
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Artjom Jakovlev 179633IAIB

CREATING A SOFTWARE FOR

PRESENTING AND ENACTING PROCESSES

Bachelor’s thesis

Supervisor: Erki Eessaar

 PhD

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Artjom Jakovlev 179633IAIB

PROTSESSIDE ESITAMISE NING

LÄBIMÄNGIMISE TARKVARA LOOMINE

Bakalaureusetöö

Juhendaja: Erki Eessaar

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Artjom Jakovlev

24.05.2020

4

Abstract

The aim of this thesis is to design and implement a web-based software that could be used

for creating interactive representations of processes that can be accessed by other users

who are then able to move through the different steps of a published process. This is

supposed to be more interactive than alternative representations of procedural guidelines

and could encourage users to experiment with choosing different options and arriving at

different outcomes.

There is already a similar system created back in 2008 as a bachelor’s thesis for the same

goals. The supervisor of both theses is the same. This thesis aims to redesign the system

from scratch, choosing better solutions for the design and adding some additional

functionality.

Based on the supervisor’s wishes the system consists of a PostgreSQL database and a web

application built using PHP. The communication between the database and the

application happens through the virtual data layer achieved by an extensive usage of

functions and views. The integrity of the data in the database is guaranteed by declarative

constraints and triggers that are created in the database.

As the result, processes can be successfully represented in the system, but the addition of

new processes through a web interface is not finished as of the time of writing this

abstract. Nevertheless, a web application that uses the virtual data layer can be created

that allows users to manage processes. Compared to the older system, the new system

also has a more modern design, and contains new elements of processes that can be

displayed.

The working web application is accessible at http://apex.ttu.ee/processes/ as of May 2020.

The software’s source code is open source (protected with the MIT license) and can be

found at https://github.com/edelmoedig/ProcessEnacting-IAIB2020.

http://apex.ttu.ee/processes/
https://github.com/edelmoedig/ProcessEnacting-IAIB2020

5

In its chapters the thesis describes the idea, related work and system analysis performed

for designing this system. It also explains the database design and design of the web

application’s front-end and back-end.

This thesis is written in English and is 62 pages long, including 7 chapters, 28 figures and

4 tables.

6

Annotatsioon

PROTSESSIDE ESITAMISE NING LÄBIMÄNGIMISE

TARKVARA LOOMINE

Selle lõputöö eesmärk on kavandada ja realiseerida veebipõhine tarkvara, mida saaks

kasutada protsesside interaktiivse esituse loomiseks. Loodud protsessidele pääsevad ligi

teised kasutajad, kes seejärel võivad protsesse samm-sammult läbides ja valikuid tehes

neid läbimängida. Tulemus peaks olema interaktiivsem kui erinevate protseduuriliste

juhiste alternatiivsed esitused. See võiks julgustada kasutajat katsetama erinevate

võimaluste valimisega erinevate lõpptulemuste saamiseks.

Sama eesmärgi saavutamiseks loodi 2008. aastal bakalaureusetöö tulemusel sarnane

süsteem. Mõlemal lõputööl on sama juhendaja. Käesoleva lõputöö eesmärk on vana

süsteem nullist ümber kirjutada, valides selleks paremad lahendused ja lisades mõned

uued funktsionaalsused.

Vastavalt juhendaja soovile koosneb süsteem PostgreSQL andmebaasist ja PHP abil

ehitatud veebirakendusest. Seos andmebaasi ja rakenduse vahel toimub virtuaalse

andmekihi kaudu, mis on saavutatud andmebaasi funktsioonide ja vaadete laialdase

kasutamisega. Andmebaasi andmete terviklikkus tagatakse andmebaasis loodud

deklaratiivsete kitsendustega ja trigeritega.

Töö tulemusena saab protsesse süsteemis edukalt esitada, aga uute protsesside lisamine

veebiliidese kaudu ei ole selle annotatsiooni kirjutamise hetkeks veel realiseeritud. Saab

luua veebirakenduse, mis virtuaalse andmekihi vahendusel võimaldab protsesse hallata.

Võrreldes vanema süsteemiga on uus süsteem ka moodsama kujundusega ja võimaldab

kasutada uusi protsessi elemente.

Töötav veebirakendus asub 2020. aasta maikuu seisuga aadressil

http://apex.ttu.ee/processes/. Tarkvara on avatud lähtekoodiga (kaitstud MIT litsentsiga)

ja see asub aadressil https://github.com/edelmoedig/ProcessEnacting-IAIB2020

http://apex.ttu.ee/processes/
https://github.com/edelmoedig/ProcessEnacting-IAIB2020

7

Selle lõputöö peatükkides on kirjeldatud süsteemi idee, seotud tööd, süsteemianalüüs,

andmebaas ning veebirakenduse ees- ja tagasüsteem.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 62 leheküljel, 7 peatükki, 28

joonist, 4 tabelit.

8

List of abbreviations and terms

ANSI American National Standards Institute

CASE Computer Aided Software Engineering

A set of labor-saving tools used in software development that

allow creating models to support following software

development lifecycle [1].

CSS Cascading Style Sheets

“A style sheet language used for adding style (e.g., fonts,

colors, spacing) to Web documents” [2].

DBMS Database Management System

A software for implementing, managing, and providing access

to databases.

Domain In SQL reusable specification of column properties where one

must specify data type and can specify things like default value,

NOT NULL constraint, and CHECK constraints.

HTML Hypertext Markup Language

“A markup language that is used to create documents on the

World Wide Web incorporating text, graphics, sound, video,

and hyperlinks” [3].

HTTP Hypertext Transfer Protocol

A protocol for transferring data over a network.

HTTPS Hypertext Transfer Protocol Secure

An extension of the HTTP that uses TLS (or SSL) to encrypt

HTTP requests and responses [4].

PDO PHP Data Objects

An interface for PHP that allows accessing databases regardless

of their DBMSs.

PHP PHP: Hypertext Preprocessor

“A scripting language used to create dynamic and interactive

HTML Web pages” [5].

SQL Structured Query Language

A special-purpose programming language designed for

managing data, database objects, privileges, transactions, etc. in

a relational database that has been built up based on the

9

underlying data model of SQL. It is used by a huge number of

apps and organizations [6].

SSL Secure Sockets Layer

A cryptographic protocol that is now deprecated in favor of

TLS.

TLS Transport Layer Security

A cryptographic protocol.

Trigger In SQL a set of actions that is executed when a certain event

occurs, possibly when some additional conditions are met. The

event can be a data modification in a base table or a view.

UML Unified Modeling Language

A standardized graphical language for “visualizing, specifying,

constructing, and documenting the artifacts” of mostly

information and software systems [7].

URL Uniform Resource Locator

A reference to a Web resource, most often a webpage, that

“specifies its location on a computer network and a mechanism

for retrieving it” [8].

WFMS Workflow Management System

“A software system that provides the infrastructure to arrange,

track, control, and coordinate the business processes known as

workflows” [9].

10

Table of contents

1 Introduction ... 15

1.1 Problem ... 15

1.2 Objective ... 15

1.3 Tools and Processes .. 16

1.4 Structure of the Thesis .. 16

2 Related Work ... 18

2.1 Users Do Not Like Manuals and What to do About This 18

2.2 Dmitri Karlõšev’s Thesis .. 18

2.3 Modelling Processes ... 19

2.4 Workflow Management Systems.. 20

2.5 Interactive Fiction ... 21

3 System Analysis .. 22

3.1 Areas of Competence .. 22

3.2 Functional Subsystems ... 22

3.3 Registers ... 22

3.4 User Stories... 23

3.5 Non-functional Requirements ... 24

3.5.1 Database .. 25

3.5.2 Back-end .. 25

3.5.3 Front-end ... 25

3.5.4 Language ... 25

4 Database Design .. 26

4.1 Tables.. 27

4.2 Views .. 31

4.3 Functions .. 31

4.4 Security ... 32

4.5 Data Integrity .. 33

5 Back-end Design ... 36

11

5.1 Database Connection .. 36

5.2 Structure.. 36

5.3 Security ... 37

6 Front-end Design ... 39

6.1 Implementation ... 39

6.2 Navigation .. 39

6.3 Main Page ... 40

6.4 Process Enactment .. 41

6.5 Search ... 42

6.6 Work in Progress .. 42

7 Summary .. 43

References .. 45

Appendix 1 – Alternative Applications .. 49

Appendix 2 – Entity-Relationship Diagrams.. 50

Appendix 3 – Physical Database Design Diagrams ... 53

Appendix 4 – Code Examples .. 57

Appendix 5 – Example Diagram .. 62

12

List of figures

Figure 1. Trigger preventing activation of processes with invalid parallel activities..... 34

Figure 2. Top navigation menu with three links shown. .. 39

Figure 3. The main page of the web application listing active processes. 40

Figure 4. The container with the process's details. ... 40

Figure 5. A step (parallel activity in this case) of a process in the web application. . 41

Figure 6. A decision step with two options in the web application. 41

Figure 7. The search form for the active processes by name. .. 42

Figure 8. Interface of draw.io. .. 49

Figure 9. Interface of Bizagi Modeler. ... 49

Figure 10. Register of administrators. .. 50

Figure 11. Register of classifiers. ... 50

Figure 12. Register of decision tables. ... 50

Figure 13. Register of process usages. ... 51

Figure 14. Register of processes. .. 51

Figure 15. Register of processes (steps). .. 52

Figure 16. Physical design of the register of administrators. ... 53

Figure 17. Physical design of the register of classifiers. .. 53

Figure 18. Physical design of the register of decision tables.. 54

Figure 19. Physical design of the register of process usages.. 55

Figure 20. Physical design of the register of processes. ... 56

Figure 21. Physical design of the register of processes (steps). 56

Figure 22. An anonymous function that can be used to insert the example process. 58

Figure 23. Two main tables – Process and Step – that depend on each other. 60

Figure 24. One of the two domains in the database, used for registration time. 60

Figure 25. An example of a function: function used to add the first step (Action here) to

a process. .. 60

Figure 26. An example of a trigger: trigger used to prevent invalid status changes. 61

Figure 27. An example of a view: basic information about steps. 61

13

Figure 28. Process of submitting and grading the independent work in the course

Databases I (in 2020). ... 62

14

List of tables

Table 1. Number of different types of objects in the database. 26

Table 2. Explanation of the meaning of tables. .. 27

Table 3. Explanation of the meaning of columns. .. 29

Table 4. Structure of the PHP back-end. .. 37

15

1 Introduction

A process is “a series of actions that you take in order to achieve a result” [10]. The goal

of this thesis is to design and implement a web-based system that allows people to create

step-by-step representations of real-life processes that can be accessed and “walked

through” by other people.

