

1

Towards Secure Agile Software Development Process

S. Hassan Adelyar

Institute of Informatics,

Tallinn University,

Tallinn, Estonia

adelyar@tlu.ee

Alex Norta

Department of Informatics,

Tallinn University of Technology,

Tallinn, Estonia

alex.norta.phd@ieee.org

Abstract-Agile methodologies such as scrum and Extreme

Programming (XP) are efficient development processes by

accepting changes at any phase and delivering software

quickly to customers. However, these methodologies have

been criticized because of the unavailability of security as an

important quality goal of software systems. Although, there

are pre-existing research results on this topic, there is no

pure approach for identifying security challenges of agile

practices that relate to the core “embrace-changes”

principle of agile. Specifically, we analyze agile practices to

find the security challenges in customer and developers

activities. The argument of this paper is that changes to

software are an important factor for security challenges and

identify challenges for the “embrace- changes” that yield

new security insights in the context of agile practices. Our

case study based result show that a number of developers-

and customer activities result security flaws and

vulnerabilities into the software.

Keywords-Agile; Embrace-changes; Development-process;

Security-challenges; Security-principles

I. INTRODUCTION

Agile is one of the most popular approaches for software-

development and its foundation is from its manifesto published

by a group of software practitioners in 2001 [1]. The focus of

agile is on developers and customers with the objective to

produce working software quickly and accept changes

throughout its lifecycle [2], [3], [4]. Therefore, agile is a widely

used approach by software industries and is suitable for rapidly

changing environments [5], [6], [7], [3], [8]. However, agile

methodologies such as extreme programming (XP) and scrum

do not support security because the focus of agile methodologies

is on functionally working software and iterative delivery [6],

[9]. At the same time, security is a critical part of software

systems.

Our aim is to analyze agile practices in order to identify

security challenges based on the security principles defined in

[10]. Experience of practitioners, shows that security principles

can guide the design and implementation of software without

security flaws. We conduct case study based research [11] on

the development process of applications that follows agile

practices to analyze the relationship between security principles

[10] and security challenges of agile practices. Our special

attention is to identify security challenges in the activities of

developers and customer of agile software development. For

agile software development to remain agile we not introduce

new practices, instead we evaluate agile practices for identifying

security challenges. Our aim is refined to the main research

question of our paper, namely: How to identify security

challenges during changes to software? To establish a separation

of concerns, the main research question is divided into the

following sub questions: What are security challenges of

response-to-changes based on security principles? What are the

most frequent security challenges in agile software

development? Which agile practices have more security

challenges?

The remainder of the paper is structured as follows.

Section II, provides related works and additional information

relevant for agile practices, software security and security

principles. Section III describes our case study design, data

collection and analysis procedures. In Section IV we present the

result of our research and evaluation of its validity. Finally,

Section V concludes this paper by summarizing the research

work, giving the contributions achieved and showing directions

for future work.

II. RELATED WORK AND BACKGROUND

Literature detects deficiencies in agile methodologies due

to the unavailability of security elements in their various phases

and practices [12], [13], [6], [9]. Research results exits in the

domain, but these research works lack a suitable approach to

identify security challenges in agile practices, during changes-

to-software. A group of researchers studies agile to explain- and

analyze its behavior for security, in order to examine its

practices for secure software development [12], [14], [13], [5],

[15], [9]. Researchers also study security for the integration into

a specific practice of agile methodology [16], [17], [18]. Other

groups of researchers emphasize security to be included at each

phase of a software development lifecycle [19] [8].

Furthermore, other researchers study agile security by

introducing frameworks for the elicitation and analysis of

security requirements [20], [21]. Agile practices, described in

Section II-A, software security, described in Section II-B and

security principles, described in Section II-C, are important

elements in our research.

A. Agile Practices
The agile methodology is suitable for a rapidly changing

environment and accepts changes to software at any phase of

development. Changes to software are an important factor for

security challenges and identifying them improves software

security. Therefore, we study the relationship between changes-

to-software, agile-practices, and security-principles.

