
Tallinn2019

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mohammad Alizadeh Ghoulan 165521

EMBEDDED LINUX CUSTOMIZITION AND

DRIVER DEVELOPMENT FOR SOC KIT

Master’s thesis

Supervisor: Dr. Alar Kuusik

 Senior Research

Scientist

Tallinn2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogiateaduskond

Mohammad Alizadeh Ghoulan 165521

EMBEDDED LINUX-I KOHANDAMINE JA

DRAIVERITE ARENDAMINE SOC KIT

JAOKS

Magistritöö

Juhendaja: Dr. Alar Kuusik

 vanemteadur

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mohammad Alizadeh Ghoulan

01.05.2019

4

 Abstract

Linux driver development for SoC FPGA which uses full-length/low-performance

communication interface, and requires mastering in Linux programming, FPGA design

and C coding, leads to complexity for developers. This article tries to provide a clear

guidance of design flow by dividing the sequence in three different parts and supplying

detailed information based on the author’s experiences of Linux driver development for

SoC Kit. XOR driver development using SoC FPGA Lightweight bridge interfacing

presents simple and basic and at the same time comprehensive information for beginner

developers. This work provides the most practical instruction for junior developers to

verify hardware/software components and obtain a general overview of all creating

special Linux distribution, driver development flow as well as FPGA design and C

programming. This research is a part of Xiphera encrypting IP block project and has

resulted in XOR driver for SoC Kit.

This thesis is written in English and is 54 pages long, including 3 chapters, 41 figures.

5

Annotatsioon

Embedded Linux-i Kohandamine ja dDraiverite

ARrendamine SoC Kit jaoks

Linuxi draiverite arendamine SoC FPGA jaoks, mis kasutab täispika / madala jõudlusega

kommunikatsiooniliidest ja vajab Linuxi programmeerimise, FPGA disaini ja C-

kodeerimise rakendamist, viib arendajatele keerukuse. Käesolevas artiklis püütakse anda

selgeid juhiseid disainivoogude kohta, jagades jada kolmeks erinevaks osaks ja esitades

üksikasjaliku teabe, mis põhineb autori kogemustel Linuxi draiveri arendamisel SoC

FPGA komplekti jaoks. XOR-i juhi arendamine SoC FPGA abil Kerge sillaühendus

pakub algajatele arendajatele lihtsat ja põhilist ning samal ajal terviklikku teavet. See töö

annab noortele arendajatele kõige praktilisema juhendi riistvara / tarkvara komponentide

kontrollimiseks ja üldise ülevaate saamiseks kõigist, mis loovad spetsiaalse Linuxi

levitamise, draiveri arendamise voolu ning FPGA disaini ja C programmeerimise.

Selle projekti jaoks on vajaliku riistvarana kasutatud SoC FPGA komplekti. Juhatus on

kombineeritud Altera Cyclone V FPGA ja ARM Cortex-9 Dual core-protsessoriga. Kuigi

turul on veel üks võistluslaud (Xilinx), kuid arvestades SoC FPGA komplekti

konkurentsivõimelist hinda ja asjaolu, et Altera on nüüd osa Intelist, kes suudab pakkuda

tehnilist tuge, alustas Xiphera oma projekti selle riistvaraplatvormi abil . See uuring on

osa Xiphera IP krüpteerimisprojektist ning selle tulemuseks on XOR draiver SoC FPGA

komplekti jaoks. See töö viib arendajatele üldise ettekujutuse sellest, kuidas Linuxi

draiverit kujundada täispika liidesega.

Lõputöö on kirjutatud [Inglise] keeles ning sisaldab teksti 54 leheküljel, 3 peatükki, 41

joonist.

6

List of abbreviations and terms

SoC

FPGA

OP

PC

RTOS

GNU

GCC

API

CPU

ARM

RISC

U-Boot

RAM

ROM

SPL

I/O

IoT

PROM

PLD

ASIC

ASSP

FFTC

DDUC

VHSIC

VHDL

FFT

IFFT

HPS

MPU

AXI

MM

AMBA

UART

System on Chip

Field-Programmable Gate Array

Operating System

Personal Computer

Real Time Operating System

GUN’s Not Unix

GNU Compiler Collection

Application Program Interface

Central Processing Unit

Advanced RISC Machines

Reduced Instruction Set Computing

Universal Boot

Random access Memory

Read Only Memory

Secondary Program Loader

Input / Output

Internet of Things

Programmable Read Only Memory

Programmable Logic Device

Application Specific Integrated Circuit

Application Standard Parts

Fast Fourier Transform Coprocessors

Digital Down Converter-Up Converter

Very High-Speed Integrated Circuit

VHSIC Hardwar Description Language

Fast Fourier Transform

Inverse Fast Fourier Transform

Hard Processor System

Microprocessor Unit

Advanced eXtensible Interface

Memory Mapped

ARM Microcontroller Bus Architecture

Universal Asynchronous Receiver Transmitter

7

RBF

GHRD

CD

SOF

SRAM

QPF

PIO

IP

TCL

DTS

DTB

BSP

MTD

RTS

Raw Binary File

Golden Hardware Reference Design

Compact disc

SRAM Object File

Static RAM

Quartus Program File

Parallel Input / Output

Intelligent Property

Tool Command Language

Digital Theater System

Device Tree Bulb

Board Support Package

Memory Technology Device

Remote Target System

TUT

VGA

Tallinn University of Technology

Video Graphics Array

8

Table of contents

Author’s declaration of originality .. 3

Abstract .. 4

Annotatsioon [Thesis title in Estonian] ... 5

List of abbreviations and terms ... 6

Table of contents ... 8

List of figures.. 9

1 Introduction ... 11

2 Customized Linux for Embedded systems .. 12

2.1 Why Linux? .. 12

2.2 Why Customization for Linux Is Required? ... 14

2.3 Linux for Embedded Systems .. 16

3 SoC FPGA’s .. 22

3.1 SoC FPGA’s Evaluation .. 23

3.2 SoC Kit ... 30

4 Driver Development for Embedded Linux .. 35

4.1 Software Requirement for Driver Development ... 35

4.2 FPGA Design Flow ... 39

4.3 Linux Distribution Development Steps .. 42

4.4 User Space Applications .. 50

4.5 XOR Driver Development ... 59

5 Summary .. 72

9

List of figures

Figure 1. Modular Structure of Linux .. 14

Figure 2. Running different applications in Kernel and User spaces 15

Figure 3. Five Elements of An Embedded Application .. 16

Figure 4. Generating an executable by Toolchain .. 18

Figure 5. Bootloader Initializing Flow ... 19

Figure 6. Generating PreLoader Sequences ... 21

Figure 7. Kernel Functionalities ... 21

Figure 8. SoC Kit .. 23

Figure 9. Advantages/disadvantages of FPGA and ASIC .. 26

Figure 10. FPGA, ASIC/ASSP and SoC comparison ... 27

Figure 11. SoC FPGA compare with ASIC ... 28

Figure 12. Fast Time to Market ... 29

Figure 13. SoC Kit Components .. 30

Figure 14. SoC Kit Block Diagram ... 31

Figure 15. Cyclone V SoC Bridges ... 32

Figure 16. Master and Slave Interfaces .. 33

Figure 17. AXI Master/Slave Interface .. 34

Figure 18. Quartus Prime 18.1 Lite Edition ... 36

Figure 19. Platform Designer Tool or Qsys ... 36

Figure 20. DS-5 .. 38

Figure 21. DS-5 Debugger Tool .. 39

Figure 22. Customized IP .. 41

Figure 23. Avalon Interface ... 41

Figure 24. Device Tree Generating and U-Boot Compiling Steps 45

Figure 25. Kernel Configuration Window ... 47

Figure 26. Buildroot Configuration Window ... 48

Figure 27. Target Configuration of Buildroot .. 49

Figure 28. Toolchain Configuration of Buildroot... 49

Figure 29. System Development Flow .. 50

file:///C:/Users/Asus/Desktop/mohammad%20visa/Embedded%20Linux%20Customization%20and%20Driver%20Development%20for%20SoC%20Kit.docx%23_Toc7986588
file:///C:/Users/Asus/Desktop/mohammad%20visa/Embedded%20Linux%20Customization%20and%20Driver%20Development%20for%20SoC%20Kit.docx%23_Toc7986589

10

Figure 30. Flash Device Connections with SoC FPG ... 51

Figure 31. Access to MTD from Terminal Window .. 52

Figure 32. MTD Partitions ... 52

Figure 33. Flash Memory Partitioning ... 53

Figure 34. Creating a New Connection from RTS ... 54

Figure 35. Configuration of RTS IP Address ... 54

Figure 36. DS-5 Debugger Menu .. 55

Figure 37. DS-5 Debugger Configuration Menu .. 56

Figure 38. DS-5 Debugger View ... 57

Figure 39. Full FIFO communication Qsys Design .. 58

Figure 40. FIFO Interface ... 59

Figure 41. Cyclone V SoC HPs Memory Map ... 63

Figure 42. Makefile compilation and transferring to the SD Card 70

Figure 43. XOR driver initializing ... 71

Figure 44. Communicating with driver and executing XOR operation 71

file:///C:/Users/Asus/Desktop/mohammad%20visa/Embedded%20Linux%20Customization%20and%20Driver%20Development%20for%20SoC%20Kit.docx%23_Toc7986593

11

1 Introduction

Combination of FPGA and SoC into a single board, to utilize both parts’ advantages, has

optimized productivity and efficiency. Synchronically, Linux has been used to run these

devices as it has been developers’ favourite OS due to its flexibility and open source data

base which provides freedom of design. Customization and driver development of

embedded Linux for SoC Kit is an article focusing on Linux for embedded concept and

its design flow. As the mentioned concept requires detailed knowledge and technical

experience in Linux programming, FPGA design, VHDL/VeriLog coding and C

programming, this research endeavours to provide a clear guidance by dividing design

sequence into three different parts and step by step explanations. Driver development for

SoC Kit requires Linux customization combining with Qsys design and HPS applications.

These development steps are related to each other and must be done in a correct order

otherwise the design process would be complicated and time consuming. This work tries

to solve the complication of the design process and provide a clear guidance.

The final purpose of this project is to develop a XOR driver as a simple representation of

the whole design sequence for SoC Kit. XOR driver verifies SoC Kit hardware/software

facilities, such as GHRD and low-performance bridge communication between FPGA

fabric and HPS sides using Avalon-MM interface. Full communication interface, which

requires HPS to FPGA and FPGA bridges’ interaction, has been described with a user

space application. Full-length communication is used for Xiphera encrypting IP block

development (which patented by Xiphera and is not a part of this work) and XOR driver

development is fundamental validation of hardware/software components of SoC Kit.

