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  Abstract 

Linux driver development for SoC FPGA which uses full-length/low-performance 

communication interface, and requires mastering in Linux programming, FPGA design 

and C coding, leads to complexity for developers. This article tries to provide a clear 

guidance of design flow by dividing the sequence in three different parts and supplying 

detailed information based on the author’s experiences of Linux driver development for 

SoC Kit. XOR driver development using SoC FPGA Lightweight bridge interfacing 

presents simple and basic and at the same time comprehensive information for beginner 

developers. This work provides the most practical instruction for junior developers to 

verify hardware/software components and obtain a general overview of all creating 

special Linux distribution, driver development flow as well as FPGA design and C 

programming. This research is a part of Xiphera encrypting IP block project and has 

resulted in XOR driver for SoC Kit. 

This thesis is written in English and is 54 pages long, including 3 chapters, 41 figures. 
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Annotatsioon 

Embedded Linux-i Kohandamine ja dDraiverite 

ARrendamine SoC Kit jaoks  

Linuxi draiverite arendamine SoC FPGA jaoks, mis kasutab täispika / madala jõudlusega 

kommunikatsiooniliidest ja vajab Linuxi programmeerimise, FPGA disaini ja C-

kodeerimise rakendamist, viib arendajatele keerukuse. Käesolevas artiklis püütakse anda 

selgeid juhiseid disainivoogude kohta, jagades jada kolmeks erinevaks osaks ja esitades 

üksikasjaliku teabe, mis põhineb autori kogemustel Linuxi draiveri arendamisel SoC 

FPGA komplekti jaoks. XOR-i juhi arendamine SoC FPGA abil Kerge sillaühendus 

pakub algajatele arendajatele lihtsat ja põhilist ning samal ajal terviklikku teavet. See töö 

annab noortele arendajatele kõige praktilisema juhendi riistvara / tarkvara komponentide 

kontrollimiseks ja üldise ülevaate saamiseks kõigist, mis loovad spetsiaalse Linuxi 

levitamise, draiveri arendamise voolu ning FPGA disaini ja C programmeerimise. 

Selle projekti jaoks on vajaliku riistvarana kasutatud SoC FPGA komplekti. Juhatus on 

kombineeritud Altera Cyclone V FPGA ja ARM Cortex-9 Dual core-protsessoriga. Kuigi 

turul on veel üks võistluslaud (Xilinx), kuid arvestades SoC FPGA komplekti 

konkurentsivõimelist hinda ja asjaolu, et Altera on nüüd osa Intelist, kes suudab pakkuda 

tehnilist tuge, alustas Xiphera oma projekti selle riistvaraplatvormi abil . See uuring on 

osa Xiphera IP krüpteerimisprojektist ning selle tulemuseks on XOR draiver SoC FPGA 

komplekti jaoks. See töö viib arendajatele üldise ettekujutuse sellest, kuidas Linuxi 

draiverit kujundada täispika liidesega. 

 

Lõputöö on kirjutatud [Inglise] keeles ning sisaldab teksti 54 leheküljel, 3 peatükki, 41 

joonist. 
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1 Introduction 

Combination of FPGA and SoC into a single board, to utilize both parts’ advantages, has 

optimized productivity and efficiency. Synchronically, Linux has been used to run these 

devices as it has been developers’ favourite OS due to its flexibility and open source data 

base which provides freedom of design. Customization and driver development of 

embedded Linux for SoC Kit is an article focusing on Linux for embedded concept and 

its design flow. As the mentioned concept requires detailed knowledge and technical 

experience in Linux programming, FPGA design, VHDL/VeriLog coding and C 

programming, this research endeavours to provide a clear guidance by dividing design 

sequence into three different parts and step by step explanations. Driver development for 

SoC Kit requires Linux customization combining with Qsys design and HPS applications. 

These development steps are related to each other and must be done in a correct order 

otherwise the design process would be complicated and time consuming. This work tries 

to solve the complication of the design process and provide a clear guidance.   

The final purpose of this project is to develop a XOR driver as a simple representation of 

the whole design sequence for SoC Kit. XOR driver verifies SoC Kit hardware/software 

facilities, such as GHRD and low-performance bridge communication between FPGA 

fabric and HPS sides using Avalon-MM interface. Full communication interface, which 

requires HPS to FPGA and FPGA bridges’ interaction, has been described with a user 

space application. Full-length communication is used for Xiphera encrypting IP block 

development (which patented by Xiphera and is not a part of this work) and XOR driver 

development is fundamental validation of hardware/software components of SoC Kit. 

XOR driver provides Lightweight bridge communication by manipulation FPGA LEDs, 

which is a very good lead to obtain a general overview of full-length communication that 

can be used for more complicated projects. 

This work consists of 3 sections. The first part investigates advantages of Linux 

customization and its necessity. The second section, SoC FPGA background, explains 

advantages and features of the SoC Kit, and finally, the third part engages in practicing 

and experimenting the real task/project. In this part, all three different stages of embedded 

Linux design flow, has been described separately. To provide the right materials for the 

mentioned sections, electronic and online sources have been also utilized. 
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2 Customized Linux for Embedded systems 

 

Linux is a Unix-like operating system for computers and servers. It has been developed 

by Linus Torvalds, a computer science student at the University of Helsinki in 1991 [1]. 

The Unix system and the its hardware were both expensive and the Minix (a Unix version 

which was available for free) did not meet his needs. Therefore, he decided to develop a 

new Unix-like OS and shared his working result on the internet after six months of hard 

working (which had made a little progress toward general utility of the system) and found 

so many people who have the same desire. From 1991 Linux has been modified thousand 

times by different developers (as it is an open source OS) and has achieved a level of 

maturity that most of developers want.  

In this chapter Linux properties and the reason that makes it the first option for the 

embedded systems development are discussed; while Windows is used widely (almost 75 

%) by end user consumers or even giant companies [2]. 

2.1 Why Linux? 

 

Referring to the market share statistics, most of computer users prefer to use Windows 

operating system while Linux has only 1.6 % of the whole market [2]. It is becoming 

more interesting, if the reality that Linux is free of charge and there is no need to pay for 

a license (except commercial distributions provided by vendors) is considered. The 

second important issue about Linux is its open source development property. So, there is 

freedom to develop new features and use whatever the project requires, and it is totally 

free of charge; but still people are using Windows OS incredibly more than Linux; but 

why? 

After using Linux more actively in my professional life, the reason has been discovered. 

I must confess that I have learned computer working by Windows OS like the most 

people, but before my master I started to hear, learn and finally use Linux as the only OS 

every day at my job. Here are more evidences to compare both OS features. Linux features 

can be briefly listed as following: 
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1- Multiuser, multiprocessor and multiplatform: more than one user can be logged 

in to a single computer at the same time. Kernel (the core of Linux OS) 

multitasking property enables users to run multiple services on one computer; and 

finally, it has been developed for more than 24 hardware systems. 

2- Flexibility: Linux can be configured for a variety of usage such as network host, 

router, web server, personal PC and many computing appliances that could be 

thought of. 

3- Efficiency: the modular design of Linux enables to include only required 

components for running the desired service. Linux servers can work without any 

crash for even decades which makes it more reliable comparing to Windows. 

4- Security: although Linux is open source which makes it risk-bearing, but it is 

highly secure OS because of its open source capability and a big group of 

volunteer developers who can easily identify attacking risks and modify Linux 

[3]. 

Considering above mentioned features, Linux is looking charming for developers who 

want to have a free-to-customization, secure, reliable and free OS. So why do amateur 

computer users prefer to use Window OS rather than Linux OS? The key words here are 

developers who are known as coder or programmer verses normal people who use 

computers as a device in daily life. Most people do not need to customize their OS, instead 

they want to have an already customized and ready to use device with all adjustments and 

configurations. Here the reason that Windows OS has taken the huge piece of market pie 

must be declared: ease of use! Windows OS has already all configurations done and needs 

only to be installed and run; moreover, it has a good support community which makes it 

attracted for end computer users. Windows has defined short cuts for different needs of 

users while in Linux it is needed to run a terminal window and execute a command 

(assuming these commands have been memorized after several time using) to have even 

a very basic feature. 

 

On the contrary, developers prefer to use Linux because of its reliable and flexible 

features which enable them to configure OS for any desired requirement. More 

importantly, to develop a new project, which might need so many different adjustments 
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and configurations, the OS allows to play with different properties, use some of them or 

even develop new ones. To sum up, the customization capability of Linux in addition to 

its other features, are the main reasons that makes it interesting for developers.  

 

2.2 Why Customization for Linux Is Required? 

 

It was mentioned in the previous chapter that Linux modularity and open source features 

make it interesting for developers to easily program the desired services. A traditional 

monolithic OS uses one static-compiled image and runs in an all-or-nothing mode in 

which the entire OS needs to be restarted, if any element or application fails. While 

application and drivers in Linux have their own interface communicating with Kernel and 

interacting with the other applications independently. Looking at below figures describes 

the modular structure of Kernel: 

1/2                         Figure 1. Modular Structure of Linux [4, p. 293] 3 

                                                

 

1 API: Application Program Interface, which interacts between Kernel and the applications run on it. 

2 Misc: Minimal Instruction Set computing, is a processor architecture with a very small number of basic 

operations [1]. 

3 Please note that all figures which have no citation in this project are screen shots from results of the 

original work by the author. 
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                     Figure 2. Running different applications in Kernel and User spaces [5, p. 129] 

 

Taking into consideration that there are so many different platforms with different 

developers who work on a variety of projects, justifies a need for free to develop system 

that supports modular capability to provide different services for different developers. 

Speaking more specifically about Linux for Embedded Systems, developers need a 

system that allows them to use it for different purposes in different time periods. 

