
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Roman Ismagilov 172665IVSM

Migrating an existing Android application to a
cross-platform

Master's thesis

Supervisors: Juhan-Peep Ernits
(PhD)

Oleg Petšjonkin
(MCs)

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Roman Ismagilov 172665IVSM

Olemasoleva Androidi rakenduse üleviimine
platvormisõltumatuks

Magistritöö

Juhendaja: Juhan-Peep Ernits
(PhD)

Oleg Petšjonkin
(MCs)

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Roman Ismagilov

10.05.2021

4

Abstract

First aim of this thesis is to give an overview and compare existing technologies that

provide possibility to create cross-platform mobile applications. Second aim is to create

a novel architectural approach by using which it would be possible to migrate an existing

Android application to cross-platform with iOS. The developed approach is based on

Model-View-Presenter design pattern and Hexagonal architecture using Kotlin/Native

and Kotlin Multiplatform technologies.

The results are validated in a case review, which is a real-world application named

Lokimo, which was successfully rewritten using the developed architecture. Since the

application revenue model is based on paid digital content, and application stores user

progress, the migration includes seamless transition for users that would update the

application on their phones.

This thesis is written in English and is 62 pages long, including 5 chapters, 38 figures and

3 tables.

Keywords

Android, iOS, Kotlin, Swift, mobile development

5

List of abbreviations and terms

UI User Interface

UX User Experience

DI Dependency Injection

LLVM Low Level Virtual Machine

LLDB Low Level Debugger

JVM Java Virtual Machine

JSON JavaScript Object Notation

JIT Just-in-time

CPU Central Processing Unit

XML Extensible Markup Language

API Application Public Interface

QR Quick Response

RAM Random Access Memory

SDK Software Development Kit

HTTP Hypertext Transfer Protocol

OOP Object Oriented Programming

SQL Structured Query Language

BPMN Business Process Model and Notation

IDE Integrated Development Environment

IBOutlet Interface Builder Outlet

GUI Graphical User Interface

ARC Automatic Reference Counting

6

Table of contents

1 Introduction ... 11

1.1 Problem statement .. 12

2 Background .. 14

2.1 Currently existing frameworks providing the possibility to develop a cross-

platform mobile application using one programming language 14

2.2 Existing tools providing the possibility of writing shared codebase 15

2.3 Technology comparison ... 18

3 Proposed development pattern ... 22

3.1 Overview of existing patterns ... 22

3.2 Requirements for the solution ... 24

3.3 Clean Architecture .. 25

3.4 Core and Contract structure .. 27

3.5 Android structure .. 28

3.6 Android dependency injection .. 29

3.7 iOS-specific distinctions ... 30

3.8 Clean Architecture compliance .. 31

3.9 Gradle modules hierarchy ... 31

4 Real case study .. 33

4.1 Application domain and specificity .. 33

4.2 Choosing technologies to use ... 34

4.3 Libraries replacement ... 35

4.3.1 Dependency injection .. 35

4.3.2 Asynchrony and concurrency .. 35

4.3.3 Network ... 37

4.4 Database migration ... 37

4.4.1 Creating a new database .. 40

4.4.2 Integration of the shared module ... 44

4.5 How multiplatform works? ... 44

4.6 Expect and Actual ... 47

7

4.7 Linking of Gradle modules ... 49

4.8 Localization synchronization .. 49

4.9 Development process .. 51

4.10 Debugging core code .. 52

4.11 Memory leaks ... 52

4.12 Risk and safety analysis .. 55

4.13 Computational performance overhead .. 56

5 Summary .. 57

5.1 Organizational problems ... 57

5.2 Development performance boost .. 57

5.3 When to use this approach? .. 58

References .. 60

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 62

8

List of figures

Figure 1. iOS native UI element outlet. Kotlin ... 16

Figure 2. Architecture where both Flutter and Kotlin/Native are used 18

Figure 3. Simplified scheme of Clean Architecture approach .. 26

Figure 4. Schematic representation of an abstract feature with some networking and

persistence functionality. .. 27

Figure 5. Schematic representation of Android implementation of an abstract feature . 28

Figure 6. Schematic representation of Dependency Injection graph for an abstract

feature in Android application. ... 29

Figure 7. Dependency Injection scheme for iOS .. 30

Figure 8. Gradle modules hierarchy ... 32

Figure 9. Screenshot of the story editor .. 33

Figure 10. Simplified architecture scheme of the existing application 34

Figure 11. Same method written using RxJava (a) and Coroutines (b). Kotlin 36

Figure 12. Simplified example of entity (a) and data access object (b) declaration using

SQLDelight. Kotlin .. 38

Figure 13. Database files (a) and tables (b) on Android device 39

Figure 14. Contents of quest_entity table ... 39

Figure 15. Tables of database generated by CoreData ... 40

Figure 16. Contents of ZQUESTENTITY table ... 40

Figure 17. SQLDelight module structure ... 41

Figure 18. Linking database in root Gradle file (a) and in the database module (b).

Groovy .. 41

Figure 19. Creating an entity and queries for data access object. SQL 42

Figure 20. Database migration query for Android. SQL .. 43

Figure 21. Simplified query for iOS database migration. SQL 43

Figure 22. Simplified example of data access object written using SQLDelight. Kotlin44

Figure 23. Compile targets of Kotlin .. 45

Figure 24. Example on module structure .. 45

Figure 25. Example of wrapper written in Kotlin to be accessed in Swift code 46

9

Figure 26. Code that calls native iOS functions. Kotlin ... 47

Figure 27. Expect declaration of BigDecimal class. Kotlin ... 47

Figure 28. Actual implementation of BigDecimal class on iOS (a) and on Android (b).

Kotlin .. 48

Figure 29. Gradle files examples on contract level (a) and core level (b) 49

Figure 30. Plurals example for English (a), Spanish (b) and Russian (c) languages. XML

 .. 50

Figure 31. Initial task development process in BPMN ... 51

Figure 32. Final task development process in BPMN .. 52

Figure 33. Heap dump of application made in XCode ... 53

Figure 34. Memory consumption of iOS application before using weak references 54

Figure 35. Shortened example of presenter class dependencies. Kotlin 54

Figure 36. Kodein component binding. Kotlin ... 55

Figure 37. Memory consumption after adding weak references 55

Figure 38. Screenshot of Quest map screen on Android (a) and iOS (b) 58

10

List of tables

Table 1. Frameworks comparison .. 18

Table 2. Comparison of selected development patterns ... 22

Table 3. Clean Architecture layers and their counterparts in the proposed pattern scope

 .. 31

11

1 Introduction

Nowadays, smartphones are becoming an integral part of everyday life. One of the main

consequences of this is the fact that mobile application development is now one of the

most demanded fields in commercial software development. It happens because of the

vast potential creditworthy audience. However, the main problem in that kind of

development is a strong fragmentation of the mobile operating system market. Even when

modern mobile operating system market is narrowed down to only two of them, they still

have a lot of fundamental differences in behaviour and tools used for the development.

The problem with developing separate native applications is that it is more time-

consuming, and it is reported [1], that developers usually manually compare versions of

their applications for different operating systems in order to find rough edges where logic

is different, or some features are missing. Such an approach is laborious and error-prone,

so it is not surprising, that companies tend to use cross-platform frameworks.

Several technologies provide the possibility to write code for Android and iOS platforms

simultaneously, but there is a noticeable issue with performance. Also, it is not possible

to adapt an existing application, already developed for one platform, developers would

have to reimplement everything from scratch. There are some tools that could be used to

have a shared codebase for both Android and iOS while having UI written in platform-

specific frameworks. This thesis aims to provide a brief overview of both approaches and

compares which one of the following is better: to reimplement applications entirely using

cross-platform framework, or develop missing platform independently or use a shared

codebase. Moreover, it is important to note that Android and iOS have different UX and

UI standards, if the application would look and work identically on both platforms, some

users could find it inconsistent, applications should behave the way other application

behave on each operation system.

