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Overview

In this thesis, the research is focused on model-based testing, specifically, on the testpurpose specification and test generation techniques to address the test coverage andfaults back-traceability problems.
The structure of the thesis is the following:

• Chapter 1 gives the motivation why this research is needed in the critical systemssoftware engineering practice, defines the research problems to be solved and theirscope, outlines the relatedwork, and introduces themethodology, problem specifichypothesis and goals to be addressed in the thesis.
• Chapter 2 presents the theoretical and methodological preliminaries the results ofthe thesis are built upon. The foundations of the thesis are model-based confor-mance testing theory, Uppaal timed automata and TCTL model checking theory.
• Chapter 3 introduces the provably correct test development workflow and verifi-cation conditions necessary to assure the correctness of development increments.The test purpose descriptions and test generation correctness are verified with re-spect to these conditions.
• Chapter 4 defines the test purpose specification language T DLT P, its syntax andsemantics.
• In Chapter 5, the practical usability of the test purpose specification languageT DLT P

and provably correct test development method are validated on the TUT100 satel-lite software case study.
The results of the thesis are concluded and future research perspectives outlined in thethesis conclusion.
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1 INTRODUCTION
In this chapter themotivation for studying novel methods of model-based testing is given.The scope of the thesis is determined from three perspectives: application domain, test-ing technology, and formal framework for test purpose specification, test generation andexecution. The goal and main results of the thesis are positioned with respect to the re-lated work of other authors in the field. The chapter concludes by outlining the mainhypothesis, methodology, and contribution of the thesis.
1.1 Motivation
Mission Critical Systems1 (MCS) are systems whose failure might cause catastrophic con-sequences, such as someone dying, damage to property, severe financial losses, dam-age to national security and others. There are several well-known failure cases, suchas TheracTwentyFive2 radiation therapy machine malfunctioning caused by undetectedsoftware fault, namely race condition. Six known accidents have been listed due to theoverdose, several of them fatal. Similarly, Patriot Missile Failure caused by software er-ror in the system’s clock, resulted in an accumulated clock drift that led to the improperreaction to Scud attack and death of twenty eight soldiers and over hundred other casu-alties. Mars Climate Orbiter Crash (NASA lost $125-million) was caused by misinterpretedrequirements in software implementation, namely, the thrust impulse command for thethrusters was produced in imperial units, instead of metric units.In these and many other examples the mission criticality is mixed also with time crit-icality. The Time Critical Systems3 (TCS) fail if the timing deadlines are not met by thesystem. So, a well-designed MCS, even in case of unavoidable system’s failures, if prop-erly predicted, timely detected and recovered, should be able to operate under severeexploitation conditions without catastrophic consequences.Detection of software bugs, especially those deeply nested in software loops whichmanifest sporadically as wrong timing in complex TCS, is a real challenge for current MCSand TCS software engineering methods. The methods of risk mitigation, in particular theprovably correct software synthesis, formal verification as well as model-based testing,are powerful but time-wise and computationally expensive which limits their wider ap-plication. In [26], it is stated that software verification and testing constitutes up to 50percent (or even more in mission critical applications) of the total development costs ofsoftware.Authors of [34] report that the root causes of 56 percent of all defects identified insoftware projects are introduced in the requirements phase. They profess that low soft-ware quality is mainly due to the problematical test coverage and incorrect requirements.In addition, 50 percent of incorrect requirements are caused by incomplete specificationand another 50 percent by unclear and ambiguous requirements.Another research report [5] outlines the application domains and development phaseswith highest risk of failure or delay. In automotive and medical domain the system inte-
gration level test and verification cause project delays respectively in 63 percent and in66,7 percent of the cases. An extreme is the medical domain where system’smiddleware
development and test has caused delays in about 75 percent of studied cases. Since bothautomotive and medical domains are often mission and time critical it gives indicationthat the software integration level test and verification are themain bottlenecks, thus new

1http://wiki.c2.com/MissionCritical2http://wiki.c2.com/TheracTwentyFive3http://wiki.c2.com/TimeCritical
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verification and test development methods and their tooling are of key importance. Thisway, any increase in productivity of testing methods and tools would have strong impacton the productivity of the whole development process and onMCS software assurance ingeneral.
1.2 The scope of the thesis
In this thesis, the research is focused on model-based testing, specifically, on the testpurpose specification and test generation techniques to address the test coverage andback-traceability of faults problems capitalized in Section 1.1.The scope of the thesis is defined from three interrelated perspectives:

• The application domain that dictates needs and constraints on the testing approach;
• The testing technology applied to meet these needs;
• The formal framework used to automatize the test purpose specification and gen-eration procedures.

1.2.1 The application domain perspective
The applications that require extensive test effort are typically systems that integratemany functions onto one while ensuring the safe segregation of functions with differentcriticality levels. These systems are called mixed-criticality systems. Those mixed-criticalMCS are usually based on a small set of core services that can be used to instantiate thesystem e.g., networked, virtualized multicore computers satisfying both the performanceand segregation demands, which are extended depending on the specifics of a missionwith relevant application software services [1]. However, the mixed criticality integrationchallenge also exists for the development process. Here, model-based engineering en-ables to integrate numerous functions of different criticality levels onto a shared complexhardware / software platform.For instance, Robotic systems completing critical missions and having extensive degreeof autonomy constitute one subclass of MCS. They operate in the dynamic and often un-der unpredictable conditions which require complex software solutions and sometimeseven dynamic reconfigurability. Examples of such systems are surgical robots and assist-ing robots used in medical treatment procedures as well as spacecrafts having long termautonomous missions.One of the practical examples of such MCS is the Scrub Nurse Robot (SNR) [6] devel-oped at Tokyo Denki University. It was designed to collaborate with a human surgeon toassist at laparoscopic surgeries. Anticipating surgeon’s movements, estimating the courseof surgery andplanning assisting actions (what instrument to pick, when andhow topass itto the surgeon) needs complex decision making methods, high degree of precision in tim-ing and inmanipulator movement planning. Exhaustivemanual testing of SNR applicationappeared to be extremely time consuming and error prone due to factors such as vari-ability of surgeon motion characteristics, imperfections of fusing different sensor types(cameras, IMU, etc.), mechanical inertia when moving instruments of different weightand shape, safety precautions of picking and handling instruments to surgeon (instrumentmust be in steady position and orientated properly when surgeon can safely grasp it), etc.Due to safety-criticality and complex use cases, such applications as SNR set high re-quirements on testing. Extensive number of combinations of movement characteristicsand variations of behaviour have to be covered by tests. Doubtlessly, exhaustive manual
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testing or even writing only test scripts for automatic test execution of these test casesremains out of the practical feasibility limits.
Satellite mission control. Launch and early orbit phase (LEOP) are the critical first stepsin a spacecraft’s life starting after the satellite separates from the launcher’s upper-moststage. Mission control on-board software is responsible for activating, monitoring andverifying various subsystems on board the satellite, to ensure that the solar panels havedeployed and that they undertake critical orbit and attitude control manoeuvres.During LEOP the ground station software should provide extra telecommanding ‘passes’,time slots when the satellite is in view of a station. This provides mission controllers flex-ibility when complex command stacks must be sent up or additional software must beuploaded to troubleshoot any problems that may be found.In the later phases ofmission, despite the best preparations, unforeseen problems andchallenges often arise that must be solved in real-time by mission control software au-tonomously when the satellite is out of communication range or already too far for timelycommunication. The onboard mission control operates in synch with core functionalitiesof the satellite control software including flight control, flight dynamics, telecommandingand data receipt via ground stations, and at the same time, has to take care of high-levelfunctions such as conflict resolution, algorithm generation, event and plan generation.Common features to be addressed when testing the use cases of satellite mission con-trol are:
• significantly longer communication delays compared to local computation dead-lines, e.g., when communicating with a ground station,
• security vulnerabilities due to communicating via open channels,
• functional interference between software components,
• non-determinism regarding events timing,
• varying control and data transmission capabilities (the communication depends onthe satellite position in the orbit, atmospheric conditions), etc.

1.2.2 The testing technology perspective (to meet the requirements)
According to standard IEEE-1012-2004 testing is considered to be part of the softwareverification and validation (V&V) processes. Verification focuses on evaluating whetherthe software matches its specification, the validation goal is to assess if the specificationmatches the customer’s requirements. Software testing as a method can be used in both.While the testing of functionality has been used traditionally in non-critical software de-velopment approaches, verifying and validating the predictable timing of critical servicesin the presence of heterogeneous and evolving distributed architectures remains still achallenge [6]. Therefore, validation methods like bench testing and encasing alone, al-though helpful and widely used, have become insufficient for MCS.The quality and productivity issues of MCS V&V can be mitigated with model-basedtechniques and tools that operate on relevant level of abstraction [28]. MBT as one groupof such techniques provides the opportunities for test automation and reduces systemsV&V effort [39]. MBT suggests the use of a formal model for specifying the expected be-haviour of System Under Test (SUT) and the test purpose. For instance, the behaviours ormodel elements to be covered by tests are subject to test purpose specification. Both, theSUT model and the test purpose specification are pre-requisites for automatic test gener-ation. According to the taxonomy shown in Figure 1 [35] MBT captures the up-right corner
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of theAccessibility-Level plane and extends through all categories along theAspect dimen-sion. Thus, MBT advantages expose most clearly in Integration and System level testingwhere the functionality, timing, safety, security and other aspects of MCS are inspectedin their most integrated form.

Figure 1 – Taxonomy of testing [40]

From test generation-execution point of view, in MBT the tests are generated either in
offline or online mode. The online testing (test generation) can be divided internally bythe methods how the test purpose is defined and how the test stimuli are selected on-the-fly. Online test execution requires more run-time resources for interpreting the SUToutputs and selecting new inputs until the test verdict about the conformance relation canbe made. In offline testing, it is required to explore the whole state space of the modelof SUT prior to generating the tests and therefore, the computationally expensive statespace exploration is not needed during test execution anymore.MBT focuses on the conformance testing where the SUT is considered to be a “black-box”, i.e. only its inputs and outputs are assumed to be externally controllable and ob-servable, respectively. The internal behaviour of the system is abstracted away in amodel.The aim of black-box conformance testing, according to [41], is to check if the behaviourobservable on the system interfaces conforms to that of given in the system requirementsspecification. During MBT, a tester executes selected test cases (extracted from the sys-tem specificationmodel) by running SUT in the test harness and emits a test verdict (pass,
fail, inconclusive). The verdict shows test result in the sense of a conformance relationbetween SUT and the requirements model. A conformance relation used most often inMBT is Input-Output Conformance (IOCO) introduced by Tretmans [37]. The behaviour ofIOCO-correct implementation should respect after some observations the following re-strictions:

• the outputs produced by SUT should be the same as allowed in the requirementsmodel;
• if a quiescent state (a situation where the system cannot evolve without an inputfrom the environment) is reached in SUT, this should also be the case in the model;
• any time an input is possible in the model, this should also be the case in the SUT.
FromMBT point of view, the aim of the thesis is to develop an expressive test purpose

specification language and the method of extracting complex test cases from SUT mod-els. The derived tests should satisfy the coverage criteria specified in the test purpose,be correct, which means that they should not signal errors in correct implementations,and should bemeaningful, i.e. erroneous implementations should be detected with high
16



probability [36]. To address the problems of complexity and traceability in MBT the the-sis extends the model-based conformance testing with a scenario based test description
language T DLT P and an automatic test generation technique and tool.
1.2.3 Formal modelling perspective
MBT relies on formal models. The models are built from the requirements or design spec-ifications in order to describe the expected behaviour of SUT in interaction with its envi-ronment. The model should be precise, unambiguous, and presented in a way relevantfor correctness verification and test generation.Another main purpose of using models in MBT is that the models of SUT are used toretrieve a test suite consisting of a set of test cases. The test cases are selected by meansof a test case specification. The standard ETSI ES 202 951 v1.1.1 (2011-07) “Requirementsfor Modelling Notations” is used to define characteristics of MBT [3]. These characteris-tics concern main phases of the MBT process: SUT and its environment modelling, testpurpose specification that defines the test coverage criteria, test generation and test ex-ecution steps.Based on the rigour of semantics, the models used in testing can be classified intoformal, semi-formal and informal ones. The models with strict formal semantics providecertainty that if themodels represent systems adequately, then all the properties verified,really hold. However, formal models tend to have some practical usability limits for MBT,in particular, the scalability of test generation methods for large industrial systems. Dueto high complexity their usage is typically limited with critical software domains such asautomotive, medical, military, and critical infrastructure systems. The general purposesoftware industry uses semiformal modelling languages such as Unified Modelling Lan-guage (UML), Systems Modelling Language (SysML) and others which are expressive andintuitive to designers, but lack fully rigorous semantics. Regardless the lack of completeformal semantics they are preferred also due to elaborated graphical representations andtool support. Informal models are used to communicate the main ideas but they lack aclear semantics and are not suitable for development of critical systems. Regardless thewide use of UML, a considerable amount of testing theory has been conducted on formalmodels, in particular, based on different classes of state machines. An extensive surveyon modelling formalisms used in MBT can be found in [30].From the test goal specification and automated test generation point of view, themod-elling formalism to be used for MCS should be expressive enough to specify the featuresof systems that are required to be tested. The class of systems in the thesis target do-main - TCS and MCS can be characterized with the following features: behaviours of TCShave projection in the unbounded and dense time domain featuring effects such as Zenobehaviour and time bounded fairness; explicit reference to metric time constraints; si-multaneous behaviours on different time scales and their interrelations; timing as wellas data dependent non-determinism of behaviours; both synchronous and asynchronousconcurrency between the parallel components of the system.The formal notation should be supported also by the analysismethodswhere the prop-erties of practical importance (safety, bounded reachability, etc.) are decidable and theirverification feasible from the complexity point of view. The last presumes modelling andverification automation tools that meet also practical usability requirements. Since thetheory of timed automata and its extension Uppal timed automata (Uppaal TA) theorysatisfy the criteria listed above, the thesis relies on the underlying theory of Uppaal TA.Related Uppaal4 tool family, supports modelling, validation and verification of real-time

4http://www.uppaal.org
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systems. Uppaal TA model systems as a collection of non-deterministic processes withfinite control structure and real-valued clocks, communicating through channels and (or)shared data structures. Typical application areas include systems in which timing aspectsare critical. In particular, for online test execution the tool Uppaal Tron and its extensionfor distributed testing DTron will be exploited in this work.
1.3 Related work
The requirements to the test purpose specification languages forMBT can be summarizedas following:

• intuitivity to support human comprehension and to make the specification processuser-friendly;
• expressiveness to capture the features and behaviours under test in a compact andunambiguous form;
• formal semantics to make the test purpose specifications verifiable and pertinentfor automated test generation;
• decidability to make the test generation from test purpose specification algorithmi-cally feasible.
The first two criteria have been capitalized in earlier attempts of designing test purposespecification languages. Check Case Definition Language (CCDL) [31] provides a high-levelapproach for requirements-based black-box system level testing. Test simulations and ex-pected results specified in human readable form in CCDL can be compiled into executabletest scripts. However, due to the lack of standardization, high-level test descriptions inCCDL are heavily tool-dependent and can be embedded only in its proprietary testingprocess.High-level keyword-based test languages, using frameworks such as the Robot Frame-work5, have also been integrated with MBT [32]. In some domains such as avionics [22]and automotive industry the efforts have been made to address the standardization oftesting methods and languages, e.g. creating a meta-model for testing avionics systems[22], and the Automotive TestML [21] focusing on automotive systems. Similarly, the OpenTest Sequence Exchange Format (OTX) [9] standardized at the International Organizationfor Standardization (ISO) provides tool-independent XML-based data exchange format[10] for the formal description and documentation of executable test sequences for au-tomobile diagnostics. These efforts have focused primarily on enabling the exchange oftest specifications between involved stakeholders and tools, and do not possess precisesemantics. Due to their domain and purpose specialization the applicability of these lan-guages in other domains is limited.The Message Sequence Chart (MSC) [8] standardized at the International Telecommu-nication Union (ITU) was one of the first languages for the specification of scenarios, notfocusing strictly on testing. In addition, [7] provides a formal specification of the seman-tics of MSC. Some of the features of MSC are adopted in UML as Sequence Diagram. Theloose semantics of UML and various interpretations of sequence diagrams are a limitingfactor for its use as a universal and consistent test description language [4].The Precise UML [14] introduces a subset of UML and OCL for MBT trying to providestrict semantics of different diagrams. This was motivated by the need for behaviouralspecifications of SUT which are well suited for generating test cases out of SUT models.
5https://robotframework.org
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Though, the experience with approaches that are based on a concrete executable lan-guage with strict semantics, such as TTCN-3, are not well suited for review and high-levelinterpretation of testing results. This is due to the low level of detail and the need to beable to understand the programming language-like syntax [20].The domain specific and weakly formalized test purpose specification languages re-ferred above share also a common set of disadvantages, either they have imprecise orinformal semantics, lack of standardization, lack of comprehensive tool support, or poorinteroperability with other development and testing tools.
European Telecommunications Standards Institute ETSI intended to address these short-comings and develop a new specification language standard by introducing Test PurposeLanguage (TPLan) that supports the high-level expression of test purposes in prose [2].Though TPLan provides notation for the standardized specification of test purposes, itleaves a gap between the declarative test purposes and the imperative test cases. With-out formal semantics the development of test descriptions bymeans of different notationsand dialects led to significant overhead and frequent inconsistencies that needed to bechecked and fixed manually.As a consequence, ETSI started a new initiative to develop the Test Description Lan-guage TDL [20] intended to bridge the gap between declarative test purposes and imper-ative test cases by offering a standardised approach for the specification of test descrip-tions. TDL provided a standardised meta-model, that was subsequently enriched with agraphical syntax, exchange format, and a UML profile. By 2015 ETSI succeeded in complet-ing TDL as a commonmeta-model with well-defined semantics, which can be representedby means of different concrete notations. The main benefits of ETSI TDL outlined in [20]are:
• higher quality tests through better design;
• easier layout to review by non-testing experts;
• better and faster test development;
• seamless integration of methodology and tools.
The development of ETSI TDL was driven by industry where it is used primarily, but notexclusively, for functional testing. To enable the application of TDL in UML based workingenvironments, a UML Profile for TDL (UP4TDL) [4] was developed. Domain-specific con-cepts are represented in a UML profile by means of stereotypes. A stereotype enablesthe extension of a UML meta-class with additional properties, relations, or constraints inorder to address domain-specific concerns.Though the ETSI TDL features one of the most advanced test purpose description lan-guage it has room for improvements including following:
• Automatic mapping of ETSI TDL to TTCN-3, that is needed for generating executabletests from TDL descriptions and re-using the existing TTCN-3 tools and frameworksfor test execution, is not fully defined yet.
• Adaptation of TDL to different domains and types of testing in order to determinenew language features and extensions, e.g. for security and performance testing,needs to be done.
• Restricted timing semantics. The Time package in TDL contains concepts for thespecification of time operations, time constraints, and timers. TDL time operationsincludeWait and Quiescence and timer operations Start, Stop, Timeout. Since time
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in TDL is global and progresses monotonically in discrete quantities there is no wayof expressing synchronization conditions between local time events of parallel pro-cesses and detecting possible Zeno computations that can be analysed in continu-ous timemodels. Similarly, time-divergency (a path is time-divergent if its executiontime is infinite), timelock-freedom cannot be analysed (a model is timelock-free ifno state in the reachability set of the model contains a timelock - a state contains atimelock whenever no time-divergent paths emanate from it).
As one step further towards automatic test generation, the timed games based syn-thesis of test strategies has been introduced in [17] and implemented in the Uppaal Tigatool. Timed computation tree logic (TCTL) is used to specify test purpose in this approach.TCTL has high expressive power and formal semantics relevant for expressing quantitativetime properties combined with CTL operators such as AG (’always’), AF (’inevitable’), EG(’potentially always’), EF (’possible’), and > (’leads-to’) [16].Due to the complexity consideration of model checking, the TCTL syntax in Uppaal toolis limited with un-nested operators only, making the TCTL expression with respect to thetemporal operators ’flat’. On the other hand, to specify the properties of timed reachabil-ity the ’flat’ TCTL expressions are not sufficient for specifying complex properties and socalled auxiliary property recognizing automata have to be added to the test models. Aninstance of such auxiliary automata is ’stopwatch’ automata that are needed to compen-sate for that deficiency. Modifying the test model structure by adding property automatais not trivial for non-expert and may be error prone process leading to the unintendedchanges of model semantics.As an extension to TCTL based test purpose specification language, the aim of thesis isto build an extra language layer (Test Scenario Definition Language - T DLT P) for test sce-nario specification that is expressive, free from the limitations of ’flat’ TCTL, interpretablein Uppaal TA, and thus, suited for automated test generation.

1.4 Main hypothesis and goals
The research goals of the thesis are based on following hypothesis:

• Due to its high expressive power the representation of test scenarios in T DLT P ismore compact compared to that of TCTL;
• Formal semantics of T DLT P expressions enables

– formal correctness verification of test models and test purpose specifications,incl. evaluation of their feasibility, time/space complexity;
– automated generation of tests from verified models;
– interpretation of different coverage criteria and back-tracing the root causesof found bugs.

• The T DLT P expressions can be interrelated with other test coverage criteria andcoveragemetrics like structural coverage, function coverage, requirement coverageetc.
The technical goals of the thesis are following:
• Defining the syntax of test scenario definition language T DLT P;
• Defining the interpretation of T DLT P in terms of language generating Uppaal TA;
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• Designing and implementing the interpreter ofT DLT P and based on that a symbolictest generator;
• Integrating the T DLT P usage into provably correct testing workflow described inPublication II.
• Demonstrating the feasibility of T DLT P usage on a practical non-trivial test purposespecification and test generation case study.

1.5 The methodology used in the thesis
The research methodology applied in the thesis relies on the theory of automata, modelchecking and model-based testing. To achieve the thesis goals, following concrete tech-niques and methods are applied:

• T DLT P syntax is defined in textual form that is inspired by temporal logic and pro-cess algebra notation;
• To reuse the existing test generation methods designed for Uppaal TA, the seman-tics of T DLT P operators is interpreted by transforming the terms of T DLT P to frag-ments of Uppaal TA that constitute the executable test model;
• T DLT P interpretation rules are defined recursively as rewriting rules applicable tothe terms of T DLT P expressions;
• the correctness of SUT models and the test models generated from T DLT P is ver-ified using TCTL model checking. The verification follows methodology introducedin [43];
• the usability of T DLT P is validated on a case study where TUT100 satellite softwareis tested and T DLT P expressions are extracted from the satellite software require-ments specification;
• the efficiency evaluation of the developed approach is measured in terms of savedtest generation effort, and detected bugs back-traceability effort (the bug is back-
traceable if the term of TDL expression can be referred to which caused the ’testfail’).

1.6 Thesis main contributions
The thesis provides the following novelties in the field of model-based testing:

1. Defines a highly expressive test purpose specification language T DLT P for complextest scenario specifications that is needed for MBT in safety and time critical sys-tems.
2. Gives the semantics of T DLT P operators that is defined in terms of model trans-formation rules that map declarative T DLT P expressions to executable test modelsrepresented as Uppaal timed automata.
3. A provably correct test development process model is introduced and correctnessconditions specified to be verified when showing correctness of test developmentsteps.
4. Validation of the thesis theoretical results on the TUT100 satellite software casestudy.
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1.7 Chapter summary
This chapter gives the motivation about why further research is needed in the domainof critical software engineering theory and practice. We define the research problemsto be solved and their scope from three perspectives, the application domain that dic-tates the needs and constraints on the testing approach, the testing technology appliedto meet these needs and the underlying formal framework to implement the MBT ap-proach. Based on the analysis of the related work on test purpose specification languagesitwas concluded that extensions towards languages expressive power and semantic rigourare needed to support automatic test generation from coverage specifications. Researchmethodology how to solve these problems in the thesis was outlined. Finally, problemspecific hypothesis and goals were defined to keep the focus and to prove the validity oftargeted results.
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2 PRELIMINARIES
In this chapter, the basics of testing are introduced in the context of model-based test-ing process while capitalizing the role of formal test model development and test purposespecification. Uppaal Timed Automata are defined as themodelling formalism for SUT de-scription and test execution environment Uppaal Tron is explained as relevant tool for thisclass of models. To decide on the test sucess or fail, the Relativized Timed Input OutputConformance (RTIOCO) relation between the model and system under test is defined. Fi-nally, related work on test coverage criteria and test purpose specification languages usedin model-based testing are reviewed and the need for a new multi-criterial test scenariospecification language is articulated.
2.1 Model-based testing
Typically, MBT is a black box testing technique where state machine models are used asspecifications of observable interactions between SUT and its environment. The goal is toproject the behaviours described in the model onto SUT by sending model generated teststimuli to SUT and observing if reactions of SUT conform to those specified in the model.Like other software processes the MBT test development can follow different processmodels - waterfall, spiral, v-shape, agile etc. Regardless the process model all of theminclude five principal steps: modelling of SUT, specification of the test purpose, test gen-
eration, deployment, and execution. In this thesis, we exploit as an example the waterfallshape test development process model shown in Figure 2 [43].

Figure 2 – Waterfall shape MBT workflow

Based on the test requirements and the test plan, a test model is constructed, at first.The model is usually an abstract, partial representation of the desired behaviour of SUT.The test model is used to generate the test cases that together form an abstract test suite.In principle, the test models can represent infinite sets of SUT behaviours. Therefore, testselection criteria, specified as test purpose, are meant to select a finite and practically ex-ecutable set of implementable test cases. For example, different model coverage criteria,such as all-states, all transitions, selected branching conditions etc. can be used to extractthe corresponding test cases.The coverage of model structural elements (states and transitions) can be used alsoas a measure of thoroughness for a test suite. Thus, a test purpose is a specific objective
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(or property) that the tester wants to test, and can be seen as a specification of the testcase. It may be expressed in terms of a single coverage item, scenarios, duration of thetest run etc. As an example let us consider a requirement “Test a state change from state
sA to state sB” in a model MSUT . For this purpose, a test case should be generated suchthat, when starting from the initial state s0 of MSUT , it covers the specific state transition
sA → sB of MSUT . This requires that the test drives SUT to the state sA, then executes
sA→ sB and the test should terminate in some safe state of MSUT after that.For non-deterministic systems a single precomputed test sequencemay never succeedin reaching the test goal if MSUT is not deterministically test-controllable. Instead of asingle test sequence we need here an online testing strategy that is capable of reachingthe goal even when SUT provides non-deterministic responses to test stimuli. The issue isaddressed in [44]where the reactive planning online tester synthesismethod is described.In the third step, the abstract test suite is generated from the model consisting of SUTand the environment component so that the test purpose can be reached by executingthe test suite. The test sequences generated are the intersection of behaviours of SUTand those specified by the test purpose.The abstract test cases are deployed using the test execution framework. Deploy-ment means transforming abstract tests to executable test scripts or by introducing testadapters which map symbolic model inputs to executable ones and the concrete outputsof SUT back to symbolic form to compare them with ones given in the model. The ad-vantage of separating an abstract test suite and concrete test suite is the platform and
language independence of the abstract test cases so, that the same abstract test case canbe executed in different test execution environments.In the fifth step, the deployed test cases are executed against the SUT. The test execu-tion will result in a report that contains the outcome of the execution of the test cases.After the test execution, the detected bugs are analysed and their root cause backtracked.Hereby, for each test that reports a failure, the cause of the failure is determined and theprogram (or model) is corrected.An example of symbolic test execution tool for Uppaal TA is Uppaal-TRON [25] depictedin Figure 3.

Figure 3 – Online MBT execution architecture: Uppaal-TRON

2.2 Uppaal timed automata
The Uppaal TA are extension of Timed Automata defined in [13] as follows:
Definition 2.1 (Timed Automaton)Assume Σ denotes a finite alphabet of actions a,b, . . . andC a finite set of real-valuedvariables x,y,z, standing for clocks. A guard is a conjunctive formula of atomic constraintsof the form x∼ n for c ∈C,∼∈ {≥,≤,=,>,<} and n ∈ N+. We use G(C) to denote theset of guards.
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A timed automaton A is a tuple 〈L, l0,E, I〉 where
• L is a finite set of locations (or nodes),
• l0 ∈ L is the initial location,
• E ∈ L×G(C)×Σ×2C×L is the set of edges and
• I : L→ G(C) assigns invariants to locations (here we restrict to constraints in the
form: x≤ n or x < n,n ∈ N+. For shorthand we write l

g,a,r−−→ l′, to denote edges.
To define the clock conditionswith respect to local events the functions known as clockresets are used. TheymapC to non-negative naturalsN. To keep the analysis tractable welimit the class of timed automata to rectangular timed automata where guard conditionsare in conjunctive form with conjuncts of the form k ∼ n for n ∈ N, and ∼∈ {≥,≤,=,>

,<}.
Definition 2.2 (Operational Semantics of TA)The semantics of a timed automata are defined as a transition system. There are twotypes of transitions between states: either delay, or action (action transition).To keep track of the changes of clock values, we use a function known as clock as-signment that maps C to non-negative reals R. Let u,v denote such functions, and u ∈ gmeans that clock values denoted by u satisfy the guard g. For d ∈ R+ let u+ d denotethe clock assignment that maps all x ∈C to u(x)+d. For r ⊆C, let [0/r] denote the clockvalue substitution for all clocks in r to 0 and preserving the value of other clocks inC\r.The operational semantics of timed automata is represented using timed transitionsystem where states are pairs 〈l,u〉 and transitions are defined by the rules:- Timed transitions: 〈l,u〉→d 〈l,u+d〉 if u∈C(l) and (u+d)∈C(l) for a non-negativereal d ∈ R+;- Action transitions: 〈l,u〉 →a 〈l′,u′〉 if l

g,a,r−−→ l′,u ∈ g,u′ = u[0/r] and u′ ∈ I(l′).The graphical representation of a timed automaton is considered as a directed graph,where locations are represented by the vertices and they are connected by edges (seeFigure 2.3). Locations are labelled with invariants. Invariants are conjunctive Booleanexpressions where the literals consist of clock variables and bound conditions of clockvariables, e.g. Clock1≤ const1.In the graphical representation the edges are annotated with guards, synchronisationsand updates. An edge is enabled by a guard in a state if and only if the guard evaluates totrue. Processes (parameterized instances of automata templates) can synchronize tran-sitions over channels. The execution of two edges of different automata labelled with acommon channel is synchronized. For instance in Figure 4, the edgeWaitingCard→ Idleof Customer automaton and the edge printReceipt → Idle of ATM automaton synchro-nize over channel card. Updates express the change of the system state when the edge isexecuted, e.g., updateClock1 = 0 resets the value of model clockClock1.To model concurrent systems, TA are extended with parallel composition. A networkof TA NTA = (T1|| . . . ||Tn) is a collection of concurrent TA Ti(i = 1, ...,n) composed usingparallel composition. The state of the network is modelled by a configuration 〈l̄, c̄〉, wherethe first component is a location vector l̄ = 〈l1, . . . , ln〉 where li is the current locationof automaton Ti. The second component c̄ ∈ R+ is the valuation of all clock variables.The initial configuration of the network is 〈l̄, c̄〉, where all automata in NTA are at initialconfiguration and the valuation of all clock variables is zero.
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Figure 4 – The TA model of ATM

Similarly to TA network configuration a symbolic state s of a single timed automaton
T is a pair 〈l,c〉, where l ∈ L(T ) is a location and c is the valuation of all clocks in C(T ).The valuation c must always satisfy the invariant constraints in the current location of theautomaton l : c |= I(l). There are three types of transitions in a TA network. A transitionfor TA network NTA is defined by:

• Action transition: if li
g,a,r−−→ l′i is an action transition in the i-th automaton Ti with aguard over clock constraint g(c̄), c̄′ |= I(l̄′), an action a∈ A, and an action transition

〈l̄, c̄〉 a−→ 〈l̄ j, c̄′〉.
• Synchronized transition: if li

g1,a,r1−−−−→ l′i and l j
g2,ā,r2−−−−→ l′j are edges in i-th and j-th(i 6= j) automata synchronized via action a and its co-action ā with c̄ |= (gi ∧ g j)and c̄′ |= I(l̄′), then 〈l̄, c̄〉 τ−→ 〈l̄′, c̄′〉 is an internal action transition in NTA, where

a,τ ∈ A, l̄′ = l̄[l′i/li, l′j/l j], and c̄′ = (r1∧ r2)(c̄). Notation l̄[l′i/li]means substitution
of all occurrences of l′i with li in l̄ [33].

• Delay transition: if δ ∈ R+ is a delay with condition ∀d < δ : (c̄+ d) |= I(l̄), then
〈l̄, c̄〉 δ−→ 〈l̄′, c̄+δ 〉 is a δ -delay transition in NTA.

Uppaal timed automata [12] extend TA also with data types such as bool, integer, ar-rays of both types but also types of locations such as committed, urgent and normal. Theadvantage of this extension is that the model has rich enough modelling power to repre-sent real-time and resource constraints and at the same time to be efficiently decidablefor reachability analysis.
Definition 2.3 A timed automatonwith data variables (TAD) over actionsA, clock variables
C and data variablesV is a tuple (L, l0,E) where

• L is a finite set of locations,
• l0 is the initial location,
• E ⊆ L×G(C,V )×A×PC×L corresponds to the set of edges, where G(C,V ) is setof guard conditions that range over g.

– g is a constraint in the form: c∼ n or v∼ n for c ∈C,v ∈V,∼∈ {≥,≤,=} and
n is a natural number.

– the guards G(C,V ) can be divided into two parts: a conjunction of constraintsover clock variables in the form c∼ n and conjunction of constraints over datavariables in the form v∼ n.
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2.3 Conformance testing with Uppaal TA
We define the conformance relation using Uppaal TA semantics representation as a timedlabelled transition system (TLTS). TLTS is a 4-tuple 〈S,s0,Actτε ,→〉, where

• S is a non-empty set of states
• s0 ∈ S is the initial state
• Actτε

de f
= Act∪{τ}∪D are the actions Act including the internal action ε and time-passage actions τ ; where D = {ε(d) | d ∈ R+}

• →⊆ (S×Actτε × S) is the transition relation with the following consistency con-straints:
– Time Determinism whenever s

ε(d)−−→ s′ and s
ε(d)−−→ s′′ then s′ = s′′

– TimeAdditivity∀s,s′′ ∈ S∧∀d1,d2≥ 0 : (∃s′ ∈ S : s
ε(d1)−−−→ s′

ε(d2)−−−→ s′′) iff s
ε(d1+d2)−−−−−→

s′′

– Null Delay ∀s,s′ ∈ S : s
ε(0)−−→ s′ iff s = s′.

The labels in Actε(where Actε
de f
= Act∪D) represent the observable input-, output ac-tions (Act = ActI∪ActO) of a system, i.e. labelled actions and passage of time; the speciallabel τ represents an unobservable internal action. A transition (s,µ,s′) ∈→ is denoted

as s
µ→ s′.A computation is a finite or infinite sequence of transitions: s0

µ1−→ s1
µ2−→ s2

µ3−→ . . .
µn−1−−−→

sn−1
µn−→ sn(→ . . .)A timed trace captures the observable aspects of a computation; it is the sequence ofobservable actions. The set of all f inite sequences of actions overActε is denoted byAct∗ε ,while ε denotes the empty sequence. If σ1,σ2 ∈ Act∗ε then σ1 ·σ2 is the concatenation of

σ1 and σ2.We consider normalised traces where actions and delays strictly alternate, startingwith a delay. It has been shown that this set characterises the set of all traces [5]. A timedtrace is thus a sequence σ ∈ (R≥0 ·Act)∗ · (R≥0 + ε) such that s0
σ−→ s′ for some s′ ∈ S.The set of traces of TLTS S is noted traces(S). The set of states that can be reached fromstate s via a trace σ is denoted as s aftertσ .

Definition 2.4 (a f tert ). Let 〈S,Act,s0,→〉 be a TLTS and σ ∈ (R≥0 ·Act)∗ · (R≥0 + ε).
Then s aftertσ =de f {s′ | s σ−→ s′}.Crucial for the definition of tioco is the set of delay and output labels of the outgoingtransitions of a state.

Definition 2.5 (elapse(s) and outt(s) ). We define elapse(s) =de f {d | s d−→} , and
outt(s) =de f {o ∈ ActU | s o−→}∪ elapse(s). For S′ ⊆ S,outt(S′) =de f ∪s∈S′outt(s).As in the ioco theory, we assume that implementations under test are input-enabled.

Definition 2.6 (Input-enabled T LT S). A T LT S 〈S,Act,s0,→〉 is called input-enabled if
and only if for all s ∈ S and all i ∈ ActI : s i−→.With the introduced concepts we can define the family of implementation relations
tiocoF .

Definition 2.7 (tiocoF ). LetP be an input-enabled T LT S, S a T LT S, andF ⊆ traces(S).Then P conforms to S w.r.t. tiocoF (written P tiocoF S) if and only if the following holds:
∀σ ∈ F : outt(P aftertσ)⊆ outt(S aftertσ).
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Definition 2.8 Relativized timed input/output conformance (RTIOCO)Let T Tri be projection of traces(S,E) on input alphabet ΣI , i.e.
T Tri(S,E) = traces(S,E)|ΣI

and let T Tro be projection of traces(S,E) on output alphabet ΣO, i.e.
T Tro(S,E) = traces(S,E)|ΣO

An implementation I conforms to its specification S under the environmental con-straints E if for all timed input traces σ ∈ traces(S) the set of timed output traces of Iis a refinement of the set of timed output traces of S for the same input trace.

I rtioco S iff ∀σ ∈ T Tri(E) :
T Tro((I,E),σ)v T Tro((S,E),σ) (1)

The timed traces generated by Upaal verifier provide symbolic test sequences to beexecuted by Uppaal Tron. For each test event, symbolic state in which the event occurredis specified in terms of clock constraints, variable valuation, list of next available states,and list of input/output actions. In the test sequence, when executed by TRON, a new testevent occurs at a specific time, the clock constraints are updated, a transition to a newsymbolic state occurs and the list of the next available states is updated.
2.4 Test coverage criteria
Test selection criteria are based on what hypothesis about the SUT behavior have to becovered by test cases. Like the code coverage measures what percentage of code is cov-ered by tests, MBT coverge criteria measure how well the generated test suite covers themodel elements. Many model coverage criteria have been adopted from the field of codecoverage, e.g. statement coverage, decision/condition coverage, etc. In the MBT taxon-omy of [40] following coverage based test selection criteria groups are described:

• Structural model coverage
• Data coverage
• Requirements coverage
• Test case specification coverage
• Random & stochastic coverage
• Fault based coverage
Structural coverage criteria deal with coverage of the control-flow through the model,based on analogy of control flow through programs. Structuralmodel coverage criteria arederived from the key concepts of the modeling paradigms used for model-based testing.For example, transition-based notations have given rise to a family of coverage criteriathat includes all-states, all-transitions, and all-transition pairs.Pre/post notations refer to predicate coverage of guards and invariants in the model.For state transition models their control graph related notions can be used such as all
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states, all transitions, all cycles. Also data-flow coverage criteria reflect the data depen-dencies in the model computations, e.g. all updates of variables that depend on given
input values.