2

The cornerstone of agile methodologies is the practices

that help to produce software quickly. The twelve practices of

agile are: planning-game, on-site customer, metaphor, small-

releases, simple-design, pair-programming, collective-

ownership, coding standards, 40-hour-week, continuous-

integration, refactoring and testing. Figure 1 shows agile

practices.

Figure 1: Agile Practices

The development process begins by requirements

gathering and the main practice in this phase is the planning-

game. Four other practices, indirectly involved, are on-site

customer, metaphor, simple-design and small-release. The on-

site customer practice is to involve the customer for writing and

prioritizing user stories as well as negotiating user stories to be

included in each scheduled release. Small-releases and simple

design practices means it is up to the customer of the software

to make important decisions. Small releases and short iterations

help a project to continue with a sustainable progress rate. The

planning game strategy is defined and prioritized according to

customer needs and choices.

A development team implements the user stories and the

main practice in this phase is pair programming in which two

programmers are coding together. Other practices involved in

this phase are coding-standards, simple-design, small-releases,

collective-ownership and 40-hour-weeks. The developers

determine the tasks necessary to implement the stories for the

current iteration and estimate the amount of effort for

performing each task as well as implementing all the stories in

the current iteration. Consequently, an implemented feature is

integrated to the software and continuous integration is the main

agile practice in this phase. By the simple-design and refactoring

practices, the developers constantly redesign and refactor

relevant parts of the system. The testing practice of agile is to

achieve the desired quality of the software. Tests check for the

presence of all the features requested by the customers and

assure the stability of the software in the presence of frequent

changes. If the test succeeds, the updated software is put into use

and the customers can decide about what new most important

features should be added to the software.

B. Software Security
Security is a quality aspect of a system property that

reflects the ability of the system to protect itself from accidental

or deliberate attacks. Security is a composite of the attributes

confidentiality, integrity, availability and accountability [22],

[23]. Confidentiality is defined as the prevention of

unauthorized exposure of software code and execution. Integrity

is the preventions of software code and execution from

unauthorized alterations, amendment or deletion. Availability is

the ability of software to be available when needed, executed in

a predictable way and delivers results in a predictable time

frame. Accountability is the availability and integrity of the

identity of the person who performed an operation.

C. Security Principles
Security principles are defined by [10] and can guide the

design and implementation without security flaws. If some part

of software development violates a principle, the violation is a

symptom of potential flaw and the development process should

be carefully revised to be sure that the flaw is accounted for. The

following is the list of security principles:

Separation of Privileges: To develop secure software, the

development process needs to verify the identity of developers

and customer based on their privileges and responsibilities.

Least Privileges: Every program and every user of a system

should operate using the least set of privileges necessary to

complete a job.

Fail-safe Defaults: The default situation is lack of access, and

the protection scheme identifies conditions under which access

is permitted.

Economy of Mechanism: Keep the design as easy, simple and

small as possible.

Psychological Acceptability: Design the human interfaces for

ease of use, so that users routinely and automatically apply the

protection mechanisms correctly.

Open Design: The design should not be secret and the

mechanisms should not depend on the ignorance of potential

attackers.

Least Common Mechanism: Minimize the amount of

mechanism common to more than one user.

Complete Mediation: Every access to every object must be

checked for authority.

III. CASE STUDY

We choose a case-study based research method [11] to

evaluate security challenges in developers- and customer

activities of agile practices based on the security principles as

listed in Section II-C. Case study in software engineering is an

empirical inquiry that draws on the source of evidence to

investigate a software phenomenon within its real-life context.

A case study provides a deeper understanding of the

phenomenon under study and is characterized by its flexibility

and the conclusion is based on a clear chain of evidence. A case

3

study consists of these main phases: case-study design, data

collection procedure, data analysis procedure and reporting [11].