1.1 Problem

There is already a previously created system for this goal [11] [12]. Because it was

designed back in 2008, it is technically outdated by now.

This thesis focuses more on redesigning and reimplementing its technical side from

scratch with some added functionality.

1.2 Objective

As with various Workflow Management Systems that share some similarities with this

piece of software, users with the administrative role are allowed to specify processes

consisting of multiple steps. End users can then walk through the processes by simply

accessing the application that is available on the public Web. At each step of the process,

the user is presented with information related to the step (possibly including links or

decision tables) and is able to make a decision and transition into one of the next possible

steps, eventually arriving at the final step.

The system is meant to interactively guide a single user through a process and does not

involve other users (i.e., there are no requests for approval to transition between

steps/states like in workflow systems [13]) nor does it automate the process itself. The

intent of the system is to make procedural guidelines more lively and interactive by

allowing users to “walk through” and play with them by selecting different options, and

tunnel them through different paths and options by allowing them to concentrate to their

16

particular needs and interests. For instance, the system could be used to explain processes

related to studying a university course.

While this system attempts to fulfill the needs of a specific client (the thesis’s supervisor

in this case), its usefulness is not limited to only some specific domains of usage. The

created software can be used to represent any real-life process regardless of the real-life

area of usage it belongs to. The software’s source code is publicly available at

https://github.com/edelmoedig/ProcessEnacting-IAIB2020. The software is open source

and has been licensed with the MIT License [14].

1.3 Tools and Processes

Enterprise Architect 12 CASE tool is used for modeling the database of the system and

generation of the statements for creating base tables (tables), declarative constraints, and

indexes.

From the technical side, the system consists of a database and a website. According to the

specific requirements of the client, the system must be able to work in the environment

that has PostgreSQL (at least version 10) and PHP (version 5).

The system is successfully tested with the database that uses the PostgreSQL 12 database

management system (DBMS). The website part was built by using pure PHP 5.6 without

any frameworks. The website is hosted on the Apache web server. The website meets the

HTML5 standards and is styled with Fomantic UI as the CSS framework. During the

development, the database and the website were hosted locally on a Windows machine

similarly running Apache server with PHP and PostgreSQL DBMS.

A process shown in a UML activity diagram for the course “Andmebaasid I (ITI0206)”

(Figure 28) is chosen as the example process that is implemented by using the newly

created system.

1.4 Structure of the Thesis

In chapter 2 related work of the thesis topic, including existing software, is explained.

Chapter 3 presents the requirements (both functional and non-functional) to the new

system. Chapter 4 explains the design of the underlying database of the software. Chapters

17

5 and 6 explain the back-end and front-end of the software, respectively. Finally, the

summary is provided that concludes the work and points towards future work with the

current topic.

18

2 Related Work

A justification for the chosen method of representing processes and multiple ways to

visually represent real processes are described in this chapter.

2.1 Users Do Not Like Manuals and What to do About This

Various authors report, based on scientific research [15] or anecdotal evidence [16], that

users do not like reading manuals and long explanations. For instance, Novick and Ward

[15] found, based on 25 in-depth interviews, that the subjects avoided using both paper

and online help systems because these are hard to navigate, have wrong level of detail,

and they thought it was easier to ask from someone else or try to find the answer

themselves. User interface designers suggest using onboarding tours in the software [17]

[18] that walk the user through the features of an application or highlight the key features,

as well as wizards [19] that walk the user through a sequence of steps so that they can

achieve a goal. The present system tries to use the same approach in order to explain

processes to its users. The system’s creators are encouraged and motivated by the

following design patterns of persuasion in user interfaces.

▪ Reduction of complex behavior into a set of sequential tasks [20].

▪ Allowing simulation so that users can play with a system without being afraid of

messing something up [21].

▪ Sequencing, according to which complex activities should be decomposed into

smaller and more manageable tasks in order to make it easier to take action [22].

2.2 Dmitri Karlõšev’s Thesis

A system for visualizing workflows was created by Dmitri Karlõšev back in 2008 [11].

The thesis had the same supervisor as the current thesis. It is also a web-based application

created using PHP and PostgreSQL, where workflows or processes (used there

synonymously) are shown as sequences of steps (activities and decision points) between

http://apex.ttu.ee/protsessid/index.php

19

which the user can transition by making choices at the decision points. Each step has a

mandatory textual description or instruction and optional related links and files.

The process implementations (processes in short) are created by process administrators.

The processes are listed on the website [12] and can be accessed by anyone who knows

the URL and has web access. The users can go through a process by reading information

provided to them at each step and making decisions as to how to proceed at decision

points. In this way the users can “play” with different scenarios (sequences of steps

through the process) and find out what the implications in case of following the scenario

that is described by the process would be in the real life. The goal was to make

descriptions more “lively” – users can experiment with different scenarios instead of

reading a wall of the text. Different users might have to follow different scenarios that are

more applicable to their situations than the others and in this way each user can get

information that is the most relevant to him/her.

As mentioned before, the thesis is based on this previous work and aims to improve it.

2.3 Modelling Processes

Models are simplifications of reality. Models can be visualized by using diagrams.

Diagrams are like views – each model element can be depicted on zero or more diagrams

and each diagram depicts zero or more model elements. Models can describe the static

structure of a system as well as its behavior, including the processes that take place in or

around it. Thus, processes too can be visualized using diagrams. A possibility is to use

flowcharts with symbols assigned by the American National Standards Institute [23].

Over the years many process modeling diagram notations have been proposed like

functional flow block diagram (FFBD) [24], control-flow diagrams [25], graphical

program evaluation and review technique [26], all of which have some applications.

Perhaps nowadays the most well-known process modeling notations are UML (Unified

Modelling Language) activity diagrams [27] and BPMN (Business Process Modeling and

Notation) [28]. The process that will be implemented in the part of the thesis where we

validate the developed program is initially presented as a UML activity diagram (see

Figure 28 from Appendix 5).

20

In order to create the diagrams one can use drawing tools (like Visio) or CASE tools (like

Enterprise Architect). These tools could be desktop applications or web-based

environments.

Many of the programs [29] [30] for creating flowcharts are available online, like for

example diagrams.net, VisualParadigm Online, Microsoft Visio, Lucidchart or

Smartdraw; others like Edraw Max must be installed on the computer. The programs are

mostly similar to each other in terms of their basic functionality: diagram elements are

dragged and dropped into the grid, and connective arrows can be created between them.

The designed diagrams can be shared as a direct link or be converted into picture format.

Some programs such as VisualParadigm Online and Lucidchart are free of charge and

offer additional functionality for subscribing to their service. Some examples of the added

functionality are more storage, more templates, collaborative work, and integration with

other services.

One example of the web-based programs is diagrams.net (previously known as Draw.io).

It is completely free, open source, and does not require the user to register to use it. It

offers a selection of templates and elements that comply with the ANSI or UML standards

(Figure 8 in Appendix 1).

In case of drawing tools, the result is essentially a static picture with no possibility to

simulate the depicted process. In case of models created in CASE tools one could also,

for instance, search models from a set of models based on their content, generate

documentation, simulate processes, or generate code from the models [31].

Another example is the free version of Bizagi Modeler [32]. Its interface allows

constructing processes by dragging the first step into the modeling area and then adding

new steps by clicking on the previous steps and dragging connections if needed (Figure

9 in Appendix 1) [33]. Bizagi Modeler is a part of a line of solutions for defining and

implementing workflows, i.e., automating processes.

2.4 Workflow Management Systems

A workflow can be defined as “collection of tasks organized to accomplish some business

process” [34] with the distinction made between material processes, information

processes, and business processes. Material processes are performed by humans,

21

information processes are automated, whereas business processes are market-centered

implementations of material or information processes that describe an organization’s

activities [34] [35]. Workflow Management Systems (WFMS) systems provide

organizations with the means of overseeing their workflows.

While WFMS systems allow visualizing processes, they are intended to be used in a

multi-user environment. They also offer some degree of automation (either involving

humans or automatically processing and modifying input data according to some pre-

existing algorithms), which is out of scope of this work. For instance, in case of the paid

versions of Bizagi one can let the system automate the processes by interpreting the model

as well as simulate the processes [36] in order to, for instance, optimize the processes. In

the workflow systems it may possible to specify processes in terms of visual models

(diagrams) (for instance, the aforementioned Bizagi Modeler).

In comparison, all three types of processes can be represented in the designed system, but

there is just a single user that should proceed with completing the tasks according to the

provided instructions and move on to the next step without automation of the tasks in

question. At least in the current software release it will not be possible to specify

processes visually or conduct simulations. Instead, one will have to use a form-based user

interface to specify processes.

2.5 Interactive Fiction

The topic of this thesis is also somewhat related to interactive novels or gamebooks. These

types of fiction typically have a starting point, the reader is asked to make a choice to

move to the next step and so on. In the end the reader arrives to one of the possible endings

[37]. The main similarity with the topic of this thesis is that interactive novels and the

designed program are both text-based, as opposed to diagrams.

