
THESIS ON MECHANICAL AND INSTRUMENTAL
ENGINEERING E32

MODEL BASED MECHATRONIC SYSTEMS
MODELING METHODOLOGY IN CONCEPTUAL

DESIGN STAGE

RAIVO SELL

TALLINN 2007

 2

Faculty of Mechanical Engineering
Department of Mechatronics

TALLINN UNIVERSITY OF TECHNOLOGY

Dissertation was accepted for the defence of the degree of Doctor of Philosophy
in Engineering Sciences on May 30, 2007

Supervisor:

Mart Tamre, Prof., PhD,
Department of Mechatronics,
Tallinn University of Technology

Opponents:

Mauri Airila, Prof., D.Sc. (Tech.),
Helsinki University of Technology, Finland

Elmo Pettai, PhD,
Tallinn University of Technology, Estonia

Defence of the thesis: August 28, 2007

Declaration: Hereby I declare that this thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any degree or examination.

Raivo Sell, ___________________

Copyright Raivo Sell 2007
ISSN 1406-4758
ISBN 978-9985-59-718-7

 3

MASINA- JA APARAADIEHITUS

MUDELITEL BASEERUV
MEHHATROONIKASÜSTEEMIDE
MODELLEERIMISE METOODIKA

KONTSEPTUAALSE PROJEKTEERIMISE
FAASIS

RAIVO SELL

 4

 5

Contents
INTRODUCTION.. 7

Background .. 7
Actuality of the topic ... 9
Objectives .. 13
Scientific novelty ... 14
List of publications .. 14
Outline of the thesis ... 15

1 PRODUCT DESIGN... 19
1.1 Design process .. 19
1.2 Early Design.. 25
1.3 Conceptual design... 26
1.4 Template libraries ... 28
1.5 Domain-independent modeling methods .. 29

1.5.1 Bond graphs.. 30
1.5.2 Hybrid dynamic system.. 32
1.5.3 Petri nets ... 33

1.6 Normatives on mechatronics design ... 35
1.7 Conclusions... 36

2 STATE OF THE ART... 37
2.1 Complex system modeling methods ... 37
2.2 System engineering modeling concepts.. 40
2.3 Artificial Intelligence methods for complex problems 45
2.4 Artificial Intelligence based research for early design...................... 47

2.4.1 Conceptual design supported by multi-agent system 47
2.4.2 Genetic algorithms with bond graphs... 47
2.4.3 Bond graphs with Simulink support ... 48
2.4.4 Artificial intelligence method application in machine design 49

2.5 Conclusions... 49
3 DESIGN FRAMEWORK.. 51

3.1 Semi-automated conceptual design... 52
3.2 Framework application ... 55

3.2.1 Modeling approach ... 55
3.2.2 Template libraries ... 56

3.3 Mobile Platform Toolkit ... 58
3.3.1 Requirements model ... 61
3.3.2 Design model.. 65
3.3.3 Linking design and requirement templates................................... 70
3.3.4 Simulation model.. 71

3.4 Conclusions... 74
4 IMPLEMENTATION PROCESS ... 75

4.1 Requirements modeling .. 78
4.2 Static structure and component interaction....................................... 83
4.3 Behavior modeling.. 85

 6

4.4 Parametric modeling ... 91
4.5 Simulation modeling... 92
4.6 Conclusion .. 96

5 CONCLUSIONS AND FUTURE WORK.. 98
ABSTRACT... 102
KOKKUVÕTE... 104
REFERENCES... 106
Elulookirjeldus ... 114
Curriculum Vitae.. 115

 7

INTRODUCTION

Background

Mechatronics and robotics are one of the most rapidly developing fields in
technology sector today, and it grows constantly. Many mechatronics
applications, like home robots were quite rear ten years ago, but are now
available for consumers. Mechatronics as an engineering domain itself is not
very new at all. The term mechatronics was introduced by a Japanese engineer
from Yasukawa Electric Company in 1969. Initially it reflected the merge of
mechanics and electronics. In the mid-1980s the control and software part
started to play more important role in mechatronics engineering and the scope of
mechatronics was extended. Today, the term mechatronics encompasses a large
array of technologies including all sub-domains of mechanics, electronics and
control. Although all classical domains have its own elements, the boundaries
between them have been misty and the software role has increased drastically.
Almost every mechatronics product has more or less embedded software and
control elements. Mechatronics gained its legitimacy in academic circles in 1996
with the publication of the first refereed journal: IEEE/ASME Transactions on
Mechatronics. In the premier issue, the authors worked hard to define
mechatronics. The selected definition was the following: "The synergistic
integration of mechanical engineering with electronics and intelligent computer
control in the design and manufacturing of industrial products and processes"
[Mech96]. Authors suggested 11 topics that should fall, at least in part, under the
general category of mechatronics [Mech96]:

• modeling and design
• system integration
• actuators and sensors
• intelligent control
• robotics
• manufacturing
• motion control
• vibration and noise control
• micro devices and optoelectronic systems
• automotive systems
• other applications

Of course there exist lots of concurrent definitions, but the idea is more or less
the same.
The term robot however is much older. Introduced by the Czech writer Karel
Čapek in 1921, it became very popular in science fiction books and movies.
Nowadays the robotics is one of the true applications of mechatronics. As all
other mechatronic systems the robots have became smarter and more
sophisticated thanks to the growth of software and computing power.

 8

In frame of all these developments the design and creation process of a
mechatronics product has turned very complex. Market however demands more
and more smart products with shorter development time and smaller cost. This
puts very high demands on mechatronic system development process and
conventional methods are not competitive any more. Engineering decisions in
different design stages affect the final product without any doubt. However
decisions made in early design stage affect the result much more than later ones.
Although almost every engineer agrees with that, the early stage design is the
most unsupported phase in the product development process. No common
methodology and tools are exploited contrary to, for example, domain specific
design, where lots of mature methods and tools are available and almost always
used. The mechatronic system development is even more affected by the lack of
early design support because the high level component integration from
dissimilar domains is always needed. The later integration means that the system
developer team must ensure the component and sub-system compatibility in all
the development stages, including the early stage. Rapidly advancing technology
automation market demands continuously new robots which are in their nature
true mechatronic products. Accordingly, the design methodology is also urgently
needed with the full support of early design and decision making process in open
design space.

The research object of this thesis is a model based mechatronics design
methodology. The developed methodology deals with early design stage and
supportive tools. The methodology is applied to the mobile robotic field as one
of the most growing mechatronic application examples.
Very roughly all robotic applications can be divided as follows:
industrial robot – usually a manipulator type robot designed for a certain
recurrent task. These kinds of robots are very widely used in automotive,
electronic, assembling and many other industries. This is the most mature field
of robotics;
humanoid robot – usually a bi-pedal walking machine, trying to simulate
human behavior and locomotion. This type of robot is the common imagination
of non-engineering people when talking about robots. They are much less useful
than industrial robots and playing in most cases the entertainer role. A lot of
research effort has been put in bi-pedal robot research and some success has
been achieved but it is still far from a useful human partner. The most well
known example is Honda ASIMO claimed as the most advanced bi-pedal
humanoid in the world today [Honda06];
mobile robot – usually a wheeled autonomous or teleoperated vehicle. This
robotic field has got a lot of attention from the last decade and many research
and industrial results are in real use. The field is especially important for military
domain where some of the application areas are antiterrorism and security.
Mobile robots have got an explosive attention in home and service field even

 9

more recently. This brings many new companies and research institutes to the
robotic design and manufacturing field. Standardization and methodological
design support is particularly important for the mobile robotic platform
development.

The current thesis presents a general framework for mechatronics design
methodology with emphasis to the early design. The implementation case is
applied to mobile robotic section. The mobile robot section can also be divided
into several sub-categories, depending on the purpose, size, locomotion schemas,
etc. The methodology implementation can be extended with some restrictions to
all these sub-categories, however the author has relied mostly on the mid size
wheeled mobile robot as most common application. Most examples and
implementations are based also on a hybrid wheeled mobile robot.

Actuality of the topic

The topic itself was selected based on the latest development of the
mechatronics field and on a practical need and opportunities. As mechatronic
product design has became more and more complex problem the need for new
methodology has also steadily grown. From the other hand the increasing role of
software in a mechatronic product sets additional requirements for the design
methodology. This means that in a product development team software
engineers have to work side-by-side with mechanical engineers and electrical
engineer where the design methods are still quite different. Because of the
boundaries of the software and hardware design being misty, the methodology of
a system design must also be unified for all the sub-domains. This is especially
challenging for conventional engineers who have been designed non-software
related products.
Because of the complexity and time critical development, the early design has
become an important design stage. Many recent papers and industry articles
emphasize the growing importance of the early design and the need for
development tools supporting the early design process [Balmelli06]. Another
important concern is that the engineering design, especially mechatronic product
design, is not a pure technical problem any more but a complex activity. There is
a need to involve artifacts, people, environment, market, etc., where all the
aspects have to be modeled in the same methodical way. The requirements in the
area of the mechatronic system design, especially in robotic field where a control
sub-system should be developed on a very high level, demand the quantities
evaluation of different design alternatives. Existing tools like, for example,
Unified Modeling Language (UML) have very wide modeling capabilities,
however the early stage verification, conflict analyses and initial simulation are
not currently covered. There are some early researches to fulfill this cap in

 10

certain fields. System on Chip (SoC) is one of the most actively studied field and
some approaches are presented in publications [Viehl06, VD06].
The modularization and model based engineering was adopted in software field
many years ago and it is obtaining growing attention also in the system
engineering field. This is the common trend adopted not only by engineers but
also by team managers, researcher and corporate strategists in a number of
industries. When the design is modularized the system or process elements are
split up and assigned to a module according to the formal plan. Modularization
enables an easier management of complex problems, performing parallel work
and accommodating future uncertainty [BC04]. The modularity is extremely
important also in mobile robotics design. The implementation example of this
thesis is a service robot where the modularity is one of the key parameters of
reducing cost and development time. Modularization effect in mobile robotics is
opened in detail in doctoral thesis [Ylönen06].

One significant reason for developing new design methodology focused on
mobile robots is that the market demand is drastically increased during last
years. Many industry reports from Europe [EUROP] and North America
evidence the growth of the robotic market [RIA105 & RIA205]. Robotic
markets are set to grow quickly and become large economic sectors in their own
right as well as providing the means for both manufacturing and service
industries to become more effective [EUROP]. Most of the growth in interactive
robots at present centers on those that can perform cleaning, security and human-
interface tasks, states an industrial report from Japan [Jetro06]. The United
Nations Economic Commission (UNEC) and International Federation of
Robotics (IFR) estimate that the personal and service robotics market will more
than double between 2005 and 2010, reaching $17.1B in 2010 (figure 1). The
number of personal and service robots sold is expected to increase ten-fold
between 2005 and 2010 according to the UNEC and IFR. Sales for domestic
robots (vacuum cleaning, lawn mowing, window cleaning and other types) are
expected to reach over million units, while sales for toy and entertainment robots
will exceed more than million units.

 11

Figure 1 Personal & service market growth [WIRA]

The famous ICT guru Bill Gates estimates in the article in Scientific American
[Gates07] that a new technological revolution will take place in the home
robotics. However the concern is that the robotic industry and development tools
are highly fragmented with only few common standards and platforms. Projects
are complex, progress is slow, and practical applications are relatively rare. This
refers again to the need for the complex system development methodologies and
tools. The service robot development is not any more the niche of the big
technological companies but has turned also to the activity of SME type
companies, where a standard set of tools is especially valuable.

The practical need for this particular topic selection has also been driven by the
author’s home department (Department of Mechatronics, Tallinn University of
Technology) last year activities. Several mobile robots related projects have
been initiated in TUT as well as partner universities in Finland and Sweden. The
methodology is partly implemented at demining robot design, which is a running
development project in the Department of Mechatronics, Tallinn University of
Technology. The methodology has been partly tested and developed based on
Workpartner robot – the ongoing research project in Automation and System
Technology Laboratory, Helsinki University of Technology.
Workpartner is the next generation interactive service robot for outdoor task.
The ultimate goal is a highly adaptive service robot. Mobility is based on the

 12

hybrid system which combines the benefits of both legged and wheeled
locomotion to provide at the same time good terrain negotiating capability and
good velocity range. The working tool is two-arm manipulator, simulating
human behavior as much as possible [Ylönen06]. The Workpartner architecture
is highly modular and common interfaces are defined between the modules.
Workpartner is one of the case study subject concerned later on this thesis.

Figure 2 Workpartner service robot, TKK

The similar novel Unmanned Ground Vehicle (UGV) type mobile robotic
platform development is running in the Department of Mechatronics at Tallinn
University of Technology. Similarly to Workpartner described above the UGV is
based on a modular design concept.

Figure 3 Demining UGV, TUT

 13

Both described mobile robot platforms are highly complex mechatronics systems
where the systematic development approach is unavoidable. Methodology
developed on the frame of this thesis is applied on both robots. Workpartner is
used as an analytical case and UGV as a design case. Generalization is made
based on these real life cases and unified template system is proposed for mobile
platform design in early stage.

Objectives

The main objectives of the doctoral research and the thesis are as follows:

To analyze existing product design approaches, methods and their suitability for
mechatronic system design. To evaluate conventional methods originated from
classical domains and new artificial intelligence based techniques exploited in
conceptual design. Based on the evaluation, to create unified mechatronics
system design process tree with the special focus on early stage, i.e.
requirement- and concept engineering.

To create a general framework model for mechatronic design process focused on
the early design stage. Utilizing the existing mechatronics and system
engineering achievements, to develop an adopted design model corresponding in
the best way to mechatronics design needs.

To develop a model based design tool applicable in practical designing and
compatible with recent trends and activities in the robotic field in Europe. The
design tool has to correspond to the practical needs of research and of industrial
institutions as well as to be general enough to represent the developed
methodology in generally understandable way.

To develop a problem based application example with guidelines for
methodology implementation. The implementation example has to rely on a
practical and well understood product from different viewpoints. At least two
different approaches have to be used: the existing solution enabling the study of
the links between the model and the developed system; the solution under
development where the methodology is actually implemented and a real product
is created. In addition several real examples have to be presented and a guideline
provided to implement the methodology in different application domains.

To analyze the achieved results and define the further development guidelines.
Analyzing the achieved results further developments must be pointed out to
continue the research and integration with close research works. Further
developments guidelines have to be provided and commented.

 14

Scientific novelty

Scientific novelty involves the following:
• analysis of the design methodologies with the focus on early design in

mechatronics domain;
• developed conceptual framework model (CFM) for semi-automated

early design process;
• developed template based toolkit – Mobile Platform Toolkit (MPT) for

practical robot applications;
• provided exampled guideline for further applications.

List of publications

� R. Sell, M. Tamre, Design templates for robot conceptual design, AIM2007,
ETH Zürich, 2007 (accepted for publication, proceedings IEEE/ASME
AIM2007 will be available in the Elsevier databases Engineering Index (EI),
Compendex, Inspec, and IEEE Xplore).

� F. Christophe, R. Sell, E. Coatanéa and M. Tamre, System Modeling
Combined with Dimensional Analysis for Conceptual Design, Int. Workshop

on Research & Education in Mechatronics, Tallinn, 2007.
� R. Sell, T. Otto, Advanced E-Curriculum and Mobile Tools for

Interdisciplinary Modular Study, Int. Workshop on Research & Education in

Mechatronics, Tallinn, 2007.
� R. Sell, M. Tamre, An Environment Friendly Autonomous ATV - Practical

Mechatronic Project, Int. Workshop on Research & Education in

Mechatronics, Tallinn, 2007.
� R. Sell, M. Tamre, Hybrid Locomotion Of Autonomous Vehicle - UGV, Int.

Workshop on Research & Education in Mechatronics, Tallinn, 2007.
� R. Sell, M. Tamre, M. Lehtla, A. Rosin, Conceptual Design Method for

General Electric Vehicle, Proc. of the Estonian Academy of Sciences

Engineering, 2007 (in press).
� R. Sell, Integration of V-model and SysML for advanced mechatronics

system design, Proc. of Int. Workshop on Research & Education in

Mechatronics, Annecy, 2005, pp. 276-280.
� R. Sell, Mechatronics System Design In Conceptual Stage, 4th

 Int. DAAAM

Conference Industrial Engineering - Innovation As Competitive Edge For

SME, Tallinn, 2004, pp. 82-85.
� R. Sell, Mechatronics Design Process and Methologies, 11

th
 Int. Power

Electronics And Motion Control Conference EPE-PEMC, Riga, 2004, pp.
6.20-6.25.

� R. Sell, New Object-Oriented Approach of Modelling Mechatronics System
in Conceptual Stage, 5th Int. Workshop on Research and Education in

Mechatronics, Gliwice, 2004, pp. 75-80.

 15

� M. Tamre, A. Kask, R. Sell, P. Leomar, Cognition through Multy-Domain
Practical Project, The Eighth Symphosium on Machine Design, Oulu, 2003,
p. 278.

� R. Sell, P.Leomar, Methodologies on the Mechatronics Domain, The Eighth

Symphosium on Machine Design, Oulu, 2003, pp. 53-59.
� R. Sell, T. Mart, Component Based Mechatronics Modelling, Proc. of

ICOM2003, Int. Conf. on Mechatronics 2003, Loughborough, GB. (Ed.) R

M Parkin, A Al-Habaibeh, M R Jackson. London: Professional Engineering
Publishing, 2003, pp. 111-116.

� M. Tamre, R. Sell, A. Kask, M. Grimheden, The Mechatronics
Collaboration Project between KTH and TTU (Sweden-Estonia). Proc. of

Int. Workshop on Research & Education in Mechatronics, TUD, Lyngby,
2002.

� R. Sell, Real-Time Mechatronics Measurement System In Virtual
Environment, 3rd

 Int. DAAAM Conference, Tallinn, 2002, pp. 58-61.

Outline of the thesis

This thesis applies to the model based design methodology for mechatronic
systems. It contains an introduction, overview of the developed methodology
and implementation.

INTRODUCTION
The introduction chapter covers the background of mechatronic and robotic
developments, methodologies and design specifics. Trends and surveys of
mechatronics and robotics market are presented with recent expectations and
estimations from industry leaders. The objectives of the thesis are summarized
and scientific novelty described. In addition there is a list of publications, an
acknowledgement and abbreviations used in the thesis.

PRODUCT DESIGN
The product design chapter provides an overview of the design process and
stages in it. Special attention is paid to the requirement design and conceptual
design stages due to the fact that the thesis is orientated towards early design of
mechatronic systems. Several most common abstract modeling techniques and
methods like bond graphs, Petri nets and Hybrid automata are briefly covered
including their usability for early design of a mechatronic system.

STATE OF THE ART
The state of the art chapter covers recent developments of mechatronics design
and artificial intelligence utilization for early design. Main widely recognized
complex system engineering methods and tools are studied. The main focus is on
Mechatronics Design Guideline VDI2206, developed by the VDI, and a very
new System Modeling Language (SysML) developed by the SysML Partners,

 16

adopted by the Object Management Group (OMG). In addition artificial
intelligence technique based applications for product design are studied and
selected researches covered.

DESIGN FRAMEWORK
The design framework chapter is a theoretical work of this thesis. The chapter
introduces a new model for the early stage of mechatronic system design. The
proposed model adopts the V-model from VDI2206 and SysML based toolkit as
a tool for conceptual design of mechatronic system. The Conceptual Framework
Model (CFM) is proposed utilizing application specific toolkit and template
libraries. As a practical approach the Mobile Platform Toolkit (MPT) is
developed. The toolkit embraces template libraries, design models and SysML
profile.

IMPLEMENTATION PROCESS
The implementation process chapter is a practical implementation of the
developed toolkit, introduced in the previous chapter. The chapter starts with a
short guideline for implementing the developed framework follow an application
example modeled with the developed toolkit. The model examples include two
different applications showing the different ways to apply the developed toolkit.
Two different approaches of linking the model with simulation are described.

Recommendations and future development guides are given with the
conclusions.

The author has over 15 scientific papers published in the pre-reviewed
international conference collections. Six articles are referred on the international
databases, including ISI Web of Science/Proceedings.

Acknowledgement
The greatest appreciation goes to my family for their support and understanding
throughout the period of thesis compilation and my absence when realizing the
fellowship in ETH Zürich in Switzerland and TKK in Finland.
I gratefully acknowledge the assistance of Professor Mart Tamre and my
colleagues from the Department of Mechatronics. Special thank to the Professor
Arne Halme from TKK for giving the opportunity to finish my thesis in his
laboratory.
The work has been carried out with the support of the Estonian Science
Foundation Grant No 5908 and the Estonian Ministry of Education & Science
Grant No 0142506s03.

 17

Abbreviations

AC Alternating Current
act Activity Diagram
ADC Analog Digital Converter
AI Artificial Intelligent
ANN Artificial Neural Network
ANSI American National Standard Institution
AP233 The draft ISO Standard for exchanging systems engineering data
ASME American Society Of Mechanical Engineers
bdd Block Definition Diagram
BG Bond Graph
CAD Computer Aided Design
CAE Computer Aided Engineering
CAM Computer Aided Manufacturing
CFM Conceptual Framework Model
CLAWAR Climbing and Walking Robots
CPU Central Processing Unit
DC Direct Current
DOA Dead on Arrival
DoDAF The Department of Defense (DoD) Architecture Framework
EOD Explosive Ordnance Disposal
EUROP European Robotic Platform
FEM Finite Element Method
FoS Families of Systems
GA Genetic Algorithms
GP Genetic Programming
GPS Global Positioning System
HMI Human Machine Interface
I2C Inter-Integrated Circuit
ibd Internal Block Diagram
IEEE Institute of Electrical and Electronics Engineers, Inc.
IFR International Federation of Robotics
INCOSE International Council on Systems Engineering
ISO International Standard Organization
LCA Life Cycle assessment
MatLab Matrix Laboratory
MC Micro Controller
MDA Model Driven Architecture
MPT Mobile Platform Toolkit
NBC Nuclear Biological Chemical
OMG Object Management Group
par Parametric Diagram
PLM Product Lifecycle Management

 18

QFD Quality Function Deployment
req Requirement Diagram
RS232 Serial Interface
seq Sequence Diagram
sm State Machine Diagram
SoC System on Chip
SoS Systems of Systems
STEP Standard for the Exchange of Product Model Data (ISO 10303)
SysML System Modeling Language
UGV Unmanned Ground Vehicle
UML Unified Modeling Language
UNEC United Nations Economic Commission
VDI Verein Deutscher Ingenieure
XMI XML Metadata Interchange
XML Extensible Markup Language

 19

1 PRODUCT DESIGN

1.1 Design process

Product design process in general can be described as a set of certain phases,
needed to be passed despite the diversity of the products even in a single
domain. These phases can be defined in various ways and are sometimes related
to the problem domain. Nevertheless the phases described in different sources
[Ullman02, PBFG07, UE03, Hubka96, Cross89, French99] overlap quite often
and the differences are in most cases formal. For example, according to Ullman
[Ullman02], the mentioned phases are specification definition, conceptual
design, product design and product support phase (figure 4).