Data coverage deals with the coverage of the input data space of an operation or tran-sition in the model. It presumes choosing test data values from a large input data space.To reduce the number of possible test cases the data space is split into equivalence classesand one representative from each equivalence class has to be chosen to detect potentialfailures. The partitioning of the value domains into equivalence classes is often comple-mented by boundary tests of the equivalence classes.
Requirements coverage aims to generate a test suite that ensures that all the informalrequirements are tested. Traceability of requirements can be automated if the fragmentsof the model can be associated with requirements of the SUT. For instance, if require-ments’ ID-s are used to label the transitions or states of a state machine or predicates ofthe post-conditions of a pre- and post-condition model, then test generation can aim tocover all requirements.
Random & stochastic coverage based generation is a computationally cheap way togenerate tests that explore a wide range of system behaviors. These aremostly applicableto environmentmodels, because it is the environment that determines the usage patternsof the SUT. The probabilities of actions are modelled directly or indirectly. The generatedtests then follow an expected usage profile ([49] , [29]).
Fault-based coverage is used to find faults in the SUT using mutation coverage. Thisinvolves mutating the model, then generating tests that would distinguish between themutated model and the original model. The assumption is that there is a correlation be-tween faults in themodel and in the SUT. Themutants are used for test generation againstthe implementation in order to check whether the latter allows for unspecified behaviors[33].
Ad-hoc test case specifications. To drive the test on heavily used cases, or to ensure thatparticular paths will be tested an explicit control of test execution can encoded in the testmodel. The notation used to express these test objectives may be the same as the nota-tion used for SUTmodelling, or it may be a declarative notation interpreted on themodel.Notations commonly used for test objectives include UML Sequence diagrams, FSMs, reg-ular expressions, temporal logic formulae, constraints and Markov chains (for expressingintended usage patterns). This family of coverage criteria relates to the scenario-basedtesting approach (e.g., ([50] , [38])) where test cases are generated from descriptions ofabstract scenarios.
The main advantage of explicit test case specifications is that they give precise controlover the test run. The drawback is that such specifications can be more labor intensivethan choosing some structural model coverage criteria. Therefore, it is recommended tocombine test selection criteria. One such strategy is to start generating tests using simplestructural model coverage and data coverage criteria and then use test case specificationsto enhance the coverage of SUT parts that are accessible only when applying complex testscenarios.
To summarize, a large variety of coverage criteria can be used to configure an auto-mated test generation process. These criteria have different scopes and purposes, but thekey is complementarity of test selection criteria [40]. To obtain good quality test suites,different coverage criteria should be combined, particularly when testing complex MCS.In other words, these applications need scenario based testing where multiple coveragecriteria are seamlessly combined and applied jointly or separately in the steps of test sce-narios. Tominimize suchmulti-criterial scenario specification effort, instead of explicit test
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control scenario descriptions symbolic languages with rich expressive power are needed.
2.5 Chapter summary
Model-based testing of time/mission critical systems presumes relevant formal notationfor describing time-dependant complex behaviors of SUT and the test coverage criteria forspecifying critical test cases. In this chapter, syntax and semantics of Uppaal Timed Au-tomata which is one of the most relevant formalism for such description, is described. Todecide on the test sucess or fail the Relativized Timed InputOutput Conformance (RTIOCO)relation between the Uppal TA model and system under test is defined. The taxonomyof test coverage criteria and test purpose specification languages used in model-basedtesting revieled that the available test specification languages suffer from expressibilityand/or automatic test generation support for the class of SUTs of interest in this thesis.As a conclusion the need for a new multi-criterial test scenario specification language fortime/mission critical systems is articulated.

30



3 PROVABLY CORRECT TEST DEVELOPMENT
Theprovably correctMBTprocess introduced in Section 2.1 (Figure 2) comprises test devel-opment steps (modelling the system under test, specifying the test purposes, generatingthe tests and executing them against SUT) that alternate with verification steps. In thischapter, the verification of test development steps is described and how the test resultsare made trustworthy throughout the testing process. We focus on model-based onlinetesting of systems with timing constraints capitalizing on the correctness of the test suitethrough test development and execution process.
3.1 The Correctness of SUT Models
3.1.1 Modelling Timing Aspects of SUT
For automated testing of input-output conformance of systems with time constraints werestrict ourselveswith a subset ofUppaal TA that simplifies SUTmodel construction. Namely,we use a subset of Uppaal TAwhere the data variables, their updates and transition guardson data variables are abstracted away. We use the clock variables only and the conditionsexpressed by clocks and synchronization labels (channels). An elementary modelling pat-tern for representing SUT behaviour and timing constraints is Action pattern (or simplyAction) depicted in Figure 5.

Figure 5 – Elementary modelling fragment

An Action models a program fragment execution on a given level of abstraction as one
atomic step. The Action is triggered by input event and it responds with output eventwithin some bounded time interval (response time). The SUT input events (stimuli in thetesting context) are generated by Tester, and the output events (SUT responses) are tomake the reactions of SUT observable to Tester. In Uppaal TA, the interaction betweenSUT and Tester is modelled with channels that link synchronous input/output events.The major timing constraint we represent in SUT model is the duration of the Action.To make the specification of durations more realistic we represent it as a closed inter-val [l_bound, u_bound], where l_bound and u_bound denote lower and upper boundrepectively. The duration interval [l_bound, u_bound] can be expressed in Uppaal TA as apair of predicates on clocks as shown in Figure 5. The clock reset clock = 0 on the edge
(Pre_location→ Action)makes the time constraint specification local to the Action andindependent from the clock value accumulated during earlier execution steps. The clockinvariant clock_ <= u_bound of location Action forces the Action to terminate latest attime instant u_bound after the clock reset and guard clock_ >= l_bound on the edge
Action→ Post_location defines the earliest time instant (w.r.t. clock reset) when the out-going transition of Action can be executed.From tester’s point of view SUT has two types of locations: passive and active. Inpassive locations SUT is waiting for test stimuli and in active locations SUT chooses its nextmoves, i.e. presumably it can stay in that location as long as specified by location invariant.The location can be left when the guard of outgoing transition Action→ Post_locationevaluates to true. In Figure 5, the locations Pre_location and Post_location are passivewhile Action is an active location.
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We compose the SUT models from Action patterns using sequential and alternative
composition.

Definition 3.1. (Composition of Action patterns). Let Fi and Fj be Uppaal TA fragmentscomposed of Action patterns incl. elementary Action with pre-locations lpre
i , lpre

j and
post-locations lpost

i , lpost
j respectively, their composition is the union of elements of bothfragments satisfying following conditions:

• sequential composition Fi ; Fj is UPTA fragment where lpost
i = lpre

j ;
• alternative composition Fi +Fj is UPTA fragment where lpre

i =lpre
j and lpost

i =lpost
j .

The test generation method of [47] relies on the notion of well-formedness of the SUTmodel according to the following inductive definition.
Definition 3.2. (Well-formedness - wf of SUT models)
• The atomic Action pattern is well-formed;
• The sequential composition of well-formed patterns is well-formed;
• The alternative composition of well-formed patterns is well-formed if the outputlabels are distinguishable.

Proposition 1. Any Uppaal TA model M with non-negative time constraints and synchro-nization channels that does not include state variables can be transformed to bi-similarwell-formed representation w f (M).
The model transformation to well-formed representation is based on the idea that forthose Uppaal TA elements that do not match with the Definition 3.2, auxiliary pre-, andpost-locations and internal ε-transition are added, that do not violate the i/o behaviourof the original model.For representing internal actions that are not triggered by external events (their in-coming edge is ε–labelled) we restrict the class of pre-locations with type committed. Infact, the subclass of models transformable to well-formed is broader than given by Defi-nition 3.2, including also Uppaal TA that have data variable updates, but in general well-formedness does not extend to models that include guards on data variables.

Figure 6 – An example of well-formed SUT model

In the rest of this chapter, we assume for test generation that MSUT is well-formedand denote these models by w f (MSUT ). An example of a well-formed model we usethroughout the chapter is depicted in Figure 6.
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3.1.2 Correctness Conditions of SUT Models
The test generation method introduced in [48] and developed further for EFSM modelsin [27] assumes that the SUT model is connected, input enabled (i.e. also input complete),
output observable and strongly responsive. In the following we demonstrate how thevalidity of these properties usually formulated for IOTS (Input-Output Transition System)models can be verified for well-formed Uppaal TA models (see Definition 3.2).
3.1.2.1 Connected Control Structure and Output Observability We say that Uppaal TAmodel is connected in the sense that there is an executable path from any location to anyother location. Since the SUT model represents an open system that is interacting withits environment we need for verification by model checking a nonrestrictive environmentmodel. According to [15] such an environment model has the role of a canonical tester. Acanonical tester provides test stimuli and receives test responses in any possible order theSUT model can interact with its environment. A canonical tester can be easily generatedfor well-formed models according to the pattern depicted in Figure 7b (this is a canonicaltester for the SUT model shown in Figure 7a).

Figure 7 – Synchronous parallel composition of a) SUT and b) canonical tester models

The canonical tester composed with SUT model implements the "random walk" teststrategy that is useful in endurance testing but it is very inefficient when functionally orstructurally constrained test cases need to be generated for large systems. Having syn-chronous parallel composition of SUT and the canonical tester (shown in Figure 7) theconnectedness of SUT can be model checked with query (2) that expresses the absenceof deadlocks in interaction between SUT and canonical tester.
A[]not deadlock (2)

The output observability condition means that all state transitions of the SUT modelare observable and identifiable by the outputs generated by these transitions. The outputobservability is ensured by the definition ofwell-formedness of the SUTmodelwhere eachinput event and Action location is followed by the edge that generates a locally (w.r.t.source location) unique output event.
3.1.2.2 Input Enabledness. Input enabledness of SUT model means that blocking ofSUT due to irrelevant test input never occurs. That presumes implicitly the input com-pleteness of the SUT model. A naive way of implementing input enabledness in SUTmodels presumes introducing self-looping transitions with input labels that are not rep-resented on other transitions that have the same source state. This makes SUT modelling
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tedious and leads to the exponential increase of its size in the size of the input alphabet.Alternatively, when relying on the notion of observational equivalence one can approx-imate the input enabledness in Uppaal TA by exploiting the semantics of synchronizingchannels and encode the input symbols as boolean variables I1 . . . In ∈ Σ in. Then the pre-location of the Action pattern (see Figure 5) needs to be modified by applying followingtransformation:
- assume there are k outgoing edges from pre-location lpre

i of action Ai, each ofthese edges e j is labeled with one input symbol I j, j = 1,k from the input alphabet
Σin(MSUT );

- add a self-loop edge (lpre
i ,lpre

i ) that models acceptance of all inputs in Σin(MSUT )except I j, j = 1,k . To implement given constraint we specify the guard of the aux-iliary edge (lpre
i ,lpre

i ) with boolean expression: not( ∨
j=1,k

I j).
Provided the branching factorB of the edges that are outgoing from lpre

i is, as a rule, sub-stantially smaller than the size of the input alphabet |Σin(MSUT )|, we can save |Σin(MSUT )|−
B(lpre

i ) edges at each pre-location of the Action patterns. Note that due to the w f -construction rules the number of pre-locations never exceeds the number of actions inthe model. That is due to alternative composition that merges pre-locations of the com-position. A fragment of alternative composition accepting all inputs in |Σin(MSUT )| is de-picted in Figure 8 (time constraints are ignored here for clarity). Symbols I1 and I2 in thefigure denote predicates Input == i1 and Input == i2 respectively.

Figure 8 – Input-enabled model fragment

3.1.2.3 StrongResponsiveness Strong responsiveness (SR)means that there is no reach-able livelock (a loop that includes only ε-transitions) in the SUT model. In other words,the model should always enter the quiescent state after finite number of steps. Sincetransforming MSUT to w f (MSUT ) does not eliminate ε-transitions there is no guaranteethat w f (MSUT ) is strongly responsive by construction (it is built-in feature of the Actionpattern). To verify the SR propety of arbitrary MSUT we apply Algorithm 1.It is straightforward to infere that all steps except step 2 of Algorithm 1 are of linearcomplexity in the size of the MSUT .
3.2 Correctness of RPT Tests
3.2.1 Functional Correctness of TestsThe tester designed or generated for given SUT model can be characterized by the testcoverage criteria it is designed for. The test generator of [47] for online testing is aimed tocover SUTmodel structural elements. The structural coverage can be expressed bymeansof boolean "trap" variables as suggested in [24]. The traps are assignment expressions of
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Algorithm 1 Strong responsiveness verification
1: According to the Action pattern in Figure 5 the MSUT input events are encoded bymeans of channel in? and a boolean variable Ii that represents the condition thatinput value is ιi. Since input occurence in Uppaal models can be expressed as stateproperty, we have to keep the input value indicating predicate true in the destinationlocation of the edge that is labelled with given event and reset to f alse immediatelywhen leaving this location. For same reason the ε-transitions need to be labeled withupdate EPS = true and following output edge with update EPS = f alse.
2: Reduce themodel by removing all the edges and locations that are not involved in thetraces of model checking query: l0 |= E[]EPS, where l0 denotes the initial locationof MSUT . The query checks if any ε-transition is reachable from l0 (that is necessarycondition for violating SR-property).
3: Remove all non ε-transitions and locations that remain isolated thereafter.
4: Remove recursively all locations that do not have incoming edges (their outgoingedges will be deleted with them).
5: After reaching the fixed point of recursion of step 4, check if the remaining part ofmodel is empty. If yes then conclude that MSUT is strongly responsive, otherwise it isnot.

boolean trap variables and the valuation of traps indicates the progress status of the testrun. For instance, one can observe what percentage of edges labeled with traps is alreadypassed in the course of test run. Thus, the relevant correctness criterion for the tester inthis context is its ability to cover traps.
Definition 3.3. Coverage correctness of the testWe say that the RPT tester is coverage correct if the test run covers all the transitionsthat are labelled with traps in the SUT model.
Definition 3.4. Optimality of the testWe say that the test is length- (time-) optimal if there is no shorter (resp. faster) testrun among those being coverage correct.
In the following we provide an ad hoc procedure of verifying the coverage correctnessand optimality in terms of model checking queries and model building constraints.Direct way of verifying the coverage correctness of the tester is to run themodel check-ing query (3) :

A♦∀(i : int[1,n])t[i]) (3)
where t[i] denotes i-th element of the array t of traps. The model for query (3) to bechecked is assumed to be the synchronous parallel composition of SUT and Tester au-tomata. For instance, the tester automaton generated using RPT generator [47] for SUTmodelled in Figure 6 is depicted in Figure 9.

3.2.2 Invariance of Tests with Respect to Changing Time Constraints of SUT
In the previous section the coverage correctness of RPT tests was discussed without ex-plicit reference to time constraints of the SUT model. The length-optimality of test se-quences can be proven inUppaalwhen for each action inwell-formedmodels both the du-ration lower andupper bounds lbi and ubi are set to 1, i.e., lbi = ubi for all i∈ 1, . . . |Action|.Then the length of the test sequence and its duration in time are numerically equal. For
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Figure 9 – Synchronous parallel composition of SUT and tester automata

instance, having some integer valued (time horizon) parameter T H as an upper boundto the test sequence length the following model checking query proves the coverage of ntraps with a test sequence of length at most T H stimuli and responses:
A♦∀(i : int[1,n])t[i]) ∧TimePass≤ T H (4)

where TimePass is the Uppaal clock that represents global time progress in themodel.Generalizing this approach for SUT models with arbitrary time constraints we can as-sume that all edges of SUT model MSUT are attributed with time constraints as describedin Section 3.1.1. Since not all edges of MSUT need to be labeled with traps (and thus cov-ered by test) we apply compaction procedure toMSUT to abstract away from the excess ofinformation (for IOCO testing) and derive precise estimates of test duration lower and up-per bounds. With the compaction procedure we aggregate a sequences of trapless edgesand merge the aggregate with one trap-labelled edge the trapless sequence is adjacentto. As the result, the aggregate action becomes an atomic Action that copies the trap ofthe labelled adjacent edge. The first edge of the aggregate contributes its input event andthe last edge to its output event. The other I/O events of the aggregate will be hiddenbecause all internal edges and locations are substituted with one aggregate location thatrepresent the composite Action. Further, we compute the lower and upper bounds forthe composite action. The lower bound is the sum of lower bounds of the shortest pathin the aggregate and the upper bound is the sum of upper bounds of the longest pathof the aggregate plus the longest upper bound (the later is needed to compute the testtermination condition). After compaction of deterministic and timed SUT model it can beproved that the duration T H of a coverage correct tests have length that satisfies boundcondition:
∑

i
lbi ≤ T H ≤∑

i
ubi +max

i
(ubi), (5)

where index i ranges from 1 to n (n is the number of traps in MSUT ). In case of non-deterministic SUT models, for showing the length- and time-optimality of generated teststhe bounded fairness assumption of MSUT must hold. A model M is k-fair iff the differ-ence in the number of executions of alternative transitions of non-deterministic choices(sharing same source location) never exceeds the bound k. The bounded fairness propertyexcludes unbounded "starvation" and "conspiracy" behaviour in non-deterministic mod-els. During the test run the test execution environment DTRON [11] is capable of collectingthe traces of monitoring the k-fairness and reporting about its violations. The safe upperbound estimate of the test length in case of non-deterministic models can be calculatedfor the worst case by multiplying the deterministic upper bound by factor k. The lower
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bound still remains ∑
i
lbi.

Proposition 2. (Invariance of Tests with respect to changes of MSUT timing ) [43].Assume a trap labelled well-formed model w f (MSUT ) is compactified, the tester au-tomatonMT ST generated using approach of [47] is invariant with respect to the variationsof time constraints specified in MSUT .The proof consists of two steps, showing that(i) Provided the reaction time of tester is negligible with respect to that of SUT, thecontrol flow of the tester MT ST does not depend on the timing of MSUT and(ii) the MT ST behaviour does not influence the timing of controllable transitions of the
MSUT .

The practical implication of Proposition 2 is that a tester, once generated, can be usedalso for syntactic modification of MSUT provided only timing parameters and initial valuesof traps have been changed. Note that invariance does not extend to structural modifica-tions of MSUT .
3.3 Correctness of test deployment
Practical execution of generated tests presumes the deployment of test adapters thatmapsymbolic input alphabet used in the test model MSUT ||MT ST to executable inputs. Sim-ilarly, real outputs from SUT need to be transformed back to symbolic outputs. This map-ping performed by test adapters may introduce additional delays that are not reflectedneither in SUT nor tester models. Also, distributed test configurations may add extra de-lays and propagation time to test execution, that can alter the ordering of test stimuli andresponses specified in the model. By applying network monitors one can measure thelatency of form4= [δ l ,δ u] at each test input and output adapter. To verify the feasibil-ity of the executable test suit, the latency estimates need to be incorporated also in thetestermodel and their impact re-verified against the correctness conditions defined in theearlier development steps.The key property to be verified when deploying MBT test in distributed execution en-vironment is ∆− testability introduced in [18]. Parameter 4 shows the delay betweenconsecutive test stimuli necessary to maintain the ordering of input-output events at testports. Thus, when verifying the correctness of distributed deployment of test one needsto proceed as following:

Step 1: estimate the latency at each input and output adapter. For any input symbol
a ∈ Σin(MSUT ) and any output symbol b ∈ Σout(MSUT ) get the interval estimates of itstotal latency (including delay caused by adapters and propagation delays): ∆a = [δ l

a,δ
u
a ]and ∆b = [δ l

b,δ
u
b ] respectively.

Step 2: modify the timed guards Grd and invariants Inv of each action of w f (MSUT )as follows:- Inv∼= cl ≤ ub 7−→ Inv′ ∼= cl ≤ ub+δ u
a +δ u

b- Grd ∼= cl ≥ lb7−→ Grd′ ∼= cl ≥ lb+δ l
a +δ l

b
Step 3: Rerun the verification tasks of earlier verification stepswith∆−extended model

w f (MSUT+4).
3.4 Chapter summary
This chapter has beenmotivated by the need to increase the trust on testing results and toavoid running infeasible tests or tests that could lead to incorrect conclusions. Secondly,to reduce the test development time and to detect the test development faults in earliest
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possible phases the proposed approach enables verifying each intermediate test devel-opment product as soon as it is available, not just waiting for the final executable testproduct. The verification conditions and technique provided are relatively independentfrom the specifics of development method. This makes the verification approach cus-tomizable to different development process models and modeling formalisms. Anotheradvantage of the approach is that it does not focus on functional properties only but cor-rectness verification steps enable to prove also the correctness aspects of distributed SUTwhere timing constraints are substantial.
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4 TEST PURPOSE SPECIFICATION LANGUAGE
In this chapter the test purpose specification language (T DLT P) introduced in [45] is de-scribed. At first, a general overview of the language is given. Then, the syntax and seman-tics are defined. Based on the formal definition of the semantics a mapping of T DLT P op-erators to Uppaal TA constructs is defined. The mapping serves the purpose of construct-ing the test model from the model of SUT and the test purpose expression in T DLT P.We consider the usage of T DLT P in the context of provably correct test developmentworkflow and present the usage steps of T DLT P starting from test purpose definitionand following through test generation and execution steps until verdict (supplied withtest diagnostics vector in case of test fail) formation.
4.1 Overview of the test purpose specification language
Test description in MBT relies typically on two formal description components: SystemUnder Test (SUT) modelling language and the test purpose specification language. In ourapproach, Uppaal TA serves as a SUT specification language.For the test purpose specification to be concise and still expressive it must bemore ab-stract than SUTmodeling language and not necessarily self-contained in the sense that itsexpressions are interpreted in the context of the SUT model only. It means that the termsof test purpose specification language T DLT P refer to the SUT model structural elementsof interest, they are called test coverage items (TCIs). The test purpose specification lan-guage T DLT P allows expressing multiple coverage criteria in terms of TCIs, including testscenario constraints such as iteration, next, leads to, and structural coverage criteria suchas selected states, selected transitions, transition pairs, and timing constraints, such as
time bounded leads to.Generating the test model based on the SUT model and T DLT P coverage expressionincludes two phases. In the first phase, the TCIs have to be labelled with Boolean trapvariables in the SUT model to make these coverage items referable in the T DLT P expres-sion. In case of a non-deterministic SUT model, the coverage of those elementary TCIsis ensured by reactive planning tester (RPT) automata, one automaton for each set ofTCIs (see [47] for further details of RPT generation). In the second phase, a test supervi-
sor model MSV R is constructed from the T DLT P expression, in order to trigger the RPTautomata according to the test scenario so that the temporal and logical coverage con-straints stated in T DLT P specification would be satisfied. Here only sub-optimality oftraces can be achieved due to SUT model non-determinism.In case of deterministic SUT model, the RPT automata can be discarded since the Up-paal model checker solely is enough to generate the coverage witness traces from theparallel composition of SUT model and the test supervisor model MSV R. Due to the factthat deterministic SUT models are deterministically controllable, these witness traces aresufficient to ensure the coverage of intended test purposes. The optimality of these tracesis granted by the Uppaal model checker options fastest trace or shortest trace. In the restof this chapter, we mainly focus on the deterministic case.
4.2 T DLT P syntax
The ground terms in T DLT P are sets of assignments to auxiliary variables called trap vari-
ables or simply traps added to the SUT model for test purpose specification. A trap is aBoolean variable assignment that labels a test coverage item, in case of Uppaal TA - anedge of the SUT model MSUT . The value of all traps is initially set to false. When the edgeof MSUT labelled with a trap is visited during test execution the trap update function is
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executed and the trap value is set to true. We say that a trap tr is an elementary trap if itsupdate function is unconditional, i.e. of shape tr := true.Generally, we assume that the trap names are unique, trap update functions are non-recursive and their arguments have definite values whenever the edge labelled with thattrap is executed. If the trap is conditional, i.e. the trap tr update condition is a Booleanexpression instead of simple boolean assignment (we call it also update constraint) thearguments of which range over the sets of variables and constants of MSUT and over theauxiliary constants and variables occurring in the test purpose specification in T DLT P, e.g.references to other traps, event counters and the time bounds of model clocks.Although we deal with finite sets of traps and their value domains the quantifiers areintroduced in T DLT P for notational convenience. To refer to the situations where manytraps have to be true or false at once, we group these traps to sets called trapsets (de-noted by T S) and prefix themwith trapset quantifiers -A for universal andE for existentialquantification. A(T S)means that all traps and E(T S)means that at least one trap of theset T S has to be true for A(T S) and E(T S) to be true. To represent a trapset in UppaalTA syntax we encode them as one-dimensional trap arrays and refer to individual traps inthe array by array index value, e.g. i-th trap in T S is referred to as T S[i].
In the following table we give the syntax of T DLT P expressions in BNF (Algorithm 2).

Algorithm 2 Syntax of T DLT P expressions in BNF
<Expression> ::=‘(‘ <Expression> ‘)’| ‘A’ <TrapsetExpression>| ‘E’ <TrapsetExpression>| <UnaryOp> <Expression>| <Expression> <BinaryOp> <Expression>| <Expression>∼> <Expression>| <Expression>∼> ‘[‘ <RelOp> <NUM> ‘]’ <Expression>| <Expression> <RelOp> <NUM>
<TrapsetExpression> ::=‘(‘ <TrapsetExpression> ’)’| ‘!’ <ID>| <ID> ‘\’ <ID>| <ID> ‘;’ <ID>
<UnaryOp> ::= ‘not’<BinaryOp> ::= ‘&’ | ‘or’ | ‘=>’ | ‘<=>’<RelOp> ::= ‘<’ | ‘=’ | ‘>’ | ‘<=’ | ‘>=’<ID> ::= (‘TR’) <NUM><NUM> ::= (‘0’ .. ‘9’)+

4.3 T DLT P semantics
To define the semantics of T DLT P we assume there are given:

• a Uppaal TA model M,
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• Trapset T S which is possibly a union of member trapsets T S = ∪i=1,mT Si, wherethe cardinality of each T Si is ni.
• L : T S → E(M), the labelling function that maps traps in T S to edges in E(M),where E(M) denotes the set of edges of the model M. We assume the uniquenessof the labeling within a trapset, i.e. there is at most one edge labelled with a trapfrom the given trapset but an edge can be labelled with many traps if each of themis from the different trapsets.

4.3.1 Atomic labelling function
The atomic labelling function is non-surjective and injective-only mapping between T Sand E(M), i.e. each element of T S is mapped to a unique edge of E(M):

L : T S→ E(M),

s.t ∀e ∈ E(M) : T Sk[i] ∈ L(e)∧T Sl [ j] ∈ L(e)⇒ k 6= l (6)
4.3.2 Derived labelling operations (trapset operations)
The formulas with a trapset operation symbol and trapset(s) identifiers being its argu-ment(s) are called T DLT P trapset formulas.

Relative complement of trapsets (T S1\T S2)Only those edges labelledwith traps of T S1 and notwith traps of T S2 are in the relativecomplement trapset T S1\T S2:
JT S1\T S2K iff

∀i ∈ [0,n1], j ∈ [0,n2],∃e ∈ E(M) : T S1[i] ∈ L(e)∧T S2[ j] 6∈ L(e) (7)

Absolute complement of a trapset (!T S)All edges that are not labelled with traps of T S are in the absolute complement trapset
!T S:

J!T SK iff ∀i ∈ [0,n],∃e ∈ E(M) : T S[i] 6∈ L(e) (8)

Linked pairs of trapsets (T S1;T S2)Two trapsets T S1 and T S2 are linked via the operator next (denoted ‘;’) if and only ifthere exists a pair of edges in M which are labelled with traps of T S1 and T S2 respectivelyand which are connected through a location so that if any of traps in T S1 is updated to
true on the k-th transition ofmodelM execution traceσ then some trap of T S2 is updatedto true in the (k+1)-th transition of that trace:

JT S1;T S2K iff ∀i ∈ [0,n1],∃ j ∈ [0,n2],σ ,k : [|T S1[i]|]σ k ⇒ JT S2[ j]Kσk+1 , (9)
where JT SKσ denotes the interpretation of the trapset T S on the trace σ and σ l de-notes the l-th suffix of the trace σ , i.e. the suffix which starts from l-th location of σ ; n1and n2 denote cardinalities of trapsets T S1 and T S2 respectively. Note that operator ‘;’enables expressing one of the “classical” structural coverage criteria “selected transition

pairs”.
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4.3.3 Interpretation of T DLT P expressions

Quantifiers of trapsetsGiven the definitions (6) - (9) of trapset operationswe define the semantics of boundeduniversal quantifier A and bounded existential quantifier E of a trapset T S as follows:
JA(T S)K iff ∀i ∈ [0,ni] : T S[i] (10)
JE(T S)K iff ∃i ∈ [0,ni] : T S[i], (11)

where n denotes the cardinality of the trapset T S.Note that quantification is defined on the trapsets only and not applicable on T DLT P

higher level operator expressions.
Logic connectivesSince recursive nesting of T DLT P logic and temporal operators is allowed for better ex-pressiveness we define the semantics of these higher level operators where the argumentterms are not trapset formulas but derived from them using recursive nesting of logic andtemporal operator symbols. Let SE, SE1 and SE2 denote such argument sub-formulas,then

JSE1&SE2K iff JSE1K and JSE2K (12)
JSE1 or SE2K iff JSE1K or JSE2K (13)
SE1⇒ SE2 ≡ not(SE1)∨SE2 (14)

SE1⇔ SE2 ≡ (SE1⇒ SE2)∧ (SE2⇒ SE1) (15)
Temporal operators

• ‘Leads to’ operator (SE1 ∼> SE2) in T DLT P is inspired by Computation Tree LogicCTL ‘always leads to’ operator, denoted by ‘ϕ ==> ψ ’ in Uppaal, which is equiva-lent to CTL formulaA�(ϕ⇒ A♦ψ). Leads to expresses that after reaching the statewhich satisfies ϕ in the computation all possible continuations of this computationreaches the state in which ψ is satisfied. For clarity we substitute themeta-symbols
ϕ and ψ with non-terminals SE1 and SE2 of T DLT P.

JSE1 ∼> SE2K iff ∀σ ,∃k, l,k ≤ l : JSE1Kσ k ⇒ JSE2Kσ l , (16)
where σ k denotes the k-th suffix of the trace σ , i.e. the suffix which starts from
k-th location of σ , and JSEK

σ k denotes the interpretation of T S on the k-th suffixof trace σ .
• ‘Time bounded leads to’means that T S2 must occur after T S1 and the time instanceof T S2 occurrence (measured relative to T S1 occurrence time instance) satisfiesconstraint�n , where� ∈ {<,=,>,≤,≥} and n ∈ N:

JSE1 ∼>[�n] SE2K iff ∀σ ,∃k, l,k ≤ l : JSE1Kσ k ⇒ JSE2Kσ l , (17)
• ‘Conditional repetition’. Let k enumerate the occurrences of JSEK, then

J#SE�nK iff ∃k : JSEK1 ∼> · · · ∼> JSEKk and k�n, (18)
where index variable k satisfies constraint�n,� ∈ {<,=,>,≤,≥} and n ∈ N.
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The application of logic not to non-ground level T DLT P terms has following interpre-tation:
not (A(T S)) iff ∃i : JT S[i]K = false (19)
not (E(T S)) iff ∀i : JT S[i]K = false (20)
not (SE1∧SE2)≡ not (SE1)∨ not (SE2) (21)
not (SE1∨SE2)≡ not (SE1)∧ not (SE2) (22)
not (SE1⇒ SE2)≡ SE1∧ not (SE2) (23)
not (SE1⇔ SE2)≡ not (SE1⇒ SE2)∨ not (SE2⇒ SE1) (24)
Jnot(SE1 ∼> SE2)K iff Jnot(SE1)K or ∀k, l,k ≤ l :

JSE1Kσk and not JSE2Kσ l
(25)

not (SE1 ∼>�n SE2)≡ not(SE1 ∼> SE2)∨∀ϕ : (SE1 ∼>ϕ SE2)

⇒ (ϕ ⇒) not(�n))
(26)

not (#T S�n)≡ ∀ϕ : (#T Sϕ)⇒ (ϕ ⇒ not(�n)) (27)
where ϕ denotes the time bound constraint that yields the negation of constraint�n.

4.4 Mapping T DLT P expressions to behavior recognizing automata
When mapping the T DLT P formulae to test supervisor component automata we imple-ment the mappings starting from ground level terms and move towards the root termby following the structure of the T DLT P formula parse tree. The terminal nodes of any
T DLT P formula parse tree are trapset identifiers. The next above the terminal layer ofthe parse tree constitute the trapset operation symbols. The trapset operation symbols,in turn, are the arguments of logic and temporal operators. The ground level trapsets andthe trapsets which are the results of trapset operations aremapped to the labelling of SUTmodel MSUT . In the following the mappings are specified for T DLT P trapset operations,logic operators and temporal operators in separate subsections.
4.4.1 Mapping T DLT P trapset expressions to SUT model MSUT labelling
When mapping the T DLT P formulae to test supervisor component automata we imple-ment the mappings starting from ground level terms and move towards the root term byfollowing the T DLT P formula parse tree structure.

TS1[0]=1

TS1[2]=1,
TS2[0]=1

TS1[2]=1,
TS2[3]=1

TS1[3]=1

TS2[1]=1

→

’TS1\TS2’[0],
TS1[0]=1

TS1[2]=1,
TS2[0]=1

TS1[2]=1,
TS2[3]=1

’TS1\TS2’[3]=1,
TS1[3]=1

TS2[1]=1

Figure 10 – Mapping T DLT P expression T S1/T S2 to the SUT model labelling

Mapping M1: Relative complement of trapsets (T S1/T S2)
T S1/T S2 - mapping adds the expression T S1/T S2 traps only to these edges of MSUT
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which are labelled with traps of T S1 and not with traps of T S2. An example of such map-ping is depicted in Figure 10.
Mapping M2: Absolute complement of a trapset (!T S)The mapping of !T S to SUT model labelling provides the labelling with !T S traps allsuch edges of SUT model MSUT which are not labelled with traps of T S. Example of thismapping is depicted in Figure 11.

TS1[0]=1

TS1[2]=1,
TS2[0]=1

TS1[2]=1,
TS2[3]=1

TS1[3]=1

TS2[1]=1

→

TS1[0]=1

TS1[2]=1,
TS2[0]=1

~TS1[3]=1

TS1[2]=1,
TS2[3]=1

~TS1[2]=1

TS1[3]=1

~TS1[1]=1
TS2[1]=1,
~TS1[0]=1

Figure 11 – Mapping T DLT P expression !T S to the SUT model labelling

Mapping M3: Linked pairs of trapsets (T S1;T S2)The mapping of terms T S1;T S2 to labelling is implemented by the labelling algorithmAlgorithm 3 (L(T S1;T S2)).
Algorithm 3 Labelling (L(T S1;T S2))

1: for each e′,e′′, i, j : pre(e′′) = post(e′)∧T S1[i] ∈ L(e′) do
2: if T S2[ j] ∈ L(e′′) then
3: Asg(e′)← Asg(e′), f lag(T S1;T S2) = true
4: Asg(e′′)← Asg(e′′),T S(T S1;T S2)[ j] = ( f lag(T S1;T S2)?true : f alse)
5: end if
6: Asg(e′′)← Asg(e′′), f lag(T S1;T S2) = f alse
7: end for

The example of Algorithm 3 application is demonstrated in Figure 12 Notice that thelabelling concerns not only the edges that are labelled with traps of T S1 and T S2 but alsothose which depart from the same location as the edge with T S2 labelling. This is neces-sary for resetting the variable f lag which indicates the executing a trapset T S1 labellededge in the previous step of the computation.

e’’

TS2[2]=1

e’

TS1[1]=1

→

e’’
TS2[2]=1,
TS1_EX_TS2[2]=
(flagTS1TS2?1:0),
flagTS1TS2=0

flagTS1TS2=0

flagTS1TS2=0
e’

TS1[1]=1,
flagTS1TS2=1

Figure 12 – Example of the application of Algorithm 3 (L(T S1;T S2))
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4.4.2 Mapping T DLT P logic operators to recognizing automata
The indexing of trapset array elements, universal and existential quantifiers in Uppaalmodelling language support direct mapping of trapset quantifiers to f orall and exists ex-pressions of Uppaal TA as shown in Figures 13 and 14.

Mapping M4: Universal quantification of the trapset
Ready Endforall (i:index) TS[i]

Figure 13 – An automaton that recognizes universally quantified trapset expressions

Mapping M5: Existential quantification of the trapset
Ready Endexists (i:index) TS[i]

Figure 14 – The automaton that recognizes existentially quantified trapset expressions

Negation not
Since logic negation not can be pushed to ground level trapset terms by applying equiv-alences (19) - (27), the direct mappings of not formulas are not considered in this work.
Mapping M6: Conjunction of sub-formulas
The conjunction SE1&SE2 is mapped to the automata fragment as shown in Figure 15.In the conjunction and disjunction automata depicted in the Figures 15 and 16 the guardconditions P and Q encode the argument terms SE1 and SE2 respectively. In conjunctionautomaton the End location is reachable from the initial location Idle if both P and Q areevaluate true in any order.

Idle Ready End

P

Q

Q

P

Figure 15 – The automaton that recognizes the conjunction of T DLT P formulas P and Q

Mapping M7: Disjunction of sub-formulas
In the disjunction automaton the End location is reachable from the initial location

Idle if either P and Q are true.
The implication of T DLT P formulas can be defined using disjunction and negation asshown in formula (14) and their transformation to property automata are implementedthrough these mappings.
Similarly, the equivalence of T DLT P formulas can be expressed via conjunction andimplication by using equivalence in formula (15).
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Idle Ready End

Q

P

Figure 16 – The automaton that recognizes the disjunction of T DLT P formulas P and Q

Ready_for_Q EndReady_for_PIdle

QP

Figure 17 – ‘Leads to’ formula (p∼> q) recognizing automaton

4.4.3 Mapping T DLT P temporal operators to recognizing automata

Mapping M8: ‘Leads to’ (p∼> q)
Mapping the ‘leads to’ operator to Uppaal TA produces the model fragment depictedin Figure 17.
Mapping M9: Timed leads to p∼>�con q

Mapping ‘timed leads to’ to a Uppaal TA fragment is depicted in Figure 18. It presumesan additional clock cl which is reset to 0 at the time instant when formula P becometrue. The condition ‘cl <= d’ in Figure 18 a) sets the upper time bound d to the eventwhen formula Q has to becomes true after P, i.e. after the clock cl reset. The mappingto property automaton depends on the time condition of leads to. So if the conditions is‘cl > d’ the mapping results in automaton shown in Figure 18 b).

EndReady_for_QReady_for_PIdle

cl>d

cl<=d
QP

cl=0

(a)

Ready_for_P End

Ready_for_Q

Idle

cl<=d

cl>dQP

cl=0

(b)

Figure 18 – ‘Timed leads to’ formula P ∼>�d Q recognizing automata a) with condition cl ≤ d; b)
with condition cl > d

Mapping M10: Conditional repetition #SE�n:
The Uppaal TA fragment generated by the mapping of #SE�n includes a counter vari-able i to enumerate the events when the SE formula p becomes true. If the loop exitcondition, e.g., ‘i≥ n’, is satisfied then the transition to location End is fired without de-lay (the middle location is of type committed).
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Figure 19 – Uppaal TA that implements conditional repetition

4.5 Reduction of the supervisor automata and the labelling of SUT
The T DLT P expressions with many nested operators may become large and involve someoverhead. Removal of this overhead in the formulas provides reduction in the state spaceneeded for their model checking and improves their readability and comprehension.The simplifications are formulated in terms of the parse tree of theT DLT P formula andstandard logic simplifications. Due to the nesting of operations in the T DLT P formula theroot operation can be any operator listed in the BNF grammar of T DLT P but the terminalsof the parse tree are always trapsets.

T DLT P formulas consist of a static component (a trapset or a trapset expression) andoptionally the logic and/or temporal component. The static component includes all sub-formulas of the parse tree branches from terminals to the lowest temporal expression, allsub-formulas above it are temporal and/or logic formulas (possibly mixed).The trapset formulas are implemented by labelling operations such as relative and ab-
solute complement. Only trapset formulas can be universally and existentially quantifica-tion. No nesting of quantifiers is allowed. Since the validity of root formula can be calcu-lated only using the truth value of the highest trapset expression in the parse tree, all thetrapsets being closer to the ground level trapset along the parse tree sub branche can beremoved from the labelling of the SUT model. This reduction can be done after labellingthe SUT model and applying all the trapset operations. An example of such reduction isdemonstrated for relative complement operation T S1\T S2 in Figure 20.

(a) (b) (c)

Figure 20 – Simplification of T S1\T S2 trapsets labelling: a) the parse tree of T S1\T S2; b) labelling
of the SUT model with T S1, T S2 and T S1\T S2 c) reduced labelling of the SUT model MSUT

Logic simplification follows after the trapset expression simplification is completed.Here standard logic simplifications are applicable:
p∧ p≡ p
p∧ not p≡ f alse
p∧ f alse≡ f alse
p∧ true≡ p
p∨ p≡ p
p∨ not p≡ true
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p∨ f alse≡ p
p∨ true≡ trueWe will introduce also a set of simplifications for T DLT P temporal operations whichfollow from the semantics of operators and the properties of integer arithmetics:
T S≡ f alse if T S = /0
p∼> f alse≡ f alse
f alse∼> p≡ f alse
true∼> p≡ p
p∼> true≡ true
#p = 1≡ p
#p�n1∧#p�n2 ≡ #p�max(n1,n2) if� ∈ {≥,>}
#p�n1∨#p�n2 ≡ #p�min(n1,n2) if� ∈ {≥,>,=}
#p�n1∧#p�n2 ≡ f alse if� ∈ {=} and n1 6= n2
#p�n1 ∼> #p�n2 ≡ #p� (n1 +n2) if� ∈ {≥,>,=}
#p�n1 ∼> #p�n2 ≡ #p�min(n1,n2) if� ∈ {<}
#p�n1∧#p�n2 ≡ #p�min(n1,n2) if� ∈ {<}
#p�n1∨#p�n2 ≡ #p�max(n1,n2) if� ∈ {<}
p∼>d1 q∧ p∼>d2 q≡ p∼>min(d1,d2) q if� ∈ {≤,<}
p∼>d1 q∧ p∼>d2 q≡ p∼>max(d1,d2) q if� ∈ {>}

4.6 Composing the test supervisor model
The test supervisor model MSRV is constructed as a parallel composition of single T DLT P

property recognizing automata each of which is produced by parsing the T DLT P formulaand mapping corresponding sub-formulae to the automaton template as defined in Sec-tion 4.5. To interrelate these sub-formula automata, two phases have to be completed:
1. Each trap labelled transition e of MSUT (here we consider the traps which are leftafter labelling reduction as described in Subsection 4.5) has to be split in two edges

e′ and e′′ connected via an auxiliary committed location lc. The edge e′ will inheritthe labelling of e while e′′ will be labelled with an auxiliary broadcast channel labelthat signals the trap update occurrence to the upper neighbor sub-formula automa-ton. We use the channel naming convention where a channel name has a prefix ch_followed by the trapset identifier, e.g. for an edge e labelled with the trap T S[i], thebroadcast channel label ch_T S! is added to the edge e′′ (an example is shown inFigure 21 a)).
2. Each non-trapset formula automaton will be extended with a wrapping constructshown in Figure 21 b). The wrapper has one or two, depending if the sub-formulaoperation is unary or binary, channel labels to synchronize its state transition withthose of its child expression(s). We call them downwards channels denoted by

Activate_subOP1, Activate_subOP2 and used to activate the recognizing mode inthe first and second sub-formula automata. Similarly, two broadcast channels areintroduced to synchronize the state transition of sub-formula automata with theirupper operation automaton. We call themupwards channels, denotedbyActivate_OPiand Done_OPi in Figure 21 b). The root node is an exception because it has up-wards channel only with the test Stopwatch automaton (the Stopwatch automatonwill be explained in Section 4.7). If the sub-formulas of a given property automa-ton are mapped to trapset expressions then the back edge Enn→ Idle to the initialstate is labelled also with trapset reset function with T S being the argument trapsetidentifier. The T DLT P operator automata extensions with wrapper constructs for
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implementing their composition in test supervisor model MSV R are shown in Fig-ure 22.

