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1 Introduction
Nowadays, cybersecurity in Industrial Control Systems (ICS) is gaining popularity. This in-cludes any industrial process and infrastructure, e.g., wastewater treatment plants, nu-clear plants, electric power distribution, turbines, railway systems. These systems, typi-cally characterized by their obscure and proprietary protocols, and isolated networks, aregetting closer to traditional Information Technology (IT) systems; by adding IT capabilitiesand replacing physical devices by "smart" ones.A very common solution in the current ICS environment is the supervisory control anddata acquisition (SCADA) system. It is used to control and monitor industrial processes,collecting real-time data from sensors, displaying the process information to the humanoperators, and sending manual or autonomous orders to the actuators. For example,SCADA systems can be found in modern electric power distribution infrastructures, recol-lecting data from the smart meters to measure the level of consumption, and controllingthe allocation of electric energy.Since testing in real ICS can be dangerous and expensive, testbeds have gained popu-larity. Testbeds are testing infrastructures which simulates a real environment. The mainuses of such solutions are the vulnerability analysis, testing IDS products and educationalpurposes. Despite this, there is a lack of open source testbeds or open source frame-works to develop such testbeds. We ponder that this is a threshold for future studentsand researchers.Our motivation is to reduce this threshold.
1.1 Research Goal
The purpose of this research is to develop a testbed for SCADA systems, following a designscience research methodology. The testbed will be used for training, i.e., learning SCADAbasics and hacking techniques.This way, it will allow future researches to have common procedures and metrics toevaluate and compare old and future developments.The final goal is to reduce the threshold needed to start learning and researching onSCADA systems, which is very high due to the expensive hardware and the very specializedsector.

Research in SCADA testbeds has became trending in current investigations. During theliterature review we have discovered gaps in previous researches, inconsistencies in themethodologies applied by other authors, and a lack of mature and updated open sourceprojects. This shortfall of public knowledge is a big threshold for students and universitiesto start researching on the field. For example, in the survey published by Holm et al. [19],only a 25% of the studies come from Europe. Most of the studies found come from theMississippi State University and they are published by the same author, Thomas Morris.In the work Stites et al. [43], the authors provide inconsistent metrics in order to proveits value. The metrics provided do not focus on the ICS testbed but on the general testingplatform, which also includes different types of attacks such as spear phishing or socialengineering, hiding partially the results on our field of study. Besides, inMorris et al. [30],the authors do not provide any metrics to defend their achievements in the educationalfield. The only data provided is that the Mississippi State University has developed newcourses related to ICS security using their own testbeds.Therefore, due to the gaps found in the usability, capability and performance mea-surement of the testbeds, the lack of open source testbeds and the lack of consistentmetrics to prove its work, we can conclude there is still place to research and develop our
7



expected testbeds. Thus, the novelty of this research is the benchmark process and themetrics used to evaluate the validity of any testbed development, either using previousframeworks or a new design from the scratch.
In the study, meaningful processes and metrics will be provided, filling the gaps leftfromother investigations. This benchmark and the results could help improving the testbedsduring their life-cycle, developing new testbeds more specialized or help the researchersto follow a methodology to validate their solutions.A design science methodology will be used to prove the validity of the testbed de-veloped. In the research presented by Peffers et al. [35], the authors explain a six stepmethodology. The process is structured in a nominally sequential order, in this case, thisresearch will use a problem-centered approach, starting with activity 1; however, there isno expectation that researchers would always proceed in sequential order from activity 1through activity 6. The planned stages are as follows:
1. Problem Identification and Motivation. There is a lack of open source projects,focused on developing SCADA testbeds, following a consolidatedmethodology. Thiscauses a big threshold for the new users who want to get trained in the topic.
2. Objectives of the Solution. Extracting the requirements to build our solution, suchas the architecture or themetrics to validate them, and analyzing possible solutionsalready created which may be valid for the research.
3. Design and Development. The actual specification, design and development of thetestbeds.
4. Demonstration. The proof of concept showing the testbeds work. This will beshown by performing the attacks in the testbeds.
5. Evaluation.Wewill evaluate the performance of the testbeds using several metrics,like the time required to deploy a single testbed or the minimum system require-ments to work with no interference.
6. Communication. Reaching the conclusions and publishing the work of this MasterThesis.

1.2 Roadmap
Chapter two contains the background information collected for the research as well as theliterature review used.In chapter three, wewill explain themethodology used to develop theproposed testbed.This methodology follows a design science approach based on the work of Peffers et al.[35], divided in six steps. This chapter structures the rest of the Master Thesis based onthese six phases, including the introductory chapter, which defines the state-of-the art ofsecurity in ICS and identifies the initial problem for the research.In chapter four, two different activities from the methodology are addressed. First, wewill define the objectives of the solution, analyzing the environment of SCADA testbeds tofind the current solutions and figuring out the minimum requirements our artifact shouldhave. Second, this chapter covers the design and development of the solution. This in-cludes the design of the testbed scenario, the different iterations performed to reach thefinal solutions and the issues found during its development phase. In this chapter we willalso discuss the possible features that can be measured and benchmarked in order toprovide validity to our investigation.
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The chapter five will focus on the demonstration part of themethodology, with specialfocus on the attacks in SCADA networks. It contains technical description of different at-tacks and the different taxonomies used to classify them. We will discuss the advantagesand disadvantages of including some of these attacks in our scenario. A special case arethe denial of service attacks, which are real threats in real world systems but very com-plex to handle and replicate in testbed scenarios. This chapter will show detailed proof ofconcepts of the attacks implemented in our scenario.After presenting our scenario and the possibilities it provides, in chapter six we willevaluate our testbed, based on the design requirements from chapter four, in order tovalidate our hypothesis. We will explain the tests applied to the scenario, describe ourprocedures and present the results. In the chapter seven, we will discuss these resultsand give some possible improvements for our testbed.In chapter eight, we will present our conclusions about the results obtained and bringforward our final thoughts about the research.Based on the issues found along the research and the literature review on the topic,chapter nine contains several research-lines for future investigation. Not only academic-based topics will be illustrated, but also industry and commercial ones.
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2 Background and literature review
Industrial Control Systems (ICS) is a general term that includes several types of controlsystems, including the supervisory control and data acquisition (SCADA) systems, used tocontrol and monitor industrial processes; from critical services and industrial infrastruc-tures, e.g., water purification, nuclear plants, chemical plants; to a single ProgrammableLogic Controller (PLC) measuring the temperature inside an industrial oven. These sys-tems collect data from the industrial processes, through sensors, and use it to control theprocess itself, through actuators.An ICS consists of a blend of control components, (e.g., logical, mechanical, electrical)that work together pursuing an industrial goal, like transportation of resources or manu-facturing a good. We can always distinguish two different parts in an ICS, the process andthe control. The first is concerned with producing the output while the second includesthe specification of the desired output or performance. This control can be fully auto-mated or include humans in the loop. ICS control industrial processes are typically usedin chemical, food and beverage, electrical, manufacturing (e.g., aerospace, automotive),oil and natural gas, pharmaceutical, transportation, and water and wastewater industries[45].
2.1 ICS basics
Historically, ICS had little resemblance to traditional information technology (IT) systems;using specialized software and hardware or having isolated systems running proprietaryprotocols, such as physically secured areas where the components were not directly con-nected to IT networks or systems.Nowadays, due to thewidely available low-cost Internet Protocols (IP) devices, the pro-prietary solutions are being replaced, which increases the likelihood of cybersecurity risksand incidents. ICS are starting to resemble IT systems, by adopting solutions to achievehigh connectivity for the corporate business and remote access capabilities (e.g., indus-try standard computers, networks and operating systems). Many of today’s ICS evolvefrom the addition of this IT capabilities into existing physical systems; either replacing orsupplementing physical control mechanisms, resulting in many of today’s "smart" tech-nologies such as the smart electric grid, smart buildings, smart manufacturing, and smarttransportation.ICS topologies are now mixed with the corporate networks, creating a huge and com-plex landscape, using different devices and protocols. In Figure 1 there is an example ofa SCADA implementation topology. The field devices are connected to the primary con-troller, where the data is stored and analyzed; in addition, this network is connected tothe corporate environment and a secondary controller.This integration provides significantly less isolation from the outside world than pre-vious models. For example, the use of wireless Internet of Things (IoT) network deviceswithin the ICS increases the risk of attacks coming from adversaries who are in close physi-cal proximity but do not have direct access to the system. All of this creates a greater needof resources for the adaptability, resilience, safety, and security of ICS. There is a wide listof considerations that should be included in ICS security:

1. Physical effects. ICS devices are directly responsible of controlling physical pro-cesses, which implies very complex interactions and consequences in the physicaldomain.
2. Time and performance requirements. ICS are generally time-critical and some sys-tems require reliable, deterministic responses. High performance is typically not
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Figure 1 – Example of a SCADA implementation. Figure from [45].

essential to ICS. In contrast, IT systems typically require it, although they can typi-cally withstand some level of delay.
3. Availability requirements. Unexpected failures of systems that control industrialprocesses are not acceptable. Outages must be planned and scheduled in advance.Control systems cannot be easily restarted without affecting the production, mean-ing that IT strategies such as rebooting a component, are usually not acceptable dueto the adverse impact on the requirements.
4. Technologies. ICS control networks and operating systems (OS) are often quite dif-ferent from IT counterparts, and many times proprietary owned technologies. Thisrequires different skill sets, experience, and levels of expertise.
5. Resource constraints. ICS and their legacy systems are usually resource-constrainedsystems that do not include typical contemporary IT security capabilities, such asencryption capabilities, error logging or authentication mechanisms. The use ofthis capabilities might affect the availability and produce timing disruptions.
6. RiskManagement Requirements. In traditional IT systems, data confidentiality andintegrity are the primary concerns. For an ICS is not the same, human safety andfault tolerance are the primary concerns.
7. Change Management. Change management defines a paradigm to maintain theintegrity of both IT and ICS. Software can’t be made one hundred percent secure,this represents one of the greatest vulnerabilities to a system. Software updates onICS usually cannot be implemented on a timely basis, they need to be thoroughly
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tested, planned and scheduled (with its correspondent outage) before being im-plemented. Additionally, many ICS use older OS versions that may no longer besupported by the vendor.
8. Interoperability. Service support is often provided via a single vendor, which maynot support solutions from another vendor. In some cases, third-party security so-lutions are not allowed due to ICS vendor service agreements or licenses.
9. Components lifetime. Traditional IT components usually have an average lifetimeof 3 to 5 years. In ICS, due to the specific use and implementation, the lifetime of thedeployed technology is often in the order of 10 to 15 years and sometimes longer.
10. Components location. IT components are often located in business or commercialfacilities. ICS may be isolated, remote or require complex transportation to reach.
Therefore, security solutions, usually designed for typical IT systems, must take specialprecautions in ICS environments. Although ICS contain some characteristics similar to tra-ditional information systems, they present serious differences; many of them are due tothe fact that logic executing in ICS has a direct effect on the physical world. Thismeans thatany cybersecurity incident in ICS can be a significant risk to the health and safety of humanlives, a serious damage to the environment, or even produce a negative impact to a na-tion’s economy. Furthermore, ICS have unique performance and reliability requirements,and unconventional protocols and operative systems. Some balance is need between thesecurity goals and efficiency in the design and operation of control systems.

2.2 ICS security
Threats to ICS can come from several sources, including malicious intruders, terroristgroups, hostile governments, accidents, natural disasters or even accidental or maliciousactions by insiders. ICS security objectives typically follow the priority of availability andintegrity, followed by confidentiality. It is more severe that an attacker is able to injectmalicious packets to affect the performance of a power plant than reading sensitive datafrom the network.To achieve these objectives, a defense-in-depth strategy should be applied, layeringsecurity mechanisms such that the impact of a failure in any onemechanism is minimized.The following controls should be included:

1. Restrict the logical access. Limit the connectivity to the internal ICS network. Thismay include a demilitarized zone (DMZ) network, unidirectional gateways, firewalllayers to split the ICS network from the corporate one or using different authenti-cation mechanisms for each network.
2. Restrict the physical access. Unauthorized physical access to the ICS componentscan cause serious damage in the performance and functionality. This includes locks,access cards or security guards.
3. Protect the components from exploitation. Including the deployment of securitypatches, disabling unused ports and services, restricting ICS user privileges, mon-itoring audit trails and using endpoint security protections, such as antivirus soft-ware.
4. Restrict unauthorizedmodification of data. This includes data in transit and at rest.Encryption solutions should be in placed. Establishing role-based access control andconfiguring each role based on the principle of least privilege.
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5. Detect security events and incidents. In order to detect possible incidents occurredby failed ICS components or external attacks, monitoring capabilities are necessary.
6. Maintain the performance during adverse conditions. ICS should be design so thateach critical component and network is redundant in case of failure. Furthermore,if a component fails, it should do it in a manner that does not generate unnecessarytraffic, or does not cause a cascade effect.
7. Restore the system after an incident. Incidents are inevitable, so a well-definedincident response plan is essential. How quickly the systems can be recovered issign of good security.
8. Provide standard procedures. Developing security policies, procedures, trainingand educational material eases the task of controlling and operating ICS. Industrialstandards and certifications should be used to prove the implementation of securitymechanisms.
These measures are important due to the increase of attacks in the ICS environmentand its consequences. For example, in 2014, the ICS Cyber Emergency Team (ICS-CERT)responded to 245 incidents. To show the impact of these attacks, some remarkable ex-amples of ICS incidents are described below.In 2007, the Idaho National Laboratory ran the Aurora Generator Test to demonstratehow a cyberattack could destroy physical components in the electric grid. First, the at-tacker gained access to the control network of a diesel generator. Then, a malicious soft-ware was executed to open and close the circuit breakers of the generator, causing anexplosion of the diesel generator.In 2008, a pipeline in Turkey was hit by an explosion, spilling over thousands of barrelsof oil in an area above a water aquifer and costing the British Petroleum about $5 mil-lion a day in transit tariffs. The attackers exploited vulnerabilities of the wireless camerasoftware, moved laterally, spoofed the traffic to the control systems and compromise thePLCs to increase the pressure, causing the explosion.One of the most known examples is the Stuxnet worm, used in 2010 to infect PLCs inseveral industrial sites. The 60% of these infections were in Iran, including an uraniumenrichment plant. The root of the infection was via malicious USB flash drive. The wormpropagated through the network by exploiting unpatched vulnerabilities. One of the finalgoals of the worm was reprogramming the PLCs to modify the operation of the uraniumcentrifuges to tear themselves apart, causing a delay in the Iranian nuclear program fromone to three years [26].
From the political perspective, ICS are gaining more relevance in the European Union(EU). The European Programme for Critical Infrastructure Protection (EPCIP) was pub-lished in 2004 to identify critical infrastructures and protect them from incidents or at-tacks. Furthermore, according to the directive EU COM(2006) 786; all member statesshould adopt the components of the EPCIP into their national statutes. For example, anOperator Security Plan (OSP) must be designed for each designated European Critical In-frastructures (ECI); which covers the identification of critical assets, threat-models and riskanalysis, and the selection of the priority counter-measures [1].