XOR driver provides Lightweight bridge communication by manipulation FPGA LEDs,

which is a very good lead to obtain a general overview of full-length communication that

can be used for more complicated projects.

This work consists of 3 sections. The first part investigates advantages of Linux

customization and its necessity. The second section, SoC FPGA background, explains

advantages and features of the SoC Kit, and finally, the third part engages in practicing

and experimenting the real task/project. In this part, all three different stages of embedded

Linux design flow, has been described separately. To provide the right materials for the

mentioned sections, electronic and online sources have been also utilized.

12

2 Customized Linux for Embedded systems

Linux is a Unix-like operating system for computers and servers. It has been developed

by Linus Torvalds, a computer science student at the University of Helsinki in 1991 [1].

The Unix system and the its hardware were both expensive and the Minix (a Unix version

which was available for free) did not meet his needs. Therefore, he decided to develop a

new Unix-like OS and shared his working result on the internet after six months of hard

working (which had made a little progress toward general utility of the system) and found

so many people who have the same desire. From 1991 Linux has been modified thousand

times by different developers (as it is an open source OS) and has achieved a level of

maturity that most of developers want.

In this chapter Linux properties and the reason that makes it the first option for the

embedded systems development are discussed; while Windows is used widely (almost 75

%) by end user consumers or even giant companies [2].

2.1 Why Linux?

Referring to the market share statistics, most of computer users prefer to use Windows

operating system while Linux has only 1.6 % of the whole market [2]. It is becoming

more interesting, if the reality that Linux is free of charge and there is no need to pay for

a license (except commercial distributions provided by vendors) is considered. The

second important issue about Linux is its open source development property. So, there is

freedom to develop new features and use whatever the project requires, and it is totally

free of charge; but still people are using Windows OS incredibly more than Linux; but

why?

After using Linux more actively in my professional life, the reason has been discovered.

I must confess that I have learned computer working by Windows OS like the most

people, but before my master I started to hear, learn and finally use Linux as the only OS

every day at my job. Here are more evidences to compare both OS features. Linux features

can be briefly listed as following:

13

1- Multiuser, multiprocessor and multiplatform: more than one user can be logged

in to a single computer at the same time. Kernel (the core of Linux OS)

multitasking property enables users to run multiple services on one computer; and

finally, it has been developed for more than 24 hardware systems.

2- Flexibility: Linux can be configured for a variety of usage such as network host,

router, web server, personal PC and many computing appliances that could be

thought of.

3- Efficiency: the modular design of Linux enables to include only required

components for running the desired service. Linux servers can work without any

crash for even decades which makes it more reliable comparing to Windows.

4- Security: although Linux is open source which makes it risk-bearing, but it is

highly secure OS because of its open source capability and a big group of

volunteer developers who can easily identify attacking risks and modify Linux

[3].

Considering above mentioned features, Linux is looking charming for developers who

want to have a free-to-customization, secure, reliable and free OS. So why do amateur

computer users prefer to use Window OS rather than Linux OS? The key words here are

developers who are known as coder or programmer verses normal people who use

computers as a device in daily life. Most people do not need to customize their OS, instead

they want to have an already customized and ready to use device with all adjustments and

configurations. Here the reason that Windows OS has taken the huge piece of market pie

must be declared: ease of use! Windows OS has already all configurations done and needs

only to be installed and run; moreover, it has a good support community which makes it

attracted for end computer users. Windows has defined short cuts for different needs of

users while in Linux it is needed to run a terminal window and execute a command

(assuming these commands have been memorized after several time using) to have even

a very basic feature.

On the contrary, developers prefer to use Linux because of its reliable and flexible

features which enable them to configure OS for any desired requirement. More

importantly, to develop a new project, which might need so many different adjustments

14

and configurations, the OS allows to play with different properties, use some of them or

even develop new ones. To sum up, the customization capability of Linux in addition to

its other features, are the main reasons that makes it interesting for developers.

2.2 Why Customization for Linux Is Required?

It was mentioned in the previous chapter that Linux modularity and open source features

make it interesting for developers to easily program the desired services. A traditional

monolithic OS uses one static-compiled image and runs in an all-or-nothing mode in

which the entire OS needs to be restarted, if any element or application fails. While

application and drivers in Linux have their own interface communicating with Kernel and

interacting with the other applications independently. Looking at below figures describes

the modular structure of Kernel:

1/2 Figure 1. Modular Structure of Linux [4, p. 293] 3

1 API: Application Program Interface, which interacts between Kernel and the applications run on it.

2 Misc: Minimal Instruction Set computing, is a processor architecture with a very small number of basic

operations [1].

3 Please note that all figures which have no citation in this project are screen shots from results of the

original work by the author.

15

 Figure 2. Running different applications in Kernel and User spaces [5, p. 129]

Taking into consideration that there are so many different platforms with different

developers who work on a variety of projects, justifies a need for free to develop system

that supports modular capability to provide different services for different developers.

Speaking more specifically about Linux for Embedded Systems, developers need a

system that allows them to use it for different purposes in different time periods.

Assuming an embedded system software developer who works on a project for

automotive industry. This project has its own specific requirements from Linux side

which may totally differ from another project for a different industry, for instance LED

TV’s. Therefore, such a system is required to provide all features needed for different

purposes and support variety of projects’ fundamental requirements.

To have a conclusion, developers prefer Linux because of freedom of configuration which

enables them to use it for different projects that require different set of drivers,

configurations and adjustments.

16

2.3 Linux for Embedded Systems

Linux is suitable for real time complex projects, especially when the connectivity among

the applications and tasks is required. There may be a need for an up-to-date host machine

(a laptop or personal PC) and a target board because Linux needs more resources

compared to the traditional real time OS (RTOS). Linux is popular for embedded systems

because of the same reasons were discussed in the previous chapter in general and mostly

for PC’s. Free software and open source community of Linux make it flexible for different

variety of embedded systems projects, especially for limited investments with high

returns. No need to mention again about Linux stability, reliability, network ability and

multiuser/multitask capability features, which make it the favourite OS for embedded

systems.

As it has been demonstrated in Figure 3, every project for embedded systems, which is

running embedded Linux, needs below listed five elements to be obtained and configured

properly. To begin:

 Figure 3. Five Elements of An Embedded Application [6, p. 76]

17

1- Toolchain: all steps for getting started a new project on an embedded board

depend on Toolchain. Toolchain is the set of code generated by compiler and other

tools for the target device. In Figure 3, Toolchain is not printed but it takes place

in the bottom of all other steps. The reason it is not shown in this figure lies in the

fact that Toolchain downloading, and configuration have been set by the host

machine and the other steps, which depend on Toolchain, are being generated and

put in a SD Card, which is used by the target board.

2- Bootloadr: after getting the Toolchain, the target board needs to be initialized;

which Bootlaoder takes the responsibility here. Bootloader is shown in Figure 3

as U-Boot (Universal Boot) which itself is a step of booting.

3- Kernel: heart of the system which manages all resources and interfacing with the

hardware. Kernel includes itself, drivers, machine specific layers and device tree

in the figure. In fact, the device tree is kind of interacting between BootLoader

and Kernel which defines hardware components of the embedded device. The

device tree is loaded by BootLoader and passed to Kernel and Kernel image

cannot be loaded without device tree compilation. A closer look at the device tree

in the third chapter of the third part of this article is given.

4- Root filesystem: includes programs and libraries and runs after Kernel

initialization [7].

5- Application: a collection of programs which you use for the project.

A closer look is taken at these five elements, as all these steps will be used later in order

to develop a driver for own Linux distribution; so it is needed to have at least a general

overview, (sometimes detailed expertise to solve problems is needed, as Linux is an open

source OS and there is no guarantee for software developers that everything work well in

all projects).

As it has been mentioned earlier, Toolchain is a set of tools that compiles required source

codes into an executable file that can be run on the embedded board; and it is absolutely

needed to be done before continuing the other steps of design sequence.

18

 Figure 4. Generating an executable by Toolchain [8, p. 7]

Toolchain contains a compiler, linker and C libraries, (available Toolchain for Linux are

mostly based on GNU which is notably written in C. There are different types of

Toolchain that also include Assembly and C++ libraries). GNU is a Unix-like OS that

provides components for Toolchain’s using Linux. GNU is an acronym of “GNU’s Not

Unix” which has been developed and named by Richard Stallman, insisting that it is not

a Unix system but Unix-like OS. He stated that after playing with words and being

inspired from “The GNU” song has named his project GNU in 1983. This OS’s compilers

and linkers support Linux using Toolchain’s and provide C libraries to start each

embedded application. Every GNU Toolchain consists of three main components: [8]

1- Binutils: s set of binary utilities containing assembler and linker.

2- GNU Compiler Collection (GCC): compilers for C and other languages depends

on the version of GCC.

3- C Library: there are different C libraries which are provided as Application

Program Interface (API). This API is the main component for interfacing Kernel

with applications.

19

It will be demonstrated how to use Toolchain to start booting the target device which

depends on the CPU (Central Processing Unit) and in this case is ARM Cortex-9.1

Choosing proper C libraries for the project will be also experienced. Altera’s2 open source

database to download and set the Ttoolchain which supports Linux Ubuntu 16.043 (the

Linux version on the host machine) will be used. It is necessary to say that Ubuntu is an

open source Linux distribution based on Debain which is a Unix-like OS. To sum up with

the Toolchain matter, it is needed to download and configure it following the steps which

will be provided in the relevant chapter.

The second step of the embedded application design flow is Bootloader which boots the

embedded device and initialize it to get the Kernel. In fact, Bootloader prepares the target

device to get the Kernel and ready to run it. Figure 5 describes Bootloader initializing

flow:

 Figure 5. Bootloader Initializing Flow [6, p. 95]

1 ARM, previously Advanced RISC Machines, and originally Acorn RISC Machines, is a family of

computer processors which follows Reduced Instruction Set Computing (RISC) architectures.

2 An American manufacturer of SoC FPGA’s and other programmable processors. Altera produces Stratix,

Aria and Cyclone V microprocessors series. It is now part of Intel.

3 The Linux version can be seen by executing “cat/etc/os-release” in a terminal window for a Linux

running on the host machine.