12

1.1 Problem statement

The first objective of this paper is to review current academic and business-related

research on how to develop cross-platform applications. To achieve this, the problem was

decomposed into these research questions:

What are the existing frameworks providing the possibility to develop cross-

platform mobile applications using one programming language?

What are the existing tools providing the possibility of writing shared codebase?

How could these technologies be compared? Which applications are written using

them and how they could be compared to the native ones?

After making research and having selected the technology that fits the most, next

objective would be to create the structural approach on how the application should be

implemented in order to meet the modern mobile application development requirements.

The objective could be decomposed into several questions:

What requirements does the pattern have to achieve, and why they are important?

What are the existing design patterns and how can they be applied in the scope of

this research?

What would the designed structure look like and how it will fit the listed

requirements?

The third objective is a real case review. Estonian company, Apico OÜ has developed

Android application and there was a need to develop an iOS version. In order to make the

development cheaper and faster, it was decided to migrate the existing Android

application to the developed framework. This problem could be separated into several

questions:

What are the steps to migrate the codebase?

What are the unforeseen problems the developers could face when doing the

refactoring?

13

What are the effects on the team performance, and how it could be managed in the

best way?

In other words, the goal of this paper is to create an architectural pattern based on the

technology that fits the best. After that, there will be done a review of migration issues

and made measurements of application performance and tracked the effort put on the

development. It is not possible to track accurately in numbers how much this method

would be more efficient rather than creating separate applications, but at least it would be

possible to count man-hours.

With all the question stated, it is possible to come up with the hypothesis, that applying

specific architectural approach on Android project could significantly reduce efforts for

developing a similar native iOS application. On the other side, it would be said that efforts

put on developing an iOS application will be the same, regardless for the architectural

approach applied on the Android application. This will be the null-hypothesis of this

research and it will be necessary to prove it wrong it by answering the listed questions

step-by-step.

14

2 Background

2.1 Currently existing frameworks providing the possibility to develop

a cross-platform mobile application using one programming language

This market is overly saturated with technologies. Competitors develop different

technologies, and there is no dominant framework in this field.	The overview of several

of them is provided below.	

Adobe Air. One of the oldest competitors in this market. All code is written in

ActionScript. The framework has noticeable imperfections that are inherent for all similar

technologies, and the technology is outdated. This solution could not be seriously

considered as a framework for a new project, but it would be interesting to apply the

imperfections on other technologies based on the same idea in order to detect possible

problems.

To run an application based on non-native components, there should be some kind of an

intermediate layer. The ActionScript is a dialect of ECMAScript, and it is running in

the Adobe Integrated Runtime. AIR uses the Flash technology which is really slow and

outdated. To run the application the user needs to download standalone package, and it is

not obvious to user, why one more application should be installed. On the one hand this

approach decreases the application size, on the other hand it could be very inconvenient,

especially because this technology is not widespread nowadays. Because of bulky

intermediate tools, the speed of the applications is much lower compared to the native

ones. Moreover, modern third-party libraries are not available or they are released with a

long delay. [2]

React Native. One of the most popular cross-platform frameworks. It uses JavaScript to

compile it to platform code using target platform widgets and libraries. It is an interesting

product, but opinions about it vary greatly. React Native code, as well as original React,

is written in the extended version of JavaScript: JSX, which helps to write stateless UI

widgets in the functional programming style [3]. 	

Flutter. It is a new technology on the market. The first stable version was released only

on the 4th of December 2018. It uses the Dart programming language and it is compiled

15

to platform applications with non-native widgets and libraries, rendering everything using

OpenGL (Skia graphics engine). The approach is similar to Adobe Air, with the difference

that it produces native ARM code packaged with Dart runtime, instead of having a

standalone runtime application, and optimizations could be done on the compilation

phase, removing unused parts. It is intriguing to compare the performance. Flutter has an

architecture that includes widgets that are claimed to look and feel as if they are native to

the operating system, moreover, they are richly customizable and reusable, declared to be

fast and extensible [3].

2.2 Existing tools providing the possibility of writing shared codebase

The idea behind this approach is to write common business logic, domain models, and

everything which is not connected to the specific platform once, and then use it in natively

written mobile applications as libraries, while having only UI and some platform-

dependent code in those native implementations. In theory, this could provide a more

flexible development process compared to the one investigated in the first question. For

example, it would be possible to use libraries written specifically for iOS, without having

to somehow port it to the Android version. In an effort to use different platform libraries

in the shared codebase, it is possible to write common abstractions, where implementation

is platform-specific. Also, it would be possible to implement some different functionality

for each platform because the market policies of the Apple App Store and Google Play

are different. Moreover, there are some restrictions in operating systems, for instance

background functionality in iOS is considerably more restricted.

This niche is evolved to a limited degree, but there are two interesting technologies

already available. Both of them also support platform-specific development using the

language provided by the framework instead of native ones.

Kotlin/Native. The shared codebase is written in Kotlin and compiled using LLVM. This

technology has newly arrived, there is only a beta version available at the moment of

writing. The appealing fact is that Kotlin could be used for the native Android

development as well, and it would run seamlessly, however it will be required to compile

the Swift-compatible library for iOS. Also, it is possible to write iOS platform code using

Kotlin with access to Foundation classes, which is beneficial when it comes to

customizing concurrency.

16

Compilation logic:

• iOS: Kotlin classes are compiled to C-compatible binaries using LLVM. The

output is a .framework file which is a native library extension for iOS and macOS.

When using Kotlin for iOS platform code, one has to use specific annotations, but

all the classes are accessible by their original names, as it is shown in the Figure

1:

@ObjCOutlet
lateinit var textField: UITextField

• Android: There are 2 possibilities to use a shared codebase: First is generating

JVM6 bytecode. Since Kotlin and Java are the official languages for Android

development, and they are fully interoperable, while compiled to JVM, it is the

best developer experience. The second approach is generating LLVM binary in

the similar way it does with iOS.

• Other platforms: it is also possible to compile Windows, macOS, Linux,

WebAssembly binaries.

However, there are some limitations in the technology, namely, it is not possible to use

libraries written in Java or any other JVM-language, except for Kotlin in the shared

codebase. Since Kotlin/Native uses the LLVM compiler instead of JVM for iOS, it would

be impossible to compile any Scala/Java/Clojure library. But it is possible to use them in

platform-specific code.

Xamarin. The shared codebase is written in C#. This technology was presented in 2011

and it is still receiving updates from the Microsoft. It is possible to do anything a

developer would do in Objective-C, Swift or Java but in C#. Using Xamarin insights tool

allows crash and issue reporting as well as user sessions monitoring [5]. The platform

supports the so-called Portable Class Library which contains C# classes compiled into

selected platforms. It supports iOS, Android and Windows. Also, it is possible to store

shared resources (for example, JSON assets) in the shared library. Unfortunately, the

commercial usage is not free.

 Compilation logic:

Figure 1. iOS native UI element outlet. Kotlin

17

• iOS: C# classes are compiled to ARM assembly language with a lightweight

version of the .NET framework implementation included. For a platform-specific

code written in C#, it is possible to use Apple’s CocoaTouch SDK classes.

• Android: shared code is compiled into the Common Intermediate Language

package with embedded MonoVM and JIT. Android-specific code has the

possibility to use any Google’s Android SDK packages as namespaces.

• Windows: compiled into the Common Intermediate Language and ran by built-in

runtime.

For both Android and iOS implementations, .NET/Mono frameworks are reduced at

compilation time by removing unused classes in order to minimize the installation file

size. However, the support of C# classes from standard library is limited. Also, it is

impossible to use dynamic .NET languages such as IronPython, IronRuby.

Since Kotlin shares many language features with Swift, C#, and Java, there would be no

particular benefit to using them, but there would be many difficulties when dealing with

platform-related problems since solutions accessible on common internet platforms

(Stackoverflow, Github issues) are mostly about native language implementations. Also,

official documentation and tutorials for iOS are written in Obj-C/Swift, and the developer

would have to rewrite them in Kotlin/C#. Likewise, Android has all the official

documentation provided with examples in Java/Kotlin. The advantage of using non-

native language for native development is insignificant compared to corresponding

problems and limitations. Instead, it would be much more justified to use one language

for platform-independent code, particularly in the case when there is a tangled business

logic, a sophisticated domain model, complex computations, and/or if there is a need to

continuously update listed features for the reason that it would require two teams to

implement same logic twice and cover it with two times bigger number of tests.