2.3 SCADA Basics
One of the most common type of ICS is the supervisory control and data acquisition(SCADA). It collects the data in real-time, displays it to the user through a Human Ma-
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chine Interface (HMI) and allows to control these processes using limited commands. Itcan also contain a Histogram, where the old data is stored. Maynard et al. [31], divideits architecture in three layers to abstract the different parts in a SCADA system: layer 0,Process; layer 1, Control; and Layer 2, Supervisory. In the Figure 2 we can see a diagramwith the described SCADA 3-layer architecture.In their study, we can find an example of a simple SCADA system; a gas pipeline. Thepipeline valves release air pressure from the pipeline automatically and they are con-nected to a control device. The HMI, connected to this control device, displays the pres-sure of the pipeline; an operator can modify the maximum and minimum values the sys-tem can reach, which means setting the parameters for the physical valves.

Figure 2 – SCADA architecture in three levels, from Maynard et al. [25]

Another example is found in the electrical power transmission and distribution indus-try. They use geographically distributed SCADA control systems to operate highly intercon-nected networks consisting of thousands of public and private utilities and rural assets forsupplying electricity to end users. SCADA systems are also used to monitor and control oiland natural gas distribution, including pipelines, ships, trucks, and rail systems, as well aswastewater facilities.As a case of study, the electric industry is often one of the most prevalent sources ofdisruptions of interdependent critical infrastructures. For example, a cascading failure canbe initiated by a disruption of themicrowave communications network used for an electricpower transmission SCADA system. The lack of monitoring and control capabilities couldcause a particular area to be taken offline, an event that would lead to loss of power andeconomic consequences. Furthermore, this loss of power could cause a major imbalance,triggering a cascading failure across the power grid, resulting in large area blackouts thatcould potentially affect other industries, like oil or natural gas production, that rely on thegrid for electric power.A typical ICS contains numerous control loops, humanmachine interfaces, and remotediagnostics and maintenance tools built using an array of network protocols on layerednetwork architectures. A control loop uses sensors, actuators, and controllers (e.g., PLCs)tomanipulate some controlled process. A sensor is a device that produces ameasurementof some physical property and then sends this information to the controller.The controller reads the signals and generates the corresponding commands, basedon a control algorithm and target set points, which are transmitted to the actuators. Ac-
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tuators such as control valves, switches, and motors are used to directly manipulate thecontrolled process based on commands from the controller.

Figure 3 – HMI visualization using the PROMOTIC software tool [36]

Operators and engineers use humanmachine interfaces to manually monitor and con-figure the threshold points, control the algorithms, and to adjust and establish parametersin the controller. The human machine interface also displays process status informationand historical information. In the Figure 3, an example of amarket HMI software is shown,operators use this kind of interface to interact with the SCADA system. Diagnostics andmaintenance utilities are used to prevent, identify, and recover from abnormal operationor failures [45].
2.4 Security Trends in ICS
At the beginning, SCADA security was based in isolation and obscurity. Nowadays, theseSCADA systems are not isolated from the Internet anymore, allowing remote access; theyalso integrate new technologies, such as Internet-of-Things or cloud computing; all of itleading to an increase of attacks [50, 44].

One emerging security trend in ICS are the intrusion detection systems (IDS). Duringthe past years some authors have presented deterministic approaches for the detectionsystem, following the same trends as in non-ICS security. First, authors focus on deter-ministic approaches like Hadeli et al. (2009) [18], Morris et al. (2013) [33] or Stoian et al.(2014) [44]; afterwards, anomaly detection, e.g., Li et al. (2015) [22] and finally machinelearning approaches, e.g., Maglaras (2018) [24].
Since testing real ICS can be dangerous and/or expensive, due to the criticality andthe cost of replicate them; many researches have focus on testbeds [31, 4, 5]. Testbedsare testing infrastructures which simulates the real environment. Their use can be wide,as described by Holm et al. [19], e.g., vulnerability analysis, educational purpose, testingdefensive mechanisms or honeynets.
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2.5 Security Trends in Testbeds
For this section, we focus on the objective classification to understand the actual trendsthe academia is following.In the study published byHolmet al. [19], the authors identify 30 different testbeds andclassify them depending on the objective, the implementation of their components andtheir requirements. In this case, the study concludes that the most common objectives touse testbeds are vulnerability analysis (50% of the studies), educational purposes (30%)and testing security mechanisms (30%).The authors also remark the lack of studies related to the performance analysis in thetestbeds and point that the objectives from the studies are described on a very superficiallevel, meaning the authors need to tackle the topics in a more tangible manner.

Another topic that is not covered properly is the creation of frameworks to implementthe testbeds, i.e., using common standards and methodologies to develop testbeds; asseen in the survey, only one work out of thirty focus on it.This might be useful for new researchers who need a first insight of the process andcan establish the baselines for new projects.
In the study presented by Alves et al. [5], the authors propose a modular approach toreplicate SCADA systems using a virtualized environment, making it low cost and portable.They split the infrastructure into five major components, unlike Maynard et al. [25] whoonly differentiate three levels. First, by adding the physical process as a new entity, andsecond, separating the level 1 into SCADA network and the edge controllers.In Maynard et al. [25] we find a recent study which shows a new open source frame-work to implement, develop and deploy testbeds. This paper breaks with the old re-searches by finally providing a tangible study on the requirements of a testbed to developan useful framework, and it becomes one of the first works which publish some code un-der GNU license version 3. In the study, the authors presented a framework to compile,orchestrate and operate SCADA networks and infrastructures.
We canmention some other studies in the testbed field related to topics we are not re-ally focused, such as vulnerability discovering, security mechanisms or performance anal-ysis. Related to vulnerability discovering we can find the work presented by Reaves andMorris [39], where the authors analyze the different vulnerabilities found using their ownHIL testbed; related to security mechanisms, the study published by Gao and Morris [17]presents a signature-based intrusion detection system; and related to performance anal-ysis and validation: in Alves et al. [4], the authors compare a physical replicated testedwith a virtual one, concluding that both have similar performances, but depending on theattack to study one approach is better than the other one; in Reaves and Morris [40], theauthors validate the fidelity of a python-based testbed.
In the educational ambit, we find a study presented by Stites et al. [43], where theauthors develop a test platform in the cloud to perform training exercises, composed byseveral machines and challenges, integrating a SCADA testbed. Another two studies, pub-lished by Morris et al. [30, 31] show that testbeds are used in the Mississippi State Uni-versity for courses specialized in industrial control systems.
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3 Methodology
An information system (IS) is a formal, sociotechnical and organizational system designedto collect, process, store, and distribute information. An emphasis is placed on an informa-tion system having a definitive boundary, users, processors, storage, inputs, outputs andthe communication networks of hardware and software [20]. IS is an applied researchdiscipline, in the sense that we often apply theory from other disciplines, like computerscience, economics, mathematics, social sciences and others, to solve problems whichintersect with the information technology [28].Avison and Elliot [10] define the term information system as the scientific field of studyof strategic, management, and operational activities involved in the gathering, process-ing, storing, distributing, and use of information; and its associated interconnections inorganizations and society. They use it to describe any organizational function that appliesIS knowledge in industry, government agencies, and not-for-profit organizations. This in-volves the technology an organization uses and the way in which this technology workswith the business processes.Therefore, the domain of study of IS includes the theories and practices related to thesocial and technological phenomena, which determine the development, use, and effectsof information systems in organizations and society. The authors conclude that even theremight be a considerable overlap of the disciplines at the boundaries, these disciplines arestill differentiated by the focus, purpose, and orientation of their activities.

Information systems typically include an IT components but are not purely concernedwith them, focusing instead on the end use of the information technology. In our case, wewill design and develop a computer-based information system. Rainer et al. [38] define itas an IS using computer technology to carry out some or all of its planned tasks.
The basic components of computer-based information systems are:
• Hardware. This term refers tomachinery. This category includes the computer itselfand all of its peripheral devices, e.g., Input-Output devices, storage devices andcommunications devices.
• Software. It refers to the computer programs (used to accept, process and displaydata) and the documentation that support them.
• Networks. The connecting systemswhich allows the devices to distribute resources.
• Data. The facts that are used by programs to produce useful information.
• Procedures. The policies that govern the operation of a computer system, suchas the actions for combining the components above to process information andproduce the preferred output. A typical analogy to illustrate the role of proceduresis: "Procedures are to people what software is to hardware"
• People. System needs people to make them useful and often it is the componentthat most influence the success or failure of information systems. It does not onlyrefer to the users, but includes anyone who interacts with the IS components, suchsystem administrators, network operators, data maintainers...
Our computer-based information system is the gamified SCADA scenario. By design, aSCADA system could be considered an IS: it performs tasks of collecting, processing anddistributing data; it defines roles in the scenario such as network operator or data analyst;
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it requires organizational policies in order to communicate the information and make de-cisions between the industrial part and the business one. The gamification goal definesnew roles, processes, interactions and also creates new layers of data managed by the IS.
As seen, information systems are a wide research field and we need an accepted com-mon framework in order to validate our work. This is achieved by a mental model whichprovides contexts in which researchers, readers and reviewers can understand and evalu-ate the work of others. For example, if a researcher following an empirical methodologyfails to describe how the data was gathered, the reviewers would require a correction.Amethodology is a system of principles, practices, and procedures applied to a specificbranch of knowledge. Such a methodology helps IS researchers to produce and presenthigh-quality research in IS that is accepted as valuable, rigorous, and publishable in ISresearch outlets. In this work we are going to use the methodology presented by Pefferset al. [35]In their work, the authors develop a design science research methodology (DSRM) forthe production and presentation of a design science (DS) research in IS. This effort con-tributes the field by providing a commonly accepted framework for successfully carryingout a DS research and a mental model for its presentation, i.e., a template for a structurefor research outputs. It should help to recognise a DS research: its objectives, processes,and outputs; as well as help researchers to present their investigation with reference to acommonly understood framework, rather than justifying the research paradigm on an adhoc basis with each new paper.Peffers et al. compare the acceptation of design as a valid researchmethodology in theengineering disciplines and the explicitly applied character of IS within its business pro-cesses; concluding that IS should also be evaluated by the same conceptual principles. Theauthors develop a methodology which defines practice rules, and a process for carryingout and presenting the research.In their literature review, the authors show that a number of researchers, both in andoutside of the IS field, have tried to provide some guidance to define DS research. How-ever, so far that literature has not explicitly focused on the development of amethodologyfor carrying out this DS research and presenting it.Without a methodology that produces explicitly applicable research solutions, IS re-search faces the risk of losing influence over other research streams for which such ap-plicability is an important value. For example, design (the act of creating these explicitlyapplicable solutions to a problem) is a valid research paradigm in other disciplines, suchas engineering, but it has not been used often in IS research papers to produce artifactsthat are applicable to research or practice.
As mentioned above, science research outcome is different than the engineering re-search one. Depending on the degree of generalization-realism of the science of study,the outcome and processes will vary. In Figure 4, we can appreciate the classification ofthe different sciences based on the degree of generalization (from a single case to univer-sal generalization) and the degree of realism (from idealized conditions to the conditionsof the practice).The science approach always follows the same structure: analysis, argumentation, jus-tification and critical evaluation; trying to prove or dismiss an hypothesis. From the engi-neering perspective, the key values are the contribution as the IT product itself and thedevelopment process. This allows focusing in creative and innovative products, more ef-ficient and effective, and best practices for the development, which is usually similar inmany cases [48].
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Figure 4 – Generalization-Realism classification of the different sciences. Figure from [48].

Examples of IT product contribution are: developing an automatized agent for tier 1of incident handling, or creating an IT application which uses a theory or method fromanother field, for instance a cyber security education platform that adapts an evaluationmethod (or theory) from education science. If the focus is put under the developmentprocess; using an object oriented technique for the development of web based system,or using a scripting language for a forensic tool, are clear examples of this.
In our case, we have prioritize the IT product, in terms of creating a testbed solutionwhich accomplish several requirements we defined as minimum, in order to have a stableproduct simple enough to start learning about SCADA systems and complex enough toallow researchers conduct new experiments. We have also prioritize the developmentprocess, in terms of following a development methodology to validate our solution andhaving a common framework to evaluate the performance.

3.1 Design Science (DS)
DS research comes from a history of design as a component of engineering and computerscience research, while action research originates from the concept of the researcher asan “active participant” in solving practical problems in the course of studying them inorganizational contexts, implying less investment on the investigation andmore attentionto the final product. In DS research, design and the proof of its usefulness is the majorcomponent, while in action research, the focus of interest is the organizational contextand the active search for problem solutions therein.