20

Bootloader prepares the CPU of the target device for the Kernel initialization. It briefly

can be described as instruction code that is recognized by the target device’s processor

and it absolutely differs from different family of processors [8]. In this case, both SoC

and FPGA sides are using ARM Cortex-9 processor. After some adjustment and

cooperating with the CPU, Bootloader loads the Kernel into RAM and runs it. The Kernel

starts to initialize hardware devices and its sub-systems. Here are some definitions of the

concepts from the figure:

Boot ROM: is a very small piece of the ROM inside the CPU of the embedded device. It

contains a very basic instruction code which is mentioned above and is executed when

the device is powered on or reset.

BSEL pins: will be described further when the board will be explored; for now, it can be

briefly said that they are configured to make embedded device CPU operates in the

highest possible speed without modifying any software code.

PreLoader or SPL: Secondary Program Loader or PreLoader is a piece of software which

is called from Boot ROM with the only purpose of preparing the system for actual

BootLoader (U-Boot) [9]. Figure below shows the sequences for generating PreLoader

image which is necessary to boot the device.

21

1

 Figure 6. Generating PreLoader Sequences [10]

U- Boot: is a Universal Boot Loader and used to boot the Linux Kernel in ARM processor

using devices [11].

 The third step of the mentioned embedded device application design sequences is Kernel

itself, which is responsible to manage all resources and interfacing with hardware

components. Figure 7 can describe Kernel and its functionalities:

 Figure 7. Kernel Functionalities [4, p. 24]

1 Parts are indicated by red dot are generating by SoC EDS which is software platform for SoC board

manipulations and configurations.

22

After booting by BootLoader, Kernel starts to handle all hardware resources such as CPU,

memory and I/O and provides a set of hardware independent API architectures to allow

user space applications and libraries to use the hardware components [12]. Kernel design

will be more discussed further.

The forth element of the design is Root Filesystem which includes all necessary files for

initializing the system. Depending on the application, it can consist of

1- An initializing program, which is the first application running after Kernel

booting.

2- A /dev directory to keep data, which is generated or required in user space.

3- Loadable modules, which are needed to be loaded during Kernel configuration

[9].

All these steps will be described in the third chapter of the third part of this article when

Linux Kernel distribution development is reviewed. Components of Root filesystem such

as Busy Box, libraries and other utilities will be explained more.

The last element of an embedded application design are applications defined by

developers for different projects with different purposes. This article is focusing on driver

development for SoC Kit.

In this chapter Linux features and reasons that make it interesting for developers and

specially embedded systems developers were discussed. Then, some basic information

about embedded Linux design flow was provided, to have a general overview of the

sequences of embedded design and other issued which will be concentrated during the

rest of this article.

3 SoC FPGA’s

The previous part was allocated to describe why developers need Linux customization for

their various projects with different purposes. In the first chapter of this part, the hardware

of the design which is SoC Kit will be discussed. A quick overview is given on

processors’ timelines, their evolution and progress to achieve nowadays’ maturity and

how development boards have been transformed to handle real time complex projects.

23

Afterwards, the second chapter will continue to discover the board for this project which

is SoC Kit (has been shown in the figure 8), manufactured by Terasic, its main features,

functionalities and hardware/software components requirements. By the end of this part,

an exact overview is provided on hardware constituent of the project. Besides, it is tried

to link embedded Linux explanation chapters with hardware clarification chapters in the

last part of this article.

 Figure 8. SoC Kit [13, p. 1]

3.1 SoC FPGA’s Evaluation

In this chapter the focus is on the development boards’ evolution and how they have been

transformed to the nowadays’ flexible and reliable boards. In order to have an exact idea

about this transformation timeline, reasons and phases, first, it is required to get an

24

overview about developers and market expectations from these boards. Developers,

students or any other interested groups of people to the embedded systems field, supposed

to know that the market expectations determine hardware, software and design timelines.

In the other word, companies, organizations, factories or even individuals, are looking for

greater solutions day by day. If developers’ solutions would not meet their anticipations,

there will be no other options for this kind of solutions, either to be terminated or be

enhanced in order to suit market qualifications.

Therefore, market conditions and expectations from this industry are discussed. Certainly,

the most important elements in the market are low cost, low power and high-performance

expectation which are every body’s desired parameters to evaluate any already exist ing

or to be existed solution. From aerospace and defence industry to scientific research and

medical industry and the other fields such as automotive, motor control, communication,

image processing, high performance computing, data servers and security, which are

some of main industry fields interested in FPGA, everybody is searching for the

mentioned properties of FPGA design. Moreover, Internet of Things (IoT) which seems

today’s inevitable concept of design and is going to become most popular or even

phenomenon of the forth industry revolution, is interested in FPGA design and

applications. In brief, market expectation from FPGA industry can be listed below:

1- Low cost, low power, which is ideal for all industrial solutions and always take

the first place of qualifications’ list.

2- High performance, high content, a greater performance can be achieved by higher

amount of hardware components and software elements. It is supposed to reach a

level of very good balance among high content/performance and low cost/ power

to idealize the final solution.

3- Well facility design and high integration property including peripherals and

interfacing with memory, in order to handle complexity of high range computing.

4- Fast time to market, which follows previous conditions and if all would be close

to what had been imagined, FPGA design flow would progress by desired

schedule.

25

5- Connectivity, if application fields of FPGA are considered, a very high and

reliable connectivity will be required and as it has been specified before, Linux

behaves well with connection protocols and has high networking features.

Therefore, a FPGA running Linux is needed to have high performance

networking.

Meeting all these expectations, the development boards have been evolved since 1984

and have been transformed to the nowadays’ SoC FPGA boards. A closer look at this

evolution and its different phases, which is the best way to understand why SoC FPGA is

used for the design, is beneficial. The FPGA industry began to develop since 1984 by

integrating Programmable Read Only Memory (PROM) and Programmable Logic Device

(PLD) which has been provided to the market by Altera. In 1985 Xilinx, one of nowadays’

FPGA manufacturer, delivered the first FPGA to the market with limited functionalities.

From the early ages, FPGA has been evolved in varied forms [1].

In a parallel way to FPGA timeline, there were other boards which have been used for

almost similar purposes. Application Specific Integrated Circuits (ASIC’s) are the most

popular ones since their properties meet market qualifications. Figure 9 is demonstrating

advantages/disadvantages of FPGA and ASIC to compare their reliability for complex

projects:

26

1

 Figure 9. Advantages/disadvantages of FPGA and ASIC [14]

Looking at this figure may create a little bit of confusion as both FPGA and ASIC have

some advantages and some unwanted features which make developers to find a balance

considering these features. At first, a project which requires hardware platform choosing

should be considered. Moreover, depending on the budget and size of the project, time

schedule and essential functionalities, a better view of the existing options could be

achieved. If FPGA is chosen, for a high amount production, which has been scheduled

properly for research and development period (there is no rush for time to market), then

more financial resources is needed, as FPGA unit cost is higher compared to ASIC. FPGA

might be selected because of its design flow and contents which are simple and well-

integrated for this purpose. As it is clearly understood, FPGA has drawbacks in case they

would be chosen for their advantages such as low NRE, simple design flow and fast time

to market. So how these disadvantages could be compensated, or in better words, if these

features would be enhanced, then FPGA might be the first option for embedded design.

1 NRE: Non-Recurring Engineering, one-time expenditure for research, develop, design and test a new

product. NRE unlike the production costs, which must be paid constantly, is paid once as it is being

considered from fixed costs category [1].

27

Figure 10 provides a clear view on the options by analysing another type of ASIC’s,

System on Chip (SoC):

1

 Figure 10. FPGA, ASIC/ASSP and SoC comparison [15, p. 7]

SoC is more integrated with more components on ASIC’s or ASSP’s with single or more

processor cores. (ASIC’s and ASSP’s can be SoC or non-SoC depending on if there is a

processor mounted or not). So, what if desired features of both sides would be combined

into a compact board to utilize all possible advantages. By this way a very good solution

for the projects is found. Before going to deeper details, it is better first to have a specific

definition of SoC FPGA by Altera (which has been merged into Intel since 2015):

“SoC FPGA’s integrate both processor and FPGA architecture into a single device.

Consequently, they provide higher integration, lower power consumption, smaller board

size, and higher bandwidth communication between processor and FPGA. They also

1 ASSP: Application Specific Standard Parts.

28

include a rich set of peripherals, an FPGA-style logic array and high-speed transceivers”

[16].

 Figure 11. SoC FPGA compare with ASIC [16, p. 3]

Figure 11 shows how SoC FPGA has been transformed from similar type boards. There

are three commercially available SoC FPGA’s which all are using ARM processors.

Altera as one of the main competitors has Aria and Cyclone series from FPGA side (I am

using Cyclone V integrated with ARM Cortex-9 dual-core processor).

Finally, a comprehensive overview about what were discussed is provided by figure 12;

it is clearly demonstrated that if SoC FPGA’s are used, products can get to the market

more quickly [17].

29

12

 Figure 12. Fast Time to Market [17, p. 4]

Floating point numbers and algorithms are an important data type in computation and

represent real numbers with a fractional part. According to IEEE, “754 floating point

standard” is the most common one used in the modern microprocessors, however, in 2008

it has been updated [18].

A clarification on exiting options, how and why to choose a more reliable hardware

platform, SoC FPGA, for the design, have been provided.

1 DDUC: Digital Down Converter-Up Converter; converts a band limited signal to a lower frequency with

lower sampling rate to simplify the subsequent radio stage [1].

2 FFTC: Fast Fourier Transform Coprocessors; an accelerator module that can be used for performing FFT

and IFFT with higher floating-point rate.

30

3.2 SoC Kit

In this chapter the board SoC Kit is discovered. It “presents a robust hardware design

platform built around Altera FPGA combines with Dual-Core ARM Cortex-9 processor

that provides re-configurability paired with high-performance and low-power

consumption” [13, p. 5]. Figure 13 contains description for some of critical components

of the board and figure 14 is demonstrating a clear view of the board’s block diagram:

 Figure 13. SoC Kit Components [13, p. 7]

31

Figure 14. SoC Kit Block Diagram [13, p. 11]

As it has been clearly indicated in figure 14, the device brain consists of FPGA and Hard

Processor System (HPS); Cyclone V is the general name of these series with FPGA Fabric

and Dual-Core ARM Cortex-9 processor. The focus will be more on the board’s

functionalities to support the road map to design a driver for it; data sheet of the board

can be studied for more technical and detailed information. The driver will manipulate

four LEDs on FPGA side by giving the Exclusive OR (XOR) operation result to power

on matched LEDs.