Programs available for creating interactive novels usually output the result as HTML and

allow the author to use CSS and JavaScript [38].

22

3 System Analysis

This chapter reviews the requirements to the system. Firstly, we decompose the system

into smaller parts (subsystems) as suggested, for instance, by Eessaar [39]. There are three

types of subsystems. Areas of competence correspond to the roles of the users of the

system. The representatives of the areas of competence use the services of functional

subsystems. Each functional subsystem corresponds to a main function (a chunk of

functionality) of the system. Each functional subsystem uses the services (reads data or

modifies data) of one or more registers. One should create the user interface, application,

and database based on the areas of competence, functional subsystems, and registers,

respectively. The subsystems and their interactions constitute the business architecture of

the system.

3.1 Areas of Competence

▪ Administrator’s area of competence

▪ User’s area of competence

3.2 Functional Subsystems

▪ Process management functional subsystem

▪ Administrator management functional subsystem

▪ Classifier management functional subsystem

3.3 Registers

▪ Register of processes

▪ Register of decision tables

▪ Register of process usages

▪ Register of administrators

▪ Register of classifiers

23

3.4 User Stories

This section presents the basic functionality of the process enactment system as expressed

in terms of user stories [40].

The user story that is related to the administrator management functional subsystem:

▪ As an administrator, I want to authenticate, so that I can receive required

permissions for creating processes.

The user stories that are related to the process management functional subsystem:

▪ As an administrator, I want to create a process, so that I can start editing it.

▪ As an administrator, I want to add steps to the newly created process (meaning the

first step that is connected directly to the process and the following steps that

follow the previously added), so that any sequence of real steps can be depicted.

▪ As an administrator, I want to create processes that can depict parallel steps (all

of which must be completed to transition further), so that real-life processes are

represented accurately.

▪ As an administrator, I want to create processes with decision points, so that the

users can choose the most suitable course of action out of those presented for

them.

▪ As an administrator, I want to assign weights to some or all options of a decision

step that are visible to the users, so that the users can make a more informed

decision about the further course of action.

▪ As an administrator, I want to add a link to a web resource to any step of the

process, so that the users can open them to get additional information about the

current step, carry out some actions required for proceeding further at the location

of that link, or to download required files from the link.

▪ As an administrator, I want to add a link to a web resource to the process in general

and that is visible at every step of the process, so that the users can get additional

information about the process or download files that are in some way required for

this process.

▪ As an administrator, I want to add decision tables to any step, so that the users can

make a decision based on the table or receive otherwise relevant information about

the step.

24

▪ As an administrator, I want to have a possibility to assign a password to a process,

so that only the users who know the password can walk through the process.

▪ As an administrator, I want the process to be accessible through a permanent link

(URL) that can be shared with other people, so that they can access the process

through it.

▪ As an administrator, I want to search through a list of process to find the process

that needs modification or review, or to make sure that there is no such process

already.

▪ As an administrator, I want to be able to change the status of the process, so that

it can be temporarily hidden from the users to be edited or for any other possible

purpose, or so that in can be permanently hidden from the users.

▪ As an administrator, I want to edit an already created process: change its name, its

password, add, modify, or remove steps and connections between them as well as

add, modify, or remove links, so that the process is kept up-to-date and the users

access its latest version.

▪ As an administrator, I want to be sure that the process is correctly implemented

technically, so that users can successfully finish it.

▪ As an administrator, I want to be able to collect statistics about the completion of

my process, so that I can use the statistics to modify either the enactment of the

process in this application or the real-life process itself.

▪ As a user, I want to be able to access a list of processes, so that I can choose the

one I want to go through.

▪ As a user, I want to go through a process, so that I can gain the relevant

information.

▪ As a user, I want to access a password-protected process, so that I can go through

it.

▪ As a user, I want to be able to search processes to find the one that is currently the

most relevant to me.

3.5 Non-functional Requirements

This subchapter lists non-functional requirements to the software that were presented by

the supervisor.

25

3.5.1 Database

The system should use the PostgreSQL (at least version 10) DBMS.

3.5.2 Back-end

The system should use PHP (version 5) and shouldn’t require installation of any extra

components/programs in the server. Every piece of supporting software that the system

needs must be provided within the folder of the web application or linked from the

Internet.

3.5.3 Front-end

The system must have a web interface. The website should be implemented using HTML,

CSS and JavaScript.

3.5.4 Language

The website should be available in English and Estonian with the possibility to add more

languages in the future.

The language used in the database (in case of the identifiers of database objects and

comments) is English.

26

4 Database Design

The following chapter describes the design of the database used in the system.

Appendix 2 shows the entity-relationship diagrams of the conceptual model of the

database, while the Appendix 3 shows the physical design.

Table 1 shows the different types of objects in the database. All of them are located in the

schema called processes.

Table 1. Number of different types of objects in the database.

Database object Count

Base table (Table) 15

Column of a table 63

View 10

Column of a view 54

Function 87 (including those of pgcrypto extension)

Trigger 38

Domain 2

The exclusive usage of functions and views for operations on the database creates a layer

of abstraction (so called virtual data layer) between the application and the database,

maximizing the reusability of the data structures [41]. Its other advantages include

possibilities to hide certain base table structure changes behind the layer, i.e., these do not

require changes in the application source code. Moreover, the layer can be used to

implement a layer of security in the multi-layered security system. More precisely, the

database user under which the application uses the database can read data through views

and modify data through user-defined routines (functions in this case) but it cannot access

directly base tables. A technical difficulty in PostgreSQL is that making changes in the

structure of base tables that have dependent views required dropping and recreating the

views [42].

27

4.1 Tables

There are 15 tables in the database that belong to the registers found during the system

analysis. Table 2. Explanation of the meaning of tables.Table 2 explains the meaning of

the tables to human users.

Table 2. Explanation of the meaning of tables.

Table Register Definition

Action Register of processes The most basic type of a step that

represents a straightforward action

that can either lead to another step or

be the final step unless inside a

parallel activity.

Action_in_parallel_activity Register of processes An action that is contained inside a

parallel activity.

Cannot lead to the next step.

Administrator Register of

administrators

A registered user that can create,

modify, or otherwise manipulate the

processes.

Decision Register of processes A type of a step that contains multiple

options (at least two) inside itself.

Cannot lead to the next step.

Decision_table Register of processes A table that is connected to an action

step and that specifies conditions and

their respective actions.

Decision_table_entry Register of processes A condition-action pair.

Option Register of processes A choice inside the decision step.

Must lead to the next step.

Parallel_activity Register of processes A type of a step that contains multiple

actions (at least two) inside itself. All

of the actions must be completed to

proceed further, and their order does

not matter.

Must lead to the next step.

Process Register of processes A sequence of steps that helps

someone or something to achieve a

goal.

Process_link Register of processes A link associated with the whole

process that is displayed on every step

of the process in the web application.

28

Table Register Definition

Process_status_type Register of classifiers A status of a process on which the

process’s visibility, accessibility, and

modifiability depend.

Process_usage Register of process

Usages

Statistics collected every time a user

starts walking through the process.

Step Register of processes A single part in a series of transitions

inside the process.

A step must belong to exactly one out

of three types: action, decision, or

parallel activity.

Step_click Register of process

Usages

Statistics collected every time a user

arrives on the step during the process

usage.

Step_link Register of processes A link associated with just one step

that is displayed only during that step

in the web application.

Table 3 explains the meaning of all the non-foreign key columns to human users. The

database design follows some conventions.

▪ Values of all the surrogate keys are generated automatically by the system. It is

achieved by using SERIAL/BIGSERIAL notation.

▪ None of the textual columns can contain empty strings and strings that consist of

only whitespace characters. It is achieved with CHECK constraints (see Figure 23

in Appendix 4).

▪ Timestamps (for instance, registration time) must be between January 1, 2020 and

December 31, 2200 (end points included). It is achieved with a CHECK

constraints. Time zone and fractional seconds are not registered and the default

value is found by using the expression LOCALTIMESTAMP(0).

▪ A domain is created if it is worth the effort – the domain is used in case of multiple

columns and if it has enough “content”, i.e., specifies a CHECK constraint or a

default value. In the present project a domain is used in case of temporal columns

(see Figure 24 in Appendix 4) and another domain is used in case of columns that

must keep URLs.

29

Table name Column name Column description

Action_in_parallel_activity reg_time Registration time.

Administrator administrator_id Primary key column. Surrogate key.

Administrator email

E-mail address of the administrator.

Must have case insensitive

uniqueness and is used as the

username in case the administrator

has to log in. Must contain at least

one @ sign.

Administrator password

Salted and hashed password of the

administrator.

Administrator given_name At least one of these names must be

registered, i.e., NOT NULL.
Administrator surname

Administrator is_active

Whether the administrator can access

the system (TRUE) or not (FALSE).

Administrator reg_time Registration time.

Decision_table decision_table_id Primary key column. Surrogate key.

Decision_table name Name of the decision table.

Decision_table is_active

Whether the decision table is

displayed to an end user who walks

through the process (TRUE) or not

(FALSE).

Decision_table reg_time Registration time.

Decision_table_entry decision_table_entry_id Primary key column. Surrogate key.

Decision_table_entry condition

Free form description of a condition

that determines which action to

perform. Must be unique within a

decision table.

Decision_table_entry action

Free form description of an action

that is performed if the condition is

met.

Decision_table_entry seq_nr

Determines the order of displaying

decision table entries. Must be

unique within a decision table.

Decision_table_entry reg_time Registration time.

Option option_id Primary key column. Surrogate key.

Table 3. Explanation of the meaning of columns.

30

Table name Column name Column description

Option weight

Numeric value that determines the

relative importance of the option.