At this point, Peffers et al. raise an interesting question about whether the DSRM couldbe used in an action research study. This refers towhether action research andDS researchcould be conceptually and methodologically integrated. The authors conclude that thereare elements of the DSRM intended to support DS research characteristics that might notalways apply well to design in practice. For example, a design artifact such as a curvedstaircase, does not necessarily require new knowledge that would be conveyed to an au-dience through a scientific publication outlet. There may be organizational, regulatory, orother reasons why some level of design research may be required, however, not in terms
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of DSRM.To develop themethodology proposed, Peffers et al. evaluated four different studies asrepresentatives of the different entry points for DSRM. They seek common elements fromprevious literature and from these case studies to build well-accepted principles where tobase the DSRMon. Finally, the authors agree on a processmodel consisting of six activitiesin a nominal sequence, as seen in Figure 5.

Figure 5 – Six step methodology proposed by Peffers et al.. Figure from [35].

The six activities proposed by Peffers et al. are explained below:
1. Problem identification and motivation. The first activity consists in defining thespecific research problem and justify the value of a solution. By this, we achieve twothings: it motivates the researcher and the audience to pursue its research goal andit helps to understand the reasoning associatedwith the researcher’s understandingof the problem.

The resources required for this activity include the knowledge of the state of theproblem and the importance of its solution. Identified problems do not necessar-ily translate directly into objectives for the artifact because the process of design isnecessarily one of partial and incremental solutions. Consequently, after the prob-lem is identified, there remains the step of determining the performance objectivesfor a solution.
For our research, the problem is threshold createdby the lack of open source projectsdesigned to learn SCADA basics and hacking techniques. Ourmotivation is to fill thisgap by developing a testbed using an existing framework and defining a benchmarkprocess, using a DSRM, to validate it.

2. Define the objectives for a solution. The second activity infers the objectives of asolution from the problem definition and knowledge of what is possible and fea-sible. The objectives can be quantitative, such as the percentage of improvementfrom other solutions, or qualitative, such as the description of new features to sup-port problems not addressed before.
The objectives should be gathered rationally from the problem specification. Theresources required include the knowledge of the state of problems and the currentsolutions, if any, and their efficacy.
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For our research, we will set qualitative and quantitative requirements. The quan-titative ones are easy to measure, e.g., maximum number of concurrent users con-nected to the testbed, or CPU consumption along the run-time execution. The qual-itative requisites will help us defining the quantitative measures; for example, theease of use of the testbed can be defined by the flexibility of the solution and theease of deployment (measured in time).
3. Design and development. Conceptually, a design research artifact can be any de-signed object in which a research contribution is embedded in the design. The thirdactivity includes determining the artifact’s desired functionality and its architecture,and then creating the actual artifact. The resources required to move from the pre-vious activity include the practical and theoretical knowledge that can be broughtto bear in a solution.

For our research, we discuss first whether we can use an existing framework orsolution, or we have to develop one from the scratch. Then, according to this resultand the requirements defined, we establish the different evaluation metrics andconcrete the architecture and scenario of our testbed.
4. Demonstration. The fourth activity demonstrates the use of the artifact to solveoneormore instances of the problem. Thismay vary between a single act of demon-stration to amore formal evaluation. The resources required for the demonstrationare the effective knowledge of how to use the artifact to solve the problem.

For our research, in this step we will show the main operation of the developedtestbed, simulating an autonomous SCADA system, as well as the attacks imple-mented.
5. Evaluation. The fifth activity observes andmeasures howwell the designed artifactsupports a solution to the problem. This involves comparing the objectives definedto the actual observed results from the use of the artifact in the demonstration. Itrequires knowledge of relevant metrics and analysis techniques.

Evaluation could include items such as a comparison of the artifact’s functionalitywith the solution objectives, the results of surveys conducted or quantifiable mea-sures of system performance, such as response time or availability.
At the end of this activity the researchers can choose whether to iterate back to thedesign and development activity to improve the effectiveness of the solution, or tocontinue to the next activity and leave improvement for the following projects.
For our research, we will measure themetrics defined in the step three and presentdifferent cases and iterations, in order to compare them and watch the progress ofour solution.

6. Communication. The sixth and last activity consists in communicating appropriatelyall the previous activities and their outputs, including the problem and its impor-tance, the solution proposed or the rigor of the research. Communication requiresthe knowledge of the disciplinary culture.
For our research, the communication part will be the presentation of this MasterThesis work and its expected defense.

The authors also indicate this process might not be in sequential order, there is noneed that researches must always proceed from activity 1 through activity 6. They may
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start at almost any step and move outward, leading to different approaches to tackle theresearch:
1. A problem-centered approach, starting with activity 1. Researchers might proceedin this sequence if the idea for the research resulted from observation of the prob-lem or from a suggested future research in a prior project.
2. An objective-centered solution, starting with activity 2, could be triggered by anindustry or research need that can be addressed by developing a new solution.
3. A design and development-centered approach, starting with activity 3, resultingfrom the existence of an artifact that has not been thought as a solution for theexplicit problem domain. Such an artifact might have come from another researchdomain, it might have already been used to solve a different problem, or it mighthave appeared as an analogical idea.
4. Finally, a client/context-initiated solution, starting with activity 4, may be based onobserving a practical solution that worked; resulting in a DS solution if researcherswork backward to apply rigor to the process.
This four approaches concur with the four cases of study used by Peffers et al. to proofthe validity of their methodology. In our case, we will use a problem-centered approach,starting with the first activity (problem identification and motivation), already discussedin the chapter one of this Master Thesis, and moving forward.Thisworkwill be structured following the six-stepmethodology explained above. Chap-ter one and two take over the identification of the problem andmotivation; chapter three,the current one, explains the methodology used; chapter four gathers the objectives andrequirements, as well as the design and development of the solution; chapter five con-tains the proof of work of the testbed and the implemented attacks; chapters six andseven show and discuss the results of the evaluation process; finally chapters eight andnine include the communication step through the conclusions and future work.
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4 Scenario
In this chapter we are going to define the objectives of our testbed, as well as design anddevelop it. This will cover the steps two and three from the science design methodology,defining the objectives for the artifact and designing and developing it, respectively.

The goal of the research is to develop a testbed solution to practice attacks in a gam-ification scenario, also called cyber range. This type of scenario help users to learn theo-retical and practical hacking techniques in a simulated environment.In the study presented by Yamin et al. [49], the authors perform a literature reviewon testbeds for cyber ranges. A cyber range is an environment that aims at providing atraining playground in order to practice and learn security issues. The study presents ataxonomy to classify and evaluate the current literature in five main topics: monitoring,scoring, teaming, scenario and management.In our case, we are focusing in themanagement, more specifically in the resourceman-agement subtopic, focused on the resource requirements, performance and usability ofthe testbeds. Through this evaluation, we can provide a benchmark process to validateour solution and similar ones.
We extract somemetrics other authors have used to prove the validity of their testbeddevelopments, e.g., the time to construct the environment or the time to perform all thepossible tests in the scenario, however we have found the list of metrics very short andinefficient.For example in Vigna et al. [46], the authors do not provide any valid metric to provetheir solution; in Lemay et al. [21], the authors only metric is a survey to the studentswith three options (adequate, good and very good); or in Reaves and Morris [40], theperformance is measured in terms of protocol-level accuracy, based on the SCADA spec-ifications, like packet size, response time or percentage of invalid CRC. This last approachis not useful for us, as we have assumed that there is no need of replicating the SCADAnetwork with the same level of accuracy. We will discuss further this topic in the scenarioarchitecture section, where we present the different approaches to build our testbed, in-cluding virtualization or real hardware replication; depending on the approach we canexpect some features in the testbed solution.Supporting this perspective, Yamin et al. conclude that in the future it is necessaryto focus on the efficiency of the testbeds, i.e., improving the deployment and executionof the scenarios; and also developing a benchmark to conduct comparisons between thedeveloped security testbeds. This aligns with our research topic, trying to establish validmetrics to prove the performance and usability of a testbed.

4.1 Objectives and requirements
The purpose of this research is to develop a SCADA testbed to be used by students, teach-ers and researchers. This creation process will follow a DSRM in order to prove its validity.To accomplish it, we have defined two types of requirements: quantitative and qualitative,that will indicate whether the solution is valid or not.

The qualitative requirements indicate the main features the testbed must have. In ourcase, as we expect the testbed to be used by non-expert users, like students; the solutionshould be easy to use. We consider this capability very important, due to the fact that avery complex solution will reduce the motivation of whoever wants to learn or research.To measure this qualitative requirement, we have defined two quantitative requisites:
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ease of deployment and flexibility.The ease of deployment is the speed needed for the system to build and run thetestbed, allowing the user to start interacting with it. This quantitative requirement canbe measured by time, more concrete, we will use the number of commands and the timerequired to deploy the scenario. We expect a result that is not dependent of the numberof devices, i.e., O(1).The second requirement, flexibility, is the property that indicates how easily the soft-ware can be adapted to new requirements or changes during its development period orafter the software is deployed. For the this research, we are using a framework to developthe testbed. We consider that the flexibility of the developed scenario is the same as theone provided by the framework.To measure this requirement we will use the metrics defined by Shen and Ren [41]. Intheir work, they define the variables flexible points and flexible distance, used to calculatethe flexible capacity, which indicates the degree of flexibility of any software quantita-tively. After the calculation of the flexible capacity, we can classify the flexibility level ofthe software between Self-adaptive, Low-level user, High-level user and Developer-level,depending on the user skills required to perform the changes. The Developer-level canbe subdivided between low, average and high skilled. We expect a flexibility level belowaverage-developer level.
The second qualitative requirement is that the system should be useful in terms ofusability and research. Our goal is to create a testbed for training. Therefore, if the testbeddoes not support multiple users, the performance is so low it does not allow a normalexecution or the scenarios cannot be expanded and modified, the solution will not passour expectations. In this case, to evaluate this qualitative requisite, we have defined threemore quantitative requirements: scalability, portability and performance.We will measure the performance by taking runtime statistics of the system, suchas CPU usage, RAM memory usage, network traffic and read/write disk operations. Forthis task, we will perform the same experiments to different testbed solutions, e.g., ourMiniCPS based solution and theGRFICS solution; and to different configurations, e.g., dou-bling the resources allocated for the testbed or changing the number of devices of thetestbed, in order to see the improvement. We cannot define a quantitative expectation,but we require that the system does not overload.The scalability will be measures in a similar way, performance tests will be conductedafter adding more subnets and concurrent users to the analyzed scenario. Our expecta-tions again require that the system do not overload.Additionally, the portabilitywill bemeasured as an extra feature. Thiswill showwhetherthe testbed can be running under any operating system, which can increase the probabil-ity of researchers to use our solution in future investigations. To measure this capability,we will try to install and run our solution under different operating systems. The expectedresult would be that the testbed solution can be executed on different OS.

4.2 Design
In this section we will discuss different topics related to the design of the testbed, firstwe will discuss the different implementation approaches for the testbed, e.g., virtualiza-tion, simulation, hardware-in-the-loop; then, we will review the current literature andframeworks looking for similar solutions which can be used to develop our testbed andreduce the workload of creating everything from the scratch; and finally, we will definethe architecture of the proposed scenario and the possible advantages and limitations.
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4.2.1 Implementation approaches
In the work published by Qassim et al. [37], the authors classify the testbeds by the waytheir components are implemented, i.e., physical replication testbed, where the testbedis a clone of the original industrial control system; software simulated testbed, by usingsimulations based on software to replicate the physical processes; virtualization testbed,using software to emulate the hardware parts; hardware-in-the-loop (HIL), by using hard-ware components to create the simulation; or a hybrid combination of them.In the study, the authors also defend that there should be a relation between the imple-mentation of testbed and the requirements. Depending on our requirements or attacks,a different testbed implementation should be chosen, i.e., to discover new vulnerabili-ties, real systems should be used; to perform training exercises, virtualization is the bestoption.For example, if the purpose of the testbed is to validate intrusion detection mecha-nisms, it is correct to think about using a hardware-in-the-loop testbed, which provideshigh fidelity and allows to change the simulation output easily [3]; or if the purpose is totest the capacity of a system against DDoS attacks we can use software simulated testbedto emulate the malicious input [14].

We are looking for a testbed that can be used to train users on hacking SCADA systems.We can focus on the network hacking, the software hacking or the hardware hacking; butfor our development, we cannot include the hardware, as it is very expensive. Therefore,a virtualized testbed is the approach that fits us the best, as it might be configured tocontain the network and the software logic.This aligns with the cloud testbed developed by Stites et al. [43]. Besides, using tax-onomies which relate how the testbed is implemented and the feasible attacks on it, wecan find where will be more effective to focus. For example, if we use a virtualized opensource testbed, attacks which involve small delays in the communications or affect a spe-cific software product are not possible, based on the real hardware limitations.
According to this, for this research the testbed implementation approach is going tobe a virtualized one. This way, it is possible to easy deploy, replicate and measure theperformance of the scenarios. We won’t focus on the fidelity of the communications,as it requires expensive hardware-in-loop components and real SCADA systems are moresensible to external interactions.

4.2.2 Framework review
Before starting developing our testbed from the scratch, we have to consider the existingsolutions. Some of the frameworks we found are MiniCPS, presented by Antonioli et al.[8, 6, 7], which is a virtualized framework fully based in python to easy build and deploytestbeds; GRFICS, by Formby et al. [16], which uses several virtual machines to simulatethe different processes and devices; ICS TestBed Framework published by Maynard et al.[25], another virtual framework but based in Java; or a customized one developed in aMaster thesis by R. Brooks [12], using a hybrid approach mixing simulation and virtualiza-tion.These frameworks vary a lot and have positive and negative features. In the Table 1 wecan compare the technologies used by the different frameworks as well as the implemen-tation approach used.

After the initial review, we are going to use the framework MiniCPS due to severalreasons. First, because it is an open source framework, mandatory requirement to con-
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Table 1 – Comparative table between the different frameworks reviewed.