Figure 21 – a) Extending the trap labelled edges with synchronization conditions for composing the
test supervisor; b) the wrapper pattern for composing operation recognizing automata

Note that the T DLT P sub-formula meta-symbols P and Q in the original templatesare replaced with channels which signal when the sub-formulas interpretation automatareach their local End locations.
4.7 Encoding the test verdict and test diagnostics in the tester model
The test verdict is yielded by the test StopWatch automaton either when the automa-ton reaches its end state End within time bound TO. Otherwise, the timeout event
Swatch == TO triggers the transition to the terminal location Failed. Specifically, Passedin the StopWatch automaton is reached simultaneously with executing the root formulaautomaton transition to its End location. For example, in Figure 23, the automaton thatimplements root formulaP, synchronizes its transition to the locationEnd with StopWatchtransition to the location Passed via upwards channelDone_P. The construct is illustratedwith StopWatch automaton depicted in Figure 23.Another extension to the supervisor model is the capability of recording the test diag-nostic information. For that each sub-formula of the test purpose specification formula
ϕT P is indexed according to its position in the parse tree of ϕT P. A diagnostic array D oftype Boolean and of the size equal to the number of sub-formulas in ϕT P is defined inthe model. The initial valuation of D sets all its elements to f alse. Whenever a modelfragment that corresponds to a sub-formula reaches its end state (that is sub-formula sat-isfaction state), the element in D that corresponds to that sub-formula is set to true. Itmeans that if the test passes, the element of D that corresponds to the root expressionis updated to true. Otherwise, in case the test fails, those elements of D remain f alsewhich correspond to the sub-formula automata which conditions were not satisfied bythe test model run. The updates D[i] := true of array D elements, where i is the index ofthe sub-formula automaton Mop

i , are shown on the edges that enter their End locations.The expression automata Mop
i and their mapping to composition wrapping are shown inFigure 20.The test model construction steps can be summarized now as follows:
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Figure 22 – Extending sub-formula automata templates with wrapping for test Supervisor compo-
sition a) And; b) Or; c) Leads to; d) Timed leads to with condition cl ≤ d; e) Timed leads to with
condition cl > d; f) Conditional repetition

1. The test purpose is specified as a T DLT P expression ϕT P and simplified if possible;
2. Trapsets T S1, . . . ,T Sn are extracted from ϕT P and the ground level test coverageitems are labelled with elements of non-intersecting trapsets;
3. The parse tree of the T DLT P expressionϕT P is analysed and each of its sub-formulaoperator opi is mapped using the mappings M1 to M10 to the automaton template

Mop
i that corresponds to the sub-formula operation;

4. The labelling of MSUT with traps is simplified by applying rules described in Section4.6, and MSUT linked with sub-formula automata Mop
i via wrapping construct thatprovides synchronization channels for signalling about reaching the state wheresub-formula are satisfied;

5. Finally, the extension for diagnostics collection is added to automata Mop
i and the
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Figure 23 – Test Stopwatch automaton

root formula automaton is composed with Stopwatch automaton MSW which de-cides on the test pass or fail.
The total testmodel is synchronous parallel composition of componentmodelsMSUT ||

MSW ||Mop
i .

4.8 Chapter summary
In this chapter the second main contribution of the thesis is presented. The test purposespecification language T DLT P is introduced, its syntax and semantics are defined. Basedon the formal definition of semantics a mapping of T DLT P operators to Uppaal TA au-tomata templates is defined. The mapping is used to automatize the construction of testmodels from themodel of SUT and the test purpose specifications expressed inT DLT P. Toremove the possible overhead in T DLT P expressions and in the test model we introduceda set of T DLT P simplification rules to keep these specifications concise and readable, andalso to reduce the size of the generated testmodel. Mapping ofT DLT P expressions to testautomata is extended with diagnosis capability to identify the specification sub-formulawhich violation by SUT behavior could cause the test fail.
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5 CASE STUDY
To demonstrate the practical usability of the test purpose specification language T DLT P

(Chapter 4) and provably correct test development method (Chapter 3) the TTU100 satel-lite program is chosen to be used as an example system. In this chapter, the general de-scription of TTU100 satellite project is presented, its power management system as SUTis modelled for further test development. The test purposes are specified for three testcases which demonstrates the T DLT P capability of expressing combinations of multiplecoverage criteria in a single test case. From T DLT P expressions the test models are con-structed and the test sequences generated using Uppaal model checker. The chapter isconcluding with comparison of the tests generated with the methods of this thesis andwith those available using ordinary TCTL model checking.
5.1 System description
TTU100 satellite program is a universitywide, interdisciplinary project that is carried out inassociationwith partners from science- and commercial organizations. Themain objectiveis to provide students of Tallinn University of Technology (TTU) with the experience ofbuilding a space system consisting of a 1U (10 cm x 10 cm x 10 cm) Nanosatellite and aground station with mission planning and mission control software and later scientificexperiments. The mission of the TTU100 Nanosatellite is to:

• perform remote sensing of Earth from Low Earth Orbit (LEO) in visible and infraredrangeof the electromagnetic spectrum. The satellite transmits remote sensing imag-ing data to ground stations on Earth which can be used for educational, scientific,space technology development and knowledge transfer purposes;
• test new space-to-Earth high data rate communication platform
• demonstrate and develop the technology for satellite attitude determination andcontrol, on-board computer and smart power supply
The T TU100 space system consists of a Space Segment and a Ground Segment. Theoverall system achitecture is depicted in Figure 24.

Figure 24 – The space system architecture
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5.1.1 Ground Segment
The Ground Segment is a system that is ment for communication with satellite and pro-viding the means for storing and processing data aquired from the satellite. The GroundSegment consists of the

• Ground Station and
• Mission Control Software.
The role of the Ground Station is to forward telecommand frames from the missioncontrol software to satellite as well as to receive the telemetry frames and high speeddownlink frames from the satellite and forward these to the mission control software. Inorder to accomplish this task the ground station shall automatically track the satellite as itflies over the line of sight range of ground station. The ground station antenna alignmentsystem shall maintain precise time of day in order tomaintain precise satellite orbit propa-gation. The Ground Station is in a fixed location consisting of two separate communicationsystems:
• UHF telecommand and telemetry transceiver with steerable Yagi-Uda antennas;
• 10GHz band (ku-band) receiver with steerable parabolic dish antenna.

It also consists of receivers and transmiters for the radio frequency links, the antennapositioning and tracking system and the interface to mission control software.
TheMission Control Softwareprovides user interface to carry out experiments on satel-lite and visualize the downloaded data. It enables building the experiment schedule andexchange data/files with satellite. The mission control software chops the data into in-dividual packets to be sent to the satellite via ground station. The communication withthe satellite may happen in burst mode where a number of packets is sent to satellite andthen a number of packets is expected from the satellite. Themission control software alsoreceives all frames from ground station, extracts the data from frames into respective datastructures and provides visualization of selected data.

5.1.2 Space Segment
The Space Segment is a 1U size nanosatellite, according to CalPoly Cubesat Design Spec-ification, on Earth’s Sun Synchronous Orbit ( 650km altitude). The satellite hosts the fol-lowing onboard functions and payload systems to carry out various experiments:

• smart electrical power supply (EPS) with solar energy harvesting and storage,
• satellite attitude determination and control system (ADCS),
• on-board computer (OBC) and (image) data processing,
• UHF band radio frequency communication system for remote control and statusmonitoring,
• Ku-band high speed radio frequency transmitter for image data downlink,
• camera and optics payload for image capture in RGB as well as in NIR bands.
For demonstration of our testing technique the smart Electrical Power Supply (EPS)subsystem is selected for SUT and its test purpose specifications are given in T DLT P.
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5.2 System under test modelling
The Electrical Power Supply subsystem (EPS) receives commands from other system com-ponents to change its operation mode and respond with its status information. In thehigh level model used for integration level testing we abstract from the concrete contentof the commands and responses and give generic description of EPS interface behavior inresponse to the commands sent from its environment.EPS is sampling its input periodically with period 20 time units. EPS wakeup timewhendetecting a new input command can vary within interval [15, 20] time units after previoussampling. After wakeup it is ready to receive incoming commands. Due to some inter-nal maintenance procedure of EPS some of the commands when sent during the self-maintenance time can be ignored, they are not responded and need to be sent again. Thecommand processing after its successful receiving takes at most 20 time units. Thereafterthe validity of the command is checked with the help of CRC error-detecting code. If theerror is detected the error data will be sent back to the EPS output port in o_responsemessage. If the received command data are correct, the command is processed and itsresults returned in the output (response) o_message. Since the EPS internal processingtime is negligible compared to that of input sampling period and wakeup time, all theother locations except start and commandCreated are modelled as committed locations.The model MSUT of the EPS is depicted in Figure 25.

Figure 25 – The model MSUT of the Electrical Power Supply subsystem

5.3 Test case 1
The goal of test case 1 is to show that after invalid command has been received the validcommand can be received correctly and responded with acknowledgement.
5.3.1 Test purpose specificationWe specify the test purpose in T DLT P as formula

A(T S2;T S4)∼> E(T S2;T S3), (28)
which expresses that all transition pairs labelled with traps of T S2 and T S4 must leadin the trace to some pair of transitions labelled with traps of trapsets T S2 and T S3.

5.3.2 Labelling of MSUT

The labelling of MSUT starts from the ground level trapsets T S2, T S3 and T S4 of the for-mula (28). These traps guide branching conditions to be satisfied in the scenario of TestCase 1. The labelling is shown in Figure 26.
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Figure 26 – Initial labelling for test case 1

Second level labelling results in applying trapset operation next “;” for pairs T S2;T S3and T S2;T S4 which presumes introducing auxiliary variables f l23 and f l24 to identify oc-currence of traps of T S3 and T S4 right after traps of T S2. Since T S2;T S3 and T S2;T S4 arearguments of the upper “forall” and "exists" formula their occurrence should be signaledrespectively to “forall”- and “exists” automata. For this purpose additional committed lo-cations and edges (colored with magenta) with upwards channels ch_T S23 and ch_T S24are introduced in Figure 27.

Figure 27 – Marking TS2;TS3 and TS2;TS4 trapsets for Test Case 1

5.3.3 Test model constructionWhen moving upwards in the parse tree of formula (28) the next operators that have
T S2;T S4 and T S2;T S3 in arguments are forall A(T S2;T S4) and exists E(T S2;T S3)whichautomata are depicted in Figure 28a and 28b.

(a) (b)

Figure 28 – a) automation that recognizes A(TS2;TS4); b) automation that recognizes E(TS2;TS3)
respectively

The root operator in the formula (28) is ‘leads to’ the arguments ofwhich areA(T S2;T S4)
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and E(T S2;T S3). The automaton that recognizes A(T S2;T S4) ∼> E(T S2;T S3) is de-picted in Figure 29.

Figure 29 – Recognizing automaton of A(T S2;T S4)∼> E(T S2;T S3)

The full test model for generating test sequences of test scenario A(T S2;T S4) ∼>
E(T S2;T S3) is shown in figure 30.

Figure 30 – Test model for implementing test scenario A(T S2;T S4)∼> E(T S2;T S3)

5.3.4 Generating test sequencesThe test sequences of the SUT model MSUT shown in Figure 25 and of the scenario
A(T S2;T S4)∼> E(T S2;T S3) are generated by running the model checking query

E <> StopWatch.Pass

There are three options of selecting the trace for test – shortest, fastest, or some. Thetrace generated with model checking option shortest is shown in the Figure 31.
5.4 Test case 2
In the Test Case 2 we exemplify how to specify the multiple repetition of earlier specifiedtest scenarios which have slight modifications. Let the Scenario 1 has to be modified sothat the quantification of T S2;T S4 and T S2;T S3 is switched. Instead ofA(T S2;T S4)∼>
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Figure 31 – Shortest trace that satisfies the test purpose of the Test Case 1

E(T S2;T S3) the test purpose is to execute scenario with E(T S2;T S4)∼> A(T S2;T S3)and run it at least 2 times in Scenario 2. The test purpose specification in T DLT P is ex-pressed in formula (29).
#(E(T S2;T S4)∼> A(T S2;T S3))>= 2 (29)

5.4.1 Test model construction
The first steps of test model construction for Test Case 2 are similar to that of Test Case1 and therefore we discard them. We consider only the introduction of a bounded re-peat construction which runs the scenario (E(T S2;T S4)∼> A(T S2;T S3)) two or moretimes. The channelActivate_LEADSTO starts the automata that interpret the expression
E(T S2;T S4) ∼> A(T S2;T S3). Local counter variable i is used to count the occurrencesof this nested expression. Each time the expression is satisfied it is signaled to repeatautomaton via channel Done_LEADSTO (Figure 32).The entire test model of Test Case 2 is depicted in Figure 33.
5.4.2 Generating test sequences
The test sequences of the SUT model MSUT shown in Figure 25 and of the scenario

#(E(T S2;T S4)A(T S2;T S3))>= 2
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Figure 32 – The automaton of the root operator of TDLTP expression #(E(T S2;T S4) ∼>
A(T S2;T S3))>= 2

are generated by running the model checking query
E <> StopWatch.Pass

similarly to Test Case 1. The trace generated with model checking option fastest isprovided in the Figure 34.
5.5 Test case 3
The Test Case 3 is designed to show that after being non-responsive due to the internalmaintenance procedures in EPS it is still capable of reacting to incoming commands re-gardless the commands are valid or with corrupted data. Both cases are allowed in thetest run multiple times, all valid command receives have to be tried two times and someof corrupted receives three or more times. This is expressed in T DLT P formula (30).

E(T S5)∼> (#(A(T S3)) == 2∧#(E(T S4))>= 3) (30)
5.5.1 Test model constructionThe test purpose stated in (5.3) needs different labelling than Test Cases 1 and 2. Since thetest purpose does not include ‘next’ trapset operations the labelling with traps of T S3,
T S4 and T S5 suffices. The SUT model labelled with these traps and auxiliary edges withupwards signaling channels (coloured with magenta) is presented in Figure 35.The repetitions of universal trapset A(T S3) and existential trapset E(T S4) are imple-mented with automata that recognize sub-formulas #(A(T S3)) == 2 and #(E(T S4))>=
3 represented in the Figure 36 a) and Figure 36 b) respectively.The recognizing automata of sub-formulas E(T S5), A(T S3) and E(T S4) are repre-sented in Figure 37.The root operator is ‘leads to’ that is implemented by the automaton in Figure 38 andfull test model of the Test Case 3 is depicted in Figure 39.
5.5.2 Generating test sequencesThe model checking query for generating the test sequence of scenario

E(T S5)∼> (#(A(T S3)) == 2∧#(E(T S4))>= 3)

is executed with option ‘some’ and the trace is exposed in Figure 40.
5.6 Chapter summary
Our experiments with three test cases on a SUT TTU100 Nanosatellite Electrical PowerSupply subsystem show that the test purpose specification language T DLT P developed inthe thesis is applicable when complex test scenarios with multiple coverage criteria are of
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Figure 33 – Test model of the Test Case 2

interest. T DLT P featured specially with compactness and expressiveness of test purposedescription. Three test cases were chosen to permute the nesting of T DLT P operators todemonstrate that the formulas of T DLT P have strictly more expressive that those appliedin Uppal query language TCTL. Regardless the number and type of operators in the testpurpose specification the Uppaal model checker generated the test traces in less than 0.2second and using less than 8MB residual and 29MB virtualmemory in peaks. Themethodof test model construction from T DLT P expressions is designed with the goal to keep theinterleaving of parallel sub-formula automata minimal. The performance characteristicswith non-trivial test cases show that the method has a good prospective for scalability.
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Figure 34 – Fastest trace that satisfies the test purpose of the Test Case 2
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Figure 35 – Labelling of the SUT model MSUT with ground level trapsets TS3, TS4 and TS5

(a)

(b)

Figure 36 – Recognizing automata of sub-formulas a) #(A(T S3)) == 2 b) #(E(T S4))>= 3

(a) A(T S3)

(b) E(T S4)

(c) E(T S5)

Figure 37 – Recognizing automata of sub-formulas a) A(T S3), b) E(T S4) and c) E(T S5)
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Figure 38 – Recognizing automaton of the scenario specification root formula E(T S5) ∼>
(#(A(T S3)) == 2∧#(E(T S4))>= 3)

Figure 39 – Full test model for the Test Case 3 scenario E(T S5) ∼> (#(A(T S3)) == 2 ∧
#(E(T S4))>= 3)
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Figure 40 – Test trace of the Test Case3 generated with model checking option “some”
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CONCLUSIONS
The study of related work on model-based testing and particularly in the domain of testpurpose specification methods shows that low software quality is mainly due to the prob-
lematical test coverage and incorrect requirements. Approximately, a half of incorrectrequirements are caused by incomplete specification and another half of cases by unclearand ambiguous requirements.To address this problem, the research of the thesis is focused on model-based testing,specifically, on the test purpose specification and test generation technique to addressthe test coverage and faults back-traceability problems. The problem is addressed fromthree perspectives:

• The application domain that dictates the needs and constraints on themodel-basedtesting method;
• The model-based testing technology to meet these needs;
• The formal framework used to automatize the test purpose specification and testgeneration procedures.
The thesis is oriented to applications that require extensive test effort, i.e. the systemsthat integrate typically many functions onto one while ensuring the safe segregation offunctions with different criticality levels. Common features to be addressed when testingthe use cases such as satellite mission software are: long communication delays, securityvulnerabilities, functional interference between software components, non-determinismregarding events timing, varying control anddata transmission capabilities. These featuresexposemost clearly in Integration and System level testingwhere the functionality, timing,safety, security and other aspects of MCS are inspected in their most entangled form.The analysis of the related work show that current test purpose specification languagesfocus on certain groups of test coverage criteria and are supporting less their integrationin multi-coverage criteria.From this point of view, the thesis task was set to develop an expressive test purpose

specification language and the method of extracting complex test cases from SUT mod-els. The requirements to the specification language could be summarised as follows: itshould express the coverage criteria important in the application domain, be correct,which means that they should not signal errors in correct implementations, should be
meaningful, i.e. erroneous implementations should be detected with high probability. Toaddress the problems of complexity and traceability inMBT the thesis extends themodel-based conformance testing with a scenario based test description language T DLT P andan automatic test generation technique that is based on this language.Since the theory of timed automata and its extension Uppal timed automata theorysatisfy the criteria of the modelling language for critical systems, the thesis relies on theunderlying theory of Uppaal TA and related UPPAAL tool family. Although this tool fam-ily has means for model checking, controller synthesis, and test execution, its propertyspecification language TCTL is used with substantial limited form, namely, the nesting oftemporal operators is not supported in the tools. This makes proving more complex prop-erties and generating tests from specifications that include several temporal constraintdifficult. It can be done using extra property automata but it requires deep knowledge inUppaal TA semantics and is error prone even for experts.As an extension to TCTL based test purpose specification language, the thesis built anextra language layer (Test Purpose Definition Language - T DLT P) for test scenario specifi-
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cation that is expressive, free from the limitations of ’flat’ TCTL, is interpretable in UppaalTA, and thus, suited for automatic test generation using Uppaal model checker.The benefits of T DLT P based test purpose specification and test generation can besummarized as follows:
• Due to its high expressive power the representation of test scenarios in T DLT P ismore compact compared to that of TCTL;
• Formal semantics of T DLT P expressions enables

– formal correctness verification of test models and test purpose specifications,incl. evaluation of their feasibility, time/space complexity (the statistics ofmodel checking are exposed as part of model checking results);
– automated generation of tests from verified models;
– interpretation of different coverage criteria and back-tracing the root causesof found bugs.

• The T DLT P expressions can be interrelated with other test coverage criteria andcoveragemetrics like structural coverage, function coverage, requirement coverageetc.
The main results and novelties of the thesis in the field of model based testing can beconcluded as follows:
1. A highly expressive test purpose specification language T DLT P for complex testscenario specifications that is needed for MBT in safety and time critical systems isdefined. The test purpose specification language T DLT P syntax and formal seman-tics are introduced. The mapping is used to automatize the construction of testmodels from the model of SUT and the test purpose expressions in T DLT P.
2. The operational semantics of T DLT P that is defined in terms of model transforma-tion rules that map declarative T DLT P expressions to executable test models rep-resented as Uppaal timed automata is defined. To remove the possible overhead in

T DLT P expressions and in the test models we introduced a set of T DLT P simplifi-cation rules to keep these specifications concise and readable, and also reduce thesize of the generated test models.
3. A provably correct test development process description is introduced and correct-ness conditions specified to be verified when showing correctness of test develop-ment steps. This work has been motivated by the need to increase the trust ontesting results and to avoid running infeasible tests or tests that could lead to incor-rect conclusions. Secondly, to reduce the test development time and to detect thetest development faults in earliest possible phases the proposed approach enablesverifying each intermediate test development product whenever it is available notjust waiting for the end of development process when full implementation is avail-able. The verification conditions and technique provided are relatively independentfrom the specifics of development method. This makes the verification approachcustomizable to different development process models and modeling formalisms.Another advantage of the approach is that it does not focus on functional propertiesonly. The correctness verification steps enable to prove also the correctness aspectsof mixed critical SUT where timing and data constraints both are substantial.
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4. The theoretical results of the thesis are validated on the TUT100 satellite softwaretesting case study. Our experimentswith three test cases on a SUTTUT100Nanosatel-lite Electrical Power Supply subsystem show that the test purpose specification lan-guage T DLT P is applicable when complex test scenarios with multiple coveragecriteria are of interest. T DLT P features especially with compactness and expres-siveness of test purpose descriptions. Three test cases were chosen to permutethe nesting of T DLT P operators to demonstrate that the formulas of T DLT P havestrictly more expressive power that those applied in Uppal query language TCTL.Regardless the number and type of operators in the test purpose specification theUppaal model checker generated the test traces without any difficulty. The methodof test model construction from T DLT P expressions keeps the interleaving of par-allel sub-formula automata minimal.
Future workAs for the further extension of the research highlighted in the thesis we can outline atleast three possible directions:Integration of T DLT P with reactive planning tester (RPT) generationmethod for onlinetesting of non-deterministic systems means that the controllable (by test) part of the en-vironmentmodel of SUT should be substitutedwith one ormany reactive planning testerswhich guarantee the efficient reachability of test coverage items - trapsets. For integra-tion the control of RPT instances has to be added to the test automata elaborated in thethesis.Design by contract is gaining popularity in provably correct development research com-munity. In particular, the multi viewpoint contract interference issues are under study.Generating the tests directly from viewpoint contracts would reduce the effort if specify-ing test purposes simultaneously with design specification by system developers. Declar-ative T DLT P provides possibilities for specifying behavioral properties on high level ofabstraction by both parties so that the contracts for different design views can be speci-fied and same T DLT P expressions used as test purpose specifications.Though current thesis address the problemsof conformance testing the usageofT DLT P

can be studied also for mutation testing, especially, to express themutations symbolically.The scalability of the test purpose specification using T DLT P and test generation hasshown promising results when applying it on TUT100 integration testing. The scalabilityof the approach can be studied even on larger SUT models, e.g. for acceptance tests ofthe TUT100 satellite system after its full release is available.
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Abstract
Scenario Oriented Model-Based Testing
Mission Critical Systems (MCS) are systems whose failure might cause catastrophic con-sequences, such as someone dying, damage to property, severe financial losses, damageto national security and others. A well-designed MCS, even in case of failures, if prop-erly predicted, timely detected and recovered, should be able to operate under severeexploitation conditions without catastrophic consequences.Detection of software bugs, especially those deeply nested in software loops whichmanifest sporadically as wrong timing in complex time critical systems, is a real challengefor current MCS software engineering methods. The methods of risk mitigation, in partic-ular the provably correct software synthesis, formal verification as well as model-basedtesting, are powerful but time and computationally expensive which limits their widerapplication in practice.According to Inria research report n° 8147, in automotive andmedical domain the sys-
tem integration level test and verification cause project delays respectively in 63% and in66,7% of cases. It gives indication that the software integration level test and verifica-
tion are themain bottleneckswhere new verification and test development methods andtheir tooling are of key importance. Model-based testing is considered to be one of thepromising validation method to address the complex verification use cases.In this thesis, the research is focused on model-based testing, specifically, on the testpurpose specification and test generation techniques to address the test coverage andfaults back-traceability problems. The scope of thesis is defined from three interrelatedperspectives:

• The application domain that dictates needs and constraints on the testing approach;
• The testing technology applied to meet these needs;
• The formal framework used to automatize the test purpose specification and gen-eration procedures.
The MCSs that require extensive test effort are typically applications that integratemany functions onto one while ensuring the safe segregation of functions with differentcriticality levels. These systems are called also mixed-criticality systems. Examples of suchsystems are surgical robots and assisting robots used in medical treatment procedures aswell as spacecrafts having long term autonomous missions.Common features to be addressed when testing the mixed critical MCSs such as satel-lites and distributed robotic systems are: significantly longer communication delays com-pared to that of local computations, security vulnerabilities, functional interference be-tween software components, non-determinism regarding events’ timing, varying controland data transmission capabilities, etc.The thesis scope is model-based conformance testing of MCS. The aim is to developan expressive test purpose specification language and the method of extracting complex

test cases from SUT models. The derived tests should satisfy the multiple coverage crite-ria specified in the test purpose, be provably correct, which means that they should notsignal errors in correct implementations, should bemeaningful, i.e. erroneous implemen-tations should be detected and traced back to the requirements. To address the problemsof complexity and traceability in MBT the thesis extends the model-based conformancetesting approach with a scenario based test description language and a related to that
automatic test generation technique.
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MBT relies on formal models. The models are built from the requirements or designspecifications in order to describe the expected behaviour of SUT in interaction with itsenvironment. The model should be precise, unambiguous, and presented in the way thatis relevant for correctness verification and test generation. The thesis relies on the un-derlying theory of Uppaal Timed Automata (Uppaal TA) and related UPPAAL tool family(www.uppaal.org) that supports modelling, validation and verification of real-time sys-tems.As a result of related work analysis it is concluded that there is a need for more ex-pressive test purpose description language (it is called in thesis T DLT P) than currentlyavailable, to allow compact, multi-criterial test coverage specifications, and which is for-mally verifiable and efficiently implementable for test generation.The technical tasks of the thesis to be solved for these goals are the following:
• Defining the syntax and formal semantics of test purpose specification language

T DLT P;
• Defining the interpretation of T DLT P in terms of language recognizing Uppaal TA;
• Designing and implementing the interpreter ofT DLT P and based on that a symbolictest generator;
• Integrating the T DLT P usage into provably correct testing workflow.
• Demonstrating the feasibility of T DLT P usage on a practical non-trivial test purposespecification and test generation case study.
Themain contribution of the thesis achieved in the field of model based testing can besummarized as follows:
1. The thesis defines a highly expressive test purpose specification language T DLT P

for specifying complex test scenarios that are needed for MBT of complex MCSs.
2. The syntax and semantics of T DLT P operators are defined and the transformationrules that map declarative T DLT P expressions to executable test models repre-sented as Uppaal TA.
3. A provably correct test development process model is introduced and proof obliga-tions specified to be verified when showing correctness of test development steps.
4. The validation of thesis theoretical results has been done on the TUT100 satellitesoftware case study.
As for the further extension of the research highlighted in the thesis following possibledirections are outlined:Integration of T DLT P with reactive planning tester synthesis method for online test-ing of non-deterministic MCS. The reactive planning tester synthesis method has beensuggested by the Autonomy and Software Technology group at NASA’s Deep Space Oneprogramme but its public version is limited with FSM models only. The use of T DLT P

would enable to extend it to more expressive Uppaal TA models.Second direction could be related to generating tests from multi-viewpoint softwarecontracts to reduce the effort of specifying test purposes simultaneouslywith design spec-ifications by system developers. Declarative T DLT P could provide the possibilities forspecifying behavioral properties on high level of abstraction by both parties so that the
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contracts for different design views can be specified and same T DLT P expressions usedas test purpose specifications.Though the current thesis address the problems of conformance testing the usage of
T DLT P can be studied also for mutation testing, especially, to express themutations sym-bolically.The scalability of the test purpose specification using T DLT P and test generation hasshown promising results when applying it on TUT100 satellite software integration test-ing. The scalability of the approach can be studied even on larger SUT models, e.g. foracceptance tests of the TUT100 satellite system after its full release is available.
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Kokkuvõte
Stsenaariumjuhitud mudelipõhine testimine
Missioonikriitilised süsteemid (MKS) on süsteemid, mille tõrked ja vead võivad põhjusta-da katastroofilisi tagajärgi nagu näiteks seada ohtu inimelusid, tekitada varalist ja rahalistkahju, ohustada rahvuslikku julgeolekut jms. Õigesti projekteeritud MKS suudab töötadaisegi karmides ekspluatatsioonitingimustes ilma fataalsete tõrgeteta eeldusel, et nendetõrgetega on projekteerimisel arvestatud, tõrked on õigeaegselt avastatud ja kompensee-ritud.Tarkvaravigade avastamine eriti juhul, kui need vead asuvad sügavates programmitsük-lites ning avalduvad ajakriitilistes süsteemides juhuslikel hetkedel sündmuste vale ajas-tusena, on kaasagsetele tarkvara arendusmeetoditele endiselt tõsiseks probleemiks. Tark-vara vigadega seotud riskide vähendamise meetodid nagu tõestatavalt korrektse tarkvarasüntees, formaalne verifitseerimine ja mudeli-põhine testimine on küll võimsad, kuid niiaja- kui arvutusressursi mahukad, mis omakorda piirab nende laiemat kasutust tarkvara-tehnika igapäeva praktikas.Inria uuringuaruande nr. 8147 kohaselt põhjustab plaanivälist hilistumist projektides63% juhul autotööstuses ja 66,7% juhtudest meditsiinitehnikas süsteemide integratsioonitestimine ja verifitseerimine. See fakt näitab, et tarkvara integratsiooni testimine ja verifit-seerimine on kogu arendusprotsessi kitsaskohtadeks ja nende automatiseerimine omabarenduse efektiivsemaks muutmisel võtmerolli. Mudeli-põhine testimine ja selle automa-tiseerimine on üks enam lubavaid valideerimistehnikaid keerukate verifitseerimisülesan-nete lahendamisel.Käesoleva väitekirja uurimisobjektiks onmudeli-põhine testimine, täpsemalt testi ees-märgi spetsifitseerimine ja testide genereerimine saavutamaks paremat testikatvust ja vi-gade põhjuste diagnoositavust. Väitekirja skoop on määratletud kolmest aspektist lähtu-valt:

• Testimistehnoloogia rakendusvaldkond, mis määrab nõuded ja kitsendused testi-mistehnikale;
• Testimistehnika ise mis peab vastama eeltoodu nõuetele ja kitsendustele;
• Formaalne aparatuur, mis on rakendatav testi eesmärkide spetsifitseerimise ja testigenereerimise automatiseerimisel.
MKS-d, mis nõuavad mahukat testimist, on tüüpiliselt rakendused, mis integreerivaderinevaid funktsionaalsusi, mille puhul on nõutav nende koostöö ohutus erinevatel kriiti-lisusastmetel. Niisugusi süsteeme nimetatakse põimkriitilisteks (mixed-critical). Niisugus-te süsteemide näiteks on kirurgias ja meditsiinilistes raviprotseduurides kasutatavad ro-botid, samuti pikaaegsetel autonoomsetel missioonidel kasutatavad kosmoseaparaadid.Niisuguste intensiivset testimist vajavate süsteemide ühisteks tunnusteks on: kommuni-katsiooniga seotud hilistumised on oluliselt suuremad kui arvutusprotsessidega seotudhilistumised, turvalisusega seotud probleemid, komponentide funktsionaalsuse ristmõju-tused, sündmuste ajastuse mitte-determinism, juhtimis- ja andmeedastusfunktsioonidevarieeruv jõudlus jne.Käesolev väitekiri keskendubMKS-demudeli-põhisele konformsustestimisele. Väitekir-ja eesmärgiks on luua suure väljendusvõimsusega testieesmärkide spetsifitseerimise keelja tehnika testitava süsteemi mudelist ning testieesmärgi kirjeldusest testide genereeri-miseks. Loodav keel ja genereeritavad testid peavad võimaldama väljendada ja kontrollidaerinevaid testikatte kriteeriume, olema tõestatavalt korrektsed st signaliseerima vigadest
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ainult tõeliste vigade korral, võimaldama tuvastada vigade põhjusi ja lokaliseerida disaininõuded, mida avastatud vead puudutavad.Mudeli-põhine testimine põhineb formaalsete mudelite olemasolul. Mudelid konst-rueeritakse süsteemi nõuete spetsifikatsioonist ja need kirjeldavad interaktsioone süs-teemi ja tema keskkonna vahel. Mudelite puhul eeldatakse, et need on ühemõtteliseltmõistetavad ja kasutatavad nii nõuete korrektsuse verifitseermiseks kui testide generee-rimiseks. Väitekirjas on valitud selleks Uppaali Ajaga Automaatide (Uppaal TA) teooria jasellega seotud tööriistade kogu (www.uppaal, org), mis toetab reaalajasüsteemide mo-delleerimist, valideerimist ja verifitseerimist.Töökäigus läbiviidud kirjanduse analüüs näitab, et teadaolevad testieemärgi spetsifit-seerimise keeled ei ole piisava väljendusvõimsusega või kui on, siis nad ei toeta testideautomaatset genereerimist. Alternatiivina väitekirjas loodava testieesmärgi kirjeldamisekeele TDLTP puhul on seatud eesmärgiks esitada korraga mitut testikattekriteeriumit, ta-gada verifitseeritavus ja efektiivne rakendatavus testide genereerimisel.Keele loomisega seotud konkreetsemad tehnilised ülesanded on seatud järgmiselt:
• Defineerida testieesmärgi kirjeldamise keele T DLT P süntaks ja formaalne semanti-ka;
• Defineerida T DLT P termide interpretatsioon termide poolt kirjeldatud käitumistetuvastamiseks, tuvastusreeglid esitatakse Uppaali ajaga automaatide kujul;
• Projekteerida ja realiseerida programmiliselt T DLT P avaldiste interpretaator ja tes-timudeli generaator;
• Integreerida T DLT P tõetatavalt korrektse testimise töövoogu;
• Demonstreerida T DLT P otstarbekus ja teostatavus praktilisel mitte-triviaalsel tes-tide spetsifitseerimise ja genereerimise näitel.
Lähtuvalt püstitatud eesmärkidest on väitekirjas loodud uudne tehnika mudelipõhisetestimise automatiseerimiseks, mis sisaldab järgmisi tulemusi:
1. On loodud suure väljendusvõimsusega testieesmärkide spetsifitseerimise keelT DLT P,mis võimaldab kompaktselt kirjeldada keerulisi testi stsenaariume ja ühendada stse-naariumides erinevaid testi kattekriteeriume, mis on vajalikud missioonikriitilistesüsteemide testimisel;
2. Defineeriti keele TDLTPoperaatorite süntaks ja semantika ning teisendusreeglidT DLT P

deklaratiivsete avaldiste teisendamiseks täidetavaks testimudeliks, mis esitatakseUppaal TA kujul;
3. Defineeritakse tõestatavalt korrektse testi arendusprotsessi mudel ja sellega seotudverifitseerimistingimused;
4. Väitekirja teoreetilised tulemusedon valideeritud rakendusnäitel,milleks on TUT100sateliidi tarkvara testimine.
Väitekirja tulemuste edasiarendamise võimalustena saab välja tuua järgmist:Keele T DLT P integreerimine reaktiivse planeeriva testri sünteesimeetodiga, mis onloodud mittedeterministlike kriitiliste süsteemide online testimiseks. Reaktiivse planeeri-va kontrolleri idee pakuti välja esmakordseltNASADeep SpaceOne programmi raames Au-tonomy and Software Technology töörühma poolt, kui algnemeetod kasutas ainult lõplike
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automaatide formaalset mudelit. T DLT P siduminemeetodiga võimaldab sünteesimeeto-dit kasutusele võtta ka suurema väljendusvõimsusega Uppaal TA mudelite puhul.Teine võimalik suund oleks siduda T DLT P mitme-aspektiliste lepingute teooriaga sel-leks, et kasutades ühte ja sama spetsifitseerimiskeelt nii disaini, kui testi spetsifitseeri-misel. T DLT P väljendusvõimsus, deklaratiivsus ja kõrge abstraktsiooni tase annavad või-maluse genereerida teste otse lepingute spetsifikatsioonidest.Kolmas suund oleks T DLT P kasutamine lisaks konformsustestimisele ka mutatsiooni-testimisel. See annab võimaluse spetsifitseerida mutatsioone mitte ainult testitava süs-teemi mudeli terminites vaid ka abstraktsemalt testi eesmärgi spetsifikatsiooni enda mu-tatsioonidena.Neljas praktilisem suund oleks keele T DLT P testimudeli genereerimise tehnika ska-leeruvuse täpsem uurimine ja mõõdistamine. Katsed TUT100 satelliidi tarkvara alamsüs-teemide testimisel olid lubavad. Parema ettekujutuse skaleeruvusest annab satelliidi süs-teemi terviktestimine, milleks avaneb võimalus satelliidi lõpliku valmimise järel.
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Appendix 1

TestCase 1 test sequence
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State:
( Environment._id13 MCS_EPS.start FORALL_TS24.Idle EXISTS_TS23.Idle P_LEADSTO_Q.Idle

StopWatch.Ready )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
StopWatch.Ready->StopWatch.Running { 1, Activate_LEADSTO!, Swatch := 0 }
P_LEADSTO_Q.Idle->P_LEADSTO_Q._id31 { 1, Activate_LEADSTO?, 1 }

State:
( Environment._id13 MCS_EPS.start FORALL_TS24.Idle EXISTS_TS23.Idle P_LEADSTO_Q._id31

StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id31->P_LEADSTO_Q.Ready_for_P { 1, Activate_EXISTS!, 1 }
FORALL_TS24.Idle->FORALL_TS24.Ready { 1, Activate_EXISTS?, 1 }

State:
( Environment._id13 MCS_EPS.start FORALL_TS24.Ready EXISTS_TS23.Idle P_LEADSTO_Q.Ready_for_P

StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Delay: 15.5

State:
( Environment._id13 MCS_EPS.start FORALL_TS24.Ready EXISTS_TS23.Idle P_LEADSTO_Q.Ready_for_P

StopWatch.Running )↪→
cl=15.5 Environment.cl=15.5 StopWatch.Swatch=15.5 i_command_comm_create=0 o_response_p=0 n=0

TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
Environment._id13->Environment._id13 { 1, i_command!, comm_valid := 1, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0, TS1[0] := 1 }↪→

State:
( Environment._id13 MCS_EPS.commandCreated FORALL_TS24.Ready EXISTS_TS23.Idle

P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment._id13 MCS_EPS.commandSent FORALL_TS24.Ready EXISTS_TS23.Idle

P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→
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Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1, fl23 := 1, fl24 :=

1 }↪→

State:
( Environment._id13 MCS_EPS.commandReceived FORALL_TS24.Ready EXISTS_TS23.Idle

