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Abstract
Efficient Deep Learning Model Optimization for Resource Con-
strained Devices

This thesis addresses critical challenges in efficient deep learning (DL) model compression
and optimization, which are essential for deploying models on resource-constrained hard-
ware. Despite significant advancements, several key research gaps remain: the lack of a
standardized quantitative method for evaluating and comparing compression techniques,
the difficulty of achieving deep compression without significant performance loss, and the
challenge of optimizing models that are highly sensitive to compression. This thesis ex-
plores these gaps through three primary research questions.

To tackle these challenges, the thesis first develops and validates a robust numerical-
based method for objectively evaluating and ranking model compression techniques. This
method, introduced in Publication |, uses a weighted score-based ranking system to assess
the efficiency, effectiveness, and suitability of each technique across various applications.
It provides a systematic and adaptable method for selecting optimal compression strate-
gies, enabling informed decision-making tailored to diverse use cases.

The second research objective focuses on achieving a deep compression ratio of 32x
while maintaining acceptable performance. This was accomplished through an innovative
ensemble technique combining Tensor Train Decomposition (TTD) and 8-bit quantization,
as detailed in Publication 2. This approach significantly exceeded expectations, achieving a
remarkable 57x compression ratio, demonstrating the feasibility of high-ratio compression
for real-world deployment without substantial loss in accuracy.

The final research objective addresses the optimization of models that are highly sensi-
tive to compression and quantization. Publication 3 introduces a novel quantization offset
technique, known as quantization bias, to mitigate the sensitivity of state-of-the-art scene
text detection and recognition models to quantization. This technique enabled efficient
deployment on integer-only hardware with minimal performance loss. Additionally, an
integrated text orientation detection module enhances the model’s capability to handle
diverse orientations, broadening its applicability across different scenarios.

The cumulative contributions of this thesis provide a comprehensive methodology for
evaluating, compressing, and optimizing DL models for deployment on low-power, low-
cost hardware platforms. The proposed solutions not only advance the state-of-the-art in
model compression but also ensure that even architectures sensitive to compression can
be effectively optimized without compromising performance. These findings have signifi-
cant implications for real-world applications, enabling high-performance DL models to op-
erate efficiently in environments with stringent computational and memory constraints.



Kokkuvote
Tohus siivadppe mudeli optimeerimine piiratud ressurssidega
seadmete jaoks

See 16put6o kasitleb kriitilisi valjakutseid téhusa stigava 6ppimise (DL) mudelite tihenda-
misel ja optimeerimisel, mis on hadavajalikud mudelite juurutamiseks piiratud ressurssi-
dega riistvarale. Vaatamata markimisvaarsetele edusammudele on endiselt mitmeid olu-
lisi uurimisliinki: standardiseeritud kvantitatiivse meetodi puudumine tihendustehnikate
hindamiseks ja vordlemiseks, raskused sligava tihendamise saavutamisel ilma markimis-
vaarse joudluse vahenemiseta ja tihendamise suhtes dlitundlike mudelite optimeerimise
valjakutse. See uuring uurib neid ltinki kolme peamise uurimiskiisimuse kaudu.

Nende valjakutsetega toimetulemiseks tootatakse [6putdds esmalt vilja ja validee-
ritakse tugev numbripdhine meetod mudeli tihendamise tehnikate objektiivseks hinda-
miseks ja jarjestamiseks. See meetod, mida tutvustati, valideeritakse | publikatsioonis, ka-
sutab kaalutud skooripdhist jarjestussiisteemi, et hinnata iga tehnika téhusust, tulemuslik-
kust ja sobivust erinevates rakendustes. See pakub slistemaatilist ja kohandatavat raamis-
tikku optimaalsete tihendusstrateegiate valimiseks, voimaldades teha teadlikke otsuseid,
mis on kohandatud erinevatele kasutusjuhtudele.

Teine uurimiseesmark keskendub siigava tihendusastme 32-kordsele saavutamisele,
sailitades samal ajal vastuvoetava joudluse. See saavutati uuendusliku ansamblitehnika
abil, mis tihendas Tensor Train Decomposition (TTD) ja 8-bitise kvantimise, nagu on tksik-
asjalikult kirjeldatud Il publikatsioonis. See lahenemine Uletas oluliselt ootusi, saavutades
markimisvaarse 57-kordse tihendusastme, mis naitab suure tihendussuhte teostatavust
reaalseks kasutuselevotuks ilma tapsuse olulise vahenemiseta.

Loplik uurimiseesmark kasitleb tihendamise ja kvantiseerimise suhtes tlitundlike mu-
delite optimeerimist. Il publikatsioon tutvustab uudset kvantimise nihketehnikat, mida
tuntakse kvantimise eelarvamusena, et leevendada tipptasemel stseeni tekstituvastus- ja
tuvastusmudelite tundlikkust kvantimise suhtes. See tehnika vdimaldas tohusat juuruta-
mist ainult tiisarvudega riistvaras minimaalse joudluskaoga. Lisaks suurendab integreeri-
tud teksti orientatsiooni tuvastamise moodul mudeli voimet kasitleda erinevaid orientat-
sioone, laiendades selle rakendatavust erinevates stsenaariumides.

Kaesoleva teadustoo kokkuvotvad panused pakuvad pohjalikku metoodikat slivadp-
pe mudelite hindamiseks, tihendamiseks ja optimeerimiseks, et neid kasutada madala
voimsusega ja odavatel riistvaraplatvormidel. Pakutud lahendused mitte ainult ei eden-
da mudeli tihendamise tipptasemel tehnoloogiat, vaid tagavad ka selle, et isegi tihenda-
mise suhtes tundlikke arhitektuure saab téhusalt optimeerida ilma joudlust vahendamata.
Need tulemused méjutavad markimisvaarselt reaalmaailma rakendusi, véimaldades suu-
re joudlusega stivadppe mudelitel tohusalt todtada keskkondades, kus on ranged arvutus-
ja malupiirangud.
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1 INTRODUCTION

1.1 Background and Motivation

In an increasingly connected world, the proliferation of smart devices has generated an
unprecedented demand for technologies capable of processing complex data in real-time
at the edge. Marco et al. [1] highlighted adaptive model selection techniques to optimize
deep learning inference on embedded systems, addressing the limitations of limited com-
putational power. Han et al. [2] proposed MCDNN, a framework for efficient stream pro-
cessing under resource constraints, utilizing approximation-based methods to enhance
the performance of the deep learning model. Liu et al. [3] advanced our understanding
of usage-driven model selection for mobile devices, emphasizing dynamic adjustments to
model compression for improved efficiency.

Deep neural networks (DNNs) have demonstrated remarkable success in driving ad-
vancements across various domains. Lukas [4] examined efficient online processing
methodologies for neural networks, emphasizing their role in real-time applications.
Zhang et al. [5] investigated compilation and optimization strategies to deploy machine
learning models in embedded systems, providing information about overcoming resource
limitations. Cai et al. [6] presented an extensive review of enabling deep learning on
mobile devices, discussing methods such as neural architecture search and model com-
pression to improve applicability. Nagarhalli et al. [7] reviewed the impact of machine
learning in natural language processing (NLP), underlining the contributions of DNNs to
tasks such as speech recognition and sentiment analysis. Saptarshi et al. [8] surveyed
recent trends in deep learning architectures and applications, demonstrating their trans-
formative potential in various fields. Minar et al. [9] provided an overview of recent
advances in deep learning, contextualizing its applications in modern computing.

Deep learning (DL), a subset of machine learning (ML), functions as a computational
approach inspired by the structure and function of the brain’s neural networks (NNs). Zhai
et al. [10] explored the integration of Al in education, providing a broader perspective on
its potential applications. Panch et al. [11] discussed the synergy between artificial intelli-
gence and health systems, highlighting the pivotal role of deep learning in decision-making
processes. Ademola et al. [12] focused on resource-aware scene text recognition, detailing
how learned features and quantization techniques enhance performance on constrained
devices. Ademola et al. [13] further explored tensor train decomposition and quantization
methods, showcasing an ensemble approach for deep learning model compression. Cai
et al. [6] emphasized the hierarchical nature of neural network feature extraction, which
enables powerful processing of unstructured data such as text and images.

DL applications extend across computer vision (CV), NLP, healthcare, finance, and en-
tertainment. In CV, Wu et al. [14] demonstrated the application of DL in tasks such as
object detection and facial recognition. Rawat et al. [15] provided a comprehensive re-
view of convolutional neural networks for image classification, highlighting their robust-
ness in complex visual tasks. In NLP, Alshahrani et al. [16] evaluated DL’s capabilities for
language translation and sentiment analysis, while Pattanayak et al. [17] emphasized the
utility of recurrent neural networks for text processing. Hirschberg et al. [18] discussed
DL advancements in NLP, offering insight into state-of-the-art methodologies. Li et al. [19]
reviewed the integration of deep learning in signal processing, including its applications
in speech and text analysis.

In healthcare, Miotto et al. [20] reviewed the transformative role of deep learning
in disease diagnosis and personalized treatments. Chensi et al. [21] examined its appli-
cations in bioinformatics and genomics, demonstrating the adaptability of DL to various
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biomedical challenges. Khader et al. [22] explored the contributions of machine learning
to cardiovascular medicine, highlighting its clinical implications. Liu et al. [23] conducted
a meta-analysis comparing DL's diagnostic performance against healthcare professionals,
establishing its potential in medical imaging. Sendak et al. [24] critically evaluated the
challenges and opportunities of integrating ML into healthcare systems.

In finance, Eunsuk et al. [25] demonstrated the use of DL for analysis and prediction
of the stock market. Sohangir et al. [26] presented a framework for financial sentiment
analysis, leveraging deep learning for better forecasting. Ahmet et al. [27] surveyed the
financial applications of DL, including algorithmic trading and risk management. Polat et
al. [28] examined ML algorithms for stock trading strategies, underlining DL’s advantages
in detecting complex patterns.

Entertainment platforms widely leverage DL for personalization and user engagement.
Zhang et al. [29] conducted a survey on DL-based recommender systems, providing a
foundation for their use on platforms such as Netflix and Spotify. Dellal-Hedjazi et al.
[30] explored the role of collaborative filtering in recommendation systems, emphasizing
its synergy with DL techniques. Liu et al. [31] presented a survey of DL applications in
recommendation systems, describing their ability to effectively predict user preferences.
Anantrasirichai et al. [32] reviewed the role of Al in creative industries, including its impact
on content generation and recommendation systems. Ying et al. [33] highlighted the scal-
ability of graph convolutional neural networks for web-scale recommendation systems.

Despite these successes, deploying DL models on resource-constrained devices re-
mains challenging. Zhang et al. [5] analyzed the trade-offs in adapting ML to embedded
systems, offering strategies for model optimization. Cai et al. [6] emphasized lightweight
architectures to improve efficiency on mobile platforms. Mujtaba et al. [34] optimized
CNN dataflow to streamline computations and applied lightweight kernel transformations,
ensuring efficiency without compromising accuracy. Liang et al. [35] provided a detailed
survey of pruning and quantization, emphasizing their importance in reducing computa-
tional demands while maintaining model performance.

In conclusion, the integration of DL in resource-constrained environments requires
balancing computational efficiency, memory usage, and energy consumption. This thesis
contributes to advancing compression techniques tailored for these challenges, ensuring
DL's scalability and effectiveness in diverse applications.

1.2 Literature Review

Model compression for resource-constrained devices has been a vital area of research to
bring Al to the edge. The state-of-the-art methods for model compression can be catego-
rized as follows —bit reduction, knowledge distillation, low-rank tensor decomposition,
pruning, microarchitecture (i.e. compact model design) and ensemble of methods. Each
offers distinct advantages and trade-offs, contributing to the development of resource-
aware and efficient models for resource-constrained devices.

1.2.1 Bit Reduction
Bit reduction (i.e., quantization, ternarization, binarization) is a prominent technique in
model compression, primarily aimed at reducing the size and computational complexity of
DNNSs. It involves approximating 32-bit full-precision weights and activations with lower-
bit representations (e.g., 8-bit, 2-bit),

Jacob et al. [36] quantized the weights and activations using 8 bit, but maintained the
bias vector in 32 bit integer. Banner et al. [37] represents the weights and activations using
4-bit with a minimal decrease in accuracy.
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Liu et al. [38] trained a ternary network using 2-bit. Thus, reducing the memory foot-
print when compared to using binary weights representation.

To address the decrease in accuracy associated with post-training quantization, Jacob
et al. [36] simulated the effect of quantization during training by rounding up full preci-
sion weights and activations. This approach is referred to as quantization-aware training.
Courbariaux et al. [39] and Mohammad et al. [40] restricted the weights to binary values
and reported near-state-of-the-art results.

Yongxin et al. [41] introduce a novel approach to overcome representation collapse
in Vector Quantization (VQ) models by reparameterizing code vectors using a learnable
linear transformation layer, enabling optimization of the entire codebook space and en-
hancing scalability, adaptability, and performance across various applications.

Bit reduction has demonstrated significant potential for compressing large DL models,
making it ideal for resource-constrained hardware. However, it presents challenges, such
as accuracy degradation, especially with aggressive bit reduction (e.g., ternary, binary net-
works).

Another issue is hardware heterogeneity, as different devices support varying levels
of quantization. Hardwaer efficiency also varies across different hardware architectures,
with some platforms unable to fully utilize interger-only precision.

Finally, quantization sensitivity varies by model and tasks. For instance, models with
large weight variations, such as scene text detection and recognition, are more sensitive
to quantization compared to models for image classification. This requires task-specific
optimization, which can be very complex and challenging.

1.2.2 Knowledge Distillation

Knowledge distillation (KD) is a model compression technique that has gained prominence
in DL research due to its simplicity and effectiveness. The idea of KD, initially proposed
by Geoffrey et al. [42], involves transferring the knowledge from a large and complex
model (ie, teacher) to a smaller and compact model (ie, student) with small computa-
tional and memory footprints. The process allows the student model to approximate the
performance of the teacher model.

The concept of KD was rooted in the idea that large models often capture intricate
patterns and relationships in data that smaller models struggle to learn directly. Geoffrey
et al. [42] proposed training a student model by mimicking the soft predictions (proba-
bility distributions) of the teacher model, rather than just learning from hard labels. This
approach takes advantage of the dark knowledge embedded in the teacher’s output prob-
abilities, allowing the student model to generalize better than it would by relying only on
labeled data. Their work demonstrated that KD could achieve the predictive capacity of
ensembles using smaller and compact models.

The researchers explored various strategies to improve the effectiveness of KD. One
such strategy is collaborative teacher-student mutual learning, where both models learn
simultaneously, and the knowledge transfer is bidirectional [43]. Zhang et al. [44] pro-
posed a self-distillation framework in which a model distills the knowledge of itself over
multiple iterations or layers, effectively refining its own predictions without requiring a
separate teacher model. This approach has shown potential for further improving model
performance without increasing complexity.

KD still presents some challenges. One major issue is the performance gap between
the teacher and student models. Also, KD does not guarantee that the student model will
reach the teacher’s performance level. This is particularly evident when the difference in
model expressivity is large.
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Another challenge is the effectiveness of distillation across different domains. Al-
though KD has shown remarkable success in image classification, its application in more
complex tasks, such as natural language processing and scene detection & recognition,
has been less straightforward.

1.2.3 Low Rank Tensor Decomposition

Low-rank tensor decomposition (TD) is a mathematical technique that has gained traction
in compression of the DL model. It extends the concept of matrix decomposition to higher-
dimensional data representations (tensors). Low-rank TD leverages to reduce the number
of parameters of the models through a low-rank approximation.

Vadim et al. [45] decomposed a 4D convolutional kernel into a sum of vector prod-
ucts using CP decomposition (CANDECOMP/PARAFAC decomposition). CP decomposes a
tensor into a sum of rank one tensors. It is one of the simplest forms of tensor decom-
position and is widely used due to its simplicity. However, CP may not always provide the
best approximation for complex tensors present in DL models.

Yong-Deok et al. [46] applied Tucker decomposition (TD) to deep CNNs, demonstrat-
ing significant reductions in both the number of parameters and computational cost, while
maintaining competitive accuracy. TD generalizes CP decomposition by allowing the ten-
sor to be decomposed into a core tensor and multiple factor matrices. TD offers more
flexibility in the approximation of tensors and has been shown to achieve better com-
pression ratios with less loss of accuracy compared to CP decomposition.

Novikov et al. [47] employed the decomposition of the tensor train (TT) in the NNs,
reducing the number of parameters in the fully connected layers by orders of magnitude
without significant accuracy loss. TT represents a tensor as a sequence of low-rank matri-
ces. This approach is particularly efficient for very large tensors, as it scales linearly with
the tensor dimensions.

Low-rank TD offers significant advantages; however, several challenges still exist. One
key issue is the accuracy trade-offs, as the compression ratio scales with the tensor rank.
Another challenge is computational complexity during the process of decomposing a ten-
sor, especially for high-dimensional data, which can be computationally expensive. This
complexity can offset some of the gains achieved through model compression, particularly
during training.

Choosing the appropriate rank for decomposition is also critical. A lower rank may
result in more compression, but at the cost of accuracy degradation, while a higher rank
may preserve accuracy but limit the compression benefits. Automated methods for rank-
ing selection are still an area of active research.

Lastly, decomposed models may not generalize well across different tasks or datasets,
particularly if the decomposition was tuned for a specific application. Ensuring that the
compressed model retains its generalization capabilities is a key challenge.

1.2.4 Pruning
Pruning is another compression technique employed in DL, primarily aimed at reducing
the size and computational footprint of NNs. By eliminating redundant or less significant
parameters, pruning creates efficient models that require less memory and computational
power, making them suitable for deployment on resource-constrained devices such as
mobile phones, embedded systems, and IoT devices. The method has gained significant
attention because of its ability to retain the accuracy of the models while reducing the
model size and inference time.

Early work on NN pruning dates back to the 1980s and 1990s, with studies by LeCun
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et al. [48] and Hassibi et al. [49] introducing the concept of optimal brain damage and
optimal brain surgeon, respectively. These methods aimed to prune network connections
based on their contribution to the loss function, effectively removing those that had min-
imal impact on the model performance.

These early approaches laid the groundwork for more sophisticated pruning tech-
niques, emphasizing the potential of pruning, not just for reducing the model size but
also for improving generalization by eliminating unnecessary complexity. Song et al. [50]
combined pruning, quantization, and Huffman coding and achieved significant reductions
in model size.

Hao et al. [51] introduced a method to prune convolutional filters based on their L1
norm, demonstrating that all filters could be removed with minimal impact on the ac-
curacy of the model. Jonathan et al. [52] introduced the "Lottery Ticket Hypothesis,"
suggesting that within large networks there exist small, randomly initialized subnetworks
that, when trained in isolation, can achieve performance comparable to the original net-
work. This hypothesis has inspired numerous studies on iterative pruning during training.

Lin et al. [53] present the design of a sparsity-aware deep learning hardware acceler-
ator that takes advantage of both data and weight sparsity in CNN models. Louizos et al.
[54] exploit LO regularization, which yielded inconsistent compression in larger datasets,
while simple magnitude pruning achieves comparable or better results.

Network pruning presents some challenges. One major challenge is accuracy loss,
particularly when aggressive pruning strategies are employed. Although fine-tuning can
often recover lost accuracy, there is a limit to how much pruning can be done before the
model’s performance deteriorates significantly.

Another challenge is the trade-off between sparsity and efficiency. Unstructured prun-
ing, while effective at reducing the number of parameters, can lead to sparse weight ma-
trices that are difficult to optimize on standard hardware, limiting the potential speedup.
Structured pruning, although more hardware-friendly, may require more sophisticated
criteria to determine which filters or neurons to prune, as these components often cap-
ture complex, high-level features.

Generalization and overfitting are also concerns in network pruning. As pruning re-
duces the number of parameters, it can lead to overfitting, particularly if the remaining
parameters are not sufficient to capture the underlying patterns in the data. This is partic-
ularly problematic in small datasets or when transferring pruned models to new domains
or tasks.

1.2.5 Microarchitecture

Microarchitectures (i.e., compact models) involve the design of small, compact, and effi-
cient model architectures. This approach is based on residual domain knowledge of the
blocks needed in the design of NN architectures. Microarchitecture differs from the other
compression methods (i.e., KD, pruning, quantization, TD etc.), because it does not rely
on any external compression.

Forrest et al. [55] achieved a similar accuracy with 50x fewer parameters obtained by
Krizhevsky et al. [56]. Andrew et al. [57] proposed MobileNets that utilize depth-wise
sepable and point-wise convolutions to reduce the number of multiplications. These CNN
microarchitectures have become the state-of-the-art for image classification and object
detection base models. Other proposed compact architectures include SqueezeNet[55],
ShuffleNet [58], EfficientNet [59], and TinyYOLO [60]. All efficient for edge deployments.

Despite the success of compact model design, several challenges persist, including bal-
ancing the accuracy-efficiency trade-off, where compact models often struggle to achieve
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the performance of larger models on complex tasks. Furthermore, ensuring generalization
across diverse tasks and datasets remains difficult, particularly when models are heavily
optimized for specific applications. Scalability also presents a challenge, as adapting com-
pact models for more powerful hardware without losing efficiency gains requires further
research.

1.2.6 Ensemble of Compression Methods

Ensemble combines multiple model compression techniques to achieve a better balance
between model size, inference time, memory, and accuracy. Using the strengths of various
compression techniques, such as pruning, quantization, TD, and KD, it mitigates the limi-
tations/weakness of the individual method. By integrating these methods, the ensemble
technique can effectively compress models while preserving performance, making them
particularly useful for resource-constrained devices.

One common ensemble method is the combination of pruning and quantization. Prun-
ing reduces the number of parameters in a model by removing less important/contributing
weights, while quantization reduces the precision of the remaining weights. Song et al.
[50] demonstrated that combining this technique can significantly reduce the size of neu-
ral networks with minimal impact on accuracy. Their work on the "Deep Compression"
framework shows that pruning followed by quantization leads to more efficient models
without significant performance loss.

Another effective ensemble technique involves combining KD and quantization. KD
transfers knowledge from a large and complex model to a compact model. The compact
model is then further compressed by quantization. Mishra et al. [61] explored this combi-
nation, showing that quantization-aware distillation helps maintain accuracy while allow-
ing lower bit quantization of the student model.

More recent research explores the integration of all three methods —KD, pruning,
quantization. Li et al. [62] proposed a comprehensive approach that first prunes the
model, distills the knowledge from the pruned model, and then applies quantization. This
multistep process helps maintain the model accuracy while reducing the model size and
improving inference speed. Their results indicate that the ensemble method can outper-
form individual techniques in terms of compression efficiency and model performance.

Linetal. [63] introduced an approach that integrates pruning, quantization, and search
for neural architecture (NAS). This method allows for automatic model design tailored
to specific hardware constraints, achieving the state-of-the-art compression rates with
minimal accuracy degradation.

The ensemble of compression methods, while very powerful, face challenges such as
increased complexity and implementation overhead, as integrating multiple techniques
(e.g., pruning, quantization, knowledge distillation, low-rank tensor decomposition) re-
quires careful coordination and consideration. Compatibility issues can also arise when
different methods interfere with each other, and the sequential application of these tech-
niques often leads to longer training times.

Task-specific tuning is also needed to optimize the ensemble for different models,
which can be time consuming. Hardware constraints may limit the benefits of compres-
sion, and there is a risk of over-compression, leading to accuracy loss.

Lastly, evaluating and benchmarking ensemble methods is difficult due to the lack of
standardized metrics that capture the trade-offs between compression, accuracy, and per-
formance across different hardware platforms.

Table 1 provides a summary of the state-of-the-art of model compression methods.
Each method is described in terms of its key contributions and the main challenges asso-
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ciated with it, along with relevant references.

Table 1: Summary of key literature on various model compression methods, describing their contri-
butions and challenges.