MiniCPS GRFICS ICS TestBed
Framework

Customized
developmentPhysicalprocess Python Python Java ISERinks

Field devices Python openPLC Java openPLCNetwork Python VirtualBox Vagrant Modbus Mas-ter Simulator(MMS)Developmentapproach Virtualization Virtualization Virtualization Hybrid

tribute the community. Second, it produces full virtualized testbeds, it does not need anyhardware or any third-party virtualization program. Third, it is all written in python, sim-plifying the development and making it, in theory, cross-platform compatible. Fourth, itis possible to create and deploy simple testbeds with basic developer skills.To compare with the selected framework, we will use GRFICS. GRFICS uses VirtualBoxto virtualize the network and uses free standard software to run the devices, i.e., OpenPLCfor the PLC or ScadaBR for the HMI.We believe that this approach gives some advantages,because it uses standard products; but it reduces drastically the scalability and flexibility.For the scalability, it is reduced because it requires to run a new scenario to add moreusers, i.e., launching a second set of virtual machines. For the flexibility, to edit the GRFICSscenario it is required knowledge of the standard software that it uses.The reasons to discard the other frameworks vary. The ICS Testbed Framework wasdiscarded because the protocols and field devices promoted by the authors were just par-tially implemented, missing many features. The customized development was not consid-ered due to the hybrid model and complexity of the solution in terms of standardization.
4.2.3 Scenario architecture
To design the scenario architecture we need to define again the requirements. We want asimple design in order to not overload the system; however, it should allow different usersto be connected concurrently. Initially, this was not taken into account when developingthe first iteration, which acted as the initial proof of concept.Our scenario in the first iteration, based on the water tower from the work of Morriset al. [31], had the topology of the Figure 6. This scenario was as small as possible and willallow only one user to use it.The process in the scenario is simple: a water tank is filled and emptied. The tank hastwo valves to pump water in and out. These valves are actuators, represented as twoPLCs, because their only function is receiving a signal to open or close the water flow. Thetank also has a sensor, represented as an RTU, which measures the value of the waterlevel and controls the actuators based on different thresholds. The SCADA server receivesperiodic values from the RTU regarding the status of the system, then, it sends them tothe historian and the HMI for visualization. The SCADA server can also send commands tothe RTU tomanually open and close the valves. These commands can be set from the HMIby choosing the execution mode, e.g., automatic execution, manual execution by closingthe first pump.The attacker will be inside the field devices network, simulating a previous breach intothe infrastructure, accessing the industrial traffic. The HMI is out of the SCADA network,
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Figure 6 – The topology of the first iteration was very simple, used to validate the testbed works

meaning that it does not receive or produce any industrial communication.
4.3 Development
In this section we will describe the testbed development process. During the research,different iterations have been developed, some of them failing and some succeeding.As defined above, the first iteration contained the basic features of the scenario tomake it work. To share information between the different devices within the scenario weuse two mechanisms: the industrial network and SQL tables.

Through the industrial network we are able to send traffic using the industrial protocolEtherNet/IP. Mininet by default uses the Ethernet protocol, and the same time, MiniCPSis a framework build over mininet. Although it is possible to use different protocols, thereare limitations when trying to implement these protocols. In Antonioli et al. [7], the au-thors use a partial implementation of theModbus protocol, however now it is deprecatedand not functional.EtherNet/IP is an industrial network protocol that adapts the Common Industrial Pro-tocol (CIP) to the standard TCP/IP stack. It can be deployed over any TCP/IP supporteddata link or physical layer, such as IEEE 802.3 (Ethernet). EtherNet/IP performs at levelsession and above, i.e., level 5, 6 and 7 of the OSI model [11]. It is possible to capture thetraffic using a packet sniffer, such as Wireshark.
The SCADA systemsmonitor a physical process, which works independently. The phys-ical process shows what is really happening and the HMI displays what the system thinksis happening. To keep the states of the system, there are two different SQL tables, whichstore separate processes.They are called real and hmi. The first table, real, stores the information regardingwhat is happening with the real physical process, and it is only modified by this process.The RTU reads this table to interact with the water tank to read the water level value.The second table, hmi, is used by the HMI device to display the data that arrives tothe SCADA. Due to the fact that the HMI should be out of the industrial network, thisdevice needs to be out of the mininet virtualized network. The easiest way to develop
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this behavior was to isolate the HMI and use this database to interact with the SCADAserver. In the practice, the SCADA gets the value from the RTU and writes it in this table;from the other side, the HMI uses this table to read the status and set the executionmodein the SCADA.By comparing these two tables it is possible to see what is happening on the systemand the effect of the attacks. For example, we can perform attacks to impact the physicalprocess, we can try to spoof the data which is displayed in the HMI visualization, or wecan do attacks focused on both things.The historian is simply a SQL database which logs the status of the system. The SCADAserver is in charged of this process, so only the table hmi is stored.
The proof of concept of the testbed working can be seen in the Figures below. In Fig-ure 7, the main process to launch the testbed (run.py) is executed. This file creates thenetwork and connects the devices based on the designed topology (topology.py).In Figure 8, the different python files (containing the source code of each device) havebeen executed from each node, i.e., the rtu.py code is running in the RTU node, as so on.In the Figure 8, four terminals are open; on the left side we can find the PLC0 and PLC2,right-up is the RTU and right-down is the physical process, updating the values constantly.

Figure 7 – Mininet automatically creates the network based on the topology designed

For purposes of better visualization and usability, we have developed a graphic inter-face emulating the HMI. This graphic interface can be seen in Figure 9 and accessed viabrowser.
In the second iteration, the network topology is expanded, allowing to addmore usersto the testbed based on the available subnets. This way, we canmeasure the performancevariations depending on the number of users. In Figure 10 the topology of this seconditeration is displayed. This design is still simple but due to themultiple subnets it is possibleto add concurrent users.After the iteration, is was assessed that the change is not trivial, because it is neces-sary to add every device of the subnet separately and re-configure the existing devices tocommunicate properly between them. It is necessary to double the existing logic, insteadof working with the subnet as a black-box.For example, in our case we have a subnet with five devices connected to a centralswitch which is connected to the SCADA server. We need to create five new devices toreplicate the subnet (changing their IP addresses), another device to replicate the SCADAlogic and edit the topology configuration to deploy the devices using MiniCPS.
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Figure 8 – The python processes run on their respective host.

Figure 9 – A graphic interface has been implemented for a better visualization
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Figure 10 – The topology of the second iteration is still simple but allows multiple connections.

A high number of write operations were found in the scenario, causing the systemto reduce its performance. This was caused by the SQL tables, so we tried to fix this inthe third iteration. This solution included a MQTT broker, invisible to the users, to usefast queues in memory instead of SQL tables. We tried to use this MQTT broker to sendmessages from the SCADA device (inside of the simulated network) to the HMI (running ina browser outside of the simulated network). In Figure 11 this ideal topology is displayed.However, this iteration failed.

Figure 11 – The topology of the third iteration adds a MQTT middleware to reduce read operations.

To connect the simulated network to the outside it is necessary to enable an interfacefrom the host machine and then run a process which redirects all the traffic using the newprotocol, e.g., HTTP or MQTT messages. Unfortunately, this could not be done for theMQTT broker and the iteration was rejected.The issue of the fail came from the design of MiniCPS. Strictly speaking, mininet is acollection of scripts that allow to create and deploy a virtualized network consisting inswitches and hosts, and it was mainly created to use the Ethernet/IP protocol.
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MiniCPS encapsulates the logic of mininet to simplify its use, causing that when itcomes to add a different middleware device or connect the virtualized network to realnetworks (e.g., to the Internet), mininet breaks.
4.3.1 Issues foundDuring the development of the testbed, several limitation have been encountered. In thissection we will enumerate and comment these issues to clarify the impact of them in therequirements and the final solution.

• The framework MiniCPS tries to encapsulate all the devices in the mininet simu-lated network, simplifying the internal use of mininet. This limits the capability ofimprovement of the framework. For example, mininet containsmechanisms to con-nect the simulated network to external services from the host or a remote machinein order to increase its performance. As seen in the third iteration, it was not pos-sible to implement these features without breaking the scenario.
• MiniCPS became abandonware in 2017, containing outdated libraries for the MOD-BUS implementation and python2 code. The project was updated to python3 in thefirst iteration, however, it was not possible to patch all the libraries, so the MOD-BUS protocol implementation is no longer working. Besides, there is a lack of in-dustrial protocols implemented for this framework. Only EtherNet/IP is partiallyimplemented and MODBUS does not work because of the outdated libraries.
• The topology implementation inMiniCPS presents some design issues. To addmoreusers, it was necessary to double the existing logic, by re-creating every device inthe scenario, assigning them different IP addresses and re-configuring the existingdevices to communicate between them.
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5 Attacks
In this chapter we are going to define the attacks that will be implemented in our sce-nario. Through this, we achieve two goals: first, that our development is valid in terms ofusability, we can perform the basic attacks so it can used for training; and second, someof the later evaluation processes will be done while executing these attacks, for examplethe bandwidth usage, so we can measure the defined metrics while the scenario is run bythe users.

For this task, we will use two different taxonomies for attacks in industrial control sys-tems. We will include a special section for denial of service attacks, where we will discusswhether to include or not these kind of attacks in our scenario and the consequences ofthat to the overall testbed.The taxonomy proposed by Zhu et al. [50] splits the attacks on SCADA systems in threecategories. Attacks on the hardware, attacks on the software and attacks on the com-munication stack. In this classification we can find attacks such as SQL injection or bufferoverflow, in the software section; weak or lack of access control, in the hardware section;or different OSI layers like network, transport or application, in the communication stacksection.Depending on the test network, their interconnections and the devices present, theseattacks gain more or less relevance; for example, in our design, the testbed is virtualizedand it does not connect to real hardware or software. This means that the attacks basedon the communication stack are the only category which is valuable for us. Thus, focusingin the attacks on the communication stack we find four different types of attacks:
• Network layer attacks, basedmainly on reconnaissance techniques like host or portdiscovery, and man-in-the-middle attacks (based on ARP spoof).
• Transport layer attacks, based on flooding attacks.
• Application layer attacks, defining attack on specific protocols, e.g., modbus, whichdoes not have any security measures like traffic encryption.
• Attacks on implementation of protocols, showing different cases where the imple-mentation of a ICS protocol contained vulnerabilities that were exploited.
This taxonomy helps us to get a first impression of the possible attacks we will be ableto implement in our scenario. Network layer and application layer attacks seem the mostreasonable, because the vulnerabilities are part of the protocols themselves and theirspecifications or configurations. Finding a vulnerability within the implementation of anyprotocol would be a big time consuming task.
In the research presented by Morris and Gao [32], the authors provide another clas-sification focused only in attacks based on the communication stack, splitting 17 differentattacks into four sub-classes: reconnaissance, response andmeasurement injection, com-mand injection and denial of service. This taxonomy providesmore detailed specificationsof the attacks. For their work, the authors use modbus as the protocol of research, how-ever some of the attacks are also valid for the Ethernet/IP protocol, used in our scenario.
• Reconnaissance Reconnaissance attacks gather control system network informa-tion, map the network architecture, and identify the device characteristics such asmanufacturer, model number, supported network protocols, system address, andsystemmemory map. In this sub-class, the authors mention three different attacks:
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– Address Scan, based on the protocol MODBUS/TCP, consists of exploiting thefeature that the protocol uses the same IP addressing schema than TCP net-works. Thus, this attack can be extended to our Ethernet/IP case.
– Function Code Scan, based on the protocol MODBUS, consists of scanning thesupported function codes of the protocol. This attack cannot be extended inour case, as it is protocol dependant.
– Device identification Scan, consists of extracting the fingerprint of the deviceslocated in the network, such as vendor name or product code. We can usethis attack as it is again based on the IP stack.

New reconnaissance techniques are still under development, for example, in Nie-dermaier et al. [34], the authors develop a passive networkmonitor techniqueusingMedia Access Control (MAC) addresses.
• Response andmeasurement The authors split the response andmeasurement classinto two sub-classes depending on the internal knowledge of the audited system;however, for the purpose of this research we will consider both as the same class.These attacks can be implemented in our scenario, as Ethernet/IP works similarlyas MODBUS.
ICS commonly use polling techniques to constantly monitor the state of a remoteprocess. Polling takes the form of a query transmitted from the client to the serverfollowed by a response packet transmitted from the server to the client. The stateinformation is used to monitor the process, to store process measurements, and aspart of the control loops which takes actions based upon the process state.
Many ICS network protocols lack authentication features to validate the origin ofpackets. This enables attackers to capture, modify, and forward response packetswhich contain sensor reading values. In addition, these protocols often take thefirst response packet to a query and reject subsequent responses as erroneous. Thisenables to craft response packets and use timing attacks to inject the responses intoa network when they are expected by a client.

• Command injection The authors divide the command injection class into three sub-classes, depending on the content injected; however, for the purpose of this re-search wewill consider all three as the same class. This attacks can be implementedin our scenario, as Ethernet/IP works similarly as MODBUS.
Command injection attacks inject false control and configuration commands intoa control system. The potential impacts of malicious command injections includeinterruption process control, interruption of device communications, unauthorizedmodification of device configurations, and unauthorizedmodification of process setpoints.
In ICS, either the human operators, which occasionally intercede with supervisorycontrol actions, or the remote terminals, which control the physical process au-tonomously, send commands to perform actions in this physical process. Typicallyactuators, such as switches or valves, connected to physical processes are con-nected to a digital or analog output connected to a remote terminal unit (RTU).
For example, a valve may have an ON/OFF mechanism which is changed by writinga value to a bit a in a register on a remoter terminal unit (RTU). Such registers can bemanipulated by network protocol write commands. An attacker who understands
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a device’s implementation specifics including a memory map can craft a commandto alter actuator states.
Command injection attacks, as well as response andmeasurement attacks, are partof the techniques used by recent vulnerability scanners, as the one presented byAntrobus et al. [9].

• Denial of service Denial of Service (DoS) attacks against ICS attempt to stop or de-grade the proper functioning of somepart of the cyber physical system to effectivelytake down thewhole system. These attacks can target the cyber system or the phys-ical system:
– Attacks against the communication links, attempt to disable programs run-ning on the network endpoints which control the system, log data, and governcommunications. An example would be volumetric attacks, by sending highvolumes of traffic to a network endpoint, attackers attempt to overwhelm thecapacity of the endpoint or the network itself.
– Attacks against the physical system vary from themanual opening or closing ofvalves and switches to destruction of portions of the physical process whichprevent operation. An example of this attack would be the Stuxnet worm,which worked by speeding up and turning off continuously the turbines ofseveral nuclear plants of Iran, causing major degradation on them and forcingtheir removal.