Assuming an embedded system software developer who works on a project for 

automotive industry. This project has its own specific requirements from Linux side 

which may totally differ from another project for a different industry, for instance LED 

TV’s. Therefore, such a system is required to provide all features needed for different 

purposes and support variety of projects’ fundamental requirements. 

To have a conclusion, developers prefer Linux because of freedom of configuration which 

enables them to use it for different projects that require different set of drivers, 

configurations and adjustments. 
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2.3 Linux for Embedded Systems 

 

Linux is suitable for real time complex projects, especially when the connectivity among 

the applications and tasks is required. There may be a need for an up-to-date host machine 

(a laptop or personal PC) and a target board because Linux needs more resources 

compared to the traditional real time OS (RTOS). Linux is popular for embedded systems 

because of the same reasons were discussed in the previous chapter in general and mostly 

for PC’s. Free software and open source community of Linux make it flexible for different 

variety of embedded systems projects, especially for limited investments with high 

returns. No need to mention again about Linux stability, reliability, network ability and 

multiuser/multitask capability features, which make it the favourite OS for embedded 

systems. 

As it has been demonstrated in Figure 3, every project for embedded systems, which is 

running embedded Linux, needs below listed five elements to be obtained and configured 

properly. To begin: 

 

                                                Figure 3. Five Elements of An Embedded Application [6, p. 76] 
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1- Toolchain: all steps for getting started a new project on an embedded board 

depend on Toolchain. Toolchain is the set of code generated by compiler and other 

tools for the target device. In Figure 3, Toolchain is not printed but it takes place 

in the bottom of all other steps. The reason it is not shown in this figure lies in the 

fact that Toolchain downloading, and configuration have been set by the host 

machine and the other steps, which depend on Toolchain, are being generated and 

put in a SD Card, which is used by the target board. 

2- Bootloadr: after getting the Toolchain, the target board needs to be initialized; 

which Bootlaoder takes the responsibility here. Bootloader is shown in Figure 3 

as U-Boot (Universal Boot) which itself is a step of booting. 

3- Kernel: heart of the system which manages all resources and interfacing with the 

hardware. Kernel includes itself, drivers, machine specific layers and device tree 

in the figure. In fact, the device tree is kind of interacting between BootLoader 

and Kernel which defines hardware components of the embedded device. The 

device tree is loaded by BootLoader and passed to Kernel and Kernel image 

cannot be loaded without device tree compilation. A closer look at the device tree 

in the third chapter of the third part of this article is given. 

4- Root filesystem: includes programs and libraries and runs after Kernel 

initialization [7]. 

5- Application: a collection of programs which you use for the project. 

A closer look is taken at these five elements, as all these steps will be used later in order 

to develop a driver for own Linux distribution; so it is needed to have at least a general 

overview, (sometimes detailed expertise to solve problems is needed, as Linux is an open 

source OS and there is no guarantee for software developers that everything work well in 

all projects).  

As it has been mentioned earlier, Toolchain is a set of tools that compiles required source 

codes into an executable file that can be run on the embedded board; and it is absolutely 

needed to be done before continuing the other steps of design sequence. 
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                                                 Figure 4. Generating an executable by Toolchain [8, p. 7] 

 

Toolchain contains a compiler, linker and C libraries, (available Toolchain for Linux are 

mostly based on GNU which is notably written in C. There are different types of 

Toolchain that also include Assembly and C++ libraries). GNU is a Unix-like OS that 

provides components for Toolchain’s using Linux. GNU is an acronym of “GNU’s Not 

Unix” which has been developed and named by Richard Stallman, insisting that it is not 

a Unix system but Unix-like OS. He stated that after playing with words and being 

inspired from “The GNU” song has named his project GNU in 1983. This OS’s compilers 

and linkers support Linux using Toolchain’s and provide C libraries to start each 

embedded application. Every GNU Toolchain consists of three main components: [8] 

1- Binutils: s set of binary utilities containing assembler and linker. 

2- GNU Compiler Collection (GCC): compilers for C and other languages depends 

on the version of GCC. 

3- C Library: there are different C libraries which are provided as Application 

Program Interface (API). This API is the main component for interfacing Kernel 

with applications. 



19 

It will be demonstrated how to use Toolchain to start booting the target device which 

depends on the CPU (Central Processing Unit) and in this case is ARM Cortex-9.1 

Choosing proper C libraries for the project will be also experienced. Altera’s2 open source 

database to download and set the Ttoolchain which supports Linux Ubuntu 16.043 (the 

Linux version on the host machine) will be used. It is necessary to say that Ubuntu is an 

open source Linux distribution based on Debain which is a Unix-like OS. To sum up with 

the Toolchain matter, it is needed to download and configure it following the steps which 

will be provided in the relevant chapter. 

The second step of the embedded application design flow is Bootloader which boots the 

embedded device and initialize it to get the Kernel. In fact, Bootloader prepares the target 

device to get the Kernel and ready to run it. Figure 5 describes Bootloader initializing 

flow: 

 

                                                        Figure 5. Bootloader Initializing Flow [6, p. 95] 

                                                

 

1 ARM, previously Advanced RISC Machines, and originally Acorn RISC Machines, is a family of 

computer processors which follows Reduced Instruction Set Computing (RISC) architectures. 

2 An American manufacturer of SoC FPGA’s and other programmable processors. Altera produces Stratix, 

Aria and Cyclone V microprocessors series. It is now part of Intel. 

3 The Linux version can be seen by executing “cat/etc/os-release” in a terminal window for a Linux 

running on the host machine. 
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Bootloader prepares the CPU of the target device for the Kernel initialization. It briefly 

can be described as instruction code that is recognized by the target device’s processor 

and it absolutely differs from different family of processors [8]. In this case, both SoC 

and FPGA sides are using ARM Cortex-9 processor. After some adjustment and 

cooperating with the CPU, Bootloader loads the Kernel into RAM and runs it. The Kernel 

starts to initialize hardware devices and its sub-systems. Here are some definitions of the 

concepts from the figure: 

Boot ROM: is a very small piece of the ROM inside the CPU of the embedded device. It 

contains a very basic instruction code which is mentioned above and is executed when 

the device is powered on or reset. 

BSEL pins: will be described further when the board will be explored; for now, it can be 

briefly said that they are configured to make embedded device CPU operates in the 

highest possible speed without modifying any software code. 

PreLoader or SPL:  Secondary Program Loader or PreLoader is a piece of software which 

is called from Boot ROM with the only purpose of preparing the system for actual 

BootLoader (U-Boot) [9]. Figure below shows the sequences for generating PreLoader 

image which is necessary to boot the device. 
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1 

                                                        Figure 6. Generating PreLoader Sequences [10] 

 

U- Boot: is a Universal Boot Loader and used to boot the Linux Kernel in ARM processor 

using devices [11]. 

 The third step of the mentioned embedded device application design sequences is Kernel 

itself, which is responsible to manage all resources and interfacing with hardware 

components. Figure 7 can describe Kernel and its functionalities: 

 

                                                            Figure 7. Kernel Functionalities [4, p. 24] 

 

 

                                                

 

1 Parts are indicated by red dot are generating by SoC EDS which is software platform for SoC board 

manipulations and configurations. 
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After booting by BootLoader, Kernel starts to handle all hardware resources such as CPU, 

memory and I/O and provides a set of hardware independent API architectures to allow 

user space applications and libraries to use the hardware components [12]. Kernel design 

will be more discussed further. 

The forth element of the design is Root Filesystem which includes all necessary files for 

initializing the system. Depending on the application, it can consist of  

1- An initializing program, which is the first application running after Kernel 

booting. 

2- A /dev directory to keep data, which is generated or required in user space. 

3- Loadable modules, which are needed to be loaded during Kernel configuration 

[9]. 

All these steps will be described in the third chapter of the third part of this article when 

Linux Kernel distribution development is reviewed. Components of Root filesystem such 

as Busy Box, libraries and other utilities will be explained more. 

The last element of an embedded application design are applications defined by 

developers for different projects with different purposes. This article is focusing on driver 

development for SoC Kit. 

In this chapter Linux features and reasons that make it interesting for developers and 

specially embedded systems developers were discussed. Then, some basic information 

about embedded Linux design flow was provided, to have a general overview of the 

sequences of embedded design and other issued which will be concentrated during the 

rest of this article. 

3 SoC FPGA’s 

 

The previous part was allocated to describe why developers need Linux customization for 

their various projects with different purposes. In the first chapter of this part, the hardware 

of the design which is SoC Kit will be discussed. A quick overview is given on 

processors’ timelines, their evolution and progress to achieve nowadays’ maturity and 

how development boards have been transformed to handle real time complex projects. 
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Afterwards, the second chapter will continue to discover the board for this project which 

is SoC Kit (has been shown in the figure 8), manufactured by Terasic, its main features, 

functionalities and hardware/software components requirements. By the end of this part, 

an exact overview is provided on hardware constituent of the project. Besides, it is tried 

to link embedded Linux explanation chapters with hardware clarification chapters in the 

last part of this article. 

 

                                                         Figure 8. SoC Kit [13, p. 1] 

 

 

3.1 SoC FPGA’s Evaluation 

 

In this chapter the focus is on the development boards’ evolution and how they have been 

transformed to the nowadays’ flexible and reliable boards. In order to have an exact idea 

about this transformation timeline, reasons and phases, first, it is required to get an 
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overview about developers and market expectations from these boards. Developers, 

students or any other interested groups of people to the embedded systems field, supposed 

to know that the market expectations determine hardware, software and design timelines. 

In the other word, companies, organizations, factories or even individuals, are looking for 

greater solutions day by day. If developers’ solutions would not meet their anticipations, 

there will be no other options for this kind of solutions, either to be terminated or be 

enhanced in order to suit market qualifications.  

