TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond
Tarkvarateaduse instituut

Nikita Golovin 1554191APB

VEEBIRAKENDUSE LOOMINE SUURIMA
KLIKI JA VARVIMISE ALGORITMIDE
TOOJOUDLUSE KONTROLLIMISEKS

Bakalaureusetdo

Juhendaja: Deniss Kumlander

Doktorikraad

Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

Nikita Golovin 1554191APB

WEB BASE RESEARCH TOOL FOR
MAXIMUM CLIQUE AND VERTEX
COLORING PROBLEMS

Bachelor’s thesis

Supervisor: Deniss Kumlander

Doctor degree

Tallinn 2018

Autorideklaratsioon

Kinnitan, et olen koostanud antud 18puttd iseseisvalt ning seda ei ole kellegi teise poolt
varem kaitsmisele esitatud. Koik t60 koostamisel kasutatud teiste autorite t06d, olulised

seisukohad, kirjandusallikatest ja mujalt parinevad andmed on t66s viidatud.

Autor: Nikita Golovin

21.05.2018

Annotatsioon

Infotehnoloogia valdkond maailmas areneb véga kiiresti. Tanapdeval on loodud sellised
tehnoloogiad nagu tehisintellekt voi arvuti loogika, mis v@imaldavad lahendada palju
probleeme. Enamik nendest probleemidest on seotud graafiteooriaga. Nagu me teame, NP-
keerukuse probleemid on selle osaks. Sellised probleemid on véga tdsised, nii et teadlased
loovad algoritme nende lahendamiseks alates XIX sajandist. Teadlased kasutavad graafe, et
keskenduda probleemide pdhjustel. Selle t66 pdhieesmérk on luua téoriist ehk veebirakendus
maksimaalse kliki ja graafi varvimise probleemi analliisimiseks.

Selle teesi alguses on probleemi kirjeldus. Kuna probleem on seotud graafi teooriga, siis selle
pohiterminid ja nende definitsioonid on ka Kirjutatud t60 sissejuhatuses. Seejarel ladheb
maksimaalne Kliki- ja vérvimis probleemide kirjeldus ning kasutatud algoritmide Ulevaade.
Parast (levaadet ldheb arendusvahendi valiku pohjendused, rakenduse vormi ja selles
projektis rakendatavate kasulike funktsioonide kirjeldus koos ndidetega. Veebirakenduse
loomise protsess on kirjeldatud peatikis 4. Kokkuvotet ja tulevaste uuringute voimalusi saaks
leida viimases peatuikis.

Teesi tulemuseks on veebirakendus suurima Kkliki ja varvimise algoritmide t66joudluse
uurimiseks. Veebirakendusel on MVC mudel, ning selle arendamisel on kasutatud: front-end:
Angular5, Typescipt ja Bootstrap, aga algoritmid realiseeritud C# programmeerimiskeeles.
Algoritmid olid juba ette antud, ning autor vajadusel tegi muutusi, selleks et adapteerida neid
veebirakenduse jaoks.

Tulevikus vOiks veebirakendust taita uute tehnoloogiate ja funktsioonidega, nii et selle
to6joudlus ja Kiirus muutusid paremaks ning kiiremaks.

LOputdo on Kkirjutatud inglise keeles ning sisaldab teksti 40 lehekiljel, 5 peatiikki, 28 joonist.

Abstract

World of infotechnology is growing rapidly. Nowadays technologies such as artificial
intellect or computer logic are resolving lots of problems. Mostly these problems are related
the topic of graph theory. As we know NP-complete problems is a part of it. These type of
problems still remain important, because scientists are finding solutions of them and creating
the algorithms since 19th century. Graphs are used by researchers to focus on the root of the
problems and show relations between the considered objects.

The main purpose of this thesis is to create web base research tool for maximum clique and
vertex coloring problems. It is focused on the maximum clique and coloring algorithms and
web application development.

First of all, thesis starts from the basics of graph theory introduction. Then goes maximum
clique and coloring problems description and algorithms overview. After the overview author
describes the main contribution — web application. Description consists of the development
tool selection reasons, the form of the application and useful features applied in this project.
Moreover, user interface aspects, which were taken to a count, were detailed described with
the examples. After that, author describes web application development process with
examples. At the end, the author makes analyze of the work and gives explanation whether
this work achieved its goals.

The result of the thesis is a web application, which is a utilitarian tool for future researches.
The application has MVC model and for its develepment were used programming languages:
for front-end side: Typescript with Angular5 and Bootstrap library and algorithms are written
with C#. In the future it could be developed with new technologies and features, so that it will
have better performance and speed.

The thesis is in English and contains 40 pages of text, 5 chapters, 28 figures.

DIMACS
DSatur
IDO

JP

LDO

NP

PSL
V2
V3

VColor-u

VColor-BT-

VColor-u

VRecolor-BT-u

RANDOM
CBC

ul

MVC

GPS

Abbreviations glossary

The Center for Discrete Mathematics and Theoretical Computer Science
Degree of Saturation

Incidence Degree Ordering

Jones and Plassmann is referenced in case of JP algorithm

Largest Degree Ordering

Nondeterministic polynomial time complexity class. Class of problems
that can be solved with a polynomial amount of time by nondeterministic
Turing machine.

Parallel Smallest-Last
Version 2, used in Dsatur algorithm.
Version 3, used in Largest-First algorithm.

Vertex Color unweighted
Maximum clique algorithm created by D.Kumlander[1].

Vertex color with backtracking for unweighted cases. Exact maximum
cliqgue finding algorithm published by D. Kumlander [1] based on
Ostergdrd’s algorithm. The main idea is to apply vertex coloring with
backtracking for fastening maximum clique finding.

Vertex color for unweighted cases. Exact maximum clique finding
algorithm published by D. Kumlander [1] based on Carraghan and
Pardalos algorithm [14]. The main idea is to apply vertex coloring for
fastening maximum clique finding.

Vertex recolor with backtracking for unweighted cases. A new exact
algorithm presented in the current thesis based on VColor-BT-u. The
main idea is to apply additional in depth coloring (recoloring) to fasten
maximum clique search.[12]

Randomly generated graph by the program.
Current best clique

User interface

Model View Controller model

Global Positioning System

API
JSON
HTML
CSS
MIS

Application Program Interface

JavaScript Object Notation, datatransfer format
HyperText Markup Language

Cascading Style Sheets

Maximum Independent Set - the largest possible subset S in a graph.

1

Table of Contents

INEFOAUCTION L.t bbbttt bbbttt nes 10
1.1 Graph @nd tEIMS ..ot 10
1.2 DIMACS and Random graphis..........ccceiueiierieiieeieesesiee s esie e e sie e e e enae e 15
1.3 Complexity and NP-COMPIEXITYooiiiiiiiiieiiieseses e 16
R C o T 130 Y (0o YRS 16
15 WWOIK OVEIVIEBW ...ttt sttt ettt et eneesneenne e 17

Maximum Clique and Coloring algorithmscccccvevviiiiicic e 18
2.1 Maximum Clique and Coloring problem............cccooeiiiiiiiiii e 18
A =7 S Tl 1[0 1 141 SRS 18

2.2.1 Carraghan and Pardalos algorithm ... 18

2.2.2 Ostergard algorithm..........ccoovvviiieceeccece e 20

2.2.3 Greedy algorithim............ooiiiiiii e 20
2.3 MOodern algorithmsc.ocouiiiiiece et 21

2.3.1 VCOolor-U algorithmcooiiiiiiiieeee e 21

2.3.2 VCOIOM-BTU oot 21

P G TV = Tolo] (o] 2 = I N U USSR 21

2.3.4 DSALUM-LDO ..ot b 21

2.3.5 LArgest FIrSEV 3. ..o 22

2.3.6 DSAIUIVZ ...ttt 22

2.3.7 DSatur-IDO-LDO......cciiiiicieeceeeie e 22

2.3.8 LDO-IDO ..ttt bbbt 22

2.3.9 Parallel Largest-FirSt ... 23

LAV = T o] o] [oF: L4 o] o PSSRSO 24
3.1 Difference between Web and Desktop applications............ccocveveveneneninenienieiennnn 24
3.2 MVC MOGEL ..o 26
1 J0 N I o LSRR 26