Also, it is possible to use both Kotlin/Native and Flutter in the same project. The first

technology would be responsible for the platform-independent code, while the second

one would only render UI. In addition, there would be a platform-specific code layer. This

approach is unusual and could require a specific case to be used for. It requires a team to

use 4 frameworks and write code in 3-4 languages (depends on which language would be

used for the Android platform: Java or Kotlin). Moreover, there will be notable

18

inconveniences in communication between Flutter and other layers due to contracts of

Method Channels, which is illustrated in Figure 2, which is adapted from the research

made in OLX [7].

2.3 Technology comparison

Table 1 is used to visually compare these frameworks based on academic studies and

other reports found on the internet. The learning curve section is filled from perspective

of a native Android developer without any significant experience in Web or iOS

development.

Technology Runtime
bundling, its
size

Battery/RAM/CPU
impact

Learning curve Community

Air Standalone
application

No reports were found Pretty straightforward
to start writing an

Limited number
of community-

Figure 2. Architecture where both Flutter and Kotlin/Native are used

 Table 1. Frameworks comparison

19

Adobe Air
needs to be
installed to
run compiled
code bundled
into apps.

application. Hard to
maintain and achieve
good performance.
Need to learn
ActionScript, which
is an implementation
of ECMAScript,
hence it shares a lot
with JavaScript.

created libraries.
Stackoverflow has
only 41215
questions with
“actionscript”
word included.
Github has about
1800 repositories
written in this
language, even
when it is a
mature
technology that
first appeared in
1998.

React
Native

Embedded
instance of V8

Average 30% more
CPU consumption [7],
feasibly higher
memory consumption.
Andreas reports [6]
that React Native
consumes 224%
energy compared to
native Android
applications.
Furthermore, the study
reports that RN
applications take 25%
more time to launch.

React itself is not
very easy as web
framework, compared
to Vue.js; it is quite
hard to switch to it
from native Android.
Could be very easy to
start if developers
already know React.

React Native is
the 3rd most
starred project in
Github. Its
community is
really huge,
having all needed
libraries, and
common
development
problems solved.

Flutter Dart needs the
Dart Virtual
Machine to
run. Thus, the
engine is
compiled into
native code
and bundled
with the
application.

The problem is this
technology is very
young and there are no
serious investigations
on the question.
However, there are
several non-scientific
articles, based on
creating a single app
and consumption
comparison.
[7] measured that
Flutter applications
consume 30% more
memory, but CPU

The framework is
designed in React-
like style. But Dart is
not a well-known
language, and in the
most cases, developer
will have to learn it
from the
scratch. According to
TIOBE index, Dart
shares 0.38% of
popularity and takes
34th place.

The community is
very young. There
are not many
libraries available
for Dart. There
are only 27000
repositories on
Github.

20

usage is close to the
native one. [9] built a
stopwatch application
and came to the
conclusion that Flutter
app is twice more CPU
and memory
consuming compared
to native iOS
application when
running the stopwatch.

Xamarin Lightweight
version of
.NET/Mono
Framework
bundled into
application.
Jiang [10]
developed 2
native
applications,
their
compared size
to Xamarin
one: native
iOS was 33
Mb, native
Android 64
Mb, Xamarin
150 Mb.

40% longer start time
compared to the native
one was reported [10].

This paradigm is very
easy to learn, because
it is the same style
compared to the
native development:
OOP codebase
written in C# is way
similar compared to
Java ones.

There are 19000
Github projects
having Xamarin
in their name or
tags. Furthermore,
there are more
than 400000
repositories
written in C#.
Moreover, it is
possible to use
native libraries for
platform specific
code.

Kotlin/
Native

Regular
application
size plus .so
library
containing
LLVM code.

No reports were found.
Measurements are
listed below in
Computational
performance overhead
section.

Kotlin is very easy
for developer who
already know Java. It
takes 1-2 weeks to
make one feel
comfortable with it.
But it is hard to
switch to Kotlin-only
libraries from the
Java ones. Moreover,
developers need to
learn the iOS
platform.

All libraries
written in Kotlin
for Android,
server and
desktop
development are
available for
Kotlin/Native.
There are 37400
projects in Github
written in Kotlin.
But Kotlin/Native
technology is very
young. Also, it is

21

possible to use
native libraries for
platform specific
code.

After reviewing the market of technologies, it becomes clear that the best solution to

migrate an existing project would be Kotlin/Native, because developers would not have

to rewrite the entire codebase in a new language. Moreover, this approach will make the

UI part of the application fully native, and the importance of this is described in the

research made by S. Xanthopoulos [11].

Although the team will have to either learn iOS platform or hire new developers in order

to make the UI and platform-dependent part.

22

3 Proposed development pattern

3.1 Overview of existing patterns

To begin with, this section reviews popular patterns for iOS and Android to decide which

one would be taken as the basic for the research. The decision will be based on the

implementation difficulty and technical restrictions of the platform. This can probably

make some strengths of the pattern unnecessary or dysfunctional. Based on several

researches [14, 15, 16], the most popular design patters for Android and iOS could be

listed as:

Android:

• MVC (Model — View — Controller)

• MVP (Model — View — Presenter)

• MVVM (Model — View — ViewModel)

iOS:

• MVC (Model — View — Controller)

• MVP (Model — View — Presenter)

• MVVM (Model — View — ViewModel)

• VIPER (View — Interactor — Presenter — Entity — Routing)

Pattern Advantages in the current scope Disadvantages in the current scope

MVP View is as simple as possible.
View does not know about Model.
Presenter and View could be platform-
independent.
It is reported that this pattern is the
most memory-efficient [14].

Quiet a lot of boilerplate code: each
View and Presenter should have a
contract.

 Table 2. Comparison of selected development patterns

23

According to a study made by M.
Potel [16] it is more modern version
on MVC, which is adapted to event-
driven systems.

MVC Default development pattern in iOS
development. Would make it easier for
iOS team to read the core code.
The most well-known pattern
according to research made in the
University of Technology of Troyes
[17].

Views are not that simple as in MVP,
because they know both about Model
and Controller. UI logic is not limited to
a single class. Also, default iOS MVC
implementation encourages developers
to make ViewControllers instead of
separate Views and Controllers, so that
they will have a lot of logic, which does
not apply to our concept. Worst in terms
of memory and CPU usage.

MVVM Fewer interfaces to declare. Easier
view state management. Reduced
complexity and improved reusability
according to the International Journal
of Computer Science [18].
Furthermore, it is reported that
MVVM increases data independence
and improves application logic
encapsulation.

Difficult to test an application when
having complex View Model. Harder to
separate domain level in Android.
Google’s implementation of LiveData
and ViewModel could not be used in the
core because they are platform-
dependent. Furthermore, Lou. T. reports
that it becomes more difficult to debug
Android applications using MVVM
compared to other patterns [14], because
of moving presentation logic to XML
files.

VIPER Same advantages as in MVP. High
level of code decoupling. Allows code
reusability.

Not a common approach in Android
development.

After looking through the most popular patterns, it becomes apparent, that the suitable

ones in this scope are MVP and MVVM. The biggest advantage of MVVM, good support

in Android, is nullified by the fact that platform libraries could not be complied on iOS.

Nevertheless, it could be implemented again from the scratch, but it will be very

development-intensive task to bind Android XMLs and iOS storyboards in the same way.

In this case the best choice would be Model-View-Presenter.

