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INTRODUCTION 

Background 

Mechatronics and robotics are one of the most rapidly developing fields in 
technology sector today, and it grows constantly. Many mechatronics 
applications, like home robots were quite rear ten years ago, but are now 
available for consumers. Mechatronics as an engineering domain itself is not 
very new at all. The term mechatronics was introduced by a Japanese engineer 
from Yasukawa Electric Company in 1969. Initially it reflected the merge of 
mechanics and electronics. In the mid-1980s the control and software part 
started to play more important role in mechatronics engineering and the scope of 
mechatronics was extended. Today, the term mechatronics encompasses a large 
array of technologies including all sub-domains of mechanics, electronics and 
control. Although all classical domains have its own elements, the boundaries 
between them have been misty and the software role has increased drastically. 
Almost every mechatronics product has more or less embedded software and 
control elements. Mechatronics gained its legitimacy in academic circles in 1996 
with the publication of the first refereed journal: IEEE/ASME Transactions on 
Mechatronics. In the premier issue, the authors worked hard to define 
mechatronics. The selected definition was the following: "The synergistic 
integration of mechanical engineering with electronics and intelligent computer 
control in the design and manufacturing of industrial products and processes" 
[Mech96]. Authors suggested 11 topics that should fall, at least in part, under the 
general category of mechatronics [Mech96]:  

• modeling and design  
• system integration  
• actuators and sensors  
• intelligent control  
• robotics  
• manufacturing  
• motion control  
• vibration and noise control  
• micro devices and optoelectronic systems  
• automotive systems 
• other applications 

Of course there exist lots of concurrent definitions, but the idea is more or less 
the same. 
The term robot however is much older. Introduced by the Czech writer Karel 
Čapek in 1921, it became very popular in science fiction books and movies. 
Nowadays the robotics is one of the true applications of mechatronics. As all 
other mechatronic systems the robots have became smarter and more 
sophisticated thanks to the growth of software and computing power. 
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In frame of all these developments the design and creation process of a 
mechatronics product has turned very complex. Market however demands more 
and more smart products with shorter development time and smaller cost. This 
puts very high demands on mechatronic system development process and 
conventional methods are not competitive any more. Engineering decisions in 
different design stages affect the final product without any doubt. However 
decisions made in early design stage affect the result much more than later ones. 
Although almost every engineer agrees with that, the early stage design is the 
most unsupported phase in the product development process. No common 
methodology and tools are exploited contrary to, for example, domain specific 
design, where lots of mature methods and tools are available and almost always 
used. The mechatronic system development is even more affected by the lack of 
early design support because the high level component integration from 
dissimilar domains is always needed. The later integration means that the system 
developer team must ensure the component and sub-system compatibility in all 
the development stages, including the early stage. Rapidly advancing technology 
automation market demands continuously new robots which are in their nature 
true mechatronic products. Accordingly, the design methodology is also urgently 
needed with the full support of early design and decision making process in open 
design space.  
 
The research object of this thesis is a model based mechatronics design 
methodology. The developed methodology deals with early design stage and 
supportive tools. The methodology is applied to the mobile robotic field as one 
of the most growing mechatronic application examples.  
Very roughly all robotic applications can be divided as follows: 
industrial robot – usually a manipulator type robot designed for a certain 
recurrent task. These kinds of robots are very widely used in automotive, 
electronic, assembling and many other industries. This is the most mature field 
of robotics; 
humanoid robot – usually a bi-pedal walking machine, trying to simulate 
human behavior and locomotion. This type of robot is the common imagination 
of non-engineering people when talking about robots. They are much less useful 
than industrial robots and playing in most cases the entertainer role. A lot of 
research effort has been put in bi-pedal robot research and some success has 
been achieved but it is still far from a useful human partner. The most well 
known example is Honda ASIMO claimed as the most advanced bi-pedal 
humanoid in the world today [Honda06]; 
mobile robot – usually a wheeled autonomous or teleoperated vehicle. This 
robotic field has got a lot of attention from the last decade and many research 
and industrial results are in real use. The field is especially important for military 
domain where some of the application areas are antiterrorism and security. 
Mobile robots have got an explosive attention in home and service field even 
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more recently. This brings many new companies and research institutes to the 
robotic design and manufacturing field. Standardization and methodological 
design support is particularly important for the mobile robotic platform 
development.  
 
The current thesis presents a general framework for mechatronics design 
methodology with emphasis to the early design. The implementation case is 
applied to mobile robotic section. The mobile robot section can also be divided 
into several sub-categories, depending on the purpose, size, locomotion schemas, 
etc. The methodology implementation can be extended with some restrictions to 
all these sub-categories, however the author has relied mostly on the mid size 
wheeled mobile robot as most common application. Most examples and 
implementations are based also on a hybrid wheeled mobile robot.  
 

Actuality of the topic 

The topic itself was selected based on the latest development of the 
mechatronics field and on a practical need and opportunities. As mechatronic 
product design has became more and more complex problem the need for new 
methodology has also steadily grown. From the other hand the increasing role of 
software in a mechatronic product sets additional requirements for the design 
methodology. This means that in a product development team software 
engineers have to work side-by-side with mechanical engineers and electrical 
engineer where the design methods are still quite different. Because of the 
boundaries of the software and hardware design being misty, the methodology of 
a system design must also be unified for all the sub-domains. This is especially 
challenging for conventional engineers who have been designed non-software 
related products. 
Because of the complexity and time critical development, the early design has 
become an important design stage. Many recent papers and industry articles 
emphasize the growing importance of the early design and the need for 
development tools supporting the early design process [Balmelli06]. Another 
important concern is that the engineering design, especially mechatronic product 
design, is not a pure technical problem any more but a complex activity. There is 
a need to involve artifacts, people, environment, market, etc., where all the 
aspects have to be modeled in the same methodical way. The requirements in the 
area of the mechatronic system design, especially in robotic field where a control 
sub-system should be developed on a very high level, demand the quantities 
evaluation of different design alternatives. Existing tools like, for example, 
Unified Modeling Language (UML) have very wide modeling capabilities, 
however the early stage verification, conflict analyses and initial simulation are 
not currently covered. There are some early researches to fulfill this cap in 
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certain fields. System on Chip (SoC) is one of the most actively studied field and 
some approaches are presented in publications [Viehl06, VD06]. 
The modularization and model based engineering was adopted in software field 
many years ago and it is obtaining growing attention also in the system 
engineering field. This is the common trend adopted not only by engineers but 
also by team managers, researcher and corporate strategists in a number of 
industries. When the design is modularized the system or process elements are 
split up and assigned to a module according to the formal plan. Modularization 
enables an easier management of complex problems, performing parallel work 
and accommodating future uncertainty [BC04]. The modularity is extremely 
important also in mobile robotics design. The implementation example of this 
thesis is a service robot where the modularity is one of the key parameters of 
reducing cost and development time. Modularization effect in mobile robotics is 
opened in detail in doctoral thesis [Ylönen06]. 
 
One significant reason for developing new design methodology focused on 
mobile robots is that the market demand is drastically increased during last 
years. Many industry reports from Europe [EUROP] and North America 
evidence the growth of the robotic market [RIA105 & RIA205]. Robotic 
markets are set to grow quickly and become large economic sectors in their own 
right as well as providing the means for both manufacturing and service 
industries to become more effective [EUROP]. Most of the growth in interactive 
robots at present centers on those that can perform cleaning, security and human-
interface tasks, states an industrial report from Japan [Jetro06]. The United 
Nations Economic Commission (UNEC) and International Federation of 
Robotics (IFR) estimate that the personal and service robotics market will more 
than double between 2005 and 2010, reaching $17.1B in 2010 (figure 1). The 
number of personal and service robots sold is expected to increase ten-fold 
between 2005 and 2010 according to the UNEC and IFR. Sales for domestic 
robots (vacuum cleaning, lawn mowing, window cleaning and other types) are 
expected to reach over million units, while sales for toy and entertainment robots 
will exceed more than million units.  
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Figure 1 Personal & service market growth [WIRA] 

 
The famous ICT guru Bill Gates estimates in the article in Scientific American 
[Gates07] that a new technological revolution will take place in the home 
robotics. However the concern is that the robotic industry and development tools 
are highly fragmented with only few common standards and platforms. Projects 
are complex, progress is slow, and practical applications are relatively rare. This 
refers again to the need for the complex system development methodologies and 
tools. The service robot development is not any more the niche of the big 
technological companies but has turned also to the activity of SME type 
companies, where a standard set of tools is especially valuable.  
 
The practical need for this particular topic selection has also been driven by the 
author’s home department (Department of Mechatronics, Tallinn University of 
Technology) last year activities. Several mobile robots related projects have 
been initiated in TUT as well as partner universities in Finland and Sweden. The 
methodology is partly implemented at demining robot design, which is a running 
development project in the Department of Mechatronics, Tallinn University of 
Technology. The methodology has been partly tested and developed based on 
Workpartner robot – the ongoing research project in Automation and System 
Technology Laboratory, Helsinki University of Technology. 
Workpartner is the next generation interactive service robot for outdoor task. 
The ultimate goal is a highly adaptive service robot. Mobility is based on the 
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hybrid system which combines the benefits of both legged and wheeled 
locomotion to provide at the same time good terrain negotiating capability and 
good velocity range. The working tool is two-arm manipulator, simulating 
human behavior as much as possible [Ylönen06]. The Workpartner architecture 
is highly modular and common interfaces are defined between the modules. 
Workpartner is one of the case study subject concerned later on this thesis. 

 
Figure 2 Workpartner service robot, TKK 

  
The similar novel Unmanned Ground Vehicle (UGV) type mobile robotic 
platform development is running in the Department of Mechatronics at Tallinn 
University of Technology. Similarly to Workpartner described above the UGV is 
based on a modular design concept.  

 
Figure 3 Demining UGV, TUT 
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Both described mobile robot platforms are highly complex mechatronics systems 
where the systematic development approach is unavoidable. Methodology 
developed on the frame of this thesis is applied on both robots. Workpartner is 
used as an analytical case and UGV as a design case. Generalization is made 
based on these real life cases and unified template system is proposed for mobile 
platform design in early stage. 

Objectives 

The main objectives of the doctoral research and the thesis are as follows: 
 
To analyze existing product design approaches, methods and their suitability for 
mechatronic system design. To evaluate conventional methods originated from 
classical domains and new artificial intelligence based techniques exploited in 
conceptual design. Based on the evaluation, to create unified mechatronics 
system design process tree with the special focus on early stage, i.e. 
requirement- and concept engineering. 
 
To create a general framework model for mechatronic design process focused on 
the early design stage. Utilizing the existing mechatronics and system 
engineering achievements, to develop an adopted design model corresponding in 
the best way to mechatronics design needs. 
 
To develop a model based design tool applicable in practical designing and 
compatible with recent trends and activities in the robotic field in Europe. The 
design tool has to correspond to the practical needs of research and of industrial 
institutions as well as to be general enough to represent the developed 
methodology in generally understandable way.   
 
To develop a problem based application example with guidelines for 
methodology implementation. The implementation example has to rely on a 
practical and well understood product from different viewpoints. At least two 
different approaches have to be used: the existing solution enabling the study of 
the links between the model and the developed system; the solution under 
development where the methodology is actually implemented and a real product 
is created. In addition several real examples have to be presented and a guideline 
provided to implement the methodology in different application domains.  
 
To analyze the achieved results and define the further development guidelines. 
Analyzing the achieved results further developments must be pointed out to 
continue the research and integration with close research works. Further 
developments guidelines have to be provided and commented. 
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Scientific novelty 

Scientific novelty involves the following: 
• analysis of the design methodologies with the focus on early design in 

mechatronics domain; 
• developed conceptual framework model (CFM) for semi-automated 

early design process; 
• developed template based toolkit – Mobile Platform Toolkit (MPT) for 

practical robot applications; 
• provided exampled guideline for further applications. 
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Outline of the thesis 

This thesis applies to the model based design methodology for mechatronic 
systems. It contains an introduction, overview of the developed methodology 
and implementation.  
 
INTRODUCTION 
The introduction chapter covers the background of mechatronic and robotic 
developments, methodologies and design specifics. Trends and surveys of 
mechatronics and robotics market are presented with recent expectations and 
estimations from industry leaders. The objectives of the thesis are summarized 
and scientific novelty described. In addition there is a list of publications, an 
acknowledgement and abbreviations used in the thesis. 
 
PRODUCT DESIGN 
The product design chapter provides an overview of the design process and 
stages in it. Special attention is paid to the requirement design and conceptual 
design stages due to the fact that the thesis is orientated towards early design of 
mechatronic systems. Several most common abstract modeling techniques and 
methods like bond graphs, Petri nets and Hybrid automata are briefly covered 
including their usability for early design of a mechatronic system. 
 
STATE OF THE ART 
The state of the art chapter covers recent developments of mechatronics design 
and artificial intelligence utilization for early design. Main widely recognized 
complex system engineering methods and tools are studied. The main focus is on 
Mechatronics Design Guideline VDI2206, developed by the VDI, and a very 
new System Modeling Language (SysML) developed by the SysML Partners, 
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adopted by the Object Management Group (OMG). In addition artificial 
intelligence technique based applications for product design are studied and 
selected researches covered. 
 
DESIGN FRAMEWORK 
The design framework chapter is a theoretical work of this thesis. The chapter 
introduces a new model for the early stage of mechatronic system design. The 
proposed model adopts the V-model from VDI2206 and SysML based toolkit as 
a tool for conceptual design of mechatronic system. The Conceptual Framework 
Model (CFM) is proposed utilizing application specific toolkit and template 
libraries. As a practical approach the Mobile Platform Toolkit (MPT) is 
developed. The toolkit embraces template libraries, design models and SysML 
profile. 
 
IMPLEMENTATION PROCESS 
The implementation process chapter is a practical implementation of the 
developed toolkit, introduced in the previous chapter. The chapter starts with a 
short guideline for implementing the developed framework follow an application 
example modeled with the developed toolkit. The model examples include two 
different applications showing the different ways to apply the developed toolkit. 
Two different approaches of linking the model with simulation are described.  
 
Recommendations and future development guides are given with the 
conclusions. 
 
The author has over 15 scientific papers published in the pre-reviewed 
international conference collections. Six articles are referred on the international 
databases, including ISI Web of Science/Proceedings. 
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1 PRODUCT DESIGN 

1.1 Design process 

Product design process in general can be described as a set of certain phases, 
needed to be passed despite the diversity of the products even in a single 
domain. These phases can be defined in various ways and are sometimes related 
to the problem domain. Nevertheless the phases described in different sources 
[Ullman02, PBFG07, UE03, Hubka96, Cross89, French99] overlap quite often 
and the differences are in most cases formal. For example, according to Ullman 
[Ullman02], the mentioned phases are specification definition, conceptual 
design, product design and product support phase (figure 4).  
 
 

Specification
Definition

Conceptual
Design

Product 
Design

Product 
support

 
Figure 4 Product design phases, according to Ullman (simplified) 

 
Another widely acknowledged engineering design source - Pahl & Beitz [PB97] 
defines the design process with four phases as follows: 
- product planning and clarifying the task, 
- conceptual design, 
- embodiment design, 
- detail design. 
A simplified structure is shown in figure 5. A more detailed graphical schema 
can be found in [PBFG07]. 
 

Product 
planning

Conceptual
Design

Embodyment 
design

Detail 
design

 
 
Figure 5 Product design phases, according to Pahl & Beitz (simplified) 

 
The first two phases are almost identical, but the last two are slightly different in 
these definitions. The input to the embodiment design is similar to the previous 



 20

definition of the design concept. The output of this phase is according to Pahl & 
Beitz, a technical description of the future product, often technical layouts, 
schemas, drawings, general arrangements or other documents depending on the 
particular domain and industry. Although the phase listing does not include the 
product support and utilization phase, today’s product design can not leave out 
these phases. Moreover the disposal and recycling have been turned to be very 
important issues in modern design and any applied methodology should have to 
support it.  
 
Discussing the design science, Hubka [Hubka96] has proposed the following 
main phases for engineering design procedure:  

• requirement, 
• conceptual design – conceptualizing, 
• layout design – embodying, 
• detailing. 

 
A simplified schema is shown in figure 6. 
 

 
 
Figure 6 Product design phases, according to Hubka (simplified) 

 
When designing complex systems there are many important relationships which 
have to be granted through the different design phases as well as engineering 
domains. Although the previously described design processes may seem trivial 
they consist many inner activities and the links between the phases are usually 
much more complex than seen in the simple figures. As also seen in figure 6 
there are many keywords, i.e. interaction; recursion, decomposition, feedback, 
improvement of quality, representing the interactivity between phases. A novel 
approach covering the system design process including described activities is 
described in [Pettai05]. In complex and cross-domain products modularization is 
another key factor which has got much attention. Several examples include also 
the mobile robotic applications [Ylönen06, STLR07, STL05, HZ07]. The 
relationship analysis is often carried out by the support of design structure 
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matrix (DSM) [SA04]. DSM is a matrix representation of a complex system. 
DSM lists all constituent subsystems or activities and the corresponding 
information exchange and dependency patterns. The purpose is to provide a 
quick overview of relationships and dependences between activities. 
Modularization is often combined with dependence trees to follow all 
relationships through the design process. It is also important to mention that 
nowadays the design process needs more advanced tools and techniques to 
support the product development through the whole design process. It means 
that we have a product model in all the design phases and this model is improved 
all the time as the design advances but is also verified and validated against the 
requirements and reality. What is required and what is feasible is one of the 
important issues to test before the actual design can start. This brings forth the 
importance of requirement engineering and later validation against the 
requirement model. It is especially important in mechatronics because due to the 
overlapping domains the feasibility is not always easily recognized. With 
increasing complexity these aspects must be treated with great respect otherwise, 
the failure of later redesign stage will cost a lot. 
 
As this thesis deals with mechatronics oriented design process focused on the 
early design the following design process schema (shown in figure 7) is adopted 
as a generalization and intersection of the previously described definitions. 
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Figure 7 Adapted design process tree 

 
In the requirement specification stage the main goal is to understand the design 
problem thoroughly respective to the customer requirements. The biggest 
problem here is that there is very little information about the design problem 
available in this stage. Initial requirement model is completed usually at the 
system level. Once this is archived it is necessary to allocate and flow the 
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requirements down to successively lower level. According to INCOSE System 
Engineering Handbook [INCOSE04] the requirement modeling process is 
iterative for each phase, with continuous feedback as the level of the design 
specification increases. The result of this stage is a design specification and a 
clearly formulated set of desired measurable behaviors of the future product, 
which introduces the quality measure into the design process.  
 