To summarize from the taxonomies explained above, we will used communicationstack based attacks in our testbed, as they are the most accurate attacks we can simu-late. From this class, we will implement different sub-classes:
• Reconnaissance attacks
• Man-in-the-middle attacks
• Response and measurement
• Command injection
• Denial of service

5.1 Discussion on denial of service attacks
We want to make a special reference to the denial of service attacks and discuss whywould it be a good or bad option to include such attacks in the testbed. As seen in theMorris and Gao taxonomy, denial of service attack can affect the whole system even if theattack is located in a concrete subnet. For this reason we need to assess the impact of thisattacks within our scenario.During the research it was seen that a simple network scan (configured to high speed)was able to considerably degrade the performance of the testbed, delaying the communi-cation or even disrupting it, between the different devices of the network, not permittingthe valves to open/close when necessary.

This behavior can be proved by using the following nmap command from the attacker:
nmap -sS -Pn -T4 -p0- -d3 RTU
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This command uses the template T4, called aggressive mode. Initially, the attack startssending around 700 packets/s and approximately 33.000 bytes/s; flooding the networkand blocking any legit traffic. After some seconds, the tool dynamically adjusts its perfor-mance, reducing it to 100 packets/s and 4.500 bytes/s; this approach doesn’t deny theservice but it still slows down the response time of the devices. In Figure 12 it is possibleto see how the tool has to adjust the RTT value due to the excessive traffic sent.

Figure 12 – It is possible to cause a denial of service attack using nmap.

For this reason, our testbed is not prepared to handle volumetric attacks without anyspecial software like firewalls or IPS. Although, adding this extra devices or configurationsmight degrade the system, due to its runtime limitations. Therefore, we have take forgranted that denial of service attacks based on flooding the network are not feasible.Anyway, it is still possible to perform different denial of service attacks by abusing dif-ferent features. For example, due to the Ethernet/IP protocol, using man-in-the-middleattacks through ARP poison would help us to deny the traffic to a single machine.
5.2 Proofs of Concept
In this section we are going to show the proof of concept of the defined attacks on thetestbed. This attacks will be possible to any user connected to the scenario within thecorrespondent subnet. Each user of the testbed will have access to the attacker machine,located in the same subnet as the field devices (PLCs and RTU). This allows direct inter-action with these devices to perform network layer attacks and application layer attacks,once the traffic is intercepted.
5.2.1 Reconnaissance
The first group of attacks we will tackle in this research are the reconnaissance attacks.These attacks, as seen in the Morris and Gao taxonomy, gather control system networkinformation, map the network architecture and identify the device characteristics.For this task we will use the tool nmap [23]. Nmap ("Network Mapper") is a free andopen source utility for network discovery and security auditing. Nmap uses raw IP pack-ets in novel ways to determine what hosts are available on the network, what services(application name and version) those hosts are offering, what operating systems (and OSversions) they are running, what type of packet filters/firewalls are in use, and dozens ofother characteristics.

First, we can conduct a network discovery scan using the command below. The option-n indicates nmap not to resolve the hosts using DNS and the option -sP forces a Ping scan.In Figure 13 all the devices from the field device subnet (10.168.1.0/24) are listed, i.e., PLC0,PLC2, RTU and the attacker machine; as well as the SCADA server, located outside of thesubnet.
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nmap -sP -n 10.168.1.0/24

Figure 13 – It is possible to discover the different devices in the network using nmap.

Then, we can conduct a port scan using the command below. The option -sS indicatesnmap to use a TCP SYN scan and the option -p to indicate the port to scan. In this casewe have omitted the rest of the ports. The TCP SYN scan does not complete the TCPhandshake, it sends only the first SYN packet and then closes the connection with a RSTpacket. This reduces the traffic generated and increases the speed of the scan. In Figure 14the output of the scan shows that the port is open and it is running an EtherNetIP portocol.
nmap -sS -p 44818 -n 10.168.1.20

Figure 14 – It is possible to retrieve information regarding the port using ICS protocols.

5.2.2 Man-in-the-Middle
The second group of implemented attacks are part of the network layer ones. In thiscase we put attention in the man-in-the middle attacks. As the Ethernet/IP protocol isencapsulates ICS traffic within the IP packets, it follows the same rules and protocols.Thus, using ARP spoofing it is possible to impersonate the local address of any host insidethe network.This attack is based on the ARP protocol, used by the machines within the subnet toadvertise their local MAC and IP addresses. Using the tool arpspoof [15] we can force anyfield device to believe that the attacker IP is the RTU one. Therefore, the field device willsend all the traffic to us, where we can sniff it and forward back to the RTU, so the systemkeeps its functionality.
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Using the commands below we can perform a man-in-the-middle attack between theRTU and the PLC2. The first command forces the forwarding of IP packets and the secondone performs the ARP poisoning. The option -r forces the ARP spoof for both targets. InFigure 15 we can see the process of poisoning the two hosts.
echo 1 | sudo tee /proc/sys/net/ipv4/ip_forward
arpspoof -i attacker-eth0 -r -t 192.168.1.20 192.168.1.30

Figure 15 – Using arpspoof we can poison the RTU and PLC2 to sniff the traffic between them.

Afterwards, using the tool Wireshark [13] we can capture the packets sent betweenthe RTU and the PLC2. The tool is able to recognise the ICS protocol traffic. In Figure 16the gamified flag sent from the RTU to the PLC2 is displayed.

Figure 16 – We can see the flag sent from the RTU to the PLC2 using Wireshark.

5.2.3 Denial of serviceComing back from to the denial of service topic, it is possible to perform such attacks in ourscenario without flooding the network and affecting the rest of the system. For example,using the same mechanisms as the ones explained for the man-in-the-middle attack, wecan poison the traffic between two hosts but never redirect the packets, thus, causing adenial of service attack for the poisoned device.
Using the commands belowwe can perform this denial of service attack. The first com-mand blocks the forwarding of IP packets and the second one poisons the traffic betweenthe RTU and the PLC0. This way, the messages sent by the RTU with the commands foropening or closing the valve will not be received by the PLC0. In Figure 17 we can see theARP spoof attack in the left windows and the physical process, not changing its value, inthe right window.

echo 0 | sudo tee /proc/sys/net/ipv4/ip_forward
arpspoof -i attacker-eth0 -t 192.168.1.20 192.168.1.10
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Figure 17 – We can perform a denial of service attack using ARP spoof.

5.2.4 Response and measurement
Response and measurement attacks are based on the data send within the SCADA net-work to pass information to the different devices or to store it and display it. We canimplement two different attacks in this section: monitoring the system behavior and in-jecting malicious values.

For a better visualization we use a graphic interface, simulating the HMI, accessiblethrough the web browser. This interface will help displaying the data received by theoperators and the control system. If we are able to spoof data through our attacks, it willbe shown here.As explained in the previous chapter, the data in the scenario is managed using twodifferent database tables: the real process table, which stores the real values of what ishappening to the physical process and it is only updated by this physical process and theactuators (the PLCs); and the hmi table, which stores the values that the SCADA receivesfrom the RTU and then are used for the graphic visualization.Therefore, we focus on this second process: the RTU sending data to the SCADA server.By monitoring the network traffic we will be able to infer the real behavior of the phys-ical process. In Figure 18 the Ethernet/IP protocol is dissected and the data sent can beextracted. In this case, the value extracted is 0xca00010085eb513f.

Figure 18 – Using Wireshark we can analyze the Ethernet/IP protocol to get the state of the system.

Doing some reverse engineering we discover that the first 4 bytes, 0xca000100, are
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repeated on every package sent, so we focus on the last 4 bytes, 0x85eb513f. Then wetry to convert these bytes into a float value:
(hex) 0x85eb513 f = ( f loat) 0.8200 (1)

Based on the debug output from the RTU, as seen in Figure 19, we can confirm bothvalues match. This means that it is possible to measure the water level of the tank anddetermine what is the process doing: increasing the water level or decreasing it.

Figure 19 – We prove the data extracted using Wireshark matches the RTU reading.

In addition, we can inject malicious values in the scenario. When the SCADA requestsinformation to the RTU, we can intercept the connection and spoof the measure. Thisway, an attacker might cover its traces not to be detected by the SCADA operators or anyIDS analyzing the status.As the protocol works clear-text, using the layer 7 in the OSI stack, we can use ettercapand the etterfilter utility to intercept and modify the traffic. To accomplish this goal, wecreate the following etterfilter, which locates the tag send from the RTU to the SCADA,containing the water level of the physical process, and changes it to zero.
# Check the protocol is TCP
# The destination port is 44818
# The data byte 14 is the letter ’L’ (from the LIT101:1 tag)

if (ip.proto == TCP && tcp.dst == 44818 && DATA.data + 14 == "\x4c") {
# Changes the hexadecimal value of the tag to 0
DATA.data + 26 = "\x00\x00\x00\x00";
msg("Data replaced");
}

Afterwards we just need to compile and run the filter. This way, we could inject a ma-licious value into the HMI that would hide our actions in the PLCs or the physical process.
5.2.5 Command injectionDue to the fact that the scenario uses EtherNet/IP, based on TCP, we are not able to re-produce the same attack that would be executed using a standard ICS protocol. This isbecause the TCP protocol keeps the state of the communication through the sequencenumber and the state flags. Then, we cannot establish easily a new TCP flow.
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Therefore, we are going to use the same approach used in the response and measure-ment attacks. We can intercept the communications and edit the values of the commandssend by the SCADA server to the devices using the tool ettercap and the utility etterfilter.
We have defined two different goal scenarios on the testbed that can be achieved bythe attacker, i.e., underflow and overflow. The first one consists of emptying the watertank and the second consist of overflowing it.For example, we can achieve the overflow scenario by using the following filter:

# Check the protocol is TCP
# The destination port is 44818
# The data byte 14 is the letter ’M’ (from the MODE:1 tag)

if (ip.proto == TCP && tcp.dst == 44818 && DATA.data + 14 == "\x4d") {
# Sends mode 5, closing the second pump
DATA.data + 24 = "\x05\x00";
msg("Data replaced");
}

if (ip.proto == TCP && tcp.dst == 44818 && DATA.data + 14 == "\x4d") {
# Sends mode 3, opening the first pump
DATA.data + 24 = "\x03\x00";
msg("Data replaced");
}

First, we change the command send from the control device to themode 5, closing thesecond pump. Then, we change the command to the mode 3, opening the first pump inorder to overflow the system.

40



6 Evaluations
After the development and demonstration of the solution achieved, we need to evaluatewhether the solution is valid or not for our initial requirements. As a reminder, we de-fined two different qualitative requirements in chapter three: the ease of use, due to theframework would be managed by students learning SCADA infrastructures without highdeveloper skills; and the usability of the solution for research purposes. In order to vali-date those qualitative requirements, we have proposed quantitative metrics that can bemeasured and compared. Therefore, in this chapter we will collect the different metricsneeded to assess the validity of our testbed.

During this chapter, we will compare different solutions using our benchmark metricsand procedures. First, our solution, which is a scenario based on MiniCPS; second, anideal solution, which is a theoretical scenario where all the metrics accomplish our expec-tations; and third, the GRFICS solution, described in chapter 4, which is scenario based onvirtual machines that simulate the devices using different virtualization technologies.Nevertheless, we cannot compare the performance of the ideal solution, as we cannotcalculate theoretically these requirements.
6.1 Execution Performance
We define performance as the amount of useful work accomplished by a computer sys-tem. It can be estimated in terms of accuracy, efficiency and speed of executing a com-puter program. Some measurements that characterize the performance are: the rate ofperformingworks, the level of resource utilization, the bandwidth usage or the data trans-mission time.Fidelity time-based metrics lose their value in virtualized testbeds, like the responsetime between a packet sent by the SCADA to the PLC. This is because the machines whichrun the virtualized testbeds are usuallymore powerful than the field devices and the exist-ing time restrictions from ICS can be managed in the testbeds by adding delays. Becauseof this reason and for the purpose of our solution, it is more important to focus on the ITfeatures than the ICS ones.

In our case we will measure the allocation of computer resources (CPU and RAM), thebandwidth usage ( i.e., the total number Bytes send within the network) and the numberof read/write bytes in disk. For the evaluation, we compare these counters in our solutionand using the GRFICS solution. In addition, we also measure while the system is idle, i.e.,nothing is running; in order to deduct the OS performance.Our host system is a Windows 10, with 24 GB RAM and 8 CPUs. To run our solution,we are using a virtual machine with 4 CPUs and 8 GB RAM, running Ubuntu 18.04. To runthe GRFICS solution we use 4 different virtual machines already prepared by the authorsthat require 3 GB RAM and 4 CPUs. We could anticipate this RAM difference will be easilyshown in our results, as the initial values are different.
We have taken the average measures of every 10 seconds using the tools dstat, insidethe virtual machines and the tool Performance Monitor, from the Windows host.In Figure 20, the comparison of the two solutions is shown. GRFICS requires moreCPU usage than MiniCPS (20a), but less RAM memory (20b), however the difference isrelatively small.We see a huge contrast in terms of traffic (20c) and Bytes written in disk (20e), whereMiniCPS exceeds GRFICS in order of four times more. We can speculate that this fact is

41



caused by the implementation design of our scenario. The Bytes read from disk (20d) aresimilar in both solutions.
6.2 Scalability
Tomeasure the scalability we want to extend our scenario to cover several users. This canbe done by increasing the number of subnets in the system. Each user can connect to adifferent subnet and access the traffic in it.However, the actual design of MiniCPS presents some limitations. First, the modularapproach taken by the authors forces to encapsulate the logic of every process insidea virtual devices. This way, it is necessary to replicate manually the whole scenario, i.e.,when writing the code, to add a new user, we need to create new files for every replicateddevice and the perform changes on those files such as editing the IP address, MAC addressor even the logic of the scenario.Second, due to the limitations found in the framework, more precisely the issues re-marked in the previous chapter related to the network connections and not being able totake the traffic out of the virtual network. Wewere not able to use a distributed approach,where the subnets or the SCADA server can be running on different machines.Therefore, to provide a simple measurement of the scalability of the system. We areonly going to analyze the previous performance metrics when adding more users or sub-nets. This way, we can calculate the maximum number of users depending on the systemspecifications.