A. Case Study Design
The software development process using agile practices

depicted in Figure 1 is selected as a case for our study with

holistic design [11]. We select four different software

development teams in Kabul city and they are using agile

practices for software development. The subject for our study is

security challenges in agile practices. We conduct explanatory

case study that has deductive features. Deductive case study

starts with existing theories, sets out a set of hypotheses for the

research, collects the evidence and finally compares to confirm

or reject the theories. For guiding data collection and analysis,

the following hypotheses are inferred from security principles,

listed in Section II-C:

(i) Continuous changes-to-software make challenges for the

process of separation of privilege.

(ii) Continuous changes-to-software increase the privileges

for customer and developers.

(iii) Continuous changes-to-software affect negatively the

developer attention.
(iv) Continuous changes-to-software increase the complexity

of software.

(v) Continuous changes-to-software make it difficult to

control the system-wide view of the software.

From eight security principles we derive five hypotheses.

The first hypothesis is derived from the security principle

“Separation of Privileges”. The second hypothesis is derived

from the security principle “Lest Privileges”. The third

hypothesis is derived from the security principle “Fail-safe

Defaults”. The principles of “Economy of Mechanism”,

“Psychological Acceptability” and “Open Design” are about the

simplicity of software therefore, they are derived into the fourth

hypothesis. The principles of “Least Common Mechanism” and

“Complete Mediation” are both about system-wide view and

control of software and both are derived into the last hypothesis.

These hypotheses, derived from the security principles, guide

the preparation of interview questions for gathering data about

agile security. The result of analysis, either confirm or reject the

hypotheses, which leads to either confirmed or rejected theories

about agile security [11].

For improving the data validity, we carefully design our

study implementing the qualitative investigation measures and

data validity rules in all phases of our case study. For ensuring

credibility, we carefully infer hypotheses from security

principles [10] and then we deduce the interview questions from

the hypotheses. Since the direct questions about security are

difficult to answer, we use security principles as a bridge

between the knowledge level of the researchers and

interviewees. During the interviews, for some questions, an

iterative questioning method is used for establishing more

clarity of the questions. The interview questions we checked

1 http://www.qsrinternational.com/

with supervisor and other colleagues who have experience in

case-study research. The collected data we code in such a way

that the most serious threats to data validity are avoided. During

the analysis phase we take care to correctly generalize our

findings.

B. Data Sources
The data collection method in our case study is interviews

with software developers. We carried out interviews with 13

software developers in four different teams. All four teams use

agile development methodology and each member of the team

has at least experience of three software development projects.

The interviewees were selected in such a way to cover the

overall software development process. From each role at least

two persons are included in the interviews.

The interview questions are derived from the hypotheses,

listed in Section III-A, which are in an order defined from

security principles, listed in Section II-C. The same questions

are asked for the three main phases of agile practices, planning-

game, pair-programming and continuous-integration that Figure

1 depicts. The mentioned three practices are collaborative and

the activities of developers and customer in these practices are

interdependent. The interview questions have an unstructured

format that can provide additional insight beyond the interview

questions. Each interview session lasts roughly 45 minutes to

one hour. The interviews are audio recorded into WMA files for

subsequent post-interview activities and analysis.

C. Analysis procedure
The main goal of analysis is to understand whether

theories about the security challenges in agile practices are valid

by testing the hypotheses, listed in Section III-A. For analysis,

first the transcribed interviews are coded. The latter are

meaningful labels organized by themes, or categories. These

labels are assigned to phrases or sentences from the interviews.

For coding and analysis, we use Nvivo1 that is a qualitative data

analysis software tool. To summarize coding, themes are

introduced to group the codes. Each theme relates to a

corresponding hypotheses from Section III-A. Table I shows our

predefined themes and a brief description from which a

corresponding theme is derived.
Table I: Themes and Themes description

Theme Theme Description

Privileges &
Responsibilities

Verify the identity of developers and
customer based on their privileges and
responsibilities.

