
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Kirill Timofejev 205934IAIB

DISTRIBUTION OF APRIORI ALGORITHM FOR LUNG

CANCER DATA SET USING APOLLO FRAMEWORK

Bachelor’s Thesis

Supervisor: Mahtab Shahin
MSc

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Kirill Timofejev 205934IAIB

APRIORI ALGORITMI HAJUTAMINE KOPSUVÄHI

ANDMEKOGUMI JAOKS KASUTADES APOLLO

RAAMISTIKKU

Bakalaureusetöö

Juhendaja: Mahtab Shahin
MSc

Tallinn 2023

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Kirill Timofejev

22.05.2023

1

Abstract

This work aims to investigate options for distributing the existing association rule mining
algorithm, Apriori. Apriori is one of the typical algorithms, which is a seminal algorithm
proposed by R. Agrawal and R. Srikant in 1994 for mining frequent itemsets for Boolean
association rules. It is frequently used in mining rules over relational databases.

The contribution of the work is implementing the algorithm in the distributed environment
to improve its speed and decrease the memory load on the local machine. As dataset size
increases over time, our computational requests also increase, so we need to find a way to
distribute the load between different machines.

During the work, the theoretical material was gathered and analyzed, the basics of the
problematic topic were introduced, and possible algorithm prototypes were created as
abstractly as technically. Using Apollo Framework, prototypes were implemented and
tested.

As the work was finished and algorithms were tested, it was possible to state that goals
were achieved. Ways of algorithm distribution were found, and the total dataset mining
time has been decreased, so the algorithm’s speed was increased.

The thesis is in English and is 48 pages long, including 6 chapters, 16 figures and 12 tables.

2

Annotatsioon

Selle töö eesmärk on uurida viisi olemasoleva assotsiatiivsete reeglite kaevandamise
algoritmi, Apriori, jaotamiseks. Apriori on üks tüüpilistest algoritmidest, mis oli välja
töötanud R. Agrawal ja R. Srikant 1994. aastal sagedaste üksuste leidmiseks Boole’i
assotsiatiivsete reeglite kaevandamiseks. Seda kasutatakse sageli reeglite kaevandamiseks
relatsioonide andmebaaside üle.

Töö panus seisneb algoritmi rakendamises jaotatud keskkonnas, et kiirendada algoritmi
töö ja vähendada mälukoormust masinatel. Kuna andmekogumite suurus suureneb ajaga,
suurenevad ka meie arvutuslikud nõudmised. Sellepärast peame leidma viisi koormuse
jaotamiseks erinevate masinate vahel.

Töö käigus koguti ja analüüsiti teoreetilist materjali, tutvustati probleemse teema
põhitõdesid ning loodi võimalikud algoritmi parenduste prototüübid nii abstraktselt
kui ka tehniliselt. Prototüübid rakendati ja testiti Apollo raamistiku abil.

Kuna töö oli lõpetatud ja algoritmid testitud, on võimalik öelda, et eesmärgid on saavutatud.
Leiti viisid algoritmi jaotamiseks ja kogu andmekogumi kaevandamise aeg on vähenenud,
seega suurenes algoritmi kiirus.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 48 leheküljel, 6 peatükki, 16
joonist, 12 tabelit.

3

List of Abbreviations and Terms

CSV Comma-separated values
JSON JavaScript Object Notation
API Application Programming Interface
CPU Central Processing Unit
IDE Integrated Development Environment
VM Virtual Machine
AWS Amazon Web Services
AFCL Apollo Function Choreography Language
MB megabytes
RAM Random Access Memory
GHz Gigahertz

4

Table of Contents

1 Introduction . 9
1.1 Existing solutions . 9
1.2 Runtime environment . 10
1.3 Dataset used for tests . 10
1.4 Goals . 11

2 Theoretical part . 12
2.1 What is Apriori? . 12
2.2 Association Rules Metrics . 13

2.2.1 Support . 14
2.2.2 Confidence . 14
2.2.3 Lift . 14

2.3 Implementation . 15
2.3.1 Finding frequent itemsets . 15
2.3.2 Generating association rules . 17

3 Algorithm prototypes . 19
3.1 Choosing approach for distribution work 19
3.2 Horizontally divided dataset . 21

3.2.1 Dividing data . 22
3.2.2 Apriori algorithm . 23
3.2.3 Collocating result . 24
3.2.4 Pros and cons . 25

3.3 Grouped by attributes dataset . 26
3.3.1 Grouping data . 27
3.3.2 Apriori step . 29
3.3.3 Collocating result . 29
3.3.4 Pros and cons . 29

4 Proofs of Concepts . 30
4.1 Dataset preprocessing . 30
4.2 Apollo Implementation in Python . 31
4.3 Single Node Apriori . 32
4.4 Horizontally divided dataset prototype implementation 34
4.5 Grouped by attributes dataset prototype implementation 37

5

5 Results and Comparison . 41
5.1 Setup Description . 41
5.2 Analysis of performance . 42

5.2.1 Detailed comparison of Local Apriori with distributed ones 43
5.2.2 Detailed comparison of Serverless approaches between each other 43

5.3 Analysis of algorithms accuracy . 45

6 Summary . 46

References . 47

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 48

6

List of Figures

1 An illustration of the Apriori principle. 16
2 Frequent itemset generation of the Apriori algorithm. 17
3 Generating rules pseudocode. 18
4 Calculating confidence of k-itemset pseudocode. 18

5 Horizontally divided dataset approach. 21
6 Example of calculated support hash map. 24
7 Example of collocated hash map. 25
8 Grouped by similar attributes approach. 26

9 Plain dataset in CSV format. 31
10 Preprocessed data in JSON format. 31
11 An illustration of local Apriori result. 32
12 Single node apriori AFCL model. 33
13 Single node Apriori AFCL model. 34
14 Horizontally divided dataset AFCL model. 39
15 Grouped dataset AFCL model. 40

