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Introduction

Human activity in the form of combusting fossil fuels for generating electricity,
manufacturing products, and transporting people and goods has led to substantial
emissions of carbon dioxide (COz) into the atmosphere that evokes climate change. CO2
has the longest life cycle (Camarero et al., 2011) and constitutes the largest share (72%)
of global total greenhouse gas (GHG)! emissions (Crippa et al., 2023). Although the
economic literature on global warming and COz emissions is expanding (Acemoglu et al.,
2016; Lange et al., 2020; Dwivedi et al., 2022), there is a need to further explore the
direct and indirect impacts of technological and economic progress on reducing CO2
emissions.

The concept of sustainable development suggests that maintaining a clean environment
and improving the quality of human life are interdependent, and advancing an economy
can be sustainable only if it is green and inclusive (Stojkoski et al., 2023). Attention to the
environmental effects of digitalization and other technologies has recently reached its
peak in response to growing public environmental concerns.

A required condition for green economic growth? is the deployment and development
of products and technologies with environmental advantages (Mealy and Teytelboym,
2022). Economically, it is highly unlikely that the level of investment in eco-friendly
technologies is socially optimal. Market prices may not reflect the environmental gains
linked to green products. On the other hand, the positive spillover effects may arise from
“learning by doing” and research and development (R&D) in green products. As a result
of these externalities, which have been crucial, for instance, in the renewable energy and
automotive industries (Aghion et al., 2016), the market is likely undersupplied with green
technologies, thus prompting government interventions.

Countries with more complex economies® produce more knowledge-intensive and
technologically complex goods and achieve higher levels of gross domestic product (GDP)
per capita and growth rates (Hausmann et al., 2014), lower income inequality, and
greater inclusiveness (Hartmann et al., 2017). Correspondingly, the complexity measure
of the green economy (or green complexity) reflects the degree to which a country is able
to produce technologically complex and green products competitively. The economies with
higher green complexity exhibit reduced CO2 emissions, markedly higher shares of
environmental patents, and stricter environmental regulations (Mealy and Teytelboym,
2022). Path dependence in green complexity implies that earlier and stronger actions to
create eco-friendly production capabilities are vital to the development of a prospective
green economy (Acemoglu et al., 2016; Aghion et al., 2016).

Reducing carbon emissions is urgent, and this issue is addressed in action plans and
policies at the supra-national level; these include the development of a competitive,
carbon-free, and digitalized economy. These necessary transitions with introducing the
intertwined green and digital technologies have been called “twin transitions” or
sustainable digitally-enabled transitions; the twin transition framework is presented in
Appendix 4 (European Commission, 2020a, 2020b; Rehman et al., 2023). The European

1 GHGs include the following: carbon dioxide, perfluorocarbons, hydrofluorocarbons, sulphur
hexafluoride, methane, nitrous oxide, and water vapour (EEA, 2023).

2 Green growth” refers to the possibility for advancing economic well-being while precisely
acknowledging environmental constraints and impacts (EBRD, 2017; Mealy and Teytelboym, 2022).
3 Economic complexity explains economic growth as involving the development of information and
accumulation of knowledge in producing sophisticated goods (Hausmann et al., 2014).



Commission (EC) has stipulated its ambitious climate objectives in the European Green
Deal (EGD)* and the European Digital Strategy (EDS)®, which consider the synergetic twin
transition as crucial to achieving sustainability goals (Paiho et al., 2023). These initiatives
specify challenging goals for all industries with a focus on greening digitalization, which
is enabled by information and communication technologies (ICT)®. The twin-transition
strategy is also fundamental to the EU’s COVID-recovery program, the NextGenerationEU,
which supports green, digital and equality principles (European Commission, 2023a).
Corresponding legislation is also in effect in other developed countries. Policymakers aim
to take full advantage of digitalization to enhance efficiency and reduce environmental
costs across all industries in the economy.

The green transition relates to areas such as the production of clean energy, the circular
economy, the preservation of ecosystems, and a decarbonized environment. The green
transition represents a potential pathway for sustainable and inclusive development in
the EU (European Commission, 2019).

The influential work of von Neumann and Turing in computing has led to the
proliferation of modern digital technologies (Ciarli et al., 2021). The digital transition
involves the adoption of digital innovations and technologies, such as computers, smart
sensors, machine learning (ML), artificial intelligence (Al), the Internet of Things (loT),
data algorithms, and hubs. The COVID-19 pandemic and the military conflict in Europe
have confirmed the vital need for digital technologies for economic development in the
EU (European Commission, 2022d). Digital technologies can reduce economies’ overall
energy consumption but, on their own, increase the demand for electricity (Schulte
et al., 2016; Lange et al., 2020). Digitalization is thus a double-edged sword in its
environmental effect, and its use can also lead to environmental degradation since it
relies heavily on infrastructure, materials, and energy (Strubell et al., 2019). E-waste is
also on the rise globally due to the increased use of digital equipment and electronics
(Kunkel and Matthess, 2020). Thus, digital transition does not automatically improve
environmental quality, and as the idea of the twin transition suggests, it should be
integrated with green solutions (Bianchini et al., 2022).

The emergence of digital technologies has spurred confidence that economic, social,
and environmental objectives can be achieved alongside goals for inclusive, sustainable
development. At the same time, the potentially unfavorable effects of the widespread
dissemination of digital technologies have raised concerns that range from escalating
inequality (O’Neil, 2016) to increasing unemployment (Brynjolfsson and Mitchell, 2017).
This issue thus demands an immediate response, especially given the current transition
to green energy, which is supported by innovative policies.

The positive environmental externalities associated with the use of digitalization may
considerably reduce CO2 emissions. For instance, the use of digital tools in teleworking,
e-teaching, e-learning, and e-health can substantially reduce time, energy, and travel
costs. Digitalization can enhance utility and productivity and can provide even greater

4The EU Green Deal is focused on ensuring environmental sustainability, including reducing energy
costs and reliance on imported fossil fuels (European Commission, 2019, 2022d).

5 The EU Digital Strategy is designed to enhance the resilience and competitiveness of the
digitalization eco-system (European Commission, 2020a, 2022b).

6 The ICTs comprise the relevant infrastructure, hardware, software, and information services, that
constitute the infrastructural foundation for digitalization. Digitalization can be defined as the
ever-increasing adoption of data processing via advanced digital technologies that generate
innovative digital processes, products, and business models (Briglauer et al., 2023).



economic prosperity by being an integral part of global net-zero society. Digital
technologies allow the deciphering of environmental issues, for instance, through the
use of big data and Al that can detect new structures in environmental processes
(Vinuesa et al., 2020); encourage consumers to behave in a more eco-friendly manner
and increase their environmental awareness (Coeckelbergh, 2021); interconnect smart
devices and smart grids for electricity management, transmission and generation (del Rio
Castro et al.,, 2021; Higon et al., 2017), and guide policymakers’ efforts to ensure
environmental sustainability and accurate forecasting of natural disasters.

Thus, the net effects of digitalization are ambiguous, and there is insufficient focus in
the literature on how the full potential of digitalization can be harnessed to achieve
energy efficiency and environmental sustainability.

In fact, scientists and policymakers have begun to address several vital questions: are
technological development in a broad sense (including green energy and low-carbon
technologies) and digital transformation compatible? What is the effect of digitalization’s
expansion on CO2 emissions, given that it is not supported by the development of overall
technology? These are the questions comprehensively addressed in this dissertation.
More specifically, this study examines the impact of digitalization, both direct and
moderated by technology development, on CO2 emissions, thus also identifying the twin-
transition impact.

These multidirectional digitalization effects imply a high level of heterogeneity,
meaning that the all-embracing quantitative effect of digitalization on CO, emissions is
uncertain and must be tackled empirically to send the right message to policymakers.
The contribution of this study (Article I) is in revealing the critical role of R&D in the form
of technology patents that transform the relationship between digitalization and CO>
emissions. In this setting, R&D-induced technology inventions act as a nonlinear transition
function that turns digitalization into a mechanism that improves environmental quality.
Existing evidence (e.g., Aydin and Cetintas, 2022) shows that progress in R&D enhances
energy efficiency and expedites the transition to green energy. This study enriches the
relationship between digitalization and R&D output and fills the research gap in two key
aspects. First, it estimates the relevance and significance of an R&D-driven regime shift
that reduces CO2 emissions in response to digitalization while controlling for a set of
appropriate indicators. Second, the study applies a nonlinear generalized panel
estimator, panel smooth transition regression (PSTR) (Gonzalez et al., 2005), which
enables a smooth R&D-induced transition and produces heterogeneous estimates that
vary across regimes. Unlike existing research, this study disentangles the R&D-driven
technological innovation and digitalization progress while investigating their joint
nonlinear smooth regime-effect on CO2 emissions. In addition, this study uses a worldwide
sample of high- and middle-income economies.

Based on the sample obtained, the author estimated several econometric models to
find the direct environmental outcomes of digitalization and those moderated by
technological development. The results indicate that the advancement of digitalization
has opposite effects: in the linear part and under a low level of technology development,
digitalization leads to CO2 emissions’ increase, presumably due to its high electricity
consumption. However, in the nonlinear part and for higher levels of technological
progress, the complex interaction of digitalization and technology reduces CO:
emissions, with the latter (reducing) effect exceeding the effect that increases emissions.
This study supports the environmental Kuznets curve (EKC) hypothesis (Grossman and
Krueger, 1995), which states that CO2 emissions have an inverted U-shaped nexus with
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the levels of economic and technological development. It shows that carbon emissions
increase with digitalization in countries with lower levels of R&D output until they reach
an R&D threshold, after which CO2 emissions begin to decline as economies advance in
digitalization.

Environmental disequilibrium and global warming are associated with substantial
increases in energy costs and issues of the security of energy supply’, as its consumption
leads to CO2 emissions. Thus, economic, energy, security, and environmental factors are
closely intertwined.

Also, not only digitalization but technology development in general is at the heart of
most strategies addressing climate change (Bianchini et al., 2023). In the transformation
to a low-carbon economy, green and low-emission technologies provide diverse
solutions, spreading from carbon capture (CC) (including CC in electricity generation) to
emissions-free steel and cement production technologies, which can successfully
decrease the environmental impact.

The EU energy program covers the energy policy of the Baltic States that has three
major goals crucial to promoting green economic development: sustainability, competitive
ability, and energy security (Bompard et al., 2017). Due to increasing competition and
incentives for organizations to invest in cost-decreasing and innovative technologies,
energy prices are expected to gradually decline and converge between EU members,
leading to increased efficiency and welfare (Bockers and Heimeshoff, 2014). Investments
are essential for sustainable development and a precondition for an accelerated digital
and green transition (European Commission, 2022d). Also, the energy markets with
enhanced interconnection may contribute to strengthening the short- and long-term
security of energy supply.

Over the last years, Estonia has transformed its energy industry, making a substantial
contribution to reinforcing energy security in the region. According to the “REPowerEU”
plan of the EC (2022c) the joint activities are required not only to improve energy
efficiency and increase renewable energy production, but also to enhance the capacities
of low-carbon production with the help of CC technologies. Regardless of the relative
abundance of oil shale (OS) reserves, few countries have chosen this fuel as a reliable
energy source for power generation. Estonia is one such country with an extensive
knowledge base and production experience in OS use, implying production capabilities
and path-dependence in this area. OS is a fossil fuel, and its combustion in power plants
results in high CO2 emissions. Substantially abating the GHG emissions in Estonia requires
a reduction in CO2 emissions from electricity generation. With the spotlight on the EU
target of net-zero GHG emissions by 2050 (European Commission, 2019), the introduction
of new technologies, including CC, is vital.

Article Il presents applied research of specific case study, with inter-phenomenon
normative real data and sensitivity analysis (rather than classical hypothesis testing)
applied to answer the specific research question. This analysis manifests the real example
of CC technology potential implementation with the retrofitting Estonia’s OS power
plants (OSPPs) to allow direct abatement of CO2 emissions, which also aligns with the
theoretical technological effect of the EKC hypothesis (Grossman and Krueger, 1995).
The effect of implementing these CC technologies is observable on the EKC curve after

7 Energy security is multidimensional construct that relates to uninterrupted (continuous)
availability of energy sources at an affordable price (International Energy Agency (IEA), 2023b).
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the threshold point, when they contribute to the decoupling of economic growth from
environmental degradation.

This dissertation provides a comparative techno-economic analysis of the
implementation of CO2 capture technologies, such as post-combustion capture (PCC) and
oxy-fuel combustion capture (OXY) technologies, in existing OS power plants in Estonia.
The technical analysis reveals that OXY technology performs better than PCC in OS
electricity generation plants. From a financial feasibility perspective (based on the
technical feasibility analysis), the possibility of CO2 capture in the Estonian OSPPs relies
on the long-term state of the electricity market and the CO2 emissions trading system.

The study, thus, seeks to answer the question of whether the actual additional cost of
integrating CC technologies in OSPPs exceeds the combined CO; emission allowance and
environmental fees or if it may lead to a competitive disadvantage. Additionally, this
study discusses the potentially high relative cost of CC and the negative externalities
arising from CO2 emissions and national energy security issues if they cannot be
practically mitigated using alternative, sustainable and manageable energy sources.
Thus, this study makes an original contribution to an area that is largely unexplored.

Digital technologies penetrate and reorganize all aspects of social and economic
activities (Ciarli et al., 2021). Organizations need modern skills for innovation, learning,
and assimilation of digital technologies that transform the programming code into
improved productivity and innovative performance (Ciarli et al., 2021). Digital
technologies like Al and ML are fundamentally transforming the tasks distribution
between human and technology. Digital technologies also support a fair and sustainable
society, for instance, by enabling digital access for unconnected and exposed individuals.
However, digitalization can inflate consumption, exacerbate the digital divide, and upset
the balance of the labor market. Thus, the positive developments of digital technologies
should be addressed in a way that minimizes potential negative externalities.

The accelerated adoption of digital technologies and digital skills allows individuals to
be more mobile and flexible in terms of employment and learning (Claro et al., 2018).
The COVID-19 pandemic has transformed daily lives and routines of individuals
(Feldmann et al., 2021). It exposed an urgent need for infrastructure and highlighted a
lack of digital skills of individuals who were unequipped to hold events, study, and work
from home online.

Today digitalization goes beyond an incremental change to existing technological
advances and represents a fundamental transformation in the technological paradigm,
capable of inducing a new cycle of economic growth and profound structural changes
(Brynjolfsson and McAfee, 2014; Cirillo et al., 2021). Such digital transformations may
have disparate impacts on employment. Some studies predict widespread
unemployment caused by technological disruption, while others suggest that the new
technological model will create employment opportunities (Frey and Osborne, 2017;
Nedelkoska and Quintini, 2018).

The literature contains mixed empirical findings on the influence of digital
technologies and digital skills on employment dynamics. These results can mostly be
explained by heterogeneity in the level of aggregation and the specificity of the
digitalization indicator used, although its choice is often dictated by data availability.
Nevertheless, most studies express the consensus position that digitalization has a
favorable effect on employment outcomes.

This dissertation contributes to extant literature by defining and empirically exploring
the relationship between digital technologies, digital skills, and employment dynamics in
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the specific occupational context. More specifically, it aims to answer the research
question of whether digital skills and digital technology (broadband Internet access) have
a positive impact on employment status on the micro level before and after the
emergence of the COVID-19. The novel contribution of this study (Article Ill) is that it
identifies the individual-level impacts in the relationship between digital skills and
employment and the post-COVID-19 effect on digital transition in European countries.
The COVID-19 pandemic has generally triggered growth in employment outcomes for
individuals with digital skills, broadband Internet access, and tertiary education.
However, in the post-pandemic period, the individuals with basic digital skills have gained
employment benefits, while the relative advantage in the labor market of those with
advanced digital skills has declined.

The contribution of this dissertation is in detecting favorable effects of the green and
digital, or so-called “twin” transitions in mitigating climate change. In evaluating the
nexus between the advancement of digitalization and green technologies and their
impact on CO2 emissions, particular focus is placed on the technological component.
There are few empirical studies of the twin-transition phenomenon, and those that
consider this in the light of technological development are even less (Bianchini et al.,
2023); even fewer studies investigate the environmental impacts of the technologies
underpinning this transition.

The complexity of interaction between general, green and digital technologies
and their environmental, social, and employment-related impacts call also for new
investigation approaches. To the best of the author’s knowledge, this dissertation makes
a novel contribution: it explores the digitalization’s impact, moderated by technological
development, on CO2 emissions, evaluates the financial feasibility of implementing
specific CC technologies in Estonia, as well as estimates the effects of digital skills and
technology on employment outcomes. The econometric methods (PSTR and bivariate
ordered probit models) applied in the published articles add to the originality of the
contribution.

The remainder of this dissertation is structured as follows. Section 1 sets out the
theoretical and empirical background and offers the literature overview on the
environmental impacts of digitalization, the effects of implementing CC technologies in
Estonia, the digital divide and transformation of the labor markets, as well as the green
and digital twin transition and their environmental implications. The research questions
and hypotheses are elaborated in Section 2 based on the arguments presented in
Section 1. In Section 3, the empirical methodology is outlined, and the data are described.
The author discusses the key estimation results in Section 4 and presents conclusions in
Section 5 with the policy suggestions most relevant to the ongoing debate on twin
transition, including a human-centered focus, the implementation of low-carbon
technologies and their economic, environmental, and social implications.

13
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cC
CsIS
DOE
EC
EGD
EKC
ETS
EU
GDP
GHG
ICT
IEA
loT
ISCED
ISCO
ML
NETL
NUTS
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PCC
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R&D
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Artificial Intelligence
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Internet of Things

International Standard Classification of Education
International Standard Classification of Occupations
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National Energy Technology Laboratory
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Operating and maintenance

Oil shale
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Oxy-fuel combustion capture
Post-combustion capture

Panel Smooth Transition Regression
Research and Development

Routine-biased technical change

Reference plant

Skill-biased technical change

Sustainable development goals

Technology readiness level

World Health Organization

Explanations of abbreviations used in the thesis — the table.
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1 Overview of the Literature

1.1 Environmental Kuznets Curve: Decoupling economic development
from carbon dioxide emissions

Below, the author offers a review of the general literature with main findings on the
primary determinants and specific effects of the digitalization components on CO;
emissions, concentrating on hypotheses associated with moderated and nonlinear
impacts.

1.1.1 Digitalization and economic development

The early dispute around Solow’s (1987) “productivity paradox” had been resolved as the
related research confirms that a rise in productivity after 1995 was induced by the
adoption and use of ICT technology (e.g., Jorgenson et al., 2008). The first wave of
literature estimated the economic effect of ICT on growth of productivity and output at
different levels of aggregation (Kohli and Grover, 2008; Lee et al., 2005). The outcomes
and the strengths of these early contributions have been constructively reviewed, for
instance in Draca et al. (2007). The research on “ICT value” shows that investments in ICT
capital positively impact productivity growth for developed economies (Dewan and
Kraemer, 2000; Ollo-Lopez and Aramendia-Muneta, 2012) as well as for higher-income
developing economies (Dedrick et al., 2013). Further, digital technologies can improve
economic development and productivity by automating processes, which leads to more
efficient resource use and stimulates investments, including in green technologies
(Evangelista et al., 2014; Antonioli et al., 2018; Tortorella and Fetterman, 2018).

Digital technologies have changed the types of services and goods available in the
economy. For instance, digital goods generate considerable gains in welfare that are not
represented in traditional measures of productivity and GDP (Brynjolfsson et al., 2019).
Whereas, in most cases, GDP represents economic growth and is broadly used, its use as
an indicator of the state of the economy is theoretically and practically controversial,
particularly when used as a measure of well-being (van den Bergh, 2009; Vadén et al.,
2020). Thus, the goods in the digital economy are not included in GDP, since each digital
good’s (e.g., smartphone applications, Wikipedia) copy created by a user often has a
zero-market price and almost zero marginal cost (Brynjolfsson et al., 2019).

In the digital age, information flows are an element of the global economy (Sui and
Rejeski, 2002). Economic development leads to increased consumption of digital goods,
which results in higher electricity usage and carbon emissions. As per the Environmental
Kuznets Curve (EKC) hypothesis, CO2 emissions grow in the early stages of economic
development until a threshold is reached but later, they decrease as economies advance
further with a shift toward more environmentally friendly and cleaner technologies, as
shown in Figure 1 (Grossman and Krueger, 1995; Stern, 2004; Ansuategi and Escapa,
2002).

15
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Figure 1. Environmental Kuznets curve (Grossman and Krueger, 1995; compiled by the author).

The EKC hypothesis defines the relationship between income inequality, level of
income per capita, and environmental quality (Acemoglu and Robinson, 2002; Marco
et al., 2022). This inverted U-shaped relationship is the result of scale, technology,
and composition effects (Grossman and Krueger, 1995; Dinda, 2004; Aslanidis, 2009).
The environmentally adverse scale effect dominates at lower levels of economic
development, with positive composition and technology effects prevailing as the
economy expands. A country’s income level is also positively linked to environmental
awareness and regulations that promote sustainability (Arrow et al., 1995; Aslanidis,
2009). However, the EKC nexus embraces not only income inequality and environmental
sustainability but also economic complexity, forming the so-called trinity, which has
three desired but incompatible goals (Marco et al., 2022). The environmental
performance of CO2 emissions is empirically shown to be highly path-dependent
(Bianchini et al., 2023).

Dinda (2004) has reviewed the literature related to the EKC hypothesis, and recently
Shahbaz and Sinha (2019) have overviewed the studies regarding concretely CO>
emissions. However, empirical evidence on the EKC relationship regarding CO2 emissions
is mixed because this nexus varies across countries, which differ in their development
trajectories and policies (Haini, 2021). For instance, while Grossman and Krueger (1995),
Yandle et al. (2002), and Cheikh et al. (2021) find support for the EKC relationship, Arrow
et al. (1995), Stern (2004), Hussain and Dogan (2021) find no such evidence. Some studies
claim that the results supporting the EKC hypothesis apply to high-income but not
low- and middle-income countries (Le and Quah, 2018). The complexity and nonlinearity
of the EKC relationship requires a more advanced framework for estimation (Van Alstine
and Neumayer, 2010), which must allow for non-linearity and heterogeneity in parameters
(Higon et al., 2017; Cakar et al., 2021).
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1.1.2 Environmental impacts of digitalization

Digital transformation has clear environmental impacts, but whether this influence is
positive or negative is debated (Briglauer et al., 2023). Also, the paucity of research on
the environmental outcomes of the digital transition adds to this ambiguity (Bianchini
et al., 2023). Further, digital technologies are not a uniform entity, but they represent
a collection of various, interconnected, and complementary areas of knowledge,
the so-called digital ecosystem. Thus, distinct digital technologies induce heterogeneous
impacts on environmental quality.

In general, digital technologies have specific common features, such as electricity
consumption.® These technologies (primarily connected devices, data centers and
transmission networks) are responsible for generating about 2% of total GHG emissions
from energy use (IEA, 2023a). The proportion of electricity consumption of the
digitalization and ICT main components are as follows (Banet et al., 2021): mobile and
fixed broadband networks (incl. access and main networks) use 27% of total ICT-related
electricity consumption; data centers use 31%, and end-user devices (incl. laptops, PCs,
smartphones, TVs) use around 42% of overall ICT electricity demand. Despite the swiftly
expanding use of digitalization, carbon emissions have increased modestly over the past
decade due to a transition to renewable energy sources, improvements in energy
efficiency, and general decarbonization of electric power grids. For instance, while
Internet traffic and data centers’ workloads have increased several times from 2010 to
2019, the data centers’ energy use barely changed (IEA, 2020). However, to achieve the
carbon-free target by 2050, emissions need to be halved by 2030.

Like connectivity technologies (e.g., gigabit, 5G, 6G), semiconductors are essential for
a sustainable digital transition (European Commission, 2022a). The recent applications
of Al, big data processing capacities, the transition to “edge computing” and the need for
infrastructure to facilitate a distributed workforce, induced by the COVID-19, demand
the increased computational capacity, extra security, and decreased energy
consumption. The emerging quantum computing technologies can spur innovations in
such complex areas of R&D as healthcare, climate change, sustainable energy, digital
twins, and Al (European Commission, 2022b). Digital technologies (e.g., ML) have
spillover effects on other inventions and technology progress at the sectoral and
economy-wide levels (Cockburn et al., 2019; Wu et al., 2024).

Given digital technology’s positive and negative environmental effects, what is the
overall net impact of digitalization? The nexus of digitalization and electricity
consumption is the key factor in determining whether digitalization is, in general,
beneficial, or detrimental to a sustainable environment. Horner et al. (2016) provide a
practical classification of the ambivalent environmental effects of digitalization.
The direct effects can be categorized as follows: the consumption of electricity related
to manufacturing (embodied energy), using (operational energy), and discarding
elements (incl. obsolescence effect)®. The next level of indirect effects (in terms of a

8 The digital ecosystem’s structure elements are data related processes, computational power to
process data, connected devices via loT, industrial robots, peripheral devices — all use electricity.
9 The obsolescence effects occur when the new technologies are introduced and still functioning
digital equipment is disposed of before its useful life expires.
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single service) can be related to efficiency (decreasing net electricity consumption),
substitution (opposing effects), and direct rebound effects (increasing electricity use)*°.

The direct rebound effect, which is the elasticity effect of own price, can result when
income and substitution effects lead to increased consumption while prices and
operational costs decrease. The third level comprises the indirect rebound effect,
resulting from the demand’s cross-price elasticity for other goods because of higher real
income. The fourth level refers to economy-wide structural effects, when digitalization
originates macroeconomic changes, facilitating or restraining growth in other industries,
which leads to modifications in energy use. The dynamic, long-term environmental
impacts of digital technologies can transform economic structures and lifestyles (e.g.,
remote work, e-commerce platforms), changes that are not immediately obvious
(Dedrick, 2010). Again, the impact of this effect is counteracting. Finally, transformational
effects relate to the alteration of consumer preferences and social and economic
institutions, induced inter alia by the growth of digitalization (Greening et al., 2000).
Likewise, the sign of such effect is ambiguous.

Another substantial aspect that determines the EKC form is the interaction between
GDP and tertiarization, which takes place when the proportion of intangible such as
service sector in the overall GDP rises. In developed economies, structural change is
supported by digitalization, which, in turn, contributes to tertiarization that creates
environmental value (Lange et al.,, 2020). When digitalization exhibits tertiarization
effects, energy consumption will decrease, as this results in a reduced energy intensity,
more frugal electricity use, and growth in the use of renewable energy. Similarly,
financialization or the increased share of economy’s financial sector results in decoupling
of economic growth from environmental degradation (Kovacic et al., 2018; Vadén et al.,
2020).

The increase in financial intensity (financial assets per unit of gross value added) plays
a crucial role in the reduction of energy intensity (per unit of GDP). Financialization gives
rise to several rent-seeking practices that have enabled and stimulated the reorganization
of production toward tertiarization and outsourcing (of industry to developing
economies), which, in turn, lead to the relative decoupling of energy intensity and GDP
(Kovacic et al., 2018).

Trade may also drive CO2 emissions with heterogeneous and opposing effects that
relate to various groups of countries. Although increased trade volumes may heighten
emissions due to growth in manufacturing and transport, it can also have positive
environmental effects via income growth, resulting in stricter regulations and lower
domestic production of pollution-intensive goods (Briglauer et al., 2023). Nevertheless,
the hypothesis of “pollution haven” implies that developing economies may be involved
in the production of the most emission-intensive products because of dissimilarities in
the environmental norms and regulations of developing and advanced countries.
Although the ability to manufacture complex, eco-friendly goods is linked to decreased
CO2 emissions per person, green complexity also involves R&D, human capital and
institutions, so this cannot be entirely attributed to the trade effect (Mealy and
Teytelboym, 2022).

Regarding trade in ICT technologies, the emission-intensive large-scale manufacturing
of digital devices, ICT-related waste disposal (digital devices’ materials are not always

10 The rebound effects occur when energy efficiency gains (due to technological innovations) result
in decreased operating costs, causing consumers to save less energy than originally expected (Sui
and Rejeski, 2002; Gillingham et al., 2016).
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recyclable), and the mining of rare earth metals are located in large developing
economies, such as China, India, and East Asian countries (Kunkel and Matthess, 2020).
However, the extent of diffusion of digital technologies remains lower in developing
economies, and thus, these do not fully experience the favorable enabling effects of
digitalization’s use (Lange et al., 2020). Although the obvious impact of population
growth on the environment, since each person requires an energy to meet their primary
needs, the related effects of urbanization and density of population are often
contradictory and non-linear (Higon et al., 2017).

Recent and scarce empirical studies examine the influence of different ICT elements
concerning their electricity consumption on CO2 emissions. Most studies detect a
negative relationship, meaning that the higher the intensity of digitalization use, the
lower the overall CO2 emissions. Remarkably, almost all studies employing data for
developed economies reveal a negative relationship between the digitalization
components and COz emissions. However, the evidence for this nexus in less developed
countries is mixed. These outcomes support the “pollution haven” hypothesis and
demand further investigation.

Existing studies separately examine the relationship between digitalization and
carbon dioxide emissions (Gong et al., 2020; Lange et al.,, 2020) and the nexus of
technological inventions and CO2 emissions (Churchill et al., 2019; Du et al., 2019).
Dwivedi et al. (2022) combine the digitalization elements and technological innovation
and investigate their joint impact on CO: emissions. Wang et al. (2021) find that
technological innovation in the digital sector intensifies CO2 emissions, while spillovers
of digital technologies across industries and borders decreases carbon footprint.

Diaz et al. (2019) examine the mechanisms of energy intensity transformation and
green-energy conversion that affect energy consumption and GDP growth using data for
134 countries for the period 1960 to 2010. The scholars detect a connection between
higher energy intensity and lower growth of GDP per capita, and this relationship is valid
for developed and developing economies. Hence, a reduction in energy intensity leads
to higher economic growth globally. The transition from fossil fuels to renewable energy
sources, that is conditioned by level of energy intensity, is positively associated with GDP
growth. Further mechanisms influencing a country’s energy composition and intensity
can be detected, considering the degree of digitalization’s penetration and its enabling
effects (reducing energy intensity, promoting economic growth).

Lee and Brahmasrene (2014) use panel data of the ASEAN countries from 1991 to 2009
to show that ICT positively affects economic growth and CO2 emissions. Using panel data
of 142 developing and developed countries over the period 1995-2010, Higon et al.
(2017) find a nonlinear inverted U-shaped relationship underlying ICT and CO2 emissions,
thus supporting the EKC hypothesis. Edquist and Bergmark (2024) explore the impact of
mobile broadband on CO2 emissions using panel data of 181 countries for the years 2002
to 2020, finding that a 10-percentage point increase in mobile broadband adoption
caused an 8% reduction in CO2 emissions per capita. However, this relationship was only
significant for high-income countries.

The existing literature does not sufficiently address the digitalization effects on
environmental sustainability despite appeals for research. There is thus a need for
further exploration of the positive and negative environmental impacts of digitalization
in differently developed countries globally, as environmental challenges are international
in scope. In its recent policy, the EC (2020a, 2020b) focuses on the interaction between
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green and digital transitions, with an emphasis on digital technologies’ beneficial effects
that can address social and environmental issues.

Based on the above discussion, this thesis explores whether those countries with
greater overall and environmental technologies’ endowments benefit both directly and
through the symbiosis of green and digital technologies. More precisely, the study
contributes by estimating the nonlinear digitalization — CO2 emission relationship as
dependent on the time- and country-varying technological (incl. green-tech) R&D output
level and by testing whether the positive environmental effects of digitalization outweigh
the negative ones.

1.2 Techno-economic perspectives of carbon capture

1.2.1 Economic feasibility of carbon capture

CO2 emissions, a major contributor to GHG emissions, are still growing globally despite
countries’ agreements and commitments to mitigate climate change (Crippa et al., 2023).
For the EU27, CO; emissions are projected to decrease to 2.6 billion tons in 2023, 7.4%
lower than in 2022 (GCP, 2023). Estonia is one of the few countries that has relied on oil
shale (OS) in terms of electricity generation. On the positive side, the high OS
consumption as a domestic fuel enhances the country’s energy security. However, OS is
a carbon-intensive fossil fuel, and OS-based electricity generation emits substantial CO2
(Augutis et al., 2020), about 1 ton of CO2 per MWhe of electricity produced.

In 2018, when OS electricity production was high, Estonia was one of the three largest
GHG producers in Europe, with 15.3 tons of GHG emissions per capita. From 2019 to
2021, Estonia’s OS electricity generation decreased, as evidenced by its per capita GHG
emissions of 9.6 tons in 2021, which decreased by a further 6% in 2022 (Crippa et al.,
2023). In 2020, Estonia transitioned from being an electricity exporter to being an importer,
and, on some days, it registered zero electricity generation using OS. Nonetheless,
the 2021 global energy crisis, exacerbated by increased energy demand and elevated
electricity prices, right after the COVID-19 pandemic peak, and Estonia’s energy security
concerns, has resulted in an increase of OS electricity generation and, in turn, growth in
CO2 emissions. Despite Estonia reduced its overall CO2 emissions by 6.8% to 10.9 Mt CO:
in 2022 (compared to 2021), the country’s power industry increased CO2 emissions by
5.2% (net GHG emissions in equivalent of CO2) to 4.1 Mt CO., which is 37% of all emissions
in Estonia (Crippa et al.,, 2023). For comparison, the same industry’s share of CO:
emissions was 51% of the country’s emissions in 2018. Thus, to reduce GHG emissions in
Estonia, it should focus on reducing CO2 emissions from energy production.

The amount of electricity produced by the OSPPs largely depends on electricity prices
on the Nord Pool market and the price of the European CO: allowance set for the EU
Emissions Trading System (ETS). The ETS is one of the EU’s main mechanisms to gain
cost-efficient reductions in GHG emissions and achieve its goals under various
commitments (e.g., Kyoto Protocol), with the ETS acting like a structure that internalizes
negative externalities.

The energy transition is not only technological but also social and political, as practices
and concepts developed within the fossil fuel-based energy system must be reconsidered
from a low-carbon perspective (Hoysniemi, 2022). Also, the integration of EU power
markets faces challenges in terms of energy-supply security, the promotion of renewable
energy, the reduction of emissions, and the decentralization of the production—
consumption link, as they all demand improved national policies (Pepermans, 2019).

20



The EC introduced the REPowerEU plan in response to economic uncertainty and the
turmoil in global energy markets provoked by Russia’s 2022 invasion of Ukraine and the
sanctions imposed on Russian energy imports into the EU (European Commission,
2022c). The plan’s measures are focused on accelerating the introduction of green
energy, enlarging EU energy supplies, and energy conservation. In response to high
energy prices, in 2022, the EC (2019, 2022d, 2022e) adopted the “action plan on
digitalizing the energy system”, to facilitate the EU’s energy policy objectives and the
EGD by promoting transparent, cyber-secure, sustainable, and competitive market for
digitalized energy services, ensuring data privacy, sovereignty and supporting investment
in energy infrastructure (Benedetti et al., 2023). This plan indicates the considerable
environmental, economic, and social benefits of the energy sector’s digitalization.

Since energy prices recently skyrocketed to record levels again (Nord Pool, 2024),
the economic motivation for diffusing green and low-carbon technologies increased
keeping in mind the environmental challenges. For instance, such high electricity prices
and decreasing prices for photovoltaic (PV) panels motivate consumers to increase
demand for PV panels (Paiho et al., 2023). Existing large heterogeneities across EU
member states and high electricity prices remain the EU’s main challenges (European
Commission, 2021). As a result, understanding the paths of price convergence and how
national regulations impact the electricity prices’ harmonization is essential to design the
EU energy, environmental, and climate policies (Saez et al., 2019).

