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PREFACE 

 

As a musician and engineer, it is much interesting for me to write about a topic in music 

information retrieval, and most likely to continue deepening my knowledge in. As music 

has a role in our daily routine, feature extraction techniques can ultimately improve the 

way computers listen to music which will definitely impact our music listening using the 

many available digital platforms. 

In all possible ways, I thank everyone who supported and advised me during my study 

period, teachers, friends and study mates.  

My supervisors in this work, Professor Olev Martens and Mr.Dmitry Shvarts, thanks for 

your assistance and advice. Professor Mart Tamre and all Mechatronics department 

teachers, thanks as you made our study much enjoyable and fulfilling. 

Last but not by any way least, My Family, father, mother, sisters and brother, for 

supporting me all the time, I love you so much. 
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List of abbreviations and symbols 

 

Hz        =       Hertz  

Khz       =       Kilo Hertz 

MFCC    =       Mel frequency cepstral Coefficient 

Ms        =       Millisecond 

RMSE    =       Root Mean Square Error 

GTCC    =       Gammatone Cepstral coefficients 

FT         =        Fourier Transform 

DFT      =        Discrete Fourier transform 

MIR      =        Music information retrieval 

BFCC    =        Bark frequency cepstral coefficients 

LSTM    =        Long short-term memory 
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INTRODUCTION 

In recent years, audio data and music resources became enormous enough that it urged 

the necessity to develop systems to manage it and make its information retrieval easier 

for users as every one of us is considered a music listener, have our own musical style 

and taste, also our moods change which will impact the type and genre of music we 

listen to on a daily basis, we want to spend short time to find the music that fits our 

mood and environment, some of us who are musicians and composers want to publish 

their music on the web in order to be listened to, so we go search for platforms that 

help us to do so. Luckily that the emerging science of music information retrieval came 

to help achieve these tasks through many musical platforms that are available today 

whether to listen or publish music like Spotify, SoundCloud, etc., these platforms 

requires intelligent algorithms to process this large amount of musical data being 

published monthly and give the desired outcome we expect. 

As the field of music information retrieval is vastly growing in the last two decades, 

researchers are addressing the problems that arise and work to find better performing 

solutions or alternatives to existing ones, development for recommendation systems or 

music searching platforms are always being discussed. One of the main tasks that these 

systems depend on is the genre classification of music, based on the results of this task 

comes the results of other systems, a powerful music recommendation system or 

application won’t give you the musical style you prefer unless it is powerful enough to 

classify music genres with high accuracy, this task has been performed with different 

set of features and usually the development go towards improving the learning 

algorithm, however feature extraction and selection is the most important pre-

processing step before learning, when selecting feature extractors, it is important that 

these extractors are powerful enough to extract relevant information from the audio 

signals that are distinctive descriptors of the music genres, so the learning algorithm 

can distinguish between them easily. 

Humans are naturally good in classifying audio with good accuracy and some studies 

had been made on this topic, so in order to achieve classification accuracy closer to that 

of the human ear, it is required to build a learning model that gets same accuracy level 

or even higher that have similar properties to our hearing system. In this study the task 

of music genre classification will be addressed from the perspective of finding the closest 

biomimicry feature extractors that are able to classify audio as human ear does, the 

accuracy of the classification model is a direct indication of the used feature extractors, 

MATLAB software will be used to develop a classification model to test the feature 

extractors. 
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1. MUSIC INFORMATION RETRIEVAL 

Music as an artistic global activity that has different styles and cultural taste in which 

millions of pieces are being produced every year, also with the advancements of the 

digital audio and storage systems and its huge musical content raised the need to 

develop intelligent systems to manage this enormous database and develop it to an 

extent to minimize our interaction with it and the time spent searching for a specific 

content. The science of music information retrieval came to prominence as it is 

facilitating everything, we need to manage digital audio databases whether 

recommendation systems, search engines and even producing and publishing, these 

services became available and easily accessible with various platforms and application 

in the recent years like YouTube, Spotify, etc., however as this science of information 

retrieval from music is still considered an infant science and there is much room for 

development and problems that arise are being addressed and discussed. 

1.1 Motivation 

All tasks in this field is based on the idea of extracting relevant and correlated 

information from music and incorporate it with automated algorithms with the help of 

various digital representations for musical pieces and high processing devices. Signal 

processing techniques and methods to extract this information from the audio signals 

provides the ability to improve it whether by denoising or applying some techniques to 

improve sound clarity, then using this extracted information and incorporate it with 

machine learning algorithms that were developed recently. The development of effective 

tools to manage, edit and produce audio, it is required to have sufficient information 

about the context and content of music and audio data available in various databases. 

Context of audio is the indication to which it belongs from a large audio collection. For 

example, two male singers in a pop music song would be similar while any information 

about the composition of an audio signal is referred to its content. For example, if you 

know a particular part of a classical song is played by a violin solo [1]. 

The reason I decided to research such topic is to make an empirical study on audio 

feature extractors that mimics the biological auditory system. For example, MFCC is the 

state of the art that is been used in the previous years that makes it able for machine 

learning algorithms to distinguish between audio files, it mimics and scales the non-

linear way humans hear and classify music, however the question is that there are other 

feature extractors that may have a better distinctive features and can better scale and 

mimic the human ear, for example using gammatone filter banks or bark frequency 
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cepstral coefficients and others. In this study these features will be discussed and 

evaluated by a classification model with different types of audio signals to determine 

which of them are the best performing for each type of audio signals. 

1.2 MIR problems & Applications 

Music information retrieval is involved in almost any digital interaction we experience 

with music, with many producers, composers and listeners, it’s important to use these 

applications to fulfill our queries related to music. There is two types of applications in 

this field, music retrieval which is involved in finding user’s queries whether searching 

for a song, an album or a preferred genre. Michael A. Casey [2] introduced a good 

explanation on different types of music retrieval systems, one is mentioned “ high 

specificity systems”, this type when the system retrieve an approximate or match the 

characteristics of the query issued by the user or able to capture the exact content of 

musical data. For example, a user wrote a song name for an artist, then the retrieval 

system returns back the same exact song the user asked for or a close approximation 

to it, but systems that retrieve musical content that have low matching characteristics 

of that given by the user are called “ low specificity”. For example, a query that was 

given requiring a specific song, the system gives back songs that are in the same genre, 

so there are low matching criteria between the query and the genre. In this section will 

explained the most required applications and problems in the field of MIR. 

1.2.1 Applications in music retrieval 

Audio fingerprinting It is a form of representation of an audio signal in which it 

contains information specific to the signal meant to be represented, it captures features 

and audio descriptions highly correlated with the song. An example for this technology 

that we use is Shazam as the user records a segment of an audio and its algorithm 

works to identify the whole song. The main concept of this technology is to pick specific 

distinctive features that makes this recording unique from other audio available in the 

database in order to have a high identification accuracy, and this is done by means of 

signal processing techniques to analyze the time-frequency domain of the audio or 

common known techniques to purify the signal from a background noise, along with 

machine learning algorithms, it is possible to build a robust accurate audio fingerprinting 

system  [3]. 

Cover song identification A song cover means another modified or somehow altered 

version to the original song which may be structured differently with using different 

tempo, timbre, instruments played and key arrangement. This task has captured much 
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attention recently from researchers to understand the underlying scientific principles in 

this area of research and its relevance with different concepts as music similarity and 

music cognition. By combining some concepts from music similarity, cultural aspects 

and music cognition, we can get a clear image of how identification of song covers can 

be done, usually an accurate measure to determine how accurate an identification 

system is, to look for the human perception of similar tasks. We can identify many 

different covers and correlate it to one song by picking out some common features and 

general representation of the song, we don’t know exactly what these distinctive 

features are, but we can correlate different covers together even with different vocals 

and instruments. There is a proposal that if the cover has high correlation with the song, 

then a short segment of this song can be enough to identify it, then timbre can be 

considered as a distinctive signature and is an important contributor in the similarity 

measures [4], but the main measure is the original song and other versions to be 

compared to it and the match happens when the common features between them are 

highly correlated.  

Query by humming This is a type of music retrieval widely used systems in which it is 

given an input in the form of a short segment of song hummed by the user without 

having any metadata about the song. It works by extracting certain features from the 

input audio and compare these features to the features of music in musical databases, 

then it displays the songs that their features match the input. The efficiency of the 

system is assessed by its ability to process the input query, analyze and extract its 

features in a short time and with minimal user interaction. Factors that affect the result 

of the query is that the user may sing this song out of tone or the identification system 

in not powerful enough to match the similarity of the query to the music in the database.  

1.2.2 MIR problems 

As the interest increases in the field of MIR since it was introduced, it still has much 

room for research and development and it still didn’t reach the level to fully manage the 

huge broadening of digital audio data. Despite the latest advancements in artificial 

intelligence and different machine learning algorithms, there still a missing gap between 

music cognition in humans and machines, human evaluation is needed in all tasks in 

MIR. Another problem that exists is that existing data available for research are 

inadequate thus it is important to determine all available sources of data involved in 

music and improve their metadata and make them ready for researchers, also state 

their legality to be used and provide online repositories. To be mentioned that MIR 

researches received some criticism of being impractical on large scales, many of 

researches that have been done are only applicable for small scale data and are 
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impractical with large scale data, but the evolving of computational powerful tools can 

definitely help to apply them to large scale data [5]. 

1.3 Music & audio representations 

There are millions of musical data available in digital databases that have different forms 

representing music, it can be in the form of text as we see as lyrics of the song and this 

type of formats is textual, also it can be poster of new music albums or audio formats 

that are used in recordings, another form is music instrument digital interface which is 

known as MIDI, these are different representations for music and audio in general which 

are required to be acquainted to, especially for studies and researches in music 

information retrieval. 

1.3.1 Score representation 

This form is the most common representation of music in which musical symbols 

denoting the rhythms, chords and melody of the piece meant to be played, its common 

name is sheet music. The instructions a musician needs to make the performance is 

encoded in the sheet music, these instructions are information like note onsets, key 

signature, duration, pitch and dynamics. This information encoded in the representation 

can only be read by a musician who has the knowledge to give out the music as states 

in the sheet. Below figure 1.1 is an example of sheet music for a song name “Just for 

you” for the Italian pianist Giovanni Marradi. 

 

Figure 1.1 Sheet music representation for a contemporary classical song taken from [6] 

 



14 

1.3.2 Waveform and sound representation 

Waveform is a representation used to display audio or sound waves, it displays the 

changes in the amplitude that occurs over time, it is a visualization tool to show the 

audio, waveform with lower amplitudes indicates a low-pitched sound or soft, while 

higher amplitudes indicates louder or higher-pitched sounds. Audio signals are 

generated when an object vibrates, human’s voice is generated when vocal chords 

vibrates, piano sound generates when its strings vibrate by the act of hammering it, the 

generated sound waves travel through air causing the air molecules to oscillate, these 

oscillations cause rapid displacements of air particles in the form of compression and 

rarefaction, then these waves when they hit ear drums it causes certain nerves to 

vibrate and generate an electrical signal to the brain which is then perceived by humans 

as sound, or sound recorder or a microphone receives these waves and translates it into 

the intended sound. These waves behave in a specific manner that determines its 

periodicity and frequency, this part will be discussed in chapter 3 in details. 

