
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

ITV40LT

Fred-Eric Kirsi 135216 IAPB

VOXEL GAME ENGINE USING BLENDER
GAME ENGINE

Bachelor's thesis

Supervisor: Jaagup Irve

Master of Sciences

Software Engineer

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

 Arvutiteaduse instituut

ITV40LT

Fred-Eric Kirsi 135216 IAPB

VOXEL-MÄNGUMOOTOR BLENDER
GAME ENGINE ABIL

Bakalaureusetöö

Juhendaja: Jaagup Irve

Magister

Tarkvarainsener

Tallinn 2016

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Fred-Eric Kirsi

23.05.2016

3

Abstract

The objective of this thesis is to study various aspects of developing a voxel style game

and in the process create a prototype engine to evaluate the possibilities and

performance of the algorithms. The algorithms evaluated are Greedy Meshing, A*

search, Goal Oriented Action Planning (GOAP), Finite state machine (FSM), and Perlin

noise. The used 3d engine is the Bender game engine. The scripting is done in the

Python coding language.

The result of this work is a working voxel game prototype, where the agents are able to

navigate, manipulate, and make decisions in real time. The aim of the prototype is to

quantize the performance and feature experience on for the user.

The work is divided into four main stages. Firstly evaluation of the work environment

and its limitations. Secondly the development and optimization of the voxel

implementation. Thirdly the creation and comparison of different pathing

implementations. Lastly the evaluation different possible decision systems.

The thesis describes the implementation of the voxel generating system using greedy

meshing and Perlin noise, how voxel aware pathfinding is executed and compares

different AI decision making systems.

The result of this project is a functional prototype, its codebase, and algorithm design

descriptions.

This thesis is written in English and is 59 pages long, including 7 chapters and 46

figures.

4

Abstract

Voxel-mängumootor Blender Game Engine abil

Selle töö eesmärk on uurida 3d voxel mängude koostamisel kasutatavaid algoritme ja

selle alusel töötada välja prototüüp. Seal hulgas uurida nii voxel keskkonna loomisest

tulenevaid probleeme kui ka agente juhtivaid süsteeme. Algoritmid mida uuritakse on

Greedy Meshing, A* tee otsing, Goal Oriented Action Planning (GOAP), Finite state

machine (FSM), and Perlin noise. Kasutatud 3d mootor on Blender game engine.

Koodimine on tehtud Python programmeerimise keeles.

Töö käigus loodud agendid peavad töö tulemusena olema võimelised reaalajas

orienteeruma ja otsuseid vastu võtma. Loodud prototüübil peab olema võimalik

tulenevalt iga algoritmi keerukusest viia läbi tööjõudluse ja võimekuse analüüs.

Töö jaguned nelja põhilisse peatükki. Esmalt tutvutakse töökeskkonna nõuetega ja

parameetritega. Teiseks teemaks on prototüübi voxel lahenduse kirjutamine ja

optimeerimine. Järgmiselt viidakse läbi erinevate teeotsingu algoritmide analüüs.

Viimasena viiakse läbi agentide otsuste vastuvõtvate süsteemide katsed.

Selles töös kirjeldatakse voxel-lite loomist ja maastiku muutmist arvestavat teeotsingut

ning võrreldakse erinevaid otsuste tegemis süsteeme. Töö tulemuseks on töötav

prototüüp, selle koodibaas ja kasutatud algoritmide kirjeldused ning hinnangud.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 59 eheküljel, 7 peatükki ja 46

joonist.

5

List of abbreviations and terms

2D Two dimensional

2d filter Post processing image filter

A* "A star" search algorithm

ANN Artificial neural network

Brownian motion Random motion of particles

chunk Voxel organization unit

Dijkstra’s algorithm search algorithm

FPS Frames per second

FSM Finite state machine

GOAP Goal oriented action planning

graph data structure In computer science

Greedy algorithm
A greedy algorithm is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at each
stage

K-map Karnaugh map

nodes A node is a basic unit used in computer science graphs.

Perlin noise Perlin noise is a type of gradient noise developed by Ken Perlin.

polygon Polygon is a collection of vertices and edges that form a face.

quads A polygon with 4 vertices.

rational agent
An agent that chooses to perform the action with the optimal
expected outcome for itself from among all feasible actions.

Ray-tracing Computer graphics technique.

RLE Run length encoding

scene
Game engine environment where objects, cameras, lights and
scene attributes are located.

shader nodes Tool for creating custom shaders.

voxel
A voxel represents a value on a regular grid in three-
dimensional space.

z-fighting
Z-fighting, also called stitching, is a phenomenon in 3D
rendering that occurs when two or more primitives have similar
values in the z-buffer.

6

Table of Contents

1 Introduction..11

1.1 Problem statement..12

2 Performance goals..13

2.1 What are the main performance factors?...13

2.2 Engine graphics and polygon count...14

2.3 Engine logic and scheduler..15

3 Writing the voxel system and its performance factors...16

3.1 General ways of memory representation...16

3.2 General ways of visual representation...18

3.3 Meshing...18

3.3.1 Naive method..19

3.3.2 Culling..20

3.3.3 Greedy Meshing...21

3.4 Prototype implementation of greedy meshing...22

3.4.1 The basic algorithms...26

3.5 Afterthought on meshing...32

3.6 Physics...34

3.7 Terrain generator..35

4 Pathfinding..36

4.1 General pathfinding methods...37

4.1.1 Pseudo-random pathfinding..37

4.1.2 Dijkstra's algorithm..38

4.1.3 A* search algorithm..39

4.2 Prototype’s implementation of world altering pathfinding....................................40

4.2.1 Branching A* altering path...40

4.2.2 Greedy A* altering path...42

4.2.3 Hybrid greedy altering path..43

4.2.4 Possibility of improvement...45

7

5 AI - Intelligent agents and decision handling...46

5.1 Stateless..46

5.2 Finite-state machine...48

5.3 Goal oriented action planning..50

5.4 Neural network assisting..52

6 The prototype..54

6.1 Features and performance..54

7 Summary...58

 References..59

8

List of Figures

Figure 1: Blender game engine profiler...13

Figure 2: Example: effects of polygon count in Blender game engine...........................14