Specification
Definition

Conceptual
Design

Product
Design

Product
support

Figure 4 Product design phases, according to Ullman (simplified)

Another widely acknowledged engineering design source - Pahl & Beitz [PB97]
defines the design process with four phases as follows:
- product planning and clarifying the task,
- conceptual design,
- embodiment design,
- detail design.
A simplified structure is shown in figure 5. A more detailed graphical schema
can be found in [PBFG07].

Product
planning

Conceptual
Design

Embodyment
design

Detail
design

Figure 5 Product design phases, according to Pahl & Beitz (simplified)

The first two phases are almost identical, but the last two are slightly different in
these definitions. The input to the embodiment design is similar to the previous

 20

definition of the design concept. The output of this phase is according to Pahl &
Beitz, a technical description of the future product, often technical layouts,
schemas, drawings, general arrangements or other documents depending on the
particular domain and industry. Although the phase listing does not include the
product support and utilization phase, today’s product design can not leave out
these phases. Moreover the disposal and recycling have been turned to be very
important issues in modern design and any applied methodology should have to
support it.

Discussing the design science, Hubka [Hubka96] has proposed the following
main phases for engineering design procedure:

• requirement,
• conceptual design – conceptualizing,
• layout design – embodying,
• detailing.

A simplified schema is shown in figure 6.

Figure 6 Product design phases, according to Hubka (simplified)

When designing complex systems there are many important relationships which
have to be granted through the different design phases as well as engineering
domains. Although the previously described design processes may seem trivial
they consist many inner activities and the links between the phases are usually
much more complex than seen in the simple figures. As also seen in figure 6
there are many keywords, i.e. interaction; recursion, decomposition, feedback,
improvement of quality, representing the interactivity between phases. A novel
approach covering the system design process including described activities is
described in [Pettai05]. In complex and cross-domain products modularization is
another key factor which has got much attention. Several examples include also
the mobile robotic applications [Ylönen06, STLR07, STL05, HZ07]. The
relationship analysis is often carried out by the support of design structure

 21

matrix (DSM) [SA04]. DSM is a matrix representation of a complex system.
DSM lists all constituent subsystems or activities and the corresponding
information exchange and dependency patterns. The purpose is to provide a
quick overview of relationships and dependences between activities.
Modularization is often combined with dependence trees to follow all
relationships through the design process. It is also important to mention that
nowadays the design process needs more advanced tools and techniques to
support the product development through the whole design process. It means
that we have a product model in all the design phases and this model is improved
all the time as the design advances but is also verified and validated against the
requirements and reality. What is required and what is feasible is one of the
important issues to test before the actual design can start. This brings forth the
importance of requirement engineering and later validation against the
requirement model. It is especially important in mechatronics because due to the
overlapping domains the feasibility is not always easily recognized. With
increasing complexity these aspects must be treated with great respect otherwise,
the failure of later redesign stage will cost a lot.

As this thesis deals with mechatronics oriented design process focused on the
early design the following design process schema (shown in figure 7) is adopted
as a generalization and intersection of the previously described definitions.

 22

Requirement
Specification

Concept
Development

Detail
Design

System
Integration

Product
Manufacture

Product
Support

Product
Disposal

P
ro

d
u
ct

 D
es

ig
n

P
ro

d
u
c
t S

u
pp

o
rt

P
ro

d
u
ct

 r
e
d
e
s

ig
n
 &

 f
e
e
d

ba
c
k

V
al

id
a
tio

n
V

e
ri
fi

ca
tio

n
R

e
fin

e
m

e
n
t

P
ro

d
u
c
t
L

ife
cy

c
le

 M
a
n
a
g

e
m

e
n

t
+

 C
o
m

m
u
n
ic

a
ti
o
n

 &
 C

o
lla

b
o

ra
ti
o

n

T
e
s

tin
g

Figure 7 Adapted design process tree

In the requirement specification stage the main goal is to understand the design
problem thoroughly respective to the customer requirements. The biggest
problem here is that there is very little information about the design problem
available in this stage. Initial requirement model is completed usually at the
system level. Once this is archived it is necessary to allocate and flow the

 23

requirements down to successively lower level. According to INCOSE System
Engineering Handbook [INCOSE04] the requirement modeling process is
iterative for each phase, with continuous feedback as the level of the design
specification increases. The result of this stage is a design specification and a
clearly formulated set of desired measurable behaviors of the future product,
which introduces the quality measure into the design process.

The next stage - conceptual design, is particularly important because the
decision made here affects most the overall design process. In this stage
uncertainty and limited knowledge about the product and big design freedom as
well are the major keywords. The danger here is that designers tend to take the
first idea and start to refine it towards the desired product. This is a poor
methodology because there is great possibility that the idea is not optimal or not
the best one at all. Therefore it is important to generate at least more than one or
two design candidates. Then it is much more plausible that designer may find a
good solution [Ullman02]. One goal of this stage is to choose best alternatives
with the least expenditure of time and other resources. Techniques generating
concepts and making decisions are used interactively as knowledge is increasing
with new ideas [Ullman02]. The iteration is less expensive during this stage than
in the following stages. The result is gained with the careful selection process
from different competing design candidates. The initial analysis and simulations
of competing solution candidates are already necessary even if there is a great
lack of rigid mathematical parameters and lots of loosely defined constraints.
The result of this stage is usually system architecture, functional and behavioral
specification of the future product.

The detail design, which can also be referred to the product design phase, is the
most time and labor consuming part of the design process. Here the concept
generated and evaluated on the conceptual design stage will be refined and all
sub-system and components will be developed. Detail design is quite well
defined. This includes a technical drawing generation, detail product sub-system
model generation, etc. For example in mechanical engineering part and assembly
modeling as well as stress analyses with FEM will be carried out. The stage
defined here (figure 7) overlaps Pahl & Beitz’s embodiment design and the
detail design. Although the input of this stage is evaluated and the concept is
selected the detail design may embody a parallel layout design. The purpose of
simultaneous layout design is to obtain more information about advantages and
disadvantages of different variants. According to Pahl & Beitz detail design
stage description, the optimization is a crucial activity compromising
optimization of principles, optimization of the layout, forms and materials; and
optimization of the production [PBFG07].

 24

The integration is a key element on the successful mechatronics design. The
integration stage embraced into adapted design tree, is derived from the nature of
the mechatronics and system engineering specifics. The integration is important
activity enough to deal with it as a separate stage in whole development process.
In the classical domain engineering, the integration before the final product is
also presented but it is not as complex as in nowadays mechatronics products.
The reason of the great complexity is related to integration issues of sub-systems
originated from dissimilar domains where even the design methods and tools can
have totally different concepts. The integration stage includes the testing and
simulating of the final product model before the prototype or the product will be
manufactured.

The production stage is not only the actual manufacturing but also a planning of
manufacture, building and assembling, quality check and testing.

The product service and disposal stage covers all activities related with the
product design support: support for manufacturing/assembling, support for
vendors, support for customer and disposal activities.

In parallel of modeling several tests and verifications need to be accomplished
during the design process. The simulation is widely exploited method to test the
system or subsystem in specific computer environment. Several software
packages are used for mechanical, electrical, software, etc. simulations. There
exist special mechatronics-oriented simulation packages like AMESim, Dymola,
Adams and in addition some well known general simulation packages e.g.
Simulink, suits for mechatronics simulations as well. The early stage simulation
on the other hand is not often used and there are no specific packages available.
The reason is the lack of system parameters and high abstraction level of the
given system. Despite of that the need for early design simulation exists due the
fact that early design decisions affect the final product in very wide scale.

Design simulation can be extremely valuable but needs also a good simulation
model which is not trivial to develop. The executable model has to reflect the
conceptual model as well as reality at the same time [Pelz03]. The verification
procedure is used to investigate the executable and conceptual model
compatibility and validation procedure investigates whether the executable
model reflects the real world adequately. In other words as stated by Peltz
[Peltz03]: “Verification ensures the system is modeled right, whereas validation
is all about modeling the right system”. The corresponding graph is shown in
figure 8.

 25

Figure 8 Context of simulation [Pelz03]

1.2 Early Design

Early design is a common term for all activities before detail product design.
This includes requirement specification, conceptual design and other concurrent
activities. Early design has got the more close attention in recent research due to
the fact that the proper requirement engineering and optimized concept selection
determine a significant part of the future product cost. Here in early design a big
potential for reducing production cost and time to market is available. Some very
recent researches have been focused right on early design for the reason
mentioned before. Gausemeier’s team work [Frank07] (who is one of the author
of VDI2206 – Mechatronics Design Methodology) from Heinz Nixdorf Institute,
University of Paderborn is one of the example. The research stands for new
methods for the conceptual design of intelligent mechatronic systems. Another
research actively carried out in Helsinki University of Technology [Coatanea05]
has the special focus on the early design. The self-optimization behavior of
mechatronics system is one of the growing research interests and this involves
directly the early design. Parallel and interactive design in early stage is
unavoidable already today. Automation and applying new algorithms for
concept creation and concept simulation is one of the key factors of successful
early design. This is the main issue in the theoretical part of the current thesis.

The requirement engineering is one of the vital stages of the whole design
process. Sometimes the engineers tend to underestimate the requirement
specification. It is not enough any more to take just customers’ plain

 26

specification and start to develop the concepts from that. It is quite common that
a customer has but a cloudy idea or concept what the final product should look
like. This is the case even with functionality of the ordered product. Some
unimportant functions may cause a decline of the budget or some may
compromise the whole system. If a design engineer takes this kind of
requirement as fixed without estimating and refining requirements together with
the customer it may result in the failure of the whole product market access or
the functionality. Therefore the requirement engineering must be carried out
with great attention and concurrent refinement during concept development and
even detail design must be established.
The well known and accepted technique for bringing together customer
requirements and engineering specifications is Quality Function Deployment
(QFD) [QFDHb]. Due to the universal approach the concept is deployed besides
engineering field in many other areas like marketing-analysis, brand
development, software development, etc. It is very often used at early design
stage to ensure the customer needs in final product. Although there are proven
benefits using QFD it does not come automatically. It is not necessarily easy to
start with but when the first effort is performed the later benefit is remarkable.
Kenneth Crow – president of DRM Associates proposes a list of
recommendations to facilitate initial use of QFD [Crow].
It is also implied in the ISO 9000:2000 standard which focuses on the customer
satisfaction.
The requirement engineering and connections with design solutions are
discussed in chapter 3.

1.3 Conceptual design

Decisions made during the conceptual design stage have significant influence on
the final product. It has been estimated that more than 75% of final product cost
is settled in conceptual stage [Lotter86, HW98]. Different methodologies for
detail product design have been proposed [VDI04] and applied, but even the
highest standard of detailed design cannot compensate for poor design concept
formulated at the conceptual design stage [PBFG07]. For this reason the concept
evaluation and verification of the conceptual design development becomes more
important. The reason is also the complexity of mechatronic systems and rising
of new techniques together with increase of computational power as well as time
and cost saving demands in today’s rapid world. Many efforts are still needed to
develop industry proved semi-automated tool for the conceptual design phase.
To archive this goal we need to define a problem in unified form at the phase
where the big uncertainty is a common feature. This is not a trivial task
considering that it must be easily understandable for product designers and other
technical staff as well as for customers.

 27

In the conceptual design process, the designer takes the problem statement and
generates a broad solution for it in the form of schemes, block diagrams, etc.
[PB97]. At this stage engineering science, practical knowledge, commercial
aspects, production methods and other relevant aspects need to be brought
together, and the most important decisions are taken. Techniques and methods
used for conceptual design are not for replacing the designer or generating
complete solutions. They are intended to improve the quality and speed of the
design process and to help designers by [French99]:

• increasing insight into the problems, and speed of acquiring the insight,
• reducing the size of mental step required in the design process,
• diversifying the approach to the problems,
• generating design philosophies for the particular problem in question,
• documenting the design process progress,
• improving communication between designers and/or other relevant

people.

There are several widely used techniques suitable for conceptual design process.
These are covered in detail in the Conceptual Design for Engineering
[French99]. A selection of techniques is as follows:

• construction of table of options, functional analysis,
• mathematical models,
• the search for alternatives,
• logical chains,
• past practice,
• problem solving and analytical techniques.

As conceptual design stage is very creative in its nature these techniques
are important to know and use. Most known techniques are:

• brainstorming - generating options,
• critical path analysis - planning and scheduling complex tasks,
• decision trees - powerful quantitative analysis of decision impact,
• force field analysis.

Detailed information about problem solving and creative techniques
can be found from reference [Higgins93] and [Dombroski00].

Nowadays complex systems and rapid time-to-market demand on mechatronics
product sets new demands for conceptual design process. Traditional methods
described above still work fine but are inefficient as they do not take into
account the interdisciplinary aspects from the very beginning. In mechatronics
design more abstract methods are needed for modeling and evaluating the
concepts at an early stage. The early integration has to be started on the very
beginning when starting to define the customer requirements. Requirement
definition has to be universal and at the same time enable verifying later design
solutions. For example, the software requirements might have demands and
definition methods quite different from mechanical ones. Nevertheless for a

 28

mechatronics product which is one integrated unit, the utilized method and
evaluation values have to be comparable. New approaches for integrated product
conceptual design are constantly searched around the world. Some of the
methods are covered in paper [Sell04a]. One ongoing research on this issue is
introduced by Coatanéa [Coatanea05] where base theories are a topological
model of design theory presented by Braha and Reich [BR03] and the C-K
theory developed by Hatchuel [HW02]. The practical implementation and
advancement of these theories results in a design synthesizes process at the
conceptual stage supported by the dimensional analysis [CYHHSM07] and
semantic atlas [CYHSML07].

1.4 Template libraries

An effective and optimum design exploits often pre-defined design patterns and
templates. Although most mechatronic products today share many common
concepts and components the design is in most cases independent and unique.
Component libraries exist and are exploited widely but not before the product
detail design stage. The conceptual stage for a mechatronic product still lacks
common design methods as well as general design patterns or templates.

Templates offer several significant advantages. Templates are general and
reusable. Thus, they can be used easily for testing the system variations in very
early stages. Moreover, it is characteristic for robotics applications that similarly
to variety of routes for reaching a target location there are several alternative
solutions especially in early stages of design. Templates exploit general
algorithms and descriptions created and tested by experts or verified by
experience. Thus, many errors can be avoided compared with the untested model
algorithms. The system design can be started in a shorter time using templates
and an engineer could exploit many design options in parallel.

Two basic approaches for component based design are commonly utilized
[BBC06]:
The designer compiles a system mechanically from “black boxes”, where the
black box is considered: a component that can be used without knowledge of its
inner workings; the user supplies the input and the output is more or less
guaranteed to be correct without a need to understand the algorithmic details or
component physics.
The second approach, where the designer wants to be able to fine tune the
system: adoption of a component for a specific application and environment in
order to obtain better performance.
Both approaches are widely used particularly in software development.
Designing mechanical subsystems engineers have standard part libraries
available. In electronics design, an engineer can pick a motor driver, an interface
or other component from the library without knowing the inner structure and

 29

working principles of that particular component though the system needs fine
tuning. The conceptual stage of a mechatronic system development integrates
these approaches utilizing the advantages of both.
A template is a description of an algorithm, abstracting away from
implementation details, thus a template is a description of a general algorithm
and in our cases also an executable object. Nevertheless, although templates are
general descriptions of the key algorithms, they may offer whatever degree of
customization the user may desire. They can be configured for the specific
structure of a problem (e.g. drive mechanism) or for the specific computing
language [BBC06]. For example the simulation template is initially implemented
in Simulink but can be also defined in Modelica language [Modelica] to execute
the simulation in Dymola environment.
Pre-defined templates are very common in software development field. For
example Standard Template Library and Active Template Library for C++. The
template library provides a ready-made set of common classes, such as
containers and associative arrays, that can be used with any built-in type and
with any user-defined type that supports some elementary operations (such as
copying and assignment). STL algorithms are independent of containers [STL].
In UML models, templates are model elements with unbound formal parameters
that can be used to define families of classifiers, packages, and operations.

ModelTem. Lib.

T1

T2

T1

T2

Figure 9 Element bindings from template library

1.5 Domain-independent modeling methods

A number of established methodologies have been adopted for product design in
general. Methodologies and techniques are widely used by industry and research
institutions, however different methodologies are applied depending on the
problem, organization and others factors. Some methods are more popular and
are further advanced, other are used rarely or only in a very specific problem
domain. Some general engineering design approaches can be pointed out
according to several design science sources [Hubka96, Pelz03]:

• Concurrent engineering workflow
• Bottom-up design
• Top-down design

 30

• Trial-error approach
• Intuitive design process
• Automated design process
• Design in context
• Modular design.
• Design for Six Sigma
• Digital simulation engineering.

According to Hubka the intuitive design is the most traditional and widely used
in different domains but although the resulting technical solution is usable it is
not optimal. In addition it needs a good experience and a broad view on the
given problem. The most effective design process type according to Hubka
design process typology [Hubka96] is a partly or totally automated design
process where the data is an input and the solution is an output which will be
further evaluated by the engineers. When supported by correct tools and
methodology the result will be optimized and of good quality within a short
time.
In mechatronics design domain-independent techniques are required due to its
cross-domain nature. It is especially important in conceptual design where the
working principles are developed without linking it to the actual solution. The
simple block diagram is definitely a most widely used domain-independent
technique. Hereafter some more specific cross-domain approaches are described
in more detail.

1.5.1 Bond graphs

The bond graph theory is a widely recognized domain-independent technique.
Bond graphs were introduced by Henry Paynter, professor at MIT, who
described the junctions in 1959 and the whole framework in 1961 [Paynter69]. A
bond graph is a graphical description of a physical dynamic system. The concept
is based on the energy flow. Bond graphs have a number of advantages over
conventional block diagram or code-based modeling technique [Gawthrop99]:

• they provide a visual representation of the system,
• since they work on the principle of energy conservation, it is difficult to

accidentally introduce extra energy into a system,
• the bonds are symbols which contain meaning,
• they separate the structure from causality,
• since each bond represents a bi-directional flow, systems which produce

a 'back force' (e.g. a motor back emf) on the input are easily modeled
without introducing extra feedback loops,

• hierarchy can be used to manage large system models.

 31

Bond graphs are based on the principle of continuity of power. If the dynamics
of the physical system to be modeled operate on widely varying time scales, fast
continuous-time behaviors can be modeled as instantaneous phenomena by using
a hybrid bond graph.

Figure 10 Example of the bond graphs [BG01]

The example above represents the simple model of electrical motor driven
winch. There are following different types of elements:

- three basic one-port passive elements,
- two basic active elements,
- two basic two-port elements,
- two basic junctions.

The basic variables are effort (e), flow (f), time integral of effort (P) and the time
integral of flow (Q). Basic one-port passive elements are R-element, C-element
and I-element. The R-element is resistor type element where flow and effort are
related by static function. Usually they dissipate energy. The C-element is
similar to electrical capacitor or mechanical spring. It stores and gives up energy
without loss. The I-element is respectively similar to electrical induction or
mechanical inertia. The element stores the energy if the momentum, P, is related
by a static constitutive law to the flow, f.
Basic active elements are sources of effort and flow denoted SE and SF
respectively. For example the electrical source is defined as an effort source
(SE). The active elements are Transformer and Gyrator. Transformer is
representing the transformation device which converts and transmits the power
across the net. Ideal examples of transformer are electrical transformer, mass
less ideal lever and electrical motor. A transformer relates flow-to-flow and
effort-to-effort. Conversely, a gyrator establishes relationship between flow to
effort and effort to flow, again keeping the power on the ports same. The
simplest gyrator is a mechanical gyroscope [Broenik99]. The above bond graph
example is explained in figure 11.

 32

Figure 11 Corresponding system to bond graph example [BG01]

However the bond graph concept is not very much exploited by practicing
engineers. The reason is that developing the complex system the bond graph
diagram turns to very complicated and voluminous which makes it very difficult
to read. Reading the bond graph diagrams needs knowledge of bond graph
concept and elements. Although the concept is not very sophisticated and the
number of standard elements is rather small the representation is very symbol
oriented. Without knowing the meaning of a symbol it is almost impossible to
figure out what is presented. Other concepts are usually more user friendly and
are easier to understand the context even without knowing the meaning of all
symbols. Despite of that, in mechatronics field the bond graph concept is much
more used than in other domains. In many cases it is not directly used but the
concept itself is utilized as a base approach for modeling mechatronics systems.

1.5.2 Hybrid dynamic system

Another technique dealing with complex systems is a hybrid dynamic system
approach. Hybrid dynamic systems (HDS) contain subsystems with continuous
dynamics and subsystems with discrete dynamics that interact with each other
[AN98]. A hybrid system is a system where both the discrete states and
continuous behavior are represented in the same model – continuous model with
continuous flow where discrete events can occur. Modeling such kind of system
is a complicated mathematical problem since continuous dynamics and discrete
event dynamics have entirely different mathematics. The detail hybrid automata
logic is explained in the widely recognized Davoren IEEE article [Davoren00] in
2000.
The standard hybrid automata graphical description is shown in figure 12. The
hybrid automata are described as an infinite-state transition system. Discrete
states are denoted with p and q in figure 12. The transition includes the guard
and reset. Transition is an event occurring when the guard constraint is set true.
In this example the guard equations are y<y’ and x=x’. When the transition is

 33

completed the reset function is executed. Here the reset function sets the x and y
to zero in a and c transitions respectively.