1.2.2 Carbon capture possibilities in oil shale power plants

CC refers to the capture of CO: from a large source, such as an electricity production
plant that uses fossil fuels (e.g., OS) as an input. There are approximately 40 operating
commercial installations that already apply CC in electricity generation and other
industrial processes (IEA, 2023b). The introduction of CC has occurred on a much smaller
scale than initially expected, but its adoption has recently gained momentum. In the case
of Estonia CC facilities can be installed on existing OSPPs, which can be modernized or
retrofitted.

CC systems involve an extremely nonlinear and complex interaction of mass and heat
transfer, chemical reactions, and thermodynamics (Lawal et al., 2009). Precise modeling
of their behavior is computationally intensive, time-consuming, and demands progressive
capabilities in process systems development. Digital and data-driven modeling
employing ML, which is easier to perform, can accurately model and predict the utterly
sophisticated underlying interrelations in CC systems with a decreased computational
load (Wu et al., 2024).

Although considerable technological developments in the Estonian energy sector have
recently led to decreased CO2 emissions, further reductions are necessary under current
EU policies. The EU strategy requires the development of CO2 capture technologies,
which can be technologically implemented in Estonian OSPPs. However, adding CC
capacity to existing power plants will raise the cost of generated electricity and decrease
efficiency. Introducing CC in OS energy generation would be financially feasible as long
as the electricity produced remains competitive with that generated from other sources
(and imported electricity via the EU’s Nord Pool power exchange).

Thus, a techno-economic analysis is necessary to identify the most effective CC
technologies and estimate their implementation cost and competitiveness. The question
to be answered is whether it would be technologically and financially feasible for Estonia
to implement the relevant and effective CC technologies and to reduce carbon emissions
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in existing power generation facilities without compromising its reliable electricity
supply. Doing so might facilitate keeping the electricity prices stable and decreasing CO2
emissions while using the existing local advantages (accumulated knowledge,
complexity, path-dependence, domestic energy) of OS based power generation.

The technical and economic assessment of retrofitting Estonia’s OSPPs with CC is
based on the introduction of two promising CC technologies: post-combustion capture
(PCC) and oxy-fuel combustion (OXY). OXY and PCC have comparatively high technology
readiness level (TRL) and can potentially be used in OSPPs. The study proposes an
assessment of the deployment of CC technologies for the OS power generation units and
conducts a comparative analysis of capture costs. This case study represents the first
extensive evaluation of the integration of CC technologies into Estonia’s OS energy
industry. The study does not provide quantitative estimates of the comprehensive
economic feasibility of integrating CC, but it addresses some crucial externalities.

1.3 Human-centered digital transformation

1.3.1 Digital divide

As the digital economy has developed, the digital divide has become an important and
constantly evolving issue for organizations, policymakers, and scholars (Van Dijk, 2020)**.
Manifestations of the digital divide can increase social inequality since they can damage
the economic and social capital of individuals (Ragnedda, 2017); the ongoing digital
transformation introduces social inequality as it does not offer everyone the same
opportunities. The effective use of digital technologies is also considered a powerful tool
for achieving the UN’s Sustainable Development Goals (SDGs), particularly “Reducing
Inequalities” (Goal 10) (United Nations, 2020). Thus, clear understanding of the digital
divide phenomenon and its different perspectives is essential in identifying technological
needs that can stimulate the development of more coherent policies. Presumably, Goal
10 of the SDGs is most impacted by digital technologies, as their skillful use can promote
equality by providing access to important information (e.g., on education, training, and
employment opportunities) and ensuring citizens’ active participation in the economy
and society (Lythreatis et al., 2022).

The digital divide is defined by level. The level-1 digital divide (digital access) refers to
inequality in terms of access due to infrastructure and costs (Dewan and Riggins, 2005).
Level-2 (digital capability) refers to inequality due to an individual’s skills and knowledge
(digital literacy) and technological capabilities (Hargittai, 2002; DiMaggio et al., 2004).
Within this level of the digital divide, Van Dijk (2006) includes the inequalities in
motivational access (associated with low self-efficacy, computer anxiety, or other
psychological factors) that prevent people from using specific technologies. The level-3
digital divide (digital outcome) refers to outcomes, such as productivity and learning, that
result from utilizing ICT and emerge from the digital capability divide (level-2) as well as
additional contextual aspects (Wei et al., 2011).

11 The digital divide is defined as inequalities in the access to and exploitation of digital devices and
the Internet (Castells, 2002), in respect of the following: 1) material access to the Internet and
personal computer (PC), 2) motivational access, an aspiration to have access, 3) skills access, or
essential skills to exploit the Internet and PC, 4) usage access, or the length, variety and effectiveness
of use (van Dijk, 2006).
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Due to proliferation of digitalization, the digital literacy and skills'> are now
fundamental for labor market participation in practically all industries (Martin, 2006) and
are twenty-first-century skills for communication, cooperation, citizenship, critical
thinking, problem solving, productivity and creativity (Voogt and Roblin, 2012).
Individuals’ unequal living conditions improve moderately with economic development,
but inequalities continue to affect their skills and performance even in countries with
equitable conditions (van Deursen and van Dijk, 2019).

The nexus between inequality and digital technology advancement has been debated.
For instance, technological innovation (incl. the Internet and e-commerce) can decrease
economic and social inequality by introducing new employment opportunities, engaging
marginalized communities in the global economy, and increasing productivity (Ambrogio
et al., 2022; Suhrab et al., 2024). However, technological development can exacerbate
socio-economic disparities, including access to technology (Bordot, 2022). Thus, individuals
with better access to digital technologies have an advantage in acquiring new information
and skills, which increases their employability and income. However, this transition
has also reduced job opportunities for low-skilled workers due to automation and
digitalization, leading to their displacement and rising unemployment.

The digitalization’s effects on inequality and the digital divide are largely explained by
government regulations, socio-demographic and socio-economic determinants (such as
income, age, gender, educational attainment level, ethnicity, and level of urbanization).
These factors are influential not only in technology adoption (Niehaves and Plattfaut,
2014) but also in determining the level-2 (skills) (Hargittai, 2002) and level-3 (outcomes)
digital divide (Scheerder et al., 2019; Hidalgo et al., 2020). However, research does not
consistently disclose the contextual relationships implicated in this divide (Scheerder
et al., 2019). The level of educational attainment of individuals and that of their parents
positively impacts their ability to tackle complex digital-related issues, controlling for age
(Gui, 2007).

Studying the factors that determine the digital divide may help resolve this inequality.
For example, studies find that the relationship between digitalization and agility is
essential. One of the main factors determining agility is the level of digitalization of a
country or industry (Skare and Soriano, 2021); also relevant are digital competencies at
the individual (Seale et al., 2010) and the workplace level (Breu et al., 2002).

The COVID-19 outbreak brought the digital divide to the forefront, with emergence of
a new order, in which humans without adequate Internet access and digital skills faced
isolation and suffered other disadvantages (De’ et al., 2020). During the pandemic,
government agencies and organizations expressed concern regarding the deteriorating
digital divide, which became life-threatening as many people were forced to work, study,
access services, and communicate from home (United Nations, 2020).

The rates of adoption of basic fixed broadband connections reached almost 100% at
the EU household level (European Commission, 2022a), meaning that coverage and
adoption rates are now largely equal. However, a substantial gap remains between the
rates of coverage and adoption for more advanced fiber-based broadband connections,
with the share of adopted to accessible connections (i.e., adoption rate) remaining below
50% in many developed economies (European Commission, 2022a).

12 Digital skills are defined broadly as the ability to solve ICT issues (Claro et al., 2018), or to utilize
and take advantage of digital technologies (Aydin, 2021).
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Existing research on the digital divide addresses the impact of digitalization on
employment in different ways, with particular attention to the development of economic
and social inequalities that disadvantage older and less digitally educated people
(Codagnone, 2009). Therefore, it is essential to better understand the trajectories of the
adoption and use of digital technologies in society and organizations to better identify
their effect on inequality, productivity, and labor market outcomes (Ciarli et al., 2021).

1.3.2 Digital transformation of the labor markets

In response to COVID-19-induced restrictions, organizations and labor have been
advanced further towards digital forms (Baptista et al., 2020). The evolution of digital
and workplace technologies recently has led to the hybridization of their use with human
activities, forming complex human-in-the-cycle or meta-human structures as new forms
of sociotechnical systems. This challenges researchers to identify the profound impacts
of workplace technology and the emerging human—technology configurations and
understand their strategic implications.

As with earlier technological advances, analyzing the long-term and aggregate impacts
of digitalization on employment is a challenging endeavor. Today digitalization is an even
more complex phenomenon in terms of its measurement and conceptualization (Calvino
et al., 2018). It also affects employment in different ways depending on the institutional
and industrial context: firms and sectors differ by various organizational and technological
aspects; economies are distinguished by disparate labor market policies, structures, and
macroeconomic conditions (Calvino and Virgillito, 2018; Evangelista et al., 2014).
Because modern digital devices are more technologically advanced and “smarter” than
their forerunners, it raises concerns that this technology will cause mass unemployment.
Digital technologies allow machines to perform assigned tasks, which are cognitively
complicated for humans, increasing the likelihood that the latter will be displaced in a
growing range of positions and tasks. For employees, the danger posed by digital
technologies is far-reaching, enabling to automate the entire stages of manufacturing
processes or to disintegrate them into sub-tasks (Cirillo et al., 2021).

Data-intensive technologies advance rapidly due to increased computing power and
can be integrated in ways that facilitate new applications (Henfridsson et al., 2018). Such
re-combinations and the evolution of task-specific software and devices make it possible
to employ digital technologies to innovate further (Zittrain, 2008). An employee’s
individual tasks are essentially separate fundamental units that can be modified or
replaced using digital devices, and a job can be defined as a set or “bundle of tasks”
(Autor et al., 2003). The switch in research focus from skills to tasks has led to a shift from
skill-biased to the routine-biased technical change (from SBTC to RBTC; Acemoglu and
Autor, 2011)3, Occupations that contain tasks requiring a greater degree of complex
thinking and creativity encounter much lower risk.

More recent literature shifted the focus to digitalization’s long-term impacts on
economic growth. Following Brynjolfsson and McAfee's (2014) prominent work,
the scholars have considered the features of current technological shift, referring to the
potentially large-scale impact of digitalization on employment (Balsmeier and Woerter,
2019). The main difference from earlier technological advances is the number of tasks

13 The RBTC hypothesis states that professions that exhibit a high proportion of repetitive and
programmable tasks (a series of instructions that a machine can understand and execute) face a
greater risk and opportunity of being fully automated (Acemoglu and Autor, 2011).
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that digitally enabled devices can now perform, some of which were formerly the
exclusive domain of humans. In investigating the influence and relevance of digitalization,
a key empirical issue is how digitalization is defined and measured.

The SBTC hypothesis (Acemoglu, 2002) claims that technologies (incl. digital ones) and
machines compete with humans as performers of tasks or factors of production. SBTC
suggests that digital technologies have differentiated impacts on marginal labor
productivity depending on the qualifications and skill level of the workforce. Recent
(digital) technologies are expected to complement high-skill jobs (due to the cognitive
skills associated with the use of digital devices) but are assumed to displace those in
mid- and low-skilled jobs. Also, skilled (i.e., more educated) employees are expected to
be more flexible when job assignments change and better able to master digital
technologies, resulting in increased productivity. For such workers, digital technologies
free up time from repetitive tasks and provide additional resources for completing
abstract and creative tasks. Hence, workers in medium- and low-skilled jobs face a
greater risk of being replaced, as their skills are less complementary to digital
technologies. This hypothesis (e.g., Michaels et al., 2014) explains the long-term
changes in the structure of employment observed in most industrialized countries
since the 1980s, and the increase in the proportion of highly skilled workers in the labor
force.

Unable to fully explain the dynamics of employment (and wage) polarization, SBTC has
recently been replaced by an RBTC approach that focuses on the tasks of workers,
a target of the technology-based labor-saving process. This approach ranks positions
according to their relative proportion of routine tasks rather than in terms of overall skill
requirements. In proposed RBTC hypothesis Autor et al. (2003) argue that ICT
development is biased towards substituting routine tasks (both cognitive and manual)
that are repetitive, standardized, easily codified, and at greater risk of being replaced by
labor-saving technological changes.

The empirical evidence on the impact of digitalization on employment is mixed.
This is mostly the result of heterogeneity in the level of aggregation and the type of
digitalization indicator employed. However, most investigations agree that digitalization
exhibits beneficial effects on employment. Early studies examine the impact of
broadband Internet access on employment and find that broadband access is positively
linked to employment dynamics (e.g., Atasoy, 2013; based on US data). Biagi and
Falk (2017), addressing a resembling question, find that overall ICT growth did not result
in jobs decline, and the use of enterprise resource planning (ERP) applications and
websites (as a digitalization proxy) has a positive effect on employment in Europe.
Balsmeier and Woerter (2019) employ Swiss firm-level data on investment in digital
technologies (e.g., ERP, robots, 3D printing, 10T) and detect that digitalization leads to an
increase in high-skilled jobs and a decrease in low-skilled employment. Autor and
Salomons (2018) explore the technological innovation’s impact on employment and
productivity in various industries of advanced economies. The authors emphasize the
innovation’s (automation) negative direct impact in own-industry (where it originates)
and the positive and compensating indirect effect on employment in other industries.
Cirillo et al. (2021) find (based on lItalian data) that the digitalization’s influence on
employment is mediated by the extent of routineness that characterizes the tasks
concentrated in each occupation. Specifically, they detect that the digital technology use
is more intensive among those in high-skilled professions (e.g., software developers,
scientists, technicians) and markedly less so among those in low-skilled occupations
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(e.g., waiters, construction and delivery workers). Therefore, the extant empirical
evidence appears to support the proposition that digitalization has a beneficial effect on
employment, at least at the macro level.

1.4 Green and digital twin transition: Challenges and policy implications

1.4.1 Challenges of decoupling economic growth from carbon emissions

The concept of “production capabilities” appears in the development and growth
literature. In terms of development, capabilities are often regarded in relation to the
technologies, infrastructure, productive knowledge, and institutions that allow an
economy to increase productivity and growth rates (Sutton and Trefler, 2016).
Production capabilities can be treated similarly, but with a specific focus on the
capabilities linked to the green economy (Mealy and Teytelboym, 2022). A country tends
to expand into economic activities where it has existing production capabilities and is
already proficient (Hidalgo et al., 2018). A country will struggle to instantly diversify from
producing an established product to an unrelated new product as it would have to
accumulate novel production know-how and invest in entirely new production factors.
This then suggests the “relatedness” and path-dependent nature of development
(Aghion et al., 2016).

Evidence confirming this dependence in the process of knowledge acquisition is
reported for different activities. Studies have considered the relatedness underpinning
various technologies by researching patent citations (Rigby, 2015) and the classification
of technology patents (Kogler et al., 2017) and by investigating the flow of employees
between industries (Neffke et al., 2017). However, despite requests from policymakers
to identify more sustainable and greener development programs, only a few studies
apply the concepts of economic complexity and relatedness to advance the
transformation to a green economy.

Technology adoption and innovations’ output are lower in regions and countries,
where economic knowledge is scarce, since new knowledge, even if reflected in patents,
has a vital tacit element. The externalities of this knowledge are limited by space.
Although the cost of information transfer has decreased substantially as digital
technologies have advanced, the marginal costs of transferring new technological
knowledge are lower when the social interactions between producers and users are
frequent (Audretsch and Feldman, 2004).

Pre-existing regional knowledge base and specialization in green technologies is
suggested to impact existing and future specialization in green technologies, a process
that is defined as incremental and path-dependent (Montresor and Quatraro, 2020).
However, green-tech development relies on previous green and non-green technologies.
Existing studies imply that firm-level technological capacity can facilitate the reduction
in emissions. Sectors that generate more green-technology-related inventions also
reveal better environmental efficiency (Ghisetti and Quatraro, 2017).

Considering the accelerated transformation to an energy-efficient and carbon-free
economy, research examines both aspects of the twin transition. These include factors
facilitating the impact of technology (Reichardt et al., 2016), and policy instruments
impacting technological advancement (Stevens et al., 2023) and the energy industry’s
innovations (Costantini et al., 2017). Also, renewable energy policies contribute to green
innovations, and show greater effectiveness in economies with stronger green innovation
capabilities (Yang et al., 2022).
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The twin transitions embodied in the EC (2023b) strategies like the EGD, and the
Digital Decade help to boost growth and innovate the EU economy. Over the past two
decades, the EU’s economy has grown by more than 61%, while CO2 emissions have
decreased by 28%, indicating an evident decoupling of growth from emissions.
The introduction of digitalization in industries will make an even greater contribution to
more efficient, sustainable, and eco-friendly production. For instance, firms that already
invest in big data-driven innovations increase productivity about 5% to 10% faster than
those that do not. Many EC programs (e.g., the Recovery and Resilience Facility) support
the twin transition, with 35% of total EU expenditures dedicated to achieving climate
goals.

Keeping in mind the ecological sustainability goals, the empirical evidence on
environmental decoupling is scarce (Vadén et al., 2020). Also, the notion of decoupling
requires specification and precision when employed in policy development. Decoupling
as a principal strategy to integrate environmental and economic goals should be
considered with a high degree of risk regarding the common future of humanity (Antal and
Van Den Bergh, 2016). Furthermore, it is necessary to develop those conceptualizations of
the economy that are not based on economic growth as the main path to human
well-being and environmental sustainability. The evidence suggests that decoupling
regarding environmental sustainability does not occur on a global level. There is evidence
of the environmental impact decoupling regarding GHG emissions in developed
countries for specific periods, but no evidence on continuous economy-wide decoupling.
In many cases even re-coupling can be observed (Vadén et al., 2020).

The rise in global CO2 emissions must be reversed (not just slowed) to ensure
climate conditions remain at a safe level for human activity (Vadén et al., 2020).
Therefore, global and continuous absolute economy-wide environmental decoupling is
required®. Even if it is difficult to attain this type of decoupling (compared to, e.g.,
sectoral or product environmental decoupling) immediately, it should still be a goal, since
its achievement truly reflects the SDGs, including ecological development. Also, fast
climate change mitigation measures, such as replacing existing fossil fuel energy facilities
with a renewable energy system, can lead to environmental imbalances (threat to
ecosystems).

1.4.2 Social challenges of digital and technology transformation
Policymakers aim to increase per capita income while eliminating inequality and ensuring
environmental sustainability (Marco et al.,, 2022). With the focus of EU policy on
synergies between the digital and green transitions, digital technologies will contribute
to solving social and environmental issues. A successful digital and green, or twin,
transition requires a workforce with the necessary skills (where the EU is already facing
skilled labor shortage) for companies to enter advanced industries (European Commission,
2023b). It is, therefore, crucial to provide needs-based learning opportunities and for firms
and government agents to recognize those skills and qualifications acquired and create
an environment that is attractive to employees to apply their skills to high-quality work.
Also, complex products (incl. digital goods) involve highly skilled workers, principally
located in the wealthiest regions, with high wages (Marco et al., 2022). On the other
hand, generally, people with advanced skills value the opportunity to earn a high income

14 Absolute decoupling indicates improved environmental quality (CO; emissions reduced), while
the economy is growing.
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over an equal income distribution and tend to pay for a clean environment. However,
despite the positive association between economic complexity and income equality at
the country level (Hartmann et al.,, 2017), the inverse relationship can occur across
regions (Balland et al., 2019).

Progress in digital technologies and infrastructure of the Internet provide an
opportunity to collect data in large volumes and in real time. Organizations and firms are
developing “digital twin” technology, which allows for a precise digital modeling of an
object or system (Bauer et al., 2021). This technology allows for more effective planning
and forecasting necessities, downtime, and disasters. Also, digital twins can considerably
improve the efficiency of CC processes (e.g., R&D, optimization, integration with
renewable energy). The EC (2023b) is elaborating a digital twin model of the Earth
(Destination Earth) to simulate natural phenomena.

In a study of the coronavirus and climate change crises, Markard and Rosenbloom
(2020) claim that the disruption of the COVID-19 and related recovery policies should be
seized as a unique possibility to speed up the transition to sustainable, low-carbon
economies and lifestyles. However, it takes time for the full impact of socio-technical
transformation to manifest.

Ongoing investments related to intelligent technologies (incl. Al) and automation are
mostly motivated by opportunity to reduce the costs, and the employers are attracted
by the prospects of income growth without the need to raise wages and employ more
people (De Cremer et al., 2022). If these cost-cutting attempts are not coupled with
investments in human upskilling and retraining, where people’s actions, capabilities, and
interests are nurtured and enhanced with the support of technology, then intelligent
technologies may entail the harm. The obsessive search for technological solutions to
optimize efficiency and maximize productivity will prioritize investments in innovations
that mainly serve the interests of those designing and disseminating intelligent
technologies. Following such a path will lead to a technologically regulated society that
serves the interests of machines and their developers rather than humankind at large.
Another vital consideration is the impact of technological development on wealth
distribution. The concentration of wealth among a few individuals who control and
exploit new technologies contributes to widening wealth and income inequality (Suhrab
etal., 2024).
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2 Research Questions and Hypotheses

Today, digitalization encompasses nearly all economic and social fields, with diverse
countervailing effects at the macroeconomic, sector, and consumer levels on electricity
consumption (immediate impact) and then on CO2 emissions (Danish et al., 2018). As of
2020, the CO2 emissions from the ICT sector represent as high as 2.1-3.9% of total global
emissions and are projected to increase without intervention (e.g., policy-related,
industrial efforts; Freitag et al., 2021). This proportion can be compared to that of the
aviation industry, which accounts for around 2.5% of global annual CO, emissions and
has been heavily criticized for its adverse environmental impact (Klower et al., 2021).

Despite the numerous favorable environmental impacts, digitalization also has
counteracting effects, for example, efficiency gains obtained via technological
development might be offset by increased electricity demands and corresponding
growth in CO2 emissions with the increased manufacture, exploitation, and disposal of
digital equipment.

Thus, based on the reasoning above, Article | addresses the following research
questions: (1) what effect does digitalization have on CO2 emissions? and (2) does the
degree of this effect depend on the level of technological development as an R&D
output? The author answers these questions employing a panel-based non-linear PSTR
approach at the macroeconomic level to provide a robust estimate of the relationship of
digitalization, human capital, economic development, and CO2 emissions, moderated by
technological patent progress, based on a sample of diverse high- and middle-income
economies.

Therefore, the following hypothesis is proposed to test this non-linear, inverted
U-shaped nexus between digitalization and CO2 emissions as moderated by R&D
output level:

Hypothesis 1: Progress in digital inclusion has crucial socioeconomic significance and
an important environmental effect; that is, in a low R&D output regime digitalization
entails an increase in CO2 emissions, but in high R&D regime, digitalization decreases CO2
emissions.

The development and adoption of digitalization through stimulating R&D activities
and technological structural change in the economy can abate CO2 emissions (Lahouel
et al.,, 2021). R&D expenditures (R&D inputs) positively correlate with innovative
technological patents (R&D outputs) and are crucial for reducing energy intensity and
increasing renewable energy supplies (Fernandez et al.,, 2018; Alam et al., 2021).
Technological patents have heterogeneous and direct reducing effect on CO2 emissions
and moderating effect, lowering carbon emissions by impacting economic development
(Cheng et al., 2021). Existing studies pay little attention to R&D output (measured in
technology patents), which serves as a transmission instrument driving the heterogeneous
impacts of digitalization on CO2 emissions globally in a nonlinear PSTR setup. Only Ma
et al. (2022) examines the mediating effect of R&D investment in the nexus between the
digital economy and environment, based on Chinese provinces from 2006 to 2017.
While Ma et al. (2022) assess the moderating role of R&D as an interaction term,
this study estimates a smooth shift in R&D regimes that drives digitalization’s impact on
carbon emissions. This leads to the second hypothesis of the study:

Hypothesis 2: The level of R&D, measured by the number of technological patents per
country inhabitant, drives the countries’ transition from environmentally polluting and
economically advancing regime to sustainable and innovative economic regime.
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Article Il considers the need to transition from fossil fuels to low-carbon energy
systems to address the intensified climate crisis. As demand for electricity continues to
grow over the coming decades, CO2 emissions from power plants will remain a major
challenge to the sustainability of the electricity industry (Vu et al., 2020). Carbon capture
technologies (including those related to OS power plants) and their implementation are
thus essential to achieving sustainable development.

Retrofitting OS power plants by integrating CC technologies will be financially
feasible until the electricity generated by those CC-equipped OSPPs is competitive
with electricity produced from alternative sources (including imported electricity). Thus,
a techno-economic evaluation is necessary to identify and estimate the cost of the
technologically most promising CC alternatives in OS electricity generation. This
assessment is helpful in considering electricity’s competitiveness when produced by
OSPPs utilizing CC technology. Based on the discussion related to CO: capturing
possibilities in OS power plants, the following hypothesis is proposed:

Hypothesis 3. Implementing the most efficient and technologically feasible
post-combustion and oxy-fuel combustion CC technologies in retrofitting existing OS
power plants in Estonia is more cost-effective compared to the combined CO2 emission
allowance and environmental charges.

With respect to Article lll, the literature on the digital divide offers a different
perspective on the impact of digitalization on employment, focusing on the development
of new types of social and economic exclusion that disadvantage older people and
the digitally uneducated workforce (Codagnone, 2009). This literature reveals that
access to digital technologies and skills in their use influence employment outcomes
throughout the life cycle, affecting a range of decisions related to the labor market.
These include, for example, the assessment of opportunity to participate in the labor
market, the probability of getting employed (Codagnone, 2009), the probability of
losing a job (Aubert et al., 2006), early retirement opportunity (Schleife, 2006),
the duration of employment (Silva and Lima, 2017) and the employment contract
(Aubert-Tarby et al., 2018). Therefore, it is necessary to determine whether individuals
with higher digital skills, better access to digital technologies (Internet) and higher
education are more likely to be employed and whether the COVID-19 adjusted these
relationships.

The interactions of the key variables with the coronavirus infection rates and
governmental containment stringency are expected to reflect the digital skills—
employment nexus moderated by the COVID-19. More advanced digital skills and greater
broadband Internet access as well as higher level of educational attainment are expected
to improve individual’'s employment outcomes. Therefore, the following hypotheses are
proposed:

Hypothesis 4. The interaction of digital skills (broadband Internet access) with the
regions’ COVID-19 infection rate and containment measures increases the probability of
employment.

Hypothesis 5. The onset of the COVID-19 pandemic reshaped the digitalization—
employment nexus, improving employment outcomes resulting from broadband
Internet access, especially the likelihood of individuals’ retaining non-manual work.

Hypothesis 6. Digital skills positively impact non-manual employment outcomes at the
higher levels of education, as the more advanced digital skills provide the greatest
probability of employment and of getting a more skill-intensive occupation.
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Hypothesis 7. The COVID-19 outbreak induced the greatest relative improvement in
employment outcomes among individuals with entry-level digital skills compared to
those who are digitally illiterate, and a reduction in the advantage of those with higher
level of digital skills.

Hypothesis 8. The within-household spillover effects resulting from members with
tertiary education enhance employment outcomes in the post-COVID-19 period.
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3 Data and Methodology

Article | investigates the relationship between digitalization and CO, emissions at the
country level. This relationship assumes the involvement of moderating R&D output,
or knowledge creation and technology development (Audretsch and Feldman, 2004),
and its implications for environmental quality.

In addition to economic and political determinants, technology is widely regarded as
the key factor in the anthropogenic impact on environmental quality (Higon et al., 2017;
Briglauer et al., 2023). Other environmental drivers include income level, human capital,
renewable energy consumption, R&D (incl. technology patents), the structure of the
economy, and the quality of institutions (Bianchini et al., 2023). With some exceptions,
most of these exogenous variables reveal nonlinear and ambiguous effects on CO:
emissions. The EKC relationship reflects the considerable effect of technological
advancement after a specific turning point or threshold in income growth, explaining the
decoupling of economic development from environmental degradation. Further
investigations reveal that for specific pollutants and industries, this relationship can be
N-shaped; however, these cases reinforce the contributing effect of technology (Pata
et al., 2023). The study applies PSTR estimator, with the nonlinear effects expressed via
the transition function that includes R&D output-driven interactions.

However, the studies addressing the EKC nexus have mixed outcomes, which may also
be due to measurement issues. Some studies employ linear quadratic polynomial
models, which cannot identify more complex nonlinearity forms and are not flexible
(Aslanidis, 2009; Aydin et al., 2019). Standard estimators for panel data (e.g., fixed, or
random effects) cannot cope with biases from cross-sectional or dynamic heterogeneity
in coefficient estimates (Gonzalez et al., 2017). To treat these issues, Article | uses a
nonlinear PSTR estimator (Gonzélez et al., 2005).

Applying the flexible PSTR estimator to the complex nexus of R&D, digitalization and
CO2 emission necessitates a large and fairly long panel of country-level data that control
for human capital, GDP, green energy use, manufacturing value added, and government
efficiency to avoid omitted variables bias in CO: impact estimates (Aslanidis and
Xepapadeas, 2006). The specification of the model is based on particular assumptions
tested and confirmed on a balanced panel of 18 middle-income and 37 high-income
economies from 1996 to 2019. This period starts with the explosive expansion of
the commercial Internet and ends before the disruption of the COVID-19. Also,
the incorporation of middle-income economies that have achieved rapid economic
progress and productivity growth in recent years due to ICT (Dedrick et al., 2013) and
their concomitant increase in the use of fossil fuels, helps test the EKC nexus. Countries
in the sample are selected based on data availability and their universities being ranked
(by Quacquarelli Symonds University Rankings) among the world’s top 1,000, which
reflects a country’s R&D development potential. Some studies address the ICT
implications for abating CO2 emissions on a regional level, but the comparative analysis
of environmental impact must be performed at the global level (Vadén et al., 2020).

The dependent variable is CO2 emissions from fossil fuels and the cement industry
expressed in tons per capita (Friedlingstein et al.,, 2022); it acts as a proxy for
sustainability and captures major environmental effects that are of prime concern to
policymakers. The R&D output measured in technological patents per million inhabitants
is selected as a transition variable, which should also be time-varying and continuous
(Colletaz and Hurlin, 2006). This variable allows the more extensive assessment of
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countries’ technological innovations and public policies (Yii and Geetha, 2017) and has
sharper linearity test results (part of the PSTR framework). Since the error term in the
PSTR model specification is not correlated with the selected transition variable,
the exogeneity condition is satisfied. Primarily, the empirical studies, including at the
macro-level, confirm the value of technology and innovations in reducing carbon
emissions, (Du et al., 2019; Ganda, 2019; Hashmi and Alam, 2019; Salman et al., 2019;
Tobelmann and Wendler, 2020). Many of these investigations measure technology
development through patent applications, suggesting that, despite their limitations, they
are a reliable indicator of the inventions’ production and dissemination (Hall et al., 2001;
Acs et al., 2002).

Existing empirical studies mostly measure only one or very few elements of the
digitalization ecosystem, and these are insufficient to properly capture the effects of this
complex ecosystem. A more comprehensive measure of digitalization is employed to
address the research question. More specifically, the underlying heterogeneity of
digitalization is specified as an index reflecting the principal stages of technology
advancement and consists of five major elements (Lee and Brahmasrene, 2014):
(1) fixed telephone, fixed broadband, and mobile cellular subscriptions; (2) individuals
using the Internet (incl. data centers, content provision); and (3) personal computers
(consumer devices and equipment). Digitalization effects rely on human capital, which is
the driving force of technological progress (Cakar et al., 2021). An educational level index
captures this and partially digital literacy and includes two indicators — average and
expected years of education (Higon et al., 2017; Haini, 2021). The estimation model also
contains GDP per capita in real terms to test the EKC relationship and renewable energy
consumption as a share of total energy use; the use of renewables does not directly cause
pollution, unlike the exploitation of fossil fuels in power plants (Lange et al., 2020).
The model also includes manufacturing value added (as a share of GDP) to address the
“composition effect” of the EKC nexus (Chen et al., 2019) and the government efficiency
index to reflect the policies implemented that can improve environmental sustainability
(Tamazian and Rao, 2010). According to the model specification (Gonzalez et al., 2017),
all control and exogenous variables are included with their lagged values (t-1).

PSTR models (Gonzalez et al., 2005) are elaborated as an extension of Hansen’s (1999)
threshold time series regression (PTR) that enables only a small number of regimes,
between which the estimated parameters shift sharply (Aydin et al., 2022). This is not
consistent with evidence of the nexus between digitalization and CO2 emissions, which
advances smoothly. In contrast, PSTR models treat heterogeneous panels, allowing
regressor coefficients to vary over time and across observations in several regimes that
shift smoothly, thus providing more flexibility (Gonzalez et al., 2017). PSTR estimates the
threshold level endogenously without subjectively (and in advance) determining the
regime switch (Aydin et al., 2019). The balanced panel data structure allows the use of
fixed effects to detect unobserved heterogeneity at the country level. The PSTR
estimation framework includes three stages: model specification, estimation, and
evaluation. The Lagrange Multiplier linearity test (Colletaz and Hurlin, 2006; Gonzalez
et al., 2005) is based on the transition variable, has heteroskedasticity and autocorrelation
consistent (HAC) versions and determines whether to continue with the linear model
(null hypothesis) or to apply PSTR (alternative hypothesis) when testing for two regimes.
The sign of the regression coefficients is essential and reflects increasing or decreasing
CO2 emissions’ effect driven by the transition variable since these coefficients cannot be
explained in a conventional way (Colletaz and Hurlin, 2006). The PSTR model is estimated
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using heteroscedasticity and a cluster-robust covariance estimator that accounts for
heteroskedasticity in standard errors (Cameron et al., 2011). The nonlinear least squares
method estimates the PSTR model parameters, utilizing the within-transformed form
that tests for unobserved heterogeneity.

Article Il estimates the financial cost of implementing CC technologies in existing
Estonian OS power generating plants. An estimate of the average incremental cost per
ton of CO2 captured at each OSPP retrofitted with CC technology is compared with the
same plant without implementing CC. CO2 capture becomes financially feasible when the
cost of integrating CC is less than the CO2 emission allowance and environmental fees
incurred without CC. The average incremental cost per MWh of electricity generated by
an OSPP integrated with CC technology is then contrasted with the electricity cost of the
same CC-free power plant to clearly identify the increase in electricity unit cost caused
by integrating the CC technology.

Substantial differences are identified and examined in various studies concerning the
cost estimating aspects for CC deployment: cost constituents, assumptions, scope and
scale of CC projects, characteristics of definite CC technologies and power plants,
geographical and time-related conditions, and terminology (Rubin, 2012). This study
presents cost estimates (in 2021 euros) for retrofitting Estonian power generating units
with CC using the two technologically feasible alternatives — PCC and OXY.

The methodology used for these assessments relies on the concepts underlying the
prevalent levelized cost of electricity (LCOE; Rubin et al.,, 2013) as a time value of
investment, operating and maintenance (O&M) as well as fuel costs per unit (ton of CO;
captured or MWh of electricity generated). In addition to CC costs, the estimation of
LCOE demands reliable data on production costs (not publicly available), electricity sales
volumes, and CO2 emission allowance prices in the future. Thus, to avoid uncertainty
(and unfounded assumptions), this study compares the average incremental cost per ton
of COz captured (and per MWh of net electricity generated) from an OSPP integrated
with CC technology with the same plant without CC technology rather than estimating
the LCOE. Unlike an LCOE assessment, this methodology only requires a cost estimate for
the initial year of operation. This method enables relevant and consistent estimates of
the financial costs of implementing CC in OSPP because it is evidence-based.