Technique Year Key Contributions Challenges

Bit Reduction 2015-2024 Enabled reduction in model size by approx- | Balancing accuracy and compres-
imating 32-bit full-precision weights and ac- | sion, especially for extremely low-
tivations with lower-bit representations (e.g., | bit formats, is challenging. Ad-
16-bit, 8-bit, 4-bit) [36]. Extreme cases such | ditionally, hardware platforms of-
as binarization and ternarization further re- | ten lack robust support for effi-
duce memory requirements and inference | cientlow-bit operations, complicat-
speed [39, 40]. Techniques like post-training | ing deployment.
quantization [37] have been explored for ef-
ficient deployment. Vector quantization was
introduced to improve inference time of the
model by reparameterizing code vectors using
a learnable linear transformation layer [41].

Knowledge Distilla- | 2015-2021 Facilitated knowledge transfer from larger, | Designing effective teacher-student

tion complex teacher models to smaller, simpler | architectures is critical. Optimizing
student models to maintain accuracy while re- | the knowledge transfer process to
ducing size [42]. Techniques such as collabo- | ensure student models retain per-
rative teacher-student learning [43] and self- | formance remains a challenge.
distillation [44] further optimize the distilla-
tion process.

Pruning 1989-2019 Reduced network size by removing less signifi- | Identifying redundant parameters
cant weights, neurons, or filters using unstruc- | and balancing compression with
tured pruning [48, 49] or structured pruning | accuracy remain significant chal-
[50, 51]. Techniques like the lottery ticket hy- | lenges. Efficient pruning algorithms
pothesis [52] and variational dropout [54] pro- | that generalize across different ar-
vided new methods to identify redundant pa- | chitectures are needed.
rameters.

Low Rank Tensor De- | 2015-2019 Applied matrix factorization techniques to de- | Selecting appropriate decomposi-

composition compose tensors in convolutional and fully | tion methods for specific architec-
connected layers, reducing parameters [45]. | tures, handling non-linear layers,
Hybrid tensor decomposition approaches [46] | and maintaining performance are
and Tensor Train Decomposition frameworks | key challenges.

[47] have been developed to optimize compu-
tational efficiency.

Microarchitecture 2016-2020 Designed lightweight CNN architectures (e.g., | Balancing model complexity, accu-
MobileNet [57], SqueezeNet [55], ShuffleNet | racy, and generalization is challeng-
[58], and EfficientNet [59]) that achieve high | ing. Adapting models for diverse
accuracy with fewer parameters. These archi- | tasks and hardware environments
tectures often reduce dependency on external | adds further complexity.
compression techniques [55, 60].

Ensemble of Model | 2016-2020 Combined multiple compression techniques | Coordinating and managing in-

Compression such as pruning, quantization, and knowledge | teractions  between different
distillation for greater reductions in model | compression techniques is com-
size while maintaining accuracy [50, 61]. Ap- | plex. Ensuring overall performance
proaches like dynamic knowledge distillation | in varied deployment scenarios is a
[62] have demonstrated improved compres- | major challenge.
sion outcomes.

1.3 Research Gaps and Research Questions

Efficient model compression has emerged as a pivotal area of research, driven by the grow-
ing demand for resource-aware Al solutions capable of operating on low-cost, low-power
embedded hardware. According to the surveyed literature, several key research gaps have
been identified.

One significant gap is the lack of a standardized, quantitative methodology for assess-
ing the efficiency, effectiveness, reliability, and suitability of DL compression methods.
This absence leaves researchers and practitioners without a clear framework for objec-
tively comparing various compression techniques. As a result, the selection of the most
suitable method often becomes subjective, relying on inconsistent benchmarks or incom-
plete performance metrics.
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Another critical challenge lies in achieving deep compression without loss of perfor-
mance. Fitting large models onto extremely resource-constrained hardware while main-
taining acceptable accuracy levels is a very challenging task. There is a pressing need to de-
velop compression techniques that are both resource- and performance-aware, enabling
efficient operation on devices with extreme storage and memory limitations without sig-
nificant degradation in performance.

Balancing model optimization and accuracy also remains a persistent challenge. Opti-
mizing deep learning models often introduces trade-offs, where reductions in computa-
tional or memory footprints can negatively impact model performance. For highly sensi-
tive models, even minor adjustments may result in substantial performance degradation.
Developing strategies that minimize resource usage while maintaining robust accuracy is
crucial, ensuring that optimized models remain effective across diverse tasks.

These challenges highlight the gaps in current research and emphasize the need for
new approaches to effectively solve them.

To address these gaps, this thesis aims to explore the following research questions.

Research Question 1(RQ1): Can a numerically based mathematical method be devel-
oped to quantitatively evaluate state-of-the-art deep learning (DL) model compression
techniques for diverse application requirements?

RQ1 focuses on developing a standardized numerical approach to objectively evaluate
and rank compression methods. The goal is to establish a systematic evaluation frame-
work that quantifies the impacts of various methods on the characteristics of the model,
providing a clear basis for selecting the most appropriate techniques.

Research Question 2 (RQ2): Can a deep model compression ratio of 32x be achieved
while maintaining an acceptable level of accuracy for practical deployment?

RQ2 examines the feasibility of achieving deep compression while preserving perfor-
mance. It aims to explore the practical limits of compression techniques and their ability to
maintain acceptable accuracy levels, offering insights into their application for resource-
constrained hardware.

Research Question 3 (RQ3): Can efficient model optimization be achieved without
significantly compromising performance, particularly for compression-sensitive archi-
tecture?

RQ3 investigates strategies for optimizing models that are particularly prone to perfor-
mance degradation under compression. The focus is on balancing efficiency gains, such as
reduced memory and computational requirements, with the need to preserve accuracy
and generalizability, especially in sensitive architectures.

1.4 Objectives and Contributions of the Thesis

This thesis aims is to address the research gaps outlined in the preceding section by ex-
ploring the three key research questions. This thesis is structured around three research
objectives (RO1, RO2, and RO3), each designed to address respective highlighted research
questions (RQ1, RQ2, and RQ3).

The objectives have resulted in contributions to efficient model compression for
resource-constrained hardware, which have been validated through publications in peer-
reviewed scientific journals and conference presentation. The cumulative findings and
contributions are thoroughly highlighted and discussed in detail throughout this thesis.

Research Objective 1 (RO1): Develop and validate a robust, numerical-based mathe-
matical method for objectively evaluating and ranking state-of-the-art model compression
methods. This method will assess each method’s impact on efficiency, effectiveness, and
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suitability across a wide range of applications, providing a standardized, quantitative ap-
proach to guide informed decision-making in selecting optimal compression strategies.

This objective explores the feasibility of developing a standardized, robust, numerical-
based method to objectively evaluate compression techniques based on their impact on
various model characteristics, such as model size, inference time, memory, accuracy, etc.

The goal was to establish a systematic evaluation method that provides a clear and
objective basis for evaluating the compression technique for different application require-
ments.

Contribution 1 (addressing RQ1): In Publication I, a numerical-based mathematical
method utilizing a weighted score-based ranking system was developed to evaluate com-
pression methods. Each method was meticulously evaluated and ranked according to a
weighted scoring scheme, allowing for a nuanced evaluation that is finely tuned to the
unique demands of various application contexts.

This innovative approach not only offers a systematic and objective means of assessing
compression methods but also provides an adaptable framework that can be tailored to
optimize performance for diverse application requirements. Using this ranking system, a
more informed selection of compression techniques is enabled, ensuring that the most
suitable and efficient methods are used for specific use cases.

Research Objective 2 (RO2): Achieve a deep model compression ratio of 32x while
preserving acceptable levels of accuracy, thereby demonstrating the practicality and fea-
sibility of high-ratio compression techniques for deep learning models.

This objective aims to explore the practical limits of model compression by evaluat-
ing whether a 32x compression ratio can be achieved without a significant loss of perfor-
mance, particularly for critical edge applications. It seeks to assess the impact of extreme
compression techniques on overall model accuracy, providing valuable insights into the
potential to achieve highly efficient model compression.

Contribution 2 (addressing RQ2): In Publication IlI, | developed an ensemble tech-
nique that integrates TT decomposition with 8-bit quantization, building upon the findings
from Publication I. This innovative approach achieved an impressive 57x compression ra-
tio, significantly surpassing the 4x compression ratio achieved by individual compression
methods. This demonstrates the superior efficacy of ensemble techniques in pushing the
boundaries of model compression.

Research Objective 3 (RO3): Develop and implement advanced optimization tech-
niques specifically designed for models with high sensitivity to compression and quan-
tization. The objective is to achieve substantial reductions in computational and memory
requirements while ensuring minimal to no degradation in accuracy and other critical per-
formance metrics.

This research objective addresses the challenge of optimizing deep learning models
that are inherently sensitive to precision changes due to their architecture. It seeks to
push the limits of what is achievable in model compression and optimization, ensuring
that even the most sensitive models can be efficiently deployed without sacrificing per-
formance integrity.

Contribution 3 (addressing RQ3): In Publication lll, the inherent sensitivity of cutting-
edge scene text detection and recognition models to quantization was effectively miti-
gated by the introduction of a novel quantization offset technique, called quantization
bias. This innovation significantly strengthened the robustness of the model, enabling ef-
ficient quantization for hardware with integer only with acceptable performance loss. In
addition, a comprehensive text orientation detection module was incorporated, improv-
ing the model’s ability to accurately process text in portrait and landscape orientations,
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thus broadening its applicability in diverse scenarios.

1.5 Thesis Structure

The organization of this thesis is summarized as follows:

Chapter 1 provides an introduction to the background, motivation, research gaps, re-
search questions, and objectives of the thesis. The chapter also outlines the contributions
of the thesis and reviews the state of the art in DL compression methods for resource-
constrained devices.

Chapter 2 establishes the foundation for understanding efficient optimization of the
DL model in resource-constrained environments. The chapter discusses key compression
techniques, examining their principles, strengths, and limitations within the context of
these environments.

Chapter 3 details the development of a numerical-based mathematical method for
evaluating model compression techniques. The chapter addresses RO1, which investigates
the feasibility of creating a standardized, quantitative approach to objectively assess and
rank compression methods based on their impact on various model characteristics. The
chapter discusses the proposed method, the experimental setup, and the results.

Chapter 4 focuses on RO2, examining the practical limits of achieving extreme model
compression for embedded devices with extremely limited memory resources. The chap-
ter evaluates the feasibility of achieving a deep compression ratio of approximately 32x
while maintaining acceptable accuracy levels. The chapter presents the methods used
and the results of the evaluation.

Chapter 5 addresses the challenge of optimizing DL models that are inherently sensi-
tive to precision changes due to their architecture. It seeks to push the limits of what is
achievable in model compression and optimization, ensuring that even the most sensitive
models can be efficiently deployed. The chapter addresses RO3.

Chapter 6 concludes the thesis by summarizing the key findings, contributions, and
recommendations for future research directions.
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2 PRELIMINARIES

This chapter provides a concise foundation for understanding the core concepts and tech-
niques underlying efficient optimization of the DL model for resource-constrained devices.

Key compression methods such as quantization, pruning, tensor decomposition,
knowledge distillation, and lightweight architecture design are explored in detail. Their
principles, strengths, and limitations are analyzed to provide insight into their practical
applicability and effectiveness in addressing the challenges.

2.1 Model Compression Methods

Compression methods for DL are designed to minimize the size of the model and compu-
tational complexity while preserving acceptable levels of accuracy. Each technique em-
ploys a different approach to achieve this objective. Primary methods include quantiza-
tion, knowledge distillation (KD), pruning, low-rank tensor decomposition (TD), compact
model design, and the integration of multiple compression strategies through ensemble
approaches.

Quantization is one of the most widely used techniques in model compression, partic-
ularly in resource-constrained environments where memory and computational resources
are limited. The core idea behind quantization is to reduce the precision of the numerical
values used to represent a model’s parameters and activations, thereby decreasing the
overall model size and improving computational efficiency.

[ max-pooling [sigmoid
Delta = 0.25

0.51 | 0.80 | 0.88 | 0.84 | 0.05
0.25 |-0.16 | 0.27 |-0.34 0.58
0.40 | 0.62 | 0.22 | 0.59 | 0.10
0.11 | 0.31 |-0.11 | -0.14 031 | 0.27 0.57
0.11 | 0.20 | 0.74 | 0.33 | 0.14
-0.22 | 0.61 |-0.05 | -0.32 0.61 | 0.19 0.65
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-0.13 | 0.15
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Figure 1: A typical CNN architecture with a normalized (5 x 5) input image convolved with a normal-
ized filter (2 x 2 kernel) showing convolution, pooling, and weights matrix multiplication operations
in a deep learning network. This low-level abstraction shows the internal computation performed
on the network parameters (i.e., the input tensor (5 x 5image). weights, and activations. Appendix
1, Figure 4.

2.1.1 Quantization

In DL models, parameters (weights, biases, and activations) are typically represented us-
ing full-precision 32-bit floating point numbers (FP32) as shown in Figure 1. While the full
precision allows for accurate representation of values, it also results in models that are
memory intensive and computationally demanding, particularly when targetting IOT de-
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vices or embedded hardware. Quantization addresses this challenge by converting the
full-precision 32-bit floating-point values into lower-bit representations (8-bit, 4-bit, or
2-bit).

Quantization techniques can be categorized into various types, each offering differ-
ent trade-offs between precision, model size, and computational efficiency. Symmetric
quantization maps floating point values into uniformly spaced intervals, making it com-
putationally efficient and straightforward to implement. In contrast, non-uniform quanti-
zation adjusts interval sizes based on data distribution, allocating more precision to areas
with higher variance, thereby reducing quantization errors at the expense of greater com-
plexity.

Post-training quantization (PTQ) [37] applies quantization to pre-trained models with-
out additional training. Calibration on a small dataset helps fine-tune the quantization
parameters, making PTQ a quick and resource-efficient solution. On the other hand,
guantization-aware training (QAT) [12] incorporates quantization effects directly into the
training process, allowing the model to adapt to low bit precision. QAT often achieves
better accuracy than PTQ, especially for very low-bit representations.

Integer-only quantization [12] ensures that all operations use integer arithmetic, mak-
ing it an optimal choice for hardware lacking floating-point support. This approach en-
ables highly efficient inference, particularly on resource-constrained platforms. Each type
of quantization offers unique advantages and challenges, catering to specific application
needs and hardware constraints.

The quantization process involves several key steps. First, the range of values for
weights and activations is determined, typically by calculating the minimum and maxi-
mum values. This range is then divided into discrete levels based on the target bit-width,
with a scale factor and zero-point calculated to map the floating-point values to integer
representations. Using these parameters, the weights and activations are quantized into
integers, effectively reducing their precision.

For inference, the quantized values are dequantized back to floating-point equivalents
using the same scale and zero-point, enabling compatibility with downstream computa-
tions. The model then performs inference with these quantized values, resulting in sig-
nificantly reduced memory requirements and faster computation, especially on hardware
optimized for integer arithmetic. This streamlined process ensures efficient deployment
while maintaining acceptable performance.

A 32-bit float range (i.e., weights, biases, activations) maps to an n-bit quantized range.
Considering an 8-bit quantizer, the mapping function maps the input float tensor range to
the 8-bit quantized output. The function is defined in Eq. (1):

qgpir = round (myiy) (1)

where ggy;; is the 8-bit quantizer, m; is the multiplier (scale factor), and iy is the input
float tensor. The multiplier is the quantization constant that is multiplied by the float input

tensor, as expressed in Eq. (2):
271

2
I’Hf = " (2)
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Quantization has been widely adopted in various applications, particularly for deploy-
ing state-of-the-art models on resource-constrained edge devices, such as using object
detection models for real-time surveillance on drones, enabling natural language process-
ing on mobile assistants, and powering image classification in wearable health monitoring
devices.
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For example, MobileNet [57], a family of lightweight convolutional neural networks
(CNNs), is based on quantization to reduce computational demands, making it suitable for
mobile devices. Similarly, BERT [64], a transformer-based language model for NLP tasks,
benefits from quantization to enable efficient deployment on mobile platforms without
significant loss of accuracy. These examples highlight the critical role of quantization in
bridging the gap between high-performance models and the practical constraints of edge
computing.

2.1.1.1 Binarization: An Extreme Case of Quantization

Binarization is a bit reduction technique that is considered an extreme case of quanti-
zation in which the weights and/or activations are encoded using a single bit (i.e., 1 bit)
[39, 40]. A single bit can be considered the atomic bit level of a number system; therefore,
a significant decrease in the model accuracy is imminent due to loss of information during
the binarization process.

In the binarization process, updating the weights during backward pass using the stan-
dard gradient descent approach is impossible because computing the loss gradient would
result in zero in almost all conditions. A Straight-Through-Estimator (STE) pseudo-function
that has been proven to solve this limitation.

The binarization function (a non-zero sign function) b;,;, takes the float tensor as input
and returns a binary output (—1, +1), as shown in Eq. (3):

01vir = bipie (if), 010 € {—1,1},if € {R} (3)

where by is the binarization function, 01,; is the binary output generated, and iy is
the input float tensor. During the backward pass, the loss gradient is calculated using the
STE function, which takes the output tensors as input and returns a binary output, which
is constrained to the threshold value, as expressed in (Eq. (4)):

1 abs(iy) < threshold,ye

4
0 abs(iy) > threshold,ye “

lossgradient = {

where the threshold,q,. is the float value that controls the lossyugiens and iy is the
float tensor processed by the STE pseudo gradient function.

2.1.1.2 Challenges and Considerations

As established in the surveyed literature (Section 1.2), bit reduction in DL models offers sig-
nificant benefits in terms of reducing model size and improving computational efficiency.
However, its implementation poses several challenges and considerations that must be
addressed to maintain the integrity and performance of the model.

One critical challenge is managing accuracy trade-offs. Reducing the precision of
weights and activations can lead to performance degradation, particularly in DL mod-
els where high precision significantly affects output quality. The balance of model size,
computational speed, and accuracy is essential. Another key consideration is bit-width se-
lection, which requires careful experimentation to determine the optimal level of quanti-
zation for different layers. Incorrect bit-width choices can result in excessive performance
losses.

Hardware compatibility further complicates quantization. The effectiveness of low-
precision arithmetic depends heavily on the target hardware’s ability to execute such op-
erations efficiently. Aligning quantization strategies with hardware capabilities is crucial
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to achieving performance gains. Additionally, model sensitivity can be an issue, as quan-
tization may make models more prone to performance instability, especially in critical
applications. Rigorous validation of quantized models is necessary to ensure they meet
accuracy and performance standards.

Although quantization has advanced significantly, several research areas remain open.
Adaptive quantization methods that dynamically adjust parameters during inference
could improve accuracy without sacrificing efficiency. Using higher bit precision in critical
layers while aggressively quantizing others is another promising avenue. Furthermore, as
new neural network architectures emerge, tailored quantization techniques are needed
to ensure that these architectures can fully benefit from the advantages of quantization.
Addressing these challenges and exploring these research directions will further enhance
the applicability and effectiveness of quantization in deep learning models.

2.1.1.3 8-bit Quantization Impact on CNN Models

In CNNs, most of the computations and memory usage are attributed to the manipulation
of large matrices, such as weight matrices and activation tensors. Reducing the precision
of these matrices from 32-bit floats to 8-bit integers not only reduces the memory re-
quired to store the parameters, but also accelerates the computation by using integer
arithmetic instead of floating-point operations.

Quantization is applicable to various layers of CNN —convolutional layers, fully con-
nected layers, and activation functions. However, it is common practice to exclude the
input and output layers from quantization to avoid a significant loss in accuracy, as these
layers are highly sensitive to precision reduction. The quantization process is mathemat-
ically defined in Eq. (1) and Eq. (2). The transformation allows weights, activations, and
other network parameters to be represented as 8-bit integers, reducing the overall mem-
ory footprint and computational complexity.

8-bit quantization offers significant advantages for optimizing DL models, particularly
in resource-constrained environments. One of the primary benefits is the reduction in
model size, achieved by representing parameters in an 8-bit integer format instead of 32-
bit floats. This transformation reduces the size of the model by approximately 4x [13],
which is particularly valuable for applications running on mobile or embedded systems
with limited memory resources.

Another key advantage of quantization is faster computation. Integer arithmetic is
generally faster than floating-point arithmetic, especially on hardware optimized for low-
precision operations. This leads to reduced inference times, making quantized models
well-suited for real-time applications where low latency is critical.

Energy efficiency is also a notable benefit of quantization. Lower-precision operations
consume less power, which is essential for devices with constrained power budgets, such
as edge devices and Internet of Things (loT) platforms. By combining these advantages,
quantization enables the deployment of efficient and effective deep learning models in
environments with stringent computational, memory, and power limitations.

However, quantization comes with trade-offs that need careful consideration to en-
sure its effectiveness. One major challenge is accuracy loss. Reducing the precision of pa-
rameters can degrade a model’s accuracy, with the impact being particularly pronounced
in sensitive layers, such as input and output layers. These layers are critical to preserving
feature integrity and overall model performance, and aggressive quantization can lead to
significant reductions in their effectiveness. To mitigate this, quantization is often applied
selectively, targeting less sensitive layers while leaving critical layers at higher precision.

Another challenge relates to layer sensitivity. Certain network architectures and spe-
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cific layers are more vulnerable to lower-precision representations. Layers that capture
fine-grained details or make high-level decisions are particularly susceptible to perfor-
mance degradation under aggressive quantization. This sensitivity requires a nuanced
approach, in which compression techniques are applied judiciously to ensure a balance
between efficiency and performance. By understanding and addressing these sensitivi-
ties, it is possible to achieve effective model compression without compromising essential
functionality.

2.1.2 Knowledge Distillation
KD is a model compression technique that involves transferring the learned information
from a large model (teacher) to a small, compact model (student). The objective is for the
student model to learn the expressive capacity of the teacher model, thus ensuring the
preservation of performance.

KD uses the output of the teacher model (usually logits or soft targets) to train the
student model as described in Figure 2. This allows the student to learn the approximation
function represented by the teacher, which is richer and potentially more informative than
learning directly from the hard labels.
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Figure 2: The teacher-student model based on a temperature-based softmax function. [42].

Knowledge distillation encompasses several variants designed to cater to diverse sce-
narios and training setups. In self-distillation [44], the same model serves as both the
teacher and the student in different phases of training. This approach allows the model
to refine its own predictions iteratively, enhancing its performance without requiring an
external teacher model.

On-line distillation, on the other hand, involves multiple models being trained simulta-
neously. During this process, the models share knowledge with each other [43], learning
collaboratively to improve their overall performance. This variant is particularly effective
in distributed training environments where multiple models can leverage shared insights
dynamically.

Mutual distillation takes a slightly different approach by allowing two models to distill
knowledge together. This bidirectional exchange helps improve the accuracy and gener-
alization capabilities of both models, making it a powerful strategy for scenarios where
model collaboration can yield significant performance gains. These variants highlight the
versatility of knowledge distillation in addressing various training requirements and re-
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source constraints.

Knowledge distillation (KD) involves a series of well-defined steps, each contributing
to the effective transfer of knowledge from the teacher model to the student model.

First, the teacher model, a large and highly accurate neural network, is trained on a
given dataset to achieve superior performance. This model serves as the reference point
for distillation. Next, the teacher model generates soft labels from its output logits. These
soft labels, representing the probability distribution over classes, encapsulate richer in-
formation about the data compared to standard hard labels. This additional information
helps the student model to understand the nuances of the dataset.

The student model is then trained using a combination of the soft labels and the origi-
nal hard labels. This dual training approach enables the student to closely approximate the
teacher’s function while retaining essential features of the original dataset. To enhance
the distillation process, temperature scaling is applied during teacher output generation.
A temperature parameter is introduced in the softmax activation function to soften the
probability distribution, providing the student model with more informative gradients.

These steps collectively ensure that the student model effectively learns from the
teacher, achieving a balance between compactness and performance.