Figure 12 Hybrid automata graphical representation

Hybrid automata models are used to model embedded real-time controller
behavior. To fulfill hard real-time requirements is becoming an increasingly
important task in different application areas, e.g. in robotics, control technology,
medicine, etc.
Practical software tools exist for hybrid system modeling. One of the tools is
Uppaal – developed jointly by Swedish and Danish universities, where addition
to discrete event modeling the verification, validation and simulations can be
executed on real-time model. Another software package is HyVisual - Hybrid
System Visual Modeler, developed by UC Berkeley. This modeling environment
has the continuous and discrete event modeling capabilities in same model. Both
softwares have a non commercial version for educational use free of charge. In
addition there are numerous other software tools more or less oriented to hybrid
system modeling, simulation, validation and verification. A list of packages can
be found on Virtual Action Group on Hybrid Dynamic Systems website [HDS].

1.5.3 Petri nets

One possible way to model a hybrid dynamic system is the Petri net concept.
Petri nets were invented in 1962 by Carl Adam Petri in his PhD thesis [Petri62].
The Petri nets or predicate/transition (Pr/T) nets are a graphical representation of
discrete system. The concept is rather simple where the net has place nodes,
transition nodes, and directed arcs connecting places with transitions. The
execution of Petri nets is nondeterministic which means that multiple transitions
can be enabled at the same time, any one of which can fire and none are required
to fire at all. Since firing is nondeterministic, Petri nets are well suited for
modeling the concurrent behavior of distributed systems.

A Petri net is a 5-tuple , where:

• S, is a set of places.
• T, is a set of transitions.
• F, is a set of arcs known as a flow relation. The set F is subject to the

constraint that no arc may connect two places or two transitions, or more
formally: .

 34

• is an initial marking, where for each place , there are
tokens.

• is a set of arc weights, which assigns to each arc
some denoting how many tokens are consumed from a place by
a transition, or alternatively, how many tokens are produced by a
transition and put into each place [Desel01].

 An example of a Pr/T net is shown in figure 13.

Figure 13 The example of Pr/T net modeling of digital behavior [BK93]

Petri nets are often used for modeling of software and digital electronics and
simulating mixed systems [Peltz03]. It is also used in modeling and simulation
of manufacturing systems, hardware design and process modeling. Some authors
have applied the technique to the mechanical and other physical domains
[BSHW97, KTT97]. The main strength of this technique is effectiveness of
dealing the parallel processes. The drawback of Petri nets on the other hand is
their poor structuring facilities. They are thus difficult to use for large scale
systems [EK96].

Some closely related techniques worth to mention are Mixed Logical and
Dynamic Systems framework proposed by Bemporad and Morari

 35

[Bemporad99], Hybrid State System Modelling [Dogruel97], Numerical
Integration method for Hybrid Dynamic Systems [Schlegl97] and others.

1.6 Normatives on mechatronics design

There are some industry normatives and guidelines related to mechatronic
system design process. The latest and probably the widest coverage guideline
has been developed by German Association of Engineers (VDI) in 2002 and
revised in May 2004. The guideline VDI2206 covers the mechatronic design
process proposing numbers of tools for design support. Concerning ISO
standards, there are no direct documents related to the mechatronics design
process. Closer normatives that affect mechatronic system design and conceptual
design are:

• ISO 15288(2002) Systems engineering – System life cycle processes
• ISO 11442-5 (1999) Technical product documentation Handling of

computer-based technical information. Part 5: Documentation in the
conceptual design stage of the development phase

• ISO 10303/STEP Industrial automation systems and integration –
Product data representation and exchange / Standard for the Exchange of
Product Model Data

VDI guidelines affecting mechatronics system design are the following:
• VDI 2206 (2002, revised 2004). Design methodology for mechatronical

systems (Entwicklungsmethodik für mechatronische Systeme.
Richtlinienentwurf)

• VDI 2422 (1994). Systematical development of devices controlled by
microelectronics (Entwicklungsmethodik für Geräte mit Steuerung
durch Mikroelektronik)

• VDI 2221 (1993). Systematic approach to the development and design
of technical systems and products (Methodik zum Entwickeln und
Konstruieren technischer Systeme und Produkte)

International projects and industry standards affecting the system
engineering and mechatronics in general:

• IEC 61499 Function Block Standard [IEC05]
• DoDAF Department of Defense Architecture Framework
• AUTOSTAR Automotive Open System Architecture
• EAST-EEA Electronics Architecture and Software Technologies –

Embedded Electronic Architecture
• RIF Requirement Interchange Format
• SDL System Description Language

Besides the documents mentioned there exist numbers of additional standards
and guidelines proposed by industry or associations. Applying these documents
to the design process depends on the developers need and companies or
customer policies.

 36

1.7 Conclusions

1. In this chapter widely recognized product design process trees are
described and analyzed. Similarities and differences of most well known
process descriptions are pointed out. The mechatronic specific needs and
problems are shown and trends mentioned. Based on the widely
recognized authors an adapted design tree has been compiled. The
adopted solution is primarily originated from the specific needs of
mechatronics and system engineering specifics. Main difference
compared with the classical engineering process is a strong focus on the
integration and early design stage. The major reason is the later
integration issue where all developed sub-systems must work together as
one synergetic system.

2. According to integration issue in mechatronics design, but also the
growing importance of conceptual design support several well known
domain-independent techniques like bond graphs, Petri nets and hybrid
automata are discussed. Advantages and disadvantages of these
techniques as well as main application fields are pointed out.

3. The result of this chapter is an overview of the existing design methods
and domain-independent techniques. It is demonstrated that the optimal
results in complex systems are very difficult to archive with traditional
methods in a mechatronics field. It is not possible to solve the whole
range of early design needs and therefore we need to combine different
techniques with suitable methodologies. This issue is discussed in more
detail in next chapter where state-of-art solutions and research trends are
studied.

 37

2 STATE OF THE ART

2.1 Complex system modeling methods

The mechatronic system development process varies from classical engineering
process in many ways as mentioned several times before. It is still quite new
paradigm and there is no proved methodology in this area. Another reason is that
mechatronics itself is developing at a great pace and the design methodologies
must follow this advancement. However, a number of acknowledged
frameworks exist. Some of them are more practice oriented [VDI04, DODAF]
and implemented in different new technology industries, others are more
theoretical [SEO03, GFK07] and under the research in universities and research
institutions.

A highly industry oriented and huge work has been done by VDI association.
This work stands for a new mechatronics system development guideline known
as VDI2206. This guideline presents the most recent points of view and has been
worked out by 40 well-known specialists in the field of mechatronics.
In the VDI2206 guidelines the design methodology main base elements are
[VDI04]:

• the general cycle of problem solving on the micro-level,
• the V-shape model on the macro-level,
• pre-defined process modules for repeating an operation step during the

design of mechatronics systems.

VDI2206 complements the previous related guidelines like VDI2221
(Systematic approach to the development and design of technical systems and
products) [VDI2221] and VDI2422 (Systematical development of devices
controlled by microelectronics) [VDI2422].
The main aim of this guideline is to support a cross-domain design of a
mechatronic system in a systematic way. Procedures, tools and methods for the
design process are described on the frame of system design approach. The
guideline is supposed to structure the variety of findings which have been
developed through research and industrial applications in the last years and to
introduce them to practice in a concise and understandable way [Gausem03].

The scheme for describing mechatronic design process is the V-shape lifecycle
model shown in figure 14. The model is based on the traditional waterfall
process model but has a set of useful properties in description in the sense that
relations between different design stages can be easily illustrated. Although this
thesis focuses mostly on the first and second phase of the V-shape model
(specification and conceptual phase) as early design stages, the product will be
developed as many circles around the V-shape as needed. Every so-called

 38

product does not have to be a real product, but can be a specification, model,
prototype and of course the product itself as well. Needed interactions depend
very much on the content and complexity of particular product design. This
guideline is mostly adopted in Germany and other European countries.

verification/validation

Figure 14 Adopted V-shape model from VDI2206 [VDI04]

The conceptual design part is denoted here as a System Design. As explained
before, the conceptual design can also be the whole round of V-model, where the
product is a selected concept. It is even possible to have several circles of the V-
model what will lead into selected and optimized solution candidate. The
interaction number depends very much the particular case.

The System Design comprises the following activities according to [VDI04,
PB97, KBS97]:

• Abstraction to identifying the main problem,
• Setting up the function structure overall function – subfunction,
• Searching for operation principles/solution elements for the subfunction,
• Concretizing to form solution variants in principle
• Assessing and selecting
• Establishing the domain-embracing solution concept.

However, before the design process can begin, the need for the product must be
clearly analyzed. This is usually done in the requirement engineering stage
which is not covered by this guideline in depth. In most cases there is a direct
market demand. Although the most new products are market-driven, the design

 39

process can also start without the market demand and in this case the design
process is product or producer driven.

While the VDI2206 is relatively known in Europe, the DoDAF methodology for
mechatronic product design, or more general the system engineering, is the
recognized methodology in U.S. The Department of Defense Architecture
Framework (DoDAF) is a framework for development of a systems architecture
or enterprise architecture (EA). All major U.S. Government Department of
Defense (DoD) weapons and information technology system procurements are
required to develop an EA and document that architecture using the set of views
prescribed in the DoDAF [DODAF]. The intent of the DoDAF is to ensure that
the system architecture description can be compared and related to another
across the organizations. Although the framework is clearly aimed at military
systems, it has broad applicability to define the architecture of complex systems
so that it can be evaluated and understood alongside the other architecture
description developed according to the same guidance. Decision makers can then
use the DoDAF compliant reports to compare the alternative solutions and
evaluate them amongst the existing system [WIDNEY06].

Figure 15 DoDAF views [DODAF]

According to the definition of DoD Architecture Framework Working Group
[DODAF] in the framework, there are three major perspectives (i.e., views) that
logically combine to describe an architecture description. These are the
Operational View (OV), Systems View (SV), and Technical Standards View
(TV). Each of the three views depicts certain architecture attributes. Some
attributes bridge two views and provide integrity, coherence, and consistency to
architecture descriptions [DODAF].

• Operational View
The OV is a description of the tasks and activities, operational elements,
and information exchanges required to accomplish DoD missions. The
OV contains graphical and textual products that comprise an

 40

identification of the operational nodes and elements, assigned tasks and
activities, and information flows required between nodes. It defines the
types of information exchanged, the frequency of exchange, which tasks
and activities are supported by the information exchanges, and the
nature of information exchanges.

• Systems View
The SV is a set of graphical and textual products that describes systems
and interconnections providing for, or supporting, DoD functions. The
SV associates systems resources to the OV. These systems resources
support the operational activities and facilitate the exchange of
information among operational nodes.

• Technical Standards View
The TV is the minimal set of rules governing the arrangement,
interaction, and interdependence of system parts or elements. Its purpose
is to ensure that a system satisfies a specified set of operational
requirements. The TV provides the technical systems implementation
guidelines upon which engineering specifications are based, common
building blocks are established, and product lines are developed. The
TV includes a collection of the technical standards, implementation
conventions, standards options, rules, and criteria organized into
profile(s) that govern systems and system elements for a given
architecture.

2.2 System engineering modeling concepts

According to the International Council on Systems Engineering [INCOSE], the
Systems Engineering “is an interdisciplinary approach and means to enable the
realization of successful systems. The whole design process focuses on defining
customer needs and required functionality early in the development cycle,
documenting requirements then proceeding with design synthesis and system
validation while considering the complete problem of operations, performance,
test, manufacturing, cost & schedule, training & support and disposal”. This
definition points out the importance of early design and integrated activity very
clearly. It also sets high demands for modeling concepts and tools. Hereafter the
most approved and state-of-art system modeling technique based on model
driven architecture is described.

In the software design world UML is de facto standard for object-oriented
software design. Starting with UML 1.1 and UML 1.5 the most recent official
version is now UML 2.0. The primary driving force behind UML 2.0 is model-
driven development, an approach to develop software that shifts the focus of
development from code to models, and to automatically maintaining the
relationship between the two. The essence of software modeling (as in all
modeling) is abstraction: the removal of fickle and distracting detail of

 41

implementation technologies as well as the use of concepts that allow more
direct expression of phenomena in the problem domain [UML].

In today’s world the software engineering is a leader deploying the concept of
model driven architecture. Object Management Group (OMG) – the coordinator
of software standard development has approved the Model Driven Architecture
(MDA) specification in 2001. MDA supports model-driven engineering of
software systems, also the concept is applicable to system engineering as well.
The MDA model is related to multiple standards, including the Unified
Modeling Language (UML), the Meta-Object Facility (MOF), the XML
Metadata interchange (XMI), Enterprise Distributed Object Computing (EDOC),
the Software Process Engineering Metamodel (SPEM), and the Common
Warehouse Metamodel (CWM) [MDA]. However there are some concerns with
MDA approach. So far there is no mainstream industry acceptance; the Gartner
Group still identifying MDA as an "on the rise" technology in its 2006 "Hype
Cycle"[GARTNER], and Forrester Research declaring MDA to be "dead on
arrival" in 2006 [Zeite06]. There are of course always opposite opinions
[Frankel06].

There have been several attempts to apply UML for non-software design.
Serious improvement has been reached in recent years. An important outcome is
OMG SysML specification finalized in this year (2007) which is initially derived
from UML RFP: UML for System Engineers Request for Proposal [SERFP] in
2003. However there are several state-of-art works carried out by research
groups based on the UML profile mechanism:

UML Profile for Schedulability, Performance, and Time Specification
[UMLSPT];
UML 2.0 Profile for Embedded System Design [KRH05];
UML Testing Profile [UMLTP];
UML Profile for SoC (Systems on Chip) [RHSZN05];
UML 2 to Solve Systems Engineering Problems [Gurd03];
UML for Hybrid Systems [BBHP06];
SYSMOD – Systems-Engineering-Profil [Weilkiens06].

Recently the major players in government, industry and ICT have collaborated
to extend UML to cover the domain of Systems Engineering. This new standard
– SysML – is adopted by the Object Management Group in the autumn of 2005
[SysML10]. During 2007 the finalized version of SysML 1.0 is expected. So far
the version 1.0 draft from May 2006 is the adopted specification.
SysML reuses a subset of UML 2.0 diagrams and supplements them with new
diagrams and modeling constructs appropriate for systems modeling. SysML is
designed to complement UML 2.0, so systems engineers who are specifying a

 42

system with SysML can collaborate efficiently with software engineers who are
defining a system with UML 2.0 [SysML09].

The following figure describes SysML modifications and relations with UML
2.0.

Figure 16 SysML diagram taxonomy [SysML10]

SysML language is a modeling language where the system model and sub-
models are described with a set of diagrams. Several diagrams are adopted from
UML and some like Requirement and Parametric diagrams are developed for
this purpose. The concrete syntax and notations are described in SysML
specification which is OMG Adopted Specification ptc/06-05-04 [SysML10].
SysML diagrams can be generally divided into the four sections:

• Requirement specification,
• Structure definition,
• Behavior definition,
• Parametric definition.

When modeling a system, an important primary task is to decide what belongs to
the system and what does not. The Context diagram is an informal way to
represent the boundaries of the system [Balmelli06]. The context of a system can
be defined by combining different elements from different diagrams. The Use

Case diagram is a standard diagram to represent the usage of a system and
interactions between the system and the surrounding environment and actors. It
is possible to use mixed diagrams where several elements from Use Case
Diagram, like Actors and Cases, and from Block Diagram like Blocks, are
compounded into one diagram. The main idea is to draw boundaries over the
system and describe as clearly as possible the contextual view of a system.

The requirement section is a new addition compared with the standard UML
diagram taxonomy. The requirements are traditionally represented by text.

 43

SysML enables to represent requirement as a model element similarly to
behavior or component in a system. This feature makes the model more
consistent and enables the modeler to develop different relationships between
the requirement and other model element. The advantage is that the modeler can
track requirement satisfaction through all the different stages of the modeling
process. The requirement diagram can contain both functional and non-
functional requirements. Depending on the design case or domain profile several
stereotyped requirements with customized attributes can be exploited. For
example a specific predefined requirement stereotype for functional, structural,
economical, environmental, etc. can be defined.

The structure of a new system is defined by two diagrams based on
UML4SysML Class metaclass. A block diagram is usually used for describing
system’s static structure. A block can be any modular unit including a part,
assembly, user, software, etc. It has a specific functionality and interaction
interfaces. It also has a certain collection of features which can be both structural
and behavioral, such as properties and operations. SysML blocks can be used
through all the phases of the system specification and design. Another way to
represent a system structure is to use Internal Block diagram. This diagram type
represents the interactions between blocks and basically defines the usage of the
system components. The block interacts with other elements through the ports.
Several types of ports can be defined depending on the type and flow through
this port. For example, standard ports are used to specify services the block can
provide or is expected to provide from others. Flow ports are used to specify
input and output items that can flow through this port.

Parametric diagram can be used to define a constraint network of a model.
Relationships between the parameters and mathematical expressions can be
defined by this diagram. The parametric model can be also an initial source for
performance analysis and simulations. Through the objective function the
parametric models can be used to compare alternative solutions in different
design stages.

Behavioral modeling is carried out by the Activity, Sequence and State Machine
diagrams, similarly to software system modeling concept. There are various
approaches how to define a system behavior and this depends quite a lot on
design domain and modeler experience. It is possible to model both continuous
and discrete or hybrid systems. However the language itself has no guarantee to
validate the correctness of hybrid system. From diagram point of view the
activity modeling emphasizes the inputs, outputs and conditions for coordinating
other behaviors. The Sequence diagram describes the flow of controls between
actors and systems or between parts of a system. The State Machine defines a set
of concepts that can be used for modeling discrete behavior through the finite
state transition systems [SysML10]. However the actual usage of diagrams can

 44

be treated several ways. Several approaches can be exploited depending on the
engineering experience [SysMLF] or guidelines. Some approaches using activity
and/or state machine:

• The choice depends on the character of the behavior whether it is
process-driven or state-driven. Activity diagrams are more used for
analysis and communication with the customer while a State Machine is
generally used for design and communication with the developers – Tim
Weilkiens.

• Oliver, et al. [OKK] point out that a functional flow block diagram
(FFBD) and a state model are two representations of the same thing. The
essential difference is function modeling. When the focus is on the
functions the Activity suits more and the State Machine is used when the
focus is on transactions between states, respectively. At an abstract level
both can represent the behavior and functions from different viewpoint –
Richard Sorensen.

• As State Machine runs continuously while the condition for that state
exists similarly to software source code, e.g. do-while and do-until. An
Activity on the other hand is a single run through the actions – Daniel C.
Lanotte. The concept can be stated that the state machine is a “parent”
and every state is defined by separate Activity diagram. When state
changes another Activity is executed inside the current state.

• Another opposite approach is that Activity is taken as a “parent” and
every single action has the State Machine specifying the inner structure
of this particular action.

As it can be seen, the behavior of a system can be modeled in different
approaches and there is nothing wrong in it. Even more, the software developers
and system engineers have discussed without consensus about that issue as it can
be seen from SysML developer Michael Latta sentiment in SysML forum
[SysMLF] – “There was some debate on this point in the UML and SysML
specification teams with nothing close to a consensus reached. In the end both
Activities and StateMachines are ways to define a behavior of an object”

Some other diagrams like Timing, Interaction Overview, Communication
diagram, defined by UML can also be used when needed as they are left
unchanged by SysML specification.

The four view picture of modeling diagrams are shown in figure 17.

 45

definition

use

STRUCTURE

BEHAVIOR

interaction

state machine

activity /
function

REQUIREMENTS PARAMETRICS

Figure 17 Four pillars of SysML [OMGSysML]

The analysis and simulation of system model can be successfully supported by a
specific software package. The best known is Matlab/Simulink software. There
are several companies working actively to provide a software platform enabling
a link to SysML model and Simulink component [VD06]. At the moment
Telelogic Rhapsody is the one that has demonstrated the working solution in this
issue [TeleL07].

2.3 Artificial Intelligence methods for complex
problems

Many non-traditional techniques and methods in engineering problem solving
domain have come to the fore recently. One of the reasons is definitely an
increase of the computing power. These opportunities allow solving the
engineering tasks, which can not be described with linear differential equations
and are non-deterministic. The techniques applicable for more advanced
mechatronics system modeling, which are taken into account, are the following:

• Genetic & Evolutionary algorithms
In evolutionary and genetic algorithms mainly four approaches are
distinguished: genetic programming, evolutionary computation,
evolutionary algorithms, and genetic algorithms. The differences are
described in the Hitch-Hiker's Guide to Evolutionary Computation
[HB01]. Here the GA and GP are only explained. Genetic Algorithms
(GA) are basically algorithms based on natural biological evolution. The
architecture of systems that implement genetic algorithms is more able

 46

to adapt to a wide range of problems. A GA functions by generating a
large set of possible solutions to a given problem. It then evaluates each
of those solutions, and decides on a "fitness level" for each solution set.
These solutions then breed new solutions. The parent solutions that were
more "fit" are more likely to reproduce, while those that were less "fit"
are more unlikely to do so. In essence, solutions are evolved over time.
This way you evolve your search space scope to a point where you can
find the solution [HM00]. Genetic Programming (GP) on the other hand
is an extension of genetic model of learning into the space of programs.
It means that population objects are not fixed-length strings but when
executed they are candidate solutions for a given problem [HB01].

• Artificial neural networks
Artificial neural networks (ANN) are collections of mathematical
models that emulate some of the observed properties of biological
nervous systems and draw on the analogies of adaptive biological
learning.

• Multi-agent systems
A multi-agent system (MAS) is a loosely coupled network of problem-
solver entities that work together to find answers to problems that are
beyond the individual capabilities or knowledge of each entity [DLC89].

• Fuzzy logic
Since the seminal work of Zadeh [Zadeh65] fuzzy logics is highly
accepted in industrial applications in order to model non-linear input–
output relations.

A more detailed coverage can be found in [SL03].
These methods are successfully applied in several cases for solving specific
problem on optimization, machine learning, adaptive control, path planning, etc.
For example, fuzzy logic is widely used in controller systems or neural networks
on parameter prediction. However in many cases the theory is applied only in
computer environment while calculating or simulating certain problem. Genetic
algorithms are often used for finding global optimum in case of great state space.
The advantage of AI methods over the traditional is the ability to search over
entire solution space and they are applicable to a wide range of problems
including non-continuous functions and functions involving different types of
variables. Although there have been lots of research results and success when
exploiting AI techniques for a certain problem, applying a single technique for a
complex interdisciplinary problem is not a trivial task. Nevertheless there have
been a limited number of attempts of exploiting the above techniques for design
solution generation.