The average annual cost of one captured ton of CO2 (2021 €/tCO2) (cost per MWh of
net electricity generated in 2021 €/MWh) includes investment-related, O&M, and
fuel-related costs and is assessed using 2021 as a base year. The investment cost of
retrofitting covers the technical parameters and scale of the power units considered.
Investment costs are then converted to capital costs by calculating annuity payments
over the useful life of the CC installations once a proper discount rate is determined.
O&M costs include chemicals, labor, and maintenance costs. The fuel cost represents the
energy required for the CC process, i.e., the revenue lost from the unsold electricity due
to energy use in the CC process. The tons of CO2 captured annually by CC technology in
the OSPP (and the annual net electricity produced in MWh) are then obtained.

The estimation of the capital costs assumes that the installation of CC technology
would take around one year (Jilvero et al., 2014), and the CC equipment’s maximum
useful life is 24 years (Kuramochi et al., 2013). CC investment costs (with installation) at
a comparable reference plant (RP) are calculated based on data from the Department of
Energy (DOE)/National Energy Technology Laboratory (NETL) reference cases (S22A,
S22F, L22A, and L22B; Black, 2011; Matuszewski, 2010), which are adjusted for the
technical parameters of the Estonian PP units. These costs are then scaled to correct for
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the production capacity of the regarded PP (based on the production capacity of the RP)
using the exponent (with the range of 0.61-0.69 for OXY technology and 0.43-0.77 for
PCC technology) and depending on the equipment type, as proposed in Guandalini et al.
(2019) and the DOE/NETL reference cases (Matuszewski, 2010; Spek et al., 2017).
The cost of CC equipment corresponding to the technical parameters of the existing
PP units reported in 2007 U.S. dollars for the DOE/NETL reference cases (Black, 2011;
Matuszewski, 2010) is converted into euros based on the exchange rate from the
European Central Bank (ECB, 2023). These costs are then adjusted to 2021 values (from
the RP values of 2007) based on Eurostat (2022) price indices for comparable industrial
equipment and its installation.

The discount rate, r, is selected as the unleveraged cost of equity (due to the specificity
of local income tax system). This study uses an r valuation model based on an incremental
approach (Butler and Pinkerton, 2006) that includes the risk-free rate of return, market
risk premium, Estonian risk premium, beta multiplier representing systemic risk, liquidity
premium, and project-based risk premium. Since the company potentially integrating the
CC technologies (the state-owned Eesti Energia AS) is relatively large, the risk premium
for a small company is omitted. Based on the values from existing literature, the discount
rate averaged approximately 9% (pre-tax discount rate; Climate, 2021).

As for the O&M costs, the labor, maintenance, and chemicals costs are estimated,
whereas cooling water and additional costs are considered relatively minor. The DOE/NETL
reference cases S22A, S22F, L22A, and L22B (Black, 2011; Matuszewski, 2010), all of
which involve coal-fired power plants (RPs) in the US, are used to model labor,
maintenance, and chemical costs (in 2007 U.S. dollars). Adjustments are then made to
technology and scaling, e.g., for labor costs, a scaling factor of 0.65 (Guandalini et al.,
2019) is used for both technologies. The costs are then converted to 2021 euros using
the corresponding labor costs, chemical production, and equipment-repair price indices
from Eurostat (2022), the U.S. Bureau of Labor Statistics (2019), and Statistics Estonia
(2019, 2022).

Since all CC equipment will potentially be installed into existing OSPPs, the electricity
cost of CC equipment reflects the loss of production efficiency (electricity sales) due to
the addition of CC and is assessed to be about 0.3 MWh/tCO>, depending on the OSPP
unit and CC technology installed with an assumed capacity factor of 85% (i.e., operating
at full power for 85% of the total number of hours per year). The average Nord Pool
electricity price of 86.7 €/MWh for the Estonian price region in 2021 is used (Nord Pool,
2022). The high volatility of Nord Pool’s electricity prices is addressed in the sensitivity
analysis.

The study examines two scenarios. The base case (1) assumes that the OSPPs operate
at full capacity for 85% of the hours annually, accounting for scheduled maintenance and
the CC technology’s expected 24-year lifespan. The alternative scenario (2) suggests that
CC technology is applied to electricity production at full capacity for 42.5% of annual
hours (half of the 85% capacity). Scenario 2 is elaborated to show what happens when
OS electricity is competitive in the market only half of the time, following real historical
patterns (Climate, 2021). The estimation results are sensitive to changes in input values,
including the use of CC technology at partial capacity (fewer than 24 years), which would
result in a substantial increase in the cost of capturing each ton of COa.

The literature related to Article Il primarily defines digitalization as the simple
implementation or acquisition of particular ICT technologies (software, hardware).
For instance, Autor and Dorn (2013) consider the effect of investment in ICT capital,
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while Acemoglu and Restrepo (2018) assess the impact of robots’ use on employment.
However, the use of these digitalization proxies is, in most cases, driven by data
limitations. Detecting a consistent and comprehensive indicator that can capture the
main characteristics of phenomenon as complex as digitalization remains a difficult task.
Organizations are nevertheless addressing this issue. For instance, in recent years,
Eurostat has surveyed ICT use and collected data on a wide range of ICT-related activities
performed by individuals and households. Such data represent an extensive source of
information for assessing the economic effect and relevance of digitalization, even at a
very granular level.

Article Il that investigates digital skills effects on employment dynamics, utilizes a
unique micro-data set from the Community Statistics on Information Society (CSIS)
provided by Eurostat in the form of pre- and post-COVID-19 survey rounds (for 2017,
2019, and 2021). This dataset covers the 26 EU member states and Norway. CSIS
categorizes those aged 16 to 74 years old into households that provide household-level
data on size, Internet access, and location, which are supplied at the nomenclature of
territorial units for statistics (NUTS), or country level for 14 countries and the NUTS1
(region) level for the remaining 13 states, or 56 regions. At the individual level, the survey
covers data on gender, age, level of educational attainment!®, employment state, and
occupation groups®. Skills constitute the basic dimension for the ISCO classification, and
this allows to examine a single distribution function of occupational statuses as depending
on skill specialization (digital skill level), skill level (education level), and work preferences
(individual and family characteristics) in four segments. Occupational status is treated as
an ordinal variable that ranks individuals into four categories: (1) not participating in the
labor market (lowest); (2) manual workers (ISCO levels 6-9); (3) non-manual employees
(ISCO levels 0-5; non-ICT professionals); (4) ICT experts (by ISCO subcategories).

The CSIS microdata are then merged with Eurostat statistics at a more granular
(NUTS1) regional level on the digitalization infrastructure (Internet’s broadband coverage
rate), tertiary education and the rate of unemployment. The data on cumulative
coronavirus infection rates are obtained from the COVID-19 European Regional Tracker,
which is subnational data for 26 European states (Naqvi, 2021). The pandemic data are
then merged with the CSIS dataset at the regional NUTS1 level'”. Comparative statistics
on governments’ efforts to contain the COVID-19 pandemic, aggregated at the country
level, are obtained from the Oxford COVID-19 Government Response Tracker (OxCGRT)
database (Hale et al., 2021). The estimations consider the impact on employment of
national policy measures to contain the spread of COVID-19 using the 2021 Stringency
Index and the Economic Support Index (as a control). The nexus between digitalization
and employment dynamics is examined in Article Il by focusing on individuals aged
25 to 54 who are either employed, self-employed, unemployed, or inactive, excluding
non-working students. The total sample consists of 262,277 individual observations,
which are equally distributed across three rounds of the survey (2017, 2019, 2021).
In terms of occupational categories and based on all observations, 21.1% of participants
are engaged in manual labor, 2.7% are employed in ICT related occupations, and 55.8%
are engaged in other non-manual occupations, together amounting to 79.7% of employed

15 According to the International Standard Classification of Education (ISCED) categories.

16 As per the International Standard Classification of Occupations (ISCO).

17 For Germany (no NUTS1 level data in CSIS) and small countries (do not have regional data) the
national-level data on cumulative COVID-19 cases are obtained from the ‘Our World in Data’ (WHO,
2020).

36



persons. The digital divide is measured using two variables: the presence of broadband
Internet access at home and the digital skills level, which are derived from the CSIS waves
used. The CSIS rounds offer an extensive measure of digital skills such as communication,
problem-solving, information retrieval, and software skills. This division corresponds to
the core twenty-first-century digital skills identified in the literature (van Laar et al.,
2020). The survey maps the digital skills’ level of individuals who have used the Internet
at least once in the past three months (categorized as “Internet users”). For the ordinal
digital skills variable, individuals are categorized as having (1) “no digital skills” (reference
category), (2) “low skills”, (3) “basic skills” and (4) “above basic skills”.

The main relationships of interest are reflected in the estimates of Internet access,
digital skills, formal education, and spillover effects in households from members with
higher education. For empirical estimation, a random utility approach is used (McFadden,
1974). Individuals derive utility from using their skills in employment, and improved
job-skill matching leads to higher utility. As such, high skill levels increase the likelihood
of labor market participation and employment that utilizes more skills. Some substantial
simplifications are introduced to allow a more direct empirical approach. First, the study
supposes a single ordinal scale for the increase in utility from labor supply at the intensive
(profession-skill ladder) and extensive (participation/non-participation) margins. Second,
it does not disentangle utility effects from voluntary and involuntary nonparticipation in
the labor market, an issue that is moderated by selecting individuals aged 25-54 (prime
working age) when the utility of employment is highest. Third, the estimation procedure
does not clearly dissociate labor supply and demand, but the latter is indirectly controlled
for in the equation on occupational outcome by the rate of unemployment (ages 20-64)
at the NUTS1 level.

The relationship among digital skills, Internet access and employment status on the
individual level is estimated using a univariate and bivariate model. A univariate ordered
probit model estimates a single equation treating all independent variables as exogenous
to employment status. The extended bivariate regression framework estimates the
employment outcome and digital skills equations separately, handling the latter as likely
endogenous. The joint estimate enables the use of different regressors in the employment
and digital skills equations, instrumenting digital skills with exogenous digitalization
parameters aggregated at the regional level and individual’s household composition
indicators.

Intra-household spillover effects from members with tertiary education are measured
using a dummy variable®®. The interaction of major determinants with COVID-19 cases
and government countermeasures is expected to provide insight into the relationship
between digital skills and employment mediated by the COVID-19. The ordinal scale of
the key variables under consideration suggests a non-linear estimation. Treating digital
skills as exogenous (an assumption that can be violated) makes an ordered probit
estimation of employment outcome possible. Relaxing this assumption entails a joint
estimation of two ordered variables (digital skills and employment) and results in a
bivariate ordered probit model. This generalized conditional likelihood setup processes
two separate equations for employment and digital skills concurrently, enabling their
stochastic (error) components to covary while establishing a triangular relationship
between digital skills and employment outcome. The joint recursive estimation occurs

18 Takes the value 1 if the individual has at least one household member (other than herself) aged
25-54 who has a higher education.
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using full information maximum likelihood (FIML) approach. Parameters’ identification
should be based on exclusion restrictions rather than functional form and nonlinearity
alone (Maddala and Lee 1976; Sajaia, 2008). For instance, Falck et al. (2021) use regional
differences in broadband Internet availability to examine the impact of ICT skills on
wages. This study uses a similar strategy in selecting the instruments to identify variation
in digital skills at the individual level. This identification strategy involves the assumption
that regional digitalization variables and household demographic factors can adequately
measure individuals’ supply of digital skills. Thus, the equation for digital skills has several
region- and household-level covariates, such as NUTS1-level high-speed Internet access
and the extensiveness of use, family size, the share of the population with a higher
education, country-age group mean digital skills and gender-age composition of
households; these are not included in the employment equation. This empirical setting
allows for the coronavirus pandemic to exhibit a moderating effect on the relationship
among digital skills, Internet access, and employment outcome. The employment
equation’s interaction terms allow the skill parameters to vary in the pre- and
post-COVID-19 periods, conditional on the cumulative infection cases in NUTS1 regions
or countries’ containment efforts, respectively. In contrast, the development of
individuals’ digital skills as a function of aggregate regional indicators of digitalization,
education, and family composition variables, is not considered fundamentally altered by
the pandemic.
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4 Key Findings and Discussion

Emerging forms of digitalization, such as Al, impact equality, productivity, and
environmental quality (Acemoglu and Restrepo, 2018; Vinuesa et al., 2020). Moreover,
Al technology can potentially impact all components of the internationally agreed 17
SDGs (UNGA, 2015). The fast development and increased mainstream application of Al
technologies recently may lead to a reduction of not only numerous presently in demand
jobs, but also of the need for people to learn the skills that allowed them to reach the
level of advanced civilization today. Hence, humans must take care in adopting these
technologies to avoid becoming over-reliant on Al, which, although can expand our
capabilities, should be regarded as a tool to achieve humanity’s desired goals, and not as
something to which society must be subjugated. Also, the overall effect of digitalization
on the labor market can be positive and there are still areas where humans cope better
(e.g., communication, health care, social relationships).

Policies related to climate change can be broadly divided into two categories: policies
that focus on reducing the mitigation costs and policies aimed at increasing R&D
investments into technologies related to energy generation and efficiency (Husain et al.,
2022). Innovation demands investment in R&D and knowledge, as well as conducting
additional experiments with knowledge (Teece, 2010; Audretsch and Belitski, 2022).

While green complexity reveals the countries, which are presently competitive in
green technologies, successfully transitioning to a green economy will necessitate
countries to reorient existing structures of production and develop novel green
industries (Mealy and Teytelboym, 2022). Clearly, if economies could identify green
diversification opportunities that are tightly linked to their present productive
capabilities, these can benefit from the existing skills, technological knowledge, and
infrastructure.

In Article I, the main research question on the digitalization — CO2 nexus is answered
using panel data from 55 high- and middle-income economies for the period of 1996 to
2019 and applying the PSTR estimator. The study involves a comprehensive measure of
digitalization as a prime variable of interest, alongside related control variables.
The results confirm the validity of the EKC hypothesis, proving that the link of CO:
emissions with digitalization and income level takes an inverted U-shape. This nonlinear
nexus is driven by exogenous R&D output (technology patents) level that determines the
smooth transition. The digitalization indicator in the lower R&D regime has a positive
estimate, which is smaller than the negative estimate in the higher regime; therefore,
the R&D-moderated effect of digitalization that decrease CO. emissions exceed the
direct effect increasing carbon emissions. The transition function governed by R&D
output shifts between the two regimes at the threshold of 39.9 technology patents per
million inhabitants.

The model is first tested for nonlinearity to determine whether it should incorporate
at least one transition variable. The linearity test results reveal a model with two regimes
and show that the nonlinear PSTR model is preferred to the linear form. The successive
evaluation tests for residual nonlinearity do not reject the two-regime model. The results
of a sequence of homogeneity tests (HAC version) show that m = 1 (number of location
parameters) is the best fit for the transition variable “technological patents”. Thus,
the best choice for estimating the PSTR model is a transition variable that captures R&D
output, represented by technological patents, in support of Hypothesis 2. The results of
the parameter constancy test (robust versions) to verify the adequacy of the estimated
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model indicate that parameter constancy can be rejected, meaning that there is variation
in the parameters over time.

The estimated parameters of the two-regime PSTR model are presented for the first
regime (low R&D output), for the nonlinear part, and for the second regime (high R&D
output) that combines the estimates from nonlinear and linear sections. The estimated
slope parameter of the transition function (main specification), y, equals 1.28, suggesting
a smooth transition from the R&D output’s lower regime to the higher regime.
The transition function’s location (threshold) parameter has a turning point estimate of
39.9 technological patents per million inhabitants. In the model with two regimes
(related to low and high values of technological patents), the estimated coefficients
smoothly shift from the first extreme regime to the second, while the technological
patents increase, and the change is centered at 39.9.

The parameter estimates are mainly interpretable by their signs (Colletaz and Hurlin,
2006). This study strongly supports the EKC hypothesis of the nexus between GDP per
capita and COz emissions per capita, with parameter point estimates equal to -0.43 in
the nonlinear part and 0.59 in the linear part. These results support the findings of
Aydin et al. (2019), who uses a similar methodological design but with different
dependent (ecological footprint) and transition variables, reporting that the positive
effect ofincome in the linear part exceeded income’s negative effect (reducing footprint)
in the non-linear part, with worldwide pollution the likely explanation.

The digitalization in the lower R&D output regime exhibits a positive estimate of 0.07,
while in the higher R&D regime and in the nonlinear part, all estimates are negative at
-0.14 and -0.21, respectively. Thus, in support of Hypothesis 1, an inverted U-shaped
nexus is detected for the transition of CO2 emissions in the R&D output level in relation
to digitalization as well. The digitalization’s high level may also reflect better digital
environmental management, more efficient energy consumption (Aydin and Esen, 2018),
wider information dissemination, and higher environmental awareness, reducing CO2
emissions (Chen et al., 2019) in economies with higher level of technological inventions.
Advanced countries generate higher levels of R&D output, leading to the adoption of
cutting-edge technologies, resulting in lower CO2 emissions (Churchill et al., 2019).
The digitalization — CO2 emissions relationship has not previously been studied using the
nonlinear PSTR estimator and estimating the R&D threshold. Only Lahouel et al. (2021)
used smooth transition regression (STR) (based on one country) with a threshold variable
of ICT, concluding that ICT contributes to the reduction of CO2 emissions when the level
of ICT is high.

The estimate of human capital is at -0.53 in the higher R&D regime, revealing that
additional human capital supported by higher levels of technological inventions
decreases CO2 emissions. Cakar et al. (2021) comes to a similar conclusion using the PSTR
framework and human capital as a transition variable, regarding a bell-shaped EKC curve.
The renewable energy consumption indicator has a point estimate of -0.16 in the
nonlinear part and —0.15 in the high R&D regime, supporting the view that higher levels
of technology invention and human capital contribute to renewable energy R&D output
and the adoption of energy-saving and green technologies (Aydin and Cetintas, 2022).
From a market perspective, the introduction of green and low-carbon technologies
depends on the level of economic development and involves a cost-benefit assessment
(Du et al., 2019). Thus, the effects of green technology innovations on CO; emissions are
more tangible in high-income countries, with better government support for these
innovations and their adoption to improve living standards.
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The change in manufacturing value added negatively affects the pollution variable,
for which the point estimates are -0.15 and -0.19 in the first and second extreme
regimes, respectively. This result confirms the EKC’s theorized “composition effect”,
suggesting that the change in value added of manufacturing results in reduced CO2
emissions, especially in the higher R&D output regime.

The robustness of the results is checked using the alternative transition variable of
R&D expenditures as a share of GDP. As discussed above, R&D investments (inputs)
correlate with technological patents and innovations (outputs; Alam et al., 2021).
The outcomes of the specification and evaluation tests suggest that a two-regime
nonlinear model is also appropriate in this case. The results of the PSTR model estimation
with transition variable of R&D expenditures indicate it is robust and comparable by sign
and magnitude with the estimated parameters of the model using technological patents
as a transition variable.

Article Il indicates that deploying CC can substantially decrease the CO, emission
intensity in power production by 90% or more. The results of total estimated costs of
retrofitting Estonian OSPPs with CC technology in two scenarios indicate that OXY
technology (42-47 €/tCO. depending on PP unit) appears to be more financially
beneficial than PCC (48-56 €/tCO; depending on PP unit). The costs are estimated for
CO2 capture and purification up to 99.98% and do not contain storage, use, or
transportation costs. This finding is generally consistent with existing literature regarding
PCC technology for coal-fired power plants (Sreedhar et al., 2017). In a rough comparison
at coal power plants in 2011, the CC implementation cost per ton of CO2 captured was
estimated at approximately €37.9 (€62.0 in 2021 values) for OXY (lyengar et al., 2017)
and €41.8 (€67.3 in 2021 values) for PCC in the DOE/NETL reference case B12B (Zoelle
et al, 2015).

Scenario 1 reveals the full potential of CC deployment in OSPPs, assuming that
electricity generation will operate at full capacity (85% of all hours per year). Scenario 2
exemplifies working only half that time (42.5% of the hours per year). However,
the actual long-term market conditions (e.g., Nord Pool electricity and European CO:
emission allowance prices) can substantially lower generation, which would also mean
less CO2 captured and a considerably higher unit cost of capture than in Scenario 2.
Capital and electricity costs are the most substantial components of CC costs in OSPPs,
regardless of the capture technology selected. While the capital cost per ton of CO2
captured represents investment as an annuity spread over the expected life of the CC
technology, significant upfront investment and appropriate financing are required.

The CC costs per captured ton of CO2 (per MWh of electricity generated) depend on
the amount of investment, electricity prices, and the useful lifespan and intensity of CC
use. The functioning of power units and their components is important for the operation
of CC technology. When power units reach the end of their useful life, CC technology is
unavoidably phased out, regardless of its ability to operate. The effect is comparable to
temporary closures or deliberate decisions to shut down power units (the intention of
Eesti Energia, the company that operates all these OSPPs, to stop producing OS electricity
by 2030 (IEA, 2023c)), which limit the useful life or capacity of CC investments.

However, recent concerns around national energy security may delay the cessation of
OS power generation, creating further ambiguity related to the outcomes of this analysis.
Moreover, since the CC technologies considered have not previously been used in the OS
industry and have not yet reached their final TRLs, the estimates obtained involve
technology risk that may imply additional costs. Since CC technologies are expected to
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be about 90% efficient, the residual uncaptured CO: will be released into the
atmosphere. The potential for regulatory changes makes it difficult to evaluate the
prospective payments for these emissions.

Capturing CO2 emitted by Estonian OSPPs is technologically feasible, but, in the long
run, may prove to be more financially costly than the prices of European CO2 emission
allowances and environmental taxes. Thus, in an uncertain market, the OS industry may
have no incentive to deploy CC without public commitment or support to make doing so
economically viable. The cost of capture will, in any event, be passed on to producers or
taxpayers, which could deteriorate the competitiveness of the Estonian economy.

The existing power generation capacities in Estonia that can be managed (i.e., not
variable generation from solar or wind and required to ensure the power grid’s frequency)
are insufficient to cover local demand and are almost completely deteriorated.
Therefore, the creation of such new capacities is just vital. Since further development of
OS electricity production (where Estonia has the knowledge, capabilities, and experience)
and its greening is most likely not viable, a possible path forward remains the
introduction and assimilation of new green technologies, such as, e.g., nuclear energy
(where mastering the full process will take several years, considering diversification
principles; IEA, 2023c). In this case, Estonia can achieve electricity independence, being
able to produce all electricity needed to meet local demand, and thus ensure the energy
system’s stability and broader climate objectives.

Article lll shows that the coronavirus pandemic disrupted and rapidly transformed the
labor market. Educational attainment, digital skills, and broadband Internet connectivity
jointly determine individuals’ employment outcomes. Also, positive spillover effects
appear if household members have completed tertiary education. Article Il revises the
relationship between skills and employment and explores how four key capabilities that
empower people in the labor world have become more vital since the onset of
COVID-19: (1) level of education; (2) access to broadband Internet; (3) digital skills; and
(4) effects of family members having higher education.

The results are presented as marginal effects of bivariate ordered probit and ordered
probit model estimates for the pre- and post-COVID-19 periods for the variables of digital
skills, educational level, and broadband access. The difference is minimal between the
conditional marginal effects estimated separately for the pre- and post-COVID-19
samples and the unconditional marginal effects estimated for the total sample (allowing
comparison of parameter estimates before and after COVID-19). The interaction terms
for the COVID-19 allow the educational attainment, digital skills, and access parameters
to change in the employment status equation before and after the outbreak. Because
COVID-19 is measured using two alternative continuous variables, changes in the
parameters in the employment status equation are proportional to the two dimensions.
Alternative specifications of the model suggest that COVID-19-related changes in the
impact of broadband connectivity and individuals’ skills on employment status are
stronger when they are driven by cumulative cases rather than the stringency of
countermeasures. A cross-model Wald test (Clogg et al., 1995) shows the strongest
statistical evidence of differences between the parameter estimates for higher education
and “above-average” digital skills, followed by the effect of within-family spillover and
broadband Internet access. This implies that the change in demand for digital capabilities
and human skills caused by the COVID-19 was restrained by government responses to
mitigate the effects of the economic downturn.
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Broadband Internet access enhanced employment outcomes, particularly the
probability of individuals retaining non-manual work; this effect is stronger in the
post-COVID-19 period, and for residents of regions with higher rates of the coronavirus
infection. When controlling for the rate of cumulative cases, stricter containment
measures result in a slightly smaller increase in marginal effects, indicating that
government policies have at least partially decreased labor market disadvantage for
individuals living in households without a broadband connection. Greater digital
competence and formal education have a stronger impact on non-manual employment
than on the likelihood of being unemployed. Therefore, skill levels are more relevant to
type of employment than labor market participation. The marginal effects for higher level
of digital skills and tertiary education show comparable magnitude, and both are
important for labor market outcome, although the absolute values of the marginal
effects vary considerably across educational attainment and digital skill levels.
The marginal effects of higher education are roughly twice those of secondary
education. Likewise, the marginal effects of the “above basic” digital skills are two to
three times the size of the effects of “low” digital skills. At absolute levels, these
effects did not differ qualitatively between the pre- and post-COVID-19 assessments.
While educational attainment has become more valuable since the pandemic and
gaps between educational levels have expanded, the changes in digital skills have been
non-homogeneous. Depending on educational level, COVID-19 has disparately fostered
“newcomer-level” digital skills at the bottom of the skills distribution.

As for the marginal effects of digital skills on non-manual employment outcomes at
the higher levels of education, digital skills have a monotonic utility-enhancing nexus
with employment status, as the highest digital skills provide the greatest likelihood of
employment and of entering a more skill-intensive occupation. Across educational and
occupational levels, COVID-19 has advantaged the employment outcomes of individuals
with entry-level digital skills over digitally illiterate persons. However, the individuals’
gains from more advanced digital skills have diminished compared to those with only
beginner skills. Since the COVID-19 outbreak, the intra-household spillover effects from
tertiary education on employment outcome and labor market participation have grown
considerably, from about 1 to 2—3 percentage points.

Unsurprisingly, access to broadband Internet at home has gained significance for
employment outcomes as the COVID-19 progressed. According to the estimates,
the relationship between broadband Internet and getting or retaining non-manual
employment is stronger than the association with the exit from unemployment.
This result is consistent with Akerman et al. (2015) assertion on complementarity
between broadband Internet and job skills. The rewards of Internet access are greater
for non-manual and skilled workers, for whom access helps retain or even enhance their
status in the labor market. The findings indicate that educational attainment has gained
importance in the post-pandemic period, with the employment gap between,
e.g., secondary and tertiary education expanding. This is in line with Soh et al. (2022),
who find a positive individual-level impact of tertiary education in digital occupations on
employment in the U.S. Since the COVID-19 outbreak, there has been a tripling of the
spillover effects of higher education within households. This highlights the value of
non-monetary benefits of tertiary education and externalities of household production,
the role of which has been especially increased due to the COVID-19 lockdown and
containment measures.
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Digital skills preserved a positive and strong effect on employment, but with
heterogeneous results for different levels of digital skills before and after the pandemic.
The COVID-19 disparately benefitted those with entry-level digital skills, and this reduced
the gap between those with basic and those with above-basic digital skills. This provides
evidence that digitally and skill-wise segmented labor markets have experienced
asymmetric labor supply disturbance. COVID-19 has caused a surge in demand for
entry-level digital skills in professions thus far characterized by low levels of digitalization
and workers with missing or low digital skills. These findings are consistent with
Zimpelmann et al. (2021), who claim that COVID-19-driven disruptions in labor supply
have impacted mid- and low-skilled employees differently. These employees typically
have little or no ability to work remotely and have little digital literacy. The abrupt shift
in demand for workers with at least some digital skill appears to have improved
employment opportunities for people able to facilitate the adoption of advanced digital
tools in areas of work with low digitalization levels in the pre-pandemic period. Thus,
asymmetric labor supply disturbances have had a greater impact at the lower end of the
digital skills distribution.

Comparing outcomes based on regional statistics on cumulative coronavirus
infections with public containment and support efforts shows that the latter mitigated
the impact of the economic downturn for households and individuals and restrained
some of the COVID-19-induced demand for digital capabilities and education.
The spillover effects of higher education within households have increased substantially
in the post-COVID-19 period, with lockdowns restricting people to their homes and
making them more reliant on family resources. The containment efforts may thus have
exacerbated the role of socioeconomic inequality in labor market outcomes.
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5 Conclusions

The COVID-19 outbreak highlighted the ongoing need for technology and sustainable
development, forcing organizations to accelerate their twin transition implementation
(Rehman et al., 2023). Given the large-scale environmental challenges that currently
exist, economies are looking to decouple economic development from rising carbon
emissions. Article | investigates the relationship between digitalization and reducing CO>
emissions through a comparative analysis and new empirical evidence on the role of R&D
output in the transition toward decreased environmental pollution. The study confirms
the nonlinear relationship among digitalization, economic advancement indicators, and
CO2 emissions for the large sample of high- and middle-income economies over the
period 1996 to 2019 (ending immediately before the COVID-19 outbreak). The results
also indicate that the effect of digitalization, unmitigated by R&D output, leads to an
increase in carbon dioxide emissions. In contrast, if digitalization is moderated by
intensive R&D output, it entails lower CO2 emissions. This means that the digitalization
use in a regime with relatively high levels of R&D contributes to environmental
sustainability. The transition function shifts between the two R&D output regimes at a
point estimated at 39.9 technological patents per million inhabitants.

The empirical results suggest directions for policy actions to improve environmental
quality. Given the renewed rise in global CO2 emissions since the COVID-19 pandemic
was declared over, and countries’” SDG commitments, governments should implement
policies that promote R&D’s role in digitalization to mitigate the environmental effects.
R&D should receive enhanced support, with a focus on the generic, green, and digital
technologies underpinning the twin transition, in a way that supports environmental
sustainability. The study’s outcomes suggest that governments should consider
enhancing the use, intensity, and readiness for digitalization to achieve the SDG-13 goal
by increasing environmental awareness, improving education, and strengthening
institutions.

Digital solutions proved indispensable during the period of COVID-19 restrictions, and
this momentum can be harnessed to drive further progress in digital and green transition.
Policymakers should pay particular attention to promoting greater access to the
Internet (e.g., fiber-based broadband connections) and digital technologies (SDG-9), and
improvements in infrastructure while introducing green technologies and supporting
R&D to improve energy efficiency and reduce pollution. Public policies should promote
the simultaneous development of R&D inputs and outputs, technological innovations,
and digitalization in the form of twin transitions as their interactions contribute to
environmental sustainability. The introduction of green, energy-efficient, and low-carbon
technologies while simultaneously promoting digitalization should be a priority in
frontier economies and those that have not yet achieved the turning point of the R&D
output regime.

The caveat to the study is that there may be alternative candidates for the variable
driving the transition between development and pollution regimes; these alternatives
may reflect technological implementation rather than development. Furthermore, while
data on technology patents offers valuable insights into the capability of countries to
innovate, directly linking patents with the production of green (or more general)
technologies or their dissemination and tracking of how a country’s patent count affects
its overall economy remains challenging. Likewise, alternative indicators of digitalization
can improve knowledge of environmental effects and influence some outcomes.
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Article Il presents a technological and economic assessment of the CC deployment in
OSPPs. From a technological point of view, it is possible to retrofit existing OSPPs with
PCC and OXY technologies. The implementation of CC can reduce the CO2 emission
intensity of electricity production by up to 90%; OXY technology is expected to marginally
outperform PCC.

Financially, installing CC in Estonian OSPPs may not be feasible in an unstable market:
the cost of CC plus storage was at least €89 per ton in 2021 when operating at full
capacity over the expected 24-year life of the CC, which may exceed the CO2 emission
allowance and environmental fees. In addition, OSPPs equipped with CC may be at a
competitive disadvantage in the electricity market compared to companies using
non-fossil energy sources in electricity generation. Potentially, CC commitments or
support measures could make this process economically feasible. However, the cost of
CC would then be transferred to producers or taxpayers, which could negatively impact
the competitiveness of the economy.

Although any CO2 capture process reduces the net power generation capacity of the
OSPPs (due to their own electricity consumption), the OSPPs operation guarantees stable
production capacity (from domestic resources), which is important for the sustainable
operation of the power grid. An instant and complete transition to renewable energy is
not feasible in Estonia, given the necessity to ensure energy security and grid stability
(Metcalf, 2014) and considering path dependence in technology development, the level
of current energy storage technologies, and the duration of investments in the energy
sector. Also, the influence of increased interest rates on the cost of low-carbon and
transition-oriented projects has recently become a major concern. Moreover, to promote
the implementation of renewable energy sources, the possibility of accumulating and
storing any excess electricity produced must be ensured (Bareschino et al., 2020).
OS-generated energy will likely continue to co-exist with cleaner technologies. However,
introducing CC into the existing fossil fuel energy system can ensure a smooth transition
toward climate neutrality targets. Also, the use of CC in fossil-fuels energy production is
one way to prevent potential energy crises and balance the energy system if renewable
resources fail to deliver the capacity required (Climate, 2021).

Because CC can decrease GHG emissions, there is a need for public interest in the
adoption of these technologies in addition to the private sector’s economic motives.
The adoption of CC technologies may have considerable positive externalities; that is,
if CC integration is not cost-effective for companies in market conditions, the public
sector may still have the motivation to encourage to make them attractive or obligatory
for the industry. When developing regulations and support measures, it is critical to
consider the competitiveness of the OS industry in the international market.

A strategy is needed for the Estonian energy sector based on comprehensive and
evidence-based comparative analysis (including potential CC) to ensure clarity and
confidence for private companies and public institutions in terms of investment decisions
and policy formulation (including R&D priorities, regulations, and environmental and
energy measures). The country’s energy strategy must include realistic solutions to
guarantee consumers the required electricity at any time and at an affordable price.
This requires new and green manageable electricity production capacities (involving
private investors) in addition to the accelerated construction of renewable energy
capacity (e.g., wind farms). The development of domestic grids, external connections
(e.g., the creation of a third Estonian-Finnish electrical cable connection), electricity
storage capacities, and compensated conscious reduction in energy consumption by
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end-users (IEA, 2023c) is also required. If, over the next few years, the country does not
create sufficient electricity production capacity, electricity prices may rise to a level that
worsens consumers’ welfare, which will hinder economic development.

The necessity for stable power generation cannot be ignored. Currently, in Estonia this
need is met by existing OSPPs. Hence, until non-fossil fuel alternatives can provide a
stable electricity supply, the CC of Estonian OSPPs remains an option. Ensuring that OSPP
capacities meet the EU’s strategy of a “carbon neutral economy” may require CC
integrating into their operations and accepting high private and public costs; the
alternative is to depend on imported electricity and face potential energy insecurity and
market fluctuations.

Article 1l offers a comparative analysis and augments existing evidence that
high-speed Internet access, digital skills, and educational attainment collectively improve
employment outcomes. The study shows how COVID-19 has substantially reshaped
these associations. Educational level and digital skills are identified as strong
complementary factors that together enhance an individual’s employment prospects.
The level of education of household members also positively affects the labor-market
outlook. One likely interpretation of this result is that more highly educated individuals
may be better able to encourage family members to get or maintain a job when this
increasingly demands digital interaction.