 

 

Figure 1.2 shows the sound waveform and the way it is formed, picture taken from [7] 

Speech and music waveforms 

Understanding the difference between each of these signals is important in to 

understand whether speech signal analysis or music signals analysis. Figures 1.3, 1.4 

below shows the difference between speech and music signals waveform. On a 

fundamental level music and speech are considered similar and they are being 

processed and analysed similarly, also they share common features. From the point of 

frequential standpoint, the range of fundamental frequency for adult male is from 85-

180 Hz, while for adult female is from 165-225 Hz, so we can say human voice is 

ranged from 85-225 Hz (“Voice frequency”, n.d), while music can have different 
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frequency ranges but it must be within the human audible frequency range from 20Hz 

to 20 Khz, then on a functional level both speech and music are different. The nature 

of speech and music signals also tend to be disrupted usually by silences, these 

silences are rather more frequent to occur in speech than in music. A study showed 

that there are approximately three silences in a sentence, while in music, silences do 

occur usually but the transients ( which occur at the start and end of silence) in 

speech are more noisy than the transients associated with music [8].  Audio signals 

are considered to be non-stationary signals and the reason because of the frequent 

changes in the frequency content, in music the pitch doesn’t change much compared 

to that of speech that are continuously changing. Also, formants in music that occur 

because of some acoustic properties of the musical instruments used show more 

stability than formants in speech. 

 

Figure 1.3 shows a speech waveform 

 

Figure 1.4 shows a classical song waveform 
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1.4 Software used, audio samples used and list of 

features 

MATLAB software will be used in this study, and the reason is because of the availability 

of different tools for audio signal analysis and different libraries that will be used for 

feature extraction process, also for features evaluation, a deep learning model will be 

made in MATLAB, it offers a wide range of machine learning applications that can be 

programmed. 

Audio samples / Dataset 

There is a dataset called GTZAN, which consists of 10 music genres and each genre 

contains 100 songs, each song is 30 seconds which is a good fit to test features on it. 

It contains music with vocals and non-vocal music, which will be separated and analysed 

individually, also a noise will be added to both, the reason is to test the performance of 

the features used in case of vocal, non-vocals and noised signals. This dataset was used 

in different studies before for classification of music genres using many machine learning 

algorithms. However, the main task in this study is not to classify genres but to 

determine the best performing audio extractors that are much closer to the human 

auditory system. The accuracy of the final classification of the algorithm developed is a 

direct indication of the performance of the feature extractors. The higher the accuracy 

of classification with a specific set of feature extractor, the better it is than another set 

of a different feature extractor, the closer it is to human perceptual auditory system. 

1.5 Objectives and tasks 

The goal intended to be reached from the study is to test the effects of auditory feature 

extractors or potential audio extractors that may hold a better approximation for the 

human ear and can have better audio classification accuracy and exhibit more noise 

robustness than conventional feature extractors. The reason is that the human ear has 

an amazing signal processing and audio analysis properties, so testing and developing 

audio feature extractors that acts as a biomimicry model that have similar biological 

properties for example masking property or other properties. In this empirical study 

audio feature extractors will be discussed and explained and how the signal processing 

process of audio differs from one to another for each of them, also their applications in 

real world industries. The results from this study is a deterministic approach to know 

what best feature extractor performs better for a specific type of audio data like music 

with vocals, non-vocal music and which is more noise robust. 
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2 RELATED WORK 

2.1 State of the art in MIR 

In this chapter discussions will include some important aspects to deepen the 

understanding of the tasks in MIR and music representations. Most of the research that 

was done before in music information retrieval tasks pointed out at creating new 

features to extract information from audio signals or using a different combination of 

pre-existing features to improve results or improve the currently existing machine 

learning algorithms to get better results, however there is noticeable lack for an 

empirical study or a deterministic approach that points the drawbacks of current feature 

extraction techniques. The notion to perform analysis on any kind of audio, the aim 

always is to achieve results close enough to our natural judgements as humans, for 

example a task like audio classification of music genres, we all can listen to a song or 

even a part of it and give a judgement to which genre it belongs, now we want computer 

to do the same with accuracy close to ours and here comes the role of using robust 

feature extraction techniques that works in a similar way to our ears with all of its 

magnificent audio analysis, the human ear has masking properties and can still 

recognise sounds, voices and songs in the presence of an external noise in the 

environment which gives it a biological noise robust properties, it also have a great 

filtering effects, a detailed description of its properties will be mentioned in next 

discussions. The purpose of conducting this research is to test and implement different 

features that have common or close properties to human ear to extract information from 

audio signals that can be used in many MIR tasks. Also to mention that each task has 

different set of features, sub-tasks and pre-processing process, there is many tasks in 

the field of music information retrieval to be considered like beat tracking, pitch tracking, 

instrument recognition, mood detection and many others [9]. The main focus will be on 

classification and to determine which are the best performing feature extractors that 

are more noise robust and efficient in different environmental conditions. 

 

2.1.1 Music Similarity 

To describe music, there is some characteristics that should be mentioned such as 

melody, lyrics or musical instruments played, to generalize this concept, the audio 

content of a song when it is similar to the audio content of another song, then it is 

considered similar, the audio content of a song holds its descriptive properties, humans 

are able naturally to identify similar patterns in music we listen, like melody or repetitive 
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rhythm or repetitive pattern that happens within one song or different songs, a music 

genre has different songs that share similar patterns or feel like, for example romantic 

songs share similar properties and give us similar feelings like tranquillity and romance, 

from this we conclude that similarity can be within the same song or a different song 

have similar adjectives, which can be defined as local similarity and global similarity 

[10], their main working measures is to detect the changes in the signal or repeated 

patterns because the biggest challenge in music similarity is to be define a measurement 

criterion that determines similar audio, and this involves picking accurate musical 

descriptors that acts as a deterministic similarity measure to use for all musical pieces 

and gives a result of a collection of similar audio files together. So performing such a 

similarity analysis involves computing a similarity matrix as proposed by Jonathan Foote 

[11], Similarity measures can differ depending on the task, for example in music genre 

classification, we need to define each genre’s unique descriptors that makes it distinctive 

from other genres and this will be explained in the next section. 

 

2.1.2 Music Genre Classification 

In this part explained the closest work that was done on this task and how a different 

approach can improve its results. The task of classifying music into genres became a 

necessity since the availability of enormous amount of large database of musical 

recordings that needs to be categorized, thousands of songs are being published every 

month on different platforms, these platforms needs to have a classification system 

deployed so users can find their preferable genre either for live streaming or buying, 

the genre of a music is defined as its own style or category that a song belongs to. 

Despite there is only few genres that are clear for all cultures, there still some genres 

that are perceived differently in different cultures, still humans have a natural ability to 

classify music just by listening to 25 seconds of a song as investigated in [12]. And this 

raised the question of how humans gives such a judgement to which genre a song 

belongs to, then it was found that it’s about the musical properties that a genre has is 

what makes it distinctive from another one, so researchers wanted to develop a 

framework or baseline to which songs can be classified and there it is not a consensus 

by everyone it still prone to have inaccurate classifications as musicians or listeners can 

disagree with a particular classification [13]. There is two ways to build a classification 

algorithm, a supervised in which you pre-label the genres and train the algorithm to 

learn from this data then classify newly provided songs, the other is unsupervised in 

which you provide the unlabelled dataset of songs but have to determine features that 

distinguish between genres or characteristics of each genre that makes it different than 
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the rest and this was determined as melody, harmony, rhythm and sound, these four 

properties of music can be effectively used to classify music however it is still prone for 

misclassification for others, and the final judgement is according to people. 

A good classification system will ease the hassle of finding the favourite musical style to 

listen to and this task is one of the most important and required tasks in music 

information retrieval that even other tasks depends on it, for example recommendation 

system or browsing system needs a pre-labelled musical database so it can give you 

results based on your listening history in case of recommendation system or give out a 

list of the genre you want in case of a browsing system. 

Many machine learning algorithms have been developed to classify musical datasets like 

support vector machine, neural networks, K nearest neighbours, gaussian mixture 

model and gradient boosting trees. Figure 2.1 shows the process of genre classification.  

 

Figure 2.1 The process of music genre classification 

 

In 2002 George Tzanetakis and Perry Cook, they agreed that the statistical properties 

associated with instruments being commonly used in the genre along with its rhythmic 

structure can act as a distinctive descriptor for each genre [14], for example classical 

songs have things in common like instruments used and tempo and other features that 

gives almost similar feelings different than listening to dance music like techno with high 

tempo and loudness, so in their proposal they implemented features like MFCC and 

features that can represent these instruments used and texture of the songs to 

categorize them to genres and they evaluated these features by developing different 

classifiers using machine learning and the classification accuracy they achieved was 

61% while it is 70% as a human accuracy to classify the same genres [15], they 

extracted features from the audio signals using MFCC like most classification algorithms, 

later came new algorithms like support vector machines achieved more than 90%, then 
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when neural networks came to prominence it proved its efficiency in classification 

because of its great pattern recognition abilities and multi-layers that gave it an 

advantage over other classification algorithms, specially convolutional neural networks 

that are able to accurately pick similarities between many images ( in this case images 

of spectrograms and MFCC) [16]. However to note that these algorithms focus to 

improve accuracy of the algorithm itself and they use the same feature extractors 

without regard to the robustness of these features, while the classification accuracy is 

tremendously affected if the audio contains noise, also audio signals with vocals is 

different than without, depending on MFCC only is not that sufficient feature extractor 

and maybe not the closest representation for audio signals from human perceptual 

perspective, that’s the reason this study aims to test different features that may be 

more noise robust and be more effective with different types of audio signals that can 

determine which and why these set of features can be used. 

2.2 Music Recommendation Systems 

The increasing amount of data and thousands of songs being published every month 

makes it difficult for a user whether a listener or buyer to find their musical style, that’s 

why recommender systems were developed to facilitate for all users to find what they 

look for in a short amount of time, these systems have access to all musical database 

up to date, it even makes music discovery easier for those interested in a specific style, 

at the same time with the developments of machine learning algorithms made it easier 

for these systems to learn from the listening habits or the behaviour of the user and 

recommend them relevant songs based on their favourite genre or even based on their 

mood with less effort, and that is the correlation that combines music information 

retrieval with recommender systems, so the preliminary step for developing a powerful 

recommender system is to first perform accurate MIR tasks whether genre or mood 

classification, so feature extraction techniques that extracts relevant information from 

the audio signals is what can determine the efficiency of the recommender system [17], 

as it predicts what a user may like based on the music analysis results from their 

previously listened music, almost anywhere online we go to buy something or listen we 

find a list of recommendations appeared that is based on our search history and how 

long the user spent listening to a specific musical genre. There are many applications 

that merges MIR and recommendation tasks, the role of MIR is to give a clear analysis 

for the audio signals by extracting features and recommendation systems find 

similarities between the user’s listening history and the music content out there, an 

example of that is the automatic playlist generation in Spotify or music apps, we find 

personalised playlists in our Spotify accounts that is made based on our listening history 
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and its main algorithm depends mostly on MIR by analysing the audio content stored in 

our history and the results are being matched with similar audio that exists in the web 

which is called “ static playlist generation” according to Peter Knees & Markus Schedl in 

their book music similarity [18], another type they talked about called ”dynamic playlist 

adaptation” which depends on explicitly on the user’s choices and preferences. 