Limitation of
Privileges

Only necessary privileges, minimize
interaction, & small components

Attention &
Caution

Lack of access as default, deny access
during mistake, & attention and caution

Software
Simplicity

Make the design of software simple,
small and easy

System-wide
View & Control

Minimize common mechanism, check
every access and deny access during a
mistake

4

The above themes are derived from security principles.

During software development, if the activities of developers and

customers are not in compliance with a process of inspection

such as for design principles, then it can become a source for

security flaws and vulnerabilities. We use a simple formula to

evaluate what codes have more value for analysis. The formula

is:

Code-value = (Sources * Phases) * Type

Sources denote how many different interviewees mention

the code, phases denote the availability of code in the three main

phases in Figure 1, and types show if a code is absolutely or

conditionally mentioned by the interviewees. Each component

in the formula has a numeric value and a higher value increases

code validity. The possible values for phases are 1, 1.5, 2, 2.5

and 3. If the code is mentioned in one phase then the phase value

is 1. If the code is mentioned in two phases and the type field for

both phases is Abs (absolute) then the phase value is 2. If the

second phase type value is Cond (conditional) then the phase

value is 1.5. If the code is mentioned in three phases and the type

field for phases is Abs then the phase value is 3. If the type value

for the second or third phase is Cond then the phase value is 2.5.

However, if the type value for the second and third code is Cond

then the phase value is 2. The type value is 1 if the type field for

the code is Abs and it is 0.5 if the type field is Cond.

Codes are sorted based on their value and then we review

every theme separately and draw conclusions. All themes and

codes are presented in Table II. The theme / code column

contains themes and corresponding codes. We abbreviate the

Phases and Type values. For phase value, c denotes planning-

game, p denotes pair-programming and i denotes continuous-

integration practice of agile. The type column values are

respectively Abs for absolute and Cond for conditional. The

value column gives the formula result.