In order to have access to FPGA side LEDs, either FPGA direct design or HPS user space

application, which give an ability to configure FPGA side LEDs via one of existing

bridges, can be tired. There is another way which is in fact more reliable for real life

projects and it is driver development which operates in the Kernel space. Now it is the

32

time for real work and having an experiment of how both sides of the board communicate

with each other; Figure 15 is specifying three bridges and their connections with FPGA

and HPS sides:

l

 Figure 15. Cyclone V SoC Bridges [19]

HPS-FPGA bridges allow masters in FPGA fabric to communicate with slaves in HPS

logic and vice versa. For instance, if a peripheral be implemented in FPGA side, HPS

component such as Microprocessor Unit (MPU) can access it. In the same way,

components implemented in FPGA fabric such as the driver, can access peripheral in HPS

side. Each bridge consists of a master/slave pair with two interfaces which are exposed

one to the FPGA and the other to HPS sides.

The FPGA to HPS bridge is supported by an Advanced eXtensible Interface (AXI) slave

that can be connected to AXI master or Avalon-Memory Mapped interface in the FPGA

33

side. HPS to FPGA and Lightweight HPS to FPGA bridges expose an AXI master

interface that can be connected to Avalon-MM slave interface in FPGA side [19]. Figure

16 has a detailed explanation of each master and slave interface with their data widths:

 Figure 16. Master and Slave Interfaces [19]

As it is indicated in the figure 16, there are two bridges from HPS to FPGA which the

Lightweight one provides lower performance interface with only 32 Bits band width.

While, the other HPS to FPGA bridge as well as FPGA to HPS bridges perform with three

options of band widths. The Lightweight HPS to FPGA bridge has limited access with 2

MB address spaces. The bridge is connected to control and status registers of soft

peripherals in FPGA fabric.

It is needed to have a general idea about AXI and Avalon-MM interfaces because they

will be used during FPGA and user space application design. As it has been mentioned

previously, AXI is a set of specifications and a part of ARM Microcontroller Bus

Architecture (AMBA) protocol. This protocol states that how different modules on the

34

system can communicate with each other, using a Handshake-Like1 producer before all

transmissions [11]. Figure 17 can describe more by illustrating master/slave interfaces:

 Figure 17. AXI Master/Slave Interface [11]

XOR project uses Write/Read data signals (shown in the above figure) for the FPGA

design.

“Avalon interfaces simplify system design by allowing developer to easily connect

components in Intel FPGA. These specifications define interface appropriate for high

speed data streaming, reading/writing registers and the memory, and enable developers

to incorporate custom components in Avalon interface to enhance interoperability of the

design” [20]. I will use this interface in the custom component for FPGA’s side LEDs

control. Avalon-MM interfaces can be used to implement read/write interface for

master/slave components such as memories, UART2’s and Timers; and typically include

only the signals required for the component logic.

To sum up, this part demonstrated hardware platform choosing, while getting an idea

about the FPGA and more importantly SoC FPGA features. A detailed look at the SoC

Kit and its bridges were provided, which will be used for the FPGA’s side design.

1 Handshake is a process of communication that establishes all required protocols and links before the full

communication begins [1].

2 Universal Asynchronous Receiver Transmitter.

35

4 Driver Development for Embedded Linux

This part describes how the driver is built. The last two sections tried to give an overview

on Linux for embedded, its design sequence, SoC FPGA evolution and the SoC Kit

features. Obtaining a general and sometime a detailed idea about the background of the

practical task was essential. This part of the article demonstrates that without having at

least a general knowledge about embedded Linux design flow and the board specification,

it is not possible to have any kind of manipulation on the design. A driver to run FPGA’s

side LEDs will be generated by the end of this part, and during design steps, the necessity

of the background knowledge to manage sequence and handle probable problems is

understood. This part consists of five chapters including software requirements for both

FPGA and HPS sides, FPGA design explanation, obtaining a Linux distribution, user

space application (HPS work) and finally XOR driver development.

4.1 Software Requirement for Driver Development

It has been mentioned before that SoC Kit’s brain consists of FPGA and HPS and their

relevant components are integrated in the board cooperating by high data speed interfaces.

Although SoC Kit is a combination of efficiently integrated of FPGA and HPS

components, these components can be categorized in two different categories: FPGA and

HPS. What I am trying to insistently specify here is compacting two independent devices

into a single board, while it can be considered and configured either as two different

devices or as a single compact device. Thus, I will work with FPGA and have a

component design for it and work on HPS separately and interestingly work on them

together at the same time. This is really the handful property of the SoC FPGA’s which

is very useful for developers to have flexibility, efficiency of their design and fast time to

market products.

At first comes discussion about FPGA side design which will be explained in the next

chapter. Quartus as the platform, which enables developers to have FPGA design from

scratch or to modify already existing designs, is needed. Quartus Prime 18.1 Lite Edition

36

can be free of charge obtained from Intel web page from software for FPGA section.

Installation of Quartus is so simple and double clicking on the run file would be enough

and as it has been illustrated in figure 18 and 19, it has Platform Design Tool (formerly

known as Quartus System: Qsys) to create FPGA design and manipulate/modify

hardware components.

 Figure 18. Quartus Prime 18.1 Lite Edition

Figure 19. Platform Designer Tool or Qsys

37

The next chapter describes the FPGA design flow, which has been developed and verified

by the author, using Qsys tool to generate Qsys file, and then useing Quartus file converter

to convert this Qsys file to Raw Binary File (.rbf), which FPGA needs to be configured

and programmed by Linux. FPGA can be configured in two ways; using Quartus by

adding the board from tools tab in menu bar and after recognizing the board by Quartus,

adding or changing .sof1 file which is generated at the end of Qsys operation, and finally

running it. The result can be observed on FPGA LEDs. The second method is to copy .rbf

file to a SD Card and use Linux to run this .rbf file and program the FPGA. Quartus

creates a folder named “handoff folder”, describing hardware configurations, which is

required to have device tree generating as an important step of the embedded design;

because it includes hardware components’ configuration to introduce to the Kernel.

The HPS side of the board needs to be programmed using SoC EDS DS-5 platform which

is Intel specific ARM product. It is named simply DS-5 as the original name would be

confusing if it is considered the user interface of the platform which has a different name

of Eclipse. This software platform also can be obtained from Intel website but its

installation is slightly different for Linux running host machine compare to Quartus

setting up. DS-5 installation can be explained as below:

1- Running DS-5 from a terminal window. (There may be a need for changing the

mode using sudo chmod 777 “file name”.run).2

2- Not to install DS-5 yet, instead, starting Embedded Command Shell from the file

directory which was obtained when DS-5 package has been downloaded.

(This can be done by executing “./embedded_command_shell” in a terminal

window from correct directory).

3- Running DS-5 installation script from Embedded Command Shell and assigning

correct installation directory.

4- After installation, there may be a need for adding PATH or editing that from

.bashrc file which is hidden in the home directory. After adding the installation

1 SRAM Object File which is machine generated code and be created by the end of Qsys operation and can

be obtain with Quartus Programmer tool to run the FPGA. SRAM is static RAM which uses flip-flop

method to store each bit.

2 Changing mode in Linux is required because of hierarchic filing structure. “sudo” or super user enables

developer to execute commands with privilege and 777 enables developer to execute the desired file as top-

level hierarchic file.

38

path to the PATH by editing .bashrc file, it is reuqired to run following command

line in a terminal window: “source ~/.bashrc” and by this installation is done.

5- To open Eclipse (user interface of DS-5), in Embedded Command Shell, it is

required to go to Eclipse directory and execute the following: “sudo bash

./eclipse”.1

Figures 20 and 21 are showing DS-5 and its Debugger tool which are similar to

ARM Cortex software platform that is used in TUT Embedded courses:

 Figure 20. DS-5

1 An appendix of useful Linux commands and their explanations will be provided.

39

 Figure 21. DS-5 Debugger Tool

4.2 FPGA Design Flow

After setting and running up the required software, now it is time to practice and execute

the real task. The first and very important stage of the driver development journey is the

Qsys design, because the driver, as software, will run this hardware component. It is

important to remind that the author is trying to manipulate FPGA side LEDs by a driver

which uses both FPGA and HPS utilities. Thus, it is required to analyse HPS facilities,

bridge interfaces and FPGA configuration in order to avoid possible problems.

As it has been mentioned previously, there are two different designs: one is Qsys and the

other is C programming in DS-5; which both require bridge interface manipulations as

bridges are connected to FPGA fabric and HPS. Here is a clear view of the road map

which consists of Qsys design with bridge interfaces and then C programming with

essential bridge interface in HPs side. To begin the Qsys design, it is needed to start

Quartus and from menu bar tab on Platform Designer tool to open it and then choosing

the Golden Hardware Reference Design (GHRD) file from right directory of the host

machine. GHRD file consists of all default hardware definitions and configurations which

comes with the board user guide CD and differs from a board to another board.

40

Developers can generate all required files inside this folder by starting Qsys design from

scratch which needs to have an absolute detailed knowledge of the board hardware

components’ specifications. In fact, Qsys design requires pin definitions, (in this project,

SoC Kit has more than 220 different pins, which should be mapped and defined one by

one). Moreover, facilities like display should be defined separately which is really hard

work and needs sometimes weeks of analysing data sheets and VHDL programming. As

this project has the GHRD folder ready, it can be started by uploading Quartus Project

File (.qpf) and opening Qsys, then uploading already existing .qsys file.

LED_PIO (Parallel Input/Output) component, which is default design of the board’s

LEDs, is found. In order to have the custom component, it is required to remove this

component and then add a new component instead, which needs to be designed. Here, the

author added VHDL codes as two different files because one of these files consists of the

IP block codes written to manipulate LEDs and the other is Avalon interface codes file.

Here a piece of the IP block code which does the XOR operation, and a part of Avalon

interface code, that includes required signals’ names, are provided: “

begin

 process (clk)
 begin

 if rising_edge(clk) then
 if rst = '1' then
 temp <= (others => '0');
 elsif load = '1' then
 temp <= din(7 downto 4) xor din(3 downto 0);
 end if;
 end if;
 end process;

”

“

entity xiphera_test_block_avalon_interface is
 port(
 clk : in std_logic;
 rst : in std_logic;
 read_ctrl : in std_logic;
 write_ctrl : in std_logic;
 writedata : in std_logic_vector(7 downto 0);
 readdata : out std_logic_vector(7 downto 0);

41

 led_export : out std_logic_vector(3 downto 0)
);
end xiphera_test_block_avalon_interface;
”

Figures 22 and 23 are demonstrating the IP block general view and Avalon interface and

its signals which have been mentioned in the second code, respectively:

Figure 22. Customized IP

 Figure 23. Avalon Interface

42

During Qsys design before generating VHDL code (which is an available option in Qsys

tool), a very important issue, which will be used later in the device tree generating stage,

needs to be considered. It is required to modify Tool Command Language (.tcl) file1

which has been generated when the author started to Qsys design and has been used to

define the customized IP to the device tree. The definition of the IP block was added in

this file and it has been used to generate .dts file2 and finally this .dts file has been used

for .dtb (Device Tree Bulb) creating which is one of Quartus final results and is used by

the device tree compiler. As it is clear from explanations, every step of the design depends

on the next one, so it requires due caution and doing the process step by step.