Figure 3: Example: space subdivison of an octree..17

Figure 4: Raycasting example...18

Figure 5: Naive culling example...19

Figure 6: Example of culling voxel faces..20

Figure 7: Example of worst case voxel chunk...21

Figure 8: Example of greedy meshing on a solid chunk of voxels..................................22

Figure 9: Example of same type faces allowed to pass through each other and over

culled space..23

Figure 10: Mikola Lysenko's example of culling..24

Figure 11: Mikola Lysenko's example of greedy meshing..24

Figure 12: Improved greedy meshing result..24

Figure 13: Example of a unoptimized plane with 5784 vertices and 1446 faces............25

Figure 14: Example of greedy meshing a plane. Vertex count has been reduced to 792

and face count to 198...26

Figure 15: Axis aligned planes of a 8x8x8 chunk...27

Figure 16: Example of the initial state of greedy meshing..28

Figure 17: Step 1 of greedy meshing...28

Figure 18: Step 2 of greedy meshing...29

Figure 19: Step 3 of greedy meshing...29

Figure 20: Step 4 of greedy meshing...30

Figure 21: Step 5 of greedy meshing. The marking of the corners.................................30

Figure 22: Step 5 of greedy meshing. The creation of polygons from corners...............31

Figure 23: Example of greedy meshing reference overwriting.......................................32

Figure 24: Example of stacking textured planes...33

Figure 25: Calculation for worst case pixel count and image size..................................33

Figure 26: Example of cube based physics from an earlier project.................................34

9

Figure 27: Example of activity and impact of 1210 sheep actors...................................37

Figure 28: Example of Dijkstra’s algorithm wasteful nature. [7]....................................38

Figure 29: Example of multiple valid targets being available to the actor......................39

Figure 30: Improvement in visited node count in A* pathing...40

Figure 31: Branching pathfinding search visualization...41

Figure 32: Branching pathfinding search execution..41

Figure 33: Greedy A* altering path generation visualization..42

Figure 34: Greedy A* altering path exccution visualization...43

Figure 35: Hybrid greedy altering path first stage: searching for a simple path.............44

Figure 36: Hybrid greedy altering path second stage: continuing with greedy pathing..44

Figure 37: Sheep being spawned next to a threat..47

Figure 38: Sheep running away from threat..47

Figure 39: A wolf's states and transitions..48

Figure 40: Wolf in idle state..49

Figure 41: Wolf having changed to explore state as of being hungry.............................49

Figure 42: Wolf having found food (a sheep) and changing to the eating state..............49

Figure 43: Base variables of the GOAP example..51

Figure 44: The search and result of the GOAP example...52

Figure 45: Example of polygon reduction of meshing a chunk......................................55

Figure 46: Example of user's terrain manipulation..56

10

1 Introduction

Voxel engines are everywhere. With the advent of Infiniminer, Minecraft and plethora

of other voxel games a new game concept started to emerge. The world where the

players now find themselves is not one of illusion of agency but one that actually

responds and changes. It is a novel experience but as such still in its infancy. There

much work that goes into making a voxel game and it is a craft worth further pursuit.

The objective of this thesis is to explore the technology that goes into making a voxel

game. The main focus is on three main topics: voxel generation, pathfinding, and agent

AI. Voxel generation is the main feature of voxel games and also the main concern

when it comes to optimization. There are many approaches when it comes to generating

voxels, with each offering variety of benefits and concerns. In most games pathfinding

is dealt by the game engine which the game is built on itself. It is generated before the

game and mostly static in nature. But voxel games require much more tailored and

dynamic pathfinding which is why pathfinding is an aspect that needs to be revisited

and evaluated. Finally, there is not much of a game without its inhabiting agents having

their own mind. The illusion worlds of agency is something without which players can

not invest themselves into the game. The agents AI must be able to make decision and

respond with competence that is expected given the context of the world.

Addressing these core subjects will enable us to create better and more compelling

experiences for the user.

The prototype on which the algorithms are studied on is developed on the Blender 3d

engine using Python as the scripting language. Blender 3d has a well documented small

scale game engine on which rapid prototyping is possible. The prototype is developed

on an Intel® Core™ i7-4790K Processor at 3.8GHz (underclocked).[1] The graphics

card used is an ATI Radeon™ HD 5770 Graphics card. [2]

11

1.1 Problem statement

The problem is to explore ways to give the user more challenging game environment

while not jeopardizing the system performance and consequently the user’s experience.

For this purpose there is a need to explore ways how to generate procedural

environments and how to bring those environments truly alive by complementing them

with capable AI.

The voxel rendering part of the engine must enable the user to make changes in the

scene without dropping the frame rate below 30 which equals to around 33ms frame

time. The generated voxel landscape must be large enough to enable bird's-eye view

while not impacting performance significantly.

The actors must be able to traverse and perform actions on the whole voxel terrain,

while not exceeding the 16ms of logic time.

12

2 Performance goals

Any user experience can negatively impacted if the application is not responsive. There

is no point in having a huge feature set if the user is unable or unwilling to use it. This is

why there is a need to understand the different performance aspects of the engine used

for the prototype and set reasonable performance goals for the mechanics.

2.1 What are the main performance factors?

The main performance factors of the Blender game engine are shown in Figure 1. Aside

from the FPS, the profile shows physics, logic, animations, network, scenegraph,

rasterizer, services, overhead and outside. The most notable are the physics, logic, and

rasterizer statistics which contribute the most time spent for the frame time.

Figure 1: Blender game engine
profiler

Physics represents the time spent on physics code. Blender uses the Bullet Physics

Library for its physics calculations. Biggest causes for physics load are complex mesh

based collisions, physics mesh updates, and large numbers of game object instances

using physics. In this project’s scope there is no need for Bullet physics as it is handled

by the agent logic itself.

The logic encompasses everything user scripted, either in Python or Blender logic

bricks. This also includes the procedural generation and updates to the voxel terrain and

actor logic. The rasterizer is responsible for actually rendering the game. This includes

13

rendering geometry, shaders, and 2D filters. Aside from them, the other profile statistics

that are either legacy or not important features in this project’s scope. The most critical

aspects of this project are the logic time and polygon count.