The teacher-student model uses a temperature-based softmax function at the output
layer as shown in (Eq. (5)):

Lossiorar = (X*H(y,G(ZS),T = 1)) +ﬁ *
H(o(z;T =1),06(z,T =1)) (5)

Loss; a1 is the total loss, which is the combination of student and distillation losses.
The loss of the student is calculated using the standard loss function by making the tem-
perature parameter (T = 1). The temperature parameter controls the amount of infor-
mation that can be distilled for the student. However, we need to remember that the
student has a threshold that limits the amount of information that he can retain from the
teacher. The a and 3 are constants associated with the individual loss function taking the
respective unnormalized log probabilities (z,, z;) for each class label.

2.1.2.1 Challenges and Considerations

Knowledge distillation (KD) provides a practical approach for the deployment of deep
learning models on resource-constrained devices, offering a balance between perfor-
mance and efficiency. As research advances, it is expected that improvements in KD
techniques will address existing limitations, expanding their applicability across a broader
range of tasks and domains.

Despite its advantages, KD presents several challenges as established in the surveyed
literature (Section 1.2) that require careful consideration. One critical factor is its depen-
dency on the quality of the teacher model. The student’s performance is inherently lim-
ited by the teacher’s capabilities, making the selection of an effective teacher model a cru-
cial step in the process. Additionally, the training complexity of KD arises from the need to
carefully tune parameters such as the temperature and loss functions. The temperature
parameter, which softens the output probabilities to facilitate knowledge transfer, must
be optimized to achieve effective distillation, which adds to the intricacy of the process.

While the student model is designed to be resource efficient, the training phase can
be resource intensive because it involves running both the teacher and student models
simultaneously. This dual execution doubles computational overhead, posing challenges
in scenarios with limited training resources. Moreover, balancing model compression and
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performance retention is a delicate task. Excessive compression may degrade the stu-
dent model’s capabilities, while insufficient compression may fail to deliver the desired
efficiency gains.

Another challenge is ensuring the student model’s generalization to unseen data.
Overfitting to the teacher’s specific characteristics can hinder the student’s ability to
perform well on new tasks. Furthermore, KD must be adaptable to different tasks and
domains. This adaptability often requires modifying the distillation process to account
for varying data characteristics, label granularity, or operational constraints.

These challenges highlight the need for careful design and optimization in KD appli-
cation, to ensure its effectiveness while maintaining a balance between efficiency and
performance in diverse applications.

These challenges strengthen the need for ongoing research, with a focus on creating
more adaptable, efficient, and compact models that can leverage the full capabilities of
teacher networks.

2.1.3 Low-Rank Tensor Decomposition

A tensor is a multidimensional array that generalizes matrices and vectors to higher di-
mensions. While a matrix is a two-dimensional array, a tensor is a higher-dimensional
array (3 or more). For DNNs, tensors are used to represent weights, activations, and in-
put data. Compressing these tensors can lead to significant reductions in memory and
computational requirements.

TD is a technique that divides a tensor into smaller components, which can be rep-
resented in compressed format. Among various TD techniques, Tensor Train Decomposi-
tion (TTD) is particularly effective for NN compression. TTD represents the original high-
dimensional tensor as a sequence (i.e., tensor train) of smaller low-rank tensors, called
cores, which are linked in a chain-like structure.

Low-rank TD is another model compression technique that reduces the parameter
count and computational complexity of NNs by approximating the weight tensors with
lower-rank structures. This method is particularly effective for CNNs and fully connected
(FC) layers, where the weights can be represented as high-dimensional tensors.

TD decomposes a high-dimensional tensor into its low-rank components, leveraging
the fact that weight tensors in neural networks often contain redundant information that
can be compactly represented without significantly impacting performance. It capitalizes
on the linear dependencies within the tensor to achieve compression.

Tensor decomposition (TD) plays a pivotal role in deep learning by enabling efficient
representation and computation. The most widely used TD techniques include CP decom-
position, Tucker decomposition, and Tensor Train decomposition, each offering unique
advantages for model compression and optimization.

CP decomposition (CANDECOMP / PARAFAC) [45] decomposes a tensor 2" into a sum
of rank-one tensors. The mathematical representation is as follows:

R
ﬁ}”zZar(@br@c, (6)

r=1

where a,, b,, and ¢, are the factor vectors in each mode, and R is the rank of the
decomposition.

Tucker Decomposition [46] decomposes a tensor 2 into a core tensor ¢ multiplied
by a matrix along each mode. The equation is as follows:

X~Gx1Ax,Bx3C 7)
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where A, B, and C are the factor matrices corresponding to each mode, and x,, de-
notes the n-mode product of the tensor with a matrix.

Tensor train decomposition [47] represents a tensor 2" in the form of a sequence of
three-dimensional tensors, expressed as:

%(il,iz,...,i]v)%G][i1}~G2[l‘2]'~~GN[iN] (8)

where Gy[ix] are the k-th core tensors of the Tensor Train, and iy are the indices cor-
responding to each dimension of the tensor.

Tensor decomposition (TD) in DL involves several key steps, ensuring that the model
benefits from reduced computational and memory requirements while maintaining accu-
racy.

The first step is to select the appropriate decomposition type based on the model
architecture and specific requirements. Options include CP decomposition for simplicity,
Tucker decomposition for flexibility, or Tensor Train decomposition for high-dimensional
tensors. Each method offers unique advantages, depending on the context.

Once the decomposition type is chosen, the next step involves the decomposition of
the weight tensors of the neural network. This process transforms high-dimensional ten-
sors into lower-dimensional structures, significantly reducing the model’s complexity and
memory footprint. The decomposition is typically applied to layers with the largest pa-
rameter counts, such as fully connected or convolutional layers.

Finally, during inference, the decomposed tensors are efficiently multiplied according
to the chosen decomposition rules to reconstruct the approximate weight tensors. This
step ensures that the model operates seamlessly with the compressed representation,
maintaining performance while benefiting from the reduced computational load.

2.1.3.1 Tensor Train Decomposition

Consider a weight matrix W € R’/ where I and J are the dimensions of the matrix.
To apply TTD, the weight matrix is first reshaped into a high-dimensional tensor #. The
tensor is then factorized into a sequence of smaller tensors G, G», ..., Gy, where each G,
is a core tensor of the decomposition. These cores are connected through shared indices,
forming a TTR. Formally, the TTP of a tensor % can be written as:

R R Ry—1

W (iryin,..iv) =Y, Y -+ Y Gi(i1,r1)Ga(r1,i2,r2) .. .G (rv—1,in)  (9)
r]:lrzzl rN,lzl

Here, i1, iz, ..., iy are the indices of the tensor elements, and R|,R;,...,Ry_ are the

TT-ranks of the decomposition, which control the level of compression. A lower TT rank
leads to a more compressed tensor but could degrade the performance of the model,
while a higher TT rank maintains precision but offers less compression.

In the context of DL models, particularly CNNs, TTD is applied to compress the weight
matrices of the FC and convolutional layers. These layers are often memory-intensive and
computation-intensive, and compressing them will lead to significant reductions in model
size and inference time.

The dense layers in CNNs typically account for the majority of the model’s parame-
ters, making them ideal candidates to target. By applying TTD to these layers, the weight
matrices are transformed into their TT representations, reducing the memory required to
store the weights and accelerating computations during both training and inference.
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Tensor Train Decomposition (TTD) provides significant advantages for compressing
convolutional neural networks (CNNs). By decomposing large-weight matrices into
smaller tensor cores, TTD greatly reduces the memory footprint, making it ideal for de-
ploying models on resource-constrained devices such as mobile phones and embedded
systems.

The compact tensor representation also improves computational efficiency by mini-
mizing the number of operations required during forward and backward passes. Addi-
tionally, TTD’s scalability, which grows linearly with the size of the input tensor, makes it
well-suited for large networks with high-dimensional weight matrices.

However, the compression achieved through TTD is governed by the Tensor Train rank
(TT rank). Selecting an appropriate TT-rank is critical for balancing compression efficiency
and maintaining model performance, as overly aggressive compression can lead to a loss
of accuracy.

2.1.3.2 Challenges and Considerations

Low-rank tensor decomposition (TD) is a powerful method for compressing deep neural
networks, particularly in scenarios where reducing the size of the model and improving
computational efficiency are critical. This technique has significant potential to advance
the deployment of deep learning models in resource-constrained environments. As re-
search continues, it is expected that low-rank TD methods will become more robust and
adaptable, extending their applicability across diverse architectures and use cases.

Despite its advantages, the implementation of low-rank TD comes with several chal-
lenges, as established in the surveyed literature (Section 1.2). A primary consideration is
the selection of rank, which directly affects the balance between compression and per-
formance retention. Determining the optimal rank is a complex task that often requires
extensive empirical testing and validation. The choice must align with the application’s
specific requirements and the data’s complexity to ensure that the model retains its pre-
dictive power.

Managing the trade-offs between accuracy and compression is another critical factor.
Excessive rank reduction can result in the loss of vital information, leading to significant
performance degradation. Careful evaluation is needed to determine the extent of com-
pression that the model can sustain while maintaining acceptable accuracy levels. Addi-
tionally, while the goal of low-rank TD is to reduce computational demands during infer-
ence, initial decomposition and reconstruction processes can introduce notable compu-
tational overhead, which must be managed effectively.

Hardware compatibility also plays a pivotal role. Decomposed models must align with
the capabilities of the target hardware, particularly specialized Al accelerators such as
TPUs and FPGAs. Ensuring that the optimized models can be efficiently deployed on the
intended devices is crucial for leveraging the full benefits of low-rank TD.

These challenges emphasize the need for a strategic approach to implementing low-
rank TD, balancing the goals of compression and efficiency with the preservation of es-
sential model performance.

2.1.4 Pruning
Pruning is a popular model compression technique that systematically removes less im-
portant neurons or connections (weights) to reduce a network’s complexity and size. This
process not only decreases the number of parameters and computational demands, but
also enhances model generalization by mitigating overfitting.

Pruning operates on the premise that not all weights in a neural network contribute
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equally to its performance. By eliminating redundant or low-impact weights, the model
becomes more efficient without significantly compromising accuracy.

Deep learning pruning techniques are designed to reduce the size and computational
complexity of neural networks by selectively removing certain components. Each ap-
proach has its own strategy and implications for network performance.

Weight pruning focuses on removing individual weights from the weight matrix. The
weights are ranked on the basis of their magnitudes, as shown in the equation.

rankyeign = |wil,wi € W (10)

Weights with the smallest magnitudes are removed under the assumption that they
contribute less to the activation of subsequent layers. This approach leads to a sparser
network while retaining its core functionality.

Node pruning takes a broader perspective by removing entire neurons or filters from
the network. This involves eliminating all incoming and outgoing connections associated
with those nodes. Node pruning is particularly effective in convolutional layers, where it
results in significant computational reductions and a more streamlined architecture.

Structured pruning adopts a systematic method by targeting larger elements, such as
entire channels, layers, or other structures within the network. This approach is advan-
tageous for hardware acceleration, as it simplifies memory access patterns and reduces
fragmentation, making it suitable for deployment on modern hardware platforms.

Each of these pruning strategies offers unique benefits and trade-offs, requiring careful
consideration based on the specific application and network architecture.

The process of implementing pruning typically involves three key steps. First, the neu-
ral network is trained to convergence, ensuring that it achieves high performance on the
training data set. This initial step provides a robust baseline model with which to work.

Next, a pruning criterion is applied to determine which weights, neurons, or other
components to remove. Common criteria include the magnitude of weights, their contri-
bution to output variation, or specific heuristics tailored to the network architecture. This
step effectively reduces the network size and complexity by identifying and eliminating
less significant elements.

Finally, the pruned network undergoes fine-tuning, a critical phase in which the model
is retrained on the original dataset to recover any accuracy lost during the pruning process.
This step ensures that the network retains its predictive performance while benefiting
from the reduced computational and memory demands introduced by pruning.

2.1.4.1 Challenges and Considerations

Pruning, a widely used method for reducing the computational and memory demands of
neural network models, presents several challenges that require thoughtful consideration
for successful implementation as established in the surveyed literature (Section 1.2).

One of the primary challenges is selecting the appropriate pruning technique, as op-
tions such as weight pruning, unit pruning, and structured pruning offer different trade-
offs in terms of model performance and computational efficiency. The choice of method
must align with the specific requirements of the application and the network’s architec-
ture to maximize benefits without compromising critical performance aspects.

The impact of pruning on model performance is another significant consideration. Al-
though pruning can reduce model size, excessive pruning can lead to a loss of accuracy and
generalization capabilities, particularly if essential connections are removed. Striking the
right balance between compression and performance retention is crucial for maintaining
the model’s predictive power.
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Pruning is often an iterative process that involves cycles of pruning followed by fine-
tuning to restore or stabilize performance. This iterative approach can be computationally
intensive and requires careful monitoring to prevent overfitting and to ensure the model
remains stable during successive adjustments.

Hardware compatibility further complicates pruning implementation. Structured
pruning, for example, is often more advantageous for deployment on GPUs and special-
ized Al accelerators due to its ability to create regular memory access patterns and better
hardware utilization. However, unstructured pruning can lead to sparse matrices that are
less efficiently handled by many hardware platforms.

In dynamic environments, where input data characteristics may change over time,
static pruning strategies may not be ideal. Adaptive pruning approaches, capable of mod-
ifying the network architecture in response to evolving data distributions or task require-
ments, may be necessary to maintain optimal performance.

These considerations highlight the complexity of pruning neural networks, underscor-
ing the need for a strategic, context-aware approach to fully leverage its benefits while
mitigating potential drawbacks.

2.1.5 Microarchitecture

Microarchitecture, or lightweight architecture, in NN refers to the design of compact net-
work structures with a focus on minimizing storage and memory footprints. Unlike other
compression techniques such as pruning, quantization, KD, or low-rank TD, microarchitec-
ture involves building efficient models from the ground up, rather than modifying existing
ones.

Microarchitecture directly influences the initial model design, with the aim of effi-
ciency and compactness without compromising performance. Examples include models
like MobileNet and EfficientNet, which are designed inherently to be lightweight and suit-
able for deployment on resource-constrained devices.

The design of efficient microarchitectures typically adheres to a set of foundational
principles aimed at balancing performance and resource efficiency. A critical aspect is
layer optimization, where each network layer is crafted to minimize computational cost
and parameter count. Techniques such as depth-wise separable convolutions [57] and
point-wise convolutions [57] exemplify this principle by breaking down complex opera-
tions into simpler, less resource-intensive components, significantly improving efficiency
in convolutional neural networks (CNNs).

Another key principle is the use of neural architecture search (NAS) [63]. This approach
employs machine learning techniques to automate the discovery of optimal network ar-
chitectures. By exploring various configurations within defined resource and performance
constraints, NAS enables the creation of architectures that are finely tuned for specific
deployment scenarios, maximizing efficiency and effectiveness. These principles collec-
tively drive the development of microarchitectures that are both high-performing and
well-suited for resource-constrained environments.

Several prominent models demonstrate the effective application of microarchitecture
principles to achieve efficiency and performance. MobileNets leverage depthwise sepa-
rable convolutions to create lightweight architectures that are highly suitable for deploy-
ment on mobile and edge devices with constrained computational resources. SqueezeNet
employs a unique design strategy centered on 1x1 convolutions, significantly reducing
the parameter count without sacrificing accuracy, making it an ideal choice for memory-
constrained applications.

EfficientNet [59] introduces a compound scaling method that uniformly scales the
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depth, width, and resolution of the network. This approach allows the model to achieve
state-of-the-art performance while maintaining computational and parameter efficiency.
These models exemplify how thoughtful architectural design can address the challenges
of deploying deep learning in resource-constrained environments.

2.1.5.1 Challenges and Considerations

The microarchitecture approach provides substantial advantages in designing efficient
neural network models. However, several challenges and considerations must be ad-
dressed to optimize its application as established in the surveyed literature (Section 1.2).
Developing microarchitectures is a complex process that requires sophisticated design
strategies. It often involves iterative trial-and-error procedures, which can be resource-
intensive. Employing a Neural Architecture Search (NAS), although promising, adds an-
other layer of complexity. The computational demands of numerous iterations needed to
identify optimal architectures make this approach time-consuming and costly.

Scaling microarchitectures to handle more complex tasks or larger datasets presents
another significant challenge. Maintaining efficiency gains while ensuring the scalability of
the model can be difficult. This process requires careful adjustments to prevent the trade-
offs between performance and resource optimization from diminishing returns. Further-
more, creating optimized microarchitectures often leads to extended development and
testing cycles. Each iteration requires extensive simulations, refinements, and validations,
which can delay the deployment of the model in practical applications.

Balancing computational efficiency with model accuracy is a persistent challenge in mi-
croarchitecture design. Although efficiency is vital in resource-constrained environments,
overly aggressive optimizations can impair the model’s ability to handle complex tasks
effectively. Achieving this balance requires meticulous adjustments to ensure that the
model remains both efficient and capable.

These challenges emphasize the importance of employing flexible design strategies
and frameworks. Such approaches enable iterative refinement and optimization, ensuring
that microarchitectures deliver balanced performance, scalability, and timely deployment
across various applications.

2.1.6 Ensemble of Compression Methods

An ensemble of compression methods is a sophisticated strategy that combines mul-
tiple techniques, such as pruning, quantization, low-rank tensor decomposition, and
knowledge distillation, to maximize model efficiency and performance. Using the unique
strengths of each approach, this method achieves superior results compared to using any
single compression technique in isolation [50].

The rationale for using an ensemble of compression methods is to achieve deep com-
pression of NNs, targeting substantial reductions in model size and computational com-
plexity while preserving performance. Each technique addresses specific inefficiencies,
and their combined effect enables an unprecedented level of compression that surpasses
the capabilities of any single method.

Pruning focuses on reducing redundancy within the NN. By eliminating unnecessary
or less important neurons and connections, pruning helps reduce model size and compu-
tational overhead, which enhances the network’s operational efficiency during inference.

Quantization aims to reduce the precision of the weights and activations from floating-
point to lower bit representations, such as 8-bit, 4-bit, 2-bit, or 1-bit . This reduction sig-
nificantly decreases the model storage and memory footprints. Hence, speed up the com-
putation, particularly on hardware that supports integer operations.
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Low-rank tensor decomposition targets the computational complexity of the network.
By approximating the weight matrices with lower-rank versions that maintain most of the
original matrix’s significant information, this method can reduce the number of parame-
ters and the computational cost of matrix multiplications involved in neural computations.

Knowledge distillation works by transferring the knowledge from a large model
(teacher) to a small, compact model (using fewer layers). KD aims to mimic the per-
formance of the large network by ensuring that the compact model achieves similar
accuracy.

By integrating these methods, this approach optimally enhances model efficiency,
making it highly adaptable for deployment on extremely resource-constrained hardware.
This strategy ensures that the model meets stringent requirements for memory, compu-
tation, and power consumption.

Implementing ensemble of compression techniques involves a strategic and iterative
approach to achieve optimal efficiency and performance. The process begins with identi-
fying compatible techniques, as not all methods work harmoniously across every network
architecture. Careful consideration is given to the specific requirements of the target ap-
plication and the characteristics of the network to select a complementary set of tech-
niques.

The selected methods are then applied sequentially to maximize their individual and
collective impact. Typically, the process starts with pruning to eliminate redundancies,
followed by quantization to reduce precision and memory requirements. Tensor decom-
position may be employed to simplify complex weight structures, and finally, knowledge
distillation is used to fine-tune and optimize the model’s overall performance.

After each compression step, iterative optimization is performed to evaluate and fine-
tune the model. This ensures that compression does not negatively impact accuracy or
generalizability. Each phase is followed by rigorous testing to maintain the model’s relia-
bility and robustness for its intended application.

2.1.6.1 Challenges and Considerations
Ensemble methods for DL model compression, while highly effective, introduce significant
complexity and unique challenges as established in the surveyed literature (Section 1.2).

Integrating multiple compression techniques requires strategic management to han-
dle dependencies and interactions. Each method, such as pruning, quantization, or dis-
tillation, can introduce changes that affect subsequent layers, adding complexity to the
optimization pipeline. Ensuring that these methods complement each other without con-
flicts is crucial.

A major concern with ensemble methods is the cumulative error introduced by each
technique. Although individual methods may only introduce minor inaccuracies, they can
add up across the layers of compression, potentially leading to a noticeable degradation in
model performance. Addressing this requires a delicate balance between achieving high
compression rates and maintaining model accuracy.

The ensemble approach also requires extensive hyperparameter tuning to optimize
the interactions between different compression methods. This tuning process can be re-
source intensive, often requiring significant computational power and time to achieve op-
timal results. Moreover, maintaining and scaling models compressed with multiple tech-
niques can be challenging, particularly when deploying them on different hardware plat-
forms or adapting them to new datasets. These challenges highlight the need for robust
frameworks and methodologies to maximize the benefits of ensemble compression while
minimizing its inherent complexities.
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The ensemble of compression methods represents a sophisticated strategy to achieve
a very deep compressed neural network models suitable for deployment on resource-
constrained devices. This approach requires a deep understanding of each compression
method and careful management of their integration and tuning to ensure optimal per-
formance and efficiency.
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3 COMPRESSION METHODS EVALUATION USING NUMERICAL-
BASED MATHEMATICAL APPROACH

This chapter addresses RQ1: "Can a numerically based mathematical method be devel-
oped to quantitatively evaluate state-of-the-art deep learning (DL) model compression
techniques for diverse application requirements?" by presenting and validating a novel
methodology for objectively evaluating and ranking compression methods. This approach
quantifies the impact of various techniques, allowing informed comparisons and selec-
tions tailored to specific needs.

Publication I: (Section 3.1)

Ademola, O.A.; Leier, M.; Petlenkov, E. Evaluation of Deep Neural Network Compression
Methods for Edge Devices Using Weighted Score-Based Ranking Scheme. Sensors 2021,
21, 7529. https://doi.org/10.3390/s21227529

3.1 Evaluation of Deep Neural Network Compression Methods for Edge
Devices Using Weighted Score-Based Ranking Scheme

To develop a numerical approach for evaluating and ranking DL model compression meth-
ods, it is essential first to establish a conceptual framework that outlines the key metrics
and criteria involved in the evaluation process. This framework will serve as the foun-
dation for the subsequent mathematical formulation and implementation. In addition,
understanding the underlying mechanisms of each compression method is crucial for a
comprehensive evaluation.

3.2 Evaluation Metrics

DL model compression methods are assessed through metrics that capture their impact
on both performance and efficiency. These key metrics - compression ratio, accuracy,
inference time, maximum memory footprint, and computational cost - offer a holistic view
of the strengths and limitations of different approaches.

The compression ratio provides a measure of how much the model size is reduced af-
ter compression compared to the original. This metric is a direct indicator of the storage
efficiency achieved. Meanwhile, accuracy evaluates the extent to which the compressed
model preserves the predictive performance of its uncompressed counterpart. Maintain-
ing accuracy is essential to ensure that compression does not compromise the model’s
utility, especially in critical applications.

Inference time, which measures the time required for the model to make predictions,
is another vital metric. Reducing the inference time enhances the speed and responsive-
ness of the model, making it suitable for real-time and interactive applications. Closely re-
lated to this is the computational cost, which is reflecting the processing resources needed
to execute the model. Lower computational costs result in faster processing and reduced
energy consumption, which is critical for devices with limited power or processing capa-
bilities.

The peak memory footprint measures the maximum memory required during model
execution. This metric is especially important in resource-constrained environments,
where memory is limited. A reduced memory footprint ensures that the model can be
efficiently deployed on hardware with stringent memory restrictions.

Each of these metrics plays a crucial role in understanding the benefits and drawbacks
of different model compression techniques, providing insight into their practical applica-
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tions.

Together, these metrics form a comprehensive framework for evaluating model com-
pression methods, helping researchers and developers identify suitable techniques for
specific use cases while balancing performance, efficiency, and resource constraints.

3.3 Limitations of Current Metrics

According to the literature surveyed (Section 1.2), while the aforementioned metrics are
invaluable for evaluating model compression methods, they exhibit certain limitations
that hinder a comprehensive assessment of compression techniques. These shortcom-
ings emphasize the need for more nuanced and integrative evaluation methods.