 47

2.4 Artificial Intelligence based research for
early design

As mentioned above, the conceptual stage of product development process is
extremely important when searching an optimal solution for the final product.
Although there are methodologies for modeling the conceptual design stage,
most work is done according to designer experience and personal predilections.
In the last decade many non-traditional techniques have been widely available,
because of a rapid increase of computational power. Therefore increased
interests exploiting new techniques for modeling purpose has arisen.

Some attempts to combine non-traditional techniques for early stage modeling
are described hereafter in more detail.

2.4.1 Conceptual design supported by multi-agent
system

Rzevski [Rzevski03] introduces the concept of mechatronic systems conceptual
design with the support of multi-agents technology. Intelligent agents are used
for designing mechatronics system in the conceptual phase. The introduced
technology can be used to design small intelligent units capable of competing
and/or co-operating with each other for a specified task and making decisions
under the condition of uncertainty through a process of negotiation. The major
elements of these systems are intelligent agents, which are software objects
capable of communication with each other, as well as reasoning about received
messages. The multi-agent technology is exploited in the software world quite
often to solve complex problems without powerful central unit. Instead, small
independent units are developed and in cooperation they can reach the solution
for complex problem. Applying the technology for a conceptual design is a new
and promising approach. Although this research presents several case studies
there are no clear examples or guidelines how to develop the mentioned agents.

2.4.2 Genetic algorithms with bond graphs

The Genetic Algorithms Research and Applications Group (GARAGe) has
developed a method using bond graphs and genetic programming. The solution
is stated as a unified and automated design methodology for synthesizing
designs for multi-domain systems [SEO03]. The approach evolves designs
(represented as bond graphs) with improving performance. The design is
improved in an iterative loop of synthesis, analysis, and feedback to the
synthesis process.
The approach [SEO03] combines bond graphs (BG) for representing the
mechatronic system model with genetic programming (GP) as a means of
exploring the design space. The flow of the entire algorithm is shown in figure

 48

18. At the very beginning the user has to specify an embryonic physical model
for the target system (i.e. its interface to the external world). That determines an
embryonic BG model and corresponding embryo (starting) element for a GP
tree. From that, an initial population of GP trees is randomly generated. BG
analysis is then performed consisting of two steps – causal analysis and state
equation analysis. Based on those two steps, the fitness function is evaluated.
For each evaluated and sorted population, genetic operations: selection,
crossover and mutation are performed. This loop of BG analysis and GP
operation is iterated until a termination condition is satisfied. The final step in
instantiating a physical design would be to realize the highest-fitness BG in
physical components [SEO03]. The exploited BG technique is quite popular for
representing the multi-domain system. It suits also well for GP and GA trees due
to its clear topology. In this research several results are generated regarding to
mechatronic system design combined with genetic programming. These research
results are a good basis for the further development and integration for
automated concept generation of a mechatronic system.

Figure 18 The GARAGe BG/GP algorithm [SEO03]

2.4.3 Bond graphs with Simulink support

The approach developed by Granda [Granda02] integrates theoretical principles
of bond graph modeling and a graphical software tool called Computer Aided
Modeling Program with Graphical input (CAMP-G). The tool implements the
theoretical principles of bond graphs and then the model is transformed into
MatLab/Simulink. The system generates first order state space differential

 49

equations, symbolic transfer functions and Simulink S functions in source code
from such as MatLab .m or .s files, which Simulink can process. The idea is to
generate automatically the differential equations from the bond graph model.
This means the generation of the system A, B, C, D matrices to produce the state
space representation and also the computer generation of transfer functions and
output equations in symbolic form. For non-linear systems this implies a set of
equations where the individual non-linear constitutive relations can be
accomplished as well as any conditional switches, non-linear time dependent
effects and of course a form suitable for logical execution of all these by MatLab
and the non-linear S functions of Simulink [Granda02].The research focuses on
linking the bond graph theory and software systems. A special design
environment has been developed to automatically generate BG models and then
the models are linked with Matlab/Simulink. Some trivial examples are
introduced and corresponding automatically generated Simulink block
described. However the focus is more oriented to the mechatronic component or
subsystem development rather than the whole system. A considerable result of
this work is a simulation linkage of an initial bond graph model, although it is
achieved by using special software system.

2.4.4 Artificial intelligence method application in
machine design

A mechanical design supportive environment based on AI methods has been
developed by an Estonian research group and covered in the master thesis
[Tiidem01, KT04]. Visual programming for mechanical design in early design
concept is used. The developed system has a graphical schema editor based on
(NUT) system. Experiments have been carried out for the gear drive, drive, d-
chain and power screws. The ExpertPIRZ and NUT [Tyugu91] is exploited as
artificial intelligent tools for automated solution generation. The software
platform is further developed and implemented in Java & C [Tyugu06]. The
work is mainly aimed for specific solution generation automation, e. g. for a gear
drive. For applying the proposed method to another application domain a new
design package needs to be developed for this specific application.

2.5 Conclusions

1. It has been shown that new mechatronics and system engineering oriented
methods and techniques have been developed within last years and in some
respect accepted by the industry. A very recent achievement is SysML
language specification which is a profile extension derived from UML 2.0.
The very final specification is adapted by the OMG and INCOSE in 2007.
At present three main frameworks are considered as state-of-art in
mechatronics design and system engineering – VDI2206, DoDAF &
SysML. In addition to these several research projects are running to find

 50

optimal way to integrate different techniques. Bond graph technique is often
used but not as a pure modeling tool but rather the BG concept itself
integrated with other methods. The interest for AI techniques is rising due to
the availability and increase of computation power. Applicability of these
methods for mechatronics design process is discussed.

2. In the VDI2206 guideline the design process is described and some tools are
suggested to carry on the process. The VDI2206 itself is not a tool but a set
of suggestions how to carry out the mechatronics design process. However,
the support for early design stage is rather poor. Connections between
requirements and concept model are not covered in deep. The SysML on the
other hand defines a modeling language enabling to model the requirements,
system structure and system behavior in an integrated way. Although the
SysML is not implemented by the industry yet, the great potential exists.
The third new aspect in mechatronics early design is the AI methods.
Research focus is turned from theory to practical applications in AI field and
several attempts to automate the mechatronics system design are described
in this chapter. Many research results where AI methods are applied use the
BG concept as a model description technique. In a small system the BG is a
good and universal technique but when the system complexity increases the
graph grows difficult to read and understand. There is also a lack of behavior
and event modeling in the BG concept. However this concept is a good input
for the AI method due to the explicit representation of model topology.

3. Applying the SysML, supported by a domain specific extension to the
design process according to known mechatronics design methodology is a
key factor for effective and successful design in mechatronics field. The
time-to-market demand as well as system complexity have increased very
rapidly and automated design support is therefore needed. However the
developed models have to be assured against requirements. Existing
solutions, described in previous chapters, do not cover all these aspects but
have good features in certain area. The BG concept exploited in several AI
solutions is good enough while used by the machine to create initial abstract
solution or verify the integrity of a sub-system. Nevertheless the
conversation to a more human friendly modeling technique is required,
otherwise it is not going to be used by practicing engineers.

4. In this chapter it is shown that exploiting AI methods the automated model
development is possible. To get more advanced results these methods must
be further developed and bound with methodological design process. A
domain specific extension is definitely necessary to carry out the effective
and optimized design in the early stage. The extension can be design
patterns, widely exploited in object-oriented software design and design
element libraries for reuse.

 51

3 DESIGN FRAMEWORK

In the previous chapter several state-of-art concepts and techniques were
analyzed. There has been discussed that conventional methods and tools do not
cover the integration nature of mechatronics. New concepts and techniques
developed over the last years deal with integrated system engineering but have
weak focus on early design stage.
The proposed approach combines the advantages of new mechatronics and
system engineering works with a focus on early design. The design framework is
a generic model of mechatronics product design in early stage. The framework
compromises requirement engineering, concept generation, concept evaluation
techniques and tools. In previous chapter AI methods were studied. A semi-
automated concept generation method is proposed based on these studies. The
method combines mechatronics design and AI algorithms. The framework is
driven by a model based approach and MDA concept. Based on that fact main
MDA advantages like interoperability, portability and component reuse
[POK01] are derived. Component reuse is one of the key factors in the proposed
framework model. Reuse is well exploited in the software world during several
years already. For example, in Japan where the software development and
robotic innovation is undoubtedly the world leader component reuse is very
widely used [Cusu91]. Several companies have reached the reuse level 25-50%
and in some certain projects even around 90% [JGJ98]. Component reuse leads
to substantial gains like reduction of time to market, defect density and
maintenance cost. It is stated that the overall reduction of development cost in
software design is 15% to as much as 75% in a long term project [JGJ98]. It is
clear that the reductions of these factors are not automatically guaranteed, but
show however the possibilities and hidden resources when applying the reuse
concept. In mechatronic systems many design concepts are developed from
scratch but nearly always elementary parts and standard assemblies are used in
domain-specific development stage. This is even more characteristic to robotics
applications where a certain sub-set of common solutions is integrated from
different fields, adding certain new design elements to achieve a quite well
defined goal within specified constraints. The similar reuse concept is also
exploited by mechatronics design tools and is known as a standard component
library. Well known mechatronics system development environments like
Dymola, AMESim, Adams, etc. use component libraries for different
mechatronics subdomains, e.g. mechanics, electronics, hydraulics, control, etc.
and methods, e.g. multibody, bond graph, etc. However in early design the
concept generation is usually developed from zero and no suitable pre-defined
models are available. The quality of the result is based mostly on the experience
of engineering team and available technical aids.

Applying the model based design and component reuse to the early design
technique is one of the challenges of this work. Process automation is taking

 52

place almost in every field. Some recent research works in mechatronics design
are presented in the previous chapter, where design solutions were developed
automatically. Based on these experiences and research results, an early design
semi-automated concept is proposed and described in papers [Sell04b, Sell04c].
The automated design is not however always suitable and therefore the solution
is proposed as a reference or an alternative and complementary option for
engineering teams. It can be successfully combined with traditional methods and
ways the engineering teams are used to use.

To achieve the reuse benefit in conceptual design a template system is
introduced. The idea can be compared with the software object-oriented design
where design patterns are exploited. The conceptual model template system
itself is a generic approach and is not restricted only to robotic applications. The
initial concept is proposed by the author in paper [ST03].

3.1 Semi-automated conceptual design

The proposed generic early stage development approach consists of techniques
and tools for three integrated sub-stages: requirement modeling, conceptual
solution modeling and conceptual solution simulations [Sell05]. All stages are
supported by the specific toolkit and algorithm libraries. The toolkit consists of
rules and template libraries for the specific application domain. A template class
from the template library provides a parameterized description of the model
element, subsystem and working principle, specifying its attributes and
operations. The conceptual solution modeling is a design candidate development
process where alternative solutions are developed and evaluated. The generic
process concept developed tools are illustrated in figure 19.

 53

Application Toolkit

Design candidate

creation

GP Schema

Engineering decisions Initial simulation

Solution

Candidate

Requirement

Model

Simulink

Model
Toolkit

profile

Figure 19 Generic concept of early stage design

The automated solution candidate creation process is proposed to carry out with
the interaction between GP schema and engineering team. The specific GP
schema develops a base design candidate based on the so-called embryo model.
The prototype of this kind of GP schema has been developed by the GARAGe
Group [SEO03] from Michigan State University, discussed in detail in chapter
3.4.2. An analogous schema is proposed to use in early design semi-automated
solution development process in this framework.
The GA and GP concepts for real system design generation have been in
research focus in many areas. Probably the most known work is [KBAKD97]
where GP concept is used to automatically synthesize the topology and size of
analog circuits, including low-pass filters, controllers, and amplifiers. There are
several other works in automated analog circuit design based on GA and GP
concepts [Grim00, LC99, FSGRZ01]. The dynamic system automated design is
studied by Tay a. o. [TFB98], where bond graphs are used as a system
representation.
Exploiting the BG concept tends to be popular in automatic design process as
well as conceptual design [Coatanea05, Granda02, SEO03, TS05]. Although the
concept has disadvantages and is not widely used by practicing engineers, it suits
well for different algorithms due its clear semantics and universal representation

 54

of integrated system’s topology. It suits well also for GP algorithm proposed by
the GARAGe group where the input and working model is expected to be bond
graph model. Therefore the prototype algorithm proposed to be exploited within
this framework use a BG concept as well. However the disadvantage of BG is
the reading difficulty in case of complex systems. In addition the BG is
representing the system structure but not the behavior and context which is
important when developing an integrated system. According these concerns the
proposed modeling approach exploits the BG representation for automated
design candidate creation while the rest of the process is carried out by the
support of SysML & application profile extension. It needs some conversation
between BG model and SysML model. Initial concept is generated by the
engineering team, inversely the usual GP initial input which is generated
randomly. Some common solution development techniques like brainstorming,
635 method, Delphi method, etc. can be successfully exploited as preferred by
the particular engineering team.

The process is roughly divided into the following steps:

• The initial solution developed by the engineering team as denoted
before, is an input for GP schema and has to be represented by the bond
graph technique as the algorithm accepts only this format.

• The concept generation and evaluation is an interaction between
engineering team and GP schema. The algorithm generates design
candidate according to initial input and requirements. The output of the
GP schema is BG representation of design candidate and has to be
converted to the SysML. The solution itself is modeled by the SysML
domain specific toolkit.

• After the end of GP run engineers start to evaluate the result developed
by the algorithm. When necessary they can set additional constraints and
limitations. Depending on the maturity of the output, additional runs can
be executed. Several outputs can be collected to start a more deep
evaluation through the initial simulation procedure.

• Different developed solutions are specified with simulation parameters
and bound with a simulation algorithm in the template library. The
initial simulation is executed and results are compared. The interaction
number depends on the problem complexity and application domain
specifics.

• The overall result is an optimized and simulated solution candidate
which will be further developed in detail design stages.

The developed profile supports the early design, but can be easily expanded to
support the whole design process. Therefore it is advisable to exploit the tools
used in conceptual design also through the whole design process with the
support of domain specific tools. This guarantees the model consistency and
compatibility with requirement model. An additional feature is automated
documentation generation through the whole process, including design changes.

 55

3.2 Framework application

3.2.1 Modeling approach

The modeling approach adopts the V-macromodel proposed by VDI2206
guideline [VDI04] which is initially adopted from software development process
[Brö95]. The V-model is transformed to reflect the conceptual stage where the
product of cycles is the solution concept. In VDI V-model, the System Design
part reflects partly the early design dealt in this thesis.

The modeling approach of this research refines the conceptual modeling and
emphasizes the requirement engineering and linking requirements to the model
element. The adopted V-model focusing on the conceptual design is presented in
figure 20.

Requirement
engineering

Initial
requirement list

Solution
candidate

Concept evaluation

C
o
n
ce

p
t
s i

m
u
la

tio
n

C
o
n
ce

p
t g

e
n

e
ra

tio
n

Figure 20 V-model for conceptual stage

According to the proposed adoption the process starts with requirement
engineering where the initial requirement list is expected to be provided by the
customer. In most cases it is represented as a text document and graphics. Based
on this documentation the requirement engineering stage refines and formalizes
the requirements followed by the toolkit formalization rules. The requirement
engineering has several stages where the models can be refined according to
progress of development. The concept generation and evaluation is interactive
process carried out either by the proposed AI algorithms, discussed in chapter

 56

3.1, or by the engineering team as usual. Whatever method is used the concept
generation sub-steps have to be dealt anyway. When the design concept is
mature enough it is bound with simulation model and executed in the simulation
environment. Several pre-defined simulation algorithms are available in toolkit
libraries and additional algorithms can be developed according to the current
need. For example in mobile platform toolkit, the performance simulation model
is linked with a design candidate and a key performance parameter evaluation
algorithm is executed. The solution generation should not end with the first cycle
but has to develop several solution candidates which can be evaluated against
each other and compared with requirements. The best matching solution
candidate will be selected and passed to the next stage.

The mechatronics design process involves several related models in concept
generation process. Each model describes a specific aspect of the system like
behavior, static structure, dynamics, etc. and has available diagrams and
documents in a predefined format. In this approach SysML with toolkit
extension used as the modeling language is. The toolkit is derived from SysML
by the standard extension mechanism. The SysML itself is derived from UML
2.0 by the same mechanism and is consistent with the OMG Meta Object
Facility (MOF). According to this mechanism the language can be extended by
the stereotypes or restricted by the subset of metamodels. In addition to profile
the model libraries are included to embrace the design templates with reusable
model elements sub-systems parts, working principles and so on.

3.2.2 Template libraries

In our case a template is defined as a parameterized model element that
describes or identifies the pattern for a group of model elements of a particular
type. The templates are not directly used in models. Instead, they will be first
initiated by binding the parameters to actual values, in the similar way as
software patterns used in Rational Software Architecture [RSA]. The binding
between a template and a model element generates a new model element based
on the template like a specific drive or transmission mechanism, robot leg or
manipulator mechanism etc. Then it can be used as bound element to model part
of a system [RSA].

In this approach different types of design templates are developed and organized
into libraries. These templates are used for robotics applications whereby the
main goal is to retain advantages for early design stages of usage of component
libraries offering design alternatives verification and fine tuning capabilities at
the same time. Derived from the effect of the real-world nature the mechatronic
system design templates, as a part of the toolkit, are grouped as Diagram
template library, Model & Principle template library and Algorithm template
library. Template package is illustrated in figure 21.

 57

«ModelLibrary»
Diagram

«ModelLibrary»
Model &
Principle

«ModelLibrary»
Algorithm

Figure 21 Template package

Each library consists of several sub-categories. The detail content and structure
of the library depends on the application toolkit. Nevertheless the standard
subcategories are proposed as follows:

• Diagram template library (system view)
o General Requirement
o Subsystem Requirement
o System Context
o System Behavior
o System Static Structure
o Subsystem Interaction
o System Dynamics

• Model & Principle template library (component view)
o Mechanics
o Hydraulics
o Electronics
o Control
o Real-Time
o Robotic

• Algorithm template library
o Performance
o Power Consumption
o Robustness
o Reliability
o Control

Additional subcategories are application toolkit specific and specified in the
toolkit specification where application domain characteristics are taken into
account. However the subcategories overlap between similar domain toolkits
and are therefore stored into general library with domain tags.

 58

3.3 Mobile Platform Toolkit

The robotic platform and its design methods have gained a constant by growing
attention in several sectors. Recently the European Robotic Platform network
EUROP [EUROP] was established to support new companies and networks in
maintaining and strengthening the Europe position in the robotics technology
field. Many other similar actions taken and networks [CLAWAR, EURON]
indicate a strong focus on the robotic sector. These actions produce a clear need
for effective and compatible development methods suitable for SME type
companies as well as research institutes and other stakeholders. Based on these
trends Conceptual Framework of Mobile Robotic Platform has been selected.
The Mobile Platform Toolkit (MPT) is an application example, and based on this
example additional profiles for different mechatronics sub-domains can be easily
developed. It is clear that some parts of toolkit will overlap on the future and
these parts, e.g. Principle Library, can be used crosswise.
The mobile platform has been dealt with as a generalization of different types of
(mainly electrical) vehicles. A mobile platform can have several totally different
locomotion types. An overview of existing locomotion applications is given in
technical report [Brooke03]. However it is clear that a conventional wheel is the
most common locomotion type and therefore the main focus is on this type. In
addition, the special focus is on hybrid locomotion and dynamically configurable
locomotion. During the doctoral research a unique dynamically configurable
wheel-leg (wheg) has been invented and patent application compiled.

<<modelLibrary>>
Principle <<profile>>

SysML

<<profile>>
Mobile Platform

Toolkit

import <<modelLibrary>>
Terrain

<<modelLibrary>>
ContactType

<<metamodel>>
UML4SysML

import

{Custom libraries can
be added by
developer}

import

import

import
verify

<<package>>
Simulation
algorithms

 59

Figure 22 Mobile Platform toolkit structure

The toolkit is defined as a SysML profile and external simulation package
algorithms. The profile itself consists of template libraries, diagram extensions
and model libraries. Standard model libraries are Principle, Terrain and
ContactType.
The model library Principle is a collection of standard mechatronic sub-systems,
elements and working principles. This library is the most similar to the existing
design software packages part library concept where standard parts are defined
and collected into categories.
The MPT Principle library contains also the working principles and subsystems
formulated in SysML and an extended profile. This means that similar
subsystems can be found in different libraries but the abstraction level is higher
and the subsystem is defined in formal language rather than physical component.
The boundaries between the physical domains are not very sharply defined and
can be determined later on detail design stage. The model can be developed by
linking the subsystems and working principles from library with loosely coupled
relations whereas the certain key parameters are defined. These parameters are
in most cases derived from the requirement model and are related to many other
parameters of a system. For example, a simple mathematical model linking
different parameters is defined by Parametric diagram and key parameters are
defined with extended stereotypes.

Terrain and ContactType library are holding the parameters of different terrain
and vehicle-soil contact. The reason for establishing the Terrain and
ContactType library was the mobile platform performance analysis and
simulation need. Depending on the required terrain capabilities, the mobile robot
must deal with obstacles, surface characteristics, slopes, etc. Terrain properties
affect greatly the robot design where a smart and optimal design can save the
energy, improve the performance, optimize the budget and so on. These
parameterized models can be linked to the design element or design candidate
and used in initial simulations.
The terrain vehicle relation in off-road conditions has been studied for a long
time already. However the terrain properties are not very easy to define and
mostly the statistical and heuristic methods must be exploited [Bekker69]. The
Terrain library holds the terrain model described with the following
characteristics:

• Terrain structure
• Holes and humps
• Obstacle density and distribution
• Geometry of terrain obstacle
• Irregularities
• Mechanical properties of soil:

o viscosity

 60

o moisture
o density
o nature of the surface (ice slice, low blanket, vegetation)

Although the terrain is described by several parameters the real terrain condition
is never fully met. However, simulating a locomotion model linked with
different terrain models gives the designer a valuable feedback when comparing
concurrent design solutions. Some parameters have a bigger effect than others in
different situations. For example, the lack of vehicle traction may be caused by
extraneous situations like rain or freezing in outside driving and initial surface
roughness has only incidental relation to it. Terrain classification based on
geomorphology or botanical concept is not suitable for mobile locomotion study
[Bekker69]. Therefore the Terrain library is introduced and only selected
parameters are included to the terrain description. The structure of a terrain
library objects is described in figure 23.