2.2 Engine graphics and polygon count

First variable to check would be the maximum possible polygon count. By subdividing

a plane the game engine can show well beyond one million polygons while never

exceeding 16ms of frame time. According to initial tests on the voxel rendering engine,

the Blender game engine can handle displaying a maximum of 50 000 faces with shader

nodes and post processing filters. Without shader nodes 100 000 polygons. See Figure

2. This is ample for a prototype voxel game.

Figure 2: Example: effects of polygon count in Blender game engine

Besides FPS, it is notable that the Blender instance uses around 2-4GB memory which

is considerably high and may by itself prove to be a bottleneck, but currently the engine

ignores the memory aspect of performance.

14

2.3 Engine logic and scheduler

The voxel creation and actor logic should not impact the frame rate. The game logic

time should be under 16ms to enable smooth gameplay at 60 FPS, but considering that

this time is shared with the rendering time in the frame time. Given a ratio of one to one,

the expected frame rate would be around 30 FPS which is still considered acceptable.

Considering that all calculations can not be made in 16ms, but are not real time

dependent, there is a possibility to spread the load over several frames. This problem

can be reduced by a scheduler. But considering there is a limit of how long you can

postpone a reaction to an action there must be a maximum limit set.

The scheduler must ensure a response for user interaction in under a second to minimize

user disarray and complete in 2 seconds in order not to disinterest the user.

The scheduler has more leeway with actor interaction as thinking pauses and semi

optimal choices are less predictable and at best case at best case enforce the idea of the

actors being conscious and bound to the rules of the world the same as the user would

be.

The scheduler should not create situations where certain task are executed at a faster

pace than other while the logic and mechanics require them to be synchronized.

15

3 Writing the voxel system and its performance factors

By analogy with pixel a voxel is a volume element. It is the smallest distinguishable

space occupying element of a three-dimensional space. Voxels as data structures

normally do not possess their own position, but are relative to their parent chunk, which

is a larger space dividing element. This enables more efficient representation of voxels

in memory and logic handling.

3.1 General ways of memory representation

In memory there are many ways to represent data and voxels are no exception. The

different implementations follow the common trend that data access time can be

exchanged with data compression. When building a voxel game, it is important to

choose a data structure for representing the world early on. This decision more than any

other has the greatest impact on the overall performance, flexibility, and scale of the

game.

The simplest choice is a flat array, where all the voxels are stored sequentially in an

array. This approach has the benefit of being the simplest solution and offers great

access time. An added benefit is that simple neighbourhood checks can be done with

index calculations instead of iteration. The flat array model’s greatest drawback is its

disinterest in compressing data. The amount of memory consumed grows with the cube

of the linear dimension. It is a viable solution for small scale games, but for larger

games the memory impact might overwhelm the hardware capacity.

A popular choice for voxel representation is an octree. An octree is a tree that

recursively subdivides space into equal sized octants as shown in Figure 3. As of most

of the voxel worlds are occupied by constant regions it is expected to reduce the size

significantly. Unfortunately, the tree traversal creates a lot of overhead for random

access and neighbourhood checks.

16

Figure 3: Example: space subdivison of an octree

Finally what [3] suggested is to use run-length encoding for storing voxels. RLE is a

very simple of lossless data compression which benefits greatly from large homogenous

sequences of data which is expected from a game environment anyway. Sequences in

which the same data value occurs in many consecutive data elements are stored as a

single data value and count, rather than as the original run. This increases the iteration

time as the iteration over the voxel set in units of runs instead of units of values. For

example in RLE “AAAAABBZZZZYYYTTTTTTTTT” would be encoded into

“5A2B4Z3Y9T”.

Generally it is advised to add a chunk paging as another layer of data management. This

way the management of contained spaces is improved. Using a hashmap to store the

chunks allows one to maintain random access times, while simultaneously taking

advantage of sparsity as in an octree.

As of time constraints the data structure used in the prototype is flat arrays divided into

chunks. While not evident yet, the voxels generation method and pathing, which is

discussed later, depended mainly on random access times, which was for the benefit of

this choice.

17

3.2 General ways of visual representation

A common method to draw voxels is to use ray-tracing. This involves raster graphics

where you simply raytrace every pixel of the display into the scene. See Figure 4. An

added benefit for this type of rendering is the added feature of ray-traced illumination

with shadows. Also ray-casting is known to scale much better with large numbers of

voxels as the processing depends on the number of pixels which is constant. Downside

is that ray-casting is feature that game engines normally don’t support and such voxel

systems are written from ground up by their users.

Figure 4: Raycasting example

What game engines are good at is drawing triangles, a lot of them. One of the main

innovations in voxel games is that they use polygons instead of ray-casting to render

their volumes. A volume described as voxels can be visualized by the extraction of

polygon iso-surfaces that follow the contours of given voxels. This is called meshing.

3.3 Meshing

The main benefit to meshing is because it can be implemented in most game engines

one way or the other and can be used side by side with other mainstream engine features

out of the box. This includes texturing, shading, physics, and animations.

The main challenge in using polygons is figuring out how to convert the voxels into

minimum amount of polygons efficiently. In a typical voxel game the voxels do not get

modified that often compared to how frequently they are drawn. Which is why the main

18

heavy lifting happens at rendering the voxels. As a result, it is quite sensible to optimize

the mesh upfront.

In the following I will explain some of the meshing possibilities.

3.3.1 Naive method

This is the worst case scenario. For each voxel a cube with 6 faces is generated. This

means that a lot of polygons are wasted to create faces that are hidden between solid

voxels as seen on Figure 5. One benefit for this method is that it does no neighbourhood

checks and thus updating a voxel is contained only to that voxel.

Figure 5: Naive culling example

For reference this method has a ratio of 6.

19

3.3.2 Culling

Clearly, in order to improve on the naive method is to simply not to draw the faces that

are obscured by checking each cubes neighbours before creating a face. This means for

each voxel 6 neighbourhood checks must be done. Of course those checks work both

ways for the voxel and the neighbour so this can be improved to about 3 checks per

voxel.