Many researches proposed the idea of generating playlists by the notion of having a 

huge collection of music and computing the similarities between songs and generating 

the playlists based on it, but a disadvantage for this is that the user maybe interested 

in listening to another genre or have different mood that requires different kind of music 

and then comes the role of taking in consideration the explicit user’s choice. In the next 

section will be explained the latest techniques used in making such systems. 

2.2.1 Collaborative Filtering  

This type of recommender system is considered as the most popular recommender 

systems, it works by exploiting the information collected about user’s likes and interests 

and gathering data about their listening habits, clicks they made and their online activity 

and it is called “ implicit rating” because user’s didn’t intentionally provide it, another 

type called “ explicit rating” because customers intentionally provide an explicit feedback 

for the service like the music they listened and it is usually in the form of a rating scale 

[19]. but mainly the performance of all types of recommender systems depends on the 

amount of data so it can be able to give accurate recommendations. There are two types 

of the collaborative filtering that will be explained next. 

User-based filtering This type is considered a memory based method and its works 

by assuming that users who share similar interests and rated items similarly or 

purchased it, then they are most likely to agree on the same items in the future, its 

mostly logical decisions, also with the advancements in machine learning algorithms 

been deployed, it gives satisfactory results, it uses k-nearest neighbours to find existitng 

users who have recorded preferences and rating who are similar to the one required to 

give the recommendation to, this recommendation technique is considered as easy and 

accurate to implement but its drawbacks that many people won’t rate items also the 

insufficient amount of users data, so it makes it a difficult task to recommend something 

for a user with no previous data which is known as “ the cold start problem”, a good 

practical solution to solve this issue is to ask few questions to the users and give 

recommendations according to their answers. 

Item-based filtering A different approach is applied in this method in which the 

algorithm focuses on the similarities between item instead of users as the user-based, 
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and it sounds logical that if a person likes an item and this item is similar to another 

one, then the person is more likely to be interested in that other item, its drawback is 

the same as for all collaborative filtering method which is the data with sufficient users 

and their activities. 

2.3 Music Data Mining 

The availability of enormous musical datasets, songs, artists and music production firms 

that publish millions of songs continuously urged the need to develop techniques to 

manage these datasets. Music data mining methods allowed to analyse, perform and 

improve tasks different tasks in MIR, and as known that the accuracy of these task’s 

results is affected by how accurate relevant information have been extracted from audio 

signals, it is also affected by how efficient these data mining techniques in organising 

and preparing these data before performing the tasks, whether music genre 

classification, emotion detection or recommendation system, these all need a pre-

prepared data with accurate relevant information, in this section will be discussed the 

state of the art or the latest techniques and most developed used in music data mining, 

however as this field is a wide research area, for this reason a well selected topics and 

techniques will be explained to act as a reference and assist in understanding this field 

and how to proceed in it. 

2.3.1 Music Metadata  

It is a description for the information contained in a musical recordings allowing it to be 

shared and distributed, these data can be the song name, artist name, name of the 

album, data of release, etc, its importance lies in facilitating performing tasks on the 

music data, for example a dataset that has accurate metadata about the genres inside 

along with name of the artists, name of the songs and numbers of its audio files will 

make easier to perform a task like music genre classification or making a 

recommendation system so the users can spend less time finding what they want [20]. 

One of the most used metadata formats is “ ID3” and mostly used with mp3 audio files 

and it helps in storing all relevant information to the audio file making it easier to extract 

all these information when needed, another method which is online music metadata 

base as mentioned in music data mining book for T.Li & G.Tzanetakis [21] which helps 

streaming and listening applications like Spotify and Soundcloud to extract the 

information of the music the users listen to, examples of these are MusicBrainz and 

MP3tag. 
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Acoustic Features These are the elements the an audio is composed of, it’s the 

description you can give to a song you listen regarding its melody or rhythmic structure, 

instruments used to play it, in which these elements have different frequencies and their 

combination gives out what we call a song, this section will list the main features that 

are used to describe audio and which will definitely help in understanding the next 

chapter which is about feature extraction in time and frequency domains. 

Table 2.1 Acoustic features 

Feature Definition 

Melody A set of consecutive rhythmic tones that form the main 

component of the song  

Harmony It is the superposition of tones and melodies that are 

simultaneously occurring over time 

Key 

Signature 

Arrangement of a set of notes that consists of flats and 

sharps that form the music composition and are used as 

an indication to which keys should be played 

Tempo The speed at which the music is played and is measured 

in beats per minute 

Rhythm The continuous repetition of a musical pattern with its 

variation as it moves over time 

Intensity It is the measure of amplitude of the vibrations coming 

out from the sound, can be range from soft to loud 

Pitch The perceived frequency of sound specially the 

fundamental, it starts as low from the left of the piano 

and increases to higher pitch as you move to the right of 

the piano’s keyboard 

Timbre It is the colour of the music or is quality that makes the 

listener gives a judgement of which musical instrument 

being played 

Acoustics Is the analysis and study of sound considering the 

external effects applied on it  
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2.4 State of The Art in Dimensionality Reduction 

The aim we always aspire to achieve is high accuracy results in tasks we want to do, so 

addressing all the steps that affect accuracy is crucial to tackle problems associated with 

it, since we deal with large audio data that have high dimensionality then reducing these 

data into lower dimensions without sacrificing its relevant information, or by other 

means the data after reduction should have the relevant data we need to perform our 

task is a good contribution to the final’s accuracy of our task, there always a threshold 

where the number of features reaches then the performance begin to decrease as shown 

in figure 9. Tasks like audio classification if performed with high dimensional data, the 

result won’t be satisfactory and the model’s performance will decrease [22], and the 

reason is because of a phenomenon called “ curse of dimensionality “ which states that 

as the number of dimensions increase, this makes the data exists in a larger volume of 

space than it used to be and it increases exponentially making it difficult to generalize 

and this causes one of the most well-known problems called “ overfitting”, so by applying 

dimensionality reduction techniques, it eases the hassles associated with high 

dimensional data, in the next discussion, state of the art of best performing 

dimensionality reduction techniques that can be applied to audio data will be explained 

and how it can affect the performance of the classification model.  

 

Figure 2.2 shows the curse of dimensionality [23] 

In figure 9 a description of how number of features can have an adverse impact on the 

performance of the classifier, after certain number of features “ which are enough for 

the classifier to be able to generalise the problem and learn the data well “, the 

performance will start decreasing and as the features increase the model will begin to 

have overfitting to a degree that the model will begin to learn irrelevant data from the 

extra features such as noise, so an indispensable step is to perform feature selection 

before training the algorithm. 
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2.4.1 Feature Selection 

Having a large amount of data that is needed to perform the intended task requires pre-

processing steps in order to achieve decent results, classification algorithms performed 

on large audio data are highly impacted by the techniques used in pre-processing and 

feature extraction, audio data has high dimensions or attributes that we need to extract, 

but it’s so important to be cautious with selection of these features by determining the 

best performing attributes and discarding the low or negative relevant ones from the 

data, it is shown that this step highly impacts the results of the model [24]. The main 

reason of not using all features in the data is to overcome the negative impact it have 

on the performance, this impact can avoid overfitting which significantly reduce the 

accuracy of the model, also more features mean more time needed for training and 

more computational power, also from a logical point of view, what if you want to make 

a classification system to classify music based on emotions, then I gave you an audio 

dataset that contains the country of origin of each song or date of birth of the artist, do 

you think these information is relevant to the emotion the song gives, the answer is 

absolutely not, emotions associated with a song comes from a set of features that makes 

us feel the way we do when we listen, these features can be like timbre, for example 

violin with piano induces a state of love, romance and tranquillity, bass and drums are 

good to dance on, and so on, that’s why in the next discussion will be explained the 

state of the art in feature selection methods and dimensionality reduction techniques. 

Types of Feature Selection Methods 

1- Filter based  

This method depends on statistical measures to rate features and give each a 

score in which we select the best ranked ones depending on their score, there 

are different types of this method will be discussed below. 

Variance Threshold It shows an indication for the features that have fixed values 

and don’t change with observations and shown to have small contribution to the 

output. 

Univariate Selection This is a proposed features selection method that can be applied 

to data to better our understanding of their features, avoid overfitting and improve 

model generalisation, it works by performing statistical measures on all features in a 

dataset and determine the best performing features and the strength of their 

relationship with the outcome we want in our task, so this method is actually good to 
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know which will be the most contributing features to the accuracy of the task, examples 

are Pearson’s correlation and chi-squared [25]. 

Correlation Method The main task of feature selection is to select features that 

performs well and contribute to the outcome of the task, features that are highly 

correlated to each other don’t add new information to the data and it’s just redundant, 

and this is the method to remove them which improves the accuracy of the model. Each 

feature is given a correlation coefficient that indicates the level of its correlation to other 

features, this coefficient varies in arrange between -1 to 1, when its value is zero this 

means no correlation, while value of 1 means that there is a strong correlation [26]. 

 

2- Wrapper based  

This method depends developing a machine learning algorithm that evaluate 

different sets of features and choose the one that has the best performance, 

this is an iterative process and despite its effectiveness it has a disadvantage of 

being computationally exhausting, figure 2.3 shows how the algorithm works.  

 

 

Figure 2.3 Wrapper-based method algorithm [25] 

 

3- Embedded Method 

In this approach the feature selection and the learning algorithm are interacted 

in which both previous methods are combined, so for example in case of a 

classification algorithm, normally we perform feature selection and then train our 

model but in this case they both are being done at the same time. Using this 

method has many advantages as they exhibit more accuracy, faster and more 

robust to develop overfitting while model training [27]. 
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Feature Importance A technique that rates all features in a dataset, a feature that 

has a high rate means it has high contribution to the output of the intended task, by 

this method we can discard irrelevant features without exerting much computational 

power due to high dimensionality. It is implemented using a trained classifier like 

decision tree that ranks the features [28]. 