Table II: Table of Coding Results

Theme / Code Phases Type Value

1.Privileges & Responsibilities

Customer puts responsibility on
developers

c+p+i Abs 32.5

Privilege & responsibilities of
developers are not clearly
documented

p+c+i Abs 30

Different pairs & frequent changes to
software

i+p Abs 20

Different pairs cause unexpected
errors

p+i Abs 14

Customer gives unclear & unstable
requirements

c Abs 12

If tasks are not clearly specified i+c+p Cond 7.5

Customer is not well familiar with
technology

c Abs 7

If software is large with frequent
changes i Cond 5.5

If developers don’t make comments
and do not work honestly p+i Cond 5.25

If developers have different ideas &
knowledge level p Cond 5

If standards are not followed i+p Cond 2.5

Developers work based on customer
interest

i Abs 1

2. Limitation of Privileges

Different pairs & frequent changes
make it difficult to limit the privileges

i+p Abs 20

Different pairs cause unexpected
errors

p+i Abs 14

Developers work for customer
interest & customer changes ideas
frequently

c Abs 12

If tasks / responsibilities are not
specified p+i Cond 9

Frequent changes of pairs & lack of
documentation

p+c Abs 7.5

If proper documentation is not
provided c+p Cond 4

Frequent changes & repetition of
work

c Abs 3

If pairs do not have good relationship
between them p Cond 2

If standards are not followed p Cond 1

3. Developer Attention

Inconsistent feedback, idea &
priority by customer cause repetition
of work

c+i Abs 22

Different pairs & frequent changes to
software

i+p Abs 20

Different pairs & frequent changes to
software

p+i Abs 14

Customer wants software quickly c+p Abs 13.5

Customer changes requirements &
developer focus is on changes

c Abs 9

Repetition of work & pressure on
developers

i+c Abs 8

If developers have less time p+c Cond 7

Customer cannot explain data
protection requirements c Abs 5

If developer is not sure about his
idea and depend on other ideas p Cond 4.5

If developer only express his idea
and others write code p Cond 3

If working in large software for long
time with frequent changes i Cond 3

If software has error and that needs
to be fixed i Cond 2

4. Software Simplicity

Customer gives unclear & unstable
requirements

c Abs 12

Different pairs & frequent changes to
software

i Abs 10

No problem p+c Abs 8

If frequent & inconsistence changes c Cond 6

No problem c+p Abs 4

If pair don’t follow the standards p+i Cond 3.75

If developers have different idea p Cond 3

If the scope of software is larger i Cond 3

If frequent & inconsistence changes i Cond 2.5

Developers work for customer
interest c Abs 2

5

If each pair works on separate part p Cond 2

Lack of proper documentation i+p Abs 1.5

If not revise the structure of
software

i+p Cond 0.75

If order of integration is not logical i Cond 0.5

5. System-wide View and Control

Different pairs & unstable status of
software

i+p Abs 18

Frequent changes & separate
integration

i+c Abs 16

Customer gives unclear & unstable
requirements

c Abs 12

Customer determines the scope &
priority

c+i Abs 12

If pairs don’t know the work of
others

p+i Cond 7

Setting priority by customers make it
difficult to control the sequential
logics of software

i+c Abs 6

Frequent changes also change the
structure

c+i Abs 4

We lose the overall view for small
components & details p Abs 3

If the scope of software is larger i Cond 3

If standards are not followed p Cond 2.5

If too many changes in short time p Cond 1.5

Customers has low technical
knowledge

c Abs 1

If pairs don’t take responsibility for
system-wide view p Cond 1

IV. RESULTS

Software security needs a variety of security mechanisms

from gathering the requirements, implementation, testing and

using environment. We are focusing on one aspect of software

security that is the developers- and customer activities. From the

earlier stipulated goals in Section 1, we derive our hypotheses

from security principles and then for each hypothesis, we

determined a corresponding theme. Through the coding session,

the collected data from interviews is organized into

corresponding respective themes. Following is the result of

comparing the coded data in Table II, together with the

corresponding security principles in order to answer our

research questions.

Our first theme belongs to the security principle of

“Separation of Privileges”. Based on this principle, the secure

software development process must verify the identity of

developers and customers based on their privileges and

responsibilities. However, the first high ranked code in the

corresponding theme indicates the unclear privileges and

responsibilities between customers and developers. This can

compromise the “accountability attribute” of security, described

in Section II-B. The coded data in the theme “Privileges &

Responsibilities”, gathered from interviewees also shows that

the privileges & responsibilities between developers are not

clearly documented. Looking at Table II, the problem of unclear

privileges and responsibilities between customers and

developers is mentioned in the three main phases and the highest

rate of the problem is in the planning-game practice. The second

highest ranked problem is the frequent changes to software by

different pairs that make it difficult to verify the identity of the

developers. For security purposes, controlling who performs

changes to software is very essential. This problem relates to the

pair-programming and continuous-integration phases of agile.

The high rate for this problem belongs to the pair-programming

phase.

Next, our second Theme we derive from the security

principle of “Least Privileges”. Based on this principle, the

objective for developing secure software is to only provide the

necessary privileges for developers and customers. Applying

this principle on developers- and customer activities then if a

question arises related to misuse of a privilege, the number of

entities that need to be inspected is minimized [10]. Violations

of this principle makes access control difficult and can

compromise all the related attributes of software security.

Looking to the theme “Limitation of Privileges” in Table II, the

first high ranked code in the corresponding theme indicates that

different pairs with different knowledge levels in agile teams

exist, while making frequent changes to the software is the main

challenge for the limitation of their privileges. This challenge

relates to the pair-programming and continuous-integration

phases and the highest rate of the problem is in the continuous-

integration phase. The second high ranked problem in this theme

is the dependency of developers on the unstable ideas of

customers that extend the privileges of customers. This problem

belongs to the planning-game phase of agile. Frequent changes

of pairs and members of the pairs are also problematic for the

limitation of the developer’s privileges in the pair-programming

and continuous-integration phases.