16 Average time of algorithms execution. 42

7

List of Tables

1 Example of medicine dataset. 12
2 Binary representation of medicine dataset. 13

3 Binary medicine dataset. 20
4 Divided dataset part 1. 22
5 Divided dataset part 2. 22
6 Divided dataset part 3. 22
7 Divided dataset part 4. 23
8 Grouped by male and age >= 55 dataset part 1. 27
9 Grouped by male and age < 55 dataset part 2. 28
10 Grouped by female and age >= 55 dataset part 3. 28
11 Grouped by female and age < 55 dataset part 4. 28

12 Local system configuration. 41

8

1. Introduction

Nowadays, many commercial and non-commercial companies collect vast amounts of data
from their daily operations. So, for example, stores collect data about the purchases made
by their customers, or banks collect data on their creditors. With the increasing amount
of data, these companies have found a practical way to use it. They started looking for
association rules among data. Now stores can evaluate the dependence of the purchase of
one item on another, or banks can assess the risk of default on a loan. For these purposes,
companies use associative analysis. One of the typical algorithms for retrieving those rules
is Apriori.

Although Apriori is one of the most popular algorithms for mining association rules
because of its simplicity and speed, it is becoming slower as data increases. With the
number of clients increasing - companies’ databases are also growing, and analyzing this
data takes more time, memory and computer capabilities. Among the more significant
amount of data, it is possible to find rare rules, respectively, but this also complicates
computer calculations, due to which the search speed decreases and, accordingly, the
search cost increases.

The problem, in this case, is that it is worth finding ways to speed up the search for
association rules when one computer can no longer complete the task so quickly. and it
also does not make sense for a company to wait for any new kind of CPU that is going to
speed up the algorithm. Therefore, it is worth developing an algorithm to distribute the
algorithm’s work among several computers.

1.1 Existing solutions

Many researches on the Internet provide information about distributing the Apriori algo-
rithm.

In general, they all are similar. One was chosen for Example[1]. From this research was
found one possible solution. This research states that it is possible to distribute Apriori
by dividing data horizontally into approximately equal parts. After dividing it into parts,
the developer should send those parts to different nodes and run Apriori using this small
data. After the computation of frequent itemsets is done locally on another machine - they
are gathered together on the primary node, and based on the results, frequent itemsets are

9

retrieved by recalculating support value globally. Then those itemsets are filtered and can
be used to generate rules.

At first sight, it seems logical. Although it is the right solution, more is needed for accurate
results. The paper cited above does not exist a comparison of accuracies on the plain
Apriori and their solution. However, this solution can only catch some rare rules that
globally are frequent enough and can send locally frequent itemset that is globally not
frequent, bringing odd computations.

The bachelor’s work addresses this research gap by comparing the approach with the stan-
dard Apriori algorithm. Furthermore, an additional algorithm prototype will be developed
to enrich the comparative analysis further. By evaluating the performance and accuracy of
these approaches, this study endeavours to contribute to the existing body of knowledge
surrounding the distribution of the Apriori algorithm.

1.2 Runtime environment

Different Internet researchers use different technologies like Spark, MapReduce, Hadoop
and others. For this work, Apollo Framework will be used to prove that this algorithm can
work correctly.[2] The Framework will review results that can be compared.

Apollo Framework was chosen because of its option to use different sources like AWS,
IBM and docker with local systems. In this case, we have different opportunities and
flexibility to choose sources based on the data set and our expertise.

1.3 Dataset used for tests

Choosing a medicine dataset about lung cancer was decided to find interesting rare rules
besides the main work.[3] Mining association rules on medical datasets offers valuable
insights and benefits for healthcare professionals and researchers. With rich and complex
data encompassing patient demographics, medical history, symptoms, diagnoses, treat-
ments, and outcomes, medical datasets provide a fertile ground for discovering hidden
relationships and patterns. Researchers can uncover previously unknown connections
between medical conditions, treatments, risk factors, and patient outcomes by applying
association rule mining techniques. This knowledge can support clinical decision-making,
personalized medicine, quality improvement, and healthcare planning. From aiding in
clinical decision support and enabling personalized treatment plans to identifying areas
for improvement and optimizing resource allocation, mining association rules on medical

10

datasets contribute to advancing medical knowledge, enhancing patient care, and improving
healthcare practices.

1.4 Goals

After analyzing alternative solutions, the author investigated ways to improve an existing
algorithm. For this work, such goals were defined as

■ Gather and analyze theoretical material on the "Association rule mining ", "Apriori
algorithm", and related topics.

■ Describe a new algorithm prototype, which parts can be integrated into a distributed
computing framework.

■ Implement prototypes using the Apollo framework.
■ Run multiple performance tests using the Apollo framework and existing medicine

dataset to measure the completion time and compare them to each other.

11

2. Theoretical part

2.1 What is Apriori?

The Apriori algorithm is an influential algorithm for discovering frequent itemsets and
association rules from large datasets. It is widely used in data mining and market basket
analysis. The algorithm works by iteratively generating candidate itemsets and pruning
those that do not meet a minimum support threshold. It employs a breadth-first search
strategy to efficiently explore the space of itemsets. The Apriori algorithm’s strength lies
in its ability to handle datasets with a large number of items and transactions. It provides
valuable insights into item associations, allowing businesses to make informed decisions
and improve various aspects such as product placement, cross-selling, and recommendation
systems.

E.g. Almost every hospital gather their patients and their symptoms data. So this data can
be analyzed later to make some common conclusions to improve medicine quality. An
example table with symptoms can be seen in Table 1.

Table 1. Example of medicine dataset.

PID Items
1 {Male, 70, Smoking, Lung Cancer}

2 {Female, 30}

3 {Male, 60, Consuming Alcohol, Yellow Fingers, Lung Cancer}

4 {Male, 25, Consuming Alcohol, Shortness of Breath}

5 {Female, 45, Smoking, Consuming Alcohol, Shortness of Breath, Lung Cancer}

In the table above, each row is a unique patient and a set of his/her symptoms that were
present at the inspection. This information can be useful for any doctor to look for similar
symptoms. In this paper, the focus is made on finding associations between those symptoms
using Association Analysis.