The reduction of face count can be in the best case, a solid chunk of n cubed voxels as

seen on Figure 6, a factor n. At the worst case, namely a checkerboard chunk as seen in

Figure 7, the same as the naive method. Earlier results suggest that the expected ratio

for a Perlin noise map is somewhere in the 1 to 2 faces per voxel.

Figure 6: Example of culling voxel faces

20

Figure 7: Example of worst case voxel chunk

3.3.3 Greedy Meshing

As the optimal mesh representation of a group of voxels is an open problem it is not

practical to aim for that. While greedy approaches do not promise the best or even a

good solution the more often provide a fast solution that will do.

The greedy meshing algorithm merges adjacent quads together into larger regions to

reduce the total size of the geometry. For example see Figure 8.

21

Figure 8: Example of greedy meshing on a solid
chunk of voxels

Given that greedy meshing can improve the result of the culled method it is expected to

give at least as good results if not better. Early test results show that the implementation

has a ratio of 0.1 to 1 face per voxel.

3.4 Prototype implementation of greedy meshing

The idea was inspired by Karnaugh map method which is used to simplify boolean

algebra exressions.[4] By analogy to K-Map, meshing can be improved by allowing

faces overlap and extend over undefined (culled) space as shown in Figure 9. Given that

the material (visual) is the same, there is no z-fighting or other artifact for this approach.

There is no rule that faces can not intersect.

22

Figure 9: Example of same type faces allowed to pass through each other and over culled
space.

As per [5] example, the culled approach would result in Figure 10 surface. While the

greedy meshing would result in Figure 11. This implementation of this idea managed to

improve on is to merge the floor tiles into one single big tile as shown in Figure 12. The

greedy algorithm can generate reasonably fast results that are by a significant margin

better than any simple culling. The main improvements can be seen in contrast of Figure

13 and Figure 14 where the improvements in vertex and face counts are listed.

23

Figure 10: Mikola Lysenko's example of
culling[5]

Figure 11: Mikola Lysenko's example of greedy
meshing[5]

24

Figure 12: Improved greedy meshing result

Figure 13: Example of a unoptimized plane with 5784 vertices and 1446 faces.

25

Figure 14: Example of greedy meshing a plane. Vertex count has been reduced to 792 and face
count to 198.

Testing showed that the optimal chunk dimension is 8 units, in order for the meshing

not to take too long. At higher dimension sizes the smallest schedulable work unit took

more than 16 ms and was in violation with the set performance goals.

26

3.4.1 The basic algorithms

To begin, every chunk with n3 voxels has 3(n+1) planes where faces can be drawn as

seen on 8x8x8 chunk in Figure 15. By pre defining these planes there are no

unnecessary neighbourhood checks. The result is a flat array representing a two

dimensional slice of the voxel chunk, where each element has a value that represents

either no face, desired face value or undefined value. Undefined values mean that it

does not matter what kind of face polygon extend over this particular face.

Figure 15: Axis aligned planes of a 8x8x8 chunk.

To illustrate, consider the example shown in Figure 16. There is shown a simple chunk

with two layers of voxels and where the middle plane is occupied by green, red

(obscured) and none type of faces.

27

Figure 16: Example of the initial state of greedy meshing.

The algorithm starts by iterating over each plane’s faces till the first undiscovered face

is found as shown in the example Figure 17.

Figure 17: Step 1 of greedy meshing

Starting form that face the first axis is chosen. In the example of Figure 18, the axis is

chosen to be the positive Y.

28

Figure 18: Step 2 of greedy meshing

The next step is shown in Figure 19. The plane from that starting field till the first

obstructing field which can't be stretched over is found. This is noted as the height of

the first column.

Figure 19: Step 3 of greedy meshing

Then this process is repeated on the same axis on the next faces again till the first

obstructing field which can't stretched over is found or it has gone past the height of the

shortest column as shown in Figure 20. It finally stops at the end of the plane or if the

column height is 0.

29

Figure 20: Step 4 of greedy meshing

The resulting list now has the column heights in decreasing order. Not stepping further

than the shortest column ensures that the repeating numbers can now be ignored and the

generated polygon can be stretched from the furthest repeating number column to the

first column. Those unique numbers and their indexes mark the corners of the polygons

to be drawn as is illustrated in Figure 21 and Figure 22.

Figure 21: Step 5 of greedy meshing. The marking of
the corners.

30

Figure 22: Step 5 of greedy meshing. The creation of
polygons from corners.

This is repeated on all 3 remaining rotations and after that all covered faces are

considered to be visited. Visited means, that they are not considered as new starting

points. After that the faces are marked in a similar temporary array where the reference

count of how many faces it covered is noted. The overwrite rule is based on the idea that

a faces are covered by the most referenced or recent equal face. This is illustrated by

Figure 23, where an old face D was overwritten by E. While that number does get dirty

(invalid) over time it gives a quick hack to reduce the face count with little performance

impact. Later, when all the faces are visited, all faces still referenced in the temporary

array are to be drawn.

31

Figure 23: Example of greedy meshing reference overwriting

This method has certainly some shortcomings. For example corner faces should get

preferential treatment. Faces from different orientation passes could be merged together

on the axis edge. Even parallelization can be applied as the planes are not dependent on

each other. There are many possible improvements that can be done, but for the time

being those can be postponed.

3.5 Afterthought on meshing

During the writing of this algorithm a third option was conceived. While sharing

polygons is a proven viable idea, all voxel faces on a plane can be drawn with a single

polygon where the polygon’s texture pixels are the faces. So if at least 1 face exists on a

plane there has to be at least one polygon. This would hint that polygon-wise this would

be the optimal solution for the least amount of polygons possible. This would work by

stacking those textured chunk planes on all 3 axes like in Figure 24. More detailed

textures could be added in a material shader as the pixels values, world position and

normal can be combined into a texture UV coordinate. The concept render of this

approach is Figure 24.

32

Figure 24: Example of stacking textured planes

The the worst case checkerboard of a 32x32x32 chunk would be 99 polygons with a 320

by 320 texture as shown in Figure 25. The best case of a single voxel chunk would be

only 6 polygon planes done with a 6 pixel image. While an alpha channel image (4

bytes per pixel) with 101376 pixels would take about 406 kilobytes, whether a graphics

engine can handle large amounts of chunks with unique textures is something to be

looked into.