Our third theme of “Attention and Caution“, we derive

from the security principle of “Fail-safe Defaults”. This

principle emphasizes security mechanisms that require high

attention of developers during the whole software development

process. Certifying that the software is actually implemented as

intended, particularly for security consideration, needs precise

attention and caution from the developers. Based on our

collected data in Table II, developers and customer activities can

negatively affect the developer attention that consequently may

introduce flaws and vulnerabilities into the software. As we can

see in Table II, the most mentioned code in this theme is the

inconsistent feedbacks, ideas and prioritization of tasks by

customers that cause repetition of work for the developers. This

repetition of work negatively affects the developers’ attention

because the unstable ideas of customers require more changes

and repetition of work that cause pressure on developers to focus

on changes. This is identical with the aim of the agile software

development methodology to produce functionally working

software with iterative delivery [13], [6]. However, it is

contradictory with the developer attention to security issues of

the software. This problem is related to the planning-game and

continuous-integration phases of agile. The second high rate

code in theme “Developer Attention” is different pairs and

frequent changes to software under time pressure that also

6

indicate the problem for developers’ attention. This problem

pertains to the pair-programming and continuous-integration

phases of agile and the high rate of the problem belongs to the

continuous-integration phase of agile.

The fourth theme we derive from “Economy of

Mechanism”, “Open Design” and “Psychological

Acceptability” security principles. Based on these principles and

in order to apply the protection mechanism effectively, the

design must be simple and small since techniques such as line-

by-line inspection for finding security flaws in the code of

software are necessary. For such techniques to be successful, a

small and simple design is essential [10]. Although the

simplicity of software is taken into account by the agile practices

of “Simple Design” and “Small Release”, the nature of activities

of developers and customer are interdependent and there is no

guarantee that the developers and customer will adhere to these

practices. The interviewees confirm that the unstable

requirements from customers need frequent and inconsistent

changes to software that increases the complexity of software.

This challenge belongs to the planning-game practice of agile.

The second highest ranked code that shows the increase of

complexity in software of this theme is pertains to the working

of different pairs on the software that comprises frequent

changes to software by these pairs. This problem relates to the

continuous integration practice of agile. This code is also backed

by another code in this theme and states that developers work on

behalf of the customer interest and frequent changes in customer

ideas cause illogical sequences of integration to the software that

increases the complexity of the latter. This code belongs to the

planning-game phase of agile.

Finally, the last Theme belongs to “Complete Mediation”

and “Least Common Mechanism” principles of security. Based

on these principles, security attributes have a system-wide

nature and the protection and authorization mechanisms for

developing secure software, requires the prevention of all

unauthorized activities during software development. In other

words, the effect of every change must be checked for the whole

software. These requirements have negative form which make

hard to prove that this negative requirements have been achieved

since negative requirements require the anticipation of all

possible flaws and vulnerabilities [10]. Consequently,

developers must demonstrate that every possible threat has been

anticipated during the development process. Thus, an expansive

view of the problem is most appropriate to ensure that no gaps

appear in the whole software during the development process.

However, the highest codes in the corresponding theme, for

these principles shows that different pairs, frequent changes and

separate integration make the status of software leads to unstable

software resulting in difficulties for developers to keep the

system-wide view and control of software. This challenge

relates to the planning-game, pair-programming and

continuous-integration phases of agile. The second highest

ranked code in this theme is that customers state unclear and

unstable requirements. This is also backed by the third highest

ranked code where interviewees indicate in agile, the scope of

software and related priority of tasks are determine by customers

that poses a challenge for developers to control the sequential

logic of software. This challenge belongs to the planning-game

and continuous-integration phases of agile.