2.4.2 Principal Component Analysis  

As mentioned in previous discussions the importance of dimensionality reduction for 

achieving good classification accuracy, in this section will be explained the importance 

of the principal component analysis (PCA). It’s one of the most common linear 

dimensionality reduction techniques available in recent years that proved its efficacy to 

improve the classification process and shorten the computational time and the reason 

is that it minimizes the features or dimensions of the data while capturing most of the 

relevant information contained within, the way it works by capturing components from 

the original data and the result is in the form of principal components in such a way that 

the first component contains most of the variance in the data and the next component 

contains the rest while keeping low correlation between both and so on [29]. An example 

of its application, an audio classification algorithm that has high dimensional audio data, 

after we extract the features from the data we can’t feed it to the classification algorithm 

because we get very low accuracy, so now we need to apply PCA that works by first 

normalising the data as a preliminary step that rescale the data to be normally 

distributed, and the reason it is so important because for example if we have an audio 

data in which one of its features let’s say length of the song which is in seconds and 

which is less than a second feature which is the sampling rate in hertz, what will happen 

is that PCA will count on the component that gives the higher variance as always the 

first principal component contains the highest variance, so scaling has an important role 

in order to make PCA to not account for such inaccuracies [30], after performing data 

normalisation, a covariance matrix should be computed on these normalised data, then 

perform eigen decomposition by computing the eigenvectors and their eigenvalues of 

the covariance matrix, the values of the resulted eigenvalues are a direct indication of 

how good or more correlated the new subspace will be, the target is to get a subspace 

of highly correlated data to the original data, since eigenvalues resulted from the 

eigenvectors gives us information about the length and the magnitude of these 

eigenvectors, if we see that the eigenvalues have close magnitude to each other, this is 

a good indication of a good subspace, also eigenvectors that contain high magnitude 

eigenvalues are more important and contain more information, also those eigenvectors 

with low magnitude eigenvalues or equals to zero don’t contribute much to the data and 

good to remove them [31]. 
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3 BIOLOGICAL & ARTIFICIAL AUDIO FEATURES 

This chapter illustrates the perception of sound in the auditory system and its 

components from a psychoacoustic point of view, this in turn helps to understand the 

process of music perception in the human ear that gives an understanding how we can 

apply these mechanisms on an artificial signal processing models that serves as a 

biomimicry model to give the optimum digital signal processing results.  Systems that 

imitate biological models shows the most accurate results and to develop algorithms 

that have the ability to process music signals as humans we must understand the 

hearing mechanisms and how it can be applied in artificial models, To keep it simple, 

The main concept is to understand how can we make the machine hear and how do we 

hear and shorten the gap between them. 

3.1 How do we perceive music? 

Firstly, music is defined as a set of combination of tones in a harmonic way to deliver a 

feeling or an emotion to its listener. It has its own features which are perceived by our 

auditory system. The act of hearing is a sensory and perceptual event that is induced 

by the propagation of a wave from the sound source, this propagation is composed of 

multiple waves that has frequency, amplitude and phase, since all frequencies carries 

information, these information are the features that are decoded by the auditory system 

and transferred to certain parts in the brain where it is perceived. The human ear has 

the ability to localise sound at discrete time by using timing analysis, spectral 

information of the signal, correlation which shows the periodicity of the signal and 

pattern matching (“Sound localisation”, n.d), It also has a non-linear response to sounds 

of different intensity levels within a range of 20 Hz to 20 Khz.  

Sound as a wave can be described in the time and frequency domains, the time domain 

sound is in the form of multiple consecutive oscillations that are changing over time 

while in the frequency domain it can be described as a spectrum which has an amount 

of vibration at each individual frequency, if we have the spectrum information of a sound 

in the frequency domain, we can calculate the time domain information and vice versa 

if we have the time domain information, we can calculate the frequency domain 

information [32]. There is a concept in psychoacoustics known as critical band and 

auditory filters which was introduced by Harvey fletcher in 1933 and refined in 1940, it 

describes the frequency bandwidth of the auditory filter of the cochlea “The organ in the 

inner ear that perceives sound (“Critical band”, n.d), however the idea of these filters 

are theoretical or mathematical that describes the behaviour of the frequencies in the 
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cochlea over a bank of auditory filters that overlap naturally. In fig 3.1, shows the 

concept of critical bandwidth and auditory filters. 

 

 

 

 

 

 

 

Fig 3.1. Critical bandwidth within auditory filters 

The concept of consonance and dissonance happens when two frequencies are so 

closely spaced that they lies in the same auditory filter, for example A note that has a 

frequency of 440 Hz and A# ( A sharp note) that has 466.164 Hz (“A# Musical note”, 

n.d), a critical band at 400 Hz is going to be around 100 Hz wide which means that 

these two frequencies are so closely separated that they will fall within one filter and 

are going to interfere with each other. In contrast two other frequencies for example A 

of 220 Hz and E of 329.628 Hz which appears that they are far enough apart to 

activate two separate auditory filters. 

3.2 Audio feature extraction 

The process of extracting information from sound using its features is called feature 

engineering, these features contains information that we need to extract in order to 

perform a wide range of applications in the areas of music recommendation systems, 

speech processing, bioacoustics, etc , for example building a music recommendation 

system to recommend music to users depending on their musical style or preferences 

requires to perform genre classification, doing such a task requires to perform extraction 

of specific audio features that are able to distinguish these genres from each other, 

these features can be extracted in two domain, time domain or frequency domain, so 

we need first to be able to decode the information in the audio signals and the better 

the accuracy of the extraction process, the higher the accuracy of the result, in the next 

parts of this chapter we will go through these features and which acts as better 
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representatives for the music signals [33]. There are two kinds of features to be 

extracted, low level features which are not directly interpreted by humans which we 

refer to as tempo, amplitude and pitch while high level features are considered to be 

highly interpretable by humans and they are derived from low-level features, these 

extracted features are represented in an interpretable domain either time or frequency 

then transferring them to a high level features like a classification system that uses the 

low dimensional or low level features to classify music genres [34]. 

3.2.1 Audio signals representation 

Audio signal is a representation of sound that changes over time, the range of audible 

frequencies to humans is known to be from 20 Hz to 20 Khz (“Audio signal”, n.d), it is 

important to know the type of the signal we are dealing with, a signal can be 

characterized by being periodic or aperiodic, continuous or discrete, stationary or non-

stationary, however audio signals in general are considered to be non-stationary 

because to define a signal as stationary means that its frequency content is constant 

over time like that of a sine wave which has a specific frequency value that doesn’t 

change over time, however this is not the case for audio signals as they are a 

superposition of multiple sine waves and each has its own frequency content, the 

stationarity of the signal can only be determined from the frequency domain and not 

related to the time domain, for example a sine wave of 10 Hz as shown in fig.3.2 and 

its magnitude spectrum as shown in fig.3.3, the amplitude of the sine wave changes 

over time while it has the same frequency content over the same period of time [35]. 

The sine wave can be represented by the following equation, 

x(t) = Α sin(ωt + φ)                                      (3.1) 

 

Where A - the amplitude. 

          𝜔 - the angular frequency. 

          𝜑 – the phase. 

 

The sine wave below in figure 3.1 has an important property as it reserves the same 

wave shape when intervened with another sine wave of the same frequency and 

different magnitude and phase like waves of an audio signal. 
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Figure 3.2 sine wave of 10 Hz sampled with a sampling frequency of 1000 Hz 

 

Fig 3.3 Magnitude spectrum of sine wave in figure 1 

3.2.2 Periodicity of audio signal 

A signal is said to be periodic if it repeats with the same pattern over a regular period 

of time, the periodicity of a signal can be described in below equation (3.2) 

𝑓(𝑥) = 𝑓(𝑥 + 𝑝)                                  (3.2) 
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Where p – periodicity of signal x 

The fundamental harmonics of this signal can be calculated as follows 

                 fo=
1

p
                                            (3.3) 

The fundamental frequency is known to be the lowest frequency of periodic waveform 

denoted as fo and from which the harmonic spectrum is composed and known as 

“Harmonics “. It is the multiples of the fundamental frequency, for example if the 

fundamental is 220 Hz, then its harmonic spectrum or as called harmonics will be 440 

Hz, 660 Hz, and so on. According to Fourier analysis is that for a function to have 

harmonic spectrum it must be periodic and for this reason we need to check the 

periodicity of the signal which is called “ periodicity analysis “ and there is two known 

methods to perform using autocorrelation analysis and Fourier [36]. For example, in 

music information retrieval tasks like beat and tempo detection, Humans have a natural 

cognitive ability to detect beats and tempo of music without difficulty, however the 

challenge here is to automate this biological process into a programmable process to a 

system that has a large scale datasets of various music styles, the extraction process 

becomes difficult due to the fact that beat and tempo are not explicitly defined because 

of the complex structure of the rhythm, from here comes the necessity of periodicity 

analysis and two proposed methods will be discussed. 

Fourier tempogram It is a two-dimensional representation of an audio signal 

displaying the variation of pulse strength over time which shows the intensity of the 

estimated periodicity given in beats per minute (BPM) over time. The tempogram works 

by detecting sudden changes in the input audio signal which can be determined from 

the note onsets, so the more accurate the onset detection techniques the better the 

results of the tempogram [37], from here comes the need to use a novelty function 

because of its ability to detect such changes in the properties of the signal such as its 

spectral content or energy. There is two known types of novelty functions that can be 

used in this task, energy based and spectral based novelty functions. 

Energy-based novelty functions When a note is played on a musical instrument, at 

this time instance there is an instant increase in the energy of the signal, for example 

hitting a piano key, or playing a note in violin, this sudden increase in the energy of the 

signal can be computed by the energy novelty function [38]. 

To explain this process mathematically, if we have a discrete-time signal x and apply a 

discrete window function w of bell shaped function where its center is at time zero square 
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which is moving along the signal x to determine the local sections, then the local energy 

of signal x with respect to the applied window function w denoted by 𝐸𝑊
𝑋  is given by 

𝐸𝑤
𝑥(n): = ∑ | 𝑥(𝑛 + 𝑚) 𝑤(𝑚) |𝑀

𝑚=−𝑀
2 = ∑ | 𝑥(𝑚) 𝑤(𝑚 − 𝑛)|𝑚∈𝑍

2         (3.4) 

Where   x – Discrete-time signal, 

            w – Discrete window function, 

            𝐸𝑤
𝑥(n) – Energy of the signal x, 

             m -   Non-zero samples of the window function, 

             n – Number of samples the window function shifts from. 

As a nature of human perception of sound is non-linear and to be able to scale it we 

need to use a logarithmic scale, also we need to put into account that analysis of music 

or an audio file contains parts of low and high energy, so being able to capture the most 

of it is an important aspect and by applying logarithm to the values of energy from 

equation (3.4) then the low energy parts will be clearly audible even if it is overlaid by 

high energy musical event. The resultant of the energy-based novelty function after 

applying the logarithm is as below equation (3.5). 

∆𝐸𝑛𝑒𝑟𝑔𝑦
𝐿𝑜𝑔

(n) = | log (𝐸𝑤
𝑥(n+1) – log (𝐸𝑤 

𝑥 (n)) |≥0 = | log 
𝐸𝑤

𝑥 (n+1) 

𝐸𝑤 
𝑥 (n)

 |≥0          (3.5) 

One drawback of this logarithm energy values that as it makes all parts of the signal 

both high and low energy clearly visible, it will also act as an amplifier to noise if the 

signal is distorted by noise, so it’s important to denoise the signal before computing its 

energy function, another drawback of this approach that detecting onsets of musical 

events that have multiple music instruments played at the same time are hard to detect, 

for example a song that has violin, piano, drums and some other effects like strings, 

instruments with higher intensities will mask the lower ones, however a good 

observation is that each of them has different frequency content then comes the need 

to detect these changes in frequency and the spectral based novelty function that 

measure these changes will be introduced in the next discussion. 