Obstacle
Hole
Soil
Obstacle_distribution
Hole_distribution
Irregularity

Terrain
Size:range
Geometry:type
Material:type

Obstacle

Viscosity :real
Moisture:real
Density:real
Natural:type

Soil

Deepness:range
Geometry:type
Slope:range

Hole

Figure 23 Terrain library structure

The ContactType specifies the wheel-surface or actuator-surface (in case of non
wheel locomotion) contact characteristics for advanced locomotion analyses and
simulation. The ContactType is very tightly related to terrain and is used more
for mechanical analysis of wheel-terrain interaction. The ContactType library
element can analogously be connected with the model element and used for
example wear analysis. One important end-application is railway vehicles where
disc-disc contact can be picked from the library and the wear analysis in various
design solutions and environmental conditions can be executed. In a similar way

 61

the tire-road friction simulation can be carried out with the connection of
ContactType library element.

The profile itself consists of pre-defined diagram templates and extended
diagram elements – stereotypes. Requirement and design template included into
Mobile Platform Toolkit is described in tables 2 and 4. These templates are
specific to the mobile robotic platform. However some of them can be
successfully exploited when developing a similar mechatronic system. For
example navigation templates can be used when developing an automatic car
navigation system for automotive industry. Depending on a particular
application domain the corresponding templates may still need smaller or bigger
adjustments.

3.3.1 Requirements model

Requirements are the foundation of the project. Every requirement is tightly
related to the cost and end solution, therefore the requirement modeling and
analysis must be carried out with great attention. Big changes in requirements on
later design process may increase significally the cost of the whole project.

Requirements arise from various sources like customer needs, regulations and
legislation, organization environment restrictions and technology availability,
etc. The requirement definition is a complex process and typically includes
performance analysis, trade studies, constraint evaluation and cost analysis.
Depending on the problem domain different requirement templates can be
defined.

Toolkit requirement extension specifies additional stereotypes derived from the
base stereotype <<Requirement>>. The profile enhancement exploits some
non-normative requirement stereotypes proposed in SysML Appendix C
[SYSML10] and additional profile specific elements. Following general
mechatronics design and robotic platform specific aspects are considered:
structure, functions, performance, environment, cost, payload, navigation, safety
and performance. In MPT a requirement is defined by the textual representation
of the constraints and the values of the parameters. Textual representation can
refer to more detail document e.g. requirements defined by the client. Default
parameters for extended requirement element are Weight, Risk,
OptimizationDirection, and Source. Optional parameters are ConsistentStandard
and VerifyMethod. Based on the extended requirement several sub-level
requirement elements are specified. Every sub-element can have additional
parameters and constraints. Base structure of requirement model hierarchy is
described in figure 24.

 62

Id
Text
Weight
Risk
OptimizationDirection
Source
ConsistentStandard
VerifyMethod

«requirement»
extendedReq

«extendedReq»
functionalReq

KeyPerformance

«extendedReq»
performanceReq

KeyParameter

«extendedReq»
structuralReq

«extendedReq»
safetyReq

CommSpeed

«extendedReq»
interfaceReq

MaxCost

«extendedReq»
economicalReq

Emission
WorkingTemp
WorkingHumidity

«extendedReq»
environmentalReq

«extendedReq»
navigationReq

LocomotionType
SpeedRange
ObstacleSize
Slope

«extendedReq»
locomotionReq

«testCase»
FunctionTest

«testCase»
SafetyTest

«satisfy»«satisfy»

Figure 24 Requirement template elements

During the requirement modeling the suitable template will be instantiated by
binding the parameters to the actual values. The single requirement element or
the entire template for the domain problem can be initiated depending on the

 63

actual need. Every template element has general parameters and optional
parameters. Only necessary parameters can be bound.

Table 1 Add-on stereotypes in MPT

Requirement /Parent Parameters Description Constraint
<<extendedReq>>
<<requirement>>

Weight
Risk
OptimizationDirection
Source
ConsistentStandard
VerifyMethod

Extended
stereotype –
The base for
extended
stereotypes.

n/a

<<functionalReq>>
<<extendedReq>>

n/a Platform basic
functions –
operations and
behavior the
system must
perform.

Must be
bound with
a testCase.

<<performanceReq>>
<<extendedReq>>

KeyPerformance Measures
quantitatively
the extent to
which a system
satisfies a
required
capability.

Satisfied
by a value
property
and block
constraint.

<<structuralReq>>
<<extendedReq>>

KeyParameter Specifies the
physical
dimensions
and
characteristics
of a system.

Satisfied
by the
block
element.

<<safetyReq>>
<<extendedReq>>

n/a Specifies the
safety
conditions and
standards the
system must
meet.

Must be
verified by
the
testCase
specified
with given
standard.

<<interfaceReq>>
<<extendedReq>>

ComSpeed Specifies
interfaces
between
subsystems
and/or
environment.

n/a

 64

<<economicalReq>>
<<extendedReq>>

MaxCost Specifies the
economical
constraints for
a system or
sub-system.

n/a

<<environmentalReq>>
<<extendedReq>>

Emission
WorkingTemp
WorkingHumidity

Environmental
requirements.

n/a

<<navigationReq>>
<<extendedReq>>

n/a Specifies the
platform
navigation
requirements.

n/a

<<locomotionReq>>
<<extendedReq>>

LocomotionType
SpeedRange
ObstacleSize
Slope

Locomotion
requirements
of mobile
robot.

n/a

The requirement models are developed in cycles of interaction levels. Depending
on the problem complexity and quality of the customer requirement list, the
number of interaction levels can vary. The proposed model sets three standard
interaction levels as a general guideline for mobile platform developer.

Level I Base diagrams, directly derived from the requirement list. Every

requirement element is specified by id and text or link to full text in
external documentation. The requirements are decomposed into
sublevels as deep as specified in initial requirement list.

Level II Requirement elements are refined with additional parameters defined
by the toolkit. Some parameters can be left blank or defined with a
range of values. Main requirements are connected to the behavior and
structural elements in Activity, State Machine or Block diagram.

Level III Every base requirement has a refined verification link with testCase
specification. Initial simulation may be passed in this stage and
corresponding requirement property assigned.

 65

Table 2 Requirement templates in MPT

Template
type

Template name Level Description

Requirement req_general I General requirement hierarchy.
System and sub-system
generalization structure.

 req_platform II Platform Structure. The main
requirement of platform sub-
systems.

 req_energy III Energy requirement specification.
 req_locomotion III Locomotion requirement

specification.
 req_navigation III Navigation requirement

specification.
 req_payload III Payload requirement specification.
Use Case uc_context I Context specification of given

problem. System boundaries and
external interaction.

Described requirement templates are pre-defined in MPT enabling to start the
conceptual modeling process quickly with initial models on the front. Although
the profile defines the mobile robotic platform specific templates, some of them
are more general (e.g. req_general, uc_context) and can be used across the
systems, or some are universal for different mechatronics product (e.g.
req_energy, req_navigation). A template system has an open architecture and
every company or engineering team has possibility to build his own additional
templates or even template libraries.

3.3.2 Design model

The conceptual design level is actually the first stage to start with the
development of the desired system which should correspond in maximum and
optimal way to the set of the requirements. The stage is tightly related to the
previous one – the requirement modeling.

Tools for modeling the system structure and component interactions are Block

Definition diagram, Internal Block diagram and Parametric diagram. The static
structure of the system is represented by the Block Definition diagram. The robot
structure is represented as a component hierarchy or the system classification
tree. In this case different relationships could be used. In the Principle library
two different types of design element units can be found.

 66

• A single block, representing a logical unit of a system. This is usually a
physical component like a motor, an electronic device or a control
algorithm.

• Group of blocks, representing a logical model of a subsystem. This is
usually a smaller unit of the system like a drive, an operator interface or
an obstacle avoidance algorithm.

The block element encapsulates parameters and operations that can be hidden in
certain design level. The system behavior is described with Activity and/or State

Machine and Sequence diagram. The particular behavior model corresponds to
specific requirement element defined in requirement model. The model specifies
the actual way how certain requirement is satisfied and how the system or
subsystem behaves in different defined conditions. These conditions are either
use scenarios defined by Use Case or environmental conditions. Environmental
aspects are temperature, humidity, pollution, etc. which can be simulated when
appropriate simulation algorithm is available in Algorithm Library and terrain
conditions where behavior model can be linked with selected terrain profile from
Terrain Library. The Activity and State Machine will specify also the
verification procedures and test cases to ensure the requirement satisfaction.

The toolkit concept design extension specifies additional stereotypes derived
from base stereotypes: <<Block>>, <<Actor>>, <<Action>>, <<State>> and

<<Bindingconnector>>. The following figure shows the abstract syntax of
extensions.

«metaclass»
Block

«stereotype»
Energy

«stereotype»
Structure

«stereotype»
Converter

«stereotype»
Joint

«stereotype»
Obstruction

«stereotype»
Source

«stereotype»
Body

«stereotype»
Storage

«stereotype»
Link

«metaclass»
Bindingconnector

«stereotype»
Transformer

«stereotype»
Sensor

«stereotype»
Actuator

«stereotype»
Ground

«stereotype»
Structure

«stereotype»
Part

«stereotype»
Subsystem

Figure 25 Abstract syntax of structure design stereotype extensions

It can be argued about the stereotype selection and definition but the stereotype
derivation mechanism allows the designer to define new objects based on the
metaclasses or toolkit stereotypes. Therefore the general approach is proposed

 67

here which can be expanded according to the need of a particular case. When
derivation mechanism is followed the new introduced block will be fully
compatible with the existing software supporting the UML/SysML design. At
the present moment (2007) MDG Technology for SysML (Sparx Systems),
Rhapsody (Telelogic), SysML Toolkit (EmbeddedPlus), Artisan Studio (Artisan
Software), TAU G2 (Telelogic) and MagicDraw (No Magic) have stated the
support for SysML/UML modeling.

«metaclass»
Actor

«stereotype»
Terrain

«stereotype»
Human

«stereotype»
Obstacle

«stereotype»
Driving

«stereotype»
Communicating

«stereotype»
Calculating

«metaclass»
Action

«metaclass»
State

Figure 26 Abstract syntax of behavior design stereotype extensions

Table 3 Stereotype description

Stereotype / Parent Parameters Description
<<subsystem>>
<<block>>

n/a Designates the well bounded
subsystem usually with well
defined inputs and outputs.
Mechanical assemblies can be
defined as subsystems.

<<part>>
<<subsystem>>

n/a The part stereotype is a general
entity for physical parts. It can be
used as a black box for undefined
parts used in platform design.

<<converter>>
<<block>>

Input
Output

General stereotype for different
kinds of energy or movement
converting elements.

<<sensor>>
<<converter>>

Type

Common sensor stereotype.
Designates all components
measuring some physical
phenomena and outputting a
signal.

<<actuator>>
<<converter>>

Type
ForceTorque

All type of actuators: electrical
motors, hydraulic,
electromagnetic, etc. actuators.
Converts energy from one

 68

domain to other.
<<transformer>>
<<converter>>

TransferCoefficient Designates converters which
convert energy or movement in a
same domain. For example
transmission, electrical
transformer, etc.

<<structure>>
<<block>>

Dimension
Material
Mass
GravityCenter

General element for construction
material, frames, joints, etc.

<<body>>
<<structure>>

n/a Body construction elements.
Rigid structure elements.

<<joint>>
<<structure>>

Type Joints, e.g. rotational pairs, linear
joints, etc.

<<ground>>
<<structure>>

n/a General ground point.

<<energy>>
<<body>>

n/a Energy elements of platform.

<<storage>>
<<energy>>

n/a Energy storage elements, e.g.
springs, capacitors.

<<source>>
<<energy>>

n/a Energy sources, e.g. batteries,
fuel cells, compulsion engine,
etc.

<<obstruction>>
<<energy>>

n/a Energy consumers, e.g. resistor,
damper, etc.

<<bindingconnector>>
<<link>>

flow
effort

Special connector for elements,
used when flow and effort have
to be transferred.

<<terrain>>
<<actor>>

n/a Specific external user which may
be linked to the Terrain Library.

<<human>>
<<actor>>

n/a External user with specific
interface, i.e. HMI.

<<obstacle>>
<<actor>>

n/a External object which affects the
platform capability.

<<driving>>
<<state>>,<<action>>

n/a General activity or state
reflecting the platform movement
or driving commands.

<<communicating>>
<<state>>,<<action>>

n/a General activity or state
reflecting the platform
communication procedure.

<<calculating>>
<<state>>,<<action>>

n/a General activity or state
reflecting the platform
calculating needed parameters.

 69

The MPT Diagram library incorporates template categories for concept design
described in table 4. Diagram templates are divided logically according to
SysML diagram types.

Table 4 Design templates in Mobile Platform Toolkit

Template type Template name Level Description

Block
definition

bdd_general I General sub-system
hierarchy. System and sub-
system generalization
structure.

 bdd_body II Chassis subsystem.

 bdd_energy II Energy subsystem.
 bdd _locomotion II Locomotion subsystem.
 bdd_sensor II Sensor subsystem.
 bdd_communication II Communication subsystem.
Internal block ibd_system II Subsystem interaction (port

types and flows)
specification.

 ibd_energy III Energy component
interaction.

 ibd_locomotion III Locomotion component
interaction.

 ibd_control III Control, sensor &
communication component
interaction.

Activity act_system II Main functions.
 act_autolocomotion III Automatic locomotion

function.
 act_pathplanning III Path planning function.
 act_navigation III Navigation function.
 act_obstacleavoidance III Obstacle avoidance

function.

The interaction levels are defined similarly to requirement level definition.
Level I System and subsystem hierarchy, subsystem general interactions are

defined. The main functionality and system states are indicated.
Level II Subsystems are opened and defined in general ‘black box’

components. The parameters of subsystems are initiated. Subsystem
inner activities are distinguished.

Level III Component parameters are defined and cross diagram relationships
established. The allocation diagram can be used to define these

 70

relations. System and subsystem behavior is opened as detail as
needed. The parameters of model and component are defined
according to selected simulation model need.

3.3.3 Linking design and requirement templates

In the product development process it is extremely important to follow the
requirements during the whole development process. It is even more important
in mechatronics domain and robotics, because the integration of classical
domains sets much higher demands for the design solution in terms of system
validation and assurance of desired properties. The verification and validation
for a mechatronic system described in VDI2206 are relevant also for the
conceptual stage, dealing with first analysis and simulation schemes to
determine the best solution candidate.

The SysML specification gives us good tools for linking requirements with
design templates. Several relationships are specified for templates, enabling
designer to relate requirements with model elements or with another
requirement. Figure 27 describes by the example how a model element could
satisfy a defined requirement.

Text: Ref. Spec. 3.a
Id: 3.4
Risk: High
Weight: 0.8
OptimizationDir .: max
Source: CustomSpec
Standard: JAUS
VerifyMethod: TestCase3
MaxCost: 20%

«FunctionalReq»
LiftPower «subsystem»

JointDrive

«block»
Joint

«Activity »
«testCase»
TestCase3

«satisfy»

«verify»

«UseCase»
Lifting

«refine»

Figure 27 Linking requirements and design

In this example JointDrive subsystem and Joint block are implemented to fulfill
the functional requirement LiftPower. Model elements are represented here as
black boxes and are linked to the block definition and the internal block
diagram. The refine relationship is used to describe how the model element can
be used to refine the text based requirement. In the figure the UseCase Lifting is
a context diagram, where the system functionality and interactions with the
environment are graphically presented. This gives additional knowledge about
the requirement background and rationales. In terms of validation and
verification the verify relationship is the most important connection between the
requirement and the design model. The verify relationship describes how the test
case verifies the requirement. Verification methods are available in the template
library and can be bound with the particular requirement. The verification
mechanism can be an abstract numerical algorithm or an executable simulation

 71

model. In MPT the test case is defined as simulation models. For example
performance simulation algorithm using external pre-defined Simulink model.

3.3.4 Simulation model

The simulation model is defined by the Constraint Blocks model or specific
model element. The simulation model can be linked to the design candidate or
the simulation model can be included to the design element through the simu
stereotype. In case of the standard simulation procedure the appropriate model
can be picked from the simulation Algorithm library. The specific relations
between the system parameters exist and these are defined by the Parametric
model. The idea is that parametric diagram defines the mathematics and
constraints of a subsystem and based on this model it is possible to generate the
Simulink block model, namely S-function. Later on the same Simulink model
can be linked to component in bdd model.
The MPT defines two additional parameter types: KeyConstraint &
PerformanceConstraint. These stereotypes add to the Constraint Block
parameters additional typed parameters – KeyParameters and
KeyPerformanceParameters respectively.

«stereotype»
ConstraintPropetry

«stereotype»
KeyConstraint

«stereotype»
PerformanceConstraint

«metaclass»
SysML:Blocks::
BlockProperty

«metaclass»
SysML:Blocks

«stereotype»
Simu

Figure 28 Parametric and simulation stereotypes

Key parameters are the typed parameters which affect very strongly the system
behavior. Key performance parameters are the most important performance

 72

requirements which are requested by the customer and cannot be yielded. These
parameters are also very important from the point of view of simulation.
Simu stereotype has the following additional defined parameters:

- InitParams
- SimulinkModelRef
- SimulinkCodeRef
- SInputs
- SOutputs

The following figure illustrates the usage of the stereotypes and the parameter
network.

<<KeyConstraint>>
name 2:Equation

keyParameter:
param 1

keyParameter:
param 4

param 2

param 3

param 5

Id=1

«requirement»
req 1

Id=2

«requirement»
req 2

<<KeyConstraint>>
name 1:Equation

«satisfy»

«satisfy»

{ math. equation }

Figure 29 Parameter interrelationships

The constraint blocks are denoted here as Equation which describes the
mathematical relations and connections between the parameters. This diagram is
in most cases the source for generating (or selecting from library, if exists) the
simulation model in target environment. The Simulink software is the most
known and therefore the Toolkit implementation examples are oriented to this
software package.

For the model verification and the solution candidates comparison against each
other, the system is divided into subsystems using subsystem metamodels. These
subsystem metamodels can also be divided into component models.
MatLab/Simulink simulation model has a hierarchical structure and each block
can be flexibly composed from configurable sub-blocks. In order to execute the

 73

simulation model, it has to be linked with the source model developed with
Toolkit. The linkage is based on defining the relationships between the design
model block and the simulation model component. The MPT defines a
simulation stereotype <<simu>>. The simu is a stereotype of the block
metaclass. It is possible to define a certain block as <<simu>> and link it with a
pre-defined Simulink model. The stereotype and its usage are shown in figure
30.

«simu»
name

«ModelLibrary»
SimulationAlgorithm«apply»

{strict}

«stereotype»
Block

Figure 30 Simu stereotype

 74

3.4 Conclusions

1. In this chapter the generic concept for early design process is proposed. The
base methodology has been developed and denoted as Conceptual
Framework Model (CFM). The concept features a semi-autonomous design
concept generation, template libraries and initial simulation. The concept
model itself is a general model with suggested methods and techniques. The
real design process depends on the problem domain, complexity and several
other aspects. The semi-automated design concept generation is described.
The generated design model is mapped with Simulink pre-defined model
and a scheme for utilizing other software tools (in case of available mapping
interface) is proposed.

2. Early stage design templates have been introduced as practical pre-defined
design elements. Template libraries have been composed for requirement
engineering and model design purpose. The template concept makes it
possible to reuse the conceptual models and its elements bringing the
advantage of reuse into mechatronics system conceptual design. The benefits
include faster time to market, optimized design solutions and effective
resource allocation.

3. Based on the template concept and CFM, the domain specific Mobile
Platform Toolkit (MPT) is developed. To fulfill the requirements described
initially by the customer and modeled in the requirement engineering stage,
the model and requirement mapping guidelines are described. According to
the profile rules certain stereotypes demand certain design elements to
satisfy or refine the particular requirement. These are described as extended
stereotype constraints. Requirement element verification is ensured by the
test case which is an activity or a state machine.

4. The result of this chapter is a definition of the design framework, including
the generic model and the template library. The toolkit for the mobile robot
platform design is developed. As it is well known that a new technique is
best acquired with the learning-by-example approach the implementation
example should be discussed. The proposed early design concept and
Mobile Platform Toolkit particularly is implemented in a real mobile
platform design case and covered in detail in the next chapter.

 75

4 IMPLEMENTATION PROCESS

The developed methodology and tool are intended to help speed up the
conceptual design process, improving the efficiency and productivity at the same
time. The guideline is intended to summarize the methodological approach
described in the previous chapters and the implementation example is a practical
case study for designing a mobile robotic platform.

When starting to design a new mechatronic product according to the proposed
methodology the following main steps must be passed:
• Requirement analysis and model development

o Requirement list creation (jointly with customer)
o Requirement feasibility analysis and decomposition
o Requirement model development – supported by requirement

templates found in MPT Template library
• Initial concept solution development according to requirement model. When

automated design candidate generation is intended to use (according to GP
concept described in chapter 3.1) the initial model has to be developed in
bond graph technique. In case of manual design SysML and extensions
should be used. In both cases more than one solution candidate should be
developed for a given problem.

• Developed solution candidates will be initially evaluated against
requirements and appropriate constraints and limits are set, if necessary.
Design candidates are improved by the automated GP algorithm or manually
by the engineering team.

• When mature enough rational candidates will be selected appropriate
Parametric diagrams should be developed describing the system dynamics
and mathematical relations of the system parameters.

• A design candidate model will be connected with a simulation model picked
from Algorithm library or developed for this special case. Simulation is
either carried out for a specific model element (e.g. process controller) or for
the whole model (e.g. performance simulation) finding the optimal
component parameters and combination.

• After the concurrent design candidate simulation the optimum solution is
selected and refined if necessary.

• A refined design candidate is the conceptual solution which is passed to the
product detail stage. Based on this concept all functions and components
will be implemented.

Although the steps are described here as a sequence, the real process is
integrated in relation between sub-stages and developers. Solutions and
functions have to be directly derived from the requirements and assured.

 76

The implementation process is a case study of the developed methodology. The
task is to demonstrate the use of the Mobile Platform Toolkit in real design
process. The practical realization of the profile is targeted for two different
systems. It is demonstrated, based on the analysis of the existing platform and on
the synthesis of a new design. The practical examples are dealt with concurrently
and appropriate explanations are provided.