The next stage - conceptual design, is particularly important because the 
decision made here affects most the overall design process. In this stage 
uncertainty and limited knowledge about the product and big design freedom as 
well are the major keywords. The danger here is that designers tend to take the 
first idea and start to refine it towards the desired product. This is a poor 
methodology because there is great possibility that the idea is not optimal or not 
the best one at all. Therefore it is important to generate at least more than one or 
two design candidates. Then it is much more plausible that designer may find a 
good solution [Ullman02]. One goal of this stage is to choose best alternatives 
with the least expenditure of time and other resources. Techniques generating 
concepts and making decisions are used interactively as knowledge is increasing 
with new ideas [Ullman02]. The iteration is less expensive during this stage than 
in the following stages. The result is gained with the careful selection process 
from different competing design candidates. The initial analysis and simulations 
of competing solution candidates are already necessary even if there is a great 
lack of rigid mathematical parameters and lots of loosely defined constraints. 
The result of this stage is usually system architecture, functional and behavioral 
specification of the future product.  
 
The detail design, which can also be referred to the product design phase, is the 
most time and labor consuming part of the design process. Here the concept 
generated and evaluated on the conceptual design stage will be refined and all 
sub-system and components will be developed. Detail design is quite well 
defined. This includes a technical drawing generation, detail product sub-system 
model generation, etc. For example in mechanical engineering part and assembly 
modeling as well as stress analyses with FEM will be carried out. The stage 
defined here (figure 7) overlaps Pahl & Beitz’s embodiment design and the 
detail design. Although the input of this stage is evaluated and the concept is 
selected the detail design may embody a parallel layout design. The purpose of 
simultaneous layout design is to obtain more information about advantages and 
disadvantages of different variants. According to Pahl & Beitz detail design 
stage description, the optimization is a crucial activity compromising 
optimization of principles, optimization of the layout, forms and materials; and 
optimization of the production [PBFG07]. 
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The integration is a key element on the successful mechatronics design. The 
integration stage embraced into adapted design tree, is derived from the nature of 
the mechatronics and system engineering specifics. The integration is important 
activity enough to deal with it as a separate stage in whole development process. 
In the classical domain engineering, the integration before the final product is 
also presented but it is not as complex as in nowadays mechatronics products. 
The reason of the great complexity is related to integration issues of sub-systems 
originated from dissimilar domains where even the design methods and tools can 
have totally different concepts. The integration stage includes the testing and 
simulating of the final product model before the prototype or the product will be 
manufactured. 
 
The production stage is not only the actual manufacturing but also a planning of 
manufacture, building and assembling, quality check and testing. 
 
The product service and disposal stage covers all activities related with the 
product design support: support for manufacturing/assembling, support for 
vendors, support for customer and disposal activities. 
 
In parallel of modeling several tests and verifications need to be accomplished 
during the design process. The simulation is widely exploited method to test the 
system or subsystem in specific computer environment. Several software 
packages are used for mechanical, electrical, software, etc. simulations. There 
exist special mechatronics-oriented simulation packages like AMESim, Dymola, 
Adams and in addition some well known general simulation packages e.g. 
Simulink, suits for mechatronics simulations as well. The early stage simulation 
on the other hand is not often used and there are no specific packages available. 
The reason is the lack of system parameters and high abstraction level of the 
given system. Despite of that the need for early design simulation exists due the 
fact that early design decisions affect the final product in very wide scale. 
 
Design simulation can be extremely valuable but needs also a good simulation 
model which is not trivial to develop. The executable model has to reflect the 
conceptual model as well as reality at the same time [Pelz03]. The verification 
procedure is used to investigate the executable and conceptual model 
compatibility and validation procedure investigates whether the executable 
model reflects the real world adequately.  In other words as stated by Peltz 
[Peltz03]: “Verification ensures the system is modeled right, whereas validation 
is all about modeling the right system”. The corresponding graph is shown in 
figure 8. 
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Figure 8 Context of simulation [Pelz03] 

1.2 Early Design 

Early design is a common term for all activities before detail product design. 
This includes requirement specification, conceptual design and other concurrent 
activities. Early design has got the more close attention in recent research due to 
the fact that the proper requirement engineering and optimized concept selection 
determine a significant part of the future product cost. Here in early design a big 
potential for reducing production cost and time to market is available. Some very 
recent researches have been focused right on early design for the reason 
mentioned before. Gausemeier’s team work [Frank07] (who is one of the author 
of VDI2206 – Mechatronics Design Methodology) from Heinz Nixdorf Institute, 
University of Paderborn is one of the example. The research stands for new 
methods for the conceptual design of intelligent mechatronic systems. Another 
research actively carried out in Helsinki University of Technology [Coatanea05] 
has the special focus on the early design. The self-optimization behavior of 
mechatronics system is one of the growing research interests and this involves 
directly the early design. Parallel and interactive design in early stage is 
unavoidable already today. Automation and applying new algorithms for 
concept creation and concept simulation is one of the key factors of successful 
early design. This is the main issue in the theoretical part of the current thesis. 
 
The requirement engineering is one of the vital stages of the whole design 
process. Sometimes the engineers tend to underestimate the requirement 
specification. It is not enough any more to take just customers’ plain 
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specification and start to develop the concepts from that. It is quite common that 
a customer has but a cloudy idea or concept what the final product should look 
like. This is the case even with functionality of the ordered product. Some 
unimportant functions may cause a decline of the budget or some may 
compromise the whole system. If a design engineer takes this kind of 
requirement as fixed without estimating and refining requirements together with 
the customer it may result in the failure of the whole product market access or 
the functionality. Therefore the requirement engineering must be carried out 
with great attention and concurrent refinement during concept development and 
even detail design must be established.  
The well known and accepted technique for bringing together customer 
requirements and engineering specifications is Quality Function Deployment 
(QFD) [QFDHb]. Due to the universal approach the concept is deployed besides 
engineering field in many other areas like marketing-analysis, brand 
development, software development, etc. It is very often used at early design 
stage to ensure the customer needs in final product. Although there are proven 
benefits using QFD it does not come automatically. It is not necessarily easy to 
start with but when the first effort is performed the later benefit is remarkable. 
Kenneth Crow – president of DRM Associates proposes a list of 
recommendations to facilitate initial use of QFD [Crow]. 
It is also implied in the ISO 9000:2000 standard which focuses on the customer 
satisfaction. 
The requirement engineering and connections with design solutions are 
discussed in chapter 3. 

1.3 Conceptual design 

Decisions made during the conceptual design stage have significant influence on 
the final product. It has been estimated that more than 75% of final product cost 
is settled in conceptual stage [Lotter86, HW98]. Different methodologies for 
detail product design have been proposed [VDI04] and applied, but even the 
highest standard of detailed design cannot compensate for poor design concept 
formulated at the conceptual design stage [PBFG07]. For this reason the concept 
evaluation and verification of the conceptual design development becomes more 
important. The reason is also the complexity of mechatronic systems and rising 
of new techniques together with increase of computational power as well as time 
and cost saving demands in today’s rapid world. Many efforts are still needed to 
develop industry proved semi-automated tool for the conceptual design phase. 
To archive this goal we need to define a problem in unified form at the phase 
where the big uncertainty is a common feature. This is not a trivial task 
considering that it must be easily understandable for product designers and other 
technical staff as well as for customers.  
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In the conceptual design process, the designer takes the problem statement and 
generates a broad solution for it in the form of schemes, block diagrams, etc. 
[PB97]. At this stage engineering science, practical knowledge, commercial 
aspects, production methods and other relevant aspects need to be brought 
together, and the most important decisions are taken. Techniques and methods 
used for conceptual design are not for replacing the designer or generating 
complete solutions. They are intended to improve the quality and speed of the 
design process and to help designers by [French99]: 

• increasing insight into the problems, and speed of acquiring the insight, 
• reducing the size of mental step required in the design process, 
• diversifying the approach to the problems, 
• generating design philosophies for the particular problem in question, 
• documenting the design process progress, 
• improving communication between designers and/or other relevant 

people.  
 

There are several widely used techniques suitable for conceptual design process. 
These are covered in detail in the Conceptual Design for Engineering 
[French99]. A selection of techniques is as follows: 

• construction of table of options, functional analysis, 
• mathematical models, 
• the search for alternatives, 
• logical chains, 
• past practice, 
• problem solving and analytical techniques. 

As conceptual design stage is very creative in its nature these techniques 
are important to know and use. Most known techniques are: 

• brainstorming - generating options, 
• critical path analysis - planning and scheduling complex tasks, 
• decision trees - powerful quantitative analysis of decision impact, 
• force field analysis. 

Detailed information about problem solving and creative techniques 
can be found from reference [Higgins93] and [Dombroski00]. 

 
Nowadays complex systems and rapid time-to-market demand on mechatronics 
product sets new demands for conceptual design process. Traditional methods 
described above still work fine but are inefficient as they do not take into 
account the interdisciplinary aspects from the very beginning. In mechatronics 
design more abstract methods are needed for modeling and evaluating the 
concepts at an early stage. The early integration has to be started on the very 
beginning when starting to define the customer requirements. Requirement 
definition has to be universal and at the same time enable verifying later design 
solutions. For example, the software requirements might have demands and 
definition methods quite different from mechanical ones. Nevertheless for a 
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mechatronics product which is one integrated unit, the utilized method and 
evaluation values have to be comparable. New approaches for integrated product 
conceptual design are constantly searched around the world. Some of the 
methods are covered in paper [Sell04a]. One ongoing research on this issue is 
introduced by Coatanéa [Coatanea05] where base theories are a topological 
model of design theory presented by Braha and Reich [BR03] and the C-K 
theory developed by Hatchuel [HW02]. The practical implementation and 
advancement of these theories results in a design synthesizes process at the 
conceptual stage supported by the dimensional analysis [CYHHSM07] and 
semantic atlas [CYHSML07]. 

1.4 Template libraries 

An effective and optimum design exploits often pre-defined design patterns and 
templates. Although most mechatronic products today share many common 
concepts and components the design is in most cases independent and unique. 
Component libraries exist and are exploited widely but not before the product 
detail design stage. The conceptual stage for a mechatronic product still lacks 
common design methods as well as general design patterns or templates. 
 
Templates offer several significant advantages. Templates are general and 
reusable. Thus, they can be used easily for testing the system variations in very 
early stages. Moreover, it is characteristic for robotics applications that similarly 
to variety of routes for reaching a target location there are several alternative 
solutions especially in early stages of design. Templates exploit general 
algorithms and descriptions created and tested by experts or verified by 
experience. Thus, many errors can be avoided compared with the untested model 
algorithms. The system design can be started in a shorter time using templates 
and an engineer could exploit many design options in parallel. 
 
Two basic approaches for component based design are commonly utilized 
[BBC06]: 
The designer compiles a system mechanically from “black boxes”, where the 
black box is considered: a component that can be used without knowledge of its 
inner workings; the user supplies the input and the output is more or less 
guaranteed to be correct without a need to understand the algorithmic details or 
component physics.  
The second approach, where the designer wants to be able to fine tune the 
system: adoption of a component for a specific application and environment in 
order to obtain better performance.  
Both approaches are widely used particularly in software development. 
Designing mechanical subsystems engineers have standard part libraries 
available. In electronics design, an engineer can pick a motor driver, an interface 
or other component from the library without knowing the inner structure and 
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working principles of that particular component though the system needs fine 
tuning. The conceptual stage of a mechatronic system development integrates 
these approaches utilizing the advantages of both.  
A template is a description of an algorithm, abstracting away from 
implementation details, thus a template is a description of a general algorithm 
and in our cases also an executable object. Nevertheless, although templates are 
general descriptions of the key algorithms, they may offer whatever degree of 
customization the user may desire. They can be configured for the specific 
structure of a problem (e.g. drive mechanism) or for the specific computing 
language [BBC06]. For example the simulation template is initially implemented 
in Simulink but can be also defined in Modelica language [Modelica] to execute 
the simulation in Dymola environment. 
Pre-defined templates are very common in software development field. For 
example Standard Template Library and Active Template Library for C++. The 
template library provides a ready-made set of common classes, such as 
containers and associative arrays, that can be used with any built-in type and 
with any user-defined type that supports some elementary operations (such as 
copying and assignment). STL algorithms are independent of containers [STL]. 
In UML models, templates are model elements with unbound formal parameters 
that can be used to define families of classifiers, packages, and operations.  
 

ModelTem. Lib.

T1

T2

T1

T2

 
Figure 9 Element bindings from template library 

1.5 Domain-independent modeling methods 

A number of established methodologies have been adopted for product design in 
general. Methodologies and techniques are widely used by industry and research 
institutions, however different methodologies are applied depending on the 
problem, organization and others factors. Some methods are more popular and 
are further advanced, other are used rarely or only in a very specific problem 
domain. Some general engineering design approaches can be pointed out 
according to several design science sources [Hubka96, Pelz03]: 

• Concurrent engineering workflow 
• Bottom-up design 
• Top-down design 
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• Trial-error approach 
• Intuitive design process 
• Automated design process 
• Design in context 
• Modular design. 
• Design for Six Sigma 
• Digital simulation engineering. 

According to Hubka the intuitive design is the most traditional and widely used 
in different domains but although the resulting technical solution is usable it is 
not optimal. In addition it needs a good experience and a broad view on the 
given problem. The most effective design process type according to Hubka 
design process typology [Hubka96] is a partly or totally automated design 
process where the data is an input and the solution is an output which will be 
further evaluated by the engineers. When supported by correct tools and 
methodology the result will be optimized and of good quality within a short 
time. 
In mechatronics design domain-independent techniques are required due to its 
cross-domain nature. It is especially important in conceptual design where the 
working principles are developed without linking it to the actual solution. The 
simple block diagram is definitely a most widely used domain-independent 
technique. Hereafter some more specific cross-domain approaches are described 
in more detail.  

1.5.1 Bond graphs 

The bond graph theory is a widely recognized domain-independent technique. 
Bond graphs were introduced by Henry Paynter, professor at MIT, who 
described the junctions in 1959 and the whole framework in 1961 [Paynter69]. A 
bond graph is a graphical description of a physical dynamic system. The concept 
is based on the energy flow. Bond graphs have a number of advantages over 
conventional block diagram or code-based modeling technique [Gawthrop99]: 

• they provide a visual representation of the system, 
• since they work on the principle of energy conservation, it is difficult to 

accidentally introduce extra energy into a system, 
• the bonds are symbols which contain meaning, 
• they separate the structure from causality, 
• since each bond represents a bi-directional flow, systems which produce 

a 'back force' (e.g. a motor back emf) on the input are easily modeled 
without introducing extra feedback loops, 

• hierarchy can be used to manage large system models. 
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Bond graphs are based on the principle of continuity of power. If the dynamics 
of the physical system to be modeled operate on widely varying time scales, fast 
continuous-time behaviors can be modeled as instantaneous phenomena by using 
a hybrid bond graph. 

 
Figure 10 Example of the bond graphs [BG01] 
 

The example above represents the simple model of electrical motor driven 
winch. There are following different types of elements: 

- three basic one-port passive elements,  
- two basic active elements,  
- two basic two-port elements, 
- two basic junctions.  

The basic variables are effort (e), flow (f), time integral of effort (P) and the time 
integral of flow (Q). Basic one-port passive elements are R-element, C-element 
and I-element. The R-element is resistor type element where flow and effort are 
related by static function. Usually they dissipate energy. The C-element is 
similar to electrical capacitor or mechanical spring. It stores and gives up energy 
without loss. The I-element is respectively similar to electrical induction or 
mechanical inertia. The element stores the energy if the momentum, P, is related 
by a static constitutive law to the flow, f.  
Basic active elements are sources of effort and flow denoted SE and SF 
respectively. For example the electrical source is defined as an effort source 
(SE). The active elements are Transformer and Gyrator. Transformer is 
representing the transformation device which converts and transmits the power 
across the net. Ideal examples of transformer are electrical transformer, mass 
less ideal lever and electrical motor. A transformer relates flow-to-flow and 
effort-to-effort. Conversely, a gyrator establishes relationship between flow to 
effort and effort to flow, again keeping the power on the ports same. The 
simplest gyrator is a mechanical gyroscope [Broenik99]. The above bond graph 
example is explained in figure 11. 
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Figure 11 Corresponding system to bond graph example [BG01] 
 

However the bond graph concept is not very much exploited by practicing 
engineers. The reason is that developing the complex system the bond graph 
diagram turns to very complicated and voluminous which makes it very difficult 
to read. Reading the bond graph diagrams needs knowledge of bond graph 
concept and elements. Although the concept is not very sophisticated and the 
number of standard elements is rather small the representation is very symbol 
oriented. Without knowing the meaning of a symbol it is almost impossible to 
figure out what is presented. Other concepts are usually more user friendly and 
are easier to understand the context even without knowing the meaning of all 
symbols. Despite of that, in mechatronics field the bond graph concept is much 
more used than in other domains. In many cases it is not directly used but the 
concept itself is utilized as a base approach for modeling mechatronics systems.  

1.5.2 Hybrid dynamic system 

Another technique dealing with complex systems is a hybrid dynamic system 
approach. Hybrid dynamic systems (HDS) contain subsystems with continuous 
dynamics and subsystems with discrete dynamics that interact with each other 
[AN98]. A hybrid system is a system where both the discrete states and 
continuous behavior are represented in the same model – continuous model with 
continuous flow where discrete events can occur. Modeling such kind of system 
is a complicated mathematical problem since continuous dynamics and discrete 
event dynamics have entirely different mathematics. The detail hybrid automata 
logic is explained in the widely recognized Davoren IEEE article [Davoren00] in 
2000. 
The standard hybrid automata graphical description is shown in figure 12. The 
hybrid automata are described as an infinite-state transition system. Discrete 
states are denoted with p and q in figure 12. The transition includes the guard 
and reset. Transition is an event occurring when the guard constraint is set true. 
In this example the guard equations are y<y’ and x=x’. When the transition is 
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completed the reset function is executed. Here the reset function sets the x and y 
to zero in a and c transitions respectively. 
  