V. CONCLUSION AND FUTURE WORK

In this paper, we conduct a case study to identify and

explain security challenges of agile software development by

evaluating developers and customer activities based on security

principles. Interviews were used as a main source of evidence to

collect data. An analysis of the collected data was performed to

evaluate the relationship of security challenges and agile

practices based on security principles [10]. The result of our

study shows that, a number of developers- and customer

activities, introduce security flaws and vulnerabilities into the

software. For developing secure software using agile, our study

show that, in order to keep the agile way of software

development we need a new type of agile tool support. Table III

shows security challenges, their frequent occurrence and

relationship to agile practices. In this table, X denotes the

existence of the challenge and X-H denotes that the challenge is

higher in the corresponding phase then the other two phases.

Table III: Security challenges, their frequent occurrence and

relationship to agile practices

Challenges Categories

Agile Phases

P
lan

n
in

g

G
am

e

P
air

P
ro

gram
m

in
g

C
o

n
tin

u
o

u
s

In
te

gratio
n

Unclear privileges &
responsibility between
customer & developers

Separation
of Privileges

X-H X X

Unclear privileges &
responsibility between
developers

Separation
of Privileges X-H X

Frequent changes &
different pairs

Separation
of Privileges X-H X

Frequent changes &
different pairs

Limitation of
privileges

 X X-H

Dependency of
developers on customer
ideas

Limitation of
privileges X

Frequent changes of
pairs & lack of
documentation

Limitation of
privileges X-H X

Inconsistence feedback
& idea of customer

Developer
attention

X-H X

Tasks priority by
customer

Developer
attention X-H X

Different pairs &
frequent changes

Developer
attention X X-H

Unstable requirement
from customer

Software
simplicity

X

Different pairs &
frequent changes

Software
simplicity X

7

Illogical sequence of
integration

Software
simplicity X

Different pair & frequent
changes

System-wide
view

X X X-H

Unclear & unstable
requirements

System-wide
view X X X-H

Scope & task priority by
customer

System-wide
view X-H X

Table III shows the three high ranked challenges, based on

their code value in Table II, for each theme. As we can see in

Table III, the challenge of “Different pairs and frequent

changes” relates to every theme. The second highest ranked

challenge that belongs to four different themes is the “Unclear

and inconsistent requirement and frequent changes in customer

idea”. Software scope and tasks priorities by customer cause

illogical sequence of integration come third grade most frequent

challenge.

Looking to the relationship of these challenges to agile

software development phases and practices in Table III, we can

find that challenges such as “Unclear privileges and

responsibilities between and developers” and “Different pairs

and frequent changes” are the challenges that relate to all three

main phases of agile. Most other challenges relates to the “Pair-

programming” and “Continuous-integration” phases of agile.

Later on, the third high category challenges relates to the

“Planning-game” and “Continuous-integration” phases of agile.

Looking to Table III from other perspective we can find that the

first, second and third high ranked phases for security challenges

are “Continuous-integrations”, “Planning-game” and “Pair-

programming” phases of agile respectively.

To develop secure software, the unclear and inconsistent

ideas and requirements of customers as well as tasks priority by

them need to be compliance with the security principles. For

developing secure software the amenability between security

principles and the interdependent work nature of developers in

different pairs, frequent changes and separate integrations is also

required. In current nature they are not obedience with security

principles and can make problem for the security requirements

such as authentication and verifying the identity, access

limitation, developers’ attention, software simplicity and

system-wide view and control of software. Based on the security

principles, the aforementioned security requirements are

essential concerns for developing secure software system.

As a limitation of this research, the interviewed developers

have little knowledge about software security and we are not

able to design our interview questions to directly address

software security. Instead, we derive the interview questions

based on the security principles [10] to address indirectly the

security issues in software development process. The lower

security knowledge and awareness of many software developers

is also counted as a main source for security flaws during agile

software development. Further studies and future work for

introducing visual and easier methods well help to raise security

awareness of developers.

REFERENCES

[1] K. Beck, M. Beedle, V. Bennekum and A. Cockburn,

"Manifesto for Agile Software Development,"

http://AgileManifesto.org, 2001.