24

3.2 Requirements for the solution

Now, when we have selected MVP as the basis for the pattern, the next step is to organize

the code structure. Then, it is important to determine, which part of the code will be in

the core and in the platform. Finally, it is necessary to assess how it will look like. It is

obvious that the more code is presented in the shared codebase the better, but the

architecture should help developers achieve some goals, which could be listed as:

• Testablity

From this point of view, the approach will not differ from regular MVP a lot. Presenters

and business logic should be covered with unit tests, while platform modules should be

covered with automation tests. Moreover, the tests of Kotlin Multiplatform core modules

could be running with JVM, which means that all the popular and time-proven tools, such

as JUnit, Mockito, etc. could be used, and developer is not obliged to learn new ones

written in Kotlin.

• Extensibility

It should not be a big problem for a developer to add a new feature when the project is

already well-developed and has massive code-base. The common solution for that is

separating code into feature-based units, which could be packages or separate modules.

It will make easier to navigate through the code when all the parts of a single feature are

located close to each other and irrelevant parts are isolated or incapsulated. In our case it

is also possible to significantly improve build speed using separate modules because

Kotlin/Native supports incremental builds. It means that when some parts of the code

were changed since the last build, only those modules, that have their parts edited, will

be recompiled. So, the average build time would not be significantly different when the

project has only 1000 lines of code or 50000. Peculiarities of adding new modules are

reviewed below in Module structure section.

• Flexibility

It is not a secret that in modern world the requirements for the application can change

throughout the whole development process. If it is a startup, the initial business model is

continuously adjusted, new hypothesizes are tested on real users, third-party services used

25

by application are changed. For example, what will happen if management decide to

change analytics platform because pricing is better or work is more stable? All third-party

services should be encapsulated into separate module, providing contract, that could be

used from the core.

• Reusability

What if it will be necessary to develop another application for the project that will have a

lot of similar features in the future? For example, after year of developing application for

content consumers, managers will require a separate application for a content developer

or content moderator? It will be a resource waste to develop them from scratch or copy-

paste existing code to a new project.

All of these goals should be considered while developing the architectural pattern with a

focus on supporting code quality throughout the whole lifespan of the application. All

those requirements are perfectly solved with Kotlin/Native.

3.3 Clean Architecture

There are a lot of different approaches on an architecture of systems, but Robert C. Martin

figured out similarities between them and summarized them into the Clean Architecture

concept. According to his study [14], although the particulars of these architectures differ,

they all are working for the same goal, which is the separation of concerns. They all

accomplish this by layering the applications. It has at least one layer dedicated to business

rules and another to interfaces.

26

As shown in Figure 3, there are concentric circles that represent layers where inner circles

do not have access to outer ones. In other words, code in the Enterprise Business Rules

section can’t mention class names from any other circles, whereas it is possible to use

everything in the Frameworks & Drivers section. One can benefit from applying these

rules in having external parts of the system easily changed, and making the system

abstracted from third-party libraries, external API specifications, UI frameworks. This in

all fulfils the requirement of flexibility, and such a system becomes intrinsically testable.

Thus, it is important to apply this recommendation to the desired architecture. Having

MVP in mind, we can initially separate the system into 3 layers: contract, having all the

interfaces, possible navigation transitions, data classes and models; core, which will have

all the business and presentation logic; and the platform, that will have all the context-

aware code.

Figure 3. Simplified scheme of Clean Architecture approach

27

3.4 Core and Contract structure

The structure of the core and contract levels would be similar to the ones in the Model-

View-Controller approach. In addition, there will be a separate module for navigation

contracts for each feature. There will be one module for networking, which will have

implementations of interactor contract for all the features. The same will apply to the

database, analytics, etc. One can observe in the Figure 4, that it is quite straightforward

to replace network (or database) module implementation with another one, in case there

will be a need to change used libraries.

The role of Orchestrator is to encapsulate the logic of network and database method calls

arrangement, so that in Presenter it will be possible just to call one method, and all the

caching, mapping and error handling would be done separately. The need for a weak

reference need will be justified in the Memory leaks section.

Figure 4. Schematic representation of an abstract feature with some networking and persistence

functionality.

28

3.5 Android structure

Each feature will also have an Android module, which will contain all the platform-

specific code, namely Activities, Fragments, Views, Adapters, ViewHolders, Navigator

implementations, etc. It is important to decouple Views and the native Android

components, such as Activities, for the purpose of single responsibility: View is handling

the layout updates and the user events listening, whereas Activity takes care of the

component lifecycle and the system events and broadcast messages.

Feature navigator implementation class will have methods that handle Intent building,

Parcelable mapping, and, possibly, work with the navigation graph from the Android

Jetpack.

Figure 5. Schematic representation of Android implementation of an abstract feature

29

3.6 Android dependency injection

In order to keep communication between the different layers clean and meet the

requirements of encapsulation, it is crucial to design the dependency injection approach.

Given that all the features and layers are separated into individual Gradle modules, each

one of them will have its own DI module, which will initialize and provide related

instances to the class constructors in the feature scope. The scope will be defined by a

feature component, which will contain all the required modules. All the common modules

of features, such as database or network, will be composed in a base component, that will

play a role of super-class for each feature component.

As we can see in Figure 6, a feature could be easily injected into any other app with

similar architecture, which will meet the requirement of reusability.

Figure 6. Schematic representation of Dependency Injection graph for an abstract feature in

Android application.

30

3.7 iOS-specific distinctions

The main challenge of implementing this approach on iOS is that Swift and Kotlin are

not mutually interchangeable and it is not possible to use all the language features of

Kotlin in Swift and vice versa. To solve this problem, the ios-combined Gradle module

is introduced to the structure. It will mostly have wrappers and dependency injection

components. iOS-specific DI modules will be declared in Swift code and then passed as

arguments to the feature component. Visual representation is shown in a Figure 7.

View is basically a renamed ViewController from the default iOS project structure that

will implement methods from the contract to be executed by the Presenter. Component

will be instantiated in View’s viewDidLoad method. If a component requires some other

Views as arguments, they will be acquired using IBOutlets and passed among others.

After creating a component, developer would be able to get a Presenter from it and call

Figure 7. Dependency Injection scheme for iOS

31

its methods in accord to user and system events, and it will call View’s method updating

the contents.

3.8 Clean Architecture compliance

So far, we have designed the module structure, now we have to create rules of modules

that should depend on each other. In order to make it compliant with the Clean

Architecture recommendations, the Table 3 was filled with Gradle modules assigned to

the corresponding layer.

Clean Architecture layer Gradle module name Contents

Frameworks & Drivers feature-android
common-android
ios-combined
network-core
database-core
ios-app
android-app

All the View
implementations, networking
and persistence, wrapping,
navigation implementations,
etc.

Interface Adapters feature-core Orchestrating requests,
presentation logic

Use Cases common-core Business and domain logic

Enterprise Business Rules common-contract
feature-contract
feature-navigation

Models, contracts.

As it was mentioned, the inner circle should not have access to outer circles. So, we have

to keep in mind that Gradle modules can be linked to ones in the same row or to the ones

below, but they can’t link to the ones above.

3.9 Gradle modules hierarchy

The Table 3 can be represented more visually. The second feature was added for

demonstration of how first feature could use it.

 Table 3. Clean Architecture layers and their counterparts in the proposed pattern scope

32

Also, and adjustment was made: feature modules of the same level can’t be linked to each

other, except for common ones. In order to interact they will have to use abstraction from

the contract level. That will improve reusability and make the implementation

encapsulated from each other.

In this case separate Android features don’t have access to each other, and if they need to

somehow interact with each other, it could be done in the presenter. In case of need to

have some common elements, they could be placed in common-android module.

Particularly, recourses, constant values, helper functions, reusable views.

Also, in this figure, it is notable, that one can add more applications, that will depend on

different features they need.

Figure 8. Gradle modules hierarchy

33

4 Real case study

4.1 Application domain and specificity

At the very beginning of the development, application idea was to create a platform for

city quests, where one segment of audience could compose interactive outdoors stories

and other users could walk through them using their mobile phones. Something similar

to geocaching but more complex. Application was designed to provide a set of tools to

creators, where every story piece would be a separate screen or so-called Task.

Application would have several task types: navigation task, where user has to physically

reach to the destination; information task, which will just contain text and images; text

input task, where user has to fill in the answer; multichoice, QR code scan task, put in

correct order, etc.