 
Figure 12 Hybrid automata graphical representation 

 
Hybrid automata models are used to model embedded real-time controller 
behavior. To fulfill hard real-time requirements is becoming an increasingly 
important task in different application areas, e.g. in robotics, control technology, 
medicine, etc.  
Practical software tools exist for hybrid system modeling. One of the tools is 
Uppaal – developed jointly by Swedish and Danish universities, where addition 
to discrete event modeling the verification, validation and simulations can be 
executed on real-time model. Another software package is HyVisual - Hybrid 
System Visual Modeler, developed by UC Berkeley. This modeling environment 
has the continuous and discrete event modeling capabilities in same model. Both 
softwares have a non commercial version for educational use free of charge. In 
addition there are numerous other software tools more or less oriented to hybrid 
system modeling, simulation, validation and verification. A list of packages can 
be found on Virtual Action Group on Hybrid Dynamic Systems website [HDS]. 

1.5.3 Petri nets 

One possible way to model a hybrid dynamic system is the Petri net concept. 
Petri nets were invented in 1962 by Carl Adam Petri in his PhD thesis [Petri62]. 
The Petri nets or predicate/transition (Pr/T) nets are a graphical representation of 
discrete system. The concept is rather simple where the net has place nodes, 
transition nodes, and directed arcs connecting places with transitions. The 
execution of Petri nets is nondeterministic which means that multiple transitions 
can be enabled at the same time, any one of which can fire and none are required 
to fire at all. Since firing is nondeterministic, Petri nets are well suited for 
modeling the concurrent behavior of distributed systems.  
 
A Petri net is a 5-tuple , where: 

• S, is a set of places. 
• T, is a set of transitions. 
• F, is a set of arcs known as a flow relation. The set F is subject to the 

constraint that no arc may connect two places or two transitions, or more 
formally: . 
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•  is an initial marking, where for each place , there are 
tokens. 

•  is a set of arc weights, which assigns to each arc 
some denoting how many tokens are consumed from a place by 
a transition, or alternatively, how many tokens are produced by a 
transition and put into each place [Desel01]. 

 An example of a Pr/T net is shown in figure 13. 
 

 
Figure 13 The example of Pr/T net modeling of digital behavior [BK93] 

 
Petri nets are often used for modeling of software and digital electronics and 
simulating mixed systems [Peltz03]. It is also used in modeling and simulation 
of manufacturing systems, hardware design and process modeling. Some authors 
have applied the technique to the mechanical and other physical domains 
[BSHW97, KTT97]. The main strength of this technique is effectiveness of 
dealing the parallel processes. The drawback of Petri nets on the other hand is 
their poor structuring facilities. They are thus difficult to use for large scale 
systems [EK96]. 
 
Some closely related techniques worth to mention are Mixed Logical and 
Dynamic Systems framework proposed by Bemporad and Morari 
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[Bemporad99], Hybrid State System Modelling [Dogruel97], Numerical 
Integration method for Hybrid Dynamic Systems [Schlegl97] and others. 

1.6 Normatives on mechatronics design 

There are some industry normatives and guidelines related to mechatronic 
system design process. The latest and probably the widest coverage guideline 
has been developed by German Association of Engineers (VDI) in 2002 and 
revised in May 2004. The guideline VDI2206 covers the mechatronic design 
process proposing numbers of tools for design support. Concerning ISO 
standards, there are no direct documents related to the mechatronics design 
process. Closer normatives that affect mechatronic system design and conceptual 
design are:  

• ISO 15288(2002) Systems engineering – System life cycle processes 
• ISO 11442-5 (1999) Technical product documentation Handling of 

computer-based technical information. Part 5: Documentation in the 
conceptual design stage of the development phase 

• ISO 10303/STEP Industrial automation systems and integration – 
Product data representation and exchange / Standard for the Exchange of 
Product Model Data 

VDI guidelines affecting mechatronics system design are the following: 
• VDI 2206 (2002, revised 2004). Design methodology for mechatronical 

systems (Entwicklungsmethodik für mechatronische Systeme. 
Richtlinienentwurf) 

• VDI 2422 (1994). Systematical development of devices controlled by 
microelectronics (Entwicklungsmethodik für Geräte mit Steuerung 
durch Mikroelektronik) 

• VDI 2221 (1993). Systematic approach to the development and design 
of technical systems and products (Methodik zum Entwickeln und 
Konstruieren technischer Systeme und Produkte) 

International projects and industry standards affecting the system 
engineering and mechatronics in general: 

• IEC 61499 Function Block Standard [IEC05] 
• DoDAF Department of Defense Architecture Framework 
• AUTOSTAR Automotive Open System Architecture 
• EAST-EEA Electronics Architecture and Software Technologies – 

Embedded Electronic Architecture 
• RIF Requirement Interchange Format 
• SDL System Description Language 

Besides the documents mentioned there exist numbers of additional standards 
and guidelines proposed by industry or associations. Applying these documents 
to the design process depends on the developers need and companies or 
customer policies. 
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1.7 Conclusions 

1. In this chapter widely recognized product design process trees are 
described and analyzed. Similarities and differences of most well known 
process descriptions are pointed out. The mechatronic specific needs and 
problems are shown and trends mentioned. Based on the widely 
recognized authors an adapted design tree has been compiled. The 
adopted solution is primarily originated from the specific needs of 
mechatronics and system engineering specifics. Main difference 
compared with the classical engineering process is a strong focus on the 
integration and early design stage. The major reason is the later 
integration issue where all developed sub-systems must work together as 
one synergetic system.   

2. According to integration issue in mechatronics design, but also the 
growing importance of conceptual design support several well known 
domain-independent techniques like bond graphs, Petri nets and hybrid 
automata are discussed. Advantages and disadvantages of these 
techniques as well as main application fields are pointed out.  

3. The result of this chapter is an overview of the existing design methods 
and domain-independent techniques. It is demonstrated that the optimal 
results in complex systems are very difficult to archive with traditional 
methods in a mechatronics field. It is not possible to solve the whole 
range of early design needs and therefore we need to combine different 
techniques with suitable methodologies. This issue is discussed in more 
detail in next chapter where state-of-art solutions and research trends are 
studied. 
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2 STATE OF THE ART 

2.1 Complex system modeling methods 

The mechatronic system development process varies from classical engineering 
process in many ways as mentioned several times before. It is still quite new 
paradigm and there is no proved methodology in this area. Another reason is that 
mechatronics itself is developing at a great pace and the design methodologies 
must follow this advancement. However, a number of acknowledged 
frameworks exist. Some of them are more practice oriented [VDI04, DODAF] 
and implemented in different new technology industries, others are more 
theoretical [SEO03, GFK07] and under the research in universities and research 
institutions. 
 
A highly industry oriented and huge work has been done by VDI association. 
This work stands for a new mechatronics system development guideline known 
as VDI2206. This guideline presents the most recent points of view and has been 
worked out by 40 well-known specialists in the field of mechatronics. 
In the VDI2206 guidelines the design methodology main base elements are 
[VDI04]: 

• the general cycle of problem solving on the micro-level, 
• the V-shape model on the macro-level, 
• pre-defined process modules for repeating an operation step during the 

design of mechatronics systems. 
 
VDI2206 complements the previous related guidelines like VDI2221 
(Systematic approach to the development and design of technical systems and 
products) [VDI2221] and VDI2422 (Systematical development of devices 
controlled by microelectronics) [VDI2422]. 
The main aim of this guideline is to support a cross-domain design of a 
mechatronic system in a systematic way. Procedures, tools and methods for the 
design process are described on the frame of system design approach. The 
guideline is supposed to structure the variety of findings which have been 
developed through research and industrial applications in the last years and to 
introduce them to practice in a concise and understandable way [Gausem03]. 
 
The scheme for describing mechatronic design process is the V-shape lifecycle 
model shown in figure 14. The model is based on the traditional waterfall 
process model but has a set of useful properties in description in the sense that 
relations between different design stages can be easily illustrated. Although this 
thesis focuses mostly on the first and second phase of the V-shape model 
(specification and conceptual phase) as early design stages, the product will be 
developed as many circles around the V-shape as needed. Every so-called 
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product does not have to be a real product, but can be a specification, model, 
prototype and of course the product itself as well. Needed interactions depend 
very much on the content and complexity of particular product design. This 
guideline is mostly adopted in Germany and other European countries. 
 
 

verification/validation 

 
Figure 14 Adopted V-shape model from VDI2206 [VDI04] 

 
The conceptual design part is denoted here as a System Design. As explained 
before, the conceptual design can also be the whole round of V-model, where the 
product is a selected concept. It is even possible to have several circles of the V-
model what will lead into selected and optimized solution candidate. The 
interaction number depends very much the particular case.  
 
The System Design comprises the following activities according to [VDI04, 
PB97, KBS97]: 

• Abstraction to identifying the main problem, 
• Setting up the function structure overall function – subfunction, 
• Searching for operation principles/solution elements for the subfunction, 
• Concretizing to form solution variants in principle 
• Assessing and selecting 
• Establishing the domain-embracing solution concept. 

 
However, before the design process can begin, the need for the product must be 
clearly analyzed. This is usually done in the requirement engineering stage 
which is not covered by this guideline in depth. In most cases there is a direct 
market demand. Although the most new products are market-driven, the design 
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process can also start without the market demand and in this case the design 
process is product or producer driven. 
 
While the VDI2206 is relatively known in Europe, the DoDAF methodology for 
mechatronic product design, or more general the system engineering, is the 
recognized methodology in U.S. The Department of Defense Architecture 
Framework (DoDAF) is a framework for development of a systems architecture 
or enterprise architecture (EA). All major U.S. Government Department of 
Defense (DoD) weapons and information technology system procurements are 
required to develop an EA and document that architecture using the set of views 
prescribed in the DoDAF [DODAF]. The intent of the DoDAF is to ensure that 
the system architecture description can be compared and related to another 
across the organizations. Although the framework is clearly aimed at military 
systems, it has broad applicability to define the architecture of complex systems 
so that it can be evaluated and understood alongside the other architecture 
description developed according to the same guidance. Decision makers can then 
use the DoDAF compliant reports to compare the alternative solutions and 
evaluate them amongst the existing system [WIDNEY06]. 
 

 
Figure 15 DoDAF views [DODAF] 

 
According to the definition of DoD Architecture Framework Working Group 
[DODAF] in the framework, there are three major perspectives (i.e., views) that 
logically combine to describe an architecture description. These are the 
Operational View (OV), Systems View (SV), and Technical Standards View 
(TV). Each of the three views depicts certain architecture attributes. Some 
attributes bridge two views and provide integrity, coherence, and consistency to 
architecture descriptions [DODAF]. 

• Operational View 
The OV is a description of the tasks and activities, operational elements, 
and information exchanges required to accomplish DoD missions. The 
OV contains graphical and textual products that comprise an 



 40

identification of the operational nodes and elements, assigned tasks and 
activities, and information flows required between nodes. It defines the 
types of information exchanged, the frequency of exchange, which tasks 
and activities are supported by the information exchanges, and the 
nature of information exchanges. 

• Systems View 
The SV is a set of graphical and textual products that describes systems 
and interconnections providing for, or supporting, DoD functions. The 
SV associates systems resources to the OV. These systems resources 
support the operational activities and facilitate the exchange of 
information among operational nodes. 

• Technical Standards View 
The TV is the minimal set of rules governing the arrangement, 
interaction, and interdependence of system parts or elements. Its purpose 
is to ensure that a system satisfies a specified set of operational 
requirements. The TV provides the technical systems implementation 
guidelines upon which engineering specifications are based, common 
building blocks are established, and product lines are developed. The 
TV includes a collection of the technical standards, implementation 
conventions, standards options, rules, and criteria organized into 
profile(s) that govern systems and system elements for a given 
architecture. 

2.2 System engineering modeling concepts 

According to the International Council on Systems Engineering [INCOSE], the 
Systems Engineering “is an interdisciplinary approach and means to enable the 
realization of successful systems. The whole design process focuses on defining 
customer needs and required functionality early in the development cycle, 
documenting requirements then proceeding with design synthesis and system 
validation while considering the complete problem of operations, performance, 
test, manufacturing, cost & schedule, training & support and disposal”. This 
definition points out the importance of early design and integrated activity very 
clearly. It also sets high demands for modeling concepts and tools. Hereafter the 
most approved and state-of-art system modeling technique based on model 
driven architecture is described.   
 
In the software design world UML is de facto standard for object-oriented 
software design. Starting with UML 1.1 and UML 1.5 the most recent official 
version is now UML 2.0. The primary driving force behind UML 2.0 is model-
driven development, an approach to develop software that shifts the focus of 
development from code to models, and to automatically maintaining the 
relationship between the two. The essence of software modeling (as in all 
modeling) is abstraction: the removal of fickle and distracting detail of 
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implementation technologies as well as the use of concepts that allow more 
direct expression of phenomena in the problem domain [UML]. 
 
In today’s world the software engineering is a leader deploying the concept of 
model driven architecture. Object Management Group (OMG) – the coordinator 
of software standard development has approved the Model Driven Architecture 
(MDA) specification in 2001. MDA supports model-driven engineering of 
software systems, also the concept is applicable to system engineering as well. 
The MDA model is related to multiple standards, including the Unified 
Modeling Language (UML), the Meta-Object Facility (MOF), the XML 
Metadata interchange (XMI), Enterprise Distributed Object Computing (EDOC), 
the Software Process Engineering Metamodel (SPEM), and the Common 
Warehouse Metamodel (CWM) [MDA]. However there are some concerns with 
MDA approach. So far there is no mainstream industry acceptance; the Gartner 
Group still identifying MDA as an "on the rise" technology in its 2006 "Hype 
Cycle"[GARTNER], and Forrester Research declaring MDA to be "dead on 
arrival" in 2006 [Zeite06]. There are of course always opposite opinions 
[Frankel06]. 
 
There have been several attempts to apply UML for non-software design. 
Serious improvement has been reached in recent years. An important outcome is 
OMG SysML specification finalized in this year (2007) which is initially derived 
from UML RFP: UML for System Engineers Request for Proposal [SERFP] in 
2003. However there are several state-of-art works carried out by research 
groups based on the UML profile mechanism: 
 
UML Profile for Schedulability, Performance, and Time Specification 
[UMLSPT];  
UML 2.0 Profile for Embedded System Design [KRH05]; 
UML Testing Profile [UMLTP]; 
UML Profile for SoC (Systems on Chip) [RHSZN05]; 
UML 2 to Solve Systems Engineering Problems [Gurd03]; 
UML for Hybrid Systems [BBHP06]; 
SYSMOD – Systems-Engineering-Profil [Weilkiens06]. 
 
Recently the major players in government, industry and ICT have collaborated 
to extend UML to cover the domain of Systems Engineering. This new standard 
– SysML – is adopted by the Object Management Group in the autumn of 2005 
[SysML10]. During 2007 the finalized version of SysML 1.0 is expected. So far 
the version 1.0 draft from May 2006 is the adopted specification. 
SysML reuses a subset of UML 2.0 diagrams and supplements them with new 
diagrams and modeling constructs appropriate for systems modeling. SysML is 
designed to complement UML 2.0, so systems engineers who are specifying a 
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system with SysML can collaborate efficiently with software engineers who are 
defining a system with UML 2.0 [SysML09]. 
 
The following figure describes SysML modifications and relations with UML 
2.0.  
 

 
Figure 16 SysML diagram taxonomy [SysML10] 

 
SysML language is a modeling language where the system model and sub-
models are described with a set of diagrams. Several diagrams are adopted from 
UML and some like Requirement and Parametric diagrams are developed for 
this purpose. The concrete syntax and notations are described in SysML 
specification which is OMG Adopted Specification ptc/06-05-04 [SysML10].  
SysML diagrams can be generally divided into the four sections:  

• Requirement specification, 
• Structure definition, 
• Behavior definition, 
• Parametric definition. 
 

When modeling a system, an important primary task is to decide what belongs to 
the system and what does not. The Context diagram is an informal way to 
represent the boundaries of the system [Balmelli06]. The context of a system can 
be defined by combining different elements from different diagrams. The Use 

Case diagram is a standard diagram to represent the usage of a system and 
interactions between the system and the surrounding environment and actors. It 
is possible to use mixed diagrams where several elements from Use Case 
Diagram, like Actors and Cases, and from Block Diagram like Blocks, are 
compounded into one diagram. The main idea is to draw boundaries over the 
system and describe as clearly as possible the contextual view of a system. 
 
The requirement section is a new addition compared with the standard UML 
diagram taxonomy. The requirements are traditionally represented by text. 
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SysML enables to represent requirement as a model element similarly to 
behavior or component in a system. This feature makes the model more 
consistent and enables the modeler to develop different relationships between 
the requirement and other model element. The advantage is that the modeler can 
track requirement satisfaction through all the different stages of the modeling 
process. The requirement diagram can contain both functional and non-
functional requirements. Depending on the design case or domain profile several 
stereotyped requirements with customized attributes can be exploited. For 
example a specific predefined requirement stereotype for functional, structural, 
economical, environmental, etc. can be defined. 
 
The structure of a new system is defined by two diagrams based on 
UML4SysML Class metaclass. A block diagram is usually used for describing 
system’s static structure. A block can be any modular unit including a part, 
assembly, user, software, etc. It has a specific functionality and interaction 
interfaces. It also has a certain collection of features which can be both structural 
and behavioral, such as properties and operations. SysML blocks can be used 
through all the phases of the system specification and design. Another way to 
represent a system structure is to use Internal Block diagram. This diagram type 
represents the interactions between blocks and basically defines the usage of the 
system components. The block interacts with other elements through the ports. 
Several types of ports can be defined depending on the type and flow through 
this port.  For example, standard ports are used to specify services the block can 
provide or is expected to provide from others. Flow ports are used to specify 
input and output items that can flow through this port.  
 
Parametric diagram can be used to define a constraint network of a model. 
Relationships between the parameters and mathematical expressions can be 
defined by this diagram. The parametric model can be also an initial source for 
performance analysis and simulations. Through the objective function the 
parametric models can be used to compare alternative solutions in different 
design stages.  
 
Behavioral modeling is carried out by the Activity, Sequence and State Machine 
diagrams, similarly to software system modeling concept. There are various 
approaches how to define a system behavior and this depends quite a lot on 
design domain and modeler experience. It is possible to model both continuous 
and discrete or hybrid systems. However the language itself has no guarantee to 
validate the correctness of hybrid system.  From diagram point of view the 
activity modeling emphasizes the inputs, outputs and conditions for coordinating 
other behaviors.  The Sequence diagram describes the flow of controls between 
actors and systems or between parts of a system. The State Machine defines a set 
of concepts that can be used for modeling discrete behavior through the finite 
state transition systems [SysML10]. However the actual usage of diagrams can 



 44

be treated several ways. Several approaches can be exploited depending on the 
engineering experience [SysMLF] or guidelines. Some approaches using activity 
and/or state machine: 

• The choice depends on the character of the behavior whether it is 
process-driven or state-driven. Activity diagrams are more used for 
analysis and communication with the customer while a State Machine is 
generally used for design and communication with the developers – Tim 
Weilkiens. 