3.3.1 Typescript+AngularS+BOOtStrap.......cooveiiiiieiieiiee e 27

IR 0 V=1 151 0 1 1 OSSPSR 27

3.3.3 VISUAL STUTIO ...t 28

3.3 4 TIS IMIANAGET ...ttt 28

TR T O ¢ -1 o 0 1SS SRS SRPRSTUSURRIN 29

3.3.6 PC technical CharaCteriStiCS.........ccviuirieriiie e 30

3.3.7 Visual Studio and WEeD APi........cocvoiiiieieee et 30

DEVEIOPMENT PIOCESS ...ttt bbbttt bbbttt 31
4.1 RequUIreMeNnts @NAlYZE.........cccveiieiiiiie ettt 31
4.2 Data transfer in the web appliCationcccooeiiiiiiiiiiie e 31
4.3 The changes made in the logic of testing algorithmscccccoe v, 33
4.4 User interface iSSUES and lIMILSc.oiieviiiiieece e 34
4.5 Performance CONTIOLcoooiiiiiiie e 39

L0700 0] 111 [] o SRS 40
T R 11 1 010 - Y2 PRSP 40
5.2 FULUIE STUAIES ...cuvreeiiieieie ettt e ae et e e nteenaessaenneeneeaneenneens 40

List of figures

Figure 1-1 Different types of the same graph representation...............cccocveveiiveieeresiese e 11
Figure 1-2 Undirected and direCted graphiscooveereriiiiiiiseeeee s 12
Figure 1-3 Weighted and unweighted graphscccceviveiiiieiieie e 12
Figure 1-4 Graph QiAQIamoviiiieiiieiieee bbbt 13
Figure 1-5 Graph diagram [5]ccveeiieiieie e 13
Figure 1-6 Complement graph diagram [5]........coeoeiiiiiiiiiiieeee e 14
Figure 1-7 Graph geretion COUEccoiiiiiiiieieiei ettt 15
Figure 2-1 Carraghan Pardalos algorithm. Pseudo code [1]ccccoeveiieiiiieiiiece e 19
Figure 2-2 Greedy algorithm pSEUdO COUEcuiiiiiieiiiteric s 20
FIgUE 3-1 MV C MO ...ttt re e e 26
Figure 3-2 Color chart code adapted from Chart.js tutorial [7].......cccccooeiiiiniiiniiiiiicee, 29
Figure 3-3 Used in this project PC informationccccooviieiieie s 30
FIQUIE 4-1 File SAVE COURoouiiiiiiiieiee ettt bbbt 32
Figure 4-2 Check and uncheck the algorithms with checkboXes............ccccccivieiiiiiiic e, 32
Figure 4-3 INput data CONTIOL........cc.ooviiiiiiiiceeee s 32
Lo U e A (@ NV =T (1T OSSPSR 33
Figure 4-5 INtervalS diVISIONooiiiiiiiiiiee e 33
Figure 4-6 Average value CalCUlationcccoiveiiiiie i 34
Figure 4-7 Excel file generation COAEoouiiiiiieiie s 34
FIQUIE 4-8 LIMITALIONS......ccuiiiiiiiiieee et te e re e te e be e esneesreenneenes 35
Figure 4-9 File eXtenSION ChECKcooiiiiiiiicee s 35
Figure 4-10 File SiZ€ ChECKocvviieiee e 36
FIQUIe 4-11 UL 8XAMPIE ..o bbbt 36
Figure 4-12 Charts eXamPleooveiiic et 37
Figure 4-13 Results table example with coloring algorithms(Greedy and DsaturV2)............. 37
Figure 4-14 Example of the limitations with Random graph.............cccccooveviiiciiecic i 38
Figure 4-15 Sequential and parallel ProCeSSINGcovviiiiiiiiiiiiee e 39
Figure 4-16 Result of parallel and sequential proCessingccccvveveiveeveeresieese e 39

file:///C:/Users/admin1/Downloads/loputoohome.docx%23_Toc514631625
file:///C:/Users/admin1/Downloads/loputoohome.docx%23_Toc514631627
file:///C:/Users/admin1/Downloads/loputoohome.docx%23_Toc514631628
file:///C:/Users/admin1/Downloads/loputoohome.docx%23_Toc514631630

1 Introduction

The Swiss mathematician Leonard Euler is the founder of the graph theory. In one of his
letters, he formulated and proposed a solution to the problem of seven Koenigsberg bridges,
which later became one of the classical problems of graph theory. The term "graph™ was
firstly introduced by Sylvester J.J. in 1878 in his article in science magazine ,,Nature* [21].

Graphs have been used for a long time to solve complex problems. The problem of seven
Koenigsberg bridges is the eldest example, where graph theory was applied. The main point
of this problem was whether it is possible to cross all the bridges with one walk without
recrossing the same road multiple times. Other historic problem connected to the graph theory
is the theorem of four colors. The main idea of it says that any map located on the sphere can
be painted with no more than four different colors (paints) so that any two regions (areas)
with a common border segment are painted in different colors. F. Guthrie from England
formulated this theorem in 1852, but could not prove it for a long time.

Scientists from the University of Illinois K.Appel (8.10.1932 — 19.04.2013) and W.Haken
(born 21.06.1928) in 1976 got success in proving the four-color theorem [22]. While proving
this theorem scientist used computer, so that it was the first graph theory theorem proved by
computer. Starting from 18th century, researchers resolving complex problems and creating
new algorithms, which have better performance and speed of completion.

People have been using graph theory during long period of time in different fields of everyday
life. Graph theory is used in social networks, GPS navigation, coordination of airport activity
(aircrafts landing queue), telecommunication networks and etc. It helps people to resolve
complete tasks and NP-complete tasks. Maximum clique and coloring problems are part of
the NP-complete problems. NP-complete tasks are still remain actual, because scientists have
not found an ideal algorithm for finding clique.

The aim of this work is to help scienists finding better algorithms and analysing their
performance. Web application gives opportunity for portable analyze with visualization of the
results, which could be understandable for every user. It helps writing research works,
because results are available to download in Microsoft Excel file.

1.1 Graph and terms

This subchapter explains main terms for better undestanding of the processes in this thesis.
Graph is a mathematical object, which consists a set of vertices and a set of edges,
connections/relations between pairs of vertices. For instance, number of vertices in graph

10

called the order of graph and size of the graph means number of relations(edges/pairs) in the
graph. Strict science definition could be depicted by formula:

G =(V,E)
G — graph (pair of sets V and E), V — set of vertices, E — set of edges

Talking about independent sets, the problem related to them (Maximum independent set
problem) is closely related to maximum clique problem. The main aim of these MIS problems
is trying to find a subset S £V so that no two vertices in S were adjacent to each other.

In essence subset S is an empty graph.

The important point in graph is the connections between the vertices, not their location on a
diagram. For better explanation, Figure 1-1 is added below, which shows exactly the same
graph, but the vertices have different location.

© [

()
er—d)—(b

b ©

Figure 1-1 Different types of the same graph representation

@

Note: In this project author has used undirected, unweighted simple graphs.

11

Graphs can be divided into directed and undirected. A directed graph (demostrated on the
right at Figure 1-2 has directed edge, which is called arc. Therefore, it san be seen that vertex
v1 have relation to vertex v2, but there might not be relation from v2 to v1.

Undirected Graph Directed Graph

An Undirected Graph A Directed Graph

Figure 1-2 Undirected and directed graphs

Talking about other graphs’ characteristics, graphs are divided to weighted and unweighted.
Weight is a number, usually it is non-negative value, which is assigned to each edge or vertex.
This number gives us additional information. For example, it could be length of a route(in
case of GPS), cost of the flight tickets or other sort of property in case of the problem core.
On the right diagram of the Figure 1-3 is the unweighted graph. It does not have any
additional values (weights). It means that all weights are equal to one.

Weighted Graph i Unweighted Graph

Figure 1-3 Weighted and unweighted graphs

Loop is an edge that connects a vertex to itself. Simple graph is an undirected graph that does
not contain any loops and there is no more than one edge connecting two vertices [24].

An undirected graph is called complete, when all the vertices are adjacent to each other.
Talking about opposite situation, if a graph has no edges, it is called edgeless (no two vertices
are adjacent to each other).

12

Vertex degree deg(v) - number of adjacent vertices or neighbours of a vertex. Vertex can be
even or odd depending on the vertex degree number, whether it is even or odd.

If there is given graph G, it means that A G - maximum vertex degree of a graph G. Vertex
support value and maximum vertex degree value are different things. Vertex support value is
a sum of degrees of all neighbours of a given vertex. For for better explanation, all
calculations and diagram (Figure 1-4) are given below.

Degree of vertex e is 4. It means that e has 4 connections: e —d, e — f, e — g, e — h. But, talking
about support of the vertex e, it is equal to 11.

Support of e equals: 4 (vertex d) + 1 (vertex f) + 3 (vertex g) + 3 (vertex h) = 11.