Figure 25: Calculation for worst case pixel count
and image size.

33

chunkSise=32
planeCount=3⋅(chunkSize+1)=99
pixelCount=planeCount⋅chunkSise2=101376
imageDimension=√ pixelCount≈320

3.6 Physics

It is notable that physics is major factor in voxel engines. The simplest way to

implement physics is to use mesh based physics, where the game engine would

calculate the intersection all physics enabled faces. As the polygon count is the main

concern this would also double the impact. This is why mesh based physics are a bad

option. An alternate method is to only spawn invisible physics enabled cubes only in the

Moore neighbourhood of each actor. This method is what was used in an earlier project

with minimal performance impact Figure 26.

Figure 26: Example of cube based physics from an earlier project

The solution which was used in the prototype was to force the behaviour of the actors to

move only in a chess like unit motions and calculate the physics in the voxel engine

code. Because the random voxel access time was low, the performance overhead even

with a thousand actors was miniscule and schedulable.

34

3.7 Terrain generator

To generate a playable world out of voxels, some form of terrain generation is required.

One such way is to use Perlin noise. “An implementation typically involves three steps:

grid definition with random gradient vectors, computation of the dot product between

the distance-gradient vectors and interpolation between these values.“[6]

For the prototype's purpose, the algorithm produces a pseudo-random heightmap which

can be used to spawn mountains and valleys. The appearance of randomness is

enhanced by the fact that multiple octaves of noise are used. In order to eliminate Perlin

noise as a performance factor only the first octave was used in the prototype. The

resulting terrain can be seen in Figure 2.

35

4 Pathfinding

What is pathfinding, its concerns and why is it relevant? Pathfinding as the name

implies describes the process to find a path between two points. This field of research is

heavily based on finding the shortest path in a weighted graph. At its simplest a

pathfinding method starts at a node and explores its adjacent nodes in least cost order

till the destination node is reached.

Two primary problems of pathfinding are finding a path and the shortest path problem.

The basic approach is to exhaust all possibilities. This of course is far from practical.

Combined with the more complicated problem of finding the optimal path all system

resources will be quickly exhausted before finding a solution. This is where algorithms

such as Dijkstra and A* improve on. They strategically eliminate paths through

dynamic programming and heuristics. By elimination the search space drastically

shrinks.

But why voxel games are different? There is inherent expectation of the world's

capability to perform alteration. Like the user is able to manipulate the state of the world

also the inhabiting actors must be applicable to the same expectations. This means that

the pathfinding not only has to traverse nodes but also be able to alter the state of the

world. By bringing this new dimension of complexity to the pathfinding problem the

prospect of finding the optimal path becomes seemingly unreachable.

As often pathfinding problems are more concerned of efficiency or being shortest

possible than focusing on features. There is a tendency to forget that the true aim is to

provide the user with unique experiences. A game is not the real world. What games

mostly do is to approximate and fake features found in real life. There is nothing wrong

with sub-optimal solutions if they are believably reasonable.

36

4.1 General pathfinding methods

4.1.1 Pseudo-random pathfinding.

Simplest would be the Brownian motion inspired pathfinding. This algorithm just

expects the actor to move around randomly. With any set of simply random vectors

there won’t be any path or progress made normally. But if one can offset the probability

of the vectors appearing by some dynamic function the resulting biased motion or drift

will try to reach the direction. If the motion to the direction of the target is more

probable, it may get there eventually.

For example we can use this to call the sheep to a location or scare them with wolves

away from a position. As these actions can be executed without any foresight there is

little to none performance impact. This is why approach is very good at giving a sense

of activity to a large group of actors without impacting performance as illustrated by

Figure 27.

Figure 27: Example of activity and impact of 1210 sheep actors.

37

4.1.2 Dijkstra's algorithm

Dijkstra’s algorithm works by visiting nodes in the graph from a starting point. While it

examines each newly discovered not-yet-examined node in a lowest cost order, it

expands outwards from the starting point until it reaches the goal. This algorithm fails if

there is a negative edge weight. Otherwise Dijkstra’s algorithm is guaranteed to find a

shortest path.

The main shortcoming if Dijkstra’s algorithm is that is does not make use of all the

information present. It does the pathfinding solely on the cost function while avoiding

any attempt to make assumptions. See Figure 28.

Figure 28: Example of Dijkstra’s algorithm wasteful nature. [7]

This can be used as an advantage when multiple undiscovered endpoints are present and

there is no preference of targets. Without exploring any alternatives the first shortest

path to a valid target is chosen. In the example Figure 29 it is shown how this applies to

the wolf and sheep situation.

38

Figure 29: Example of multiple valid targets being available to the actor.

While this is a neat feature, there is a pre-processing trade-off. If the amount of targets

is low or they are positioned relatively far away, a better approach would be to list all

the valid targets and to perform heuristic search algorithm for each target. One of such

algorithms is A*.

4.1.3 A* search algorithm

More commonly than Dijkstra's algorithm A* is used in games. It is evident in the

example Figure 30 that the A* is an improvement as the number of nodes probed is

visibly reduced.

While being a variant of Dijkstra's algorithm the secret to its success is that it combines

the travel cost information that Dijkstra’s algorithm uses and the remaining distance to

the target. This approximate distance is found by the heuristics, and represents a

minimum possible distance between that node and the end. When the weight of

heuristics in the evaluation approaches zero, A* becomes equivalent to Dijkstra's

algorithm. As the focus on heuristic increases, the result becomes more greedy and no

longer guarantees an optimal path. In many applications like video games this is

acceptable and even desirable, in order to keep the algorithm running quickly.

39

Figure 30: Improvement in visited node count in A* pathing

4.2 Prototype’s implementation of world altering pathfinding.

The goal is to enable the actors to deliver the experience that the users expect from a

capable AI. The main such capability is show voxel conscious path planning. This

requires to handle world state tracking per node which memory inefficient and leads to

further branching. In the following are shown possible options that were tested.