Spectral-based novelty function As known as spectral flux, it is based on 

transforming the signal into time-frequency domain to be able to detect the frequency 

changes across the signal, it is known to be sensitive to spectral fluctuations or 

transients and this is important as it gives it an advantage over the energy based 

function as it can detect the onsets of musical events much clearer specially when 
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multiple instruments being played at the same time, or by others means it can overcome 

the masking effect of louder instruments over the quieter ones [39]. Computing the 

spectral flux is a representation of the amount of changes in the spectrum of the signal 

over time, it can captured by measuring the differences between two consecutive STFT 

frames by computing each frame’s power spectrum, the frame is a segment of the signal 

that we determine, then its equation (3.6) is as follows [40]. 

𝑆𝐹 =  ∑ ( 𝑛
𝑛=1 Dt (n) – Dt-1(n) )2              (3.6) 

Where Dt – Normalised frequency distribution in frame t. 

From the above equation (3.6) we see the computation of spectral flux and how it can 

be measured, it is considered as a frequency domain representation and categorized as 

low level feature descriptor, it is used frequently in tasks that require speech or onset 

detection [41], an implementation for an audio signal that represents a 30 seconds of 

the classical song “ The Four Seasons, Op. 8: Concerto No. 2 For Violin In G Minor, Rv 

315 "Summer “ in MATLAB to show the spectral flux is as below. 

 

Fig 3.4 Spectral flux of the mentioned song showing the change of its frequency content over 

time 

 

Autocorrelation method This is a common method known for checking the periodicity 

of the signal, it is a measure of the similarities between the original audio signal and 
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shifted versions of it when the signal is delayed over time, it is inspired by the natural 

periodicity analysis of the human ear [42]. Many tasks in music information retrieval 

uses autocorrelation to detect the periodicity of audio signals in music specially if it is 

distorted by noise, also to identify the missing fundamental frequency of sound which 

is known as “ Missing fundamental” according to (“Autocorrelation”, n.d), below will be 

shown an example in Matlab on finding periodicity of a signal using autocorrelation. 

3.3 Time-domain features 

Audio signals has time-domain representations and frequency domain representations, 

however most tasks needs frequency domain analysis to reveal the signal’s information 

for detailed analysis which can’t be seen in the time domain, the accuracy of the tasks 

depend mostly on these features, in the time domain these features are directly 

extracted from the audio signal. Most audio features either show time or frequency 

information but not both, in the next section wavelets will be explained how it can show 

information in both domains which can be a better alternative than showing only time 

domain information. 

3.3.1 Zero-Crossing Rate 

It is a measure of how frequent the sign of the signal changes or the frequency in which 

the signal changes its sign crossing the zero point from the positive to the negative or 

vice versa. It is used in many tasks in speech processing and music information retrieval 

like musical instrument recognition and music genre classification due to its simplicity, 

can also measure the noise level in audio signals, when zero crossing rate values are 

high, this is an indication of the existence of noise, another application is that it can 

detect the presence of speech in audio signal or not,  it is computed using below equation 

(3.7) according to [43], let’s assume that xi(n)=0,1,….,N-1, to be the samples of the ith 

frame. 

Z(i) = 
1

2𝑁
 ∑  𝑁−1

𝑛=0  sgn xi(n) – sgn xi(n-1)                 (3.7) 

Where sgn xi(n) = 1, xi(n) ≥0 or -1, xi(n)<0. 

The results from the above equation (3.7) can show the high frequency content of a 

signal if the sign frequently changes, also can do periodicity check for the signal, 

because as periodic signals repeat the same pattern over time, then variations in the 

values of zero crossing rate can be an indication that the signal is aperiodic. 
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3.3.2 Energy 

The energy of the signal indicates the loudness of the sound as it shows the amplitude 

of the sound signal and can be computed directly from the time domain representation 

[44], 

E = ∑ 𝑥[𝑛]𝑛
𝑛=0

2                     (3.8) 

Where      x[n] is the input signal 

                N is the length of the signal 

3.3.3 Root mean square energy 

As known as “RMS “is calculated directly from the energy of the signal as following 

equation (3.9) 

RMS = √
1

𝑁
 ∑ | 𝑥(𝑛)𝑛 |2                          (3.9) 

Where      x[n] is the input signal 

                N is the length of the signal 

RMS is a measure for the strength of the signal’s amplitude, which is an indication of 

its loudness, so as the signal’s amplitude is constantly varying the RMS can calculate 

its average [44]. 

3.4 Frequency-domain features 

Most of tasks in audio signal analysis requires transformation of given audio signals into 

the frequency domain, the reason is simply that time domain don’t hold that much 

information of the given signals to perform the needed tasks, time domain represents 

the changes happens to an audio signal over time while frequency domain represents 

the changes of the audio signal as a function of frequency and since sounds are an 

audible properties of humans that have band limit in which it is perceived, so in order 

to be able to make machines hear sounds the way we do, we have to decode the content 

of the audio signal the way human ears do, then transforming signals to its 

corresponding frequency values is the best way we can make algorithms that analyse 

sounds as human auditory system does. While most audio signal analysis techniques 

focus on either showing the information within the signal in time or frequency domains 

but not both, then it becomes an advantage for discussing ways to represent signals in 
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both domains simultaneously, then comes the role of wavelets which will be discussed 

later in this chapter. 

3.4.1 Fourier transform 

Fourier transform is made on the purpose to show the frequency information of a signal 

by displaying its frequency values and where it lies over a range of frequencies, any 

change happens in one of the domains consequently happens in the other domain ( time 

or frequency), however it is noticed that the frequency information of a given signal 

don’t show the time it happened then came the need to find a way to show the time 

information, Dennis Gabor came with the idea that instead of considering the whole 

signal, just consider a segment of it by fixing a window function which is a non-zero 

function inside a specific interval and zero outside of it, and it is multiplied by each 

segment of the signal as it moves over the entire signal [45], by this way we can get 

the frequency content for each segment, below will be shown an example of applying “ 

hamming “ window to a 30 seconds audio signal of a pop song done in Matlab. 

 

Fig 3.5 shows a hamming window applied to a 30 seconds audio signal and displays it in the 

time and frequency domains 

However, it is important to note that as application of a window function gives the 

advantage of displaying the frequency content of a segment of a given signal and this 

raises the question of what length this applied segmentation should be? A good answer 

for this question is that a proper window size should contain as much as possible 
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information of the frequency content and time information for the given signal, while 

this seems difficult according to heisenbug uncertainty principle which states that it’s 

impossible to have a window function that achieves good frequency resolution without 

affecting time localisation, because selecting longer window sizes will give better 

frequency resolution but will affect time localisation and to achieve good time resolution 

will affect the frequency, also the research showed that no amount of overlap can 

improve the results, so the most proper solution is to compromise and have an optimal 

selection of time-frequency resolution without sacrificing much of the information in the 

signal [46]. Another point to account for is the stationarity of the signal, most audio 

signals are in continuous change, for example a song being played, one note of it is 

considered stationary but as more notes being played along with different instruments, 

this leads to a change in the signal characteristics such as timbre and frequency, and 

eventually becomes non stationary, so a solution is to apply the window function of size 

equal to the length of the stationary part, a wider window size will get a more confused 

frequency content, that will make it difficult to distinguish single notes, also FFT theorem 

assumes that the frequency information across the signal is not changing or repeating 

over a periodic pattern, otherwise the results of the analysis would be inaccurate, so to 

avoid this, small window sizes applied to short segments of the audio signal would suffice 

to get accurate frequency representation [47]. 

Spectral leakage Another drawback of Fourier transform, so as FT supposes that the 

signal behave in a periodic manner, while most audio signal don’t stay too long periodic 

and eventually changes, so as discussed in previous section is to segment the signal to 

frames and analyse each frame separately as the signal tend to be more stationary 

within this frame, then apply the window function, the result after windowing will the 

frequency representation of that audio segment but with some leaked spectral 

information from the edges of the applied window function, a proposed solution to this 

problem that helped to mitigate the effects is to apply a window functions of “ Hann” or 

“ Hanning”, it showed that it smoothens these discontinuities at the edge of the window 

making it behave in a more periodic manner as discussed in section 2.2 in [41]. 

As shown below in figure 3.6, the spectral leakage because of windowing, also it is worth 

to mention that every task requires reconsideration of which window type , length and 

overlap between consecutive segments, a task that requires detecting speech in a noisy 

environment will have different window parameters than a task for classifying music 

genres [48]. 
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Figure 3.6 shows spectral leakage happened after applying a window function (“Spectral 

leakage”, n.d) 

3.4.2 Wavelet Analysis for Audio Signals 

The main purpose of audio analysis is to be able to get an accurate representation of an 

audio signal without losing much of its information in the analysis process, so when we 

have a signal to be analysed, we need to find the optimum way to retain as much 

information for this signal in both frequency and time domains, Fourier transform don’t 

offer this advantage, FT decomposes the signal as sum of cosine and sine waves, it 

gives us a good frequency resolution with sacrificing its time localisation, we end up 

having the frequency information but the time of its occurrence remains hidden in the 

frequency spectrum. Another drawback of Fourier transform is that it gives good results 

for stationary signals but when it comes to non-stationary signals that have their 

frequency content changes over time, it doesn’t give the expected results, when short-

time Fourier transform came to light and promised to offer a solution for good time 

localisation, it was found that it didn’t give the ideal expected performance and the 

reason is that the window size used in the analysis remains the same all over the signal 

in time and frequency [49]. Here comes the role of wavelets that is able to overcome 

these disadvantages and gives good time-frequency resolution even for non-stationary 

audio signals like that of music, this will be explained in the following discussion and 

how we can use wavelets in music analysis and pointing its properties. However, there 

is many wavelets that had been developed for different purposes, so it’s important to 
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keep the focus on specific kind that serves us to get accurate results for our task, as we 

are analysing audio signals then we will study the properties of wavelets that give the 

desired result in analysing music [50]. 

The word wavelet is defined as a little wave that have an oscillatory behaviour that 

decays rapidly unlike the sinusoids, wavelets have a finite duration, short time Fourier 

transform are unadjustable and the window size used in the analysis remains the same 

all over the signal, if the window is so narrow, we will have a very good time resolution 

but we lost most of the frequency content, and if the window is very wide, then we 

captured all the frequency content but lost the time localisation. 

The Discrete Wavelet Transform Recently, wavelet analysis applications have arose 

due to the need to find an effective way to extract information from non-stationary 

signals as music with better time-frequency resolution rather than the conventional 

short-time Fourier transform and its associated drawbacks that were mentioned in the 

previous discussion (3.4.2). Also, their ability to be adjusted to parameters that fits the 

needed task. In wavelets we can control its parameters, it consists of a scaling 

parameter that determines how wide or narrow the window is and a translation 

parameter that slides the window along the signal over its duration (time), then to get 

the frequency information without losing any, make a wider window that covers the 

whole signals to pick out the lower frequency content as it exists during the whole signal 

duration, and then use smaller windows to pick out high frequencies, because low 

frequencies are not localised in time then can be done with a wider window, while high 

frequencies are localised in time so can be captured with smaller windows, and these 

are similar properties to the human auditory system that have similar time-frequency 

resolution characteristics [51]. There are two types of wavelet transformation, the 

continuous and the discrete, we will go through the discrete here as it has a denoising 

properties for audio signals. 