Depending on their digital skills and Internet access, the COVID-19 pandemic has
disparately enhanced the employment outcomes of individuals with entry-level (“low”)
digital skills compared to digitally illiterate persons. In contrast, individuals’ gains from
having more advanced digital skills decreased relative to those with low-level digital
skills. The sharp disruptions in the labor market induced by COVID-19 responses
necessitated a rapid transition to online work modes. This transition occurred primarily
with respect to the extensive margin, with increasing demand for remote work hours,
as opposed to the intensive margin, which would imply an increased demand for more
complex digital skills. The shift to remote work happened more easily among highly
skilled employees, a substantial proportion of whom are digitally savvy and already work
remotely. The rapid digitalization trend in some mid- and low-skill occupations, where
physical contact has been replaced by digital solutions following COVID-19 and
accompanying social distancing requirements, has collided with the insufficient supply of
digitally literate workers at the bottom of the pay-skill distribution; this may explain the
disproportionate improvement in employment outcomes for mid- and low-skilled
workers with minimal digital skills.

Overall, the results indicate that COVID-19 likely expanded the employment gap
between advantaged individuals with high skills, from educated households and who are
digitally literate, and those who are less advantaged. These findings highlight that efforts
to ensure equal access to education and digital empowerment must be intensified.
Future research could explore whether changes in the rewards for digital skills in the
labor market prompted by the COVID-19 will permanently alter the distribution of digital
skills supply and reshape work more universally to greater digitalization.

Governments and decision-making institutions should implement appropriate policies
to address the challenges of the digital divide by, for example, equipping homes and
schools with the infrastructure and technological needs (Aydin, 2021), supporting
ongoing professional training of digital-skills educators, harmonizing the education
system with the rapidly evolving labor markets’ needs, conducting courses to transmit
digital skills, and making these accessible to those experiencing digital inequalities.
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The contribution of this dissertation is its identification of the necessity of digital and
green transition. This twin transition should be more thoroughly considered and
implemented to ensure one technology supports the other (e.g., via policies that
influence technological outcomes) or mitigates adverse externalities (associated with the
diffusion of the first technology). For instance, the adoption of digital technologies (that
have positive effects) may also lead to negative consequences (direct effects) and
electricity consumption that can be mitigated by the simultaneous integration of green
technologies. In addition, the implementation of CC technologies to reduce CO:
emissions is cost-ineffective (at least currently) and leads to uncompetitive prices for
electricity generation. Again, this high CC cost can be reduced via the adoption of digital
technologies (Al, ML, digital twins), improved CC technologies, or policy (e.g., EU support
measures) that internalize the negative externalities caused by some features of one of
the technologies in the twin transition. Likewise, access to digital technologies and skills
in their use are essential. However, the proliferation of digital technologies creates a
digital divide (also in terms of employment) that must be mitigated using other
technologies (e.g., generative Al) or regulatory tools (upskilling, learning, increasing
access).

Estimating changes in living standards and developing accurate policies affecting these
requires properly measuring the welfare gains from all goods, including goods without
positive market prices, such as digital, public, and environmental goods (Brynjolfsson
etal., 2019). Zero-priced digital goods offer considerable value to customers even though
they do not contribute to GDP. However, these free digital goods produce a consumer
surplus, which can be estimated by applying the prices (quality-adjusted) and data
consumption intensity of digital devices (Byrne and Corrado, 2019). In the same vein,
alternative measures (regarding the techno-economic assessment of CC with market
prices) can be used to estimate welfare gains for nonmarket goods (environmental and
public goods) delivered by the government. This will help address an essential gap in
comprehension of development of green and digital economy, since GDP measures
production and not well-being.

Future studies could evaluate how to underpin twin transition’s further integration
and realization to create an even more sustainable society. Further, future studies on the
decoupling of electricity consumption (and thus CO2: emissions) and economic
development alongside the deployment of digital and green technologies, should
consider the energy embedded in imports and the effects of sectoral changes (e.g.,
tertiarization) (Moreau and Vuille, 2018; Vadén et al., 2020). Thus, deindustrialization
that shifts electricity use abroad and structural changes in trade can lead to increased
embodied national electricity consumption (which is not in official statistics). Also,
the registered decoupling should be sufficiently extensive to infer if it represents an
established pattern or interim stabilization (Palm et al., 2019). The claim that decoupling
actually happens should be supported by policymakers through specific and detailed
plans and actions for structural change that will clearly define differences for the future.
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Abstract

Economic Perspectives of Twin-transition: Low-carbon
Production and Inclusive Digitalization

Attaining inclusive green development requires that economies consider the multiplicity
of economic, environmental, and social factors. Complex green production should be
regarded as contributing to the reduction of greenhouse gas (GHG) emissions. This study
examines the nexus between digital and green transformations — the “twin” transition,
which is underpinned by the development of contemporary technologies to determine
the impact of digital and green technologies on CO: emissions. Advanced digital
technologies (e.g., machine learning) help reduce the harmful effects of other carbon-
intensive technologies but contribute to CO2 emissions due to their own energy use.
Whether digitalization is associated with an increase or decrease in carbon emissions
may depend on the complexity of a country’s research and development (R&D) output,
represented by its technology patents. This study examines the transition in regime
induced by R&D output that moderates the relationship between digitalization and CO>
emissions. The study tests the environmental Kuznets curve (EKC) hypothesis using a
panel smooth transition regression (PSTR) estimator with two regimes of R&D output to
account for country- and year-varying impacts of digitalization, human capital, and
income level on CO2 emissions. The study includes data for 55 high- and middle-income
countries between 1996 and 2019 and detects that the transition process is determined
by a country’s level of R&D output, measured in technological patents per inhabitant.
The results confirm that CO2 emissions have an inverted U-shaped relationship with
digitalization and income levels and support the EKC hypothesis. This nonlinear
association smoothly shifts with the level of exogenous R&D. The digitalization index in
the lower R&D regime has a significant estimate of 0.07, whereas in the higher R&D
regime the estimate is -0.14, meaning that the decreasing effect of digitalization on CO:
emissions is greater than its increasing effect. The R&D output inflection point at which
the transition function shifts between the two regimes is equal to 39.9 technological
patents per million inhabitants. Policy actions promoting the twin transition must
account for these findings, considering the benefits of digital transformation when
underpinned by the promotion of contemporary and green technologies.

CO: is one of the main anthropogenic GHGs that contributes to global warming.
Carbon capture (CC) — removing CO: before it is released into the atmosphere —is a key
technology with the potential to reduce CO2 emissions because its deployment can lead
to decreased mitigation costs. R&D to create new or upgrade existing carbon capture
technologies involves complex processes and demands digitalization tools (e.g., machine
learning) to optimize big data modeling and reduce production time. The combustion of
oil shale, a fossil fuel, in power plants results in high CO2 emissions that need to be
sharply reduced. This study provides a comparative techno-economic evaluation of the
implementation of CO2 capture technologies, specifically post- and oxy-fuel combustion
technologies, by retrofitting existing oil shale power plants in Estonia.

The energy industry of Estonia is unique due to its heavy dependence on oil shale.
The technical analysis in this study shows that oxy-fuel combustion capture will
technically surpass post-combustion capture in oil shale power production. However, the
implementation of CO2 capture technologies will lead to a decrease in the generated
energy of power units due to the energy requirements of carbon capture equipment.
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The financial feasibility of CO2 capture in Estonian oil shale power plants relies on the
electricity market’s long-term prospects and the emissions trading system. Operating at
full capacity over an expected 24-year service life will cost at least €42 per ton of CO2
captured and €89 per ton of CO2 captured and stored at 2021 prices. Actual costs may
surpass the payment of CO2 emissions allowance fees and environmental taxes or lead
to a decrease in competitiveness.

The outcomes of the sensitivity analysis for key inputs such as investment amount,
electricity price, useful life and CC usage intensity indicate higher estimates of CC costs
per ton of CO2 captured. Therefore, only if the negative externalities arising from CO2
emissions and domestic energy security concerns cannot be realistically alleviated by
alternative, stable and manageable energy sources should government support the
implementation of CO2 capture technologies in the plants considered. All else being
equal, introducing higher taxes to cover government aid or shifting the costs of CO2
capture to the private sector may decrease the overall competitiveness of the Estonian
economy.

Amid lockdowns and stay-at-home orders related to the COVID-19, the economy
largely moved online, and digital technologies with Internet access became more critical
than ever. The expanding use of digitalization in the workplace means that the
employment market demands digital capabilities and skills, either in goods production or
in workers with complementary skills. This study investigates the nexus between
employment outcomes and access to broadband Internet, educational attainment, and
digital skills deploying pre- and post-COVID-19 survey waves for 2017, 2019 and 2021 of
the Eurostat Community Statistics on the Information Society in 27 European economies.
The joint assessments of individuals’ employment outcomes and digital skills include
external controls using statistics from Eurostat and the European Regional COVID-19
Tracker at the NUTS1 level, as well as data from the Oxford COVID-19 Government
Response Tracker on government restrictions and economic support measures.
The pandemic increased the employment benefits of possessing at least some digital
skills, while the relative advantages of more advanced digital skills have declined.
Broadband Internet access, digital skills, and educational attainment combine to raise
employment outcomes, but the COVID-19 transformed these relationships in disparate
ways. It increased employment benefits from formal education and approximately
tripled the labor market advantages from having household members with tertiary
education.
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Lihikokkuvote

Rohe-digip6orde majanduslikud perspektiivid: Madala
siisinikheitega tootmine ja kaasav digitaliseerimine

Kaasava rohelise majanduskasvu saavutamiseks peavad majandused arvestama
majanduslike, keskkonna- ja sotsiaalsete tegurite mitmekesisusega. Ka kompleksset
rohelist tootmist tuleks pidada kasvuhoonegaaside (KHG) heitkoguste vahendamisele
kaasaaitavaks. Antud uuring keskendub rohep6drde ja digitaalsete arengute seosele —
,rohe-digipdordele”, mille aluseks on kaasaegsete tehnoloogiate areng, et teha kindlaks
digitaalsete ja roheliste tehnoloogiate mdju CO: heitkogustele. Taiustatud digitaal-
tehnoloogiad, nditeks masinGpe, vdivad vahendada teiste silisinikumahukate
tehnoloogiate kahjulikke mdjusid, kuid nad ise aitavad kaasa CO: heitkogustele oma
energiakasutuse tottu. See, kas digitaliseerimine on seotud sisinikdioksiidi heitkoguste
suurenemise vOi vahenemisega, vGib séltuda riigi teadus- ja arendustegevuse (T&A)
valjundi keerukusest, mida esindavad tehnoloogiapatendid. Selles uuringus uuritakse
lileminekut reZiimis, mille pdhjustab teadus- ja arendustegevuse vialjund, mis
modereerib digitaliseerimise ja CO2-heite seost. Uuringus testitakse keskkonna Kuznetsi
kdvera hlpoteesi, kasutades paneelandmete sujuva llemineku regressiooni hindajat
kahe teadus- ja arendustegevuse viljundi reziimiga, et arvestada digitaliseerimise,
inimkapitali ja sissetulekute riigiti ja aasta I6ikes muutuvat m&ju CO2 heitkogustele.
Uuring holmab 55 kdrge ja keskmise sissetulekuga riiki aastatel 1996—2019. Uurimist6o
tuvastab, et Ulleminekuprotsessi maarab teadus- ja arendustegevuse viljundi tase,
moddetuna tehnoloogilistes patentides riigi elaniku kohta. Tulemused kinnitavad, et CO2
emissioonidel on Umberpdodratud U-kujuline seos digitaliseerimise ja sissetuleku-
tasemega ning toetavad keskkonna Kuznetsi kévera hiipoteesi. See mittelineaarne seos
nihkub sujuvalt eksogeense teadus- ja arendustegevuse tasemes. Digitaliseerimise
indeks madalamal T&A reziimil on oluliseks hinnanguks 0,07; kérgemal T&A reziimil aga
—0,14, mis tdhendab, et digitaliseerimise mdju CO: heitkoguste vahendamisele on
suurem kui selle suurendav méju. Teadus- ja arendustegevuse valjundi poodrdepunkt,
mille juures Gleminekufunktsioon kahe reziimi vahel nihkub, vérdub 39,9 tehnoloogilise
patendiga miljoni elaniku kohta. Rohe-digip66ret edendavates poliitikameetmetes tuleb
neid jareldusi arvesse vOtta, arvestades digitaalse iGmberkujundamise eeliseid, kui seda
toetavad kaasaegsete ja roheliste tehnoloogiate edendamine.

CO:2 on ks peamisi inimtekkelisi kasvuhoonegaase atmosfadris, mis aitab kaasa
globaalsele soojenemisele. Susinikdioksiidi pitidmine (CC) — CO2 eemaldamine enne selle
atmosfaari paiskamist on potentsiaalne vétmetehnoloogia CO: heitkoguste vahendamisel,
kuna selle kasutuselevott voib vahendada leevenduskulusid. Teadus- ja arendustegevus
uute vOi olemasolevate CC-tehnoloogiate loomiseks voi taiustamiseks hdlmab keerulisi
protsesse ja nduab digitaliseerimistddriistu (nt masindpet), et optimeerida suurandmete
modelleerimist ja vdhendada tootmisaega. Pdlevkivi on fossiilklitus, mille pdletamine
elektrijaamades toob kaasa kdrge CO: emissiooni, mida tuleb jarsult vdhendada.
Kadesolev uuring annab vérdleva tehnilis-majandusliku hinnangu CO; piiddmis-
tehnoloogiate, eelkdige jarelplidmise- ja  hapnikupbletamise tehnoloogiate
rakendamisele Eestis olemasolevate pdlevkivielektrijaamade moderniseerimise teel.

Eesti energeetika on ainulaadne oma suure polevkivisdltuvuse téttu. Tehniline analiitis
naitab, et pdlevkivienergia tootmisel Uletab hapnikus pdletamise plidmistehnoloogia
tehniliselt jarelptiidmise tehnoloogiat. Susinikdioksiidi  pltddmistehnoloogiate
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kasutuselevétt toob aga kaasa CC-seadmete energiavajaduse tottu energiaplokkides
toodetava energia vdhenemise. Eesti polevkivielektrijaamade rahaline otstarbekus CO>
pllidmiseks sOltub elektrituru pikaajalisest valjavaatest ja heitkogustega kauplemise
siisteemist. Tdisvoimsusel tootamine eeldatava 24-aastase kasutusea jooksul maksab
2021. aasta hindades vahemalt 42 eurot puitud CO2 tonni kohta ja 89 eurot piitud ja
ladustatud CO: tonni kohta. Tegelikud kulud vdivad tletada CO. saastekvootide ja
keskkonnamaksude maksmist vdi viia konkurentsivGime languseni.

Peamiste sisendite, nagu investeeringute summa, elektri hind, kasulik eluiga ja CC
kasutamise intensiivsus, tundlikkusanalllsi tulemused naitavad kérgemaid hinnanguid
CC kuludele piitud CO2 tonni kohta. Seega peaks valitsus toetama CO2 puidmis-
tehnoloogiate rakendamist asjaomastes tehastes vaid juhul, kui CO2 heitkogustest ja
riigisiseste energiajulgeolekuga seotud probleemidest tulenevaid negatiivseid valis-
mojusid ei ole voimalik reaalselt leevendada alternatiivsete, stabiilsete ja juhitavate
energiaallikatega. Kérgemate maksude kehtestamine, kui kdik muud asjaolud on
vordsed, riigiabi katteks vdi CO2 plilidmise kulude suunamine erasektorisse vdib
vahendada Eesti majanduse Uldist konkurentsivéimet.

COVID-19-ga seotud sulgemiste ja kojujdamise korralduste keskel on majandus
lilkunud suures osas vorku ja Interneti-juurdepadsuga digitaaltehnoloogiad on muutunud
kriitilisemaks kui kunagi varem. Digitaliseerimise laienev kasutamine té6kohal tdhendab,
et tooturg nduab digitaalseid voimeid ja oskusi kas kaupade tootmisel vGi tdiendavate
oskustega tootajatel. Selles uuringus uuritakse seost téohGivetulemuste ja lairiba-
Internetile juurdepdadsu, haridustaseme ja digioskuste vahel, kasutades Eurostati
infolhiskonda kasitleva Ghenduse statistika 2017., 2019. ja 2021. aasta COVID-19-eelseid
ja -jargseid uuringulaineid 27 Euroopa majanduses. Uksikisikute téoh&iveviljundite ja
digioskuste Uhishinnangud hélmavad viliseid kontrolltegureid, kasutades Eurostati ja
Euroopa piirkondliku COVID-19 jalgija statistikat NUTS1 tasemel, samuti Oxfordi
COVID-19 valitsuse reageerimise jalgimise andmeid valitsuse piirangute ja majanduslike
toetusmeetmete kohta. Pandeemia on suurendanud vahemalt mdéningate digioskuste
omamisest saadavat kasu toohdivele, samas kui arenenumate digioskuste suhtelised
eelised on vdhenenud. Lairiba Interneti-juurdepaas, digitaalsed oskused ja haridustase
suurendavad Uheskoos toohodivetulemusi, kuid COVID-19 on neid suhteid erineval viisil
muutnud. See on suurendanud formaalharidusest saadavat kasu to6hdivele ja ligikaudu
kolmekordistanud kdrgharidusega leibkonnaliikmete t66hsive eeliseid.
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Appendix 1. Publication |

DIGITALIZATION AND CO; EMISSIONS: DYNAMICS UNDER R&D AND TECHNOLOGY
INNOVATION REGIMES

Publication |

This article “Digitalization and CO2 emissions: Dynamics under R&D and technology
innovation regimes” was published in Technology in Society, Vol 74, Artjom Saia, pp. 1-15,
Copyright Elsevier, (2023). DOI: https://doi.org/10.1016/j.techsoc.2023.102323. (ETIS 1.1).
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1. Introduction

One of the most alarming issues facing humanity in recent decades
has been the growing volume of carbon dioxide (CO3) emissions, which
lead to global warming and environmental disequilibrium. The United
Nations (UN) conference on climate change (COP27 [1]), urged states to
take action to reach the global goals — established by the Paris Agree-
ment and the United Nations Framework Convention on Climate Change
(UNFCCC) - to cut greenhouse gas (GHG) emissions (including CO5) and
limit global warming to 1.5° Celsius above pre-industrial levels [2]. A
major challenge in formulating environmental policy is that reducing
CO, emissions may compromise people’s economic well-being [3].
Therefore, environmental economics scholars have diligently investi-
gated the connection between economic development and environ-
mental policy and sought the most effective means of measuring this
relationship. Environmental indicators have shown that income level
growth below a certain threshold harms the environmental balance, and
growth above that threshold improves environmental quality. Such an
inverted U-shaped relationship between income and environmental

E-mail address: artjom.saia@taltech.ee.

https://doi.org/10.1016/j.techsoc.2023.102323

pollution is defined by the environmental Kuznets curve (EKC), which
was introduced by [4] and is based on [5] original hypothesis of an
inverted U-shaped relationship between income level and inequality.
The environmental economics literature has researched the EKC exten-
sively within individual countries and among groups of countries
[6-16].

Research on the EKC has, however, not delivered unanimous results;
this may relate, in part, to measurement problems. The linear quadratic
polynomial equations used in some investigations of the EKC relation-
ship cannot detect more complex forms of nonlinearity and are inflexible
[10,17]. Similarly, the standard panel data estimators, including time
and fixed or random effects, cannot handle biases that arise from
cross-sectional or dynamic heterogeneity in a panel’s coefficient esti-
mates [18]. Also, the issue of time inconstancy has not received suffi-
cient attention in the literature [19]. To address these issues, this study
employs Panel Smooth Transition Regression (PSTR) [20], a more
flexible estimator that allows for nonlinear estimates that vary in
cross-sections among countries and over time.

In studying the relationship between economic growth and
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decarbonization, a key element to consider is digitalization [21]. Digital
technologies' have fundamentally changed how firms operate (e-com-
merce, business processes), how individuals communicate (social net-
works), and how governments disseminate policies and engage citizens
(e-government services). Artificial intelligence and machine learning are
fundamentally reshaping the distribution of tasks between labor and
technology.

Digitalization entails countervailing effects upon achieving climate
goals which require energy use to be reduced and the share of renewable
energy increased [21,24]. Production and maintenance of digital
infrastructure, such as cloud servers or data centers, increase energy
consumption [25,26]. On the other hand, smart digital solutions enable
the optimization of production processes [27], the development of
energy-efficient infrastructures, buildings, and electrical grids, and
reduce carbon emissions thus promoting sustainability of the economy
[28,29]. So far, the research has not found consensus on the aggregate
environmental impacts of digitalization [30,31]. According to the
Global Enabling Sustainability Initiative (GeSI) and Deloitte [32], by
2030 digitalization could potentially decrease global CO, emissions by
9%. This reduction in carbon footprint would arise from the optimiza-
tion of processes in energy networks and improvement of energy con-
servation. High-speed Internet and cloud solutions can contribute to
achieving sustainable development. Internet of Things and artificial
intelligence may facilitate increased use of renewable energy by
enhancing efficiency in the power grid and increasing access to solar
energy (GeSI and Deloitte, 2019; [33]). Digital knowledge sharing and
transfer, and e-learning facilities generate educational benefits. The
aggregate environmental and economic effects of digitalization warrant
further investigation at the global level.

The combined application of green innovations and digital technol-
ogies offers promising avenues for achieving carbon neutral economic
growth [2]. R&D has a central role in generating inventions and intro-
ducing technologies, not only applicable in the energy sector but
throughout the economy, for attaining sustainable growth [31,34].

As the main contribution this study demonstrates the crucial role of
R&D in reshaping the digitalization-CO, emissions’ nexus. R&D in
technological advances operates as a nonlinear transition function that
makes digitalization a tool for combating climate change. Existing
studies [35,36] suggest that advances in R&D accelerate renewable
energy transition and improve energy efficiency. The current study adds
the link between digitalization and R&D and addresses the research gap
in two main aspects. Firstly, it assesses the significance of the
R&D-induced regime transition that moderates the response of COy
emissions to digitalization, while controlling for the country income and
human capital level, renewable energy consumption, manufacturing
value added, and government effectiveness. Secondly, this study em-
ploys a nonlinear generalized PSTR estimator that allows for smooth
transition governed by the R&D as transition variable and that provides
heterogeneous estimates that vary across regimes. Digitalization — CO2
emissions nexus under non-linear smooth regime change in R&D has not
been studied before. Previous studies have investigated in separation the
link between digitalization and carbon emission [37,38]; Higon, Gho-
lami and Shirazi, 2017; [39,40]; Lange, Pohl and Santarius, 2020; [30,
31,36,41,42]; and the link between technological innovation and COy
emissions (Fernandez, Lopez and Blanco, 2018; [9]; Du, Li and Yan
2019; [43]; Zeraibi, Balsalobre-Lorente and Murshed, 2021). Alterna-
tively, Dwivedi et al. (2022) merge technology innovation and digita-
lization components and study their joint effect on carbon emission.
[34] shows that technological innovation in digital industry increases
CO; intensity, but digital technology cross-industry and cross-border
spillovers reduce carbon footprint. Unlike previous studies, the current

! Digital technologies comprise of information and communication technol-
ogies (ICT) — communication equipment (PCs, mobile phones, network hard-
ware), software, applications [22], and the Internet [23].
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investigation disentangles the R&D-induced technological innovation
and digitalization processes while examining their joint non-linear
mechanism upon CO; emission. In this setting R&D operates as a tran-
sition force that changes the impact of digitalization to carbon footprint.
Beyond addressing this nonlinear mechanism, the current study employs
a global sample of middle- and high-income economies and applies
PSTR as a generalized non-linear panel estimator that captures the
smooth transition process governing the link between technological
advancement and carbon emission. The PSTR estimator proposed by
[20,44] has proved its value in environmental economic research [6,7,
10,19,35,45-47]. Unlike sharp threshold estimators the PSTR permits
units to change the regime in different timeframes with the threshold
variable shifting smoothly over time.

Application of the PSTR model in the complex setup of R&D - digi-
talization and carbon emission triangle requires a large and sufficiently
long panel of rich country data that allow for controls of human capital,
income level, energy consumption and institutional data beyond the
digitalization and carbon emission indicators. The model specification is
subject to several assumptions that have been tested and validated on a
balanced panel of 55 countries (Table A.1. in Annex A) from 1996 to
2019. The dataset includes 37 high-income and 18 middle-income
countries, thus offering the necessary time and country variation. Ac-
cording to the EKC, COy emissions have an inverted U-shaped rela-
tionship with the national level of economic and technological
development. This study confirms the EKC hypothesis in R&D output
and shows that carbon emissions grow with digitalization in countries
with lower R&D output levels until reaching the R&D threshold, beyond
which the CO, emissions begin to decrease as the economies advance in
digitalization.

This study is structured as follows: Section 2 includes a review of the
existing theoretical and empirical literature and develops hypotheses in
three subsections: (1) evidence on the EKC, (2) the relationship between
digitalization and COy emissions, and (3) linkages between R&D and
CO, emissions. Section 3 describes the data and sets out the methodol-
ogy and transition-variable selection in three separate sub-sections.
Section 4 presents and discusses the results, and Section 5 presents the
study’s conclusions and policy implications.

2. Literature review and hypotheses development

2.1. Theoretical foundations and empirical evidence on the environmental
Kuznets curve

The relationship between economic growth and CO5 emissions pro-
posed by the EKC stems from three main effects [4,17,48]. The scale
effect arises when the increased exploitation of natural resources and
energy use, resulting from production growth, leads to the degradation
of environmental quality. The composition effect has a positive, coun-
tervailing impact on the environment; as GDP grows, the economic
structure shifts toward less polluting and cleaner activities that entail
lower CO, emissions. Cleaner structure of production is associated with
a decreasing role for manufacturing and other energy-intensive in-
dustries and an increasing role for services, knowledge, and information
technology activities that have relatively low energy consumption.
Finally, the technological effect appears in more advanced countries that
increase their R&D expenditures during technological progress [9,49].
This entails replacing old and polluting technologies with new and
cleaner ones, introducing more sustainable production processes, and
thus preserving the environment [4].

The environmentally harmful scale effect dominates at lower levels
of economic advancement, with the technology and composition effects
strengthening as the economy expands. National income level is also
positively associated with environmental awareness and regulations
that promote sustainability [17]. Societies in which there is greater
environmental awareness are more likely to demand a strengthening of
environmental norms and regulations, including pollution charges and
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taxes, monitoring, strong regulatory institutions, and public environ-
mental education [8,50-52]. Additionally, more effectively defining and
enforcing property rights and removing environmentally harmful sub-
sidies can improve environmental standards [53,54].

Empirical results concerning the EKC hypothesis are mixed [55]
since the nexus between growth and CO; emissions differs across
countries that have a distinct growth paths (incl. R&D and diffusion of
technology) [56] and policies [41]. For example, support for the EKC
hypothesis is found by [11,54,57,58] and [59]. By contrast [10,50,55,
60-63], find no robust evidence for the relationship. [64] suggest that
the results are consistent with the EKC hypothesis only for high-income
countries but not for low- and middle-income economies. The estimation
of the relationship must incorporate nonlinearity and enable parame-
ters’ heterogeneity with controls for multiple variables such as educa-
tion, energy consumption, and democracy [46,65].

2.2. Digitalization, economic growth, and CO2 emissions

Digitalization and ICT’s positive impact on economic growth and
productivity is broadly recognized [66-68]. Existing literature on “ICT
value” shows that investments into ICT capital have a positive influence
on productivity for highly developed [69,70] and upper-middle-income
[71] economies. Digital exchange of information strengthens R&D
collaboration within and across organizations [72] and contributes to
innovation [70]. [73] claim that education through non-excludable
digital technology results in an equivalent allocation of educational
capital, subject to the availability of an Internet connection. Further-
more, almost zero expenses on digital content sharing and distribution
can facilitate an increase in global knowledge dissemination [74].
Extensive use of advanced digital technologies necessitates the avail-
ability and quality of human resources, as seen in the growing demand
for advanced conceptual and technical skills in programming and en-
gineering and, more generally, for problem-solving skills and creative
thinking [75].

The positive impacts of digitalization on the environment have been
referred to as the “three D’s for the economy” — decarbonization (via
reduced energy use), dematerialization (by switching from print to e-
books), and demobilization (e-commerce reduces traffic) [37]. There are
two ways of thinking about ICT and GHG emissions — “green ICT” and
“ICT for green.” The first concerns the environmental effects of ICT that
must be mitigated (also known as direct effects) by making the produc-
tion and use of ICT greener or more environmentally beneficial; this can
be achieved by reducing the energy consumption of hardware, data
centers, and data-intensive processes, utilizing renewable energy sour-
ces, virtualization, and recycling electronic waste [28,76,77]. The idea
of “ICT for green” is that ICT and digitalization can act as mechanisms
that improve environmental quality (so-called indirect effects). For
instance, “smart grid” technology may utilize digitalization to improve
performance of the transmission, consumption, and generation of elec-
tricity, which accounts for a major source of CO, emissions since many
power plants globally utilize fossil fuels to produce electricity [23,78].
Thus, in addition to their positive externalities in respect of growth and
productivity, digital technologies can reduce CO4 emissions through the
optimization of manufacturing processes [27], exploitation of smart
devices, by inducing resource efficiency and reduced waste [79], pro-
motion of pro-environmental behavior over the Internet [40], develop-
ment of transport networks, construction of smart cities, and facilitation
of teleworking [65,77].

Digitalization’s tertiary effects derive from modification in economic
structures or consumption patterns and individual behavior, which lead
to an increase in green energy use and frugal consumption of energy,
supported by heightened environmental awareness [70,76]. Therefore,
digitalization can improve the environment by increasing energy effi-
ciency directly and promoting structural change (tertiarization) while
moderating the effects of manufacturing, use, and disposal of ICTs [21].

Past research has shown that economic development and energy
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consumption are interdependent [80,81], and whether digitalization
development has a causal effect on economic growth, energy use, and
CO, emissions has been investigated. [38] uses an autoregressive
distributed lag (ARDL) bounds testing model for Japan and shows that
long-run ICT investments lead to more efficient energy use. A recent
study [33] shows that ICT goods trade (export and import) in South
Asian countries can directly (via interaction effects) and indirectly abate
CO, emissions via increased consumption of renewable energy and
decreased intensity of energy use. [65] use a panel of 142 countries and
claim that the nexus between ICT and CO, emissions can be described by
an inverted U-shape, implying the presence of the EKC relationship. [30]
employ digitally delivered services as a proxy for digitalization and,
using an unbalanced panel of 190 countries, reveal a bell-shaped rela-
tionship between CO; emissions and digitalization, supporting the EKC
relationship and implying that higher levels of digitalization lead to
reduced emissions. By contrast, in their study of the relationship be-
tween ICT, economic growth, and CO; emissions for nine ASEAN
countries from 1991 to 2009 [82], find that ICT positively influences
growth and CO, emissions through increased consumption of ICT goods
and electricity. [68] claim that ICT (Internet and mobile use) and eco-
nomic growth stimulate energy consumption, increasing emissions.

Although the impact of digitalization on economic growth and
environmental pollution has received attention in the academic litera-
ture, the evidence on the sign and magnitude of that effect is still
inconclusive, as some studies imply that digital technologies reduce COy
emissions directly or indirectly [39,41,83], whereas others suggest that
digitalization may damage the environment [77,82]. Consequently,
examining the implications of digitalization for environmental perfor-
mance is a natural direction for further research. Previous research [42]
stresses that this relationship should be investigated in the nonlinear
context.

This research thus contributes to the literature by testing the
nonlinear, inverted U-shaped relationship between digitalization and
CO, emissions as dependent on the time-varying and country-varying
technological R&D output level, which leads to the main hypothesis of
the study.

Hypothesis 1. Progress in digitalization has a crucial environmental
impact — that in a low R&D output regime the digitalization induces an
increase in CO2 emissions, while in a high R&D regime, digitalization
reduces CO, emissions.

2.3. Relationship between research and development and CO, emissions

According to endogenous growth theory, investments in R&D,
human capital, and innovation prompt technological progress, which
can trigger more efficient and sustainable production that saves energy
and natural resources [9,84,85]. [86] stresses how technological ad-
vances complement knowledge and human capital. [87] study the joint
impacts of R&D and ICT on productivity, finding that ICTs have been
effective in increasing production efficiency and creating inter-industry
spillovers, while R&D increased the extent of technical change and
stimulated knowledge spillover effects within industries, with comple-
mentarity between the two to reduce inefficiencies. Economic growth,
triggered by technological progress, enables countries to increase in-
vestment in R&D and adopt cutting-edge technologies that enhance
economic performance and environmental sustainability [48,49].

CO; emissions can be abated by developing and utilizing digitaliza-
tion via promoting R&D activities and technological structural change in
the economy [42]. In addition, when countries endeavor to reduce the
intensity of CO5 emissions, they need to boost R&D activities and the
implementation of intellectual property protection to facilitate the
technological innovation of the digitalization industry [34]. Public R&D
activities promote the development of renewable energy technologies
that can accelerate the transition to green energy [88], thereby miti-
gating carbon emissions. R&D expenditures have been found to be
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positively correlated with innovative technological patents and are
crucial for reducing energy intensity and increasing renewable energy
supplies by advancing energy-saving and clean energy technologies
[89]. Thus, the inputs of R&D activities are tightly related to outputs, for
example, technological inventions that reduce COy emissions [90,91].
Technology innovations can effectively increase energy efficiency [80]
and, thus, abate CO, emissions [56]. [43] claim that technological
innovation (measured by patents) has heterogeneous and decreasing
direct impact on CO, emissions and a moderating effect, lowering car-
bon emissions via impacting economic growth.

The empirical literature on how R&D impacts CO, emissions, which
is primarily focused on single-country evidence, shows that R&D ex-
penditures reduce CO, emissions if the best available technologies are
employed. Comparative country panel studies using observation periods
ranging between 10 and 20 years show that R&D investments and in-
novations reduce CO5 emissions [90]. [9] in their study on the impact of
R&D intensity on CO2 emissions, use panel data of G7 countries and a
non-parametric estimation framework, finding that the relationship
between R&D and CO, emissions is time-varying and is negative over
most of the period 1870-2014, with a positive relationship in
1955-1990.

Digitalization alone may be insufficient to reduce COy emissions
since digital technologies are contingent on the degree of human capital
development [41]. Human capital is decisive in the uptake and
deployment of technology and in promoting the innovative potential
that result in technological advancement [41] and new technology
creation [71]. Therefore, human capital growth can improve the envi-
ronment by facilitating R&D in green energy and low-carbon, ener-
gy-saving technologies [92]. Since human capital development also
promotes economic growth, the relationship between human capital
progress and CO; emissions may also be described by the EKC
hypothesis.

The existing literature pays limited attention to R&D output
(measured in technological inventions per capita) acting as a trans-
mission mechanism that drives the heterogenous effects of digitalization
on carbon emissions on the global level in a nonlinear framework of
PSTR. Only the study by [36] considers the mediating role of R&D in-
vestments in reshaping the environmental effect of the digital economy.
Their findings on 30 Chinese provinces over 2006-2017 showed
long-run cointegrating relationships between R&D, digitalization, and
carbon dioxide emissions. Unlike the current study they estimated the
moderating effect of R&D as an interaction variable term, while the
given research models the smoothly transitioning regime shift in the
effects of digitalization and GDP upon CO5 emission.