The idea was to give the author maximum freedom of creation and allow building almost

any type of game outdoors with different types of riddles and questions. After several

months of the development, it became apparent that the idea is much bigger than just

quests and it nicely fits the tourism market and could be used for creating interactive

tours.

Figure 9. Screenshot of the story editor

34

4.2 Choosing technologies to use

The reviewing application is an Android application with heavy offline logic and written

entirely in Kotlin, but having a lot of Java dependencies. The design of the application is

based on the Clean Architecture approach [6]. Also, the application is separated into

several feature-specific modules. The architecture scheme is presented on the Figure 10.

The platform logic is already isolated and there is no need for modifications, but the core

and contract modules should get rid of Java dependencies, in particular, RxJava and

Dagger 2.

Also, it is worth considering to use some Kotlin/Native libraries instead of those, used in

the platform and move them to the core. For example, Retrofit was used to handle HTTP

requests. It could be replaced with Ktor, and there will be no need for writing a separate

platform implementation for iOS.

Figure 10. Simplified architecture scheme of the existing application

35

4.3 Libraries replacement

4.3.1 Dependency injection

Initially Dagger 2 was used in the Android application. While using this library, developer

has to declare modules with bindings, which combine these modules into components

that have equivalent scope with Android components (Activity, Fragment, Service). Also,

it is possible to declare subcomponents for smaller objects: for example, for an item in

list that should have its own dependency graph developer can declare subcomponent, and

import needed modules. There are 2 popular Kotlin replacements available: Koin and

Kodein. And only Kodein is compatible with Kotlin/Native. During the replacement the

same logic was applied: components and subcomponents separation with modules

importing. For iOS application components were declared in Kotlin code, because the

library API is based on infix functions which are neither supported in Swift nor Objective-

C. In overall, the replacement process took a week and made development process much

easier: library is feasibly simpler. The only disadvantage is that Dagger 2 creates

dependency graph during the compilation, and Kodein does that during the runtime, so

sometimes it takes some time to find an error in dependency injection and there is an

additional overhead while running the application to provide dependencies.

After refactoring was done, it was suddenly discovered, that both iOS and Android

application have memory leaks because of some references being stored too long and not

released after UI element was destroyed. The solution was to use weak references for all

UI components managed by the platform, such as Activities/Fragments on Android and

ViewControllers on iOS. More about that in Memory Leaks section.

4.3.2 Asynchrony and concurrency

The initial solution was RxJava 2: powerful library for reactive and asynchronous

programming. The library itself contains approximately 10000 methods and significantly

increases application installer file size even when ProGuard tool is used. it could be

replaced with Kotlin coroutines, which moreover have better computational performance.

It was found that coroutines are significantly faster when to comes to thousands of

operations [12]. The migration was not very trivial: we had to rewrite a lot because of

completely different approaches: RxJava has the logic defined in chained method calls in

declarative programming style with a lot of callbacks. Coroutines code is written in

36

synchronous style wrapped in coroutine context closures (e.g., launch function). In most

cases it makes code simpler, developer can read the asynchronous blocks without learning

coroutines, while it is almost impossible to understand RxJava chains without knowing

its operator functions and scheduling logic.

For example, two methods, show in Figure 11, do the same. First one is written in RxJava,

second in coroutines. While reading the first one, it is not obvious, what Single,

Single.concat or fromCallable do if you haven’t worked with Rx before.

override fun loadAssets(filePath: String): Single<SectionContainer> {
 val asset: Single<String> = Single.fromCallable { con-
text.readTextAsset("$filePath.json") }
 val remote: Single<String> = Single.fromCallable {
 remoteConfigInteractor.getRemoteConfig(filePath)
 }

 return Single.concat(remote, asset)
 .filter { it.isNotEmpty() }
 .firstOrError()
 .map { it ->
 Gson().fromJson<SectionContainer>(it,
 SectionContainer::class.java)
 }
}

override suspend fun loadAssets(filePath: String): SectionContainer {
 val asset: String = context.readTextAsset("$filePath.json") ?: ""
 val remote: String = remoteConfigInteractor.getRemoteConfig(filePath)

 return listOf(asset, remote)
 .first { it.isNotEmpty() }
 .let {
 Gson().fromJson<SectionContainer>(it,
SectionContainer::class.java)
 }

}

Second one written in coroutines is easy to read if you know Kotlin syntax. Since core

codebase is also intended to be read by iOS team, this migration really helped to make

logic more readable for them.

(a)

(b)

Figure 11. Same method written using RxJava (a) and Coroutines (b). Kotlin

37

4.3.3 Network

Initial network implementation on Android was done with OkHTTP and Retrofit libraries.

It was possible to left it untouched and implement separate networking service for iOS

that will fulfil the protocols defined in the core, but in order to make all networking

consistent it was decided to rewrite it from the scratch. Used technology is Ktor-client

library. It is based on Coroutines and provides Kotlin-idiomatic code style.

4.4 Database migration

Originally, persistence was implemented using Room library, which is a part of Android

Jetpack developed by Google. It was not obligatory to change it to some Kotlin

alternatives, because it’s not used in core, only in platform, but this could force us to use

CoreData or alternatives on iOS side, so we investigated if there are some cross-platform

database solutions compatible with Kotlin/Native. And the selected library is

SQLDelight. Both Android and iOS have SQLite as their database management system.

SQLDelight is a library that is based on SQLite and generates type safe Kotlin API for

SQL statements defined by developers during the compile time.

As we were doing the transition to the new library in the moment, we already had active

users, it was crucial to migrate user data seamlessly, so that nobody would lose their

progress. In order to carry that out, first thing to investigate before making a transition

was to check migration functionality. Otherwise, in that moment, iOS application was not

yet released and it was not important to keep progress. To summarize, these were the

steps:

1. Analyse generated database on Android and iOS

2. Create a new database

3. Write migrations

38

In the project all entity models were declared as standard annotated data classes and data

access objects were defined as annotated interfaces with SQL requests in annotation

parameters as shown below in the Figure 12:

@Entity(tableName="profile_entity")
data class ProfileEntity (
 @PrimaryKey(autoGenerate = true)
 var pid: Long = 1,
 var id: Long,
 <…>
)

@Dao
interface ProfileDao {
 @Insert(onConflict = OnConflictStrategy.REPLACE)
 fun insert(profileEntity: ProfileEntity)

 @Query("SELECT * FROM profile_entity WHERE pid=1")
 fun getProfile(): ProfileEntity?

 @Query("DELETE FROM profile_entity")
 fun deleteProfile()

 @Language("RoomSql")
 @Query("UPDATE profile_entity SET accessToken=:accessToken,
refreshTo-ken=:refreshToken WHERE pid=1")
 fun updateProfileTokens(accessToken: String, refreshToken: String)
}

Room generates the database in the runtime, and it is possible to analyze the contents

using the Device File Explorer in order to mitigate the unexpected contingency, as shown

in Figure.

(a)

(b)

Figure 12. Simplified example of entity (a) and data access object (b) declaration using
SQLDelight. Kotlin

39

The name of selected class equals the database name, which is given in the

databaseBuilder method of Room. It is possible to open the file using any third-party

software, such as DB Browser for SQLite.

Thereby, we can see what was generated besides the annotated tables. Also, we can check

if the real table structure is different from the one in the code.

As can be noted in a Figure, there is no significant difference between entities in the code

and in the database. Next, we checked if database version is also consistent using

PRAGMA user_version; command.

On iOS the database structure description was made in .xcdatamodeld file and had the a

little bit less fields, because not all the features were implemented yet. By default, XCode

(a) (b)

Figure 13. Database files (a) and tables (b) on Android device

Figure 14. Contents of quest_entity table

40

generates database to /Library/Application Support/. It is also possible to open them and

check the contents:

As we can see on the Figure, table names are different from the ones in the project. The

table structure also is not the same:

Since CoreData stores its tables in different folder compared to SQLDelight, and it has

different table naming rules, it was necessary to spend some time to investigate how to

make this work seamless.