P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=1
MCS_EPS.fl24=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id1 { comm_valid, tau, TS3[0] := 1, TS23[0] := fl23 ? 1 : 0,

fl23 := 0, fl24 := 0 }↪→

State:
( Environment._id13 MCS_EPS._id1 FORALL_TS24.Ready EXISTS_TS23.Idle P_LEADSTO_Q.Ready_for_P

StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id1->MCS_EPS.commandValid { 1, ch_TS23!, 1 }
FORALL_TS24.Ready->FORALL_TS24._id15 { 1, ch_TS23?, 1 }

State:
( Environment._id13 MCS_EPS.commandValid FORALL_TS24._id15 EXISTS_TS23.Idle

P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandValid->MCS_EPS.dataCreated { 1, tau, data_create := 1 }

State:
( Environment._id13 MCS_EPS.dataCreated FORALL_TS24._id15 EXISTS_TS23.Idle

P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.dataCreated->MCS_EPS.replyReceived { 1, tau, data_send := 1 }

State:
( Environment._id13 MCS_EPS.replyReceived FORALL_TS24._id15 EXISTS_TS23.Idle

P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.replyReceived->MCS_EPS._id2 { 1, o_response!, n := o_response_p }
Environment._id13->Environment._id13 { 1, o_response?, cl := 0 }

State:
( Environment._id13 MCS_EPS._id2 FORALL_TS24._id15 EXISTS_TS23.Idle P_LEADSTO_Q.Ready_for_P

StopWatch.Running )↪→
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cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1
TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id2->MCS_EPS.start { 1, tau, cl := 0 }

State:
( Environment._id13 MCS_EPS.start FORALL_TS24._id15 EXISTS_TS23.Idle P_LEADSTO_Q.Ready_for_P

StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
FORALL_TS24._id15->FORALL_TS24.End { exists (i:(const (label index:(range (int) "0" "M -

1")))) TS23[i], Done_EXISTS!, 1 }↪→
P_LEADSTO_Q.Ready_for_P->P_LEADSTO_Q._id29 { 1, Done_EXISTS?, 1 }

State:
( Environment._id13 MCS_EPS.start FORALL_TS24.End EXISTS_TS23.Idle P_LEADSTO_Q._id29

StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
FORALL_TS24.End->FORALL_TS24.Idle { 1, tau, Reset() }

State:
( Environment._id13 MCS_EPS.start FORALL_TS24.Idle EXISTS_TS23.Idle P_LEADSTO_Q._id29

StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id29->P_LEADSTO_Q.Ready_for_Q { 1, Activate_FORALL!, 1 }
EXISTS_TS23.Idle->EXISTS_TS23.Ready { 1, Activate_FORALL?, 1 }

State:
( Environment._id13 MCS_EPS.start FORALL_TS24.Idle EXISTS_TS23.Ready P_LEADSTO_Q.Ready_for_Q

StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=15.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Delay: 15.5

State:
( Environment._id13 MCS_EPS.start FORALL_TS24.Idle EXISTS_TS23.Ready P_LEADSTO_Q.Ready_for_Q

StopWatch.Running )↪→
cl=15.5 Environment.cl=15.5 StopWatch.Swatch=31 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
Environment._id13->Environment._id13 { 1, i_command!, comm_valid := 0, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0, TS1[0] := 1 }↪→

State:
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( Environment._id13 MCS_EPS.commandCreated FORALL_TS24.Idle EXISTS_TS23.Ready
P_LEADSTO_Q.Ready_for_Q StopWatch.Running )↪→

cl=0 Environment.cl=0 StopWatch.Swatch=31 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1
TS2[0]=0 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment._id13 MCS_EPS.commandSent FORALL_TS24.Idle EXISTS_TS23.Ready

P_LEADSTO_Q.Ready_for_Q StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=31 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1, fl23 := 1, fl24 :=

1 }↪→

State:
( Environment._id13 MCS_EPS.commandReceived FORALL_TS24.Idle EXISTS_TS23.Ready

P_LEADSTO_Q.Ready_for_Q StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=31 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=1
MCS_EPS.fl24=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id0 { !comm_valid, tau, TS4[0] := 1, TS24[0] := fl24 ? 1 :

0, fl23 := 0, fl24 := 0 }↪→

State:
( Environment._id13 MCS_EPS._id0 FORALL_TS24.Idle EXISTS_TS23.Ready P_LEADSTO_Q.Ready_for_Q

StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=31 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=1 TS5[0]=0 TS23[0]=1 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id0->MCS_EPS.commandInvalid { 1, ch_TS24!, 1 }
EXISTS_TS23.Ready->EXISTS_TS23._id18 { 1, ch_TS24?, 1 }

State:
( Environment._id13 MCS_EPS.commandInvalid FORALL_TS24.Idle EXISTS_TS23._id18

P_LEADSTO_Q.Ready_for_Q StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=31 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=1 TS5[0]=0 TS23[0]=1 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
EXISTS_TS23._id18->EXISTS_TS23.End { forall (i:(const (label index:(range (int) "0" "M -

1")))) TS24[i], Done_FORALL!, 1 }↪→
P_LEADSTO_Q.Ready_for_Q->P_LEADSTO_Q._id27 { 1, Done_FORALL?, 1 }

State:
( Environment._id13 MCS_EPS.commandInvalid FORALL_TS24.Idle EXISTS_TS23.End P_LEADSTO_Q._id27

StopWatch.Running )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=31 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=1 TS5[0]=0 TS23[0]=1 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→

Transitions:
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P_LEADSTO_Q._id27->P_LEADSTO_Q.End { 1, Done_LEADSTO!, 1 }
StopWatch.Running->StopWatch.Pass { 1, Done_LEADSTO?, 1 }

State:
( Environment._id13 MCS_EPS.commandInvalid FORALL_TS24.Idle EXISTS_TS23.End P_LEADSTO_Q.End

StopWatch.Pass )↪→
cl=0 Environment.cl=0 StopWatch.Swatch=31 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=1 TS5[0]=0 TS23[0]=1 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=0 MCS_EPS.data_send=1 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0

↪→
↪→
↪→
↪→
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Appendix 2

TestCase 2 test sequence
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State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q.Idle REPEAT_P.Idle

StopWatch.Ready )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
StopWatch.Ready->StopWatch.Running { 1, Activate_REPEAT!, Swatch := 0 }
REPEAT_P.Idle->REPEAT_P._id34 { 1, Activate_REPEAT?, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q.Idle REPEAT_P._id34

StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
REPEAT_P._id34->REPEAT_P.Ready { 1, Activate_LEADSTO!, 1 }
P_LEADSTO_Q.Idle->P_LEADSTO_Q._id31 { 1, Activate_LEADSTO?, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q._id31

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id31->P_LEADSTO_Q.Ready_for_P { 1, Activate_EXISTS!, 1 }
EXIST_TS24.Idle->EXIST_TS24.Ready { 1, Activate_EXISTS?, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Ready P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0
MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Delay: 15.125

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Ready P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=15.125 Environment_.cl=15.125 StopWatch.Swatch=15.125 i_command_comm_create=0 o_response_p=0

n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
Environment_._id13->Environment_._id13 { 1, i_command!, comm_valid := 0, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0, TS1[0] := 1 }↪→

State:
( Environment_._id13 MCS_EPS.commandCreated ALL_TS23.Idle EXIST_TS24.Ready

P_LEADSTO_Q.Ready_for_P REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→
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Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment_._id13 MCS_EPS.commandSent ALL_TS23.Idle EXIST_TS24.Ready P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1, fl23 := 1, fl24 :=

1 }↪→

State:
( Environment_._id13 MCS_EPS.commandReceived ALL_TS23.Idle EXIST_TS24.Ready

P_LEADSTO_Q.Ready_for_P REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=1 MCS_EPS.fl24=1 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id0 { !comm_valid, tau, TS4[0] := 1, TS24[0] := fl24 ? 1 :

0, fl23 := 0, fl24 := 0 }↪→

State:
( Environment_._id13 MCS_EPS._id0 ALL_TS23.Idle EXIST_TS24.Ready P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id0->MCS_EPS.commandInvalid { 1, ch_TS24!, 1 }
EXIST_TS24.Ready->EXIST_TS24._id15 { 1, ch_TS24?, 1 }

State:
( Environment_._id13 MCS_EPS.commandInvalid ALL_TS23.Idle EXIST_TS24._id15

P_LEADSTO_Q.Ready_for_P REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandInvalid->MCS_EPS.errorCreated { 1, tau, error_create := 1 }

State:
( Environment_._id13 MCS_EPS.errorCreated ALL_TS23.Idle EXIST_TS24._id15 P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.errorCreated->MCS_EPS.replyReceived { 1, tau, error_send := 1 }

State:
( Environment_._id13 MCS_EPS.replyReceived ALL_TS23.Idle EXIST_TS24._id15

P_LEADSTO_Q.Ready_for_P REPEAT_P.Ready StopWatch.Running )↪→
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cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0
TS1[0]=1 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.replyReceived->MCS_EPS._id2 { 1, o_response!, n := o_response_p }
Environment_._id13->Environment_._id13 { 1, o_response?, cl := 0 }

State:
( Environment_._id13 MCS_EPS._id2 ALL_TS23.Idle EXIST_TS24._id15 P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id2->MCS_EPS.start { 1, tau, cl := 0 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24._id15 P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
EXIST_TS24._id15->EXIST_TS24.End { exists (i:(const (label index:(range (int) "0" "M - 1"))))

TS24[i], Done_EXISTS!, 1 }↪→
P_LEADSTO_Q.Ready_for_P->P_LEADSTO_Q._id29 { 1, Done_EXISTS?, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.End P_LEADSTO_Q._id29 REPEAT_P.Ready

StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
EXIST_TS24.End->EXIST_TS24.Idle { 1, tau, Reset() }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q._id29

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id29->P_LEADSTO_Q.Ready_for_Q { 1, Activate_FORALL!, 1 }
ALL_TS23.Idle->ALL_TS23.Ready { 1, Activate_FORALL?, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Ready EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Delay: 15.125

State:
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( Environment_._id13 MCS_EPS.start ALL_TS23.Ready EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q
REPEAT_P.Ready StopWatch.Running )↪→

cl=15.125 Environment_.cl=15.125 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0
n=0 TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
Environment_._id13->Environment_._id13 { 1, i_command!, comm_valid := 1, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0, TS1[0] := 1 }↪→

State:
( Environment_._id13 MCS_EPS.commandCreated ALL_TS23.Ready EXIST_TS24.Idle

P_LEADSTO_Q.Ready_for_Q REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment_._id13 MCS_EPS.commandSent ALL_TS23.Ready EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1, fl23 := 1, fl24 :=

1 }↪→

State:
( Environment_._id13 MCS_EPS.commandReceived ALL_TS23.Ready EXIST_TS24.Idle

P_LEADSTO_Q.Ready_for_Q REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=1 MCS_EPS.fl24=1 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id1 { comm_valid, tau, TS3[0] := 1, TS23[0] := fl23 ? 1 : 0,

fl23 := 0, fl24 := 0 }↪→

State:
( Environment_._id13 MCS_EPS._id1 ALL_TS23.Ready EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id1->MCS_EPS.commandValid { 1, ch_TS23!, 1 }
ALL_TS23.Ready->ALL_TS23._id18 { 1, ch_TS23?, 1 }

State:
( Environment_._id13 MCS_EPS.commandValid ALL_TS23._id18 EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
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MCS_EPS.commandValid->MCS_EPS.dataCreated { 1, tau, data_create := 1 }

State:
( Environment_._id13 MCS_EPS.dataCreated ALL_TS23._id18 EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.dataCreated->MCS_EPS.replyReceived { 1, tau, data_send := 1 }

State:
( Environment_._id13 MCS_EPS.replyReceived ALL_TS23._id18 EXIST_TS24.Idle

P_LEADSTO_Q.Ready_for_Q REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.replyReceived->MCS_EPS._id2 { 1, o_response!, n := o_response_p }
Environment_._id13->Environment_._id13 { 1, o_response?, cl := 0 }

State:
( Environment_._id13 MCS_EPS._id2 ALL_TS23._id18 EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id2->MCS_EPS.start { 1, tau, cl := 0 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23._id18 EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
ALL_TS23._id18->ALL_TS23.End { forall (i:(const (label index:(range (int) "0" "M - 1"))))

TS23[i], Done_FORALL!, 1 }↪→
P_LEADSTO_Q.Ready_for_Q->P_LEADSTO_Q._id27 { 1, Done_FORALL?, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.End EXIST_TS24.Idle P_LEADSTO_Q._id27 REPEAT_P.Ready

StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

Transitions:
ALL_TS23.End->ALL_TS23.Idle { 1, tau, Reset() }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q._id27

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=0

↪→
↪→
↪→
↪→

99



Transitions:
P_LEADSTO_Q._id27->P_LEADSTO_Q.End { 1, Done_LEADSTO!, 1 }
REPEAT_P.Ready->REPEAT_P._id36 { 1, Done_LEADSTO?, i++ }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q.End REPEAT_P._id36

StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q.End->P_LEADSTO_Q.Idle { 1, tau, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q.Idle REPEAT_P._id36

StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
REPEAT_P._id36->REPEAT_P._id34 { i < 2, tau, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q.Idle REPEAT_P._id34

StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
REPEAT_P._id34->REPEAT_P.Ready { 1, Activate_LEADSTO!, 1 }
P_LEADSTO_Q.Idle->P_LEADSTO_Q._id31 { 1, Activate_LEADSTO?, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q._id31

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id31->P_LEADSTO_Q.Ready_for_P { 1, Activate_EXISTS!, 1 }
EXIST_TS24.Idle->EXIST_TS24.Ready { 1, Activate_EXISTS?, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Ready P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Delay: 15.25

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Ready P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=15.25 Environment_.cl=15.25 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→
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Transitions:
Environment_._id13->Environment_._id13 { 1, i_command!, comm_valid := 0, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0, TS1[0] := 1 }↪→

State:
( Environment_._id13 MCS_EPS.commandCreated ALL_TS23.Idle EXIST_TS24.Ready

P_LEADSTO_Q.Ready_for_P REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment_._id13 MCS_EPS.commandSent ALL_TS23.Idle EXIST_TS24.Ready P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1, fl23 := 1, fl24 :=

1 }↪→

State:
( Environment_._id13 MCS_EPS.commandReceived ALL_TS23.Idle EXIST_TS24.Ready

P_LEADSTO_Q.Ready_for_P REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=1
MCS_EPS.fl24=1 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id0 { !comm_valid, tau, TS4[0] := 1, TS24[0] := fl24 ? 1 :

0, fl23 := 0, fl24 := 0 }↪→

State:
( Environment_._id13 MCS_EPS._id0 ALL_TS23.Idle EXIST_TS24.Ready P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id0->MCS_EPS.commandInvalid { 1, ch_TS24!, 1 }
EXIST_TS24.Ready->EXIST_TS24._id15 { 1, ch_TS24?, 1 }

State:
( Environment_._id13 MCS_EPS.commandInvalid ALL_TS23.Idle EXIST_TS24._id15

P_LEADSTO_Q.Ready_for_P REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandInvalid->MCS_EPS.errorCreated { 1, tau, error_create := 1 }

State:
( Environment_._id13 MCS_EPS.errorCreated ALL_TS23.Idle EXIST_TS24._id15 P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
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cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1
TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.errorCreated->MCS_EPS.replyReceived { 1, tau, error_send := 1 }

State:
( Environment_._id13 MCS_EPS.replyReceived ALL_TS23.Idle EXIST_TS24._id15

P_LEADSTO_Q.Ready_for_P REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.replyReceived->MCS_EPS._id2 { 1, o_response!, n := o_response_p }
Environment_._id13->Environment_._id13 { 1, o_response?, cl := 0 }

State:
( Environment_._id13 MCS_EPS._id2 ALL_TS23.Idle EXIST_TS24._id15 P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id2->MCS_EPS.start { 1, tau, cl := 0 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24._id15 P_LEADSTO_Q.Ready_for_P

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
EXIST_TS24._id15->EXIST_TS24.End { exists (i:(const (label index:(range (int) "0" "M - 1"))))

TS24[i], Done_EXISTS!, 1 }↪→
P_LEADSTO_Q.Ready_for_P->P_LEADSTO_Q._id29 { 1, Done_EXISTS?, 1 }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.End P_LEADSTO_Q._id29 REPEAT_P.Ready

StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=1 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
EXIST_TS24.End->EXIST_TS24.Idle { 1, tau, Reset() }

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Idle EXIST_TS24.Idle P_LEADSTO_Q._id29

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id29->P_LEADSTO_Q.Ready_for_Q { 1, Activate_FORALL!, 1 }
ALL_TS23.Idle->ALL_TS23.Ready { 1, Activate_FORALL?, 1 }

State:
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( Environment_._id13 MCS_EPS.start ALL_TS23.Ready EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q
REPEAT_P.Ready StopWatch.Running )↪→

cl=0 Environment_.cl=0 StopWatch.Swatch=45.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1
TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Delay: 15.5

State:
( Environment_._id13 MCS_EPS.start ALL_TS23.Ready EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=15.5 Environment_.cl=15.5 StopWatch.Swatch=61 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=1 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
Environment_._id13->Environment_._id13 { 1, i_command!, comm_valid := 1, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0, TS1[0] := 1 }↪→

State:
( Environment_._id13 MCS_EPS.commandCreated ALL_TS23.Ready EXIST_TS24.Idle

P_LEADSTO_Q.Ready_for_Q REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=61 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment_._id13 MCS_EPS.commandSent ALL_TS23.Ready EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=61 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1, fl23 := 1, fl24 :=

1 }↪→

State:
( Environment_._id13 MCS_EPS.commandReceived ALL_TS23.Ready EXIST_TS24.Idle

P_LEADSTO_Q.Ready_for_Q REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=61 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=1
MCS_EPS.fl24=1 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id1 { comm_valid, tau, TS3[0] := 1, TS23[0] := fl23 ? 1 : 0,

fl23 := 0, fl24 := 0 }↪→

State:
( Environment_._id13 MCS_EPS._id1 ALL_TS23.Ready EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=61 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id1->MCS_EPS.commandValid { 1, ch_TS23!, 1 }
ALL_TS23.Ready->ALL_TS23._id18 { 1, ch_TS23?, 1 }
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State:
( Environment_._id13 MCS_EPS.commandValid ALL_TS23._id18 EXIST_TS24.Idle P_LEADSTO_Q.Ready_for_Q

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=61 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
ALL_TS23._id18->ALL_TS23.End { forall (i:(const (label index:(range (int) "0" "M - 1"))))

TS23[i], Done_FORALL!, 1 }↪→
P_LEADSTO_Q.Ready_for_Q->P_LEADSTO_Q._id27 { 1, Done_FORALL?, 1 }

State:
( Environment_._id13 MCS_EPS.commandValid ALL_TS23.End EXIST_TS24.Idle P_LEADSTO_Q._id27

REPEAT_P.Ready StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=61 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=1

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id27->P_LEADSTO_Q.End { 1, Done_LEADSTO!, 1 }
REPEAT_P.Ready->REPEAT_P._id36 { 1, Done_LEADSTO?, i++ }

State:
( Environment_._id13 MCS_EPS.commandValid ALL_TS23.End EXIST_TS24.Idle P_LEADSTO_Q.End

REPEAT_P._id36 StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=61 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=2

↪→
↪→
↪→
↪→

Transitions:
REPEAT_P._id36->REPEAT_P.End { i >= 2, Done_REPEAT!, 1 }
StopWatch.Running->StopWatch.Pass { 1, Done_REPEAT?, 1 }

State:
( Environment_._id13 MCS_EPS.commandValid ALL_TS23.End EXIST_TS24.Idle P_LEADSTO_Q.End

REPEAT_P.End StopWatch.Pass )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=61 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=1

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=1 TS24[0]=0 comm_valid=1 MCS_EPS.comm_create=0
MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=1
MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1 MCS_EPS.fl23=0
MCS_EPS.fl24=0 REPEAT_P.i=2

↪→
↪→
↪→
↪→
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Appendix 3

TestCase 3 test sequence
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State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Idle StopWatch.Ready )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
StopWatch.Ready->StopWatch.Running { 1, Activate_LEADSTO!, Swatch := 0 }
P_LEADSTO_Q.Idle->P_LEADSTO_Q._id36 { 1, Activate_LEADSTO?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q._id36 StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id36->P_LEADSTO_Q.Ready_for_P { 1, Activate_EXISTS_TS5!, 1 }
EXISTS_TS5.Idle->EXISTS_TS5.Ready { 1, Activate_EXISTS_TS5?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Ready FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=0 i_command_comm_create=0 o_response_p=0 n=0 TS1[0]=0

TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Delay: 15.015625

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Ready FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=15.015625 Environment_.cl=15.015625 StopWatch.Swatch=15.015625 i_command_comm_create=0

o_response_p=0 n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0
comm_valid=0 ch_TS24=0 ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=0
MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0 MCS_EPS.error_create=0
MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0
REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
↪→

Transitions:
Environment_._id14->Environment_._id14 { 1, i_command!, comm_valid := 0, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0 }↪→

State:
( Environment_._id14 MCS_EPS.commandCreated EXISTS_TS5.Ready FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=15.015625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=0 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Delay: 0.015625

State:
( Environment_._id14 MCS_EPS.commandCreated EXISTS_TS5.Ready FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0.015625 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1

o_response_p=0 n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0
comm_valid=0 ch_TS24=0 ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=0
MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0 MCS_EPS.error_create=0
MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0
REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
↪→
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Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 1 }

State:
( Environment_._id14 MCS_EPS.commandSent EXISTS_TS5.Ready FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0.015625 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1

o_response_p=0 n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0
comm_valid=0 ch_TS24=0 ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1
MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1 MCS_EPS.data_create=0 MCS_EPS.error_create=0
MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0
REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS._id0 { eps_busy, tau, TS5[0] := 1 }

State:
( Environment_._id14 MCS_EPS._id0 EXISTS_TS5.Ready FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0.015625 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1

o_response_p=0 n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=1 TS23[0]=0 TS24[0]=0
comm_valid=0 ch_TS24=0 ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1
MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1 MCS_EPS.data_create=0 MCS_EPS.error_create=0
MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0
REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id0->MCS_EPS.commandIgnored { 1, ch_TS5!, 1 }
EXISTS_TS5.Ready->EXISTS_TS5._id19 { 1, ch_TS5?, 1 }

State:
( Environment_._id14 MCS_EPS.commandIgnored EXISTS_TS5._id19 FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0.015625 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1

o_response_p=0 n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=1 TS23[0]=0 TS24[0]=0
comm_valid=0 ch_TS24=0 ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1
MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1 MCS_EPS.data_create=0 MCS_EPS.error_create=0
MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0
REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandIgnored->MCS_EPS._id3 { 1, tau, 1 }

State:
( Environment_._id14 MCS_EPS._id3 EXISTS_TS5._id19 FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0.015625 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1

o_response_p=0 n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=1 TS23[0]=0 TS24[0]=0
comm_valid=0 ch_TS24=0 ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1
MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1 MCS_EPS.data_create=0 MCS_EPS.error_create=0
MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0
REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id3->MCS_EPS.start { 1, tau, cl := 0 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5._id19 FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q.Ready_for_P StopWatch.Running )↪→
cl=0 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1 o_response_p=0

n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=1 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
EXISTS_TS5._id19->EXISTS_TS5.End { exists (i:(const (label index:(range (int) "0" "M - 1"))))

TS5[i], Done_EXISTS_TS5!, 1 }↪→
P_LEADSTO_Q.Ready_for_P->P_LEADSTO_Q._id34 { 1, Done_EXISTS_TS5?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.End FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q._id34 StopWatch.Running )↪→
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cl=0 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1 o_response_p=0
n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=1 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
EXISTS_TS5.End->EXISTS_TS5.Idle { 1, tau, Reset() }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q.Idle P_LEADSTO_Q._id34 StopWatch.Running )↪→
cl=0 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1 o_response_p=0

n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id34->P_LEADSTO_Q.Ready_for_Q { 1, Activate_AND!, 1 }
P_AND_Q.Idle->P_AND_Q._id54 { 1, Activate_AND?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3.Idle REPEAT_RETS4.Idle P_AND_Q._id54 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1 o_response_p=0

n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
P_AND_Q._id54->P_AND_Q._id48 { 1, Activate_RATS3!, 1 }
REPEAT_RATS3.Idle->REPEAT_RATS3._id39 { 1, Activate_RATS3?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3._id39 REPEAT_RETS4.Idle P_AND_Q._id48 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1 o_response_p=0

n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RATS3._id39->REPEAT_RATS3.Ready { 1, Activate_FORALL!, 1 }
FORALL_TS3.Idle->FORALL_TS3.Ready { 1, Activate_FORALL?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id48 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1 o_response_p=0

n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
P_AND_Q._id48->P_AND_Q.Ready { 1, Activate_RETS4!, 1 }
REPEAT_RETS4.Idle->REPEAT_RETS4._id44 { 1, Activate_RETS4?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4._id44 P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1 o_response_p=0

n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
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Transitions:
REPEAT_RETS4._id44->REPEAT_RETS4.Ready { 1, Activate_EXISTS_TS4!, 1 }
EXISTS_TS4.Idle->EXISTS_TS4.Ready { 1, Activate_EXISTS_TS4?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0.015625 StopWatch.Swatch=15.03125 i_command_comm_create=1 o_response_p=0

n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Delay: 15.03125

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=15.03125 Environment_.cl=15.046875 StopWatch.Swatch=30.0625 i_command_comm_create=1

o_response_p=0 n=0 TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0
comm_valid=0 ch_TS24=0 ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1
MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1 MCS_EPS.data_create=0 MCS_EPS.error_create=0
MCS_EPS.data_send=0 MCS_EPS.error_send=0 MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0
REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
↪→

Transitions:
Environment_._id14->Environment_._id14 { 1, i_command!, comm_valid := 0, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0 }↪→

State:
( Environment_._id14 MCS_EPS.commandCreated EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=1
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment_._id14 MCS_EPS.commandSent EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=0 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1 }

State:
( Environment_._id14 MCS_EPS.commandReceived EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id1 { !comm_valid, tau, TS4[0] := 1 }

State:
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( Environment_._id14 MCS_EPS._id1 EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready
REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id1->MCS_EPS.commandInvalid { 1, ch_TS4!, 1 }
EXISTS_TS4.Ready->EXISTS_TS4._id16 { 1, ch_TS4?, 1 }

State:
( Environment_._id14 MCS_EPS.commandInvalid EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=0 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandInvalid->MCS_EPS.errorCreated { 1, tau, error_create := 1 }

State:
( Environment_._id14 MCS_EPS.errorCreated EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=0
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.errorCreated->MCS_EPS.replyReceived { 1, tau, error_send := 1 }

State:
( Environment_._id14 MCS_EPS.replyReceived EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.replyReceived->MCS_EPS._id3 { 1, o_response!, n := o_response_p }
Environment_._id14->Environment_._id14 { 1, o_response?, cl := 0 }

State:
( Environment_._id14 MCS_EPS._id3 EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id3->MCS_EPS.start { 1, tau, cl := 0 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
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cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0
TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
EXISTS_TS4._id16->EXISTS_TS4.End { exists (i:(const (label index:(range (int) "0" "M - 1"))))

TS4[i], Done_EXISTS_TS4!, 1 }↪→
REPEAT_RETS4.Ready->REPEAT_RETS4._id46 { 1, Done_EXISTS_TS4?, i++ }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.End

REPEAT_RATS3.Ready REPEAT_RETS4._id46 P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
EXISTS_TS4.End->EXISTS_TS4.Idle { 1, tau, Reset() }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4._id46 P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RETS4._id46->REPEAT_RETS4._id44 { i < 3, tau, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4._id44 P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RETS4._id44->REPEAT_RETS4.Ready { 1, Activate_EXISTS_TS4!, 1 }
EXISTS_TS4.Idle->EXISTS_TS4.Ready { 1, Activate_EXISTS_TS4?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=30.0625 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Delay: 15.0625

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=15.0625 Environment_.cl=15.0625 StopWatch.Swatch=45.125 i_command_comm_create=1

o_response_p=0 n=0 TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0
comm_valid=0 ch_TS24=0 ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1
MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0 MCS_EPS.data_create=0 MCS_EPS.error_create=1
MCS_EPS.data_send=0 MCS_EPS.error_send=1 MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0
REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→
↪→
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Transitions:
Environment_._id14->Environment_._id14 { 1, i_command!, comm_valid := 0, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0 }↪→

State:
( Environment_._id14 MCS_EPS.commandCreated EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment_._id14 MCS_EPS.commandSent EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1 }

State:
( Environment_._id14 MCS_EPS.commandReceived EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id1 { !comm_valid, tau, TS4[0] := 1 }

State:
( Environment_._id14 MCS_EPS._id1 EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id1->MCS_EPS.commandInvalid { 1, ch_TS4!, 1 }
EXISTS_TS4.Ready->EXISTS_TS4._id16 { 1, ch_TS4?, 1 }

State:
( Environment_._id14 MCS_EPS.commandInvalid EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandInvalid->MCS_EPS.errorCreated { 1, tau, error_create := 1 }

State:
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( Environment_._id14 MCS_EPS.errorCreated EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16
REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.errorCreated->MCS_EPS.replyReceived { 1, tau, error_send := 1 }

State:
( Environment_._id14 MCS_EPS.replyReceived EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.replyReceived->MCS_EPS._id3 { 1, o_response!, n := o_response_p }
Environment_._id14->Environment_._id14 { 1, o_response?, cl := 0 }

State:
( Environment_._id14 MCS_EPS._id3 EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id3->MCS_EPS.start { 1, tau, cl := 0 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=1

↪→
↪→
↪→
↪→

Transitions:
EXISTS_TS4._id16->EXISTS_TS4.End { exists (i:(const (label index:(range (int) "0" "M - 1"))))

TS4[i], Done_EXISTS_TS4!, 1 }↪→
REPEAT_RETS4.Ready->REPEAT_RETS4._id46 { 1, Done_EXISTS_TS4?, i++ }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.End

REPEAT_RATS3.Ready REPEAT_RETS4._id46 P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
EXISTS_TS4.End->EXISTS_TS4.Idle { 1, tau, Reset() }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4._id46 P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
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cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0
TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RETS4._id46->REPEAT_RETS4._id44 { i < 3, tau, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4._id44 P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RETS4._id44->REPEAT_RETS4.Ready { 1, Activate_EXISTS_TS4!, 1 }
EXISTS_TS4.Idle->EXISTS_TS4.Ready { 1, Activate_EXISTS_TS4?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=45.125 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Delay: 15.125

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=15.125 Environment_.cl=15.125 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0

n=0 TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
Environment_._id14->Environment_._id14 { 1, i_command!, comm_valid := 0, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0 }↪→

State:
( Environment_._id14 MCS_EPS.commandCreated EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment_._id14 MCS_EPS.commandSent EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
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MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1 }

State:
( Environment_._id14 MCS_EPS.commandReceived EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id1 { !comm_valid, tau, TS4[0] := 1 }

State:
( Environment_._id14 MCS_EPS._id1 EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Ready

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id1->MCS_EPS.commandInvalid { 1, ch_TS4!, 1 }
EXISTS_TS4.Ready->EXISTS_TS4._id16 { 1, ch_TS4?, 1 }

State:
( Environment_._id14 MCS_EPS.commandInvalid EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandInvalid->MCS_EPS.errorCreated { 1, tau, error_create := 1 }

State:
( Environment_._id14 MCS_EPS.errorCreated EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.errorCreated->MCS_EPS.replyReceived { 1, tau, error_send := 1 }

State:
( Environment_._id14 MCS_EPS.replyReceived EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.replyReceived->MCS_EPS._id3 { 1, o_response!, n := o_response_p }
Environment_._id14->Environment_._id14 { 1, o_response?, cl := 0 }

State:
( Environment_._id14 MCS_EPS._id3 EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
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cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0
TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id3->MCS_EPS.start { 1, tau, cl := 0 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4._id16

REPEAT_RATS3.Ready REPEAT_RETS4.Ready P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=2

↪→
↪→
↪→
↪→

Transitions:
EXISTS_TS4._id16->EXISTS_TS4.End { exists (i:(const (label index:(range (int) "0" "M - 1"))))

TS4[i], Done_EXISTS_TS4!, 1 }↪→
REPEAT_RETS4.Ready->REPEAT_RETS4._id46 { 1, Done_EXISTS_TS4?, i++ }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.End

REPEAT_RATS3.Ready REPEAT_RETS4._id46 P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=1 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=3

↪→
↪→
↪→
↪→

Transitions:
EXISTS_TS4.End->EXISTS_TS4.Idle { 1, tau, Reset() }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4._id46 P_AND_Q.Ready P_LEADSTO_Q.Ready_for_Q
StopWatch.Running )

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=3

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RETS4._id46->REPEAT_RETS4.End { i >= 3, Done_RETS4!, 1 }
P_AND_Q.Ready->P_AND_Q._id50 { 1, Done_RETS4?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.End P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=3

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RETS4.End->REPEAT_RETS4.Idle { 1, tau, i := 0 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=60.25 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
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Delay: 15.25

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=15.25 Environment_.cl=15.25 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=0 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
Environment_._id14->Environment_._id14 { 1, i_command!, comm_valid := 1, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0 }↪→

State:
( Environment_._id14 MCS_EPS.commandCreated EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment_._id14 MCS_EPS.commandSent EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1 }

State:
( Environment_._id14 MCS_EPS.commandReceived EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id2 { comm_valid, tau, TS3[0] := 1 }

State:
( Environment_._id14 MCS_EPS._id2 EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id2->MCS_EPS.commandValid { 1, ch_TS3!, 1 }
FORALL_TS3.Ready->FORALL_TS3._id23 { 1, ch_TS3?, 1 }

State:
( Environment_._id14 MCS_EPS.commandValid EXISTS_TS5.Idle FORALL_TS3._id23 EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
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cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0
TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=0 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandValid->MCS_EPS.dataCreated { 1, tau, data_create := 1 }

State:
( Environment_._id14 MCS_EPS.dataCreated EXISTS_TS5.Idle FORALL_TS3._id23 EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=0 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.dataCreated->MCS_EPS.replyReceived { 1, tau, data_send := 1 }

State:
( Environment_._id14 MCS_EPS.replyReceived EXISTS_TS5.Idle FORALL_TS3._id23 EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.replyReceived->MCS_EPS._id3 { 1, o_response!, n := o_response_p }
Environment_._id14->Environment_._id14 { 1, o_response?, cl := 0 }

State:
( Environment_._id14 MCS_EPS._id3 EXISTS_TS5.Idle FORALL_TS3._id23 EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id3->MCS_EPS.start { 1, tau, cl := 0 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3._id23 EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=0 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
FORALL_TS3._id23->FORALL_TS3.End { exists (i:(const (label index:(range (int) "0" "M - 1"))))

TS3[i], Done_FORALL!, 1 }↪→
REPEAT_RATS3.Ready->REPEAT_RATS3._id41 { 1, Done_FORALL?, i++ }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.End EXISTS_TS4.Idle

REPEAT_RATS3._id41 REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
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Transitions:
FORALL_TS3.End->FORALL_TS3.Idle { 1, tau, Reset() }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3._id41 REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RATS3._id41->REPEAT_RATS3._id39 { i < 2, tau, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Idle EXISTS_TS4.Idle

REPEAT_RATS3._id39 REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RATS3._id39->REPEAT_RATS3.Ready { 1, Activate_FORALL!, 1 }
FORALL_TS3.Idle->FORALL_TS3.Ready { 1, Activate_FORALL?, 1 }

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=75.5 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Delay: 15.5

State:
( Environment_._id14 MCS_EPS.start EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=15.5 Environment_.cl=15.5 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0

TS1[0]=0 TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0
ch_TS23=0 MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
Environment_._id14->Environment_._id14 { 1, i_command!, comm_valid := 1, cl := 0 }
MCS_EPS.start->MCS_EPS.commandCreated { cl > 15, i_command?, i_command_comm_create := 1, cl :=

0 }↪→

State:
( Environment_._id14 MCS_EPS.commandCreated EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandCreated->MCS_EPS.commandSent { 1, tau, comm_send := 1, eps_busy := 0 }

State:
( Environment_._id14 MCS_EPS.commandSent EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
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cl=0 Environment_.cl=0 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0
TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandSent->MCS_EPS.commandReceived { !eps_busy, tau, TS2[0] := 1 }

State:
( Environment_._id14 MCS_EPS.commandReceived EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=0 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS.commandReceived->MCS_EPS._id2 { comm_valid, tau, TS3[0] := 1 }

State:
( Environment_._id14 MCS_EPS._id2 EXISTS_TS5.Idle FORALL_TS3.Ready EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
MCS_EPS._id2->MCS_EPS.commandValid { 1, ch_TS3!, 1 }
FORALL_TS3.Ready->FORALL_TS3._id23 { 1, ch_TS3?, 1 }

State:
( Environment_._id14 MCS_EPS.commandValid EXISTS_TS5.Idle FORALL_TS3._id23 EXISTS_TS4.Idle

REPEAT_RATS3.Ready REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=1 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
FORALL_TS3._id23->FORALL_TS3.End { exists (i:(const (label index:(range (int) "0" "M - 1"))))

TS3[i], Done_FORALL!, 1 }↪→
REPEAT_RATS3.Ready->REPEAT_RATS3._id41 { 1, Done_FORALL?, i++ }

State:
( Environment_._id14 MCS_EPS.commandValid EXISTS_TS5.Idle FORALL_TS3.End EXISTS_TS4.Idle

REPEAT_RATS3._id41 REPEAT_RETS4.Idle P_AND_Q._id50 P_LEADSTO_Q.Ready_for_Q StopWatch.Running
)

↪→
↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=2 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
REPEAT_RATS3._id41->REPEAT_RATS3.End { i == 2, Done_RATS3!, 1 }
P_AND_Q._id50->P_AND_Q._id51 { 1, Done_RATS3?, 1 }

State:
( Environment_._id14 MCS_EPS.commandValid EXISTS_TS5.Idle FORALL_TS3.End EXISTS_TS4.Idle

REPEAT_RATS3.End REPEAT_RETS4.Idle P_AND_Q._id51 P_LEADSTO_Q.Ready_for_Q StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=2 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
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Transitions:
P_AND_Q._id51->P_AND_Q.End { 1, Done_AND!, 1 }
P_LEADSTO_Q.Ready_for_Q->P_LEADSTO_Q._id32 { 1, Done_AND?, 1 }

State:
( Environment_._id14 MCS_EPS.commandValid EXISTS_TS5.Idle FORALL_TS3.End EXISTS_TS4.Idle

REPEAT_RATS3.End REPEAT_RETS4.Idle P_AND_Q.End P_LEADSTO_Q._id32 StopWatch.Running )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=2 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→

Transitions:
P_LEADSTO_Q._id32->P_LEADSTO_Q.End { 1, Done_LEADSTO!, 1 }
StopWatch.Running->StopWatch.Pass { 1, Done_LEADSTO?, 1 }

State:
( Environment_._id14 MCS_EPS.commandValid EXISTS_TS5.Idle FORALL_TS3.End EXISTS_TS4.Idle

REPEAT_RATS3.End REPEAT_RETS4.Idle P_AND_Q.End P_LEADSTO_Q.End StopWatch.Pass )↪→
cl=0 Environment_.cl=0 StopWatch.Swatch=91 i_command_comm_create=1 o_response_p=0 n=0 TS1[0]=0

TS2[0]=1 TS3[0]=1 TS4[0]=0 TS5[0]=0 TS23[0]=0 TS24[0]=0 comm_valid=1 ch_TS24=0 ch_TS23=0
MCS_EPS.comm_create=0 MCS_EPS.comm_send=1 MCS_EPS.comm_rec=0 MCS_EPS.eps_busy=0
MCS_EPS.data_create=1 MCS_EPS.error_create=1 MCS_EPS.data_send=1 MCS_EPS.error_send=1
MCS_EPS.fl23=0 MCS_EPS.fl24=0 REPEAT_RATS3.i=2 REPEAT_RETS4.i=0

↪→
↪→
↪→
↪→
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Appendix 4

Publication I

E. Halling, J. Vain, A. Boyarchuk, and O. Illiashenko. Test scenario specifica-tion language formodel-based testing. International Journal of Computing,2019
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1. INTRODUCTION 

In model-based testing (MBT), the requirements 

model of System Under Test (SUT) describes the 

expected correct behavior of the system under 

possible inputs from its environment. The model, 

represented in a suitable machine interpretable 

formalism, can be used to automatically generate the 

test cases either offline or online, and be used as the 

oracle that checks if the SUT behavior conforms to 

this model. Offline test generation means that tests are 

generated before test execution and executed when 

needed. In online test generation the model is 

executed in lock step with the SUT. The test model 

communicates with SUT via controllable inputs and 

observable outputs of the SUT. 

Test description in MBT typically relies on two 

formal representations, SUT modelling language and 

the test purpose specification language. 