With Association Analysis, the outputs are association rules that show the relationship
between symptoms. A classic example {Smoking} -> {Lung Cancer}, which states that
transactions containing Smoking usually tend to contain Lung Cancer too. So from this
rule, we can make a conclusion that usually, the person who smokes tends to have cancer

12

too. With this information, doctors can usually use it to define the diagnosis of the patient.

That is why we need Apriori to find interesting itemsets. Let’s dive in to understand how it
works. Firstly, we will look at metrics used inside the algorithm to generate interesting
rules.

2.2 Association Rules Metrics

Association Analysis uses some metrics to generate these associations. To make it easier
to understand the table with the binary presentation of Table 1 can be seen in Table 2

Table 2. Binary representation of medicine dataset.

PID Sex Age Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

1 Male 70 1 0 0 0 1

2 Female 30 0 0 0 0 0

3 Male 60 0 1 1 0 1

4 Male 25 0 1 0 1 0

5 Female 45 1 1 0 1 1

Each row corresponds to a patient, but each column now corresponds to a symptom. Then
the value in each cell is one if the symptom is present and 0 if not. Let

I = {i1, i2, i3, ..., id}

be the set of all symptoms in a hospital database and

T = {t1, t2, t3, ..., tN}

be the set of all patients. Each patient ti contains a subset of symptoms chosen from I . A
collection of zero or more symptoms is called an itemset.

13

2.2.1 Support

An important property of an itemset is its support. It basically refers to the number of
transactions that contain a particular itemset divided by the number of all transactions and
informs the percentage of transactions containing itemset. Mathematically, the support
count of itemset X can be stated as follows:

support(X) =
Number of transactions containing X

Number of all transactions

2.2.2 Confidence

Another important property is confidence. It shows the probability of Y being present in a
transaction with X. Mathematically; confidence can be stated as follows;

confidence(X− > Y) =
support(X ∪ Y)

support(X)

2.2.3 Lift

This says how likely item Y is purchased when item X is purchased while controlling
for how popular item Y is. A lift of 1 implies no association between items. A lift value
greater than one means that item Y is likely to be bought if item X is bought (positively
correlated), while a value less than one means that item Y is unlikely to be bought if item
X is bought (negatively correlated).[4]. Mathematically, the lift can be stated as follows:

lift(X− > Y) =
confidence(X -> Y)

support(Y)

14

2.3 Implementation

Apriori consists of 2 steps. The first is finding frequent itemsets, and the second is
generating association rules out of frequent itemsets.

2.3.1 Finding frequent itemsets

At this step, we want to define frequent itemsets used to generate rules. In general, a data
set that contains k items can potentially generate up to 2k − 1 frequent itemsets, excluding
the null set. Because k can be very large in many practical applications, the search space
of itemsets that need to be explored is exponentially large.[5] That is why The Apriori
principle is used. The Apriori principle states:

If an item set is frequent, then all of its subsets must also be frequent.[5]

To see why this rule can be helpful, suppose we now know items a and b are already
infrequent. Using the rule, we can automatically drop any supersets containing a and b
because we know they will not surpass the minimum support threshold we’ve set. In the
diagram below, we can see that a large part of the diagram (Figure 1) can be pruned (we
now only need to compute the support for the grey node).[4]

15

Figure 1. An illustration of the Apriori principle.

The pseudocode for the frequent itemset generation part of the Apriori algorithm is shown
in Figure 2. Let Ck denote the set of candidate k-itemsets and Fk denote the set of frequent
k-itemsets.

16

Figure 2. Frequent itemset generation of the Apriori algorithm.
[5]

Generating k-candidates

Fk−1 × Fk−1 Method The candidate generation procedure in the apriori-gen function
merges a pair of frequent (k − 1)-itemsets only if their first k − 2 items are identical. Let
A = a1, a2, ..., ak−1 and B = b1, b2, ..., bk−1 be a pair of frequent (k − 1)-itemsets. A and
B are merged if they satisfy the following conditions[5]:

ai = bi(for i = 1, 2, ..., k − 2) and ak−1 = bk−1.

2.3.2 Generating association rules

This part is easier. You should take every generated frequent itemset, and for each item
there, calculate its confidence depending on the rest of the itemset. X is one of the found
itemsets, then we should find confidence of X − Y− > Y where Y is any one of the items
present in X . Pseudocodes are shown in Figure 3 and Figure 4.

17

Figure 3. Generating rules pseudocode.
[5]

Figure 4. Calculating confidence of k-itemset pseudocode.
[5]

18

3. Algorithm prototypes

3.1 Choosing approach for distribution work

This study investigates two distinct approaches for the distribution of the Apriori algorithm,
each addressing the challenge of calculating frequent itemsets independently on distributed
nodes. The main objective is to efficiently distribute the computation while ensuring
accurate and reliable results.

The first approach involves dividing the dataset at the initial stage of the algorithm. The
dataset is partitioned into smaller, approximately equal portions, and these subsets are then
assigned to different nodes within the distributed system. By doing so, each node can
independently execute the Apriori algorithm on its assigned subset of data. This approach
allows for parallel processing and harnesses the computational power of multiple nodes,
thereby potentially speeding up the overall execution time.

The second approach explores the concept of setting up communication and creating a
distributed database among the nodes. In this scenario, the support map, which keeps
track of the occurrence of itemsets, is stored and shared among the nodes. However, it
is important to note that this approach introduces additional complexities and overhead.
The distributed database needs to handle concurrent updates and continuously synchronize
the data, which can impact the overall system performance. In particular, the process
of blocking mutex on a distributed map takes longer compared to the synchronization
between local threads in a single-machine multi-threaded implementation.

Given the potential challenges and performance implications associated with maintaining
a distributed database, the decision was made to adopt the approach of dividing the dataset.
This approach allows each node to work independently on its allocated subset of data.
By minimizing the need for constant synchronization and inter-node communication, this
approach offers improved efficiency and reduced computational overhead.

Here is shown example Table 3 on which prototypes will be explained further.

19

Table 3. Binary medicine dataset.