&
B
F

Degree

bl B T T
BD ED 00 00 kb e e b ek

L H

Figure 1-4 Graph diagram

The density g (G) of the graph is ratio of the graph’s vertices number n = |V| to the number of
the graph’s edges m = |E|. Formula for finding density [5]:

Figure 1-5 Graph diagram [5]

13

Complement graph G for graph G has edges (connections) only between these pairs of
vertices, which graph G does not. Figure 1-6 demonstrates the difference. If we unite both

graphs (¢ and E) in one diagram, we will get complete graph, because each pair of vertices
will have 1 edge between each other [2].

Graph Complement graph

Figure 1-6 Complement graph diagram [5]

In order to use some terms later in the Chapter 2, author gives explanation of terms here,
which are directly connected to the maximum clique terms. The clique is a complete subgraph
of the graph. Subgraph is a subset formed by vertices with corresponding edges. It is not
obligatory fact, that subgraph should have all edges, which have graph. Vertices can have
relations in a graph, but in case of subgraph they might not have any edges between each
other.

A complete subgraph is a subset of vertices of the graph, where each vertex is connected by
edges to other vertices of this subgraph [5].

Clique is called maximum clique, if there is no more other cliques bigger in the same graph.
In other words, if considering clique is not a part of the other clique.

Heuristic solution is a type of techniques for solving a problem in case when classic methods
are too slow or fail in finding any exact solution. This type of techniques finds more quickly,
but approximate solution.

For example, we have some problems, which classic methods are not able to resolve in
acceptable time and get acceptable solution. We can use heuristic method such as arbitary
choices in order to get not bad solution much faster.

Graph coloing — distributing nodes of the graph by color assingment. It means that nodes of
the same color can not have relations between each other. Color is just identification of the
node.

14

1.2 DIMACS and Random graphs

In many researches scientists are testing maximum cliqgue and coloring algorithms on
DIMACS and RANDOM qgraphs. Web application created in this project gives opportunity to
test algoritms’ performance on the both types of graphs.

The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) is a
collaboration between Rutgers University, Princeton University, and the research
firms AT&T, Bell Labs, Applied Communication Sciences and NEC. It was founded in 1989
with money from the National Science Foundation [18].

One of the DIMACS Challenge purposes is to ease the effort required to test and compare
algorithms and heuristics. Center for Discrete Mathematics and Theoretical Computer Science
provides a pack of benchmarks instances, which represent different graphs, constructed on the
real life problem basis. These instances can be used for testing maximum clique algorithms
performance. Talking about other the DIMACS center’s activities, scientists also test many
assumptions about implementation methods and data structures. As it was mentioned before,
RANDOM graphs can also be tested with web application. User gives the input parameters
and application generates the graph by itself. Code is demonstrated on Figure 1-7. As input
parameters it has number of nodes and density of the graph.

public static Graph GenerateGraph(int nodes, double density)
{
if (density < @ || density > 1)
throw new Exception("@ <= density <= 1");
int numberOfEdges = Convert.ToInt32(Math.Round(nodes * (nodes -
1) * density / 2, 0));
var graph = new Graph
{
Values = new bool[nodes, nodes],
Edges = numberOfEdges
}s
var random = new Random();
Thread.Sleep(49);
var random2 = new Random();

int x, y;
for (int i = @; i < numberOfEdges; i++)
{
do
{
X = random.Next(©, nodes);

y = random2.Next (@, nodes);

} while (x ==y || graph.Values[x, y]);
graph.Values[x, y] = true;
graph.Values[y, x] = true;

}

return graph;

Figure 1-7 Graph geretion code

15

1.3 Complexity and NP-complexity

,How fast or slow does particular algorithm perform?* - this type of question belongs to
algorithmic complexity topic. We define complexity as a numerical function T(n) - time
versus the input size n.

Complexity of the algorithm is a function f: N—N [11].

It can be divided on time complexity and memory complexity. Time complexity is an
algorithm search performance dependance from the time comsumed and memory complexity
is a dependence from the used memory for finding the result.

Every algorithm has a logic for finding solution of different kind of problems. Talking about
maximum clique problems, these kind of tasks does not have guaranteed result. There is no
algorithm, which could completely solve maximum clique problem. It is more complicated
type of the problem, which called NP-complete problems. These problems are hard to solve
and nowadays they do not have guaranteed solution.

Alan Turing in 1936 brought to the science world first serious result in algorithms complexity
field. Alan invented an abstract computer model called Turing machine[20].

P class problems can be solved with a polynomial time on a deterministic Turing machine.
NP class problems are solvable by non-deterministic Turing machine in polynomial time.

1.4 Goals of study

The graph theory and projects related to this topic are extensive.The goals were set up based
on the assigned task: Web application for maximum clique and coloring algorithms analyze.

1. Create utility WEB application in order to help researchers test maximum clique and
coloring algorithms

2. Study modern algorithms for finding maximum clique

3. Visualize maximum clique and coloring algorithms results in order to help researchers
quickly analyze differences between algorithms’ performance

4. Create opportunity for researchers to test maximum clique and coloring algorithms on
DIMACS graphs and on generated RANDOM graphs

5. Build a foundation for exploring maximum clique for end-user research

16

1.5 Work overview

In the chapter 1 of this thesis is the problem introduction and main terms related to this topic.
There is an overview on the types of graphs and NP-complexety. After that, goals of study are
represented. Chapter 2 describes maximum clique and coloring problems. This chapter
contains short overview of the maximum clique finding algorithms and other heuristic
algorithms like coloring used in the web application. Firstly, there are described basic
algorithms, which later became fundamental. Chapter 3 represents web application
development tools and explaines author’s choice of the tools and desicions made during
development based on the requirements. There is a description of application model and used
technologies. The main focus of the chapter 4 is to describe the development process such as
front-end and required back-end. Moreover, it describes the ways, how application could have
high discoverability. Finally, Chapter 5 contains a summary of the study. Possible
opportunities for future studies are also noted there.

17

2 Maximum Clique and Coloring algorithms

This chapter starts with an overview of maximum clique and coloring problem. Afterwards, it
describes basic algorithms for solving these problems such as: greedy, branch and bound
algorithms. After, in the next subchapter will be described modern algorithms and will be
noticed that they are based on basic ones. The topic of this thesis consists of maximum clique
and coloring algorithms, so that later will be described algorithms for resolving these type of
problems.

2.1 Maximum Clique and Coloring problem

The root of the maximum clique problem is finding the biggest complete subgraph. As it was
mentioned before, this type of problem is called NP-complete, because it is very complicated
to find solution with usual methods and techniques. The first and the most famous algorithms,
later became the basis of modern algorithms, were created by Randy Carraghan and Panos M.
Pardalos in 1990 and in 2002 by Patrick R.J. Ostergard. The purpose of existing algorithms
modification is to invent algorithm with better quality and performance. In other words, find
the best solution in a shorter period of time. If we compare modern and basic algorithms
logic, the difference will be clearly seen: old algorithms are focused more on adjacent vertices
checking vertices that are not adjacent, while modern algorithms depend on heuristics, more
precisely on coloring.

The problem of coloring the graph is defined as the task of assigning colors to the vertices of
the graph in a way that no pairs of adjacent vertices has not got the same colors. The number
of colors used in the process should remain as small as possible. As smaller the number of
colors as better algorithm, but we always should take to the count time consumption.

The coloring of the graph allows you to build a number of independent sets and to use the
additional characteristics of the information gathered, and the rational use of heuristic
solutions does not increase the time significantly.

2.2 Basic algorithms

These algorithms are Carraghan and Pardalos algorithm, Ostergard algorithm and greedy
algorithms. They are a basis for the modern algorithms, so that their description is more
detailed in this subchapter.

2.2.1 Carraghan and Pardalos algorithm
In 1990 was published branch and bound algorithm in article “An exact algorithm for the

maximum clique problem” written by Randy Carraghan and Panos M. Pardalos [14]. It still
remains simple and efficient. But it’s efficiency could be noticed only on lower density

18

graphs. The algorithm itself is a good and simple example of finding clique. As an example,
below is added pseudo code of this algorithm (Figure 2-1).

function Main
CBC := 0 // the maximum cligue’s =ize
clique (v, 0)
return CBC

end function

function cligue(V, depth)

if |V] = 0 then
if depth > CBC then
New record - save it.
CBC := depth
end 1if
return
end 1f

i =0
while 1 < |V| do

if depth + |V| - i £ CBC then // prune
return
i:=1i+1
// form a new depth. N(v) denotes a neighborhood of w
clique (N(v) | \;fvj : 3 > i, 7 £ |V|, depth + 1)
end while
return

end function

Figure 2-1 Carraghan Pardalos algorithm. Pseudo code [1]

Carraghan and Pardalos algorithm’s concept is creating branches of the vertices. In other
words, it has depths (levels). First of all, it expands vertex “verl” from the first depth. Then at
second depth it considers only these vertices, which are adjacent to “verl”. Then expand
suitable vertex “ver2” from the second depth. Next step of the solution is to build-up third
depth from the vertices, which are adjacent to “verl” and “ver2”. Every set of depths is one
branch in the solution [1].