• Oliver, et al. [OKK] point out that a functional flow block diagram 
(FFBD) and a state model are two representations of the same thing. The 
essential difference is function modeling. When the focus is on the 
functions the Activity suits more and the State Machine is used when the 
focus is on transactions between states, respectively. At an abstract level 
both can represent the behavior and functions from different viewpoint – 
Richard Sorensen. 

• As State Machine runs continuously while the condition for that state 
exists similarly to software source code, e.g. do-while and do-until. An 
Activity on the other hand is a single run through the actions – Daniel C. 
Lanotte. The concept can be stated that the state machine is a “parent” 
and every state is defined by separate Activity diagram. When state 
changes another Activity is executed inside the current state. 

• Another opposite approach is that Activity is taken as a “parent” and 
every single action has the State Machine specifying the inner structure 
of this particular action. 

 
As it can be seen, the behavior of a system can be modeled in different 
approaches and there is nothing wrong in it. Even more, the software developers 
and system engineers have discussed without consensus about that issue as it can 
be seen from SysML developer Michael Latta sentiment in SysML forum 
[SysMLF] – “There was some debate on this point in the UML and SysML 
specification teams with nothing close to a consensus reached.  In the end both 
Activities and StateMachines are ways to define a behavior of an object”  
 
Some other diagrams like Timing, Interaction Overview, Communication 
diagram, defined by UML can also be used when needed as they are left 
unchanged by SysML specification. 
 
The four view picture of modeling diagrams are shown in figure 17. 
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Figure 17 Four pillars of SysML [OMGSysML] 

 
The analysis and simulation of system model can be successfully supported by a 
specific software package. The best known is Matlab/Simulink software. There 
are several companies working actively to provide a software platform enabling 
a link to SysML model and Simulink component [VD06]. At the moment 
Telelogic Rhapsody is the one that has demonstrated the working solution in this 
issue [TeleL07]. 

2.3 Artificial Intelligence methods for complex 
problems 

Many non-traditional techniques and methods in engineering problem solving 
domain have come to the fore recently. One of the reasons is definitely an 
increase of the computing power. These opportunities allow solving the 
engineering tasks, which can not be described with linear differential equations 
and are non-deterministic. The techniques applicable for more advanced 
mechatronics system modeling, which are taken into account, are the following: 

• Genetic & Evolutionary algorithms 
In evolutionary and genetic algorithms mainly four approaches are 
distinguished: genetic programming, evolutionary computation, 
evolutionary algorithms, and genetic algorithms. The differences are 
described in the Hitch-Hiker's Guide to Evolutionary Computation 
[HB01]. Here the GA and GP are only explained. Genetic Algorithms 
(GA) are basically algorithms based on natural biological evolution. The 
architecture of systems that implement genetic algorithms is more able 
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to adapt to a wide range of problems. A GA functions by generating a 
large set of possible solutions to a given problem. It then evaluates each 
of those solutions, and decides on a "fitness level" for each solution set. 
These solutions then breed new solutions. The parent solutions that were 
more "fit" are more likely to reproduce, while those that were less "fit" 
are more unlikely to do so. In essence, solutions are evolved over time. 
This way you evolve your search space scope to a point where you can 
find the solution [HM00]. Genetic Programming (GP) on the other hand 
is an extension of genetic model of learning into the space of programs. 
It means that population objects are not fixed-length strings but when 
executed they are candidate solutions for a given problem [HB01].  

• Artificial neural networks 
Artificial neural networks (ANN) are collections of mathematical 
models that emulate some of the observed properties of biological 
nervous systems and draw on the analogies of adaptive biological 
learning. 

• Multi-agent systems 
A multi-agent system (MAS) is a loosely coupled network of problem-
solver entities that work together to find answers to problems that are 
beyond the individual capabilities or knowledge of each entity [DLC89]. 

• Fuzzy logic 
Since the seminal work of Zadeh [Zadeh65] fuzzy logics is highly 
accepted in industrial applications in order to model non-linear input–
output relations. 

A more detailed coverage can be found in [SL03]. 
These methods are successfully applied in several cases for solving specific 
problem on optimization, machine learning, adaptive control, path planning, etc. 
For example, fuzzy logic is widely used in controller systems or neural networks 
on parameter prediction. However in many cases the theory is applied only in 
computer environment while calculating or simulating certain problem. Genetic 
algorithms are often used for finding global optimum in case of great state space. 
The advantage of AI methods over the traditional is the ability to search over 
entire solution space and they are applicable to a wide range of problems 
including non-continuous functions and functions involving different types of 
variables. Although there have been lots of research results and success when 
exploiting AI techniques for a certain problem, applying a single technique for a 
complex interdisciplinary problem is not a trivial task. Nevertheless there have 
been a limited number of attempts of exploiting the above techniques for design 
solution generation.  
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2.4 Artificial Intelligence based research for 
early design 

As mentioned above, the conceptual stage of product development process is 
extremely important when searching an optimal solution for the final product. 
Although there are methodologies for modeling the conceptual design stage, 
most work is done according to designer experience and personal predilections. 
In the last decade many non-traditional techniques have been widely available, 
because of a rapid increase of computational power. Therefore increased 
interests exploiting new techniques for modeling purpose has arisen.  
 
Some attempts to combine non-traditional techniques for early stage modeling 
are described hereafter in more detail. 

2.4.1 Conceptual design supported by multi-agent 
system 

Rzevski [Rzevski03] introduces the concept of mechatronic systems conceptual 
design with the support of multi-agents technology. Intelligent agents are used 
for designing mechatronics system in the conceptual phase. The introduced 
technology can be used to design small intelligent units capable of competing 
and/or co-operating with each other for a specified task and making decisions 
under the condition of uncertainty through a process of negotiation. The major 
elements of these systems are intelligent agents, which are software objects 
capable of communication with each other, as well as reasoning about received 
messages. The multi-agent technology is exploited in the software world quite 
often to solve complex problems without powerful central unit. Instead, small 
independent units are developed and in cooperation they can reach the solution 
for complex problem. Applying the technology for a conceptual design is a new 
and promising approach. Although this research presents several case studies 
there are no clear examples or guidelines how to develop the mentioned agents.  

2.4.2 Genetic algorithms with bond graphs 

The Genetic Algorithms Research and Applications Group (GARAGe) has 
developed a method using bond graphs and genetic programming. The solution 
is stated as a unified and automated design methodology for synthesizing 
designs for multi-domain systems [SEO03]. The approach evolves designs 
(represented as bond graphs) with improving performance. The design is 
improved in an iterative loop of synthesis, analysis, and feedback to the 
synthesis process. 
The approach [SEO03] combines bond graphs (BG) for representing the 
mechatronic system model with genetic programming (GP) as a means of 
exploring the design space. The flow of the entire algorithm is shown in figure 
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18. At the very beginning the user has to specify an embryonic physical model 
for the target system (i.e. its interface to the external world). That determines an 
embryonic BG model and corresponding embryo (starting) element for a GP 
tree. From that, an initial population of GP trees is randomly generated. BG 
analysis is then performed consisting of two steps – causal analysis and state 
equation analysis. Based on those two steps, the fitness function is evaluated. 
For each evaluated and sorted population, genetic operations: selection, 
crossover and mutation are performed. This loop of BG analysis and GP 
operation is iterated until a termination condition is satisfied. The final step in 
instantiating a physical design would be to realize the highest-fitness BG in 
physical components [SEO03]. The exploited BG technique is quite popular for 
representing the multi-domain system. It suits also well for GP and GA trees due 
to its clear topology. In this research several results are generated regarding to 
mechatronic system design combined with genetic programming. These research 
results are a good basis for the further development and integration for 
automated concept generation of a mechatronic system.  
 

 
 

Figure 18 The GARAGe BG/GP algorithm [SEO03] 

2.4.3 Bond graphs with Simulink support 

The approach developed by Granda [Granda02] integrates theoretical principles 
of bond graph modeling and a graphical software tool called Computer Aided 
Modeling Program with Graphical input (CAMP-G). The tool implements the 
theoretical principles of bond graphs and then the model is transformed into 
MatLab/Simulink. The system generates first order state space differential 
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equations, symbolic transfer functions and Simulink S functions in source code 
from such as MatLab .m or .s files, which Simulink can process. The idea is to 
generate automatically the differential equations from the bond graph model. 
This means the generation of the system A, B, C, D matrices to produce the state 
space representation and also the computer generation of transfer functions and 
output equations in symbolic form. For non-linear systems this implies a set of 
equations where the individual non-linear constitutive relations can be 
accomplished as well as any conditional switches, non-linear time dependent 
effects and of course a form suitable for logical execution of all these by MatLab 
and the non-linear S functions of Simulink [Granda02].The research focuses on 
linking the bond graph theory and software systems. A special design 
environment has been developed to automatically generate BG models and then 
the models are linked with Matlab/Simulink. Some trivial examples are 
introduced and corresponding automatically generated Simulink block 
described. However the focus is more oriented to the mechatronic component or 
subsystem development rather than the whole system. A considerable result of 
this work is a simulation linkage of an initial bond graph model, although it is 
achieved by using special software system. 

2.4.4 Artificial intelligence method application in 
machine design 

A mechanical design supportive environment based on AI methods has been 
developed by an Estonian research group and covered in the master thesis 
[Tiidem01, KT04]. Visual programming for mechanical design in early design 
concept is used. The developed system has a graphical schema editor based on 
(NUT) system. Experiments have been carried out for the gear drive, drive, d-
chain and power screws. The ExpertPIRZ and NUT [Tyugu91] is exploited as 
artificial intelligent tools for automated solution generation. The software 
platform is further developed and implemented in Java & C [Tyugu06]. The 
work is mainly aimed for specific solution generation automation, e. g. for a gear 
drive. For applying the proposed method to another application domain a new 
design package needs to be developed for this specific application. 

2.5 Conclusions 

1. It has been shown that new mechatronics and system engineering oriented 
methods and techniques have been developed within last years and in some 
respect accepted by the industry. A very recent achievement is SysML 
language specification which is a profile extension derived from UML 2.0. 
The very final specification is adapted by the OMG and INCOSE in 2007. 
At present three main frameworks are considered as state-of-art in 
mechatronics design and system engineering – VDI2206, DoDAF & 
SysML. In addition to these several research projects are running to find 
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optimal way to integrate different techniques. Bond graph technique is often 
used but not as a pure modeling tool but rather the BG concept itself 
integrated with other methods. The interest for AI techniques is rising due to 
the availability and increase of computation power. Applicability of these 
methods for mechatronics design process is discussed.  

2. In the VDI2206 guideline the design process is described and some tools are 
suggested to carry on the process. The VDI2206 itself is not a tool but a set 
of suggestions how to carry out the mechatronics design process. However, 
the support for early design stage is rather poor. Connections between 
requirements and concept model are not covered in deep. The SysML on the 
other hand defines a modeling language enabling to model the requirements, 
system structure and system behavior in an integrated way. Although the 
SysML is not implemented by the industry yet, the great potential exists. 
The third new aspect in mechatronics early design is the AI methods. 
Research focus is turned from theory to practical applications in AI field and 
several attempts to automate the mechatronics system design are described 
in this chapter. Many research results where AI methods are applied use the 
BG concept as a model description technique. In a small system the BG is a 
good and universal technique but when the system complexity increases the 
graph grows difficult to read and understand. There is also a lack of behavior 
and event modeling in the BG concept. However this concept is a good input 
for the AI method due to the explicit representation of model topology. 

3. Applying the SysML, supported by a domain specific extension to the 
design process according to known mechatronics design methodology is a 
key factor for effective and successful design in mechatronics field. The 
time-to-market demand as well as system complexity have increased very 
rapidly and automated design support is therefore needed. However the 
developed models have to be assured against requirements. Existing 
solutions, described in previous chapters, do not cover all these aspects but 
have good features in certain area. The BG concept exploited in several AI 
solutions is good enough while used by the machine to create initial abstract 
solution or verify the integrity of a sub-system. Nevertheless the 
conversation to a more human friendly modeling technique is required, 
otherwise it is not going to be used by practicing engineers. 

4. In this chapter it is shown that exploiting AI methods the automated model 
development is possible. To get more advanced results these methods must 
be further developed and bound with methodological design process. A 
domain specific extension is definitely necessary to carry out the effective 
and optimized design in the early stage. The extension can be design 
patterns, widely exploited in object-oriented software design and design 
element libraries for reuse. 
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3 DESIGN FRAMEWORK 

In the previous chapter several state-of-art concepts and techniques were 
analyzed. There has been discussed that conventional methods and tools do not 
cover the integration nature of mechatronics. New concepts and techniques 
developed over the last years deal with integrated system engineering but have 
weak focus on early design stage.  
The proposed approach combines the advantages of new mechatronics and 
system engineering works with a focus on early design. The design framework is 
a generic model of mechatronics product design in early stage. The framework 
compromises requirement engineering, concept generation, concept evaluation 
techniques and tools. In previous chapter AI methods were studied. A semi-
automated concept generation method is proposed based on these studies. The 
method combines mechatronics design and AI algorithms. The framework is 
driven by a model based approach and MDA concept. Based on that fact main 
MDA advantages like interoperability, portability and component reuse 
[POK01] are derived. Component reuse is one of the key factors in the proposed 
framework model. Reuse is well exploited in the software world during several 
years already. For example, in Japan where the software development and 
robotic innovation is undoubtedly the world leader component reuse is very 
widely used [Cusu91]. Several companies have reached the reuse level 25-50% 
and in some certain projects even around 90% [JGJ98]. Component reuse leads 
to substantial gains like reduction of time to market, defect density and 
maintenance cost. It is stated that the overall reduction of development cost in 
software design is 15% to as much as 75% in a long term project [JGJ98]. It is 
clear that the reductions of these factors are not automatically guaranteed, but 
show however the possibilities and hidden resources when applying the reuse 
concept. In mechatronic systems many design concepts are developed from 
scratch but nearly always elementary parts and standard assemblies are used in 
domain-specific development stage. This is even more characteristic to robotics 
applications where a certain sub-set of common solutions is integrated from 
different fields, adding certain new design elements to achieve a quite well 
defined goal within specified constraints. The similar reuse concept is also 
exploited by mechatronics design tools and is known as a standard component 
library. Well known mechatronics system development environments like 
Dymola, AMESim, Adams, etc. use component libraries for different 
mechatronics subdomains, e.g. mechanics, electronics, hydraulics, control, etc. 
and methods, e.g. multibody, bond graph, etc. However in early design the 
concept generation is usually developed from zero and no suitable pre-defined 
models are available. The quality of the result is based mostly on the experience 
of engineering team and available technical aids.  
 
Applying the model based design and component reuse to the early design 
technique is one of the challenges of this work. Process automation is taking 
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place almost in every field. Some recent research works in mechatronics design 
are presented in the previous chapter, where design solutions were developed 
automatically. Based on these experiences and research results, an early design 
semi-automated concept is proposed and described in papers [Sell04b, Sell04c]. 
The automated design is not however always suitable and therefore the solution 
is proposed as a reference or an alternative and complementary option for 
engineering teams. It can be successfully combined with traditional methods and 
ways the engineering teams are used to use. 
 
To achieve the reuse benefit in conceptual design a template system is 
introduced. The idea can be compared with the software object-oriented design 
where design patterns are exploited. The conceptual model template system 
itself is a generic approach and is not restricted only to robotic applications. The 
initial concept is proposed by the author in paper [ST03]. 

3.1 Semi-automated conceptual design 

The proposed generic early stage development approach consists of techniques 
and tools for three integrated sub-stages: requirement modeling, conceptual 
solution modeling and conceptual solution simulations [Sell05]. All stages are 
supported by the specific toolkit and algorithm libraries. The toolkit consists of 
rules and template libraries for the specific application domain. A template class 
from the template library provides a parameterized description of the model 
element, subsystem and working principle, specifying its attributes and 
operations. The conceptual solution modeling is a design candidate development 
process where alternative solutions are developed and evaluated. The generic 
process concept developed tools are illustrated in figure 19.  
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Figure 19 Generic concept of early stage design 

 
The automated solution candidate creation process is proposed to carry out with 
the interaction between GP schema and engineering team. The specific GP 
schema develops a base design candidate based on the so-called embryo model. 
The prototype of this kind of GP schema has been developed by the GARAGe 
Group [SEO03] from Michigan State University, discussed in detail in chapter 
3.4.2. An analogous schema is proposed to use in early design semi-automated 
solution development process in this framework.  
The GA and GP concepts for real system design generation have been in 
research focus in many areas. Probably the most known work is [KBAKD97] 
where GP concept is used to automatically synthesize the topology and size of 
analog circuits, including low-pass filters, controllers, and amplifiers. There are 
several other works in automated analog circuit design based on GA and GP 
concepts [Grim00, LC99, FSGRZ01]. The dynamic system automated design is 
studied by Tay a. o. [TFB98], where bond graphs are used as a system 
representation.  
Exploiting the BG concept tends to be popular in automatic design process as 
well as conceptual design [Coatanea05, Granda02, SEO03, TS05]. Although the 
concept has disadvantages and is not widely used by practicing engineers, it suits 
well for different algorithms due its clear semantics and universal representation 
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of integrated system’s topology. It suits well also for GP algorithm proposed by 
the GARAGe group where the input and working model is expected to be bond 
graph model. Therefore the prototype algorithm proposed to be exploited within 
this framework use a BG concept as well. However the disadvantage of BG is 
the reading difficulty in case of complex systems. In addition the BG is 
representing the system structure but not the behavior and context which is 
important when developing an integrated system. According these concerns the 
proposed modeling approach exploits the BG representation for automated 
design candidate creation while the rest of the process is carried out by the 
support of SysML & application profile extension. It needs some conversation 
between BG model and SysML model. Initial concept is generated by the 
engineering team, inversely the usual GP initial input which is generated 
randomly. Some common solution development techniques like brainstorming, 
635 method, Delphi method, etc. can be successfully exploited as preferred by 
the particular engineering team.  
 
The process is roughly divided into the following steps: 

• The initial solution developed by the engineering team as denoted 
before, is an input for GP schema and has to be represented by the bond 
graph technique as the algorithm accepts only this format.  