The DWT can be described by the following equation, 

W(j,k) = ∑ ∑ 𝑥(𝑘)𝑘𝑗  2−𝑗/2𝜓 (2−𝑗 n-k)                 (3.10) 

Where 𝜓(t) is a the mother wavelet, 

           j,k are for scale, translation. 

The process of computing DWT is similar to discrete multirate filter banks, it works by 

filtering the signal through low pass and high pass filters, this signal decomposition will 

result in determining the signal sub-bands, then half of the samples are neglected after 

sampling as the Nyquist-Shannon sampling theorem states, after that the low sub-band 
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is iteratively filtered by the same previous decomposing technique to result in much 

narrower sub-bands, and always the length of the coefficients in each sub-band equals 

to half of number of the coefficients of the previous stage, this technique has been 

proven to be effective as it will give us the large coefficients that resembles the part of 

the signal we need to capture and low coefficients are more likely to contain noise and 

uncorrelated frequencies of the signal so it has denoising properties [52]. This type of 

transformation provides a logarithmic decomposition for frequencies which imitates the 

way humans perceive frequencies and this property make it act as biomimicry model, 

the closer the machine’s perception of music to humans, the more accurate it is, and 

this because it provide a multiresolution decomposition which was difficult to achieve 

with Fourier methods, so now for example if we have an audio signal that resembles a 

song, which is considered as non-stationary signal, it will contain high frequencies and 

low frequencies, we use wide windows to capture the low ones and compressed windows 

to capture the high ones [53]. 

A MATLAB explanation for the above process of DWT for a common pop song “Emotions 

for Mariah Carey” to illustrate its audio analysis process, the song will be segmented 

into 30 seconds and will be decomposed according to DWT as below figure. 

 

 

Figure 3.7 The DWT signal decomposition into approximation and detail coefficients 
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The above figure (3.7) shows the audio signal decomposed simultaneously into detail 

coefficients as it passed through a high pass filter and approximation coefficients as it 

passed through low pass filter as shown in figure (3.8). 

 

Figure 3.8 showing signal x[n] passing through low-pass filter l[n] and high-pass filter h[n] 

 

The output of the low-pass filter will go through another decomposition through another 

high and low pass filters with half the cut-off frequency of the previous one according 

to (“Discrete wavelet transform”, n.d), then the output of the second decomposition will 

be, 

Ylow [n] =  ∑ 𝑥[𝑘] 𝑙[2𝑛 − 𝑘]∞
𝑘=−∞         (3.11) 

Yhigh [n] =  ∑ 𝑥[𝑘] ℎ[2𝑛 − 𝑘]∞
𝑘=−∞        (3.12) 

Next is to decompose the approximation coefficients into two decompositions 

simultaneously, and this is the second stage of multiresolution analysis that is supposed 

to be done by the DWT, it follows an iterative filtering process to give narrower sub-

bands in which the number of coefficients of each sub-band equals half that of the 

coefficients of the previous decomposition. The denoising and compressing properties 

of the DWT lies in giving the possibility to capture the part of the signal you are 

interested in in the form of large magnitude DWT coefficients and the noise are comes 

out in the form of smaller DWT coefficients and a denoising example will be explained 

below on how DWT denoises a signal [52]. So the wavelet analysis is considered to have 

an efficient zooming effect that contribute to capture even the small details of the signal 

represented as high frequencies at specific time and can disregard other non-interesting 

parts of the signal as discussed in [50]. 
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Figure 3.9 shows the decomposition of the approximation coefficients as it passed through high-

pass and low-pass filters 

Denoising of an audio signal Noise is regarded as random frequencies that exists in 

the signal and can disturb the analysis process and interfere with the important 

frequencies that needs to be captured from the signal, then signal denoising is a 

common approach that is been applied to signals that exhibit noisy behaviour and 

wavelets have denoising properties, below denoising example was done using MATLAB 

with the audio file of 30 seconds for the same song used in fig 3.7, 

 

Figure 3.10, original signal of a pop song distorted with additive Gaussian white noise 
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Figure 3.10 is an example explaining the denoising process using wavelets, an audio 

signal has been distorted by additive Gaussian white noise, then will use wavelets to 

denoise it to test its denoising properties, it is done by maximizing or minimizing specific 

frequencies, as noise has different frequencies than the original frequency range of the 

signal, then wavelets can distinguish them by what is called “ Wavelet thresholding “, it 

gives us two output coefficients, one is of large magnitude which carry all the main and 

essential features of the original signal and the second is of small magnitude coefficients 

which are regarded as noise and can be removed without adverse effects on the original 

signal [54]. This procedure is shown in figure 3.11 for denoising the audio signal, 

 

 

Figure 3.11 Signal denoising using wavelets  

 

In figure 3.11 wavelets used to denoise the signal and as shown the denoised signal is 

exhibiting similar behaviour as the original signal. 
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3.4.3 Mel Frequency Cepstral Coefficients 

As known as “ Mfcc”, It is considered as a way for sound visualization, inspired by the 

way humans perceive sounds, as humans understand sounds non-linearly, then it is 

required to scale these sound on a logarithmic scale so that machines can understand 

the way human ear do [55], for this reason Mel scale is used because of its ability to 

scale sounds logarithmically which is close to perceptual auditory system. It was used 

first for speech recognition systems and lately it gained popularity in music classification 

tasks and since then it is been used in a wide range of music information retrieval 

applications [56], MFCC’s computation procedure will explained in details in the 

following discussion along with its advantages and drawbacks. 

Feature extraction of audio signals is the preliminary step for any music information 

retrieval task, these extracted features are the distinctive description for these signals, 

it’s a decoding process for the information within these signals so we can decompose 

them to perform specific tasks like music genre classification, music recommendation 

system or speech recognition. MFCC are set of features that transform the frequency of 

the signals into a human perceptual like scale, the process of extracting these 

coefficients is like a transformative approach for the linearly spaced frequencies of the 

signal which is in Hz into the Mel scale which is non-linear “logarithmic “ [57]. 

 

 

Figure 3.12 shows the process for computing the Mel-frequency cepstral coefficients 

 

Pre-emphasis The importance of this step lies in amplifying high frequencies and 

boosting the overall spectrum of the signal, sometimes audio signals experience a kind 

of decay at high frequency regions that were supressed, that needs to be accounted for 

to get accurate analysis results [58],  
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It is performed by applying a high pass filter to the input signal as follows, 

Y(t) = x(t) - 𝛼x(t-1)                         (3.13) 

Where Y(t) is the output of the signal. 

           𝛼    is the filter coefficient ( its value ranges from 0.90 to 1). 

           X(t) is the input signal. 

 

Frame blocking This is the second step to be done next in the computation of MFCC, 

an audio signal of period t is changing over time and is considered non-stationary, so 

doesn’t make sense to apply Fourier analysis as it is applied only when assuming the 

signal is in a stationary condition even if not completely, it can be considered as quasi-

stationary, so to tackle the non-stationarity of audio signals is to divide it into short 

segments of equal length and analyse them separately, the common segment size used 

in audio signal processing is 20-40 ms of 50% overlapping, this is based on the 

assumption that signals tends to have stationary behaviour with short period of time, 

large segments will change this to be non-stationary also too short won’t give us enough 

samples to have a spectral representation for the audio signal [59]. 

Windowing Each audio segment should be multiplied by the window function, so if 

hamming window is applied, it fulfils the Fourier analysis assumption for staionarity of 

the signal and reduces the spectral leakage [58], it can be represented by the following 

equation, 

w[n] = 0.54 – 0.46 cos 
2𝜋𝑛

𝑁−1
             (3.14) 

Where 0 ≤ 𝑛 ≤ 𝑁 − 1 

Discrete Fourier Transform This step involves applying the discrete Fourier transform 

to each audio segment with the hamming window, so we will get an output of the 

magnitude spectrum of frequencies of each frame, the DFT can be computed by the 

following equation, 

X(k) = ∑   𝑥(𝑛)𝑁−1
𝑛=0  𝑒

−𝑗2𝜋𝑛𝑘
𝑁                     (3.15) 

Where 0 ≤ 𝑘 ≤ 𝑁 − 1 

N is the number of points 
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The reason hamming window is applied while performing the DFT for the audio segments 

is that it makes the peak of the frequency response values is more sharper and distinct 

which makes it easier to distinguish from other responses, while without using the signal 

experiences a kind of discontinuity at the edges of the frame which makes the peak of 

the frequency response appear as blurred [60]. 

Mel-frequency wrapping The next step after getting the frequency response values, 

is to visualize them on a scale to be understood, as mentioned before that the way we 

humans perceive sounds is logarithmically, so in order to have accurate results in our 

audio analysis tasks, we need to give machines the ability to perceive sounds the way 

we do, from this point, the Mel-scale and filter banks comes to have an important role 

that will be explained in the following discussion. 

Mel scale was originally developed as a way to visualize audio in a similar manner that 

mimics human auditory system, after some experiments to scale human perception of 

audio, it was found that below 1000 Hz can be perceived linearly and the scale’s spacing 

is in linear form, while above 1000 Hz it is converted to a logarithmic spacing, the 

formula below is used to convert Hz to mels and vice versa is, 

Fmel = 2595 log10 ( 1+
𝑓

700
 )              (3.16) 

Where f is the frequency in Hertz 

          Fmel is the frequency in mels 

 

The power spectrum for each frame that was computed from the step will be multiplied 

by a set of filter banks (20-40) filters, the standard is 26 [61], in a triangular shape in 

which these filter banks are placed in an equally spaced way on the Mel scale by using 

the above equation (3.16) to place them on the scale and this way converts the audio 

in Hz to mels which mimics the human ear, the spacing of filter banks starts narrower 

and gets wider as frequencies increase and then it gets us an estimate of the amount 

of energy that occurs at these different frequency regions on the scale [61], the shape 

of the filter bank used of course has a direct impact on the result of the extracted 

frequencies, in which each filter bank gives a different spectral estimation that is a direct 

reflection for the properties of the applied filter. The triangular shape is the most 

common used one, hanning filter shape was also used before, some researches showed 

gammatone filters can provide better performance in case of noisy signals [62], this will 

be experimented in the following discussions. 
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The output of the mel spectrum can be represented by the following equation (3.17) 

as mentioned in [63], 

S(m) = ∑  [ 𝑁−1
𝑘=0 | X(k) |2 Hm(k) ]                (3.17) 

Where 0 ≤ 𝑚 ≤ 𝑀 − 1 

          M is the number of the triangular mel filters 

          Hm(k) is the weight applied to the kth energy spectrum bin that contributes to the 

mth output band, the below figure (3.13) shows how the filter banks are placed on the 

mel scale. 

 

Figure 3.13 shows triangular filter banks placed on Mel scale as explained in [63] 

The resultant of the above step will get us the energy spectrum of the mel frequencies 

resulted from applying the triangular filter banks, then we have to take the log for each 

of these energies and this is inspired by human’s ear sensitivity for hearing, that has a 

non-linear behaviour, to mimic this behaviour we apply the log, it is also showed that 

this step makes it more robust to very quiet and very loud sounds, and it significantly 

affect the accuracy of speech recognition [64]. 