In this case, the tests are run in the Ubuntu 18.04 virtual machine with 4 CPUs and 8GB RAM. We have taken the average measures of every 10 seconds using the tools dstat,inside the virtualized environment.In Figure 21, the comparison based on the number of users is shown. In our scenario,the number of users is given by the number of subnets. As expected, the performance isalways degraded when adding more users. It should be noted that the consumption ofRAM keeps stable during the three schemes, i.e., one subnet, two subnets and three sub-nets (21b). The CPU usage is doubled with two users and consumes 100% of the allocatedprocessors (4) in the three users scenario (21a). The network traffic (21c) and the Byteswritten in disk (21e) grow linearly, with bigger peaks when we have more users. Finally, asseen in the previous performance analysis, the Bytes read from disk look the same.
6.3 Portability
We consider portability to the capacity of any software of being effectively and efficientlytransferred from one hardware, software or other operational or usage environment toanother [2]. In this case, due to the nature of the development, we will consider thechange of operating system as the only feasible metric. The portability in terms of hard-ware does not matter; because of the virtualization scenario, changing the computerwhere the testbed is running does not change its behavior, as far as the operating sys-tem is compatible. For this reason, we have to analyze whether the testbed is compatiblewith different operating systems or not.The testbed is written in Python3. Python3 is compatible several platforms, from theofficial documentation it iswell compatiblewith Linux,WindowsVista and newer, FreeBSD10 and newer, macOS Leopard (macOS 10.6, 2008) and newer [42].The testbed uses the software MiniCPS, which is based on Mininet, a network emu-lator able to create virtual networks, links, switches and hosts on a single machine. ThisMininet software is one of the key parts of the testbed, meaning that the portability of
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(e) Disk Bytes write per second

Figure 20 – Graph showing the performance comparison between MiniCPS and GRFICS
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Figure 21 – Graph showing the performance comparison based on the number of concurrent users
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the whole project depends mainly on the portability of this piece of software. Readingthe documentation of Mininet, we can find that it is only fully compatible with Ubuntu12.04+ and Fedora 18+, removing any possibility of being portable out of the Linux Kernel[29].Therefore, we can conclude the testbed is not portable and only runs under Linux oper-ating systems. This is because it is based on the softwareMininet, whichwritten in Pythonbut it was developed to work only with the Linux Kernel.
6.4 Ease of deployment
To evaluate the ease of deployment, we are going to take two different values into ac-count: the time required to deploy the scenario and the number of commands requiredto run it. The time is important for us because we expect low latency when it comes torun or restart a scenario, e.g. developing or editing the scenario, restarting during a CTFevent. Other authors [47, 40] only use time as a measure to evaluate and benchmarktheir solutions, however we think that the number of commands indicates the degree ofautomation and, therefore, the easiest to deploy.These values can be compared between different solutions which represent the samescenario to get the easiest to deploy. Wehave seen different solutionswhich required longtimes in order to deploy a single scenario, but simplicity in the number of commands, e.g.,solutions based on VirtualBox require a lot of time to boot and execute every device fromthe scenario, however, they do not need many commands to run, as they execute thesoftware automatically after boot.

We are measuring the ease of deployment in three possible schemes: the actual so-lution, based on MiniCPS, which is not fully automatic; an ideal iteration, based also inMiniCPS, which tried to fix this lack of automation; and the GRFICS [16] tested solution,based on VirtualBox. We cannot directly compare the three schemes because the firsttwo and the last one do not represent the same scenario. However, we will try to set thisvalues depending on the number of devices.
6.4.1 Number of commands

Our solution The number of commands required to run our solution can be representedwith the actions performed:
• Run MiniCPS = 1 command
• Load the xterms for the device = 1 command
• Run the each device process = 1 command / device
• Run the HMI = 1 command

Therefore, the number of commands can be represented by O(n). We consider nas the number of devices.
Ideal solution The ideal, but failed, iteration tried to reduce the actions performed inMiniCPS, i.e., running each device manually, to one single action as follows:

• Run MiniCPS and automatically launch the devices = 1 command
• Run the HMI = 1 command
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This iteration consisted of an orchestration script inside the MiniCPS python codewhich executes a bash command calling each python processes. This failed dueto MiniCPS limitations. We found network instability using this approach causedby race-conditions and memory leaks caused by the python processes and the bigamount of database workers reading and writing. In Figure 22 we can see severalprocesses left unclean after the scenario was ended.

Figure 22 – There are several processes and threads that are left unclean when we try to automate
the deployment

In this case, the number of commands can be represented by O(1).
GRFICS solution The GRFICS solution runs every device through VirtualBox and uses itsinternal network to connect them. It only requires to boot every VM to execute thescenario.

• Boot every device = 1 command / device
Again, like in our solution, the number of commands can be represented by O(n).

6.4.2 Time of deployment
To measure the time of deployment, we do not count the booting time of the host OS, asit depends entirely on the OS and the hardware. We consider this value starts from thefirst command executed until the scenario is fully deployed and ready to receive attacks.In case of using VirtualBox to run the devices, we count the booting time of each devicein parallel.Weare going tomeasure five times the timeof deployment for eachoneof the schemesdefined previously. Even if the second solution does not really work, we will consider itvalid in terms of theoretical comparison, to evaluate possible improvements.The time measures can be found in table 2.

Table 2 – Measures of the time required to execute the scenario, in seconds.

Our solution Ideal solution GRFICS solution
t1 44.49 20.20 69.29
t2 33.90 19.14 67.68
t3 37.00 23.40 55.28
t4 50.12 23.85 62.44
t5 41.55 20.91 59.42
Total 41.41 21.5 62.82
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Using the previous values from the number of commands required to deploy, we canextract the formulas to calculate the time to deploy (td) for each one of the analyzedschemes.To do so, we differentiate the commands between the ones that depend on the num-ber of devices and the ones which don’t. We are calling the first ones static commands(SCs) and the second ones dynamic commands (DCs). This way, we have tSC and tDC as thetimes required to run them. We consider n as the number of devices.
Our solution The time required to deploy our solution is around 41 seconds on average.

td = tSC + tDC ∗n
td = 10 seconds+ tDC ∗n

Ideal solution The time required to deploy the ideal solution is around 22 seconds onaverage. This time, just SCs are executed, because we only need a single set ofcommands to run the scenario.
td = tSC
td = 22 seconds

GRFICS The time required to deploy the ideal solution is around 63 seconds on average.
td = ∑

n
i=1 tSC

td = td1 + td2 + td3 + td4 = 63 seconds

6.5 Flexibility
Software flexibility is one of software properties that indicate the capability to changeand adapt to solutions, i.e. how easy the software can be changed. However, it is notsimple to measure and evaluate it. To measure the flexibility of the framework used, weuse the study from Shen and Ren [41], based on the Function Point Analysis (FPA), initiallydeveloped by Allan J. Albrecht in 1979 at IBM and further modified by the InternationalFunction Point Users Group (IFPUG).The FPA is a reliable method for measuring the size of computer software. It mea-sures the functionality that the user requests and receives. It also measures the softwaredevelopment and maintenance cost and size independently of the technology used forimplementation.In their research, Shen and Ren identify five steps tomeasure and analyze the softwareflexibility:

• Identify the flexible points.
• Analyse and calculate the flexible distance of every flexible point.
• Determine flexible point level and its flexible force value.
• Calculate the flexible degree of every flexible point.
• Calculate flexible capacity for different analysis.

6.5.1 Identification of flexible points
A flexible point (FXP) is a location in software that can cause flexible changes in it. TheFXP can be a function, function control points, a reconfiguration, a segment of codes, avariant point etc.
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In our study case, we are analysing a testbed solution, used to create our scenarios.Therefore, the FXPs are implicit in the functionalities of the framework, e.g. edit the sce-nario, add new users.We have identified four different FXPs:
1. Edit the scenario. For example, adding new industrial devices or changing the logicof the scenario.
2. Add new users to the scenario. In our case, to increase the users we have to addmore attacker-subnets to the scenario.
3. Add external devices. For example, IDS or databases. This time, the external de-vices do not directly interact with the scenario and they only receive informationpassively.
4. Addnewprotocols. Either implementing new industrial protocols or adding alreadydeveloped ones.

6.5.2 Calculation of flexible distanceFlexible distance is the range or size of the software change caused by a FXP. First, tocalculate the flexible distance, we divide each FXP into the different functions involved inits developing. There are five different function types:
• External input (EI). Receives information from outside the application boundary.
• External output (EO). Displays information of the information system.
• External inquiry (EI). A special type of external output. Displays information of theinformation system after performing a search criterion.
• Internal logical files (ILF). The files containing the data and code.
• External interface files (EIF). The files containing the data but maintained by exter-nal information systems.
Second, we classify the function types as simple, average or complex, giving them aspecific weight to each. Table 3 shows the function types and the weighting factors forthe varying complexities. This classification has been taken from the Reference manualfor the Early & Quick Function Points method [27].

Table 3 – Function type weights for the flexible distance calculation.

Function types Simple Average ComplexExternal input 7 10 15External output 5 7 10External inquiry 3 4 6Internal logical files 4 5 7External interface files 3 4 6
For each FXP the sum of the weights quantifies the size of information processing andis referred to as the Unadjusted Function Points (UFP). As defined by Shen and Ren, as weare only concerned about the change size, we can take UFP counts as flexible distance.Thus, the flexible distance indicates how much effort requires any change.
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Using these definitions above, the calculations of the flexible distances, for each FXP,in our study case are seen in table 4. We have assessed the weights for each functioninvolved in the FXP based on our experience during the development.
Table 4 – Flexible distance calculation for the FXPs defined.

Flexible point Function involved Funtion type Weight

Edit the scenario
Create device logic ILF 10Update topology ILF 7Change other de-vices logic to connectit

ILF 15

Edit configuration file ILF 7Edit GUI to add thedevice EO 5
Total 44

Add new users
Update topology ILF 7Change other de-vices logic to connectit

ILF 7

Edit configuration file ILF 10Edit GUI to add thedevice EO 5
Total 34

Add external devices Update topology ILF 7Change the other de-vices logic to connectit
ILF 10

Edit configuration file ILF 7
Total 24

Add new protocols Create protocol logic ILF 15Create an interfacefor devices to use theprotocol
ELF 10

Edit configuration file ILF 7
Total 32

6.5.3 Determination of flexible force value
Software manipulators can be general users, maintainers or developers, but their abilityto manipulate software is different. Based on the manipulator level needed to performthe changes, it is possible to divided them into different FXP levels: Self-Adaptive (SAFXP),self-changes performed at runtime transparent to the users; Low-level User (LUFXP), userswith basic knowledge about computers and business; High-level User (HUFXP), softwarehigh-level users with in-depth knowledge about computers and the application domain;and Developer-level User (DUFXP), developer users who have experience and knowledgeof business, system administration and software development.

The flexible force is the minimum external force applied to a FXP that can cause thesoftware to change. It is based on the FXP level. Table 5 shows the FXP levels and defines
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the corresponding value of flexible force. This table have been taken by definitions fromthe research of Shen and Ren [41]. These values are used later on to calculate the flexiblecapacity of every proposed scheme.
Table 5 – Flexible force values based on the FXP levels.

Flexible point
level

Flexible force
value

Manipulation

SAFXP 0 Not need user’s manipulationLUFXP 10 Simple function manipulationHUFXP 20 Complex function and business manipulationDUFXP1 30 Low technical manipulationDUFXP2 40 Average technical manipulationDUFXP3 50 High technical manipulation

6.5.4 Calculation of flexible degree and capacityTable 6 shows the calculations of the flexible degree and capacity for our solution. We pro-pose three implementation schemes that require different manipulator levels and there-fore, different flexible force.The first one is the solution developed for this research itself, based on MiniCPS; thesecond would be a theoretical implementation which is more promising, e.g., loweringdeveloper level required, with some standard software like Docker, which can simplifythe network limitations from MiniCPS; and the third one is a more complex solution interms of software coding, like GRFICS, which increases the developer level.
From our experience developing the scenario, we take for granted that the minimumrequired level to create the testbeds using MiniCPS and fulfill the FXP requirements is adeveloper level, as we need to write source code lines to perform any change or just tocreate the testbed scenario.We focus our research in students, teachers and security professionals; so we considerthat low and average developer levels are the available manipulators.
From the calculation tablewe see that the first scheme requires softwaremanipulatorsfrom low-developer level to high-developer level. However, as we defined in our require-ments, we only have below average-developer level, so the available flexibility will neverbe 100%. In this case, a manipulator with an average-developer level would be the onewith most flexible capacity.The second scheme represents an ideal solution, which reduces the manipulator levelof the different FXPs. This time, it is not required a high-skill manipulator, increasing theavailable flexibility to the maximum and providing a low-developer level user the biggestcapacity of the three schemes.In the third scheme, we define the most complex one, representing GRFICS. For ex-ample, we define that adding new protocols to this schema is not possible. To develop anew protocol in this solution would require to change also the devices, because they arevirtualized software that are only compatible with a specific ICS protocol.
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Table 6 – Final flexibility calculations.