PID Sex Age Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

1 Male 80 1 0 0 0 1

2 Female 44 0 0 0 0 0

3 Male 62 0 1 1 0 1

4 Male 85 0 1 0 1 0

5 Female 87 1 1 0 1 1

6 Male 23 1 0 0 0 1

7 Female 30 0 0 0 0 0

8 Male 56 0 1 1 0 1

9 Male 39 0 1 0 1 0

10 Female 20 1 1 0 1 1

11 Female 25 0 0 0 0 0

12 Male 38 0 1 1 0 1

13 Male 43 0 1 0 1 0

14 Female 62 1 1 0 1 1

15 Female 67 1 1 0 1 0

16 Male 57 1 0 0 0 1

20

3.2 Horizontally divided dataset

The idea of this approach was taken from research paper that was chosen for Example[1].
In this approach the main idea is to divide data horizontally. The workflow of the algorithm
is shown in Figure 5.

Figure 5. Horizontally divided dataset approach.

21

3.2.1 Dividing data

Main goal in this part is to divide data. Corresponding to Table 3 it would look like this in
case we had 4 nodes that can do calculations. Tables 4, 5, 6, 7 are referred as an example
of dividing dataset into equal blocks of data.

Table 4. Divided dataset part 1.

PID Sex Age Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

1 Male 80 1 0 0 0 1

2 Female 44 0 0 0 0 0

3 Male 62 0 1 1 0 1

4 Male 85 0 1 0 1 0

Table 5. Divided dataset part 2.

PID Sex Age Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

5 Female 87 1 1 0 1 1

6 Male 23 1 0 0 0 1

7 Female 30 0 0 0 0 0

8 Male 56 0 1 1 0 1

Table 6. Divided dataset part 3.

PID Sex Age Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

9 Male 39 0 1 0 1 0

10 Female 20 1 1 0 1 1

11 Female 25 0 0 0 0 0

12 Male 38 0 1 1 0 1

22

Table 7. Divided dataset part 4.

PID Sex Age Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

13 Male 43 0 1 0 1 0

14 Female 62 1 1 0 1 1

15 Female 67 1 1 0 1 0

16 Male 57 1 0 0 0 1

3.2.2 Apriori algorithm

In this step, the conventional Apriori algorithm, which was described in Chapter 2, is
applied to the block of data obtained in the Chapter 3.2.1.

The objective of this step is to generate association rules based on the frequent itemsets
discovered within the specific block of data. The Apriori algorithm follows a systematic
approach, involving the generation of candidate itemsets, the evaluation of their support,
and the pruning of infrequent itemsets.

During the execution of the Apriori algorithm on the block of data, a local hash map is
created. This hash map serves as a crucial data structure that stores the support metrics for
each mined itemset. The support metric represents the frequency or occurrence count of an
itemset within the given block of data. By maintaining this local hash map, the algorithm
efficiently tracks the support values of the itemsets, enabling subsequent steps to utilize
this information for further analysis. Example of reuslt shown on Figure 6.

The local hash map generated in this step becomes essential in the subsequent phase, where
the results from multiple blocks of data need to be combined. By having a local hash map
for each block, the integration of the results becomes more manageable.

This step of applying the Apriori algorithm to the block of data contributes to the creation
of association rules and the generation of a local hash map containing the support metrics
for each mined itemset.

23

Figure 6. Example of calculated support hash map.

3.2.3 Collocating result

This is the most important step in this approach as it gives the final result of distributed
computing. In this step hash maps, obtained in previous step, can be merged or syn-
chronized to restore the collective support metrics for the complete dataset. This process
ensures that all the necessary information regarding the support of itemsets is consolidated,
enabling a comprehensive analysis of association rules across the entire dataset. Example
of collocating is shown on Figure 7.

Using the collocated hash map, each rule mined is evaluated to determine whether it
satisfies the predefined support and confidence metrics. This evaluation process is crucial
for filtering out irrelevant or insignificant rules and retaining only the rules that exhibit
significant associations between items.

For each rule, the support and confidence metrics are calculated by referencing the support
map stored in the collocated hash map. During the evaluation process, any rule that does
not meet the minimum support or confidence thresholds is considered not significant and
is subsequently removed from further consideration. This filtering step ensures that only
rules that possess sufficient support and demonstrate a strong association between the
antecedent and consequent are retained. The rules that successfully pass the support and
confidence criteria are accumulated in the final rules array, which serves as the output of
the association rule mining process.

24

Figure 7. Example of collocated hash map.

3.2.4 Pros and cons

An examination of the theoretical pros and cons of the approach reveals potential advan-
tages and disadvantages. From a theoretical perspective, this distributed approach holds
promise in terms of significantly improving the speed of the Apriori algorithm compared
to its non-distributed counterpart.

The advantage of improved speed arises from the ability to distribute the computational
workload among multiple nodes, enabling concurrent execution of the Apriori algorithm
on each block of data. This parallel processing capability has the potential to reduce the
overall execution time, particularly when dealing with large datasets.

However, it is important to acknowledge that this approach’s theoretical advantages may
come at a cost in terms of algorithm accuracy, particularly when dealing with smaller
datasets. By dividing the dataset into smaller blocks, there is a possibility that infrequent
itemsets, which may still be relevant and significant in the overall dataset, could be missed.

25

3.3 Grouped by attributes dataset

This implementation is based on grouping some data rows by common attributes. The
workflow of the algorithm is shown if Figure 8.

Figure 8. Grouped by similar attributes approach.

26

3.3.1 Grouping data

The grouping step represents a pivotal and intricate phase within this approach, significantly
influencing the effectiveness and performance of the distributed algorithm. The careful and
precise grouping of data into blocks based on a selected attribute is crucial to ensure that
the resulting data blocks are approximately equal in size. This step requires meticulous
consideration of several factors to achieve optimal grouping. But in this case it decreases
dimensionality of dataset on each node and the size of dataset which causes very big
increase in Apriori speed.

One crucial aspect is the careful selection of columns from which attribute values are
chosen to form the basis for grouping the data. It is imperative to choose columns that
do not include the target columns for association rule mining. Including target columns
in the grouping process would result in transactions that do not consist items with those
attributes, thereby distorting the calculation of support. Hence, it is essential to adhere to
the principle that any column can be chosen for grouping except for the target columns.