Fig. 1 presents the conceptual model employed in the current study.
Growth in R&D intensity, measured in technological patents, determines
the smoothly transitioning regime shift from environment polluting
state towards non-polluting state. In the environment polluting regime
that is featured by low R&D intensity both digitalization and GDP in-
crease CO, emissions. In the non-polluting regime with high R&D in-
tensity, digitalization and GDP reduce the carbon footprint.

Hypothesis 2. The R&D output level (measured in country’s tech-
nology patents per inhabitants) governs the transition process that leads
countries from an environmentally exploitative and expansive economic
regime into an innovative and sustainable economic regime under
digitalization.
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3. Data and methodology
3.1. Data

The empirical analysis employs a balanced panel of 55 countries,
including 37 high-income and 18 middle-income economies” over a 23-
year period from 1996 to 2019. This period begins with the explosive
diffusion of commercial Internet across the world and has been named
the era of mass digitalization by [74] and concludes before the shocks of
the COVID-19 pandemic. The countries in the sample were selected
based, in part, on their universities being included in the world’s
top-thousand institutions disclosed by Quacquarelli Symonds (QS)
University Rankings and data availability; this ranking is used as a proxy
for a country’s R&D output development potential. Additionally, in-
clusion the middle-income countries that have experienced rapid eco-
nomic advancement and productivity increases from ICT [71] in recent
decades and concomitant growth in fossil fuel consumption helps in
testing the EKC hypothesis.

[6] stress that omitted variables may bias the estimated effects on
CO, emissions. Therefore, this research controls for several variables,
including economic growth per capita, renewable energy consumption,
manufacturing value added, and government effectiveness. Doing so
helps in identifying the dynamic relationship between digitalization and
human capital-driven productivity growth and environmental pollution,
conditioned by the regime-shifting R&D driver.

The measurement of CO, emissions requires consideration because
there are multiple indicators and measurement frameworks available.
The UNFCCC requires that countries report their CO, emissions using a
production approach. Under this rule, carbon emissions are assigned to
the country in which they originate during production [93]. The
awareness-raising environmental indicators are typically expressed in
mass units [94]. The measure “fossil fuels and cement production CO2
emissions” was chosen as the dependent variable in this research [42,
95].

The R&D output indicator representing “all technological inventions
(patents)” in numbers per million inhabitants is selected as the transition
variable (the selection process is described in Section 3.2.). This measure
of patents enables the assessment of countries’ technological in-
novations and government policies, which also relate to the environ-
ment and innovation [96].

Following [82]; the digitalization indicator is defined as the con-
structed index reflecting a multi-dimensional perspective. This com-
posite digitalization index includes several phases of technology
development, namely: (1) readiness and (2) use, and intensity. Variables
that reflect digital technology readiness include three indicators: per-
sonal computers, fixed telephone subscriptions, and mobile cellular
subscriptions (all per 100 people). Indicators representing digitalization
intensity and use include fixed broadband subscriptions (Internet) and
individuals using the Internet (all per 100 people). The composite index
weights all these five indicators equally (average scores of the sub-
components), an approach that relies on the existing literature [82].°

The effect of digitalization depends on the level of human capital,
since human capital spurs technological progress, prompts innovations
[46], and makes digital technologies more effective in an economy [41].
The index of educational attainment includes two indicators for human
capital: mean years and expected years of schooling; this index also
partly captures digital literacy [41,65].

2 High-income, upper-middle income, and lower-middle income economies
are included, following the World Bank classification. https://datahelpdesk.
worldbank.org/knowledgebase/articles/906519.

3 The composite digitalization index using the weights from the principal
component analysis leads to qualitatively similar results to those obtained using
the equal-weighted index. The results from this robustness check are available
on request from the author.
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R&D measured in tech-patents per million inhabitants

Fig. 1. Conceptual model.

The model includes real gross domestic product (GDP) per capita as a
control variable [11] to test the EKC hypothesis. Another control vari-
able included is renewable energy consumption as a percent of total
energy consumption (energy demand); renewable energy use does not
contribute to pollution directly, unlike fossil fuel utilization in power
plants [21,56]. The share of value added in manufacturing is included to
address the EKC’s theoretical “composition effect” since, with economic
growth, the share of manufacturing decreases, which entails lower COy
emission levels [8]. The effect of the institutional setting and develop-
ment, which can improve environmental quality [97] is considered by
including the government effectiveness index in the model. Table 1
presents the variable names, explanations, and data sources.

Table 2 presents the descriptive statistics of the key variables based

Table 1
Variables, description, and data source.

Variable  Description Source

CO, Fossil fuels and cement production CO, UNFCCC, Global carbon
emissions, territorial, in tons per capita project [95]

ATI Patents for inventions in all Patents — Technology
technologies, in numbers per million development [98]
inhabitants

DIG Digitalization index (five components): World Development
individuals using the Internet, personal  Indicators [99], ICT
computers, fixed telephone Indicators [100]
subscriptions, mobile cellular
subscriptions, and fixed broadband
subscriptions (all per 100 inhabitants)

EIX Human capital: education index Human Development Data
includes mean of years of schooling for [101]
adults (25 and above) and expected
years of schooling for children

GDP Real GDP per capita, PPP (purchasing World Development
power parity), constant 2017 Indicators [102]
international dollars, in thousands

REN Renewable energy consumption: U.S. Energy Information
nuclear, renewables, and other primary Administration data [108]
energy consumption, percentage of
total energy consumption

IVA Value added from manufacturing, National accounts data [103]
proportion of GDP

GOV Government effectiveness index: shows ~ Worldwide Governance

capacity to carry out and communicate
prudent policies, commitment to
policies, independence from political
oppression; varies from —2.5 (weak
institutions) to 2.5 (strong institutions),
normalized from 0 to 100.

Indicators [104]

on a sample of high-income and middle-income countries for the period
1996-2019. The average real GDP per capita for the sample of high-
income countries for 1996-2018 (Panel A) was 41.09 (in thousands of
international dollars). For upper-middle-income (Panel B) and lower-
middle-income (Panel C) countries, it was 14.15 and 7.51 thousand
international dollars, respectively. High-income countries produced
higher CO4 emissions per capita at 9.38 tons, compared to upper-middle-
income and lower-middle-income countries with an average of 4.03 and
2.42 tons, respectively, in the period 1997-2019. In high-income
countries, the digitalization index averaged 52.52% in the period
1996-2018, while for upper- and lower-middle-income economies, the
index was 27.03% and 19.60%, respectively. The high-income countries
produced more technological inventions per capita, 280.68, compared
to the upper-middle-income and lower-middle-income countries that
produced, on average, 10.62 and 1.56 inventions per capita, respec-
tively, in the period 1996-2018. The statistics for technological in-
ventions reveal that annual inventions have increased in practically all
countries over the sampled period. Thus, the more relevant analysis is of
regime shift induced by the increase in technological inventions and
evidence that promoting technological development can also contribute
to environmental improvement.

Similar to previous studies [18], all the exogenous and control var-
iables enter the model with their lagged values (t—1) for the period
1996-2018. Table A2 in Annex A provides the correlations between the
variables from 1996 to 2019.

3.2. Choice of the transition variable

Economic considerations and the exogeneity condition should guide
the selection of the transition variable, which must also be continuous
and time-varying [105]. The transition variable should capture the
regime effect of digitalization on CO2 emissions according to its
time-varying pattern. According to [9]; the relationship between R&D
and CO; emissions is time-varying and negative over most of the sample
period. Thus, in general, R&D output can serve as the transition variable
to capture the nonlinear, time-varying relationship between CO5 emis-
sions and R&D output. The transition variable also accounts for country
heterogeneity in R&D output and CO, emissions levels and in the
strength of the relationship between them.

Two R&D output indicators were considered in selection of the most
suitable transition variable: “patents for all technological inventions™
and “scholarly output on environmental science,” both per million in-
habitants. Data for the first indicator of technological development were
obtained from the “innovation in technologies” section of the [98]
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Table 2

Descriptive statistics of the variables.
Variable COy ¢ ATl DIGi: 1 EIXir1 GDP;;_q RENj VA1 GOV
Panel A: High-income economies
Mean 9.38 280.68 52.52 81.21 41.09 20.30 15.04 76.47
Median 8.61 184.99 59.30 82.40 39.81 17.54 14.84 79.35
Standard deviation 4.35 354.95 21.65 7.86 17.67 16.70 5.27 11.68
Minimum 2.99 0.74 2.88 52.90 9.96 0.39 0.97 42.50
Maximum 25.98 2725.43 105.89 94.30 120.65 69.82 34.90 98.74
No. of countries 37 37 37 37 37 37 37 37
Observations 851 851 851 851 851 851 851 851
Panel B: Upper-middle-income economies
Mean 4.03 10.62 27.03 62.97 14.15 14.90 19.09 51.82
Median 3.73 5.86 26.02 63.30 13.84 11.35 16.60 51.12
Standard deviation 2.32 12.97 18.44 8.25 5.30 11.86 6.40 8.90
Minimum 0.96 0.39 1.06 43.50 2.60 1.88 10.34 30.06
Maximum 9.95 73.99 64.68 84.20 28.32 41.83 33.10 75.34
No. of countries 11 11 11 11 11 11 11 11
Observations 253 253 253 253 253 253 253 253
Panel C: Lower-middle-income economies
Mean 2.42 1.56 19.60 55.85 7.51 7.87 18.22 46.15
Median 1.84 111 15.95 55.70 7.19 4.50 16.73 45.71
Standard deviation 2.04 1.53 17.08 8.44 3.15 6.89 4.24 6.23
Minimum 0.58 0.04 0.34 35.10 2.22 0.21 11.90 32.45
Maximum 8.84 7.38 60.50 75.00 14.54 25.50 31.95 62.87
No. of countries 7 7 7 7 7 7 7 7
Observations 161 161 161 161 161 161 161 161

Notes: Panel A: high-income countries; Panel B: upper-middle-income countries; Panel C: lower-middle-income countries. CO5; — CO, emissions per capita,
1997-2019; ATI;_; - all technological inventions (patents), per million capita, in lagged values (-1 year), 1996-2018; DIG;_; — digitalization index, percent of
population; EIX;_; — education index; REN;_; — renewable energy consumption, percent of total energy consumption; GDP;_; — GDP per thousand capita; IVA;_1 —
manufacturing value added, percent of GDP; GOV;_; — government effectiveness index, normalized from 0 to 100. All exogenous variables are in lagged values (—1

year), 1996-2018.

database (technology domain: all technologies, total patents; family
size: all inventions; presented by inventor country). Only published
applications for “patents of invention” are considered. Data are based on
the concept of the “simple patent family” [106]. This indicator is
appropriate for a broad assessment of countries’ innovation and related
government policies. The second indicator, “scholarly output on envi-
ronmental science” [107], includes data for all publication types (arti-
cles, conference papers, reviews, books, and books chapters) and serves
as a proxy for the country’s prolificacy. It also serves as a measure of
publishing activity and productivity, being a snowball metric.

Both variables were subsequently tested with time-lagged values to
avoid potential endogeneity from contemporaneous associations. The
“technological inventions” indicator is suggested as the better candidate
for the transition variable as it evaluates a country’s technological
progress more broadly and has a smoother, more continuous data
structure with less variance and clearer results of linearity tests. This
reasoning is also supported by the EKC technological effect and by
previous research’ findings that technology patents reduce CO» emis-
sions [91,96]. Additionally, technological innovation (patents) was
previously used as a controlling variable in the PSTR framework [46].
The alternative, “expenditures on R&D,” is a less appropriate candidate
since it reflects the input for innovation activities but does not represent
technological development, which is generally considered as an output
of innovation [56]. Since in equation (4) (see Section 4), the error term
does not correlate with selected transition variable of technological in-
ventions, then the exogeneity condition for this variable is fulfilled (it is
not endogenous). Figure A.3. in Annex A presents the transition variable
“technological inventions” per million inhabitants with respect to COy
emissions per capita for all countries in the study.

Since the “technological inventions” variable changes across coun-
tries and over time, it also allows the regression estimates to vary for
each country and over time, implying that any country can move from
one regime into another (smooth transition). With two regimes, the

regression coefficients gradually shift from the lower extreme regime to
the higher one as the “technological inventions” variable increases.

3.3. Model specification and estimation

PSTR models were developed by Gonzalez et al. [20] and [44] as an
extension of [109] univariate sharp threshold time-series models (PTR).
A two-regime PTR model defines two equations for the dependent var-
iable, with the threshold variable determining which equation applies to
a particular observation [105]. However, the application of this
econometric technique is not trivial. The limitations of the PTR esti-
mator are that it only allows for a small number of regimes and that the
estimated parameters change between the regimes abruptly [110]. The
latter is inconsistent with the evidence on the digitalization-CO rela-
tionship that progresses gradually and not abruptly. PSTR models
handle heterogeneous panels, allowing the coefficients of regressors to
fluctuate over time and across observational units in a certain number of
regimes that switch smoothly [18]. A common feature of PTR and PSTR
is that both estimate the threshold level endogenously without relying
on a subjective assessment of the regime change [10]. This property is a
major advantage since it allows for cross-country heterogeneity without
the necessity of the researcher to categorize countries in advance of the
estimation [105].

PSTR is intended for use with non-dynamic (no lagged endogenous
variable included) panel specifications; the approach is similar to uni-
variate time-series smooth transition auto-regressive (STAR) estimators
[111,112]. Given its properties mentioned above the PSTR framework
provides greater flexibility compared to more conventional panel data
estimators.

The empirical model applied in this research regresses CO2 emissions
on measures of digitalization, human -capital, economic growth,
renewable energy consumption, manufacturing value added, and gov-
ernment effectiveness using the technological inventions’ level as the
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transition variable in the PSTR estimation framework [20,44]. All the
variables enter the model in log-transformed form. The data’s balanced
panel structure enables the use of fixed effects to control for
country-level unobserved heterogeneity. Overall, the PSTR modelling
approach has three phases, which are model specification, estimation,
and evaluation.

The decision as to whether to use PSTR (alternative hypothesis) or to
stay with the linear model (null hypothesis) is based on the test of
linearity when controlling for two regimes, or the test of no remaining
nonlinearity when controlling for more than two regimes. The failure to
reject the null hypothesis of linearity would mean that the relationship
between CO; emissions and economic-capacity variables is invariant
across countries and over time. [105] and Gonzalez et al. [20] suggest a
linearity test for the model specification to determine the presence and
number of regimes in the PSTR.

Before estimating the PSTR model, it is necessary to test for cross-
sectional dependency (CSD) and a unit root. Cross-sectional depen-
dence in panel data implies that a shock in one cross-sectional unit or
country can induce consequences for other countries regarding the COy
emissions. [113] has proposed a unit root test robust to CSD in the
panels, and [114] provides a test for determining the presence of CSD in
the panel. The panels unit root test proposed by [115] was also per-
formed. [116] cointegration test in panels allows for CSD and can
robustly detect a long-run cointegrating relationship between digitali-
zation (with related control variables) and CO, emissions. For compar-
ison, the panels cointegration tests proposed by [117-119] are also
conducted.

The baseline PSTR model with two regimes is set in the form:

In i = + A + By In i+, In xag(quei 7, €) + i (b}

wherei=1,...,Nand t = 1,...,T, with N and T representing 55 coun-
tries (cross-sectional) and 23 years of the panel, respectively. f; and fy;
denote parameters’ estimates in the linear part and the nonlinear part of
the model. The independent variables — x;; is a k-dimensional vector of
variables that vary in time (e.g., In DIG; denotes the log values of the
digitalization). The dependent variable In y; indicates the log value of
CO; emissions. Further, g; is the transition variable of the technology
development level, y; is a vector of country fixed effects, and 4, is time
fixed effects, the inclusion of which takes account of the level of exog-
enous developments in carbon mitigating technologies available to all
countries [65]. The nonlinear transition function is denoted by g(qi:; 7,¢),
which is continuous and bounded between 0 and 1, and u;, is the error
term. This transition function depends on the transition variable g;, the
slope argument y (which conditions the smoothness of the transition
between regimes), and the threshold parameter c;.

In accordance with [120] in terms of time-series modeling, as well as
the elaborations by [44] and [20] in the panel data domain, the
following logistic specification of the transition function is applied:

—1
g(q,/;770)=(1+EXP<*7H(%*C;)>> @
j=1

where y > 0,¢1 < ¢2 < ... <Cm, €= (1, ...,cm)' denotes the m-dimen-
sional vector of location parameters. The conditions imposed on the
slope and location parameters y and c; in equation (2) are determined for
identification purposes. If m = 1 and the slope argument y tends to in-
finity, this transition function g(gi;y,c) becomes an indicator function
that is equal to 1, if g; > ¢, and O otherwise. If that is the case, the
regression model defined in equation (1) is reduced to the threshold
regression model for panel data (PTR) with two regimes, as proposed by
[109]. For less extreme slope parameter value, the regression co-
efficients gradually shift from a lower regime into a higher one or from
Bo to By + 1, while the transition variable g; increases and the change is
centered at c¢;. It is possible to obtain point estimates on location
parameters.
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Based on the reasoning presented in Section 3.2 and the results of the
specification tests, it can be inferred that the sensitivity of CO2 emissions
to digitalization changes smoothly as a function of the countries’ level of
technological invention. Also important is the sign of the regression
coefficients that may represent the growth or decline of CO, emissions as
determined by the transition variable since the regression coefficients
cannot be interpreted in the traditional way [105]. In current PSTR
estimation, heteroskedasticity in standard errors is permitted and is
estimated with the heteroskedasticity-consistent and cluster-robust
covariance estimator [18,121].

Additionally, to address the issues of within-cluster dependence and
heteroskedasticity, the wild bootstrap (WB) and wild cluster bootstrap
(WCB) [122] evaluation tests were applied. Cluster-dependency means
that the dependency may exist only within an individual and not across
individuals [20].

In line with Gonzalez et al. [18], it is also possible to generalize the
PSTR model with more than two regimes (additive model):

Iny; = p; + A+ fy Inxi + Z ﬂ, In x;,g; (q,“[) s c,-) + uy 3)
j=1

In this model, the transition functions g}-(qg); Vjs G),j=1,...,r, are
defined by the slope (D] and location parameters (c;), and the transition

variable qg). In terms of sources of endogeneity (unobserved heteroge-
neity), the PSTR estimator with multiple regimes defined by equation
(3) represents an alternative hypothesis when testing for no remaining
nonlinearity (heterogeneity) [18]. The null hypothesis of the linearity
test ([105]; Gonzalez et al., 2005) is either Hy : y =0 or HO pp = 0.
However, since the PSTR model has nuisance arguments that are not
identified under either of the null hypotheses, the test statistics will
obtain a non-standard distribution. The solution is developed for panel
data and proposed by Gonzalez et al. [18], that suggests replacing the
transition function g(gy, 7, ¢) in equation (1) with its first-order Taylor
expansion around y = 0 and performing the test of linearity, which is a
Lagrange Multiplier (LM) test. These linearity LM tests are performed
based on the transition variable: y2-version, F-version, y?-version het-
eroskedasticity and autocorrelation consistent (HAC), and F-version
HAC tests.

Using the within-transformed form that controls for unobserved
heterogeneity, the nonlinear least squares (NLS) estimate the PSTR
model parameter. The initial values of the parameters ¢; and y; are used
in the estimation with subsequent application of the optimization
method proposed by [123]. In this study, the PSTR modeling is per-
formed applying the “PSTR” package in R software environment [124].

4. Results

This section reports and discusses the results from the analysis of the
effect of the R&D-output regime driving the relationship between digi-
talization and CO, emissions. Before the PSTR was estimated, the
baseline model was tested for the presence of nonlinearity to identify
whether a model with at least one threshold variable (r = 1) should be
estimated. The homogeneity test rejected the null hypothesis on line-
arity, based on p-value, which suggests that a threshold function must be
incorporated to account for the coefficient heterogeneity across coun-
tries and over time. In other words, the results of the test suggested the
use of two regimes and indicated that the nonlinear PSTR estimation is
superior to a linear form. The subsequent evaluation tests for remaining
nonlinearity did not reject the model with a single threshold function
and two regimes.

Table A.4. in Annex A presents the results from the [114] test that
does not reject the null hypothesis of no cross-sectional dependence in
error terms. The results for the [113] panel unit root test (and the [115]
panels unit root test) are presented in Table A.5., Annex A; the null
hypothesis of non-stationarity is rejected for most variables except the
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manufacturing value added, a variable that is then integrated at its first
difference values for inclusion in the model. The tests following [116,
117]; and [118,119] reject the null hypothesis of no cointegration,
suggesting that the variables in the model exhibit a stable long-run
relationship (Table A.6. of Annex A).

Based on the reasoning presented in Section 3.2, two potential R&D
output transition variables were proposed that can determine the
nonlinearity between digitalization and carbon emissions. The tests re-
sults presented in Table 3 reveal that linearity is rejected for both pro-
spective threshold variables (with m = 1 or m = 2). The p-values for all
LM tests are almost equal to zero; thus, the specific threshold variable
cannot be detected. However, the HAC versions of the linearity test re-
turn substantially lower p-values, implying that “technological in-
ventions” is the most suited to the role of transition variable.

A sequence of homogeneity tests was conducted to determine the
number of location parameters, m, (also transition function’s order).
Table 3 also presents the results of this specification test to select the
order m of the PSTR model’s transition function. Supported by the HAC
version of the tests, the outcomes reveal that m =1 is the most appro-
priate option for the transition variable “technological inventions.”
Therefore, the best choice for estimation of the PSTR model is the
transition variable that captures R&D output in the form of technolog-
ical inventions, in support of Hypothesis 2, with the number of switches
(location parameters) equal to 1, which implies a two-regime model.

Table A.7. of Annex A reports the results for the tests of remaining
nonlinearity or the possibility that the investigated relationships entail
more than two regimes and that the parameters are not time-varying.
The outcomes of the parameter constancy test and no remaining
nonlinearity test (robust versions) to confirm the adequacy of the esti-
mated model show that parameter constancy can be rejected (parame-
ters time-variation is present), and heterogeneity in the coefficients
across countries is entirely captured (no remaining nonlinearity). The

Table 3
Results of the linearity and sequence of homogeneity tests.

Linearity (homogeneity) tests

LM tests: transition variable — scholarly output in Environmental Science

m LM.X LM_F HACX HACF
1 482.3 65.14 19.19 2.59
p-value (0.00) (0.00) (0.008) (0.012)
2 537.7 36.10 36.33 2.44
p-value (0.00) (0.00) (0.001) (0.002)
LM tests: transition variable — technological inventions
m LM_X LM_F HACX HACF
1 394.8 53.33 27.08 3.66
p-value (0.00) (0.00) (0.000) (0.001)
2 453.4 30.44 34.79 2.34
p-value (0.00) (0.00) (0.002) (0.003)

Sequence of homogeneity tests for choosing the number of “m”

LM tests: transition variable — scholarly output in Environmental Science

m LM_X LM_F HACX HAC_F
1 482.3 65.14 19.19 2.59
p-value (0.00) (0.00) (0.008) (0.012)
2 89.61 12.03 12.80 1.72
p-value (0.00) (0.00) (0.077) (0.101)
LM tests: transition variable — technological inventions
m LM_X LM_F HACX HACF
1 394.8 53.33 27.08 3.66
p-value (0.00) (0.00) (0.000) (0.001)
2 85.2 11.44 16.24 2.18
p-value (0.00) (0.00) (0.023) (0.033)

Notes: m — number of location parameters/switches. Linearity LM tests consid-
ering two R&D output transition variables; y?-version, F-version, y?-version
heteroskedasticity and autocorrelation consistent (HAC), and F-version HAC
test. Model specification with N = 55; High-income and middle-income coun-
tries; 1210 observations.
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results of these tests imply that the model with one transition is
appropriate, as p-values are higher than 0.1, where the p-values of both
the WB and WCB tests are equal to 1.00.

The specification tests of the PSTR model suggest a setup with a
single transition function and a single location parameter. Hence, the
model entails two regimes for the estimation of cross-country hetero-
geneity and time variability in the relationship between digitalization
and CO, emissions.

The PSTR model specification is formulated as:

In CO, iy = p; + 4+ Po; In DIG;,_; + P, In EIX;,_ + fo3InGDP;,_,
+ P InREN;,_; + fosIn IVA;,_y + fogln GOV;_y + B, In DIG;,_,
+ foIn EIX;, | 4 f3In GDP;,_y + B ,In REN;,_, + p5In IVA;,_,
+Bisln GOVii|g(ATL 157, ¢) + i
[©)]

where y; is country fixed effects, and 4, is year fixed effects and the
transition function is expressed as follows:

g(ATL iy, ¢) = (1 +exp( —y(In AT, — ) .y >0 (5)

in the first part of the presented model (equation (4)), the independent
variables impact carbon emissions directly and linearly, but in the sec-
ond part, their nonlinear effects are moderated by transition variable of
technological inventions. Table 5 presents the results of the final esti-
mation of the PSTR model with one location parameter and one tran-
sition function.

Table 5 also presents the results of the estimated parameters from the
linear part in the first regime (low R&D output), from the nonlinear part,
and from the second regime (high R&D output), which is the result of the
combined estimates from linear and nonlinear parts.

First, the simple model was estimated (Table 5, column 1) to inves-
tigate the heterogeneous impact of digitalization on CO5 emissions and
to control if the results are robust for the main exogenous variable of
interest. The slope parameter y of the transition function is 3.665, sug-
gesting that the transition from the lower R&D regime to the higher
regime is steeper compared to the main specification (Table 5, column
3). The location parameter is slightly higher for this specification at
3.897. Figure A.8. Annex A graphically presents the impact of digitali-
zation (controlled for human capital) on CO4 emissions conditioned by
technological inventions. The estimates reveal that in the lower R&D
output regime (primarily represented by lower-middle-income and
upper-middle-income economies), the digitalization impact on COg is
positive and statistically significant: 0.18. Then, the transition function
makes a shift at the value of 3.897 (log-scaled technological patents per
million inhabitants) to the higher R&D regime (represented by high-
income economies) where the digitalization effect on emissions is
negative and significant: —0.144.

In the main specification of the PSTR model (Table 5, column 3), the
estimated slope parameter y of the transition function equals 1.277,
implying the smooth transition from the lower R&D output regime to the
higher regime. The location or threshold parameter specified in the
transition function has a turning point estimate of 39.85 (antilog of
3.685) technological inventions per million inhabitants. In this model
with two regimes, which are related to low and high values of g;
(technological inventions), the regression coefficients gradually shift
from the first extreme regime to the second, while the technological
inventions increase, and the change is centered at 39.85 (c;).

The interpretation of the regression parameter estimates is primarily
based on their signs. The baseline EKC hypothesis for the relationship
between GDP per capita and CO, emissions per capita found firm sup-
port in the current study (main specification, Table 5, column 3), with
significant parameter point estimates equal to 0.59 in the linear part and
equal to —0.43 in the nonlinear part. These findings support previous
research [19], where the estimates were: 0.51 and —0.55, respectively,
for ASEAN countries and a different transition variable. The results
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Table 5

Estimated parameters of two-regime PSTR model.
Variables Estimates, coefficients (standard errors) Estimates, coefficients (standard errors) Estimates, coefficients (standard errors)

@ ) 3

Low R&D level, fiy;, linear part, 1st extreme regime
DIGi1 0.181 (0.029) *** 0.072 (0.037) * 0.070 (0.037) *
EIXj1 —0.389 (0.288) —0.231 (0.297) —0.245 (0.294)
GDPj._1 0.591 (0.122) *** 0.588 (0.123) **=
RENj 1 0.014 (0.042) 0.013 (0.042)
IVAj1 —0.150 (0.069) **
GOV 0.110 (0.128) 0.108 (0.127)
/j, nonlinear part
DIGi1 -0.325 (0.056) *** —0.211 (0.066) *** —0.212 (0.065) ***
EIXj 1 0.268 (0.055) *** —-0.326 (0.369) -0.327 (0.364)
GDPy 1 —0.431 (0.230) * —0.430 (0.230) *
RENj1 —0.162 (0.068) ** —0.162 (0.068) **
VA1 —0.040 (0.139)
GOVi1 0.937 (0.301) *=** 0.941 (0.298) *=**
High R&D level, fi; + fj, 2nd extreme regime
DIGi-1 —0.144 (0.060) ** -0.139 (0.055) ** —0.142 (0.055) ***
EIXj1 —0.122 (0.300) —0.557 (0.290) * —0.533 (0.290) *
GDPj._1 0.159 (0.203) 0.158 (0.202)
RENj 1 —0.149 (0.040) *** —0.149 (0.039) *=**
IVAj 1 —-0.190 (0.099) *
GOVir1 1.047 (0.258) *** 1.049 (0.255) ***
Slope parameter, y 3.665 (1.332) *** 1.296 (0.568) ** 1.277 (0.547) **
Location parameter, ¢, (antilog) 3.897 (49.25) (0.244) *x= 3.685, (39.85) (0.490) *** 3.685, (39.85) (0.484) *=**

Notes: standard errors (in parentheses) are achieved by applying the heteroskedasticity-consistent and cluster-robust covariance estimator; dependent variable: CO3 ;; —
CO,, emissions per capita; ATI;_; —all technologies (patents) per million capita; DIG;_; —digitalization index, percent of population; EIX;_; —education index; GDP;;_1
— GDP per thousand capita; REN;_; — renewable energy consumption, percent of total energy consumption; IVA;_; — value added from manufacturing, percent of GDP
(first-differenced); GOV;,_1 — government effectiveness index. The model includes dummy variables for OECD countries (= 1 for OECD, 0 otherwise) and global
financial crisis (= 1 for 2007, 2008, 2009, 0 otherwise). All exogenous variables are in lagged values (—1 year), 1997-2018. Significance levels: *p < 0.10, **p < 0.05,
wxxp < 0.01.

confirm those in [10]; where in a similar methodological setup but with the nonlinear part, with global pollution referenced as a probable
different transition (GDP) and dependent (ecological footprint) vari- explanation.
ables the income’s positive impact in the linear part was greater than in Moreover, the main variable of interest, digitalization in the lower

1.00-

0.50-

Transition function

0.00- @

11 1R A (11 [ [ |

-25 0.0 28 5.0 5 10.0
TV - All technological inventions

Fig. 2. PSTR model’s estimated transition function based on technological inventions
Notes: Each dot indicates an observation. “All technological inventions (patents) per million inhabitants™ is on the X axis in logarithmic scale. The turning point at the
value of 3.685 is marked by a vertical line.
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R&D output regime, had a positive and statistically significant point
estimate of 0.070, whereas, in the higher regime, the estimate was
negative at —0.142 and statistically significant. The estimate was also
negative at —0.21 and statistically significant in the nonlinear part.
Hence, in support of Hypothesis 1, an inverted U-shaped relationship
was found for CO, emissions transitioning in the R&D output level with
respect to digitalization as well. The high level of digitalization may also
capture better digital environmental management (enhanced data
collection and analysis), more efficient energy use [80], wider infor-
mation spread, and a higher environmental-awareness effect that reduce
CO; emissions [8,30] in advanced economies that have a high level of
technological innovations. The results support Hypothesis 1: in the low
R&D output regime, digitalization’s impact on CO, emissions is positive;
however, in a high R&D regime, digitalization’s effect on carbon emis-
sions is negative. At the same time, advanced economies produce higher
levels of R&D output, which results in the deployment of the most
innovative technologies (including digital technologies) that leads to
lower CO, emissions’ levels [9,49]. The relationship between digitali-
zation and CO, emissions was not previously examined using a
nonlinear PSTR estimator and testing the R&D threshold effect, with
only [42] using STR estimator and ICT as a threshold variable and
finding that ICT contributes to the mitigation of CO, emissions at a high
level of ICT.

Fig. 2 presents the transition function g(ATI;; 1;y,c) based on the
log-scaled variable of technological inventions per million inhabitants.
The turning point in the log scale is 3.685, which is represented in Fig. 2
by a vertical line.

The human capital estimate remained insignificant in the linear and
nonlinear parts but was negative and statistically significant at the point
estimate level of —0.53 in the higher R&D output regime. This indicates
that incremental human capital supported by high technology innova-
tion level reduces CO, emissions, a finding that at least partially sup-
ports the educational Kuznets curve hypothesis [125]. [46]; using the
PSTR approach and human capital as a regime transition variable, show
similar evidence on a hump-shaped Kuznets curve.

Additionally, the measure of renewable energy consumption had a
significant negative point estimate of —0.16 in the nonlinear part and
—0.15 in the high R&D output regime, which contributes to the evidence
that human capital facilitates R&D in renewable energy and the intro-
duction of energy-saving technologies [35,92]. Furthermore, the change
in manufacturing value added negatively impacts the pollution variable;
its estimates are —0.15 and —0.19 in the first and second extreme re-
gimes, respectively, both are statistically significant. This result supports
the EKC theoretical “composition effect”, meaning that the change in
manufacturing value added leads to decreased CO, emissions especially
in the higher R&D regime. A somewhat surprising result appears in
respect of the government effectiveness index, with a positive point
estimate of 1.05 in the higher R&D regime. On the one hand, institutions
play an important role in sustainability goals alongside economic and
technological progress — institutions support the enforcement of regu-
lations and enhance energy technology development [92]. However,
efficient institutions can lead to economic advancement and increased
energy use, which can, in turn, result in higher emission levels, with
mixed findings revealed on this relationship in the extant literature [61].

Table 5, column (2), presents the results of a shorter version of the
specification (without the indicator for manufacturing value added),
which is compared to the main specification for robustness purposes.
The estimations of this version are highly similar in terms of sign and
magnitude. The slope parameter here is greater, indicating a steeper
transition from the lower technological development regime to the
higher one. The location parameter value remains similar at 3.69.

The robustness of the results is tested using the alternative transition
variable of R&D expenditures as a percentage of GDP (obtained from
World Development Indicators, with lagged values (-1 year) for
1996-2018; [126]. Based on the discussion in Section 2.3, R&D in-
vestments (inputs) correlate with innovative technologies (outputs)
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[89]. Table A.9. of Annex A shows the results of this estimation of the
PSTR model (equation 6) with R&D expenditures as the transition var-
iable and one location parameter (the results of the specification and
evaluation tests imply a nonlinear model with one location parameter).
The parameter estimates are indicated for low- and high-regime tran-
sitioned in the level of R&D investments. The findings reveal that the
estimations with R&D input as the transition variable are robust and
comparable (by sign and magnitude) with estimated parameters of the
model with the transition variable of technological inventions, pre-
sented in Table 5. The slope parameter here 1.448 (main specification) is
slightly higher, indicating a steeper transition from the lower to the
higher R&D input regime. The transition function makes a shift between
the two R&D regimes at a threshold of 0.58, which represents R&D
expenditures taken as a share of GDP.

The model also includes a dummy variable for the global financial
crisis (GFC) (equal to 1 for the years 2007, 2008, and 2009, and
0 otherwise) to control for the potential effect of GFC on the results. In
the linear part (first extreme regime), the GFC impact was negative
—0.030, while in the second extreme regime and nonlinear part, the
coefficients were positive: 0.051 and 0.081, respectively (all statistically
significant). This reveals that, in the higher R&D output regime, the
impact of GFC on CO, emissions was positive.

5. Conclusions

In the face of massive environmental challenges, countries are
seeking opportunities to decouple economic development from
increasing carbon emissions. This study examines how digitalization
links to abating of CO, emissions and provides new empirical evidence
on the role of R&D output in driving the transition toward lower carbon
emissions.