Flexible point Flexible
distance

Scheme 1 Scheme 2 Scheme 3
fi Ki fi Ki fi Ki

Edit the scenario 44 (40)DUFXP2 1.07 (30)DUFXP1 1.41 (50)DUFXP3 0.86
Add new users 34 (40)DUFXP2 0.83 (30)DUFXP1 1.10 (50)DUFXP3 0.67
Add external devices 24 (30)DUFXP1 0.77 (30)DUFXP1 0.77 (40)DUFXP2 0.59
Add new protocols 32 (50)DUFXP3 0.63 (40)DUFXP2 0.78 ∞ 0

Required manipulators DU1, DU2, DU3 DU1, DU2 DU2, DU3Available manipulators DU1, DU2 DU1, DU2 DU1, DU2Potential flexible capacity 3.3 4.06 2.12Available flexible capacity 2.67 4.06 0.59Available rate of flexibility 81% 100% 28%DU1 flexible capacity 0.77 3.28 0DU2 flexible capacity 1.9 0.78 0.59DU3 flexible capacity 0.63 0 1.53
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7 Discussion
After the evaluation results, in this chapter we are going to discuss whether our solutionis appropriate for the defined objectives.Weonly have been able to compare our solutionwithGRFICS, due to the fact that otherprojects were not fully working or it was not possible to replicate the testbeds, becausethey were not open source developments.

The evaluation has shown that our solution is as well suited as others, in the SCADAtestbed environment. Regarding the performance of our scenario, in terms of CPU andRAM consumption, it is similar to GRFICS; but in terms of Bytes written in disk or networktraffic it is way behind the expectations. This implies that bigger networks or subnetswould cause a bigger impact in the performance.The high amount of write operations are caused by the extended use of databases tostore information. This is because of two reasons: the design of MiniCPS and the virtualnetwork limitations.First, MiniCPS is designed to store information in databases to keep the state of the sce-nario, i.e., the physical process and the devices interacting with it use database queriesto update and read this state. Second, due to the network limitations found in MiniCPS,which do not allow to connect the virtualized network to the outside, we had to sim-ulate the information exchange between the SCADA network and the HMI using moredatabases.The same happens with the bandwidth usage. Using different network protocols it ispossible to separate the data exchange and control commands of the scenario, however,MiniCPS only supports one ICS protocol, i.e., EtherNet/IP; as MODBUS in not fully devel-oped. In our development, we use the same protocol for both tasks, which increases theinteractions of the devices to send the same amount of data. Besides, this required asmaller update rate of the devices, i.e., the rate that every device loops its programmedlogic; increasing how many times the devices send and receive data.On the other hand, we found that the read Bytes from the disk is not a very usefulmetric in our case, as it keeps similar for the different solutions or even close to zero inour experiments. The devices usually don’t read these bytes directly from disk, but fromRAM memory. Initially, the database is loaded in memory and afterwards it is updated inmemory and disk.
Wehavedefined the feature ease of deployment as the simplicity to launch any testbed.To evaluate it, we consider two metrics: the number of commands (or interactions) re-quired to run the scenario and the time required to deploy it.For the first metric, only the ideal solution presents a complexity of O(1), achievedwhen the scenario can run by a fixed amount of commands. Either our solution or theothers analyzed depend on the number of devices, increasing the complexity to O(n).In the second metric, the time to deploy, we see some advantage in our design (41seconds) compared to GRFICS (62 seconds). However, due to the complexity given by thenumber of commands, we can expect that the timewill scale linearly, so runningmanuallyevery device or virtual machine will not be feasible in bigger scenarios.By automatizing or orchestrating the deployment, it would reduce significantly thecomplexity values to the ideal one O(1). It was not possible to implement this featuredue to the process leaks caused by the EtherNet/IP incomplete implementation and therace-conditions of the workers reading and writing the databases.
The scalability measurement can be obtained through the conclusions of the perfor-
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mance and the ease of deployment analysis. First, the performance decreases linearlywith the number of users of the application (i.e., number of subnets), requiring a doubleamount of resources just to run a scenario for two users. Second, the time required andnumber of commands also increases linearly with the number of devices, affecting thescalability. This growth will not be bearable at some point, for example, for 10 users thenumber of commands will be around 53 and the time required 310 second.
Number of commands The number of commands required to run the solution for 10users:

3 commands+5 commands∗10 users = 53 commands.
Time to deploy The time required to deploy the solution for 10 users:

10 seconds+30 seconds∗10 users = 310 seconds

Using distributed environments, i.e., running every process, device or set of devicesin an independent real machine, might help long-term to deploy scenarios in separatedmachines that do not share resources, reducing the cost. This approach is not possibledue to the limitations found to connect the virtual network with the outside world. Forexample, the solution GRFICS could use this approach, having its virtual machines runningon different servers and connecting them through the network.Another solution would be using different implementation approaches, as concludedby Qassim et al. [37]. This way, we can abstract the interactions of the scenario to theuser by using simulations even real hardware, instead of just virtualization, to increasethe performance in scalable scenarios.
Because our testbed is fully based on a third-party software, it is tied to this softwareconstraints. For example, the GRFICS solution uses different implementation approaches,but connects everything using VirtualBox, which is portable to several OS. One just needto run the virtual machine, where the testbed implementation is abstracted to the user.MiniCPS provides a framework to develop python testbeds, based on its network ca-pabilities, i.e., EtherNet/IP traffic. However, we have seen that the principal limitationsof the framework are in this level, i.e., lack of more industrial protocols, lack of networkconnectivity to the outside.A possible workaround would be using the virtualization tool Docker to cover the net-work part of our solutions. It is designed to simplify connections between software run-ning in its containers andwe found several implementations of industrial protocols adaptedto Docker.
In our flexibility analysis, we compare three different schemes. First, our actual solu-tion, which was assessed by the experience of developing our scenario using the MiniCPSframework. This approach is only flexible in terms of a medium-skilled developer. For ex-ample, in order to create new protocols we need to develop them low-level, interactingwith the software mininet which is abstracted to the user by the framework MiniCPS. Weassume this can be done only by an experienced high-skilled developer.The second schemewas theoretical, thinking in solutions like Docker, which has amod-ular design and having other industrial protocols already developed by its community. Thissimplifies the task of adding protocols to the testbed.The third approach is based on the GRFICS solution. This virtual machine environmentrequires customized developments in order to create protocols or add devices, increasingthe minimum threshold for the developers. In this case, the developer level is between
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medium and high-skilled. Besides, to develop new protocols in this approach, it wouldrequire to create them from the scratch and make them compatible with the virtualizeddevices. Therefore, we have set the flexible force to infinity, as it would not be feasible forany single developer.When we look for a bigger flexibility degree, we expect low developer level or evenless, like high user skills. This wouldmean that we require awell developed solutionwhichallows to create testbeds automatically or with simple configuration changes. Our testbedsolution is far away from this goal
7.1 Improvements for our solution
During the research we have based our work on the framework MiniCPS, this project isat the same time based on the network simulator mininet. We have encountered severallimitations and issues, e.g., MiniCPS had became abandonware, some libraries were up-dated and they were not compatible anymore. However, we believe it is still a promisingproject which has a lot of range to grow, although it needs more development and com-munity. Therefore, in this section we encourage future researchers to face this challengeand we propose several improvements:

• Developing an interface, written in python, to connect external devices to the virtu-alized network in a simple manner. This will extend the capabilities of the testbed,by transforming the virtualized approach in a Hardware-in-the-loop (HIL) approach.
• Developing new ICS protocols and integrating them in the framework. For exam-ple, in the case of MODBUS, updating or patching the old libraries, not supportedanymore by the framework.
• Improve the performance of the testbed by introducingmodern software solutions.For example, using a message broker, that can store information and return it with-out overloading the system, it was possible to reduce the read operations.
• Refactor the whole project. MiniCPS became abandonware after the research teamwas dissolved, two years ago. Refactoring the project would improve the ease ofuse of it, reducing the flexibility level.
• Capturing the traffic to generate different datasets of ICS traffic. They can be usedin future researches to detect attacks or train machine learning models.
• Extending the configuration of the network. This includes setting VLANs, routers orIDS in the network, as well as linking the ICS network to a corporate one or eventhe Internet.
• Extend the gamification part. During the development the focus was put into creat-ing the scenario, setting the attacks and evaluate their results. For example, addingchallenges and a score portal would improve the gamification capability.
• Extending the testbed to a distributed model. Splitting the different subnets anddevices in a distributed model might increase significantly the performance.
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8 Conclusions
The development of SCADA testbedswill continue to be amayor topic in cybersecurity dueto the big amount of research lines it can open. However, there is still a lack of open sourceand common projects. This does not only affect the academia, but also the business envi-ronment. Creating new customized testbed solutions for each problem is expensive andunproductive.With this research we expected to learn about SCADA systems and build a testbed so-lution to contribute to the open source community, including a short guide about attacksin such industrial scenarios. Besides, we needed to develop a process to validate our so-lution, based on metrics which could help to decide whether the solution is valid or notfor us.We can conclude that we have achieved all of these goals to some degree. Our testbedsolution works and allows to simulate an scenario to practice and learn the topic, al-though, it is not ready to host a CTF event, as it lacks several functionalities, e.g. morethan three concurrent users, CTF dashboards. We have designed a process and definedseveral metrics to evaluate testbed developments, realizing that our testbed does notcover the minimum standards we were expecting. In addition, we have learned a lot onthe ICS topic, more specific in SCADA systems.

All of these negative results come from the issues found in the frameworkMiniCPS andthe limitations of the proposed design.The project was abandoned 4 years ago, once the research teamwas finished. This hasinfluenced on our development, e.g., we had first to update to Python3 as the support wasfinished in 2019.The design of testbed solutions or frameworks should be also staked out from the be-ginning. A good approachmust prioritize a low coupling, so the change of one componentdoes not affect the others. Besides, the flexibility plays a big role in this kind of develop-ments. The framework used creates unique scenarios but does not allow to expand in amodular way, i.e., adding newprotocols, connecting hardware to the network. We believethe SCADA network is the most important part of any developed solution, as it is the partthat can limit the rest of the testbed.
In this researchwe have developed a SCADA testbed aswell as amethodology to evalu-ate the general performance and capabilities of the solution proposed. This methodologycan be used by other researchers to test different approaches and solutions.The science design approach has helped us to follow step-by-step the methodology, inorder to prove the validity of our testbed solution. Starting from the problem statementand design expectations, followed to the development and finished by the demonstrationand evaluation of those requirements; it has been possible to answer the question: Is thissolution valid for us?Thus, this approach has allowed us to conclude our design doesn’t fulfill our initialrequirements and expectations. Furthermore, it raises the question of performing moreiterations on the proposed solution, creating a new solution from the scratch or lookingfor another framework or software to build on.
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9 Future work
As the final wrap up, based on the issues and limitation found along the research, the re-quirements fulfilled and failed, aswell as the literature reviewed, wewould like to proposesome research-lines for the future.

• Develop a new framework to build testbeds based on Docker. This way, it is possibleto remove the limitations coming from mininet and would improve the portabilityand flexibility. This approach would also need to develop or import the libraries toreplicate ICS protocols.
• Develop a new framework to build testbeds based on virtualmachine orchestration.Taking the GRFICS solution as the starting point and using cloud solutions (AWS,Azure...) This approach could provide a virtualized or even hybrid design that canimprove the portability, flexibility and ease of deployment.
• Scenario modeling. The scenarios found in ICS literature are commonly repeated,creating a modeling framework to replicate any real life scenario into a testbedwould reduce the ease of use and increment the case uses for the community.
• Designing a benchmarking framework. Defining benchmark metrics and develop-ing a measurement framework to assess the performance and capacities of thetestbeds. Extending the work of this research.
• Federation. Federation consists of a model where different providers and enter-prises agree upon standards of operation in a decentralized fashion. This will affectthe portability, the development of standards, the definitions of models and dataand prevent the fragmentation of the industry.

56



List of Figures
1 Example of a SCADA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 SCADA architecture in three levels, from Maynard et al. [25] . . . . . . . . . . . . . . . . 143 HMI visualization using the PROMOTIC software tool [36] . . . . . . . . . . . . . . . . . . . 154 Generalization-Realism classification graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Six step methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 First iteration network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Creation of the mininet simulated network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 Testbed running monitored by the terminal windows . . . . . . . . . . . . . . . . . . . . . . . . 299 Graphic interface accessible through the browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2910 Second iteration network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3011 Third iteration network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3012 Performing a denial of service with nmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3513 Nmap host discovery scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3614 Nmap port scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3615 ARP spoof attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3716 Capturing the flag with Wireshark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3717 Denial of service using ARP spoof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3818 Measuring the data sent by the RTU to the SCADA . . . . . . . . . . . . . . . . . . . . . . . . . . . 3819 Checking the water level displayed in the RTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3920 Performance comparison between the different solutions . . . . . . . . . . . . . . . . . . . 4321 Performance comparison based on the number of users . . . . . . . . . . . . . . . . . . . . . 4422 Process leaks while trying to orchestrate the deployment . . . . . . . . . . . . . . . . . . . . 46

57



List of Tables
1 Comparative table between the different frameworks reviewed. . . . . . . . . . . . . 262 Measures of the time required to execute the scenario, in seconds. . . . . . . . . . 463 Function type weights for the flexible distance calculation. . . . . . . . . . . . . . . . . . . 484 Flexible distance calculation for the FXPs defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 Flexible force values based on the FXP levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 Final flexibility calculations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

58



References
[1] Commission of the european communities, directive eu com(2006) 786.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:52006DC0786&from=EN, 2006.

[2] I. 29119-4:2015. Software and systems engineering— Software testing— Part 4: Test
techniques. ISO, Geneva, Switzerland, 2015.

[3] H. G. Aghamolki, Z. Miao, and L. Fan. A hardware-in-the-loop scada testbed. In 2015
North American Power Symposium (NAPS), pages 1–6. IEEE, 2015.

[4] T. Alves, R. Das, and T. Morris. Virtualization of industrial control system testbeds forcybersecurity. In Proceedings of the 2nd Annual Industrial Control System Security
Workshop, pages 10–14. ACM, 2016.