The selection of appropriate attributes for grouping and the exclusion of target columns
pose challenges for the practical application of this algorithm. Users must possess a
clear understanding of the target columns and their significance within the dataset to
ensure accurate and meaningful association rule mining. Consequently, the algorithm’s
applicability may be constrained if users are not adequately aware of the target columns or
if such columns cannot be determined reliably.

Corresponding to Table 3 it would look like this in case we had 4 nodes that can do
calculations. Tables 8, 9, 10, 11 are referred as an example of grouping dataset into blocks
of data. This data is grouped by some general attributes like sex and age.

Table 8. Grouped by male and age >= 55 dataset part 1.

PID Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

1 1 0 0 0 1

3 0 1 1 0 1

4 0 1 0 1 0

8 0 1 1 0 1

16 1 0 0 0 1

27

Table 9. Grouped by male and age < 55 dataset part 2.

PID Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

6 1 0 0 0 1

9 0 1 0 1 0

12 0 1 1 0 1

13 0 1 0 1 0

Table 10. Grouped by female and age >= 55 dataset part 3.

PID Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

5 1 1 0 1 1

14 1 1 0 1 1

15 1 1 0 1 0

Table 11. Grouped by female and age < 55 dataset part 4.

PID Smoking Consuming
Alcohol

Yellow Fin-
gers

Shortness
of Breath

Lung Can-
cer

2 0 0 0 0 0

7 0 0 0 0 0

10 1 1 0 1 1

11 0 0 0 0 0

28

3.3.2 Apriori step

This step entails the execution of the Apriori algorithm, as elucidated in Chapter 2, on
the datablocks derived from the preceding step. By applying the Apriori algorithm to
each datablock, a set of association rules is generated. These rules, which capture the
relationships and dependencies between items in the dataset, form the foundation for the
subsequent step where they will be aggregated and consolidated.

3.3.3 Collocating result

This step basically takes all rules obtained in previous step and combine them all together
to common array. Common array is final result of this approach that contains all mined
rules.

3.3.4 Pros and cons

The most important advantage of this algorithm is speed which is increased because of
decreasing size of the algorithm and its dimensionality, as one column is deleted from
dataset, which brings high speed and lower memory load. Besides that it discovers more
rare and detailed rules. They are more detailed because each node mines rules on dataset
with predefined group of attributes and they added to final result. So for example if user
wants to discover each rules with its dependence on age or sex he/she can use this approach
and group data based on such wishes. In this case every rule will contain this column and
will be very carefully described.

On the other hand, this approach has disadvantage that you can not group data on target
columns and you should carefully think of which columns you want to use for grouping. It
makes user to explore dataset before implementing algorithm to choose correct columns.

29

4. Proofs of Concepts

In the previous chapter two different prototypes were proposed for Apriori algorithm
distribution. A method was described for every prototype.

In this chapter proofs of concepts for each of prototypes are implemented using Apollo
Framework for distributing a workflow according to its graph representation and Python
for preprocessing dataset, implementation of Apriori algorithm, collocating results and
dividing it into blocks of data. For each of implementation AWS account was required as
AWS Lambda was used for serverless functions deploying.

4.1 Dataset preprocessing

Dataset preprocessing is important because it improves the quality and suitability of
the data for analysis, handles missing values and outliers, enables feature selection and
dimensionality reduction, transforms and encodes variables, ensures compatibility with
analysis techniques, reduces noise and biases, and enhances efficiency and performance
during analysis. Ultimately, dataset preprocessing contributes to more accurate and reliable
results, saves computational resources, and maintains the integrity of findings[6].

For the chosen dataset couple of techniques like data quality improvement and data normal-
ization are used to improve dataset for the given algorithm. Other techniques as handling
missing values, feature selection and dimensionality reduction, data transformation and
encoding, noise reduction and outlier handling were not used as this dataset was full and
did not require any of these to use[6].

CSV file[3] was parsed into JSON format as it is used for communication between nodes.
Age column values were grouped into 8 different groups to reduce amount of possible
itemsets and make it more convenient to combine with other attributes in Apriori. Illustra-
tion of plain dataset is shown in Figure 9. Illustration of preprocessed dataset is shown in
Figure 10.

30

Figure 9. Plain dataset in CSV format.

Figure 10. Preprocessed data in JSON format.

4.2 Apollo Implementation in Python

In this thesis, the Apriori algorithm was implemented using the Python programming
language to mine association rules from a given dataset. The implementation aimed to
discover interesting patterns and relationships among items based on their co-occurrence
frequencies.

The Apriori algorithm implementation followed the classic steps of candidate generation
and pruning. Initially, the dataset was preprocessed to ensure its compatibility with the
algorithm. This involved transforming the data into a suitable format, such as a transactional
representation, which is a requirement for the Apriori algorithm.

The Python programming language provided a flexible and efficient environment for
implementing the Apriori algorithm. The algorithm was implemented using custom Python
functions and data structures.

The implementation began with generating the initial set of frequent itemsets with a mini-
mum support threshold. The algorithm then iteratively generated higher-level candidate

31

itemsets and pruned those that did not meet the support threshold. This process continued
until no further candidate itemsets could be generated.

To optimize the implementation, techniques such as storing itemsets support count in hash
map, were utilized to efficiently access and update itemsets and their support counts. This
helped improve the runtime performance, especially when dealing with larger datasets.

To evaluate the implemented Apriori algorithm, experiments were conducted using prepro-
cessed dataset[3]. The performance of the algorithm was measured using built-in timer.
Results are shown in Figure 11.

Figure 11. An illustration of local Apriori result.

The generated association rules from the Apriori algorithm were evaluated based on various
interestingness measures, including support and confidence. These metrics were used to
identify meaningful and statistically significant rules from the dataset. The results were
presented and discussed to provide insights into the relationships between items and their
potential applications in different domains.

Overall, the implemented Apriori algorithm in Python proved to be effective in discovering
association rules from the given datasets. The flexibility and efficiency of the Python
programming language enabled the development of a robust implementation that could
handle datasets of varying sizes. This implementation is going to be used in next prototypes
implementations to mine association rules.