• The concept generation and evaluation is an interaction between 
engineering team and GP schema. The algorithm generates design 
candidate according to initial input and requirements. The output of the 
GP schema is BG representation of design candidate and has to be 
converted to the SysML. The solution itself is modeled by the SysML 
domain specific toolkit. 

• After the end of GP run engineers start to evaluate the result developed 
by the algorithm. When necessary they can set additional constraints and 
limitations. Depending on the maturity of the output, additional runs can 
be executed. Several outputs can be collected to start a more deep 
evaluation through the initial simulation procedure. 

• Different developed solutions are specified with simulation parameters 
and bound with a simulation algorithm in the template library. The 
initial simulation is executed and results are compared. The interaction 
number depends on the problem complexity and application domain 
specifics.  

• The overall result is an optimized and simulated solution candidate 
which will be further developed in detail design stages.  

The developed profile supports the early design, but can be easily expanded to 
support the whole design process. Therefore it is advisable to exploit the tools 
used in conceptual design also through the whole design process with the 
support of domain specific tools. This guarantees the model consistency and 
compatibility with requirement model. An additional feature is automated 
documentation generation through the whole process, including design changes. 
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3.2 Framework application 

3.2.1 Modeling approach 

The modeling approach adopts the V-macromodel proposed by VDI2206 
guideline [VDI04] which is initially adopted from software development process 
[Brö95]. The V-model is transformed to reflect the conceptual stage where the 
product of cycles is the solution concept. In VDI V-model, the System Design 
part reflects partly the early design dealt in this thesis.  
 
The modeling approach of this research refines the conceptual modeling and 
emphasizes the requirement engineering and linking requirements to the model 
element. The adopted V-model focusing on the conceptual design is presented in 
figure 20. 
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Figure 20 V-model for conceptual stage 

 
According to the proposed adoption the process starts with requirement 
engineering where the initial requirement list is expected to be provided by the 
customer. In most cases it is represented as a text document and graphics. Based 
on this documentation the requirement engineering stage refines and formalizes 
the requirements followed by the toolkit formalization rules. The requirement 
engineering has several stages where the models can be refined according to 
progress of development. The concept generation and evaluation is interactive 
process carried out either by the proposed AI algorithms, discussed in chapter 
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3.1, or by the engineering team as usual. Whatever method is used the concept 
generation sub-steps have to be dealt anyway. When the design concept is 
mature enough it is bound with simulation model and executed in the simulation 
environment. Several pre-defined simulation algorithms are available in toolkit 
libraries and additional algorithms can be developed according to the current 
need. For example in mobile platform toolkit, the performance simulation model 
is linked with a design candidate and a key performance parameter evaluation 
algorithm is executed. The solution generation should not end with the first cycle 
but has to develop several solution candidates which can be evaluated against 
each other and compared with requirements. The best matching solution 
candidate will be selected and passed to the next stage.  
 
The mechatronics design process involves several related models in concept 
generation process. Each model describes a specific aspect of the system like 
behavior, static structure, dynamics, etc. and has available diagrams and 
documents in a predefined format. In this approach SysML with toolkit 
extension used as the modeling language is. The toolkit is derived from SysML 
by the standard extension mechanism. The SysML itself is derived from UML 
2.0 by the same mechanism and is consistent with the OMG Meta Object 
Facility (MOF). According to this mechanism the language can be extended by 
the stereotypes or restricted by the subset of metamodels. In addition to profile 
the model libraries are included to embrace the design templates with reusable 
model elements sub-systems parts, working principles and so on.  

3.2.2 Template libraries 

In our case a template is defined as a parameterized model element that 
describes or identifies the pattern for a group of model elements of a particular 
type. The templates are not directly used in models. Instead, they will be first 
initiated by binding the parameters to actual values, in the similar way as 
software patterns used in Rational Software Architecture [RSA]. The binding 
between a template and a model element generates a new model element based 
on the template like a specific drive or transmission mechanism, robot leg or 
manipulator mechanism etc. Then it can be used as bound element to model part 
of a system [RSA].  
 
In this approach different types of design templates are developed and organized 
into libraries. These templates are used for robotics applications whereby the 
main goal is to retain advantages for early design stages of usage of component 
libraries offering design alternatives verification and fine tuning capabilities at 
the same time. Derived from the effect of the real-world nature the mechatronic 
system design templates, as a part of the toolkit, are grouped as Diagram 
template library, Model & Principle template library and Algorithm template 
library. Template package is illustrated in figure 21. 
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«ModelLibrary»
Diagram

«ModelLibrary»
Model & 
Principle

«ModelLibrary»
Algorithm

 
Figure 21 Template package 

 
Each library consists of several sub-categories. The detail content and structure 
of the library depends on the application toolkit. Nevertheless the standard 
subcategories are proposed as follows: 

• Diagram template library (system view) 
o General Requirement 
o Subsystem Requirement 
o System Context 
o System Behavior 
o System Static Structure 
o Subsystem Interaction 
o System Dynamics 

• Model & Principle template library (component view) 
o Mechanics 
o Hydraulics 
o Electronics 
o Control 
o Real-Time 
o Robotic 

• Algorithm template library 
o Performance 
o Power Consumption 
o Robustness 
o Reliability 
o Control 

Additional subcategories are application toolkit specific and specified in the 
toolkit specification where application domain characteristics are taken into 
account. However the subcategories overlap between similar domain toolkits 
and are therefore stored into general library with domain tags. 
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3.3 Mobile Platform Toolkit 

The robotic platform and its design methods have gained a constant by growing 
attention in several sectors. Recently the European Robotic Platform network 
EUROP [EUROP] was established to support new companies and networks in 
maintaining and strengthening the Europe position in the robotics technology 
field. Many other similar actions taken and networks [CLAWAR, EURON] 
indicate a strong focus on the robotic sector. These actions produce a clear need 
for effective and compatible development methods suitable for SME type 
companies as well as research institutes and other stakeholders. Based on these 
trends Conceptual Framework of Mobile Robotic Platform has been selected. 
The Mobile Platform Toolkit (MPT) is an application example, and based on this 
example additional profiles for different mechatronics sub-domains can be easily 
developed. It is clear that some parts of toolkit will overlap on the future and 
these parts, e.g. Principle Library, can be used crosswise. 
The mobile platform has been dealt with as a generalization of different types of 
(mainly electrical) vehicles. A mobile platform can have several totally different 
locomotion types. An overview of existing locomotion applications is given in 
technical report [Brooke03]. However it is clear that a conventional wheel is the 
most common locomotion type and therefore the main focus is on this type. In 
addition, the special focus is on hybrid locomotion and dynamically configurable 
locomotion. During the doctoral research a unique dynamically configurable 
wheel-leg (wheg) has been invented and patent application compiled. 
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Figure 22 Mobile Platform toolkit structure 

 
The toolkit is defined as a SysML profile and external simulation package 
algorithms. The profile itself consists of template libraries, diagram extensions 
and model libraries. Standard model libraries are Principle, Terrain and 
ContactType.  
The model library Principle is a collection of standard mechatronic sub-systems, 
elements and working principles. This library is the most similar to the existing 
design software packages part library concept where standard parts are defined 
and collected into categories. 
The MPT Principle library contains also the working principles and subsystems 
formulated in SysML and an extended profile. This means that similar 
subsystems can be found in different libraries but the abstraction level is higher 
and the subsystem is defined in formal language rather than physical component. 
The boundaries between the physical domains are not very sharply defined and 
can be determined later on detail design stage. The model can be developed by 
linking the subsystems and working principles from library with loosely coupled 
relations whereas the certain key parameters are defined. These parameters are 
in most cases derived from the requirement model and are related to many other 
parameters of a system. For example, a simple mathematical model linking 
different parameters is defined by Parametric diagram and key parameters are 
defined with extended stereotypes. 
 
Terrain and ContactType library are holding the parameters of different terrain 
and vehicle-soil contact. The reason for establishing the Terrain and 
ContactType library was the mobile platform performance analysis and 
simulation need. Depending on the required terrain capabilities, the mobile robot 
must deal with obstacles, surface characteristics, slopes, etc. Terrain properties 
affect greatly the robot design where a smart and optimal design can save the 
energy, improve the performance, optimize the budget and so on. These 
parameterized models can be linked to the design element or design candidate 
and used in initial simulations.  
The terrain vehicle relation in off-road conditions has been studied for a long 
time already. However the terrain properties are not very easy to define and 
mostly the statistical and heuristic methods must be exploited [Bekker69]. The 
Terrain library holds the terrain model described with the following 
characteristics: 

• Terrain structure 
• Holes and humps 
• Obstacle density and distribution 
• Geometry of terrain obstacle 
• Irregularities 
• Mechanical properties of soil:  

o viscosity  
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o moisture 
o density 
o nature of the surface (ice slice, low blanket, vegetation) 

 
Although the terrain is described by several parameters the real terrain condition 
is never fully met. However, simulating a locomotion model linked with 
different terrain models gives the designer a valuable feedback when comparing 
concurrent design solutions. Some parameters have a bigger effect than others in 
different situations. For example, the lack of vehicle traction may be caused by 
extraneous situations like rain or freezing in outside driving and initial surface 
roughness has only incidental relation to it. Terrain classification based on 
geomorphology or botanical concept is not suitable for mobile locomotion study 
[Bekker69]. Therefore the Terrain library is introduced and only selected 
parameters are included to the terrain description. The structure of a terrain 
library objects is described in figure 23. 
 

Obstacle
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Soil
Obstacle_distribution
Hole_distribution
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Terrain
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Geometry:type
Material:type

Obstacle

Viscosity :real
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Density:real
Natural:type

Soil
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Geometry:type
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Figure 23 Terrain library structure 

 
The ContactType specifies the wheel-surface or actuator-surface (in case of non 
wheel locomotion) contact characteristics for advanced locomotion analyses and 
simulation. The ContactType is very tightly related to terrain and is used more 
for mechanical analysis of wheel-terrain interaction. The ContactType library 
element can analogously be connected with the model element and used for 
example wear analysis. One important end-application is railway vehicles where 
disc-disc contact can be picked from the library and the wear analysis in various 
design solutions and environmental conditions can be executed. In a similar way 
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the tire-road friction simulation can be carried out with the connection of 
ContactType library element.  
 
The profile itself consists of pre-defined diagram templates and extended 
diagram elements – stereotypes. Requirement and design template included into 
Mobile Platform Toolkit is described in tables 2 and 4. These templates are 
specific to the mobile robotic platform. However some of them can be 
successfully exploited when developing a similar mechatronic system. For 
example navigation templates can be used when developing an automatic car 
navigation system for automotive industry. Depending on a particular 
application domain the corresponding templates may still need smaller or bigger 
adjustments.  

3.3.1 Requirements model 

Requirements are the foundation of the project. Every requirement is tightly 
related to the cost and end solution, therefore the requirement modeling and 
analysis must be carried out with great attention. Big changes in requirements on 
later design process may increase significally the cost of the whole project.  

 
Requirements arise from various sources like customer needs, regulations and 
legislation, organization environment restrictions and technology availability, 
etc. The requirement definition is a complex process and typically includes 
performance analysis, trade studies, constraint evaluation and cost analysis. 
Depending on the problem domain different requirement templates can be 
defined.  
 
Toolkit requirement extension specifies additional stereotypes derived from the 
base stereotype <<Requirement>>. The profile enhancement exploits some 
non-normative requirement stereotypes proposed in SysML Appendix C 
[SYSML10] and additional profile specific elements. Following general 
mechatronics design and robotic platform specific aspects are considered: 
structure, functions, performance, environment, cost, payload, navigation, safety 
and performance. In MPT a requirement is defined by the textual representation 
of the constraints and the values of the parameters. Textual representation can 
refer to more detail document e.g. requirements defined by the client. Default 
parameters for extended requirement element are Weight, Risk, 
OptimizationDirection, and Source. Optional parameters are ConsistentStandard 
and VerifyMethod. Based on the extended requirement several sub-level 
requirement elements are specified. Every sub-element can have additional 
parameters and constraints. Base structure of requirement model hierarchy is 
described in figure 24.  
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Id
Text
Weight
Risk
OptimizationDirection
Source
ConsistentStandard
VerifyMethod

«requirement»
extendedReq

«extendedReq»
functionalReq

KeyPerformance

«extendedReq»
performanceReq

KeyParameter

«extendedReq»
structuralReq

«extendedReq»
safetyReq

CommSpeed

«extendedReq»
interfaceReq

MaxCost

«extendedReq»
economicalReq

Emission
WorkingTemp
WorkingHumidity

«extendedReq»
environmentalReq

«extendedReq»
navigationReq

LocomotionType
SpeedRange
ObstacleSize
Slope

«extendedReq»
locomotionReq

«testCase»
FunctionTest

«testCase»
SafetyTest

«satisfy»«satisfy»

 
Figure 24 Requirement template elements 

 
During the requirement modeling the suitable template will be instantiated by 
binding the parameters to the actual values. The single requirement element or 
the entire template for the domain problem can be initiated depending on the 
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actual need. Every template element has general parameters and optional 
parameters. Only necessary parameters can be bound.  
 
Table 1 Add-on stereotypes in MPT  

 
Requirement /Parent Parameters Description Constraint 
<<extendedReq>> 
<<requirement>> 
 

Weight 
Risk 
OptimizationDirection 
Source 
ConsistentStandard 
VerifyMethod 

Extended 
stereotype – 
The base for 
extended 
stereotypes. 

n/a 

<<functionalReq>> 
<<extendedReq>> 
 

n/a Platform basic 
functions – 
operations and 
behavior the 
system must 
perform. 

Must be 
bound with 
a testCase. 

<<performanceReq>> 
<<extendedReq>> 
 

KeyPerformance Measures 
quantitatively 
the extent to 
which a system 
satisfies a 
required 
capability.  

Satisfied 
by a value 
property 
and block 
constraint. 

<<structuralReq>> 
<<extendedReq>> 
 

KeyParameter Specifies the 
physical 
dimensions 
and 
characteristics 
of a system. 

Satisfied 
by the 
block 
element. 

<<safetyReq>> 
<<extendedReq>> 
 

n/a Specifies the 
safety 
conditions and 
standards the 
system must 
meet. 

Must be 
verified by 
the 
testCase 
specified 
with given 
standard. 

<<interfaceReq>> 
<<extendedReq>> 
 

ComSpeed Specifies 
interfaces 
between 
subsystems 
and/or 
environment. 

n/a 
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<<economicalReq>> 
<<extendedReq>> 
 

MaxCost Specifies the 
economical 
constraints for 
a system or 
sub-system. 

n/a 

<<environmentalReq>> 
<<extendedReq>> 
 

Emission 
WorkingTemp 
WorkingHumidity 

Environmental 
requirements. 

n/a 

<<navigationReq>> 
<<extendedReq>> 
 

n/a Specifies the 
platform 
navigation 
requirements. 

n/a 

<<locomotionReq>> 
<<extendedReq>> 
 

LocomotionType 
SpeedRange 
ObstacleSize 
Slope 

Locomotion 
requirements 
of mobile 
robot. 

n/a 

 
The requirement models are developed in cycles of interaction levels. Depending 
on the problem complexity and quality of the customer requirement list, the 
number of interaction levels can vary. The proposed model sets three standard 
interaction levels as a general guideline for mobile platform developer. 
 
Level  I Base diagrams, directly derived from the requirement list. Every 

requirement element is specified by id and text or link to full text in 
external documentation. The requirements are decomposed into 
sublevels as deep as specified in initial requirement list. 

Level  II Requirement elements are refined with additional parameters defined 
by the toolkit. Some parameters can be left blank or defined with a 
range of values. Main requirements are connected to the behavior and 
structural elements in Activity, State Machine or Block diagram. 

Level  III Every base requirement has a refined verification link with testCase 
specification. Initial simulation may be passed in this stage and 
corresponding requirement property assigned. 
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Table 2 Requirement templates in MPT 

 
Template 
type 

Template name Level Description 

Requirement req_general I General requirement hierarchy. 
System and sub-system 
generalization structure. 

 req_platform II Platform Structure. The main 
requirement of platform sub-
systems. 

 req_energy III Energy requirement specification. 
 req_locomotion III Locomotion requirement 

specification. 
 req_navigation III Navigation requirement 

specification. 
 req_payload III Payload requirement specification. 
Use Case uc_context I Context specification of given 

problem. System boundaries and 
external interaction. 

 
Described requirement templates are pre-defined in MPT enabling to start the 
conceptual modeling process quickly with initial models on the front. Although 
the profile defines the mobile robotic platform specific templates, some of them 
are more general (e.g. req_general, uc_context) and can be used across the 
systems, or some are universal for different mechatronics product (e.g. 
req_energy, req_navigation). A template system has an open architecture and 
every company or engineering team has possibility to build his own additional 
templates or even template libraries. 

3.3.2 Design model 

The conceptual design level is actually the first stage to start with the 
development of the desired system which should correspond in maximum and 
optimal way to the set of the requirements. The stage is tightly related to the 
previous one – the requirement modeling.  
 
Tools for modeling the system structure and component interactions are Block 

Definition diagram, Internal Block diagram and Parametric diagram. The static 
structure of the system is represented by the Block Definition diagram. The robot 
structure is represented as a component hierarchy or the system classification 
tree. In this case different relationships could be used. In the Principle library 
two different types of design element units can be found.  
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• A single block, representing a logical unit of a system. This is usually a 
physical component like a motor, an electronic device or a control 
algorithm. 

• Group of blocks, representing a logical model of a subsystem. This is 
usually a smaller unit of the system like a drive, an operator interface or 
an obstacle avoidance algorithm.  

The block element encapsulates parameters and operations that can be hidden in 
certain design level. The system behavior is described with Activity and/or State 

Machine and Sequence diagram. The particular behavior model corresponds to 
specific requirement element defined in requirement model. The model specifies 
the actual way how certain requirement is satisfied and how the system or 
subsystem behaves in different defined conditions. These conditions are either 
use scenarios defined by Use Case or environmental conditions. Environmental 
aspects are temperature, humidity, pollution, etc. which can be simulated when 
appropriate simulation algorithm is available in Algorithm Library and terrain 
conditions where behavior model can be linked with selected terrain profile from 
Terrain Library.  The Activity and State Machine will specify also the 
verification procedures and test cases to ensure the requirement satisfaction. 
 
The toolkit concept design extension specifies additional stereotypes derived 
from base stereotypes: <<Block>>, <<Actor>>, <<Action>>, <<State>> and 

<<Bindingconnector>>. The following figure shows the abstract syntax of 
extensions. 