4.4.1 Creating a new database

Before anything else, we need to create a new module, that will have Android, Common

and iOS source sets. The final structure after running migrations is illustrated below:

Figure 15. Tables of database generated by CoreData

Figure 16. Contents of ZQUESTENTITY table

41

Next step is to add SQLDelight dependency to the project, what can be done with adding

a classpath to buildscript of the root Gradle file and adding database metadata to the

build.gradle file, as shown in Figure 18 below:

buildscript {
 repositories {
 google()
 mavenCentral()
 }
 dependencies {
 classpath "com.squareup.sqldelight:gradle-
plugin:$sqldelight_version"
 }
}

apply plugin: 'com.squareup.sqldelight'
apply plugin: 'com.android.library'
apply plugin: 'kotlin-multiplatform'
apply plugin: "com.squareup.sqldelight"

sqldelight {
 LokimoDb {
 packageName = "ee.apico.database"
 }
}

Figure 17. SQLDelight module structure

(a)

(b)

Figure 18. Linking database in root Gradle file (a) and in the database module (b). Groovy

42

Where “LokimoDb” is the project name and “ee.apico.database” is the package name. By

default, sources are located in <sourceSet>/sqldelight

In this structure, androidMain and iOSMain will only contain files for the migration from

native tools to the cross-platform one. All the consequent migrations will be stored in

commonMain only. In order to create an entity it is enough to write an .sq file that will

contain plain SQL query. Simplified example of scheme declaration could be observed in

Figure 19 below. As an outcome, SQLDelight generates a separate class for each entity

and statement.

CREATE TABLE profileEntity (
 pid INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL DEFAULT 1,
 id INTEGER NOT NULL,
 <…>
);

selectAll:
SELECT * FROM profileEntity;

insert:
INSERT OR REPLACE INTO profileEntity(pid, id, <…>)
VALUES ?;

getProfile:
SELECT * FROM profileEntity WHERE pid = 1;

deleteProfile:
DELETE FROM profileEntity;

updateProfileTokens:
UPDATE profileEntity SET accessToken=?, refreshToken=? WHERE pid = 1;

As it was stated above, there will be two separate migrations, one for Android, and one

for iOS. Migrations are also described in format of plain SQL query. For Android,

migration is quite simple, just renaming the tables:

Figure 19. Creating an entity and queries for data access object. SQL

43

DROP TABLE room_master_table;
ALTER TABLE profile_entity RENAME TO profileEntity;
ALTER TABLE quest_entity RENAME TO questEntity;
ALTER TABLE quest_progress_entity RENAME TO questProgressEntity;

Also, it is important to consider, how user data will be migrated, if Android application

will be updated from the version, that has an older scheme of database. In this case,

intermediate migrations also have to work. For this case, it is necessary to leave all the

previous migrations that were written for Room in the project and write code that will

execute them.

In case of iOS, writing a migration will be a bit more complex, because all the tables and

columns have different names. Simplified version of the migration of Profile entity and

two fields is shown below in Figure 21:

DROP TABLE IF EXISTS profileEntity;
CREATE TABLE profileEntity (
 pid INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL DEFAULT 1,
 <…>
);

INSERT INTO profileEntity(pid, <…>)
SELECT 1, ZPID, <…>
FROM ZPROFILEENTITY
LIMIT 1;
<…>

DROP TABLE IF EXISTS Z_METADATA;
DROP TABLE IF EXISTS Z_MODELCACHE;
DROP TABLE IF EXISTS Z_PRIMARYKEY;
DROP TABLE IF EXISTS ZPROFILEENTITY;
<…>

Next step is to rewrite data access objects, which is quiet straight-forward: just remove

Room annotations, and implement the interface using the generated Query class:

Figure 20. Database migration query for Android. SQL

Figure 21. Simplified query for iOS database migration. SQL

44

class QuestDaoImpl(
 private val queries: QuestEntityQueries
) : QuestDao {

 override fun insert(qp: QuestEntity) {
 queries.insert(qp)
 }

 override fun getQuests(): List<QuestEntity> {
 return queries.getQuests().executeAsList()
 }

 <…>

}

4.4.2 Integration of the shared module

All we have to do for the Android integration is to add Gradle dependencies to library

and shared module and launch the AndroidSQLiteDriver, which is a class bundled in the

library. In case of iOS in is required to write custom behaviour for NativeSqliteDriver,

because by default it creates a new database, if current version is 0.

4.5 How multiplatform works?

One of key features of Kotlin is native support of cross-platform projects. Kotlin/Native

is not the only one target platform. It is also possible to compile to JVM and JS.

Figure 22. Simplified example of data access object written using SQLDelight. Kotlin

45

As shown in Figure 23, it is also possible to compile the shared codebase to JS and use in

browser if needed. Kotlin for Android is usual Android module written in Kotlin. It will

always have Android Manifest and access to the context and executed with Dalvik VM.

Kotlin/JVM will be executed in regular JVM, instead of DVM. Could be used, for

example, for unit tests. The folder structure of the module is illustrated below on the

Figure 24.

Figure 23. Compile targets of Kotlin

Figure 24. Example on module structure

46

Illustrated module it the one that mostly consists of the interfaces (contract part in

terminology of MVP). Where main contains all the expected classes, androidMain is usual

Android module, commonMain is what will be compiled into a shared codebase.

jvmMain has only helper classes for unit-tests and actual implementation of some classes,

that have to be different from Android and iOS ones. iOSMain is also a Kotlin module

that has access to Foundation namespace. In this case it contains utility classes for

concurrency and memory management and some wrappers to use Kotlin Coroutines

classes from Swift code. Unfortunately, IDE navigation in iOSMain modules is not

working yet, due to beta status of technology.

class ChannelWrapper<E> {
 private val channel: Channel<E> = Channel(RENDEZVOUS)

 fun get() = channel

 @InternalCoroutinesApi
 fun send(item: E) {
 CancelableCoroutineScope(MainLoopDispatcher()).launch {
 channel.send(item)
 }
 }
}

Here is an example of Channel wrapper class. The problem is that Kotlin global functions

are inaccessible from Swift code, since then it is not possible to instantiate a new channel

directly, because it does not have public constructors, only a function with this signature.

One interesting part of code fragment in Figure 25 is that we create MainLoopDispatcher

which is a CoroutineDispatcher implementation.

Figure 25. Example of wrapper written in Kotlin to be accessed in Swift code

47

@ExperimentalCoroutinesApi
@InternalCoroutinesApi
override fun scheduleResumeAfterDelay(timeMillis: Long, continuation:
CancellableContinuation<Unit>) {
 dispatch_after(dispatch_time(DISPATCH_TIME_NOW, timeMillis *
NANOSECONDS_IN_MILLISECOND), dispatch_get_main_queue()) {
 try {
 with(continuation) {
 resumeUndispatched(Unit)
 }
 } catch (err: Throwable) {
 NSLog(err.message.toString())
 throw err
 }
 }
}

Figure 26. Code that calls native iOS functions. Kotlin

Here is an example of one function of coroutine dispatcher implementation. It calls some

iOS native functions, such as dispatch_after() and dispatch_get_main_queue(). Although,

now there is no need to write custom coroutine dispatchers for iOS module, because

developers had added their implementation to the library.