One significant limitation is the lack of comparative analysis. Current metrics do not
facilitate direct comparisons between different types of compression methods. For ex-
ample, a method that excels in improving inference speed might sacrifice accuracy [37],
making it challenging to evaluate overall performance and rank the methods holistically.

Another issue is the absence of a holistic perspective. Many metrics focus on isolated
aspects of compression, such as compression ratio or accuracy, without considering their
interdependencies. For example, achieving a high compression ratio at the cost of a dras-
tic drop in accuracy might render a compression method ineffective, yet existing metrics
often fail to adequately balance these trade-offs.

Application-specific variability further complicates evaluations. Metrics typically do
not account for the diverse requirements of different application domains. A compression
method optimized for image classification may not perform as well for natural language
processing or time series analysis. This variability requires metrics that can adapt to the
unique constraints and objectives of each domain.

Lastly, user and environmental factors are often overlooked. An effective evaluation
should consider user expectations for responsiveness and the computational resources
available in deployment environments. For example, mobile users prioritize fast re-
sponses, while 10T devices may operate under stringent memory and energy constraints.
Current metrics do not sufficiently reflect these real-world factors, limiting their practical
utility.

These limitations underscore the importance of developing a unified evaluation
methodology that integrates multiple metrics into a cohesive numerical-based mathe-
matical approach. Such a methodology would enable more comprehensive and objective
assessments, facilitate meaningful comparisons across methods, and better account for
the diverse conditions and requirements of deployment environments.

3.4 The Numerical-Based Mathematical Approach

3.4.1 Mathematical Formulation

This subsection develops a mathematical method that integrates the key parameters es-
sential for evaluating model compression methods. These parameters —Compression Ra-
tio (CR), Accuracy (Acc), Peak Memory Footprint (PMF), Computational Cost (FLOP) and
Inference Time (IT) are chosen for their critical impact on the performance and efficiency
of compressed models in practical applications.

3.4.1.1 Definition of Parameters

The definition of key parameters is critical for evaluating and ranking model compres-
sion methods, particularly in resource-constrained environments. These parameters cap-
ture the trade-offs between model efficiency and performance, ensuring that compressed
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models meet the specific demands of applications. By focusing on aspects such as com-
pression ratio, inference time, computational cost, model accuracy, and peak runtime
memory footprint, a comprehensive understanding of the impact of compression tech-
niques can be achieved.

The compression ratio (CR) quantifies the reduction in model size achieved after com-
pression. It is defined as the ratio of the size of the original model to the size of the com-
pressed model, providing a measure of the efficiency in reducing storage requirements.
Inference time (IT) represents the time required for the model to process input and pro-
duce output. It directly impacts the responsiveness of the model, particularly in real-time
applications, where lower IT values signify improved performance.

The computational cost (FLOPs) reflects the resources needed to train and execute
the model. This parameter includes considerations of energy and processing power, mak-
ing it critical for scenarios involving devices with limited computational capabilities or en-
ergy constraints. The accuracy (Acc) evaluates the predictive performance of the com-
pressed model, ensuring that its functionality is retained after compression. Accuracy is
typically measured against a validation dataset and compared to the original model.

The maximum memory footprint (PMF) assesses the maximum memory usage during
model execution. This parameter is especially important for the deployment of models in
environments with stringent memory restrictions, such as mobile devices or loT devices,
where minimizing PMF improves the feasibility and efficiency of the deployment.

These parameters collectively form a comprehensive framework for evaluating model
compression methods, ensuring a balance between efficiency and functionality tailored
to resource-constrained environments.

3.5 Weighted Score-Based Ranking Scheme

The weighted score-based ranking scheme is a comprehensive method developed to eval-
uate and compare different model compression techniques. It consists of six primary
components —Scaling, Scoring, Weighting, Weighted Score, Weighted Score Average, and
Ranking. Each component plays a crucial role in ensuring that the final ranks are accurate
and reflect the models’ performance across the various metrics.

3.5.1 Scaling
The first step in the ranking scheme involves scaling the results of each compression
method to a uniform scale, ensuring that all metrics are comparable and weighted ap-
propriately. This is achieved using the following scaling function.
Rgcaled = M X (rmax - Vmin) + Vimin (1)
Nmax — Nmin

where:
® 1 .q10q4 denotes the scaled value, transforming the raw metric into a uniform scale.
e nis the original unscaled metric value to be transformed.

® 1in and n,,, represent the minimum and maximum observed values for the metric
in all models, respectively.

® rmin = 1 and 4 = ¢ are the endpoints of the target scale range, chosen to stan-
dardize the score within a defined and manageable range. Here, ¢ represents the
count of compression methods, adapting the scale to accommodate the number of
methods that are evaluated.
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The scaling function linearly transforms the original metric values into a standardized
scale that ranges from 1to c¢. The adaptation of r,,,,, to ¢ ensures that the scoring range dy-
namically adjusts to the total number of compression methods that are being evaluated,
allowing for a direct and objective comparison among a variable number of methods. This
approach facilitates equitable scoring and enhances the granularity of the evaluation by
scaling the maximum possible score to reflect the number of competing methods.

3.5.2 Scoring

After the scaling process, each scaled metric undergoes a scoring process, where it is as-
signed a score based on its performance relative to other results. The scores are calibrated
on a scale from 1to ¢, where ¢ represents the count of the compression methods and also
the highest possible score indicating the best performance.

3.5.2.1 Adapting Scores for Metric Characteristics

The scoring mechanism for evaluating model compression metrics must account for the
nature of each parameter. For metrics like compression ratio and accuracy, where higher
values indicate better performance, the scoring directly corresponds to the scaled values,
with higher scaled values receiving higher scores. However, for metrics such as inference
time, peak memory footprint, and computational cost, where lower values are preferable,
the scoring is inverted to ensure that lower scaled values, reflecting better performance,
receive higher scores. This balanced approach ensures that the scoring system accurately
reflects the desired outcomes across different metrics.

3.5.3 Scoring Formula

The scoring formula translates the scaled values into the final scores based on the specific
performance criteria of each metric. The formula accounts for whether a higher or lower
metric value signifies better performance, as illustrated below.

Fmax — (Mscatea — 1) if lower values are better
score; = (12)

Ngcaled if higher values are better
where:

e score; is the score assigned to the i-th metric, reflecting its performance relative to
the desired result.

® ng.aeq 1S the scaled value of the metric, adjusted to a range that standardizes all
metrics for a fair comparison.

® Fmax = c is the maximum value on the scoring scale, corresponding to the highest
possible score, which is set based on the count of compression methods evaluated

().

The scoring rules for evaluating compression metrics depend on whether higher or
lower values indicate better performance. These rules ensure that the scoring system
appropriately reflects the desired outcomes for each metric.

For metrics where lower values indicate better performance, such as inference time or
error rates, scores are calculated by subtracting the scaled value from r,,,,. This approach
ensures that lower values, representing better results, correspond to higher scores. The
scoring is expressed mathematically as:
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score; = Vpax — (nscaled - 1) (13)

In contrast, for metrics where higher values are better, such as compression ratio or
accuracy, the scaled value is directly assigned as the score. This approach aligns the scoring
with the goal of achieving higher values for these metrics. The corresponding formula is
as follows:

score; = Ngcaled (14)

These equations provide a standardized method for scoring, facilitating objective and
consistent evaluation of different compression techniques.

3.5.4 Weighting

Weighting is a crucial step in the evaluation process, as it reflects the relative importance
of each metric in the overall assessment. This subsection explains how weights are as-
signed to each metric and discusses the rationale behind these decisions.

The weights are determined on the basis of the significance of each metric in achiev-
ing the desired outcomes of the compression process. Factors influencing weight assign-
ment include the specific requirements of the application, the performance objectives,
and the potential impact of each metric on the overall utility of the compressed model.
The weighting process involves the following steps:

The process of assigning weights to evaluate compression methods involves several
structured steps to ensure alignment with specific application goals and priorities.

First, all relevant metrics are identified that influence the performance and utility of
compression methods, such as compression ratio, accuracy, and inference time. This ini-
tial step establishes the foundation for a comprehensive evaluation.

Next, these metrics are prioritized on the basis of their relative importance to the spe-
cific objectives of the model compression. For instance, reducing inference time might be
more critical in real-time applications, whereas minimizing model size could take prece-
dence in environments with severe storage constraints.

Once the priorities are established, numerical weights are assigned to each metric.
These weights reflect their relative importance and ensure that the evaluation process
emphasizes the most critical aspects of performance. For example, in scenarios where
minimizing inference time is the primary goal, a higher weight is assigned to that metric.
In contrast, when model size is the most critical factor, the compression ratio receives
greater weight.

This systematic weighting process ensures that the evaluation aligns with the applica-
tion’s needs, providing a scoring system that accurately reflects the desired performance
trade-offs and objectives.

3.5.5 Weighted Score
The weighted score for each metric is calculated by multiplying the score by its respective
weight. This step integrates the importance of the metric with its performance.

n
composite_score = Z(scorei X weight;) (15)
i=1

where:

e composite_score is the weighted score for each model, indicating its overall perfor-
mance.
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e score; is the score of the i-th metric, which has been adjusted according to the scale
and importance of the metric.

o weight; is the normalized weight for the i-th metric, reflecting its relative importance
in the overall assessment.

e 7 is the total number of metrics used in the evaluation.

3.5.6 Weight Score Average

The weighted score average is computed by averaging the composite scores of all metrics
for each compression method. This average provides a single score that represents the
overall performance of the method.

composite_score

16
i weight e

weighted_score_average =

3.5.7 Ranking

Finally, the compression results are ranked based on their weighted score averages (i.e.,
the mean weighted scores). The method with the highest average receives the highest
rank, and the rank proceeds in descending order of the average scores. This ranking
method highlights the method that performs best across all considered metrics and aligns
with the application’s specific requirements.

Rank = order by weighted_score descending (17)

These components collectively form a robust approach for evaluating and ranking
model compression methods, ensuring that the final decisions are grounded in a thor-
ough quantitative analysis.

3.5.8 Application of Weighted Score-Based Ranking Scheme

This subsection details the practical application of the weighted score-based scheme to
assess the efficacy of different model compression methods applied to a benchmark CNN
model (Table 2). The evaluation considers key performance metrics —CR, IT, FLOPs, Acc,
and PMF.

3.5.8.1 Benchmark Model Description
The benchmark model, designed for an image classification task, serves as the base model
for the experiment. Performance metrics were initially recorded to establish a baseline
for comparison before the application of any compression methods.

The architecture of the CNN benchmark is described in Table 3. The architecture takes
a three-channel input image of size (64, 6, 3) as input, and (3, 3) convolutional filters (ker-
nels) were used throughout the entire network, resulting in a total of 1,106,209 parame-
ters. CNN includes a stack of two sets of CONV2D, RELU, BN, and POOL layers, followed by
a set of CONV, RELU, and BN. The final block is the dense block, which consists of layers
of FC, BN, FC, and SOFTMAX, as shown in Table 2.

3.5.8.2 Compression Methods Evaluated
The study evaluates the following state-of-the-art compression methods:

The 8 bit quantization (Section 2.1.1.3) reduces the precision of the weights from float-
ing point to a full 8 bit integer. The full precision base model was quantized using the
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Table 2: A table showing a summary of all the layers of the baseline model architecture.

Layer Type Output Size Parameters
CONV2D (None, 64, 64, 32) 864
BN (None, 64, 64, 32) 96
MAXPOOL2D (None, 32, 32, 32) 0
CONV2D (None, 32, 32, 64) 18,432
BN (None, 32, 32, 64) 192
MAXPOOL2D (None, 16, 16, 64) 0
CONV2D (None, 16, 16, 64) 36,928
BN (None, 16, 16, 64) 192
FLATTEN (None, 16384) 0
DENSE (None, 64) 1,048,576
BN (None, 64) 192
DENSE1 (None, 11) 704
ACTIVATION (None, 11) 0

TOTAL PARAMETERS 1,106,209

symmetric mode 8-bit signed full integer quantizer defined in Eq. (1) and Eq. (2). The
scaling function transforms the input float tensors (weights and activations) of the base
model to a quantized 8 bit output.

Binarization (Section 2.1.1.1) minimizes the precision of the weights to binary values,
significantly reducing the size of the model. The base model was binarized using Larqg, an
open-source Binary Neural Network library built on Keras. The binarization function of the
non-zero sign function b,;, transforms the float tensor of the model to a binary output
(—1, +1) as shown in Eq. (3).

The weight pruning (Section 2.1.4) removes insignificant weights from the model
to decrease its complexity and size. The base model was pruned using magnitude-
based weight pruning as opposed to the neuron-based method, because it was observed
that magnitude-based weight pruning does not affect model accuracy significantly. The
weights of the pruned base model were selected using rank-based criteria, calculated
using the absolute value of the individual weight in Eq. (10).

The decomposition of low-rank tensors (Section 2.1.3.1) decomposes the model tensors
into low-rank approximations to reduce computational demands. The dense layer of the
base model was transformed into TT matrices as described in Eq. (8). The transformation
parameters used include a TT-rank of 4, an input dims of (16,16,8,8), and an output dims
of (4,4,2,2). The decomposition transforms the dense layer into a TT layer with fewer
parameters while maintaining the expressiveness of the layer.

Knowledge distillation (Section 2.1.2) Transfers knowledge from the base model to a
smaller, more compact model. The class probabilities vector of the base model for each
data point was computed and stored. These probabilities vectors, also called soft labels,
were distilled to a compact model. The compact model was trained using both the soft and
hard labels, and the overall losses generated by the model were combined and weighted,
as defined in Eq. (5). The architecture of the compact model is described in Table 3.
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Table 3: A table showing a summary of all the layers of the compact model architecture.

Layer Type Output Size Parameters
CONV2D (None, 64, 64, 16) 432
BN (None, 64, 64, 16) 48
MAXPOOL2D (None, 32, 32, 16) 0
CONV2D (None, 32, 32, 32) 4,640
BN (None, 32, 32, 32) 96
MAXPOOL2D (None, 16, 16, 32) 0
CONV2D (None, 16, 16, 32) 9,248
BN (None, 16, 16, 32) 96
FLATTEN (None, 8192) 0
DENSE (None, 32) 262,208
BN (None, 32) 96
DENSE1 (None, 11) 363
ACTIVATION (None, 11) 0

TOTAL PARAMETERS 277,227

3.5.8.3 Scoring and Weighting Process

The scoring and weighting process for evaluating model compression methods involves
several key steps, designed to ensure a robust and objective assessment of each method’s
effectiveness. This process transforms raw metric data into a normalized score that re-
flects both the performance of the models and their relative importance, as determined
by the weighting system.

1. Scaling (Normalization of Raw Metric Values): The first step involves scaling the raw
performance metrics to a normalized scale from 1 to ¢ (where ¢ = 5 in our study,
corresponding to the number of evaluated compression methods). This normaliza-
tion adjusts the metric values to a uniform scale, allowing for equitable comparison
across different metrics and models.

n — Npin
Ngcaled = ————— X (Ci 1) +1
Nmax — Nmin
where n is the raw metric value, n,,;;, and n,,, are the minimum and maximum
values for that metric, respectively, and c is the top score value.

2. Scoring (Adapting Metric Scores): Once metric values are scaled, each is scored
on the adjusted scale from 1 to ¢. This scoring reflects whether higher or lower
values indicate better performance, with adjustments made accordingly to ensure
that higher scores always reflect better performance.

3. Weight Assignment: Weights are assigned to each metric based on their impor-
tance to the overall effectiveness of the compression method. This importance is
determined through stakeholder analysis and the specific operational context in
which the model operates.

Weight for each metric = Assigned based on strategic importance

4. Calculation of Weighted Score Summation: The mean weighted score for each
model is calculated by taking the weighted average of the scored metrics.
n
composite_score = Z(score,- X weight;) (18)
i=1
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where:

e composite_score is the weighted score for each model, indicating its overall
performance.

e score; is the score of the i-th metric, which has been adjusted according to the
metric’s scale and importance.

o weight; is the normalized weight for the i-th metric, reflecting its relative im-
portance in the overall assessment.

e 7 is the total number of metrics used in the evaluation.

5. Weighted Score Average: To normalize the mean weighted score, it is divided by
the total sum of the weights, providing a score average that allows for comparison
across models with varying numbers of metrics and weight distributions.

composite_score

19
Liy weight; 1)

weighted_score_average =

where:

o weight; is the normalized weight for the i-th metric, reflecting its relative im-
portance in the overall assessment.

e 7 is the total number of metrics used in the evaluation.

6. Ranking: Finally, models are ranked based on their weighted score averages. The
model with the highest score average is ranked highest, indicating it is the most
effective according to the evaluated metrics and assigned weights.

Rank = order by weighted_score descending (20)

Each step in this process is meticulously designed to ensure that the evaluation of
compression methods is not only comprehensive and systematic, but also aligned with
the specific needs and constraints of the application domain. This methodical approach
provides a robust framework for making informed decisions about which compression
method best meets the operational requirements.

3.5.8.4 Weights Assignment Strategy
In the evaluation of the compression methods of the model applied to the benchmark
model detailed in Table 3, the weights were objectively assigned to each performance
metric. These assignments were based on different optimization objectives, each tailored
to meet specific application requirements. To accommodate the comparative analysis,
sets of weights were systematically generated such that each weight is an integer be-
tween 1 and ¢ - with ¢ = 5, representing the total number of compression methods
evaluated. This ensures that the impact of each metric is scaled appropriately according
to its importance in various application contexts. The following outlines the simulation
of different weighting scenarios, corresponding to five distinct objectives: performance-
oriented, efficiency-oriented, balanced approach, memory reduction focus, and cost-
sensitive model.

Each set of weights is designed to reflect the intended application requirements, en-
suring that the evaluation metrics align closely with the performance goals shown in Ta-
ble 4. This method allows for a structured and quantifiable approach to evaluating the
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effectiveness of different compression methods with respect to the requirements of the

application.

Table 4: Summary of Weight Assignments for Different Optimization Goals

Goals CR? IT° FLOPs* Accd PMFe
Performance-Oriented 2 3 3 5 2
Efficiency-Oriented 4 4 3 2 2
Balanced Approach 3 3 3 3 3
Memory Reduction Focus 2 2 1 3 5
Cost-Sensitive Model 4 3 4 2 2

@ CR: Compression Ratio
b IT: Inference Time

€ FLOPs: Floating Point Operations

d Acc.: Accuracy

€ PMF: Peak Memory Footprint

3.6 Results and Discussion

The baseline CNN model, prior to any compression, serves as the benchmark for the exper-
iments. Table 5 shows the performance metrics of the baseline model in several key met-
rics —Compression ratio, inference time, computational cost, accuracy, and peak memory

footprint.

Table 5: Benchmark Model Metrics

Metrics Baseline
Compression Ratio 4429.61
Infer. Time (ms) 22.88
Comp. Cost (MFLOPs) 66.44
Acc. (%) 77.23
PMF (KB) 8907.81

@ CR: Compression Ratio

b Infer. Time: Inference Time

€ FLOPs: Floating Point Operations
d Acc.: Accuracy

€ PMF: Peak Memory Footprint

Table 6 presents the raw metric values obtained from the compression methods, pro-
viding initial insight into their individual impacts.

Table 6: Raw Metric Values.

Metric Quant. Bin. Prun. Distil.  Tensor-Tr.
Compression Ratio 3.96 41.99 3.38 400 18.23
Infer. Time (ms) 13.65 5.40 22.64 12.55 18.53
Comp. Cost (MFLOPs) 7.29 6.96 66.44 35.12 64.34
Acc. (%) 76.95 67.10 74.64 72.05 7291
PMF (KB) 3705.47 1775.78 8900.78 2300.48 3617.19

To facilitate an objective comparison across the compression methods, each metric
was scaled using Eq. (11) as shown in Table 7. Each metric was scaled from 1 to 5 (cor-
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responding to the total number of compression methods evaluated) based on their per-
formance relative to others within the same metric category. The normalization process
allows to objectively score each method.

Table 7: Scaled Metric Values.

Metric Quant. Bin. Prun. Distil. Tensor-Tr.
Compression Ratio 1.06 500 100 106 2.54
Infer. Time (ms) 291 100 5.00 266 4.05
Comp. Cost (MFLOPs) 1.02 1.00 500 2.89 4.86
Accuracy (%) 500 100 4.06 3.01 3.36
PMF (KB) 208 100 5.00 129 2.03

After the scaling process, each scaled metric undergoes a scoring process by apply-
ing Eq. (12), where it is assigned a relevance score is assigned based on its performance
relative to other results.

The scores were transformed on a scale from 1to ¢, where ¢ = 5 represents the count
of compression methods and also the highest possible score indicating the best perfor-
mance. The scoring translates the scaled values into final scores based on the specific
performance criteria of each metric as shown in Table 8.

Table 8: Scored Metric Values.

Metric Quant. Bin. Prun. Distil. Tensor-Tr.
Compression Ratio 3.00 500 100 3.00 4.00
Infer. Time (ms) 3.00 500 100 4.00 2.00
Comp. Cost (MFLOPs) 4.00 5.00 1.00 3.00 2.00
Acc. (%) 500 100 4.00 200 3.00
PMF (KB) 2,00 500 100 4.00 3.00

In Table 4, each set of weights is strategically designed to reflect distinct optimization
objectives—performance, efficiency, balanced, memory-reduction, and cost-sensitive.
These categories were tailored to meet specific application requirement contexts, demon-
strating the flexibility in evaluating compression methods to align with varying operational
requirements. This differentiation in weighting profiles underscores the adaptability of
the propsed evaluation method, allowing it to cater to diverse application needs and high-
light the most suitable compression strategies based on targeted optimization goals.

Table 9: Weighted Score of the Performance-Based Weight Set Profile.

Metric Weight Quant. Bin. Prun. Distil. Tensor-Tr.
Compression Ratio 2.00 6.00 10.00 2.00 6.00 8.00
Infer. Time (ms) 3.00 9.00 15.00 3.00 12.00 6.00
Comp. Cost (MFLOPs) 3.00 12.00 15.00 3.00 9.00 6.00
Acc. (%) 500 25.00 500 20.00 10.00 15.00
PMF (KB) 2.00 400 10.00 2.00 8.00 6.00
Weighted Score 56.00 55.00 30.00 45.00 41.00

To illustrate the application of these weight set profiles, the performance-oriented
profile was specifically chosen for detailed analysis. The weighted scores and their cor-
responding averages for each compression method, using the performance-based weight

47



set, were calculated according to Equations (18) and (19). The results of these calculations
are presented in Table 9, providing a quantified demonstration of how each compression
method performs under a performance-centric evaluation criterion.

The weighted score averages were ranked using Eq. (18) as shown in Table 10. The
results of the performance-based weight set profile for the evaluated compression meth-
ods —quantization, binarization, pruning, KD , and TD were summarized in Table 10. Each
method was assessed in five key metrics: Compression Ratio, Inference Time, Computa-
tional Cost (MFLOP), Accuracy, and Peak Memory Footprint (PMF), with corresponding
weights reflecting the relative importance of these metrics in performance-oriented ap-
plications.

Quantization is highest with a weighted score average of 3.73, demonstrating a strong
balance between maintaining the accuracy of the model (76. 95%) and improve the infer-
ence time (13.65 ms) & computational cost. Although quantization did not lead to the most
significant reduction in model size, its overall performance across the metrics evaluated
makes it the most effective compression method under the performance-based profile.

Binarization follows closely with a weighted score average of 3.67. This method excels
in compression ratio (41.99) and inference time (5.40 ms), but its relatively lower accuracy
(67.10%) reduces its overall score. Although binarization significantly reduces the model
size and speeds up inference, the trade-off in accuracy makes it less favorable for applica-
tions that require high predictive performance.

Pruning ranks lowest with a weighted score average of 2.00, primarily due to its poor
performance in inference time (22.64 ms) and computational cost (66.44 MFLOPs), de-
spite showing improvements in model accuracy (74.64%). Although pruning can effec-
tively remove redundant parameters, its computational overhead and slower inference
time hinder its overall performance in this evaluation.