4.3 Single Node Apriori

This section is written to describe the simplest usage way of Apollo Framework and to
compare results that are made on the same machine which is AWS Lambda server. The
workflow is shown in Figure 12.

To implement this workflow in Apollo Framework three things are required: preprocessed
data, AFCL model and Apollo implementation script in Python.

Preprocessing of data was described in Chapter 4.1 and Apollo Python script was described
in Chapter 4.2. The left part is AFCL model. The tutorial for AFCL was found here[7].

32

Figure 12. Single node apriori AFCL model.

Model was written using special IDE provided by Apollo[8]. The result is shown in Figure
13. According to this Figure to Run Single Node Apriori it is required to send to the node
transactions list, minimum support metric and minimum confidence metric. Then after
computation the Node will send rules back which are possible to explore.

33

Figure 13. Single node Apriori AFCL model.

4.4 Horizontally divided dataset prototype implementation

The first prototype that was implemented is "Horizontally divided dataset" which was
described in Chapter 3. Basically it divides original dataset into approximately equal
blocks of data. The workflow of this prototype was shown in Figure 5.

To implement this workflow in Apollo Framework five things are required: preprocessed
data, AFCL model, Apollo implementation script in Python, Python script that divides
data into block and Python script that combines rules and data received from serverless
functions. Preprocessing of data was described in Chapter 4.1 and Apollo Python script
was described in Chapter 4.2. For the implementation AFCL model and 2 more Python
scripts are required.

34

Model was written using special IDE provided by Apollo[8]. The result is shown in Figure
14. According to this Figure to Divided Horizontally Apriori, it is required to send to the
node transactions list, minimum support metric, minimum confidence metric and total size
of dataset.

First step in this model is to divide data. For this goal separate function is created. This
function name is "DivideData". On input it takes all dataset transaction and divide it into
approximately equal by size blocks of data. On output it gives Array where each item is
datablock that contains approximately same amount of data.

Second step in this model is to mine rules using Apriori. Here is used the same Apriori
function that was written in Chapter 4.2. On the input it takes earlier created block of data,
minimum support value and minimum confidence value. On output after computation
it gives array that consists locally mined rules, JSON representation of hash map that
contains support value for each itemset that was calculated and size of datablock which was
used in this step. Apollo Framework combines all these results and add them into common
arrays. So after all nodes are finished their work, all their results are located in array. On
output we get array of arrays with rules, array of hash maps JSON representations and
array of data block sizes.

35

Final step is to collocate all these results together. As was described in prototype here is
required to combine all maps together and check every locally calculated rule to fit under
chosen metrics like minimum confidence and minimum support. That is why on input
function takes array of arrays with rules, array of serialized into JSON maps, array of
datablock sizes, minimum support, minimum confidence and total size of original dataset.
Firstly, it deserializes all maps and combines their values together. That is why we need
sizes of blocks to restore original number of itemset in datablock and then sum them all up.
Then each rule is evaluated using this common hash map and false ones are pruned and
right ones are sent back on output.

36

4.5 Grouped by attributes dataset prototype implementation

The second prototype that was implemented is "Grouped by attributes" which was described
in Chapter 3. Basically it groups data similar attributes group e.g. age or sex. The workflow
of this prototype was shown in Figure 8.

To implement this workflow in Apollo Framework five things are required: preprocessed
data, AFCL model, Apollo implementation script in Python, Python script that groups
data by similar attributes group and Python script that combines rules and data received
from serverless functions. Preprocessing of data was described in Chapter 4.1 and Apollo
Python script was described in Chapter 4.2. For the implementation AFCL model and 2
more Python scripts are required.

Model was written using special IDE provided by Apollo[8]. The result is shown in Figure
15. According to this Figure to implement Grouped by attributes Apriori, it is required
to send to the node transactions list, minimum support metric, minimum confidence
metric, total size of dataset and all fields that can be present in itemset, it is sent as JSON
representation of map where each key is a field and its value is array with possible values
for this field.

First step in this model is to group data. For this goal separate function is created. This
function name is "GroupData". On input it takes all dataset transactions and all possible
attributes. Then it groups dataset by some field or fields. On output it gives Array where
each item is datablock that contains approximately same amount of data and array with
attributes where each element is corresponding to the element in array with groups, value
in this case shows by which attribute this block of data was grouped. This function is the
most complicated one in this approach because you should attribute in such a way to make
blocks of data approximately equal by size. In this work was chosen to group data by age.

Second step in this model is to mine rules using Apriori. Here is used the same Apriori
function that was written in Chapter 4.2. On the input it takes earlier created block of data,
minimum support value, minimum confidence value, size of original dataset and group
name which is value by which this block was grouped. On output after computation it
gives array that consists locally mined rules and group name. Apollo Framework combines
all these results and add them into common arrays. So after all nodes are finished their
work, all their results are located in array. On output we get array of arrays with rules and
array of group names.

Final step is to collocate all these results together. In this function it is not more than

37

deserialization of rules and adding group name to the left hand side rule to get final rule
and then adding these all rules to the common array. On output it gives back all rules that
were mined from each data block.

38

Figure 14. Horizontally divided dataset AFCL model.

39

Figure 15. Grouped dataset AFCL model.

40

5. Results and Comparison

The algorithms, which have been explained in detail in Chapter 4, were implemented and
executed with the chosen dataset[3]. This step was essential to evaluate their effectiveness
in achieving the research objectives. By running the algorithms on a local computer, a
comprehensive comparison and analysis of their performance could be conducted. As
target column was "Lung Cancer" column. Metrics that were used are 10% support and
50% confidence because otherwise nothing could be mined from this dataset. Concluding
this fact was made a decision that chose dataset was auto generated using random generator.
In general, it does not affect the result as rules from dataset are not primary goal of this
work.

5.1 Setup Description

To execute the Apriori algorithm locally, a specific configuration was employed, which is
summarized in Table 12.