Discrete Cosine Transform As known as “ DCT”, this is the last step required to get 

the cepstral coefficients, from last step we got the log of the energies of the filter banks 

which are 26 log energies from the 26 applied filters, these energies are of low order 

coefficients and high order coefficients, most of the important information we need are 
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encoded within the lower order coefficients which contains the vocal tract information 

and most tasks like speech recognition or music information retrieval tasks as genre 

classification requires only these low order coefficients, so we pick only the first 13 

coefficients and drop the rest “high order coefficients”. As all of the 26 coefficients were 

found to be highly correlated because of the overlapping between the applied filter 

banks, the more overlapped the filters, the more the filter’s energies are correlated, and 

vice versa, this resulted in some issues while using it to perform tasks, so the advantage 

of applying DCT lies in its ability to decorrelate these coefficients and separate them so 

we can keep only the first 13 coefficients we need [64]. The final Mel frequency cepstral 

coefficients are computed from the following equation, 

C(n) = ∑ 𝑙𝑜𝑔𝑀−1
𝑚=0 10 (s(m)) cos ( 

𝜋𝑛(𝑚−0.5)

𝑀
)                  (3.18) 

Where n= 0,1,2,….., c-1 

          C(n) The cepstral Coefficients. 

 

An example for extracting the Mel-frequency cepstral coefficients from a rock song “The 

stone roses-Elephant stone), implemented in MATLAB with 40ms window length and 

50% overlap. 

 

Figure 3.14 shows 13 MFCC extracted from a rock song 
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3.4.4 Gammatone Cepstral Coefficients  

Feature extraction of audio signals is a pre-processing step before performing any task 

on audio data, it is the way that discriminates between each file of these data. The most 

conventional and common way for feature extraction is the MFCC that was explained in 

the previous section, in this section a different approach will be discussed for extracting 

the information within the audio signals. MFCC is considered to have perceptual 

properties like that of human ear and that was explained previously, however there are 

other auditory filters that have another way to mimic the same behaviour and may give 

better performance with analysis of audio signals or some type of them, for example, 

MFCC maybe good with audio that contains no vocals, but is not performing good with 

vocal audio or noisy signals. It is important to study other auditory filters that have 

good potential to scale the way humans listen to music and have similar properties like 

masking. Gammatone filter banks shows that it can mimic the impulse response of the 

auditory nerves of the human hearing according to study [65]. The impulse response of 

the gammatone can described by below equation,  

g(t) = atn-1 cos(2𝜋ft+𝜑) e -2𝜋bft             (3.19) 

Where a = peak value 

          tn-1= Time onset 

          Exponential for calculating decay and bandwidth 

          f = Center frequency of the filter 

          𝜑= The phase 

The computation of GTCC is resembles that of MFCC but the filter banks are instead 

replaced with gammatone filters, the reason is that these filters mimics the magnitude 

characteristics of the auditory filters in the human ear [66], its impulse response can be 

computed from the above equation (3.19). The human ear behaves in a non-linear way 

as discussed in the beginning of chapter 3, so filter banks that exhibit non-linear 

behaviour can somehow and have similar frequency characteristics can be used to be 

as an artificial human ear and gammatone filters have these properties. 

The similarities between the gammatone filters and human ear in the analysis of audio 

comes from that the bandwidth of the gammatone filters are estimated in relevance 

with the critical band of the human ear that fall within the center frequency of these 

filters, since “Harvey fletcher” in 1933 introduced the concept of critical band, he made 
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an assumption that the auditory filters in the cochlear part of the human ear is made of 

rectangular bandwidth filters which he found that it can very closely approximate the 

exact human hearing capabilities, he then concluded that the auditory filter’s bandwidth 

is the result of equivalent rectangular bandwidth “  ERB “ at the center frequency fc [67], 

using below equation, 

ERB = 24.7 + 0.108 fc              (3.20) 

Where fc = Center frequency 

Equation (3.20) resulted in the highest values of quality factor, as abbreviated Q factor, 

which is used for evaluating the efficiency of filters in the selection of frequencies among 

a specific range, a high Q factor indicates that the filter is highly selective [68]. The 

reason for using the ERB scale is its logarithmic response that mimics the human ear, 

below is a figure to show the way the gammatone filters are placed on the ERB scale, 

taken from [69]. 

 

Figure 3.14 shows the frequency response of the gammatone filter banks in a way that their 

center frequencies is equally spaced between 50 Hz and 4 Khz 

3.4.5 Bark frequency cepstral coefficients 

A different approach for emulating the human’s hearing capabilities. Bark scale is a 

psychoacoustic measure that was introduced by Eberhard Zwicker in 1961, the way it 

works is that it mimics the frequency response of the human hearing which lies within 

24 critical bands by using the frequency warping scale known as bark scale. The most 

common scale in speech and audio processing is the Mel scale which can extract mel 

frequency cepstral coefficients from an audio signal, its computation process was 
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explained previously in section 3.4.3, however its performance degrades with existing 

noise in the environment. The auditory system has a natural masking property, bark 

scale approximates the perceived spectrum of hearing into 24 critical bands and this 

makes it a potential closer artificial representor for the human hearing. The bark 

frequency cepstral coefficients computation is much similar to that of MFCC with just 

changing the mel scale filter to that of bark scale filter, then the result is the resulting 

cepstral coefficients extracted from the original signal. The bark frequency can be 

computed using below equation [70], 

B(f) = 13 arctan (0.00076f) + 3.5 arctan ( 
𝑓

7500
)2                    (3.21) 

Where f = Frequency in Hz 

 

 

Figure 3.15 shows the computation process of BFCC [70] 
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4 Features evaluation and testing  

In the previous chapter, feature extractors were discussed and their potential to improve 

the feature extraction process of information from audio signals, which are highly 

dimensional and performing feature extraction significantly lowers these dimensions 

while keeping the most relevant ones to our task. 

The following discussion will be focused on the evaluation model that had been made to 

test the auditory feature extractors, a deep learning model developed in MATLAB for 

classifying different music genres using the features intended, the classification 

accuracy “ in percentage” is a direct indication of the used feature performance. For 

example, while comparing the features classification results the higher the percentage 

the better this feature is for classifying the type of signals used as an input signal. 

 

4.1 Types of signals  

The features will be tested with different types of signals to determine which are the 

most noise robust and which have higher performance. A set of audio files without vocals 

“Just music “will be used and another set with vocals “Music with speech”, these sets of 

audio files will be interrupted with noise, each of these sets will be independently tested 

using each of the auditory feature extractors. The music dataset consists of 200 audio 

files of two genres, each genre is 100 audio files, and the vocals dataset consists of 300 

audio files of 3 genres, each is 100 files, audio files are mono channel and sampled at 

22050 Hz. 

The amount of audio files used have no direct impact on the performance of the feature 

extractors. The reason is that the classification percentage of each of these feature 

extractors will all be compared together to determine which has the highest percentage 

and consequently performs better, for example if Mel frequency cepstral coefficients 

were extracted for a specific dataset and resulted in 65% and gammatone cepstral 

coefficients were extracted for the same dataset and resulted in 60%, and bark 

spectrum coefficients resulted in 55%, then this means that for this type of audio data 

(music with vocals), MFCC has better performance than GTCC & bark spectrum, and the 

same procedure will be followed with other types of datasets and after noise disruption. 

This way it can be figured out which are the best feature extractors that performs better 

than others and are closer to the human ear which was found to be 70%, then the closer 
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the accuracy of a feature extractor to this threshold, the closer it is to human auditory 

perception. 

4.2 Deep learning model for classification 

The classification model is made in MATLAB, it is a method for testing the performance 

of the audio feature extractors. Firstly, the dataset is loaded, then split to training and 

validation sets with ration of 80% training and 20% validation. Extraction of features 

will be performed separately on each of the two sets, as mentioned before, that audio 

sets are highly dimensional with many redundant information, so feature extraction 

keeps the highly relevant information while discarding the others. The data used in this 

model is considered to be small and deep learning models will show lower performance 

compared to machine learning models when small data is used, but in this study the 

focus is to compare the feature extractors and determine the best performing with 

different types of audio data. 

The learning model workflow starts with accessing the audio files then reading them, 

MATLAB will save them in what is called “ cell arrays”, these audio files are labelled and 

it is always preferred that each label contains sufficient amount of audio files so that the 

neural network can learn about each label and pick the patterns and features that 

distinguish each label from the other. The neural network was designed using LSTM with 

an adjustable number of hidden units, sequence input layer, fully connected layer, 

SoftMax layer and classification output layer. The number of sequence input layers 

corresponds to the number of features or dimensions that have been extracted from the 

audio files. For example, MFCC extraction will extract 13 coefficients that contains the 

most highly relevant information to feed to the network, pitch corresponds to one 

additional layer and so on, the architecture of the network used is taken from here [71]. 

The size of the fully connected layer corresponds to the number of labels of the audio 

data entered as input. 

After designing the neural network, training options needs to be specified, the optimizer 

is set to “ Adam” , mini-patch options to shuffle and made to be “every-epoch”, and 

validation data is fed with the validation dataset’s cell array, plots are allowed to be 

displayed to see the accuracy percentage of the classification model. The model is ready 

to be trained and display the results, however some modification can be done like 

number of hidden units in the LSTM, and the model itself is subjective to many trial and 

error and modify different parameters in order to get the desired results, but in this 

study as its main subject to compare and determine best performing features not to get 

high accuracy percentage of classification, then current parameters should suffice. 
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4.2.1 Results  

The first dataset to be fed to the network consists of 200 audio files of two music 

genres, each genre is 100 audio files, sampled at 22 Khz, and it is of non-vocal audio 

data “ just music”, each song is segmented into 30 seconds. 

The feature extractors used in the training will be only the ones meant to be tested, by 

this way, the final accuracy classification percentage can all be given to the feature 

extractor selected without any contribution from other additional feature extractors that 

can improve the accuracy as spectral centroid, spectral flux and pitch. 

 

Training with Mel spectrum 

 

 

Figure 4.1 shows the training results using Mel spectrum for audio classification 
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Adding noise  

Noise will be added to test the feature extractor robustness, noise can be due to 

environmental factors or any distortions that may happen and disrupt the audio signals. 

The amount of noise added to the dataset is the same with all feature extractors. 

 

Figure 4.2 shows the training results with Mel spectrum and adding noise 

Training with erb spectrum “Gammatone cepstral coefficients” 

 

Figure 4.3 shows the training results with erb spectrum 
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Adding noise 

 

Figure 4.4 shows the training results with erb spectrum and added noise 

Training with bark spectrum 

 

Figure 4.5 shows the training results with bark spectrum 
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Adding noise 

 

Figure 4.6 shows the training results with bark spectrum and added noise 

The second dataset which consists of 200 audio files of two music genres but with 

vocals is to be fed to the neural network with same feature extractors and conditions 

applied to the previous dataset. 