The requirements to the test purpose specification 

languages for MBT can be summarized as following: 

1. intuitive and user-friendly specification 

process; 

2. expressiveness to capture the features and 

behaviours under test in a compact and 

unambiguous form; 

3. formal semantics to make the test purpose 

specifications verifiable and pertinent for 

automated test generation; 

4. decidability to make the test generation from 

test purpose specification algorithmically 

feasible. 

 

The first two criteria have been capitalized in 

earlier attempts of designing test purpose 

specification languages. Check Case Definition 

Language (CCDL) [1] provides a high-level approach 

for requirements-based black-box system level 

testing. Test simulations and expected results 

specified in human readable form in CCDL can be 

compiled into executable test scripts. However, due 

to the lack of standardization, high-level test in CCDL 

are heavily tool-dependent and can be used only in 

tool specific testing processes. 

High-level keyword-based test languages, such as 

the Robot Framework [2], have also been integrated 

with MBT [3]. In domains such as avionics [4] and 

automotive industry the efforts have been made to 

address the standardization of testing methods and 

languages, e.g. creating a meta-model for testing 

avionics systems [4], and the Automotive TestML 

[5]. Similarly, the Open Test Sequence Exchange 

Format (OTX) [6] standardized by ISO provides tool-

independent XML-based data exchange format [7] 

for description and documentation of executable test 

sequences. These efforts have focused primarily on 

enabling the exchange of test specifications between 
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involved stakeholders and tools. Due to their domain 

and purpose specialization the applicability of these 

languages in other domains is limited. 

The Message Sequence Chart (MSC) [8] 

standardized by International Telecommunication 

Union was one of the first scenario specification 

languages though it was not only focusing on testing. 

The semantics of MSC is specified in [9]. Some of the 

features of MSC are adopted in UML, e.g. in 

Sequence Diagrams. Still, loose semantics limits its 

use as a consistent test description language [10]. 

Precise UML [11] introduces a subset of UML and 

OCL for MBT. The attempt to unify the semantics of 

different diagrams was motivated by the need for 

behavioral specifications of SUT which are well 

suited for generating test cases out of SUT models. 

Concrete test scripting language, such as TTCN-3, 

regardless their strict semantics are not well suited for 

high-level description of test scenarios. They rather 

follow the style of syntax typical to imperative 

programming languages [12]. 

Thus, most of the test purpose specification 

languages referred above suffer from some of the 

disadvantages, either they have imprecise or informal 

semantics, lack of standardization, lack of 

comprehensive tool support, or poor interoperability 

with other development and testing tools. 

European Telecommunications Standards 

Institute (ETSI) intended to address these 

shortcomings and developed a new specification 

language standard by introducing Test Purpose 

Language (TPLan) that supports the high-level 

expression of test purposes in prose [13]. Though 

TPLan provides notation for the standardized 

specification of test purposes, it leaves a gap between 

the declarative test purpose and its imperative 

implementation in test. Without formal semantics the 

development of test descriptions by means of 

different notations and dialects led to overhead and 

inconsistencies that need to be checked and fixed 

manually. As a consequence, ETSI started a new 

initiative by developing the Test Description 

Language TDL [12]. It is intended to bridge the gap 

between declarative test purposes and imperative test 

cases by offering a standardized approach for the 

specification of test descriptions. The main benefits 

of ETSI TDL outlined in [12] are higher quality tests 

through better design, easier layout to review by non-

testing experts, better and faster test development, 

and seamless integration of methodology and tools. 

The development of ETSI TDL was driven by 

industry where it is used primarily, but not 

exclusively, for functional testing. To enable the 

application of TDL in UML based working 

environments, a UML Profile for TDL (UP4TDL) 

[10] was developed. Domain-specific concepts are 

represented in UP4TDL by means of stereotypes.   

Though TDL features one of the most advanced 

test purpose description language it has room for 

improvements. In the first place, automatic mapping 

of ETSI TDL to TTCN-3 is not fully implemented 

yet. The mapping is needed for generating executable 

tests from TDL descriptions and re-using the existing 

TTCN-3 tools and frameworks for test execution. 

Second limitation of TDL is restricted timing 

semantics. The Time package in TDL contains 

concepts for the specification of time operations, time 

constraints, and timers. Since time in TDL is global 

and progresses monotonically in discrete quantities 

there is no way of expressing synchronization 

conditions between local time events of parallel 

processes and detecting possible Zeno computations 

that can be analyzed in continuous time models. 

Similarly time-divergency and timelock-freedom 

cannot be analyzed. 

One step further towards automatic test generation 

was timed games based synthesis of test strategies 

introduced in [14] and implemented in the Uppaal 

Tiga tool. Timed Computation Tree Logic (TCTL) 

used for specifying test purpose in this approach has 

high expressive power and formal semantics relevant 

for expressing quantitative time properties combined 

with CTL operators such as ‘always’, ‘inevitable’, 

‘potentially always’, ‘possible’, and ‘leads-to’ [15]. 

Due to the complexity of model checking, the 

TCTL syntax in Uppaal tool is limited with un-nested 

operators making the TCTL expressions flat with 

respect to the temporal operators. On the other hand, 

to specify the properties of timed reachability the flat 

TCTL expressions are not sufficient for specifying 

complex properties and so called auxiliary property 

recognizing automata, e.g. ‘stopwatch’ automata are 

needed. Modifying the test model structure by adding 

property automata is not trivial for non-experts and 

may be an error prone process leading to the 

unintended changes of semantics of tests. 

The aim of this work is to build an extra language 

layer (Test Scenario Definition Language - TDLTP) 

for test scenario specification that is expressive, free 

from the limitations of ‘flat’ TCTL, interpretable in 

Uppaal TA, and suited for test generation. 

 In our approach, Uppaal Timed Automata (TA) 

[16] serve as a SUT specification language. Uppaal 

TA have been chosen because they are designed to 

express the timed behavior of state transition systems 

and there exists a mature set of tools that supports 

model construction, verification and online model-

based testing [17].  

For the test purpose specification to be concise and 

still expressive its specification language must be 

more abstract than SUT modeling language and not 

necessarily self-contained in the sense that its 

expressions are interpreted in the context of SUT 

model only. It means that the terms of test purpose 
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specification refer to the SUT model structural 

elements of interest, they are called test coverage 

items (TCIs). The test purpose specification language 

TDLTP proposed in our approach allows expressing 

multiple coverage criteria in terms of TCIs, including 

test scenario constraints such as iteration, next, leads 

to, and structural coverage criteria such as selected 

states, selected transitions, transition pairs, and 

timing constraints, e.g. time bounded leads to. 

Generating the test model based on the SUT model 

and TDLTP coverage expression includes two phases. 

In the first phase, the TCIs have to be labelled in the 

SUT model with Boolean variables called traps. The 

traps are needed to make TCIs referable in the TDLTP 

expressions. In case of non-deterministic SUT model 

the coverage of those elementary TCIs is ensured by 

reactive planning tester (RPT) automata, one 

automaton for each conjunctive set of TCIs (see [19] 

for further details of RPT generation). In the second 

phase of generation, a test supervisor model MSVR is 

constructed from the TDLTP expression to trigger the 

RPT automata according to the test scenario so that 

the temporal and logical coverage constraints stated 

in TDLTP specification would be satisfied. Since non-

deterministic SUT models based tests are partially 

controllable only pseudo optimal traces can be 

generated by this method. Alternatively, in case of 

deterministic SUT models, the RPT automata 

generation phase can be discarded since Uppaal 

model checker generates optimal witness traces from 

the parallel composition of SUT and tester models. 

The rest of this paper is organized as follows. In 

Section 2 Uppaal Timed Automata formalism is 

introduced, Sections 3 and 4 define the TDLTP 

language syntax and semantics respectively, Section 

5 defines the map from TDLTP to Uppaal TA that 

controls if the test scenario execution satisfies its 

declarative expression. In Section 6 the reduction 

rules of TDLTP expressions are presented. Section 7 

describes how the whole test model is composed by 

introducing test supervisor automaton. Section 8 

explains how the test verdict and test diagnosis 

capability are encoded in the tester model, and finally 

the conclusions are drawn. 

 

2. UPPAAL TIMED AUTOMATA 

Uppaal Timed Automata [16] (TA) used for 

modelling SUT is defined as a closed network of 

extended timed automata that are called processes. 

The processes are gathered into a single system by 

parallel composition known from the process algebra 

CCS. An example of a system comprising two 

automata is given in Fig. 1. 

The nodes of the automata are called locations and 

the directed edges transitions. The state of an 

automaton consists of its current location and 

assignments to all variables, including clocks. The 

initial locations of the automata are graphically 

denoted by double circle inside the location. 

 
Process_i:         

                         
 

Process_j: 

 
Figure  1 - A sample model: synchronous composition 

of two Uppaal automata Process_i and Process_j 

Synchronous communication between the 

processes is by hand-shake synchronization links that 

are called channels. A channel relates a pair of edges 

labeled with symbols for input actions denoted by e.g. 

chA? and chB? in Fig. 1, and output actions denoted 

by chA! and chB!, where chA and chB are the names 

of the channels. 

In Fig. 1, there is an example of a model that 

represents a synchronous remote procedure call. The 

calling process Process_i and the callee process 

Process_j both include three locations and two 

synchronized transitions. Process_i, initially at 

location Start_i, initiates the call by executing the 

send action chA! that is synchronized with the receive 

action chA? in Process_j. The location Operation 

denotes the situation where Process_j computes the 

value to output variable y. Once done, the control is 

returned to Process_i by the action chB!. 
The duration of executing the result is specified by 

the interval [lb, ub] where the upper bound ub is given 

by the invariant cl<=ub of location Operation, and the 

lower bound lb by the guard condition cl>=lb of the 

transition Operation ⟶ Stop_j. The assignment cl=0 

on the transition Start_j ⟶ Operation ensures that the 

clock cl is reset when the control reaches the location 

Operation. The global variables x and y model the 

input and output arguments of the remote procedure 

call, and the computation itself is modelled by the 

function f(x) defined in the declarations block. 

While the synchronous communication between 

processes is modeled using channels, asynchronous 

communication between processes is modeled using 

global variables accessible to all processes. 

Formally, the Uppaal TA are defined as follows: 

Let ∑ denote a finite alphabet of actions a, b, … 

and C a finite set of real-valued variables p, q, r, 

denoting clocks. A guard is a conjunctive formula of 

atomic constraints of the form p ~ n for p ∈ C, ~ ∈ {≤
, ≥, =, <, >} and n ∈ N+. We use G(C) to denote the 

set of clock guards. A timed automaton A is a tuple 

N, l0, E, I where N is a finite set of locations 

(graphically denoted by nodes), l0 ∈ N is the initial 

location, E ∈ N × G(C) × ∑ × 2C × N is the set of 

edges (an edge is denoted by an arc) and I : N ⟶ G(C) 
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assigns invariants to locations (here we restrict to 

constraints in the form: p ≤ n or p < n, n ∈ N+. 

Without the loss of generality we assume that 

guard conditions are in conjunctive form with 

conjuncts including besides clock constraints also 

constraints on integer variables. Similarly to clock 

conditions, the propositions on integer variables k are 

of the form k ~ n for n ∈ N, and ~ ∈ {≤, ≥, =, <, >}. 

For the formal definition of Uppaal TA semantics we 

refer the reader to [18] and [16]. 

 

3. TDLTP SYNTAX 

The ground terms in TDLTP are sets (denoted TS) 

of assignments to auxiliary variables called trap 

variables or simply traps added to the SUT model for 

test purpose specification. A trap is updated by 

Boolean variable assignment that labels a TCI. In case 

of Uppaal TA, the TCIs are edges of the SUT model 

MSUT. The value of all traps is initially set to false. 

When the edge of MSUT labelled with a trap is visited 

during test execution the trap update function is 

executed and the trap value is set to true. We say that 

a trap tr is elementary trap if its update function is 

unconditional, i.e. of shape tr := true. 

Generally we assume that the trap names are 

unique, trap update functions are non-recursive and 

their arguments have definite values whenever the 

edge labelled with that trap is executed. The trap tr 

update condition, if conditional trap, is a Boolean 

expression (we call it also update constraint) the 

arguments of which range over the sets of variables 

and constants of MSUT and over the auxiliary constants 

and variables occurring in the test purpose 

specification in TDLTP, e.g. references to other traps, 

event counters and the time bounds of model clocks. 

Although we deal with finite sets of traps and their 

value domains the quantifiers are introduced in 

TDLTP for notational convenience. To refer to the 

situations where many traps have to be true or false at 

once, we group these traps to sets called trapsets 

denoted by TS and prefix them with trapset 

quantifiers - A for universal and E for existential 

quantification. A(TS) means that all traps and E(TS) 

means that at least one trap of the set TS has to be true. 

To represent a trapset in Uppaal TA syntax we encode 

them as one-dimensional trap arrays and refer to 

individual traps in the array by array index value, e.g. 

i-th trap in TS is referred to as TS[i]. 

In the following we give the syntax of TDLTP 

expressions in BNF: 

Expression ::=  

 ’(’ Expression ’)’ 

|’A’ TrapsetExpression  

| ’E’ TrapsetExpression   

| UnaryOp Expression 

| Expression BinaryOp Expression 

| Expression ~> Expression 

| Expression ~>’[’RelOpNUM’]’ 

Expression 

| ’#’ Expression RelOp NUM 

 

TrapsetExpression ::= 

’(’  TrapsetExpression’)’ 

| ’!’ ID 

|  ID ’ \’  ID 

|  ID ’ ;’  ID 

 

UnaryOp  ::=  ’not’  

BinaryOp ::=  ’&’ | ’or’ | ’=>’ |’<=>’ 

RelOp       ::=  ’<’ | ’=’ | ’>’ | ’<=’ | ’>=’ 

ID          ::=  (’TR’) NUM 

NUM        ::=  (’0’..’9’)+ 

 

4. TDLTP SEMANTICS 

To define the semantics of TDLTP we assume there 

are given: 

- an Uppaal TA model M; 

- Trapset TS which is possibly a union of 

member trapsets 𝑇𝑆 = ⋃ 𝑇𝑆𝑖𝑖=1,𝑚 , where the 

cardinality of each TSi is ni; 

- 𝐿: 𝑇𝑆 ⟶ 𝐸(𝑀), the labelling function that 

maps the traps in TS to edges in E(M), where 

E(M) denotes the set of edges of the model 

M. We assume the uniqueness of the labeling 

within a trapset, i.e. there is at most one edge 

labelled with a trap from the given trapset but 

an edge can be labelled with many traps if 

each of them is from different trapset.  

4.1 ATOMIC LABELLING FUNCTION 

Atomic labelling function is non-surjective and 

injective-only mapping between TS and 𝐸(𝑀), i.e. 

each element of TS is mapped to a unique edge in 

𝐸(𝑀): 

L: TS ⟶ E(M), s.t. e E(M):  
 TSk[i] L(e)  TSl[j] L(e)  kl 

(1) 

 

4.2 DERIVED LABELLING OPERATIONS 
(TRAPSET OPERATIONS) 

The formulas with a trapset operation symbol and 

trapset(s) identifiers being its argument(s) are called 

TDLTP trapset formulas. 

 

Relative complement of trapsets (𝑻𝑺𝟏\𝑻𝑺𝟐). Only 

those edges labelled with traps of 𝑇𝑆1 and not with 

traps of 𝑇𝑆2 are in the relative complement trapset 

𝑇𝑆1\𝑇𝑆2: 
⟦𝑇𝑆1\𝑇𝑆2⟧ iff  

∀𝑖[0, 𝑛1], 𝑗[0, 𝑛2], ∃𝑒𝐸(𝑀): 
(2) 
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𝑇𝑆1[𝑖] ∈ 𝐿(𝑒) ∧ 𝑇𝑆2[𝑗] ∉ 𝐿(𝑒) 

 

Absolute complement of a trapset (! 𝑻𝑺). All edges 

that are not labelled with traps of TS are in the 

absolute complement trapset ! 𝑇𝑆: 

 
⟦! 𝑇𝑆⟧ iff ∀𝑖[0, 𝑛], ∃𝑒𝐸(𝑀): 𝑇𝑆[𝑖] ∉ 𝐿(𝑒) (3) 

 

Linked pairs of trapsets (𝑻𝑺𝟏;  𝑻𝑺𝟐). Two trapsets 

𝑇𝑆1 𝑎𝑛𝑑 𝑇𝑆2 are linked via operator next (denoted 

‘;’) if and only if there exists a pair of edges in M 

which are labelled with traps of 𝑇𝑆1 and  𝑇𝑆2 

respectively and which are connected through a 

location so that if any of traps in  𝑇𝑆1 is updated to 

true on the k-th transition of model M execution trace 

𝜎 then some trap of 𝑇𝑆2 is updated to true in the 

(k+1)-th transition of that trace: 

 
⟦𝑇𝑆1;  𝑇𝑆2 ⟧  iff  ∀𝑖 ∈ [0, 𝑛1], ∃𝑗 ∈
[0, 𝑛2], 𝜎, 𝑘: ⟦𝑇𝑆1[𝑖]⟧𝜎𝑘 ⟹ ⟦𝑇𝑆2[𝑗]⟧𝜎𝑘+1 

 

(4) 

where ⟦𝑇𝑆⟧𝜎 denotes the interpretation of the trapset 

TS on the trace 𝜎 and 𝜎𝑙 denotes the l-th suffix of the 

trace 𝜎, i.e. the suffix which starts from l-th location 

of 𝜎;  𝑛1 and 𝑛2 denote cardinalities of trapsets 

𝑇𝑆1 and  𝑇𝑆2 respectively. Note that operator ‘;’ 

enables expressing one of the “classical” structural 

coverage criteria ‘selected transition pairs’. 

 

4.3 INTERPRETATION OF TDL 
EXPRESSIONS 

Quantifiers of trapsets. Given the definitions 1 - 

4 of trapset operations we define the semantics of 

bounded universal quantifier A and bounded 

existential quantifier E of a trapset TS as follows: 

 

        ⟦𝐴 (𝑇𝑆)⟧ iff  ∀𝑖 ∈ [0, 𝑛]: 𝑇𝑆[𝑖],  (5) 

⟦𝐸 (𝑇𝑆)⟧ iff  ∃𝑖 ∈ [0, 𝑛]: 𝑇𝑆[𝑖], (6)  

 

where n denotes the cardinality of the trapset TS. 

Note that quantification is defined on the trapsets 

only and not on higher level operators. 

 

Logic connectives. Since recursive nesting of 

TDLTP logic and temporal operators is allowed for 

better expressiveness we define the semantics of these 

higher level operators where the argument terms are 

not trapset formulas but derived from them using 

recursive nesting of logic and temporal operator 

symbols. Let SE, 𝑆𝐸1  and 𝑆𝐸2denote such argument 

sub-formulas, then 

 
⟦𝑆𝐸1 & 𝑆𝐸2 ⟧       iff   ⟦𝑆𝐸1⟧ 𝑎𝑛𝑑 ⟦𝑆𝐸2⟧ (7) 

⟦𝑆𝐸1 𝑜𝑟 𝑆𝐸2 ⟧     iff   ⟦𝑆𝐸1⟧  𝑜𝑟   ⟦𝑆𝐸2⟧ (8) 

  

𝑆𝐸1 => 𝑆𝐸2 ≡ 𝑛𝑜𝑡(𝑆𝐸1)  ∨  𝑆𝐸2 (9) 

  

𝑆𝐸1 <=> 𝑆𝐸2 ≡ (𝑆𝐸1 ⟹ 𝑆𝐸2)  
∧  (𝑆𝐸2 ⟹ 𝑆𝐸1) 

(10) 

 

Temporal operators 

 

‘Leads to’ operator ′𝑆𝐸1 ↝  𝑆𝐸2′ in TDLTP is 

inspired by Computation Tree Logic CTL ‘always 

leads to’ operator, denoted by  ′𝜑 − −> 𝜓′ in Uppaal, 

which is equivalent to CTL formula 𝐴(𝜑 ⟹ 𝐴𝜓). 

Leads to expresses that after reaching the state which 

satisfies 𝜑 in the computation all possible 

continuations of this computation reach the state in 

which 𝜓 is satisfied. For clarity we substitute the 

meta-symbols 𝜑 and 𝜓 with non-terminals 

𝑆𝐸1and 𝑆𝐸2  of TDLTP. 

 
⟦𝑆𝐸1 ~ >  𝑆𝐸2 ⟧   iff 

 ∀𝜎, ∃𝑘, 𝑙, 𝑘 ≤ 𝑙: ⟦𝑆𝐸1⟧𝜎𝑘 ⟹ ⟦𝑆𝐸2⟧𝜎𝑙 

 

(11) 

where 𝜎𝑘 denotes the k-th suffix of the trace 𝜎, i.e. 

the suffix which starts from k-th location of 𝜎, and 

⟦𝑆𝐸⟧𝜎𝑘 denotes the interpretation of TS on the k-th 

suffix of trace 𝜎. 

 

‘Time bounded leads to’ means that TS2 must 

occur after TS1 and the time instance of TS2 

occurrence (measured relative to 𝑇𝑆1 occurrence 

satisfies constraint ⊛ 𝑛, where  ⊛ {<, =, >, ≤, } 

and n ∈ N: 

 

⟦𝑆𝐸1~ >[⊛𝑛]  𝑆𝐸2⟧   iff   

∀𝜎, ∃𝑘, 𝑙, 𝑘 ≤ 𝑙: ⟦𝑆𝐸1⟧𝜎𝑘 ⟹ ⟦𝑆𝐸2⟧𝜎𝑙 

 

(12) 

‘Conditional repetition’. Let k enumerate the 

occurrences of ⟦𝑆𝐸⟧, then 

 

⟦#𝑆𝐸 ⊛ 𝑛 ⟧  iff ↝ ⋯ ↝  ⟦𝑆𝐸⟧𝑘  𝑎𝑛𝑑 𝑘 ⊛ 𝑛. 

 
 (13) 

where index variable k satisfies constraint ⊛ 𝑛,  

⊛ {<, =, >, ≤, } and n ∈ N. 

 

The application of logic not to non-ground level 

TDLTP terms has following interpretation: 

 𝑛𝑜𝑡(𝐴 (𝑇𝑆)) 𝑖𝑓𝑓      ∃𝑖: ⟦𝑇𝑆[𝑖]⟧ = 𝑓𝑎𝑙𝑠𝑒 (14) 

𝑛𝑜𝑡(𝐸 (𝑇𝑆)) 𝑖𝑓𝑓      ∀𝑖: ⟦𝑇𝑆[𝑖]⟧ = 𝑓𝑎𝑙𝑠𝑒 (15) 

𝑛𝑜𝑡 (𝑆𝐸1 ∧ 𝑆𝐸2) ≡ 𝑛𝑜𝑡 (𝑆𝐸1)  ∨  𝑛𝑜𝑡 (𝑆𝐸2) (16) 

𝑛𝑜𝑡 (𝑆𝐸1 ∨ 𝑆𝐸2) ≡ 𝑛𝑜𝑡 (𝑆𝐸1)  ∧  𝑛𝑜𝑡 (𝑆𝐸2) (17) 

𝑛𝑜𝑡 (𝑆𝐸1 ⟹ 𝑆𝐸2) ≡ 𝑆𝐸1  ∧  𝑛𝑜𝑡 (𝑆𝐸2) (18) 

𝑛𝑜𝑡 (𝑆𝐸1 ⟺ 𝑆𝐸2

≡ 𝑛𝑜𝑡 (𝑆𝐸1 ⟹ 𝑆𝐸2)  
∨  𝑛𝑜𝑡 (𝑆𝐸2 ⟹ 𝑆𝐸1) 

(19) 

⟦𝑛𝑜𝑡(𝑆𝐸1 ↝  𝑆𝐸2)⟧ iff (20) 
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⟦𝑛𝑜𝑡 (𝑆𝐸1)⟧  𝑜𝑟  ∀𝑘, 𝑙, 𝑘
≤ 𝑙: ⟦𝑆𝐸1⟧𝜎𝑘  𝑎𝑛𝑑  𝑛𝑜𝑡⟦𝑆𝐸2⟧𝜎𝑙 

𝑛𝑜𝑡 (𝑆𝐸1 ↝⊛𝑛   𝑆𝐸2) ≡  𝑛𝑜𝑡(𝑆𝐸1 ↝

 𝑆𝐸2) ∨ ∀𝜙: (𝑆𝐸1 ↝𝜙  𝑆𝐸2 ) ⇒ (𝜙 ⇒

𝑛𝑜𝑡(⊛ 𝑛)), 

(21) 

𝑛𝑜𝑡 (#𝑇𝑆 ⊛ 𝑛) ≡ ∀𝜙: (#𝑇𝑆 𝜙) ⇒ (𝜙 ⇒
𝑛𝑜𝑡(⊛ 𝑛) ) 

(22) 

 

where 𝜙 denotes the time bound constraint that 

yields the negation of constraint  ⊛ 𝑛. 

 

5. MAPPING TDLTP EXPRESSIONS TO 
BEHAVIOR RECOGNIZING AUTOMATA 

When mapping the TDLTP formulae to test 

supervisor component automata we implement the 

mappings starting from ground level terms and move 

towards the root term by following the structure of the 

TDLTP formula parse tree. The terminal nodes of any 

TDLTP formula parse tree are trapset identifiers. The 

next above the terminal layer of the parse tree 

constitute the trapset operation symbols. The trapset 

operation symbols, in turn, are the arguments of logic 

and temporal operators. The ground level trapsets and 

the trapsets which are the results of trapset operations 

are mapped to the labelling of SUT model MSUT. In 

the following the mappings are specified for TDLTP 

trapset operations, logic operators and temporal 

operators in separate subsections. 

 

5.1 MAPPING TDLTP TRAPSET 
EXPRESSIONS TO SUT MODEL MSUT 
LABELLING 

Mapping M1: Relative complement of trapsets 

𝑇𝑆1\𝑇𝑆
2

: The 𝑇𝑆1\𝑇𝑆2 – mapping adds the traps of 

the trapset 𝑇𝑆1\𝑇𝑆2  only to these edges of MSUT 

which are labelled with traps of 𝑇𝑆1 and not with 

traps of 𝑇𝑆2. An example of such mapping is depicted 

in Fig. 2. 

 
↓L(𝑇𝑆1\𝑇𝑆2) 

 
Figure 2 - Mapping TDLTP expression 𝑻𝑺𝟏\𝑻𝑺𝟐 to 

the SUT model labelling 

Mapping M2: Absolute complement of a trapset 

!TS: The mapping of !TS to SUT model labelling 

provides the labelling with !TS  traps all such edges 

of SUT model MSUT which are not labelled with traps 

of TS. Example of this mapping is depicted in Fig. 3. 

 

 
 

↓L(! 𝑇𝑆) 

 

 
 

Figure 3 - Mapping TDLTP expression  ! 𝑻𝑺 to the SUT 

model labelling 

 

Mapping M3: Linked pairs of trapsets 𝑇𝑆1; 𝑇𝑆2: 

The mapping of terms 𝑇𝑆1; 𝑇𝑆2 to labelling is 

implemented by the labelling algorithm Algorithm 1 

(𝐿(𝑇𝑆1; 𝑇𝑆2)) 

 

 
 

↓L(𝑇𝑆1; 𝑇𝑆2) 
 

 
 

Figure 4 - Example of the application of 

ALGORITHM 1 (𝑳(𝑻𝑺𝟏; 𝑻𝑺𝟐)) 

 

The example of Algorithm 1 application is 

demonstrated in Fig. 4. Notice that the labelling 

concerns not only the edges that are labelled with 

traps of TS1 and TS2 but also those which depart from 

the same location as the edge with TS2 labelling. This 

is necessary for resetting the variable flag which 

indicates the executing a trapset TS1 labelled edge in 

the previous step of the computation. 
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𝒇𝒐𝒓𝒂𝒍𝒍  
    𝑒′, 𝑒′′, 𝑖, 𝑗: 𝑝𝑟𝑒(𝑒′′) = 𝑝𝑜𝑠𝑡(𝑒′) ⋀ 𝑇𝑆1[𝑖] ∈ 𝐿(𝑒′)  
    𝒊𝒇  𝑇𝑆2[𝑗] ∈ 𝐿(𝑒′′)  

  𝒕𝒉𝒆𝒏  
𝐴𝑠𝑔(𝑒′) ←  𝐴𝑠𝑔(𝑒′), 𝑓𝑙𝑎𝑔(𝑇𝑆1; 𝑇𝑆2)

= 𝑡𝑟𝑢𝑒,  
𝐴𝑠𝑔(𝑒′′) ←  𝐴𝑠𝑔(𝑒′′), 𝑇𝑆(𝑇𝑆1; 𝑇𝑆2)[𝑗]
= (𝑓𝑙𝑎𝑔(𝑇𝑆1; 𝑇𝑆2)? 𝑡𝑟𝑢𝑒: 𝑓𝑎𝑙𝑠𝑒), 

    𝒇𝒊 
    𝐴𝑠𝑔(𝑒′′) ←  𝐴𝑠𝑔(𝑒′′), 𝑓𝑙𝑎𝑔(𝑇𝑆1; 𝑇𝑆2) = 𝑓𝑎𝑙𝑠𝑒 

𝒆𝒏𝒅 𝒇𝒐𝒓𝒂𝒍𝒍 
 

5.2 MAPPING TDLTP LOGIC OPERATORS 
TO RECOGNIZING AUTOMATA 

 The indexing of trapset array elements, universal 

and existential quantifiers in Uppaal modelling 

language support direct mapping of trapset 

quantifiers to forall and exists expressions of Uppaal 

TA as shown in Fig. 5 and 6. 

 

Mapping M4: Universal quantifier of the trapset 

 

 
 

Figure 5 - An automaton that recognizes universally 

quantified trapset expressions 

 

Mapping M5: Existential quantifier of the trapset 

 

 
 

Figure 6 - The automaton that recognizes existentially 

quantified trapset expressions 

 

Negation not 

Since logic negation not can be pushed to ground 

level trapset terms by applying equivalences (14 – 22) 

and the direct mappings of not formulas are not 

considered in this work. 

 

Mapping M6: Conjunction of sub-formulas 

The conjunction SE1 & SE2 is mapped to the 

automata fragment as shown in Fig. 7. In the 

conjunction and disjunction automata depicted in the 

Fig. 7 and 8 the guard conditions P and Q encode the 

argument terms SE1 and SE2 respectively. In 

conjunction automaton the End location is reachable 

from the initial location Idle if both P and Q evaluate 

to true in any order. 

 

 
 

Figure 7 - The automaton that recognizes the 

conjunction of TDLTP formulas P and Q 

 

Mapping M7: Disjunction of sub-formulas 

In the disjunction automaton the End location is 

reachable from the initial location Idle if either P and 

Q are true. 

 

 
Figure 8 - Automaton that recognizes the 

disjunction of TDLTP formulas P and Q 

 

The implication of TDLTP formulas can be defined 

using disjunction and negation as shown in formula 

(9) and their transformation to property automata are 

implemented through these mappings. 

Similarly, the equivalence of TDLTP formulas can 

be expressed via conjunction and implication by 

using equivalence in formula (10). 

 

5.3 MAPPING TDLTP TEMPORAL 
OPERATORS TO RECOGNIZING 
AUTOMATA 

Mapping M8: ‘Leads to’ 𝑝 ↝q 

Mapping the leads to operator to Uppaal TA 

produces the model fragment depicted in Fig. 9. 

 

 
 

Figure 9 - ‘Leads to’ formula 𝒑 ↝q recognizing 

automaton 

 

Mapping M9: Timed leads to p ↝⊛𝑐𝑜𝑛 𝑞 

Mapping ‘timed leads to’ to a Uppaal TA fragment 

is depicted in Fig. 10. It presumes an additional clock 

cl which is reset to 0 at the time instant when formula 

P become true. The condition ‘cl<=d’ in Fig. 10 a) 

sets the upper time bound d to the event when formula 

Q has to becomes true after P, i.e. after the clock cl 

reset.  
a) 

 
 
b) 

 
Figure 10 - ‘Timed leads to’ formula P ↝⊛𝒅 𝑸 

recognizing automata a) with condition cl≤d;  

b) with condition cl>d 

 

The mapping to property automaton depends on 

the time condition of leads to. For instance if the 

conditions is ‘cl>d’ the mapping results in automaton 

shown in Fig. 10 b). 
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Mapping M10: Conditional repetition #𝑆𝐸 ⊛ 𝑛: 
The Uppaal TA fragment generated by the 

mapping of  #𝑆𝐸 ⊛ 𝑛 (Fig. 11) includes a counter 

variable i to enumerate the events when the SE 

formula P becomes true. If the loop exit condition, 

e.g., ‘i >=n’, is satisfied then the transition to location 

End is fired without delay (the middle location is of 

type committed). 

 
 

Figure 11 - Uppaal TA that implements conditional 

repetition 

 

6. REDUCTION OF THE SUPERVISOR 
AUTOMATA AND THE LABELLING OF 

SUT 

The TDLTP expressions with many nested 

operators may become large and involve some 

overhead.  Removal of this overhead in the formulas 

provides reduction in the state space needed for their 

model checking and improves the readability and 

comprehension of this formula.  

The simplifications are formulated in terms of the 

parse tree of the TDLTP formula and standard logic 

simplifications. Due to the nesting of operations in the 

TDLTP formula the root operation can be any operator 

listed in the BNF grammar of TDLTP but the terminals 

of the parse tree are always trapsets. 

 
a) 

 
b) 

 
c) 

 
 

Figure 12 - Simplification of 𝑻𝑺𝟏\ 𝑻𝑺𝟐 trapsets 

labelling: a) the parse tree of 𝑻𝑺𝟏\𝑻𝑺𝟐; b) labelling of 

the SUT model with  𝑻𝑺𝟏, 𝑻𝑺𝟐 𝐚𝐧𝐝 𝑻𝑺𝟏\ 𝑻𝑺𝟐   

c) reduced labelling of the SUT model MSUT 

TDLTP formulas consist of a static component (a 

trapset or a trapset expression) and optionally the 

logic and/or temporal component. The static 

component includes all sub-formulas of the parse tree 

branches from terminals to the lowest temporal 

expression, all sub-formulas above it are temporal 

and/or logic formulas (possibly mixed). 

The trapset formulas are implemented by labelling 

operations such as relative and absolute complement. 

Only trapset formulas can be universally and 

existentially quantification. No nesting of quantifiers 

is allowed. Since the validity of root formula can be 

calculated only using the truth value of the highest 

trapset expression in the parse tree, all the trapsets 

being closer to the ground level trapset along the 

parse tree sub branch can be removed from the 

labelling of the SUT model. This reduction can be 

done after labelling the SUT model and applying all 

the trapset operations. An example of such reduction 

is demonstrated for relative complement operation 

𝑇𝑆1\𝑇𝑆2 in Fig. 12. 

 

Logic simplification follows after the trapset 

expression simplification is completed. Here standard 

logic simplifications are applicable: 

 

𝑝 ∧ 𝑝 ≡ 𝑝 

𝑝 ∧ 𝑛𝑜𝑡 𝑝 ≡ 𝑓𝑎𝑙𝑠𝑒,  

𝑝 ∧ 𝑓𝑎𝑙𝑠𝑒 ≡ 𝑓𝑎𝑙𝑠𝑒, 

𝑝 ∧ 𝑡𝑟𝑢𝑒 ≡ 𝑝, 

𝑝 ∨ 𝑝 ≡ 𝑝, 

𝑝 ∨ 𝑛𝑜𝑡 𝑝 ≡ 𝑡𝑟𝑢𝑒, 

𝑝 ∨ 𝑓𝑎𝑙𝑠𝑒 ≡ 𝑝, 
𝑝 ∨ 𝑡𝑟𝑢𝑒 ≡ 𝑡𝑟𝑢𝑒, 

 

(13) 

We will introduce also a set of simplifications for 

TDLTP temporal operators which follow from their 

semantics and the properties of integer arithmetic: 

 

𝑇𝑆 ≡ 𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑇𝑆 = ∅  

𝑝 ↝ 𝑓𝑎𝑙𝑠𝑒 ≡ 𝑓𝑎𝑙𝑠𝑒  

𝑓𝑎𝑙𝑠𝑒 ↝  𝑝 ≡ 𝑓𝑎𝑙𝑠𝑒  

𝑡𝑟𝑢𝑒 ↝ 𝑝 ≡ 𝑝   

𝑝 ↝ 𝑡𝑟𝑢𝑒 ≡ 𝑡𝑟𝑢𝑒  

#𝑝 = 1 ≡ 𝑝   
#𝑝 ⊛ 𝑛1 ⋀#𝑝 ⊛ 𝑛2      

≡ #𝑝 ⊛ 𝑚𝑎𝑥(𝑛1, 𝑛2)  𝑖𝑓 
⊛∈ {≥, >}  

#𝑝 ⊛ 𝑛1 ∨ #𝑝 ⊛ 𝑛2     
≡ #𝑝 ⊛ 𝑚𝑖𝑛(𝑛1, 𝑛2)  𝑖𝑓 ⊛
∈ {≥, >, =}  

#𝑝 ⊛ 𝑛1 ⋀#𝑝 ⊛ 𝑛2 ≡ 𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 ⊛
∈ {=} 𝑎𝑛𝑑 𝑛1 ≠  𝑛2 

#𝑝 ⊛ 𝑛1  ↝  #𝑝 ⊛ 𝑛2

≡ #𝑝 ⊛ (𝑛1 + 𝑛2)      𝑖𝑓 ⊛
∈ {≥, >, =}  

(14) 

       

     

               

           
 

   

      

       

        

         
        

         

         
        

         

        

         
         
         

              

              



Authors / International Journal of Computing, 17(4) 2018, 1-2 

 

 9 

#𝑝 ⊛ 𝑛1  ↝  #𝑝 ⊛ 𝑛2

≡ #𝑝 ⊛ 𝑚𝑖𝑛(𝑛1, 𝑛2)  𝑖𝑓 ⊛
∈ {<}  

#𝑝 ⊛ 𝑛1  ∧ #𝑝 ⊛ 𝑛2

≡ #𝑝 ⊛ 𝑚𝑖𝑛(𝑛1, 𝑛2)  𝑖𝑓 ⊛
∈ {<}  

#𝑝 ⊛ 𝑛1  ∨ #𝑝 ⊛ 𝑛2    
≡ #𝑝 ⊛ 𝑚𝑎𝑥(𝑛1, 𝑛2) 𝑖𝑓 ⊛
∈ {<}  

𝑝 ↝𝑑1
𝑞 ∧  𝑝 ↝𝑑2

𝑞 ≡

𝑝 ↝min (𝑑1,𝑑2) 𝑞     𝑖𝑓 ⊛∈ {≤, <}  

𝑝 ↝𝑑1
𝑞 ∧  𝑝 ↝𝑑2

𝑞

≡ 𝑝 ↝max (𝑑1,𝑑2) 𝑞     𝑖𝑓 ⊛

∈ {>} 

 

7. COMPOSING THE TEST SUPERVISOR 
MODEL 

The test supervisor model MSVR is constructed as a 

parallel composition of single TDLTP property 

recognizing automata each of which is produced by 

parsing the TDLTP formula and mapping 

corresponding sub-formulae to the automaton 

template as defined in Section 5. To interrelate these 

sub-formula automata, two phases have to be 

completed: 

1) Each trap labelled transition e of MSUT (here 

we consider the traps which are left after 

labels reduction as described in Section 6) has 

to be split in two edges e’ and e” connected 

via an auxiliary committed location lc. The 

edge e’ will inherit the labelling of e while e” 

will be labelled with an auxiliary broadcast 

channel that signals the trap update 

occurrence to the upper neighbor sub-formula 

automaton. We use the channel naming 

convention where a channel name has a prefix 

ch_ followed by the trapset identifier, e.g. for 

an edge e labelled with the trap TS[i], the 

broadcast channel label ch_TS! is added to the 

edge e” (an example is shown in Fig. 13 a)). 