To execute Apriori using Apollo Framework AWS Lambda was chosen as very popular
serverless platform. AWS Lambda exhibits limited configurability, primarily allowing
for adjustments to the allocated RAM memory size as the sole means of configuring
computational power. Within the scope of this study, a RAM memory size of 2048 MB
was selected, as AWS imposed restrictions on increasing it beyond this value. It is worth
noting that the maximum allowable RAM size set by AWS is limited to 10240 MB.[9].

Table 12. Local system configuration.

CPU RAM Operating system Python
2.6 GHz 6-Core Intel Core i7 16GB macOS 12.4 3.8

41

5.2 Analysis of performance

Important note is that for distributed algorithm execution only first 40000 transactions of
chosen dataset[3] were chosen because AWS has limitation for the size of request that can
be sent and it is 6MB that is why not entire dataset could be sent[10]. One more fact is that
AWS Gateway timeout is 30 seconds[11] for each endpoint and it is not configurable so it
was important for Single Apriori to choose right size of dataset when its execution time
would fit under 30 seconds. For that 20000 transactions were used.

Results are shown in Figure 16. For each algorithm 5 independent executions were
performed and analyzed. Average of performed executions are shown in this Figure. Each
step of algorithm was measured separately in addition to analyze their execution times.

Figure 16. Average time of algorithms execution.

Note: In the Divided Apriori approach, the mining process involved the utilization of 8
nodes, with each node assigned an equal portion of the dataset for rule extraction. On
the other hand, the Grouped Apriori approach also employed 8 nodes, but the data was
grouped based on 8 distinct age gaps, ensuring that the groups were approximately equal
in size (with a deviation of approximately ±10%).

42

5.2.1 Detailed comparison of Local Apriori with distributed ones

One crucial aspect to consider is the local execution time of the Apriori algorithm, which
amounts to 31.49 seconds for 40000 transactions. This metric serves as a fundamental
benchmark for comparison, as the primary objective of this thesis is to enhance the speed
of Apriori.

From Figure 16, it is evident that the average time required for rule mining from 40000
transactions using the Divided approach is approximately 21.50 seconds. On the other hand,
the average time for rule mining from the same dataset using the Grouping approach is
18.51 seconds. Both approaches outperform the local execution of Apriori, demonstrating
that the distribution of workload contributes to improved performance. This signifies a
notable 30% increase in speed.

These findings support the investigation of whether the proposed distribution methods
effectively expedite the mining process. The comparison of execution times substantiates
the hypothesis that the Divided and Grouping approaches facilitate faster rule mining in
comparison to the traditional local execution of Apriori.

By presenting these comparative results, it is apparent that the proposed approaches provide
tangible benefits in terms of computational efficiency. The observed improvements in
speed not only validate the effectiveness of the distribution methods but also underline the
potential for optimizing the Apriori algorithm in practice.

5.2.2 Detailed comparison of Serverless approaches between each
other

In this section, three approaches, namely Single Apriori, Divided Apriori, and Grouped
Apriori, are compared. Although their overall results show a similar completion time of
around 20 seconds, a closer examination reveals notable differences between them.

One significant observation is that the Single Apriori approach running on AWS Lambda
required 25 seconds to complete the mining process for 20000 transactions. On the other
hand, the two distributed approaches achieved the same task 5 seconds faster. This clear
discrepancy substantiates the assertion that distributed approaches are significantly faster
in comparison.

43

When comparing the two distributed approaches, the Grouping approach proves to be 16%
faster overall than the Divided approach. This difference warrants further investigation and
analysis.

One crucial aspect to consider in the comparison of the Divided and Grouped Apriori
approaches is the Apriori step itself. It is observed that the Grouped approach outperforms
the Divided approach by 20% in terms of time, indicating that the Grouped approach
mines association rules at a faster rate. This performance difference can be attributed to
the variance in dataset dimensionality and the reduction in the number of attributes, such
as Age, utilized in the Grouped approach.

When it comes to the dataset division and grouping steps, both approaches exhibit similar
time requirements. The Divided approach is slightly faster, with a 5% advantage, as it
solely divides the dataset and performs a single iteration over the transactions. Conversely,
the Grouped approach involves both the grouping of data based on age groups and two
iterations—one over the transactions and the other over the age groups. While the speed
difference in this step is negligible, it is worth noting that both approaches efficiently
distribute the workload across the nodes.

However, when it comes to the collocation of results, the Grouped approach proves to be
faster. This step involves combining all the mined rules together. In the Grouped approach,
this process is straightforward, while in the Divided approach, it requires deserializing
rules and hash maps and checking each rule again to ensure they meet the confidence
and support measures. The Grouped approach completes the collocation step 34% faster,
showcasing its advantage in this aspect.

Considering the cumulative performance across these steps, the Grouped approach demon-
strates a 16% overall improvement in terms of speed. This performance gain makes the
Grouped approach a viable alternative and a promising solution for mining association
rules in a distributed manner.

By carefully analyzing these performance differences and considering the specific require-
ments of the research objectives, it is possible to make an informed decision on which
approach to adopt for efficient and timely rule mining.

44

5.3 Analysis of algorithms accuracy

The comparison between the Divided approach and the Grouped Apriori approach becomes
more nuanced when considering the theoretical basis and the accuracy of the results. The
Divided approach, which achieves 100% accuracy, ensures that all mined rules are identical
to those obtained from the local Apriori execution.

On the other hand, the rules mined in Grouped Apriori approach are based on a distinct
dataset. When comparing the Grouped approach with the local Apriori, it is found that
60% of the rules mined by the Grouped Apriori are identical to those obtained through
local execution. However, the remaining 40% of rules are more detailed and provide a
deeper understanding of the dataset.

Therefore, the Grouped Apriori approach not only mines a greater number of rules but
also offers a more comprehensive and detailed view of the dataset compared to the local
Apriori execution. This aspect highlights the advantage of the Grouped approach in terms
of efficiency and the level of insight it provides.