The analytical case study is based on the Hybritor platform and Workpartner
application developed in Automation Technology Laboratory of Helsinki
University of Technology during 1998-2006. The Hybritor platform has four
legs equipped with wheels and active body joints. Each leg has three actively
controlled joints and a wheel actuator. The platform has a modular structure and
unified communication interfaces [HLSYK03]. Hybritor is a base platform for
mobile service robot called Workpartner. Workpartner is a high adaptive service
robot for outdoor tasks. The platform is equipped with two-hand human like
manipulator, which can be used for manipulations and handling tools. The
subsystems of Workpartner are divided according to generic functions
[Ylönen06]:

• Locomotion subsystem
• Manipulator
• Energy subsystem
• Navigation and perception subsystem
• Control subsystem
• Human-machine interface

The Hybritor platform is shown in figure 31 and Workpartner project
information can be found on public website:
http://www.automation.hut.fi/IMSRI/workpartner/

Figure 31 Hybritor platform [HLSYK03]

 77

The similar mobile robot platform is under development in Tallinn University of
Technology, Department of Mechatronics. The platform is called UGV
(Unmanned Ground Vehicle) for demining purpose. The development process
started in 2005 concurrently with the thesis design framework and Mobile
Platform Toolkit development process. The platform is equipped with
independently actuated legs and wheels. The platform has a modular structure
where the modules can be easily removed or replaced when needed. UGV can
provide different functionality depending on the equipped module. Standard
service module is the manipulator module and additional modules can be NBC
detection, surveillance, cutting tool, etc. The vehicle has the following modules
and subsystems:

• Energy subsystem
• Locomotion subsystem
• Track subsystem
• Control subsystem
• Vision subsystem
• Manipulator subsystem
• Communication subsystem

The early prototype of UGV design is shown in figure 32.

Figure 32 UGV platform

There are several other mobile robot platforms in the world and they are actively
developed for many areas. The most advanced results are in the military section.
The well know solutions are iRobot PackBot [iRobot], Foster-Miller Talon
[Talon], RHex [SBK01] and others. However there is no unified platform for

 78

new mobile robotics. Most of the solutions are developed from zero and the
engineering design data are unavailable for public. The Mobile Platform Toolkit
developed in this thesis is trying to offer an open unified platform development
solution. The example diagrams based on the real systems are presented in the
following as a guideline for using this toolkit.

4.1 Requirements modeling

Requirement engineering starts in most cases when receiving the initial system
specification from customer. On the other hand some (robotic) projects can start
without external customer and are driven from research interest or new
technology interest. This is usually the case in academic institutions or research
institutes where the robotic platform is needed to study different robotic modules
like control algorithms, navigation algorithms, manipulator subsystem, etc. In
this case the requirement list has to be defined before the development process
can start. The practical difference between these two cases are usually the
requirement flexibility where the research project requirement can be changed
more easily during the development than in the case of the industrial application.
Although the requirements can change (and usually some change takes always
place) the requirement modeling should support to track these changes and point
out the affected side systems. Therefore the requirement model must be created
with great care.

The initial requirement model is decomposed in Level I according to MPT. On
the first cycle the decomposed requirements are opened in separate diagrams and
linked with the requirement list by the ID.

Id=1

«requirement»
UGV

Id=3.q

«environmentalReq»
Temperature

Id=3.d.1

«structuralReq»
Weight

Id=3.c

«energyReq»
PowerSupply

Id=3

«functionalReq»
Locomotion

Id=3.g

«functionalReq»
Holes

Id=3.w

«structuralReq»
Platform

Id=3.y

«structuralReq»
Payload

Id=7.f

«interfaceReq»
ControlMode

Id=7.x

«interfaceReq»
OnboardUI

Id=7

«interfaceReq»
OperatorUI

Id=3.k

«energyReq»
Charging

Id=3.m

«structuralReq»
Replacement

Id=3.e

«functionalReq»
Obstacles

Id=3.b

«functionalReq»
Wheeled

Id=3.c

«functionalReq»
Tracks

Id=3.d

«performanceReq»
Speed

<<comment>>
Payload might be
bigger if extreme
condition is not
met.

req UGV

Id=3.f

«functionalReq»
Stairs

Figure 33 General requirement decomposition of UGV (a fragment)

 79

Defining the general requirement decomposition the req_general template
diagram from library is used. Suitable requirement elements are selected and
imported to the model by binding element parameters i.e. ID, with actual values.
Appropriate relationships and types are imported automatically. The requirement
model is connected with the requirement list by the ID parameter. It is possible
to include the particular requirement text into the requirement element by the
parameter Text, but usually the text document is longer than a single sentence
and including all text in a model element would make the model less
comprehensive. The requirement diagram text explanation defined on figure 33
is shown in figure 34. When needed, the text can include figures, schematics or
other graphical elements.

 80

table Requrement list

ID Name Text

1 UGV The UGV is the base platform for demining robot
3 Locomotion The platform is equipped with two different

locomotion types: wheels and track. Both types
should be operated separately. The passableness
is determined by Bekker’s method [Bekker60].

3.b Wheeled The platform is equipped with electrical brushless
DC motors, enabling turning around on the spot.

3.c Tracks The platform should be equipped with removable
tracks to improve the off-road capabilities and
climbing up stairs.

3.d.1 Weight Maximum total weight of robot is 300 kg.
3.e Obstacles The platform is able to overpass the obstacles

with maximum height 40 cm.
3.f Stairs The platform is able to climb up and down the

stairs with an ascent angle 40 deg with maximum
robot weight. The mass center must not change
significantly.

3.g Holes The platform is able to pass deep holes with
maximum width 30 cm.

3.d Speed Constant speed, at least 5 km/h, is guaranteed on
smooth and parallel slopes (max 20 deg) with
maximum robot weight.

3.c Battery The platform is equipped with battery enabling to
work at least 1 hour in normal environmental
condition (outside temp. 24 deg).

3.k Charging The charging is assured by 220V/50Hz, 110V/60
Hz and 12/24 V DC main supplies.

3.m Replacement The main batteries have to be replaced without
interrupting the control and communication
module.

3.q Temperature The working temperature is -15 deg …. + 50 deg.
In working temperature below -10 deg the
working time can be reduced 40%.

…… ……. ………….

Figure 34 Requirement list

 81

In the requirement engineering stage the context and relationships with the
environment have to be specified. Here it is possible to use either the Block

Definition diagram or the Use Case diagram. According to the profile
specification the Use Case is shown as an example, see figure 35. Use Case in
SysML language is directly derived from UML 2.0 without any modification.
There are quite few elements and therefore it is easy to understand. The system
is outlined with the system boundary line and outside the system different so-
called actors are presented. The user of the system can be a person, other system
or an environmental item. The system itself provides certain services and
interacts with external users. The example describes the overall context of the
mobile robotic platform - UGV.

Operation

<<human>>
Operator

<<object>>
TargetObject

Object
carry

NBC detect Manipulation
Water

shotgun

System

«include»

Drive

Provide
video

Provide
data

«extend»

<<terrain>>
Terrain

uc System context

«subsystem»
Locomotion

system

«requirement»
Operational

function

«include»«include»

«reqLocomotion»
Locomotion

«requirement»
Video

system

Provide
environmental

data

Navigation

«reqNavigation»
Navigation

«subsystem»
Navigation

system

«include»

«include»

«include»

«subsystem»
Video

system

«include»

Figure 35 System context

After the first level system context definition and requirement specification,
every subsystem requirements have to be opened in more detail. Level II
embraces the subsystem details as described in level description in chapter 3.3.1.
The following diagram shows a subsystem requirement model at level II. The

 82

subsystem Energy is decomposed and parameterized with toolkit parameters.
Generic design elements are connected with the requirement element to show the
satisfaction and verification relationship of a particular element. The example is
based on Workpartner case where two different energy sources are used. The
energy system includes a lightweight compulsion engine and series connected
batteries. In addition the computer control is included to the energy system to
obtain maximum efficiency. Control software starts and stops the compulsion
engine to recharge the batteries according to efficiency [Ylönen06]. The energy
requirement model is shown in figure 36.

Text=”Vehicle has to
have dual power system”
Id=1

«energyRequirement»
PowerSupply

Text=”48V
batterypack have to
be used”
Id=1.2

«requirement»
Battery

Text=”Engine must
charge the batteries
with max 3 hours
and run at least
wheel motors
without battery
support”
Id=1.1

«requirement»
CombustionEngine

Text=”20min in 20A”
Id=1.2.1

«requirement»
ContinuousCurrent

Text=”100A for 10s”
Id=1.2.2

«requirement»
PeakCurrent

«testCase»
ChargingTest

«verify»

«testCase»
NormalRun

«testCase»
MaxLoadRun

«verify»

«verify»

req Energy Subsystem

«testCase»
DriveHomeTest

«verify»

Figure 36 Requirement model for Power subsystem

The outcome of the requirement engineering cycle is a set of models, describing
the requirement structure and needed design elements to satisfy or verify the
particular requirement. The model may be refined during the concept generation
stage in case new aspects arise. However the changes must be documented and
carefully dealt with. When changing the requirement all connected elements
(design blocks and activities) have to be rechecked as well to assure the
consistency of the whole system. In case of software support for toolkit the
conflicting relationships can be detected automatically. The rule check algorithm
validates the design model and requirement model according to profile
specification.

 83

4.2 Static structure and component interaction

The component decomposition and relationship definition is the first actual
system modeling step. Some of the components can be directly derived from the
requirement model, whereas some components or subsystems will join to one
and some diverge. The general subsystem decomposing is similar to general
requirement model. The next step is to decompose the subsystem into functional
blocks. In figure 37 the energy supply subsystem of Workpartner is shown.

Energy Supply Subsystem

Battery

CombustionEngine 48V Subsystem

ChargingDevice

24V Subsystem 12V Subsystem 5V Subsystem

NavigationUnit

Mouth

BatteryMeasure

EngineControl
Unit

MiddleJoint
ControlUnit

LegControlunit

Manipulator

MainControl
Unit

LaserScanner

PTU

UltrasonicSensor

1

1

1

1

1

4

1

1

1

VideoServer

Camera

Gripper

WLAN
AccessPoint

DataComp
Mini-ITX

Speaker

Mic

1

1

1

1

2

1

11

LaserPointer

EthernetSwitch

HeadLEDs

Wireless
Emer.STOP

Inclinometer

1

1

1

1

1

4

bdd Energy supply

1

Figure 37 Energy supply subsystem of a Workpartner

Here only the name of the block is represented and dealt as a black box
approach. Some blocks are generally one-to-one understood like Battery, some
can be realized in very different way, e.g. Gripper, ControlUnit, Manipulator,
etc. The actual design and parametric model of a particular block will be
developed in the next design stage. While the bdd diagram describes the
component hierarchy, the ibd diagram defines the component interaction. Ports
and flows are defined enabling the interaction between the components across
the system.

 84

pcu:PowerControlUnit

vc:VoltageCompensator eg:EngineGenerator

bp:BatteryPack

ibd [block] PowerSubsystem

cd:ChargeDevice

dc24:DCConverter24

dc12:DCConverter12

dc5:DCConverter5

ft:FuelTank

p:fuel

ff:fuelfitting

fs:fueli:current

i1:current

v24:voltage

v12:voltage

v5:voltage
i2:current

bm:BatteryMeasure

v1:voltage

a1:analogSignal

d:runData

d:runCmd

Figure 38 Power subsystem interaction

Here the dual power system is described (figure 38). Components have different
port types, i.e. AtomicPort, non-AtomicPort and flow directions. AtomicPorts are
single usage of a block while the non-AtomicPort is a multiple usage of a port.
In case of non-AtomicPort the flow specification must be specified. The
previous example corresponds to the Workpartner analytical diagram. The
power subsystem involves the main components EngineGenerator, BatteryPack
and PowerControlUnit. Other outlined components are converters, sensors and
accessories. Components are connected through the ports that can be in this case
of two different types. For example, a fuel flowing from FuelTank to
EngineGenerator. Both blocks have an atomic port p and ff respectively.
Another possible port type is non-atomic port. A non-atomic flow port relays
items of several types specified by a FlowSpecification. In this example a port d
of PowerControlUnit and EngineGenerator is a non-atomic port. The
specification of this is shown in figure 39.

 85

bdd protocol Flowspecification

flowProperties
out command: ModBusRUN

«flowSpecification»
runCmd

flowProperties
in engineState: Boolean
in generatorVoltage: Real

«flowSpecification»
runData

Figure 39 Flow specification for a non-atomic port

All subsystems are modeled in a similar way to the presented power subsystem
model. Later on the integrity of a component model is examined and different
models are cross-mapped using the Allocation diagram. Allocations are often
used in early design as a precursor to a more detailed rigorous specification and
implementation.

4.3 Behavior modeling

Behavior modeling describes the behavior of the system through the Activity,
State Machine, Sequence and Use Case diagrams. With activity we can specify
the actions and their input/output sequences. Continuous and discrete flows,
such as material, energy or information flows can be specified by Rate
stereotype.
The general behavior and system services are described with the Use Case
diagram. The Use Case is a simple and trivial representation of system usages
and users. Nevertheless it is necessary to represent visually the main services of
a system and connections between them. The simple and human friendly
representation is useful when explaining the further system to the non-technical
persons. They can be different stakeholders like customer, market-analyzers,
financers, etc. Presenting the system overview and context in this way enables
us to ensure that developers and non-technical stakeholders understand the
design problem and proposed concept in the same way. The templates
uc_context in the early stage and uc_system in behavior design can be used for
this purpose. Figure 40 shows the main services of a system and its boundary as
well as external “actors”.

 86

Operation

<<human>>
Operator

<<human>>
Partner

Service

Object pickup
Object

manipulation Cargo

System

«include»
«include»

«include»

Drive
platform

Drive
manipulator

Sensor
readings

Demo

«include»

«include»

«include»

«extend»

«include»«include»

<<terrain>>
Terrain

uc System services

Maintenance

Automatic object
approaching

«include»

Automatic code
generation

«include»

Figure 40 General services of the system

System activity is more specific and models the system or subsystem actions.
The common activity of the system is specified with template act_general

showing the high level action sequence. According to SysML specification,
there are several types of elements, like Action, Events, Signal, TimeEvent and
so on. The Toolkit specifies additional stereotypes described in the previous
chapter. Based on this model the main process will be implemented either in the
hardware or in the software. Operational inputs as well as main sensor signal are
connected to the certain action. The following figure is a general activity
diagram based on the Workpartner mobile robot.

 87

Init system

Select
operation mode

Errors?

Manual
control

<<calculating >>
Autonomous

control

automan

<<driving>>
Move

<<communicating>>
Test

communication

Errors?

Sense
environment

Measure
leg force

Measure
attitude

<<calculating>>
Calculate leg

action

<<calculating>>
Calculate

wheel rotation

<<calculating>>
Calculate

locomotion
parameters

<<calculating>>
Calculate

middle joint
action

System
error monitor

Emergency
STOP

Power off

Inclino-
meter

Current
sensors

Distance
sensors

act General activity

Task
selection

Speed & Direction
command

Figure 41 General activity diagram of Workpartner

Implementation of this activity is described as follows:
When the system is turned on, the initial selftest action is carried out. All
subsystems will run appropriate tests shown here as one black box activity. With
the tests done, the next action follows. The system has two different operation
modes and selection will be made by the operator. If the operator selects remote
teleoperation guidance the additional communication test will be executed. If no
error results the general black box activity Move is reached. The Move activity
holds in this stage all operational and functional activities of the platform. In
addition to commands from the operator, the actual measurements are
performed. Sensors measurements are inputs for control logic to calculate the
locomotion parameters in order to select a right locomotion type and save the
energy. The whole system operation will be interrupted when either the
emergency stop is pressed or a fatal system error occurs during operation. The

 88

normal shutdown is realized by power off signal. As it is seen, the actual activity
of the subsystem is not represented in this diagram. The act_general template is
used for describing the system behavioral concept. The next logical step is to
open basic functions and describe the certain functionality of subsystems. For
example the Workpartner has three locomotion types: ordinary rolling, walking
and rolking. Rolking is a special hybrid locomotion type combining the rolling
and walking on the same time where leg joints and wheels are generating the
propulsive force simultaneously [HLSY00]. The next diagram opens one
subsystem and shows the activity model of rolking locomotion mode.

Calculate force

Thigh
current

Velocity control

Wheel
velocity

velocity Raise the body

no obstacle

Knee current

Drive wheel

Drive knee

Start
Rolking mode

Stop
rolking mode

<<comment>>
In rolking, the leg supports lightly the body and the wheel rotates actively by the velocity
control. When the wheel hits the stair and is not able to go forward, the control algorithm
starts to lighten the leg. Thigh and knee currents change according to the force reference.
Wheel current changes according to the velocity reference. Stair climbing is based on
simultaneous lightening of the leg and active rolling of the wheel . When the wheel is on a
stair, lightening of the leg stops and the wheel continues to rotate forward, thus pulling the leg
forward.

act RolkingMode

Lighten the leg

obstacle

Support
other legs

Drive thight

Calculate actuator
parameters

Figure 42 Activity diagram of rolking mode

 89

Activity represented in this diagram is implemented on the Workpartner robot.
Workpartner has a special feature that enables us to select the locomotion type
automatically. The selection bases on the energy efficiency and terrain
estimation, which can be pre-simulated using terrain library and the
corresponding simulation model. The goal is to minimize the energy
consumption without loosing considerably the speed and performance. Here the
energy consumption is a key parameter which will be optimized. The automatic
locomotion selection is modeled in state machine diagram. The state machine
represents the system discrete behavior and through finite state transitions. The
activities are invoked during the transitions which are entry and exit of state. The
execution of activities is specified by guard conditions. The transitions between
the states can be continuous or discrete. In addition the composite state can be
used to nest the states in sequence or parallel action. Using the State Machine
and Activity diagram for behavior modeling is not very strictly defined. The
discussion about this is found in chapter 2. Having considered these different
approaches discussed in chapter 2.2 the Toolkit specifies his own approach
based on previous ones. In general the State Machine is treated as a higher level
system states. Every state is specified with the specific Activity diagram
describing the inner structure of a given state. The concept is similar to hybrid
system modeling where the discrete states consist of continuous process inside.
Nevertheless depending on the characteristics of a particular system and
problem, opposite approach can be successfully applied (as discussed in chapter
2.2). The example given in figure 42 is a decomposed action with guard
condition represented by State Machine. The further decomposition can be
implemented again with Activity diagrams where every state has its own
diagram. The reason of dictating the diagram usage is to give a concrete
guideline for engineers who want to have practical guides but not many open
options. However the previously described approaches are not precluded and can
be successfully used by experienced engineers. The corresponding State

Machine diagram is shown in figure 43. This is the detail state model describing
the behavior when the autonomous regime is selected.

 90

Off
shutdown

Idle

Current
measuring

Walking

Rolling

I>x

I<=x

I

Start

Measure
current

stop

Measure
current

stop

Rolking

stop

Operating

start shutoff

stm AutomaticLocomotionSelection

Figure 43 State machine diagram

In addition to State Machine and Activity, the behavior can be modeled with the
Sequence diagram. This type of diagram is often used in software modeling and
suits well for embedded control algorithm modeling in a robotic platform. A
sequence diagram describes the flow and control between actors and system
blocks. Sending and receiving messages between lifelines are represented
according to timeline shown on the vertical axis. The Sequence diagram, shown
in figure 44 enables modeling of timing and component allocation. In figure 44
the automatic charging system is modeled. Based on this model power control
algorithm can be later analyzed and implemented.

 91

<<actor>>
operator

<<block>>
PowerController

<<block>>
BatterySensor

<<block>>
Generator

<<block>>
Actuator

Turn on

measureBattery

measurement

run actuators

Start generator

actuator
control

Stop generator

stop actuators
stop running

Figure 44 Sequence diagram

The described model is used to represent the behavior of general system and its
subsystems in a different level and situations. In conceptual design several
parallel models might be developed for a single situation. Allocating the
activities with a system static structure (i.e. blocks) pros and cons of particular
model can be easily determined and analyzed. On the next design stage behavior
models are used to generate process control algorithms either in hardware or
software. When appropriate tools are available some software creation process in
controller design can be automated. The high level behavior diagrams are more
general and cannot be directly used for automated design. However they are
important to understand the system behavior and assure the fulfillment of the
requirements.

4.4 Parametric modeling

The real-world systems are in most cases non-linear and therefore it is important
to have tools for early stage simulations where even the system dynamic model
is not yet fully defined. The early stage system parameter relations are modeled
by the Parametric diagram. It shows how one value of the structural property
affects the other value. Parametric constraints are tightly connected with the
system structure and are used in combination with Block diagrams. Two new
stereotypes are introduced by the MBT which determine the key parameters of a
system. The key parameters are the main input for system analysis and
simulation. Different conceptual solutions are described by Parametric diagram
and will be executed in simulation environment. The simulation results are used
for design improvement. For example, this is used for performance and

 92

reliability analysis as well as for meeting all requirements specified by the
Requirement diagram.
The Parametric diagram of UGV performance is taken as an example.

w:TotalWeightpl:PayloadEq

VehicleWeightBatteryWeightPayloadCapacity

df:AirDragForce
Eq

CargoWeight

rf:RollingFriction

FrictionCoefficient

dyn:VehicleDynamics

RoadIncline

ee:EnergyConsumption
Eq

VehiclePosition

ManipulatorWeight

par UGV basic dynamics

<<keyconstraint>>
TotalWeight

<<performanceconstraint>>
Torque

BatteryCapacity

Workload

Figure 45 Parametric diagram of UGV

In figure 45 it is seen that TotalWeight is denoted as a keyconstraint. This
indicates that the subsystem should be optimized according to this parameter.
The total weight of UGV is derived from requirements and affects the overall
vehicle performance as well as many other parameters. From the performance
point of view the output torque is another key parameter which needs to meet the
appropriate requirement. The optimum relation between the needed torque and
maximum allowed weight is searched without compromising the required
functionality. The mathematical relations between parameters are denoted by the
rounded rectangle with defined ports. Parameters and links with other functions
are connected through these ports. In this example the mathematical equations
are not shown but can be described by a comment object when needed. An
example of this mechanism is shown in figure 47.