4.2.1 Branching A* altering path

This algorithm follows the A* pathfinding pattern. The main change to the algorithm is

the added functionality for passing through solid voxels where the travel cost is

calculated with the necessary changes in mind. The most significant adjustment is that

after each change to the graph the current node chain is considered to have moved to

another branch of graph. This results in nodes being visited multiple times on branched

graphs which is detrimental. The algorithm will find the shortest path if possible, as

each branch paths are considered equally in the queue and after the fact can be viewed

as a path emerging on a pre modified graph. Most concerning drawback is the

uncontrolled branching which quickly saturates the system resources. The concept is

viable only on short distances as the path shown in Figure 31 and executed in Figure 32,

required 20000 nodes being visited which while visually unseen caused major lag in the

prototype.

40

Figure 31: Branching pathfinding search visualization

Figure 32: Branching pathfinding search execution

41

4.2.2 Greedy A* altering path

Previously it was assumed that after each change in the world the node on that chain

continues in a branched graph contrary to other currently evaluated nodes as any change

applied in the current chain of nodes may not apply to other. In order to avoid branching

the nodes are limited to be evaluated only once. This is achieved by first come first

served basis. This serves the purpose of avoiding node overlap between branched

graphs. The child nodes inherit the invalidated nodes list of its own path chain which in

addition to the initial graph servers as the branched graph.

The resulting path is capable of building stair structures into solid spaces as was the

branching algorithm. The main difference is that while the path is not optimal, it

manages to explore more node with zero overlap which in turn reduced the visited node

count to 2000 in the path shown in Figure 33 and Figure 34.

Figure 33: Greedy A* altering path generation visualization

42

Figure 34: Greedy A* altering path exccution visualization

While during testing no test case was found where this could not produce a path, this

algorithm still discards a lot of possible paths as first choice basis eliminates otherwise

perfectly fine nodes. What is more, while the path that this algorithm serves is

acceptable through solid space, it makes no effort to generate a better standard surface

path.

4.2.3 Hybrid greedy altering path

While the greedy algorithm didn’t do exceptionally well on normal unobstructed graph

a simple improvement is to first explore the graph with standard A* algorithm while

noting any starting points for paths that require voxel alteration. When the first pass

does not yield a path then all the noted points are entered back into the pathfinding stack

which then is passed to the greedy pathfinder. This results in an easy improvement on

the greedy path with no drawbacks for paths that do not require alteration. The first pass

can be seen in Figure 35 where the actor tries to climb the cube structure by first

searching any possible paths around it and then resorts to more destructive approach in

Figure 36. Of course, the issue of getting sub-par results for any paths after the first

stage is still present.

43

Figure 35: Hybrid greedy altering path first stage: searching for a simple path

Figure 36: Hybrid greedy altering path second stage: continuing with greedy
pathing

44

4.2.4 Possibility of improvement

While branching search is a broken algorithm, the pursuit of that idea was not without

merit. The preservation of the node updating nature of the A* algorithm after the

alternating stage of the greedy is something that should have been a result of this study.

Relaxing the “no update” criteria mentioned in 4.2.2 could merge the two staged

process into one that is similar to the branching algorithm. For example by allowing

updates on any node which branch is same, but otherwise enforce first choice rule.

45

5 AI - Intelligent agents and decision handling

An AI system is composed of an agent and the environment in which they act. “An

intelligent agent is an autonomous entity which observes and acts upon an environment

and directs its activity towards achieving goals. Intelligent agents may also learn or use

knowledge to achieve their goals.”[8]

Such behaviour is achieved by the use effectors to perform actions in response to

perception. Effectors are what the agent uses to perform actions. Those include legs and

hands in real life and by analogy movement logic actuators in Blender. Actions are what

results from the use of effectors. For example change of its location or damage to

enemies. Sensors are what the agent uses to perceive the world. In Blender this is done

by using logic sensors or scripting.

Agents are considered rational if they work towards the optimal outcome. The rational

actor should be concerned with results of its actions in response what the agent has

perceived. This way the actor performs actions that causes the agent to be most

successful the knowledge of the world it has acquired.

By only having an interactive world and means of exploration the agents capable of

action but not reaction. This on its own does not count to being a good experience for

the user. As the goal is to inhabit the game world with agents that are rational in order

for the world to be perceived interesting and challenging there is a need to explore ways

to program such agents.

5.1 Stateless

The easiest form of a rational agent is a simple stateless agent. It can only act on the

basis of the current perception as it has no information of its past observations. “The

agent function is based on the condition-action rule: if condition then action.” [8]

46

As there is no state or perception history to evaluate the performance and response time

is great. While the decisions lack foresight and appear naive it can avert the attention

from that by the sheer numbers of actors that can be simulated. This is great for giving

the user impression of an alive and populous world. For example it is easy to implement

sheep logics as such as they walk around randomly or while seeing a wolf run away as

shown in the transition from Figure 37 to Figure 38.

Figure 37: Sheep being spawned next to a threat

Figure 38: Sheep running away from threat

47

5.2 Finite-state machine

A finite-state machine is in only one state at a time. While being in a state the actor

performs an action of that state and checks the perceived state of the world. It can

transition from its current state to another when initiated by a triggering event or

condition.

This is great for developing smarter agents compared to stateless logic. By being state

aware the actor can complete rational sequences of actions. An added benefit is that

there is not much difference in performance compared to stateless as the logic is

comparable and the overhead is small. As the states and transitions are finite in number

and written by hand the resulting choices have easily understandable logic to them.

For example a wolf might have four main states and the corresponding transitions. See

Figure 39. The wolf can execute rational sequence of actions. For example it knows that

in order to feed it has to explore for food or prey while protecting itself from danger and

fatigue. The transition from being inattentive Figure 40, to being hungry Figure 41 and

lastly eating Figure 42 is illustrated below.

Figure 39: A wolf's states and transitions

48

Figure 40: Wolf in idle state

Figure 41: Wolf having changed to explore state as
of being hungry

Figure 42: Wolf having found food (a
sheep) and changing to the eating state.