KD and TD rank third and fourth, respectively. KD offers a balanced approach with a
weighted score average of 3.00, combining acceptable accuracy (72.05%) and inference
time (12.55 ms). TD, while effective in reducing model size (Compression Ratio: 18.23),
exhibits moderate performance on most metrics, leading to a weighted score average of
2.73.

Table 10: Rank of the Performance-Based Weight Set Profile.

Metric Weight Quant. Bin. Prun. Distil. Tensor-Tr.
Compression Ratio 2.00 6.00 10.00 2.00 6.00 8.00
Infer. Time (ms) 3.00 9.00 15.00 3.00 12.00 6.00
Comp. Cost (MFLOPs)  3.00 12.00 15.00 3.00 9.00 6.00
Acc. (%) 5.00 25.00 5.00 20.00 10.00 15.00
PMF (KB) 2.00 400 10.00 2.00 8.00 6.00
Weighted Score Avg. 3.73 3.67 2.00 3.00 2.73
Rank 1 2 5 3 4
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3.7 Summary

This chapter addressed a critical gap in the evaluation of DL model compression methods
by developing a numerically based mathematical method. The primary objective was to
establish a standardized approach that allows for the systematic and objective evaluation
and ranking of various compression techniques based on their impact on key performance
metrics, such as compression ratio, inference time, computational cost, accuracy and peak
memory footprint.

The core objective of this chapter was to answer the research question RQ1: "Can a nu-
merically based mathematical method be developed to quantitatively rank the efficiency,
effectiveness and suitability of model compression methods?" The presented approach
not only quantifies the effects of different compression techniques on model characteris-
tics, but also provides a clear, objective framework for comparing and selecting the most
appropriate compression method based on specific application requirements.

To demonstrate the practical application of this method, a performance-based weight
set profile was selected and applied to five different compression methods: quantization,
binarization, pruning, knowledge distillation, and tensor decomposition. Each method
was evaluated based on its ability to balance trade-offs between reducing model size,
minimizing computational complexity, and maintaining acceptable accuracy & inference
times.

The results of the evaluation, summarized in Table 10, showed that quantization
ranked highest with the best weighted score average. This method demonstrated an
optimal balance between maintaining model accuracy and improving computational effi-
ciency, making it particularly suitable for performance-critical applications. Binarization
ranked second, excelling in compression ratio and inference time but suffering from
reduced accuracy, limiting its overall effectiveness. Pruning, although effective in param-
eter reduction, was hampered by higher computational costs and slower inference times,
which led to its lowest rank in this performance-based profile.

The use of the performance-based profile allowed for a focused evaluation of how
each method performs under strict performance requirements, where accuracy, infer-
ence time, and computational efficiency are paramount. The weighted score averages
were calculated using the methodology outlined in Equations (18) and (19), providing an
objective basis to rank the compression methods.

This chapter makes a significant contribution to the field by introducing a numerical-
based mathematical approach for systematically evaluating model compression methods.
Provides a standardized yet flexible methodology that adapts to diverse application needs
through customizable weight set profiles. By offering a quantitative framework for rank-
ing the efficiency, effectiveness, and suitability of compression techniques, this chapter
equips researchers and practitioners with a robust tool to make informed decisions when
optimizing deep learning models for specific use cases.

Although the performance-based profile was used in this demonstration, flexibility
allows the application of other optimization objectives, such as efficiency, memory-
reduction, balanced, or cost-sensitive profiles, depending on the operational context
and requirements of the application. For instance, in scenarios where memory usage
is a critical factor, the memory-reduction profile could be applied, where peak memory
footprint is assigned a higher weight relative to other metrics. Similarly, in cost-sensitive
environments, the cost-sensitive profile can be used to prioritize compression ratio and
computational cost over other performance metrics.

This flexibility underscores the utility of the proposed methodology in adapting to
different operational constraints and priorities, thereby ensuring its broad applicability
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across a range of deep learning applications. The results also revealed several trade-offs
inherent in the use of different compression methods. For example, while binarization
excels in reducing model size and improving inference time, it significantly compromises
accuracy, making it less suitable for applications where predictive performance is a top
priority. Conversely, knowledge distillation offers a more balanced approach but is less
effective in reducing computational complexity compared to other techniques such as
pruning or tensor decomposition.

3.8 Conclusion

The development of this numerically based mathematical method for evaluating and rank-
ing model compression methods provides a powerful tool for addressing the challenges
associated with the optimization of the DL model. By offering a standardized and quantita-
tive approach, this method fills a critical gap in the field, enabling systematic comparison
of compression techniques and supporting the selection of methods based on the specific
requirements of real-world applications.

In addition to the performance-based profile demonstrated in this chapter, the flexi-
bility to apply different weight set profiles ensures that the methodology can be adapted
to suit a variety of optimization goals. This enables researchers and practitioners to focus
on optimizing models for specific applications, whether that involves minimizing memory
usage, improving computational efficiency, or balancing between multiple objectives.

Future work could focus on further refining the profiles of the weight set by incorporat-
ing additional metrics or exploring specialized applications, such as edge computing or the
Internet of Things (1oT), where resource constraints are even more stringent. Additionally,
this methodology could be extended to evaluate the impact of compression methods on
more complex DL architectures, such as large language transformers or recurrent neural
networks.

In conclusion, this chapter has successfully developed and validated a comprehensive
approach to model compression evaluation, providing theoretical and practical contribu-
tions to the optimization of DL models for performance-critical applications. The flexibility
of the weight-based evaluation method ensures that it can continue to evolve, providing
valuable information for a wide range of applications.
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4 ENSEMBLE OF COMPRESSION METHODS

This chapter addresses the research question (RQ2): "Can a deep model compression
ratio of 32x be achieved while maintaining an acceptable level of accuracy for practical
deployment"? It explores the practical limits of model compression techniques, assessing
the feasibility of attaining such a significant compression ratio while ensuring that perfor-
mance levels remain suitable for application requirements.

Publication II: (Section 4.2)

O. A. Ademola, E. Petlenkov and M. Leier, "Ensemble of Tensor Train Decomposition
and Quantization Methods for Deep Learning Model Compression"”, 2022 International
Joint Conference on Neural Networks (IJCNN), Padua, Italy, 2022, pp. 1-6, doi: 10.1109/I-
JCNN55064.2022.9892626.

4.1 Limitations of Single Compression Methods

Single compression methods as evaluated in Section 1.3 often struggle to strike an optimal
balance between key model metrics —CR, Acc, IT, FLOPs, and PMF. Each method has its
advantages, but also has inherent limitations that restrict its effectiveness when applied
individually.

To overcome these limitations that individual methods pose, combining two or more
compression methods into an ensemble (Section 2.1.6) can provide deeper compression
while preserving the performance of the model. The ensemble method leverages the
strengths of each technique and compensates for their weaknesses, resulting in a more
efficient and compact model suitable for deployment in resource-constrained environ-
ments.

Although deep model compression using ensemble offers the potential to deploy com-
pressed models on resource-limited devices, several challenges arise when attempting to
compress models at high ratios, such as 32x or more, without significantly impacting ac-
curacy. The possibility is explored in this chapter.

4.2 Ensemble of Tensor Train Decomposition and Quantization

DL models, particularly CNNs, are often too large and computationally expensive to deploy
directly on edge devices or embedded systems with limited resources. Although individ-
ual compression techniques such as TTD and 8-bit quantization offer substantial improve-
ments in reducing the size and inference time of the model, each has its own limitations
when applied independently (Table 6). TTD achieves an impressive compression ratio,
while quantization offers computational speedup and reduced precision storage.

The choice of combining tensor TTD and 8-bit quantization was inspired by the results
of my first publication, Evaluation of Deep Neural Network Compression Methods for
Edge Devices Using Weighted Score-Based Ranking Scheme in Appendix 1 (also discussed
in Section 3.1). In this publication, different DNN compression methods were ranked based
on a weighted score-based system.

The motivation behind combining these methods is to leverage the strengths of both
techniques, achieving deeper model compression than what either method could achieve
individually. By first applying TTD to reduce the memory and computation demands of
dense layers and then quantizing the resulting model, a significant compression was
achieved without sacrificing too much accuracy. This two-stage approach allows for
greater flexibility in optimizing both memory and computational efficiency.
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4.2.1 Architecture of the Ensemble Compression Pipeline

The proposed ensemble compression pipeline integrates Tensor Train Decomposition
(TTD) and 8-bit integer quantization in a sequential process to achieve effective compres-
sion of deep learning models, as described in Figure 3. Each step contributes uniquely to
optimizing the model, resulting in a compact but efficient version suitable for deployment
on resource-constrained devices.

The pipeline begins with a CNN base model (Table 2), which comprises convolutional
and fully connected (FC) layers. TTD is then applied specifically to the dense layer, which
typically contains the majority of the model’s parameters. By decomposing the weight
tensors of this layer into low-rank tensor cores, TTD substantially reduces the memory
footprint while retaining the model’s structural integrity. Following TTD, 8-bit integer
quantization is performed on the weights, biases, and activations of the tensor-trained
model. This step reduces the parameter precision from 32-bit floating point to 8-bit inte-
gers, effectively decreasing the model size and computational demands. Careful calibra-
tion ensures minimal performance loss during this quantization process.

The final output of the pipeline is a highly optimized, quantized tensor-trained model
that combines the advantages of TTD and 8-bit quantization, offering reduced memory
and computational requirements while maintaining accuracy. This makes the model par-
ticularly well suited for applications on low-resource platforms such as embedded systems
and mobile devices.

Base model

Tensorized model Quantized model
(32-bit)

(32-bit) (8-bit)

Figure 3: An illustration of the trainable pipeline for model compression using the ensemble of Tensor
Train Decomposition (TTD) and 8-bit quantization. The pipeline begins with a trained base model,
followed by TTD applied to dense layers, and concludes with 8-bit quantization of the resulting tensor
trained model. Appendix 2, Figure 3

The integration of TTD and 8-bit quantization offers several advantages over using ei-
ther technique individually, creating a synergistic effect that enhances the compression
and efficiency of deep learning models.

One key benefit is the ability to achieve deep compression ratios by leveraging the
strengths of both methods. TTD significantly reduces the memory requirements of fully
connected layers, while 8-bit quantization further compresses the model by reducing pa-
rameter precision. This combination delivers a level of compression that neither method
could achieve independently (Table 6).

Furthermore, the ensemble method provides a balanced reduction in both memory
usage and computational demands (Table 6). TTD minimizes memory footprints, particu-
larly in dense layers, and quantization accelerates computations through the use of low-
precision 8-bit integers. Together, these methods enable real-time inference on resource-
constrained devices, making the compressed model well suited for edge and embedded
applications.

The ensemble approach is also designed to retain accuracy despite aggressive com-
pression. Careful selection of TT-ranks and the selective application of quantization en-
sure that the resulting quantized tensor-trained model maintains acceptable performance
levels. In most cases, the accuracy degradation is kept within 10% of the original uncom-
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pressed model, offering a practical trade-off between the compression efficiency and the
model performance.

4.2.2 Challenges of the Ensemble Method

While the ensemble method offers substantial benefits, its implementation poses cer-
tain challenges that require careful consideration as established in the surveyed literature
(Section 1.2). One critical factor is selecting the appropriate TT-ranks during tensor train
decomposition. Lower TT-ranks achieve higher compression but may significantly impact
model performance. Striking the right balance requires meticulous tuning and experimen-
tation to ensure optimal performance for the specific model and data set.

Another challenge lies in managing accuracy loss during 8-bit quantization. Although
quantization substantially reduces the size of the model and improves speed, it can de-
grade accuracy, especially in sensitive architectures and layers. The ensemble method
must carefully calibrate the quantization to maintain the overall performance of the model
within acceptable limits.

By addressing these challenges through careful tuning and applying both techniques
in tandem, the ensemble method delivers a compact and efficient model that meets the
demands of the application.

4.3 Experimental Setup and Results

4.3.1 Architecture of the Baseline Model

The experiments in this study were carried out using a baseline CNN model, which was
trained on a custom data set. The architecture of the baseline model is shown in Table
2. The model consists of several convolutional layers followed by max-pooling layers and
an FC layer. The FC layer contributes to the majority of the model parameters (weights),
making it an ideal target for TTD.

The performance of the model was evaluated using these model metrics —model size,
peak memory footprint, accuracy, model speed, and computational cost as evaluated
in Section 3.2. The objective of the experiments was to evaluate the effects of applying
TTD and 8-bit quantization on this baseline model in terms of the model metrics. This is
to fulfill the goal of exploring the practical limits of model compression and to evaluate
the feasibility of achieving a very deep compression ratio while maintaining acceptable
performance limits required by applications.

4.3.2 Ensemble End-to-End Trainable Pipeline

To fully exploit the advantages of TTD and 8-bit quantization, | developed an end-to-end
trainable pipeline that compresses the CNN model of benchmark using an ensemble of
these two techniques, as shown in Figure 4. The pipeline was designed to be trainable
from scratch, meaning that the model was optimized with compression methods applied
during training, ensuring that the compressed model maintains an acceptable level of
performance while achieving significant reductions in size and computational complexity.

The pipeline integrates three core components to achieve efficient model compression
and performance optimization.

The pipeline begins with a trained baseline CNN model, comprising convolutional lay-
ers and a fully connected (FC) layer. The FC layer is the primary target for compression as
it typically contains the majority of the model parameters. By focusing on this layer, the
pipeline aims to address the significant memory and computational demands associated
with dense connections in deep learning models.
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Figure 4: A block representation of the end-to-end trainable pipeline for model compression using
an ensemble of Tensor Train Decomposition (TTD) and 8-bit quantization. The pipeline first applies
TTD to compress the dense layers, followed by 8-bit quantization to further reduce the model size
and computational cost. Appendix 2, Figure 4

TTD (Section 2.1.3.1) is then applied to the FC layer during training. This process fac-
torizes large weight matrices into smaller tensor cores, significantly reducing the memory
footprint of the model. TTD enables the network to maintain its performance by learning
an efficient low-rank representation, ensuring that the reduced parameter set retains the
critical features required for effective predictions.

Finally, 8-bit integer quantization (Section 2.1.1.3) is used to further compress the
model. In this step, the weights, biases, and activations of the tensor-trained model
are converted from 32-bit floating point to 8-bit integers. By incorporating quantization-
aware training, the model adjusts to the lower-precision format, ensuring minimal accu-
racy degradation while achieving substantial reductions in computational and memory
requirements.

The final compressed model generated by the pipeline is called the quantized tensor
trained model (QuanTT). This model combines the strengths of TTD, which reduces the
number of parameters in memory, and 8-bit quantization, which accelerates inference by
using low-precision integer arithmetic.

4.3.3 Training and Optimization Process
The pipeline was designed for end-to-end training, incorporating both TTD and quantization-
aware during the forward and backward passes. This approach allows the model to
adapt to the compressed structure and reduced precision of the weights and activa-
tions throughout the training. Although actual quantization was applied post-training,
quantization-aware induction ensures that the model learns to operate effectively under
the constraints of lower precision, thereby minimizing potential accuracy loss that could
occur.

The optimization process includes the following.

¢ Backpropagation with TTD: As the model trains, the tensor cores are updated
through backpropagation, ensuring that the compressed tensor representations
are optimized to minimize the loss function. The TT-ranks, which control the de-
gree of compression, are also tuned during this process.

¢ Quantization-Aware Training: 8-bit quantization was integrated into the training
process, allowing the model to learn how to operate effectively with low precision
weights and activations. Quantization-aware training helps the model mitigate the
accuracy degradation that typically accompanies post-training quantization.
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The end-to-end trainable pipeline enables deep learning model compression for de-
ployment in resource-constrained environments. By integrating TTD with 8-bit quanti-
zation, this approach produces highly compressed models that maintain strong perfor-
mance, making them ideal for real-world applications with limited computational and
memory resources.

4.3.4 Tensor Train Configuration

TTD was applied to the dense layer of the baseline model, which accounts for approxi-
mately 94.79% of the model’s parameters. This layer, with an input dimension of 16,384
and an output dimension of 64, was converted into a TT layer to significantly reduce the
memory footprint.

Various TT configurations were tested to find the optimal TT rank for compression.
Table 11 presents the different combinations of TT-ranks, input dimensions, and output di-
mensions explored in the experiments. The objective was to achieve the smallest possible
TT-ranks while maintaining satisfactory model performance.

Table 11: Tensor Train Layer Configurations.

Configuration TT-layer Parameters
Type TT-ranks | Input dims | Output dims
TTA 4 (16,16,8,8) (4,4,2,2)
TT-I 6 (16,16,8,8) (4,4,2,2)
TT-I 8 (16,16,8,8) (4,4,2,2)
TT-IV 10 (16,16,8,8) (4,4,2,2)
TT-V 4 (16,8,16,8) (4,2,4,2)
TT-VI 6 (16,8,16,8) (4,2,4,2)
TT-VII 8 (16,16,8,8) (4,4,2,2)
TT-VIII 10 (16,16,8,8) (4,4,2,2)
TT-IX 4 (64,2,64,2) (8,1,8,1)
TT-X 6 (64,2,64,2) (8,1,8,1)
TT-XI 8 (64,2,64,2) (8,1,8,1)
TT-XII 10 (64,2,64,1) (8,1,8,1)

The original weight matrix of the dense layer, which has a shape of (16384,64), was
reshaped into a higher order tensor. The input dimension of 16,384 and the output di-
mension of 64 were factored into smaller dimensions. For example:

e (16,16,8,8) refers to the factorized shape of the input tensor (in this case a 4-
dimensional tensor), where each element represents the size of the factorized di-
mensions. These dimensions were chosen on the basis of the TT-ranks and the
shape of the original tensor. For the input dimension of 16,384, it was decomposed
into (16,16,8,8), and similarly, the output dimension of 64 is decomposed into
(4,4,2,2).

o (4,4,22) refers to the factorized dimensions of the output tensor after decompo-
sition. These dimensions correspond to the TT-ranks and how the original output
dimension (64) was divided into smaller tensor cores.

By decomposing the weight matrix into these smaller tensor cores, the overall num-
ber of parameters stored in memory was reduced due to the lower-rank approximation,
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Table 12: Performance comparison of tensor trained compressed models with different configura-
tions

Config. Key Performance Indicators

Type MS (KB)? | PMF (KB)® | Acc. (%) | Speed (ms)® | CC (MFLOPs)®
TT-I 243 361719 72.91 18.53 64.34
TT-l 250 3621.09 72.62 19.40 64.34
TT-I 259 3628.91 74.06 20.48 64.34
TT-IV 271 3644.53 70.32 21.80 64.34
TT-V 244 3613.28 73.48 18.48 64.34
TT-VI 251 3621.09 74.35 19.38 64.34
TT-VII 260 3632.81 72.62 20.38 64.34
TT-VIII 272 3640.62 70.89 21.78 64.34
TT-IX 278 3652.34 69.74 19.59 64.34
TT-X 321 3695.31 74.35 21.24 64.34
TT-XI 381 3746.09 74.92 23.21 64.34
TT-XII 458 3816.41 70.31 25.73 64.34

aMS: Model Size, PPMF: Peak Memory Footprint, CAcc.: Accuracy, 9Speed: Model Speed, €CC: Com-
putational Cost

allowing efficient compression without sacrificing too much accuracy. The TT-ranks (e.g.
4, 6, 8, 10) control the level of compression, as shown in Table 12, with smaller TT-ranks
leading to higher compression, but potentially greater loss in accuracy.

Each configuration type (e.g., TT-I, TT-ll, TT-lll, TT-IV, TT-V, etc.) results in a tensor-
trained model, as shown in Table 12. These models were evaluated and ranked using the
weighted score-based ranking method discussed in Section 3.1 to obtain the configura-
tion of the TT layer that produces the best performing tensor-trained model. The tensor
trained model generated by the TT-V configuration type was the highest ranked and was
selected for the final TT-layer configuration used in compression.

4.3.5 Tensor Trained Model Quantization

The parameters of the optimized tensor-trained model were quantized to 8-bit unsigned
integers, further reducing memory, storage, and computational footprints. Quantization
was applied to all layers except input and output layers to prevent significant accuracy
loss, resulting in the quantized tensor-trained model (QuanTT).

QuanTT preserves the compressed structure introduced by TTD while enhancing
memory efficiency and inference speed through 8-bit precision for parameter storage. By
selectively quantizing only certain layers, accuracy loss typically associated with quanti-
zation was minimized, maximizing the compression benefits from tensor train decompo-
sition.

4.3.6 Performance Comparison and Evaluation of Key Metrics

To evaluate the performance of the ensemble method, the base model was compared
with three compressed variants: tensor trained only, quantized only and the quantized
tensor trained model (QuanTT) produced by the ensemble method. Table 13 summarizes
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Table 13: This table compares the baseline model with TTD, 8-bit quantization, and the ensemble
method (QuanTT)

Model MS (KB)® | PMF (KB)P | Acc (%) | IS (ms)d | MFLOPs®
Baseline 4429.61 8907.81 77.23 22.88 66.44
Quantized Only 1119.40 3705.47 76.95 13.65 7.29
Tensor Trained Only 244.00 3613.28 73.48 18.48 64.34
QuanTT 76.70 1632.81 69.45 12.89 7.06

aMs: Model Size

bpm: Peak Memory Footprint

CAcc: Accuracy

djs: Inference Speed

€MFLOPs: Million Floating Point Operations

the results, highlighting key performance indicators such as model size, accuracy, infer-
ence speed, computational cost, and peak memory footprint.

Evaluation of key metrics highlights substantial improvements across various aspects
of compressed models, particularly in the QuanTT model.

The QuanTT model achieves an exceptional reduction in size, compressing the baseline
model from 4429.61 KB to just 76.7 KB, resulting in a remarkable 57x reduction. This level
of compression far exceeds the individual effects of tensor train decomposition or quan-
tization alone, rendering the model highly compact and ideal for deployment in memory-
constrained environments.

In terms of accuracy, the QuanTT model maintains a performance level of 69.45%,
despite experiencing a 10% reduction compared to the baseline. This balance between
accuracy and efficiency ensures its suitability for scenarios that prioritize memory and
computational efficiency over minor accuracy losses.

Inference speed is significantly improved, and the QuanTT model produces 2x faster
inference times than baseline. This improvement positions the model as an excellent
choice for real-time applications on resource-limited devices, reducing latency, and im-
proving response times.

The computational cost is another area of major improvement, and the QuanTT model
achieving a 9x reduction in mega floating-point operations (MFLOPs) compared to base-
line. This efficiency makes it well-suited for devices with limited processing power, such
as edge and embedded systems.

Peak memory usage sees a substantial decrease as well, with the QuanTT model con-
suming 1632.81 KB, which is 5x lower than the baseline’s 8907.81 KB. This significant re-
duction enables efficient deployment on devices with strict memory constraints, ensuring
smooth operation in resource-limited environments.

Overall, the QuanTT model, produced by the TTD and 8-bit quantization ensemble,
outperformed the other compressed models in every key metric. It provides the most
effective balance between model size, speed, and computational efficiency while main-
taining acceptable accuracy for practical applications. These results highlight the poten-
tial of this compression pipeline for real-world use-case in memory and computation-
constrained environments.
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4.4 Summary and Conclusion

4.41 Summary
This chapter introduced a novel ensemble method for deep compression of CNN models
by integrating Tensor Train Decomposition (TTD) with 8-bit integer quantization.

The primary objective was to address the research question (RQ2): "Can a deep model
compression ratio of 32x be achieved while maintaining an acceptable level of accuracy
for practical deployment?". The objective was to enable the deployment of deep learning
models on devices with highly resource-constrained devices, where both memory and
computational resources are severely limited.

Through a comprehensive review of traditional compression techniques such as prun-
ing, quantization, knowledge distillation (KD), and tensor decomposition (TD), | high-
lighted their limitations when used in isolation. Although each technique is effective on
its own, they often struggle to strike a balance between high compression ratios and
preserving model accuracy. To overcome these limitations, an ensemble approach that
combines TTD and 8-bit quantization was proposed to achieve substantial compression
while maintaining performance within acceptable bounds.

The experimental results validated the effectiveness of this approach. By applying TTD
to the dense layer and quantizing the parameters to 8-bit integers, the resulting com-
pressed model, QuanTT, achieved a remarkable 57x reduction in model size, a 5x reduc-
tion in memory usage, and a 2x increase in inference speed, with only a 10% reduction in
accuracy. These results demonstrate the potential of the proposed method for real-world
applications in environments with stringent resource constraints.

Not only was the initial goal of a 32x compression ratio achieved, but it was signif-
icantly surpassed. The QuanTT model achieved a 57x compression ratio, far exceeding
expectations. Despite this substantial reduction in model size, the compressed model re-
tained a satisfactory level of accuracy, with only a minor 10% decrease compared to the
baseline. This confirms that it is feasible to achieve deep compression without sacrificing
the performance required for practical deployment.

The synergy between TTD and 8-bit quantization proved to be an optimal solution
for this challenge. TTD effectively reduced the number of parameters stored in memory,
while quantization improved computational efficiency by lowering parameter precision.
The combination of these techniques allowed the model to balance compression and per-
formance, making it a robust solution for deployment in resource-limited environments.

4.4.2 Conclusion
In conclusion, this chapter presented an end-to-end trainable pipeline for DL model com-
pression that combines TTD and 8-bit quantization. By addressing RQ2, | demonstrated
that it is possible to achieve a compression ratio far beyond the original 32x goal, reaching
57x, while maintaining a performance level suitable for different application contexts.
This offers a practical and scalable solution for deploying DL models on devices with
very limited resources. The ability to compress models so drastically, without compromis-
ing critical performance metrics, is a significant step forward for the deployment of the
DL model on the edge.
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5 PRACTICAL USE CASE: OPTIMIZATION LIMITATION OF SCENE
TEXT DETECTION AND RECOGNITION MODELS

This chapter addresses RQ3: "Can efficient model optimization be achieved without
significantly compromising performance, especially for network architectures that are
highly sensitive to compression and quantization?" focusing on scene text detection and
recognition models. The aim is to overcome their sensitivity to compression by develop-
ing a method for efficient optimization that preserves performance, even on integer-only
hardware.

Publication IlI: (Section 5.1)

0. A. Ademola, E. Petlenkov, and M. Leier, "Resource-Aware Scene Text Recognition Using
Learned Features, Quantization, and Contour-Based Character Extraction," in IEEE Access,
vol. 11, pp. 56865-56874, 2023, doi: 10.1109/ACCESS.2023.3283931.

5.1 Resource-Aware Scene Text Recognition Using Learned Features,
Quantization, and Contour-Based Character Extraction

5.2 Scene Text Recognition In Embedded Systems

Scene text recognition refers to the detection and interpretation of textual information
embedded within natural images or video frames. This task is crucial in a wide range
of real-world applications, particularly those where decision making is based on visual
context, such as intelligent transportation systems, autonomous navigation, and parcel
sorting. In these scenarios, the recognition of text, such as road signs, traffic warnings,
markers, or container numbers, allows systems to make intelligent and informed deci-
sions.

While text in natural scenes is often easily recognizable to humans, for machines, it
remains a challenging task. Variations in font size, orientation, background clutter, lighting
conditions, and text distortions all contribute to the complexity of this problem. Detecting
and recognizing scene text typically requires sophisticated algorithms that can adapt to
these variations and extract accurate information in real-time.

Embedded systems, including autonomous robots, handheld & IoT devices, increas-
ingly rely on scene text recognition for applications like navigation, labeling, and smart
tracking. However, unlike general-purpose computing systems, embedded devices oper-
ate under stringent hardware constraints. These devices often lack the processing power,
memory, and energy resources required to run large-scale DL models, which are typically
used for tasks such as scene text recognition.

5.3 Resource Constraints in Embedded Hardware

Embedded systems, especially those used in real-time applications, are typically built on
hardware platforms optimized for power efficiency rather than computational through-
put. Microcontrollers and edge devices, for instance, often rely on integer-only hardware,
restricting their ability to perform floating-point operations common in deep learning sys-
tems. These devices also have limited memory and processing power, making it impracti-
cal to deploy large, resource-intensive models directly.

Although modern deep learning methods excel at detecting and recognizing text in
complex scenes, they require substantial resources in terms of storage, memory, and
computation. For example, models based on convolutional neural networks (CNN) or re-
current neural networks (RNNs) require extensive floating-point computations, numerous
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filter layers, and significant memory to achieve high accuracy. This poses a significant chal-
lenge when deploying these models on devices with constrained computational capacity
and memory.

Given these constraints, there is a critical need for techniques that reduce the resource
requirements of scene text recognition models while preserving high performance. This is
particularly essential for systems operating on integer-only hardware, such as edge TPUs
or microcontrollers, where all computations must be performed using integer arithmetic.

5.4 Challenges and Research Objectives

5.4.1 Challenges in Optimizing Scene Text Detection and Recognition Models
Optimizing scene text detection and recognition models, particularly those based on deep
learning architectures, poses significant challenges. These models must handle the inher-
ent variability of natural scenes, including various text orientations, lighting conditions,
and background clutter, necessitating sophisticated algorithms for high accuracy. How-
ever, they are highly sensitive to compression, which can cause severe performance degra-
dation if not managed carefully.

A primary challenge is that scene text recognition models often depend on floating
point arithmetic for tasks like feature extraction, classification, and recognition. Com-
pression techniques such as quantization and pruning, essential for deploying models on
resource-constrained hardware, can introduce quantization errors and reduce model pre-
cision, severely affecting performance. In scene text recognition, even minor errors in
text detection can lead to complete recognition failures, making these models especially
vulnerable to optimization-induced errors.

Additional difficulties arise when deploying these models on embedded devices with
integer-only hardware, such as edge TPUs and microcontrollers, which lack support for
floating-point operations. Converting floating-point models to integer-based ones with-
out careful management of quantization errors can lead to unacceptable accuracy losses.
The challenge lies in achieving efficient compression while preserving the accuracy re-
quired for effective scene text recognition.

Moreover, while techniques such as quantization and pruning reduce model size and
complexity, they also introduce new challenges. Quantization, for example, can cause
a loss of precision that is particularly detrimental to text recognition models, which are
sensitive to even small errors. The key challenge is to strike a balance between resource
efficiency and maintaining the high level of accuracy needed for applications that rely on
robust scene text recognition, especially when these models are deployed on integer-only
hardware.

5.4.2 Research Objectives

This chapter seeks to address these optimization limitations inherent in scene text detec-
tion and recognition models, specifically addressing their sensitivity to model compres-
sion. The primary objective was to develop a method for efficient model optimization
without significantly compromising the performance of the model, particularly when im-
plemented on integer-only hardware.

The key research objectives focus on addressing the challenges associated with opti-
mizing scene text recognition models for resource-constrained environments:

Handling Sensitivity to Compression: The research aims to develop strategies to miti-
gate the negative impact of quantization on scene text recognition models. This includes
introducing mechanisms to counteract quantization-induced errors, thereby minimizing
performance degradation.

60



Efficient Quantization Strategy: A tailored 8-bit quantization technique is proposed,
designed specifically for scene text recognition models. This strategy accounts for the
models’ sensitivity to precision loss, ensuring accuracy retention while maintaining com-
patibility with integer-only hardware.

Resource-Efficient Solution: The research seeks to ensure that the optimized model
operates efficiently on resource-constrained devices, such as microcontrollers and Edge
TPUs, by reducing memory and computational requirements without compromising func-
tionality.

Minimizing Performance Trade-Offs: Efforts are made to balance model size with per-
formance, ensuring that compression techniques do not significantly impair the model’s
ability to detect and recognize text, even in challenging and noisy scene images.

Deploying on Integer-Only Hardware: The study emphasizes optimizing both text de-
tection and recognition pipelines to function seamlessly on integer-only hardware. This
allows for real-time text recognition in embedded systems that lack floating-point sup-
port.

The solution proposed in this chapter addresses the key issue of optimization sensitiv-
ity in scene text recognition models, offering a balanced approach that enables efficient
deployment on embedded systems while maintaining an acceptable accuracy in challeng-
ing environments.

5.5 Scene Text Detection and Recognition

Scene text detection and recognition have evolved significantly over the past few years
with advancements in both computer vision and DL methods. These methods have been
developed to solve the complex task of extracting and identifying text in natural scenes,
which poses several challenges due to varying lighting conditions, text orientations, fonts,
and background clutter.

5.5.1 Text Detection

Text detection is the process of identifying regions in an image that contain text. Early
approaches to text detection relied on traditional computer vision techniques, such as
sliding windows, connected component analysis, and machine learning classifiers such as
Support Vector Machines (SVM), Random Forests, and AdaBoost. These methods involved
manually designed filters to detect candidate text regions based on features such as edges,
contrast, and color. Although computationally efficient, these methods struggled with
accuracy in complex scenes and text that varied in orientation or size.

With the advent of DL, modern text detection methods have significantly improved in
accuracy and robustness. State-of-the-art techniques, such as Faster R-CNN, introduced
by Ren et al. [65], and Connectionist Text Proposal Network (CTPN), developed by Tian et
al. [66], rely on deep CNNs to propose regions that are likely to contain text. The Faster
R-CNN method incorporates a region proposal network (RPN) to detect multi-orientated
text, while CTPN combines CNN and RNN to enhance the detection of text in complex
orientations.

One prominent text detection model is EAST (Efficient and Accurate Scene Text Detec-
tor), proposed by Zhou et al. [67]. EAST utilizes a fully CNN for efficient text detection
by directly predicting text regions. EAST is known for its balance between accuracy and
speed, making it well suited for real-time applications. However, despite these advances,
the deployment of these methods on resource-constrained hardware poses significant
challenges due to their computational complexity.
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5.5.2 Text Recognition

Text recognition refers to the process of recognizing and converting detected text regions
into readable format. Early recognition methods involved the use of hand-made features
and machine learning algorithms to classify text. However, these methods suffered from
limited accuracy, especially when faced with low resolution or distorted text.

Deep learning-based text recognition methods have since become the state-of-the-
art, using convolutional and recurrent neural networks to recognize text in natural scenes.
Jaderberg et al. [68] pioneered the use of deep CNN for word-level recognition, achiev-
ing significant improvements in accuracy. These models excel at learning complex text
patterns directly from data, making them robust to variations in font, orientation, and
background noise.

More recently, attention-based methods have been introduced to improve the accu-
racy of text recognition in challenging conditions. These methods, such as those proposed
by Shi et al. [69], use sequence-to-sequence models with attention mechanisms to focus
on relevant parts of the image during the recognition process.

Recent efforts have focused on addressing the resource constraints of embedded
systems by developing lightweight models and optimization techniques. For example,
lightweight text spotters such as the method introduced by Bagi et al. [70] have been
designed to operate efficiently in resource-limited environments while still providing
accurate text detection and recognition.

Quantization-aware training (QAT) is another approach that has been used to mitigate
the negative effects of quantization on model accuracy. Adaptive bezier curve networks,
such as ABCNet [71], further optimize the text recognition pipeline by reducing the number
of parameters and operations required, making them more suitable for real-time applica-
tions on devices with limited resources.

Despite these advancements, there remains a need for more efficient methods that
can handle the sensitivity of scene text recognition models to optimization techniques like
guantization and pruning, particularly, on hardware supports integer-only operations.

5.6 Proposed Methodology

The focus of this methodology is to overcome the optimization limitations of scene text
detection and recognition models when deployed on resource-constrained hardware, par-
ticularly integer-only devices. My approach achieves efficient model compression while
preserving performance, adapted for embedded systems with limited resources. This sec-
tion elaborates on the architecture of the system, the enhancements made to the base
models, the quantization techniques, and the unique text recognition strategies devel-
oped.

5.6.1 System Architecture Overview

The overall system follows a two-stage architecture that begins with text detection, fol-
lowed by text recognition. As shown in Figure 5, the detection model localizes text regions
within the image, while the recognition model decodes the text contained within these
regions.

| designed the system using a modified EAST detector for the detection stage and a
novel contour-based extraction method for the recognition stage. Both models are heavily
optimized to run efficiently on integer-only hardware, such as microcontrollers or edge
TPUs, without compromising accuracy.
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Figure 5: System Architecture for Scene Text Detection and Recognition. Appendix 3, Figure 1

5.6.2 Text Detection: Modified EAST Architecture

The text detection stage is built on the original EAST architecture, which performs direct
prediction of text regions. Figure 6 illustrates the original EAST architecture, highlighting
its three main stages: feature extraction, feature merging, and output generation.
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Figure 6: Original EAST Architecture for Scene Text Detection, [67]

To better suit the needs of resource-limited hardware, | introduced key modifica-
tions to the base EAST model. My approach replaces the original PVANet backbone with
ResNet-50, which offers a more efficient trade-off between speed and accuracy. The
ResNet-50 backbone, illustrated in Figure 7, uses a bottleneck design that reduces the
number of operations, making it ideal for further compression for real-time embedded
systems.

The modified EAST architecture, as shown in Figure 8, retains the three core stages of
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the original design while incorporating ResNet-50 for feature extraction. This enhance-
ment significantly reduces the model’s size and computational footprint, making it more
amenable to further optimization. This improvement is attributed to two key aspects of
ResNet-50’s design.

First, ResNet-50 employs a bottleneck architecture with 1x1 kernel filters, which re-
duces the number of matrix multiplications and network parameters, leading to faster
propagation times. Second, it replaces fully connected layers with global average pooling,
which effectively minimizes the overall size of the model. These features make ResNet-50
a more efficient backbone for the modified EAST architecture

The architecture is composed of three essential stages.

Feature extraction leverages ResNet-50, illustrated in Figure 7, as the backbone to ex-
tract high-level features from input images. It consists of five convolutional blocks, each
designed to capture progressively more complex features from the input data.

Feature merging employs 1x1 and 3x3 convolutions to combine intermediate outputs
from various stages of ResNet-50. This approach reduces computational complexity while
retaining important feature information.

Output generation produces bounding boxes, shown in Figure 9, along with confidence
scores for detected text regions. These outputs are then passed to the recognition model
for further processing.

5.6.3 Quantization for Integer-Only Hardware

One of the critical challenges in deploying deep learning models on embedded devices
is ensuring efficient computation on hardware that only supports integer arithmetic. To
address this, | applied an 8-bit quantization technique to both the weights and activations
of the models. This reduces the precision of parameters from 32-bit floating-point values
to 8-bit integer values, drastically cutting memory usage and computational demands.

The quantization process followed a structured approach to minimize errors and main-
tain model performance.

A key innovation was the introduction of a quantization offset, or bias, to address small
errors introduced by reduced precision in the integer-only representation. These errors,
particularly significant in sensitive regions like bounding box coordinates in the text detec-
tion model, were mitigated by introducing an offset during ground-truth label generation.
This adjustment compensated for quantization-induced errors during training, ensuring
accuracy in regions most susceptible to small deviations.

Quantization-aware training (QAT) was employed to further enhance performance.
By simulating quantization-induced errors during the training phase, the model adapted
to lower precision values. This approach preserved accuracy even when static quantiza-
tion was applied post-training, countering the typical performance degradation associated
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with static post-training quantization.

Finally, scaling and quantization were applied to convert 32-bit floating-point values
into 8-bit integers using equations (1) and (2). This process, supported by the quantiza-
tion offset, maintained robust bounding box accuracy, ensuring minimal deviation despite
reduced precision. This step was critical in upholding the overall detection and recognition
pipeline’s reliability.

By combining QAT with the quantization offset, the final model achieves the necessary
precision for accurate text detection.

5.6.4 Text Recognition: Contour-Based Character Extraction

After detecting the text regions, the next step was to extract and recognize individual
characters within those regions, as illustrated in Figure 11. | developed a contour-based
character extraction method, which improves recognition accuracy even in challenging
scenarios like distorted or low image resolution text.
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Figure 9: Bounding boxes generated by the text detection model. Appendix 3, Figure 5

The recognition pipeline is structured into three key stages to ensure accurate and
efficient processing of detected text regions.

The first stage, pre-processing, involves cropping and normalizing the detected text re-
gions based on the bounding-box coordinates provided by the detection model. This step
ensures that only regions containing text are passed to the recognition pipeline, reducing
computational overhead and eliminating noise from surrounding areas.

Next, contour-based character extraction is employed to isolate individual characters
within the detected text regions. Contours are computed for each character, effectively
separating them even in cases of close clustering or varying orientations. Irrelevant con-
tours, such as those belonging to background objects, are discarded to prevent interfer-
ence. This method significantly improves recognition accuracy by ensuring that only valid
character candidates are processed.

Finally, the character recognition stage identifies specific characters using a CNN-based
recognition model. The architecture, as detailed in Table 3, balances efficiency and accu-
racy. The model begins with convolutional layers that extract high-level features, captur-
ing unique characteristics like edges and strokes essential for classification. Pooling layers
follow, reducing the spatial dimensions of feature maps to enhance efficiency without los-
ing critical information. Fully connected layers conclude the pipeline, mapping extracted
features to character labels such as letters and numbers. This structured design ensures
robust and accurate text recognition suitable for a variety of applications.

The text recognition model was quantized to support integer-only computations, en-
suring both real-time performance and accuracy. The output of the character recognition
model was aggregated string, representing the text recognized within the region of inter-
est as seen in Figure 12.

By combining contour-based extraction with a lightweight CNN and quantization, the
recognition model was able to deliver high accuracy in detecting and recognizing text. This
method ensures that the system remains suitable for real-time embedded applications
without the performance degradation typically associated with compressed or quantized
scene text detection and recognition models.

The contour-based method has shown exceptional performance in addressing the
challenges posed by the variability of real-world text. It effectively manages diverse text
orientations, including horizontal and vertical layouts commonly seen in scene images.
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Figure 10: The bounding boxes generated without the introduction of quantization offset. Appendix
3, Figure 6

Text Bounding Box

Pre-processing L_d Character Recognition [ 1 Constructed Text

Figure 11: The text recognition pipeline. Appendix 3, Figure 8

Using deep feature extraction from convolutional layers, the method generalizes well
across a wide range of fonts and styles, ensuring robust recognition irrespective of visual
variations. In addition, it is adept at handling low-resolution or blurred text, making it
particularly useful for applications where image quality fluctuates. This versatility under-
scores its suitability for complex real-world scenarios.

This approach was specifically designed to overcome the limitations of previous recog-
nition models that struggled with resource constraints and real-world variability, ensuring
that the model remains robust in different application scenarios.

5.7 Experiments

In this section, | present the experiments conducted to evaluate the performance of the
proposed resource-aware scene text detection and recognition method, optimized for
integer-only embedded hardware. The experiments include training and evaluation of
both text detection and recognition models, followed by a comprehensive analysis of their
performance in terms of model size, inference time, accuracy, computational cost, and
peak memory footprint.

5.7.1 Experimental Setup

The experiments were carried out using a proprietary dataset. It comprises of 2000 im-
ages, with 1500 allocated for training the text detection model and 500 reserved for test-
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Figure 12: Scene text detection and recognition results. Appendix 3, Figure 9

ing. Each image contains a shipping container with a unique cargo identification number,
consisting of both letters and numbers. These container images were standardized to a
size of 320 x 320 pixels to facilitate processing by the detection model.

For the text recognition model, 8750 character images were extracted. These images,
resized to 64 x 64 pixels, included 35 characters, consisting of the digits 0-9 and the letters
A-Z, excluding ‘O’ due to its visual similarity to digit O. Each character class contained 250
images, ensuring a balanced dataset. From this set, 7000 images were used for training,
while the remaining 1750 were reserved for testing.

To evaluate the models on embedded hardware that supports only integer operations,
| selected the Google Coral Development Board as the target hardware platform. The
Coral board is equipped with Quad Cortex A53 and Cortex M4F processors, along with
a dedicated Edge TPU coprocessor. It includes 1 GB of RAM and 8 GB of flash memory,
making it an ideal candidate for testing the performance of compressed models.

5.7.2 Evaluation Metrics
The performance of the quantized models was evaluated using these key metrics:

e Model Size: The size of the model in memory after quantization.

¢ Inference Time: The time required to process an input image and produce an out-
put.

e Computational Flop: The total number of floating point operations during model
inference.

¢ Peak Memory footprint: The peak memory usage during model inference.

e Mean Loss: A combination of dice loss and intersection-over-union (loU) loss for
the text detection model.

e Accuracy: It measures the predictive capacity of the text recognition model.

These metrics assess the trade-offs between model performance, memory footprint,
and inference speed, which are critical in resource-constrained environments.
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5.8 Results and Discussion

The results are presented in this section. The evaluation focuses on several key perfor-
mance metrics that assess the applicability and efficiency of quantized models for both
text detection and recognition tasks. The performance of both the original and quantized
models was evaluated based on the size of the model, the inference time, the computa-
tional cost, and the maximum RAM usage.

Table 14: Evaluation metrics of the text detection and recognition models

Text Detection Text Recognition
Metrics Original Quantized Original Quantized
Model Size (MB) 96.21 24.83 0.88 0.23
Inference Time (ms) 2356.00 1450.77 3.59 2.18
Computational Cost (MFLOP)  15072.50 0 20.20 0
Peak RAM Usage (MB) 286.23 40.63 5.04 3.29

Mean Loss Accuracy

Model Performance (%) 25.51 26.23 99.73 99.62

As seen in Table 14, the quantized models significantly outperformed the original mod-
els in terms of resource efficiency. Quantized models achieved a reduction in model size.
The size of the text detection model was reduced from 96.21 MB to 24.83 MB, while the
size of the text recognition model decreased from 0.88 MB to 0.23 MB. This reduction
highlights the efficiency of the quantization technique, making the models more suitable
for deployment on resource-constrained devices like microcontrollers or TPUs.

A reduction in inference time was observed in both models after quantization. The
text detection model’s inference time improved from 2356.00 ms to 1450.77 ms, while
the recognition model saw a reduction from 3.59 ms to 2.18 ms. This improvement is
crucial for real-time applications as it ensures faster processing of text regions and overall
system responsiveness.

The computational cost for both the quantized detection and recognition models was
reduced to zero floating-point operations (FLOPs), demonstrating that the models were
fully optimized to operate exclusively on integer-only hardware, thereby eliminating the
need for any floating-point computations.

Quantized models demonstrated a reduction in maximum RAM usage. The RAM usage
of the text detection model decreased from 286.23 MB to 40.63 MB, while the usage
of the recognition model decreased from 5.04 MB to 3.29 MB. This reduction ensures
that the models can run smoothly on devices with limited memory resources, improving
overall system stability and efficiency.

In terms of performance, the mean loss and accuracy of the original and quantized
models were compared. The results show that the quantized models maintained accuracy
and performance, with only minimal deviations from the original models.

After quantization, the mean loss of the text detection model increased slightly from
25.51% to 26.23%, but this minor change did not significantly affect overall performance.
The use of quantization bias and quantization-aware training (QAT) during training effec-
tively mitigated quantization-induced errors, addressing a key factor contributing to the
models’ sensitivity to compression.

In terms of text recognition accuracy, the quantized model performed remarkably well,
maintaining an accuracy of 99.62%, compared to 99.73% in the original model. The min-
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imal difference of 0.11% shows that the quantized model is highly reliable, making it a
suitable option for real-time applications without significant performance degradation.

5.9 Summary and Conclusion

5.9.1 Summary

This chapter addresses the research question (RQ3): "Can efficient model optimization be
achieved without significantly compromising model performance, particularly for net-
work architectures that are very sensitive to compression?". The focus of this case study
was on scene text detection and recognition models, which are known for their sensitivity
to quantization. The primary objective was to develop a method for efficient optimization
while maintaining acceptable model performance, especially when the models are de-
ployed on integer-only hardware.

The results demonstrate that the quantization techniques introduced was effective.
The quantized text detection model saw a reduction in size from 96.21 MB to 24.83 MB,
and the inference time improved from 2356 ms to 1450.77 ms. Similarly, the size of the
quantized text recognition model decreased from 0.88 MB to 0.23 MB, with the inference
time dropping from 3.59 to 2.18 ms. Despite these optimizations, the accuracy of both
models remained largely unaffected, with only minimal reductions observed.

By reducing the computational cost to zero for quantized models due to integer-based
operations, the study confirms that efficient model optimization can indeed be achieved
without a significant compromise in performance. These findings highlight the viability of
model compression and quantization techniques for use in scene text processing.

5.9.2 Conclusion

The results clearly demonstrate that the applied quantization technique provides a sub-
stantial improvement in resource efficiency without significantly sacrificing performance.
The quantized models exhibit reduced memory and computational requirements, mak-
ing them ideal for deployment in embedded systems with constrained resources, such as
microcontrollers and edge TPUs.

Despite the minimal increase in mean loss, the overall performance of the quantized
models remains highly competitive with the original models. The slight decrease in accu-
racy in the recognition model is negligible in practical applications and is outweighed by
the significant improvements in inference time, model size, and RAM usage.

The combination of quantization-aware training (QAT) and the introduction of a quan-
tization offset successfully mitigated most of the adverse effects typically associated with
quantization of scene text models. This approach proves effective for optimizing scene
text detection and recognition models.
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6 CONCLUSION

This thesis has addressed the research gaps described through three key research ob-
jectives (RO1, RO2, and RO3), each corresponding to the research questions (RQ1, RQ2,
and RQ3). The contributions made towards efficient model compression for resource-
constrained hardware have been validated through peer-reviewed publications and con-
ference presentations—detailed in Appendix I, 2, and 3. The cumulative findings and
contributions are extensively discussed throughout this thesis.

Research Question 1(RQ1): Can a numerically based mathematical method be devel-
oped to quantitatively evaluate state-of-the-art deep learning (DL) model compression
techniques for diverse application requirements?

Research Objective 1 (RO1) focused on developing a robust numerically based math-
ematical method to objectively evaluate and rank state-of-the-art model compression
techniques. This method, detailed in Publication | (Appendix 1) , utilized a weighted
score-based ranking system that assessed the efficiency, effectiveness, and suitability of
each compression technique across various applications. The proposed method provides
a standardized and adaptable approach for objectively selecting optimal compression
strategies tailored to specific use cases, ensuring that the most effective methods are
employed.

Research Question 2 (RQ2): “Can a deep model compression ratio of 32x be achieved
while maintaining an acceptable level of accuracy for practical deployment?”

Research Objective 2 (RO2) aimed to achieve a deep model compression ratio of 32x
while maintaining acceptable levels of accuracy. This objective explored the practical lim-
its of extreme compression for deep learning models, particularly in critical edge applica-
tions. The ensemble method developed in Publication Il (Appendix 2), which combines
Tensor Train Decomposition (TTD) and 8-bit quantization, successfully achieved a remark-
able 57x compression ratio, far exceeding the initial target. This demonstrates the viability
of high-ratio compression techniques for practical deployment without significant perfor-
mance loss.

Research Question 3 (RQ3): “Can efficient model optimization be achieved without
significantly compromising performance, especially for network architectures that are
highly sensitive to compression and quantization?”

Research Objective 3 (RO3) addressed the challenge of optimizing deep learning mod-
els that are highly sensitive to compression and quantization. The goal was to significantly
reduce computational and memory requirements while preserving model performance.
Publication 11l (Appendix 3) introduced a novel quantization offset technique, known as
quantization bias, which effectively mitigated the sensitivity of state-of-the-art scene text
detection and recognition models to quantization. This innovation enabled efficient de-
ployment on hardware that is only integer with minimal accuracy degradation. In addition,
a comprehensive text orientation detection module was integrated, improving the ability
of the model to process text in various orientations, thus broadening its applicability.

In conclusion, the research presented in this thesis has made significant advance-
ments in the field of efficient deep learning (DL) model compression and optimization.
By addressing the research questions described here, this thesis has developed innova-
tive methods to evaluate, compress, and optimize models, providing valuable insights and
practical solutions to implement high performance DL models on resources-constrained
devices. The proposed methods not only push the boundaries of model compression, but
also ensure that even sensitive architectures can be efficiently deployed without compro-
mising performance, making them well suited for a wide range of applications.
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Abstract: The demand for object detection capability in edge computing systems has surged. As
such, the need for lightweight Convolutional Neural Network (CNN)-based object detection models
has become a focal point. Current models are large in memory and deployment in edge devices is
demanding. This shows that the models need to be optimized for the hardware without performance
degradation. There exist several model compression methods; however, determining the most
efficient method is of major concern. Our goal was to rank the performance of these methods using
our application as a case study. We aimed to develop a real-time vehicle tracking system for cargo
ships. To address this, we developed a weighted score-based ranking scheme that utilizes the model
performance metrics. We demonstrated the effectiveness of this method by applying it on the baseline,
compressed, and micro-CNN models trained on our dataset. The result showed that quantization is
the most efficient compression method for the application, having the highest rank, with an average
weighted score of 9.00, followed by binarization, having an average weighted score of 8.07. Our
proposed method is extendable and can be used as a framework for the selection of suitable model
compression methods for edge devices in different applications.

Keywords: deep neural network compression; compression method evaluation; weighted score-
based ranking; embedded deep learning; edge computing

1. Introduction

In deep learning, object classification tasks are solved using Convolutional Neural
Networks (CNNs). CNNs are variants of Deep Neural Network (DNN) architectures that
accept batches of images as input and return the probability vectors of all the possible
outcomes [1]. These architectures are used as the backbone of state-of-the-art DNN-based
object detection methods. R-CNN [2] was one of the most successful methods proposed to
solve object classification, localization, and segmentation problems. R-CNN used AlexNet
(a variant of the CNN architecture developed in [1], having over 62M trainable parameters
and requiring a storage size of 250MB) as the backbone of the network. Other CNN
architectures used as the backbone of object detection models are ResNet-50 [3], which
requires over 95MB of storage space, and VGG16 [4].

Recent works have shown that microarchitectures (e.g., SqueezeNet [5], ShuffleNet [6],
EfficientNet [7], MobileNet [8]) with fewer parameters and small model sizes can achieve
the same level of accuracy as the macroarchitectures (e.g., Inception [9], AlexNet [1],
ResNet-50 [3], VGG16 [4]).

Modern object detection methods have shown excellent results in terms of accuracy
and generalization. This is due to the complexity of the networks used as the models’
backbone. This complexity hinders their applications on edge computing devices that are
usually liable to computational power and memory constraints. To deploy such models on
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these pieces of hardware while maintaining the performance (i.e., accuracy, robustness), it
is necessary to optimize the models efficiently.

Different studies have proposed different compression methods, such as bit reduction,
low-rank matrix decomposition, network pruning, sparsity, domain residual, knowledge
distillation, etc. These methods have shown excellent results in terms of model size
reduction, fast inference, and computational efficiency, without a significant decrease in
accuracy when compared with the original model [5,10]. However, identifying the most
effective and efficient methods based on the application requirements is challenging.

In this work, we propose a weighted score-based ranking scheme to address this
problem. Our proposed scheme utilizes the performance metrics of the compressed models
to evaluate and rank the compression methods. We show the effectiveness of this scheme
by applying it on the baseline, compressed, and micro-CNN models trained on our dataset.

2. Project Description
2.1. Project Background

The research projects ROROGREEN and Smart Car Deck Solution (SCDS) are initia-
tives developed by DFDS, Denmark (Europe’s largest Ferry operator), and Tallink AS, Esto-
nia (an Estonian based shipping company), respectively. These projects set out to develop
an automatic vehicle detection (classification and localization), positioning, and tracking
system for the cargo ships operated by both companies. The projects aim to digitize, auto-
mate, and optimize the end-to-end process of vessel stowage, loading/discharge of cargo
units, and terminal operations. The actualization of these projects is crucial because it is
envisioned that other shipping companies in Europe will also benefit from the projects’
results in the future.

2.2. Project Requirements

The ROROGREEN and SCDS projects require a real-time automated solution that can
track and monitor different objects on the decks of a cargo ship. Our goal is to achieve this
using a cost-effective camera-based edge device that is capable of processing the images
from the camera locally and in real-time. Our proposed solution is based on modern
CNN-based object detection methods, which will be optimized for the proposed hardware.
For the evaluation of the optimization methods implemented in this work, we used a
portion of the entire dataset that consisted of 1400 images of different categories gathered
locally. The sample of the dataset is described in Figure 1.

=

| (=

Figure 1. Sample of objects, including a person class, to be detected in the ROROGREEN and SCDS
projects. There are eleven images and each corresponds to the respective target class.
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To fulfil the goal of the projects, we proposed a solution that leverages modern object
detection methods. These methods serve as the backbone for the other functionalities
of the system (e.g., tracking, positioning, monitoring). We extracted the requirements
of the projects from the projects” goals, use cases, and areas of use. We found that the
requirements of both projects are quite similar. The ROROGREEN project aims to classify,
localize, and track two classes of vehicles according to DFDS vehicle grouping. The SCDS
project aims to detect and track ten classes of vehicles with people inclusive, which makes
it a total of eleven classes. It is worth noting that DFDS'’s vehicle classes are also embedded
in Tallink’s vehicle categories.

The base networks of modern CNN-based object detection methods are usually deep.
These usually require hardware having high processing power, high memory (flash size),
and high RAM size. These requirements are usually lacking in resource-constrained
devices; as such, deploying the models without optimization is impossible. Therefore,
model compression is mandatory for efficient computation and storage, which, in turn,
reduces the inference time without a significant drop in model accuracy. This will also
minimize the overall power consumption of the system.

As discussed above, it is evident that our goal is to develop a real-time, low-power,
cost-effective, and efficient solution using camera-based embedded hardware. This im-
plies that the trained custom model must be optimized to meet the system/hardware
requirements as highlighted below.

e High accuracy;

e Small model size;

*  Small peak memory footprint;
e Fast inference;

¢ Computational efficiency.

3. Problem Statement

The ROROGREEN and SCDS projects aim to automate the loading and offloading
operations of the cargo units by using the real-time data generated (e.g., vehicle type, object
bounding coordinates, lane position, and other application parameters) by the camera-
based embedded hardware installed on each deck. The generated data are processed by
the external server, which automatically generates the loading/offloading plan, which is
validated with the standard deck plan.

Predicting the vehicle type, bounding box coordinates, and position of each object
requires modern object detection and position estimation algorithms. These methods must
be energy-efficient, less computationally intensive, and accurate. This is quite onerous
because of the choice of hardware required. The contrived visual representation of a ship
deck containing different vehicle types on respective lanes is described in Figure 2.

Vehidetype: Trucktrailer
Coordinates: [ 30,20,40,60]
Lane Number: 2

Vehicle type: Car Vehide type: Loy
Coordinates: [20,40,30,60] Coordinates: [20,40,30,400]
Lane Number: 1 Lane Number: 1

Figure 2. A contrived deck plan showing the vehicle loading operation. Each vehicle type occupies
different regions and the respective lane position.
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We proposed a CNN-based object detection method. This was adopted due to the
remarkable results it has shown. Modern object detection models are quite large in depth
and sometimes width. The depth is usually characterized by the number of hidden
layers in the backbone of the CNN architectures used. The depth contributes to the
total number of parameters (i.e., the weights in each layer), which usually result in large
models, as described in Figure 3. These models are power-inefficient, computationally
expensive, and require large memory for storage. This cannot be processed by our low-
power camera-based edge device. As such, the models need to be optimized /compressed
for the hardware.

O O
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Figure 3. A visual representation of a deep neural network (right) and a shallow neural network (left).

There are existing compression methods for large CNN models’ compression. Each
method has its drawbacks and determining the most suitable and effective method is of
major concern. To properly evaluate the effectiveness of each method, it is important to
understand how the method affects the original models. Therefore, we can rank all the
methods based on the following key parameters: model size, accuracy, memory footprint,
computational cost, and inference time.

4. Related Work

CNN models have shown unprecedented results in solving problems related to com-
puter vision (e.g., image classification, object detection, tracking). Due to the high computa-
tional power and memory that are required, this has impeded their adoption in embedded
applications. This problem led to a new area of research (i.e., deep neural network com-
pression) to tackle such challenges.

Several methods for model compression have been proposed in different studies.
These methods have shown remarkable results, albeit with certain drawbacks. In this
section, we categorize the methods into five groups: bit reduction, knowledge distillation,
tensor decomposition, network pruning, and microarchitecture.

4.1. Bit Reduction

Bit reduction techniques have been around for quite a while [11,12]. These techniques
aim to reduce the size of the model without a significant loss in the model performance.
In practice, this is somewhat difficult to achieve due to the loss of information when
approximating the 32-bit full precision weights and activations to a fixed point integer
representation [13,14]. Quantization can be implemented using (16, 8, or 4 bits); however,
there can be extreme cases where 2 bits or 1 bit are used to represent the weights and/or
activations. These are referred to as binarization and ternarization. Binary networks encode
the weights and activations with 1 bit (-1, 1), in contrast to ternary, which uses 2 bits (-1, 0,
1) [15].

The works of [11,12,16,17] showed the possibility of training deep networks with low
bit-width weights. The weights and activations of the networks were discretized and a
drastic reduction in model size with an insignificant drop in accuracy was achieved in [14].
An adaptive quantization framework that achieved a 20-40% higher compression rate,
in contrast to non-adaptive quantization methods that relied on a uniform quantizer, was
proposed in [18]. A vector-based quantization method that reduces the reconstruction in
the network output was introduced in [19]. The work of [18] also showed that the network
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layers contribute differently to the model prediction result; therefore, it is logical not to use
uniform bit-width quantization.

Quantization techniques have shown promising results for large model compression.
This breakthrough has caused different industries developing on-device/edge-based ar-
tificial intelligence solutions to adopt the methods. It is worth noting that the lower the
bit-width used in quantization, the higher the compression rate and the model sensitivity
to accuracy degradation.

4.2. Knowledge Distillation

The idea of transferring the knowledge learnt by a large model to a small model
is primordial. This has shown quite a reasonable result (i.e., accuracy). Ensembles (i.e.,
combining the predictions of several models) of large models were compressed using this
method [20]. The authors used the parameters learned by the large, slow, and complex
models to train an ensemble of small and fast models. This method gained traction from
the results shown by the authors. The authors of [21] trained a single model by transferring
the attributes of the ensemble of models to the single model. This achieved higher accuracy
than the prediction of the individual model of the ensemble.

The transfer of knowledge from a large and accurate model does not guarantee that
the small model will be accurate. It was demonstrated that not all the students (small
models) can learn effectively from the teachers (large models) in [22]. The authors also
pointed out that past work has not addressed this area but rather focused on the trend of
the subject.

Knowledge distillation has proven to be very relevant in many applications. This is
due to its simplicity and the ability to use synthetic data (data generated artificially) where
real data are not readily available; however, the statistical attributes of the synthetic data
must conform with the mimic real data [22].

4.3. Low-Rank Tensor Decomposition

Tensor decomposition is the generalization of low-rank matrix decomposition. Its use
case has been extended to CNNs. CNN models are composed of different layers, which
are defined by the types of mathematical operations performed in the layer. These layers
include the convolutional layer (CL), activation layer (AL), fully connected layer (FCL), etc.
A layer in the network is an array of nodes or neurons that can be expressed as a matrix
or tensor (i.e., a generalized form of a matrix). Each node is a regression function that
performs some computations (e.g., matrix multiplication) on higher-dimensional input
data and a weights matrix. Matrix-based optimization techniques (e.g., singular value
decomposition, eigendecomposition) can be applied to the convolutional and/or the fully
connected layers [10,23] to reduce the number of parameters in these layers.

When a tensor (e.g., weights matrix) is factorized into its sub-components (i.e., sub-
tensors or factors), all the sub-tensors do not contribute equally to the main tensor. This
implies that the sub-tensors can be ranked based on the order of importance. An approxi-
mate tensor can be derived, which results in having a low rank in contrast to the original
high-order tensor. Singular value decomposition (SVD) (the most commonly used matrix
decomposition method) was used to compress the weights matrix in the fully connected
layer to reduce the model size. A two-times increase was achieved in computation time
by decomposing the weights in the convolutional layers in [24]. Kholiavchenko [25] pro-
posed an iterative-based tensor decomposition technique and showed that a layer can be
decomposed several times.

It is also worth pointing out that the compression ratio of the model when adopting
this method is greatly dependent on the rank value (i.e., the most significant to the least
significant). In the case of an extreme rank value, the model size will be drastically small
and vice versa.
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4.4. Network Pruning

It has been shown in several studies that deep neural networks are usually overpa-
rameterized. This is quite common in large and complex networks [26]. It affects the model
convergence time and contributes to the computation and storage overheads. The goal
of pruning is to reduce a large network to a smaller and faster network. This is possible
because the parameters of the network do not contribute equally to the model output.
As such, the level of contribution can be ranked by the order of importance and the less
significant parameters can be pruned (i.e., set to zero). A penalty factor was introduced
to the loss function to penalize the weights that do not contribute significantly to the
network output, resulting in a smaller network, in [27]. A stochastic gradient descent (SGD)
momentum-based pruning method for setting redundant weights to zero was proposed
in [28].

The network parameters that can be pruned include the weights (connections), neu-
rons (nodes), or convolutional filters (kernels). The choice of the parameters to be explored
for pruning is dependent upon the application requirements (e.g., memory footprint, com-
putational cost, bandwidth). A weights- or connections-only-based pruning technique is
also referred to as unstructured pruning, in contrast to structured pruning, which involves
the removal of low-rank neurons or filters [28]. Redundant weights were eliminated to
compress the network size and compensate for the accuracy drop by retraining the network
in [29].

Pruning is a very old compression method [30] and has shown its strength in the
reduction of model size. The effectiveness varies with the techniques adopted (e.g., brute-
force [30], penalty-factor [31], sensitivity error [32,33]). Network pruning usually results
in an accuracy drop. When a network is over-pruned, it can render the network useless.
This is why it is important to estimate the pruning threshold, evaluate the network after
pruning, and retrain to compensate for the decrease in accuracy.

4.5. Microarchitecture

Microarchitecture is a concept for designing small and compact models. This method
is based on the background information (i.e., residual knowledge) of the critical and most
important blocks needed in the design of the CNN architecture. This is quite different from
the other methods (i.e., pruning, quantization, binarization, tensor decomposition) because
it does not rely on any external compression techniques that are usually applied to the CNN
model either after or during training. It focuses on using domain knowledge to carefully
design the network architecture. The same level of accuracy obtained by AlexNet [1] with
50-times fewer parameters was achieved in [5]. Before the term miroarchitecture was
standardized by these authors [5], smaller kernel sizes (i.e., smaller-sized convolutional
filters) were used in practice, and this has shown significant improvements in terms of
model performance (i.e., speed, accuracy) [34-36].

The research on the design of efficient and lightweight CNN models has increased
as a result of the exponential growth in the demand for real-time, efficient, and power-
consumption-aware embedded computer vision applications in diverse areas. A category of
models called MobileNet was proposed in [8]; these CNN microarchitectures have become
some of the state-of-the-art methods for image classification and object detection for low-
power and resource-constrained devices. Other models in this category are SqueezeNet [5],
ShuffleNet [6], EfficientNet [7], and TinyYOLO [37].

5. Compression Methods, Evaluation, and Ranking

Our goal is to evaluate and develop a novel method for ranking the performance of
state-of-the-art techniques for compressing deep learning models. The performance of
each technique will be ranked using the following five key metrics: model size, accuracy,
peak runtime memory usage, computational cost, and inference time. In this section, we
describe each compression method and its implementation.
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5.1. Baseline Model Description

This section describes the architecture of our baseline model. This simple and
lightweight network was developed to serve as the reference model for evaluating the
different compression methods for this work. The input layer of the network takes an RGB
image of shape (64, 64, 3) and (3, 3) kernel filters were used throughout the entire network,
resulting in a total of 1,106,209 parameters. The choice of the convolutional filter size was
inspired by the work of [34]. The network includes a stack of two sets of CONV2D, RELU,
BN, and POOL layers, followed by a set of CONV, RELU, and BN. The final block is the
dense block, which consists of FC, BN, FC, and SOFTMAX layers, as shown in Table 1.

Table 1. A table showing a summary of all the layers of the baseline model architecture.

Layer Type Output Size Parameters
CONV2D (None, 64, 64, 32) 864
BN (None, 64, 64, 32) 96
MAXPOOL2D (None, 32, 32, 32) 0
CONV2D (None, 32, 32, 64) 18,432
BN (None, 32, 32, 64) 192
MAXPOOL2D (None, 16, 16, 64) 0
CONV2D (None, 16, 16, 64) 36,928
BN (None, 16, 16, 64) 192
FLATTEN (None, 16384) 0
DENSE (None, 64) 1,048,576
BN (None, 64) 192
DENSE1 (None, 11) 704
ACTIVATION (None, 11) 0
TOTAL PARAMETERS 1,106,209

5.2. Compression Methods

CNNs play a vital role in deep learning methods for object detection. A CNN is
composed of different layers. Each layer is made up of computational nodes (i.e., neurons)
that process the input signals. The contribution made by each layer to the computation
and memory requirements of the whole network is usually unevenly distributed. This
is because of the different operations and parameters that are associated with each layer.
The majority of the weights are in the dense layers (i.e., fully connected layer), but these
account for a lesser percentage of the total floating-point operations. This implies that
optimizing the FC layers alone will result in only a dramatic reduction in the model size,
without a significant improvement in the overall speed, in contrast with optimizing the
convolutional layers.

Several methods have been proposed for CNN model compression for resource-
constrained devices. Each of these methods has its advantages and drawbacks. This makes
it very challenging to identify the most appropriate, effective, and efficient compression
method to adopt. The choice of the method is strictly dependent on the requirements of
the application. In this section, we describe the compression methods that we considered
in this work.

5.2.1. Quantization

Bit precision reduction is an important concept in mathematics that has been widely
adopted in different applications, including deep neural network compression. Quantiza-
tion limits the width of the bit that is used to represent a digit or number. The bit width
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of the operands controls the precision level of the output when mathematical operations
are performed.

The most common types of operations that are performed in CNNs are convolution
operation, bias addition, and the dot product of the weights matrix and float input tensor,
as described in Figure 4. These operations are computed in a 32-bit full precision floating
point. Quantization aims to replace the 32-bit floating-point operations with low-precision
number formats such as 1 bit, 4 bit, 8 bit, or 16 bit. Binarization transforms full precision
models into a single-bit model (the weights and activations are encoded using 1 bit).
Binarization can be described as an extreme case of quantization where the weights and
activations are encoded using 4 bit, 8 bit, or 16 bit.

051 | 0.90 | 0.88 | 0.84 | 0.05

0.25 | -0.16 | 0.27 | -0.34

0.40 | 0.62 [ 0.22 | 059 | 0.10

011 | 031 |-0.11 | -0.14 031 | 027
011 | 0.20 [ 0.74 | 033 | 0.14

-0.22 | 0.61 | -0.05 | -0.32 061 | 019
0.47 | 0.01 | 0.85 | 0.70 | 0.09 8 -

-0.33 | 048 | -0.27 | 0.19

076 | 0.19 | 0.72 | 017 | 0.57

Kernel

-0.13 0.15

-0.15 0.62

Figure 4. A CNN architecture with a normalized (5 x 5) input image convolved with a normalized fil-
ter (2 x 2 kernel) showing the three most common operations (convolution, pooling, and weights ma-
trix multiplication operations) in a CNN. This low-level abstraction shows the internal computation
performed on the network parameters (i.e., the input tensor (5 x 5 image), weights, and activations).

A model can be quantized either during training (Bit-Reduction-Aware Training, also
called Quantization-Aware Training) or after training (Post-Quantization). The latter often
results in a significant decrease in accuracy. However, this can be mitigated by retraining
the network to compensate for the decrease in accuracy as a result of the error induced
during the quantization operation.