4.5 Simulation modeling

Simulation is usually exploited at a later design stage where the system model is
relatively precisely defined. To get the maximum benefit, the proposed design
framework includes simulation in the conceptual design stage. Simulation
principles are generally defined in chapter 3. According to these principles and
toolkit extension described in chapter 3.3.4 the following two options are
presented:
The model (structure and behavior) consists of a special block element
stereotyped as simu. An example is shown in figure 46 where simu block is a
control algorithm of robot, controlling the leg and wheel motors according to

 93

terrain changes. The ControlFPGA block is a link to the simulation model.
Simulating the control algorithm, the engineering team gets feedback on critical
component parameters required to fulfill the initial requirements, or simulating
different algorithm candidates determining the system feedback.

The following example shows the ibd containing simu element.

«actuator»
Wheel

«driver»
Amplifier

«simu»
ControlFPGA

parameters

type:analogous

«sensor»
JointPos

parameters

type:digital

«sensor»
EncoderEC

«driver»
Amplifier

«actuator»
Joint

ibd LocomotionControlSimulation

<<terrain>>

«ModelLibrary»
Terrain

«apply» {strict}

«ModelLibrary»
SimulationAlgorithm

«apply» {strict}

Figure 46 Locomotion Control including simulation blocks

Another simulation link defined by MPT is a parametric diagram connection to
Simulink model. The parametric diagram defines the mathematics and
constraints of a subsystem. Based on this model Simulink block diagram is
generated. Later on the same a Simulink model can be linked to a component in
bdd model as described above. An example of corresponding parametric model
is shown in figure 47.

 94

TotalInclineEq

Θ:PlatformIncline

β:TorsionOffset

StaticBalanceEq

l:PlatformWidth

par UGV static balance

<<performanceconstraint>>
α0:LegAngle

<<performanceconstraint>>
CGHeight

r:WheelRadius

<<keyconstraint>>
φ:CriticalBalanceAngle

{ φ=(arctan(l/2/(lj*cos (π*α/180)+r)*180))/π }

{ α= Θ+β+α0 }

Legged solution
boundary

Figure 47 Balance condition in incline situation of platform

The diagram shown in figure 47 is a source for Simulink model shown in figure
49.
The parametric model defines the balance conditions of a mobile platform. Here
two concurrent design candidates are compared. The principal concepts are
shown in figure 48. A design candidate is linked with the simulation model and
simulation results are compared with appropriate requirement. Simulation is
executed in various terrain conditions.

CG

Concept #1

CG

Concept #2

Figure 48 Two conceptual design candidates

The following static balance condition formula is used for a legged platform
(design candidate #1):

π

πα

ϕ

180

180
cos

5,0
arctan ⋅



















+






 ⋅
⋅

⋅

=

rl

l

j

 (4.1)

where:

α – the controlled leg angle

 95

l – platform width
ll – leg length
r – wheel radius

Balance condition for a conventional platform (design candidate #2) is described
with following formula:

π
ϕ

180
5,0

arctan ⋅








+
⋅

=
rl

l

i
 (4.2)

where:

li – wheel axe shift

The Simulink model has a S-function which is generated from Parametric
diagram shown in figure 47. Different design candidates can share the same S-
function or have the specific S-function depending on the solution configuration.
Terrain and simulation parameter inputs are the same in single simulation
enabling comparable results generation.

These simple examples are for description purpose. Contact properties,
dynamical forces and movement parameters are excluded due to the space
limitation.

Figure 49 Balance simulation model

The example shown in figure 49 has two structural concepts of the mobile
platform simulated against incline requirement. The requirement specifies
critical balance angle which is the key constraint of this simulation.

The solution candidate selection is carried out by comparing the different
simulation results and linking the results with the requirement model. Traditional

 96

analytical and evaluation methods can be utilized to select the best machining
solution.

The above examples show how to implement the initial simulations in the
conceptual design procedure. Compared with the detail design stage, the
conceptual design has much bigger design freedom but also lacks precisely
defined system parameters. This characteristic is the same in simulations which
give big freedom to implement a simulation model but lack the simulation
parameters at the same time. It might be necessary to estimate some unknown
parameters in initial simulations. Nevertheless the main target is to compare the
design candidates and see the difference in certain conditions rather than to get
the precise behavior of a further system. This aim enables us to unify some
common simulation parameters which were not known the beginning.

Solution candidate selection is usually affected by many aspects. The selected
solution should best match the requirement criteria as well as meet other relevant
aspects. The simulation result is definitely one of the essential factors and these
results can be interpreted by the engineering team to support the selection
decision or improve the concept.

4.6 Conclusion

1. In this chapter the implementation process based on two real examples is
described. The design methodology framework has been implemented in
real design and two different design cases are involved to illustrate the
analysis and synthesis of a mechatronic system. The implementation is a
practical example of using Mobile Platform Toolkit developed in the frame
of this thesis. The toolkit definition has been explained in the previous
chapter in detail.

2. The chapter has a logical subchapter sequence corresponding to design
process described in chapter 3. To illustrate several aspects of conceptual
modeling with a developed toolkit real system examples are presented. The
examples are analytical model fragments of the mobile platform
Workpartner, developed in Automation and System Technology Laboratory
of Helsinki University of Technology, and design model fragments of
Unmanned Ground Vehicle – UGV, currently under the development in
Department of Mechatronics Tallinn University of Technology. The covered
early design stages are requirement engineering, model development and
initial simulation. Diagrams are often compiled for power or locomotion
subsystems as these are the most important in mobile platform design.
Vehicle dynamics and control algorithms are partly covered in the
simulation behavior sections.

 97

3. In addition the chapter is intended for use as a design guideline of using
developed Toolkit. The practical examples are covering the toolkit specific
stereotypes as well as templates from the template library. The templates are
intended to simplify technical issues of developing models. Pre-defined
templates are developed based on the existing systems and include most
common subsystems and parts. In case of using templates it helps to keep
track of all the essential parts of the platform design without forgetting any
important aspects. At the same time the creativity and novelty of developing
a new solution is not prevented as templates are open and only relevant parts
of the particular template have to be imported to the design. Nevertheless the
connections and other relations are imported automatically without losing
the consistency of the system.

4. Although two real cases are described the full development process is hardly
covered. In a real design process all subsystems must be fully modeled and
more than one design candidate developed and simulated. Including all
diagrams and design documents into thesis is not rational due to the huge
amount of space and detailed technical documentation of the particular
system.

 98

5 CONCLUSIONS AND FUTURE WORK

For conclusions the following aspects are considered: novel findings and
developments of the present work, practical implementation and application
example, further development of the research. Two main aims of this research
are to develop and propose a base framework for conceptual design of a
mechatronic system; utilizing recent developments and techniques to develop a
practical tool for advanced conceptual design.

The primary theoretical result is a model based mechatronics system
development methodology framework for conceptual design stage.

The following conclusions are reached and novel aspects introduced in the thesis

1. Through the analysis of different product design approaches the adopted
general design sequence is composed. In different sources the design
stages of product development process are described conformably,
varying mostly in names and boundaries. The composed design stage
tree is a unified approach from analyzed solutions with the mechatronics
specific additions. The integration stage has been separated from general
system design and a stronger emphasis has been placed on requirement
and concept connection. This modified design process reflects better the
mechatronics design nature and emphasizes the early stage.

2. A main result – mechatronics conceptual design framework denoted as

Conceptual Framework Model (CFM) is the base ideology of this thesis.
The framework relies on the VDI2206 V-macromodel methodology
whereof the concept is adopted for conceptual design. New sub-stages
are defined and linked with each other for verification and refinement of
a model. A newly developed System Modeling Language has been
selected as a modeling tool which is expanded by the application
specific profile. The concept features a semi-autonomous design
solution generation, template libraries and initial simulation model. In
the state-of-art situation analysis relevant research works of design
process supported by artificial intelligence methods are investigated.
The advantages and disadvantages of the techniques are shown and
based on that genetic programming concept for the semi-automated
design solution generation is selected. The selected technology is
utilized in this framework as a practical tool for the concept generation
automation.

3. Based on the proposed framework a practical tool derived from the

System Modeling Language is developed as a language profile. This is
done by using profile inheritance mechanism built in to SysML and
UML. Application toolkit development principles are introduced and

 99

design pattern libraries proposed. The design patterns are denoted in this
thesis as design template and are divided into several categories. It is
shown that using pre-developed design templates can improve the
conceptual design significantly. As an application example the mobile
robotic platform domain is selected for implementation of the developed
methodology. A partial reason for this selection is recent developments
in robotic industry and corresponding international network
establishments in the last years. The practical need for a systematic
approach to the mobile robot design in TUT where several medium-size
mobile robotic projects have been introduced has been an important
factor.

The main practical result of the present work is the Mobile Platform Toolkit
(MPT) for robotic application design. The toolkit has been implemented and
corresponding libraries are developed which are not fully included in the thesis
due to the space limitation. Some practical examples are presented in the
implementation chapter.

The following outcomes based on the practical results can be formulated:

1. The main practical result of the thesis is a Mobile Platform Toolkit
(MPT) based on the theoretical research. The MPT is an application
specific toolkit for the conceptual design stage. The toolkit includes the
requirement modeling as well as structure and behavior modeling
instruments. The toolkit is derived from SysML and is fully applicable
in SysML compatible software environments, hence it can be
implemented without creating a specific software environment.

2. A practical implementation of the developed methodology is

summarized in short and an explicit guideline is presented. The
guideline describes the conceptual design sequence according to the
developed methodology and explains the available option in a current
stage.

3. The implementation process has two parallel applications at different

design stages. Some examples are modeled based on the existing system
showing the connections between the real system and model diagrams.
The selected system is Hybritor platform of Workpartner project
developed in Helsinki University of Technology, Department of
Automation and System Technology. The examples show the subsystem
structure and behavior models. The second application is a similar
robotic platform which is under development in the Department of
Mechatronics, Tallinn University of Technology. During the work
several concepts are tested in the real design process. The requirement
analysis is one of the examples described in the implementation chapter.

 100

The whole thesis is organized as a design background analysis, theoretical
implementation of a novel conceptual design and a practical application for
specific domain compounding the whole concept into one consistent unit. The
thesis and research is supported by continuous presentations at international
mechatronics conferences.

The author has published more than 15 pre-reviewed international publications
on subjects related to this thesis. Some of them are indexed in the international
databases, including ISI Web of Proceedings.

The work results are reported during the thesis compilation in several series of
conferences: REM (Research and Education on Mechatronics), DAAAM
(Danube Adrian Association for Automation & Manufacture), EPE-PEMC
(European Power Electronics - Power Electronics and Motion Control), ICOM
(International Conference of Mechatronics) and OST (Oulu-Stockholm-Tallinn).
Pending conference presentation is IEEE/ASME - International Conference on
Advanced Intelligent Mechatronics in ETH Zürich, Switzerland.

The developed conceptual design methodology is partly exploited in the
Unmanned Ground Vehicle development process in the Department of
Mechatronics, Tallinn University of Technology.

During the conceptual framework development for a mechatronic system, the
dynamic wheg (hybrid wheel-leg) was invented with the support of the
developed methodology. The invention is a unique application for mobile robot
platform. Patent application has been composed and registered in Estonian
Patent Office with registration number P200700027 on 01.06.2007.

Finally the research goals of the thesis have been completed successfully. The
novelty and actuality have been continuously presented and discussed in oral
presentations at international conferences as well as in pre-reviewed
publications.

Future research is an important aspect and has to consider the following aspects:

Semi-automated algorithm improvement and integration with SysML

concept
The algorithm proposed in chapter 3, developed by the GARAGe group has been
tested in a lab environment and with non-complex problems. In real design the
improvement of this algorithm is needed. However, the concurrent method may
be introduced for semi-automated conceptual solution generation based on the
artificial intelligence method. A joint continuous research is planned in
conceptual design automation already.

 101

Integration of conceptual design approaches

Several researches are currently active in universities around Europe. The
integration of the approaches is important to have bigger coverage of application
domains as well as techniques and interfaces between them.

Software development for integrated design environment

Today’s product design can not be imagined without the support of software.
Many platforms and packages are available for several years already but some
are very recent. Developed conceptual design framework must be integrated
with design environments by creating application toolboxes as described in
chapter 3.3. On the other, hand simulation software integration is also needed to
simulate created concepts. The main target simulation software would be
Matlab/Simulink, LabView and Dymola. The important issue is also to specify
in more detail the model exchange interfaces. The suggested standards here are
XML/XMI and AP233 specifications.

Library enhancement and new application specific toolkit development
In this thesis an application example described in more detail is a mobile robotic
platform. Based on this example many other toolkits should be developed
according to the need. It is suggested that wherever possible the toolkits would
be freely available for download. A central database may be created for design
templates and toolkits.

 102

ABSTRACT
The aim of the doctoral thesis is to develop a mechatronics design methodology
focused on the early design stage. The motivation is a drastic growth of the
mechatronic and robotic sector and practical needs in Tallinn University of
Technology as well as other technical institutions.

The practical need is directly related with robotic application. Robotics is one of
the key technologies of the near future. Robots have been available for a long
period already but only in specific environments and factories. In very recent
years several authorities in robotic sector have discussed robotic revolution
especially in service and mobile robotics. First examples can be seen already
where home robotic applications have grown very popular. The biggest mobile
robotics evolution is taking place in the military and rescue sector. Many new
projects are running and several unmanned ground vehicle type mobile robots
have been brought to the market.

The drastic growth of robotics sets new demands for the development process.
Design reuse, modularity and effective development process are the main issues
to be successful in this business. Therefore it is necessary to find new solutions
for effective product design. The robots are true mechatronics products and this
leads us to search mechatronics development methodologies. In conventional
engineering there are lots of different methods and tools but not in mechatronics
field where only some recent works can be found. Also, a successful product
development means that the design solution has to be selected very carefully,
based on a strong research in the very beginning of the design. Strong
methodical focus on the conceptual design and requirement engineering can save
the design cost and time significally. Based on these facts new mechatronics
design methodology is clearly needed and robotics is a well suited application.
However the methodology and tools have to be clear and easy to learn.

This thesis is focused on the model based design methodology for mechatronic
systems in the conceptual stage. It proposes a generic framework model for
effective and semi-automated design candidate generation in the conceptual
design stage. The specific application is focused on the mobile robots. An
application specific toolkit was developed as a tool based on the developed
methodology. The methodology specifies toolkits and model libraries which are
realized on the example of mobile robotic platform design. Additional toolkits
can be developed according to this methodology.

The practical implementation of the Mobile Platform Toolkit is presented based
on real examples. Two analogous mobile robots in a different design stage were
selected to illustrate the use of the toolkit. The Workpartner robot from Helsinki
University of Technology is used as an analytical example and the UGV

 103

platform from Tallinn University of Technology is utilized as a synthesis
example where the developed approach was applied in the conceptual design
stage.

This thesis proposes a methodological approach for a mechatronic system design
in the conceptual stage. Practical results are the Mobile Platform Toolkit and
application examples with brief guidelines for technology implementation.

Keywords: Conceptual design, mechatronics, mobile robotics, modeling,
simulation

 104

KOKKUVÕTE

Doktoritöö raames on töötatud välja mehhatroonikasüsteemi kontseptuaalse faasi
modelleerimise metoodika, mis baseerub VDI2206 modifitseeritud
projekteerimise V-mudelil ja uuel arendamisjärgus oleval süsteemi
modelleerimise keelel SysML. Doktoritöös on pakutud välja kontseptuaalne
raamtöö mudel, mis käsitleb disainlahenduste poolautomaatset genereerimist.
Mudel sisaldab endas ka rakendusspetsiifilist töövahendite komplekti (toolkit),
mis on praktiline tööriist projekteerijale. Praktiliseks näiteks on valitud mobiilne
robotplatvorm. Valiku määras mobiilsete robotite kiire areng ja osakaalu järsk
suurenemine tehnoloogiarakendustes viimastel aastatel ja lisaks ka praktiline
vajadus Tallinna Tehnikaülikoolis.

Doktoritöö eesmärgiks oli luua mehhatroonikasüsteemi projekteerimise
kontseptuaalse faasi metoodika ja praktiline töövahend. Otsene vajadus selle
järele oli tingitud mehhatroonika ja robootika sektori kiirest arengust ning
praktilisest vajadusest nii Tallinna Tehnikaülikoolis kui ka mujal.

Käesoleva töö konkreetsed eesmärgid olid:
1. Analüüsida olemasolevaid toote projekteerimise metoodikaid ning nende

sobivust mehhatroonika valdkonnaga.

2. Töötada välja üldine mehhatroonikasüsteemidele orienteeritud

kontseptuaalse projekteerimise raamistik ja mudel. Mudeli fookus on
varajane projekteerimine, mis hõlmab nõuete analüüsi ja modelleerimist
ning tooteloome kontseptuaalset projekteerimist ja modelleerimist.

3. Arendada välja konkreetsed töövahendid raammudeli rakendamiseks

mehhatroonikasüsteemi projekteerimisel. Töövahendite komplekt peab
katma nii nõuete kui ka kontseptuaalse faasi modelleerimise
probleemistiku. Töövahendite komplekt on rakendusspetsiifiline ja
näiterakenduseks valida robootika.

4. Rakendada väljatöötatud mudel ja töövahendite komplekt konkreetsel

robootika rakendusvaldkonnal. Koostada läbi praktiliste näidete lühike
metoodika kasutusjuhend.

Doktoritöö koosneb neljast põhiosast. Kaks esimest on projekteerimis-
metoodikate ülevaade ja võrdlus ning olulisemate uurimisprojektide analüüs, kus
on kasutatud tehisintellekti meetodeid kontseptuaalse disainlahenduse
saamiseks. Kolmandas peatükis on kirjeldatud projekteerimise metoodikat koos
töövahendite ja mudelite baasi kirjeldusega. Neljas peatükk on konkreetne
rakendusnäide väljatöötatud töövahendite (toolkit) rakendamisest kahel erineval

 105

reaalsel projektil. Esimene projekt on Helsingi Tehnikaülikooli poolt välja
töötatud Workpartneri teenindusrobot, mida on kasutatud kui analüütilist
lahendust. Teine projekt on Tallinna Tehnikaülikoolis arendatav
demineerimisrobot, mille kontseptuaalses projekteerimise faasis on
väljatöötatud metoodika ja töövahendid osaliselt rakendatud.

Töö tulemuseks on väljatöötatud metoodika koos selle kirjelduse ja
rakendusnäitega ning metoodikal baseeruv mobiilse platvormi arendusvahendite
tööriistakomplekt konkreetse rakendusnäitena. Lisaks on väljatöötatud
metoodika ja töövahendid rakendatud ka konkreetsetele projektidel, mille mõned
näited on töös esitatud.

Väitekirja kokkuvõttes on antud suunitlused ja soovitused metoodika edasiseks
arendamiseks ja integratsiooniks samalaadsete uurimisprojektidega.

Tulemused:

1. Lähtuvalt erinevate olemasolevate tooteloome protsesside metoodikatest ja

lähenemistest on loodud mehhatroonikasüsteemidele kohandatud
tooteloome protsessi kirjeldus.

2. Peamiseks töö teoreetiliseks tulemuseks on mehhatrooniksüsteemidele

orienteeritud kontseptuaalse projekteerimise raammudel, mis on töö
baasideoloogiaks.

3. Töötati välja töövahendite komplekti metamudel raammudeli

rakendamiseks ja kontseptuaalse faasi praktiliseks projekteerimiseks.
Töövahendite komplekt koosneb projekteerimise eeldefineeritud
mudelitest, simuleerimise eeldefineeritud algoritmidest ja modelleerimise
baasdiagrammidest.

4. Peamiseks praktiliseks töö tulemuseks on rakendusepõhine töövahendite

komplekti väljatöötlus. Rakenduseks valiti mobiilne robotplatvorm, kuna
antud valdkond on viimaste trendide järgi muutumas väga oluliseks nii
tsiviil- kui ka militaarrakendustes.

5. Vastavalt töövahendite komplektile teostati praktiline realisatsioon, mis

baseerub kahel reaalsel mobiilse roboti projektil.

Uurimistöö ajal on väljatöötatud metoodikat reaalselt rakendatud kahel projektil
ja lisaks on arendustöö käigus loodud leiutis – ratasjalg, mille taotlus on
registreeritud Eesti Patendiametis numbriga P200700027.

 106

REFERENCES

[AN98] P.J. Antsaklis, A. Nerode, Hybrid Control Systems: An

Introductory Discussion to the Special Issue, IEEE Trans. On

Automatic Control, 43, 1998, pp. 457-460.
[Balmelli06] L.Balmelli, An Owerview of the System Modeling Language

for product and systems development – Part 1: Requirements,
use-case, and test-case modeling, Watson Research Center and
Tokyo Research Laboratory, IBM, 2006

[BBC06] R. Barrett, M. Berry, T. F. Chan, et al, Templates for the

Solution of Linear Systems: Building Blocks for Iterative

Methods (2nd Edition), PA: SIAM, Philadelphia, 1994.
[BBHP06] K. Berkenkötter, S. Bisanz, U. Hannemann, J. Peleska ,

HybridUML Profile for UML 2.0, International Journal on

Software Tools for Technology Transfer (STTT), Springer,
Berlin / Heidelberg, 8, 2006.

[BC04] C. Y. Baldwin, K. B. Clark, Modularity in the Design of

Complex Engineering Systems, in Complex Engineered Systems:

Science Meets Technology, Springer, Berlin, 2006.
[Bekker60] M. G. Bekker, Off-the-Road Locomotion, University of

Michigan Press, Michigan, 1960.
[Bekker69] M. G. Bekker, Introduction to Terrain-Vehicle Systems,

University of Michigan Press, Michigan, 1969.
[Bemporad99] A. Bemporad and M. Morari. Control of systems integrating

logic, dynamics, and constraints. Automatica, 35(3), 1999, pp.
407–427.

[BG01] A. K. Samantaray, About Bond Graph,
http://www.bondgraphs.com/about.html, 2003-08-10.

[BK93] M. Brielmann, B. A. Kleinjohann, Formal Model for Coupling
Computer Based Systems and Physical Systems, EURO-DAC,
1993, pp.158–163.

[BR03] D. Braha, Y. Reich, Topological structures for modeling
engineering design processes, Res. Eng Design, 14, 2003,
pp.185–199.

[Brö95] A. P. Bröhl, Das V-modell – Der Standard für die

Softwareentwicklung, Verlag, München/Oldenbourg, 1995.
[Broenik99] J. F. Broenik, Introduction to Physical Systems Modelling with

Bond Graphs, SiE Whitebook on Simulation methodologies,
http://www.ce.utwente.nl/bnk/papers/BondGraphsV2.pdf, 1999.

[Brooke03] H. Brooke, Mobility Analysis of Small Lightweight Robotic
Vehicles, ME 567, http://www-
personal.umich.edu/~bhaueise/robotics_web/, 2003.

 107

[BSHW97] M. Brielmann, J. Stroop, U. Honekamp, P. Waltermann,
Simulation of hybrid mechatronic systems: a case study, Proc.

Int. Conference, 1997.
[CLAWAR] Climbing and Walking Robots, http://www.uwe.ac.uk/clawar/,

2007-03-01.
[Coatanea05] E. Coatanéa, Conceptual Modelling Of Life Cycle Design - A

Modelling and Evaluation Method Based on Analogies and

Dimensionless Numbers, Doctoral Dissertation, Espoo, 2005.
[Cross89] N. Cross, Engineering Design Methods, John Wiley & Sons,

New York, 1989.
[Crow] K. Crow, Customer-Focused Development with QFD, DRM

Associates, http://members.aol.com/drmassoc/QFD.html, 2007-
04-01.

[Cusu91] M. A. Cusumano, Japan’s Software Factories: A Challenge for

US Management, Oxford University Press, New York, 1991.
[CYHHSM07] E. Coatanéa, B. Yannou, S. Honkala, M. Hämäläinen, T.

Saarelainen, P. Makkonen, A. Lajunen, Measurement theory
and dimensional analysis: methodological impact on the
comparison and evaluation process, Proc. of ASME Design

Theory and Methodology Conference: DETC-2007, Las Vegas,
2007.

[CYHSML07] E. Coatanéa, B. Yannou, S. Honkala, T. Saarelainen, P.
Makkonen, A. Lajunen, Towards an automatic synthesis of
design solutions via the use of classifications and semantic atlas,
Proc. of ASME Design Theory and Methodology Conference:

DETC-2007, Las Vegas, 2007.
[Davoren00] J.M. Davoren, A. Nerode, Logics for Hybrid Systems, Proc. of

the IEEE, 88 (7), 2000.
[Desel01] J. Desel, G. Juhas, What Is a Petri Net? - Informal Answers for

the Informed Reader, Hartmut Ehrig et al. (Eds.): Unifying

Petri Nets, LNCS 2128, 2001, pp. 1-25.
[DLC89] E. H. Durfee, V. R. Lesser, D. D. Corkill, Trends in Cooperative

Distributed Problem Solving. In: IEEE Transactions on

Knowledge and Data Engineering, KDE-1(1), 1989, pp. 63-83.
[DODAF] DoD Architectural Framework, Version 1.0, Volume I,

"Definitions and Guidelines", 2004.
 [Dogruel97] M. Dogruel and Ü. Özgüner, Discrete and Hybrid State System

Modeling and Analysis, Turkish Journal of Electrical

Engineering and Computer Science, 5 (2), 1997.
[Dombroski00] T. Dombroski, Creative Problem Solving: The Door to

Individual Success and Change, toExcel Press and iUniverse,
Lincoln, 2000.

[EK96] P. Estraillier, F. Kordon, Structuration of large scale Petri nets:
an association with higher level formalisms for the design of

 108

multi-agent systems In: IEEE International Conference On

Systems, Man And Cybernetics, Beijing, 1996.
[EURON] European Robotics Research Network, http://www.euron.org/,

2007-05-01.
[EUROP] European Robotics Platform,

http://www.robotics-platform.eu.com/, 2007-03-01.
[Frank07] J. Gausemeier, U. Frank, New Methods for the conceptual

design of intelligent mechatronic systems, Int. Workshop on

Research & Education in Mechatronics, Tallinn, 2007.
[Frankel06] D. S. Frankel, A Response to Forrester, MDA Journal, 2006.
[French99] M. French, Conceptual Design for Engineers (3rd Edition),

Springer, London, 1999.
[FSGRZ01] Z. Fan, J. Hu, K. Seo, E. Goodman, R. Rosenberg, B. Zhang,

Bond Graph Representation and GP for Automated Analog
Filter Design, Proc. of the Genetic and Evolutionary

Computation Conference, San Francisco, 2001, pp. 81-86.
[GARTNER] Hype Cycle for Emerging Technologies, Gartner Group,

http://www.gartner.com/DisplayDocument?ref=g_search&id=4
94180, 2006-12-01.

[Gates07] B. Gates, A Robot in Every Home The leader of the PC
revolution predicts that the next hot field will be robotics,
Scientific American Inc., New York, 2007, pp. 58-65.

[Gausem03] J. Gausemeier, S. Moehringer, VDI 2206 - A New Guideline
For The Design Of Mechatronic Systems, Int. Conference On

Engineering Design ICED 03, Stockholm, 2003.
[Gawthrop99] P. J. Gawthrop, D. J., Ballance, Symbolic computation for

manipulation of hierarchical bond graphs, Symbolic Methods in

Control System Analysis and Design, N. Munro (ed), IEE,
London, 1999.

[GFK07] J. Gausemeier, U. Frank, S. Kahl, Methodology for the
conceptual design of intelligent mechatronic systems, Int.

Workshop on Research & Education in Mechatronics, Tallinn,
2007.

[Granda02] J. J. Granda, The role of bond graph modeling and simulation in
mechatronics systems An integrated software tool: CAMP-G,
MATLAB–SIMULINK. In: Mechatronics, 12 2002, pp. 1271–
1295.

[Grim00] J. Grimbleby, Automatic analogue circuit synthesis using
genetic algoriths. IEE Proc. – Circuits Devices Systems, 2000,
pp. 319-323.

[Gurd03] A. Gurd, Using UMLTM 2.0 to Solve Systems Engineering
Problems, Telelogic White Paper,
http://whitepapers.zdnet.co.uk, 2003.

 109

[HB01] J. Heitkötter, D. Beasley, Hitch-Hiker's Guide to Evolutionary
Computation, http://www.aip.de/~ast/EvolCompFAQ/, 2001.

[HDS] Hybrid Dynamic systems,
http://moncs.cs.mcgill.ca/people/mosterman/cacsd/hds/software.
shtml, 2006-05-01.

[Higgins93] J. M. Higgins, 101 Creative Problem Solving Techniques, New
Management Pub.,1993

[HLSY00] A. Halme, I. Leppänen, S. Salmi, S. Ylönen, Hybrid locomotion
of a wheel-legged machine. 3rd

 Int. Conference on Climbing and

Walking Robots, Prof. Engineering Publishing Ltd., 2000, pp.
167-173.

[HLSYK03] A. Halme, I, Leppänen, S. Ylönen, I. Kettunen, Workpartner:
Interactive Human-like Service Robot for Outdoor Applications,
Int.l Journal of Robotics Research, 22, 2003, pp. 627-640.

[HM00] S. Hsiung, J. Matthews, An Introduction to Genetic Algorithms.
In: Generation5

http://www.generation5.org/content/2000/ga.asp, 2003-04-10.
[Honda06] Honda ASIMO report, Honda, CD-ROM, 2006.
[Hubka96] V. Hubka, W. Eder, Design science: introduction to the needs,

scope and organization of engineering design knowledge,
Springer-Verlag, London, 1996.

[HW02] A. Hatchuel, B. Weil, C-K theory: Notions and applications of a
unified design theory, Proc. of the Herbert Simon Int.

Conference on Design Sciences, Lyon, 2002.
[HW98] W. Hsu, I.M.Y. Woon, Current Research in the Conceptual

Design of Mechanical Products, Computer-Aided Design, 30
(5), 1998, pp. 377-389.

[HZ07] P. Hehenberger, K. Zeman, Modularization and Integration in
Design from a Mechatronics-oriented Point of View, Int.

Workshop on Research & Education in Mechatronics, Tallinn,
2007.

[IEC05] international standard IEC 61499 First edition, International
Electrotechnical Commission, 2005.

[INCOSE04] Systems Engineering Handbook, INCOSE-TP-2003-016-02,
Version 2a, Technical Board of International Council on
Systems Engineering, 2004.

[iRobot] iRobot PackBot, http://www.irobot.com/, 2007-01-20.
[Jetro06] Trends in the Japanese Robotics Industry, Industrial Reports

JETRO Japan Economic Monthly, 2006.
[JGJ98] I. Jacobson, M. Griss, P.Jonsson, Software Reuse: Architecture,

Process and Organization for Business Succes, ACM Press,
Addison-Wesley, New York, 1998.

[KBAKD97] J.R Koza, F.H. Bennett, D. Andre, M. Keane, A. Dunlap.
Automated synthesis of analog electrical circuits by means of

 110

genetic programming, IEEE Trans Evolution Comput, 1(2),
1997, pp. 109–28.

[KBS97] E. Kallenbach, O. Saffert, C. Schäffel, Zur Gestaltung

integrierter mechatronischer Produkte, in Tagung Mechatronic

im Maschinen- und Fahrzeugbau, Moers, VDI Berichte 1315,
Düsseldorf, VDI Verlag, 1997.

[KRH05] P. Kukkala, J. Riihimäki, M. Hännikäinen, T. D. Hämäläinen,
K. Kronlöf, UML 2.0 Profile for Embedded System Design,
Proc. of the Design, Automation and Test in Europe

Conference. Munich, 2005, pp. 710-715.
[KT04] A. Kalja, T. Tiidemann. TRIZ and Artificial Intelligent Software

in the Conceptual Design, The Sixth Annual Conference of the

Altshuller Institute for TRIZ Studies. TRIZCON2004,
Washington, 2004. pp. 29-1-29-7.

[KTT97] B. Kleinjohann, J. Tacken, C. Tahedl, Towards a complete
design method for embedded systems using
preddicate/transition-nets, Int. Conference on Computer

Hardware Description Languages and Their Applications,
Toledo, 1997, pp. 256–262.

[LC99] J. Lohn, S. Colombano, A circuit representation techniques for
automated circuit design, IEEE Transactions on Evolutionary

Computation, 1999, pp. 205-219.
[Lotter86] B. Lotter, Manufacturing Assembly Handbook. Butterworths,

Boston, 1986.
[MDA] The official MDA Guide Version 1.0.1, OMG Document

Number: omg/2003-06-01, 2003.
[Mech96] IEEE/ASME Transactions on Mechatronics, 1 (1), 1996.
[Modelica] Modelica – A Unified Object-oriented Language for Physical

Systems Modeling, Language spec. ver. 2.1, Modelica
Assocation, http://www.modelica.org, 2004.

[OKK] D. W. Oliver, T. P. Kelliher, J. G. Keegan, Engineering

Complex Systems with Models and Objects, McGraw-Hill,1997.
[OMGSysML] What is OMG SysML?, http://www.omgsysml.org/, 2007-02-

10.
[Paynter69] H. Paynter, Bond Graphs and Diakoptics, The Matrix Tensor

Quarterly, 19(3), 1969, pp. 104-107.
[PB97] G. Pahl, W.Beitz, Konstruktsionslehre – Methoden und

Anwendung, Berlin, Springer Verlag, 1997.
[PBFG07] G. Pahl, W. Beitz, J. Feldhusen, K.-H. Grote, Engineering

Design: A Systematic Approach, Springer, UK, 2007.
[Pelz03] G. Pelz, Mechatronic Systems. Modelling and Simulation with

HDLs, John Wiley & Sons, West Sussex, 2003.
[Petri62] C. A. Petri, Kommunikation mit Automaten, Ph. D. Thesis.

University of Bonn, 1962.

 111

[Pettai05] E. Pettai, Tootmise Automatiseerimine, Tallinn, 2005.
[POK01] T. Pokorny, The Model Driven Architecture: No Easy Answers,

Simulation Industry Association of australis, 2001.
[QFDHb] J. ReVelle, J. Moran, C.Cox, The QFD Handbook, Wiley, New

York, 1998.
[RHSZN05] S. P. Rajan, T. Hasegawa, M. Shoji, Q. Zhu, and T. Nakata,

UML Profile for SoC RFC, DAC 2005 Workshop UML-SoC

2005 UML for SoC Design Conference, Anaheim, 2005.
[RIA105] Robotics Industry Sets New Records in 2005, Robotic Industries

Association, Industry report, 2005.
[RIA205] Robotics Industry Posts 30% Growth in North America, Robotic

Industries Association, Industry report, 2005.
[RSA] IBM Rational Software Architecture, http://www.ibm.com,

2007-02-25.
[Rzevski03] G. Rzevski, On Conceptual design of intelligent mechatronic

system, Mechatronics, 13, 2003, pp. 1029–1044.
[SA04] D. Sharman, Y. Ali, Characterizing Complex Product

Architectures, Systems Engineering Journal, 7 (1), 2004.
[SBK01] U. Saranli, M. Buehler, D.E. Koditschek, RHex: A Simple and

Highly Mobile Hexapod Robot, Int. Journal of Robotics

Research, 20, 2001, pp. 616-631.
[Schlegl97] T. Schlegl, M. Buss, Günther Schmidt, Development of

numerical Integration Method for Hybrid (Discrete-continuos)
Dynamic Systems, Proc of Advanced Mechatronics, AIM97,
Tokyo, 1997.

[Sell04a] R. Sell, Mechatronics Design Process and Methologies, 11th Int.

Power Electronics And Motion Control Conference EPE-

PEMC, Riga, 2004.
[Sell04b] R. Sell, Mechatronics System Design In Conceptual Stage, 4th

Int. DAAAM Conference Industrial Engineering - Innovation As

Competitive Edge For SME, Tallinn, 2004.
[Sell04c] R. Sell, New Object-Oriented Approach of Modelling

Mechatronics System in Conceptual Stage, 5th Int. Workshop on

Research and Education in Mechatronics, Gliwice, 2004.
[Sell05] R. Sell, Integration of V-model and SysML for advanced

mechatronics system design, Proc. of Int. Workshop on

Research & Education in Mechatronics, d’Annecy, 2005.
[SEO03] K. Seo, Z. Fan, J. Hu, E. D. Goodman, R. C. Rosenberg,

Toward a unified and automated design methodology for multi-
domain dynamic systems using bond graphs and genetic
programming, Mechatronics, 13, 2003, pp. 851–885.

[SERFP] UML for Systems Engineering RFP, OMG Document: ad/03-

03-41, 2003.

 112

[SL03] R. Sell, P.Leomar, Methodologies on the Mechatronics Domain,
The Eighth Symphosium on Machine Design, Oulu, 2003.

[ST03] R. Sell, M. Tamre, Component Based Mechatronics Modeling,
ICOM 2003 International Conference on Mechatronics, Prof.
Engineering Publishing Limited, London and Bury St Edmunds,
2003, pp.111-116.

[STL] Standard Template Library, Wikipedia, 2007-01-10.
[STL05] R. Sell, M. Tamre, P. Leomar, Design Of Modular UGV Using

SysML And Extensions, OST Conference, Stockholm, 2005.
[STLR07] R. Sell, M. Tamre, M. Lehtla, A. Rosin, Conceptual Design

Method for General Electric Vehicle, Proc. of the Estonian

Academy of Sciences Engineering, 2007.
[SysML09] System Modeling Language (SysML) Specification. Version

0.90 Draft. OMG document ad/2005-01-10,
http://www.sysml.org, 2005-09-01.

[SysML10] System Modeling Language (SysML) Specification. Version 1.0
Draft. OMG document ad/2006-03-01, http://www.sysml.org,
2006-04-01.

[SysMLF] SysML forum discussion thread - Connection between
Activities and States, 2006 / 2007.

[Talon] Foster-Miller Talon robot,
http://www.fostermiller.com/lemming.htm, 2007-01-30.

[TeleL07] Leveraging the New Simulink and UML/OMG SysML
Integration from Telelogic to Solve Hybrid Engineering Design
Challenges, Telelogic webinar, Detroit-Troy, 2007.

[TFB98] E. Tay, W. Flowers, J. Barrus, Automated generation and
analysis of dynamic system designs. Res Eng Des, 10, 1998, pp.
15–29.

[Tiidem01] M. Tiidemann, Mehaaniliste ülekannete arvutamine

konseptuaalsel projekteerimiel, master thesis, Tallinn University
of Technology, 2001.

[TS05] S. Turki, T. Soriano, A SysML extension for Bond Graphs
support, 2005 http://icta05.teithe.gr/papers/50.pdf, 2005-01-12.

[Tyugu06] E. Tyugu, Extensible Multipurpose Simulation Platform, Proc.

Of the 6
th
 WSEAS Int. Conf. on Simulation, modeling and

Optimization, Lisbon, 2006, pp. 738-743.
[Tyugu91] E. Tyugu, Three new-generation software environments, Comm.

Of the ACM, 34 (6), 1991, pp. 46-59.
[UE03] K. T. Ulrich, S. D. Eppinger, Product Design and Development,

McGraw Hill Higher Education, 2003.
[Ullman02] D. G. Ullman, Mechanical Design Process, McGraw – Hill,

2002.

 113

[UML] Unified Modeling Language (UML) Specification:
Infrastructure version 2.0, OMG Adopted Specification, ptc/03-

09-15, http://www.omg.org/, 2003.
[UMLSPT] UML Profile for Schedulability, Performance, and Time

Specification, OMG Draft Available Specification ptc/2003-03-

2, http://www.omg.org, 2003.
[UMLTP] UML 2.0 Testing Profile Specification, version 1.0, OMG

document formal/05-07-07, 2005.
[VD06] Y. Vanderperren, W. Dehaene, From UML/SysML to

MatLab/Simulink: Current State and Future Perspectives, Proc.

Design, Automation and Test in Europe (DATE) Conf., Munich,
2006.

[VDI04] VDI 2206 Design methodology for mechatronic systems, Verein
Deutscher Ingenieure, Berlin, 2004.

[VDI2221] VDI 2221 Systematic approach to the development and design

of technical systems and products, Verein Deutscher Ingenieure,
Berlin, 1993.

[VDI2422] VDI 2422 Systematical development of devices controlled by

microelectronics, Verein Deutscher Ingenieure, Berlin, 1994.
[Viehl06] A. Viehl, T. Schönwald, O. Bringmann, W. Rosenstiel, Formal

Performance Analyse and Simulation of UML/SysML Models
for ESL Design, Design, Automation and Test in Europe

(DATE), Munich, 2006.
[Weilkiens06] T. Weilkiens, Systems Engineering mit SysML/UML –

Modellierung, analyse, Design, dpunkt.verlag, Heidelberg,
2006.

[WIDNEY06] C. Widney, An IBM Rational approach to the Department of
Defense Architecture Framework (DoDAF) Part 1: Operational
view, IBM, 2006.

[WIRA] Worldwide Market, International Robotic Association,
http://www.robotinvestments.com/RI_worldwide_market.htm,
2007-02-20.

[Ylönen06] S. Ylönen, Modularity in Service Robotics – Techno-Economic

justification thorough a Case Study, doctoral thesis, Helsinki,
2006.

[Zadeh65] L.A. Zadeh, Fuzzy sets, Information Control, 81965, pp. 338–
353.

[Zeite06] C. Zeite, MDA Is DOA, Partly Thanks To SOA, Forrester,
http://www.forrester.com/Research/Document/Excerpt/0,7211,3
9156,00.html, 2006-10-01.

 114

Elulookirjeldus

1.Isikuandmed
Ees- ja perekonnanimi Raivo Sell
Sünniaeg ja koht 09.03.1975 Tallinn
Kodakondsus Eesti
Perekonnaseis vabaabielus
Lapsed Ingmar (s. 2001), Sirli (s. 2007)

2. Kontaktandmed

Aadress Akadeemia tee 5a-60, Tallinn
Telefon +372 620 32 01
E-post raivo@staff.ttu.ee

3. Hariduskäik

Õppeasutus Lõpetamise aeg Haridus
Tartu Ülikool 2002 informaatikaõpetaja
Tallinna Tehnikaülikool 2001 teadusmagister
Tallinna Tehnikaülikool 1999 diplomiinsener
Võhma Keskkool 1993 keskharidus

4. Keelteoskus

Inglise kesktase
Vene algtase
Soome algtase
Saksa algtase

5. Täiendusõpe
Õppimise aeg Õppeasutuse või muu organisatsiooni nimetus
2007 Helsinki University of Technology
2003 ETH Zürich
2002 KTH Stockholm

6. Teenistuskäik

Töötamise aeg Organisatsiooni nimetus Ametikoht
1994 AS "Tallinna Paber" varustaja
1995 ...1998 Tallinna Tehnikaülikool arvutiklassi haldur
1997 ...1999 Software Engineering Center OÜ tarkvara konsultant
1998 ... 1999 Armila Eesti OÜ arvutispetsialist
1999 ... 2002 Viljandi ÜKK IT osakonna juht
2002 … Tallinna Tehnikaülikool teadur

7. Teadustöö põhisuunad
Mehhatroonikasüsteemi modelleerimise metoodika, mobiilsed robotid.

 115

Curriculum Vitae

1.Personal data
Name Raivo Sell
Date and place of birth 09.03.1975 Tallinn
Citizenship Estonian
Family status open marrage
Children Ingmar (b. 2001), Sirli (b. 2007)

2. Contact

Address Akadeemia tee 5a-60, Tallinn
Phone +372 620 32 01
E-mail raivo@staff.ttu.ee

3. Education

Institution Graduated Speciality
University of Tartu 2002 informatics
Tallinn University of Technology 2001 M.Sc.
Tallinn University of Technology 1999 diploma eng.
Võhma High School 1993 sec. education

4. Language skills

English Intermediate
Russian Elementary
Finnish Elementary
German Elementary

5. Further training
Apperenticeship Educational or other organization
2007 Helsinki University of Technology
2003 ETH Zürich
2002 KTH Stockholm

6. Professional employment

Period Organization Position
1994 AS "Tallinna Paber" supplier
1995 ...1998 Tallinn University of Technology computer manager
1997 ...1999 Software Engineering Center OÜ software consultant
1998 ... 1999 Armila Eesti OÜ ICT support
1999 ... 2002 Viljandi ÜKK head of ICT dep.
2002 … Tallinn University of Technology researcher

7. Main research interest
Mechatronics system modeling methodology, mobile robotics.