This study provides support for a nonlinear relationship between COy
emissions and economic advancement indicators for the broad sample of
high-income and middle-income countries for the period 1996-2019.
The study results support the EKC hypothesis, finding evidence of an
inverted U-shaped relationship between CO, emissions per capita and
GDP per capita. The facilitating role of R&D output in that nexus implies
that policies focused on enhancing R&D output can contribute to the
development of a carbon neutral economy. The findings in alignment
with the EKC hypothesis show that economic development in low or
moderate R&D and technology regime does not contribute to environ-
mental quality, but the growth in later stages, supported by technolog-
ical development, induces increased use of renewable energy resources
and lower CO; emissions. An even stronger link is confirmed in the
relationship between carbon dioxide emissions and digitalization. The
findings also suggest that the digitalization effect not moderated by R&D
output can trigger an increase in carbon emissions levels. By contrast, if
digitalization is driven by intense R&D activities (especially those with
favorable environmental effects), it leads to a decrease of CO5 emissions.
This implies that the use of digitalization in higher R&D regime pro-
motes environmental sustainability. A partial EKC effect is found for
human capital, as it has a negative relationship with CO, emissions in
the high R&D output regime. The turning point at which the transition
function shifts between the two R&D regimes is equal to 39.9, a metric
that reflects the average number of technology patents per million
inhabitants.

Considering the main goals of this study, the obtained empirical re-
sults suggest directions for policy recommendations to improve envi-
ronmental sustainability. With resumed increase in global CO; emissions
after the end of the COVID-19 pandemic and considering the obligations
that countries have taken to achieve sustainable development goals
(SDGs) [127], governments should preferably implement stringent
policies that promote environmental as well as economic welfare. These
policies should recognize the role of R&D in moderating the relationship
between digitalization and CO, emissions. Hence, to sustain the envi-
ronment, more R&D is needed in digital development that generates
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products and applications that serve human needs, either at a lower cost
for the environment or, preferably, in an environmentally neutral or
even improving way.

On these avenues digitalization explicitly addresses several of the
SDGs set by the United Nations. In the context of decarbonization,
digitalization plays a strong role in promoting industry, innovation and
infrastructure, contributing to building of sustainable communities and
cities and strengthening climate action while facilitating access to
affordable and clean energy. The study findings reveal that governments
should consider facilitating the increased use, intensity and readiness of
digitalization that helps to achieve SDG-13 goals (targets 13.2 and 13.3)
by raising environmental awareness, enhancing education and
strengthening of institutions. Digital inventions that optimize processes
and deploy artificial intelligence and smart technologies contribute to
frugal energy use. Digital solutions already proved to be indispensable
during the COVID-19 lockdowns, making remote work and e-learning
pervasive, and the momentum could be used in striving for further
progress in digitalization. Policymakers should put particular focus on
promoting improved access to ICT technologies and the Internet (SDG-9
target 9.C) as well as more developed infrastructure (e.g., 4G, 5G net-
works), e-commerce and high-tech industries, with simultaneous intro-
duction of green technologies (target 9.4) and facilitation of scientific
R&D (targets 9.5 and 9.B) to improve efficiency of resource use and
reduce pollution. It is also essential to implement policies that promote
the tertiary effects of digitalization, such as environmental awareness in
consumption habits and economic decision-making. Governments
should consider digitalization, technological innovation, and R&D pol-
icies together as an interaction of these contributes to environmental
sustainability. These policies and the ongoing transition to renewable
energy sources pave the path to carbon neutral welfare growth.

The results of this study show that renewable energy consumption
reduces CO3 emissions when moderated by technological innovations.
This means that the share of clean energy should be increased in total
energy consumption by facilitating research into renewable energy so-
lutions, adoption of advanced energy technology and development of
energy infrastructure (SDG-7 targets 7.A and 7.B). However, the
increased cost of manufacturing, transportation and installation of
renewable energy equipment (e.g., wind turbines, solar panels) and
recent energy crisis [14] will present additional challenges in shaping
the policy. Governments should consider providing support to the public
and private initiatives in pursuing R&D activities to lower the costs of
renewable energy solutions. Furthermore, the study outcomes reveal
that income growth moderated by technology inventions reduces
pollution. Countries should therefore facilitate sustainable economic
growth when recovering after the COVID-19 pandemic (SDG-8) so that
digitalization supports increased productivity via introduction of tech-
nological upgrading and concentrating on high value-added industries
(targets 8.2 and 8.3). Special attention should be paid to efficient re-
sources use (incl. circular economy) and to the disconnection of eco-
nomic growth from deterioration of environment (target 8.4).

The estimation outcomes imply that R&D output plays a crucial
moderating role in environmental and economic sustainability. The re-
sults align with the findings of previous research [9,48] that high R&D
output has a suppressing effect on CO, emissions as more efficient and
green energy technologies are adopted that reduce waste, pollution, and
energy use in the production processes and decrease the exploitation of
non-renewable resources. Modern technologies, initially invented and
introduced in advanced economies of the US, Europe, and Japan, also
benefit the middle-income countries that are gradually adopting them,
increasing production efficiency and sustainability, and reducing COy
emissions globally [128]. The adoption of energy-efficient technologies
and the simultaneous deployment of digitalization should be prioritized
in both frontier economies and those that have not yet reached the R&D
regime turning point. Technological inventions can enable the
middle-income economies to reach the technological threshold that has
restrained the increase in their renewable energy generation capacity
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[129]. Furthermore, the implementation of these policies in
high-income economies will generate spillovers for the middle-income
countries that will help the latter to shape policies to increase energy
efficiency, promote green digitalization and thus decrease emissions.

As for caveats to this study, there may be other candidates (beyond
technological inventions, representing technological development, not
adoption) for the transition variable governing the shift between the
production-pollution regimes or an R&D variable other than techno-
logical inventions (patents) that may better capture the regime shift
process. Similarly, alternative indicators for digitalization may deepen
the knowledge of environmental impacts and affect some of the results.
Finally, the results may be sensitive to the composition of the country-
year panel.
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ARTICLE INFO ABSTRACT

Keywords: Oil shale is a calcium-rich fossil fuel, and its combustion in power plants generates high CO; emissions, which
CO, capture must be reduced drastically. Thus, this study conducts a comparative techno-economic analysis of adding CO,
Oil shale

capture technologies, namely, post- and oxy-fuel combustion technologies, to existing oil shale power plants in
Estonia. Estonia’s energy sector is unique due to its heavy reliance on oil shale. The study’s technical analysis
indicates that oxy-fuel combustion capture would outperform post-combustion capture in oil shale power gen-
eration. However, integration of CO, capture technology would result in reductions in power units’ heat rate
performances by more than 10% points due its energy requirements. From a financial perspective, the feasibility
of Estonian oil shale power plant CO; capture depends upon the long-term trends in the electricity market and
CO; emissions trading system. Full-capacity operation over an assumed 24-year lifetime would cost at least 89
euros per ton of CO; captured and stored in 2021 values. The actual cost might exceed paying CO, emission
allowance fees and environmental charges or result in a competitive disadvantage. Thus, only in the event that
the negative externalities resulting from CO, emissions and national energy security concerns cannot be feasibly
mitigated with alternative, stable, and controllable energy sources should state aid be used for COy capture
technologies for oil shale power plants. The need to impose higher taxes, ceteris paribus, to cover the state aid or
transfer the CO; capture costs to the private sector might reduce the Estonian economy’s overall competitiveness.

Power plants

Oxy-fuel combustion
Post-combustion capture
Techno-economic analysis

combustible gas is released, making it an unconventional oil resource.
Generally, OS deposits are found on all continents and contain an esti-
mated 6050 billion barrels of shale oil [10]. Despite its relative abun-
dance, only a few countries consider OS to be a reliable source for power
generation and shale oil production. As one of these countries, Estonia
has a long-term knowledge base concerning, and industrial experience
in, OS utilization. Estonian OS, called kukersite, belongs to a marine
group of formations and is rich in carbonates. Its organic matter has a
relatively high atomic ratio of hydrogen to carbon (H/C), typically
exceeding 1.2 (comparable to that for conventional oil); a low
oxygen-to-carbon ratio (O/C), typically falling below 0.12; a low ni-
trogen content of 0.33 %wt; and a chlorine presence of 0.75 %wt [9,11].
Due to the high hydrogen content in the organic matter, it can release up

OS is a fine-grained sedimentary rock that conjtains organic matter, to 90% of its volatiles [9]. Minerals constitute 60-70% of this OS and
more commonly known as kerogen [7]. The core difference between OS typically consist of carbonate minerals (calcite and dolomite) and sandy

and coal is that the organic matter found in OS is mainly of algal origin clay [11,13]. This OS's average moisture content is around 10 %wt, and
[8,9]. Another distinctive feature of OS is that during the thermal its average lower heating value is 8.5 MJ/kg [11,14].

decomposition of kerogen, a significant amount of shale oil and

1. Introduction

The need to reduce greenhouse gas (GHG) emissions to combat
climate change is evident [1,2]. The European Union (EU) has set targets
of net-zero GHG emissions by 2050 and a 55% reduction in GHG
emissions by 2030 compared to 1990 levels [3]. Oil shale (OS) is among
the fossil fuels that generate relatively high CO, emissions in power
plants—defined as at least 0.9-1.0 tons of CO2 per MWh, of electricity
generated [4]—as CO; is created not only through the oxidation of
carbon from organic material but also through the decomposition of
carbonates in OS’s mineral matrix [5,6].
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Abbreviations LCOE Levelized cost of electricity
LHV Lower heating value
BPP Balti Power Plant MEA Monoethanolamine
CcC CO,, capture MWh/tCO, MWh per ton of CO, captured
CCUS CO,, capture, utilization, and storage NETL National Energy Technology Laboratory
CFB Circulating fluidized bed 0/C Oxygen-to-carbon atomic ratio
DOE U.S. Department of Energy oS Oil shale
ECB European Central Bank OSPP 0Oil shale power plant
EPP Eesti Power Plant OoXY Oxy-fuel combustion
ESP Electrostatic precipitator PC Pulverized combustion
ETS Emissions Trading System PCC Post-combustion capture
EU European Union RP Reference plant
FF Fabric filter TRL Technology readiness level
FW Foster Wheeler WACC  Weighted average cost of capital
GHG Greenhouse gas Yar As-received basis percent
H/C Hydrogen-to-carbon atomic ratio Y%owt Weight percent

Estonia is unique in that a majority of its electricity is produced by oil
shale power plants (OSPPs), a portion of which it exports. Therefore,
Estonia’s GHG emissions per capita have been among the highest in
Europe. During the period 2013-2018, when OS electricity production
volumes were high, Estonia, with its 13.8-16.7 tons of GHG emissions
per capita, ranked among the top three GHG producers in Europe, along
with Luxembourg and Iceland. During 2019-2020, OS electricity pro-
duction declined in Estonia, as reflected in GHG emissions per capita of
11.2 tons in 2019 and 8.7 tons in 2020 [15]. The 2021 international
energy crisis, amplified by Estonia’s national energy security concerns
following the 2022 invasion of Ukraine by Russia and imposed or
planned sanctions regarding Russian fuel and energy imports to the EU,
led to a sharp increase in OS electricity production and, inevitably,
surging CO, emissions. No data are yet available for this period, but in
2018—the year likely to be most comparable with 2021 and
2022—Estonia’s net GHG emissions, including international transport,
reached the equivalent of 20.3 million tons of CO», of which 69% came
from the energy sector [16]. Thus, to reduce GHG emissions in Estonia,
the main focus should be on reducing CO, emissions from energy
production.

Although significant technological improvements in the OS energy
industry since the 1990s have significantly reduced CO, emissions,
under the current climate change mitigation goals, further reductions in
the industry’s environmental footprint are necessary [5]. In line with the
EU’s strategy, CO2 capture (CC) technologies must be developed and
implemented to reduce CO, emissions [17]. CC could be used in the
OSPPs [18,19], particularly if ways to store or utilize the captured COy
efficiently could be identified. However, adding CC capacity to existing
production units would increase the cost of the electricity generated and
reduce power generation efficiency. Implementing carbon capture, uti-
lization, and storage (CCUS) in OS energy production would make
financial sense if the electricity generated remained competitive with
electricity generated from other energy sources. Estonian OS-based
electricity must compete with fossil and renewable energy on the Eu-
ropean market via the Nord Pool power exchange. Therefore, a
techno-economic evaluation is needed to identify the technologically
most promising CC methods for OS-based electricity generation and to
assess their costs and competitiveness [5].

This study makes a novel contribution to an area that has received
minimal attention in the literature. The paper’s primary objective is to
assess the suitability of available CC technologies for OS electricity
generation in Estonia and to determine any additional associated costs.
The techno-economic analysis of retrofitting CC into the OSPPs is based
on the integration of two alternative CC technologies: post-combustion
capture (PCC) and oxy-fuel combustion (OXY). PCC and OXY have
relatively high technology readiness levels (TRLs >7) and can be used at

OSPPs. The paper offers a comparative assessment of CC technologies for
the OS energy industry, a comparative analysis of capture costs, and a
discussion of the results, including policy implications. This paper rep-
resents the first comprehensive assessment of the integration of CC
technologies into the OS-based power industry. To support and provide
input for the OS specific analyses of CC technologies presented in this
study (incl. in comparison with coal power plants), experiments have
been carried out with the OXY technology on a pilot scale. These ex-
periments build upon the authors’ experiences in the field of OXY [20]
and are transferable to other Ca-rich processes.

2. Material and methods
2.1. Oil shale as a fuel

The specifications for the two types of OS considered in this study are
presented in Table 1. As these two OS compositions vary in terms of
organic content, they are assigned different heating values. In this
specification, carbonate COy represents the CO2 content in raw fuel
bound with calcite and dolomite minerals.

2.2. Oil shale-based power generation

Over the last two decades, significant changes have occurred in the
Estonian OS-based power generation industry, including the partial
retrofitting of old pulverized combustion (PC) units with new circulating
fluidized bed (CFB) boilers (Balti Power Plant (BPP) unit 11 and Eesti
Power Plant (EPP) unit 8 in the period 2004-2005) [22] as well as the

Table 1

Specifications for the oil shales considered in this study.
Parameter 0s1 082
Carbon (organic), %, 19.28 21.00
Hydrogen, %, 2.37 2.48
Oxygen, %qr 3.62 2.46
Nitrogen, %a, 0.06 0.06
Sulfur (organic), %a, 0.39 0.37
Pyritic Sulfur, %, 0.91 1.02
Sulphate Sulfur, %,, 0.03
Chlorine, %,, 0.31 0.09
Carbonate CO3, %ar 17.98 19.00
Corrected Ash Content, %,, 43.53 42.00
Crystallic Water Content, %,, 0.64
Water Content, %, 10.90 11.52
Lower Heating Value, MJ/kg 7.90 8.33

Sources: Measurements made during experiments by the authors and Enefit
Power [12,21].
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commissioning of a new 305 MW, power unit at the Auvere Power Plant
in 2016. An overview of current OS utilization in power generation is
provided in Table 2. Only large-scale CFB units with rated capacities
greater than 50 MW, and using OS as their primary fuel are presented in
this table.

Power generation volume at OSPPs greatly depends on electricity
prices and the CO5 European Emission Allowance price posted for the EU
Emissions Trading System (ETS). As a result, OS power generation
declined significantly in recent years. However, it has increased once
more due to the sharp rise in electricity prices in 2021. Figs. 1 and 2
illustrate the recent dynamics of electricity generation and related COy
emissions in Estonia from OS firing power units. These figures show the
unprecedented reversals in volume that occurred through 2020. On the
one hand, these reversals significantly reduced absolute CO3 emissions
in the OS industry. On the other hand, CO; intensity per generated MWh
decreased gradually due to the much higher heating rates of the
remaining units. CO, emissions from the existing PC units exceeded
1200 kg/MWh, [24], whereas for retrofitted and new CFB units, emis-
sions were below 1000 kg/MWhe. In 2020, Estonia switched from being
a power exporter to a power importer and recorded several days with
zero OS-based power generation; however, the energy deficit and high
electricity prices in 2021 marked the comeback of the old PC units. This
trend has been further escalated by the need to secure Estonian national
power generation in light of regional security concerns.

Source: [25].

From a technical point of view, integrating CFB technology into OS

Table 2
Overview of the main power generation units.

Parameter BPP Unit 11 EPP Unit 8 Auvere Unit
(FW) (FW)
Type Two CFB Two CFB One CFB per single
boilers per boilers per turbine
single turbine single turbine
Rated Capacity 215" 215 305
(gross), MW,
Efficiency, % (net, 37" 37 40.27
LHV)
Commissioning Turbine 1970s, Turbine 1970s, 2016-2018
Boilers 2005 Boilers 2004
Steam Parameters, 12.7/535/535 12.7/535/535 17.2/540/565
MPa/°C/°C
Boiler Efficiency, % ~90 ~90 ~90
Fuel Type 0il shale, 0il shale, semi- 0il shale, biomass
biomass up to coke gas up to 50%; semi-
50% coke gas
Fuel Consumption, t/  234.5° 234.5¢ 295.5°

h
Water Cooling System  Once-through Once-through Once-through
NOx Reduction - - -

Method
NOx, (mg/Nm® 6% <200 <200 <200
03)

Sulfur Capture Naturally, Naturally, Naturally, directly
directly in CFB directly in CFB in CFB furnace
furnace furnace

SO, (mg/Nm® 6%0,)  ~3 ~3 ~3

Dust Control ESP ESP ESP & FF

Particulate matter (i. <20-30 <20-30 <5

e., dust), (mg/Nm3

6%02)
Flue Gas Flow, Nm®/h  ~767,455 ~767,455 ~1,034,514
Mt COy/y" 1.49 1.49 2.03

# Originating from combustion, based on 100% OS fuel and assuming 85%
capacity factor.

Y Without district heating load applied, can provide district heating load up to
110 MWy,

€ 100% OS firing with OS 7.9 MJ/kg, without district heating load.

4100% OS firing with 0OS 7.9 MJ/kg.

€ 100% OS firing with OS 8.33 MJ/kg.
Source: Authors’ calculations based on [12,21,23].
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Fig. 2. CO, emissions based on the firing of shale oil.

power units results in radically different performance characteristics,
such as technical availability, fuel flexibility, general thermal efficiency,
and emissions of pollutants [22,26,27]. High carbonate mineral con-
tent—that is, a molar ratio of calcium to sulfur (Ca/S) of around eight,
depending on OS quality—Ileads to the direct capture of almost all the
sulfur in the CFB furnace. The relatively low nitrogen content in
kukersite OS, combined with a lower combustion temperature, leads to
lower NOy formation, keeping it below its emission allowance of 200
mg/Nm®. Another advantage of CFB boilers, especially in light of the
recent decarbonized energy vector, is that they cause OS to decompose
to a smaller extent, around 70-80% [28], resulting in lower specific COy
emissions compared with PC combustion, where carbonates decompose
almost wholly. CFB boilers also offer fuel flexibility, making
co-combustion with other types of fuels, including biomass fuel [26,29,
301, which is regarded as carbon neutral under the current regulations,
possible.

Considering these characteristics, the three CFB-based units were
selected for this study’s CC retrofit analysis. The power units BPP 11 and
EPP 8 were deemed identical for this study’s purposes. Thus, the results
per unit (labeled as FW to refer to the Foster Wheeler-supplied tech-
nology used) apply to both BPP 11 and EPP 8. Additionally, in the
technical analysis, a hypothetical power unit with a fixed net power
output of 275 MW, (making it the same size as the Auvere unit without
CC) and powered by a CFB steam generator with supercritical parame-
ters is included. This generator provides a net unit efficiency of 43%
(LHV-based). It was assumed that the unit combusts OS2 fuel but can co-
combust biomasses up to 50% via heat input.

2.3. Selection of potential CO> capture technologies for oil shale power
plants

The techno-economic analysis of retrofitting CC into the FW and
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Auvere power units in the present study is based on the integration of
two alternative CC technologies: PCC and OXY that have relatively high
technology readiness levels (TRLs >7) and can be used at OSPPs.

Various PCC methods have been described [17,31,32], but they all
can be integrated into a power unit after the combustion section. These
methods include CC via adsorption, absorption, membrane, chemical
looping, and cryogenic processes. In this study, an amine solution ab-
sorption process was selected for studying CC deployment in OS power
generation units [33] because it has been demonstrated on a commercial
scale for power generation [34] and appears to be relatively
cost-effective, at least among the PCC methods [35]. Furthermore, its
characteristics have been well reported in the literature. This method
absorbs CO; from flue gas via the amine solvent monoethanolamine
(MEA).

OXY technology is another CC candidate for power plants. Compared
to the amine process outlined above, OXY has the potential to be more
energy and cost efficient [36]. The process is highly mature with a TRL
of 7. Unlike the amine process, OXY has been considered in many
research studies, including both modeling [37] and experimental
studies. It has been explored in the laboratory [38-41] and pilot scales
[20]. The pilot scale experiments [20] were extended to different
0,/CO, mixture ratios supplied to the combustion chamber, including
the cold recirculation of flue gases and different operational parameters.
These investigations have found that OS combustion in the oxy-fuel
environment at CFB conditions is technically feasible. Furthermore,
some positive effects have been observed; for example, it was demon-
strated that the OS carbonate minerals (around 20% recalculating to
CO3) decompose to a lesser extent under oxy-fuel conditions than during
combustion in air due to the higher CO; partial pressure under the
former set-up [42]. Thus, each OS unit can produce a positive energy
gain [43], leading not only to reduced specific CO, emissions and
reduced specific fuel consumption but also to a significant reduction in
NOy emissions due to the lower conversion of fuel nitrogen to NOy. At
the same time, there is a nearly complete capture of sulfur in-situ (the
SO, concentration in flue gases will be only a few ppm) due to the high
Ca/S ratio in OS.

2.4. Methodology for estimating the cost of CO2 capture at oil shale power
plants

To assess the financial cost of CC, the estimate of the average addi-
tional cost per ton of CO, captured at each OSPP equipped with CC
technology is compared to the same plant without CC technology.
Capturing CO3 becomes financially feasible when the cost of CC is less
than the CO; emission allowance and applicable environmental charges
incurred without CC. In addition, the average additional cost per MWh
of the net electricity produced by an OSPP equipped with CC technology
is compared with the cost of electricity from the same plant without CC
technology to illustrate the increase in the unit cost of electricity brought
about by the introduction of CC. The study does not quantitatively assess
the broader economic feasibility of CC, but it does address some key
externalities in the discussion section.

When specifying the methodology for this study, significant differ-
ences in the extant literature regarding the CC cost assessment meth-
odology, cost components, assumptions, scale, and scope of the CC
projects; features of specific CC technologies and power plants
(including a new plant with CC vs an existing plant retrofitted with CC);
geographical and temporal conditions; and terminology needed to be
carefully considered when comparing various studies [5,44]. This study
presents the cost estimates for retrofitting the Estonian FW and Auvere
CFB units with CC via the two technologically promising alternatives
mentioned earlier, i.e., PCC and OXY, in 2021 euros.

The methodology used for these estimates departs from the concepts
underlying the often-used levelized cost of electricity (LCOE; e.g. Refs.
[45,46]), as the per unit (ton of CO, captured or MWh of net electricity
produced) time value of the investment cost, operating and maintenance
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costs, and cost of fuel are considered. The cost of fuel covers the revenue
lost from electricity sales due to the consumption of energy in the CC
process. Note that estimating the LCOE would require the availability of
reliable information on production costs in addition to CC costs. In the
case of OSPPs, no reliable information on the actual production cost of
electricity is publicly available. For example, it has been suggested that
the actual production cost of electricity for the FW and Auvere power
units ranges from 15 to 25 EUR/MWh [47] to over 50 EUR/MWh [48],
reflecting high ambiguity. Moreover, LCOE estimation would require
inputting CO, emission allowance fees for each year of CC technology
operation, but future CO; emission allowance fees depend on
yet-to-be-made political decisions. Also, estimating the LCOE would
necessitate making assumptions about electricity sale volumes for each
future year of operation. Given the market characteristics described
above, any such assumptions would be highly subjective. To avoid
including elements with such high uncertainty, instead of estimating the
LCOE, this paper compares the average additional cost per ton of COy
captured and average additional cost per MWh of net electricity pro-
duced in an OSPP equipped with CC technology with the same plant
without CC technology. Unlike in LCOE estimation, where cost estimates
would be needed for each future year of operation, cost estimates are
needed for the first year of operation only. However, these estimates
reconcile with the LCOE approach when it is assumed that the annual
discount rate is equal to annual inflation in all cost components. This
approach provides meaningful and useful estimates of the financial cost
of implementing CC in an OSPP because it relies on evidence-based
input.

The cost per ton of CO; captured (Equation (1)) as well as the cost per
MWh of net electricity produced (Equation (2)) comprise the
investment-related cost component (I), operating and maintenance costs
(M) and the fuel-related cost (F). The retrofitting investment cost
(Equation (3)) reflects the technical parameters and scale of the FW and
Auvere power units. The investment cost is then converted into the
capital cost for calculating the annuity payments over the useful work-
ing life of the CC equipment after the identification of an appropriate
discount rate. Operating and maintenance costs (Equation (4)) include,
e.g., the costs of chemicals, labor, and maintenance [49]. The fuel cost
(Equation (5)) represents the energy needed for the CC process, i.e., the
revenue lost from electricity sales due to consumption of energy in the
CC process. The annual average costs per ton of CO, captured, c1;
(EURg021/tCO2), and per MWh of net electricity produced, c2¢
(EUR2021/MWh), are estimated for base year to = 2021.

I, +M, +F,
iy (EUR /1€O2) :W (€D
1, + M, +F
€245 (EURpn) [MWH) :W 2
1
Cho, (Ql/) Xy X Yy, X (147)
I, = {1 ;] 3)
(U
;
M, = Zgi.t X Upp XY @
p
Fiy,=Ecc X p,, (5)

where Crf is the investment cost of the CC technology at a comparable
reference plant (RP) in year ¢ (according to the relevant literature), Q is
the production capacity of the considered plant, Qs is the production
capacity of the reference plant, s is the scale adjustment factor [501, af
represents a currency index with which to translate the amount in the
original currency f spent on the reference plant in year t into euros for
the same year, and yg is a price index for translating the euros spent on
good g in year t of the RP study into the base year ty value. Additionally, r
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is the discount rate, n is the useful life of the implemented CC technology
in years, Egc is the annual amount of energy in MWh needed for oper-
ating the CC technology, and py is the market price of electricity in the
base year ty. Other costs are denoted with gj(; ... j). Similar to investment
costs, these costs are translated from the original currency and historical
values used in the study on the RP into euros for the base year. V(CO2)
denotes the annual tons of CO, captured with the CC technology at the
OSPP and E(MWh) denotes the annual net amount of electricity pro-
duced at the OSPP in MWh.

3. Assumptions for calculations and scenarios

3.1. Technological assessment of post-combustion capture of COz at oil
shale power plants

In the present study, the technical characteristics and investment and
operating costs for the post-combustion solution were determined based
on the rigorous analysis presented in DOE/NETL reference cases S22A
and S22F [51]. One distinctive feature of that analysis involves the
baseline performance and cost estimates provided for a power plant that
uses CFB for steam generation. Thus, one of the main reasons for the
reference case selection was that it closely matches the concept
considered here.

Generally, the composition of the flue gas formed during OS com-
bustion is quite similar to that of low-quality coal (lignite) and has some
favorable features when the amine process is utilized. Namely, due to
the naturally high carbonate mineral content in OS (Ca/S ~8), sulfur is
generally fully captured in the furnace when CFB technology is used,
positively impacting the CC process.

The flue gas composition assumed in this study for pure OS is pro-
vided in Table 3. For comparison purposes, a typical coal flue gas
composition and the subbituminous and lignite coal flue gas composi-
tions from the DOE/NETL reference case [51] are included. For each OS,
the flue gas composition was calculated based on the ultimate fuel
analysis shown in Table 1 while assuming an 80% carbonate decom-
position. Note that the OS flue gas compositions are quite similar to
those for the coals considered in the DOE/NETL reference case [51].

A cornerstone of the post-combustion process’ performance is the
energy required for amine regeneration. According to an overview of
several commercially available amine-based capture technologies [53],
this parameter falls in the range 2.2-3.6 GJ/tCO3, depending on fuel
type and technology supplier. In the DOE/NETL reference case [51], the
CO, removal system was based on applying the Econamine FG process
with the highest reboiler steam duty reviewed in Ref. [53]. It was
assumed that the steam extracted from the turbine was used as a heat
source. The equivalent electrical energy reduction of 0.22 MWh./MWh;,
was used in this study. The condenser heat duty reduction, which occurs
due to the reduction in the steam mass flow rate coming into the
condenser, was obtained by applying a simple heat mass balance around
the steam cycle [50]. A 90% capture efficiency was assumed, while the
captured CO, was compressed to 15.3 MPa (supercritical state). It
should be noted that there are no studies in the available literature that
include rate-based calculations for the amine process. The primary

Table 3
Flue gas compositions in oil shale CFB units compared with typical coal power
units.

Parameter NETL S/L* [511, Typical Coal [52], 081, % 082, %
% Mole % Mole Mole Mole
CO, 14.12/13.59 7-15 13.19 13.33
H,0 11.04/14.29 5-15 13.84 13.38
Ny 70.82/68.11 65-75 68.71 69.21
0, 3.17/3.19 2-12 4.26 4.08

# S represents subbituminous coal (Powder River Basin coal from Montana),
and L represents lignite coal from North Dakota [51].
Sources [51,52]: and authors’ calculations based on [9].
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performance characteristics implemented in the present study are pro-
vided in Table 4.
Sources [50-52]: and authors’ calculations.

3.2. Technological assessment of the oxy-fuel capture of CO2 at oil shale
power plants

The technical parameters and economic indicators for retrofitting the
existing Estonian CFB units and the hypothetical new CFB power unit
with OXY technology were determined based on DOE/NETL reference
cases L22A and L22B [54]. In those cases, cost and technical perfor-
mance assessments under OXY for CFB-powered units were performed
assuming the types of coal used were the same as those used in the
post-combustion reference case [51]. These circumstances, which
facilitated the comparative analysis of the PCC and OXY cases, were the
primary consideration in the selection of these reference cases. Yet, as
the OXY inevitably changes the combustion conditions and heat and
mass transfers, its impact on the flue gas composition—specifically on
the sulfur and NOy emissions, as well as the carbonate decom-
position—has been studied on a pilot scale with OS as the fuel [55,56].
Those results were considered in the selection and analysis of CC capture
possibilities in OSPPs.

The OXY system’s main technical characteristics were established as
follows. The energy requirement for oxygen separation from the air,
assuming conventional (available on a large scale) cryogenic distillation
producing 95%mol, was assumed to be 196 kWh/tO,. To establish a
basis on which to compare post-combustion capture, it was assumed that
the CO, formed in the OXY flue gas stream was purified and compressed
to a level similar to that in the post-combustion reference case. The
energy requirement in the compression and purification system was
assumed to be 0.22 kWh/Nmgo,.

3.3. Estimating the cost of CO_ capture in oil shale power plants

To estimate capital costs, installing the CC technology was assumed
to take about one year (as in Refs. [57,58], among others), and the
maximum useful life of the equipment was assumed to be 24 years [57,
58]. CC investment costs (including installation) were calculated based
on the data from DOE/NETL reference cases S22A, S22F, L22A, and
L22B [51,54] regarding RP investment costs, which were adjusted to the
technical parameters of the FW and Auvere units. These costs were then
scaled, as per Equation (3), with the exponent s, which fell in the range
0.61-0.69 for the OXY technology and 0.43-0.77 for the PCC technol-
ogy, depending on the type of equipment, as suggested in Ref. [50] and
following the DOE/NETL reference cases [54,59]. The costs of the CC
equipment meeting the technical parameters of the FW and Auvere units
given in 2007 US dollars for the DOE/NETL reference cases [51,54] were
converted into euros based on the exchange rate provided by the Eu-
ropean Central Bank (ECB). These costs were then updated to 2021
values based on Eurostat price indices for similar industrial equipment
and their installation costs.

Due to the Estonian income tax system’s peculiarities, the use of

Table 4
The main technical characteristics of the CO, removal system used in the present
study.

Parameter Units Value

Specific reboiler duty [51]
Equivalent specific electrical energy reduction (power-
to-heat ratio), estimated based on [50]

GJ/tCOy 3.2
MWhe/MWhy, 0.22

Electricity consumption [51] kwWh/tCO, 34

Amine (MEA) consumption [51,52] kg/tCO, 0.1
(captured)

Cooling duty during the capture process [51] kW/tCO, 1.08

Capture efficiency [51] % 90

CO, compression [51] kWh/tCO, 80
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capital from loans does not entail a tax advantage (i.e., produce a tax
shield). Thus, raising capital via loans at market terms does not signif-
icantly reduce the discount rate, and the weighted average cost of cap-
ital (WACC) is approximately equal to the unleveraged cost of equity.
Consequently, the discount rate r is chosen as the cost of equity without
leverage, which can be estimated via several methods in practice. This
study develops a model for estimating r based on the logic of the build-
up approach [60] and comprising the risk-free rate of return (rz), market
risk premium (rpy), Estonian risk premium (rpgg), beta multiplier
reflecting systemic risk (fy), liquidity premium (rpyq) and project-based
risk premium (rpprs). Because the company potentially implementing
the CC technologies (the state-owned Eesti Energia AS) is a relatively
large one, the risk premium for a small company is omitted. Thus, the
model used in this study to estimate the discount rate is as follows:

r=rp+ Py % (rpy + 1pee) + pio + oers 6)

The numerical values or ranges of the components of r for 2021 were
assumed to be as follows: the risk-free rate of return (rf) ranged from
—0.37% to 0% [61,62]; the market risk premium (rpys) was in the range
4.7-4.72% [63,64]; the country risk premium (rpgg) was 0.68% [63]; the
beta multiplier (fy) was 1.07 [65], the liquidity premium (rpjq) fell in
the range 0.5-1% [5] and the project-based risk premium (rppgr,) was 3%
[66,67]. Based on these values, the discount rate, calculated according
to Equation (6), ranged from 8.17% to 9.78%, producing an average of
about 9%, which was then used as the r (pre-tax discount rate) value in
this study.

For the operating and maintenance costs g;, the costs of labor,
maintenance, and chemicals were estimated, while cooling water and
additional costs were considered to be relatively insignificant. The
starting points for modeling the labor, maintenance, and chemical costs
were DOE/NETL reference cases S22A, S22F, L22A, and L22B [51,54],
all concerning US-based coal power plants (the reference plants) and
measuring costs in 2007 US dollars. As a next step, technology and
scaling adjustments were made (e.g., for labor costs, a scaling factor of
0.65 was used for both technologies [50]), and the costs were then
converted to 2021 euros using relevant labor, chemical production, and
equipment repair price indices from Eurostat [68], the US Bureau of
Labor Statistics [69], and Statistics Estonia [70,71].

As all CC equipment would be integrated into the existing OSPPs, the
CC electricity cost (cf. fuel cost in LCOE) represents the loss in electricity
sales and generation efficiency due to adding the CC and was estimated
to be around 0.3 MWh/tCO,, depending on the OSPP unit and CC
technology used and assuming an 85% capacity factor (i.e., operating at
full capacity for 85% of the total hours available per year). NordPool’s
2021 average electricity price of 86.73 EUR/MWh, for the Estonian
price region [72] was used for py. The high volatility of NordPool’s
electricity prices was reflected in the sensitivity analysis described in the
following section.