49

5.3 Goal oriented action planning

Goal oriented action planning is a system that allows to plan a sequence of actions to

satisfy a particular goal. The planner finds the appropriate combination of actions based

on what preconditions are available to fulfil the goal that is self-consistent. This is

achieved with A* pathfinding. The use of A* with the appropriate heuristic avoids

visiting overly expensive action routes.

“A GOAP system does not replace the need for a finite-state machine, but greatly

simplifies the required FSM. A plan is a sequence of actions, where each action

represents a state transition. By separating the state transition logic from the states

themselves, the underlying FSM can be much simpler. Actions define when to transition

into and out of a state, and what happens to the game world as a result of this transition.

Ultimately, the Goto and Animate states cover most of things that agents do. GOAP

offers a much more elegant structure that better accommodates change. The addition of

design requirements is handled by adding actions, and preconditions to related actions.”

[9]

The states that the actor can be in are described as positive valued vectors while the

queries and transitions can have negative values. The query is formed by the difference

of the current state and the desired state. A goal state is found when a sequence of

actions is found that transforms this query back into a positive vector. The sequence is

found by working backwards from this goal query by starting with the last action and

moving to towards the starting action and representing the unfulfilled pre-requirements

of each transition as negative values in the query. A simple example scenario is the

acquisition of food rations and weapons, namely the creation of cake from ingredients

and picking up swords as seen in Figure 43 and Figure 44. The starting state would

represent the actors inventory. The desired state would be the desired state of 3 cakes

and 3 swords with other values being 0 in order to be ignored. This would result in a

query where the actors state is some number of negative swords and negative cake in its

inventory. From there the transitions are applied to the query state in the same way as

possible moves are evaluated for the current node the A* pathfinder.

50

Figure 43: Base variables of the GOAP example

51

Figure 44: The search and result of the GOAP example

While this was not fully implemented into the game itself, the benefits speak for

themselves. Characters in the game can exhibit more varied, complex, and interesting

behaviours using GOAP while the code behind the behaviours is more structured,

reusable, and maintainable.

5.4 Neural network assisting

A novel idea would be the use of neural networks to assist agents. Neural networks are

good a pattern recognition and as there are certainly interaction patterns between actors

that the agent could learn to better evaluate its situation, which is why it is something

worth to be looked into.

52

Artificial neural networks are generally presented as systems of interconnected

"neurons" which exchange messages between each other. The connections have

numeric weights that can be tuned based on experience, making neural nets adaptive to

inputs and capable of learning. [10]

Initial test in writing a neural network turned out to be successful, but dreadfully slow.

Event after increasing the learning rate coefficient the learning took several seconds to

group the data from six inputs nodes to three output nodes. Main problems were caused

by the backpropagation which really could have used a more memory lookup and

iteration efficient language like C++. There is probably a good reason why till now little

to no game has used this and why the likes of Google are producing custom “Tensor

Processing Unit” units for their AlphaGo machine which is also why this idea was not

investigated further in the prototype.[11]

53

6 The prototype

The goal of this work was to explore the most crucial topics of creating a voxel game.

For the sake of testing various algorithms of their performance characteristics, a

prototype was in order. This prototype served as a voxel game engine where the

aforementioned features could be written and explored first hand.

“A game engine is a software framework designed for the creation and development of

video games. The core functionality typically provided by a game engine includes a

rendering engine, a physics engine or collision detection, sound, scripting, animation,

artificial intelligence, networking, streaming, memory management, threading,

localization support, scene graph, and may include video support for cinematics.“ [12]

While this engine is not complete or yet user friendly it has managed to address the first

core subject of rendering, pathfinding and agent artificial intelligence.

All the testing data was acquired on an outdated ATI Radeon™ HD 5770 Graphics card

and a Intel® Core™ i7-4790K Processor at 3.8GHz (underclocked).

6.1 Features and performance

One of the main features realized in the prototype was the meshing of the voxel chunks.

The testing was done on 8x8x8 voxel chunks in 193 chunk terrain. The terrain

generation took an average of 9 seconds for 61660 voxels of the standard terrain seed

and size that was used. The voxels were reduced to 5850 polygons which is a ratio of

~0.095 polygons per voxel. The maximum time spent to initiate a chunk was 0.45

seconds. This also includes the Perlin noise generation with rock and tree placement.

The meshing itself took an average of 2ms and a maximum of 10ms. This time is

important that it describes the response time to the change in environment. What is

more, this time can be scheduled into per plane smaller tasks. Meshing of a chunk can

be seen in Figure 45. The individual squares seen on the left are a shader trick to

illustrate those virtual faces of voxels and not real polygons.

54

As a side note, as the Blender game engine does not support polygon creation by itself,

the polygons are borrowed from various sized donor objects. This means that there is a

slight disarray between the voxel polygon count and actual polygon count present in

scene, which results in extra strain for the rasterizer.

The user and actors are able to manipulate the voxel terrain varying influence radiuses.

The aiming for the user was done with ideas borrowed from Bresenham's line algorithm

which result was a list of passed voxels.[13] The last voxel of the list was the solid

voxel the ray hit and the hit normal, which is required for relative placement, was found

by subtracting the position of the one before last and the last voxel. The user is free to

change landscape as shown in Figure 46 with placing and removing up to 1000 voxels

at a time while not exceeding 16ms logic spikes. The alterations made by the actors are

minor in scale and shown in previous topics.

55

Figure 45: Example of polygon reduction of meshing a chunk

Figure 46: Example of user's terrain manipulation

The prototype used a scheduler to minimize the strain on the time budget of a frame.

The shown individual 1000 voxel changes in Figure 46 were spread over multiple

chunks and their planes. All responses happened under a second which was acceptable.

The actors were handled in a separate scheduler with a time budget of 8ms. This

enabled to update over 1000 actors per seconds with an average strain of 5ms. Also a

scheduler was used for pathfinding with a 3ms limit per logic tic. All those schedulers

were not aware of each other's consumed time which led to frame rate drops when all

aforementioned features were used at the same time. This was a concern that due time

constraints was not further addressed.