CBC is a variable, where we store the biggest depth number found by far. It needs to be stored
for prunning the branches. Formula of prunning is pretty simple:

depth + num — cur < CBC

depth - current depth

num - number of vertices in a current depth

cur - currently expanding vertex

This formula can be described like this: if current biggest possible clique size is not bigger
than CBC, it means that we can prune this branch.

19

2.2.2 Ostergard algorithm

After twelve years since Carraghan and Pardalos article was published, in 2002 Patrick R.J.
Ostergard published “A fast algorithm for the maximum clique problem” article [15]. This
algorithm is a reversed variant of Carraghan and Pardalos algorithm, because it starts from the
end. In other words, it starts with n-th depth subgraph, where only vertex located and clique
size is 1 initially. Clique sizes of subgraphs are stored in cache. Next step is to consider (n-
1)th subgraph containing 2 vertices. New prunning formula could be used in this algorithm:

depth + cache[i] < CBC

depth — current depth
i — vertex currently being expanded
CBC — currently biggest clique

But more important point is condition, which stops further search.
depth + cache[i] > CBC

Potentially CBC value could be increased only by one, because only one vertex added to a
new n-th depth subgraph compared to (n+1)th depth subgraph.

2.2.3 Greedy algorithm

The most productive and the simplest heustic coloring algorithm is Greedy algorithm. This
algorithm is a mix of speed and performance [1]. Moreover, it is easy to implement. However,
number of color classes sometimes is not close to chromatic number. We have list of colors,
our purpose to color all vertices and use as less color classes as possible. First step is coloring
the first vertex ,,verl“ in color ,,colorl®. Number of used colors equals 1. Then it takes other
uncolored vertices and tries to color them, so that there will not be any adjacent vertex to
,verl® with the ,,colorl® color. Important condition: If it is not possible to color a vertex into
any of existing colors, a new color must be created and assigned, so that number of used
colors will be increased. And algorithms repeats steps two and three until final result - all the
vertices should be colored. Because of its simplicity and productivity, lots of modern
algorithms are based on greedy algorithm.

// n - number of vertices, k - number of coclors on each stsp
k = 1; Celexr vy with C; (Cy)
For i := 2 ton
Try tc celer v; with coler (j, where j = min (1, ... , k)
If none color was used te coler vy then
k := k+l [Produce a new color]
Color v; with Cg
End if

Next

Figure 2-2 Greedy algorithm pseudo code

20

2.3 Modern algorithms

This subchapter describes modern algorithms used in this project. Some of them are based on
basic algorithms, which where described before. But, some of algorihms described in this
subchapter are the improved variations of the modern algorithms with another approach.

2.3.1 Vcolor-U algorithm

“Some Practical Algorithms to Solve The Maximum Clique Problem” thesis Deniss
Kumlander published in 2005 [1]. VVColor-u, the whole name is Vertex Color unweighted
algorithm, was introduced in this thesis. The author of this algorithm wanted to demonstrate
efficiency of using independent sets within clique finding algorithms.

The difference between previous described algorithms and VColor-u is that Vertex Color
unweighted algorithm demonstrates fine performance on high densities. This algorithm is
based on Carraghan and Pardalos approach.

D. Kumlander noted that there is no any other optimizations than vertex coloring. It is done to
evaluate influence of coloring on overall performance purely [1].

2.3.2 Vcolor-BTU

The idea of the second algorithm introduced in the same article was to apply initial vertex
coloring on the bases of the Ostergard’s algorithm. The main idea is to apply additional in
depth coloring (recoloring) to fasten maximum clique search. The only distiction of the
algorithm is that it operates with independent sets instead of single vertices.

2.3.3 Vrecolor-BTU

This algorithm is based on VColor-BT-u was introduced in master’s thesis made by A.
Porosin [12]. As the author of the algorithm noted, the idea of this one is to gather and
combine all the gained knowledge to fasten maximum clique finding even more. It can be
clearly seen from the modern algorithms that almost all of them are focused on Carraghan and
Pardalos approach and only VColor-BT-u implements Ostergérd’s idea.

2.3.4 DSatur-LDO

DSatur-LDO is a coloring algorithm, with combination of two algorithms. Basically this
algorithm works in the same way as DSatur, but when there is a conflict with finding solution,
it uses logic of the Largest-First algorithm and resolves the problem. The Largest-First
algorithm orders the vertices by the number of neighbors and then the Greedy coloring begins.
The basic idea of the Largest-First algorithm is that vertices with more neighbors are colored
first of all, because the most conflicts are caused by them.

21

2.3.5 Largest FirstV3

First of all, the Largest-Frist algorithm orders the vertices by the number of neighbors and
then starts Greedy coloring. Largest-First V2 is an upgraded version of the Largest-First
algorithm. In this algorithm, it can be colored more than one vertex in every iteration. For
example, after coloring of the vertex with the biggest number of neighbors, the algorithm
gives the same color for all other vertices, which have unpainted neighbors [5]. Finally, these
vertices are removed from the graph.

Largest-FirstV3 is the third version of the Largest-First algorithm. Generally it is the same as
the Largest-First V2, but in each iteration reordering is occured. Removing a painted vertex
from a graph causes a decrease of the edges number between the removed vertex and
neighbors [5].

2.3.6 DsaturV?2

The DSaturi algorithm orders the vertices by decreasing their saturation levels. In other
words, on the first place is a vertex whose neighbors have used the largest number of different
colors. Reordering happens in each iteration. In the case of conflict(if the number of different
colors is the equal), algorithm selects vertex according to the largest number of non-colored
neighbors [1]. DSatur V2 is DSatur's second version.

In the second version, the first step is to find clique of the graph, and then determines colors
fo each vertex in the clique. Finally, these colored vertices are removed from the graph and
the work continues starts again the same way as in the original version of DSatur.

2.3.7 DSatur-IDO-LDO

Again we deal with an algorithm consisting of combination of three. In this algorithm, the
conflicts are firstly solved by the IDO algorithm, and then the remaining conflicts are solved
by the LDO algorithm [13]. IDO is an advanced DSatur algorithm. Vertices are ordered by the
number of their painted neighbors and if there are two vertices that have the same number of
colored neighbors, it uses random numbers to determine the order of the vertices. For the
coloring it uses greedy algorithm.

2.3.8 LDO-IDO

The LDO-IDO depends to a group of coloring algorithm with combination of other
algorithms. The main heuristics of this algorithm is the Largest-First algorithm. In case of
conflicts, IDO heuristics decides which vertex to choose. Generally, this algorithm is similar
to the Largest-First V3 algorithm, but it has the IDO function, which means that the first
ordering is made by the largest number of neighbors and only then by the largest number of
colored neighbors [5].

22

2.3.9 Parallel Largest-First

The Jones and Plassmann algorithm is a basis for the Parallel Largest-First algorithm, but the
heuristic part is the Largest-First algorithm. The basic idea of a JP algorithm is to create a
unique set of weights at the beginning of the algorithm that is used throughout the algorithm.
For example, it uses random integers. The numbers of the vertices will be used for the same
random numbers in the collection. In each iteration, the JP algorithm finds an independent
group in a graph, and then assigns colors to these vertices using the Greedy algorithm. All
activities are carried out in parallel [5].

The Parallel Largest-First algorithm finds the maximum degree for each vertex. Random
values are also used to help solving a problem where two vertices have the same number of
neighbors.

23

3 Web application

Purpose of this project is to creat application, which users (researchers) can use to analyze and
visualize maximum clique and coloring algorithms. Web application should have simple for
user to understand interface and do implementations with high performance. It means that the
application should give user opportunity to make analyze of algorithms’ performance and
compare algorithms’ with each other. Moreover, application should not use a lot of resources
from the user’s device, but at the same time it should be pretty fast. Besides visualisation of
the results, application gives user opportunity to download Excel file with results table. User
can choose what algorithms will be tested (Maximum Clique or Coloring) and implement
algorithms on DIMACS graph by downloading it from his device or create RANDOM graph
by filling the inputs in the web application. The main points of maximum clique and coloring
algorithms research are:

1) Number of colours

2) Maximum clique value

3) Time consumed in order to find solution by algorithm
Application visualize results in tables and charts, so that user could use them in his/her
research.