[2] Sonia and A. Singhal, "Integration Analysis of Security

Activities from the perspective of agility," 978-0-7695-

4657-5/12 $26.00 © 2012 IEEE, 2012.

[3] C. Pohl and Hans-JoachimHof, "Secure Scrum:

Development of Secure Software with Scrum," MuSe-

Munich IT Security Research Group, 2015.

[4] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta,

Agile Software Development Methods: Review and

Analysis, Finland: VTT Electronics, 2002.

[5] I. Ghani and I. Yasin, "Software Security Engineering in

Extreme programming Methodology: A Systematic

Literature Review," ISSN 1013-5316; CODEN: SINTE,

pp. 215-221, 2013.

[6] S. Bartsch, "Practitioners Perspectives on Security in

Agile Development," Sixth International Conference on

Availability Reliability and Security, pp. 479-484, 2011.

[7] B. Beca, "Agile Development with Security Engineering

Activities," pp. 149-158, 2011.

[8] Microsoft, "Microsoft Security Development Lifecycle

for Agile Development," http://www.microsoft.com/sdl. ,

2009.

[9] J. Wayrynen, M. Boden and G. Bostrom, "Security

Engineering and eXtreme Programming: An Impossible

Marriage".Comminications Security Lab, Ericsson

Research.

[10] J. H. Saltzer and M. D. Schroeder, "The Protection of

Information in Computer Systems," pp. 1278 - 1308,

1975.

[11] P. Runeson, M. Host and A. Rainer, Case Study

Research in Software Engineering, New Jersey, USA:

John Wiley, 2012.

[12] B. Konstantin, "Extreme Security Engineering: On

Employing XP Practices to Achieve Good Enouht

Security," First ACM Workshop on Business Driven

Security Engineering, p. 7, 2003.

[13] I. Ghani, N. Izzaty and A. Firdaus, "ROLE-BASED

EXTREME PROGRAMMING (XP) FOR SECURE

SOFTWARE DEVELOPMENT," Special Issue-Agile

Symposium, pp. 1071-1074, 2013.

[14] A. Chandrabose and K. Alagarsamy, "Security

Requirement Engineering - A Strategic Approach,"

International Journal of Computer Applications, vol. 13,

pp. 25-32, 2011.

[15] C. Wood and G. Knox, "Guidelines for Agile Security

Requirements Engineering".

[16] E. Aydal, R. Paige, H. Chivers and P. Brooke, "Security

Planning and Refactoring in Extreme Programming,"

Springer Link, vol. 4044, pp. 154-163, 2006.

8

[17] G. Bostrom and B. Konstantin, "Extending XP Practices

to Support Security Requirements Engineering," in

ICSE, University of British Columbia, Canada, 2006.

[18] Sonia, A. Singhal and J. Balwani, "Analysing Security

and Software Requirements using Multi-Layered

Iterative Model," IJCSIT International Journal of

Computer Science and Information Technology, vol. 5,

no. 2, pp. 1283-1287, 2014.

[19] D. Owens, "Integrating Software Security into the

Software Development Lifecycle System Securities".

[20] E. Mathisen and T. Fallmyr, "Using Business Process

Modeling to Reduce the Effects of Requirements

Changes in Software Projects," in IEEE, 2009.

[21] C. Haley, L. Robin, M. Jonath and N. Bashar, "Security

Requirements Engineering: A Framework for

Representation and Analysis," IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, vol. 34, pp. 133-153,

2008.

[22] A. Avizienis, J.-C. Laprice, B. Randell and C. Landwehr,

"Basic Concepts and Taxonomy of Dependable and

Secure Computing," IEEE Transaction on Dependable

and Secure Computing, vol. 1, pp. 11-33, 2004.

[23] C. Pfleeger and S. Lawrence, Security in Computing,

New Jersey, USA: PRENTICE HALL, 2003.