Therefore, market conditions and expectations from this industry are discussed. Certainly, 

the most important elements in the market are low cost, low power and high-performance 

expectation which are every body’s desired parameters to evaluate any already exist ing 

or to be existed solution. From aerospace and defence industry to scientific research and 

medical industry and the other fields such as automotive, motor control, communication, 

image processing, high performance computing, data servers and security, which are 

some of main industry fields interested in FPGA, everybody is searching for the 

mentioned properties of FPGA design. Moreover, Internet of Things (IoT) which seems 

today’s inevitable concept of design and is going to become most popular or even 

phenomenon of the forth industry revolution, is interested in FPGA design and 

applications. In brief, market expectation from FPGA industry can be listed below: 

1- Low cost, low power, which is ideal for all industrial solutions and always take 

the first place of qualifications’ list. 

2- High performance, high content, a greater performance can be achieved by higher 

amount of hardware components and software elements. It is supposed to reach a 

level of very good balance among high content/performance and low cost/ power 

to idealize the final solution. 

3- Well facility design and high integration property including peripherals and 

interfacing with memory, in order to handle complexity of high range computing. 

4- Fast time to market, which follows previous conditions and if all would be close 

to what had been imagined, FPGA design flow would progress by desired 

schedule. 
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5- Connectivity, if application fields of FPGA are considered, a very high and 

reliable connectivity will be required and as it has been specified before, Linux 

behaves well with connection protocols and has high networking features. 

Therefore, a FPGA running Linux is needed to have high performance 

networking. 

Meeting all these expectations, the development boards have been evolved since 1984 

and have been transformed to the nowadays’ SoC FPGA boards. A closer look at this 

evolution and its different phases, which is the best way to understand why SoC FPGA is 

used for the design, is beneficial. The FPGA industry began to develop since 1984 by 

integrating Programmable Read Only Memory (PROM) and Programmable Logic Device 

(PLD) which has been provided to the market by Altera. In 1985 Xilinx, one of nowadays’ 

FPGA manufacturer, delivered the first FPGA to the market with limited functionalities. 

From the early ages, FPGA has been evolved in varied forms [1].  

In a parallel way to FPGA timeline, there were other boards which have been used for 

almost similar purposes. Application Specific Integrated Circuits (ASIC’s) are the most 

popular ones since their properties meet market qualifications. Figure 9 is demonstrating 

advantages/disadvantages of FPGA and ASIC to compare their reliability for complex 

projects: 
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1 

                                              Figure 9. Advantages/disadvantages of FPGA and ASIC [14] 

 

Looking at this figure may create a little bit of confusion as both FPGA and ASIC have 

some advantages and some unwanted features which make developers to find a balance 

considering these features. At first, a project which requires hardware platform choosing 

should be considered. Moreover, depending on the budget and size of the project, time 

schedule and essential functionalities, a better view of the existing options could be 

achieved. If FPGA is chosen, for a high amount production, which has been scheduled 

properly for research and development period (there is no rush for time to market), then 

more financial resources is needed, as FPGA unit cost is higher compared to ASIC. FPGA 

might be selected because of its design flow and contents which are simple and well-

integrated for this purpose. As it is clearly understood, FPGA has drawbacks in case they 

would be chosen for their advantages such as low NRE, simple design flow and fast time 

to market. So how these disadvantages could be compensated, or in better words, if these 

features would be enhanced, then FPGA might be the first option for embedded design. 

                                                

 

1 NRE: Non-Recurring Engineering, one-time expenditure for research, develop, design and test a new 

product. NRE unlike the production costs, which must be paid constantly, is paid once as it is being 

considered from fixed costs category [1]. 
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Figure 10 provides a clear view on the options by analysing another type of ASIC’s, 

System on Chip (SoC): 

1 

                                                  Figure 10. FPGA, ASIC/ASSP and SoC comparison [15, p. 7] 

  

SoC is more integrated with more components on ASIC’s or ASSP’s with single or more 

processor cores. (ASIC’s and ASSP’s can be SoC or non-SoC depending on if there is a 

processor mounted or not). So, what if desired features of both sides would be combined 

into a compact board to utilize all possible advantages. By this way a very good solution 

for the projects is found. Before going to deeper details, it is better first to have a specific 

definition of SoC FPGA by Altera (which has been merged into Intel since 2015): 

“SoC FPGA’s integrate both processor and FPGA architecture into a single device. 

Consequently, they provide higher integration, lower power consumption, smaller board 

size, and higher bandwidth communication between processor and FPGA. They also 

                                                

 

1 ASSP: Application Specific Standard Parts. 
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include a rich set of peripherals, an FPGA-style logic array and high-speed transceivers” 

[16].  

 

                                                   Figure 11. SoC FPGA compare with ASIC [16, p. 3] 

 

Figure 11 shows how SoC FPGA has been transformed from similar type boards. There 

are three commercially available SoC FPGA’s which all are using ARM processors. 

Altera as one of the main competitors has Aria and Cyclone series from FPGA side (I am 

using Cyclone V integrated with ARM Cortex-9 dual-core processor).  

Finally, a comprehensive overview about what were discussed is provided by figure 12; 

it is clearly demonstrated that if SoC FPGA’s are used, products can get to the market 

more quickly [17]. 



29 

12 

                                                                    Figure 12. Fast Time to Market [17, p. 4] 

 

Floating point numbers and algorithms are an important data type in computation and 

represent real numbers with a fractional part. According to IEEE, “754 floating point 

standard” is the most common one used in the modern microprocessors, however, in 2008 

it has been updated [18].  

A clarification on exiting options, how and why to choose a more reliable hardware 

platform, SoC FPGA, for the design, have been provided. 

 

                                                

 
1 DDUC: Digital Down Converter-Up Converter; converts a band limited signal to a lower frequency with 

lower sampling rate to simplify the subsequent radio stage [1]. 

2 FFTC: Fast Fourier Transform Coprocessors; an accelerator module that can be used for performing FFT 

and IFFT with higher floating-point rate. 
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3.2 SoC Kit  

 

 

In this chapter the board SoC Kit is discovered. It “presents a robust hardware design 

platform built around Altera FPGA combines with Dual-Core ARM Cortex-9 processor 

that provides re-configurability paired with high-performance and low-power 

consumption” [13, p. 5]. Figure 13 contains description for some of critical components 

of the board and figure 14 is demonstrating a clear view of the board’s block diagram: 

 

 

                                                                        Figure 13. SoC Kit Components [13, p. 7] 
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Figure 14. SoC Kit Block Diagram [13, p. 11] 

 

 

As it has been clearly indicated in figure 14, the device brain consists of FPGA and Hard 

Processor System (HPS); Cyclone V is the general name of these series with FPGA Fabric 

and Dual-Core ARM Cortex-9 processor. The focus will be more on the board’s 

functionalities to support the road map to design a driver for it; data sheet of the board 

can be studied for more technical and detailed information. The driver will manipulate 

four LEDs on FPGA side by giving the Exclusive OR (XOR) operation result to power 

on matched LEDs. 

In order to have access to FPGA side LEDs, either FPGA direct design or HPS user space 

application, which give an ability to configure FPGA side LEDs via one of existing 

bridges, can be tired. There is another way which is in fact more reliable for real life 

projects and it is driver development which operates in the Kernel space. Now it is the 
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time for real work and having an experiment of how both sides of the board communicate 

with each other; Figure 15 is specifying three bridges and their connections with FPGA 

and HPS sides:  

 

l

 

                                                                Figure 15. Cyclone V SoC Bridges [19] 

 

 

HPS-FPGA bridges allow masters in FPGA fabric to communicate with slaves in HPS 

logic and vice versa. For instance, if a peripheral be implemented in FPGA side, HPS 

component such as Microprocessor Unit (MPU) can access it. In the same way, 

components implemented in FPGA fabric such as the driver, can access peripheral in HPS 

side. Each bridge consists of a master/slave pair with two interfaces which are exposed 

one to the FPGA and the other to HPS sides. 

The FPGA to HPS bridge is supported by an Advanced eXtensible Interface (AXI) slave 

that can be connected to AXI master or Avalon-Memory Mapped interface in the FPGA 
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side. HPS to FPGA and Lightweight HPS to FPGA bridges expose an AXI master 

interface that can be connected to Avalon-MM slave interface in FPGA side [19]. Figure 

16 has a detailed explanation of each master and slave interface with their data widths: 

 

 

                                               Figure 16. Master and Slave Interfaces [19] 

 

 

As it is indicated in the figure 16, there are two bridges from HPS to FPGA which the 

Lightweight one provides lower performance interface with only 32 Bits band width. 

While, the other HPS to FPGA bridge as well as FPGA to HPS bridges perform with three 

options of band widths. The Lightweight HPS to FPGA bridge has limited access with 2 

MB address spaces. The bridge is connected to control and status registers of soft 

peripherals in FPGA fabric. 

It is needed to have a general idea about AXI and Avalon-MM interfaces because they 

will be used during FPGA and user space application design. As it has been mentioned 

previously, AXI is a set of specifications and a part of ARM Microcontroller Bus 

Architecture (AMBA) protocol. This protocol states that how different modules on the 
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system can communicate with each other, using a Handshake-Like1 producer before all 

transmissions [11]. Figure 17 can describe more by illustrating master/slave interfaces: 

 

             Figure 17. AXI Master/Slave Interface [11] 

 

XOR project uses Write/Read data signals (shown in the above figure) for the FPGA 

design. 

 

“Avalon interfaces simplify system design by allowing developer to easily connect 

components in Intel FPGA. These specifications define interface appropriate for high 

speed data streaming, reading/writing registers and the memory, and enable developers 

to incorporate custom components in Avalon interface to enhance interoperability of the 

design” [20]. I will use this interface in the custom component for FPGA’s side LEDs 

control. Avalon-MM interfaces can be used to implement read/write interface for 

master/slave components such as memories, UART2’s and Timers; and typically include 

only the signals required for the component logic. 

 

To sum up, this part demonstrated hardware platform choosing, while getting an idea 

about the FPGA and more importantly SoC FPGA features. A detailed look at the SoC 

Kit and its bridges were provided, which will be used for the FPGA’s side design. 

 

 

                                                

 

1 Handshake is a process of communication that establishes all required protocols and links before the full 

communication begins [1]. 

2 Universal Asynchronous Receiver Transmitter. 
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4 Driver Development for Embedded Linux 

This part describes how the driver is built. The last two sections tried to give an overview 

on Linux for embedded, its design sequence, SoC FPGA evolution and the SoC Kit 

features. Obtaining a general and sometime a detailed idea about the background of the 

practical task was essential. This part of the article demonstrates that without having at 

least a general knowledge about embedded Linux design flow and the board specification, 

it is not possible to have any kind of manipulation on the design. A driver to run FPGA’s 

side LEDs will be generated by the end of this part, and during design steps, the necessity 

of the background knowledge to manage sequence and handle probable problems is 

understood. This part consists of five chapters including software requirements for both 

FPGA and HPS sides, FPGA design explanation, obtaining a Linux distribution, user 

space application (HPS work) and finally XOR driver development. 

 

4.1 Software Requirement for Driver Development 

 

It has been mentioned before that SoC Kit’s brain consists of FPGA and HPS and their 

relevant components are integrated in the board cooperating by high data speed interfaces. 

Although SoC Kit is a combination of efficiently integrated of FPGA and HPS 

components, these components can be categorized in two different categories: FPGA and 

HPS. What I am trying to insistently specify here is compacting two independent devices 

into a single board, while it can be considered and configured either as two different 

devices or as a single compact device. Thus, I will work with FPGA and have a 

component design for it and work on HPS separately and interestingly work on them 

together at the same time. This is really the handful property of the SoC FPGA’s which 

is very useful for developers to have flexibility, efficiency of their design and fast time to 

market products. 

At first comes discussion about FPGA side design which will be explained in the next 

chapter. Quartus as the platform, which enables developers to have FPGA design from 

scratch or to modify already existing designs, is needed. Quartus Prime 18.1 Lite Edition 
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can be free of charge obtained from Intel web page from software for FPGA section. 

Installation of Quartus is so simple and double clicking on the run file would be enough 

and as it has been illustrated in figure 18 and 19, it has Platform Design Tool (formerly 

known as Quartus System: Qsys) to create FPGA design and manipulate/modify 

hardware components. 

 

                                                    Figure 18. Quartus Prime 18.1 Lite Edition 

 

 

 

Figure 19. Platform Designer Tool or Qsys 
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The next chapter describes the FPGA design flow, which has been developed and verified 

by the author, using Qsys tool to generate Qsys file, and then useing Quartus file converter 

to convert this Qsys file to Raw Binary File (.rbf), which FPGA needs to be configured 

and programmed by Linux. FPGA can be configured in two ways; using Quartus by 

adding the board from tools tab in menu bar and after recognizing the board by Quartus, 

adding or changing .sof1 file which is generated at the end of Qsys operation, and finally 

running it. The result can be observed on FPGA LEDs. The second method is to copy .rbf 

file to a SD Card and use Linux to run this .rbf file and program the FPGA. Quartus 

creates a folder named “handoff folder”, describing hardware configurations, which is 

required to have device tree generating as an important step of the embedded design; 

because it includes hardware components’ configuration to introduce to the Kernel. 

The HPS side of the board needs to be programmed using SoC EDS DS-5 platform which 

is Intel specific ARM product. It is named simply DS-5 as the original name would be 

confusing if it is considered the user interface of the platform which has a different name 

of Eclipse. This software platform also can be obtained from Intel website but its 

installation is slightly different for Linux running host machine compare to Quartus 

setting up. DS-5 installation can be explained as below: 

1- Running DS-5 from a terminal window. (There may be a need for changing the 

mode using sudo chmod 777 “file name”.run).2 

2- Not to install DS-5 yet, instead, starting Embedded Command Shell from the file 

directory which was obtained when DS-5 package has been downloaded. 

(This can be done by executing “./embedded_command_shell” in a terminal 

window from correct directory). 

3- Running DS-5 installation script from Embedded Command Shell and assigning 

correct installation directory. 

4- After installation, there may be a need for adding PATH or editing that from 

.bashrc file which is hidden in the home directory. After adding the installation 

                                                

 

1 SRAM Object File which is machine generated code and be created by the end of Qsys operation and can 

be obtain with Quartus Programmer tool to run the FPGA. SRAM is static RAM which uses flip-flop 

method to store each bit. 

2 Changing mode in Linux is required because of hierarchic filing structure. “sudo” or super user enables 

developer to execute commands with privilege and 777 enables developer to execute the desired file as top-

level hierarchic file. 
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path to the PATH by editing .bashrc file, it is reuqired to run following command 

line in a terminal window: “source ~/.bashrc” and by this installation is done. 

5- To open Eclipse (user interface of DS-5), in Embedded Command Shell, it is 

required to go to Eclipse directory and execute the following: “sudo bash 

./eclipse”.1 

Figures 20 and 21 are showing DS-5 and its Debugger tool which are similar to 

ARM Cortex software platform that is used in TUT Embedded courses: 

 

 

                     Figure 20. DS-5 

                                                                              

 

 

 

                                                

 

1 An appendix of useful Linux commands and their explanations will be provided. 
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                  Figure 21. DS-5 Debugger Tool 

4.2 FPGA Design Flow 

 

After setting and running up the required software, now it is time to practice and execute 

the real task. The first and very important stage of the driver development journey is the 

Qsys design, because the driver, as software, will run this hardware component. It is 

important to remind that the author is trying to manipulate FPGA side LEDs by a driver 

which uses both FPGA and HPS utilities. Thus, it is required to analyse HPS facilities, 

bridge interfaces and FPGA configuration in order to avoid possible problems. 

As it has been mentioned previously, there are two different designs: one is Qsys and the 

other is C programming in DS-5; which both require bridge interface manipulations as 

bridges are connected to FPGA fabric and HPS. Here is a clear view of the road map 

which consists of Qsys design with bridge interfaces and then C programming with 

essential bridge interface in HPs side. To begin the Qsys design, it is needed to start 

Quartus and from menu bar tab on Platform Designer tool to open it and then choosing 

the Golden Hardware Reference Design (GHRD) file from right directory of the host 

machine. GHRD file consists of all default hardware definitions and configurations which 

comes with the board user guide CD and differs from a board to another board. 
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Developers can generate all required files inside this folder by starting Qsys design from 

scratch which needs to have an absolute detailed knowledge of the board hardware 

components’ specifications. In fact, Qsys design requires pin definitions, (in this project, 

SoC Kit has more than 220 different pins, which should be mapped and defined one by 

one). Moreover, facilities like display should be defined separately which is really hard 

work and needs sometimes weeks of analysing data sheets and VHDL programming. As 

this project has the GHRD folder ready, it can be started by uploading Quartus Project 

File (.qpf) and opening Qsys, then uploading already existing .qsys file. 

LED_PIO (Parallel Input/Output) component, which is default design of the board’s 

LEDs, is found. In order to have the custom component, it is required to remove this 

component and then add a new component instead, which needs to be designed. Here, the 

author added VHDL codes as two different files because one of these files consists of the 

IP block codes written to manipulate LEDs and the other is Avalon interface codes file. 

Here a piece of the IP block code which does the XOR operation, and a part of Avalon 

interface code, that includes required signals’ names, are provided: “ 

begin 
 
 process (clk) 
 begin 
 
  if rising_edge(clk) then 
   if rst = '1' then 
    temp <= (others => '0'); 
   elsif load = '1' then 
    temp <= din(7 downto 4) xor din(3 downto 0); 
   end if; 
  end if; 
 end process; 

” 

“ 

entity xiphera_test_block_avalon_interface is 
 port(  
  clk        : in std_logic; 
  rst        : in std_logic; 
  read_ctrl  : in std_logic; 
  write_ctrl : in std_logic; 
  writedata  : in std_logic_vector(7 downto 0); 
  readdata   : out std_logic_vector(7 downto 0); 
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  led_export : out std_logic_vector(3 downto 0)  
 ); 
end xiphera_test_block_avalon_interface;  
” 

Figures 22 and 23 are demonstrating the IP block general view and Avalon interface and 

its signals which have been mentioned in the second code, respectively: 

 

Figure 22. Customized IP 

                                                                 

 

 

                  Figure 23. Avalon Interface 
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During Qsys design before generating VHDL code (which is an available option in Qsys 

tool), a very important issue, which will be used later in the device tree generating stage, 

needs to be considered. It is required to modify Tool Command Language (.tcl) file1 

which has been generated when the author started to Qsys design and has been used to 

define the customized IP to the device tree. The definition of the IP block was added in 

this file and it has been used to generate .dts file2 and finally this .dts file has been used 

for .dtb (Device Tree Bulb) creating which is one of Quartus final results and is used by 

the device tree compiler. As it is clear from explanations, every step of the design depends 

on the next one, so it requires due caution and doing the process step by step. 

Now VHDL code can be generated and the process continues to the Quartus design. After 

the same modification in VHDL code (inserting the IP block), it is time to start preparing 

for analyzing and synthesis which is the final stage of Quartus design to generate .sof file. 

Here, it is required to consider another important point that is running the .tcl script from 

Quartus by choosing it from right directory, before starting the full synthesis. Then full 

synthesis should be run and wait to have .sof file, which can be converted from Quartus 

converting program files tool, to .rbf file to use from Linux to configure FPGA. Finally, 

it is ready to try the result of the first step of design either by programming FPGA with 

.sof file and run LEDs using Quartus, or by running .rbf file from a terminal window and 

configure LEDs using Linux. This is the last operation before moving forward which gave 

us all required files for the rest of development. Now FPGA design could be left aside, 

and focus would be given on the Linux and HPS development stages which will be the 

next chapters. 

 

4.3 Linux Distribution Development Steps 

 

This chapter will describe all necessary steps to obtain and source the Kernel to 

manipulate its property and configure it as desired Linux distribution. As was mentioned, 

                                                

 

1 TCL (also pronounced as tickle) is an open source, general purpose and dynamic programming language 

[1]. 

2 DTS: Digital Theater System file format which saves data in audio type. 
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elements of every embedded design have been listed as: Toolchain, Bootloader, Kernel, 

Root file system and User space application(s). It is clearly explained that obtaining the 

Toolchain is the first step of design, but before going further it seems necessary to clarify 

one issue. Toolchain is listed as the first step of every design but XOR project started with 

FPGA design; but why? The answer simply can be declared that FPGA design was a pre-

request for the device tree which will be generated and added to the Kernel after U-Boot 

stage. By this way the author organized the process and would not need to come back to 

FPGA design in the middle of Linux development process. As it was insistently indicated 

before, everything else related to embedded Linux design depends on Toolchain and in 

this case, it is GCC which is installed when Linux distribution on the host computer was 

installed. Toolchain compiles object code files (which have been obtained from Altera 

open source data base) to its linker and then generates executable files which can be used 

by Linux. Here, no further action in needed, because Toolchain effects are seen when it 

is used to compile U-Boot and Kernel. 

This part concentrates more on Bootloader step of the design. Booting sequences could 

be briefly reminded here. Every time that the power button be pushed, Linux booting 

happens by the following order: reset, boot ROM, pre-loader, U-Boot and finally Linux.1 

As it has been illustrated in the first part of the thesis, after reset, the system starts to read 

Boot ROM and check for some physical configuration (which must be done before any 

kind of design considering SoC Kit user manual guide), then tries to do a set of 

configurations to prepare flash. It is useful to specify the reason of storing some important 

information in the flash. The type of the flash is None-Volatile NOR flash which can 

reserve information permanently. By this way, significant information will be safe when 

the system powered off or reset and this substantial data can be used to repeat basic 

configuration of the board. After setting up the flash, Boot ROM tries to run Pre-Loader 

which must be generated before going on. Therefore, the second part of the practical task 

during this design will be pre-loader generating. 

                                                

 

1 For more see figure 5. 
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To begin, the author initially started with BSP1 editor. Intel has Nios II BSP editor coming 

with the SoC EDS (Intel specific DS-5) installation package. I only started an Embedded 

Command Shell (the procedure has been declared in chapter 4.1) and ran the following 

command line “bsp-editor &”. This starts the editor window which asks for the file, 

and from handoff folder in GHRD directory the “soc_system_hps_0” file can be added. 

After some modification (which can be found from online sources), simply pressed 

generate and after a short while, closed the window and ran “make”. Note that all shell 

commands must be execute in Embedded Command Shell terminal window. That’s all 

about the pre-loader which is a pre-request element for Boot loader, then it is time to 

prepare for actual U-Boot. 

After getting done two pre-request tasks (Qsys design for the device tree and pre-loader 

generating for U-Boot), now it is time to return to the original design flow with obtaining 

and compiling toolchain. As it has been mentioned before, toolchain comes with Linux 

installation, but it varies from one board to another, thus a new toolchain source for the 

new Linux distribution is needed. It can be downloaded from Linaro web page with a 

desired version.2 Here, a very important matter, which is faced frequently, and is cross 

compile environmental issue, which must be set properly, should be notified. To do this, 

it is required to run the following from a terminal window “export cross_compile 

Directory/arm-linux-gnueabihf-” and then to check if it sets properly with 

“printenv”. Exporting the directory should be carefully done, because it can be source 

of many problems during U-Boot or Kernel compilation. 

Next, the source code of U-Boot is obtainable from Altera open source data base (the 

desired version could be downloaded) and then U-Boot is compiled by:  

“make socfpga_cyclone5_config 

make”. It will generate U-Boot.img (image) file. Another file named boot.script is 

required to complete U-Boot stage of the design. This file contains hardware information 

                                                

 

1 In embedded system a Board Support Package is a layer of software containing hardware specific drivers 

to allow RTOS operates in a particular hardware environment [1]. 

2  versions 6.3.1 or 7.1.1 can be used as some other versions create problems during compilation, moreover, 

the hardware might not suit recently released versions. 
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of FPGA that U-Boot requires to load and pass to the Kernel. This file can be created and 

run to compile U-Boot and end the task here (its content can be found in Rocketboard [9] 

web page: embedded Linux beginners guide). 

Now it is time to generate the device tree which previously has been mentioned several 

times. Before starting the process, an expert look at the device tree is required to realize 

what it is or why it is needed at all. Each embedded board has its own specifications that 

Kernel needs to know by obtaining its initialization code, which is provided by board 

manufacturer. Before the device tree, manufacturers had to provide maintenance service 

for Kernel every time that hardware configuration needed to be changed. Nowadays, the 

device tree takes care of hardware structure definition and is independent from U-Boot 

and the Kernel, which enables developers to modify only this file without concerning 

about other files that require more repairing time. Figure 24 shows a clear view of the 

device tree generating and U-Boot compiling steps: 

 

Figure 24. Device Tree Generating and U-Boot Compiling Steps [6, p. 50] 

 

Board Info files shown on the figure 24, come with GHRD folder in .xml format and 

contain data for external peripherals. The FPGA should recognize the board peripherals 

using these .xml files. It was needed to run essential codes (input is soc_system_sopcinfo 

file, and output is soc_system.dts; for the design only soc_system_board_info.xml file as 
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external peripheral is required) to generate .dts file and finally compile it to .dtb file and 

finish with the device tree. Note that it is needed to follow the instruction provided by 

Rocketboards web site and execute correct code lines in the correct directory from 

Embedded Command shell, in case of examining the process as a beginner. 

The third and the most important stage, within the context of the Kernel design is the 

Toolchain obtaining as the heart of the entire system of the embedded design sequence. 

The Toolchain was obtained before, which is required to compile the Kernel. It can also 

be used in this stage, just to remind that in case the Shell window has been closed, cross 

compile command line could be ran again. The Kernel source needs to be acquired from 

Altera open source data base (in case a recent version would not be found, other online 

free resources could be searched). After downloading and unpacking the folder, its 

directory from the Shell window1  should be navigated and the following be executed: 

“make ARCH=arm socfpga_defconfig” and then “make ARCH=arm menuconfig”. This 

will open a window which is illustrating in figure 25 and after required configuration it is 

possible to compile the Kernel. 

                                                

 

1 Navigating inside Linux file system can be done by “cd directory”. 
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Figure 25. Kernel Configuration Window [9] 

 

 

Here two options need to be changed: The first, “Automatically append version 

information of the version string” option which is in “General setup” tab and must be 

unchecked. When a Kernel module (driver) is loaded, the Kernel checks its version and 

in case of difference, the Kernel rejects loading. This feature of the Kernel could be 

disabled in order to be able to load various versions of drivers. The second option which 

needs to be changed is “Support for larger (2TB+) block devices and files” which can be 

found from “Enable the block layer” tab and it must be on. This option enables developers 

to mount ext41 file systems in write/read mode. (otherwise, ext4 can be mounted in read 

only mode). Now it is time for compiling the Kernel which is very crucial for the project, 

to do so “make ARCH=arm LOCALVERSION= zImage” should be ran. Once this operation 

is done (it can take a while), a zImage file will be generated that is a compressed version 

of the Linux distribution. 

                                                

 

1 Ext4 file system will be described in the SD Card creating part. 
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It is time now to take advantage of what have been done so far, which is creating own 

Linux distribution. It only requires root file system to be completed and utilized running 

on the target embedded board. 

Finally, to create the own Linux distribution, a Root file system needs to be built and, as 

was mentioned previously, it contains essential files to boot the system up. It is required 

to configure a PATH to the Toolchain to compile Root file system: 

“make -C buildroot ARCH=ARM  

BR2_TOOLCHAIN_EXTERNAL_PATH=$(pwd)/Toolchain directory_arm-linux-

gnueabihf nconfig” which will open a configuration window shown in figure 26: 

 

Figure 26. Buildroot Configuration Window [9] 

 

From this window the author changed some properties in Target and Toolchain options 

on the base of the embedded Kernel features which is using ARM Cortex processor; so, 

the Buildroot should be configured accordingly. The other manipulation part is for 

Toolchain according to the compiled Toolchain which has been obtained from online 

sources. The configurations are demonstrating in below figures respectively: 
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After setting mentioned configuration, saving changes and exiting from the page (F6 + 

Enter and then F9), then it is time for moving to the next step of setting Busy box by 

running following piece of code: “make –C buildroot busybox-menuconfig”. it will 

open the configuration window and there is no need to do any change there, so just saving 

and exiting were needed. The only purpose of opening the Busy box without any 

manipulation is to inform the Kernel that all configurations are done. At the end the code 

that was used before to start the configurations of the Buildroot should be executed: “make 

-C buildroot ARCH=ARM BR2_TOOLCHAIN_EXTERNAL_PATH=$(pwd)/Toolchain 

directory_arm-linux-gnueabihf all” and the Root file system will be generated in 

a few minutes, then it is time to think of the application which will be made as the Linux 

distribution is ready to upload them. 

This chapter tried to have a revision of generating customized Linux distribution with 

desired FPGA design, Toolchain, U-Boot and Kernel source codes. I have used Terasic 

GHRD source and added the XOR component, obtained other required items mostly from 

Altera open source data base, and followed sequences to build the special Linux 

distribution, that could handle the user space applications and the Kernel modules 

(drivers). The next chapter demonstrates how to design a user space application by 

considering some example. 

 

 

           Figure 27. Target Configuration of Buildroot 

 

           

 

 

       Figure 28. Toolchain Configuration of Buildroot 
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4.4 User Space Applications 

 

It was indicated before that it is possible to operate in both user space and the Kernel 

space of the design. Their difference lies in their process running managements which 

proves that the memory dedicating for all processes is well organized in the Kernel. When 

developers run a process in the user space, only dedicated section of the memory, which 

has been defined by the application itself and specified by the Kernel, takes care of the 

process. Therefore, it is possible to run different application in the user space at the same 

time, moreover, drivers can be uploaded in the Kernel space. Thus, the visible difference 

of above-mentioned spaces can be specified as difference of applications’ format, space 

for the process and memory indication. This chapter investigates user space application 

design flow, as figure 29 describes perfectly: 

 

Figure 29. System Development Flow [21, p. 44] 

 

 

As above figure illustrates, design flow for both user space applications and drivers 

(modules) in case of FPGA design is almost the same, except for the device tree 

generation for drivers which is not a part of user space application design sequence. Thus, 

it was needed to write VHDL/VeriLog code and design Qsys system if this project 
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requires to have physical access to FPGA. Otherwise, the project on the target embedded 

board using DS-5 (ARM Development Studio) could be tried, which is described in this 

chapter. In other words, if the project does not contain complexity (such as study projects 

or some professional ones that are being designed for simple purposes, for instance the 

Flash writing/reading application), the author could handle the situation only by writing 

code for DS-5 and examining the project on the board with Target Remote System if and 

if the project would not require any hardware design such as inserting, removing or any 

kind of components modification.  

The author analyzed writing/reading from/to flash program as a user space application 

that does not require any Qsys manipulation, then investigated communicating via FIFO 

blocks, as an application that needs Qsys design, and inserted FIFO blocks as hardware 

components. Here is an overview on the board flash device: SoC Kit is equipped by a 

512M-bit serial NOR flash device which is used for non-volatile HPS information such 

as Preloader image which is being used in U-Boot step of the design. Although the 

manufacturer has provided an access to the flash device using Quartus programmer, it is 

required to write C code in order to write to and read from the device. As it has been 

shown in figure 14, the flash device is connected to HPs side and “the HPS flash 

programmer sends file contents via USB Blaster II, to the HPS, and instructs the HPS to 

write the data to the flash memory” [13, p. 42]. 

 

 

             Figure 30. Flash Device Connections with SoC FPG [13, p. 42] 

 

 

The reason that the author chose this flash program is to remind U-Boot process and 

emphasize on the importance of the non-volatile data structure type. Xiphera uses this 
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program to store a unique ID generated by its IP block in FPGA side. Due to the structure 

type of the flash device, data remains when the SoC FPGA is powered off or reset, and 

can be used for the repeating boot or other necessary applications.  

Initially, it is important to understand the concept of Memory Technology Device (MTD) 

which is different from other memory storage devices such as SD Card, hard disc or flash 

disc. Basically, MTDs are NAND/NOR flash memory devices which are utilized for 

keeping non/volatile data like boot image or configuration. Although, hard discs are used 

for data storage but there are two differences between MTDs and the other data storage 

devices. First, MTD needs to be erased before re-writing any data, which is the key 

variation and requires to be considered when developers write the code to access to the 

MTD. Second, MTDs have limited range of erasing operation (1000 – 10000 times) [22] 

which makes them not good erase-block. 

MTDs can be partitioned in Linux and can be reached by running “cat proc/mtd” which 

is being demonstrated in below figures:  

 

                      Figure 31. Access to MTD from Terminal Window                       

 

 

 

 

 

 

 

 

 

           Figure 32. MTD Partitions  [22] 
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Figure 33. Flash Memory Partitioning 

 

 

After demonstrating MTDs general structure, it is possible to focus on the design and C 

code to finalize the task about flash program. As it has been specified in this chapter, the 

data storage structure requires erasing before writing, which is considered here. The code 

general structure can be summarized as: 

1-  inserting an additional header file to control the MTD: “# include <mtd/mtd-

user.h>” 

2- Accessing the device from user space, as was operated there, and opening the 

device for reading and writing: “mtd-info-t mtd-info” , “int fd = 

open(“dev/mtd0” , ORDWR)” 

3-  Data erase structure including getting device info, setting erase block size and 

erasing indicated block by following respectively: “erase-info-t ei” , “ioctl 

(fd , MEMGETINFO , &mtd-info)” , “ei.length = mtd-info.erasesize” 

and finally for the specified boundaries erasing operation: “ioctl (fd , 

MEMERASE , &ei)”  

4- Reading from writing to the device: “read (fd, read-buffer, sizeof(read-

buf))” , “write (fd, data, sizeof(data))”. Unsigned char characters “read-

buffer” and “data”, which have been defined by the coder/author, include an 

empty sector and data, that requires to be written to the MTD accordingly. 

5- Finally, the MTD needed to be closed by “close (fd)”  

 

Then, the code should be tested to see if works as expected. To examine the code, it is 

needed to set DS-5 properly to have access to the SoC Kit. At the first chapter of this 
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section, it was described how to install DS-5 and open it from embedded Command Shell 

and run essential codes. 

 Now it is explained how to debug a written code by using Remote Target System: 

1- Opening Eclipse and then from main menu window → show view → other → 

expand Remote Systems folder, choosing Remote System. After that, a new 

connection by clicking the New Connection button, shown on below picture, 

needs to be created. 

 

Figure 34. Creating a New Connection from RTS                                        

Selecting SSH only →  Next →, then putting the target's IP address1  in the Host name field, while using 

SoCKit as the Connection name and clicking Next →  

  

 

Figure 35. Configuration of RTS IP Address 

                                                

 
1 To get the IP address of the board: Boot the Linux on it by opening a communication window in a terminal 

window: “sudo screen /dev/ttyUSB0 115200” and switch on the board to boot Linux on it. It may 

ask for login password, give “root” to get in, then “ifconfig” to get the board IP address. 

 

 



55 

                                    

 

2- Checking “ssh.files” then clicking the “Finish” button. If “Next” is clicked instead 

of “Finish”, the rest of the default settings would be: “processes.shell.linux”, 

“ssh.shells”, and “ssh.terminals”. 

3- Browsing the target's file system; Expanding “SoCKit” → “Sftp files” → “Root”. 

If the connection has “Files” instead of “Sftp Files” option, then the connection 

was not created correctly, and it is needed to disconnect, delete it and recreate it 

again. 

4- Entering User ID=root, leaving the password blank; checking Save user ID and 

clicking the OK button. There will be a few authentication dialogs; accepting them 

all. A remote connection with the board is created. 

 

5- To debug the project using newly established RTS, from Eclipse main menu, 

→debug configurations → DS-5 debugger should be run: 

 

      

Figure 36. DS-5 Debugger Menu 

 

  

6- Clicking on new (top-right corner of the menu) to open the debug configuration 

management window and giving the same name with the project and choosing 
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Download and debug application under Connections via gdbserver1 in connection 

view: 

 

       

Figure 37. DS-5 Debugger Configuration Menu 

                        

In File view, assigning a directory for host machine to download (workspace is 

recommended →flash → debug →flash). “flash” is my program name. 

7- In the same view, choosing target download and working directory 

(/home/root/flash for both of them in this case) and then selecting flash.o (object 

file) to load symbols from file option from workspace →flash→debug →flash.o 

and finally press apply and then debugging to open the DS-5 debugger view: 

                                                

 

1 gdbserver is a computer program that makes it possible to remotely debug other programs running on the 

same system as the program to be debugged and allows the GNU Debugger to connect from another system 

to the target board [1]. 

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/GNU_Debugger
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Figure 38. DS-5 Debugger View 

                                    

 
After setting up RTS, it is easy to debug the code to find problems, trace them and solve. 

DS-5 debugger is similar to ARM Cortex one which is used in TUT embedded courses 

and has a very convenient user interface which needs to be explored by spending short 

time. It is required to switch off the board, turn it on again, boot Linux1, enter the Linux 

and get the board’s IP address to connect again to the host computer and finally read the 

content of the flash. If the read data is the same as it was written there a few minutes 

before, then it is possible to make sure that the duty is done and there is a program to 

write/read to/from the flash device. 

 

It was explained that the SoC FPGA board’s bridges’ features before in chapter 3.2 and 

indicated that the Lightweight HPs to FPGA bridge data transmission is limited by 32 

Bits, while other two bridges have 64 and 128 Bits interface options additionally. These 

mentioned features are considerably important, hence, they are analyzed and discussed in 

the next program. Depending on the application, only the LW bridge or all of them can 

be used. For instance, the XOR driver project, in FPGA design part, does not need so 

                                                

 

1 There is a default hardware setting with required files (GHRD) and Linux image generated on the base of 

these default configurations, which comes with the SoC development board from manufacturer. This Linux 

image contains all essential items for booting that can be copied on the SD Card and used to discover 

board’s features by beginners. Own Linux distribution would be created by the end of this article and 

replace the initial one. 
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much data transmission between HPS and FPGA side as it is only LEDs manipulation 

project to examine the board property. However, sometimes a more complicated FPGA 

design is needed, which requires data transmission range more than LW bridge can 

provide. So, it is needed to utilize the other two bridges.  

Different from the flash program, FIFO project requires Qsys design which includes 

creating one FIFO block for writing and another for reading, as the project could be called 

full communication between FPGA and HPS. In this example, HPS to FPGA FIFO block 

receives data which is waiting in FIFO block, then FIFO block reads this data to a buffer 

and sets a ready flag. Afterward, this data has been written to FPGA to HPS FIFO block 

and the ready flag can be cleared now. Figures 39 and 40 are showing Qsys design and 

FIFO block interface respectively:  

 

 

Figure 39. Full FIFO communication Qsys Design 

                                                     

 

Bridges’ interfaces have been shown before and in figure 40 only FIFO’s interface is 

demonstrating. An Avalon-MM write master pushes data into FIFO and the read master 

pops it from FIFO’s output port [23]. 
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        Figure 40. FIFO Interface [24, p. 2] 

 

More detailed coding in XOR chapter will be shown and some points of the application 

just need to be mentioned here. It is needed to specify exact base address for both bridges 

and indicate the size of memory which will be occupied. Then opening the memory 

device, sending data to FIFO and reading them back. The general structure of the code is 

similar to the flash program code with only difference in code lines, as the target devices 

are different.  

 

4.5 XOR Driver Development 

 

XOR driver development is a part of Xiphera’s IP block design process and tries to 

provide the most efficient representation of the whole design flow. As it has been 

described widely in previous chapters, driver development for embedded requires Linux 

customization combining with FPGA design and HPS user space applications. These 

development steps are related to each other and must be done in a correct order. Each step 

includes generating/obtaining source codes and organizing them to arrange correct 

configurations. The whole process is divided into 3 different sections, which require a 

team of experts. Xiphera as a start-up company planned to verify the whole process by 

the most efficient method to avoid excess financial and human recourses. The final 

purpose of this project has been defined as verifying hardware/software component in the 

most efficient way which is one of critical issues for start-up environments. 
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In the other words, developing more complicated drivers for SoC Kit (such as FIFO driver 

development to design a full-length communication between FPGA and HPS using all 3 

bridges which is ongoing) requires a more complicated Qsys design, Xiphera’s own 

definition for SoC Kit’s pins assignment and Xiphera’s specific device tree. Developing 

a pin map for SoC Kit without its peripherals (such as USB, UART and VGA connections 

and LCD) can be used for other FPGA (and not only SoC Kit). This pin map would be 

developer company’s specific design and boost the company’s reputation.  However, 

developing such a pin map would take a longer period of time and requires a team work 

to divide definitions of pins to finalize the assignment in efficient way. Similarly, 

generating respective device tree can optimize FPGA design work time and developers 

can easily insert their new components to the device tree for different FPGSs. All 

mentioned items are only FPGA related issues and combining these designs with the 

Toolchain and Kernel source code must be considered before FPGA design. The 

Toolchain and the Kernel source codes either must be written by Xiphera or obtained 

from Altera open source data base. Most developers and start-up companies prefer to 

utilize free Toolchain and Kernel sources, however, this issue challenges their FPGA 

design; because all necessary versions of these sources are not available. Developing and 

obtaining these items take a long time and needs a greater team of experts, while the 

purpose of XOR project is verifying hardware/software component for Xiphera’s Linux 

distribution in the fastest possible way. Therefore, a simple representation of the whole 

design flow is organized to observe the result as soon as possible. Different aspects of 

embedded Linux driver development and its sequences have been discussed in general. 

The purpose of the project and the reason to optimize existing resources to achieve to the 

final goal was explained. Now it is time to concentrate on actual purpose for this project 

which is XOR driver development flow. 

Similar to all Linux embedded projects, XOR has three different design steps:  

1- Qsys design for FPGA side which is at the same time a pre-request design for the 

device tree and Linux distribution generating. This part of design requires Quartus 

platform, our host machine and the target board.  

2- Linux distribution obtaining and configuration which needs to be generated in the 

host computer and be tested on the board to observe if the recently created Linux 

boots without problem.  
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3- The last step of the XOR driver development is composing code for driver itself 

which can be done using C code and insert to the newly generated Linux from 

host machine and finally be examined on the board. 

At the end of each part of the design I needed to test the obtained results in order to 

solve probable problems before continuing to the other part. All three parts have been 

considered in different chapters, and now I am going to combine all previous 

described information together and do a practical experiment. Please note that the 

purpose of this project is verifying the board functionalities such as booting, hardware 

component and LW bridge interface. This validation will be exposed on four LEDs 

in FPGA side which can be controlled from Quartus, HPS side using DS-5 as well as 

from Linux terminal window utilizing the produced driver. As it has been mentioned 

before, XOR uses LW bridge AXI interface and takes an input value in the range of 

1 – 255, changes this value to a HEX number, executes XOR operation between lower 

and higher nibbles of this HEX integer and finally sends the result down to the FPGA 

side LEDs. For instance, if one gives the input value of 100 from either DS-5 debugger 

argument page or a terminal window, which is connected to the board with any screen 

program, XOR converts it to 64 HEX-decimal integer and then execute XOR 

operation between 4 (0100) and 6 (0110) = 0010 and send the result to the FPGA’s 

LEDs and by the exposing result, the second LED will be turned on. 

A general view of the project, by obtaining the purpose and functionality of it, has 

been provided. Now, it is beneficial to continue step by step. Qsys design flow and its 

necessity for device tree were explained in chapter 4.2. I inserted the customized 

component which is called xiphera_test_block to the already existing GHRD Qsys 

design and appended essential code line to .tcl file then generated VHDL code. 

Eventually, requiring connections were added to the recently inserted component and 

finished Qsys design. When a new component is meant to be added to the Qsys design, 

from configuration menu of the new component, it is needed to add VHDL/VeriLog 

code which in this case it was two VHDL files; one for xiphera IP block and the other 

one for Avalon interface. Before synthesis in Quartus, it is needed to add 

xiphera_test_block to the top level VHDL code instead of old component name which 

in this case it was LED_PIO not forgetting to run tcl script file before full synthesis. 

If directive is followed step by step,.sof file would be achieved which can be 

converted to .rbf file using Quartus file converter. 
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The second part of the design is C code developing to try the FPGA design using DS-

5 platform. This part is a user space application project, but the necessity of this 

section is understood when the driver’s code would be written. I needed to create a 

new project in DS-5 and added the C code then built the project to generate executable 

file and connected to the target board using RTS to debug it.  

Now, the C code, which is a step toward the final C code of driver, needs to be 

analysed. 

 The code can be summarized as: 

1- Header files, specifying memory space and the base address which has been 

illustrated in figure 41: “ 

#define PAGE_SIZE 409600 

#define LWHPS2FPGA_BRIDGE_BASE 0xff200000 

#define xiphera_test_block_OFFSET 0x0”, variables definitions, indicating input 

value boundaries (1 and 255) 

2-  Opening the memory device file with fd: “ 

fd = open ("/dev/mem", ORDWR|O_SYNC); ” and mapping LW HPS to FPGA 

bridge into process memory with mmap: “ 

bridge_map = mmap(NULL, PAGE_SIZE, PROT_READ|PROT_WRITE, 

MAP_SHARED, fd ,LWHPS2FPGA_BRIDGE_BASE); ” 

3- Getting the designed peripheral’s (xiphera_test_block) base address which is 00 

in my case: “ 

xiphera_test_block_mem = (unsigned char *) (bridge_map + BLINK_OFFSET) 

; ”, write the input value into ” xiphera_test_block_mem” and close the file device by 

“close (fd)”. 



63 

 

Figure 41. Cyclone V SoC HPs Memory Map [19, p. 55] 

 

The code can be debugged to find solutions for possible problems, and if everything 

works properly, then it is possible to continue with Linux distribution development part, 

which has been already explained. To sum up, Quartus design, C code of user application 

and customized Linux on the base of the Qsys design and device tree manipulations, have 

been developed. Now, there remains only driver codes, Linux configuration to compile 

the driver and finally, gather everything together, transfer to a SD Card and try on the 

board. 

The general structure of my driver C code can be summarized as: 

1- Inserting header files: depending on the expected functionalities and aim of 

the driver, header files needed to be added. Developing of the algorithm of the 

driver design flow was one of the author’s crucial tasks during this project. 

Having an algorithm design was helpful to find software requirements of the 

driver. XOR driver needs to take an input value from user space and map this 

value into the process memory and finally shows the value using FPGA’s 

LEDs. As it is understood from the algorithm, XOR driver requires including 

“<linux/uaccess.h>” to access user space and copy the input value into the 
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allocated memory. XOR also needed inserting “<linux/ioport.h> and 

<linux/io.h>” to manipulate FPGA’s LEDs. Including “<linux/init.h>, 

<linux/module.h>, <linux/kernel.h> and <linux/device.h>”, 

provides essential prototypes for initializing/exiting, inserting/removing XOR 

driver to the Kernel and functions such as “*drv” (driver)/“*buf” (buffer). In 

order to define functions such as containing the input value, which is taken 

from user space, and writing this value into the memory, XOR uses 

“<linux/platform_device.h>”. Finally, XOR needs communicating 

between user and the Kernel spaces which should be handled in file system 

format as a requirement of Linux Kernel design. “<linux/kobjects.h> and 

<linux/sysfs.h>” header files include attributer functions such as 

“DRIVER_ATTR show and store”. These header files create a directory in 

“/sys/bus/platform/drivers/xiphera_test_block” of  SoC Kit root and an entry 

point in this directory. This directory and its entry point are used to 

communicate with XOR driver which is in the Kernel space. Users can enter 

an input value between 1 – 255 from the terminal window, which is used to 

insert XOR driver to the Kernel. As it has been described initially, users 

operate in user space and need to send the input value to the entry point of the 

specified root directory of SoC Kit Kernel space. 

2- Defining the inserted component address base which has been declared in SoC 

Kit data sheet and can be obtained from Qsys design. This memory space has 

been allocated on the base of LWbridge interface which has been used for this 

project. 400 KB of the memory span was defined for XOR to be mapped: “ 

#define xiphera_test_block_BASE 0xff200000 

#define xiphera_test_block_SIZE PAGE_SIZE 

#define PAGE_SIZE 409600”, 

Informing the Kernel about the device tree which is being used by XOR driver and linking 

essential functions with XOR with following data structure: “ 

MODULE_DEVICE_TABLE(of, xiphera_test_block_dt_ids); 

static struct platform_driver xiphera_test_block = { 



65 

    .probe = xiphera_test_block_probe, 

    .driver = { 

        .name = "xiphera_test_block", 

        .owner = THIS_MODULE, 

        .of_match_table = xiphera_test_block_dt_ids 

    } 

};”,  

declaring “driver_attribute” which is the Kernel’s sysfile structure [25] and finally 

registering the driver, specifying license and inserting initialize and exit lines1. 

3- Creating directory and entry point of sysfs file and removing this 

configuration after exiting from driver: “ 

driver_create_file(&xiphera_test_block_driver, 

&driver_attr_xiphera_test_block);  

driver_remove_file(&xiphera_test_block_driver, 

&driver_attr_xiphera_test_block);”. 

 

4- Accessing to I/O memory: “  

res = request_mem_region(xiphera_test_block_BASE, 

xiphera_test_block_SIZE, "xiphera_test_block"); 

if (res == NULL) {  

driver_unregister(&xiphera_test_block_driver); 

                                                

 

1 It is highly recommended that driver writers refer to Linux Device Drivers book as a really helpful material 

in order to analyze module writing steps and techniques deeply and understand using of codes.  
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return -EBUSY; } ”, re-mapping the component’s address into processor memory 

with “ioremap” function (as it has been done in XOR user space application code with 

“mmap( PROT_READ|PROT_WRITE)”): “  

xiphera_test_block_mem=ioremap(xiphera_test_block_BASE, 

xiphera_test_block_SIZE); 

if (xiphera_test_block_mem == NULL) { 

release_mem_region(xiphera_test_block_BASE, 

xiphera_test_block_SIZE); 

return –EFAULT;}” and finally write the input value which is a single bit into 

“xiphera_test_block_mem”: “iowrite8(value, 

xiphera_test_block_mem);”. 

Then it is possible to setup required Kernel environment to compile XOR driver as it has 

been mentioned previously in Linux distribution development chapter. It is needed to run 

“export ARCH=arm” as this project aims to develop driver for ARM Cortex-9 processor 

of SoC Kit. In addition, I defined “export CROSS_COMPILE= …” which is path the 

Toolchain directory in my host computer to compile and generate executable file using 

already obtained Toolchain source. Moreover, “export OUT_DIR=…” was executed to 

set the Kernel source directory in the host machine in order to use the Kernel source code. 

Above mentioned lines of code required to be compiled either from Command Shell 

window or using a Makefile from the host machine to set variables properly and compile 

recently designed driver to insert it to the Kernel. XOR driver projects followed the first 

method (compiling variable configurations from Command Shell terminal) to keep the 

Makefile as simple as possible. 

The next step was creating the Makefile and a Kbuild file with below contents 

respectively: 

“KDIR ?=OUT_DIR 

default: 

$(MAKE) -C $(KDIR) ARCH=arm M=$$PWD” and 
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 “obj-m := xiphera_test_block.o”.  

Compiling these two files generates “.ko” file which is containing all configuration and 

codes of XOR driver. This “.ko” file would be uploaded into the SD Card and inserted to 

the Kernel running on SoC Kit target. Then “make” command was executed from the 

Embedded Command Shell window to generate “.ko” file in the indicated output 

directory. Generating this file took a longer while than usual time in my case because 

there were some error messages in my code which came up during compilation. All error 

messages were written from terminal window and modified in “xiphera_test_block.c” 

file. So every time I needed to verify my code it was essential that the code would be 

debugged and probable error messages get corrected. This process happens during the 

driver code debugging before inserting the driver to the Kernel. In case the Makefile 

compiling step would be passed without any error and the generated “.ko” file inserted to 

the Kernel, the actual debugging starts. XOR debugging took a few days as I needed to 

examine it on the board and found out its problem, modified occurred errors and re-

compile the Makefile again. The is a reasonable explanation for long while debugging 

period; As it has been mentioned previously, XOR project is a combination of Qsys 

design, Linux distribution development sequence and C code composing. These steps are 

linked together and must be followed in a correct order to obtain the final “.ko” file. When 

an error occurs, the developer has to debug all steps of background design flow. This 

background includes hardware configuration and verification which must be checked 

during development every step to avoid facing with possible problems. The hardware 

maintenance was simple part of the XOR driver project as SoC Kit was recently 

manufactured and tested. The most difficulty was software debugging process which 

contains different items. There were so many software related issues during this design 

period such as: 

 MSEL pin configuration as there are different set of configurations for various 

modes (such as FPGA running from Quartus, programming from HPS, etc.). 

During Kernel booting into SoC Kit, incorrect MSEL pin configuration caused a 

problem and board hung. There were problems with USB cables which 

sometimes were stoping the design process. SD Card partitioning was another 

critical problem which required formatting and re-partitioning again. 
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 Qsys design related errors such as ignoring to run “.tcl” file before full synthesis 

in Quartus. This mistake causes problem with the device tree and prevent 

developer to add the pin assignment properly, consequently compile the device 

tree correctly. The other issue was adding customized hardware component to the 

device tree before generating VHDL during final step of Qsys design. If these 

issues would be ignored, driver developer has to start Qsys design from beginning 

which happened two times in XOR project. 

 Linux related problems such the Kernel source code obtaining and its existing 

versions as well as the Toolchain code. In case other dominant items would be 

verified, there is no doubt except the available Kernel source code and its version 

if is matched with the Linux version on developer’s host machine.  

 C code modification which is required to be done every time before compiling 

the Makefile. 

 

The final step of XOR project was transferring generated files to a SD Card which 

required to be partitioned by following steps: 

1- Inserting the SD Card (at least 1 GB memory space is required as the created 

Linux image file and other essential files occupy more than 512 MB) and 

mounting it1. 

2- Executing “sudo fdisk /dev/sdb” (/dev/sdb is the SD Card directory in my 

host computer and can be obtained by “lsblk”) gives instruction to specify 

partitions’ size and type. 

3- Creating 3 partitions with 1, 254 and 256 MB sizes and unknown, Linux and 

FAT32 types respectively. (“n” for new partition, “t” for type specification and 

“w” to save configurations). 

4- Running “sudo partprobe /dev/sdb” to aware the host Kernel about changes 

which have happened. 

5- Creating file systems for the second and third partitions as the first one is a raw 

file type. “sudo mkfs.ext4 /dev/sdbp2” and “sudo mkfs –t vfat 

                                                

 

1 “sudo mount /dev/sdb” sdb is my SD Card name which can be shown by running “lsblk”. 
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/dev/sdbp3” and then creating mount points for these partitions: “mkdir 

sdbp2_mount 

sudo mount /dev/sdbp2 sdbp2_mount/” and “ 

mkdir sdbp3_mount 

sudo mount /dev/sdbp3 sdbp3_mount/”. 

6- Copying “preloader-mkpimage.bin” file directly into the first partition (using 

“sudo dd if=… of=…”) and then executing “sync” to do physical copy operation. 

7- Running 

 “sudo cp …/u-boot.img …/u-boot.scr soc_system.dtb1 soc_system.rbf2 

…/zImage3 sdbp3_mount/” and then “sync” to copy booting files and the Kernel 

image to the FAT partition of the SD Card. 

8- Running “sudo tar -xvf …/rootfs.tar -C sdbp2_mount/” and then “sync” 

to extract required files into the second partition of the SD Card. 

9- Copying “.ko” file to the second partition:  

“sudo cp xiphera_test_block.ko sdbp2_mount/” and then “sync”. 

10- Un-mounting the second and third partitions: “ 

sudo umount sdbp2_mount/ 

sudo umount sdbp2_mount/” and removing the SD Card and insert it to the 

board. 

Now it is time to boot Xiphera’s own Linux on the board. After booting XOR driver can 

be initialized by running “insmod xiphera_test_block.ko”. The driver can be checked 

by giving an input value:  

“ 

                                                

 

1 The device tree bulb, which is generated by device tree when the FPGA design is finished. 

2 The output file of Quartus file converter, which has been converted from .sof as Qsys design result. 

3 Linux image file, which has been generated in Linux distribution development section. 
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echo “30” 

/sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block” 

As it has been indicated before, the HEX representation of 30 is 1E with 0001 higher and 

1110 lower nippers and XOR operation gives the 1111 result, which switches all FPGA’s 

LEDs on for SoC Kit. (“rmmod xiphera_test_block.ko” is using to unload the driver). 

Figures 42, 43 and 44 are demonstrating the Makefile compilation and copying 

“xiphera_test_block.ko” file to the SD Card, “xiphera_test_block” driver initializing and 

verifying the XOR operation using this driver respectively: 

 

Figure 42. Makefile compilation and transferring to the SD Card 
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Figure 43. XOR driver initializing 

 

Figure 44. Communicating with driver and executing XOR operation                                      

The design flow was finalized, as XOR driver has been checked. The development and 

the obtained result were confirmed, which was the purpose of this project. The same result 

had been observed previously in Quartus design and user application processes.  
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5 Summary 

 

Linux driver development for SoC FPGA requires deep knowledge of Linux 

programming, driver development flow and SoC FPGA design sequence. Mastering in 

these different fields needs years of experience while beginner developers who try to run 

their desired Linux driver need a simple and at the same time a comprehensive guide of 

whole process. This research pursued the fact of simplicity and practical guidance to 

provide a clear instruction of Linux driver development. It started with importance of 

customized Linux and its freedom and flexibility. In the second part, hardware component 

has been described and finally at the last section, Linux distribution obtaining has been 

explained.  

All embedded designs require five elements of Toolchain, Bootloader, Kernel, Root 

filesystem and applications which have been analysed step by step. FPGA Qsys design 

which is pre-request of the device tree generation and the second item of mentioned 

sequence, has been described separately. DS-5 platform installation and user space 

applications has been considered with examples. Finally, I described how to design and 

compile XOR driver which is a part of Xiphera encrypting Ip block project. The purpose 

of XOR driver development project was verifying hardware/software component for SoC 

Kit in efficient way, which required a simple driver representation of whole design 

process. The aim of the project has been realized as the author could design and check 

XOR driver on the board successfully.  
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