Two scenarios are presented: the baseline scenario, Scenario 1, as-
sumes that the OSPPs operate at full capacity for 85% of annual hours,
taking into consideration routine maintenance and downtime, and that
the CC technology will have the expected 24-year lifetime (with a year
for installation added). The alternative scenario, Scenario 2, assumes
that the CC technology is applied to electricity generation at half of the
above 85% capacity factor (i.e., the CC operates at full capacity for
42.5% of the annual hours). Scenario 2 was created to illustrate what
happens when OS electricity is competitive in the market only part of the
time, following actual historical patterns [5]. The analysis results are
sensitive to variations in the input values, including the use of CC
technology at less than full capacity or for less than 24 years, either of
which would significantly increase the cost of capturing each ton of COa.
These sensitivities are discussed in the next section.

4. Results

The technical results for retrofitting the FW (assuming OS1 use) and
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Auvere (assuming OS2 use) CFB power units for CC are shown in
Table 5. For comparison, this table includes a hypothetical CFB power
unit with supercritical steam parameters (assuming OS2 use). The main
drawback of CC implementation is the reduction of turbine net power
and power unit net efficiency due to the additional energy required to
run the CC process in the retrofitted power units. The table below shows
that CC deployment can significantly reduce CO, intensity in power
generation—up to 90% or even more. Under the specified assumptions,
to achieve a 90% CO, reduction, the net efficiency of an FW unit can
drop by up to 25.12% for PCC and 26.36% for OXY. The Auvere unit
demonstrates a better performance, mainly due to its higher initial
thermal efficiency. Further CO reduction is possible but would require
additional energy when using pure OS as the primary fuel. However, if
biomass, which is currently regarded as a COz-neutral fuel under envi-
ronmental regulations, is combusted in the power units, then even net
negative CO, emissions can be achieved under nearly the same energy
penalty. Depending on the biomass’s share of the fuel blend supplied to a
unit, the negative CO5 emissions can be as low as —40% (—0.59 Mt CO2/
y for BPP Unit 11 and 0.8 Mt COy/y for the Auvere unit) of the initial
level when the biomass is at 50% of the fuel blend.

The total estimated costs of implementing CC technology in Estonian
OSPPs in the above two scenarios is outlined in Table 6. The costs are for
CO;, capture and purification to 99.98%, and do not include storage, use,
or transport. When amine-based absorption is used, OXY appears to be
financially more favorable than PCC. This finding is broadly in line with
previous literature concerning PCC technology for coal power plants
[19]. Using a rough comparison, in coal power plants, in 2011, CC cost
per ton of CO, captured was estimated to be approximately 37.9 euros
(62.0 euros in 2021 values) for OXY [73] and 41.8 euros (67.3 euros in
2021 values) for PCC in the DOE/NETL reference case B12B [74].

Scenario 1 illustrates the full potential of CC implementation at
OSPPs, assuming that electricity production will run at full capacity for
85% of all annual hours. Scenario 2 illustrates operation at only a half
that time (i.e., operating for 42.5% of annual hours). Still, in reality,
long-term market conditions (e.g., NordPool’s electricity prices, and
CO, European Emission Allowances prices) may lead to significantly
lower production, which also means a lower amount of CO5 captured
and a significantly higher unit cost of capture than illustrated by Sce-
nario 2.

As outlined in Table 6, the most significant CC cost components in
OSPPs are capital and electricity costs, regardless of the capture tech-
nology chosen. Although the capital cost per ton of captured COz in-
cludes investment in the form of an annuity, allocated over the CC
technology’s expected lifetime, significant initial investments would be
needed at the beginning of the project, necessitating appropriate
funding.

The CC costs per ton of CO; captured and per MWh of net electricity
produced are susceptible to the amount of investment, electricity prices,
and useful lifetime and intensity of use of the CC. The results of the
sensitivity analysis for some of the main inputs are shown in Figs. 3 and
4.

The operation of the power units and their components is essential
for CC technology operation. When the power units reach the end of
their useful lives, CC technology use inevitably ends, regardless of its
viability. A temporary shutdown of electricity generation units has a
similar effect; e.g., when the electricity produced is not competitive on
the market, the CC technology is not fully utilized, and the unit cost per
ton of CO; captured increases.

5. Discussion

The results of this study depend highly on the assumptions. For
instance, the CC technology is assumed to have a useful lifespan of 24
years. However, the remaining lives of the FW power generation
equipment (e.g., the 1970s turbines in the EPP 8 and BPP 11 units) may
be shorter than 24 years, thereby increasing the cost per ton of CO2
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Table 5
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Results on main technical parameters of the considered power units after CC integration.

Parameter FW Retrofit Auvere Retrofit New Supercritical Power Unit

Type Oxy-fuel Post-Com-bustion Oxy-fuel Post-Com-bustion Oxy-fuel Post-Com-bustion
Net Rated Power, MW, 135.7 129.3 201.6 192.7 275 275

Efficiency, % (net, LHV) 26.36 25.12 29.46 28.17 33.26 28.77

Fuel Consumption, t/h 234.5" 234.5" 295.5"" 295.5"" 357" 413"

Specific CO, Emissions™ ", kg/MWh, 146 155 141 135 120 139

DOE/NETL L22B/L22F CO,, kg/MWh, [54] 114%* 130

Mt COy/y* 0.149 0.149 0.203 0.203 0.283 0.243

+ 100% OS firing with OS 7.90 MJ/kg (0S1), without district heating load.
-+ 100% OS firing with OS 8.33 MJ/kg (0S2).
+-+-+ Based on combustion and 90% capture efficiency.

* Originating from combustion, based on 100% OS fuel and assuming an 85% capacity factor.

**Recalculated to 90% capture efficiency.
Sources: authors’ calculations, [54]

Table 6
The estimated cost of CO, capture (EUR/tCO,) and initial investment (EUR in
millions).

Parameter FW Auvere
Oxy-fuel Post-Com- Oxy- Post-
bustion fuel Com-
bustion
Scenario 1
Cost of CO, capture (EUR/ 47.1 56.2 41.7 48.2
tCO,), i.e. c1; (EUR2021/
tCO,) in Equation 1
incl. capital cost (%) 39.1% 41.6% 32.1% 33.3%
electricity cost (%) 56.0% 52.5% 62.7% 60.8%
labor costs (%) 3.1% 2.7% 2.9% 2.0%
maintenance costs (incl. 1.6% 0.7% 2.1% 1.0%
materials) (%)
cost of chemicals (%) 0.2% 2.2% 0.2% 2.6%
Cost of cooling water (%) <0.1% 0.4% <0.1% 0.2%
CC cost per unit of electricity 62.5 78.2 50.8 61.3
produced (EUR/MWh,), i.e.
¢2; (EUR2921/MWh) in
Equation 2
CO, captured (max annual 1.34/unit 1.34/unit 1.83 1.83
amount; Mt) (2.68 (2.68
total) total)
Scenario 2
Cost of CO, capture (EUR/ 67.1 81.1 56.3 65.3
tCOy), i.e. c1 (EURz021/
tCOy) in Equation 1
CC cost per unit of electricity 89.0 112.8 68.5 83.0
produced (EUR/MWh,), i.e.
¢2; (EURy021/MWh) in
Equation 2
CO,, captured (max annual 0.67/unit 0.67/unit 0.91 0.91
amount; Mt) (1.34 (1.34
total) total)
Initial investment in CC 220.2 279.1 217.6 261.3

technology (EUR in millions)

captured and per MWh of electricity produced over the actual economic
life of the CC equipment. Furthermore, Eesti Energia, the energy com-
pany operating all the CFB OSPPs in Estonia, announced in June 2021
their intention to terminate OS-based electricity generation by 2030 at
latest [75]. This decision is welcome in view of the GHG emission
reduction goals and justified by the research reported in Ref. [5] and
done under the applied research project “Climate Change Mitigation
with CCS and CCU Technologies” (ClimMit), which supported the cur-
rent study (see acknowledgements). In the context of CC implementa-
tion in Estonian OSPPs, this decision limits the useful lifetime or
capacity of any CC investment made. However, recent national energy
security concerns may postpone the termination of OS-based electricity
generation, adding further ambiguity to this modeling exercise. More-
over, as the above two CC technologies have not been used in the OS
industry before and have not yet reached their final TRLs, the estimates

used herein involve significant technological risk and may result in
additional installation costs (e.g., reduced electricity generation at the
OSPP) and contingency costs. In short, the CC costs may differ from the
modeled ones in practice.

Based on Ref. [5], a recent comprehensive study concerning CCUS
implementation possibilities for the Estonian OS industry, the primary
option for disposing of any captured CO3 is piping it to storage under the
North Sea off the coast of Norway, although this storage infrastructure
remains under development, because there are no CO; storage facilities
in Estonia or feasible options for utilizing the total COy captured. The
approximate cost for the onshore transportation, shipment to Norway
and storage of the CO in the North Sea has been estimated at 47-59
EUR/tCO; [5] in 2020/2021 values.

As no CC technology operates at full efficiency (e.g., both PCC and
OXY are expected to be around 90% efficient; see, e.g. Ref. [76]), any
CO, that is not captured would be emitted. The potential charges for
these emissions are challenging to estimate for the future due to po-
tential changes in the regulatory environment.

Although any CO, capture process reduces the useable electricity
generation capacity of the OSPPs due to the increase in their self-
consumption of electricity, their operation ensures stable production
capacity, which is essential for the sustained operation of the electricity
grid. Also, stable electricity is guaranteed with domestic resources when
utilizing OSPPs in Estonia. Due to the need to ensure energy security and
network stability [77] and considering technological path dependence,
the level of development of energy storage technologies, and the long
duration of investments in the energy sector, an immediate and com-
plete transition to renewable energy is not possible in Estonia. More-
over, to advance the implementation of renewable energy, it must be
feasible to amass and store any surplus electricity generated [78]. En-
ergy generated from OS will probably continue to exist in the near future
in parallel with cleaner technologies. However, CC implementation in
the existing fossil fuel-based energy system may allow a smooth tran-
sition toward climate neutrality goals. Additionally, the use of CC in
fossil fuel energy production is one way to avoid potential energy crises
and balance the grid should the planned renewable resources fail to
provide the necessary capacity, e.g., due to their variability [5,79].

Capturing and storing CO, emitted by Estonian OSPPs is techno-
logically possible but might be financially in the longer term more
expensive than the prices of CO, European Emission Allowances and
applicable environmental charges. Thus, in an uncertain market, there
may be no incentive for the OS industry to implement CCUS without a
public obligation or support measures making the process economically
viable. Regardless, the cost of capture would be passed on to producers
or taxpayers, which could harm the Estonian economy’s
competitiveness.

Since CCUS can reduce GHG emissions, public interest in imple-
menting these technologies is vital, in addition to the private sector’s
economic considerations. The deployment of CCUS technologies has
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Fig. 3. Sensitivity of CC cost (EUR/tCO,) to

potentially significant positive externalities; that is, if it is not cost-
effective for companies under market conditions, the public sector
may still be interested in encouraging the adoption of CCUS technologies
through regulatory or supportive measures and making them attractive
or mandatory for the industry. When designing regulations (including
restrictions and obligations for the OS industry) and support measures, it
is crucial to consider the competitiveness of the OS industry and related
economic sectors on the international market. For example, in the long
run, it may not make sense to support companies that meet environ-
mental objectives (including fossil fuel-based industries adopting CCUS)
but are not competitive in their core businesses, which might be the case
for OS-fueled electricity. However, supporting internationally competi-
tive core businesses in terms of adopting CCUS technologies to move
toward environmental or sustainability goals may make sense even
when such support is not cost-effective under market conditions.

An energy sector strategy for Estonia based on an integrated and
evidence-based comparative analysis (including potential CCUS) is
needed to provide clarity and certainty for both private companies and
government agencies in terms of making investment decisions and
informing policymaking (including the identification of related R&D
priorities, development of appropriate regulations and legislation, and
decision making on environmental and energy-related interventions),
respectively. Such a strategy would contribute to the optimal use of
public resources and ensure the security of the energy supply [5].

6. Conclusions

This study presents a technological and economic assessment of CC
implementation in OSPPs. From a technological perspective, it is

investment in CC technology and cost of capital.

possible to retrofit existing OSPPs for the application of both PCC and
OXY technologies. CC deployment can significantly reduce CO5 intensity
in power generation—up to 90% or even more. However, integration of
CC technology would result in reductions in power units’ heat rate
performances by more than 10% points due its energy requirements.
This reduction is smaller for OSPP units with higher base thermal per-
formances. OXY is expected perform slightly better than PCC.

From a financial perspective, in an uncertain market, CC in the
Estonian OSPPs might not be feasible, as the cost of CC plus storage was
at least 89 euros per ton in 2021 under full capacity operation over the
expected 24-year lifetime of the CC, which might exceed the COy
emission allowance fees and environmental charges. Furthermore, CC-
equipped OSPPs could face a competitive disadvantage in the elec-
tricity market compared to companies employing non-fossil energy
sources in power generation. Potentially, CC obligations or support
measures (e.g., expanding biomass use in combination with OS in OSPPs
or regarding the CC in biomass combustion as generating net negative
emissions) could make the process economically feasible. However, the
cost of CC would then be passed on to producers or taxpayers, which
might negatively affect the economy’s competitiveness.

The need for stable electricity generation cannot be overlooked.
Currently, in Estonia, this need is fulfilled by existing OSPPs. Thus, until
non-fossil-fuel-based alternatives can ensure a steady power supply,
CCUS by Estonian OSPPs remains an option to consider. To ensure that
OSPP capacity is in line with the EU’s vision of a “carbon-neutral
economy,” it might be necessary to integrate CC into their operations
and accept its high private and public costs, or rely on imported energy
and face potential energy security issues and market fluctuations.
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Fig. 4. Sensitivity of CC cost (EUR/tCO5>) to electricity price and average annual capacity factor.
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Extended regressions

1. Introduction

The digital transformation accelerated by COVID-19 has garnered academic interest in the fields of both the macro- and micro-
economics. The macroeconomic line of research follows from Tinbergen’s (1974) endogenous “race” between technology and skills
supply. New technologies and digitalization processes generate skill-biased demand shifts (Goldin and Katz, 2008; Acemoglu and
Autor, 2012, 2011). Microeconomic perspectives include firm-level studies with a focus on the effects of digital diffusion, digital skills
and capacities on productivity (Gal et al., 2019; Heredia et al., 2022; Nicoletti et al., 2020; Pareliussen and Mosiashvili, 2020; Skog
et al., 2018; Corrado et al., 2017), as well as individual-level studies concentrating on the socioeconomic and labor-market aspects of
the digital divide (Akerman et al., 2015; Brynjolfsson and McAfee, 2011; Van Kessel et al., 2022).

The digital divide is a term used to describe disparities in, first, access to the Internet and frequency of use, and second, proficiency
in Internet use or the level of digital skills. Scheerder et al (2017) and Aydin (2021) underline as a third dimension of the digital divide
the interaction of digital skills with the contextual factors that shape the learning and productivity outcomes for the individual. The
early literature on the digital divide investigated the inclusion and access of different social groups to the Internet and digital tech-
nologies. Most of this literature sought to determine which socio-demographic factors are associated with a higher (or lower) pro-
pensity to have access to or use the Internet (DiMaggio and Hargittai, 2001; Hargittai, 2002). This line of investigation has shown that
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individuals with higher socio-economic status in terms of income, education, and labor-market outcomes are more likely to have access
and to use the Internet more frequently. This has raised concerns about the polarization and increasing inequality stemming from
uneven digital access and Internet usage (Van Kessel et al., 2022).

The increasing affordability and use of information and communications technologies (ICT) have led to rapid digital diffusion in all
spheres of human activity with considerable economic effects. Czernich et al. (2011) estimate a 0.9-1.5 percentage point increase in
per capita economic growth in response to a 10% increase in broadband penetration. Nicoletti et al. (2020) assert that high-speed
broadband connection and other digital technologies are highly complementary to technology adoption, emphasizing the necessity
of ubiquitous broadband dissemination. Internet access has reached near full coverage in the economically advanced parts of the
world, leaving only a small share of households with no connection to the Internet. Van Kessel et al. (2022) based on Eurostat’s
Community Statistics on Information Society (CSIS) 2019 survey, however, document large differences in Internet access between
countries in North-Western and South-Eastern Europe. As of 2021, about 4% of households in Europe with a member aged 25-54 years
reported having no broadband Internet access at home, according to CSIS. See Fig. C1 in the appendix.

Given that access to the Internet is more widespread than ever, the literature is shifting its focus away from digital access towards
discrepancies in digital skills. Akerman et al. (2015) have noted that further gains from Internet accessibility in terms of labor-market
inclusion and productivity might decrease unless there is a significant qualitative improvement in digital skills and patterns of digital
use. DiMaggio and Hargittai (2001) and Hargittai (2002) refer to disparities in digital skills as a second-level digital divide.

The number of studies on digital skills is growing but has been restrained by the limited availability of reliable data. Krutova et al.
(2022) admit that statistics on technology are in their infancy and highlight the need for more detailed data, for instance regarding the
qualitative characteristics of technology, which would enable the study of the effects of technological change on employment and labor
productivity. To meet the demands for better data on ICT use and digital competencies, Eurostat launched the CSIS on a voluntary basis
in 2010 and as a mandatory data-transmission request starting in 2011. The CSIS survey gathers information on Internet penetration,
computer- and Internet-use patterns, and digital skills at the individual level. The current study employs three CSIS survey waves with
reference years 2017, 2019, and 2021. These data contain a comprehensive measure of digital skills at the individual level and in-
formation on digital access at the household level. Because the study investigates the link between digital capacity and labor market
outcomes, the empirical analysis focuses on individuals of prime working age (i.e., 25-54 years old) and their households.

This study provides micro-evidence regarding the relationship between employment status and broadband Internet access and
digital skills before and after the breakout of the COVID-19 pandemic. The potential endogeneity of the measure of digital skills is
considered in the joint framework that estimates individuals’ digital skills conditional on their household characteristics and regional
aggregate variables as external controls based on Eurostat statistics. In addition, the data structure, which nests individuals into
households, enables an investigation into intra-family spillover effects, such as positive externalities for employment stemming from
the highest education level possessed at the household level. To the authors’ knowledge, this is the first study to estimate the
individual-level effects linking digital skills and employment status pre- and post-COVID-19 in a large number of European countries.
The findings capture how COVID-19 accelerated the digital transformation. COVID-19 has roughly tripled the labor market advantages
from having household members with tertiary education, with tentative evidence that governments’ COVID-19 response measures
magnified the role of family members’ educational attainment on labor-market outcomes. The pandemic has increased employment
benefits from formal education conditional on the level of digital skills and Internet access. It has improved the employment outcomes
of people with basic digital skills relative to the digitally illiterate. In contrast, the benefits of more advanced digital skills shrank
relative to those with only basic digital skills.

The next section reviews the literature on digital skills and employment and surveys recent research on how COVID-19 and the
digital transformation affect the labor markets. Section 3 introduces the data and outlines the empirical strategy. Section 4 reports and
Section 5 discusses the results. Finally, Section 6 summarizes and concludes the study.

2. Literature review
2.1. Digital skills and employment

From a labor-supply perspective, it is crucial to understand the complementarities and substitutability of skills stemming from
digitalization. Brynjolfsson and McAfee (2012) claim that a shortage of skills and stagnant work organization may hamper the
technological acceleration. Van Deursen and Van Dijk (2011) note that to use the Internet effectively, strategic Internet skills and
information-seeking skills are required that go beyond formal and operational skills and point out that research on strategic digital
skills is limited.

Bejakovic and Mrnjavac (2020) find a positive correlation between digital skills and employment in European countries. Akerman
et al. (2015) report that broadband Internet technology is skill biased. Their study found that broadband adoption in Norway com-
plemented the productivity of skilled workers and improved their labor market outcomes but it substituted for the labor of unskilled
workers. Krutova et al. (2022) study skill-biased technological change and show that while productivity gains from “traditional”
technologies complement labor and improve employment outlooks, the introduction of innovative/digital technologies displaces labor
and increases the risk of permanent job loss. The introduction of ChatGPT, an artificial intelligence (AI) chatbot, marks a new era of
human-centered technologies that raise discussions on the ethical aspects of technology-augmented decisions and the need for human
upskilling (De Cremer et al., 2022; OECD, 2017).

On a positive note, digitalization diminishes the necessity of task-specific working places, thus increasing the spread of “tele-
commuting” and decreasing the need for proximity between the home and work locations (Goldfarb and Tucker, 2019). Besides
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allowing for more flexible work organization, the communication features of digital technologies also facilitate the direct meeting of
labor supply and demand via employer—employee matching platforms or indirectly via social media and other information-sharing or
search environments (Kuhn and Mansour, 2014; Goldfarb and Tucker, 2019). The outcome may be higher labor market participation
as well as qualitatively better job matches (Evangelista et al., 2014).

While the literature on economic returns to education is vast (Psacharopoulos and Patrinos, 2018), the evidence regarding labor
market returns to ICT skills is still limited. Falck et al. (2021) estimate returns on ICT skills on Programme for the International
Assessment of Adult Competencies (PIAAC) data across countries and find an almost 24 percent increase in wages in response to one
standard deviation increase in ICT skills.' To counter causality issues pointed out by DiNardo and Pischke (1997), the study by Falk
et al. (2021) employs instrumental variable estimation that exploits technology-induced variation in Internet availability across
countries. Among earlier studies, DiMaggio and Bonikowski (2008) and Hanushek et al. (2015) have documented positive correlations
between digital skills and labor earnings, whereas Oosterbeek and Ponce (2011) found no evidence of an ICT-skill wage premium.

The eminent literature on individuals’ occupational choices and self-selection in the labor market recognizes the importance of
heterogeneous skills (Roy, 1951; Heckman and Sedlacek 1985, 1990; Sullivan, 2010). The job-search models by Mortensen and Pis-
sarides (1994) and its extensions (see Cairo and Cajner, 2018) explain the mechanisms behind labor market outcomes and postulate
that individuals’ outlook in the labor market improve if job-arrival rates increase and weaken if job-separation rates grow. Job-
separation rates have an endogenous relationship with on-the-job training, in that accumulation of valuable job or occupation spe-
cific skills reduces the likelihood for job separation. Cair6 and Cajner (2018) have shown that higher education increases accumulation
of job-specific human capital and leads to lower job-separation rates but does not significantly affect job-finding rates. According to
Frijters and Van der Klaauw (2006), loss of skills and drop in reservation wage over the out-of-employment spell is the main deter-
minant of unemployment and not job offer arrival rates that remained largely unchanged. Occupations vary strongly in remuneration,
job-offer and job-security rates that all determine individual utility from occupational choice. Sullivan (2010) shows that occupational
choice has by far the largest effect on individual utility as compared to the effect of on-the-job human capital accumulation within
chosen occupation. Work on the links between digital skills, the acquisition of job-specific human capital, and job-finding and job-
separation rates is still in its infancy (see Eggenberger and Backes-Gellner, 2021; Non et al., 2021).

Non et al. (2021) investigate the link between digital skills and labor-market outcomes over the pre-COVID-19 years 2012-2019 in
the Netherlands. They find that the individuals with lower digital skills are older, less educated, and more frequently female. In-
dividuals with at least basic skills have higher labor-force participation and are about 10 percent more likely to be employed compared
to digitally unskilled individuals. The unemployment spell, however, is not different for individuals with below-basic skills and those
with basic or above-basic skills. This suggests that, like formal education (Cair6 and Cajner, 2018), digital skills have no significant
impact on job-finding rates. At the same time, there is evidence that digital skills increase productivity, and Non et al. (2021) report a
4-6 percent wage premium for a one-standard-deviation increase in digital skills. This productivity effect is likely to have implications
for job-separation rates, in that individuals who are more digitally skilled accumulate more job-specific capital, which improves their
outlooks for longer job tenure.

2.2. COVID-19 and digital transformation of the labor market

The COVID-19 lockdown and broadly implemented remote-work regimes have substantially increased work from home, a shift
with a lasting effect (Aksoy et al., 2022). Flexible modes of work may alleviate labor market disadvantages for individuals facing higher
commuting costs or having caretaking roles at home (Chung et al., 2021). Sostero et al. (2020) estimate a 36% share of teleworkable
employment in Europe but also note that a considerable share of it, equivalent to 20% (over 40 million workers), were not regularly
engaged in teleworking before the COVID-19 pandemic. They note that while the strongest expansion of telework post COVID-19 was
observed among high-pay, high-skill occupations, the most radical changes in work organization concerned middle-skill workers, who
did not have teleworking opportunities or experience before. In a similar vein, Von Gaudecker et al. (2020) show that in the
Netherlands, working hours declined more for those with lower educational degrees and the self-employed in the early months after
the COVID-19 breakout in March 2020.

Soh et al (2022) investigated whether Covid-19 recession changed demand for digital occupations in the United States. They find
that digital employment remained more resilient during COVID-19 recession, but there was no temporary nor permanent increase in
absolute demand for digital occupations. More importantly, Soh et al (2022) separate cognitive, routine, and manual digital occu-
pations and find that the resilience of digital employment during COVID-19 arises predominantly from the group of cognitive digital
workers.”

Another line of research seeks to explain the dynamics of unemployment in a context of cyclical fluctuations and disruptive crises.
Fujita and Ramey (2009) show that while job-separation rates are countercyclical and have a contemporaneous effect, pro-cyclical job-
finding rates follow productivity increases with a lag. Using data from the US Current Population Survey, Barnichon (2012) finds that
hiring and separation respectively contribute approximately 60% and 40% to unemployment dynamics, except for business cycle
turning points, when job separations become dominant triggers of unemployment. His results are in line with those of Fujita and
Ramey (2009), who report a 40-50% share of job separations in unemployment dynamics and an even stronger effect when

1 In the sample of German municipalities, Falck et al. (2021) find an ICT wage reward of 31%.
2 Soh et al (2022) define digital employment that corresponds to occupations with a digital score in the top 50th percentile. The digital score
(Muro et al, 2017) measures digital skills and their relevance and importance for occupation.
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considering dynamic interaction with the job-finding rate. In the European context, Hairault et al. (2015) reveal an even (50/50)
contribution of hiring and separation to unemployment in France over the 1994-2002 period and a 60/40 to 65/35 rate over the
2004-2010 period. Hobijn and Sahin (2009) estimate monthly job-finding and job-separation rates for 20 OECD countries, identifying
considerable variation in both rates, with the US standing out with the highest job-finding rate in contrast to Western European
countries, which have considerably lower hiring rates. Gallant et al. (2020) provide evidence from the US labor market of a different
dynamics in unemployment mechanisms during the COVID-19 recession compared to past recessions. During the COVID-19 recession,
like in previous crises, job separations began to increase rapidly after the outbreak; however, no significant drop in hiring rates fol-
lowed along the usual lines of labor-market distress dynamics. The temporary nature of the COVID-19 recession implied high re-hiring
and has meant that job creation has remained mostly resilient.

The COVID-19 crisis is also unprecedented in terms of the measures taken by governments for the protection of public health and to
cushion employees and employers against economic distress. The comparative data on COVID-19 infection rates and governments’
responses reveal high regional and country variation.® This variation in governments’ public health and economic support responses is
not explained by the COVID-19 incidence rates only as different nations have taken very different stances on how to combat the virus.
In response to the severe economic disturbances provoked by the COVID-19 outbreak, the European Commission implemented a
temporary support instrument, a so-called “social bond,” to mitigate unemployment risks in an emergency (SURE).* By the end of May
2021, nineteen European member states were granted a loan amounting to over 94 billion euros in total.” The conditions for receiving
SURE funding were related to how significantly COVID-19 increased the public expenditures of the member state, and no specific
design was imposed on the particular labor-market measures to protect employment. The member states eventually implemented
considerably varying schemes, which have been labeled as “short-time work schemes,” “employment protection schemes,” or “job
retention schemes” in the academic literature (Miiller et al., 2022). Drahokoupil and Miiller (2021) proposed a typology of the varying
job-retention schemes, and Miiller et al. (2022) identified a set of criteria that enable the efficient and socially adequate use of SURE
resources.

Despite growing research on the implications of the COVID-19 pandemic, our understanding of how COVID-19-related economic
and social disruptions have mediated skills—employment relationships in Europe remains limited.® The pandemic has created new
demands in terms of households’ access to the Internet and individuals’ digital skills. A shift of production from a designated work
place to the home has also affected spillover effects between household members. This paper sets out to provide empirical estimates of
these effects and establish whether and to what extent the mediating role of the COVID-19 crisis stems from the actual cumulative rate
of COVID-19 cases or the public containment measures aimed at keeping the spread of the virus under control.

3. Data and methodology
3.1. Data sources, sample, and variables

The study focuses on the pre- and post-COVID-19 waves of the CSIS survey conducted in 2017, 2019, and 2021. The dataset in-
cludes 26 EU member countries and Norway.” The CSIS surveys individuals aged 16 to 74 years and nests them into households that
report information on household size, location, income, and access to the Internet. The households’ location is available at the NUTS1
(Nomenclature of territorial units for statistics) level for 56 regions and at the NUTSO or national level for 14 countries.® At the level of
the individuals, the survey contains information on the respondents’ age, gender, educational attainment (based on International
Standard Classification of Education [ISCED 2011] categories), employment status, and occupational category. The broad occupa-
tional categories are manual workers (The International Standard Classification of Occupations [ISCO] levels 6-9), non-manual
workers (ISCO levels 1-5), and ICT professionals (sub-categories at ISCO levels 1-3 that capture ICT assistants, operators, engi-
neers, and managers).

The current analysis complements the CSIS survey microdata with Eurostat NUTS1-level aggregate regional statistics on the un-
employment rate, tertiary educational attainment level, and the regions’ broadband Internet coverage rate.

The information on cumulative COVID-19 incidence rates per 10 000 inhabitants was retrieved from the COVID-19 European
Regional Tracker, an open data source at the sub-national level covering 26 European countries and created by Asjad Naqvi (see Naqvi,
2021). The merge with the CSIS dataset takes place at the NUTS1 regional level, except for the smaller countries that do not have
NUTS1-level regional classification and Germany, for which there is no NUTS1 regional information in the CSIS. For these countries,

3 Hale et al. (2021) compiled a worldwide comparative database regarding country governments’ responses to the COVID-19 pandemic, the
Oxford COVID-19 Government Response Tracker. The dataset comprises indexes of containment stringency, which include social-distancing re-
strictions and lockdowns but also information on economic support. Naqvi’s (2021) work is a source for the COVID-19 European Regional Tracker,
an open data source at the sub-national level for 26 European countries.

4 Council Regulation 2020/672 was published on 19 May 2020.

5 https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/659638/IPOL_BRI(2021)659638_EN.pdf.

6 See Brodeur et al. (2021), Padhan and Prabheesh (2021) for literature reviews of the economics of COVID-19.

7 Austria (AT), Belgium (BE), Bulgaria (BG), Cyprus (CY), Czech Republic (CZ), Germany (DE), Denmark (DK), Estonia (EE), Greece (EL), Spain
(ES), Finland (FI), France (FR), Croatia (HR), Hungary (HU), Ireland (IE), Italy (IT), Lithuania (LT), Luxembourg (LU), Latvia (LV), Malta (MT),
Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT), Sweden (SE), Slovenia (SI), Slovakia (SK).

8 CY, CZ, DE, DK, EE, HR, IE, LT, LV, LU, MT, NO, SK, SI. Note that Germany does not report NUTS1 regions in the CSIS.
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information on the cumulative confirmed COVID-19 cases at the national level was retrieved from the Our World in Data COVID-19
dataset.’

The comparative country level statistics on governments’ responses to COVID-19 is based on the Oxford COVID-19 Government
Response Tracker (OxCGRT), a database that aims to track and consistently compare government responses to the pandemic world-
wide (Hale et al., 2021).'° The estimations account for the effect of national COVID-19 containment and closure measures on the labor
market using OXCGRT’s stringency index and controlling for the Economic Support Index (ESI) for 2021.

For the investigation of the relationship between digital empowerment and employment, the study sample focuses on respondents
in their prime working age (i.e., 25 to 54 years old) who are either employed, self-employed, unemployed or inactive.'’ The study
sample excludes students who are not in the labor force. The total sample for analysis includes 262,277 individual observations across
the three survey waves (2017, 2019, and 2021). Of all observations, 79.7% correspond to individuals in employment with 21.12%
holding manual occupations, 2.74% being employed in ICT occupations, and 55.84% working in other non-manual occupations. The
underlying ISCO occupational classification codes for these three broad employee groups are detailed in the Appendix. 9.45% of the
sample are unemployed, and 10.85% are inactive. The total number of observations is divided evenly between 2017 (34.73%), 2019
(32.36%), and 2021 (32.91%).

Table 1 in the Appendix summarizes the descriptive statistics for the estimation sample.

The digital divide is measured based on two main aspects: the availability and speed of Internet access from home and the level of
digital skills. Both variables were retrieved from the statistics of the 2017, 2019, and 2021 waves of the CSIS. Fig. 1 shows that the
share of respondents without Internet access from home is the highest among the individuals not employed. The group of individuals
engaged in non-manual work has considerably higher average Internet access rate compared to manual workers.

The 2017, 2019, and 2021 waves of the CSIS contain a comprehensive measure of digital skills encompassing four dimensions: (1)
information-retrieving skills, (2) communication skills, (3) problem-solving skills, and (4) software skills. This division is in line with
the core 21st-century digital skills defined and investigated by van Laar et al. (2017, 2020), who distinguish information-management,
communication, problem-solving, technical, and other skills (e.g., collaboration, creativity, and critical thinking). The survey maps the
level of digital skills only for individuals who have used the Internet at least once within the last 3 months. These individuals are
categorized as “Internet users” in the current study. “Internet non-users” are individuals with no Internet use over the last 3 months,
those who could not respond to the question “When did you last use the Internet?,” and those who reported having no Internet skills.
The latter group forms the lowest (reference) category for the ordinal digital skills variable. The upper digital-skill categories are “low
skills,” “basic skills,” and “above-basic skills.” The digital-skill level takes the value of “above basic” for individuals who report at least
two activities within each of the four skill dimensions, including information, communication, problem-solving, and software skills.
The “basic” skill level is assigned to individuals reporting at least one activity in all four dimensions, and the “low” skill level concerns
individuals who report activity in at least one digital-skill dimension but not all. Appendix B contains detailed information on digital-
skill dimensions and levels. Fig. 2 portrays descriptively the frequency of Internet use and the level of digital skills across four
respondent groups.

Panel A of Fig. 2 demonstrates that almost all non-manual workers aged 25-54 years in Europe are Internet users (i.e., used the
Internet at least once in the past 3 months). The share of individuals who never used Internet is the highest among those not employed,
followed by manual workers. Non-manual workers have the highest share of above basic digital skills, while the share of digitally
illiterate is highest in the group of individuals not employed. However, the share of respondents with above average digital skills is
higher among the not employed than in the group of manual workers.

3.2. Estimation framework

The main associations of interest are captured by the estimates for formal education, internet access, digital skills, and within-
household spillovers stemming from members with tertiary education. The theoretical foundations for the analysis rely on Roy
(1951) framework of individuals’ self-selection in occupational choices and the empirical estimation employs random utility approach.