Option reg_time Registration time.

Option guard

Condition that must be met to choose

the option.

Process process_id Primary key column. Surrogate key.

Process name Name of the process.

Process description Free form explanation of the process.

Process reg_time Registration time.

Process password

Optional salted and hashed password.

If the process is password protected,

i.e., the password is registered, then

the end user who accesses it must

provide the password.

Process_link process_link_id Primary key column. Surrogate key.

Process_link url

URL of a web-resource that is

relevant in terms of the entire

process. Must start with “http://” or

https://. Must be unique within a

process.

Process_link name Name of the process link.

Process_link priority_nr

Determines the order of displaying

links in case a process has multiple

links. Must be unique within a

process.

Process_link reg_time Registration time.

Process_status_type process_status_type_code

Code of the process status. It is

registered by a human user, not

generated by the system.

Process_status_type name Name of process status.

Process_usage process_usage_id Primary key column. Surrogate key.

Step step_id Primary key column. Surrogate key.

Step reg_time Registration time.

Step description Free form explanation of the step.

Step_click step_click_id Primary key column. Surrogate key.

https://

31

Table name Column name Column description

Step_click click_time

Timestamp of a moment when the

step was accessed by an end user

who walks through the process.

Step_link step_link_id Primary key column. Surrogate key.

Step_link url

URL of a web-resource that is

relevant in terms of the step. Must

start with “http://” or https://. Must be

unique within a step.

Step_link name Name of the step link.

Step_link priority_nr

Determines the order of displaying

links in case a step has multiple links.

Must be unique within a step.

Step_link reg_time Registration time.

4.2 Views

There are 10 views that are used for SELECTing data to display in the application:

▪ all_processes,

▪ active_inactive_on_hold_processes,

▪ active_processes,

▪ process_steps (see Figure 27 of Appendix 4),

▪ parallel_actions,

▪ decision_options,

▪ decision_tables,

▪ decision_table_entries,

▪ process_links,

▪ step_links.

4.3 Functions

All of the required INSERTs, UPDATEs, and DELETEs can be done in the database

using user-defined functions. Most of the functions are used to create and modify

processes and other objects that are connected to them. In total at the time of writing the

thesis, there are 49 non-trigger user-defined functions that do not belong to any extension.

https://

32

46 functions are written in SQL and one in PL/pgSQL. Many functions use a feature of

PostgreSQL according to which one can change data in multiple tables with one statement

and can use the identifier that was generated while inserting a row to a table within the

same statement to modify data in other tables (see Figure 25 of Appendix 4).

Using these functions, a process is constructed step-by-step. For example, there are five

closely related functions for adding steps.

1. The new step is the first step of the process.

2. The new step is added so that it is connected to the previous step but is not connected

to the next step at the time of creation.

3. The new step is added so that it is connected to the previous and next steps at the time

of creation.

4. The new step is added to an option but is not connected to the next step at the time of

creation.

5. The new step is added to the option and leads to an existing next step.

Together with using triggers, this approach guarantees that a process is constructed

correctly and can be successfully finished after its activation.

In order to demonstrate it, the process depicted in Appendix 5, Figure 28 can be created

using the code from Appendix 4, Figure 22.

4.4 Security

The right to connect to the database is taken from PUBLIC (that is, any user who could

theoretically connect to the database) and is restricted to two users (corresponding to the

application) created specifically for this database: process_administrator and

process_user. All the database objects are created in the schema called processes. Access

to this schema and to the schema public is also taken from PUBLIC. Finally, rights to

execute routines are also taken from PUBLIC.

The functions are created with SECURITY DEFINER meaning that they have the

privileges of the function’s creator which allows the unprivileged users that have access

to them execute operation with the higher privileges. However, they are restricted to only

using these functions and operations inside them, which improves security.

33

There are views that are created for showing information from the tables required for the

web application. As additional security, the views are created with security_barrier

property to reliably hide hidden rows and prevent potential malicious functions from

extracting more information, and with the CHECK OPTION on those views that refer

only to one table to prevent UPDATEs and INSERTs that do not comply with the

definition of the view.

Access to the schema processes along with the right to execute the functions and SELECT

from the views is given to the process_aministrator and process_user depending on their

needs, with the former receiving access to all of the functions and the latter receiving

access only to the functions for authorization and logging process usages. The principle

of least privilege [43] was used to give privileges to these users, i.e., they got only the

privileges that are essential to complete their tasks.

The passwords in the database are salted and hashed using the PostgreSQL extension

pgcrypto with the Blowfish algorithm.

4.5 Data Integrity

The software uses BEFORE INSERT, BEFORE UPDATE, and BEFORE DELETE

triggers to ensure the integrity of the data inside the database in case it is not possible to

achieve it declaratively by using database constraints. These triggers fire corresponding

trigger functions that prevent the called operation from succeeding and raise exceptions

if the constraints are violated. The trigger functions are written in PL/pgSQL language.

The extensive usage of triggers in the database instead of processing the logic in the

application has its pluses and minuses. The pluses of the trigger-based approach is the

guarantee that data modification is checked against the enforced rule regardless of the

way it is entered to the database (through an application or perhaps directly by using an

administrative interface), the guarantee of atomicity (either all of the operations occur or

none of them), and the ability to change the business logic without changing the

application’s code. Its minuses are the difficulties in migrating from the DBMS because

the triggers must be rewritten, the inner workings of the triggers that are sometimes

unclear to the user, and a decrease in the speed of the operations in the database [44].

34

As an example of a trigger in the database, the trigger that prevents the activation of a

process with a parallel activity that has less than two actions in it can be seen in Figure 1.

The trigger function uses explicit locking of a table to deal with the situation when at the

same time of activation parallel activities are deleted.

CREATE OR REPLACE FUNCTION
processes.f_activate_process_parallel_activity_less_than_2_actions() RETURNS
trigger AS

$$

DECLARE

 v_count bigint;

BEGIN

 LOCK TABLE processes.Process, processes.Action_in_parallel_activity,
processes.Parallel_activity, processes.Step IN ACCESS EXCLUSIVE MODE;

 v_count := (SELECT Count(*)

 FROM (SELECT Parallel_activity.parallel_activity_id,
count(action_id)

 FROM processes.Parallel_activity

 INNER JOIN processes.Step ON
parallel_activity_id = step_id

 LEFT JOIN
processes.Action_in_parallel_activity

 ON
Action_in_parallel_activity.parallel_activity_id =

Parallel_activity.parallel_activity_id

 WHERE Step.process_id = NEW.process_id

 GROUP BY Parallel_activity.parallel_activity_id

 HAVING Count(*) < 2) AS Parallel_action_count);

 IF v_count > 0 THEN

 RAISE EXCEPTION 'There are % parallel activities that have less than
2 parallel actions.', v_count;

 ELSE

 RETURN NEW;

 END IF;

END;

$$ LANGUAGE plpgsql SECURITY DEFINER

 SET search_path = processes, public, pg_temp;

 CREATE TRIGGER trig_activate_process_parallel_activity_less_than_2_actions

 BEFORE UPDATE OF process_status_type_code

 ON processes.Process

 FOR EACH ROW

 WHEN (OLD.process_status_type_code <> NEW.process_status_type_code AND
NEW.process_status_type_code = 2)

EXECUTE FUNCTION
processes.f_activate_process_parallel_activity_less_than_2_actions();

Figure 1. Trigger preventing activation of processes with invalid parallel activities.

35

The trigger function uses explicit locking of a table to deal with the situation when at the

same time of activation of a process a parallel activity of the process is deleted.

PostgreSQL uses multiversion concurrency control method [45], according to which

reading a data element does not block updating or deleting the element and vice versa.

Thus, in case of control logic sometimes explicit locking of specific rows or the entire

table is needed. Another example of a trigger is presented in Figure 26 of Appendix 4. It

is simpler and it only has to access the row which modification fired it. Thus, its function

does not have to conduct explicit locking of rows.

36

5 Back-end Design

The following chapter describes the part of the system’s backend that was created using

pure PHP without any extensions. The software is not so big and thus the influence on

the developer’s productivity was not a real problem. Moreover, frameworks that

implement the use of object-relational mapping have their own problems (like potential

leaky abstractions, weakened data validation, performance, problems, etc.) [46].

As of the time of finishing this thesis, this part along with the corresponding parts of the

website, has not been completely finished, but the plan is to complete it before the defense

of the thesis.

5.1 Database Connection

The connection to the database is established using PDO. The parameters are read in the

class Connection from the file config.ini. The object of this class is in every .php file

where the connection is required.

There are two more classes: Administrator that contains queries for registering a new

process administrator and Process that contains queries for selecting the data that needs

to be displayed during the walkthroughs of the processes along with the logging functions

that save statistic about step clicks to the database. As it is not currently possible to create

processes from the application, the required PDO functions that call the corresponding

functions from the database are missing from here right now.

5.2 Structure

Generally, most of the queries to the database and the following logic are located at the

top of the .php files. PHP scripts are also called inside the HTML code in order to generate

those parts of the page that depend on the result of the queries.

There are seven .php files in this project not including classes Administrator, Process, and

Connection. The explanation of their purpose is shown in Table 4.

37

Table 4. Structure of the PHP back-end.

File name Purpose

enact.php The page that shows all available information about the current step

that can be received from the database.

process_id and step_id are parameters of the query string

(pr={process_id}&step={step_id}) in the URL. The step must belong

to the corresponding process and the process must be accessible to the

user, otherwise the user is redirected to the main page.

Includes navigation.

index.php The main page that lists all active processes that can be accessed by

ordinary users.

Includes navigation and search.

Search uses the query string “search={value}” in the URL, and when it

is set only shows the processes have this substring in their names

(using LIKE in the query to the database).

login.php The page used by administrators to log in.