4.6 Expect and Actual

Kotlin has a powerful language feature to work with the platform-specific code. Expect

class works like an interface, that could be declared in the main module, and used both in

the shared code library and in the platform code. The difference with the usual interface

declaration is that those expect classes would be replaced by actual platform

implementations during the compilation, depending on the target platform. Below there

is a simple example with a big decimal number declared in contract module.

expect class BigDecimal(
 value: String
) {
 fun getValue(): String

 fun toDouble(): Double
}

Figure 27. Expect declaration of BigDecimal class. Kotlin

48

In order to use it the same way on both compile targets, there are two implementations,

that are wrapping native classes, NSDecimalNumber for iOS and BigDecimal on

Android.

actual class BigDecimal actual constructor(value: String) {
 private val value: NSDecimalNumber = NSDecimalNumber(value)

 actual fun getValue(): String = value.stringValue

 actual fun toDouble(): Double {
 return value.doubleValue
 }

 fun getNSDecimalNumber() = value

 override fun toString(): String {
 return getValue()
 }
}

actual class BigDecimal actual constructor(value: String) {
 private val value: BigDecimal = BigDecimal(value)

 actual fun getValue(): String = value.toPlainString()

 actual fun toDouble(): Double {
 return value.toDouble()
 }

 override fun toString(): String {
 return getValue()
 }
}

Expect/Actual pattern could be a good choice in cases when developer needs to wrap such

native pairs of libraries as AVFoundation/CameraX, Core ML/MLKit,

LocalAuthentification/Biometric, Accounts/Room, etc, and wrap them with the same

expected signature in order to use in the shared codebase.

(a)

(b)

Figure 28. Actual implementation of BigDecimal class on iOS (a) and on Android (b). Kotlin

49

4.7 Linking of Gradle modules

Next step is to review is how to link modules with each other. In order to make code look

cleaner, all the boilerplate was moved to a separate Gradle file, which is included to all

build files. Below, there is an example of linking one feature on contract and core levels.

apply plugin: 'com.android.library'
apply plugin: 'kotlin-multiplatform'
apply from: rootProject.file('gradle/common_android-setup.gradle')

depends([
 ':common-contract',
 ':network-contract'
])

apply plugin: 'com.android.library'
apply plugin: 'kotlin-multiplatform'
apply from: rootProject.file('gradle/common_android-setup.gradle')

depends([
 ':common-core',
 ':review-contract',
 ':home-navigation',
 ':analytics-contract',
 ':profile-contract'
])

What is important to mention is that all modules, even those, that are platform-

independent, should have Android plugin applied, because Kotlin Multiplatform requires

all modules, that will be used in Android, to have a manifest file, that will have a package

name.

4.8 Localization synchronization

One of important challenges was to make the resources (e.g., strings) easily synchronized

between Android and iOS apps. They should be updatable, localizable and easily

manageable. The application supports 8 languages and it is obvious that developers

(a)

(b)

Figure 29. Gradle files examples on contract level (a) and core level (b)

50

cannot update all localizations when they want to add or adjust something. Thus, it is

crucial to develop an approach or tool to handle the problem.

In Android strings are represented with XML-files, where the name attribute is a key,

accessible from the R file, when application context is available. Android strings support

string arrays, C-style templates. Also, there is quantity strings support, which is needed

for templates with plural forms, because different languages have different grammatic

rules for that. For example, the plural string, shown in Figure 30, would have similar rules

in English, Spanish and many other languages: But in Russian there will be an additional

case for numbers that end with 2, 3 or 4.

<plurals name="quest_start__creations_mask">
 <item quantity="one">%1$d publication</item>
 <item quantity="other">%1$d publications</item>
</plurals>

<plurals name="quest_start__creations_mask">
 <item quantity="one">%1$d publicación</item>
 <item quantity="other">%1$d publicaciones</item>
</plurals>

<plurals name="quest_start__creations_mask">
 <item quantity="one">%1$d публикация</item>
 <item quantity="few">%1$d публикации</item>
 <item quantity="many">%1$d публикаций</item>
</plurals>

To make application look more natural and grammatically correct it is important to take

care of these small details. In iOS strings also support templates, but arrays and plurals

support are limited. But the most critical difference is that resources are accessed by a

string key. And if there is no value available, they key would be returned. This can

possibly lead to unpleasant consequences: if there is no localized value, user will see the

key, while it will be better to show English value.

The solution was a custom Gradle task that takes all the strings.xml files from Android

resources, converts them to iOS Localizable format and adds them to the project. If

(a)

(b)

(c)

Figure 30. Plurals example for English (a), Spanish (b) and Russian (c) languages. XML

51

translation is missed in some of the languages, it adds the English version to the

localization file to avoid the problem with returning the key as a default value.

4.9 Development process

Initially regular git-flow approach was used. But we encountered several problems with

that. When something is changed on Android side, affecting the core, those changes will

also affect iOS: sometimes it will fail to compile until contracts are fulfilled on iOS side,

or, it can lead to unexpected behaviour. And when iOS developers see these problems,

they have to solve them out-of-context.

It was causing a lot of problems, so next step was to use approach with 2 separate

development branches, that work the same as in git-flow: when a new task for iOS is

started, developer branches off the iOS development branch, and the same process for

Android. Though, to keep codebase up to date, we synced those branches each month,

having full attention on that process. That should have helped to avoid having unexpected

bugs and not to waste time solving problems out of context.

Figure 31. Initial task development process in BPMN

52

After several months of using this approach, we found out, that regular branch syncing is

still very nervous process and we tried another way to handle it: single main development

branch, and pull requests containing both iOS and Android code. This one was the most

time effective and convenient, but required developers to know a lot about both platforms

and Kotlin/Native specificity, so, the final approach is not recommended to be acquired

if team members are not yet experienced for it.

4.10 Debugging core code

Since we are recompiling the core each time into a library, it begs the question: how

should we debug the application during the runtime? Is it possible to put breakpoints in

Kotlin code while running Swift application from XCode? Or the only solution is to print

strings to the log? Fortunately, if core code is compiled using LLVM, it is possible to

debug it with LLDB. But it is not very convenient to use LLDB as is. There is a plugin

for XCode that integrates this tool to IDE’s debugging GUI. And it becomes possible to

carry out the debugging in a familiar way: with breakpoints, stepping into or out, reading

variable values. It requires adding Kotlin files as sources, and for that there is additional

plugin available: Kotlin XCode Sync. It is not very hard to add all this to project, but the

plugins are not very advanced, they are still in active development.

4.11 Memory leaks

Memory leaks are the huge problem that happens when program prevents deallocation of

objects in memory, which are not used anymore. Mostly, it happens in static typed

languages that rely on garbage collectors [19]. Thus, the next important thing to consider

is the way iOS and Android manage memory allocations. There is a huge difference in

Figure 32. Final task development process in BPMN

53

approaches, and what works perfectly in Android could easily leak in iOS. In Android’s

garbage collector mechanism, it is enough that unused object is inaccessible from root

object even if it has cross references from other unused objects to be removed, while in

ARC object that have strong references on itself will be kept in memory. In other words,

retain cycles that are not a problem in Android, could make iOS application very memory-

consuming, and that problem needs special attention. As it was mentioned in study [19],

the initial step to detect memory leaks is to make a heap dump.

Screenshot in the Figure 33 was made during investigation the memory leaks problem. In

illustrated situation, the view controller is being leaked 8 times, the exact number of times

the screen was launched during the use session. Due to visual representation, it is possible

to easily notice that view controller and presenter are holding cross-references to each

other.

As it was mentioned before, Android and iOS have different ways to manage memory,

and using code where object are perfectly deallocated in Android could cause huge

problems on iOS. For example, this is what was happening with memory consumption on

iOS application:

Figure 33. Heap dump of application made in XCode

54

Figure 34. Memory consumption of iOS application before using weak references

Automatic reference counting will always think that cross-referring objects are needed by

application, and thus, all objects that are referenced inside of them, would also leak. For

example, if a view controller with a map view was leaked, it would cause a loss of 150-

200 megabytes of RAM. When it happens several times, memory consumption can easily

grow up to 1 Gb in just several minutes, which is unacceptable. The solution is to add

weak references. In case of this architecture, it will look like this:

There will be expect class called Reference, which will have actual implementations on

both platforms. Android version will just simply return wrapped object, but iOS version

will return weak referenced version. This class will be used to wrap all the view

controllers, so that they will be released as soon as their presenters will be not used.

class DiscountPresenter(
 override val viewReference: Reference<DiscountContract.View>,
 private val commonDbRepository: CommonContract.CommonDbRepository,
 private val dialogPresenter: DialogContract.Presenter,
 <…>
 coroutineScope: CoroutineScope
) : DiscountContract.Presenter, CoroutineScope by coroutineScope

Figure 35. Shortened example of presenter class dependencies. Kotlin

55

bind() from singleton { Reference(view) }

After having done this refactoring to all the screens, memory consumption started to look

like this:

Figure 37. Memory consumption after adding weak references

As we can see in Figure 37, the amount of used memory grows up when screen is opened,

and goes down when closed.