2) Each non-trapset formula automaton will be 

extended with a wrapping construct shown in 

Fig. 13 b). The wrapper has one or two, 

channel labels, depending if the sub-formula 

operation is unary or binary, to synchronize its 

state transition with those of its child 

expression(s). We call them downwards 

channels denoted by Activate_subOP1, 

Activate_subOP2 and used to activate the 

recognizing mode in the first and second sub-

formula automata. Similarly, two broadcast 

channels are introduced to synchronize the 

state transition of sub-formula automata with 

their upper operation automaton. We call them 

upwards channels, denoted by Activate_OPi 

and Done OPi in Fig. 13 b). The root node is 

an exception because it has upwards channel 

only with the test Stopwatch automaton (the 

Stopwatch automaton will be explained in 

Section 8). If the sub-formulas of given 

property automaton are mapped to trapset 

expressions then the back edge EndIdle to 

the initial state is labelled also with trapset 

reset function with TS being the argument 

trapset identifier. The TDLTP operator 

automata extensions with wrapper constructs 

for implementing their composition in test 

supervisor model MSVR are shown in Fig. 14. 

 
a) 

 

               
 

b) 

 

 
 

Figure 13 - a) Extending the trap labelled edges with 

synchronization conditions for composing the test 

supervisor; b) the wrapper pattern for composing 

operation recognizing automata 

 
a) 

 
 

↓ 

 

 
 

b) 

 
 

↓ 
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c) 

 
 

↓ 

 

 
d) 

 
 

↓ 
 

 
e) 

 
 

↓ 

 
f) 

 
 

↓ 

 

 
 
Figure 14 - Extending sub-formula automata templates 

with wrapping for test Supervisor composition a) And; 

b) Or; c) Leads to; d) Timed leads to with condition 

cl≤d; e) Timed leads to with condition cl>d;  f) 

Conditional repetition 

 

Note that the TDLTP sub-formula meta symbols P and 

Q in the original templates are replaced with channels 

which signal when the sub-formulas interpretation 

automata reach their local End locations. 

 

8. ENCODING THE TEST VERDICT AND 
TEST DIAGNOSTICS IN THE TESTER 

MODEL 

The test verdict is yielded by the test StopWatch 

automaton either when the automaton reaches its end 

state End within time bound TO. Otherwise, the 

timeout event Swatch==TO triggers the transition to 

the terminal location Failed. Specifically, Passed in 

the StopWatch automaton is reached simultaneously 

with executing the test purpose formula TP 

automaton transition to its End location. For example, 

in Fig. 15, the automaton that implements root 

formula P, synchronizes its transition to the location 

End with StopWatch transition to the location Passed 

via  upwards channel Done_P. 

 

 
 

Figure 15 - Test Stopwatch automaton. 

 

Another extension to the supervisor model is the 

capability of recording the test diagnostic 

information. For that each sub-formula of the test 

purpose specification formula TP is indexed 

according to its position in the parsing tree of TP. A 

diagnostic array D of type Boolean and of the size 

equal to the number of sub-formulas in TP is defined 

in the model. The initial valuation of D sets all its 

elements to false. Whenever a model fragment that 

corresponds to a sub-formula reaches its end state 

(that is sub-formula satisfaction state), the element in 

D that corresponds to that sub-formula is set to true. 

It means that if the test passes, all elements of D are 

updated to true. Otherwise, in case the test fails, those 

elements of D remain false which correspond to the 

sub-formula automata which conditions were not 

satisfied or reached by the test model run. The 

updates D[i]:= true of array D elements, where i is the 

index of the sup-formula automaton Mop
i, are shown 

on the edges that enter their End locations. The 

expression automata Mop
i and their mapping to 

composition wrapping are shown in Fig. 14. 

The test model construction steps can be summarized 

now as follows: 

1. the test purpose is specified as a TDLTP 

expression TP; 

2. trapsets TS1,…, TSn are extracted from TP 

and the ground level TCIs are labelled with 

elements of non-intersecting trapsets; 

3. the parse tree of the TDLTP expression TP is 

analysed and each of its sub-formula operator 

opi is mapped using the mappings M1 to M10 

to the automaton template Mop
i that 

corresponds to the sub-formula operation; 
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4. the labelling of MSUT with traps is simplified 

by applying rules in Section 4.6, and MSUT 

linked with sub-formula automata Mop
i via 

wrapping construct that provides channels 

for signalling about reaching the state where 

sub-formula are satisfied; 

5. finally, the extension for collecting 

diagnostics is added to automata Mop
i and the 

root formula automaton is composed with 

Stopwatch automaton MSW which decides on 

the test pass or fail. 

The total test model is synchronous parallel 

composition of component models MSUT|| MSW ||i M
op

i. 

 

9. CASE STUDY 

To demonstrate the usability of TDLTP the 

TTU100 satellite testing case study has been chosen. 

The objective of the TTU100 project is to build a 

space system consisting of a 1U (10 cm x 10 cm x 10 

cm) nanosatellite and a ground station where mission 

planning and mission control software for scientific 

experiments is installed. The TTU100 system 

consists of a Ground Segment and a Space Segment. 

The Ground Segment communicates, stores and 

processes data aquired from satellite. The Space 

Segment is nanosatellite on Earth’s Sun Synchronous 

Orbit (650km altitude). The satellite onboard system 

consists of smart electrical power supply (EPS), 

attitude determination and control system (ADCS), 

on-board computer (OBC), communication system 

(UHF band, Ku-band) and camera and optics payload. 

For TDLTP usability demonstration smart EPS 

subsystem is selected as a SUT. The test purpose is 

specified for a test case which demonstrates the 

TDLTP capability to express combinations of multiple 

coverage criteria in a single test case. From TDLTP 

expressions the test models are constructed and the 

test sequences generated using Uppaal model 

checker. The section is concluding with comparison 

of the tests generated with the methods presented in 

the paper and with those available using ordinary 

TCTL model checking. 

 

9.1 SYSTEM UNDER TEST MODELLING 

EPS receives commands from other system 

components to change its operation mode and 

respond with its status information. In the integration 

level test model we abstract from the concrete content 

of the commands and responses and describe its 

interface behavior in response to input commands.  

EPS is sampling its input periodically with period 

20 time units. EPS wakeup time when detecting a new 

input command can vary within interval [15, 20] time 

units after previous sampling. After wakeup it is 

ready to receive incoming commands. Due to internal 

maintenance procedures of EPS some of the 

commands when sent during self-maintenance can be 

ignored, and need to be repeated later. The command 

processing after its successful receive takes at most 

20 time units. Thereafter, the validity of the command 

is checked using CRC error-detecting code. If the 

error is detected the error report will be sent back to 

EPS output port in o_response message. If the 

received command data is correct, the command is 

processed and its results returned in the outgoing 

o_message. Since EPS internal processing time is 

negligible compared to that of input sampling period 

and wakeup time, all the other locations except start 

and commandCreated are modelled as committed 

locations. The model MSUT of the EPS is depicted in 

Fig. 16. 

 
 

Figure 16 - The model MSUT of the Electrical Power 

Supply subsystem. 

 

9.2 TEST PURPOSE SPECIFICATION 

The goal of test case is to show that after invalid 

command has been received the valid command can 

be received correctly and responded with 

acknowledgement. We specify the test purpose in 

TDLTP as formula 

 

𝐴(𝑇𝑆2; 𝑇𝑆4)  ∼>  𝐸(𝑇𝑆2; 𝑇𝑆3), (25) 

 

which expresses that all transition pairs labelled with 

traps of TS2 and TS4 must lead to some pair of 

transitions labelled with traps of trapsets TS2 and TS3. 

 

9.3 LABELLING OF MSUT 

The labelling of MSUT starts from the ground level 

trapsets TS2, TS3 and TS4 of the formula (25). These 

traps guide branching conditions to be satisfied in the 

test scenario. The labelling is shown in Fig. 16.  

Second level labelling results in applying trapset 

operation next ‘;’ for pairs TS2;TS3 and TS2;TS4 which 

presumes introducing auxiliary variables fl23 and fl24 

to identify occurrence of traps of TS3 and TS4 right 

after traps of TS2. Since TS2;TS3 and TS2;TS4 are 

arguments of the upper ‘forall’ and ‘exists’ formula 

their occurrence should be signaled respectively to 

‘forall’ and ‘exists’ automata. For this purpose 

additional committed locations and edges with 

upwards channels ch_TS23 and ch_TS24 are 
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introduced in Fig. 17. 

 
 

Figure 17 - Marking TS2;TS3 and TS2;TS4 trapsets 

 

9.3 TEST MODEL CONSTRUCTION 

When moving upwards in the parse tree of formula 

(25) the next operators that have TS2;TS4 and TS2;TS3 

in arguments are forall A(TS2;TS4) and exists 

E(TS2;TS3) which automata are depicted in Fig. 18.  

 

 
 

 
Figure 18 - a) automation that recognizes A(TS2;TS4); 

b) automation that recognizes E(TS2;TS3) respectively 

 

The root operator in the formula (25) is ‘leads to’ 

the arguments of which are A(TS2;TS4) and 

E(TS2;TS3). The automaton that recognizes 

A(TS2;TS4) ∼> E(TS2;TS3) is depicted in Fig. 19. 

The full test model for generating test sequences 

of test scenario A(TS2;TS4) ∼> E(TS2;TS3) is 

composed of automations shown in Fig. 17, Fig. 18, 

Fig.19 and Fig. 20. 

 

 
Figure 19 - Recognizing automaton of  

A(TS2;TS4) ∼> E(TS2;TS3) 

 

                 
 

Figure 20 – Automaton for Environment and  

StopWatch of Test model for implementing test 

scenario A(TS2;TS4) ∼> E(TS2;TS3) 

 

9.4 GENERATING TEST SEQUENCES 

The test sequences of the SUT model MSUT shown 

in Fig. 16 and of the scenario A(TS2;TS4) ∼> 

E(TS2;TS3) are generated by running the model 

checking query E<> StopWatch.Pass. There are three 

options of selecting the trace for test - shortest, 

fastest, or some. The trace generated with model 

checking option shortest is shown in the Fig.21. 

 

 

 
Figure 21 – Test Case test sequence 

 

The lenght of the trace generated by using 

TDLTP is 22 transitions and the average lenght 

generated using ordinary TCTL model checking 

is 50 transitions. 
 

9. CONCLUSION 

In this paper high level test purpose specification 

language TDLTP, its syntax and semantics have been 

defined for model-based testing of time critical 

systems. Based on the semantics proposed in this 

work a mapping from TDLTP to Uppaal TA formalism 
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has been defined. The mapping is used for automatic 

construction of test models that are composition of a 

SUT model and the tester model derived from the test 

purpose specification in TDLTP. Practical side effect 

of the proposed test generation technique is the 

diagnosis capability enabling tracing back the 

specification sub-formula which violation by SUT 

behavior could cause the test fail. The application of 

TDLTP based test generation approach on the TTU100 

satellite power supply system case study confirmed 

also our expectations that complex multi-purpose test 

goals can be specified using TDLTP in compact and 

comprehensible way saving from time consuming 

and error prone manual test scripting. 
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Provably Correct Test Development for
Timed Systems

Jüri VAIN a,1, Aivo ANIER a and Evelin HALLING a

a Department of Computer Science, Tallinn University of Technology, Estonia

Abstract. Automated software testing is an increasing trend for improving the pro-
ductivity and quality of software development processes. That, in turn, rises issues
of trustability and conclusiveness of automatically generated tests and testing pro-
cedures. The main contribution of this paper is the methodology of proving the
correctness of tests for remote testing of systems with time constraints. To demon-
strate the feasibility of the approach we show how the abstract conformance tests
are generated, verified and made practically executable on distributed model-based
testing platform dTron.

Keywords. model-based testing, provably correct test generation, timed automata,
verification by model checking

Introduction

The growing competition in software market forces manufacturers to release new prod-
ucts within shorter time frame and with lower cost. That imposes hard pressure to soft-
ware quality. Extensive use of semi-automated testing approaches is an attempt to im-
prove the quality of software and related development processes in industry. Although a
wide spectrum of commercial and academic tools are available, the testing process still
involves strong human factor and remains prone to human errors. Even fully automated
approaches cannot guarantee trustable and conclusive testing unless the test automation
is correct by construction or exhaustively covered with correctness checks. Test automa-
tion and test correctness are the main subjects of study in model based testing (MBT).
Generally, MBT process comprises following steps: modelling the system under test, re-
ferred as Implementation-Under-Test (IUT), specifying the test purposes, generating the
tests and executing them against IUT.

In this paper we study how the correctness of test derivation steps can be ensured
and how to make the test results trustable throughout the testing process. In particular, we
focus on model-based online testing of software systems with timing constraints capital-
izing on the correctness of the test suite through test development and execution process.
In case of conformance testing the IUT is considered as a black-box, i.e., only the inputs
and outputs of the system are externally controllable and observable respectively. The
aim of black-box conformance testing [1] is to check if the behaviour observable on sys-
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tem interface conforms to a given requirements specification. During testing a tester exe-
cutes selected test cases on an IUT and emits a test verdict (pass, fail, inconclusive). The
verdict is computed according to the specification and a input-output conformance rela-
tion (IOCO) between IUT and the specification. The behaviour of a IOCO-correct imple-
mentation should respect after some observations following restrictions: (i) the outputs
produced by IUT should be the same as allowed in the specification; (ii) if a quiescent
state (a situation where the system can not evolve without an input from the environment
[2]) is reached in IUT, this should also be the case in the specification; (iii) any time an
input is possible in the specification, this should also be the case in the implementation.

The set of tests that forms a test suite is structured into test cases, each addressing
some specific test purpose. In MBT, the test cases are generated from formal models that
specify the expected behaviour of the IUT and from the coverage criteria that constrain
the behaviour defined in IUT model with only those addressed by the test purpose. In our
approach Uppaal Timed Automata (UPTA) [3] are used as a formalism for modelling
IUT behaviour. This choice is motivated by the need to test the IUT with timing con-
straints so that the impact of propagation delays between the IUT and the tester can be
taken into account when the test cases are generated and executed against remote real-
time systems. Another important aspect that needs to be addressed in remote testing is
functional non-determinism of the IUT behaviour with respect to test inputs. For non-
deterministic systems only online testing (generating test stimuli on-the fly) is applicable
in contrast to that of deterministic systems where test sequences can be generated off-
line. Second source of non-determinism in remote testing of real-time systems is com-
munication latency between the tester and the IUT that may lead to interleaving of inputs
and outputs. This affects the generation of inputs for the IUT and the observation of out-
puts that may trigger a wrong test verdict. This problem has been described in [4], where
the Δ-testability criterion (Δ describes the communication latency) has been proposed.
The Δ-testability criterion ensures that input/output interleaving never occurs.

1. Preliminaries

1.1. Uppaal Timed Automata

Uppaal Timed Automata (UPTA) [3] are widely used as one of the main modelling for-
malism for representing time constraints of software intensive systems. Before delving
into test construction we shortly introduce the syntax and semantics of UPTA.

A timed automaton is given as a tuple (L;E;V ;Cl; Init; Inv;TL). L is a finite set of
locations, E is the set of edges defined by E ∈ L×G(Cl,V )× Sync×Act × L, where
G(Cl,V ) is the set of transition enabling conditions - guards. Sync is a set of synchro-
nization actions over channels. In the graphical notation, the locations are denoted by
circles and transitions by arrows. An action send over a channel h is denoted by h! and
its co-action receive is denoted by h?. Act is a set of sequences of assignment actions
with integer and boolean expressions as well as with clock resets. V denotes the set of
integer and boolean variables. Cl denotes the set of real-valued clocks (Cl ∩V = /0).

Init ⊆ Act is a set of assignments that assigns the initial values to variables and
clocks. Inv : L → I(Cl,V ) is a function that assigns an invariant to each location, I(Cl,V )
is the set of invariants over clocks Cl and variables V . TL →{ordinary,urgent,committed}
is the function that assigns the type to each location of the automaton.
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We can now define the semantics of UPTA in the way presented in [3]. A clock
valuation is a function valcl : Cl → R≥0 from the set of clocks to the non-negative reals.
A variable valuation is a function valv : V → Z∪ BOOL from the set of variables to
integers and booleans. Let RCl and (Z∪BOOL)V be the sets of all clock and variable
valuations, respectively. The semantics of an UPTA is defined as a LTS (∑, init,→),
where ∑⊆ L×RCl ×(Z∪BOOL)V is the set of states, the initial state init = Init(cl,v) for
all cl ∈Cl and for all v ∈V , with cl = 0, and →⊆ ∑×{R≤0 ∪Act}×∑ is the transition
relation such that:

(l,valcl ,valv)→ (l,valcl +d,valv) if ∀d′ : 0 ≤ d′ ≤ d ⇒ valcl +d |= Inv(l),
(l,valcl ,valv)→ (l′,val′cl ,val′v) if ∃e = (l,act,G(cl,v),r, l′) ∈ E i.e.
valcl ,valv |= G(cl,v),val′cl = [re → 0]valcl , and val′cl ,val′v |= Inv(l′),
where for delay d ∈ R≥0,valcl + d maps each clock cl in Cl to the value valcl + d,

and [re → 0]valcl denotes the clock valuation which maps (resets) each clock in re to 0
and agrees with valcl over Cl\re.

1.2. Test Generation for On-line Testing

Reactive on-line testing means that the tester program has to react to observed outputs
of the IUT and to possible changes in the test goals on-the-fly. The rationale behind the
reactive planning method proposed in [5] lies in combining computationally hard offline
planning with time bounded online planning phases. Off-line phase is meant to shift the
computationally hard planning as much as possible in the test preparation phase. Here
the static analysis results of IUT model and the test goal are recorded in the format of
compact planning rules that are easy to apply later in the on-line phase. The on-line
planning rules synthesized must ensure close to optimal test runs and termination of the
test case when a prescribed test purpose is satisfied.

The RPT synthesis algorithm introduced in [5] assumes that the IUT model is an
output observable non-deterministic state machine ([6]). Test purpose (or goal) is a spe-
cific objective or a property of the IUT that the tester is set out to test. Test purpose is
specified in terms of test coverage items. We focus on test purposes that can be defined as
a set of boolean ”trap” variables associated with the transitions of the IUT model ([7]).
The goal of the tester is to drive the test so that all traps are visited at least once during
the test run.

The tester synthesis method outputs tester model as UPTA where the rules for online
planning are encoded in the transition guards called gain guards. The gain guard evalu-
ates true or false at the time of execution of the tester determining if the transition can be
taken from the current state or not. The value true means that taking the transition with
the highest gain is the best possible choice to reach unvisited traps from current state.
The decision rules for on-the-fly planning are derived by performing reachability anal-
ysis from the current state to all trap-equipped transitions by constructing the shortest
path trees. Since at each test execution step only the guards associated with the outgoing
transitions of the current state are evaluated, the number of guard conditions to be evalu-
ated at one planning step is relatively small (equal to the location-local branching factor
in the worst case). To implement such a gain guided model traversal, the gain guard is
constructed using (model and goal specific) gain functions and the standard function max
that return the maximum of those gain values that characterize alternative test paths.

Technically, the gain function of a transition returns a value that depends on the
distance-weighted reachability of the unvisited traps from the given transition. The gain
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guard of the transition is true if and only if that transition is a prefix of the test sequence
with highest gain among those that depart from the current state. If the gain functions
of several enabled transitions evaluate to same maximum value the tester selects one of
these transitions using either random selection or “least visited first” principle. Each tran-
sition in the model is considered to have a weight and the gain of test case is proportional
to the length and the sum of weights of whole test sequence.

The RPT synthesis comprises three main steps (Figure 1):
1. extraction of the RPT control structure,
2. constructing gain guards,
3. reduction of gain guards according to the parameter “planning horizon” that de-

fines the pruning depth of the planning tree.

Figure 1. RPT synthesis workflow

In the first step, the RPT synthesiser analyses the structure of the IUT model and
generates the RPT control structure. In the second step, the synthesizer finds possibly
successful IUT runs for reaching the test goal.

Last step of the synthesis reduces the gain functions pruning the planning tree up
to some predefined depth that is given by parameter “planning horizon”. Since the RPT
planning tree has the longest branch proportional to the length of Euler’s contour in the
IUT model control graph the gain function’s recurrent structure may be very complex
and for practical purposes needs to be bounded by some planning horizon. Traps being
beyond the planning horizon still contribute in the gain function value but their distance
is just ignored. Thus, for deep branches of planning tree the gain function returns an
approximation of the gain value.

2. Correctness of IUT Models

2.1. Modelling Timing Aspects of IUT

For automated testing of input-output conformance of systems with time constraints we
restrict ourselves with a subset of UPTA that simplifies IUT model construction. Namely,
we use a subset where the data variables, their updates and transition guards on data vari-
ables are abstracted away. We use the clock variables only and the conditions expressed
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by clocks and synchronization labels. An elementary modelling pattern for representing
IUT behaviour and timing constraints is Action pattern (or simply Action) depicted in
Figure 2.

Post_locationAction

clock_ <= u_bound

Pre_location
clock_ >= l_bound

out!in?
clock_=0

Figure 2. Elementary modelling fragment "Action"

An Action models a program fragment execution on a given level of abstraction
as one atomic step. The Action is triggered by input event and it responds with output
event within some bounded time interval (response time). The IUT input events (stimuli
in testing context) are generated by Tester, and the output events (IUT responses) are
to make the reactions of IUT observable to Tester. In UPTA, the interaction between
IUT and Tester is modelled by synchronous channels that mediate input/output events.
Receiving an input event from channel in is denoted by in? and sending an output event
via channel out is denoted by out!.

The major timing constraint we represent in IUT model is duration of the Action.
To make the specification of durations more realistic we represent it as a closed interval
[l_bound,u_bound], where l_bound denotes a lower bound and u_bound an upper bound
of the interval. Duration interval [l_bound,u_bound] can be expressed in UPTA as shown
in Figure 2. Clock reset ”clock = 0” on the edge ”Pre_location → Action” makes the
time constraint specification local to the Action and independent from current value at
earlier execution steps. An invariant ”clock ≤ u_bound” of location ”Action” forces the
Action to terminate latest at time instant u_bound after the clock reset and guard ”clock≥
l_bound” of the edge ”Action → Post_location” defines the earliest time instant w.r.t.
clock reset when the outgoing transition of Action can be executed.

From tester’s point of view IUT has two types of locations: passive and active. In
passive locations IUT is waiting for test stimuli and in active locations IUT chooses
its next moves, i.e. presumably it can stay in that location as long as specified by
location invariant. The location can be left when the guard of outgoing transition
Action → Post_location evaluates to true. In Figure 2, the locations Pre_location and
Post_location are passive while Action is an active location.

We compose IUT models from Action pattern using two types of composition rules:
sequential and alternative composition.

Definition 1. Composition of Action patterns.
Let Fi and Fj be UPTA fragments composed of Action patterns (incl. elementary

Action) with pre-locations l pre
i ,l pre

j and post-locations l post
i ,l post

j respectively, their com-
position is the union of elements of both fragments satisfying following conditions:

• sequential composition Fi;Fj is UPTA fragment where l post
i = l pre

j ;
• alternative composition Fi +Fj is UPTA fragment where l pre

i = l pre
j and l post

i =

l post
j .

The test generation method we highlighted in Section 1.2 relies on the notion of
well-formedness of the IUT model according to the following inductive definition.

Definition 2. Well-formedness (wf) of IUT models
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• atomic Action pattern is well-formed;
• sequential composition of well-formed patterns is well-formed;
• alternative composition of well-formed patterns is well-formed if the output labels

are distinguishable;

Proposition 1. Any UPTA model M with non-negative time constraints and synchro-
nization labels that do not include state variables can be transformed to bi-similar to it
well-formed representation w f (M).

Note without the detailed proof that for those locations and edges of UPTA that do
not match with the Definition 2, the well-formedness needs adding auxiliary pre-, and
post-locations and ε-transition, that do not violate the i/o behaviour of original model.
For representing internal actions that are not triggered by external events (their incoming
edge is ε-labelled) we restrict the class of pre-locations with type "committed". In fact,
the subclass of models transformable to well-formed is broader than given by Definition
2, including also UPTA that have data variable updates, but in general wf -form does not
extend to models that include guards on data variables.
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Figure 3. Simple example of well-formed IUT model

In the rest of paper, we assume for test generation that MIUT is well-formed and
denote this fact by w f (MIUT ). An example of such an IUT model we use throughout the
paper is depicted in Figure 3.

2.2. Correctness of IUT Models

The test generation method introduced in [5] and developed further for EFSM models
in [8] assumes that the IUT model is connected, input enabled, output observable and
strongly responsive. In the following we demonstrate how the validity of these properties
usually formulated for IOTS (Input-Output Transition System) models can be ensured
for well-formed UPTA models (see Definition 2).

2.2.1. Connected Control Structure and Output Observability

We say that UPTA model is connected in the sense that there is an executable path from
any location to any other location. Since the IUT model represents an open system that
is interacting with its environment we need for verification by model checking a non-
restrictive environment model. According to [9] such an environment model has the role
of canonical tester. Canonical tester provides test stimuli and receives test responses in
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any possible order the IUT model can interact with its environment. A canonical tester
can be easily generated for well-formed models according to the pattern depicted in
Figure 4b (this is canonical tester for the model shown in Figure 3).
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Figure 4. Synchronous parallel composition of a) IUT and b) canonical tester models

The canonical tester implements the "random walk" test strategy that is useful in
endurance testing but it is very inefficient when functionally or structurally constrained
test cases need to be generated for large systems.

Having synchronous parallel composition of IUT and the canonical tester (shown in
Figure 4) the connectedness of IUT can be model checked with query (1) that expresses
the absence of deadlocks in interactions between IUT and canonical tester.

A[]not deadlock (1)

The output observability condition means that all state transitions of the IUT model
are observable and identifiable by the outputs generated by these transitions. Observabil-
ity is ensured by the definition of well-formedness of the IUT model where each input
event and Action location is followed by the edge that generates a locally (w.r.t. source
location) unique output event.

2.2.2. Input Enabledness

Input enabledness assumption means that blocking due to irrelevant test input during
test execution is avoided. Naive way of implementing this assumption in IUT models
presumes introducing self-looping transitions with input labels that are not represented
on other transitions that share the same source state. That makes IUT modelling tedious
and leads to the exponential increase of the MIUT size. Alternatively, when relying on the
notion of observational equivalence one can approximate the input enabledness in UPTA
by exploiting the semantics of synchronizing channels and encoding input symbols as
boolean variables I1...In ∈ Σ. Then the pre-location of the Action pattern (see Figure 2)
needs to be modified by applying the Transformation 1.

2.2.3. Transformation 1

• assume there are k outgoing edges from pre-location l pre
i of Actioni, each of these

transitions is labeled with some input I1...Ik ∈ Σi(Actioni)⊆ Σ;
• we add a self-looping edge l pre

i → l pre
i that models acceptance of all inputs in Σ

except those in Σi. Because of that we specify the guard of edge l pre
i → l pre

i as
boolean expression: not(I1 ∨ ...∨ Ik).
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Provided the outgoing branching factor Bout
i of l pre

i is, as a rule, substantially smaller
than |Σ| we can save |Σ|−Bout

i − 1 edges at each pre-location of Action patterns. Note
that by w f -construction rules the number of pre-locations never exceeds the number of
actions in the model. That is due to alternative composition that merges pre-locations
of the composition. A fragment of alternative composition accepting inputs in Σi with
described additional edge for accepting symbols in Σ\Σi(Actioni) is depicted in Figure
5 (time constraints are ignored here, I1 and I2 in the figure denote predicates Input == i1
and Input == i2 respectively).

Post_location2Action2

Post_location1Action1

Pre_location
out!

I2=false,
O2=trueI2

in?

not(I1 or I2)
in?

out!

I1=false,
O1=true

I1
in?

Figure 5. Input enabled fragment

2.2.4. Strong Responsiveness

Strong responsiveness (SR) means that there is no reachable livelock (a loop that includes
only ε-transitions) in the IUT model MIUT . In other words, MIUT should always enter the
quiescent state after finite number of steps. Since transforming MIUT to w f (MIUT ) does
not eliminate ε-transitions there is no guarantee that w f (MIUT ) is strongly responsive by
default. To verify the SR propety of MIUT we apply Algorithm 1.

2.2.5. Algorithm 1

1. According to the Action pattern of Figure 5 the information of i/o events is spec-
ified using synchronization channel in and a boolean variable that represents re-
ceiving an input symbol Ii. Since Uppaal model checker is state based we need
recording the occurrence of input events in states. Therefore, the boolean variable
representing an input event is kept true in the destination location of the edge
that is labelled with given event and reset f alse immediately after leaving this
location. For same reason the ε-transitions are labelled with update EPS = true
and following output edge with update EPS = f alse.

2. Next, we reduce the model by removing all the edges and locations that are not
involved in the traces of model checking query: l0 |= E�EPS, where l0 denotes
initial location of MIUT . The query checks if any ε-transition is reachable from
l0 (necessary condition for violating SR-property).

3. Further, we remove all non ε-transitions and locations that remain isolated there-
after.

4. Remove recursively all locations that do not have incoming edges (their outgoing
edges will be deleted with them).

5. After reaching the fixed point of recursion of step 4 we check if the remaining part
of model is empty. If yes then we can conclude that MIUT is strongly responsive,
otherwise it is not.

It is easy to show that all steps except step 2 are of linear complexity in the size of the
MIUT .
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3. Correctness of RPT Tests

3.1. Functional Correctness of Generated Tests

The tester program generated based on IUT model can be characterized using some test
coverage criteria it is designed for. As shown in Section 1.2, the RPT generating algo-
rithm is aimed at structural coverage of IUT model elements and can be expressed by
means of boolean "trap" variables. To recall, the traps are assignment expressions of
boolean trap variables and the valuation of traps indicates the status of the test run. For
instance, one can observe if the edges labeled with them are already covered or not in
the course of test run. Thus, the relevant correctness criterion for the tester generated is
its ability to cover traps.

Definition 3. Coverage correctness of the test.
We say that the RPT tester is coverage correct if the test run covers all the transitions

that are labelled with traps in IUT model.
Definition 4. Optimality of the test.
We say that the test is length (time) optimal if there is no shorter (accordingly faster)

test runs among all those being coverage correct.
We can show that the RPT method generates tests that are coverage correct (and

in general, close to optimal) by construction, if the planning horizon of gain function is
greater or equal to the depth of reduced reachability tree of MIUT . Though, the practical
limit of planning depth is set by Uppaal tool where the largest integer value of type ’long’
is 231. That allows distinctive encoding of gain function co-domain for test paths up to
depth 31. It means that if the IUT is fully connected and deterministic RPT provides a
test path that covers all traps length-optimally. In non-deterministic case it provides the
best strategy against any legal strategy the IUT chooses (legal in this context means that
any behaviour of IUT either conforms to its specification or is detectably violating it).

While the reachability tree exceeds given by the horizon depth limit the gain function
becomes stochastic (insensible to reachability tree structure deeper than the horizon). It
is distinctive on the number of deeper traps only, but it is not distinctive on their co-
reachability. Even though, the planning method with cross horizon depth has shown to
be statistically efficient by providing close to optimal test paths in large examples there is
threat of choosing infeasible paths if the model is not well-formed and/or not connected.

Instead of going into details of the proof (by structural induction) of RPT tester
generation correctness and optimality we provide ad-hoc verification procedure in terms
of model checking queries and model construction constraints.

Direct way of verifying the coverage correctness of the tester is to run a model
checking procedure with query:

A�∀(i : int[1,n]) t[i] , (2)

where t[i] denotes i-th element of the array of traps. The model the query is running on
is synchronous parallel composition of IUT and Tester automata. For instance, the RPT
automation for IUT modelled in Figure 3 is depicted in Figure 6.

3.2. Invariance of Tests with Respect to Changing Time Constraints of IUT

In section 2.2 the coverage correctness of RPT tests was discussed without explicit ref-
erence to MIUT time constraints. The length-optimality of test sequences can be proven
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Figure 6. Synchronous parallel composition of IUT and RPT models

in Uppaal when for each Actioni both the duration lower and upper bounds lbi and ubi
equal to one, i.e., lbi = ubi = 1 for all i ∈ 1, ..., |Action|. Then the length of the test se-
quence and its duration in time are numerically equal. For instance, having some integer
valued (time horizon) parameter T H as an upper bound to the test sequence length the
following model checking query proves the coverage of n traps with a test sequence of
length at most T H stimuli and responses:

A�∀(i : int[1,n]) t[i] ∧ TimePass≤T H (3)

where TimePass is Uppaal clock that represents global time of the model.
Generalizing this result for IUT models with arbitrary time constraints we assume

that all edges of MIUT are attributed with time constraints as described in Section 2.1.
Since not all the transitions of model MIUT need to be labelled with traps (and thus cov-
ered by test) we apply compaction procedure to MIUT to abstract away from the excess of
information and derive precise estimates of test duration lower and upper bounds. With
compaction we aggregate consecutive trapless transitions with one trap-labelled transi-
tion the trapless ones are neighbours to. Now, the aggregate Action becomes like atomic
Action of Figure 2 that copies the trap of the only trap labelled transition included in
the aggregate. The first transition of the aggregate contributes its input event and the last
transition its output event. The other I/O events of the aggregate will be hidden because
all internal transitions and locations are substituted with one aggregate location we call
composite Action. Further, we compute the lower and upper bounds for the composite
action. The lower bound is the sum of lower bounds of the shortest path in the aggregate
and the upper bound is the sum of upper bounds of the longest path of the aggregate
plus the longest upper bound (the later is needed to compute the test termination condi-
tion). After compaction of deterministic and timed IUT model it can be proved that the
duration T H of a coverage correct tests have length that satisfies following condition:

∑
i

lbi ≤ T H ≤ ∑
i

ubi +max
i
(ubi), (4)

where index i ranges from 1 to n (n - number of traps in MIUT ).
In case of non-deterministic IUT models, for showing length- and time-optimality

of generated tests the bounded fairness of MIUT needs to be assumed. We say that a
model M is k− f air iff the difference in the number of executions of alternative transi-
tions of non-deterministic choices never exceeds the bound k. This assumption excludes
unbounded "starvation" and "conspiracy" behaviour in non-deterministic models. Dur-
ing the test run our test execution environment dTron [10] is monitoring k-fairness and
reporting error message "violation of IUT k-fairness assumption" when this constraint is
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broken. Due to k-fairness monitoring by dTron the safe estimate of the test length upper
bound in case of non-deterministic models can be found for the worst case by multiplying
the deterministic upper bound by factor k. The lower bound still remains ∑i lbi.

Proposition 2. Assuming a trap labelled UPTA model MIUT is well-formed in the
sense of Definition 2 and compactified, the RPT that is generated based on MIUT remains
invariant with respect to variations of the time constraints specified in MIUT .

The practical implication of Proposition 2 is that a RPT once generated for a timed
trap labeled UPTA model MIUT , one can use it for any syntactically and semantically
feasible modification of MIUT where only timing parameters and initial values of traps
have been changed. Invariance does not extend to structural changes of MIUT .

Due to the limited space we sketch the proof in two steps by showing that (i) the con-
trol decisions of MRPT do not depend on the timing of MIUT and (ii) the MRPT behaviour
does not influence the timing on controllable transitions of MIUT .

(i) The behaviour of MRPT depends on the gain guards of its controllable edges and
responses (output events) of MIUT , not on the time instances when these responses are
generated. Same applies to the gain guards. They are boolean functions defined on the
structure of MIUT and the valuation vector of traps. Thus the timing constraints specified
in MIUT do not influence the behaviour of MRPT .

(ii) In the synchronous parallel composition MIUT ||sync MRPT the actions of MIUT

and MRPT take the effect over progress of time alternatively. Though the communication
of input and output events is synchronous, it is due to the semantics of UPTA, that exe-
cution of transitions is instantaneous, and does not pose any constraint on the delay be-
tween earlier or later event. Since the planning time of MRPT is assumed to be negligible
comparing to the response time of MIUT we model the control locations in MRPT always
as committed locations (denoted by "c" in Figure 6) and there is no additional waiting
in obsevation locations of MRPT either. Thus, MRPT does not set any restriction to the
time invariants inv(Actioni)and transition guards grd(Actioni → PostLocationi) of MIUT

actions.

4. Test Execution Environment dTron

Uppaal TRON is a testing tool, based on Uppaal [3] engine, suited for black-box confor-
mance testing of timed systems [11]. dTron [12] extends this enabling distributed execu-
tion. It incorporates Network Time Protocol (NTP) based real-time clock corrections to
give a global timestamp (t1) to events at IUT adapter(s). These events are then globally
serialized and published for other subscribers with a Spread toolkit [13]. Subscribers can
be other SUT adapters, as well as dTron instances. NTP based global time aware sub-
scribers also timestamp the event received message (t2) to compute and possibly com-
pensate for the overhead time it takes for messaging overhead Δ = t2 − t1.

Δ is essential in real-timed executions to compensate for messaging delays that may
lead to false-negative non-conformance results for the test-runs. Messaging overhead
caused by elongated event timings may also result in messages published in on order, but
revived by subscribers in another. Δ can then also be used to re-order the messages in a
given buffered time-window tΔ. Due to the online monitoring capability dTron supports
the functionality of evaluating upper and lower bounds of message propagation delays
by allowing the inspection of message timings. While having such a realistic network
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latency monitoring capability in dTron our test correctness verification workflow takes
into account theses delays. For verfication of the deployed test configuration we make
corresponding time parameter adjustments in the IUT model. By Proposition 2 the RPT
tester generated is invariant to time parameter variations. Thus final verification against
the query 3 is proving that the test is feasible as well in the presence of realistic configu-
ration constraints of the testing framework dTron.

5. Web Testing Case-study

We describe street light control system (SLCS) to show the applicability of the proposed
testing workflow. The SLCS has a central server and multiple controllers each control-
ling one or more streetlight. The controllers have programmable high-power relays (con-
tactors) to manipulate the actual lights, but also have various sensor and communica-
tion extensions to provide supplementary capabilities like dimming and following more
complex lighting programs.

Figure 7. Street light control system test architecture

Light-controllers have minimal memory and do not persistently store their state in
the memory. They poll the central server to retrieve their designated state information.
This state information is stored in the array of bits, each bit denoting a specific parameter
value for the controller. Controller polls the server and the server responds whether it
has new state info for the controller. If this is the case, the information is provided with
the response. The server holds the state information for each controller. This information
can be manipulated by users via an Internet web user interface (UI). Figure 7 shows an
abstract view of test architecture. The test purpose is to test if when a user has logged
in and tries to turn on a light using the UI, the light will eventually get lit and that is
reported back with message lights on.

Figure 8 shows an extract of IUT model MIUT and generated tester MRPT . The test
adapters shown in Figure 7 interface symbolic interactions specified by channels in the
model with real interface of IUT. These channels are distinguished by name convention.
We use names in and out in the model and they are intercepted by dTron and executed
by adapters. Adapters translate synchronizations in the model in to actions against the
actual system and feed information back to the model.
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Figure 8. IUT and RPT models

Table 1. Tester input and output variables.

Input Output
Variable Meaning Variable Meaning

i1 login o1 login sucessful
i2 select controller (for setting) o2 login failed
i3 set light on o3 empty selection of controllers
i4 set light off o4 mode setting menu for chosen controllers
i5 dimming the light o5 status report “light on”
i6 logout o6 status report “light of”

o7 status report “light dimmed”
o8 log out completed

Table 2. Pre-execution correctness checks of tests.

Correctness condition Verification method

Output observability of MIUT Static analysis of test stimulus - response pairs
Connected control structure of MIUT Generating canonical tester and running query 1
Input enabledness of MIUT Transformation 1 (see Section 2.2 )
Strong responsivness of MIUT Algorithm 1 (see Section 2.2 )
Coverage correctness of MRPT Model checking query 2
Time-bound checks of tests Compaction procedure (Section 3.2), calculate 4

The tester is controlling that the test run will cover traps t[1] and t[2]. The inputs and
outputs of MIUT are explained in the table 1.

The timing constraints of IUT are specified in MIUT as follows:

• TO denotes the time-out to log off after being logged in if there is no activity over
UI during TO time units

• All actions controllable and observable over UI have pre-specified duration inter-
val [Rl,Ru]. If the responses to IUT inputs do not conform with given interval the
timing conformance test fail is reported. Implicitly [Rl,Ru] includes also param-
eter Δ. The estimate Δ̂ of Δ is generated by dTron as the result of monitoring the
traffic logs at the planned test interface

Before running the executable test dTron performs a sequence of test model verifi-
cations. Table 2 illustrates the verification tasks available with current version of dTron.
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6. Conclusion

We have proposed a MBT testing workflow that incorporates steps of IUT modelling, test
specification, generation, and execution that are alternating with their correctness verifi-
cation steps. The online testing approach of timed systems proposed relies on Reactive
Planning Tester (RPT) synthesis algorithm and distributed test execution environment
dTron. As shown in the paper the behaviour of generated RPT tester model does not set
extra timing constraints to controllable input/output of IUT and the on-line decisions of
the tester do not depend on the timing of IUT. dTron provides support to estimate time
delays in real test configuration and allows to take them into account while verifying the
test correctness properties with real environment delay constraints. This is a first prac-
tical step towards provably correct automated test generation for Δ-testing outlined as a
new MBT challenge in [4].
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Model-based integration testing of ROS packages:
a mobile robot case study

Juhan Ernits, Evelin Halling, Gert Kanter and Jüri Vain

Abstract—We apply model-based testing – a black box testing
technology – to improve the state of the art of integration testing
of navigation and localisation software for mobile robots built
in ROS. Online model-based testing involves building executable
models of the requirements and executing them in parallel with
the implementation under test (IUT). In the current paper we
present an automated approach to generating a model from the
topological map that specifies where the robot can move to. In
addition, we show how to specify scenarios of interest and how
to add human models to the simulated environment according
to a specified scenario. We measure the quality of the tests
by code coverage, and empirically show that it is possible to
achieve increased test coverage by specifying simple scenarios
on the automatically generated model of the topological map.
The scenarios augmented by adding humans to specified rooms
at specified stages of the scenario simulate the changes in the
environment caused by humans. Since we test navigation at
coordinate and topological level, we report on finding problems
related to the topological map.