Includes navigation.

logout.php PHP script that ends the current session.

navigation.php A navigation menu located at the top of the screen. Always contains

the link to the main page, shows additional links to administrators.

register.php The page used for registration of new administrators.

Includes navigation.

search.php A search form that is used for searching among all active processes by

name.

5.3 Security

All of the parameterized queries are first prepared and then executed to prevent SQL

injection. htmlspecialchars() is used on inputs where possible in order to sanitize them.

Function header() is used to move the user from the location he or she should not access

to a different one, and exit() is used to terminate the running script. A session is started

and $_SESSION variables are used to store information about the current session, like

for example, whether the current user is an administrator or not: for an administrator

$_SESSION[‘id’] is set to the id received during the login. During the logout the

previously set variables are unset and the session is destroyed.

38

The passwords are sent as plain text to the database and are hashed in the database.

Because the connection over at the apex.ttu.ee server happens over the HTTP protocol

and not the HTTPS, this is potentially unsafe [47] [48] [4]. The solution would be to place

the production version of the software to the server that supports HTTPS.

39

6 Front-end Design

This chapters describes the design of the website.

6.1 Implementation

The frontend is designed using the open-source CSS framework Fomantic-UI, which is a

community fork of another CSS framework called Semantic-UI. It requires jQuery to

fully function. The framework and its dependencies are included in the head of every

page.

All of the styling has been done using Fomantic-UI classes and there is no styling outside

of the framework as of now.

6.2 Navigation

The navigation menu is location in the middle top of the screen (Figure 2). When on the

main page or inside the processes, a guest user only sees the link “Processes” that takes

the user to the main page. When on the administrative page and not logged in, there are

three menu entries that lead to the list of processes, registration page, or login page

respectively. When logged it, the latter two buttons are replaced with one “Log out”

button. When the currently missing functionality of designing processes inside the

application is added, a logged-in administrator will be able to see a link to the list of all

modifiable processes.

Figure 2. Top navigation menu with three links shown.

40

6.3 Main Page

The main page of the website (Figure 3) lists all active processes that can be accessed by

the users.

Figure 4 shows the part with a process’s information shown in the list up close. The name,

description, owner, and registration time of the process are show along with the button

that allows the user to access the process.

Figure 3. The main page of the web application listing active processes.

Figure 4. The container with the process's details.

41

6.4 Process Enactment

Figure 5 shows how a step looks during the “walkthrough” of a process. On the left there

is the name of a process, clicking on which takes the user back to the first step, in the

middle there is a description of the step (with descriptions of multiple parallel actions in

this case) with the buttons leading to the next steps to the bottom of it. On the right there

are related links, with the process links followed by the step links. In this case, the parallel

activity itself has no related links, but every parallel action inside this parallel activity has

an associated link.

Figure 6 shows a decision step in the same process. By clicking on one of the two buttons,

the user can move to one of the possible steps.

Figure 5. A step (parallel activity in this case) of a process in the web application.

Figure 6. A decision step with two options in the web application.

42

6.5 Search

The search function (Figure 7) is located on the main page. It has only one input field that

is used for entering the substring that should be in the process’s name in order for it to

show up in the results.

6.6 Work in Progress

At the time of submitting the thesis the following main functionalities were

unimplemented or partially implemented due to the mistakes in planning.

▪ Web-application for the administrator to manage processes.

▪ Access to password-protected processes by end users.

▪ Support of multiple languages in the user interface.

The plan now is to complete these before the defense of the thesis in June 2020.

Retrospectively, it would have been important to start the work earlier and employ some

method for release planning like, for instance, the one that is proposed by Norman [49].

Figure 7. The search form for the active processes by name.

43

7 Summary

The objective of this thesis was to design and implement a web-based system than could

be used for specifying representations of processes. These would be subsequently

accessed and walked through (enacted) by other people. The representations of processes

are displayed to the users as sequences of steps, among which the users can transition and

eventually arrive to the final step, successfully completing the enactment of the process.

The system’s functional needs were given by the supervisor and additionally found with

the help of the user stories from the perspectives of an administrator and a guest user. In

order to design the database that could fulfill these needs, the required areas of

competence, functional subsystems, and registers were found during the system analysis.

Enterprise Architect 12 was used to create the entity-relationship diagrams and physical

database design diagrams. The latter was specifically created for PostgreSQL. The initial

version of the SQL code that contained the statements for creating tables, declarative

constraints, and indexes was generated with the help of Enterprise Architect.

The SQL code that was used for the creation of the final version of the database was

completed by manually adding other types of database objects, such as domains,

functions, triggers, and views. All of the interactions with the database from the web

application happen through these functions and views. Moreover, the database usage

privileges were removed from unauthorized users and were given to two new users

corresponding to the roles of a process administrator and a simple user. These users are

used by the application to access the database. The privileges to the users were given

according to their needs and following the principle of least privilege. The integrity of the

data that is kept in the database is guaranteed by using declarative constraints and triggers

that stop operations that lead to inconsistencies and mistakes in data. To summarize, the

database contains everything that is needed for specifying and accessing process

representations.

As for what concerns the web application written in PHP and HTML using the Fomantic-

UI CSS framework, currently it is missing the functionality for managing the processes

44

by the administrators: there is no working PHP and HTML code written for it at the time

of submission. The website can be used to display and access the processes that have been

manually created by using the database functions. At the time of the submission it shows

correctly different steps and links related to these, allows to transition between steps,

collects statistics about the accessed steps, and permits registering and logging in.

Nevertheless, as such the usefulness of this application is severely limited. The other

function that is described in the user stories but is currently missing is accessing a

password-protected process. The website is also currently available only in English. All

these functionalities will be added by the time of defense the thesis in June 2020.

The best way of designing a new process should be similar to modelling a flowchart where

every step of the process and the connections between the steps are seen all the time. The

most similar method to this is used in Bizagi Modeler [33]. This method essentially turns

a diagram into its step-by-step representation that is then shown to the users. An

alternative that is easier to implement is to make the stage of creation like the walkthrough

of a process that is currently implemented, however this requires the administrator to

constantly go back to modify steps and have less overview over the process overall, which

is a major inconvenience.

When compared with the older version of the similar process enactment system, this

implementation has a more modern interface, supports parallel activities, option weights,

and decision tables, and has an arguably better database design in general.

Both the database and the website are hosted on apex.ttu.ee as of May 2020. The website

is available on http://apex.ttu.ee/processes/. The software’s source code is open source

(protected with MIT license) and can be found at

https://github.com/edelmoedig/ProcessEnacting-IAIB2020.

Future work could include experimentation with user interface to find the best ways for

specifying and presenting processes. Another line of work is to implement the system by

using a graph-based DBMS (for instance, Neo4j). A goal of this would be to find out as

to whether it is better suited for such task than PostgreSQL or not.

https://github.com/edelmoedig/ProcessEnacting-IAIB2020

45

References

[1] M. Rouse, "Computer-aided software engineering (CASE)," October 2018.

[Online]. Available: https://searcherp.techtarget.com/definition/CASE-computer-

aided-software-engineering. [Accessed 23 May 2020].

[2] "Cascading Style Sheets," The World Wide Web Consortium, [Online]. Available:

https://www.w3.org/Style/CSS/Overview.en.html. [Accessed 23 May 2020].

[3] "HTML Definition," Merriam-Webster, [Online]. Available:

https://www.merriam-webster.com/dictionary/HTML. [Accessed 23 May 2020].

[4] "Why is HTTP not secure? | HTTP vs. HTTPS," Cloudflare, [Online]. Available:

https://www.cloudflare.com/learning/ssl/why-is-http-not-secure/. [Accessed 25

May 2020].

[5] "PHP: Hypertext Preprocessor (PHP)," Techopedia , 5 November 2011. [Online].

Available: https://www.techopedia.com/definition/24406/php-hypertext-

preprocessor-php. [Accessed 23 May 2020].

[6] "Intro to SQL: Querying and managing data," Khan Academy, [Online].

Available: https://www.khanacademy.org/computing/computer-programming/sql.

[Accessed 23 May 2020].

[7] "Unified Modeling Language," Object Management Group, [Online]. Available:

https://www.omg.org/spec/UML/. [Accessed 23 May 2020].

[8] "URL," [Online]. Available: https://en.wikipedia.org/wiki/URL. [Accessed 25

May 2020].

[9] "Save Time by Taking the Time: Creating Workflows," Smartsheet, [Online].

Available: https://www.smartsheet.com/save-time-taking-time-creating-

workflows. [Accessed 23 May 2020].

[10] "Meaning of process in English," Cambridge Dictionary, [Online]. Available:

https://dictionary.cambridge.org/dictionary/english/process. [Accessed 11 April

2020].

[11] D. Karlõsev, "Töövoo süsteemi projekteerimine ja realiseerimine,"

Bakalaureusetöö. TTÜ Informaatikainstituut, 2008.

[12] D. Karlõsev, "Töövoo süsteemi projekteerimine ja realiseerimine," [Online].

Available: http://apex.ttu.ee/protsessid/. [Accessed 21 February 2020].

[13] M. Jones, "Designing a Workflow Engine Database," [Online]. Available:

https://exceptionnotfound.net/designing-a-workflow-engine-database-part-1-

introduction-and-purpose/. [Accessed 21 February 2020].

[14] "The MIT License," Open Source Initiative, [Online]. Available:

https://opensource.org/licenses/MIT. [Accessed 25 May 2020].

[15] D. G. Novick and K. Ward, "Why don’t people read the manual?," in Proceedings

of the 24th Annual ACM International Conference on Design of Communication,

Myrtle Beach, 2006.

46

[16] J. Spolsky, "Designing for People Who Have Better Things To Do With Their

Lives," 26 April 2000. [Online]. Available:

https://www.joelonsoftware.com/2000/04/26/designing-for-people-who-have-

better-things-to-do-with-their-lives/. [Accessed 24 May 2020].