Now VHDL code can be generated and the process continues to the Quartus design. After

the same modification in VHDL code (inserting the IP block), it is time to start preparing

for analyzing and synthesis which is the final stage of Quartus design to generate .sof file.

Here, it is required to consider another important point that is running the .tcl script from

Quartus by choosing it from right directory, before starting the full synthesis. Then full

synthesis should be run and wait to have .sof file, which can be converted from Quartus

converting program files tool, to .rbf file to use from Linux to configure FPGA. Finally,

it is ready to try the result of the first step of design either by programming FPGA with

.sof file and run LEDs using Quartus, or by running .rbf file from a terminal window and

configure LEDs using Linux. This is the last operation before moving forward which gave

us all required files for the rest of development. Now FPGA design could be left aside,

and focus would be given on the Linux and HPS development stages which will be the

next chapters.

4.3 Linux Distribution Development Steps

This chapter will describe all necessary steps to obtain and source the Kernel to

manipulate its property and configure it as desired Linux distribution. As was mentioned,

1 TCL (also pronounced as tickle) is an open source, general purpose and dynamic programming language

[1].

2 DTS: Digital Theater System file format which saves data in audio type.

43

elements of every embedded design have been listed as: Toolchain, Bootloader, Kernel,

Root file system and User space application(s). It is clearly explained that obtaining the

Toolchain is the first step of design, but before going further it seems necessary to clarify

one issue. Toolchain is listed as the first step of every design but XOR project started with

FPGA design; but why? The answer simply can be declared that FPGA design was a pre-

request for the device tree which will be generated and added to the Kernel after U-Boot

stage. By this way the author organized the process and would not need to come back to

FPGA design in the middle of Linux development process. As it was insistently indicated

before, everything else related to embedded Linux design depends on Toolchain and in

this case, it is GCC which is installed when Linux distribution on the host computer was

installed. Toolchain compiles object code files (which have been obtained from Altera

open source data base) to its linker and then generates executable files which can be used

by Linux. Here, no further action in needed, because Toolchain effects are seen when it

is used to compile U-Boot and Kernel.

This part concentrates more on Bootloader step of the design. Booting sequences could

be briefly reminded here. Every time that the power button be pushed, Linux booting

happens by the following order: reset, boot ROM, pre-loader, U-Boot and finally Linux.1

As it has been illustrated in the first part of the thesis, after reset, the system starts to read

Boot ROM and check for some physical configuration (which must be done before any

kind of design considering SoC Kit user manual guide), then tries to do a set of

configurations to prepare flash. It is useful to specify the reason of storing some important

information in the flash. The type of the flash is None-Volatile NOR flash which can

reserve information permanently. By this way, significant information will be safe when

the system powered off or reset and this substantial data can be used to repeat basic

configuration of the board. After setting up the flash, Boot ROM tries to run Pre-Loader

which must be generated before going on. Therefore, the second part of the practical task

during this design will be pre-loader generating.

1 For more see figure 5.

44

To begin, the author initially started with BSP1 editor. Intel has Nios II BSP editor coming

with the SoC EDS (Intel specific DS-5) installation package. I only started an Embedded

Command Shell (the procedure has been declared in chapter 4.1) and ran the following

command line “bsp-editor &”. This starts the editor window which asks for the file,

and from handoff folder in GHRD directory the “soc_system_hps_0” file can be added.

After some modification (which can be found from online sources), simply pressed

generate and after a short while, closed the window and ran “make”. Note that all shell

commands must be execute in Embedded Command Shell terminal window. That’s all

about the pre-loader which is a pre-request element for Boot loader, then it is time to

prepare for actual U-Boot.

After getting done two pre-request tasks (Qsys design for the device tree and pre-loader

generating for U-Boot), now it is time to return to the original design flow with obtaining

and compiling toolchain. As it has been mentioned before, toolchain comes with Linux

installation, but it varies from one board to another, thus a new toolchain source for the

new Linux distribution is needed. It can be downloaded from Linaro web page with a

desired version.2 Here, a very important matter, which is faced frequently, and is cross

compile environmental issue, which must be set properly, should be notified. To do this,

it is required to run the following from a terminal window “export cross_compile

Directory/arm-linux-gnueabihf-” and then to check if it sets properly with

“printenv”. Exporting the directory should be carefully done, because it can be source

of many problems during U-Boot or Kernel compilation.

Next, the source code of U-Boot is obtainable from Altera open source data base (the

desired version could be downloaded) and then U-Boot is compiled by:

“make socfpga_cyclone5_config

make”. It will generate U-Boot.img (image) file. Another file named boot.script is

required to complete U-Boot stage of the design. This file contains hardware information

1 In embedded system a Board Support Package is a layer of software containing hardware specific drivers

to allow RTOS operates in a particular hardware environment [1].

2 versions 6.3.1 or 7.1.1 can be used as some other versions create problems during compilation, moreover,

the hardware might not suit recently released versions.

45

of FPGA that U-Boot requires to load and pass to the Kernel. This file can be created and

run to compile U-Boot and end the task here (its content can be found in Rocketboard [9]

web page: embedded Linux beginners guide).

Now it is time to generate the device tree which previously has been mentioned several

times. Before starting the process, an expert look at the device tree is required to realize

what it is or why it is needed at all. Each embedded board has its own specifications that

Kernel needs to know by obtaining its initialization code, which is provided by board

manufacturer. Before the device tree, manufacturers had to provide maintenance service

for Kernel every time that hardware configuration needed to be changed. Nowadays, the

device tree takes care of hardware structure definition and is independent from U-Boot

and the Kernel, which enables developers to modify only this file without concerning

about other files that require more repairing time. Figure 24 shows a clear view of the

device tree generating and U-Boot compiling steps:

Figure 24. Device Tree Generating and U-Boot Compiling Steps [6, p. 50]

Board Info files shown on the figure 24, come with GHRD folder in .xml format and

contain data for external peripherals. The FPGA should recognize the board peripherals

using these .xml files. It was needed to run essential codes (input is soc_system_sopcinfo

file, and output is soc_system.dts; for the design only soc_system_board_info.xml file as

46

external peripheral is required) to generate .dts file and finally compile it to .dtb file and

finish with the device tree. Note that it is needed to follow the instruction provided by

Rocketboards web site and execute correct code lines in the correct directory from

Embedded Command shell, in case of examining the process as a beginner.

The third and the most important stage, within the context of the Kernel design is the

Toolchain obtaining as the heart of the entire system of the embedded design sequence.

The Toolchain was obtained before, which is required to compile the Kernel. It can also

be used in this stage, just to remind that in case the Shell window has been closed, cross

compile command line could be ran again. The Kernel source needs to be acquired from

Altera open source data base (in case a recent version would not be found, other online

free resources could be searched). After downloading and unpacking the folder, its

directory from the Shell window1 should be navigated and the following be executed:

“make ARCH=arm socfpga_defconfig” and then “make ARCH=arm menuconfig”. This

will open a window which is illustrating in figure 25 and after required configuration it is

possible to compile the Kernel.

1 Navigating inside Linux file system can be done by “cd directory”.

47

Figure 25. Kernel Configuration Window [9]

Here two options need to be changed: The first, “Automatically append version

information of the version string” option which is in “General setup” tab and must be

unchecked. When a Kernel module (driver) is loaded, the Kernel checks its version and

in case of difference, the Kernel rejects loading. This feature of the Kernel could be

disabled in order to be able to load various versions of drivers. The second option which

needs to be changed is “Support for larger (2TB+) block devices and files” which can be

found from “Enable the block layer” tab and it must be on. This option enables developers

to mount ext41 file systems in write/read mode. (otherwise, ext4 can be mounted in read

only mode). Now it is time for compiling the Kernel which is very crucial for the project,

to do so “make ARCH=arm LOCALVERSION= zImage” should be ran. Once this operation

is done (it can take a while), a zImage file will be generated that is a compressed version

of the Linux distribution.

1 Ext4 file system will be described in the SD Card creating part.

48

It is time now to take advantage of what have been done so far, which is creating own

Linux distribution. It only requires root file system to be completed and utilized running

on the target embedded board.

Finally, to create the own Linux distribution, a Root file system needs to be built and, as

was mentioned previously, it contains essential files to boot the system up. It is required

to configure a PATH to the Toolchain to compile Root file system:

“make -C buildroot ARCH=ARM

BR2_TOOLCHAIN_EXTERNAL_PATH=$(pwd)/Toolchain directory_arm-linux-

gnueabihf nconfig” which will open a configuration window shown in figure 26:

Figure 26. Buildroot Configuration Window [9]

From this window the author changed some properties in Target and Toolchain options

on the base of the embedded Kernel features which is using ARM Cortex processor; so,

the Buildroot should be configured accordingly. The other manipulation part is for

Toolchain according to the compiled Toolchain which has been obtained from online

sources. The configurations are demonstrating in below figures respectively:

49

After setting mentioned configuration, saving changes and exiting from the page (F6 +

Enter and then F9), then it is time for moving to the next step of setting Busy box by

running following piece of code: “make –C buildroot busybox-menuconfig”. it will

open the configuration window and there is no need to do any change there, so just saving

and exiting were needed. The only purpose of opening the Busy box without any

manipulation is to inform the Kernel that all configurations are done. At the end the code

that was used before to start the configurations of the Buildroot should be executed: “make

-C buildroot ARCH=ARM BR2_TOOLCHAIN_EXTERNAL_PATH=$(pwd)/Toolchain

directory_arm-linux-gnueabihf all” and the Root file system will be generated in

a few minutes, then it is time to think of the application which will be made as the Linux

distribution is ready to upload them.

This chapter tried to have a revision of generating customized Linux distribution with

desired FPGA design, Toolchain, U-Boot and Kernel source codes. I have used Terasic

GHRD source and added the XOR component, obtained other required items mostly from

Altera open source data base, and followed sequences to build the special Linux

distribution, that could handle the user space applications and the Kernel modules

(drivers). The next chapter demonstrates how to design a user space application by

considering some example.