Training with Mel spectrum 

 

Figure 4.7 shows the training results with Mel spectrum with the vocals dataset 
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Adding noise 

 

Figure 4.8 shows the training results with Mel spectrum of the vocals dataset and added noise 

Training with erb spectrum 

 

Figure 4.9 shows the training results with erb spectrum of the vocals dataset 
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Adding noise 

 

Figure 4.10 shows the training results with erb spectrum of the vocals dataset and added noise 

Training with bark spectrum  

 

Figure 4.11 shows the training results with bark spectrum of the vocals dataset 
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Adding noise 

 

Figure 4.12 shows the training results with bark spectrum of the vocals dataset with added 

noise 

The third dataset is mixed between the first and the second dataset, which means it 

contains 200 audio files of both music vocals and non-vocal music. The model training 

will be run with the same conditions applied to the previous datasets, and same value 

of noise. 

Training with Mel spectrum 

 

Figure 4.13 shows the training results with mel spectrum of the mixed dataset 
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Adding noise 

 

Figure 4.14 shows the training results with mel spectrum of the mixed dataset with added noise 

Training with erb spectrum 

 

Figure 4.15 shows the training results with erb spectrum of the mixed dataset  
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Adding noise 

 

Figure 4.16 shows the training results with erb spectrum of the mixed dataset with added noise 

Training with bark spectrum 

 

Figure 4.17 shows the training results with bark spectrum of the mixed dataset  
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Adding noise 

 

Figure 4.18 shows the training results with bark spectrum of the mixed dataset with added 

noise 

4.3 Conclusion 

The deep learning model acted as an evaluation method to test the performance of the 

auditory feature extractors. The aim from this experiment to find the feature that best 

approximates or gives the most closer representation to the human ear, for this reason 

noise were added to all audio files in each dataset to test its robustness and masking 

properties, also considering different types of audio signals were taken in consideration 

as there is music with vocals and non-vocal music. Music with vocals has an added 

speech signal to the audio itself which alters its spectral range of frequency and this in 

turn affects the performance of the feature extractor, also considered adding noise that 

may occur due to any environmental conditions. After model training the following 

results were found, the results are in percentage that indicates the ability of the model 

to classify the audio files into genres. 
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Table 4.1 Classification accuracy of audio feature extractors by deep learning model 

Feature 

extractor  

Non-vocal 

music 

dataset 

Non-vocal 

music dataset 

with noise 

Vocal 

music 

dataset 

Vocal 

music 

dataset 
with 

noise 

Mixed 

dataset of 

the 
previous 

two 

datasets 

Mixed 

dataset 

with noise 

Mel 

spectrum 

77.50% 62.50% 72.50% 70% 82.50% 57.50% 

Erb 

spectrum 

85% 50% 65% 47.50% 82.50% 77.50% 

Bark 

spectrum 

80% 67.50% 70% 67.50% 85% 75% 

 

The table above shows the classification percentage resulted from the deep learning 

model training. It reflects the ability of the feature extractors to classify songs that were 

given as input audio signals to the model. These feature extractors work by extracting 

the most relevant information in the audio signals decreasing its high dimensionality 

and feeding to the classification model. The accuracy results showed a high accuracy for 

the erb spectrum with non-vocal music classification while low when disrupted by noise, 

this means it gives great results if the audio signals were denoised before applying it, 

but it won’t perform well in case of real time classification and there exists noise due to 

environmental conditions. The Mel spectrum showed a moderate and can be said 

acceptable performance in both classification for non-vocal music and noise robustness, 

and it is commonly used in music industries, then comes the bark scales that showed 

good classification performance makes it better than the Mel spectrum and higher noise 

robustness which gives it an advantage over the erb and Mel spectrums. The second 

testing phase that have the vocal music dataset, Mel spectrum’s accuracy surpassed 

both the erb and bark spectrums and also in noise robustness, making it a good choice 

for vocal music, or speech recognition applications. The third testing phase that have 

the mixed dataset of combined vocal and non-vocal music, which makes sense of most 

real audio datasets that exists out there and makes it easier to use in different 

application than to split to vocal and non-vocal. The bark spectrum performed the best 

as feature extractor than both Mel and erb spectrums and also for noise robustness, 

making it the best choice to apply for real time audio or large audio datasets. This result 

makes it the closest approximation to the human ear combining its noise robustness 

properties and classification accuracy and the reason as mentioned in section 3.4.5 its 

structure of 24 bands that corresponds to the 24 critical bands of the human hearing. 
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SUMMARY 

Audio data is vastly growing with millions of songs being published every year, then 

became the need to develop algorithms and robust systems to deal with is inevitable. 

Music information retrieval is the science that deals with such audio data and retrieve 

information from it then feed it to machine learning algorithms to perform specific tasks. 

In the last decade these algorithms became so much developed to efficiently manage 

and do different MIR tasks, however there still many research areas that researchers 

pointed out for development and these are being discussed every year in the 

international society of music information retrieval “ISMIR”. One of the most important 

steps in MIR tasks is the feature extraction. As mentioned before that audio data are 

highly dimensional data and most of these dimensions or features are considered to be 

redundant, so feeding the raw audio data directly to algorithms is not going to get good 

results, for this reason comes the necessity to only extract the most relevant features 

from the data, and this is done through the feature extraction process. The feature 

extraction process involves applying some auditory feature extractors with signal 

processing, the efficacy of these feature extractors depends on how effective they are 

in extracting the relevant information from the audio signals even if these signals have 

been exposed to noise due to environmental or other factors. The most commonly used 

is the Mel frequency cepstral coefficients which scales the frequency response of the 

audio signals on a non-linear scale, and this is inspired by the way humans listen to 

sounds. We listen to sounds linearly for sounds that are below 1000 Hz but above, we 

perceive it logarithmically. There are different types of psychoacoustical scales that 

approximates audio in a similar way human do, but the question is to what extent? then 

testing different feature extractors with real audio is the way to see which will perform 

better, specially that using mel scale was found to give poor performance in the 

presence of noise, and this disadvantage will be a challenge in case it is needed to 

process audio data in real time and there exists a noise due to any environmental 

conditions. There are two other psychoacoustical scales that also have similar properties 

to the human ear and may hold the key to a better performance, those are the erb scale 

and bark scale. A deep learning model was made to classify music genres, and the 

spectrum of these audio files were extracted using the three psychoacoustical scales to 

see which performs better and more noise robust, also different types of audio signals 

were used (music with vocals, non-vocal music and mixed). The results showed that 

bark scale is the best to approximate human hearing and have the best noise robustness 

properties, this can make it as a better alternative to use in music genre classification 

without need to separate the datasets into vocals and non-vocals which would be a 

difficult task in processing large amounts of audio data. 
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APPENDIX 

MATLAB deep leaning model code used to test the features, the design parameters of 

the network was used by help of this example [72]. 

% load the genre dataset  

  

location = fullfile('/Users/zaynamed/Desktop/MATLAB Testing/Dataset/Mixed Genres'); 

  

ads = audioDatastore(location, 'IncludeSubFolders', true,... 

      'LabelSource', 'foldernames' ); 

   

% Split to training and test data: 

   

  [traindata,testdata]=splitEachLabel(ads,0.8); 

   

  lentraindata= length(traindata.Files); 

   

  % read the audio files for train data: 

   

  for i=1:lentraindata 

       

      [data{i},fs]=audioread(cell2mat(traindata.Files(i)));  

       

  end 

   

  % Adding noise to the train dataset to disrupt the audio signals  

   

   for r=1:lentraindata 

      

     noisydatatrain{r}= cell2mat(data(r))+ (randn(size(data(r)))*(0.02)); 

      

 end 

   

  % read the audio files for test data: 

   

  lentestdata= length(testdata.Files); 
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  for j=1:lentestdata 

       

      [dataTest{j},fs]=audioread(cell2mat(testdata.Files(j)));  

       

  end 

   

  % Adding noise to the test dataset to disrupt the audio signals 

   

   for t=1:lentestdata 

      

     noisydatatest{t}= cell2mat(dataTest(t))+ (randn(size(dataTest(t)))*(0.02)); 

      

 end 

   

  % extract the features for train dataset: 

  

  aFE = audioFeatureExtractor( ... 

    "SampleRate",fs, ... 

    "Window",hamming(round(0.03*fs),"periodic"), ... 

    "OverlapLength",round(0.02*fs), ... 

    "SpectralDescriptorInput","barkSpectrum", ... 

    "spectralCentroid",true, ... 

    "spectralSlope",true); 

     

  

featuresTrain=cellfun(@(x)extract(aFE,x),noisydatatrain,"UniformOutput",false); 

  

Ytrain=traindata.Labels; 

labelsValidation=testdata.Labels; 

  

% equalizing the number of rows of the mfcc coeficcients of the train data: 

  

lenFeaturesTrain= length(featuresTrain); 

  

for k=1:lenFeaturesTrain 

     

    Processfeatures=featuresTrain{k}; 
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    Processfeatures=Processfeatures(1:2989,:); 

     

    FeatTrain{k}= Processfeatures; 

     

end   

     

% Convert 1*n array to n*1 array: 

  

FeatTrain=permute(FeatTrain,[2 1]);   

  

% convert cells in the above array 800*1 with cells (800*13) into (13*800): 

  

lenfeatTrain= length(FeatTrain); 

  

for u=1:lenfeatTrain 

     

    processfeatTrain= FeatTrain{u}; 

     

    processfeatTrain= permute(processfeatTrain,[2 1]); 

     

    readyfeaturesTrain{u}= processfeatTrain; 

  

end 

  

readyfeaturesTrain= permute(readyfeaturesTrain,[2 1]); 

  

%Extract features for Validation set: 

  

featuresTest=cellfun(@(x)extract(aFE,x),noisydatatest,"UniformOutput",false); 

  

featuresTest=permute(featuresTest,[2 1]); 

  

% Convert the array of features to have only first 2990 coefficients.   

  

lenfeaturesTest= length(featuresTest); 

  

for n=1:lenfeaturesTest 
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    usefeatures=featuresTest{n} 

     

    usefeatures=usefeatures(1:2989,:); 

     

    FeatTest{n}=usefeatures;         

                                       

end 

  

%Convert the test features into 200*1 array instead of 1*200 cell: 

  

FeatTest=permute(FeatTest,[2 1]); 

  

% Convert cells in array 200*1 ( 800*13) to (13*800): 

  

lenFeatTest= length(FeatTest); 

  

for r=1:lenFeatTest 

     

    useFeatTest= FeatTest{r}; 

     

    useFeatTest=permute(useFeatTest,[2 1]); 

     

    readyfeatures{r}= useFeatTest; 

     

end 

  

readyfeatures=permute(readyfeatures,[2 1]); 

  

  

%Define and Train the Network 

  

layers = [ ... 

    sequenceInputLayer(2) 

    lstmLayer(125,"OutputMode","last") 

    fullyConnectedLayer(numel(unique(Ytrain))) 

    softmaxLayer  

    classificationLayer]; 
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options = trainingOptions("adam", ... 

    "Shuffle","every-epoch", ... 

    "ValidationData",{readyfeatures,labelsValidation}, ... 

    "Plots","training-progress", ... 

    "Verbose",false); 

  

net = trainNetwork(readyfeaturesTrain,Ytrain,layers,options); 
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