[5] T. Alves, R. Das, A. Werth, and T. Morris. Virtualization of scada testbeds for cyber-security research: A modular approach. Computers & Security, 77:531–546, 2018.
[6] D. Antonioli, A. Agrawal, and N. O. Tippenhauer. Towards high-interaction virtualics honeypots-in-a-box. In Proceedings of the 2nd ACMWorkshop on Cyber-Physical

Systems Security and Privacy, pages 13–22, 2016.
[7] D. Antonioli, H. R. Ghaeini, S. Adepu, M. Ochoa, and N. O. Tippenhauer. Gamify-ing ics security training and research: Design, implementation, and results of s3. In

Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy,pages 93–102, 2017.
[8] D. Antonioli and N. O. Tippenhauer. Minicps: A toolkit for security research on cpsnetworks. In Proceedings of the First ACM workshop on cyber-physical systems-

security and/or privacy, pages 91–100, 2015.
[9] R. Antrobus, S. Frey, B. Green, and A. Rashid. Simaticscan: Towards a specialisedvulnerability scanner for industrial control systems. In 4th International Symposium

for ICS & SCADA Cyber Security Research 2016 4, pages 11–18, 2016.
[10] D. Avison and S. Elliot. Scoping the discipline of information systems. Information

systems: the state of the field, pages 3–18, 2006.
[11] P. Brooks. Ethernet/ip: Industrial protocol white paper. Institute of Electrical and

Electronic Engineers, EFTA, 2001.
[12] R. Brooks. Virtual ics test bedk. Master’s thesis, Iowa State University, 2018.
[13] G. Combs. Wireshark network protocol analyzer. https://www.wireshark.org/.
[14] C. Davis, J. Tate, H. Okhravi, C. Grier, T. Overbye, and D. Nicol. Scada cyber securitytestbed development. In 2006 38th North American Power Symposium, pages 483–488. IEEE, 2006.
[15] B. Earl. Dsniff tool collection. http://monkey.org/ dugsong/dsniff/.
[16] D. Formby, M. Rad, and R. Beyah. Lowering the barriers to industrial control sys-tem security with {GRFICS}. In 2018 {USENIX} Workshop on Advances in Security

Education ({ASE} 18), 2018.
59



[17] W. Gao and T. H. Morris. On cyber attacks and signature based intrusion detectionfor modbus based industrial control systems. Journal of Digital Forensics, Security
and Law, 9(1):3, 2014.

[18] H. Hadeli, R. Schierholz, M. Braendle, and C. Tuduce. Leveraging determinism in in-dustrial control systems for advanced anomaly detection and reliable security config-uration. In 2009 IEEE Conference on Emerging Technologies & Factory Automation,pages 1–8. IEEE, 2009.
[19] H. Holm, M. Karresand, A. Vidström, and E. Westring. A survey of industrial controlsystem testbeds. In Secure IT Systems, pages 11–26. Springer, 2015.
[20] L. M. Jessup, J. S. Valacich, and M. Wade. Information systems today. Prentice HallUpper Saddle River, NJ, 2003.
[21] A. Lemay, J. Fernandez, and S. Knight. An isolated virtual cluster for scada networksecurity research. In 1st International Symposium for ICS & SCADA Cyber Security

Research 2013 (ICS-CSR 2013) 1, pages 88–96, 2013.
[22] H. Li, G. Liu, W. Jiang, and Y. Dai. Designing snort rules to detect abnormal dnp3 net-work data. In 2015 International Conference on Control, Automation and Information

Sciences (ICCAIS), pages 343–348. IEEE, 2015.
[23] G. Lyon. Nmap network scanner. https://nmap.org/.
[24] L. A.Maglaras and J. Jiang. Intrusion detection in scada systems usingmachine learn-ing techniques. In 2014 Science and Information Conference, pages 626–631. IEEE,2014.
[25] P. Maynard, K. McLaughlin, and S. Sezer. An open framework for deploying experi-mental scada testbed networks. 5th International Symposium for ICS & SCADA Cyber

Security Research 2018 (ICS-CSR 2018), 2018.
[26] S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A.-R. Sadeghi, M. Maniatakos, andR. Karri. The cybersecurity landscape in industrial control systems. Proceedings of

the IEEE, 104(5):1039–1057, 2016.
[27] R. Meli. E&QFP Early & Quick Function Points for IFPUG method. 01 2012.
[28] J.Mingers and F. Stowell. Information systems: an emerging discipline? McGraw-Hill,1997.
[29] B. Mininet core team: Lantz and B. O’Connor. Installation guide for mininet.

https://github.com/mininet/mininet/blob/master/INSTALL.
[30] T. Morris, A. Srivastava, B. Reaves, W. Gao, K. Pavurapu, and R. Reddi. A controlsystem testbed to validate critical infrastructure protection concepts. International

Journal of Critical Infrastructure Protection, 4(2):88–103, 2011.
[31] T. Morris, R. Vaughn, and Y. S. Dandass. A testbed for scada control system cyberse-curity research and pedagogy. In Proceedings of the Seventh Annual Workshop on

Cyber Security and Information Intelligence Research, page 27. ACM, 2011.
[32] T. H. Morris and W. Gao. Industrial control system cyber attacks. In Proceedings

of the 1st International Symposium on ICS & SCADA Cyber Security Research, pages22–29, 2013.
60



[33] T. H. Morris, B. A. Jones, R. B. Vaughn, and Y. S. Dandass. Deterministic intrusiondetection rules for modbus protocols. In 2013 46th Hawaii International Conference
on System Sciences, pages 1773–1781. IEEE, 2013.

[34] M. Niedermaier, T. Hanka, S. Plaga, A. von Bodisco, and D. Merli. Efficient passiveics device discovery and identification by mac address correlation. arXiv preprint
arXiv:1904.04271, 2019.

[35] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design scienceresearch methodology for information systems research. Journal of management
information systems, 24(3):45–77, 2007.

[36] PROMOTIC. Scada visualization software. https://www.promotic.eu/en/index.htm.
[37] Q. Qassim, N. Jamil, I. Z. Abidin, M. E. Rusli, S. Yussof, R. Ismail, F. Abdullah, N. Ja’afar,H. C. Hasan, and M. Daud. A survey of scada testbed implementation approaches.

Indian Journal of Science and Technology, 10(26):1–8, 2017.
[38] R. K. Rainer, C. G. Cegielski, I. Splettstoesser-Hogeterp, and C. Sanchez-Rodriguez.

Introduction to information systems: Supporting and transforming business. JohnWiley & Sons, 2013.
[39] B. Reaves and T. Morris. Discovery, infiltration, and denial of service in a processcontrol system wireless network. In 2009 eCrime Researchers Summit, pages 1–9.IEEE, 2009.
[40] B. Reaves and T.Morris. An open virtual testbed for industrial control system securityresearch. International Journal of Information Security, 11(4):215–229, 2012.
[41] L. Shen and S. Ren. Analysis andmeasurement of software flexibility based on flexiblepoints. Published in the Proceedings of Smef–2006, 1990.
[42] V. Stinner. Python development documentation, supported platforms and architec-tures. https://pythondev.readthedocs.io/platforms.html, 2018.
[43] J. Stites, A. Siraj, and E. L. Brown. Smart grid security educational training withthundercloud: A virtual security test bed. In Proceedings of the 2013 on InfoSecCD

’13: Information Security Curriculum Development Conference, InfoSecCD ’13, pages105:105–105:110, New York, NY, USA, 2013. ACM.
[44] I. Stoian, S. Ignat, D. Capatina, and O. Ghiran. Security and intrusion detection oncritical scada systems for water management. In 2014 IEEE International Conference

on Automation, Quality and Testing, Robotics, pages 1–6, May 2014.
[45] K. Stouffer, S. Lightman, V. Pillitteri, M. Abrams, and A. Hahn. Nist special publica-tion 800-82, revision 2: Guide to industrial control systems (ics) security. National

Institute of Standards and Technology, 2014.
[46] G. Vigna, K. Borgolte, J. Corbetta, A. Doupe, Y. Fratantonio, L. Invernizzi, D. Kirat, andY. Shoshitaishvili. Ten years of ictf: The good, the bad, and the ugly. In 2014 {USENIX}

Summit on Gaming, Games, and Gamification in Security Education (3GSE 14), 2014.
[47] B.White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,M.Newbold,M.Hibler, C. Barb,and A. Joglekar. An integrated experimental environment for distributed systems andnetworks. ACM SIGOPS Operating Systems Review, 36(SI):255–270, 2002.

61



[48] R. J. Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[49] M.M. Yamin, B. Katt, and V. Gkioulos. Cyber ranges and security testbeds: Scenarios,functions, tools and architecture. Computers & Security, page 101636, 2019.
[50] B. Zhu, A. Joseph, and S. Sastry. A taxonomy of cyber attacks on scada systems. In

2011 IEEE International Conferences on Internet of Things, and Cyber, Physical and
Social Computing, pages 380–388. IEEE, 2011.

62



Acknowledgements
This Master Thesis could not be done without the help of a lot of people of my life.

To my family, because they have helped me embrace the challenge of going abroad.
To Susana, because she has given me unconditional love and support.
To Lorena and Cristo, because they were always there, even in the worst moments.
To Valentin, because he opened me the world of cybersecurity.
To Hayretdin, because of his patience.
To Carlos and Nico, because that Hackathon was the beginning.
To Kapil and Adrian, because they gave me the encouragement to finish.

63



Abstract
Developing a SCADA Testbed from a Design Science Approach
Nowadays, cybersecurity in Industrial Control Systems (ICS) is gaining popularity. This in-cludes any industrial process and infrastructure, e.g., wastewater treatment plants, nu-clear plants, electric power distribution, turbines, railway systems. Due to the widelyextended use of the Internet of Things, devices of any type directly connected to the In-ternet, the ICS environment is evolving. These systems, typically characterized by theirobscure and proprietary protocols, and isolated networks, are getting closer to traditionalInformation Technology (IT) systems; by adding IT capabilities and replacing physical de-vices by "smart" ones.A very common solution in the current ICS environment is the supervisory control anddata acquisition (SCADA) system. It is used to control and monitor industrial processes,collecting real-time data from sensors, displaying the process information to the humanoperators, and sending manual or autonomous orders to the actuators. For example,SCADA systems can be found in modern electric power distribution infrastructures, recol-lecting data from the smart meters to measure the level of consumption, and controllingthe allocation of electric energy.From the cybersecurity perspective, the research trends include Intrusion DetectionSystems (IDS) and testbeds. IDS solutions permit the detection of anomalies and ma-licious behavior within the network. They have evolved from deterministic to machinelearning approaches. Testbeds are testing infrastructures which simulates a real environ-ment. Since testing in real ICS can be dangerous and expensive, testbeds have gainedpopularity.Considering that having a real replica of a nuclear plant in the basement is not a option,we believe testbeds are one of the main start points for researching in the ICS scene. Themain uses of such solutions are the vulnerability analysis, testing IDS products and edu-cational purposes. Despite this, there is a lack of open source testbeds or open sourceframeworks to develop such testbeds. We ponder that this is a threshold for future stu-dents and researchers.Therefore, this research will focus on the creation of an open source testbed and theprocess of its development. For this task, we will follow a design science methodology.This approach will help us to design, develop and validate our solution. The final goal isto validate the procedures to develop a testbed. This procedures can be used later bystudents, teachers or researchers to learn, teach and research this topic.
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Kokkuvõte
Testimisplatvormi loomine SCADA süsteemidele kasutades di-
sainiteaduse metoodikati
Tänapäeval on küberturve tööstusjuhtimissüsteemides (ICS) muutumas üha populaarse-maks. See hõlmab kõiki tööstuslikke protsesse ja infrastruktuure, nagu näiteks reoveepu-hasteid, tuumajaamasid, elektrienergia jaotust, turbiine, raudteesüsteeme. Asjade inter-neti laialdase kasutamise tõttu areneb ICS-i keskkond. Need süsteemid,mida tavaliselt ise-loomustavad varjatud ja omandiõigusega protokollid ning isoleeritud võrgud, lähenevadtraditsioonilistele infotehnoloogia (IT) süsteemidele; IT-võimaluste lisamine ja füüsilisteseadmete asendamine „nutikatega“.Praeguses ICS-i keskkonnas on järelvalve ja andmete hankimise (SCADA) süsteem vä-ga levinud lahenduseks. Seda kasutatakse tööstusprotsesside juhtimiseks ja jälgimiseks,reaalajas andmete kogumiseks, protsessiteabe kuvamiseks operaatoritele ning manuaal-sete või autonoomsete tellimuste saatmiseks täiturmehhanismidele. SCADA süsteemevõibleida näiteks kaasaegsetest elektrienergia jaotusinfrastruktuuridest, nutiarvutitest and-mete kogumisel, millega mõõdetakse tarbimistaset, ja kontrollimiseks elektrienergia jao-tustest.Küberturvalisuse seisukohast hõlmavad uurimustöö suundumused sissetungimise tu-vastamise süsteeme (IDS) ja testvoodeid. IDS-lahendused võimaldavad tuvastada ano-maaliaid ja pahatahtlikku käitumist võrgus. Need on arenenud deterministlikest masina-õppe lähenemisviisidest. Testvoodid on reaalse keskkonna simuleerimiseks mõeldud inf-rastruktuurid. Testimine reaalses ICS-is võib olla ohtlik ja kallis, mistõttu on testvoodidkogunud populaarsust.Arvestades, et keldris oleva reaalse tuumajaama koopia omamine ei ole võimalik, usu-me, et testvoodid on üks peamisi lähtepunkte ICS-i uurimisel areenil. Selliste lahendustepeamised kasutusalad on haavatavuste analüüs, IDS-toodete testimine ja hariduslik ees-märk. Sellest hoolimata puudub selliste testvoodi arendamiseks avatud lähtekoodiga test-voodid või raamistikud.Me leiame, et see on läveks tulevaste üliõpilaste ja teadlaste jaoks.Seetõttu keskendub see uurimustöö avatud lähtekoodiga katsealuse loomisele ja selleväljatöötamise protsessile. Selle ülesande täitmiseks järgitakse disianiteaduse metoodi-kat. See lähenemisviis aitab lahendust kavandada, välja töötada ja valideerida. Lõppees-märk on katsealuse väljatöötamise protseduuride valideerimine. Seda protseduuri saavadõpilased, õpetajad või teadlased kasutada hiljem selle teema õppimiseks, õpetamiseks jauurimiseks.
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