 Figure 27. Target Configuration of Buildroot

 Figure 28. Toolchain Configuration of Buildroot

50

4.4 User Space Applications

It was indicated before that it is possible to operate in both user space and the Kernel

space of the design. Their difference lies in their process running managements which

proves that the memory dedicating for all processes is well organized in the Kernel. When

developers run a process in the user space, only dedicated section of the memory, which

has been defined by the application itself and specified by the Kernel, takes care of the

process. Therefore, it is possible to run different application in the user space at the same

time, moreover, drivers can be uploaded in the Kernel space. Thus, the visible difference

of above-mentioned spaces can be specified as difference of applications’ format, space

for the process and memory indication. This chapter investigates user space application

design flow, as figure 29 describes perfectly:

Figure 29. System Development Flow [21, p. 44]

As above figure illustrates, design flow for both user space applications and drivers

(modules) in case of FPGA design is almost the same, except for the device tree

generation for drivers which is not a part of user space application design sequence. Thus,

it was needed to write VHDL/VeriLog code and design Qsys system if this project

51

requires to have physical access to FPGA. Otherwise, the project on the target embedded

board using DS-5 (ARM Development Studio) could be tried, which is described in this

chapter. In other words, if the project does not contain complexity (such as study projects

or some professional ones that are being designed for simple purposes, for instance the

Flash writing/reading application), the author could handle the situation only by writing

code for DS-5 and examining the project on the board with Target Remote System if and

if the project would not require any hardware design such as inserting, removing or any

kind of components modification.

The author analyzed writing/reading from/to flash program as a user space application

that does not require any Qsys manipulation, then investigated communicating via FIFO

blocks, as an application that needs Qsys design, and inserted FIFO blocks as hardware

components. Here is an overview on the board flash device: SoC Kit is equipped by a

512M-bit serial NOR flash device which is used for non-volatile HPS information such

as Preloader image which is being used in U-Boot step of the design. Although the

manufacturer has provided an access to the flash device using Quartus programmer, it is

required to write C code in order to write to and read from the device. As it has been

shown in figure 14, the flash device is connected to HPs side and “the HPS flash

programmer sends file contents via USB Blaster II, to the HPS, and instructs the HPS to

write the data to the flash memory” [13, p. 42].

 Figure 30. Flash Device Connections with SoC FPG [13, p. 42]

The reason that the author chose this flash program is to remind U-Boot process and

emphasize on the importance of the non-volatile data structure type. Xiphera uses this

52

program to store a unique ID generated by its IP block in FPGA side. Due to the structure

type of the flash device, data remains when the SoC FPGA is powered off or reset, and

can be used for the repeating boot or other necessary applications.

Initially, it is important to understand the concept of Memory Technology Device (MTD)

which is different from other memory storage devices such as SD Card, hard disc or flash

disc. Basically, MTDs are NAND/NOR flash memory devices which are utilized for

keeping non/volatile data like boot image or configuration. Although, hard discs are used

for data storage but there are two differences between MTDs and the other data storage

devices. First, MTD needs to be erased before re-writing any data, which is the key

variation and requires to be considered when developers write the code to access to the

MTD. Second, MTDs have limited range of erasing operation (1000 – 10000 times) [22]

which makes them not good erase-block.

MTDs can be partitioned in Linux and can be reached by running “cat proc/mtd” which

is being demonstrated in below figures:

 Figure 31. Access to MTD from Terminal Window

 Figure 32. MTD Partitions [22]

53

Figure 33. Flash Memory Partitioning

After demonstrating MTDs general structure, it is possible to focus on the design and C

code to finalize the task about flash program. As it has been specified in this chapter, the

data storage structure requires erasing before writing, which is considered here. The code

general structure can be summarized as:

1- inserting an additional header file to control the MTD: “# include <mtd/mtd-

user.h>”

2- Accessing the device from user space, as was operated there, and opening the

device for reading and writing: “mtd-info-t mtd-info” , “int fd =

open(“dev/mtd0” , ORDWR)”

3- Data erase structure including getting device info, setting erase block size and

erasing indicated block by following respectively: “erase-info-t ei” , “ioctl

(fd , MEMGETINFO , &mtd-info)” , “ei.length = mtd-info.erasesize”

and finally for the specified boundaries erasing operation: “ioctl (fd ,

MEMERASE , &ei)”

4- Reading from writing to the device: “read (fd, read-buffer, sizeof(read-

buf))” , “write (fd, data, sizeof(data))”. Unsigned char characters “read-

buffer” and “data”, which have been defined by the coder/author, include an

empty sector and data, that requires to be written to the MTD accordingly.

5- Finally, the MTD needed to be closed by “close (fd)”

Then, the code should be tested to see if works as expected. To examine the code, it is

needed to set DS-5 properly to have access to the SoC Kit. At the first chapter of this

54

section, it was described how to install DS-5 and open it from embedded Command Shell

and run essential codes.

 Now it is explained how to debug a written code by using Remote Target System:

1- Opening Eclipse and then from main menu window → show view → other →

expand Remote Systems folder, choosing Remote System. After that, a new

connection by clicking the New Connection button, shown on below picture,

needs to be created.

Figure 34. Creating a New Connection from RTS

Selecting SSH only → Next →, then putting the target's IP address1 in the Host name field, while using

SoCKit as the Connection name and clicking Next →

Figure 35. Configuration of RTS IP Address

1 To get the IP address of the board: Boot the Linux on it by opening a communication window in a terminal

window: “sudo screen /dev/ttyUSB0 115200” and switch on the board to boot Linux on it. It may

ask for login password, give “root” to get in, then “ifconfig” to get the board IP address.

55

2- Checking “ssh.files” then clicking the “Finish” button. If “Next” is clicked instead

of “Finish”, the rest of the default settings would be: “processes.shell.linux”,

“ssh.shells”, and “ssh.terminals”.

3- Browsing the target's file system; Expanding “SoCKit” → “Sftp files” → “Root”.

If the connection has “Files” instead of “Sftp Files” option, then the connection

was not created correctly, and it is needed to disconnect, delete it and recreate it

again.

4- Entering User ID=root, leaving the password blank; checking Save user ID and

clicking the OK button. There will be a few authentication dialogs; accepting them

all. A remote connection with the board is created.

5- To debug the project using newly established RTS, from Eclipse main menu,

→debug configurations → DS-5 debugger should be run:

Figure 36. DS-5 Debugger Menu

6- Clicking on new (top-right corner of the menu) to open the debug configuration

management window and giving the same name with the project and choosing

56

Download and debug application under Connections via gdbserver1 in connection

view:

Figure 37. DS-5 Debugger Configuration Menu

In File view, assigning a directory for host machine to download (workspace is

recommended →flash → debug →flash). “flash” is my program name.

7- In the same view, choosing target download and working directory

(/home/root/flash for both of them in this case) and then selecting flash.o (object

file) to load symbols from file option from workspace →flash→debug →flash.o

and finally press apply and then debugging to open the DS-5 debugger view:

1 gdbserver is a computer program that makes it possible to remotely debug other programs running on the

same system as the program to be debugged and allows the GNU Debugger to connect from another system

to the target board [1].

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/GNU_Debugger

57

Figure 38. DS-5 Debugger View

After setting up RTS, it is easy to debug the code to find problems, trace them and solve.

DS-5 debugger is similar to ARM Cortex one which is used in TUT embedded courses

and has a very convenient user interface which needs to be explored by spending short

time. It is required to switch off the board, turn it on again, boot Linux1, enter the Linux

and get the board’s IP address to connect again to the host computer and finally read the

content of the flash. If the read data is the same as it was written there a few minutes

before, then it is possible to make sure that the duty is done and there is a program to

write/read to/from the flash device.

It was explained that the SoC FPGA board’s bridges’ features before in chapter 3.2 and

indicated that the Lightweight HPs to FPGA bridge data transmission is limited by 32

Bits, while other two bridges have 64 and 128 Bits interface options additionally. These

mentioned features are considerably important, hence, they are analyzed and discussed in

the next program. Depending on the application, only the LW bridge or all of them can

be used. For instance, the XOR driver project, in FPGA design part, does not need so

1 There is a default hardware setting with required files (GHRD) and Linux image generated on the base of

these default configurations, which comes with the SoC development board from manufacturer. This Linux

image contains all essential items for booting that can be copied on the SD Card and used to discover

board’s features by beginners. Own Linux distribution would be created by the end of this article and

replace the initial one.

58

much data transmission between HPS and FPGA side as it is only LEDs manipulation

project to examine the board property. However, sometimes a more complicated FPGA

design is needed, which requires data transmission range more than LW bridge can

provide. So, it is needed to utilize the other two bridges.

Different from the flash program, FIFO project requires Qsys design which includes

creating one FIFO block for writing and another for reading, as the project could be called

full communication between FPGA and HPS. In this example, HPS to FPGA FIFO block

receives data which is waiting in FIFO block, then FIFO block reads this data to a buffer

and sets a ready flag. Afterward, this data has been written to FPGA to HPS FIFO block

and the ready flag can be cleared now. Figures 39 and 40 are showing Qsys design and

FIFO block interface respectively:

Figure 39. Full FIFO communication Qsys Design

Bridges’ interfaces have been shown before and in figure 40 only FIFO’s interface is

demonstrating. An Avalon-MM write master pushes data into FIFO and the read master

pops it from FIFO’s output port [23].

59

 Figure 40. FIFO Interface [24, p. 2]

More detailed coding in XOR chapter will be shown and some points of the application

just need to be mentioned here. It is needed to specify exact base address for both bridges

and indicate the size of memory which will be occupied. Then opening the memory

device, sending data to FIFO and reading them back. The general structure of the code is

similar to the flash program code with only difference in code lines, as the target devices

are different.

4.5 XOR Driver Development

XOR driver development is a part of Xiphera’s IP block design process and tries to

provide the most efficient representation of the whole design flow. As it has been

described widely in previous chapters, driver development for embedded requires Linux

customization combining with FPGA design and HPS user space applications. These

development steps are related to each other and must be done in a correct order. Each step

includes generating/obtaining source codes and organizing them to arrange correct

configurations. The whole process is divided into 3 different sections, which require a

team of experts. Xiphera as a start-up company planned to verify the whole process by

the most efficient method to avoid excess financial and human recourses. The final

purpose of this project has been defined as verifying hardware/software component in the

most efficient way which is one of critical issues for start-up environments.