[17] "Real Users Don't Read Manuals," Open Social, 20 June 2017. [Online].

Available: Real Users Don't Read Manuals. [Accessed 24 May 2020].

[18] M. Cook, "UX Flows: How to Turn Onboarding into an Amazing First Date with

Your User," Telepathy, [Online]. Available: UX Flows: How to Turn Onboarding

into an Amazing First Date with Your User. [Accessed 24 May 2020].

[19] "Wizard," UI Patterns, [Online]. Available: https://ui-

patterns.com/patterns/Wizard. [Accessed 25 May 2020].

[20] "Reduction," UI Patterns, [Online]. Available: https://ui-

patterns.com/patterns/Reduction. [Accessed 25 May 2020].

[21] "Simulation," UI Patterns, [Online]. Available: https://ui-

patterns.com/patterns/Simulation. [Accessed 25 May 2020].

[22] "Sequencing," UI Patterns, [Online]. Available: https://ui-

patterns.com/patterns/Sequencing. [Accessed 25 May 2020].

[23] "ISO 5807:1985 [ISO 5807:1985] Information processing — Documentation

symbols and conventions for data, program and system flowcharts, program

network charts and system resources charts," 1985.

[24] "Systems Engineering Fundamentals," Defense Acquisition University Press,

2001.

[25] R. M. Smelik, "Specification and Construction of Control Flow Semantics a

generic approach using graph transformations".

[26] A Guide to the Project Management Body of Knowledge, Project Management

Institute, 2013.

[27] "Activity Diagrams," uml-diagrams.org, [Online]. Available: https://www.uml-

diagrams.org/activity-diagrams.html. [Accessed 25 May 2020].

[28] "Business Process Model and Notation," December 2013. [Online]. Available:

https://www.omg.org/spec/BPMN/2.0.2/PDF. [Accessed 1 April 2020].

[29] B. Aston, "The Best Flowchart Software Of 2020," The Digital Project Manager, 1

January 2020. [Online]. Available:

https://thedigitalprojectmanager.com/flowchart-software/. [Accessed 1 April

2020].

[30] K. Franks, "What’s the best workflow diagram software?," 2020. [Online].

Available: https://www.jotform.com/blog/workflow-diagram-software/. [Accessed

23 February 2020].

[31] S. Backhauß, "Code Generation for UML Activity Diagrams in Real-Time

Systems," Hamburg University of Technology, 2016.

[32] "Bizagi Modeler," Bizagi, [Online]. Available:

https://www.bizagi.com/en/platform/modeler. [Accessed 22 May 2020].

[33] Bizagi, "Bizagi Modeler Tutorial: How to Model Your First Business Process

using BPMN," [Online]. Available:

https://www.youtube.com/watch?v=GpXYgNVcdMU. [Accessed 23 May 2020].

47

[34] D. Georgakopoulos, M. Hornick and A. Sheth, "An overview of workflow

management: From process modeling to workflow automation infrastructure,"

Distrib Parallel Databases, no. 3, p. 119–153, 1995.

[35] R. Medina-Mora, T. Winograd and R. Flores, "ActionWorkflow as the Enterprise

Integration Technology," Bulletin of the Technical Committee on Data

Engineering, IEEE Computer Society , vol. 16, no. 2, 1993.

[36] "Simulation in Bizagi," Bizagi, [Online]. Available: http://help.bizagi.com/bpm-

suite/en/index.html?simulation_in_bizagi.htm. [Accessed 25 May 2020].

[37] N. Montfort, Twisty Little Passages: An Approach to Interactive Fiction, The MIT

Press, 2005.

[38] J. Paul, "Best open source tools to create Interactive Fiction," 9 November 2019.

[Online]. Available: https://itsfoss.com/create-interactive-fiction/. [Accessed 8

March 2020].

[39] E. Eessaar, "A Set of Practices for the Development of Data-Centric Information

Systems," in 22nd International Conference on Information Systems Development

(ISD2013), Seville, 2013.

[40] "User Stories," [Online]. Available:

https://www.mountaingoatsoftware.com/agile/user-stories. [Accessed 28 February

2020].

[41] L. Burns, Management, Building the Agile Database: How to Build a Successful

Application Using Agile Without Sacrificing Data, Technics Publications, 2011.

[42] "PostgreSQL: Drop column and recreate dependent views," Stack Overflow,

[Online]. Available: https://stackoverflow.com/questions/50455507/postgresql-

drop-column-and-recreate-dependent-views. [Accessed 25 May 2020].

[43] N. Lord, "What is the Principle of Least Privilege (POLP)? A Best Practice for

Information Security and Compliance," 12 September 2018. [Online]. Available:

https://digitalguardian.com/blog/what-principle-least-privilege-polp-best-practice-

information-security-and-compliance. [Accessed 25 May 2020].

[44] A. Põlluste, "Veebi- ja andmebaasipõhise metamodelleerimise vahendi üleviimine

andmebaasi trigeritel põhinevaks süsteemiks," Magistritöö. TTÜ

Informaatikainstituut, 2016.

[45] "PostgreSQL Concurrency with MVCC," Heroku, 20 February 2019. [Online].

Available: https://devcenter.heroku.com/articles/postgresql-concurrency.

[Accessed 25 May 2020].

[46] A. Korban, "The case against ORMs," 2 November 2017. [Online]. Available:

https://korban.net/posts/postgres/2017-11-02-the-case-against-orms/. [Accessed

25 May 2020].

[47] "Passwords in the Clear," World Wide Web Consortium, 8 October 2008.

[Online]. Available: https://www.w3.org/2001/tag/doc/passwordsInTheClear-52.

[Accessed 25 May 2020].

[48] "How to secure passwords over HTTP?," Stack Overflow, [Online]. Available:

https://security.stackexchange.com/questions/197330/how-to-secure-passwords-

over-http. [Accessed 25 May 2020].

[49] T. Norman, "Agile Release Planning 101," 6 September 2012. [Online].

Available: http://tommynorman.blogspot.com/2012/09/agile-release-planning-

101.html. [Accessed 25 May 2020].

48

[50] "Validating process errors," Bizagi, [Online]. Available:

http://help.bizagi.com/process-

modeler/en/index.html?validating_process_errors.htm. [Accessed 24 May 2020].

49

Appendix 1 – Alternative Applications

Figure 8. Interface of draw.io.

Figure 9. Interface of Bizagi Modeler [50].

50

Appendix 2 – Entity-Relationship Diagrams

Figure 10. Register of administrators.

Figure 11. Register of classifiers.

Figure 12. Register of decision tables.

class Administrators

Administator

- email: char

- password: char

- given_name: char [0..1]

- surname: char [0..1]

- is_active: boolean

- reg_time: timestamp

class Classifiers

Classifier

- code: char

- name: char

Process_status_type

«invariant»

{Mandatory}

class Decision_tables

Decision_table

- is_active: boolean

- name: char

- reg_time: timestamp

Step

Processes::

Action

Decision_table_entry

- condition: char

- action: char

- seq_nr: int

- reg_time: timestamp

1 0..*

1

0..*

51

Figure 13. Register of process usages.

Figure 14. Register of processes.

class Process usages

Processes::ProcessProcess_usage

Processes::StepStep_click

- click_time: timestamp

10..*

1

0..* 0..*

1

10..*

+next 0..1

+previous 0..*

class Processes

Process

- name: char

- description: char

- reg_time: timestamp

- password: char [0..1]

Step

Step_link

- url: char

- name: char [0..1]

- priority_nr: int

- reg_time: timestamp

Administrators::

Administator

Classifier

Classifiers::

Process_status_type

Process_link

- url: char

- name: char [0..1]

- priority_nr: int

- reg_time: timestamp

1

0..*

0..1

+first step

0..1 +owner

10..*

0..*

1

0..* 1

1

0..*

52

Figure 15. Register of processes (steps).

class Processes (steps)

Step

- reg_time: timestamp

- description: char

Action
Decision

«invariant»

{Mandatory; Or}

Variant

- weight: double [0..1]

- reg_time: timestamp

- guard: char

Parallel_activ ity

Action_in_parallel_activ ity

- reg_time: timestamp

«invariant»

{Next step is specified only in

case of actions and parallel

activities. In case of Decision

it is determined by the

variants.}

0..*

+leads to

1

+next

0..1

+previous

0..*

12..* 0..1 2..*

53

Appendix 3 – Physical Database Design Diagrams

Figure 16. Physical design of the register of administrators.