«metaclass»
Block

«stereotype»
Energy

«stereotype»
Structure

«stereotype»
Converter

«stereotype»
Joint

«stereotype»
Obstruction

«stereotype»
Source

«stereotype»
Body

«stereotype»
Storage

«stereotype»
Link

«metaclass»
Bindingconnector

«stereotype»
Transformer

«stereotype»
Sensor

«stereotype»
Actuator

«stereotype»
Ground

«stereotype»
Structure

«stereotype»
Part

«stereotype»
Subsystem

 
Figure 25 Abstract syntax of structure design stereotype extensions 

 
It can be argued about the stereotype selection and definition but the stereotype 
derivation mechanism allows the designer to define new objects based on the 
metaclasses or toolkit stereotypes. Therefore the general approach is proposed 
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here which can be expanded according to the need of a particular case. When 
derivation mechanism is followed the new introduced block will be fully 
compatible with the existing software supporting the UML/SysML design. At 
the present moment (2007) MDG Technology for SysML (Sparx Systems), 
Rhapsody (Telelogic), SysML Toolkit (EmbeddedPlus), Artisan Studio (Artisan 
Software), TAU G2 (Telelogic) and MagicDraw (No Magic) have stated the 
support for SysML/UML modeling. 

«metaclass»
Actor

«stereotype»
Terrain

«stereotype»
Human

«stereotype»
Obstacle

«stereotype»
Driving

«stereotype»
Communicating

«stereotype»
Calculating

«metaclass»
Action

«metaclass»
State

Figure 26 Abstract syntax of behavior design stereotype extensions 

 
Table 3 Stereotype description 

 
Stereotype / Parent Parameters Description 
<<subsystem>> 
<<block>> 
 

n/a Designates the well bounded 
subsystem usually with well 
defined inputs and outputs. 
Mechanical assemblies can be 
defined as subsystems. 

<<part>> 
<<subsystem>> 
 

n/a The part stereotype is a general 
entity for physical parts. It can be 
used as a black box for undefined 
parts used in platform design. 

<<converter>> 
<<block>> 

Input 
Output 

General stereotype for different 
kinds of energy or movement 
converting elements. 

<<sensor>> 
<<converter>> 
 

Type 
 

Common sensor stereotype. 
Designates all components 
measuring some physical 
phenomena and outputting a 
signal. 

<<actuator>> 
<<converter>> 
 

Type 
ForceTorque 

All type of actuators: electrical 
motors, hydraulic, 
electromagnetic, etc. actuators. 
Converts energy from one 
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domain to other. 
<<transformer>> 
<<converter>> 

TransferCoefficient Designates converters which 
convert energy or movement in a 
same domain. For example 
transmission, electrical 
transformer, etc. 

<<structure>> 
<<block>> 

Dimension 
Material 
Mass 
GravityCenter 

General element for construction 
material, frames, joints, etc.  

<<body>> 
<<structure>> 

n/a Body construction elements. 
Rigid structure elements. 

<<joint>> 
<<structure>> 

Type Joints, e.g. rotational pairs, linear 
joints, etc. 

<<ground>> 
<<structure>> 

n/a General ground point. 

<<energy>> 
<<body>> 

n/a Energy elements of platform. 

<<storage>> 
<<energy>> 

n/a Energy storage elements, e.g. 
springs, capacitors. 

<<source>> 
<<energy>> 

n/a Energy sources, e.g. batteries, 
fuel cells, compulsion engine, 
etc. 

<<obstruction>> 
<<energy>> 

n/a Energy consumers, e.g. resistor, 
damper, etc. 

<<bindingconnector>> 
<<link>> 

flow 
effort 

Special connector for elements, 
used when flow and effort have 
to be transferred.  

<<terrain>> 
<<actor>> 

n/a Specific external user which may 
be linked to the Terrain Library. 

<<human>> 
<<actor>> 

n/a External user with specific 
interface, i.e. HMI. 

<<obstacle>> 
<<actor>> 

n/a External object which affects the 
platform capability. 

<<driving>> 
<<state>>,<<action>> 

n/a General activity or state 
reflecting the platform movement 
or driving commands. 

<<communicating>> 
<<state>>,<<action>> 

n/a General activity or state 
reflecting the platform 
communication procedure. 

<<calculating>> 
<<state>>,<<action>> 

n/a General activity or state 
reflecting the platform 
calculating needed parameters. 
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The MPT Diagram library incorporates template categories for concept design 
described in table 4. Diagram templates are divided logically according to 
SysML diagram types. 
 
Table 4 Design templates in Mobile Platform Toolkit 

 
Template type Template name Level Description 

Block 
definition 

bdd_general I General sub-system 
hierarchy. System and sub-
system generalization 
structure. 

 bdd_body II Chassis subsystem. 

 bdd_energy II Energy subsystem. 
 bdd _locomotion II Locomotion subsystem. 
 bdd_sensor II Sensor subsystem. 
 bdd_communication II Communication subsystem. 
Internal block ibd_system II Subsystem interaction (port 

types and flows) 
specification. 

 ibd_energy III Energy component 
interaction. 

 ibd_locomotion III Locomotion component 
interaction. 

 ibd_control III Control, sensor & 
communication component 
interaction. 

Activity act_system II Main functions. 
 act_autolocomotion III Automatic locomotion 

function. 
 act_pathplanning III Path planning function. 
 act_navigation III Navigation function. 
 act_obstacleavoidance III Obstacle avoidance 

function. 
 
The interaction levels are defined similarly to requirement level definition.  
Level  I System and subsystem hierarchy, subsystem general interactions are 

defined. The main functionality and system states are indicated.   
Level  II Subsystems are opened and defined in general ‘black box’ 

components. The parameters of subsystems are initiated. Subsystem 
inner activities are distinguished.  

Level  III Component parameters are defined and cross diagram relationships 
established. The allocation diagram can be used to define these 
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relations. System and subsystem behavior is opened as detail as 
needed. The parameters of model and component are defined 
according to selected simulation model need.  

3.3.3 Linking design and requirement templates 

In the product development process it is extremely important to follow the 
requirements during the whole development process. It is even more important 
in mechatronics domain and robotics, because the integration of classical 
domains sets much higher demands for the design solution in terms of system 
validation and assurance of desired properties. The verification and validation 
for a mechatronic system described in VDI2206 are relevant also for the 
conceptual stage, dealing with first analysis and simulation schemes to 
determine the best solution candidate.  
 
The SysML specification gives us good tools for linking requirements with 
design templates. Several relationships are specified for templates, enabling 
designer to relate requirements with model elements or with another 
requirement. Figure 27 describes by the example how a model element could 
satisfy a defined requirement. 
 

 

Text: Ref. Spec. 3.a
Id: 3.4
Risk: High
Weight: 0.8
OptimizationDir .: max
Source: CustomSpec
Standard: JAUS
VerifyMethod: TestCase3
MaxCost: 20%

«FunctionalReq»
LiftPower «subsystem»

JointDrive

«block»
Joint

«Activity »
«testCase»
TestCase3

«satisfy»

«verify»

«UseCase»
Lifting

«refine»

 
Figure 27 Linking requirements and design 

 
In this example JointDrive subsystem and Joint block are implemented to fulfill 
the functional requirement LiftPower. Model elements are represented here as 
black boxes and are linked to the block definition and the internal block 
diagram. The refine relationship is used to describe how the model element can 
be used to refine the text based requirement. In the figure the UseCase Lifting is 
a context diagram, where the system functionality and interactions with the 
environment are graphically presented. This gives additional knowledge about 
the requirement background and rationales. In terms of validation and 
verification the verify relationship is the most important connection between the 
requirement and the design model. The verify relationship describes how the test 
case verifies the requirement. Verification methods are available in the template 
library and can be bound with the particular requirement. The verification 
mechanism can be an abstract numerical algorithm or an executable simulation 
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model. In MPT the test case is defined as simulation models. For example 
performance simulation algorithm using external pre-defined Simulink model. 

3.3.4 Simulation model 

The simulation model is defined by the Constraint Blocks model or specific 
model element. The simulation model can be linked to the design candidate or 
the simulation model can be included to the design element through the simu 
stereotype. In case of the standard simulation procedure the appropriate model 
can be picked from the simulation Algorithm library. The specific relations 
between the system parameters exist and these are defined by the Parametric 
model. The idea is that parametric diagram defines the mathematics and 
constraints of a subsystem and based on this model it is possible to generate the 
Simulink block model, namely S-function. Later on the same Simulink model 
can be linked to component in bdd model. 
The MPT defines two additional parameter types: KeyConstraint & 
PerformanceConstraint. These stereotypes add to the Constraint Block 
parameters additional typed parameters – KeyParameters and 
KeyPerformanceParameters respectively. 
 

«stereotype»
ConstraintPropetry

«stereotype»
KeyConstraint

«stereotype»
PerformanceConstraint

«metaclass»
SysML:Blocks::
BlockProperty

«metaclass»
SysML:Blocks

«stereotype»
Simu

 
 
Figure 28 Parametric and simulation stereotypes 

 

Key parameters are the typed parameters which affect very strongly the system 
behavior. Key performance parameters are the most important performance 
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requirements which are requested by the customer and cannot be yielded. These 
parameters are also very important from the point of view of simulation.  
Simu stereotype has the following additional defined parameters: 

- InitParams 
- SimulinkModelRef 
- SimulinkCodeRef 
- SInputs 
- SOutputs  

 
The following figure illustrates the usage of the stereotypes and the parameter 
network. 
 
 

<<KeyConstraint>>
name 2:Equation

keyParameter:
param 1

keyParameter:
param 4

param 2

param 3

param 5

Id=1

«requirement»
req 1

Id=2

«requirement»
req 2

<<KeyConstraint>>
name 1:Equation

«satisfy»

«satisfy»

{ math. equation  }

 
 

Figure 29 Parameter interrelationships 

 
The constraint blocks are denoted here as Equation which describes the 
mathematical relations and connections between the parameters. This diagram is 
in most cases the source for generating (or selecting from library, if exists) the 
simulation model in target environment. The Simulink software is the most 
known and therefore the Toolkit implementation examples are oriented to this 
software package.  
 
For the model verification and the solution candidates comparison against each 
other, the system is divided into subsystems using subsystem metamodels. These 
subsystem metamodels can also be divided into component models. 
MatLab/Simulink simulation model has a hierarchical structure and each block 
can be flexibly composed from configurable sub-blocks. In order to execute the 
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simulation model, it has to be linked with the source model developed with 
Toolkit. The linkage is based on defining the relationships between the design 
model block and the simulation model component. The MPT defines a 
simulation stereotype <<simu>>. The simu is a stereotype of the block 
metaclass. It is possible to define a certain block as <<simu>> and link it with a 
pre-defined Simulink model. The stereotype and its usage are shown in figure 
30. 
 

«simu»
name

«ModelLibrary»
SimulationAlgorithm«apply» 

{strict}

«stereotype»
Block

 
 

Figure 30 Simu stereotype 
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3.4 Conclusions 

1. In this chapter the generic concept for early design process is proposed. The 
base methodology has been developed and denoted as Conceptual 
Framework Model (CFM). The concept features a semi-autonomous design 
concept generation, template libraries and initial simulation. The concept 
model itself is a general model with suggested methods and techniques. The 
real design process depends on the problem domain, complexity and several 
other aspects. The semi-automated design concept generation is described. 
The generated design model is mapped with Simulink pre-defined model 
and a scheme for utilizing other software tools (in case of available mapping 
interface) is proposed. 

2. Early stage design templates have been introduced as practical pre-defined 
design elements. Template libraries have been composed for requirement 
engineering and model design purpose. The template concept makes it 
possible to reuse the conceptual models and its elements bringing the 
advantage of reuse into mechatronics system conceptual design. The benefits 
include faster time to market, optimized design solutions and effective 
resource allocation. 

3. Based on the template concept and CFM, the domain specific Mobile 
Platform Toolkit (MPT) is developed. To fulfill the requirements described 
initially by the customer and modeled in the requirement engineering stage, 
the model and requirement mapping guidelines are described. According to 
the profile rules certain stereotypes demand certain design elements to 
satisfy or refine the particular requirement. These are described as extended 
stereotype constraints. Requirement element verification is ensured by the 
test case which is an activity or a state machine.  

4. The result of this chapter is a definition of the design framework, including 
the generic model and the template library. The toolkit for the mobile robot 
platform design is developed. As it is well known that a new technique is 
best acquired with the learning-by-example approach the implementation 
example should be discussed. The proposed early design concept and 
Mobile Platform Toolkit particularly is implemented in a real mobile 
platform design case and covered in detail in the next chapter. 
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4 IMPLEMENTATION PROCESS 

The developed methodology and tool are intended to help speed up the 
conceptual design process, improving the efficiency and productivity at the same 
time. The guideline is intended to summarize the methodological approach 
described in the previous chapters and the implementation example is a practical 
case study for designing a mobile robotic platform.  
 
When starting to design a new mechatronic product according to the proposed 
methodology the following main steps must be passed: 
• Requirement analysis and model development 

o Requirement list creation (jointly with customer) 
o Requirement feasibility analysis and decomposition 
o Requirement model development – supported by requirement 

templates found in MPT Template library 
• Initial concept solution development according to requirement model. When 

automated design candidate generation is intended to use (according to GP 
concept described in chapter 3.1) the initial model has to be developed in 
bond graph technique. In case of manual design SysML and extensions 
should be used. In both cases more than one solution candidate should be 
developed for a given problem. 

• Developed solution candidates will be initially evaluated against 
requirements and appropriate constraints and limits are set, if necessary. 
Design candidates are improved by the automated GP algorithm or manually 
by the engineering team. 

• When mature enough rational candidates will be selected appropriate 
Parametric diagrams should be developed describing the system dynamics 
and mathematical relations of the system parameters. 

• A design candidate model will be connected with a simulation model picked 
from Algorithm library or developed for this special case. Simulation is 
either carried out for a specific model element (e.g. process controller) or for 
the whole model (e.g. performance simulation) finding the optimal 
component parameters and combination. 

• After the concurrent design candidate simulation the optimum solution is 
selected and refined if necessary. 

• A refined design candidate is the conceptual solution which is passed to the 
product detail stage. Based on this concept all functions and components 
will be implemented. 

 
Although the steps are described here as a sequence, the real process is 
integrated in relation between sub-stages and developers. Solutions and 
functions have to be directly derived from the requirements and assured. 
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The implementation process is a case study of the developed methodology.  The 
task is to demonstrate the use of the Mobile Platform Toolkit in real design 
process. The practical realization of the profile is targeted for two different 
systems. It is demonstrated, based on the analysis of the existing platform and on 
the synthesis of a new design. The practical examples are dealt with concurrently 
and appropriate explanations are provided.  
 
The analytical case study is based on the Hybritor platform and Workpartner 
application developed in Automation Technology Laboratory of Helsinki 
University of Technology during 1998-2006. The Hybritor platform has four 
legs equipped with wheels and active body joints. Each leg has three actively 
controlled joints and a wheel actuator. The platform has a modular structure and 
unified communication interfaces [HLSYK03]. Hybritor is a base platform for 
mobile service robot called Workpartner. Workpartner is a high adaptive service 
robot for outdoor tasks. The platform is equipped with two-hand human like 
manipulator, which can be used for manipulations and handling tools. The 
subsystems of Workpartner are divided according to generic functions 
[Ylönen06]: 

• Locomotion subsystem 
• Manipulator 
• Energy subsystem 
• Navigation and perception subsystem 
• Control subsystem 
• Human-machine interface 

The Hybritor platform is shown in figure 31 and Workpartner project 
information can be found on public website: 
http://www.automation.hut.fi/IMSRI/workpartner/ 
 

 
 

Figure 31 Hybritor platform [HLSYK03] 
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The similar mobile robot platform is under development in Tallinn University of 
Technology, Department of Mechatronics. The platform is called UGV 
(Unmanned Ground Vehicle) for demining purpose. The development process 
started in 2005 concurrently with the thesis design framework and Mobile 
Platform Toolkit development process. The platform is equipped with 
independently actuated legs and wheels. The platform has a modular structure 
where the modules can be easily removed or replaced when needed. UGV can 
provide different functionality depending on the equipped module. Standard 
service module is the manipulator module and additional modules can be NBC 
detection, surveillance, cutting tool, etc. The vehicle has the following modules 
and subsystems: 

• Energy subsystem 
• Locomotion subsystem 
• Track subsystem 
• Control subsystem 
• Vision subsystem 
• Manipulator subsystem 
• Communication subsystem 

 
The early prototype of UGV design is shown in figure 32. 
 

 
 
Figure 32 UGV platform 

 
There are several other mobile robot platforms in the world and they are actively 
developed for many areas. The most advanced results are in the military section. 
The well know solutions are iRobot PackBot [iRobot], Foster-Miller Talon 
[Talon], RHex [SBK01] and others. However there is no unified platform for 



 78

new mobile robotics. Most of the solutions are developed from zero and the 
engineering design data are unavailable for public. The Mobile Platform Toolkit 
developed in this thesis is trying to offer an open unified platform development 
solution. The example diagrams based on the real systems are presented in the 
following as a guideline for using this toolkit. 

4.1 Requirements modeling 

Requirement engineering starts in most cases when receiving the initial system 
specification from customer. On the other hand some (robotic) projects can start 
without external customer and are driven from research interest or new 
technology interest. This is usually the case in academic institutions or research 
institutes where the robotic platform is needed to study different robotic modules 
like control algorithms, navigation algorithms, manipulator subsystem, etc. In 
this case the requirement list has to be defined before the development process 
can start. The practical difference between these two cases are usually the 
requirement flexibility where the research project requirement can be changed 
more easily during the development than in the case of the industrial application. 
Although the requirements can change (and usually some change takes always 
place) the requirement modeling should support to track these changes and point 
out the affected side systems. Therefore the requirement model must be created 
with great care. 
 
The initial requirement model is decomposed in Level I according to MPT. On 
the first cycle the decomposed requirements are opened in separate diagrams and 
linked with the requirement list by the ID.  