60

In the other words, developing more complicated drivers for SoC Kit (such as FIFO driver

development to design a full-length communication between FPGA and HPS using all 3

bridges which is ongoing) requires a more complicated Qsys design, Xiphera’s own

definition for SoC Kit’s pins assignment and Xiphera’s specific device tree. Developing

a pin map for SoC Kit without its peripherals (such as USB, UART and VGA connections

and LCD) can be used for other FPGA (and not only SoC Kit). This pin map would be

developer company’s specific design and boost the company’s reputation. However,

developing such a pin map would take a longer period of time and requires a team work

to divide definitions of pins to finalize the assignment in efficient way. Similarly,

generating respective device tree can optimize FPGA design work time and developers

can easily insert their new components to the device tree for different FPGSs. All

mentioned items are only FPGA related issues and combining these designs with the

Toolchain and Kernel source code must be considered before FPGA design. The

Toolchain and the Kernel source codes either must be written by Xiphera or obtained

from Altera open source data base. Most developers and start-up companies prefer to

utilize free Toolchain and Kernel sources, however, this issue challenges their FPGA

design; because all necessary versions of these sources are not available. Developing and

obtaining these items take a long time and needs a greater team of experts, while the

purpose of XOR project is verifying hardware/software component for Xiphera’s Linux

distribution in the fastest possible way. Therefore, a simple representation of the whole

design flow is organized to observe the result as soon as possible. Different aspects of

embedded Linux driver development and its sequences have been discussed in general.

The purpose of the project and the reason to optimize existing resources to achieve to the

final goal was explained. Now it is time to concentrate on actual purpose for this project

which is XOR driver development flow.

Similar to all Linux embedded projects, XOR has three different design steps:

1- Qsys design for FPGA side which is at the same time a pre-request design for the

device tree and Linux distribution generating. This part of design requires Quartus

platform, our host machine and the target board.

2- Linux distribution obtaining and configuration which needs to be generated in the

host computer and be tested on the board to observe if the recently created Linux

boots without problem.

61

3- The last step of the XOR driver development is composing code for driver itself

which can be done using C code and insert to the newly generated Linux from

host machine and finally be examined on the board.

At the end of each part of the design I needed to test the obtained results in order to

solve probable problems before continuing to the other part. All three parts have been

considered in different chapters, and now I am going to combine all previous

described information together and do a practical experiment. Please note that the

purpose of this project is verifying the board functionalities such as booting, hardware

component and LW bridge interface. This validation will be exposed on four LEDs

in FPGA side which can be controlled from Quartus, HPS side using DS-5 as well as

from Linux terminal window utilizing the produced driver. As it has been mentioned

before, XOR uses LW bridge AXI interface and takes an input value in the range of

1 – 255, changes this value to a HEX number, executes XOR operation between lower

and higher nibbles of this HEX integer and finally sends the result down to the FPGA

side LEDs. For instance, if one gives the input value of 100 from either DS-5 debugger

argument page or a terminal window, which is connected to the board with any screen

program, XOR converts it to 64 HEX-decimal integer and then execute XOR

operation between 4 (0100) and 6 (0110) = 0010 and send the result to the FPGA’s

LEDs and by the exposing result, the second LED will be turned on.

A general view of the project, by obtaining the purpose and functionality of it, has

been provided. Now, it is beneficial to continue step by step. Qsys design flow and its

necessity for device tree were explained in chapter 4.2. I inserted the customized

component which is called xiphera_test_block to the already existing GHRD Qsys

design and appended essential code line to .tcl file then generated VHDL code.

Eventually, requiring connections were added to the recently inserted component and

finished Qsys design. When a new component is meant to be added to the Qsys design,

from configuration menu of the new component, it is needed to add VHDL/VeriLog

code which in this case it was two VHDL files; one for xiphera IP block and the other

one for Avalon interface. Before synthesis in Quartus, it is needed to add

xiphera_test_block to the top level VHDL code instead of old component name which

in this case it was LED_PIO not forgetting to run tcl script file before full synthesis.

If directive is followed step by step,.sof file would be achieved which can be

converted to .rbf file using Quartus file converter.

62

The second part of the design is C code developing to try the FPGA design using DS-

5 platform. This part is a user space application project, but the necessity of this

section is understood when the driver’s code would be written. I needed to create a

new project in DS-5 and added the C code then built the project to generate executable

file and connected to the target board using RTS to debug it.

Now, the C code, which is a step toward the final C code of driver, needs to be

analysed.

 The code can be summarized as:

1- Header files, specifying memory space and the base address which has been

illustrated in figure 41: “

#define PAGE_SIZE 409600

#define LWHPS2FPGA_BRIDGE_BASE 0xff200000

#define xiphera_test_block_OFFSET 0x0”, variables definitions, indicating input

value boundaries (1 and 255)

2- Opening the memory device file with fd: “

fd = open ("/dev/mem", ORDWR|O_SYNC); ” and mapping LW HPS to FPGA

bridge into process memory with mmap: “

bridge_map = mmap(NULL, PAGE_SIZE, PROT_READ|PROT_WRITE,

MAP_SHARED, fd ,LWHPS2FPGA_BRIDGE_BASE); ”

3- Getting the designed peripheral’s (xiphera_test_block) base address which is 00

in my case: “

xiphera_test_block_mem = (unsigned char *) (bridge_map + BLINK_OFFSET)

; ”, write the input value into ” xiphera_test_block_mem” and close the file device by

“close (fd)”.

63

Figure 41. Cyclone V SoC HPs Memory Map [19, p. 55]

The code can be debugged to find solutions for possible problems, and if everything

works properly, then it is possible to continue with Linux distribution development part,

which has been already explained. To sum up, Quartus design, C code of user application

and customized Linux on the base of the Qsys design and device tree manipulations, have

been developed. Now, there remains only driver codes, Linux configuration to compile

the driver and finally, gather everything together, transfer to a SD Card and try on the

board.

The general structure of my driver C code can be summarized as:

1- Inserting header files: depending on the expected functionalities and aim of

the driver, header files needed to be added. Developing of the algorithm of the

driver design flow was one of the author’s crucial tasks during this project.

Having an algorithm design was helpful to find software requirements of the

driver. XOR driver needs to take an input value from user space and map this

value into the process memory and finally shows the value using FPGA’s

LEDs. As it is understood from the algorithm, XOR driver requires including

“<linux/uaccess.h>” to access user space and copy the input value into the

64

allocated memory. XOR also needed inserting “<linux/ioport.h> and

<linux/io.h>” to manipulate FPGA’s LEDs. Including “<linux/init.h>,

<linux/module.h>, <linux/kernel.h> and <linux/device.h>”,

provides essential prototypes for initializing/exiting, inserting/removing XOR

driver to the Kernel and functions such as “*drv” (driver)/“*buf” (buffer). In

order to define functions such as containing the input value, which is taken

from user space, and writing this value into the memory, XOR uses

“<linux/platform_device.h>”. Finally, XOR needs communicating

between user and the Kernel spaces which should be handled in file system

format as a requirement of Linux Kernel design. “<linux/kobjects.h> and

<linux/sysfs.h>” header files include attributer functions such as

“DRIVER_ATTR show and store”. These header files create a directory in

“/sys/bus/platform/drivers/xiphera_test_block” of SoC Kit root and an entry

point in this directory. This directory and its entry point are used to

communicate with XOR driver which is in the Kernel space. Users can enter

an input value between 1 – 255 from the terminal window, which is used to

insert XOR driver to the Kernel. As it has been described initially, users

operate in user space and need to send the input value to the entry point of the

specified root directory of SoC Kit Kernel space.

2- Defining the inserted component address base which has been declared in SoC

Kit data sheet and can be obtained from Qsys design. This memory space has

been allocated on the base of LWbridge interface which has been used for this

project. 400 KB of the memory span was defined for XOR to be mapped: “

#define xiphera_test_block_BASE 0xff200000

#define xiphera_test_block_SIZE PAGE_SIZE

#define PAGE_SIZE 409600”,

Informing the Kernel about the device tree which is being used by XOR driver and linking

essential functions with XOR with following data structure: “

MODULE_DEVICE_TABLE(of, xiphera_test_block_dt_ids);

static struct platform_driver xiphera_test_block = {

65

 .probe = xiphera_test_block_probe,

 .driver = {

 .name = "xiphera_test_block",

 .owner = THIS_MODULE,

 .of_match_table = xiphera_test_block_dt_ids

 }

};”,

declaring “driver_attribute” which is the Kernel’s sysfile structure [25] and finally

registering the driver, specifying license and inserting initialize and exit lines1.

3- Creating directory and entry point of sysfs file and removing this

configuration after exiting from driver: “

driver_create_file(&xiphera_test_block_driver,

&driver_attr_xiphera_test_block);

driver_remove_file(&xiphera_test_block_driver,

&driver_attr_xiphera_test_block);”.

4- Accessing to I/O memory: “

res = request_mem_region(xiphera_test_block_BASE,

xiphera_test_block_SIZE, "xiphera_test_block");

if (res == NULL) {

driver_unregister(&xiphera_test_block_driver);

1 It is highly recommended that driver writers refer to Linux Device Drivers book as a really helpful material

in order to analyze module writing steps and techniques deeply and understand using of codes.

66

return -EBUSY; } ”, re-mapping the component’s address into processor memory

with “ioremap” function (as it has been done in XOR user space application code with

“mmap(PROT_READ|PROT_WRITE)”): “

xiphera_test_block_mem=ioremap(xiphera_test_block_BASE,

xiphera_test_block_SIZE);

if (xiphera_test_block_mem == NULL) {

release_mem_region(xiphera_test_block_BASE,

xiphera_test_block_SIZE);

return –EFAULT;}” and finally write the input value which is a single bit into

“xiphera_test_block_mem”: “iowrite8(value,

xiphera_test_block_mem);”.

Then it is possible to setup required Kernel environment to compile XOR driver as it has

been mentioned previously in Linux distribution development chapter. It is needed to run

“export ARCH=arm” as this project aims to develop driver for ARM Cortex-9 processor

of SoC Kit. In addition, I defined “export CROSS_COMPILE= …” which is path the

Toolchain directory in my host computer to compile and generate executable file using

already obtained Toolchain source. Moreover, “export OUT_DIR=…” was executed to

set the Kernel source directory in the host machine in order to use the Kernel source code.

Above mentioned lines of code required to be compiled either from Command Shell

window or using a Makefile from the host machine to set variables properly and compile

recently designed driver to insert it to the Kernel. XOR driver projects followed the first

method (compiling variable configurations from Command Shell terminal) to keep the

Makefile as simple as possible.

The next step was creating the Makefile and a Kbuild file with below contents

respectively:

“KDIR ?=OUT_DIR

default:

$(MAKE) -C $(KDIR) ARCH=arm M=$$PWD” and

67

 “obj-m := xiphera_test_block.o”.