3.1 Difference between Web and Desktop applications

The purpose of thesis is to create application. In order to achieve portability and platform
independence (can be used on different devices) was set the list of requirements after
discussion with the supervisor. As the best solution was chosen web application. Web
application is a client—server computer program. The client part implements the user
interface, generates requests (client-side logic) to the server and processes the responses from
it. Despite having a complicated structure, application interface is brought down to a level of a
regular user. The client is the browser, the server is the web server. Communication is
implemented via network (Internet connection). Web application consists primarily of pages
with partially or completely undefined content. The final content of web pages will be formed
when a particular user sends a request. In this project user should fill the inputs, choose the
algorithms from the list and run the application. Then input information will be formed as a
request to the server-side.

The server part receives a request from the client, performs calculations, then forms a web
page and sends it to the client over the network.

In other words, this is an Internet application with a client-server architecture. For better
understanding of its working principe, the basic elements of such architecture are named
below.

24

From the server side, different technologies and any programming languages can be used for
developing web applications. Moreover, it does not matter which OS is configured on a user
device, so that Internet applications can be considered as universal cross-platform services.
The standards for any web development products are generally common. Functional aspects
are based on the implementation of functions needed to solve user tasks. Other positive points
of choosing web application instead of desktop app are developing, portability and sharing.
Updating and developing is done on the server, the user does not care how it is executed by
developers on the server. It means, that user does not need to download any programs of
his/her device. Cross-platform usage, in other words, location of the user generally is not
important, browser is the only thing needed. Tools, software on the server are also cross-
platform.

Functionality is the most important requirement for any software product. Historically,
desktop applications are considered to be more functional and ergonomic. But over the years,
different interface libraries have been developed significantly. As far as author’s application
concerned, for Ul and visualization of the results were used Bootstrap and Chart.js libraries.
Nowadays developers can use lots of features to improve functionality of the web application:

e hierarchical lists with the ability to move columns and apply filters;
e drag & drop with any visual effects;

e interactive panels, business graphics and charts;

e audio and video players (Flash player);

e and others.

On the other hand, speed and performance of the web application depends on Internet
connection and poor connectivity can cause performance issues with web application.
Desktop applications are standalone, that’s why they do not face any hindrances from Internet
connectivity. Moreover, as web applications are internet dependent, they cost more bandwidth
usage than desktop applications [17].

Security and reliability usually are a very serious issues. Some organizations fundamentally
do not want and do not provide the opportunity to work in corporate systems outside their
domain. The need for the usage of cryptographic information protection and electronic
signature has not been proven to anyone for a long time. To use these technologies,
application needs to access third-party libraries, but not all web applications can do this and
often have some limitations. The stability of the browsers themselves is also potentially a
weakness, and it can not always be affected by the developer of a business application [16].
Offline work, objectively, more often and more easily implemented by using desktop
applications. In case of individual organizations, they are still frightened and working in the
browser very carefully. However, considering application for finding maximum clique and
coloring algorithms security aspect is not important, because there is no personal information
or even databases used and can not cause any serious issues.

25

3.2 MVC model

The MVC design pattern involves splitted application data into three separate components:
Model, View (the user interface), and Controller (control logic),- so that each component can
be modified independently. The view is responsible for the user's visible display of this data
(in case of web, it forms HTML / CSS given from the server to user browser) and the
Controller manages all processes [19].

Client Side Server Side

Browser e 5 IIS hosted in web server
o
x|

i Server side web
For struct:;'l;eg thisweh HTML ASP.Net development technology

Server side equivalent of HTML

HTML elements — for easier processing; will
For web page be converted to HTML elements
presentation CSS Helpers while sending it to browser
arts C#.Net
Client side Ianguage for Javascript / Server side language for
processing VB.Net developing web applications

Figure 3-1 MVC model

Figure 3-1 shows the basic components and programming languages of the MVC. User fill the
inputs with information. This information is formed into the request. Data transfer is usually
realised by JSON. On a server-side controller receives request and run the algorithms with
given from request parameters. The results are formed to the response, which JSON sends
back to the client-side. The client-side gets the response and performs the visualization of the
results to the user. Despite the fact that all these parts are independent for developing, they
exchange the information to reach the final goal of the application.

3.3 Tools

Before starting application development were discussed with superviser list of tools, which
were used in order to achieve the best result. The main factors, which were taken to the count,
are: programming languages, flexibility of usage, powerful built-in tools and features and
worldwide popularity. This part describes used for developing tools and explanation of
choice.

26

3.3.1 Typescript+Angular5+Bootstrap

TypeScript is a typed superset of JavaScript that compiles to plain JavaScript [4]. JavaScript
is most common and well-known programming language for web pages. It is also used on
many platforms. JavaScript runs on the client-side on the web and its function is to check the
behavior and functionalit of the website. In other words, JavaScript is a parent of TypeScript.
The autor has chosen it, because it is rather modern and offers support for the latest and
evolving JavaScript features, including those from ECMAScript 2015 and future proposals,
like async functions and decorators, to help build robust components [4].

Angular 5 is the latest famework for developing applications with JavaScript especially
TypeScript.

Angular turns templates into code that's highly optimized for today's JavaScript virtual
machines, giving you all the benefits of hand-written code with the productivity of a
framework [9]. There is also lots of tutorial videos and documentation available in the
Internet. It was decided to use Angular 5, because comparing it with Vue or React, it shows
good performance and speed and it decrease its reliability. Moreover, it has lots of good
educational videos and documentations, which were easily found.

Bootstrap is a library for the front-end development. It has extensive prebuilt components, and
powerful plugins built on jQuery. It helps to perform finctional Ul with high discoverability.
Bootstrap is an open source toolkit for developing with HTML, CSS, and JavaScript [8].

3.3.2 Webstorm

Webstorm is product of JetBrains company. During last 15 years they have been developing
the strongest, most effective developer tools. As a proof of their quility, JetBrains has won
over 50 international industry awards in the past 15 years.

,,By automating routine checks and corrections, our tools speed up production, freeing
developers to grow, discover and create. We make professional software development a more
productive and enjoyable experience.* — this is a slogan (idea) of the company [23].
Webstorm was chosen because of its smart coding assistance for JavaScript and compiled-to-
JavaScript languages, Node.js, HTML and CSS. Moreover, it gives opportunity for future
development of the web application, because it provides advanced coding assistance for
Angular, React, Vue.js and Meteor. Nowadays mobile development industry is growing
rapidly and Webstorm supports for React Native, PhoneGap, Cordova and lonic development.
Being a student of Tallinn university of technology, author have got official license for using
advanced version of Webstorm given by the university. For the front-end development was
chosen Javascript, so that the main positive points of Webstorm are more compact and
lightweight documentation popup and Typescript support.

It uses a more simple and consistent format to present developer the available information
about parameters in methods, their type and type of return values in JavaScript and
TypeScript.

27

3.3.3 Visual Studio

Visual Studio is a Microsoft product. The supervisor provided author with maximum clique
and coloring algorithms made with C# programming language. In this case Visual Studio is
the most suitable development enviroment, which helps developer write program code and
run the project to see the result offline. For developing web application was used Visual
Studio Community 2017, the latest version from any available.

3.3.4 11S Manager

1S Manager(previously known as the Web Management Tool) is a internet information
service tool, which is a part of every Windows OS. Windows server is used for implementing
application in order to get it available for regular internet users. Moreover, Visual Studio
gives opportunity to test the application on local machine with running 11S Manager insade of
the platform.

28

3.3.5 Chart,js

One of the most important aspects of the work is to visualize results for the user. After
discussion we have decided, that the best way for visualization is a charts. For Javascript the
best solution is Chart.js, because it has huge documantation and tutorials. Moreover, it is
useful for future development, because it has a lot of plugins and developers can get them, for
example, from Github releases. It has MIT license, in the other words, it is free software
license. As an example, color chart code is given below:

//Color Chart
this.chartColor = new Object();
var chartColorName = 'chartColor' + this.chartsCanvas[i];

this.chartColor = new Chart(chartColorName, {
type: 'line’,
data: {
labels: node,
datasets: DatasetColor,
}s
options: {
title: {
display: true,
text: objRandomResultViewModel.Density + "%",
fontSize: 20,

}s

scales: {
yAxes: [{
scalelLabel: {
display: true,
labelString: 'Color'
}
H,

xAxes: [{
scalelLabel: {
display: true,
labelString: 'Nodes'
}
}]
}
}
3

Figure 3-2 Color chart code adapted from Chart.js tutorial [7]

Note: Charts were done with Chart.js official website documentation [6] and tutorial from the
Coursetro website [7].