Figure 17. Physical design of the register of classifiers.

class Administrators

Administrator

«column»

* administrator_id: serial

* email: varchar(254)

* password: varchar(60)

 given_name: varchar(800)

 surname: varchar(800)

* is_active: boolean = TRUE

* reg_time: timestamp = LOCALTIMESTAMP(0)

«check»

+ PK_Administator(serial)

+ CHK_Administrator_must_have_a_name()

+ CHK_Administrator_given_name_not_only_whitespace()

+ CHK_Administrator_surname_not_only_whitespace()

+ CHK_Administrator_e_mail_at_least_one_at()

+ CHK_Administrator_password_not_only_whitespace()

«unique»

+ AK_Administrator_email(varchar)

class Classifiers

Process_status_type

«column»

*PK process_status_type_code: smallint

* name: varchar(50)

«PK»

+ PK_Process_status_type(smallint)

«unique»

+ AK_Process_status_type_name(varchar)

«check»

+ CHK_Process_status_name_not_only_whitespace()

54

Figure 18. Physical design of the register of decision tables.

class Decision Tables

Decision_table

«column»

*PK decision_table_id: serial

*FK action_id: integer

* name: varchar(500)

* is_active: boolean = TRUE

* reg_time: timestamp = LOCALTIMESTAMP(0)

«PK»

+ PK_Decision_table(serial)

«FK»

+ FK_Decision_table_Action(integer)

«index»

+ IX_Decision_table_action_id(integer)

«check»

+ CHK_Decision_table_name_not_only_whitespaces()

Decision_table_entry

«column»

*PK decision_table_entry_id: serial

*FK decision_table_id: integer

* condition: text

* action: text

* seq_nr: smallint

* reg_time: timestamp = LOCALTIMESTAMP(0)

«PK»

+ PK_Decision_table_entry(serial)

«FK»

+ FK_Decision_table_entry_Decision_table(integer)

«unique»

+ AK_decision_table_entry_seq_nr(integer, smallint)

+ AK_decision_table_entry_condition(text, integer)

«check»

+ CHK_Decision_table_entry_condition_not_only_whitespaces()

+ CHK_Decision_table_entry_action_not_only_whitespaces()

Processes::Action

+FK_Decision_table_Action

0..*

(action_id = action_id)

«FK»

+PK_Action 1

+FK_Decision_table_entry_Decision_table 0..*

(decision_table_id = decision_table_id)

«FK»

+PK_Decision_table 1

55

Figure 19. Physical design of the register of process usages.

class Process Usages

Process_usage

«column»

*PK process_usage_id: bigserial

*FK process_id: integer

«PK»

+ PK_Process_usage(bigserial)

«FK»

+ FK_Process_usage_Process(integer)

«index»

+ IX_Process_usage_process_id(integer)

Step_click

«column»

*PK step_click_id: bigserial

*FK process_usage_id: bigint

*FK step_id: integer

* click_time: timestamp = LOCALTIMESTAMP(0)

«PK»

+ PK_Step_click(bigserial)

«FK»

+ FK_Step_click_Step(integer)

+ FK_Step_click_Process_usage(bigint)

«index»

+ IX_Step_click_step_id(integer)

+ IX_Step_click_process_usage_id(bigint)

Processes::Step

Processes::Process

+FK_Step_click_Process_usage 0..*

(process_usage_id = process_usage_id)

«FK»

+PK_Process_usage 1

+FK_Process_Step_first_step 1

(first_step_id = step_id)

«FK»

+PK_Step 1

+FK_Step_click_Step

0..*

(step_id = step_id)

«FK»

+PK_Step

1

+FK_Process_usage_Process
0..*

(process_id = process_id)

«FK»

+PK_Process

1

+FK_Step_Step

0..*

(next_step_id = step_id)

«FK»

+PK_Step

0..1

+FK_Step_Process 0..*

(process_id = process_id)

«FK»

+PK_Process 1

56

Figure 20. Physical design of the register of processes.

Figure 21. Physical design of the register of processes (steps).

class Processes

Process

«column»

*PK process_id: serial

* name: varchar(250)

* description: text

*FK owner_id: integer

 FK first_step_id: integer

* reg_time: timestamp = LOCALTIMESTAMP(0)

*FK process_status_type_code: smallint = 2

 password: varchar(60)

«FK»

+ FK_Process_Step_first_step(integer)

+ FK_Process_Process_status_type(smallint)

+ FK_Process_Administator(integer)

«PK»

+ PK_Process(serial)

«index»

+ IX_Process_owner(integer)

+ IX_Process_process_status_type_code(smallint)

«unique»

+ AK_Process_first_step_id(integer)

«check»

+ CHK_Process_name_not_only_whitespaces()

+ CHK_Process_description_not_only_whitespaces()

Step

Process_link

«column»

*PK process_link_id: serial

*FK process_id: integer

* url: varchar(2000)

 name: varchar(1000)

* priority_nr: smallint

* reg_time: timestamp = LOCALTIMESTAMP(0)

«PK»

+ PK_Process_link(serial)

«FK»

+ FK_Process_link_Process(integer)

«check»

+ CHK_Process_link_url_not_only_whitespace()

+ CHK_Process_link_name_not_only_whitespace()

«unique»

+ AK_Process_link_priority(integer, smallint)

+ AK_Process_link_url(varchar, integer)

Administrators::Administrator

Classifiers::Process_status_type

Step_link

«column»

*PK step_link_id: serial

*FK step_id: integer

* url: varchar(2000)

 name: varchar(1000)

* priority_nr: smallint

* reg_time: timestamp = LOCALTIMESTAMP(0)

«PK»

+ PK_Step_link(serial)

«FK»

+ FK_Step_link_Step(integer)

«check»

+ CHK_Step_link_url_not_only_whitespace()

+ CHK_Step_link_name_not_only_whitespace()

«unique»

+ AK_Step_link_priority(integer, smallint)

+ AK_Step_link_url(varchar, integer)

+FK_Process_Step_first_step 1

(first_step_id =

step_id)

«FK»

+PK_Step

1

+FK_Process_link_Process 0..*

(process_id = process_id)

«FK»

+PK_Process 1

+FK_Process_Administator

0..*

«FK»

+PK_Administator 1

+FK_Step_link_Step 0..*

(step_id = step_id)

«FK»

+PK_Step 1

+FK_Step_Process

0..*

(process_id = process_id)

«FK»

+PK_Process

1

+FK_Process_Process_status_type 0..*

(process_status_type_code = process_status_type_code)

«FK»

+PK_Process_status_type 1

class Processes (steps)

Step

«column»

*PK step_id: serial

*FK process_id: integer

* reg_time: timestamp = LOCALTIMESTAMP(0)

* description: text

 FK next_step_id: integer

«FK»

+ FK_Step_Step(integer)

+ FK_Step_Process(integer)

«PK»

+ PK_Step(serial)

«check»

+ CHK_Step_description_not_only_whitespace()

«index»

+ IX_Step_Process(integer)

+ IX_Step_next_step(integer)

Action

«column»

*pfK action_id: integer

«PK»

+ PK_Action(integer)

«FK»

+ FK_Action_Step(integer)

Parallel_activ ity

«column»

*pfK parallel_activity_id: integer

«PK»

+ PK_Parallel_activity(integer)

«FK»

+ FK_Parallel_activity_Step(integer)

Decision

«column»

*pfK decision_id: integer

«PK»

+ PK_Decision(integer)

«FK»

+ FK_Decision_Step(integer)

Action_in_parallel_activ ity

«column»

*FK parallel_activity_id: integer

*pfK action_id: integer

* reg_time: timestamp = LOCALTIMESTAMP(0)

«FK»

+ FK_Action_in_parallel_activity_Parallel_activity(integer)

+ FK_Action_in_parallel_activity_Action(integer)

«index»

+ IX_Action_in_parallel_activity_Parallel_activity(integer)

«PK»

+ PK_Action_in_parallel_activity(integer)

Option

«column»

*PK option_id: serial

*FK decision_id: integer

 FK next_step_id: integer

 weight: decimal(10,3)

* reg_time: timestamp = LOCALTIMESTAMP(0)

* guard: text

«PK»

+ PK_Option(serial)

«FK»

+ FK_Option_Decision(integer)

+ FK_Option_Step(integer)

«index»

+ IX_Option_next_step(integer)

«unique»

+ AK_Option_decision_guard(integer, text)

«invariant»

{Next step is specified

only in case of actions

and parallel activities.

In case of Decision it is

determined by the

variants.}

+FK_Parallel_activity_Step

0..1

(parallel_activity_id = step_id)

«FK»

+PK_Step 1

+FK_Step_Step

0..*

(next_step_id = step_id)

«FK»

+PK_Step 0..1

+FK_Action_Step

0..1
(action_id = step_id)

«FK»

+PK_Step

1

+FK_Action_in_parallel_activity_Parallel_activity

0..*

(parallel_activity_id = parallel_activity_id)

«FK»

+PK_Parallel_activity

1

+FK_Action_in_parallel_activity_Action 0..1

(action_id = action_id)

«FK»

+PK_Action 1

+FK_Option_Decision

2..*

(decision_id = decision_id)

«FK»

+PK_Decision 1

+FK_Option_Step

0..*

(next_step_id = step_id)

«FK»

+PK_Step

1

+FK_Decision_Step

0..1

(decision_id = step_id)

«FK»

+PK_Step 1

57

Appendix 4 – Code Examples

BEGIN;

DO $$

 DECLARE

 administrator integer;

 process integer;

 ettevalmistus integer;

 kas_saan_kohale_tulla integer;

 saan_tulla integer;

 ei_saa_tulla integer;

 tyhista integer;

 ole_kohal integer;

 kohtumine integer;

 kuidas_lood_on integer;

 on_pisivead integer;

 on_korras integer;

 on_suured_puudused integer;

 maara_kordaja integer;

 kordaja_tabel integer;

 parandamine integer;

 BEGIN

 SELECT processes.f_register_administrator('admin@test.ee',
'12345678', 'Admin', NULL) INTO administrator;

 SELECT processes.f_register_process('Iseseisva töö esitamise
ja hindamise protsess', 'Admebaaside II projekt.', administrator,
NULL) INTO process;

 SELECT processes.f_add_first_parallel_activity(process,
'Ettevalmistus') INTO ettevalmistus;

 PERFORM processes.f_add_action_in_parallel_activity(process,
ettevalmistus, 'Registreeri ettenäitamisele');

 PERFORM processes.f_add_action_in_parallel_activity(process,
ettevalmistus, 'Lae failid Maurusesse');

 SELECT processes.f_add_decision_to_step(process,
ettevalmistus, 'Kas saan kohale tuua?') INTO kas_saan_kohale_tulla;

 SELECT
processes.f_add_option_to_decision(kas_saan_kohale_tulla, NULL, 'Ei JA
ettenäitamiseni rohkem kui 24 tundi') INTO ei_saa_tulla;

 SELECT
processes.f_add_option_to_decision(kas_saan_kohale_tulla, NULL, 'Jah
VÕI (ei ja ettenäitamiseni vähem kui 24 tundi)') INTO saan_tulla;