Id=1

«requirement»
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Id=3.q

«environmentalReq»
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Id=3.d.1

«structuralReq»
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Id=3.c

«energyReq»
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Id=3

«functionalReq»
Locomotion

Id=3.g

«functionalReq»
Holes

Id=3.w

«structuralReq»
Platform

Id=3.y

«structuralReq»
Payload

Id=7.f

«interfaceReq»
ControlMode

Id=7.x

«interfaceReq»
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Id=7

«interfaceReq»
OperatorUI

Id=3.k

«energyReq»
Charging

Id=3.m

«structuralReq»
Replacement

Id=3.e

«functionalReq»
Obstacles

Id=3.b

«functionalReq»
Wheeled

Id=3.c

«functionalReq»
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Id=3.d

«performanceReq»
Speed

<<comment>>
Payload might be 
bigger if extreme 
condition is not 
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req UGV

Id=3.f

«functionalReq»
Stairs

 
Figure 33 General requirement decomposition of UGV (a fragment) 

 



 79

Defining the general requirement decomposition the req_general template 
diagram from library is used. Suitable requirement elements are selected and 
imported to the model by binding element parameters i.e. ID, with actual values. 
Appropriate relationships and types are imported automatically. The requirement 
model is connected with the requirement list by the ID parameter. It is possible 
to include the particular requirement text into the requirement element by the 
parameter Text, but usually the text document is longer than a single sentence 
and including all text in a model element would make the model less 
comprehensive. The requirement diagram text explanation defined on figure 33 
is shown in figure 34. When needed, the text can include figures, schematics or 
other graphical elements.  
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table Requrement list

 
 
 
 

ID Name Text 

1 UGV The UGV is the base platform for demining robot 
3 Locomotion The platform is equipped with two different 

locomotion types: wheels and track. Both types 
should be operated separately. The passableness 
is determined by Bekker’s method [Bekker60]. 

3.b Wheeled The platform is equipped with electrical brushless 
DC motors, enabling turning around on the spot.  

3.c Tracks The platform should be equipped with removable 
tracks to improve the off-road capabilities and 
climbing up stairs. 

3.d.1 Weight Maximum total weight of robot is 300 kg.  
3.e Obstacles The platform is able to overpass the obstacles 

with maximum height 40 cm. 
3.f Stairs The platform is able to climb up and down the 

stairs with an ascent angle 40 deg with maximum 
robot weight. The mass center must not change 
significantly.  

3.g Holes The platform is able to pass deep holes with 
maximum width 30 cm. 

3.d Speed Constant speed, at least 5 km/h, is guaranteed on 
smooth and parallel slopes (max 20 deg) with 
maximum robot weight. 

3.c Battery The platform is equipped with battery enabling to 
work at least 1 hour in normal environmental 
condition (outside temp. 24 deg). 

3.k Charging The charging is assured by 220V/50Hz, 110V/60 
Hz and 12/24 V DC main supplies. 

3.m Replacement The main batteries have to be replaced without 
interrupting the control and communication 
module. 

3.q Temperature The working temperature is -15 deg …. + 50 deg. 
In working temperature below -10 deg the 
working time can be reduced 40%. 

…… ……. …………. 
 
 

 

Figure 34 Requirement list 
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In the requirement engineering stage the context and relationships with the 
environment have to be specified. Here it is possible to use either the Block 

Definition diagram or the Use Case diagram. According to the profile 
specification the Use Case is shown as an example, see figure 35. Use Case in 
SysML language is directly derived from UML 2.0 without any modification. 
There are quite few elements and therefore it is easy to understand. The system 
is outlined with the system boundary line and outside the system different so-
called actors are presented. The user of the system can be a person, other system 
or an environmental item. The system itself provides certain services and 
interacts with external users. The example describes the overall context of the 
mobile robotic platform - UGV. 
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Figure 35 System context 

 
After the first level system context definition and requirement specification, 
every subsystem requirements have to be opened in more detail. Level II 
embraces the subsystem details as described in level description in chapter 3.3.1. 
The following diagram shows a subsystem requirement model at level II. The 
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subsystem Energy is decomposed and parameterized with toolkit parameters. 
Generic design elements are connected with the requirement element to show the 
satisfaction and verification relationship of a particular element. The example is 
based on Workpartner case where two different energy sources are used. The 
energy system includes a lightweight compulsion engine and series connected 
batteries. In addition the computer control is included to the energy system to 
obtain maximum efficiency. Control software starts and stops the compulsion 
engine to recharge the batteries according to efficiency [Ylönen06]. The energy 
requirement model is shown in figure 36. 
 

Text=”Vehicle has to 
have dual power system”
Id=1

«energyRequirement»
PowerSupply

Text=”48V 
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be used”
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Id=1.1

«requirement»
CombustionEngine

Text=”20min in 20A”
Id=1.2.1

«requirement»
ContinuousCurrent

Text=”100A for 10s”
Id=1.2.2

«requirement»
PeakCurrent

«testCase»
ChargingTest

«verify»

«testCase»
NormalRun

«testCase»
MaxLoadRun

«verify»

«verify»

req Energy Subsystem

«testCase»
DriveHomeTest
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Figure 36 Requirement model for Power subsystem 

 
The outcome of the requirement engineering cycle is a set of models, describing 
the requirement structure and needed design elements to satisfy or verify the 
particular requirement. The model may be refined during the concept generation 
stage in case new aspects arise. However the changes must be documented and 
carefully dealt with. When changing the requirement all connected elements 
(design blocks and activities) have to be rechecked as well to assure the 
consistency of the whole system. In case of software support for toolkit the 
conflicting relationships can be detected automatically. The rule check algorithm 
validates the design model and requirement model according to profile 
specification. 
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4.2 Static structure and component interaction 

The component decomposition and relationship definition is the first actual 
system modeling step. Some of the components can be directly derived from the 
requirement model, whereas some components or subsystems will join to one 
and some diverge. The general subsystem decomposing is similar to general 
requirement model. The next step is to decompose the subsystem into functional 
blocks. In figure 37 the energy supply subsystem of Workpartner is shown. 
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Figure 37 Energy supply subsystem of a Workpartner 

 
Here only the name of the block is represented and dealt as a black box 
approach. Some blocks are generally one-to-one understood like Battery, some 
can be realized in very different way, e.g. Gripper, ControlUnit, Manipulator, 
etc. The actual design and parametric model of a particular block will be 
developed in the next design stage. While the bdd diagram describes the 
component hierarchy, the ibd diagram defines the component interaction. Ports 
and flows are defined enabling the interaction between the components across 
the system.  
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pcu:PowerControlUnit

vc:VoltageCompensator eg:EngineGenerator

bp:BatteryPack

ibd [block] PowerSubsystem

cd:ChargeDevice

dc24:DCConverter24

dc12:DCConverter12
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v1:voltage
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d:runData

d:runCmd

 
Figure 38 Power subsystem interaction 

  
Here the dual power system is described (figure 38). Components have different 
port types, i.e. AtomicPort, non-AtomicPort and flow directions. AtomicPorts are 
single usage of a block while the non-AtomicPort is a multiple usage of a port. 
In case of non-AtomicPort the flow specification must be specified. The 
previous example corresponds to the Workpartner analytical diagram. The 
power subsystem involves the main components EngineGenerator, BatteryPack 
and PowerControlUnit. Other outlined components are converters, sensors and 
accessories. Components are connected through the ports that can be in this case 
of two different types. For example, a fuel flowing from FuelTank to 
EngineGenerator. Both blocks have an atomic port p and ff respectively. 
Another possible port type is non-atomic port. A non-atomic flow port relays 
items of several types specified by a FlowSpecification. In this example a port d 
of PowerControlUnit and EngineGenerator is a non-atomic port. The 
specification of this is shown in figure 39. 
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bdd protocol Flowspecification

flowProperties
out command: ModBusRUN

«flowSpecification»
runCmd

flowProperties
in engineState: Boolean
in generatorVoltage: Real

«flowSpecification»
runData

 
 
Figure 39 Flow specification for a non-atomic port 

 
All subsystems are modeled in a similar way to the presented power subsystem 
model. Later on the integrity of a component model is examined and different 
models are cross-mapped using the Allocation diagram. Allocations are often 
used in early design as a precursor to a more detailed rigorous specification and 
implementation.  

4.3 Behavior modeling 

Behavior modeling describes the behavior of the system through the Activity, 
State Machine, Sequence and Use Case diagrams. With activity we can specify 
the actions and their input/output sequences. Continuous and discrete flows, 
such as material, energy or information flows can be specified by Rate 
stereotype.  
The general behavior and system services are described with the Use Case 
diagram. The Use Case is a simple and trivial representation of system usages 
and users. Nevertheless it is necessary to represent visually the main services of 
a system and connections between them. The simple and human friendly 
representation is useful when explaining the further system to the non-technical 
persons. They can be different stakeholders like customer, market-analyzers, 
financers, etc.  Presenting the system overview and context in this way enables 
us to ensure that developers and non-technical stakeholders understand the 
design problem and proposed concept in the same way. The templates 
uc_context in the early stage and uc_system in behavior design can be used for 
this purpose. Figure 40 shows the main services of a system and its boundary as 
well as external “actors”. 
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Figure 40 General services of the system 

 
System activity is more specific and models the system or subsystem actions. 
The common activity of the system is specified with template act_general 

showing the high level action sequence. According to SysML specification, 
there are several types of elements, like Action, Events, Signal, TimeEvent and 
so on. The Toolkit specifies additional stereotypes described in the previous 
chapter. Based on this model the main process will be implemented either in the 
hardware or in the software. Operational inputs as well as main sensor signal are 
connected to the certain action. The following figure is a general activity 
diagram based on the Workpartner mobile robot. 
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Figure 41 General activity diagram of Workpartner 

 
Implementation of this activity is described as follows: 
When the system is turned on, the initial selftest action is carried out. All 
subsystems will run appropriate tests shown here as one black box activity. With 
the tests done, the next action follows. The system has two different operation 
modes and selection will be made by the operator. If the operator selects remote 
teleoperation guidance the additional communication test will be executed. If no 
error results the general black box activity Move is reached. The Move activity 
holds in this stage all operational and functional activities of the platform. In 
addition to commands from the operator, the actual measurements are 
performed. Sensors measurements are inputs for control logic to calculate the 
locomotion parameters in order to select a right locomotion type and save the 
energy. The whole system operation will be interrupted when either the 
emergency stop is pressed or a fatal system error occurs during operation. The 
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normal shutdown is realized by power off signal. As it is seen, the actual activity 
of the subsystem is not represented in this diagram. The act_general template is 
used for describing the system behavioral concept. The next logical step is to 
open basic functions and describe the certain functionality of subsystems. For 
example the Workpartner has three locomotion types: ordinary rolling, walking 
and rolking. Rolking is a special hybrid locomotion type combining the rolling 
and walking on the same time where leg joints and wheels are generating the 
propulsive force simultaneously [HLSY00]. The next diagram opens one 
subsystem and shows the activity model of rolking locomotion mode.  
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Figure 42 Activity diagram of rolking mode 
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Activity represented in this diagram is implemented on the Workpartner robot. 
Workpartner has a special feature that enables us to select the locomotion type 
automatically. The selection bases on the energy efficiency and terrain 
estimation, which can be pre-simulated using terrain library and the 
corresponding simulation model. The goal is to minimize the energy 
consumption without loosing considerably the speed and performance. Here the 
energy consumption is a key parameter which will be optimized. The automatic 
locomotion selection is modeled in state machine diagram. The state machine 
represents the system discrete behavior and through finite state transitions. The 
activities are invoked during the transitions which are entry and exit of state. The 
execution of activities is specified by guard conditions. The transitions between 
the states can be continuous or discrete. In addition the composite state can be 
used to nest the states in sequence or parallel action. Using the State Machine 
and Activity diagram for behavior modeling is not very strictly defined. The 
discussion about this is found in chapter 2. Having considered these different 
approaches discussed in chapter 2.2 the Toolkit specifies his own approach 
based on previous ones. In general the State Machine is treated as a higher level 
system states. Every state is specified with the specific Activity diagram 
describing the inner structure of a given state. The concept is similar to hybrid 
system modeling where the discrete states consist of continuous process inside. 
Nevertheless depending on the characteristics of a particular system and 
problem, opposite approach can be successfully applied (as discussed in chapter 
2.2). The example given in figure 42 is a decomposed action with guard 
condition represented by State Machine. The further decomposition can be 
implemented again with Activity diagrams where every state has its own 
diagram. The reason of dictating the diagram usage is to give a concrete 
guideline for engineers who want to have practical guides but not many open 
options. However the previously described approaches are not precluded and can 
be successfully used by experienced engineers. The corresponding State 

Machine diagram is shown in figure 43. This is the detail state model describing 
the behavior when the autonomous regime is selected. 
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Figure 43 State machine diagram 

 
In addition to State Machine and Activity, the behavior can be modeled with the 
Sequence diagram. This type of diagram is often used in software modeling and 
suits well for embedded control algorithm modeling in a robotic platform. A 
sequence diagram describes the flow and control between actors and system 
blocks. Sending and receiving messages between lifelines are represented 
according to timeline shown on the vertical axis. The Sequence diagram, shown 
in figure 44 enables modeling of timing and component allocation. In figure 44 
the automatic charging system is modeled. Based on this model power control 
algorithm can be later analyzed and implemented. 
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BatterySensor

<<block>>
Generator

<<block>>
Actuator

Turn on

measureBattery

measurement

run actuators

Start generator

actuator
control

Stop generator

stop actuators
stop running

 
Figure 44 Sequence diagram 

 
The described model is used to represent the behavior of general system and its 
subsystems in a different level and situations. In conceptual design several 
parallel models might be developed for a single situation. Allocating the 
activities with a system static structure (i.e. blocks) pros and cons of particular 
model can be easily determined and analyzed. On the next design stage behavior 
models are used to generate process control algorithms either in hardware or 
software. When appropriate tools are available some software creation process in 
controller design can be automated. The high level behavior diagrams are more 
general and cannot be directly used for automated design. However they are 
important to understand the system behavior and assure the fulfillment of the 
requirements. 

4.4 Parametric modeling 

The real-world systems are in most cases non-linear and therefore it is important 
to have tools for early stage simulations where even the system dynamic model 
is not yet fully defined.  The early stage system parameter relations are modeled 
by the Parametric diagram. It shows how one value of the structural property 
affects the other value. Parametric constraints are tightly connected with the 
system structure and are used in combination with Block diagrams. Two new 
stereotypes are introduced by the MBT which determine the key parameters of a 
system. The key parameters are the main input for system analysis and 
simulation. Different conceptual solutions are described by Parametric diagram 
and will be executed in simulation environment. The simulation results are used 
for design improvement. For example, this is used for performance and 
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reliability analysis as well as for meeting all requirements specified by the 
Requirement diagram.  
The Parametric diagram of UGV performance is taken as an example. 

w:TotalWeightpl:PayloadEq

VehicleWeightBatteryWeightPayloadCapacity

df:AirDragForce
Eq

CargoWeight

rf:RollingFriction

FrictionCoefficient

dyn:VehicleDynamics

RoadIncline

ee:EnergyConsumption
Eq

VehiclePosition

ManipulatorWeight

par UGV basic dynamics

<<keyconstraint>>
TotalWeight

<<performanceconstraint>>
Torque

BatteryCapacity

Workload

 
Figure 45 Parametric diagram of UGV 
 
In figure 45 it is seen that TotalWeight is denoted as a keyconstraint. This 
indicates that the subsystem should be optimized according to this parameter. 
The total weight of UGV is derived from requirements and affects the overall 
vehicle performance as well as many other parameters. From the performance 
point of view the output torque is another key parameter which needs to meet the 
appropriate requirement. The optimum relation between the needed torque and 
maximum allowed weight is searched without compromising the required 
functionality. The mathematical relations between parameters are denoted by the 
rounded rectangle with defined ports. Parameters and links with other functions 
are connected through these ports. In this example the mathematical equations 
are not shown but can be described by a comment object when needed. An 
example of this mechanism is shown in figure 47.  

4.5 Simulation modeling 

Simulation is usually exploited at a later design stage where the system model is 
relatively precisely defined. To get the maximum benefit, the proposed design 
framework includes simulation in the conceptual design stage. Simulation 
principles are generally defined in chapter 3. According to these principles and 
toolkit extension described in chapter 3.3.4 the following two options are 
presented: 
The model (structure and behavior) consists of a special block element 
stereotyped as simu. An example is shown in figure 46 where simu block is a 
control algorithm of robot, controlling the leg and wheel motors according to 
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terrain changes. The ControlFPGA block is a link to the simulation model. 
Simulating the control algorithm, the engineering team gets feedback on critical 
component parameters required to fulfill the initial requirements, or simulating 
different algorithm candidates determining the system feedback. 
 
The following example shows the ibd containing simu element. 
 

«actuator»
Wheel

«driver»
Amplifier

«simu»
ControlFPGA

parameters

type:analogous

«sensor»
JointPos

parameters

type:digital

«sensor»
EncoderEC

«driver»
Amplifier

«actuator»
Joint

ibd LocomotionControlSimulation

<<terrain>>

«ModelLibrary»
Terrain

«apply» {strict}

«ModelLibrary»
SimulationAlgorithm

«apply» {strict}

 
Figure 46 Locomotion Control including simulation blocks 

 
Another simulation link defined by MPT is a parametric diagram connection to 
Simulink model. The parametric diagram defines the mathematics and 
constraints of a subsystem. Based on this model Simulink block diagram is 
generated. Later on the same a Simulink model can be linked to a component in 
bdd model as described above. An example of corresponding parametric model 
is shown in figure 47.  
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TotalInclineEq

Θ:PlatformIncline

β:TorsionOffset

StaticBalanceEq

l:PlatformWidth

par UGV static balance

<<performanceconstraint>>
α0:LegAngle

<<performanceconstraint>>
CGHeight

r:WheelRadius

<<keyconstraint>>
φ:CriticalBalanceAngle

{ φ=(arctan(l/2/(lj*cos (π*α/180)+r)*180))/π  }

{ α= Θ+β+α0 }

Legged solution 
boundary

 
Figure 47 Balance condition in incline situation of platform 

 
The diagram shown in figure 47 is a source for Simulink model shown in figure 
49.  
The parametric model defines the balance conditions of a mobile platform. Here 
two concurrent design candidates are compared. The principal concepts are 
shown in figure 48. A design candidate is linked with the simulation model and 
simulation results are compared with appropriate requirement. Simulation is 
executed in various terrain conditions. 
 