29

3.3.6 PC technical characteristics

In this thesis was used for developing and testing author’s personal computer. All decisions
results were made depending on its performance and productivity. In next chapters, which
describe the development process, it should be taken to the count.

View basic information about your computer

Windows edition
Windows 10 Pro

© 2017 Microsoft Corporation. All rights reserved.

System
Processor: . Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz 2.40 GHz
Installed memory (RAM): 8.00 GB
System type: 64-bit Operating System, x64-based processor
Pen and Touch: No Pen or Touch Input is available for this Display

Computer name, domain, and workgroup settings
Computer name: DESKTOP-QMM2VG4
Full computer name: DESKTOP-QMM2VG4
Computer description:

Workgroup: WORKGROUP

Figure 3-3 Used in this project PC information

3.3.7 Visual Studio and Web Api

A server-side web application is a programmatic interface consisting of one or more publicly
exposed endpoints —response message system, which are needed to define request, in current
project in expressed in JSON, which is exposed via the web. As far as all algorithms are
written in C# - Visual Studio Community, which is also open-source tool, is the best solution.

30

4 Development process

4.1 Requirements analyze

The development process started from the web application requirements analyze. In other
words, what should the web application be able to do. After the analyze author set up list of
requirements:

e Ability to run algorithms, developed with C# programming language

e Foundation for future development

e 4 types of testing (Maximum Clique or Coloring algorithms with DIMACS or

RANDOM graphs)

e Give opportunity to user upload DIMACS graphs

e Give opportunity to user input parameters for RANDOM graph research

e Modern and understandable Ul design

e Visualization of the results (tables and charts)

Taking to a count all requirements, was chosen web application form with MVC model. As it
was mentioned in Chapter 3, MVC gives opportunity for development separatly front-end and
back-end. This fact is very important, because given to author algorithms are made with C#
programming language. Talking about logical structure of web application, it can be devided
into 2 components:

1. Maximum clique algorithms testing
2. Coloring algorithms testing

Regardless the type of the graph, for example, the maximum clique algorithms used in testing

DIMACS graph, are the same, as in testing RANDOM graphs. The only difference is the input
parameters. The same logic with coloring algorithms.

4.2 Data transfer in the web application
As it was mentioned before, this web application has got MVC software pattern. Client-side,

in other words front-end, was developed with Typescript, Angular5 framework and Bootstrap
library. Client-side is responsible for getting input data from the user.

31

In case of DIMACS graphs, user upload the file with the graph. The maximum clique with
DIMACS graph code is taken as an example:

saveFiles(fileList) {
this.errors = []; // Clear error
let formData: FormData = new FormData();
for (var j = 0; j < filelList.length; j++) {
formData.append("file[]", fileList[j], fileList[j].name);
}

Figure 4-1 File save code

The file, which was checked by the list of errors. It should be of the correct extension, file
size should not more than 10mb.

After uploading the file, user should choose the algorithms. It is needed to put tick in a
checkbox of the algorithm.

onAlgoCheckChange(algName, event) {

var curIndex = this.selectedAlgorithms.indexOf(algName);

if (event.target.checked && curIndex < 0) {
this.selectedAlgorithms.push(algName);

b

else if (levent.target.checked & & curIndex > -1) {
this.selectedAlgorithms.splice(curIndex, 1);

b

this.checkedAll = this.selectedAlgorithms.length ==

this.checkAlllst.length;

}

Figure 4-2 Check and uncheck the algorithms with checkboxes

After the filling the inputs, all data should be checked in order to perform proper data transfer.
The input information control is represented on the Figure 4-3.
uploadData(event) {
this.elestyle = { 'display': 'block' };
this.errors = []; // Clear error
this.validateFiles(this.filelList);
if (this.filelList == undefined || this.filelList == null ||
this.filelList.length < 1)
this.errors.push("Please upload file");
if (this.selectedAlgorithms.length < 1)
this.errors.push("Please select atleast one algorithm ");
if (this.errors.length > 0) {
this.elestyle = { 'display': 'none' };
return this.errors;

}

this.saveFiles(this.filelList);

}

Figure 4-3 Input data control

32

If the data is correct, it is perfromed to a request and then JSON sends data request to the
server-side:
formData.append("CustomFormData",
JSON.stringify({ Algorithms: this.selectedAlgorithms, Density:
null,SubTests:10 }));

var parameters = {};
Figure 4-4 JSON request

The request is received by MaximumClique Api Controller. It converts the recieved data to a
proper format in order to use the information for algorithms running. One of the aims of
adapting algorithms for web application was to save the logic of the algorithms and their
performance.

After the execution the results are sent to the ResultViewModel. As it was mentioned Model
is a part of the MVC, which directly manages the data, logic and rules of the application. Then
JSON sends the formed response back to the client-side in order to visualize the results.

The algorithms, which were given to the author also could create Excel file with the results,
so that the author has left this part and end-user can also download the file by clicking on the
link.

Talking about RANDOM algorithms testing, there are other input parameters such as
minimum and maximum density and numbers of the minimum and maximum vertices for
each density. The logic of the data transfer remains the same.

4.3 The changes made in the logic of testing algorithms

The main changes were made by author in implementation of the RANDOM graphs. The logic
explanation is pretty simple:

1) The user inputs the minumum and maximum densities in per cents. The system
automatically calculates certain number of researching densities. The step between
densities is always 10%. For better understanding, the example is given below:

Minimum density equals 30% and the maximum equals 60%, it means that
research will be done on 4 types of densities: 30%, 40%, 50% and 60%.

2) Each density has got minimum and maximum number of vertices. In order to
visualize results on a line chart and show algorithms’ performance more detailed,
number of vertices also divided into 4 intervals.

decimal diff = maxVertices - minVertices;

var div = Math.Ceiling(diff / 4); //divide the vertices
int d = Convert.ToInt32(div);

int row = 1;

int counter = 1;

Figure 4-5 Intervals division

33

3) Next step is start of the algorithms’ work with the calculated values.

4) In order to get more accurate result, algorithms are executed 10 times. The number of
execution in the code is a Subtest variable. To visualize the average result of the
Subtests, was implemented change in the code:

//calculate the average

sumColor = sumColor + alg.ColorNumber;

sumTime = sumTime + alg.Elapsed;
lstobj.Add(objRandomColorBenchmarkAlgorithmSubTestDetail);
numberOfSubTest++;

avgColor = sumColor / numberOfSubTest;//average of Color
avgTime = sumTime / numberOfSubTest;//average of Time

Figure 4-6 Average value calculation

5) Saving average results in Excel sheets.

private void PrintResult(int testNumber, int numberOfSubTest,
int algorithmNumber, int row, double avg, double colorNumber,
int step)
{
const int initialRow = 2;
row = row - 1;// set the average of color and time
value in sheet

int column = algorithmNumber + 1 + testNumber *
(NumberOfAlgorithms * 2 + 1) + step;

using (var doc = new ExcelPackage(new
FileInfo(CurrentFile)))

{

var wb = doc.Workbook.Worksheets[1];

wb.Cells[row + initialRow + numberOfSubTest,
column].Value = avg;

wb.Cells[row + 1initialRow + numberOfSubTest,
column + 1].Value = colorNumber;

doc.Save();

¥

Figure 4-7 Excel file generation code

4.4 User interface issues and limits

Even though maximum clique and coloring problems are a part of graph theory, which is
complicated by itself, one of the purposes of the application is to have high discoverability
and be understandable for regular user. In order to achieve this goal, there were made some
front-end decisions and limitations.

34

When the user opens the web application page, there is a menu for choosing what type on
analyse is needed. User can choose 4 types on testing:

1) Maximum clique algorithms testing with DIMACS graphs
2) Coloring algorithms testing with DIMACS graphs

3) Maximum clique algorithms testing with RANDOM graphs
4) Coloring algorithms testing with RANDOM graphs

In the first and second type of the analyze user should upload file with DIMACS graph. As far
as file uploading concerned, there were limitations applied such as file extension and size.
After the testing the DIMACS graph compilation time, was set up the limit of the file size.
Otherwise application uploads it more than hour and it causes web api timeout request.

function FileUploadComponent(http, fileservice) {
this.http = http;
this.fileservice = fileservice;
this.errors = [];
this.fileExtl = "CLQ";
this.maxFiles = 2;
this.maxSize = 10; // 10MB

Figure 4-8 Limitations

User interface should give feedback to the client that the uploaded file is wrong. The Figure 4-
9 shows how it is implemented.