 SELECT processes.f_add_action_to_option(process, ei_saa_tulla,
'Tühista registreerimine') INTO tyhista;

 PERFORM processes.f_add_action_to_step_existing_next(process,
tyhista, kas_saan_kohale_tulla, 'Registreeri ettenäitamisele');

 SELECT processes.f_add_action_to_option(process, saan_tulla,
'Ole kohal (vähemalt üks autor)') INTO ole_kohal;

58

 SELECT processes.f_add_parallel_activity_to_step(process,
ole_kohal, 'Kohtumine') INTO kohtumine;

 PERFORM processes.f_add_action_in_parallel_activity(process,
kohtumine, 'Vaata iseseisev töö koos õppejõuga üle');

 PERFORM processes.f_add_action_in_parallel_activity(process,
kohtumine, 'Tee märkmeid');

 SELECT processes.f_add_decision_to_step(process, kohtumine,
'Kuidas iseseisva tööga lood on?') INTO kuidas_lood_on;

 SELECT processes.f_add_option_to_decision(kuidas_lood_on,
NULL, 'Iseseisvas töös on pisivead JA õppejõud annab loa kohapeal
parandamiseks') INTO on_pisivead;

 SELECT processes.f_add_option_to_decision(kuidas_lood_on,
NULL, 'Iseseisev töö on korras') INTO on_korras;

 PERFORM
processes.f_add_action_to_option_existing_next(process, on_pisivead,
ole_kohal, 'Paranda iseseisvat tööd kohapeal');

 SELECT processes.f_add_action_to_option(process, on_korras,
'Õppejõud: määra projekti kordaja, mis sõltub arvestuse saamise
ajast') INTO maara_kordaja;

 SELECT processes.f_add_decision_table(maara_kordaja,
'Kordajad') INTO kordaja_tabel;

 PERFORM processes.f_add_decision_table_entry(kordaja_tabel,
'Õppenädal, mil arvestati', 'Projekti kordaja', 1::smallint);

 PERFORM processes.f_add_decision_table_entry(kordaja_tabel,
'1-13', '1.3', 2::smallint);

 PERFORM processes.f_add_decision_table_entry(kordaja_tabel,
'14-15', '1.2', 3::smallint);

 PERFORM processes.f_add_decision_table_entry(kordaja_tabel,
'16', '1.1', 4::smallint);

 PERFORM processes.f_add_decision_table_entry(kordaja_tabel,
'17-18', '1.0', 5::smallint);

 PERFORM processes.f_add_decision_table_entry(kordaja_tabel,
'19-20', '0.9', 6::smallint);

 PERFORM processes.f_add_action_to_step(process, maara_kordaja,
'Iseseisev töö on arvestatud');

 SELECT processes.f_add_option_to_decision(kuidas_lood_on,
NULL, 'Iseseisvas töös on suured puudused VÕI (iseseisvas töös on
pisivead ja õppejõud ei anna kohapeal parandamiseks luba)') INTO
on_suured_puudused;

 SELECT
processes.f_add_parallel_activity_to_option_existing_next(process,
on_suured_puudused, kas_saan_kohale_tulla, 'Parandamine') INTO
parandamine;

 PERFORM processes.f_add_action_in_parallel_activity(process,
parandamine, 'Registreeri ettenäitamisele');

 PERFORM processes.f_add_action_in_parallel_activity(process,
parandamine, 'Paranda iseseisvat tööd');

 PERFORM processes.f_add_action_in_parallel_activity(process,
parandamine, 'Lae failid Maurusesse');

 PERFORM processes.f_activate_process(process);

 END

$$;

COMMIT;

Figure 22. An anonymous function that can be used to insert the example process.

59

CREATE TABLE processes.Process

(

 process_id serial NOT NULL,

 name varchar(250) NOT NULL,

 description text NOT NULL,

 owner_id integer NOT NULL,

 first_step_id integer NULL,

 reg_time processes.d_time,

 process_status_type_code smallint NOT NULL DEFAULT 1,

 password varchar(60) NULL,

 CONSTRAINT PK_Process PRIMARY KEY (process_id),

 CONSTRAINT AK_Process_first_step_id UNIQUE (first_step_id),

 CONSTRAINT CHK_Process_name_not_only_whitespace CHECK (name !~
'^[[:space:]]*$'),

 CONSTRAINT CHK_Process_description_not_only_whitespace CHECK
(description !~ '^[[:space:]]*$'),

 CONSTRAINT CHK_Process_password_not_only_whitespace CHECK
(password !~ '^[[:space:]]*$'),

 CONSTRAINT FK_Process_Process_status_type FOREIGN KEY
(process_status_type_code) REFERENCES processes.Process_status_type
(process_status_type_code) ON DELETE NO ACTION ON UPDATE CASCADE,

 CONSTRAINT FK_Process_Administrator FOREIGN KEY (owner_id)
REFERENCES processes.Administrator (administrator_id) ON DELETE NO
ACTION ON UPDATE NO ACTION

) WITH (FILLFACTOR = 90);

CREATE INDEX IX_Process_owner ON processes.Process (owner_id ASC);

CREATE INDEX IX_Process_process_status_type_code ON processes.Process
(process_status_type_code ASC);

CREATE TABLE processes.Step

(

 step_id serial NOT NULL,

 process_id integer NOT NULL,

 reg_time processes.d_time,

 description text NOT NULL,

 next_step_id integer NULL,

 CONSTRAINT PK_Step PRIMARY KEY (step_id),

 CONSTRAINT CHK_Step_description_not_only_whitespace CHECK
(description !~ '^[[:space:]]*$'),

 CONSTRAINT CHK_Step_next_step_not_itself CHECK (next_step_id <>
step_id),

 CONSTRAINT FK_Step_Step FOREIGN KEY (next_step_id) REFERENCES
processes.Step (step_id) ON DELETE SET NULL ON UPDATE NO ACTION,

 CONSTRAINT FK_Step_Process FOREIGN KEY (process_id) REFERENCES
processes.Process (process_id) ON DELETE NO ACTION ON UPDATE NO ACTION

) WITH (FILLFACTOR = 90);

CREATE INDEX IX_Step_Process ON processes.Step (process_id ASC);

CREATE INDEX IX_Step_next_step ON processes.Step (next_step_id ASC);

/* Add First_step FK to Process */

ALTER TABLE processes.Process

60

 ADD CONSTRAINT FK_Process_Step_first_step FOREIGN KEY
(first_step_id) REFERENCES processes.Step (step_id) ON DELETE SET NULL
ON UPDATE NO ACTION;

Figure 23. Two main tables – Process and Step – that depend on each other.

CREATE DOMAIN processes.d_time AS

 timestamp NOT NULL DEFAULT LOCALTIMESTAMP(0) CONSTRAINT
CHK_d_time_from_2020_to_2200 CHECK (VALUE >= '2020-01-01' AND VALUE <
'2201-01-01');

Figure 24. One of the two domains in the database, used for registration time.

CREATE OR REPLACE FUNCTION processes.f_add_first_action(

p_process_id processes.Step.process_id%TYPE,

p_description processes.Step.description%TYPE)

 RETURNS processes.Step.step_id%TYPE AS $$

WITH add_step AS (INSERT INTO processes.Step (process_id, description)

 VALUES (p_process_id, p_description) RETURNING step_id),

 add_action AS (INSERT INTO processes.Action (action_id) SELECT
step_id FROM add_step),

 add_first_step

 AS (UPDATE processes.Process SET first_step_id = (SELECT
step_id FROM add_step) WHERE process_id = p_process_id)

SELECT step_id

FROM add_step;

$$ LANGUAGE sql SECURITY DEFINER

 SET search_path = processes, public, pg_temp;
Figure 25. An example of a function: function used to add the first step (Action here) to a process.

61

CREATE OR REPLACE FUNCTION processes.f_change_process_status() RETURNS
trigger AS

$$

BEGIN

 RAISE EXCEPTION 'Allowed status transitions are: "On hold" =>
"Active", "Active" => "Inactive", "Inactive" => "Active", "Active" =>
"Ended", "Inactive" => "Ended".';

END;

$$ LANGUAGE plpgsql SECURITY DEFINER

 SET search_path = processes, public, pg_temp;

CREATE TRIGGER trig_change_process_status

 BEFORE UPDATE OF process_status_type_code

 ON processes.Process

 FOR EACH ROW

 WHEN (NOT ((OLD.process_status_type_code =
NEW.process_status_type_code) OR

 (OLD.process_status_type_code = 1 AND
NEW.process_status_type_code = 2) OR

 (OLD.process_status_type_code = 2 AND
NEW.process_status_type_code = 3) OR

 (OLD.process_status_type_code = 3 AND
NEW.process_status_type_code = 2) OR

 (OLD.process_status_type_code IN (2, 3) AND
NEW.process_status_type_code = 4)))

EXECUTE FUNCTION processes.f_change_process_status();
Figure 26. An example of a trigger: trigger used to prevent invalid status changes.

CREATE OR REPLACE VIEW processes.process_steps WITH (security_barrier) AS

SELECT step_id,

 CASE WHEN decision_id IS NULL THEN FALSE ELSE TRUE END AS
is_decision,

 CASE WHEN parallel_activity_id IS NULL THEN FALSE ELSE TRUE END AS
is_parallel_activity,

 process_id,

 description AS
step_description,

 next_step_id

FROM processes.Step

 LEFT JOIN processes.Decision ON step_id = decision_id

 LEFT JOIN processes.Parallel_activity ON step_id =
parallel_activity_id;

Figure 27. An example of a view: basic information about steps.

62

Appendix 5 – Example Diagram

Figure 28. Process of submitting and grading the independent work in the course Databases I (in 2020).