The prototype featured voxel aware pathfinding. The pathfinding implemented was able

to find solutions to all presented test cases while being very scheduling friendly. The

actors were able to traverse, search and manipulate the environment. The biggest

downside was that pathfinding required up to 80000 voxel lookups which took about a

second on average. This would normally be acceptable if it weren't for multiple actors.

Each actor had to wait in queue for its path which caused obstruction to all actors.

The actors actions were handled by stateless logic and FSM. The implemented logic did

not cause any significant processing overhead compared to pathfinding or meshing.

While not implemented into the actors code for GOAP and ANN was included. The

56

implementation of GOAP planning took under 1ms for a 20 step plan. Neural network

performance was subpar and was included for proof of concept.

The prototype voxel game engine was able to provide a testing environment for various

features while performing mostly to specification. Besides performance the

technological debt was also a significant problem. This was mostly caused by lack of

time and discipline. This is a concern that needs to be addressed in the future.

57

7 Summary

The aim of this work was to explore everything concerning the creation of a voxel game

engine. The result was a prototype environment where the algorithms could be

evaluated and demonstrated. The main topics covered were voxel graphics, voxel

conscious pathfinding and actor decision making systems.

First main goal addressed was the data and visual representation of voxels. Various

implementations were discussed and new solutions regarding voxel meshing was

developed and tested. The result was a responsive voxel generation and manipulation

system.

The second main goal was to develop a voxel aware pathfinder. The found solution was

not perfect, but was able to create paths that required alteration to the world state while

doing so with acceptable levels of system load.

The last goal was to create actors that could use the terrain and pathing in an intelligent

manner. The proposed solutions delivered acceptable performance and expected

capability. The main issue was that not all solutions were not fully implemented into the

agent logic system.

The discussed algorithms were implemented into the prototype voxel game engine and

put into perspective. While the engine performed mostly to the specification the main

issue was the development time limit and the technological dept it caused. Overall the

prototype voxel engine was a good first step towards being able to create a unique

experience for the end users.

58

References

[1] Intel core i7. [WWW] http://ark.intel.com/products/80807/Intel-Core-i7-4790K-
Processor-8M-Cache-up-to-4_40-GHz (16.05.2016)

[2] AMD HD5770. [WWW] http://www.amd.com/en-
us/products/graphics/desktop/5000/5770 (16.05.2016)

[3] An Analysis of Minecraft-like Engines. Mikola Lysenko [WWW]
https://0fps.net/2012/01/14/an-analysis-of-minecraft-like-engines/ (16.05.2016)

[4] Karnaugh map. [WWW] https://en.wikipedia.org/wiki/Karnaugh_map
(16.05.2016)

[5] Meshing in a Minecraft Game. Mikola Lysenko [WWW]
https://0fps.net/2012/06/30/meshing-in-a-minecraft-game/ (16.05.2016)

[6] Perlin noise. [WWW] https://en.wikipedia.org/wiki/Perlin_noise (16.05.2016)

[7] Introduction to A*. [WWW]
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
(16.05.2016)

[8] Intelligent agent. [WWW] https://en.wikipedia.org/wiki/Intelligent_agent
(16.05.2016)

[9] Applying Goal-Oriented Action Planning to Games. [WWW]
http://alumni.media.mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf
(16.05.2016)

[10] Artificial neural network. [WWW]
https://en.wikipedia.org/wiki/Artificial_neural_network (16.05.2016)

[11] Google reveals the mysterious custom hardware that powers AlphaGo. [WWW]
http://www.theverge.com/circuitbreaker/2016/5/19/11716818/google-alphago-
hardware-asic-chip-tensor-processor-unit-machine-learning (16.05.2016)

[12] Game engine. [WWW] https://en.wikipedia.org/wiki/Game_engine (16.05.2016)

[13] Bresenham's line algorithm. [WWW] https://en.wikipedia.org/wiki/Bresenham
%27s_line_algorithm (16.05.2016)

59

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://en.wikipedia.org/wiki/Perlin_noise
http://ark.intel.com/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz
http://ark.intel.com/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz

	1 Introduction 11
	1.1 Problem statement 12

	2 Performance goals 13
	2.1 What are the main performance factors? 13
	2.2 Engine graphics and polygon count 14
	2.3 Engine logic and scheduler 15

	3 Writing the voxel system and its performance factors 16
	3.1 General ways of memory representation 16
	3.2 General ways of visual representation 18
	3.3 Meshing 18
	3.4 Prototype implementation of greedy meshing 22
	3.5 Afterthought on meshing 32
	3.6 Physics 34
	3.7 Terrain generator 35

	4 Pathfinding 36
	4.1 General pathfinding methods 37
	4.2 Prototype’s implementation of world altering pathfinding. 40

	5 AI - Intelligent agents and decision handling 46
	5.1 Stateless 46
	5.2 Finite-state machine 48
	5.3 Goal oriented action planning 50
	5.4 Neural network assisting 52

	6 The prototype 54
	6.1 Features and performance 54

	7 Summary 58
	References 59
	1 Introduction
	1.1 Problem statement

	2 Performance goals
	2.1 What are the main performance factors?
	2.2 Engine graphics and polygon count
	2.3 Engine logic and scheduler

	3 Writing the voxel system and its performance factors
	3.1 General ways of memory representation
	3.2 General ways of visual representation
	3.3 Meshing
	3.3.1 Naive method
	3.3.2 Culling
	3.3.3 Greedy Meshing

	3.4 Prototype implementation of greedy meshing
	3.4.1 The basic algorithms

	3.5 Afterthought on meshing
	3.6 Physics
	3.7 Terrain generator

	4 Pathfinding
	4.1 General pathfinding methods
	4.1.1 Pseudo-random pathfinding.
	4.1.2 Dijkstra's algorithm
	4.1.3 A* search algorithm

	4.2 Prototype’s implementation of world altering pathfinding.
	4.2.1 Branching A* altering path
	4.2.2 Greedy A* altering path
	4.2.3 Hybrid greedy altering path
	4.2.4 Possibility of improvement

	5 AI - Intelligent agents and decision handling
	5.1 Stateless
	5.2 Finite-state machine
	5.3 Goal oriented action planning
	5.4 Neural network assisting

	6 The prototype
	6.1 Features and performance

	7 Summary
	References