4.12 Risk and safety analysis

The framework should provide the same level of code protection as the native tools in

order to prevent reverse engineering and leakage of private keys. In case of Android the

shared library would be compiled the same way, the regular libraries would do. It means

that regular obfuscation tools, such as ProGuard would work. Yet it means, that leaving

private keys in core code as string constants would make them accessible during

decomplication. Thereby, the secret keys should be stored in Gradle configuration files

on Android level, and if they are needed in the core modules, developer has to provide an

abstraction with getters, that would invoke context-aware calls on Android side. And on

Figure 36. Kodein component binding. Kotlin

56

iOS the same values should be stored in .plist files. Expect/Actual feature fits the

requirement the best.

4.13 Computational performance overhead

One of main problems with cross platform solutions is losing performance. Fortunately,

when it comes to Android, we don’t have any computational overhead: it works as a

native multi module application. In order to test it on iOS a small sample application was

created with basic architecture (dependency injection + network + database + MVP) and

measured it with and without Kotlin/Native shared library and compared to build time of

the project being reviewed in this study.

One of feasible problems with Kotlin/Native is slow build time on iOS: the mean clean

build time of native layer of the sample project is 10 seconds, yet it takes 250 seconds of

additional time on average only to build a shared library. Although, the average build

time of the reviewed application, which has 50+ Gradle modules, is close to the sample

application: 31 seconds for native layer and 280 seconds for shared codebase. Build

machine: MacBook Pro 2018, Core i7, 16 Gb RAM.

However, everything is fine, when it comes to incremental builds. If nothing was changed

in the core, it just checks that there were no changes and skips the build phase. If some

modules are changed since last build, the changed modules will rebuild, plus the ones,

that depend on them. So, if common-contract module is changed, then almost all other

modules will be rebuilt, because they have a dependency on it.

In our experience, in most of the cases when a developer is working on iOS part in this

framework, core is already done and there is no need to edit it, so the long build problem

was not that feasible.

Another important thing is RAM consumption overhead. While the clean iOS version of

the sample app was consuming 11 Mb of RAM, it took 17 Mb at peak with shared library

connected.

57

5 Summary

5.1 Organizational problems

The main problem that appeared during the process was that it is not very easy for iOS

team to work with core code written in Kotlin. When, in theory, they do not need to work

with it a lot, in practice each time they were working on a new feature platform

implementation, it was necessary to check through the business logic.

5.2 Development performance boost

Even when the approach is quite complex and could seem tangled, it gives a real boost

when it comes to logic-intensive parts of application. For example, it took 2 weeks of

development to make a screen with map of whole quest for Android, shown in the Figure

38, but having all the core logic implemented it took only 4 days to make the same screen

on iOS, and could have been done even faster, if it was done be someone with a greater

iOS development experience.

58

(a) (b)

Figure 38. Screenshot of Quest map screen on Android (a) and iOS (b)

5.3 When to use this approach?

Since the moment of making the research, choosing a technology to use for the migration

until now, frameworks had developed a lot, and it is necessary to give an updated opinion.

Flutter had become a mature technology and augmented a huge variety of third-party

libraries, also the Dart language had evolved a lot: now it has null-safety and greater static

code analysis tools. On the other hand, Kotlin/Native stopped being an experimental

technology, and now it is being adopted by many development teams. Other technologies,

such as Xamarin, Adobe Air are gradually losing the popularity. Personally, I have

developed several real-world applications in Flutter, and I can say that the technology is

really great and promising, and I would choose it in case of limited resources, while

Kotlin/Native can give much smoother user experience with native UI, but it would fit to

59

the teams, that have great experience in Android and iOS development and have more

recourses. Also, it is important to notice, that there had been done a huge step towards

using MVVM: now there are some libraries written to use with Kotlin/Native, that

encapsulate a lot of native logic and provide possibility to use the advantages of the

pattern without having to write wrappers. Also, there is an ongoing development of

unifying SwiftUI and Jetpack Compose technologies using Kotlin/Native, that are native

UI frameworks being developed by Apple and Google to replace current ones.

60

References

[1] M. E. Joorabchi, A. M. and P. K. , “Real challenges in mobile app development.,”

in Proceedings of the ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2013.

[2] V. Brossier, Developing Android Application with Adobe Air, 2011.
[3] W. Wu, “React Native vs Flutter, cross-platform mobile application frameworks,”

Metropolia University of Applied Sciences, 2018.
[4] J. Fayzullaev, “Native-like Cross-Platform Mobile Development Multi-OS Engine

& Kotlin Native vs Flutter,” South-Eastern Finland University of Applied
Sciences, 2018.

[5] S. Borisenkova, Developing Sopima Cross-platform Mobile Application With
Xamarin, Haaga-Helia University of Applied Sciences, 2015.

[6] J. B. Lorenzo, “Fast Prototypes with Flutter + Kotlin/Native,” 2018. [Online].
Available: https://tech.olx.com/fast-prototypes-with-flutter-kotlin-native-
d7ce5cfeb5f1. [Accessed 11 06 2020].

[7] A. Sullivan, “Examining performance differences between Native, Flutter, and
React Native mobile development.,” [Online]. Available:
https://robots.thoughtbot.com/examining-performance-differences-between-
native-flutter-and-react-native-mobile-development. [Accessed 12 04 2020].

[8] V. B. Andreas Lelli, “Evaluating Application Scenarios with React Native,”
Uppsala University, 2016.

[9] A. Bizzotto, “How fast is Flutter? I built a stopwatch app to find out.,” [Online].
Available: https://medium.freecodecamp.org/how-fast-is-flutter-i-built-a-
stopwatch-app-to-find-out-9956fa0e40bd .

[10] S. Jiang, “Comparison of Native, Cross-Platform and Hyper Mobile Development
Tools Approaches for iOS and Android Mobile Applications,” University of
Goethernburg, 2016.

[11] S. Xanthopoulos, “A Comparative Analysis of Cross-platform Development
Approaches for Mobile Applications,,” in Proceedings of the 6th Balkan
Conference in Informatics, 2013.

[12] T. Lou, “A comparison of Android Native App Architecture MVC, MVP and
MVVM,” Aalto University.

[13] R. Nunkesser, “Choosing a Global Architecture for Mobile Applications,” Hamm-
Lippstadt University of Applied Sciences.

[14] M. Potel, “MVP: Model-View-Presenter the taligent programming model for C++
and Java,” Taligent Inc., 1996.

[15] M. L. Karina Sokolova, “Android Passive MVC: a Novel Architecture Model for
Android Application Development,” University of Technology of Troyes.

61

[16] M. A. Mariam Aljamea, “MMVMi: A Validation Model for MVC and MVVM
Design Patterns in iOS Applications,” IAENG International Journal of Computer
Science.

[17] R. C. Martin, Clean Architecture: A Craftsman's Guide to Software Structure and
Design, 2017.

[18] A. Bresolin, “Kotlin coroutines vs RxJava: an initial performance test,” [Online].
Available: https://proandroiddev.com/kotlin-coroutines-vs-rxjava-an-initial-
performance-test-68160cfc6723.

[19] G. Novark, “Efficiently and precisely locating memory leaks and bloat,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2009.

[20] Microsoft, “Xamarin.Android / Concepts and Internals / Limitations,” [Online].
Available: https://docs.microsoft.com/en-us/xamarin/android/internals/limitations.

[21] Microsoft, “Understanding the Xamarin Mobile Platform,” [Online]. Available:
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-
fundamentals/building-cross-platform-applications/understanding-the-xamarin-
mobile-platform. [Accessed 20 04 2020].

62

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I, Roman Ismagilov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Migrating an existing Android application to a cross-platform”, supervised by

Juhan-Peep Ernits and Oleg Petšjonkin.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

10.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