Individuals gain pecuniary and non-pecuniary utility'? from utilizing their skills in the labor market, whereas improvement in
occupation—skill match leads to higher utility. This implies that high skill level increases the probability of labor market participation
and more skill-intensive employment.'® This paper makes a few considerable simplifications that allow for a more straightforward
empirical approach. First, it assumes a single ordinal scale for the utility gain from the labor supply at the extensive (participation/non-
participation) and intensive (occupation-skill ladder) margins. Second, it does not separate the utility effects from voluntary and
involuntary labor-market non-participation. This issue is moderately alleviated by narrowing down on individuals in their prime
working age (25-54 years) who are not students and do not work for this reason. The utility of working and willingness to work are the

o https://ourworldindata.org/explorers/coronavirus-data-explorer; https://github.com/owid/covid-19-data/tree/master/public/data.
10 https://data.humdata.org/dataset/oxford-covid-19-government-response-tracker.
11 Although the statutory pension age in most European countries is 65 years or above, early retirement schemes mostly apply from age 55.
12 Non-pecuniary utility includes individual heterogeneities in innate preferences for schooling, for working in specific occupation and disutilities
of labor market participation (Sullivan, 2010).
13 Underutilization of skills increases alternative costs for the individual.
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A. INTERNET ACCESS = NARROWBAND + BROADBAND

100

percent

ICT professionals Non-manual workers Manual workers Not employed

| I \arrowband access only [ Broadband access

Fig. 1. Percentage of respondents’ households having either narrowband or broadband Internet access from home. The sample includes households
with one or more individuals aged 25-54 years, except for student households with no members in the labor force. Fixed broadband connections
include DSL, ADSL, VDSL, cable, optical fiber, satellite, and public Wi-Fi connections. Mobile broadband connections via a mobile phone network
must enable at least 3G, including UMTS, using a SIM card or USB key, mobile phone, or smartphone as a modem. Narrowband connections include
dial-up access over a normal telephone line or ISDN, as well as mobile narrowband connections via a mobile phone network below 3G (e.g., 2G+/
GPRS), using a SIM card or USB key, mobile phone, or smartphone as a modem. Source: Eurostat, CSIS 2022. Authors’ calculations.
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Fig. 2. Panel A: Percentage of individuals who reported last accessing the Internet within the past 3 months, between 3 and 12 months ago, more
than 1 year ago, or having never accessed the Internet. Panel B: Percentage of individuals with missing, low, basic, or above-basic digital-skill levels.
Note that digital-skill levels were measured only for individuals who reported most recently accessing the Internet within the past 3 months at least.
The sample includes individuals aged 25-54 years who are employed, self-employed, unemployed, or inactive (including retired and in compulsory
military service). Students who are not in the labor force are excluded. Source: Eurostat, CSIS 2022. Authors’ calculations.
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highest in prime working age. Thirdly, the estimation approach does not explicitly separate labor supply and demand, however the
latter is implicitly controlled for by NUTS1 level unemployment rate (age 20-64) in the occupational outcome equation.

The association between individuals’ employment outcomes, Internet access, and digital skills is estimated in both a univariate and
a bivariate framework. The univariate ordered probit model estimates a single employment equation and treats all regressors as
exogenous to the employment status of the individual. The extended bivariate regression estimates separate equations for employment
status and digital skills treating the latter as potentially mismeasured or otherwise endogenous. The joint estimation allows for
different parameters in the employment and digital skills equations and instruments digital skills with exogenous regional aggregate
digitalization indicators and individual’s family composition variables.

Skills form the underlying dimension for the ISCO occupational classification and this enables to investigate a single distribution
function of occupational outcomes as depending on skill levels (educational attainment), skill specialization (digital skill level) and
tastes for work (individual and household characteristics) at four different segments (see Appendix A for the details on ISCO concept).
Occupational outcome is observed as an ordinal variable with four categories. Individuals not participating in the labor market
(voluntarily or involuntarily) are assigned to the lowest category. The upper categories are formed and grouped according to the ISCO
occupational classification. The second category is comprised of individuals employed in manual occupations (ISCO levels 6-9), the
middle or third category represents individuals in non-manual occupations (ISCO categories 0-5) but who are not employed as ICT
professionals, and the highest or fourth category represents individuals employed as ICT professionals (according to ISCO sub-
categories; see Appendix A for the details).

Within-household spillovers stemming from members with tertiary education are measured with a dummy variable taking the
value of 1 if the respondent has at least one household member (beyond herself) aged 25-54 years who has a tertiary education, and
0 otherwise. The interactions of the main covariates with the COVID-19 incidence rate and governmental containment stringency are
expected to capture the COVID-19-moderated skill-employment link. Hence, the hypothesis to be tested concerns the interaction effect
of skills with the regions’ exposure to COVID-19 and countermeasures, both of which are considered exogenous to the individual.

The ordinal scale of the main variables of interest implies a non-linear estimation. Treating digital skills as exogenous allows for an
ordered probit estimation of the employment status. The exogeneity of the digital skills assumption might, however, be violated for
two reasons. First, the digital skills variable may be prone to measurement errors; second, employment status may be a reverse cause of
digital skills. Relaxing these assumptions requires a joint estimation of two ordered variables and results in a bivariate ordered probit
model. This generalized conditional likelihood framework handles separate equations for digital skills and employment simulta-
neously, allowing for covariation in their stochastic (error) components while imposing a triangular set-up for the dependency be-
tween digital skills and employment status. The joint recursive estimation relies on full information maximum likelihood (FIML),
where for reasons of computational feasibility, the likelihood function is defined as a product of marginal and conditional density.'®

The identification of parameters has to rely on exclusion restrictions and not only on non-linearity and functional form (Maddala
and Lee, 1976; Sajaia, 2008). Falck et al. (2021) use regional variation in broadband Internet availability to trace the effect of ICT skills
on wages. This study applies a similar strategy in that the Internet use and high-speed connection rollout variables at the regional level
serve as instruments for individuals’ digital skills. In addition, family size and other family members’ age-gender composition variables
serve as further instruments that capture variation in digital skills at the individual level. This identification strategy relies on the
assumption that regional digitalization indicators and household demographics are adequate measures of individuals’ supply of digital
skills but do not explicitly determine the individual supply of labor at different skill levels. The underlying rationale, then, is that the
digitalization network at the regional level has an effect on individuals’ digital skills earlier than on employment likelihood at different
occupational-skill levels. Hence, the digital skills equation has several covariates at the regional and household levels that are excluded
from the employment equation, including NUTS1-level Internet access and the prevalence of use, percentage of the population with
tertiary education, country-age groups mean digital skills and households’ gender-age composition.

The triangular system with latent equations for joint estimation is defined as follows:

D; = xllj,yl +x'1hy2 + 01+ 0+ €

E, = Covid; X Xy, + Xy,0 + 2, + 8y + 83 + 2, (1)

The subscript i stands for the individuals, j captures the variation across NUTS1 regions, and ¢ the variation across survey waves. D;
denotes the digital-skill level of the individual, and E; stands for employment status. The covariate vectors in the digital skills equation
contain the regional and household level variables (with respect to members other than the respondent) as instruments, x'lj[ =

(constant7 tertiaryjl,broadbandjt,accessjt.,nevemsedjt), and x'lh = (maxeducationy,, malemembery, memberage35to44;, memberage45to54;,).

The regional rates of Internet access, Internet use, and tertiary-education attainment as well as household-composition variables are
expected to correlate with the digital skills of the individuals. The covariate vector x, in the employment equation incorporate the

14 Brinca et al. (2021) found that labor supply was accountable for two-thirds of the spring 2020 drop in aggregate growth rate of work hours in the
United States.

15 The results are estimated using the STATA eoprobit routine. Sajaia’s (2008) bioprobit would be another equivalent command for retrieving the
estimation results. Because survey weights at the levels of individuals and households across the countries may be incompatible, the estimates are
calculated as unweighted. See also Solon et al. (2015) on the caveats of using survey weights.
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constant and the main variables of interest including endogenous digital skills D, the household-level dummy for broadband Internet
access, the formal education level according to the ISCED classification, and the dummy for another member of the household pos-
sessing tertiary education. The variable vector z controls for individuals’ age and the gender—family size interaction variable as well as
the NUTSI regional unemployment level. Both equations include year effects 6, and NUTSI regions’ fixed effects ;. The COVID-19
mediator variable varies across j regions and, depending on the model specification, stands for the cumulative rate of confirmed
cases or the index of governmental containment stringency. While one acts as the interaction variable in the employment equation, the
other is included in the control variable vector z. Parameter vector y, includes the intercept term and the parameters of the NUTS1
regional-level instruments, and y, includes the parameters of household-level instruments in the digital skills equation. Parameter
vector @; in the employment status equation includes the COVID-19 main effect and exposure-skill interaction effect parameters,
whereas it contains the interaction parameter for the recursive term. Vector a, contains the intercept term and the skill variables’ main
effects on employment outcomes, including the main parameter for the recursive term. Vector f stands for the parameters of the
control variables in the employment equation.

The error terms of the two equations are assumed to satisfy E(xj;¢1;) = 0 and E(x2;¢2;) = 0 and follow the standard bivariate normal
distribution.

’ 1 p

& = (e1,€2) N(0,X) where = [/) 1 ]

The ordered outcome variables for digital skills and employment status are both measured on four levels: k = 1(noskills),
2(lowskills), 3(basicskills), and 4(above — averageskills) and | = 1(notemployed), 2(manualwork), 3(non —manualwork), and 4(ICTwork),
respectively. The log-likelihood function for the individual is:

4
InL; = Z Zl(Di =k E; = )InPr(D; = k,E; = I)

4
k=1 I=1

where the probability Pr(D; = k, E; = l) given the cut-offs that satisfy ci1 < c12 < ¢13 and ca1 < €22 < a3 is:

Pr(D; = k,E; = 1) = Pr(cy—t < D; < e, e < Ei < c)
=Pr(D; < cu, Ei < cu)

—Pr(D; < cppi, Ei < cy)

—Pr(D;i < e, Ei < cyy)

+Pr(D; < cy1, Ei < c1)
Given the assumption of bivariate standard normal distribution of the error term and denoting the linear indexes in the digital skills

and employment equation Lp = Xy;,y; +¥,,75 +61; +1 and Ly = Covid; X X1 + X,z 42,3 +6y -+ correspondingly, the probability of
the outcome that D; = k and E; = [ can be written as:

Pr(D; = k, E; = 1) = ®,(cie — Lp, (e — Le)¢,P)
- ¢2<Clk—l —Lp, (021 - LE)C?)
- d)2<clk —Lp, (02171 - LE)Cﬁ)

+ @ (i1 — Lp, (€1 —LE>C]5)

Where ®, stands for the bivariate standard normal cumulative distribution function,
¢ = \/H#W’ and p = {(0+p), where 0 stands for the parameter of the recursive term in the employment equation.

This empirical set-up allows the COVID-19 pandemic to have a moderating role in shaping the link between skills, Internet access
and employment status. The interaction terms in the employment equation let the skill parameters vary in the pre- and post-COVID-19
pandemic periods depending on the NUTSI regions’ cumulative confirmed infection rates or on countries containment measures
accordingly. In contrast, the formation of individuals’ digital skills as depending on the regions’ aggregate digitalization and education
indicators and family composition variables is not considered to be fundamentally reshaped by the COVID-19 outbreak. While the post-
COVID-19 regime may have an effect on how individuals acquire digital skills in interaction with the changed environment in the
longer term, the assumption in the present paper is that this fundamental change has not yet taken place or has been negligible by the
year 2021.'° The intra-household correlations between individuals are accounted for by household-level clustered standard errors.

16 The model does not consider further interaction effects on employment status with respect to the control variables, such as individual de-
mographics and regional aggregate and dummy variables. Year dummies capture the shift induced by COVID-19 in both the employment status and
the digital skills equations.
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* Data: CSIS 2017, 2019, 2021. Naqvi (2021): COVID-19 European Regional Tracker. Eurostat.

Fig. 3. Extended ordered probit estimates for not in employment and non-manual employment outcomes before and after COVID-19 measured in
cumulative rate of infections in the region.

4. Results

This section reports the marginal effects of ordered probit and bivariate ordered probit estimates for the pre- and post-COVID-19
periods for educational-attainment, digital skills, and broadband-access variables, see Table 2, Table 3 and Fig. 3. Table 2 presents the
results for being not employed in the labor market and Table 3 for doing non-manual work.'”:'® The differences between the con-
ditional marginal effects estimated separately for the pre-COVID-19 and post-outbreak samples and the unconditional marginal effects
estimated over the total period are small. The unconditional marginal effects are estimated on a total sample and enable a comparison
of pre- and post-COVID-19 parameter estimates. The COVID-19 interaction terms let the education, digital access and skill parameters
change in the employment outcome equation before and after COVID-19 outbreak. Since COVID-19 is measured with two alternative
continuous variables, the aggregate cumulative confirmed COVID-19 cases in corresponding NUTS1 regions (COVID-19 Regional
Tracker) and the stringency of governmental containment measures (OxCGRT), the parameter changes in the employment outcome
equation are proportional to these two measures. Alternative model specifications show that COVID-19-related changes in the effect of
broadband connection availability and individuals’ skills on employment outcomes are greater if conditioned on cumulative cases
rather than on the stringency of public containment measures. Clogg et al (1995) cross-model Wald test proves the strongest statistical
differences between coefficient estimates for tertiary education and above average digital skills, followed by intra-family spillover
effect and broadband access (see Appendix D). This suggests that the shift in the demand for digital capacity and human skills triggered
by COVID-19 was suppressed by the governments’ responses aiming to alleviate economic setbacks resulting from stringent
containment measures.

Access to broadband Internet improved employment outcomes, especially the likelihood for maintaining ones’ non-manual job,

17 The results for manual-job outcomes and ICT-professional job outcomes are available upon request.
18 The unconditional marginal effects on the total sample enable a potential outcome comparison with a strong assumption of conditional inde-
pendence over the pre- and post-COVID-19 periods.
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* Data: CSIS 2017, 2019, 2021. Naqvi (2021): COVID-19 European Regional Tracker. Eurostat.

Fig. 4. Extended ordered probit estimates for not in employment and non-manual employment outcomes before and after COVID-19 measured in
cumulative rate of infections in the region. Digital skill effect at secondary and tertiary levels of education.

more strongly in the post-COVID-19 period than in pre-COVID-19 years and increasingly so for the individuals located in the regions
with higher exposure to COVID-19 infections. While controlling for the level of cumulative infections, tighter public containment
measures lead to a somewhat smaller hike in marginal effects, which indicates that public policy has at least partially reduced the
labor-market disadvantages for individuals belonging to households without a high-speed Internet connection.

Upper skill levels in both digital literacy and formal education have a stronger effect on non-manual employment than on the
probability of being not employed. This indicates that the skill level matters more for the type of employment than for participation in
the labor market. The marginal effects for upper-level digital skills and tertiary education are of similar magnitude and both types of
skills have considerable importance for labor-market status. Across education and digital skill levels, however, the absolute values of
marginal effects differ substantially. The marginal effects of tertiary education are approximately twice of the size of secondary ed-
ucation effects. Similarly, the marginal effects of above basic digital skills are two- to-threefold of the size of low digital skill effects. In
absolute levels these effects did not qualitatively change between pre- and post-COVID-19 estimations. There were, however, some
noteworthy, though subtle changes in marginal effects pre- and post-COVID-19. While educational-attainment became more important
post COVID-19 and the gaps between educational levels widened, the shifts across digital-skill levels were non-uniform. In the COVID-
19 period, the largest relative shift arose for individuals with entry level digital skills, as opposed to digital illiteracy. At the same time
the advantage from the upper digital skill levels did not grow. Hence, conditional on education level COVID-19 disproportionally
favored novice level digital skills at the lower end of the skill distribution.

Fig. 4 and Table 4 show the marginal effects of digital skills on non-employment and non-manual employment at the secondary and
tertiary levels of education. Digital skill level has a monotonous utility improving relationship with employment outcomes in that the
highest digital skills grant the highest probability of employment and likelihood of having a more skill-intense occupation. As for
probability of employment, digital skills have a stronger effect for the individuals with secondary level of education. In contrast, for the
probability of having a more skill-intense employment, the digital skill effects are stronger for the individuals with tertiary education.
Across both educational levels and occupational outcomes COVID-19 has favored the employment outcomes of people with entry level
digital skills relative to the digitally illiterate. In contrast, the benefits of more advanced digital skills shrank relative to those with only
novice digital skills.
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Table 4
Marginal effects of digital skills on the probability of non-employment and employment in non-manual occupations, bivariate ordered probit esti-
mates pre and post COVID-19 at the level of secondary and tertiary education.

Probability of Unconditional marginal effects at the level of educational attainment
occupational choice COVID-19 interacted: 2017, 2019, and 2021
Secondary education Tertiary education
Cumulative cases Stringency Cumulative cases Stringency
Pre- Post- Pre- Post- Pre-Covid19 Post-Covid19 Pre-Covid19 Post-Covid19
Covid19 Covid19 Covid19 Covid19
Probability of non-employment
Skills, low —0.1211%%%  —0.1454%**  —0,1227%%*  —0,1385%**  _(.1125%** —0.1327%** —0.1143%+* —0.1255%%*
(0.0219) (0.0229) (0.0223) (0.0235) (0.0230) (0.0245) (0.0235) (0.0247)
Skills, basic —0.2460%** —0.2504** —0.2473%** —0.2440%** —0.2148%*** —0.2160%** —0.2166%** —0.2088%***
(0.0386) (0.0394) (0.0393) (0.0405) (0.0371) (0.0379) (0.0379) (0.0385)
Skills, above basic —0.3557%** —0.3408%** —0.3604%** —0.3266%** —0.2932%** —0.2792%** —0.2974%** —0.2665%**
(0.0536) (0.0555) (0.0546) (0.0568) (0.0466) (0.0481) (0.0476) (0.0490)
Probability of employment in non-manual occupations (ISCO 0-5)
Skills, low 0.0923%** 0.1108%*** 0.0931%** 0.1073*** 0.1123%** 0.1363*** 0.1136%** 0.1304%**
(0.0125) (0.0122) (0.0126) (0.0131) (0.0185) (0.0197) (0.0187) (0.0204)
Skills, basic 0.2105%** 0.2104%** 0.2105%** 0.2087%** 0.2371%** 0.2407%*** 0.2380%** 0.2357%**
(0.0271) (0.0265) (0.0273) (0.0281) (0.0352) (0.0360) (0.0356) (0.0373)
Skills, above basic 0.3404*** 0.3138*** 0.3441%** 0.3039%** 0.3513%** 0.3324%** 0.3556%** 0.3198%***
(0.0469) (0.0486) (0.0528) (0.0543)
Cor(employment
status, digital (0.0483) (0.0494) (0.0483) (0.0494
skills)
Log-Likelihood —568 900.3 —568 894.7 —568 900.3 —568 894.7
Sample observations 262 277 262 277 262 277 262 277
Household clusters 129 413 129 413 129 413 129 413

Note: Refer to notes to Table 2 and Table 3.

After the COVID-19 outbreak the within-household spillovers from the externalities of tertiary education on employment status and
labor-force participation increased substantially, from below a single percentage point to 2-3 percentage points. This hike was stronger
in response to COVID-19 preventive containment and closure measures, than in response to cumulative COVID-19 incidence rates.

5. Discussion

The COVID-19 pandemic disrupted and rapidly reshaped the world of work. Access to broadband Internet, digital skills and
educational attainment combine to shape employment outcomes. There are also positive spillovers if household members have higher
education. The current study revisits the skill-employment link and investigates how four main capacities that empower individuals in
the labor market have become even more important after COVID-19 struck: (1) access to the high-speed Internet; (2) level of
educational attainment; (3) spillovers from tertiary educated family members; and (4) digital skills.

Not surprisingly, during COVID-19 access to high-speed Internet from home became more important for employment outcomes.
The estimations show that the association of broadband Internet with taking up or keeping non-manual employment is stronger than
the link with exit from non-employment. This finding is in line with Akerman et al.’s (2015) claim regarding the complementarity
between broadband Internet and labor skills. Access to the Internet benefits more the skilled and those in non-manual employment for
whom high-speed Internet access offers ways to maintain or even strengthen their labor market status. Access to the Internet has a
smaller but positive and significant effect on taking up a job for individuals not in employment.

The results show that the level of educational attainment became more important post COVID-19, with a widening employment gap
between below-secondary and secondary education and between secondary and tertiary education. This is consistent with Soh et al.
(2022) who found positive employment effect of digital occupations in the United States, but within digital occupations the effect was
mainly driven by cognitive occupations dominated by individuals with tertiary education.

Post COVID-19, the within-household spillovers from tertiary education tripled in size. This sheds light on the importance of higher
education’s non-monetary benefits and externalities that arise from home production, whose role has particularly increased with
COVID-19-related containment and closure measures.'’

Digital skills maintained a positive and strong effect on employment, but with contrasting outcomes across digital skill levels before
and after the pandemic. COVID-19 disproportionally rewarded individuals with novice level digital skills and this narrowed the gap to
individuals with basic or above basic digital skills. This observation gives testimony of skill-segmented and digitally disparate labor
markets that witnessed asymmetric labor supply disruptions. COVID-19 triggered an abrupt demand for entry-level digital skills in
occupations and jobs hitherto characterized by low level of digitalization and workers with absent or low digital skills. This evidence
agrees with Von Gaudecker et al (2020) who report labor supply disruptions from COVID-19 disproportionately affecting middle- and

19 See McMahon (2018) for the non-monetary benefits and externalities of higher education.
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low-skilled workers. These workers tend to have little or no opportunity to telework and they have low digital literacy. The sudden
demand shift in favor of employees with at least some digital skills seemingly increased employability of individuals able to support the
implementation of new digital tools in fields of work with low pre-pandemic levels of digitalization. Hence, the asymmetric labour
supply disruptions affected more strongly the lower end of digital skills distribution.”’

Comparing results using regional statistics on cumulative COVID-19 incidence rates with the indicator of governments’ contain-
ment and economic support measures finds that public containment and economic support measures alleviated the economic setback
for households and individuals and suppressed some of the COVID-19 triggered demand for digital capacities and education. Using the
cross-model Wald test from Clogg et al (1995) shows the strongest statistical differences between coefficient estimates for tertiary
education and above average digital skills, followed by broadband access and within household educational spillovers (see Appendix
D). The intra-household spillovers from tertiary education rose substantially comparing to the pre-pandemic years with the COVID-19
period. The preventive isolation closed individuals in their homes and made them more dependent on their family resources. Hence,
the containment measures may have aggravated the role of socio-economic disparities on labor market outcomes.

6. Summary and conclusions

This paper adds to the existing evidence that access to broadband Internet, digital skills and educational attainment combine to
raise employment outcomes and documents how COVID-19 has changed these relationships in important ways. Educational attain-
ment and digital skills are found to be strong complements that jointly improve the employment outlook for the individual. Labor
market outcomes are also positively shaped by the education level of household members. COVID-19 has roughly tripled the labor
market advantages from having household members with tertiary education, with tentative evidence that governments’ COVID-19
response measures magnified the role of family members’ educational attainment on labor-market outcomes. A possible explana-
tion for this could be that individuals with higher education would be better at supporting family members to gain or remain in
employment when this increasingly requires digital interactions. A parallel could be drawn to findings that children with higher-
educated parents had better learning outcomes in periods of remote schooling during the pandemic (Fisher et al 2020).

Conditional on the level of digital skills and Internet access COVID-19 has disproportionally improved the employment outcomes of
people with some (“low™) digital skills relative to the digitally illiterate. In contrast, the benefits of more advanced digital skills shrank
in comparison to those with only low digital skills. A plausible explanation may be that the abrupt labor-market disruptions caused by
COVID-19-related containment measures required a rapid transition from on-site to online modes of work. This transition happened
mostly at the extensive margin, raising demand for teleworkable hours, as opposed to the intensive margin, which would have raised
demand for more sophisticated digital skills. The switch to online work occurred more naturally among high-skilled workers, a
considerable share of whom is digitally proficient and already in teleworkable jobs. A rapid digitalization drive in some middle-and
low-skill occupations when physical contact was substituted for digital solutions due to COVID-19 confronted with insufficient supply
of digitally literate labor at the lower end of the pay-skill distribution and this could explain the disproportionally improved
employment outcomes for digital “survivors” among the middle- and low-skilled workers.

In general, the findings point in the direction that COVID-19 likely widened the employment gap between advantaged groups, with
high skills, from educated families and digitally proficient, and less advantaged groups. These results underscore the need for
intensified efforts to secure equal access to education and digital empowerment. Future research may show whether the changes in
labor-market rewards for digital skills triggered by the COVID-19 pandemic will permanently reshape the distribution of the supply of
digital skills and transform work more universally towards higher digitalization.
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Appendix
Table Al
Employment status, CSIS 2017/2019 and CSIS 2021.
Code CSIS Definitions 2017/2019 CSIS Definitions 2021
1 Employed or self-employed (including family workers) Employed
2 Unemployed Unemployed
3 Student (not in the labor force) Retired
4 Other not in the labor force (retired, inactive, in compulsory military service, etc.) Unable to work due to long-standing health problems
5 N/A Student, pupil (not in the labor force)
6 N/A Fulfilling domestic tasks
7 N/A Compulsory military or civilian service
8 N/A Other
9 Not applicable (age = blank or age < 16 years or age > 74 years) Used the Internet within the last 3 months, skill level “low”

Appendix A. 1: Employment status categories

The “not in employment” category includes categories 2 and 4 in the 2017 and 2019 CSIS surveys and categories 2, 3, 4, and 6 in the
2021 CSIS survey (note that category 8 does not include any observations). Students and pupils are excluded from the study.
Table Al

Appendix A. 2: Occupational categories

The study employs ISCO (The International Standard Classification of Occupations) definitions and categorization of occupations.
ISCO arranges occupations into groups according to two main dimensions: (1) skill level and (2) skill specialization. Skill level refers to
complexity and range of duties and tasks that relate to a specific occupation and it is measured with four ISCO occupational skill levels,
the level of formal educations according to ISCED and with on-the-job training and extent of required work experience. The concept of
skill specialization involves four aspects: (1) the required field of knowledge, (2) the tools and machinery used, (3) the materials
worked on with, and (4) the kinds of goods and services produced (International Labour Office, 2012).

The CSIS includes four categories of occupational status: (1) not in employment (unemployed/inactive), (2) manual workers: ISCO
6 to 9, (3) non-manual workers: ISCO 1 to 5 and (4) ICT professionals: ISCO sub-categories under 1-3 (CSIS Methodological manual,
2006). The ISCO groups 1-3 correspond to skills that are supported by tertiary level of education (ISCED5 and above), ISCO groups 4-8
require at least secondary level of education (ISCED2-4) and only the lowest ISCO group 9, elementary occupations, correspond to a
skill level that is provided by only primary level of education (ISCED1). In terms of CSIS broad groupings of non-manual and manual
occupations, the non-manual workers (ISCO 1-5) would require at least secondary education, and manual workers (ISCO 6-9) would
require no higher than secondary education (International Labour Office, 2012).

Manual workers. This category corresponds to major groups 6 to 9 of ISCO:

- Major group 6: Skilled agricultural and fishery workers (ISCED2-4);

- Major group 7: Craft and related trade workers (ISCED2-4);

- Major group 8: Plant and machine operators and assemblers (ISCED2-4);

- Major group 9: Elementary occupations (ISCED1).

Non-manual workers. This category corresponds to major groups 1 to 5 of ISCO:

- Major group (1): Legislators, senior officials, and managers (ISCED5-6);

- Major group 2: Professionals (ISCED5-6);

- Major group 3: Technicians and associate professionals (ISCED5);

- Major group 4: Clerks (ISCED2-4);

- Major group 5: Service workers and shop and market sales workers (ISCED2-4);

- Major group 0: Armed forces (ISCED1-2-4).

ICT professionals. This category consists of individuals in one of the following eight ISCO unit groups (unit groups correspond to the
4-digit level), see also the Methodological manual for Information Society Statistics 145.

— 1236: Computing services managers;

— 2131: Computer systems designers, analysts, and programmers.

— 2139: Computing professionals not elsewhere classified;

— 2144: Electronics and telecommunications engineers;
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— 3114: Electronics and telecommunications engineering technicians;
— 3121: Computer assistants;

— 3122: Computer equipment operators;

— 3132: Broadcasting and telecommunications equipment operators.
— 213: Computing professionals;

— 312: Computer associate professionals.

Appendix B:. CSIS definition of digital skills

The CSIS survey measures digital skills solely for individuals who have used the Internet at least once within the past 3 months. The
aggregate digital-skill level is composed of five sub-categories of digital skills: (1) information and data-literacy skills, (2) commu-
nication and collaboration skills, (3) problem-solving skills, (4) digital content-creation skills, and (5) digital-safety skills. These sub-
categories are defined below.

The activities used for calculating information and data-literacy skills are the following: copying or moving files or folders;
saving files on Internet storage space; obtaining information from public authorities/services’ websites; finding information about
goods or services; seeking health-related information.

The activities used for calculating communication and collaboration skills are: sending/receiving emails; participating in social
networks; telephoning/placing video calls over the Internet; uploading self-created content to any website for sharing.

For the area of problem-solving skills, the individual must have performed one task in each of two specific sub-categories to
qualify as “above basic™: sub-category 1 (problem solving) consists of transferring files between computers or other devices, installing
software and applications (apps), and changing the settings of any software, including operational systems or security programs; sub-
category 2 relates to familiarity with online services, including online purchases (in the last 12 months), selling online, using online
learning resources, and Internet banking.

For the area of digital-content creation, the individual must have performed one task in each of two sub-categories to qualify as
“above basic™: sub-category 1 includes using word-processing software, using spreadsheet software, and using software to edit photos,
video, or audio files; sub-category 2 comprises creating a presentation or document integrating text, pictures, tables, or charts, using
advanced functions of spreadsheets to organize and analyze data (sorting, filtering, using formulas, creating charts), and having
written a code in a programming language.

For the area of digital safety, the individual must have carried out actions for managing and securing digital access to their
personal data (e.g., name, date of birth, identity number, contact details, credit card number, photos, or geographical location).

The aggregate digital skills are ranked on four levels (“none,” “low,” “basic,” and “above basic™) as follows:

Skill level “none” corresponds to an individual who has no digital skills across all five sub-skill categories or has missing skills in
four out of five sub-skill categories.

Skill level “low” corresponds to an individual who lacks at least one out of five sub-skills entirely but has a few or multiple skills in
other digital sub-skill categories.

Skill level “basic” corresponds to an individual who has a few or multiple skills in all five digital sub-skill categories but not multiple
skills in all five sub-categories. In other words, individuals with a “basic” skill level have some digital skills in all five categories but
are limited to a few skills in one or more of them.

Skill level “above basic” corresponds to an individual who has multiple skills in all five digital sub-skill categories.

Table B1 presents the definitions for aggregate digital-skill levels for the 2017 and 2019 CSIS waves and the 2021 wave. The
common scale is adopted according to the category divisions with the mapping as set out in Table B1.

Table B1
Digital skills, CSIS 2017/2019 and CSIS 2021.
Code  Definitions CSIS 2017/2019 Code Definitions CSIS 2021
0 Skill level “none” or skill level not available because no Internet use 0 Skill level “none” or skill level not available because no Internet use
within the last 3 months within the last 3 months
1 Skill level “low” 1,2,3 Skill level “limited,” “narrow,” “low”
2 Skill level “basic™ 4 Skill level “basic™
3 Skill level “above basic” 5 Skill level “above basic”
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Appendix C:. Internet access, Internet use and digital skills by countries

Fig. C1 illustrates the Internet penetration for working-age individuals’ households in European countries according to the 2021
wave of the CSIS. The Internet coverage for households ranged from 94.2% in Bulgaria to 99.9% in Luxembourg, with six more
countries (Finland, Norway, The Netherlands, Austria, Spain, and Cyprus) boasting Internet penetration levels above 99%. Moreover, a
dominant part of European households accessed the Internet with high-speed broadband connections, with the highest coverage found
in Norway (99.6%).

Panel A of Fig. C2 demonstrates that the vast majority of individuals aged 25-54 years in Europe are Internet users (i.e., used the
Internet at least once in the past 3 months). The countries’ ranking in terms of the frequency of Internet use resembles that of
households’ Internet access. The share of Internet users is the highest in Norway, Denmark, Luxembourg, Finland, Sweden, and
Ireland, where over 99% of prime working-age individuals are Internet users. The countries at the lower end of the distribution are
Bulgaria (86.5%) and Greece and Italy (approximately 90%).

The aggregated digital-skill composition across countries (Fig. 2, Panel B) has a more varied structure. The countries reporting a
50% or higher share of 25-54-year-old individuals with above-basic digital skills are the Netherlands, Finland, Croatia, Ireland, and
Norway. In contrast, only 9% of individuals in Bulgaria have above-average digital skills.

A. INTERNET ACCESS = NARROWBAND + BROADBAND
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Fig. C1. Percentage of households having either narrowband or broadband Internet access from home. The sample includes households with one or
more individuals aged 25-54 years, except for student households with no members in the labor force. Fixed broadband connections include DSL,
ADSL, VDSL, cable, optical fiber, satellite, and public Wi-Fi connections. Mobile broadband connections via a mobile phone network must enable at
least 3G, including UMTS, using a SIM card or USB key, mobile phone, or smartphone as a modem. Narrowband connections include dial-up access
over a normal telephone line or ISDN, as well as mobile narrowband connections via a mobile phone network below 3G (e.g., 2G+/GPRS), using a
SIM card or USB key, mobile phone, or smartphone as a modem. Source: Eurostat, CSIS 2022. Authors’ calculations.
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A. FREQUENCY OF INTERNET USE
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Fig. C2. Panel A: Percentage of individuals who reported last accessing the Internet within the past 3 months, between 3 and 12 months ago, more
than 1 year ago, or having never accessed the Internet. Panel B: Percentage of individuals with missing, low, basic, or above-basic digital-skill levels.
Note that digital-skill levels were measured only for individuals who reported most recently accessing the Internet within the past 3 months at least.
The sample includes individuals aged 25-54 years who are employed, self-employed, unemployed, or inactive (including retired and in compulsory
military service). Students who are not in the labor force are excluded. Source: Eurostat, CSIS 2022. Authors’ calculations.

Appendix D:. Cross-model parameter tests Wald hypotheses test

Table D1

Table D1

2 Results for cross-model parameter equality comparing model specifications with COVID-19 cumulative cases and containment
stringency index from ordered probit estimation.

Parameters Wald chi-square p-value
Broadband internet access (BIACC) 5.0522%* 0.0246
Digital skills: base skills, none

Skills, low 3.4284* 0.0641
Skills, basic 0.8507 0.3563
Skills, above basic 14.2419%** 0.0002
Educational attainment: base primary education

Secondary education 0.8908 0.3453
Tertiary education 25.6215%** 0.0000
Household spillover, tertiary education 6.4265** 0.0112

Sample, N = 262277 individual observations.
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Appendix 4. The framework of twin transitions

Sustainable & Green Inclusive Economic Development

Green Jobs and technologies Low Emissions
Inclusive development Sustainable productivity
Institutions Twin Transitions
Policy & Regulations Green and Digital

e.g. Green Deal,
Digital Strategy

Green Transition Digital Transition
Technologies and implementation: Technologies and implementation:
Renewable, Low-Carbon, Carbon Capture (CC) Al, loT, ML, Digital Twins,
Circular Economy, Recycling Technology, data algorithms and hubs

Preservation of ecosystems

All Technologies
Green Complexity R&D EKC Digital Skills
Path Dependence, Relatedness, Diversification, (Green) Production capabilities

Knowledge Accumulation and Innovation, Human Capital

Figure 2. The framework of twin transitions.
Source: European Commission (2019, 2020a, 2020b, 2022b, 2022d, 2023a), Briglauer et al.
(2023), Paiho et al. (2023), Rehman et al. (2023), compiled by the author.
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