// isValidFileExtension use to check file extention
ColorFileuploadComponent.prototype.isValidFileExtension = function
(fileList) {
// Make array of file extensions
var extensions = (this.fileExtl.split(',"))
.map(function (x) { return x.toLocaleUpperCase().trim(); });
for (var i = 0; i < filelist.length; i++) {
// Get file extension
var ext = fileList[i].name.toUpperCase().split('.").pop() ||
fileList[i].name;
var exists = extensions.includes(ext);
if (lexists) {
this.errors.push("you can not upload file : " +
fileList[i].name);
}
this.isValidFileSize(fileList[i]);

Figure 4-9 File extension check

35

Web application has got list of extensions and if the uploaded file extention is wrong, it
throws error message. Talking about size, user also gets the error message, if the size limit
exceeded.

// isValidFileSize use to check file size in MB
ColorFileuploadComponent.prototype.isValidFileSize = function

(fileList) {

var fileSizeinMB = filelist.size / (1024 * 1000);

var size = Math.round(fileSizeinMB * 100) / 100; // convert upto 2
decimal place

if (size > this.maxSize)

this.errors.push("Error (File Size): + fileList.name +

exceed file size limit of " + this.maxSize + "MB (" + size + "MB)");

}s

Figure 4-10 File size check

Talking about discoverability of the user interface, it is easy to understand. User can choose
the algorithms just by putting a tick in the checkbox.

MaximumClique

I Color Algorithm Random Color Algorithm ~ Random Maxclique Algorithm

&UPLOAD FILE

FileName :

Select Algorithm W Alcheck
. VRecolorBtu . VRecolorBtuGreedy . VRecolorBtuDSatur . VRecolorBtuDSaturV2
. VRecolorBtuDSaturldoLdo . VRecolorBtuDSaturLdo . VRecolorBtuldoLdo
. VRecolorBtuLargestFirstV3 . VRecolorBtuMinMax . VRecolorBtuParallel)pV2

. VRecolorBtuParallelLargestFirst . VRecolorBtuParallelSmallestLast . VRecolorBtuNotParallelLargestFirst

Figure 4-11 Ul example

36

There is no Ul conflicts with the functionality. The result is shown as a table with the names
of the alforithms and charts.

30% 30%
finMax I 'doLdo - I inMax
70
150
40% 40%
[x - o — fax

Figure 4-12 Charts example

Total nodes :67

Algorithm Name Time Elapsed Color Number
Greedy 1 5

DSaturv2 23 5

. Time £

20

15

5

=

Greedy DSsturv2

Figure 4-13 Results table example with coloring algorithms(Greedy and DsaturV2)

Other 2 types of analyze are directly connected with RANDOM graphs. In this part user
should enter all needed parameters for graph generation and for the analyze. These parameters
are density and number of vertices on each density. User chooses by himself, what test would
be performed. In other words, application gives opportunity to put limits of test such as
minimum and maximum density, because in the most cases, researchers are interested in
testing specific densities. Talking about limitations, application gives opportunity to test
maximum 5 algorithms, because otherwise it takes more than 50 minutes to get the result.
Note: it was tested on author’s PC.

37

uploadData(event) {

this.elestyle = { 'display': 'block"' };
this.errors = []; // Clear error
this.chartsCanvas = [];

if (this.mindensity == null) {
this.errors.push("Min density required");

}

Note: Gives error message, if the minimum density input is empty. The same control of the
input in case of maximum density.

if (this.selectedAlgorithms.length < 1)
this.errors.push("Please select atleast one algorithm");

Note: Throws error message, if no algorithms chosen by the user.

if (this.selectedAlgorithms.length > 5)
this.errors.push("Please select algorithm between 1 to 5");

Note: Throws error message, if the user has chosen more than 5 algorithms. It is needed to
avoid timeout problems.

for (var i = 0; i < this.minVertices.length; i++) {

if (this.minVertices[i] == '') {
this.errors.push("Min vertices can't be null");
break;

}

Note: Throws error message, if the input of minimum number of vertices is not filled by the
user. The same control of the input in case of maximum number of vertices.

if ((parselnt(this.minVertices[i])) >= (parseInt(this.maxVertices[i]))) {
this.errors.push("Min vertices must be less than max vertices ");
break;

}
}

Note: Throws error message, if the minimum number of vertices is bigger than maximum
number.

Figure 4-14 Example of the limitations with Random graph

Because of necessity of all inputs fulfillment and avoiding exceptions, was created list of error
massages. For example, if user forgets to choose any of algorithms, application throw
notification: ,,Please select at least one algorithm® and etc. Moreover, each input has a name,
so that the input field will not cause misunderstanding from the user side.

38

45 Performance control

During development process author tried several techniques of improving web application
performance. The idea was to check if parallel processing of the algorithms will be faster than
one by one. The web application works in different browsers such as: Chrome, Firefox or
Microsoft Edge. The names of the function are presented on Figure 4-15.

// Nikita Golovin: function to start algorithm processing
public ResultViewModel StartNew(double? density)

// Nikita Golovin: New function to be used parallel algorithm
processing

public async Task<ResultViewModel> StartNewParallel(double?
density)

!

Figure 4-15 Sequential and parallel processing

After applying these two techniques, author got the results. The time consumed for processing
parallel technique was more than one by one. Probably, this results can be applied only to the
author’s PC with its technical characteristics. The results of the processing are demostrated on
the Figure 4-16.

o 1 — c—fat588-168.clq

URecolorBtu: CligueSize — 126. Elapoed — 152, branches - 8681
WRecolorBtuGreedy: CliqueSize — 126, Elapsed — 173, bhranches — 8681
URecolorBtuDSatur: CligueSize — 126, Elapsed — 327, branches — 88681
URecolorBtuDSaturlU2: CliqueSize - 126, Elapsed - 353, branches — 8881
URecolorBtuDSaturldoLdo: CligueSize — 126, Elapsed — 358, branches — 8681
UReco lorBtuDSaturL CliqueSize — 126, Elap*ed - 382, b)anche° - 8801
fURecolorBtuldoLdo: igueSize — 126, Elapqed — 334, branches - 8881

UReco lorBtuLargest tU3: CllqueSlze — 126, Elapsed - 259, branches — 886061
URecolorBtuMinMax: CligueSize — 126, Elapsed — 435, branches — 8141
lURecolorBtuParallelJpVU2: CliqueSize — 126, Elapsed - 375. branches — 8288
URecolorBtuParallelLargestFirst: CliqueSize — 126, Elapsed — 242, bhranches — 674

URecolorBtuParallelSmallestLast: CliqueSize — 126, Elapsed — 172, hranches — 500

lURecolorBtuNotParallelLargestFirst: CliqueSize — 126, Elapsed — 198. bhranches —
8001

o 1 — c—fat580-108.clg

WURecolorBtu: CliqueSize — 126, Elapsed — 242, branches — 8081

UReco lorBtuGreedy: CligqueSize — 126. Elapsed — 264, hranches — 80861

UReco lorBtuDSatur: iqueSize — 126, Elapsed — 544, branches - 8881

UReco lorBtuDSaturU2: CllqueSlhe — 126, Elapsed — 691. branches — 8681
URecolorBtuDSaturldoLdo: CliqueSize — 126, Elapsed — 469, branches — 80681
UReco lorBtuDSaturLdo: CliqueSize — 126, Elapsed — 518, branches — 8681
URecolorBtuldoLdo: iqueSize — 126, Elapsed — 543, branches - 8081

UReco lorBtuLargest U3: CliqueSize — 126, Elapsed — 525. branches — 8081
UReco lorBtuMinMax: weSize — 126, Elapsed — 872, branches — 8141

UReco lorBtuParallelJpVU2: CliqueSize — 126, Elapsed — 587. branches — 8281
lURecolorBtuParallelLargestFirst: CliqueSize — 126, Elapsed - 421, branches - 808

lURecolorBtuParallelSmallestLast: CliqueSize — 126, Elapsed — 492, branches - 808

URecolorBtuNotParallelLargestFirst: CliqueSize — 126, Elapsed — 228, branches -
8001

Figure 4-16 Result of parallel and sequential processing

39

5 Conclusion

5.1 Summary

The main goal of this bachelor’s thesis was to create the application for exploring the
performance of the maximum clique and coloring algorithms. In order to achieve this, were
analyzed the requirements and based on them were chosen the most appropriate software
development technologies and solutions. As a result of the work, author has created web
application that helps the user to perform analysis of algorithms performance, compare
performance of algorithms between each other and visualize results. The author studied
algorithms logic in order to implement them in the project and adapt them for web api. Web
application as a form of software does not depend on the technical features of the user device
and its location, but the only condition is the availability of the Internet connection. The
application interface is made as user-friendly as possible and logically structured.

The web application allows user to explore the performance of the maximum clique and
coloring algorithms with DIMACS or RANDOM qgraphs. It is known that the performance of
some algorithms for a specific density is the best, so that the user can generate the RANDOM
graph as it is needed for his research.