Compiling these two files generates “.ko” file which is containing all configuration and

codes of XOR driver. This “.ko” file would be uploaded into the SD Card and inserted to

the Kernel running on SoC Kit target. Then “make” command was executed from the

Embedded Command Shell window to generate “.ko” file in the indicated output

directory. Generating this file took a longer while than usual time in my case because

there were some error messages in my code which came up during compilation. All error

messages were written from terminal window and modified in “xiphera_test_block.c”

file. So every time I needed to verify my code it was essential that the code would be

debugged and probable error messages get corrected. This process happens during the

driver code debugging before inserting the driver to the Kernel. In case the Makefile

compiling step would be passed without any error and the generated “.ko” file inserted to

the Kernel, the actual debugging starts. XOR debugging took a few days as I needed to

examine it on the board and found out its problem, modified occurred errors and re-

compile the Makefile again. The is a reasonable explanation for long while debugging

period; As it has been mentioned previously, XOR project is a combination of Qsys

design, Linux distribution development sequence and C code composing. These steps are

linked together and must be followed in a correct order to obtain the final “.ko” file. When

an error occurs, the developer has to debug all steps of background design flow. This

background includes hardware configuration and verification which must be checked

during development every step to avoid facing with possible problems. The hardware

maintenance was simple part of the XOR driver project as SoC Kit was recently

manufactured and tested. The most difficulty was software debugging process which

contains different items. There were so many software related issues during this design

period such as:

 MSEL pin configuration as there are different set of configurations for various

modes (such as FPGA running from Quartus, programming from HPS, etc.).

During Kernel booting into SoC Kit, incorrect MSEL pin configuration caused a

problem and board hung. There were problems with USB cables which

sometimes were stoping the design process. SD Card partitioning was another

critical problem which required formatting and re-partitioning again.

68

 Qsys design related errors such as ignoring to run “.tcl” file before full synthesis

in Quartus. This mistake causes problem with the device tree and prevent

developer to add the pin assignment properly, consequently compile the device

tree correctly. The other issue was adding customized hardware component to the

device tree before generating VHDL during final step of Qsys design. If these

issues would be ignored, driver developer has to start Qsys design from beginning

which happened two times in XOR project.

 Linux related problems such the Kernel source code obtaining and its existing

versions as well as the Toolchain code. In case other dominant items would be

verified, there is no doubt except the available Kernel source code and its version

if is matched with the Linux version on developer’s host machine.

 C code modification which is required to be done every time before compiling

the Makefile.

The final step of XOR project was transferring generated files to a SD Card which

required to be partitioned by following steps:

1- Inserting the SD Card (at least 1 GB memory space is required as the created

Linux image file and other essential files occupy more than 512 MB) and

mounting it1.

2- Executing “sudo fdisk /dev/sdb” (/dev/sdb is the SD Card directory in my

host computer and can be obtained by “lsblk”) gives instruction to specify

partitions’ size and type.

3- Creating 3 partitions with 1, 254 and 256 MB sizes and unknown, Linux and

FAT32 types respectively. (“n” for new partition, “t” for type specification and

“w” to save configurations).

4- Running “sudo partprobe /dev/sdb” to aware the host Kernel about changes

which have happened.

5- Creating file systems for the second and third partitions as the first one is a raw

file type. “sudo mkfs.ext4 /dev/sdbp2” and “sudo mkfs –t vfat

1 “sudo mount /dev/sdb” sdb is my SD Card name which can be shown by running “lsblk”.

69

/dev/sdbp3” and then creating mount points for these partitions: “mkdir

sdbp2_mount

sudo mount /dev/sdbp2 sdbp2_mount/” and “

mkdir sdbp3_mount

sudo mount /dev/sdbp3 sdbp3_mount/”.

6- Copying “preloader-mkpimage.bin” file directly into the first partition (using

“sudo dd if=… of=…”) and then executing “sync” to do physical copy operation.

7- Running

 “sudo cp …/u-boot.img …/u-boot.scr soc_system.dtb1 soc_system.rbf2

…/zImage3 sdbp3_mount/” and then “sync” to copy booting files and the Kernel

image to the FAT partition of the SD Card.

8- Running “sudo tar -xvf …/rootfs.tar -C sdbp2_mount/” and then “sync”

to extract required files into the second partition of the SD Card.

9- Copying “.ko” file to the second partition:

“sudo cp xiphera_test_block.ko sdbp2_mount/” and then “sync”.

10- Un-mounting the second and third partitions: “

sudo umount sdbp2_mount/

sudo umount sdbp2_mount/” and removing the SD Card and insert it to the

board.

Now it is time to boot Xiphera’s own Linux on the board. After booting XOR driver can

be initialized by running “insmod xiphera_test_block.ko”. The driver can be checked

by giving an input value:

“

1 The device tree bulb, which is generated by device tree when the FPGA design is finished.

2 The output file of Quartus file converter, which has been converted from .sof as Qsys design result.

3 Linux image file, which has been generated in Linux distribution development section.

70

echo “30”

/sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block”

As it has been indicated before, the HEX representation of 30 is 1E with 0001 higher and

1110 lower nippers and XOR operation gives the 1111 result, which switches all FPGA’s

LEDs on for SoC Kit. (“rmmod xiphera_test_block.ko” is using to unload the driver).

Figures 42, 43 and 44 are demonstrating the Makefile compilation and copying

“xiphera_test_block.ko” file to the SD Card, “xiphera_test_block” driver initializing and

verifying the XOR operation using this driver respectively:

Figure 42. Makefile compilation and transferring to the SD Card

71

Figure 43. XOR driver initializing

Figure 44. Communicating with driver and executing XOR operation

The design flow was finalized, as XOR driver has been checked. The development and

the obtained result were confirmed, which was the purpose of this project. The same result

had been observed previously in Quartus design and user application processes.

72

5 Summary

Linux driver development for SoC FPGA requires deep knowledge of Linux

programming, driver development flow and SoC FPGA design sequence. Mastering in

these different fields needs years of experience while beginner developers who try to run

their desired Linux driver need a simple and at the same time a comprehensive guide of

whole process. This research pursued the fact of simplicity and practical guidance to

provide a clear instruction of Linux driver development. It started with importance of

customized Linux and its freedom and flexibility. In the second part, hardware component

has been described and finally at the last section, Linux distribution obtaining has been

explained.

All embedded designs require five elements of Toolchain, Bootloader, Kernel, Root

filesystem and applications which have been analysed step by step. FPGA Qsys design

which is pre-request of the device tree generation and the second item of mentioned

sequence, has been described separately. DS-5 platform installation and user space

applications has been considered with examples. Finally, I described how to design and

compile XOR driver which is a part of Xiphera encrypting Ip block project. The purpose

of XOR driver development project was verifying hardware/software component for SoC

Kit in efficient way, which required a simple driver representation of whole design

process. The aim of the project has been realized as the author could design and check

XOR driver on the board successfully.

73

References

[1] "Wikipedia," [Online]. Available: https://www.wikipedia.org/ [Please note that in

this research Wikipedia has been used only for superficial information such as

year of productions, nationality of the developers and explanation of

abbriviations].

[2] StatCounter, "Golobal market share held by operating systems," 2013 - 2019.

[3] R. &. L. D.-A. Blum, Linux for Dummies, 9th Edition, Hoboken, NJ: Wiley

Publishing, Inc., 2009.

[4] Bootlin, "Linux Kernel and Driver Development Training," Bootlin, 2004-2019.

[5] Altera, "SoC Devices Workshop 3: Developing Drivers for Altera SoC," Altera-

Public, Austin, USA, 2016.

[6] Altera, "SoC Devices Workshop 2: Altera SoC Linux Introduction," Altera,

Austin, USA, 2016.

[7] c. Simonds, Mastering Embedded Linux Programming, 2.edition, Birmingham,

UK: Packt Publishing Ltd., 2017.

[8] R. Blum, Professional Assembly Language, Indianapolis, IN: Wiley Publishing,

Inc., 2005.

[9] "RocketBoards," [Online]. Available:

https://rocketboards.org/foswiki/Documentation/EmbeddedLinuxBeginnerSGuide.

[10] Rocketboards, "SoC Kit Tutorials," 2015.

[11] "ARM Community," [Online]. Available:

https://community.arm.com/developer/tools-software/oss-platforms/w/docs/293/u-

boot.

[12] Bootlin, "Linux Kernel and Driver Development Training," 2004-2019.

[13] A. &. T. &. Altera, "SoCKit User Manual," 2003-2014.

[14] "Anysilicon," 30 January 2016. [Online]. Available: https://anysilicon.com/fpga-

vs-asic-choose/. [Accessed 2019].

[15] Ramdas, "ASIC vs SOC FPGA," Verification Excellence, 2016.

[16] Altera, "Architecture Brief of SoC FPGA," Altera, San Jose, CA, 2014.

[17] T. Instruments, "Multicore SoCs: stay a step ahead of SoC FPGAs," Texas,

Instruments, Dallas, Texas, 2016.

[18] V. Rajaraman, "IEEE Standard for Floating Point Numbers," Bengaluru, India,

2016.

[19] Altera, "Cyclone V hard Processor System Technical Reference Manual," Altera,

San Jose, Ca, 2018.

[20] Intel, "Avalon Interface Specifications," 2018.

[21] Altera, "SoC Devices Workshop 1: Altera SoC SW Development Overview,"

Altera, Austin, USA, 2016.

[22] M. L. Jangir, "OpenSource," 2012. [Online]. Available:

https://opensourceforu.com/2012/01/working-with-mtd-devices/.

[23] Altera, "Embedded Peripheral IP User Guide," San Jose, CA, 2016.

[24] Altera, "On-Chip FIFI Memory Core," Altera, San Jose, CA, 2009.

74

[25] J. &. R. A. &. K.-H. G. Corbet, Linux Device Drivers, 3.edition, Sebastopol, CA:

O'Reilly Media, Inc., 2005.

	Author’s declaration of originality
	Abstract
	Annotatsioon Embedded Linux-i Kohandamine ja dDraiverite ARrendamine SoC Kit jaoks
	List of abbreviations and terms
	Table of contents
	List of figures
	1 Introduction
	2 Customized Linux for Embedded systems
	2.1 Why Linux?
	2.2 Why Customization for Linux Is Required?
	2.3 Linux for Embedded Systems

	3 SoC FPGA’s
	3.1 SoC FPGA’s Evaluation
	3.2 SoC Kit

	4 Driver Development for Embedded Linux
	4.1 Software Requirement for Driver Development
	4.2 FPGA Design Flow
	4.3 Linux Distribution Development Steps
	4.4 User Space Applications
	4.5 XOR Driver Development

	5 Summary