CG

Concept #1

CG

Concept #2

 
Figure 48 Two conceptual design candidates  

 
The following static balance condition formula is used for a legged platform 
(design candidate #1): 
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  (4.1) 

where: 
 
α – the controlled leg angle 
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l – platform width 
ll – leg length 
r – wheel radius 
 
Balance condition for a conventional platform (design candidate #2) is described 
with following formula: 
 

π
ϕ

180
5,0
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







+
⋅

=
rl

l

i
    (4.2) 

 
where: 
 
li – wheel axe shift 
 
The Simulink model has a S-function which is generated from Parametric 
diagram shown in figure 47. Different design candidates can share the same S-
function or have the specific S-function depending on the solution configuration. 
Terrain and simulation parameter inputs are the same in single simulation 
enabling comparable results generation. 
 
These simple examples are for description purpose. Contact properties, 
dynamical forces and movement parameters are excluded due to the space 
limitation.  
 

 
Figure 49 Balance simulation model  

 
The example shown in figure 49 has two structural concepts of the mobile 
platform simulated against incline requirement. The requirement specifies 
critical balance angle which is the key constraint of this simulation.  
 
The solution candidate selection is carried out by comparing the different 
simulation results and linking the results with the requirement model. Traditional 
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analytical and evaluation methods can be utilized to select the best machining 
solution.  
 
The above examples show how to implement the initial simulations in the 
conceptual design procedure. Compared with the detail design stage, the 
conceptual design has much bigger design freedom but also lacks precisely 
defined system parameters. This characteristic is the same in simulations which 
give big freedom to implement a simulation model but lack the simulation 
parameters at the same time. It might be necessary to estimate some unknown 
parameters in initial simulations. Nevertheless the main target is to compare the 
design candidates and see the difference in certain conditions rather than to get 
the precise behavior of a further system. This aim enables us to unify some 
common simulation parameters which were not known the beginning. 
 
Solution candidate selection is usually affected by many aspects. The selected 
solution should best match the requirement criteria as well as meet other relevant 
aspects. The simulation result is definitely one of the essential factors and these 
results can be interpreted by the engineering team to support the selection 
decision or improve the concept.  
 

4.6 Conclusion 

1. In this chapter the implementation process based on two real examples is 
described. The design methodology framework has been implemented in 
real design and two different design cases are involved to illustrate the 
analysis and synthesis of a mechatronic system. The implementation is a 
practical example of using Mobile Platform Toolkit developed in the frame 
of this thesis. The toolkit definition has been explained in the previous 
chapter in detail.  

2. The chapter has a logical subchapter sequence corresponding to design 
process described in chapter 3. To illustrate several aspects of conceptual 
modeling with a developed toolkit real system examples are presented. The 
examples are analytical model fragments of the mobile platform 
Workpartner, developed in Automation and System Technology Laboratory 
of Helsinki University of Technology, and design model fragments of 
Unmanned Ground Vehicle – UGV, currently under the development in 
Department of Mechatronics Tallinn University of Technology. The covered 
early design stages are requirement engineering, model development and 
initial simulation. Diagrams are often compiled for power or locomotion 
subsystems as these are the most important in mobile platform design. 
Vehicle dynamics and control algorithms are partly covered in the 
simulation behavior sections. 
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3. In addition the chapter is intended for use as a design guideline of using 
developed Toolkit. The practical examples are covering the toolkit specific 
stereotypes as well as templates from the template library. The templates are 
intended to simplify technical issues of developing models. Pre-defined 
templates are developed based on the existing systems and include most 
common subsystems and parts. In case of using templates it helps to keep 
track of all the essential parts of the platform design without forgetting any 
important aspects. At the same time the creativity and novelty of developing 
a new solution is not prevented as templates are open and only relevant parts 
of the particular template have to be imported to the design. Nevertheless the 
connections and other relations are imported automatically without losing 
the consistency of the system.   

4. Although two real cases are described the full development process is hardly 
covered. In a real design process all subsystems must be fully modeled and 
more than one design candidate developed and simulated. Including all 
diagrams and design documents into thesis is not rational due to the huge 
amount of space and detailed technical documentation of the particular 
system. 
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5 CONCLUSIONS AND FUTURE WORK 

For conclusions the following aspects are considered: novel findings and 
developments of the present work, practical implementation and application 
example, further development of the research. Two main aims of this research 
are to develop and propose a base framework for conceptual design of a 
mechatronic system; utilizing recent developments and techniques to develop a 
practical tool for advanced conceptual design. 
 
The primary theoretical result is a model based mechatronics system 
development methodology framework for conceptual design stage.  
 
The following conclusions are reached and novel aspects introduced in the thesis 

1. Through the analysis of different product design approaches the adopted 
general design sequence is composed. In different sources the design 
stages of product development process are described conformably, 
varying mostly in names and boundaries. The composed design stage 
tree is a unified approach from analyzed solutions with the mechatronics 
specific additions. The integration stage has been separated from general 
system design and a stronger emphasis has been placed on requirement 
and concept connection. This modified design process reflects better the 
mechatronics design nature and emphasizes the early stage. 

 
2. A main result – mechatronics conceptual design framework denoted as 

Conceptual Framework Model (CFM) is the base ideology of this thesis. 
The framework relies on the VDI2206 V-macromodel methodology 
whereof the concept is adopted for conceptual design. New sub-stages 
are defined and linked with each other for verification and refinement of 
a model. A newly developed System Modeling Language has been 
selected as a modeling tool which is expanded by the application 
specific profile. The concept features a semi-autonomous design 
solution generation, template libraries and initial simulation model. In 
the state-of-art situation analysis relevant research works of design 
process supported by artificial intelligence methods are investigated. 
The advantages and disadvantages of the techniques are shown and 
based on that genetic programming concept for the semi-automated 
design solution generation is selected. The selected technology is 
utilized in this framework as a practical tool for the concept generation 
automation. 

 
3. Based on the proposed framework a practical tool derived from the 

System Modeling Language is developed as a language profile. This is 
done by using profile inheritance mechanism built in to SysML and 
UML. Application toolkit development principles are introduced and 
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design pattern libraries proposed. The design patterns are denoted in this 
thesis as design template and are divided into several categories. It is 
shown that using pre-developed design templates can improve the 
conceptual design significantly. As an application example the mobile 
robotic platform domain is selected for implementation of the developed 
methodology. A partial reason for this selection is recent developments 
in robotic industry and corresponding international network 
establishments in the last years. The practical need for a systematic 
approach to the mobile robot design in TUT where several medium-size 
mobile robotic projects have been introduced has been an important 
factor. 

 
The main practical result of the present work is the Mobile Platform Toolkit 
(MPT) for robotic application design. The toolkit has been implemented and 
corresponding libraries are developed which are not fully included in the thesis 
due to the space limitation. Some practical examples are presented in the 
implementation chapter.  
 
The following outcomes based on the practical results can be formulated: 

1. The main practical result of the thesis is a Mobile Platform Toolkit 
(MPT) based on the theoretical research. The MPT is an application 
specific toolkit for the conceptual design stage. The toolkit includes the 
requirement modeling as well as structure and behavior modeling 
instruments. The toolkit is derived from SysML and is fully applicable 
in SysML compatible software environments, hence it can be 
implemented without creating a specific software environment. 

 
2. A practical implementation of the developed methodology is 

summarized in short and an explicit guideline is presented. The 
guideline describes the conceptual design sequence according to the 
developed methodology and explains the available option in a current 
stage. 

 
3. The implementation process has two parallel applications at different 

design stages. Some examples are modeled based on the existing system 
showing the connections between the real system and model diagrams. 
The selected system is Hybritor platform of Workpartner project 
developed in Helsinki University of Technology, Department of 
Automation and System Technology. The examples show the subsystem 
structure and behavior models. The second application is a similar 
robotic platform which is under development in the Department of 
Mechatronics, Tallinn University of Technology. During the work 
several concepts are tested in the real design process. The requirement 
analysis is one of the examples described in the implementation chapter. 
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The whole thesis is organized as a design background analysis, theoretical 
implementation of a novel conceptual design and a practical application for 
specific domain compounding the whole concept into one consistent unit. The 
thesis and research is supported by continuous presentations at international 
mechatronics conferences. 
 
The author has published more than 15 pre-reviewed international publications 
on subjects related to this thesis. Some of them are indexed in the international 
databases, including ISI Web of Proceedings. 
 
The work results are reported during the thesis compilation in several series of 
conferences: REM (Research and Education on Mechatronics), DAAAM 
(Danube Adrian Association for Automation & Manufacture), EPE-PEMC 
(European Power Electronics - Power Electronics and Motion Control), ICOM 
(International Conference of Mechatronics) and OST (Oulu-Stockholm-Tallinn). 
Pending conference presentation is IEEE/ASME - International Conference on 
Advanced Intelligent Mechatronics in ETH Zürich, Switzerland. 
 
The developed conceptual design methodology is partly exploited in the 
Unmanned Ground Vehicle development process in the Department of 
Mechatronics, Tallinn University of Technology. 
 
During the conceptual framework development for a mechatronic system, the 
dynamic wheg (hybrid wheel-leg) was invented with the support of the 
developed methodology. The invention is a unique application for mobile robot 
platform. Patent application has been composed and registered in Estonian 
Patent Office with registration number P200700027 on 01.06.2007. 
 
Finally the research goals of the thesis have been completed successfully. The 
novelty and actuality have been continuously presented and discussed in oral 
presentations at international conferences as well as in pre-reviewed 
publications. 
 
Future research is an important aspect and has to consider the following aspects: 
 
Semi-automated algorithm improvement and integration with SysML 

concept 
The algorithm proposed in chapter 3, developed by the GARAGe group has been 
tested in a lab environment and with non-complex problems. In real design the 
improvement of this algorithm is needed. However, the concurrent method may 
be introduced for semi-automated conceptual solution generation based on the 
artificial intelligence method. A joint continuous research is planned in 
conceptual design automation already. 
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Integration of conceptual design approaches 

Several researches are currently active in universities around Europe. The 
integration of the approaches is important to have bigger coverage of application 
domains as well as techniques and interfaces between them. 
 

Software development for integrated design environment 

Today’s product design can not be imagined without the support of software. 
Many platforms and packages are available for several years already but some 
are very recent. Developed conceptual design framework must be integrated 
with design environments by creating application toolboxes as described in 
chapter 3.3. On the other, hand simulation software integration is also needed to 
simulate created concepts. The main target simulation software would be 
Matlab/Simulink, LabView and Dymola. The important issue is also to specify 
in more detail the model exchange interfaces. The suggested standards here are 
XML/XMI and AP233 specifications. 
 

Library enhancement and new application specific toolkit development 
In this thesis an application example described in more detail is a mobile robotic 
platform. Based on this example many other toolkits should be developed 
according to the need. It is suggested that wherever possible the toolkits would 
be freely available for download. A central database may be created for design 
templates and toolkits. 
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ABSTRACT 
The aim of the doctoral thesis is to develop a mechatronics design methodology 
focused on the early design stage. The motivation is a drastic growth of the 
mechatronic and robotic sector and practical needs in Tallinn University of 
Technology as well as other technical institutions.  
 
The practical need is directly related with robotic application. Robotics is one of 
the key technologies of the near future. Robots have been available for a long 
period already but only in specific environments and factories. In very recent 
years several authorities in robotic sector have discussed robotic revolution 
especially in service and mobile robotics. First examples can be seen already 
where home robotic applications have grown very popular. The biggest mobile 
robotics evolution is taking place in the military and rescue sector. Many new 
projects are running and several unmanned ground vehicle type mobile robots 
have been brought to the market.  
 
The drastic growth of robotics sets new demands for the development process. 
Design reuse, modularity and effective development process are the main issues 
to be successful in this business. Therefore it is necessary to find new solutions 
for effective product design. The robots are true mechatronics products and this 
leads us to search mechatronics development methodologies. In conventional 
engineering there are lots of different methods and tools but not in mechatronics 
field where only some recent works can be found. Also, a successful product 
development means that the design solution has to be selected very carefully, 
based on a strong research in the very beginning of the design. Strong 
methodical focus on the conceptual design and requirement engineering can save 
the design cost and time significally. Based on these facts new mechatronics 
design methodology is clearly needed and robotics is a well suited application. 
However the methodology and tools have to be clear and easy to learn. 
 
This thesis is focused on the model based design methodology for mechatronic 
systems in the conceptual stage. It proposes a generic framework model for 
effective and semi-automated design candidate generation in the conceptual 
design stage. The specific application is focused on the mobile robots. An 
application specific toolkit was developed as a tool based on the developed 
methodology. The methodology specifies toolkits and model libraries which are 
realized on the example of mobile robotic platform design. Additional toolkits 
can be developed according to this methodology. 
 
The practical implementation of the Mobile Platform Toolkit is presented based 
on real examples. Two analogous mobile robots in a different design stage were 
selected to illustrate the use of the toolkit. The Workpartner robot from Helsinki 
University of Technology is used as an analytical example and the UGV 
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platform from Tallinn University of Technology is utilized as a synthesis 
example where the developed approach was applied in the conceptual design 
stage. 
 
This thesis proposes a methodological approach for a mechatronic system design 
in the conceptual stage. Practical results are the Mobile Platform Toolkit and 
application examples with brief guidelines for technology implementation. 
 
Keywords: Conceptual design, mechatronics, mobile robotics, modeling, 
simulation  
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KOKKUVÕTE 
 
Doktoritöö raames on töötatud välja mehhatroonikasüsteemi kontseptuaalse faasi 
modelleerimise metoodika, mis baseerub VDI2206 modifitseeritud 
projekteerimise V-mudelil ja uuel arendamisjärgus oleval süsteemi 
modelleerimise keelel SysML. Doktoritöös on pakutud välja kontseptuaalne 
raamtöö mudel, mis käsitleb disainlahenduste poolautomaatset genereerimist. 
Mudel sisaldab endas ka rakendusspetsiifilist töövahendite komplekti (toolkit), 
mis on praktiline tööriist projekteerijale. Praktiliseks näiteks on valitud mobiilne 
robotplatvorm. Valiku määras mobiilsete robotite kiire areng ja osakaalu järsk 
suurenemine tehnoloogiarakendustes viimastel aastatel ja lisaks ka praktiline 
vajadus Tallinna Tehnikaülikoolis.  
 
Doktoritöö eesmärgiks oli luua mehhatroonikasüsteemi projekteerimise 
kontseptuaalse faasi metoodika ja praktiline töövahend. Otsene vajadus selle 
järele oli tingitud mehhatroonika ja robootika sektori kiirest arengust ning 
praktilisest vajadusest nii Tallinna Tehnikaülikoolis kui ka mujal. 
 
Käesoleva töö konkreetsed eesmärgid olid: 
1. Analüüsida olemasolevaid toote projekteerimise metoodikaid ning nende 

sobivust mehhatroonika valdkonnaga. 
 
2. Töötada välja üldine mehhatroonikasüsteemidele orienteeritud 

kontseptuaalse projekteerimise raamistik ja mudel. Mudeli fookus on 
varajane projekteerimine, mis hõlmab nõuete analüüsi ja modelleerimist 
ning tooteloome kontseptuaalset projekteerimist ja modelleerimist. 

 
3. Arendada välja konkreetsed töövahendid raammudeli rakendamiseks 

mehhatroonikasüsteemi projekteerimisel. Töövahendite komplekt peab 
katma nii nõuete kui ka kontseptuaalse faasi modelleerimise 
probleemistiku. Töövahendite komplekt on rakendusspetsiifiline ja 
näiterakenduseks valida robootika. 

 
4. Rakendada väljatöötatud mudel ja töövahendite komplekt konkreetsel 

robootika  rakendusvaldkonnal. Koostada läbi praktiliste näidete lühike 
metoodika kasutusjuhend.  

 
Doktoritöö koosneb neljast põhiosast. Kaks esimest on projekteerimis-
metoodikate ülevaade ja võrdlus ning olulisemate uurimisprojektide analüüs, kus 
on kasutatud tehisintellekti meetodeid kontseptuaalse disainlahenduse 
saamiseks. Kolmandas peatükis on kirjeldatud projekteerimise metoodikat koos 
töövahendite ja mudelite baasi kirjeldusega. Neljas peatükk on konkreetne 
rakendusnäide väljatöötatud töövahendite (toolkit) rakendamisest kahel erineval 
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reaalsel projektil. Esimene projekt on Helsingi Tehnikaülikooli poolt välja 
töötatud Workpartneri teenindusrobot, mida on kasutatud kui analüütilist 
lahendust. Teine projekt on Tallinna Tehnikaülikoolis arendatav 
demineerimisrobot, mille  kontseptuaalses projekteerimise faasis on 
väljatöötatud metoodika ja töövahendid osaliselt rakendatud. 
 
Töö tulemuseks on väljatöötatud metoodika koos selle kirjelduse ja 
rakendusnäitega ning metoodikal baseeruv mobiilse platvormi arendusvahendite 
tööriistakomplekt konkreetse rakendusnäitena. Lisaks on väljatöötatud 
metoodika ja töövahendid rakendatud ka konkreetsetele projektidel, mille mõned 
näited on töös esitatud.  
 
Väitekirja kokkuvõttes on antud suunitlused ja soovitused metoodika edasiseks 
arendamiseks ja integratsiooniks samalaadsete uurimisprojektidega. 
 
Tulemused: 
 
1. Lähtuvalt erinevate olemasolevate tooteloome protsesside metoodikatest ja 

lähenemistest on loodud mehhatroonikasüsteemidele kohandatud 
tooteloome protsessi kirjeldus. 

 
2. Peamiseks töö teoreetiliseks tulemuseks on mehhatrooniksüsteemidele 

orienteeritud kontseptuaalse projekteerimise raammudel, mis on töö 
baasideoloogiaks. 

 
3. Töötati välja töövahendite komplekti metamudel raammudeli 

rakendamiseks ja kontseptuaalse faasi praktiliseks projekteerimiseks. 
Töövahendite komplekt koosneb projekteerimise eeldefineeritud 
mudelitest, simuleerimise eeldefineeritud algoritmidest ja modelleerimise 
baasdiagrammidest. 

 
4. Peamiseks praktiliseks töö tulemuseks on rakendusepõhine töövahendite 

komplekti väljatöötlus. Rakenduseks valiti mobiilne robotplatvorm, kuna 
antud valdkond on viimaste trendide järgi muutumas väga oluliseks nii 
tsiviil- kui ka militaarrakendustes. 

 
5. Vastavalt töövahendite komplektile teostati praktiline realisatsioon, mis 

baseerub kahel reaalsel mobiilse roboti projektil. 
 
Uurimistöö ajal on väljatöötatud metoodikat reaalselt rakendatud kahel projektil 
ja lisaks on arendustöö käigus loodud leiutis – ratasjalg, mille taotlus on 
registreeritud Eesti Patendiametis numbriga P200700027. 
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