I. INTRODUCTION

The software for robots gets increasingly complex as
computational resources keep increasing at reduced power
budgets. Thus it has become possible to develop software that
enables robots to cope in realistic human environments. The
current research in, e.g. long term behaviour of mobile robots is
concerned with changing environments involving humans and
human interaction with robots. The research targets specific
scenarios e.g. involving recurring robot behaviour over time
in dynamic environments as in [14], [1], and techniques to
reason about changing scenes, as in [16], [15]. Such problems
stem from the dynamic nature of human environments and the
need for robots to cope in them.

While the current robotics research advances the frontiers
of what can be achieved by robots, we are aware of relatively
moderate amount of work done on how to test robot software
to ensure that such solutions are robust and actually work
as expected. Evaluation and testing such software is often
achieved by running extended tests on real hardware and in
simulation. But how much testing is enough? When different
development teams develop separate components, how can the
influence of a changeset on the overall system behaviour be
efficiently evaluated?

Most contemporary software for robots uses some kind
of data sharing framework to fascilitate interconnection of
sensors, various data processing nodes and actuators. While
there exist several such frameworks, we target ROS [18] as a
representative and widely used such framework.
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The primary focus of the current paper is how to improve
the state of the art of integration testing ROS packages involved
in high level robot control, such as e.g. localisation and
navigation of mobile robots.

In order not to delve into the very basics of integration test-
ing, it is useful to assume that there is some kind of integration
testing system in place, e.g. Jenkins [13]. Jenkins attempts to
build all software that gets uploaded to the repository and run
the existing tests. When the tests pass, the Jenkins instance can
be instructed to upload the binaries to a distribution site. Our
goal is to support such integration testing scenario and provide
feedback whether some lines of code, e.g. the ones that just
got updated, were active in certain test scenarios or not.

We take the approach of Robot Unit Testing [6] and extend
it in two ways: first we introduce a white box metric of
code coverage, in particular statement and branch coverage,
as a quality measure of the tests. Second, we combine a
technique called model-based testing [19] into the test setup,
that allows us to formalise the requirements of the system into
a formal model and check the conformance of the formalised
requirements to the implementation under test (IUT), in our
case the appropriate stack of ROS packages together with
either a real or simulated set of sensors and actuators.

The experiments involve modelling and testing the nav-
igation and localisation components of the software stack
developed in the STRANDS1 project. The stack was cho-
sen because it involves multiple layers of functionality on
top of the standard ROS move_base mobile base package
that is responsible for accomplishing navigation, it is open
sourced, accessible on GitHub, contains a working simulation
environment built using Morse [7], and many existing quality
assurance techniques are actively used in the project, including
unit tests and a Jenkins based continuous integration system.

A. Test metrics

In order to evaluate and compare different test methods, it
is important to quantitatively measure the results. There exist
several metrics for software tests, like the number of code
errors found, number of test cases per requirement, number of
successful test cases etc, that are difficult to apply in our setting
where the requirements are not completely clear. Instead we
will use the metric of statement and branch coverage of the
ROS packages that we are interested in and we prefer tests
that excercise a larger percentage of the robot code.

It is important to keep in mind that 100% statement
coverage does not guarantee that the code is bug free. On

1Spatio-Temporal Representation and Activities for Cognitive Control in
Long-Term Scenarios (STRANDS). The project is funded by the EC 7th
Frameworks Programme, Cognitive Systems and Robotics, project reference
600623.978-1-4673-9163-4/15/$31.00 c© 2015 IEEE



the other hand, code coverage is a metric that gives some idea
about how much of the code gets touched by the tests.

Another relevant metric in the setting of ROS is perfor-
mance, i.e. how much CPU and memory resources get used
by certain nodes under certain scenarios. We will only use
the code coverage metric in the current paper as we have no
reference for evaluating the performance results in the context
of the chosen case study and monitoring performance has been
addressed in e.g. [17] previously.

For computing code coverage of Python modules we use
the tool coverage.py [4]. The approach is programming
language agnostic, for example, llvm-cov or gcov can be
used for measuring C++ code coverage in ROS with little
additional effort.

B. Model-based testing

Model-based testing is testing on a model that describes
how the system is required to behave. The model, built in
a suitable machine interpretable formalism, can be used to
automatically generate the test cases, either offline or online,
and can also be used as the oracle that checks if the IUT passes
the tests. Offline test generation means that tests are generated
before test execution and executed when needed. In the case
of online test generation the model is executed in lock step
with the IUT. The communication between the model and the
IUT involves controllable inputs of the IUT and observable
outputs of the IUT. For example, we can tell the robot to go
to a node called Station, and we can observe if and when the
robot achieves the goal.

There are multiple different formalisms used for building
models of the requirements. Our choice is Uppaal timed
automata (TA) [5] because the formalism naturally supports
state transitions and time and there exists the Uppaal Tron
[11] tool that supports online model-based testing.

II. RELATED WORK

A. Testing in ROS

Testing is required in the ROS quality assurance process2,
meaning that a package needs to have tests in order to comply
with the ROS package quality requirements. However, the
requirement is compulsory only for centrally maintained ROS
packages and it is up to the particular maintainers to choose
their quality assurance process.

The ROS infrastructure supports different levels of testing.
The basic testing methodology used in ROS is unit testing.
The most used testing tools in ROS unit testing are gtest
(Google C++ testing framework), unittest (Python unit testing
framework) and nosetest (a more user-friendly Python unit
testing framework, which extends the unittest framework).
Using the aforementioned tools is not a strict requirement as
the tools are agnostic to which testing framework is used. The
only requirement is that the used testing framework outputs
the test results in a suitable XML format (Ant JUnit XML
report format).

ROS has support for higher level integration tests as well.
Integration testing can be done using the rostest package,

2http://wiki.ros.org/QAProcess

which is a wrapper for the roslaunch tool. Rostest allows
specifying complex configurations of tests, which enables
integration testing of different packages.

The ROS build tool (catkin_make) has built-in support
for testing and it is fairly simple to include tests for the
package. The main concern, however, is with creating the tests
as it is up to the developer to write the tests for their packages.
This can be difficult, because many robotics packages deal with
dynamic data (e.g. object detection from image stream) and
testing with dynamic data is more challenging than unit testing
simple functions. For this reason, many developers neglect
creating unit tests.

To our knowledge there is relatively little research pub-
lished on testing robot software in ROS, but we think it
deserves further attention, since it is not trivial to apply the
testing techniques known in the field of software engineering
to robot software. Bihlmaier and Wörn [6] introduced RUT
(Robot Unit Testing) methodology to bring modern testing
techniques to robotics. They outline the process of testing
robots utilizing a simulation environment (e.g. Gazebo or
MORSE) and control software to test robot performance and
correctness of the control algorithm without actually running
the tests on real hardware. Our approach follows theirs, but
we have firstly introduced quantified measurement of Python
code in the context of ROS and secondly embedded online
model-based testing into the ROS framework, that enables not
only to drive the system through scenarios deemed interesting
by the developers, but also checks if the behaviour conforms
to the models, i.e. formalised requirements.

Robotic environments entail uncertainty, and testing in
the presence of uncertainty is a hard problem, especially
automatically deciding whether a test succeeded or failed.
There is an attempt to address the issue in [8] where some ideas
in the future handling of uncertainty in testing are outlined. The
main emphasis is on using probabilistic models to specify input
distributions and to accommodate environment uncertainty in
the models. We take a different approach to accommodating
uncertainty by abstracting behaviour and measuring whether
goals are reached within reasonable time limits.

B. Robot monitoring and fault detection

Several fault detection and monitoring approaches in con-
junction with robotic frameworks have been proposed, e.g.
[10], [12], [17], that enable to detect various faults in robot
software. These complement our approach, as we introduce
monitoring conformance to certain aspects of specifications
that we have encoded into our model, e.g. that the robot
makes reasonable progress from topological location to another
connected topological location. Our approach differs from the
above in the sense that in addition to monitoring, we also
provide control inputs to the system. In fact, we get the
continuous patrolling feature for free, as we generate the model
from the topological map.

III. MODELLING ROBOT REQUIREMENTS WITH TIMED
AUTOMATA

The overall test setup used in the context of model-based
testing with Uppaal Tron as the test engine and dTron as the
adapter generation framework is given in Fig. 1. The model



contains the formalisation of the requirements of the IUT
and the environment. We model the topological map of the
environment and encode distances as deadlines. The adapter
is responsible for translating messages from the model to
postings to appropriate topics in ROS, and vice versa. The
dTron layer allows the adapter to be distributed across multiple
computers while ensuring that measuring the time stays valid.

 

 

 

 

Uppaal Tron 

dTron 

Fig. 1. The test setup involving the Uppaal Tron test engine and the distributed
adapter library dTron.

The test configuration used in the current work consists
of test execution environment dTron and one or many test
adapters that transform abstract input/output symbols of the
model to input/output data of the robot. The setup is outlined
in Fig. 1. Uppaal Tron is used as a primary test execution
engine. Uppaal Tron simulates interactions between the IUT
and its environment by having two model components – the
environment and the implementation model. The interactions
between these component models are monitored during model
execution. When the environment model initiates an input
action i Tron triggers input data generation in the adapter
and the actual test data is written to the robot interface.
In response to that, the robot software produces output data
that is transformed back to model output o. Thereafter, the
equivalence between the output returned and the output o
specified in the model is checked. The run continues if there is
no conformance violation, i.e. there exists an enabled transition
in the model with parameters equivalent to those passed by the
robot. In addition to input/output conformance, the rtiocoe
checking supported by Uppaal Tron also checks for timing
conformance. We refer the reader to [5] for the details.

A. Uppaal Timed Automata

Uppaal Timed Automata [5] (TA) used for the specification
of the requirements are defined as a closed network of extended
timed automata that are called processes. The processes are
combined into a single system by the parallel composition
known from the process algebra CCS. An example of a system
of two automata comprised of 3 locations and 2 transitions
each is given in Fig. 2.

The nodes of the automata are called locations and the di-
rected edges transitions. The state of an automaton consists of
its current location and assignments to all variables, including
clocks. The initial locations of the automata are graphically
denoted by an additional circle inside the location.

Synchronous communication between the processes is by
hand-shake synchronisation links that are called channels. A
channel relates a pair of transitions labelled with symbols for
input actions denoted by e.g. chA? and chB? in Fig. 2, and
output actions denoted by chA! and chB!, where chA and
chB are the names of the channels.

Fig. 2. A sample system with two Uppaal timed automata with synchroni-
sation channels chA and chB. The automaton at the top denotes Process i
and the one below Process j. In addition to the automata, the model also
includes the declarations of channels chA and chB, integer constants lb=1,
ub=3, and initial_value=0, integer variables x and y, a clock cl, and
a function f(x) defined in a subset of the C language.

In Fig. 2, there is an example of a model that represents
a synchronous remote procedure call. The calling process
Process i and the callee process Process j both include three
locations and two synchronised transitions. Process i, initially
at location Start i, initiates the call by executing the send
action chA! that is synchronised with the receive action chA?
in Process j, that is initially at location Start j. The location
Operation denotes the situation where Process j computes the
output y. Once done, the control is returned to Process i by
the action chB!

The duration of the execution of the result is specified
by the interval [lb, ub] where the upper bound ub is given
by the invariant cl<=ub, and the lower bound lb by the
guard condition cl>=lb of the transition Operation→ Stop j.
The assignment cl=0 on the transition Start j → Operation
ensures that the clock cl is reset when the control reaches
the location Operation. The global variables x and y model
the input and output arguments of the remote procedure call,
and the computation itself is modelled by the function f(x)
defined in the Uppaal model.

Please note that in the general case these inputs and outputs
are between the processes of the model. The inputs and
outputs of the test system use channels labelled in a special
way described later. Asynchronous communication between
processes is modelled using global variables accessible to all
processes.

Formally the Uppaal timed automata are defined as follows.
Let Σ denote a finite alphabet of actions a, b, . . . and C a
finite set of real-valued variables p, q, r, denoting clocks. A
guard is a conjunctive formula of atomic constraints of the
form p ∼ n for c ∈ C,∼∈ {≥,≤,=, >,<} and n ∈ N+. We
use G(C) to denote the set of clock guards. A timed automaton
A is a tuple 〈N, l0, E, I〉 where N is a finite set of locations
(graphically denoted by nodes), l0 ∈ N is the initial location,
E ∈ N × G(C) × Σ × 2C × N is the set of edges (an edge
is denoted by an arc) and I : N → G(C) assigns invariants
to locations (here we restrict to constraints in the form: p ≤ n
or p < n, n ∈ N+. Without the loss of generality we assume
that guard conditions are in conjunctive form with conjuncts
including besides clock constraints also constraints on integer
variables. Similarly to clock conditions, the propositions on
integer variables k are of the form k ∼ n for n ∈ N, and
∼∈ {≤,≥,=, >,<}. For the formal definition of Uppaal TA
full semantics we refer the reader to [5].



Fig. 3. Automatically generated timed automaton representation of the topological map containing locations “ChargingPoint”, “Station” and “Reception”.

Fig. 4. Automatically generated timed automaton denoting the topological map (below) and the desired scenario (above).

Fig. 5. A scenario involving models of humans

B. Modelling the topological map

One of the general requirements of a mobile robot is that
it should be able to move around in its environment. We relate
the requirement to the topological map and state that the robot
should be able to move to the nodes of the topological map.
The details of how the topological map gets constructed for
the particular case study are given in [9], but for the purpose
of the current requirements, we assume that each node of the
topological map should be reachable by the robot and that
from each node, it should be possible to reach adjacent nodes
without having to visit any further nodes.

Since the topological map is an artefact frequently present
in mobile robots, we chose to automate the translation of the
topological map to the TA representation.

In Fig. 3 there is an example of a TA model of the
environment of a robot specifying where the robot should be
able to move and in what time the robot should be able to
complete the moves. The environment stipulates that when the
robot moves from the node called ChargingPoint to Station
on the topological map, it synchronises on the communication
channel i_goto with the robot model. This corresponds to
passing the command to the robot to go to the state number

16, which denotes the Station node on the topological map.
The destination node number is assigned on the transition
to a parameter i_goto_state that is passed along with
the synchronisation command to the test adapter which in
turn will pass the command to move to the Station node
on to the robot. There is an additional assignment on the
transition, res_g=16 which denotes that the current goal is
node 16, i.e. the Station node. The assignment cl_inv=25
means that the maximum time allowed for the robot to be
on its way from ChargingPoint to Station is 25 time units.
The clock cl is then reset to 0. The automaton transitions to
the intermediate location ChargingPoint Res where it awaits
reaching the Station node. When Station is reached, the robot
will indicate it to the test adapter which converts the indication
to the response o_response that is passed back to the model.
The guard res_g==16 only allows the transition to be taken
for the goal node 16. While on the second transition the guard
does not influence the behaviour as there is no other value
res_g can have taken, there is a choice on transitions starting
from the Station node. It is possible either to go back to the
ChargingPoint node when taking the transition below with the
assignment res_g=1 or go to the Reception node by taking
the transition above with the assignment res_g=13. Then, the



guards res_g==1 and res_g==13 will restrict which will
be the valid transition after the robot has reached the goal.
In this way the model will be able to distinguish which node
it started off to. If the robot for some reason wonders to a
wrong node or is kidnapped on the way without covering the
sensors, it will be detected as a conformance failure. Also,
if the robot takes too much time to reach another node, the
model will trigger an error. The time restrictions are enforced
by invariants cl<=cl_inv at the intermediate states. The
robot is modelled as an automaton with a single location and
the edges synchronising on the IUT input and output messages
– those denoted by the i_... and o_... channels. The
model of the robot is input enabled, i.e. it does not restrict any
behaviour, it is up to the implementation – the robot software.

In Fig. 4 there is a model where the behaviour is restricted
with a scenario. The model contains an automaton corre-
sponding to the topological map, an automaton corresponding
to a scenario above it, and an input enabled single location
automaton denoting the robot. Now there is one additional
intermediate state to facilitate synchronisation with the sce-
nario over the sc_chan channel. It is important to note
that when synchronisation over the sc_chan takes place, an
integer variable sc_g is assigned the value 13. After such
synchronisation, when the map model is at ChargingPoint Res
location, the only option to proceed is to the Reception
location. In this way a goal is set that is not an immediate
neighbour of the current node on the map.

If multiple such combinations of pairs are enabled, one
is chosen either randomly or according to some test coverage
criterion involving model elements. We have omitted the clock
resets and invariants from Fig. 4 for brevity. The automaton
with a single location denotes the model of the robot.

In our approach both models are automatically generated
from the topological map file in the yaml format. The time
delays allowed to transition from a node to node on the
topological map are computed based on the distances along
the edges between nodes and are computed with a margin to
accommodate time spent on turning. The resulting model is
able to detect situations when the robot gets stuck for example
when moving too close to a low wall in simulation or when
there is a link on the topological map that is not present in the
environment. In the case of scenarios we compute the length
of the shortest path between each pair of nodes specified in the
scenario and add appropriate time restrictions to the invariant
of the intermediate location introduced between the nodes on
the topological map automaton stipulated by the scenario.

In Fig. 5 we add the human factor to the environment.
As the simulator, Morse, supports models of humans, we
can create scenarios where humans are either moved around
or “teleported” to desired locations. We leave the actual
locations to be specified at the adapter level and specify in
the scenario automaton when which configuration of humans
should be present in certain rooms. This way we can change
the environment in chosen rooms and emulate varying patterns
involving humans.

We can think of the scenarios as high level test cases in
the context of integration testing. In the example above there
is a test case for moving along a predefined adjacent set of
nodes, one for moving to a remote location on the topological

map, and one moving throught rooms with humans present.

In addition to actual testing, such scenarios run in cycles
can be used for generating data, e.g. representing long term
behaviour in simulation. As we can leave certain parts of the
scenario less strictly specified, the model-based testing tool
will vary the scenarios randomly.

Once a test failure is encountered, the search for the causes
is currently left to the user. If the problem is repeatable after a
certain patch set, the problem obviously may be related to the
patch set, but it may also be the problem with the simulator
or wrong estimates of deadlines in the model. The process of
getting the requirements related to the model right requires
work, that can be considered the overhead in our approach.

IV. TEST EXECUTION

In order to connect the model to the robot we need an
adapter (sometimes called harness) that connects the abstract
messages from the model to the concrete messages compre-
hensible by the robot and vice versa. We use the dTron tool
to fascilitate connecting our ROS adapter to Uppaal Tron. We
refer to the dTron setup as the tester.

A. dTron

dTron3 [3] extends the functionality of Uppaal Tron by
enabling distributed and coordinated execution of tests across
a computer network. It relies on Network Time Protocol (NTP)
based clock corrections to give a global timestamp (t1) to
events arriving at the IUT adapter. These events are then
globally serialized and published to other subscribers using the
Spread toolkit [2]. Subscribers can be other IUT adapters, as
well as dTron instances. Subscribers that have clocks synchro-
nised with NTP also timestamp the event received message
(t2) to compute and if necessary and possible, compensate for
the messaging overhead D = t2 − t1. The parameter D is
essential in real-time executions to compensate for messaging
delays in test verdict that may otherwise lead to false-negative
non-conformance results for the test-runs.

B. ROS test adapter

We have created a test adapter that can be used as a
template for test adapters in any similar dTron-based MBT
setup. The template adapter is implemented in C++ and the
specific case study inherits from the template adapter and
implements the one specific to the case study. The template
adapter has the implementations for receiving and sending
messages between the tester and the adapter – a generic
prerequisite for performing model-based testing with dTron.

In essence, the test adapter specifies what is to be done
when a synchronisation message is received from the tester. In
the mobile robot case, the model specifies the goal waypoint
where the robot must travel. Upon receiving the waypoint
information via a synchronisation message (i_... channel),
it is either passed as a goal to the standard ROS move_base
action server or the action server responsible for topological
navigation – topological_navigation, depending on
which level we choose to run the tests. In the implementation
the goal topic is specified in the configuration of the adapter.

3http://www.cs.ttu.ee/dtron



After publishing the goal, the adapter waits for the action
server to return a result for the action (i.e. whether it was
successful or not). In case the action was successful, the
adapter sends a synchronisation message (o_... channel)
back to the tester and waits for a new goal to be passed on
to the action server. If the goal was not achieved, the adapter
does not send a synchronisation to the tester and the tester will
detect a time-out and report the test failure.

V. EXPERIMENTAL RESULTS

We specified different scenarios, i.e. high level test
cases, and ran the tests in two different simulated environ-
ments4 and repeated same scenarios by sending the goals to
the move_base and topological_navigation action
servers. The results are summarised in Table I and the highest
coverage results for the particular test case for each package
are highlighted in cases they can be distinguished. The “Total”
columns represent total number of statements of Python code
in the package, “Missed” columns represent the number of
statements missed, and the “%” columns represent a combined
statement and branch coverage percentage. That is why there
are same statement counts but different percentages in the
results of e.g. the localisation node.

Initially we tested the code coverage by manu-
ally specifying a neigbouring node on the topological
map to move_base. Then we proceeded giving the
same topological node to the robot as a goal via the
topological_navigation action server. These are the
rows marked by manual goal.

Then we repeated the same neighbouring node goals, but
controlled the robot from the model (rows marked by model).
It is expected that the code coverage is very close in these
cases.

Next we specified a scenario with the goal node not being
a neighbour. It can be seen from the results that signifi-
cantly more code was exercised in the topological naviga-
tion node in the case of scenarios with goals passed to the
topological_navigation action server.

Next we tested the scenario when human models are
moved to different locations in a room and robot is given
tasks to enter and leave the room. We managed to run
the tests when passing goals to move_base, but the
topological_navigation case failed because the robot
got stuck with “DWA planner failed to produce path” error
from move_base. We cannot confirm the problem to be
a code error, as it can also be related to a local simulator
configuration. But we have successfully demonstrated that it
is possible to produce code coverage results in cases where
the tests succeed and point out scenarios where the goals are
not reached.

We also augmented the topological map with a transition
through a wall. The test system yielded a test failure based on
exceeding the deadline for reaching the node.

We used different versions of code in C1 and C2, that
is why there is are slightly different statement counts in

4C1 corresponds to AAF simulation environment and C2 to Bham SoCS
building ground floor simulation environment.

similar components. C1 experiments were done on STRANDS
packages taken from the GIT repository while C2 experi-
ments were done using current versions of packages avail-
able from the Ubuntu Strands deb package repository. In
the case of the actionlib package, it appears that more
code is utilized in the case of topological navigation. The
strands_navigation package contains only messages in
Python, thus there are very little differences in coverage. In
the topological_navigation module utilisation there
is clear correlation between the use of topological goals and
code coverage. The localisation node uses practically the
same amount of code regardless of the scenario. In the case of
the navigation node the difference is the largest and there
is clear correlation between larger code coverage and harder
navigation tasks5.

When interpreting the results it is important to keep in mind
that the coverage numbers are for single high level test cases.
When analysing e.g. the navigation package coverage,
then the code covered in the move_base case is a subset
of the coverage in the topological_navigation case.
Developing a test suite with a higher total code coverage is
an iterative process of running the tests and looking at what
code has still been missed. In the current case study, the test
suite needs to be extended with a scenario with a goal that
is the same as the current node, there need to be scenarios
triggering the preemting of goals, and triggering several differ-
ent exceptions. Such behaviour requires extending the model,
and perhaps the adapter. While the coverage numbers of the
reported scenarios are below 100%, the added value provided
by the current approach lies in clear feedback, either in the
form of test failure, or in the case of success, what code was
used in the particular set of scenarios and what was missed.

VI. CONCLUSION

We presented a case study of applying model-based testing
in ROS and evaluating the results in terms of code coverage
of code related to topological navigation of mobile robots.
Relying on the empirical evidence, we conclude that the
proposed automatic generation of models from topological
maps and defining scenarios as sequences of states provides
a valuable tool of exercising the system with the purpose to
achieve high code coverage. By performing the tests on the
move_base coordinate level and topological navigation level,
we showed that our approach can also be used to validate
and discover problems in configurations, such as topological
maps. We also showed how to build models of the environment
involving human models in simulation. Similar scenarios can
be carried out also in real life, but then the test adapter needs
to be changed to give humans instructions when and where to
move to, and when humans are in place, the adapter can return
to giving the robot next goals.

The future work on the model and adapter side involves
extending the dynamic reconfiguration of the environment, e.g.
connecting collision detection probes in Morse with the test
adapter and introducing natural human movement. Improving
the code coverage requires insight into the packages and man-
ual extension of model and the adapter to support triggering
various exceptions and other specific actions.

5The code and detailed coverage statistics is available at http://cs.ttu.ee/
staff/juhan/mobile robot mbt/.



TABLE I. THE EXPERIMENTAL RESULTS OF MODEL-BASED TESTING A MOBILE ROBOT IN SIMULATION IN TWO DIFFERENT VIRTUAL ENVIRONMENTS,
C1 AND C2.
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C1 manual goal move base 1347 733 46 13024 10969 16 1954 1502 23 154 37 72 349 251 24
C2 manual goal move base 1347 872 35 13024 10902 16 1789 1479 17 154 37 73 344 247 24
C1 model goal move base 1347 733 46 13024 10969 16 1954 1502 23 154 37 73 349 251 24
C2 model goal move base 1347 872 35 13024 10902 16 1789 1479 17 154 37 73 344 247 24
C1 manual goal topo-nav 1347 565 58 13024 10832 17 1954 1335 32 154 37 72 349 99 64
C2 manual goal topo-nav 1347 678 50 13024 10864 17 1789 1346 25 154 37 73 344 159 48
C1 model goal topo-nav 1347 598 56 13024 10832 17 1954 1335 32 154 37 73 349 97 65
C2 model goal topo-nav 1347 615 54 13024 10749 17 1789 1311 27 154 37 73 344 98 64

C1 scenario topo-nav 1347 598 56 13024 10832 17 1954 1315 33 154 37 73 349 77 72
C2 scenario move base 1347 872 35 13024 10902 16 1789 1475 18 154 37 73 344 247 24
C2 scenario topo-nav 1347 613 54 13024 10749 17 1789 1286 28 154 37 73 344 73 73

C2 scenario with humans move base 1347 871 35 13024 10902 16 1789 1479 17 154 37 73 344 247 24
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Abstract. Low-latency systems where reaction time is primary success factor and
design consideration, are serious challenge to existing integration and system level
testing techniques. Modern cyber physical systems have grown to the scale of
global geographic distribution and latency requirements are measured in nanosec-
onds. While existing tools support prescribed input profiles they seldom provide
enough reactivity to run the tests with simultaneous and interdependent input pro-
files at remote front ends. Additional complexities emerge due to severe timing
constraints the tests have to meet when test navigation decision time ranges near the
message propagation time. Sufficient timing conditions for remote online testing
have been proposed in remote Δ-testing method recently. We extend the Δ-testing
by deploying testers on fully distributed test architecture. This approach reduces the
test reaction time by almost a factor of two. We validate the method on a distributed
oil pumping SCADA system case study.

Keywords. model-based testing, distributed systems, low-latency systems

1. Introduction

Modern large scale cyber-physical systems have grown to the size of global geo-
graphic distribution and their latency requirements are measured in microseconds or even
nanoseconds. Such applications where latency is one of the primary design consider-
ations are called low-latency systems and where it is of critical importance – to time
critical systems. A typical example of distributed time critical system is smart energy
grid (SEG) where delayed control signals can cause overloads and blackouts of whole
regions. Thus, the proper timing is the main measure of success in SEG and often the
hardest design concern.

Since large SEG-s systems are mostly distributed systems (by distributed systems
we mean the systems where computations are performed on multiple networked com-
puters that communicate and coordinate their actions by passing messages), their latency
dynamics is influenced by many technical and non-technical factors. Just to name a few,
energy consumption profile look up time (few milliseconds) may depend on the load
profile, messaging middleware and the networking stacks of operating systems. Simi-
larly, due to cache miss, the caching time can grow from microseconds to about hundred
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milliseconds [1]. Reaching sufficient feature coverage by integration testing of such sys-
tems in the presence of numerous latency factors and their interdependences, is out of the
reach of manual testing. Obvious implication is that scalable integration and system level
testing presumes complex tools and techniques to assure the quality of the test results
[2]. To achieve the confidence and trustability, the test suites need to be either correct by
construction or verified against the test goals after they are generated. The need for au-
tomated test generation and their correctness assurance have given raise to model based
testing (MBT) and the development of several commercial and academic MBT tools. In
this paper, we interpret MBT in the standard way, i.e. as conformance testing that com-
pares the expected behaviors described by the system requirements model with the ob-
served behaviors of an actual implementation (implementation under test). For detailed
overview of MBT and related tools we refer to [3] and [4].

2. Related Work

Testing distributed systems has been one of the MBT challenges since the beginning of
the 90s. An attempt to standardize the test interfaces for distributed testing was made
in ISO OSI Conformance Testing Methodology [5]. A general distributed test architec-
ture, containing distributed interfaces, has been presented in Open Distributed Processing
(ODP) Basic Reference Model (BRM), which is a generalized version of ISO distributed
test architecture. First MBT approaches represented the test configurations as systems
that can be modeled by finite state machines (FSM) with several distributed interfaces,
called ports. An example of abstract distributed test architecture is proposed in [6]. This
architecture suggests the Implementation Under Test (IUT) contains several ports that
can be located physically far from each other. The testers are located in these nodes
that have direct access to ports. There are also two strongly limiting assumptions: (i) the
testers cannot communicate and synchronize with one another unless they communicate
through the IUT, and (ii) no global clock is available. Under these assumptions a test
generation method was developed in [6] for generating synchronizable test sequences
of multi-port finite state machines. However, it was shown in [7] that no method that is
based on the concept of synchronizable test sequences can ensure full fault coverage for
all the testers. The reason is that for certain testers, given a FSM transition, there may
not exist any synchronizable test sequence that can force the machine to traverse this
transition. This is generally known as controllability and observability problem of dis-
tributed testers. These problems occur if a tester cannot determine either when to apply a
particular input to IUT, or whether a particular output from IUT is generated in response
to a specific input [8]. For instance, the controllability problem occurs when the tester at
a port pi is expected to send an input to IUT after IUT has responded to an input from the
tester at some other port p j, without sending an output to pi. The tester at pi is unable to
decide whether IUT has received that input and so cannot know when to send its input.
Similarly, the observability problem occurs when the tester at some port pi is expected
to receive an output from IUT in response to a given input at some port other than pi and
is unable to determine when to start and stop waiting. Such observability problems can
introduce fault masking.

In [8], it is proposed to construct test sequences that cause no controllability and
observability problems during their application. Unfortunately, offline generation of
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test sequences is not always applicable. For instance, when the model of IUT is non-
deterministic it needs instead of fixed test sequences online testers capable of handling
non-deterministic behavior of IUT. But even this is not always possible. An alternative is
to construct testers that includes external coordination messages. However, that creates
communication overhead and possibly the delay introduced by the sending of each mes-
sage. Finding an acceptable amount of coordination messages depends on timing con-
straints and finally amounts to finding a tradeoff between the controllability, observabil-
ity and the cost of sending external coordination messages.

The need for retaining the timing and latency properties of testers became crucial na-
tively when time critical cyber physical and low-latency systems were tested. Pioneering
theoretical results have been published on test timing correctness in [9] where a remote
abstract tester was proposed for testing distributed systems in a centralized manner. It
was proven that if IUT ports are remotely observable and controllable then 2Δ-condition
is sufficient for satisfying timing correctness of the test. Here, Δ denotes an upper bound
of message propagation delay between tester and IUT ports. However, this condition
makes remote testing problematic when 2Δ is close to timing constraints of IUT, e.g. the
length of time interval when the test input has to reach port has definite effect on IUT.
If the actual time interval between receiving an IUT output and sending subsequent test
stimulus is longer than 2Δ the input may not reach the input port in time and the test goal
cannot be reached.

In this paper we focus on distributed online testing of low latency and time-critical
systems with distributed testers that can exchange synchronization messages that meet Δ-
delay condition. In contrast to the centralized testing approach, our approach reduces the
tester reaction time from 2Δ to Δ. The validation of proposed approach is demonstrated
on a distributed oil pumping SCADA system case study.

3. Preliminaries

3.1. Model-Based Testing

In model-based testing, the formal requirements model of implementation under test
describes how the system under test is required to behave. The model, built in a suitable
machine interpretable formalism, can be used to automatically generate the test cases,
either offline or online, and can also be used as the oracle that checks if the IUT behavior
conforms to this model. Offline test generation means that tests are generated before test
execution and executed when needed. In the case of online test generation the model is
executed in lock step with the IUT. The communication between the model and the IUT
involves controllable inputs of the IUT and observable outputs of the IUT.

There are multiple different formalisms used for building conformance testing mod-
els. Our choice is Uppaal timed automata (TA) [10] because the formalism is designed to
express the timed behavior of state transition systems and there exists a family of tools
that support model construction, verification and online model-based testing [11].

3.2. Uppaal Timed Automata

Uppaal Timed Automata [10] (UTA) used for the specification of the requirements are
defined as a closed network of extended timed automata that are called processes. The
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processes are combined into a single system by the parallel composition known from the
process algebra CCS. An example of a system of two automata comprised of 3 locations
and 2 transitions each is given in Figure 1.

Figure 1. A parallel composition of Uppaal timed automata

The nodes of the automata are called locations and the directed edges transitions.
The state of an automaton consists of its current location and assignments to all variables,
including clocks. The initial locations of the automata are graphically denoted by an
additional circle inside the location.

Synchronous communication between the processes is by hand-shake synchroniza-
tion links that are called channels. A channel relates a pair of edges labeled with symbols
for input actions denoted by e.g. chA? and chB? in Figure 1, and output actions denoted
by chA! and chB!, where chA and chB are the names of the channels.

In Figure 1, there is an example of a model that represents a synchronous remote
procedure call. The calling process Process i and the callee process Process j both in-
clude three locations and two synchronized transitions. Process i, initially at location
Start i, initiates the call by executing the send action chA! that is synchronized with the
receive action chA? in Process j, that is initially at location Start j. The location Opera-
tion denotes the situation where Process j computes the output y. Once done, the control
is returned to Process i by the action chB!

The duration of the execution of the result is specified by the interval [lb,ub] where
the upper bound ub is given by the invariant cl<=ub, and the lower bound lb by the
guard condition cl>=lb of the transition Operation → Stop j. The assignment cl=0 on
the transition Start j → Operation ensures that the clock cl is reset when the control
reaches the location Operation. The global variables x and y model the input and output
arguments of the remote procedure call, and the computation itself is modelled by the
function f(x) defined in the declarations section of the Uppaal model.

The inputs and outputs of the test system are modeled using channels labeled in a
special way described later. Asynchronous communication between processes is mod-
eled using global variables accessible to all processes.

Formally the Uppaal timed automata are defined as follows. Let Σ denote a finite
alphabet of actions a,b, . . . and C a finite set of real-valued variables p,q,r, denoting
clocks. A guard is a conjunctive formula of atomic constraints of the form p ∼ n for
p∈C,∼∈ {≥,≤,=,>,<} and n∈N+. We use G(C) to denote the set of clock guards. A
timed automaton A is a tuple 〈N, l0,E, I〉 where N is a finite set of locations (graphically
denoted by nodes), l0 ∈ N is the initial location, E ∈ N ×G(C)×Σ× 2C ×N is the set
of edges (an edge is denoted by an arc) and I : N → G(C) assigns invariants to locations
(here we restrict to constraints in the form: p ≤ n or p < n,n ∈ N+. Without the loss
of generality we assume that guard conditions are in conjunctive form with conjuncts
including besides clock constraints also constraints on integer variables. Similarly to
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clock conditions, the propositions on integer variables k are of the form k ∼ n for n ∈ N,
and ∼∈ {≤,≥,=,>,<}. For the formal definition of Uppaal TA full semantics we refer
the reader to [12] and [10].

4. Remote Testing

The test purpose most often used in MBT is conformance testing. In conformance testing
the IUT is considered as a black-box, i.e., only the inputs and outputs of the system are
externally controllable and observable respectively. The aim of black-box conformance
testing according to [13] is to check if the behavior observable on system interface con-
forms to a given requirements specification. During testing, a tester executes selected
test cases on an IUT and emits a test verdict (pass, fail, inconclusive). The verdict shows
correctness in the sense of input-output conformance relation (IOCO) between IUT and
the specification. The behavior of a IOCO-correct implementation should respect after
some observations following restrictions:

(i) the outputs produced by IUT should be the same as allowed in the specification;
(ii) if a quiescent state (a situation where the system can not evolve without an

input from the environment [14]) is reached in IUT, this should also be the case in the
specification;

(iii) any time an input is possible in the specification, this should also be the case in
the implementation.

The set of tests that forms a test suite is structured into test cases, each addressing
some specific test purpose. In MBT, the test cases are generated from formal models that
specify the expected behavior of the IUT and from the coverage criteria that constrain
the behavior defined in IUT model with only those addressed by the test purpose. In our
approach Uppaal Timed Automata (UTA) [10] are used as a formalism for modeling IUT
behavior. This choice is motivated by the need to test the IUT with timing constraints so
that the impact of propagation delays between the IUT and the tester can be taken into
account when the test cases are generated and executed against remote real-time systems.

Another important aspect that needs to be addressed in remote testing is functional
non-determinism of the IUT behavior with respect to test inputs. For nondeterministic
systems only online testing (generating test stimuli on-the-fly) is applicable in contrast
to that of deterministic systems where test sequences can be generated offline. Second
source of non-determinism in remote testing of real-time systems is communication la-
tency between the tester and the IUT that may lead to interleaving of inputs and out-
puts. This affects the generation of inputs for the IUT and the observation of outputs that
may trigger a wrong test verdict. This problem has been described in [15], where the
Δ-testability criterion (Δ describes the communication latency) has been proposed. The
Δ-testability criterion ensures that wrong input/output interleaving never occurs.

4.1. Centralized Remote Testing

Let us first consider a centralized tester design case. In the case of centralized tester, all
test inputs are generated by a single monolithic tester. This means that the centralized
tester will generate an input for the IUT, waits for the result and continues with the next
set of inputs and outputs until the test scenario has been finished. Thus, the tester has to
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wait for the duration it takes the signal to be transmitted from the tester to the IUT’s ports
and the responses back from ports to the tester. In the case of IUT being distributed in a
way that signal propagation time is non-negligible, this can lead into a situation where
the tester is unable to generate the necessary input for the IUT in time due to message
propagation latency. These timing issues can render testing an IUT impossible if the IUT
is a distributed real-time system.

Figure 2. Remote tester communication architecture

To be more concrete, let us consider the remote testing architecture depicted in Fig-
ure 2 and the corresponding model depicted in Figure 3 and 4. In this case the IUT has 3
ports (p1, p2, p3) in geographically different places to interact within the system, inputs
i1, i2 and i3 at ports p1, p2 and p3 respectively and outputs o1 at port p1, o2 at port p2, o3
at port p3.

Figure 3. IUT model

We model a multi-ports timed automata by splitting the edges with multiple com-
munication actions to a sequence of edges each labeled with exactly one action and con-
nected via committed locations, so that all ports of such group are updated at the same
time. In Figure 4 the labels on the edges represent the transitions and the transition tuple
(L0, L1, i1! /(o1?, o2?)) is represented by sequence of edges each labeled with exactly one
action and connected via committed locations. For example the sequence of edges from
location L0 to L1 with labels i1!, o1? and o2? represents the multiple communication
actions where the input i1! at port p1 in location L0 being able to trigger a transition that
leads to the output o1? and o2? at ports p1, p2 respectively and the location becoming L1.

Using such splitting of edges with committed locations, we model a three port au-
tomata shown in Figure 4 where the tester sends an input i1 to the port p1 at Geographic
Place 1 and receives a response or outputs o1 and o2 from IUT at Geographic Place

1 and Geographic Place 2 respectively. After receiving the result, the tester is in lo-
cation L1, it gets both i3 on port p3 and i2 on port p2. Then, either it follows the intended
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Figure 4. Remote Tester model

path sending i3 before i2, or it sends i2 before i3. If tester decides to send i3 before i2 it
receives an output o1 at port p1 and returns to location L1. The transition is a self loop
if its start and end locations are the same. If tester decides to send i2, the IUT responds
with an output o3 at port p3. Now, the tester is in location L2, it gets both i1 on port p1
and i2 on port p2. Based on guard condition and previously triggered inputs and received
outputs the next input is sent to IUT and tester continues with the next set of inputs and
outputs until the test scenario has been finished.