45

6. Summary

The primary objective of this study was to enhance the speed of association rule mining
through the implementation of a distributed approach based on the Apriori algorithm.
To accomplish this goal, two distinct algorithm prototypes were developed. Python was
chosen as the main programming language for implementation, and the Apollo Framework
was utilized as the runtime environment. Through rigorous testing and comprehensive
analysis of the results, it can be confidently asserted that the primary objective has been
achieved. Both prototypes exhibit a 30% improvement in performance compared to the
local execution of the Apriori algorithm.

The algorithms presented in this study have demonstrated their efficacy and applicability
for association rule mining in real-world scenario. Each approach possesses its own set
of advantages and limitations. The Divided approach provides a simpler implementation,
removing the need for intricate data grouping and collocation steps. On the other hand,
the Grouped approach necessitates careful consideration of attribute selection for data
grouping, aiming to achieve approximately equal-sized data blocks. It should be noted
that the Grouped approach is constrained by the requirement to exclude the target columns
from the grouping process.

Furthermore, there are opportunities for further advancements in this area. Potential
avenues for future research include the exploration of distributed hash tables for improved
data management, the utilization of alternative serverless platforms, the investigation
of alternative data grouping techniques, and the development of algorithms to facilitate
efficient pruning of data on remote machines through periodic data synchronization.

In conclusion, this work has successfully achieved its main objective of enhancing the
speed of association rule mining through a distributed approach. The implemented algo-
rithms have proven their effectiveness and can be applied in practical scenarios. While
both approaches have their merits, the choice of implementation depends on specific
requirements and considerations. Future research should focus on refining and expanding
upon the existing methodologies to unlock further advancements in the field of distributed
association rule mining.

46

References

[1] Yang-Jun GAO Huan-Bin WANG. Research on parallelization of Apriori algo-

rithm in association rule mining. [Accessed: 20-03-2023]. URL: https://www.
sciencedirect.com/science/article/pii/S1877050921005858.

[2] Thomas Fahringer Fedor Smirnov Behnaz Pourmohseni. Apollo: Modular and

Distributed Runtime System for Serverless Function Compositions on Cloud, Edge,

and IoT Resources. [Accessed: 20-02-2023]. URL: https://dl.acm.org/
doi/abs/10.1145/3452413.3464793.

[3] Lung cancer dataset. [Accessed: 10-03-2023]. URL: https://www.kaggle.
com/datasets/h13380436001/h-lung-cancer?select=survey+

lung+cancer.csv.

[4] Association rule. [Accessed: 12-04-2023]. URL: http://ethen8181.github.
io/machine-learning/association_rule/apriori.html.

[5] Association Analysis: Basic Concepts and Algorithms. [Accessed: 12-04-2023].
URL: https://www-users.cse.umn.edu/~kumar001/dmbook/ch6.
pdf.

[6] Data Preprocessing: 6 Techniques to Clean Data. [Accessed: 15-05-2023].
URL: https://www.scalablepath.com/data- science/data-
preprocessing-phase.

[7] AFCL 1.1. [Accessed: 15-05-2023]. URL: https://apollowf.github.io/
learn.html.

[8] AFCL Editor. [Accessed: 15-05-2023]. URL: https://github.com/Apollo-
AFCL/AFCLEditor/blob/main/docs/tutorial.md.

[9] Memory and computing power. [Accessed: 21-05-2023]. URL: https://docs.
aws.amazon.com/lambda/latest/operatorguide/computing-

power.html.

[10] Lambda quotas. [Accessed: 21-05-2023]. URL: https://docs.aws.amazon.
com/lambda/latest/dg/gettingstarted-limits.html.

[11] Amazon API Gateway quotas and important notes. [Accessed: 21-05-2023].
URL: https : / / docs . aws . amazon . com / apigateway / latest /
developerguide/limits.html.

47

https://www.sciencedirect.com/science/article/pii/S1877050921005858
https://www.sciencedirect.com/science/article/pii/S1877050921005858
https://dl.acm.org/doi/abs/10.1145/3452413.3464793
https://dl.acm.org/doi/abs/10.1145/3452413.3464793
https://www.kaggle.com/datasets/h13380436001/h-lung-cancer?select=survey+lung+cancer.csv
https://www.kaggle.com/datasets/h13380436001/h-lung-cancer?select=survey+lung+cancer.csv
https://www.kaggle.com/datasets/h13380436001/h-lung-cancer?select=survey+lung+cancer.csv
http://ethen8181.github.io/machine-learning/association_rule/apriori.html
http://ethen8181.github.io/machine-learning/association_rule/apriori.html
https://www-users.cse.umn.edu/~kumar001/dmbook/ch6.pdf
https://www-users.cse.umn.edu/~kumar001/dmbook/ch6.pdf
https://www.scalablepath.com/data-science/data-preprocessing-phase
https://www.scalablepath.com/data-science/data-preprocessing-phase
https://apollowf.github.io/learn.html
https://apollowf.github.io/learn.html
https://github.com/Apollo-AFCL/AFCLEditor/blob/main/docs/tutorial.md
https://github.com/Apollo-AFCL/AFCLEditor/blob/main/docs/tutorial.md
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Kirill Timofejev

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Distribution of Apriori Algorithm for Lung Cancer Data Set Using Apollo
Framework”, supervised by Mahtab Shahin
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

22.05.2023

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

48

	Introduction
	Existing solutions
	Runtime environment
	Dataset used for tests
	Goals

	Theoretical part
	What is Apriori?
	Association Rules Metrics
	Support
	Confidence
	Lift

	Implementation
	Finding frequent itemsets
	Generating association rules

	Algorithm prototypes
	Choosing approach for distribution work
	Horizontally divided dataset
	Dividing data
	Apriori algorithm
	Collocating result
	Pros and cons

	Grouped by attributes dataset
	Grouping data
	Apriori step
	Collocating result
	Pros and cons

	Proofs of Concepts
	Dataset preprocessing
	Apollo Implementation in Python
	Single Node Apriori
	Horizontally divided dataset prototype implementation
	Grouped by attributes dataset prototype implementation

	Results and Comparison
	Setup Description
	Analysis of performance
	Detailed comparison of Local Apriori with distributed ones
	Detailed comparison of Serverless approaches between each other

	Analysis of algorithms accuracy

	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis

