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1 Introduction

The enhancement of microscope images is increasingly important in many fields. High resolution im-

ages are required for distinguishing intricacies of small cells in a sample. For example, Laasmaa et al.

(2023) used high-resolution imaging techniques to study mouse cardiomyocytes. Microscopes are

useful tools in multiple different fields, not just biology. Microscopes are used in fields like forensic

research, medical fields and industrial fields.

Conventional light microscopes have a hard limit on their usefulness in many fields. The resolution

acquired using a conventional light microscope is restricted by the resolution limit described by Ernst

Abbe in 1873 (Abbe, 1873). Super-resolution techniques pass this resolution limit and allow for high

resolution microscope images. The first concepts of techniques to surpass the Abbe resolution limit

for far-field microscopy surfaced in the early 1990-s (Prakash et al., 2022). Ever since, numerous

different techniques have been developed to resolve images in the nanoscale, these methods are

called super-resolution methods. Super-resolution techniques use the independent behavior of flu-

orescent probes to overcome the diffraction limit (Fazel et al., 2022). Single-molecule localization

techniques are one of the most popular super-resolution techniques. This is because they can be

used with low-cost setups (Schermelleh et al., 2019). These techniques all use the stochastic ”ON” -

”OFF” switching of fluorescent molecules (Fazel et al., 2022).

In this work, a Bayesian approach is developed to localize fluorescent molecules (emitters) on syn-

thetic single-molecule localization microscopy technique images. The Bayesian approach involves

using Bayesian statistics to infer the emitter positions. The Bayesian approach differs from the ”tra-

ditional” frequentist approach by the interpretation of uncertainty. The Bayesian approach uses prior

information for the analysis, while the frequentist approach works only with the information from

the data (Fornacon-Wood et al., 2022). Previous works have used a Bayesian approach in a method

to localize emitters using grouping of localizations (Fazel et al., 2022).

The aim of this work is to develop a Bayesian approach to solve the problem of localizing emitter

positions on microscope images and determine, whether the developed algorithm can resolve emit-

ter positons better than the frequentist approach. For the comparison of frequentist inference and

Bayesian inference, the Bayesian inference and frequentist inference are implemented. The models

are tested on synthetic images generated using a stochastic image model. The images contain pho-

tons of a randomly placed emitter, the number of emitted photons is varied and images with noise

are also included in the test data.
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2 Overview of literature

2.1 Image formation in microscopy

In microscopy, light diffracts from the observed object and interferes with the undisturbed direct

light. The resulting diffracted light is then captured by the objective lens of themicroscope and forms

an image (Rudi Rottenfusser et al., nd). The diffraction pattern emitted by a single point emitter is

called the point spread function (PSF). The PSF is seen as blurry diffraction patterns that describe

the blur of the optical system (Cheng, 2006). The formation of an image from a microscope can

be defined using the PSF. Mathematically, the observed image could be viewed as a convolution

operation between the viewed object and the PSF, with the existing noise (Cheng, 2006). The model

for image formulation is the following:

i = P(o⊗ h), (1)

whereP is Poisson noise originating from photon counting, o is the observed object and h is the PSF.

⊗marks the convolution operation.

Images can be improved mathematically or experimentally using different imaging techniques. The

mathematical approach is called deconvolution. Deconvolution aims to enhance image resolution

by de-noising the convolved image (equation 1), using knowledge on the nature of noise (Laasmaa

et al., 2011). The most substantial aberrations or noise result from the imaging system itself. This

includes the optics of the microscope (Dey et al., 2006). As previously mentioned, noise also results

from photon counting, which occurs when a detector is used to image the object using a microscope

(Laasmaa et al., 2011). Deconvolution is able to greatly enhance microscope images, but is still re-

stricted by the resolution limit, due to it being a post-processing method. This is because the optics

used image the object are diffraction-limited (Dey et al., 2006). On the other hand, experimental

methods, such as super-resolution methods are able to overcome the diffraction limit.

The resolution limit for light microscopy or optical microscopy is said to be constrained by the Abbe

resolution limit. This spatial resolution is around half the wavelength of visible light∼ 200 nanome-

ters. Super-resolution microscopy techniques get past this limit and allow us to accomplish spatial

resolutions in the range of 1 to 100 nanometers. (Nienhaus and Nienhaus, 2016). This means that it

is possible to potentially improve light microscopy images 200 times. The techniques used in super-

resolution microscopy allow us to image cellular structures with the same level of detail as with

electron microscopy (Schermelleh et al., 2019). The development of super-resolution techniques

was also awarded with a Nobel Prize in Chemistry in 2014 to Eric Betzig, Stefan Hell, and William E.

Moerner (Nienhaus and Nienhaus, 2016; Moerner, 2015; Betzig, 2015; Hell, 2015; Nienhaus, 2008).

As deconvolution aims to reverse the effects of blur on the image, super-resolutionmethods attempt

to construct a higher resolution image from observations with low resolution (Laasmaa et al., 2011;

Maral, 2022).
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2.2 Super-resolution microscopy

Super-resolution microscopy is able to overcome the Abbe resolution limit of conventional light mi-

croscopy by using techniques that allow higher resolution. Though the topic of super-resolution is

still quite new, many techniques have been developed. Prakash et al. (2022) has brought up three

major super-resolutionmicroscopy techniques. The techniques have been applied towide-field, total

internal reflection and confocal microscope setups (Schermelleh et al., 2019). These techniques are

stimulated emission depletion (STED), structured illumination microscopy (SIM) and single-molecule

localizationmicroscopy (SMLM) (Prakash et al., 2022). Furthermore, other methods exist – for exam-

ple ground state depletion microscopy (GSD) and the Zeiss Airyscan microscope. (Dixon et al., 2017;

Wu and Hammer, 2021)

The advantages of super-resolution microscopy originate from the nature of optical fluorescence

microscopy. For one, a clear advantage of fluorescence microscopy is that it allows us to perform

experiments on live specimens for an extended amount of time. This, with the added resolution

lets us to look at dynamics and structures on the molecular level even when using live specimens

(Nienhaus and Nienhaus, 2016). Another advantage is that super-resolution microscopy techniques

maintain the advantage of sample preservation, similarly to optical fluorescence microscopy. It also

allows to have target specifity, whichmeans that we are able to distinguish between different targets

(Schermelleh et al., 2019).

One of the more important disadvantages of super-resolution micrsoscopy is difficulty of labelling of

the structures in the specimen. It is important to carefully choose the correct markers for labelling

of the molecules of interest for a successful experiment. Moreover, modern microscopes generate

enormous amounts of data that, when analysed, require a lot of computational power as well as

storage space (Nienhaus and Nienhaus, 2016).

Even considering the mentioned downsides to super-resolution techniques, the techniques could

provide effective and easy acquisition of data with high resolution. It is likely that many of the limi-

tations of the mentioned techniques will be overcome in the near future.

2.3 Super-resolution methods

2.3.1 Stimulated emission depletion - STED

STED relies on the general principle of light-matter interaction. Thismeans that for this technique any

fluorescent marker, using a suitable light wavelength, can be used (Nienhaus and Nienhaus, 2016).

This technique utilizes non-linear exitation/emission, at the price of inaccurately counting fluores-

cent signals in different parts of the sample, to become diffraction-unlimited (Prakash et al., 2022).

This means that it overcomes the diffraction limit of light. In practice this technique can be applied

by overlaying the excitation beam with a depletion laser beam (Schermelleh et al., 2019). Using the

two beams, the fluorescent probes are first excited, then de-excited via stimulated emission. This

creates a doughnut-shaped focal intensity distribution, which is diffraction limited. But with high in-
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tensities the stimulated emission is saturated and all the fluorophores that are not in the center of

the doughnut-shape are in the off-state. The size of the effective excited area which in the center,

however, reaches subdiffracton values. The size also decreases with the intensity of the depletion

beam (Vicidomini et al., 2018).

Prakash et al. (2022) have composed the pros and cons of this technique. Firstly, the benefits include

lateral resolution increase for sparse or isolated structures. Another benefit is that nopost-processing

is not required. It also allows for variable resolution increase and high penetration depth. The main

limitations include low dynamic range, sensitivity to out-of-focus background, or noise, which is not

great for dense 3D features. Another limitation is high power density, which leads to phototoxicity,

which means that the specimen gets damaged by the light. Another important limitation is that this

technique has low imaging speed per field-of-view (Prakash et al., 2022).

2.3.2 Structured illumination microscopy - SIM

Instead of using a point-like scanning pattern like STEDmicroscopy, this technique uses periodic lines

of excitation (Nienhaus and Nienhaus, 2016). The technique of SIM uses the widely known moiré

effect. This effect occurs when two fine patterns are laid on one another in a multiplicative manner.

As a result, moiré fringes or a beat pattern of periodic variation in amplitude occur. In SIM the two

patterns are unknown spatial distribution of the fluorescent dye and the purposely structured exci-

tation light (Gustafsson, 2000). Spatial resolution can be improved by creating a stack of images that

have been algorithmically decoded and reassembled in frequency space (Schermelleh et al., 2019).

Structured illumination microscopy techniques at best, double the spatial resolution in lateral and

axial directions, due to it being still fundamentally bound by laws of diffraction. This method effi-

ciently allows for photon detection because it relies on sensitive camera detection. This method is

also suitable for volumetric live-cell imaging (Schermelleh et al., 2019).

In practice, SIM could be applied by passing the illumination light of a microscope through a line-

patterned grating which is located at the secondary image plane of the microscope. This line grating

could be, for example, sinusoidal illumination patterns. The resulting patterns contain information

about the sample structure that is unobservable due to the diffraction limit (Gustafsson, 2000; Chen

et al., 2023).

2.3.3 Airyscan

Airyscan is a technique that uses a special detector array. The pinhole of the confocal microscope,

which is generally set to be the size of 1 Airy Unit, is replaced with a 32-channel Gallium Arsenide

Phosphide detector or GaAsP detector. The individual channels of the detector are arranged in a

circular disk. This array of detectors allows for optical sectioning in all 3 dimensions with 1 Airy Unit

resolution (Wu and Hammer, 2021). The Airy Unit is equivalent to the lateral point spread function

of a point emitter (Weisshart, 2014). The detector allows for a two fold improvement after a pro-
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cessing step in which each 32 individual elements are linearly deconvolved. This further enhances

the resolution in the axial and lateral directions (Wu and Hammer, 2021).

The detector works as follows. An image the size of 1.25 Airy units is projected onto the detector

using zoom optics. Each detector element acts as a small 0.2 Airy unit pinhole. With this setup, the

collection efficiency of a large pinhole is maintained and the resolution benefits of a small pinhole,

from using the multiple small detector elements, are acquired (Huff, 2015).

2.3.4 Single molecule localization microscopy - SMLM

SMLM is a termused formultiple super-resolutionmethods. Thesemethods achieve super-resolution

by individually localizing molecules (Lelek et al., 2021). The methods that fall under this term are

stochastic optical reconstruction microscopy (STORM), direct stochastic reconstruction microscopy

(dSTORM), photoactivation localization microscopy (PALM) as well as fluorescence photoactivation

localization microscopy (fPALM) and DNA-points accumulation for imaging in nanoscale topography

(DNA-PAINT) (Schermelleh et al., 2019).

Single molecule localization microscopy is based on the fact that single emitters can be localized

with high precision if emission light from different emitters do not ovelap. The overlapping of emit-

ter PSF-s is prevented by separating the distinct fluorescent emissions in time. This could be done

by employing the phenomenon of photoswitching. Photoswitching means that the molecules can

switch between an excited “ON”-state and an inactive “OFF”-state. The switching is most commonly

achieved by using lasers or by controlling the chemical environment, both can change the probabil-

ities of the stochastic switching events (Lelek et al., 2021). The key requirements for applying the

SMLM techniques are a powerful laser to activate only the molecules of interest, while photobleach-

ing or altering the fluorescence of other molecules, a high numerical aperture lens to collect photons

efficienly and high quantum efficiency and low noise detector (Ma et al., 2017).

The principle for single-molecule localization microscopy techniques is wide-field excitation of fluo-

rescent probes with temporal separation of stochastic emission (Prakash et al., 2022). The detection

is most commonly done using electron-multiplying charge coupled devices (EMCCD-s) and scientific

complementary metal-oxide-semiconductors (sCMOS). This is due to the cameras having relatively

high quantum efficiency and low noise, which are necessary for effective photon collection (Ma et al.,

2017). The advantages of single-molecule localizationmicroscopy are that it provides single-molecule

sensitivity, which means that the technique is able to detect single molecules in a sample, and an-

other advantage is that this techniquemost likely provides the highest potential resolution. Themore

prominent disadvantages are that it is very slow and that it over-represents sparse features in an im-

age and under-represents the very dense ones (Prakash et al., 2022).

The SMLM methods differ from each other by how the photoswitching is done and by the chosen

fluorophores (Lelek et al., 2021). The aforementioned STORM is a single molecule-localization tech-
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nique that requires the properties of the emission of the fluorescent labels to be controlled by the

light (Nienhaus and Nienhaus, 2016). The on-off switching is done here by the use of photoswitch-

ing of activator and reporter dye-pairs. This technique requires special buffer conditions to induce

the blinking of conventional dyes (Schermelleh et al., 2019). On the other hand, dSTORM uses con-

ventional fluorescent probes to transfer dyes to long-lived off-states, which are important for allow-

ing individual molecules to be imaged with high precision. This photoswitching is done using thiols

(Schermelleh et al., 2019). In simpler words, STORM achieves photoswitching with the use of an

activator-dye, and dSTORM without an activator-dye (Lelek et al., 2021).

PALM and fPALM both utilize labels or fluorescent dyes that can be photoswitched or activated

(Schermelleh et al., 2019). These methods differ from STORM and dSTORM because it does not use

activator-dyes or buffers. Instead these methods use different wavelengths of light, most commonly

UV-light, to excite fluorescent proteins (Lelek et al., 2021).

DNA-PAINT differs from STORMand PALMbecause it does not rely on the photoswitching of the dyes.

Instead, it uses dyes that can freely diffuse until they interact with the targets that we are interested

in. This could happen by either transient or temporary binding and permanent binding (Lelek et al.,

2021).

TheGSD technique uses a differentmethod to get past the diffraction limit of light. Themethodworks

by reducing the number of fluorophores, that are excited at the same time (Dixon et al., 2017). This

is achieved by exciting the labelled samples with a high energy laser, this way the probability of the

fluorophores entering a dark or “OFF”-state is greatly increased. This state is called the triplet state

(Dixon et al., 2017; Hell and Kroug, 1995). When many fluorescent labels enter the dark state, the

ground state or the bright state, where the emitters are “ON” gets depleted. Then it is possible to

localize single molecules (Dixon et al., 2017).

2.4 Localization of molecules

In this work, the main focus is on SMLM methods. Over the years, many different methods or al-

gorithms have been developed for localizing the emitters for SMLM techniques. The most widely

known are the nonlinear least squares estimation and the maximum likelihood estimation. Abraham

et al. (2009) has evaluated thesemethods. Both of thesemethods aim to solve parametric estimation

problems. The least squares method works by finding the model parameter values that produce the

least difference between the model and the observed data. The maximum likelihood estimation on

the other hand finds values for the model parameters that are most likely to produce the observed

data (Abraham et al., 2009).

A recently developed algorithm is the SNSMIL or Shot Noise based SingleMolecule Identification and

Localization. This algorithm demands the user to have a graphics processing unit (GPU), for real-time

molecule identification and localization. The algorithm itself is based on the intrinsic nature of noise

(Tang et al., 2015). The authors of the algorithm also introduced a new quality metric, for which
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the threshold can be chosen by the user. The authors concluded that their algorithm provides good

results even when the noise level of the image is very high (Tang et al., 2015).

Recently, Bayesian methods have been researched to precisely estimate emitter positions on super-

resolution images. These methods use Bayesian statistics to design models, which can accurately

localize the positions of the pointillistic emitters in SMLM. Fazel et al. (2022) introduced the Bayesian

Grouping of Localizations (BaGoL) algorithm, which uses the Reversible Jump Markov Chain Monte

Carlo (RJMCMC) methodology. This MCMC method allows the algorithm to estimate the number of

parameters of the model, as well as the parameters themselves, from the data. This is important

since their algorithm has a variable number of parameters, which is due to the number of emitters

being unknown. The first step to applying their model is to split the area of interest into subregions

with small overlaps, which is done to speed up the process of calculations. Secondly, the outliers or

emitters that are spaced too close to each other are removed. The third step involves the application

of the RJMCMC on the subregions, as a result, a single chain of data is acquired. The fourth step in

the algorithm is to generate the model with the most probable number of emitters and the poste-

rior probability results. The final step is to combine the results of the subregions to form one high

resolution image. The authors applied their algorithm on images created by using DNA-PAINT and

dSTORM methods as well as synthetic data and DNA origami constructs, and were able to produce

sub-nanometer precision with their approach (Fazel et al., 2022). A Bayesian method is also used in

(Jazani et al., 2019). The approach to which they have designed an alternative framework for is fluo-

rescence correlation spectroscopy (FCS). FCS is a similar approach to SMLM in the way that they both

can benefit from Bayesian statistics to deduce better results. In FCS the Bayesian approach allows

to achieve results fast without losing accuracy compared to other methods. Their approach aims to

capture processes faster and reduce photo-toxicity or cell death in live samples, which happens due

to long exposure duration. It is technique which is used to deduce physical quantities of interest,

such as diffusion (Jazani et al., 2019).

Overall, the Bayesian methods for molecule position determination is a potential candidate for fur-

ther development due to showing good results in fluorescence microscopy.

9



3 Methods

3.1 Bayesian modelling in Python

In thiswork, twodifferent approaches to localizing singlemolecules in synthetic images are presented

and evaluated.

Bayesian inference could be done in Python using a few different libraries. One of the most well-

known libraries is PyMC. This library allows users to easily build their Bayesian models and fit them

usingMarkov ChainMonte Carlo (MCMC)methods. PyMC is a probabilistic programming library with

tools to specify Bayesian models and inference (Abril-Pla et al., 2023). PyMC uses MCMC algorithms

like the No-U-Turn-Sampler (NUTS), which is an extention to the Hamiltonian Monte Carlo method,

that does not require the number of steps to be specified. The Hamiltonian Monte Carlo method it-

self is a MCMC method, that circumvents the random walk behavior (Hoffman et al., 2014; Abril-Pla

et al., 2023).

Another library that can be used for Bayesian model in Python is Stan. The specific library that could

be used in Python is PyStan. Similarly to PyMC, the NUTS sampler is available for use in Stan. The

syntax of Stan is similar to that of C++ (Carpenter et al., 2017).

The developed Bayesian inference BayesM was compared to a frequentist approach FreqM. FreqM

was also developed in Python.

3.2 Generation of synthetic data

The images used to test the models in this work are all generated using a stochastic image model

implemented in Python.

The PSF is defined with the following function:

F (X,Y ) =
1

σ ·
√
2π

· exp
(
−(X −X0)

2 + (Y − Y0)
2

2 · σ2

)
. (2)

The emitters are placed on the images in a randommanner. The locations for the emitters are gener-

ated using a random uniform distribution, which is bound by the boundary size of 5 times the width

of the PSF (equation 2). The emitter emits photons based on a random normal distribution. The

distribution is centered at the generated location of the emitter and has a spread equivalent to the

width of the PSF (equation 2). The background of the image is added using a random uniform dis-

tribution. The background is spread over the entire image. The information of the generated image

frame is saved, so are the original emitter locations.
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3.3 Bayesian model

The likelihood function of the BayesM model is defined as:

image ∼ Poisson(i, µ(X,Y )). (3)

The total intensity for an image can be found in the following way:

µ(X,Y ) = (µmol · F (X,Y ) + µbg)∆t, (4)

where µmol is the molecular brightness, X and Y are emitter center coordinates, F (X,Y ) is the PSF,

µbg is the brightness of the background, and∆t is the time step or frame time.

The function defined in equation 3 is used to model the likelihood of the observed data i given the

parameters of the model µ(X,Y ) (equation 4). In the case of BayesM the observed data is the in-

tensity values of the image and µ(X,Y ) is the total intensity found using the parameters that are

being optimized.

The priors are defined in the following manner. The prior for molecular brightness:

µmol ∼ Uniform(αmin, αmax). (5)

The priors for the emitter center coordinates are defined as:

X ∼ Normal(µx, σx), (6)

Y ∼ Normal(µy, σy), (7)

The prior for background brightness is defined as:

µbg ∼ Uniform(βmin, βmax). (8)

The prior for the width of the PSF is the following:

sigma ∼ LogNormal(µs, σs). (9)

The parameter values for the priors in equations 5, 6, 7, 8, and 9 are the following. αmin is set to

1× 103. αmax is set to 1× 107. µx and µy are obtained by finding the center of mass of the image.

sigmax and sigmay are equal to 20. βmin and βmax are 0 and 1 × 105 respectively. µs and σs are

3 and 1 respectively.

3.4 Frequentist approach

The FreqM used is a least squares model with a Gaussian function. The model aims to minimize the

following sum of residuals:

R =
n∑

i=0

((µmol · F (X,Y ) + µbg) ·∆t− intensity)2i , (10)
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where F is the PSF, defined by equation 2, and X and Y are the emitter center coordinates. Index n is

the number of emitters, µmol is the molecular brightness, µbg is the background brightness, and∆t

is the frame duration.

The initial conditions used for optimize the FreqMmodel, that minimizes the sum of residuals (equa-

tion 10) are the following. The initial condition for the amplitude or the molecular brightness is

found by dividing the maximum value of the image intensity by the time step or frame time. The

initial conditions for both coordinates are found using the same center of mass values used for the

BayesM model priors. The initial value for the width of the PSF is 20 pixels. Finally the initial value

for background brightness is estimated as the median value of the image.

3.5 Evaluation of models

For evaluating the models performance and comparing the results, different methods are used. The

error between original emitter locations and those found using a model could be found by:

E =
√

(orig −model)2, (11)

where orig are the original parameter values we would like to compare to the model resultsmodel.

3.5.1 The Bayesian inference model

The BayesM approach was implemeted as a set of scripts. The organization of files and data import

was performed by a single script. This script sorted the files in a natural order and presented the

executable file with the correct list of files to be sent to the model. The executable script loaded

the image data from the file and the information of the image was extracted using a function from

the same script that organizes the file order. The information of the current file is then sent by the

executable file to the PyMC model. The model performed 10000 warm-up steps and 4000 sampling

steps. The model had 4 chains. The summary of the execution of the model as well as the inference

data was acquired and saved. The original emitter center coordinates were saved. Altogether, the

BayesM implementation uses 3 different scripts written in the Python programming language: The

file organization script, the executable script and the model script.

3.5.2 Comparison of Bayesian inference libraries

For comparing the different libraries in Python, two different scripts were created and their execution

duration for performing Bayesian inference was timed. The model implemented in both libraries is

visualised in figure 1. Both the script using the Stan library and the script using the PyMC library were

executed at the same time. This was done five times and the results were saved. For comparison

of the libraries, two convergence diagnostics were taken into account. The first is the Rhat, which is

the most commonly used convergence diagnostic. The Rhat is the standard deviation found from all

the chains of the MCMC model included together, divided by the root mean square of the separate

standard deviations of the values within each separate chain. If the Rhat is one, the chains have all

converged. Another diagnostic is the effective sample size (ESS). ESS shows how many independent
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Figure 1: Model scheme for the BayesM. The top row of ovals indicate the priors for the parameters of the model. Bg

signifies the prior for background, sigma the prior for the width of the PSF, molecular_brightness the molecular brightness

and center_x and center_y signify the priors for the coordinates of the emitter center position. The rectangle around the

coordinates shows with a marked number how many emitters are on the image. Mu is the total intensity and it is deter-

mined from all the parameters of upmost row. The image is created from the total intensity using the Poisson distribution,

image is the observed data that the model is trying to explain. The rectangle aroundmu and image signifies that they have

the same dimensions, with the dimensions shown on the bottom right of the rectangle.

draws contain the same amount of information as the dependent sample acquired by the MCMC

algorithm. The larger the ESS, the better (Vehtari et al., 2021). Both the Rhat and the effective

sample size (ESS) were noted and compared between the different libraries.

3.5.3 The frequentist model

The FreqM implementation uses the same file organization script used for the BayesM implementa-

tion to sort the input files and extract the information from the read files. The vector of residuals is

found using a Gaussian function (equations 2 and 10) and the intensity of the image. The parame-

ters that were being optimized by the model were molecular brightness, background brightness, the

emitter center coordinates and the width of the PSF. Furthermore the modified Jacobian matrix is

extracted from the results to find the covariance matrix. This is done by approximating the Hessian

of the cost function.

3.5.4 Error and Kernel Density Estimates, visualisation of results

For the BayesM model results figures were created showing the results of the 4 different chains for

the emitter coordinate results. Additionally, the chains were visualised as a coordinate versus itera-

tion plot.

Student’s T-test and ANOVA was performed on the data. ANOVA was performed only on images

where the molecule had emitted 25 or more photons. For finding the errors for the BayesMmethod,
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the mean values of all 4 chains were used. The found errors between the model results and the orig-

inal values were visualised. The T-test results were visualised on the error figures using the following

levels: if the p-value is less that 0.001, the label is ”***”, if the p-value is less than 0.01, the label is

”**”, the corresponding p-value to label ”*” is less than 0.05. If p-value is greater than or equal to

0.05, the label is ”ns” or not significant. The significance level for ANOVA was 0.05.

The Kernel density estimate (KDE) was found for both BayesM and FreqM. For FreqM, finding the KDE

was less trivial. Since the results from themodel were singular values it was necessary to make a few

additional steps. The ”chains” for the data were simulated using a multivariate normal distribution.

Finally, the KDE was found using a Gaussian KDE function from. The results were visualised along

with the original emitter location for both sets of images.

3.6 Model usage

The BayesM and FreqMmodel scripts were both developed, tested and executed in the TalTech HPC

Center cluster. For running parallel jobs, slurm job array scripts were used. Using the cluster it was

possible to efficiently acquire the results for the images. 350 jobs were run using the slurm job array

and for each job (each image), 2 CPU-s were employed along with 6GB of memory.

3.7 Software

3.7.1 Packages used for Bayesian inference in Stan

The packages used for Bayesian inference in Stan include NumPy, which was used for finding the

maximum intensity coordinates of the image for the model priors. NumPy was also used to make

compatible data arrays from the input data for the model. PyStan was used to build and sample the

model. Arviz was used to create the summary of the model as well as create inference data of the

results, which could then be saved using the Python pickle module. Lastly, time module was used to

time the duration of the model for library comparison.

3.7.2 Packages used for Bayesian inference in PyMC

The BayesM consisted of three separate scripts. The file organization and data import script used

NumPy for array-related problems and for finding the maximum value of the image. The data import

part of the script used pickle for handling the files. Natsorted package was used to sort the filenames

in natural order. The centre of mass was found using SciPy center_ of_ mass function. Os module

was used to access files in the cluster directories.

The model script uses two Python packages: NumPy and PyMC. PyMC is used to visualise the model

using themodel_ to_ graphviz function and to define the model priors. NumPy was used to perform

the mathemathical operations in the model script.

The executable script was more complicated and used many different modules and packages. Date-

time and time were used to perform the naming of the data and the model execution timemeasure-
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ments respectively. Argparse and os were used in file name related problems and pickle was used

for saving the results of Bayesian inference. PyMC was used to perform Bayesian inference on the

data and Arviz was used to create a summary of the model as well as create the inference data of the

model results. Pytensor was used in slurm job array related problems.

3.7.3 Packages used for the frequentist approach

The FreqM script uses NumPy, pickle, datetime, os, argparse and center_ of_ mass similarly to the

BayesM scripts. Least squares is performed on the data using the SciPy function least_ squares.

3.7.4 Packages used for visualisation, statistical analysis

T-test was performed on the data using the ttest_ ind function from Scipy package. ANOVA was per-

formed using the statsmodels package. Visualisation of errors was done using the Seaborn package.

Additionally, Matplotlib was used to plot the T-test results and for changing the figure parameters.
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4 Results

4.1 Generation of images

350 images were generated using the image model. Each image had the dimensions of 100 x 100

pixels, the pixel size was 100 nanometers. The frame time was 0.001 seconds. Each image contained

a single emitter in a random location. The emitters were located at least 5 times the width of the

PSF (equation 2) away from the edges of the image. 50 images were generated for each number of

photons per emitter. 7 different number of photons per emitter were chosen: 10, 25, 50, 100, 500,

650, 1000.

Additionally, 350 images were generated which also contained photons in the background. For each

of these images, the number of photons in the background was 100 and they were uniformly dis-

tributed over the entire image. Figure 2 shows two examples of the generated images. Both images

on the figure have 100 emitted photons per emitter, Figure 2 B. contains noise – 100 uniformly dis-

tributed background photons. Altogether, 800 images were generated for BayesM and FreqMmodel

analysis.
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B

Figure 2: Synthetic images generated using the image model. A. An image with a single emitter that has emitted 100

photons. B. A single emitter with 100 emitted photons with added noise of 100 photons.

4.2 Comparison of Bayesian inference libraries

Two Python libraries, where Bayesian inference was possible to perform were tested. The two li-

braries were Stan and PyMC. From five runs of each Bayesian inference libraries: Stan and PyMC,

resulted, that the runtime for performing Bayesian inference in Stan was 266 ± 18 seconds on aver-

age, whereas when performing Bayesian inference in PyMC the average runtime was 94 ± 8 seconds.
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Figure 3: Trace plot for all chains for an image without added noise for BayesM results. A. and C. are plots for probability

density versus image coordinates. The colors on subfigures A and B help to differentiate the 4 chains of the model. Note

how the chains all follow the same curve approximately. B. and C. are plots for coordinate versus iterations or samples.

The values of coordinates are in pixels for all subfigures.

That makes the PyMC library about two times faster than the Stan library.

4.3 Results of Bayesian inference and comparisonwith frequentist approach

The accuracy of BayesM is inspected visually by viewing the probability density plots for all 4 chains.

Figures 3 and 4 show the probability density plots and the coordinate values versus iterations for an

image with 100 emitted photons per emitter and an image with 100 emitted photons per emitter

with an added uniformly distributed background of 100 photons respectively. From visual inspec-

tion, it is clear, that the densities of the chains are similar. The deviation of the calculations as seen

on figures 3 B and D and 4 B and D is approximately 1 pixel.

Figures 5 and 6 display the original image, the emitter position found by the model and the recon-

structed image side-by-side for BayesM. The same results for FreqM can be seen on figures 7 and

8 As seen from these figures, both models are able to determine the location of the emitter with

reasonable accuracy. The reconstructed images portray the emitter correctly, the shape is uniform

and round, when considering the two-dimensional images. The center appears the brightest and

intensity fades gradually towards the outside of the emitter.

Errors found using equation 11 in the case of emitter position coordinates are displayed on figures 9,

10. Additionally these results were composed into tables 1. and 2. The results indicate that BayesM

gradually surpasses the performance of FreqM, when images contain an emitter with 100 photons

per emitter or more. The FreqM approach shows better results when the number of photons per

emitter is small, this result is especially evident for 10 photons per emitter. In the case of images
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Figure 4: Trace plot for all chains for image with noise for BayesM results. The contents of the subfigures are as in Figure

3.

with no added background photons, the mean values for error are lower for both coordinate values

for the caseswith 25 andmore photons per emitter for BayesMmethod compared to FreqMmethod.

For images with 100 added background photons, the mean values of error of BayesM method are

lower than those of the FreqM method when considering images with 500 and more photons per

emitter. Both methods remain quite even in performance when the emitter has emitted 25, 50 and

100 photons for this case. These results are also indicated by the T-test results on the data. Though

there are some discrepancies between the two coordinate results, it is clear, that there are signifi-

cant differences between themeans of the results from FreqM and BayesM in the case of 10 emitted

photons per emitter. The results from ANOVA indicate, that the effect of number of photons on the

error shows significance for the generated images (p-value 0.004 for images with no noise, p-value

< 0.001 for images with noise). The effect of method on the error was found to be significant in

the case of no background noise (p-values < 0.001), when the image contained noise, the effect of

method on error was not significant (p-value 0.006). The interaction effect of method and number

of photons showed significance when the image had no noise and this was the opposite for the case

when the image contained background noise (p-value 0.005 for images with no noise and p-value 0.9

for images with noise).

The resulting errors of determining the width of the PSF with BayesM and FreqM are shown figures

11 and 12. It is apparent from both figures, that the BayesMmethod finds the width of the PSF more

accurately for both, images with no noise and images with 100 added background photons. There is

a noticeable difference between the results for images with no added background noise and images

with added noise. The errors for the BayesM method in the case of determining the PSF width are

much lower than those of the FreqM method. The results of T-test indicate significant differences

between the methods from 10 to 500 photons per emitter for images with no noise. When the emit-
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Figure 5: Localization accuracy for image with no noise (BayesM). Subfigure A displays the original generated image. The

red cross marks the original emitter location. B. Detected location of the emitter. C. Reconstructed image, red cross marks

the original emitter location. Subfigure B features a red arrow instead of a red cross for figure readability. The coordinate

values are in pixels.

ter has emitted 650 to 1000 photons, the significance is not that prominent, for 650 photons, the

difference is not significant. When the image contains background photons, there is a significance of

differences for the cases when the emitter has emitted 10, 25, 100, 1000 emitters. The significance is

more prominent for the case of 10 photons emitted per emitter. The ANOVA results indicated a sig-

nificance of the effect of method and number of photons on the error for the case of no background

noise and images with background noise (p-values < 0.001). Similarly, the interaction of method and

number of photons showed a significance for both types of images (p-value < 0.001).

The KDE results for BayesM and FreqM can be found on figures 13 and 14. From visual inspection of

the two figures, it is apparent, that for the selected images, BayesM more accurately estimates the

emitter location, compared to FreqM. BayesM appears to have a good performance in the terms of

bias and variance. The FreqM estimate is still quite near the original value, but is not as accurate as

BayesM.
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Figure 6: Localization accuracy for image with noise (BayesM). Same notation as in Figure 5 is used.
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Figure 7: Localization accuracy for image without added noise (FreqM). Same notation as in Figure 5 is used.

Table 1: Mean errors for imageswithout noise of Figure 9. All values inmicrometers. X and Y signify the x- and y-coordinates

of the emitter center coordinates.

Photons Bayesian X Bayesian Y Gaussian X Gaussian Y

10 2.6 ± 1.9 3.5 ± 1.6 0.08 ± 0.06 0.1 ± 0.08

25 0.05 ± 0.04 0.05 ± 0.03 0.07 ± 0.05 0.07 ± 0.07

50 0.03 ± 0.02 0.03 ± 0.03 0.05 ± 0.04 0.05 ± 0.04

100 0.02 ± 0.02 0.02 ± 0.02 0.03 ± 0.02 0.03 ± 0.02

500 0.009 ± 0.007 0.011 ± 0.009 0.013 ± 0.01 0.01 ± 0.01

650 0.008 ± 0.007 0.011 ± 0.006 0.01 ± 0.01 0.02 ± 0.01

1000 0.009 ± 0.006 0.008 ± 0.006 0.011 ± 0.008 0.01 ± 0.007
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Figure 8: Localization accuracy for image with noise (FreqM). Same notation as in Figure 5 is used.

Table 2: Mean errors for images with noise of Figure 10. All values are in micrometers. X and Y signify the x- and y-

coordinates of the emitter center coordinates.

Photons Bayesian X Bayesian Y Gaussian X Gaussian Y

10 1.8 ± 1.3 2 ± 1.4 0.1 ± 0.08 0.12 ± 0.09

25 0.06 ± 0.05 0.05 ± 0.04 0.06 ± 0.06 0.06 ± 0.07

50 0.04 ± 0.03 0.03 ± 0.02 0.04 ± 0.04 0.04 ± 0.03

100 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.03

500 0.008 ± 0.007 0.009 ± 0.007 0.013 ± 0.008 0.013 ± 0.009

650 0.009 ± 0.007 0.008 ± 0.007 0.012 ± 0.009 0.012 ± 0.01

1000 0.008 ± 0.006 0.007 ± 0.006 0.009 ± 0.007 0.011 ± 0.008
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Figure 9: Errors for emitter center coordinates for results of image without added background noise. Displayed on the

figure are T-test results performed to observe the significance of method on the error. See the results subsection for the

significance levels. Note how the error values decrease as the number of photons per emitter is increased.
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Figure 10: Errors for coordinates results of image with noise. Same notation as in Figure 9 is used.
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Figure 11: Errors for the width of the PSF for results of image without noise. T-test results are displayed at the top of this

figure. Note how the difference of errors between themethods has a slight decrease as the number of photons per emitter

is increased.
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Figure 12: Errors for the width of the PSF for results of image with noise. Same notation as in Figure 11 is used.
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Figure 13: Figure showing the KDEs of BayesM and FreqM emitter detection of image without added noise. The red cross

signifies the original emitter location. The levels represented correspond to 25, 50, 75 and 90 percentile.
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Figure 14: Figure showing the KDEs of BayesM and FreqM emitter detection of image with added noise. Same notation as

in Figure 13 is used.
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5 Discussion

Analysis of the BayesM model and the comparison with FreqM indicated that BayesM outperforms

the FreqM model when the emitter has emitted around 25 or more photons. There is a clear differ-

ence in localization precision when the molecule has emitted 100 or more photons and in that case,

BayesM gives better results. Considering this, the BayesM could be used in applications where the

number of photons emitted by the molecule is moderate to large.

For using the BayesM in future applications, such as applying it to real microscope images, themodel

can be adapted to be suitable for the occasion. This involves changing the prior distributions based

on information about the microscopy setup as well as the special information about the emitters

when dealing with multiple frames.

When the image of interest containsmultiple frames, a newproblem arises for the BayesM. The emit-

ter could be shown in a bright state on multiple frames, this causes the model to think that there are

multiple emitters in the same spot instead of one. This problem could be investigated in the future

and possibly solved using knowledge of the excitation probabilities of fluorophores. For even further

investigations, the multiple emitter problem could be investigated. In this case, multiple emitters

have been placed on one frame. In this case, a method needs to be devised to correctly label the

emitters in the MCMC chains. Assume, we have emitter labelled as 1 and an emitter labelled as 2.

The model does not recognize them as a scientist would naturally label them, that means that the

coordinates could be swapped in different chains of the calculations leading to the complete image

of just one emitter instead of two due to the chains being averaged to complete the final result. As

an alternative, it is possible to correct the chain orders as a post-processing step. This can be done

by arranging the chains according to the order of the first calculations.

Compared to previous works regarding Bayesian methods for localizing emitter positions, the devel-

oped and applied in this work uses 4 chains for MCMC, Fazel et al. (2022) only had one chain for the

MCMC algorithm. The authors also did not perform convergence checks like Rhat due to the fact,

that their algorithm made use of only one chain. They also did not perform the ESS convergence

check. However, their algorithm is a promising method to more precisely localize and groupmultiple

blinking events. This hints to the BayesM method possibly providing good results when extended to

solve similar problems.

The results of BayesM show that it is not advised to apply for images where there are few emitted

emitter photons. It is not quite clear why this is, thus the problem should be investigated further.

Currently it is recommended to use the FreqM to localize emitters for the cases with few emitted

photons emitted per fluorescent probe.

In conclusion, the BayesM shows a great potential to localizing emitters on super-resolution images.

Future developments are required tomake BayesMcompatible to use for imageswith a small amount

of photons emitted per emitter, as well as images with multiple frames and multiemitter cases.
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7 Abstract

The purpose of this thesis is to develop and evaluate the performance of a Bayesian inference model

used for single-molecule localizationmicroscopy. The Bayesian inferencemodel aims to localize emit-

ters on images with high precision. Another objective is to compare the Bayesian inference model to

a frequentist inference approach.

In the main part of this thesis, the nature of super-resolution techniques are explained. The dif-

ferent techniques of super-resolution are described, mostly focusing on single-molecule localization

microscopy techiques. Lastly the developed models and evaluation methods are described and re-

sults are presented.

In the practical part of the thesis a Bayesian inference model was developed to localize emitters on

synthetically generated images. Two different Bayesian inference libraries are tested to determine

which is faster to use for the images used in this work. The image data for this work, which was

generated using a stochastic image model is used to test the Bayesian inference model and compare

it to a frequentist approach. The models were implemented in the Python programming language.

As a result of applying themodel on synthetic images, it was found that the Bayesian inferencemodel

works well to localize emitters on synthetic super-resolution images, where the emitter has emitted

25 or more photons. It was also concluded, that the Bayesian inference achieves smaller errors com-

pared to the frequentist approach when the emitter has emitted many photons. As a result of using

themodels on images with emitters that have emitted few photons it was found, that the frequentist

approach achieves smaller error values. Additionally, future directions for the Bayesian approach are

given in the present work.

Key words: super-resolution, Bayesian inference, frequentist inference, single-molecule localization

microscopy
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8 Annotatsioon

Antud töö eesmärgiks on arendada Bayesi otsustusmudel ühe molekuli lokaliseerimise mikroskoopia

jaoks ning selle jõudlust hinnata. Bayesi otsustusmudeli eesmärk on lokaliseerida kõrge täpsusega

fluorestsete molekulide asukohti mikroskoopia piltidel. Teine eesmärk on võrrelda Bayesi otsustus-

mudelit sagedusotsustuse lähenemisega.

Töö põhiosas selgitatakse super-resolutsiooni tehnikate olemust. Kirjeldatakse erinevaid super-reso-

lutsiooni tehnikaid, keskendudes ühe molekuli lokaliseerimise mikroskoopia tehnikatele. Viimasena

kirjeldatakse arendatud mudeleid ja hinnangute meetodeid ning esitatakse saadud tulemusi.

Tööpraktilises osas arendatiBayesi otsustusmudelmolekulide lokaliseerimiseks tehislikkelmikroskoo-

pia piltide. Testiti kahte erinevat teeki Bayesi otsustusmudel, et võrrelda kumb on kiirem antud töös

kasutatud piltide parendamiseks. Töös kasutatud pildid genereeriti kasutates stohhastilist pilditekke-

mudelit, ning neid kasutati Bayesi otsustusmudeli ning sagedusotsustusmudeli võrdlusel. Mudeleid

rakendati programmeerimiskeeles Python.

Mudeli rakendamisel tehislikel piltidel leiti, et Bayesi otsustusmudel saavutab häid tulemusi fluorest-

sete molekulide lokaliseerimisel tehislikel super-resolutsiooni piltidel, kus molekul on kiiranud 25

või rohkem footonit. Töö tulemusena järeldati, et Bayesi otsustusmudel saavutab väiksemaid vigu

võrreldes sagedusotsustusmudel kui molekul on kiiranud palju footoneid. Mudelite rakendamisel

piltidel, kus molekul on kiiranud vähe footoneid leiti, et sagedusotsustusmudel saavutab väiksemaid

veaväärtusi. Lisaks antakse töö lõpus tulevikusuundi Bayesi lähenemisviisi kohta.

Võtmesõnad: super-resolutsioon, Bayesi otsustus, sagedusotsustus, ühe molekuli lokaliseerimise

mikroskoopia
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