The described IUT is a real-time distributed system, which means that it has strict
timing constraints for messaging between ports. More specifically, after sending the first
input i1 to port p1 at Geographic Place 1 and after receiving the response o1 and o2
at Geographic Place 1 and Geographic Place 2 respectively, the tester needs to
decide and send the next input i2 to port p2 at Geographic Place 2 or input i3 to port
p3 at Geographic Place 3 in Δ time. But, due to the fact that the tester is not at the
same geographical place as the distributed IUT, it is unable to send the next input in time
as the time it takes to receive the response and send the next input amounts to 2Δ, which
is double the time allotted for the next input signal to arrive.

Consequently, the centralized remote testing approach is not suitable for testing a
real-time distributed system if the system has strict timing constraints with non negligi-
ble signal propagation times between system ports. To overcome this problem, the cen-
tralized tester is decomposed and distributed as described in the next section.

5. Distributed Testing

The shortcoming of the centralized remote testing approach is mitigated with extend-
ing the Δ-testing idea by decomposing the monolithic remote tester into multiple local
testers. These local testers are directly attached to the ports of the IUT. Thus, instead of
bidirectional communication between a remote tester and the IUT, only unidirectional
synchronization between the local testers is required. The local testers are generated in
two steps: at first, a centralized remote tester is generated by applying the reactive plan-
ning online-tester synthesis method of [16], and second, a set of synchronizing local
testers is derived by decomposing the monolithic tester into a set of location specific
tester instances. Each tester instance needs to know now only the occurrence of i/o events
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Figure 5. Distributed Local testers communication architecture

at other ports which determine its behavior. Possible reactions of the local tester to these
events are already specified in its model and do not need further feedback to the event
sender. The decomposing preserves the correctness of testers so that if the monolithic re-
mote tester meets 2Δ requirement then the distributed testers meet (one) Δ-controllability
requirement.

We apply the algorithm described in 5.1 to transform the centralized testing architec-
ture depicted in Figure 2 into a set of communicating distributed local testers, the archi-
tecture of which is shown in Figure 5. After applying the algorithm, the message prop-
agation time between the local tester and the IUT port has been eliminated because the
tester is attached directly to the port. This means that the overall testing response time is
also reduced, because previously the messages had to be transmitted over a channel with
latency bidirectionally. The resulting architecture mitigates the timing issue by replacing
the bidirectional communication with a unidirectional broadcast of the IUT output sig-
nals between the distributed local testers. The generated local tester models are shown in
Figure 6, Figure 7, Figure 8 and Figure 9.

Figure 6. Local tester at Geographic Place 1 Figure 7. Local tester at Geographic Place 2
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Figure 8. Local tester at Geographic Place 3

Figure 9. Output Event Synchronizer

5.1. Tester Distribution Algorithm

Let MMT denote a monolithic remote tester model generated by applying the reactive
planning online-tester synthesis method [16]. Loc(IUT ) denotes a set of geographically
different port locations of IUT . The number of locations can be from 1 to n, where n ∈N
i.e. Loc(IUT ) = {ln|n ∈ N}. Let Pln denotes a set of ports accessible in the location ln.

1. For each l, l ∈ Loc(IUT ) we copy MMT to Ml to be transformed to a location
specific local tester instance.

2. For each Ml we go through all the edges in Ml . If the edge has a synchronizing
channel and the channel does not belong to the the set of ports Pln , we do the
following:

• if the channel’s action is send, we replace it with the co-action receive.
• if the channel’s action is receive, we do nothing.

3. For each Ml we add one more automaton that duplicates the input signals from
Ml to IUT , attached to the set of ports Pln and broadcasts the duplicates to other
local testers to synchronize the test runs at their local ports. Similarly the IUT
local output event observations are broadcast to other testers for synchronization
purposes like automaton in Figure 9.

6. Correctness of Tester Distribution Algorithm

To verify the correctness of distributed tester generation algorithm we check the bi-
simulation equivalence relation between the model of monolithic centralized tester and
that of distributed tester. For that the models are composed by parallel compositions so
that one has a role of words generator on i/o alphabet and other the role of words acceptor
machine. If the i/o language acceptance is established in one direction then the roles of
models are reversed. Since the i/o alphabets of remote tester and distributed tester differ
due to synchronizing messages of distributed tester the behaviors are compared based on
the i/o alphabet observable on IUT ports only. Second adjustment of models to be made
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for bi-simulation analysis is the reduction of message propagation delays to uniform ba-
sis either on Δ or 2Δ in both models. Assume (due to closed world assumption used in
MBT):

• the centralized remote tester model: Mremote = TAIUT ‖ TAr−T ST

• the distributed tester model: Mdistrib = TAIUT ‖ �i TAd−T ST
i i = [1, n], n - number

of ports locations.
• to unify the timed words TW (Mremote) and TW (Mdistrib) the communication de-

lay between IUT and Tester is assumed.

Definition (correctness of tester distribution mapping): The mapping Mremote Algorithm
−−−−−→
Mdistrib is correct if TAr−T ST and �i TAd−T ST

i are observation bisimilar, i.e. if TAr−T ST and
�i TAd−T ST

i are respectively generating and accepting automata on common i/o alphabet
Σi∪Σo then all timed words TW (TAr−T ST ) are recognizable by �i TAd−T ST

i and all timed
words TW(�i TAd−T ST

i ) are recognizable by TAr−T ST .
Here, alphabet Σi ∪ Σo includes i/o symbols used at IUT-TESTER interfaces of

Mremote and Mdistrib.
Correctness verification of the distribution mapping:
Step 1: (Constructing generating-accepting automata synchronous composition):

• label each output action of TAr−T ST with output symbol a! and its co-action in �i
TAd−T ST

i with input symbol a?;
• define parallel composition TAr−T ST ‖ �i TAd−T ST

i with synchronous i/o actions.

Step 2: (Bisimilarity proof by model checking): TAr−T ST and �i TAd−T ST
i are observation

bisimilar if following holds: Mremote � not deadlock ∧ Mdistrib � not deadlock ⇒
TAr−T ST ‖ � j TAd−T ST

j � not deadlock j = [1, n], n - number of local testers , i.e. the
composition of bisimilar testers must be non-blocking if the testers composed with IUT
model separately are non-blocking.

7. Case Study

7.1. Use Case

The benefit of using the proposed method is demonstrated in the use case of an EMS
(Energy Management System) which is integrated into the SCADA (Supervisory Con-
trol And Data Acquisition) system of an industrial consumer. An EMS is essentially a
load balancing system. The target of the balancing system is the load on power supplies
called feeders to an industrial consumer. These industrial power consumers have multiple
feeders to power the devices required for their operations (e.g., pumps and pipeline heat-
ing systems). The motivation for balancing the power consumption between the feeders
stems from the fact that the power companies can enforce fines on the industrial con-
sumers if the power consumption exceeds certain thresholds due to safety considerations
and possible damage to the equipment. Therefore, the consumer is motivated to share
the power consuming devices among the feeders minimize or eliminate such energy con-
sumption spikes completely.

Let us consider a use case in which an oil terminal has two feeders and multiple
power consuming devices (consumers). The number of consumers can range from some
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to many. In our use case we have 32 consumers, but in other cases it can be more. These
consumers are both pumps and pipeline heating systems. The pumps have a high surge
power consumption when starting up which must be taken into consideration when de-
signing an EMS. The EMS monitors the current consumption by polling the consumers
via a communication system (e.g., PROFIBUS, CAN bus or Industrial Ethernet). The
PROFIBUS communication system is standardized in EN 50170 international standard.

Because the oil terminal stores oil it is considered an explosion hazard area
and therefore, a special communication system that is certified for explosive areas -
PROFIBUS PA (Process Automation) is used. PROFIBUS PA meets the ‘Intrinsically
Safe’ (IS) and bus-powered requirements defined by IEC 61158-2. The maximum trans-
fer rate of PROFIBUS PA is 31.25 kbit/s which can limit the system response speed if
there are many devices connected to the PROFIBUS bus and each device has significant
input and output data load.

The EMS is able to switch devices from being supplied from either feeder. Ideally,
the power consumption is shared equally among both feeders at all times. This means
that the EMS monitors the devices and switches devices over to other feeders if the power
consumption is unbalanced among the feeders. In normal operation, the feeder loads are
kept sufficiently low to accommodate new devices starting up in a way that the surge
consumption will not exceed the threshold power of the feeders.

The EMS polls every power consumer periodically and updates the total consump-
tion. Based on this total consumption, the EMS will command the power distribution de-
vices to switch around from first feeder to the second in case the load on the first feeder
is higher than on the second and vice versa.

In our use case we simulate the power consumption of the devices as the input to the
IUT. The tester monitors the output (the EMS feeder load values). The test purpose is to
verify that neither of the power loads exceed the specified threshold. Exceeding this limit
might cause equipment damage and the power company can impose fines upon violating
this limit.

Figure 10. Case Study Test Architecture

The test architecture is depicted in Figure 10. In the right side of the figure, we can
see the EMS and consumers as the implementation under test. The test model and test
runner is on the left side. The test is executed via DTRON, which transmits the inputs and
outputs via Spread. In the IUT and tester models we are going to introduce, the signals
prefixed with i or o are synchronizing signals sent through Spread message serialization
service . The signals without the aforementioned prefixes are internal signals which are
not published to the Spread network. The input to the IUT is provided by the remote tester
model is depicted in Figure 13 which simulates the device power consumption levels and
creates challenging scenarios for the EMS. The EMS queries the consumers which are
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modeled in Figure 12 and balances the load between the feeders based on the total power
consumption monitoring data . The EMS model is shown in Figure 11 which displays
the querying loop. The querying is performed in a loop due to the semi-duplex nature
of communication in PROFIBUS networks. The EMS also takes the maximum power
limit into account as the total power consumption must not exceed this level. This can be
seen in the remote tester model shown in Figure 13. Remote tester nondeterministically
selects a consumer and sends the level of energy consumption for that particular device to
the input port of the IUT. Then the remote tester waits s time units before requesting the
current feeder energy levels. On the model, it is indicated as i get line balance!. After
receiving the current values the tester will check whether they are within allowed range.
If the values exceed the limit the test verdict is fail. Otherwise the tester will continue
with the next iteration.

Figure 11. Energy Management System model Figure 12. Consumer model

Figure 13. Remote Tester model

The communication delay between receiving the signal from EMS with the current
feeder energy levels and sending input to the IUT is 2Δ. According to the specification the
system must stabilize the load between feeders in stabilization time limit s after receiving
the input. If Δ is very close to system stabilization time limit s indicated in the remote
tester model in Figure 13 the remote tester fails to send the signal in time to the IUT.

For this reason, we introduce the distributed tester Figure 14 where each local com-
ponent of the tester is closely coupled to the IUT input ports. As shown in chapter 5 this
approach reduces the delay by up to Δ. This guarantees that after receiving the output
from EMS we can send new input to IUT within less than s time units.

7.2. Test Execution Environment DTRON

Uppaal TRON [11] is a testing tool, based on Uppaal engine, suited for black-box con-
formance testing of timed systems [11]. DTRON [13] extends this enabling distributed
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Figure 14. Parametrized local tester template for distributed testing

execution. It incorporates Network Time Protocol (NTP) based real-time clock correc-
tions to give a global timestamp (t1) to events at IUT adapter(s). These events are then
globally serialized and published for other subscribers with a Spread toolkit [18]. Sub-
scribers can be other IUT adapters, as well as DTRON instances. NTP based global time
aware subscribers also timestamp the event received message (t2) to compute and possi-
bly compensate for the overhead time it takes for messaging overhead Δ = t2 − t1.

Δ is essential in real-timed executions to compensate for messaging delays that may
lead to false-negative non-conformance results for the test-runs. Messaging overhead
caused by elongated event timings may also result in messages published in on order,
but revived by subscribers in another. Δ can then also be used to re-order the messages
in a given buffered time-window tΔ. Due to the online monitoring capability DTRON
supports the functionality of evaluating upper and lower bounds of message propagation
delays by allowing the inspection of message timings. While having such a realistic net-
work latency monitoring capability in DTRON our test correctness verification workflow
takes into account theses delays. For verification of the deployed test configuration we
make corresponding time parameter adjustments in the IUT model.

8. Conclusion

We extend the Δ-testing method proposed originally for single remote tester by intro-
ducing multiple local testers on fully distributed test architecture where testers are at-
tached directly to the ports of IUT. Thus, instead of bidirectional communication be-
tween a remote tester and IUT only unidirectional synchronization between the local
testers is needed in given solution. A constructive algorithm is proposed to generate lo-
cal testers in two steps: at first, a monolithic remote tester is generated by applying the
reactive planning online-tester synthesis method of [16], and second, a set of synchro-
nizing local testers is derived by partitioning the monolithic tester into a set of location
specific tester instances. The partitioning preserves the correctness of testers so that if
the monolithic remote tester meets 2Δ requirement then the distributed testers meet (one)
Δ-controllability requirement. Second contribution of the paper is that distributed testers
are generated as Uppal Timed Automata. According to our best knowledge the real time
distributed testers have not been constructed automatically in this formalism yet. As for
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method implementation, the local testers are executed and communicating via distributed
test execution environment DTRON [13]. We demonstrate that the distributed deploy-
ment architecture supported by DTRON and its message serialization service allows re-
ducing the total test reaction time by almost a factor of two. The validation of proposed
approach is demonstrated on an Energy Management System case study.
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Abstract. Low-latency systems where reaction time is primary success factor and
design consideration, are serious challenge to existing integration and system level
testing techniques. Modern cyber physical systems have grown to the scale of
global geographic distribution and latency requirements are measured in nanosec-
onds. While existing tools support prescribed input profiles they seldom provide
enough reactivity to run the tests with simultaneous and interdependent input pro-
files at remote front ends. Additional complexities emerge due to severe timing
constraints the tests have to meet when test navigation decision time ranges near the
message propagation time. Sufficient timing conditions for remote online testing
have been proposed in remote Δ-testing method recently. We extend the Δ-testing
by deploying testers on fully distributed test architecture. This approach reduces the
test reaction time by almost a factor of two. We validate the method on a distributed
oil pumping SCADA system case study.

Keywords. model-based testing, distributed systems, low-latency systems

1. Introduction

Modern large scale cyber-physical systems have grown to the size of global geo-
graphic distribution and their latency requirements are measured in microseconds or even
nanoseconds. Such applications where latency is one of the primary design consider-
ations are called low-latency systems and where it is of critical importance – to time
critical systems. A typical example of distributed time critical system is smart energy
grid (SEG) where delayed control signals can cause overloads and blackouts of whole
regions. Thus, the proper timing is the main measure of success in SEG and often the
hardest design concern.

Since large SEG-s systems are mostly distributed systems (by distributed systems
we mean the systems where computations are performed on multiple networked com-
puters that communicate and coordinate their actions by passing messages), their latency
dynamics is influenced by many technical and non-technical factors. Just to name a few,
energy consumption profile look up time (few milliseconds) may depend on the load
profile, messaging middleware and the networking stacks of operating systems. Simi-
larly, due to cache miss, the caching time can grow from microseconds to about hundred
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milliseconds [1]. Reaching sufficient feature coverage by integration testing of such sys-
tems in the presence of numerous latency factors and their interdependences, is out of the
reach of manual testing. Obvious implication is that scalable integration and system level
testing presumes complex tools and techniques to assure the quality of the test results
[2]. To achieve the confidence and trustability, the test suites need to be either correct by
construction or verified against the test goals after they are generated. The need for au-
tomated test generation and their correctness assurance have given raise to model based
testing (MBT) and the development of several commercial and academic MBT tools. In
this paper, we interpret MBT in the standard way, i.e. as conformance testing that com-
pares the expected behaviors described by the system requirements model with the ob-
served behaviors of an actual implementation (implementation under test). For detailed
overview of MBT and related tools we refer to [3] and [4].

2. Related Work

Testing distributed systems has been one of the MBT challenges since the beginning of
the 90s. An attempt to standardize the test interfaces for distributed testing was made
in ISO OSI Conformance Testing Methodology [5]. A general distributed test architec-
ture, containing distributed interfaces, has been presented in Open Distributed Processing
(ODP) Basic Reference Model (BRM), which is a generalized version of ISO distributed
test architecture. First MBT approaches represented the test configurations as systems
that can be modeled by finite state machines (FSM) with several distributed interfaces,
called ports. An example of abstract distributed test architecture is proposed in [6]. This
architecture suggests the Implementation Under Test (IUT) contains several ports that
can be located physically far from each other. The testers are located in these nodes
that have direct access to ports. There are also two strongly limiting assumptions: (i) the
testers cannot communicate and synchronize with one another unless they communicate
through the IUT, and (ii) no global clock is available. Under these assumptions a test
generation method was developed in [6] for generating synchronizable test sequences
of multi-port finite state machines. However, it was shown in [7] that no method that is
based on the concept of synchronizable test sequences can ensure full fault coverage for
all the testers. The reason is that for certain testers, given a FSM transition, there may
not exist any synchronizable test sequence that can force the machine to traverse this
transition. This is generally known as controllability and observability problem of dis-
tributed testers. These problems occur if a tester cannot determine either when to apply a
particular input to IUT, or whether a particular output from IUT is generated in response
to a specific input [8]. For instance, the controllability problem occurs when the tester at
a port pi is expected to send an input to IUT after IUT has responded to an input from the
tester at some other port p j, without sending an output to pi. The tester at pi is unable to
decide whether IUT has received that input and so cannot know when to send its input.
Similarly, the observability problem occurs when the tester at some port pi is expected
to receive an output from IUT in response to a given input at some port other than pi and
is unable to determine when to start and stop waiting. Such observability problems can
introduce fault masking.

In [8], it is proposed to construct test sequences that cause no controllability and
observability problems during their application. Unfortunately, offline generation of
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test sequences is not always applicable. For instance, when the model of IUT is non-
deterministic it needs instead of fixed test sequences online testers capable of handling
non-deterministic behavior of IUT. But even this is not always possible. An alternative is
to construct testers that includes external coordination messages. However, that creates
communication overhead and possibly the delay introduced by the sending of each mes-
sage. Finding an acceptable amount of coordination messages depends on timing con-
straints and finally amounts to finding a tradeoff between the controllability, observabil-
ity and the cost of sending external coordination messages.

The need for retaining the timing and latency properties of testers became crucial na-
tively when time critical cyber physical and low-latency systems were tested. Pioneering
theoretical results have been published on test timing correctness in [9] where a remote
abstract tester was proposed for testing distributed systems in a centralized manner. It
was proven that if IUT ports are remotely observable and controllable then 2Δ-condition
is sufficient for satisfying timing correctness of the test. Here, Δ denotes an upper bound
of message propagation delay between tester and IUT ports. However, this condition
makes remote testing problematic when 2Δ is close to timing constraints of IUT, e.g. the
length of time interval when the test input has to reach port has definite effect on IUT.
If the actual time interval between receiving an IUT output and sending subsequent test
stimulus is longer than 2Δ the input may not reach the input port in time and the test goal
cannot be reached.

In this paper we focus on distributed online testing of low latency and time-critical
systems with distributed testers that can exchange synchronization messages that meet Δ-
delay condition. In contrast to the centralized testing approach, our approach reduces the
tester reaction time from 2Δ to Δ. The validation of proposed approach is demonstrated
on a distributed oil pumping SCADA system case study.

3. Preliminaries

3.1. Model-Based Testing

In model-based testing, the formal requirements model of implementation under test
describes how the system under test is required to behave. The model, built in a suitable
machine interpretable formalism, can be used to automatically generate the test cases,
either offline or online, and can also be used as the oracle that checks if the IUT behavior
conforms to this model. Offline test generation means that tests are generated before test
execution and executed when needed. In the case of online test generation the model is
executed in lock step with the IUT. The communication between the model and the IUT
involves controllable inputs of the IUT and observable outputs of the IUT.

There are multiple different formalisms used for building conformance testing mod-
els. Our choice is Uppaal timed automata (TA) [10] because the formalism is designed to
express the timed behavior of state transition systems and there exists a family of tools
that support model construction, verification and online model-based testing [11].

3.2. Uppaal Timed Automata

Uppaal Timed Automata [10] (UTA) used for the specification of the requirements are
defined as a closed network of extended timed automata that are called processes. The
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processes are combined into a single system by the parallel composition known from the
process algebra CCS. An example of a system of two automata comprised of 3 locations
and 2 transitions each is given in Figure 1.

Figure 1. A parallel composition of Uppaal timed automata

The nodes of the automata are called locations and the directed edges transitions.
The state of an automaton consists of its current location and assignments to all variables,
including clocks. The initial locations of the automata are graphically denoted by an
additional circle inside the location.

Synchronous communication between the processes is by hand-shake synchroniza-
tion links that are called channels. A channel relates a pair of edges labeled with symbols
for input actions denoted by e.g. chA? and chB? in Figure 1, and output actions denoted
by chA! and chB!, where chA and chB are the names of the channels.

In Figure 1, there is an example of a model that represents a synchronous remote
procedure call. The calling process Process i and the callee process Process j both in-
clude three locations and two synchronized transitions. Process i, initially at location
Start i, initiates the call by executing the send action chA! that is synchronized with the
receive action chA? in Process j, that is initially at location Start j. The location Opera-
tion denotes the situation where Process j computes the output y. Once done, the control
is returned to Process i by the action chB!

The duration of the execution of the result is specified by the interval [lb,ub] where
the upper bound ub is given by the invariant cl<=ub, and the lower bound lb by the
guard condition cl>=lb of the transition Operation → Stop j. The assignment cl=0 on
the transition Start j → Operation ensures that the clock cl is reset when the control
reaches the location Operation. The global variables x and y model the input and output
arguments of the remote procedure call, and the computation itself is modelled by the
function f(x) defined in the declarations section of the Uppaal model.

The inputs and outputs of the test system are modeled using channels labeled in a
special way described later. Asynchronous communication between processes is mod-
eled using global variables accessible to all processes.

Formally the Uppaal timed automata are defined as follows. Let Σ denote a finite
alphabet of actions a,b, . . . and C a finite set of real-valued variables p,q,r, denoting
clocks. A guard is a conjunctive formula of atomic constraints of the form p ∼ n for
p∈C,∼∈ {≥,≤,=,>,<} and n∈N+. We use G(C) to denote the set of clock guards. A
timed automaton A is a tuple 〈N, l0,E, I〉 where N is a finite set of locations (graphically
denoted by nodes), l0 ∈ N is the initial location, E ∈ N ×G(C)×Σ× 2C ×N is the set
of edges (an edge is denoted by an arc) and I : N → G(C) assigns invariants to locations
(here we restrict to constraints in the form: p ≤ n or p < n,n ∈ N+. Without the loss
of generality we assume that guard conditions are in conjunctive form with conjuncts
including besides clock constraints also constraints on integer variables. Similarly to
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clock conditions, the propositions on integer variables k are of the form k ∼ n for n ∈ N,
and ∼∈ {≤,≥,=,>,<}. For the formal definition of Uppaal TA full semantics we refer
the reader to [12] and [10].

4. Remote Testing

The test purpose most often used in MBT is conformance testing. In conformance testing
the IUT is considered as a black-box, i.e., only the inputs and outputs of the system are
externally controllable and observable respectively. The aim of black-box conformance
testing according to [13] is to check if the behavior observable on system interface con-
forms to a given requirements specification. During testing, a tester executes selected
test cases on an IUT and emits a test verdict (pass, fail, inconclusive). The verdict shows
correctness in the sense of input-output conformance relation (IOCO) between IUT and
the specification. The behavior of a IOCO-correct implementation should respect after
some observations following restrictions:

(i) the outputs produced by IUT should be the same as allowed in the specification;
(ii) if a quiescent state (a situation where the system can not evolve without an

input from the environment [14]) is reached in IUT, this should also be the case in the
specification;

(iii) any time an input is possible in the specification, this should also be the case in
the implementation.

The set of tests that forms a test suite is structured into test cases, each addressing
some specific test purpose. In MBT, the test cases are generated from formal models that
specify the expected behavior of the IUT and from the coverage criteria that constrain
the behavior defined in IUT model with only those addressed by the test purpose. In our
approach Uppaal Timed Automata (UTA) [10] are used as a formalism for modeling IUT
behavior. This choice is motivated by the need to test the IUT with timing constraints so
that the impact of propagation delays between the IUT and the tester can be taken into
account when the test cases are generated and executed against remote real-time systems.

Another important aspect that needs to be addressed in remote testing is functional
non-determinism of the IUT behavior with respect to test inputs. For nondeterministic
systems only online testing (generating test stimuli on-the-fly) is applicable in contrast
to that of deterministic systems where test sequences can be generated offline. Second
source of non-determinism in remote testing of real-time systems is communication la-
tency between the tester and the IUT that may lead to interleaving of inputs and out-
puts. This affects the generation of inputs for the IUT and the observation of outputs that
may trigger a wrong test verdict. This problem has been described in [15], where the
Δ-testability criterion (Δ describes the communication latency) has been proposed. The
Δ-testability criterion ensures that wrong input/output interleaving never occurs.

4.1. Centralized Remote Testing

Let us first consider a centralized tester design case. In the case of centralized tester, all
test inputs are generated by a single monolithic tester. This means that the centralized
tester will generate an input for the IUT, waits for the result and continues with the next
set of inputs and outputs until the test scenario has been finished. Thus, the tester has to
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wait for the duration it takes the signal to be transmitted from the tester to the IUT’s ports
and the responses back from ports to the tester. In the case of IUT being distributed in a
way that signal propagation time is non-negligible, this can lead into a situation where
the tester is unable to generate the necessary input for the IUT in time due to message
propagation latency. These timing issues can render testing an IUT impossible if the IUT
is a distributed real-time system.

Figure 2. Remote tester communication architecture

To be more concrete, let us consider the remote testing architecture depicted in Fig-
ure 2 and the corresponding model depicted in Figure 3 and 4. In this case the IUT has 3
ports (p1, p2, p3) in geographically different places to interact within the system, inputs
i1, i2 and i3 at ports p1, p2 and p3 respectively and outputs o1 at port p1, o2 at port p2, o3
at port p3.

Figure 3. IUT model

We model a multi-ports timed automata by splitting the edges with multiple com-
munication actions to a sequence of edges each labeled with exactly one action and con-
nected via committed locations, so that all ports of such group are updated at the same
time. In Figure 4 the labels on the edges represent the transitions and the transition tuple
(L0, L1, i1! /(o1?, o2?)) is represented by sequence of edges each labeled with exactly one
action and connected via committed locations. For example the sequence of edges from
location L0 to L1 with labels i1!, o1? and o2? represents the multiple communication
actions where the input i1! at port p1 in location L0 being able to trigger a transition that
leads to the output o1? and o2? at ports p1, p2 respectively and the location becoming L1.

Using such splitting of edges with committed locations, we model a three port au-
tomata shown in Figure 4 where the tester sends an input i1 to the port p1 at Geographic
Place 1 and receives a response or outputs o1 and o2 from IUT at Geographic Place

1 and Geographic Place 2 respectively. After receiving the result, the tester is in lo-
cation L1, it gets both i3 on port p3 and i2 on port p2. Then, either it follows the intended
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Figure 4. Remote Tester model

path sending i3 before i2, or it sends i2 before i3. If tester decides to send i3 before i2 it
receives an output o1 at port p1 and returns to location L1. The transition is a self loop
if its start and end locations are the same. If tester decides to send i2, the IUT responds
with an output o3 at port p3. Now, the tester is in location L2, it gets both i1 on port p1
and i2 on port p2. Based on guard condition and previously triggered inputs and received
outputs the next input is sent to IUT and tester continues with the next set of inputs and
outputs until the test scenario has been finished.

The described IUT is a real-time distributed system, which means that it has strict
timing constraints for messaging between ports. More specifically, after sending the first
input i1 to port p1 at Geographic Place 1 and after receiving the response o1 and o2
at Geographic Place 1 and Geographic Place 2 respectively, the tester needs to
decide and send the next input i2 to port p2 at Geographic Place 2 or input i3 to port
p3 at Geographic Place 3 in Δ time. But, due to the fact that the tester is not at the
same geographical place as the distributed IUT, it is unable to send the next input in time
as the time it takes to receive the response and send the next input amounts to 2Δ, which
is double the time allotted for the next input signal to arrive.

Consequently, the centralized remote testing approach is not suitable for testing a
real-time distributed system if the system has strict timing constraints with non negligi-
ble signal propagation times between system ports. To overcome this problem, the cen-
tralized tester is decomposed and distributed as described in the next section.

5. Distributed Testing

The shortcoming of the centralized remote testing approach is mitigated with extend-
ing the Δ-testing idea by decomposing the monolithic remote tester into multiple local
testers. These local testers are directly attached to the ports of the IUT. Thus, instead of
bidirectional communication between a remote tester and the IUT, only unidirectional
synchronization between the local testers is required. The local testers are generated in
two steps: at first, a centralized remote tester is generated by applying the reactive plan-
ning online-tester synthesis method of [16], and second, a set of synchronizing local
testers is derived by decomposing the monolithic tester into a set of location specific
tester instances. Each tester instance needs to know now only the occurrence of i/o events
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Figure 5. Distributed Local testers communication architecture

at other ports which determine its behavior. Possible reactions of the local tester to these
events are already specified in its model and do not need further feedback to the event
sender. The decomposing preserves the correctness of testers so that if the monolithic re-
mote tester meets 2Δ requirement then the distributed testers meet (one) Δ-controllability
requirement.

We apply the algorithm described in 5.1 to transform the centralized testing architec-
ture depicted in Figure 2 into a set of communicating distributed local testers, the archi-
tecture of which is shown in Figure 5. After applying the algorithm, the message prop-
agation time between the local tester and the IUT port has been eliminated because the
tester is attached directly to the port. This means that the overall testing response time is
also reduced, because previously the messages had to be transmitted over a channel with
latency bidirectionally. The resulting architecture mitigates the timing issue by replacing
the bidirectional communication with a unidirectional broadcast of the IUT output sig-
nals between the distributed local testers. The generated local tester models are shown in
Figure 6, Figure 7, Figure 8 and Figure 9.

Figure 6. Local tester at Geographic Place 1 Figure 7. Local tester at Geographic Place 2
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Figure 8. Local tester at Geographic Place 3

Figure 9. Output Event Synchronizer

5.1. Tester Distribution Algorithm

Let MMT denote a monolithic remote tester model generated by applying the reactive
planning online-tester synthesis method [16]. Loc(IUT ) denotes a set of geographically
different port locations of IUT . The number of locations can be from 1 to n, where n ∈N
i.e. Loc(IUT ) = {ln|n ∈ N}. Let Pln denotes a set of ports accessible in the location ln.

1. For each l, l ∈ Loc(IUT ) we copy MMT to Ml to be transformed to a location
specific local tester instance.

2. For each Ml we go through all the edges in Ml . If the edge has a synchronizing
channel and the channel does not belong to the the set of ports Pln , we do the
following:

• if the channel’s action is send, we replace it with the co-action receive.
• if the channel’s action is receive, we do nothing.

3. For each Ml we add one more automaton that duplicates the input signals from
Ml to IUT , attached to the set of ports Pln and broadcasts the duplicates to other
local testers to synchronize the test runs at their local ports. Similarly the IUT
local output event observations are broadcast to other testers for synchronization
purposes like automaton in Figure 9.

6. Correctness of Tester Distribution Algorithm

To verify the correctness of distributed tester generation algorithm we check the bi-
simulation equivalence relation between the model of monolithic centralized tester and
that of distributed tester. For that the models are composed by parallel compositions so
that one has a role of words generator on i/o alphabet and other the role of words acceptor
machine. If the i/o language acceptance is established in one direction then the roles of
models are reversed. Since the i/o alphabets of remote tester and distributed tester differ
due to synchronizing messages of distributed tester the behaviors are compared based on
the i/o alphabet observable on IUT ports only. Second adjustment of models to be made
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for bi-simulation analysis is the reduction of message propagation delays to uniform ba-
sis either on Δ or 2Δ in both models. Assume (due to closed world assumption used in
MBT):

• the centralized remote tester model: Mremote = TAIUT ‖ TAr−T ST

• the distributed tester model: Mdistrib = TAIUT ‖ �i TAd−T ST
i i = [1, n], n - number

of ports locations.
• to unify the timed words TW (Mremote) and TW (Mdistrib) the communication de-

lay between IUT and Tester is assumed.

Definition (correctness of tester distribution mapping): The mapping Mremote Algorithm
−−−−−→
Mdistrib is correct if TAr−T ST and �i TAd−T ST

i are observation bisimilar, i.e. if TAr−T ST and
�i TAd−T ST

i are respectively generating and accepting automata on common i/o alphabet
Σi∪Σo then all timed words TW (TAr−T ST ) are recognizable by �i TAd−T ST

i and all timed
words TW(�i TAd−T ST

i ) are recognizable by TAr−T ST .
Here, alphabet Σi ∪ Σo includes i/o symbols used at IUT-TESTER interfaces of

Mremote and Mdistrib.
Correctness verification of the distribution mapping:
Step 1: (Constructing generating-accepting automata synchronous composition):

• label each output action of TAr−T ST with output symbol a! and its co-action in �i
TAd−T ST

i with input symbol a?;
• define parallel composition TAr−T ST ‖ �i TAd−T ST

i with synchronous i/o actions.

Step 2: (Bisimilarity proof by model checking): TAr−T ST and �i TAd−T ST
i are observation

bisimilar if following holds: Mremote � not deadlock ∧ Mdistrib � not deadlock ⇒
TAr−T ST ‖ � j TAd−T ST

j � not deadlock j = [1, n], n - number of local testers , i.e. the
composition of bisimilar testers must be non-blocking if the testers composed with IUT
model separately are non-blocking.

7. Case Study

7.1. Use Case

The benefit of using the proposed method is demonstrated in the use case of an EMS
(Energy Management System) which is integrated into the SCADA (Supervisory Con-
trol And Data Acquisition) system of an industrial consumer. An EMS is essentially a
load balancing system. The target of the balancing system is the load on power supplies
called feeders to an industrial consumer. These industrial power consumers have multiple
feeders to power the devices required for their operations (e.g., pumps and pipeline heat-
ing systems). The motivation for balancing the power consumption between the feeders
stems from the fact that the power companies can enforce fines on the industrial con-
sumers if the power consumption exceeds certain thresholds due to safety considerations
and possible damage to the equipment. Therefore, the consumer is motivated to share
the power consuming devices among the feeders minimize or eliminate such energy con-
sumption spikes completely.

Let us consider a use case in which an oil terminal has two feeders and multiple
power consuming devices (consumers). The number of consumers can range from some
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to many. In our use case we have 32 consumers, but in other cases it can be more. These
consumers are both pumps and pipeline heating systems. The pumps have a high surge
power consumption when starting up which must be taken into consideration when de-
signing an EMS. The EMS monitors the current consumption by polling the consumers
via a communication system (e.g., PROFIBUS, CAN bus or Industrial Ethernet). The
PROFIBUS communication system is standardized in EN 50170 international standard.

Because the oil terminal stores oil it is considered an explosion hazard area
and therefore, a special communication system that is certified for explosive areas -
PROFIBUS PA (Process Automation) is used. PROFIBUS PA meets the ‘Intrinsically
Safe’ (IS) and bus-powered requirements defined by IEC 61158-2. The maximum trans-
fer rate of PROFIBUS PA is 31.25 kbit/s which can limit the system response speed if
there are many devices connected to the PROFIBUS bus and each device has significant
input and output data load.

The EMS is able to switch devices from being supplied from either feeder. Ideally,
the power consumption is shared equally among both feeders at all times. This means
that the EMS monitors the devices and switches devices over to other feeders if the power
consumption is unbalanced among the feeders. In normal operation, the feeder loads are
kept sufficiently low to accommodate new devices starting up in a way that the surge
consumption will not exceed the threshold power of the feeders.

The EMS polls every power consumer periodically and updates the total consump-
tion. Based on this total consumption, the EMS will command the power distribution de-
vices to switch around from first feeder to the second in case the load on the first feeder
is higher than on the second and vice versa.

In our use case we simulate the power consumption of the devices as the input to the
IUT. The tester monitors the output (the EMS feeder load values). The test purpose is to
verify that neither of the power loads exceed the specified threshold. Exceeding this limit
might cause equipment damage and the power company can impose fines upon violating
this limit.

Figure 10. Case Study Test Architecture

The test architecture is depicted in Figure 10. In the right side of the figure, we can
see the EMS and consumers as the implementation under test. The test model and test
runner is on the left side. The test is executed via DTRON, which transmits the inputs and
outputs via Spread. In the IUT and tester models we are going to introduce, the signals
prefixed with i or o are synchronizing signals sent through Spread message serialization
service . The signals without the aforementioned prefixes are internal signals which are
not published to the Spread network. The input to the IUT is provided by the remote tester
model is depicted in Figure 13 which simulates the device power consumption levels and
creates challenging scenarios for the EMS. The EMS queries the consumers which are
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modeled in Figure 12 and balances the load between the feeders based on the total power
consumption monitoring data . The EMS model is shown in Figure 11 which displays
the querying loop. The querying is performed in a loop due to the semi-duplex nature
of communication in PROFIBUS networks. The EMS also takes the maximum power
limit into account as the total power consumption must not exceed this level. This can be
seen in the remote tester model shown in Figure 13. Remote tester nondeterministically
selects a consumer and sends the level of energy consumption for that particular device to
the input port of the IUT. Then the remote tester waits s time units before requesting the
current feeder energy levels. On the model, it is indicated as i get line balance!. After
receiving the current values the tester will check whether they are within allowed range.
If the values exceed the limit the test verdict is fail. Otherwise the tester will continue
with the next iteration.

Figure 11. Energy Management System model Figure 12. Consumer model

Figure 13. Remote Tester model

The communication delay between receiving the signal from EMS with the current
feeder energy levels and sending input to the IUT is 2Δ. According to the specification the
system must stabilize the load between feeders in stabilization time limit s after receiving
the input. If Δ is very close to system stabilization time limit s indicated in the remote
tester model in Figure 13 the remote tester fails to send the signal in time to the IUT.

For this reason, we introduce the distributed tester Figure 14 where each local com-
ponent of the tester is closely coupled to the IUT input ports. As shown in chapter 5 this
approach reduces the delay by up to Δ. This guarantees that after receiving the output
from EMS we can send new input to IUT within less than s time units.

7.2. Test Execution Environment DTRON

Uppaal TRON [11] is a testing tool, based on Uppaal engine, suited for black-box con-
formance testing of timed systems [11]. DTRON [13] extends this enabling distributed
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Figure 14. Parametrized local tester template for distributed testing

execution. It incorporates Network Time Protocol (NTP) based real-time clock correc-
tions to give a global timestamp (t1) to events at IUT adapter(s). These events are then
globally serialized and published for other subscribers with a Spread toolkit [18]. Sub-
scribers can be other IUT adapters, as well as DTRON instances. NTP based global time
aware subscribers also timestamp the event received message (t2) to compute and possi-
bly compensate for the overhead time it takes for messaging overhead Δ = t2 − t1.

Δ is essential in real-timed executions to compensate for messaging delays that may
lead to false-negative non-conformance results for the test-runs. Messaging overhead
caused by elongated event timings may also result in messages published in on order,
but revived by subscribers in another. Δ can then also be used to re-order the messages
in a given buffered time-window tΔ. Due to the online monitoring capability DTRON
supports the functionality of evaluating upper and lower bounds of message propagation
delays by allowing the inspection of message timings. While having such a realistic net-
work latency monitoring capability in DTRON our test correctness verification workflow
takes into account theses delays. For verification of the deployed test configuration we
make corresponding time parameter adjustments in the IUT model.

8. Conclusion

We extend the Δ-testing method proposed originally for single remote tester by intro-
ducing multiple local testers on fully distributed test architecture where testers are at-
tached directly to the ports of IUT. Thus, instead of bidirectional communication be-
tween a remote tester and IUT only unidirectional synchronization between the local
testers is needed in given solution. A constructive algorithm is proposed to generate lo-
cal testers in two steps: at first, a monolithic remote tester is generated by applying the
reactive planning online-tester synthesis method of [16], and second, a set of synchro-
nizing local testers is derived by partitioning the monolithic tester into a set of location
specific tester instances. The partitioning preserves the correctness of testers so that if
the monolithic remote tester meets 2Δ requirement then the distributed testers meet (one)
Δ-controllability requirement. Second contribution of the paper is that distributed testers
are generated as Uppal Timed Automata. According to our best knowledge the real time
distributed testers have not been constructed automatically in this formalism yet. As for
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method implementation, the local testers are executed and communicating via distributed
test execution environment DTRON [13]. We demonstrate that the distributed deploy-
ment architecture supported by DTRON and its message serialization service allows re-
ducing the total test reaction time by almost a factor of two. The validation of proposed
approach is demonstrated on an Energy Management System case study.
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