Talking the visualization of the results, the web application gives the end-user opportunity to
compare the performance and efficiency of the maximum click and coloring algorithms using
graphs and tables. Additionally, the user can download the results in Excel file. Link for
downloading is available after launching the web application.

The aim of the bachelor thesis was successfully fulfilled. Web application is a real software
that can be used on huge variety of devices, and thanks to its structure, it can be improved in
the future. Web application is a foundation for researchers, so that in the future it could be
easily developed to the end-user standards.

5.2 Future studies

Despite the fact that we have a working web application, it can be improved. The web
application will remain utility tool for the researchers, because NP-complete problems are still
being explored. Despite the fact that we have reached all goals, the speed of the web
application could be improved by applying of new technologies. In this aspect, such as
development, the selected MVC web application model is a right decision. Besides the speed,
functionality of the application could be also improved. For example, the end-user could
upload his own algorithm or compare multiple algorithms simultaneously with multiple
graphs.

40

Kokkuvote

Kéesolevas bakalaureuse t60 pdhieesmargiks oli realiseerida rakendus suurima kliki ja
varvimise algoritmide t66joudluse kontrollimiseks. Selle saavutamiseks analliisiti esmalt
ndudeid ja nende jargi valiti sobivamaid tarkvara arendamistehnoloogiaid ja lahendusi. Oli
valitud veebirakenduse vorm. Téokaigus oli loodud tarkvara, mis aitab kasutajale teostada
algoritmide t66joudluse analtiusi, vorrelda algoritmide t66j6udlust ja visualiseerida tulemusi.
Veebirakenduse kasutamise vOimalus ei soltu kasutaja seadme tehnilistest omadustest ning
tema asukohast, vaid ainuke tingimus on Interneti Uhenduse saadavus. Rakenduse
kasutajaliides on tehtud voimalikult arusaadavalt 16ppkasutajale ning loogiliselt tles ehitatud.

Veebirakendus vdimaldab uurida suurima Kliki ja vérvimise algoritmide t66jéudlust nii
DIMACS, kui ka RANDOM graafidega. Kuna on teada, et mdnede algoritmide t66jéudlus on
parim konkreetse tiheduse juhul, kasutaja saab ise genereerida RANDOM graafi nii, nagu vaja
tema uurimistoo jaoks.

Tulemuste visualiseerimisest raékides, veebirakendus annab |8ppkasutajale vGimalust
vorrelde suurima kliki ja varvimise algoritmide t06joudlust ja effektiivsust graafikute ning
tabelite abil. Peale selle, kasutaja saab alla laadida Excel faili tulemustega. Link
allalaadimiseks on kattesaadav pérast veebirakenduse t66 kéivitamist.

Bakalaureuseto6 eesmark sai taidetud. Veebirakendus on reaalselt tootav tarkvara, mida saab
kasutada erinevates seadmetes, ning tanu selle struktuuri, seda saab tulevikus edasi areneda.

Tulevased uuringud

Vaatamata sellele, et meil on téotav ja 16plik veebirakendus, seda saaks tdiendada.Kuna
tdnapaeval jaab aktuaalseks, veebirakendus oma korral jaab vajalikuks uurimisvahendiks.
Vaatamata sellele, arendamise kaigus olid saavutatud kdik eesmérgid, veebirakenduse kiirust
saaks parandada uute tehnoloogiate rakendamisel. Selles aspektis nagu arendamine hasti aitab
autoriga valitud MVC veebirakenduse mudel. Peale kiirust, saaks lisada veebirakendusele ka
funktsionaalsust. Naiteks, et 10pp-kasutaja saaks Gles laadida oma algoritmi v6i vorrelda
samaaegselt mitu algoritmi mitmede graafidega.

41

References

[1] D. Kumlander, Some Practical Algorithms to Solve The Maximum Clique Problem,
Tallinn, 2005.

[2] W. Hasenplaugh, T. Kaler, T. B. Schardl ja C. E. Leiserson, Ordering Heuristics for
Parallel Graph Coloring, 2014.

[3] l. Petuhhov, Graaf, [WwWW]. Available:
http://www.cs.tlu.ee/~inga/alg_andm_09/graph_2008.pdf (21.05.2018).

[4] TypeScript. [WWW]. Available: https://www.typescriptlang.org/ (21.05.2018)

[5] J. R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer ja C. L. Martin, A
Comparison of Parallel Graph Coloring Algorithms, 1995.

[6] Chartjs documentation. [WWW]. Available: http://www.chartjs.org/docs/latest/
(21.05.2018)

[7] Chart.js Tutorial. [WWW]. Available: https://coursetro.com/posts/code/126/Let's-build-
an-Angular-5-Chart.js-App---Tutorial (21.05.2018)

[8] Bootstrap. [WWW]. Available: https://getbootstrap.com/ (21.05.2018)

[9] Official Angular Website. [WWW]. Available: https://angular.io/ (21.05.2018)

[10] Angular Tutorial. [WWW]. Available: https://mdbootstrap.com/angular/angular-tutorial/
(21.05.2018)

[11] M. Koit, Graafiteooria pohimdisted, internet based by Hilja Afanasjeva [WwWW].
Available:
https://www.teaduskool.ut.ee/sites/default/files/teaduskool/oppetoo/mat_gymn_graafiteooria.
pdf (21.05.2018)

[12] A. Porosin, Reversed Search Maximum Clique Algorithm Based on Recoloring, Tallinn,
2015.

[13] Soma Saha, Gyan Baboo, Rajeev Kumar, An Efficient EA with Multipoint Guided
Crossover for Bi-objective Graph Coloring Problem, 2011.

[14] Carraghan R, Pardalos PM An exact algorithm for the maximum clique problem. Op.
Research Letters 9, 1990, pp 375-382.

42

http://www.cs.tlu.ee/~inga/alg_andm_09/graph_2008.pdf
https://www.typescriptlang.org/
http://www.chartjs.org/docs/latest/
https://coursetro.com/posts/code/126/Let's-build-an-Angular-5-Chart.js-App---Tutorial
https://coursetro.com/posts/code/126/Let's-build-an-Angular-5-Chart.js-App---Tutorial
https://getbootstrap.com/
https://angular.io/
https://mdbootstrap.com/angular/angular-tutorial/
https://www.teaduskool.ut.ee/sites/default/files/teaduskool/oppetoo/mat_gymn_graafiteooria.pdf
https://www.teaduskool.ut.ee/sites/default/files/teaduskool/oppetoo/mat_gymn_graafiteooria.pdf

[15] Ostergard PRJ, A fast algorithm for the maximum clique problem, Discrete Applied
Mathematics 120, 2002, pp 197-207.

[16] Niga Atta, Desktop application VS. Web applicaiton [WWW]. Available:
https://www.avestagroup.net/DetailsEN.aspx?PostID=1006&CataType=5&CatalD=1006
(21.05.2018)

[17] Web and Desktop application comparison [WWW]. Available: http://lamp-
dev.ru/desktop-vs-web-applications-340.html (21.05.2018)

[18] DIMACS. [WWW]. Available: http://dimacs.rutgers.edu/archive/Challenges/
(21.05.2018)

[19] MVC model. [WWW]. Available: https://docs.microsoft.com/en-
us/aspnet/mvc/overview/older-versions-1/overview/understanding-models-views-and-
controllers-cs (21.05.2018)

[20] University of Cambridge, Turing machine [WWW]. Available:
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/turing-machine/one.html (21.05.2018)

[21] Chartrand G (1985) The Konigsberg Bridge Problem: An Introduction to Eulerian
Graphs, Introductory Graph Theory. New York: Dover 3(1), pp 51-60

[22] Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer.
237, 108-121, 1977.

[23] Jetbrains Co, Webstorm. [WWW]. Available: https://www.jetbrains.com/webstorm/
(21.05.2018)

[24] Simple graph [WwWWwW]. Available:
https://www.tutorialspoint.com/graph_theory/types of graphs.htm (21.05.2018)

43

https://www.avestagroup.net/DetailsEN.aspx?PostID=1006&CataType=5&CataID=1006
http://lamp-dev.ru/desktop-vs-web-applications-340.html
http://lamp-dev.ru/desktop-vs-web-applications-340.html
http://dimacs.rutgers.edu/archive/Challenges/
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/overview/understanding-models-views-and-controllers-cs
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/overview/understanding-models-views-and-controllers-cs
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/overview/understanding-models-views-and-controllers-cs
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/turing-machine/one.html
https://www.jetbrains.com/webstorm/
https://www.tutorialspoint.com/graph_theory/types_of_graphs.htm