We quantized the weights and activations of the baseline model using a symmetric
mode 8-bit signed full integer quantizer implemented in Keras [38], using TensorFlow [39]
as the computing engine. The mapping of the 32-bit input float tensors (i.e., weight matrix,
activations) to the 8-bit quantized range is described in Figure 5. The mapping function (i.e.,
8-bit quantizer) maps the input float tensors of the baseline model to the 8-bit quantized
output. This function is defined in Equation (1):

qgpir = round(myir) o

where ggy;; is the 8-bit quantizer, m;y is the multiplier, and iy is the input float tensor.
The multiplier is the quantization constant that is multiplied with the float input tensor,
as expressed in Equation (2):

271
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" max(Jig]) @



Sensors 2021, 21, 7529

90of 17

~max{|x;[) 0 max| /1)
i o 2
" v il
-128 0 127

Figure 5. This figure shows the mapping of the input tensor float range to the 8-bit signed integer
quantized range in symmetric mode.

5.2.2. Binarization

Binarization is a bit reduction technique that is considered an extreme case of quanti-
zation in which the weights and/or activations are encoded using a single bit (i.e., 1 bit).
A single bit can be considered the atomic bit level of a number system; therefore, a signif-
icant decrease in the model accuracy is imminent due to loss of information during the
binarization process. We did not binarize the first and last layer of the baseline model to
minimize this loss.

In the binarization process, updating the weights during backward pass using the
standard gradient descent approach is impossible because computing the loss gradient
would result in zero in almost all conditions. We adopted a Straight-Through-Estimator
(STE) pseudo function that has been proven to solve this issue.

We binarized the baseline model using Larq [40], an open-source Binary Neural
Network library built on Keras [38]. The binarization function (a non-zero sign function)
b1pir takes the float tensor as input and returns a binary output (—1 and +1), as shown in
Equation (3):

o1pit = bipit(if), 010i € {—1,1},ir € {R} ®3)

where by is the binarization function, 01 is the binary output generated, and iy is the
input float tensor. During the backward pass, the loss gradient is calculated using the STE
function, which takes the output tensors as input and returns a binary output, which is
constrained to the threshold value, as expressed in Equation (4):

1 abs(if) < thresholdygyy,

1055 oradient = 4
gradient {o abs(if) > threshold gy, @
where the thresholdy,y,, is the float value that controls the [0ssgagient and if is the float
tensor processed by the STE pseudo gradient function.

5.2.3. Network Pruning

Pruning is one of the oldest methods for compressing large CNN models for low-
power and resource-constrained devices. Pruning explores and exploits redundant param-
eters that do not contribute significantly to the model performance. The effectiveness of
the pruning method is dependent on how efficiently we can evaluate the parameters that
are redundant in the network.

Over-pruning the baseline model will decrease the accuracy and damage the network
completely. This can be mitigated by evaluating the model based on certain criteria after
each pruning operation in an iterative manner. There are different pruning methods (e.g.,
weight-only pruning, node-only pruning, or layer pruning).

In this work, we pruned the baseline model using the magnitude-based weight
pruning approach as opposed to the neuron-based method. We implemented this pruning
method because it does not affect (i.e., decrease) the model accuracy significantly, especially
when the base model is not complex (i.e., having few hidden layers, as with the baseline
model). The weights of the baseline model pruned were selected using rank-based criteria,
calculated using the absolute value of the individual weight in Equation (5):

rankwcight = |wi|,w; € W ()
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where rankq,iqp; is the rank of the individual weight, w; is the weight, and W is the weight
matrix associated with each neuron within the respective layer of the network.

5.2.4. Knowledge Distillation

Distilling knowledge (i.e., useful information) from a large model (the teacher) to a
small model (the student) has shown excellent results in model compression. The concept
of knowledge transfer is based on the idea that large models are robust and can learn
complex patterns from data such that useful information can be transferred to the small
model to mimic the behaviour of the large model.

We implemented the teacher-student model using a temperature-based softmax func-
tion at the output layer in Keras [38]. This technique was inspired by [21]. The teacher
model (i.e., VGG16) was trained on our dataset, and the class probabilities vector for each
data point (i.e., observation) was calculated and extracted. These probabilities vectors, also
called soft labels, were distilled to the small model as the target label during training. We
also trained the small model using the hard labels, and the overall losses generated by the
small model were combined and weighted, as shown in Equation (6):

Losstotar = & X H(y/U(ZS)rT =1)) +Bx
H(o(z T=1t),0(z5, T =1)) (6)

LosS;y141 1s the total loss, which is the combination of the student and distillation losses.
The student loss is computed using the standard loss function by making the temperature
parameter (T = 1). The temperature parameter controls the amount of information that
can be distilled to the student. However, we need to keep in mind that the student has a
threshold that limits the amount of information that it can retain from the teacher. The «
and B are constants associated with the individual loss function taking the respective
unnormalized log probabilities (zs, z¢) for each class label.

5.2.5. Tensor Train Decomposition

The decomposition of a matrix into its low-rank embedding is a very important
concept in linear algebra. Matrix decomposition is used extensively in applied data
processing for computation acceleration and data compression. Tensor decomposition is
a means of generalizing the concept of low-rank matrix decomposition by treating the
matrix as a tensor (i.e., a higher-order array). There are standard matrix decomposition
methods (e.g., OR, LU, Eigen, singular value decomposition (SVD), etc). SVD is the most
widely used method but cannot operate directly on higher-order data structures such as
tensors. Working directly on tensors offers the benefit of keeping the correlation between
data points intact.

Tensor decomposition is still relatively new. Few methods have been developed (e.g.,
Canonical Polyadic (CP), Tucker, Tensor-Ring, Tensor-Train, etc.). We adopted the TT
decomposition method due to the computational time (i.e., reconstruction and decompo-
sition time) and storage space advantages that it has over CP, Tucker, and other tensor
decomposition methods.

TT decomposition factorizes a tensor into sub-tensors called cores/factors. The num-
ber of cores is dependent on the dimensions of the input tensor. TT is based on SVD and the
factorized outputs are expressed as a train of tensors (i.e., a product of smaller core tensors).
The dense layer in the baseline model has a set of weights in its nodes transformed into TT
matrices (i.e., 4D tensor shape). The TT matrices are factorized into four TT cores and each
element of the tensor can be reconstructed as defined in Equation (7):

RyiRyRs
T(ivininis) = 3. G'(ir).

112,73

G2 (r1iar2).G? (r2iziz) G* (r3is) @)
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where T is the original tensor, i, represents the tensor indices, r,, corresponds to the ranks
of the tensor, R; are the compressed /contracted hidden indices, and G' are the TT cores.

We retrained the baseline model using TT, which transforms the input and output
parameters of the dense layer, excluding the softmax layer, into TT matrices, and the
outputs were decomposed into tensor cores. We implemented this method using the t3f
framework [41], a tensor train library built on TensorFlow [39].

5.2.6. Microarchitecture

The concept of designing sub-blocks/modules as a micro-unit in CNNSs has shown
promising results in terms of model size reduction and improved inference time without a
significant decrease in model accuracy. The CNN microarchitecture relies on the residual
knowledge that is adopted to carefully design each of the CNN sub-blocks that make up
the entire network. The microarchitecture defines the dimensions and structure of each
sub-module and how they are integrated to form the entire network.

There are several CNN microarchitectures that have been proposed for resource-
constrained devices. In this work, we trained our dataset on MobileNet V1, MobileNet V2,
MobileNet V3, and ShuffleNet. The results of these models were compared with those of
the compressed models.

5.3. Evaluation and Ranking

An object detection model performs a detection task by fusing object classification
and localization methods. Some methods involve using two separate algorithms (i.e.,
MobileNet and SSD). Other methods (e.g., YOLO) use a single model to perform both
the classification and localization tasks. To optimize such a model for memory compres-
sion, speed, and accuracy, the parts of the model contributing to these metrics need to
be optimized.

Much of the memory and computational power is expended by the base network of the
object detection model. This formed the basis of our evaluation of the compression methods
on the classification model instead of both the classification and localization models.

We based our evaluation and ranking on five key metrics: model size, accuracy,
peak runtime memory footprint, computational cost, and inference time. The results
corresponding to the key metrics obtained from the compressed models, micro-CNN
models, and the base model are described in Table 2. These results were mean values
calculated over a small number of experiments in order to reduce the error margin due to
the stochastic nature of training CNN models.

Table 2. Evaluation metrics results of the compressed models, base model, and micro-CNN models.

Uncompressed Compressed Micro-CNN
. . . P - Tensor-
Metric Baseline Quantized Binarized Pruned Distilled Trained Vi V2 V3 ShuffleNet
Model Size (KB) 4429.61 1119.54 105.50 1308.82 4429.61 258.02 12,856.38 8935.84 12,171.81 7761.17
Accuracy (%) 77.23 76.95 67.10 74.64 72.04 71.47 68.88 64.43 71.18 65.99
Inference Time (ms) 22.88 13.65 5.40 22.64 22.87 17.31 39.09 20.79 16.79 40.09
Computational Cost
(MFLOPs) 66.44 7.29 6.96 66.44 66.44 64.05 94.01 52.88 15.24 158.63
geak Memory 8907.81 3705.47 177578 8900.78 8907.59 4971.88 19,857.04 125828 1055002  12,796.72
ootprint (KB)

We evaluated the baseline, compressed, and micro-CNN models on a Google Coral
Development Board with the following technical specifications: Quad Cortex-A53 and
Cortex-M4F processors, Edge TPU co-processor (supports only int8 operations), 1 GB
LPDDR4 RAM, and 8 GB eMMC flash memory [42]. The performance (i.e., key metrics) of
the compressed, micro-CNN, and base models was evaluated using the weighted score-
based ranking scheme that we developed.
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Our ranking scheme relies on two major components: the weights (i.e., relevance
scores) assigned to the criteria (i.e., key metrics) and the computed scores of the results
generated by the compressed models, base model, and micro-CNN models. It is critical
that the weights and scores should have the same scale (i.e., value range). The raw results
generated in Table 2 were not scaled and this does not meet the requirement of the weighted
score-based ranking method.

We applied a scaling and scoring function to the unscaled results generated in Table 2.
This function maps and scores each unscaled result to a value in the range (1-10). The scal-
ing function is defined as:

1 — Myyin
Nscaled = m X (Tmax = Tmin) + Tmin ()]
where 14, is the scaled output value, n is the metric value to be scaled into [#,,;;—max],
Mypin is the minimum of the metric value range, and #,,,y is the maximum of the metric
value range. The 7, and 7y, represent the minimum and maximum value of the target
scale range (i.e., 1-10 as used in our experiment). The scale corresponds to the range of the
weighted relevance score assigned to each evaluation metric.

Each metric was assigned a weighted relevance score in the range (1-10); a high
weighted relevance score (e.g., 10) indicates that the corresponding metric has the highest
priority (i.e., most significant) and vice versa, as shown in Table 3. The scores (i.e., the scaled
metric values) and weights assigned to the evaluation metrics are described in Table 3.

The weighted relevance score controls the significance score of a metric during the
evaluation of the performance of the compressed models, base model, and micro-CNN
models. The weight of each metric is determined based on the application requirements.
We assigned a weight value to the individual metric, as shown in Table 3. These values
were generated based on our application requirements. The values can be adjusted to suit
other applications.

The scaled values were scored on a scale of (1-10). A score of 10 assigned to the model
per metric value means that the model with respect to the metric is the most significant,
while a score of 1 means that the model is less significant. Table 4 shows the score of
each model per metric value computed from the results (scaled metric values) obtained in
Table 3.

The weighted score was calculated by computing the product of the corresponding
weight of the relative importance score assigned to the metric and the score of the model
corresponding to the metric. The mean weighted scores of the compressed models, micro-
CNN models, and base model were ranked using an inverse ranking method similar to
Spearman’s rank approach (i.e., the largest mean weighted score was assigned a rank of
1, the second-largest mean weighted score was assigned a rank of 2, and as the mean
weighted score decreases, the rank number increases by 1 until the maximum rank number
n is reached, where n is the count of the models evaluated), as shown in Table 5.

Table 3. Weighted relevance score assigned to evaluation criteria and model results scaled to (1-10), which corresponds to

evaluation metrics’ scale range.

Uncompressed Compressed Micro-CNN

Metric Weight  Baseline  Quantized Binarized Pruned  Distilled ;r:a’l‘;‘;z %1 V2 V3 ShuffleNet
Model Size (KB) 8 4.05 1.72 1.0 1.85 405 111 10.00 7.23 952 6.40
Accuracy (%) 10 10.00 9.80 2.88 8.18 6.35 5.95 413 1.00 5.75 2.10
Inference Time (ms) 6 487 282 1.00 481 486 3.63 8.45 4.40 352 10.00
Computational Cost

(MFLOP) 6 453 1.02 1.00 453 453 439 6.17 372 1.49 10.00
Peak Memory 7 455 1.96 1.00 455 455 259 10.00 6.38 537 6.49

Footprint (KB)
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Table 4. Metric scores corresponding to the scaled metric value.
Uncompressed Compressed Micro-CNN
Metric Weight Baseline  Quantized Binarized Pruned Distilled _IT: ;;;ZZ Vi V2 V3 ShuffleNet
Model Size (KB) 8 6.00 8.00 10.00 7.00 6.00 9.00 2.00 4.00 3.00 5.00
Accuracy (%) 10 10.00 9.80 2.88 8.18 6.35 5.95 4.13 1.00 5.75 2.10
Inference Time (ms) 6 3.00 9.00 10.00 5.00 4.00 7.00 2.00 6.00 8.00 1.00
Computational Cost
(MFLOPs) 6 5.00 9.00 10.00 5.00 5.00 6.00 4.00 7.00 8.00 3.00
Peak Memory
Footprint (KB) 7 7.00 9.00 10.00 7.00 7.00 8.00 3.00 5.00 6.00 4.00
Table 5. Compressed models, base model, and micro-CNN models ranked by the weighted mean score.
Uncompressed Compressed Micro-CNN
Metric Weight  Baseline Quantized Binarized Pruned  Distilled _Efa’::‘;a \%! V2 V3 ShuffleNet
Model Size (KB) 8 48.00 64.00 80.00 56.00 48.00 72.00 16.00 32.00 24.00 40.00
Accuracy (%) 10 100.00 98.00 28.80 81.80 63.50 59.50 41.30 10.00 57.50 21.00
Inference Time (ms) 6 18.00 54.00 60.00 30.00 24.00 42.00 12.00 36.00 48.00 6.00
Computational Cost
(MFLOPs) 6 30.00 54.00 60.00 30.00 30.00 36.00 24.00 42.00 48.00 18.00
Peak Memory 7 49.00 63.00 70.00 49.00 49.00 56.00 21.00 35.00 42.00 28.00
Footprint (KB) . . . : . . . . } )
Weighted Mean Score 6.62 9.00 8.07 6.67 5.80 7.18 3.09 4.19 5.93 3.05
Rank 5 1 2 4 7 3 9 8 6 10

We calculated the mean weighted score per model for all metrics by computing the
ratio of the arithmetic mean of the weighted scores and the sum of the weights assigned to
all metrics. The equation is defined as:

Yo wim;
):?:1 wj

where W is the mean weighted score, i is the metric index, n is the total number of
evaluation metrics, w; is the weighted relevance score assigned to each metric, and m; is
the calculated score of the model corresponding to the metric.

The ranking result showed that the application’s most effective, efficient, and suit-
able compression method is quantization with the rank of 1 (having the largest mean
weighted score of 9.0), followed by binarization (having a mean weighted score of 8.07),
as shown in Figure 6. As the rank number increases, the methods’ effectiveness, efficiency,
and suitability to meet the application requirements decrease.

W= )
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Figure 6. Compression methods ranked by the mean weighted score.

6. Discussion

The state-of-the-art methods for compressing deep learning models have shown
excellent results in terms of peak runtime memory reduction, low latency, model size
reduction, and computational efficiency, without a significant decrease in accuracy. These
results vary from one compression method to another. The application requirements
also differ, thus making it challenging to choose the optimal compression method for
different applications (e.g., our ROROGREEN and SCDS projects). To address this, we
propose a weighted score-based ranking scheme that enables us to evaluate and rank the
compression methods based on their computed weighted mean scores. The weighted mean
score is dependent on the metric scores and the weights assigned to the evaluation criteria,
as shown in Table 4. The values in Table 4 correspond to the metric scores computed for
each scaled evaluation criterion with respect to all the models evaluated.

The weight assigned to each evaluation metric determines the relevance score of the
individual criterion. A high relevance score assigned to the metric with respect to the score
range gives the metric a high effect when calculating the weighted metric score and the
weighted mean score, as shown in Table 5. The metric scores correspond to the scaled
metric values in Table 3. The scaled metric values correspond to the scaled model results in
Table 2. The scaling ensures that all the values (i.e., the results obtained for all the metrics
during model evaluation) use a common range. This eliminates the dominance effect of
larger values regardless of the units when calculating the weighted mean scores. The metric
scores ensure that the least and the most significant values of the evaluation metrics have
the same interpretation (e.g., the lower the model size, the higher the compression rate
with respect to the original model, whereas the higher the accuracy, the better).
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We compare and rank the result of the computed weighted mean score of the baseline,
compressed (i.e., quantized, binarized, pruned, distilled, and tensor-trained), and micro-
CNN (i.e. MobileNetV1, MobileNetV2, MobileNetV3, and ShuffleNet) models, as shown
in Figure 6. The weighted mean score for each model indicates the suitability score of
the compression method that produces the model. A higher suitability score is desirable.
The higher the weighted mean score (i.e., suitability score), the higher the rank (the highest
rank is equivalent to 1 and it decreases as the rank value increases). The model with the
highest weighted mean score (i.e., a rank of 1) is considered the most efficient and effective
model for the hardware. As such, the compression technique that produces the model
is considered the most suitable compression method for optimizing the base model for
the application.

The limitation of our proposed scheme is the selection of weights for the performance
metrics. These weights must reflect the priorities (i.e., level of significance) of the appli-
cation criteria. This is considered a limiting factor because the weights are dependent on
the application requirements, such as the available hardware resources (e.g., processor
capability, flash size, RAM, etc.), model requirements, and the other requirements that are
specific to the application (e.g., real-time capability, on-device model performance, etc.),
and thus must be chosen appropriately. We do not consider this a major limiting factor
because we have demonstrated how we selected the weights that are appropriate for the
performance metrics in our case studies (ROROGREEN and SCDC projects).

Choosing the optimal model compression method for on-device Al applications is
challenging due to the lack of an application-specific framework for evaluating methods
for deep learning model compression for resource-constrained edge devices. We addressed
this issue using our proposed weighted score-based ranking scheme. The scheme helps us
to identify the quantization technique as the optimal method for compressing our object
detection and tracking models for the application based on our requirements.

7. Conclusions and Future Work

In this work, we evaluated and ranked the state-of-the-art methods for CNN model
compression for resource-constrained edge devices using a weighted score-based ranking
scheme that we developed. Our ranking method uses five key metrics (i.e., model size,
accuracy, inference time, computational cost, and peak memory footprint) computed for
each model generated by the compression methods. We introduced an individual weight
to these key metrics. The individual weight reflects how relevant/important the metric is
in our application.

This work was motivated by the lack of a clear framework/method for selecting
the most efficient methods for compressing CNN models for edge computing devices
(e.g., micro-controllers, small computer boards, portable devices, mobile devices, DNN
hardware accelerators, etc.). As such, we developed a weighted score-based ranking
scheme to address this issue.

We applied our method to the baseline model developed, compressed versions of
the baseline model produced by the state-of-the-art compression methods that we imple-
mented, and the micro CNN models trained on a portion of the SCDS and ROROGREEN
dataset. According to the ranking of the mean weighted scores computed, the quantized
model obtained the highest rank, with a mean weighted score of 9.00, followed by the
binarized, model having a mean weighted score of 8.07. ShuffleNet has the lowest rank
in Table 5, with a mean weighted score of 3.05. This clearly shows that the quantiza-
tion technique is the most suitable model compression method for both the SCDS and
ROROGREEN projects.

Determining the most effective, efficient, and optimal method /methods for optimizing
deep learning models for edge devices can be very challenging. We addressed this issue
using our weighted score-based evaluation and ranking method.

In the future work, we will focus on how we can further improve the metrics of the
best-ranked method (i.e., the quantized model).
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Abbreviations

The following abbreviations are used in this manuscript:

AL Activation Layer

BN Batch Normalization

CNN Convolutional Neural Network
CP Canonical Polyadic

Conv2D  Convolution 2D
DNN Deep Neural Network
F-RCC Faster Region-Based Convolutional Neural Network

FC Fully Connected

FCL Fully Connected Layer

ReLU Rectified Linear Unit

SVD Singular Value Decomposition
SGD Stochastic Gradient Descent
TT Tensor Train
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Abstract—We have seen tremendous growth in the adoption of
convolutional neural networks (CNNs) over the years in solving
real-world problems such as image analysis, object detection,
auto-translation, etc. This exponential growth has been due to
the unprecedented outcomes achieved over traditional methods.
However, these remarkable achievements come at a cost. Convo-
lutional neural networks are memory intensive, computationally
expensive, and usually cause the underlying pieces of hardware
running the models to consume an excessive amount of power
during inference. These factors impede its deployment in mobile
and embedded applications due to the availability of limited
hardware resources. To address this problem, different methods
for compressing deep learning models have been presented in
different works. In this paper, we propose an approach to further
improve the compression results. Our approach leverages an
ensemble of two model compression methods — tensor train
decomposition and 8-bit integer quantization. Our goal is to
demonstrate the efficiency and effectiveness of the ensemble
technique by applying it to the baseline CNN model trained
on our dataset. We compared the performance of the baseline
and compressed model produced by the ensemble. We achieved
a 57x reduction in model size compared with 4x and 17x com-
pression factors that would have been achieved with either only
quantization or tensor train decomposition methods respectively.
We further demonstrated an end-to-end trainable pipeline for
training any CNN model based on our proposed method.

Index Terms—model compression, an ensemble of compression
methods, 8-bit quantization, tensor train representation, and
tensor decomposition.

I. INTRODUCTION

Convolutional neural networks have gained traction over
the years in solving problems related to vision processing
(e.g., image recognition, pose estimation, object detection,
etc.) as a result of the remarkable results shown over non-
deep learning-based methods. This landmark was achieved
due to the availability of powerful processing units, a large
number of datasets, the capability of the networks to learn
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automatically, and most importantly the complexity of the
network architectures used in generating the models.

Owing to this breakthrough, there has been a shift from
classical computer vision/machine learning-based models run-
ning in edge applications to deep learning-based models (e.g.,
CNN). However, there are impeding factors hindering this
transition such as the computation & storage cost, runtime
memory usage, and the power requirements of the CNN mod-
els [1]. As such, few compression techniques (e.g., binariza-
tion, pruning, quantization, tensor decomposition, clustering,
distillation, etc.) have been proposed to address these factors
[2].

The performance of the compressed models varies with the
compression techniques. In this paper, we present an ensemble
of tensor train decomposition and 8-bit quantization methods
for compressing large CNN models. This method offers a deep
compression of more than a factor of 20x when compared
with the individual compression method such as binarization,
quantization, tensor decomposition, distillation, pruning, etc.
This allows low-power and resource-constrained devices such
as micro-controllers and other portable/small devices to run
deep learning models seamlessly and efficiently.

The choice of the compression methods to coalesce was
inspired by the results produced based on the weighted score-
based ranking scheme proposed by [3].

II. RELATED WORK

Deep learning models (e.g., CNN) have been proven to be
very efficient in solving vision-based tasks such as image
recognition [4]. This efficiency comes at some cost (e.g.,
computation, memory, energy, time, etc.). This has hindered
its application in portable devices [5]. Different methods have
been proposed for optimizing these large models for the
devices and have shown remarkable results. However, the
performance of the optimized models usually varies with the
compression methods.

The variation in performance of the compressed model
is dependent on the layers (i.e., convolutional or fully con-
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nected layers) being optimized by the compression techniques.
The objectives of optimization also vary (e.g., model size,
bandwidth, energy consumption, runtime memory, accuracy,
inference speed, etc.) [3]. In the works of [6] [7] [8], the
network weights that are inconsequential to the network output
are pruned (i.e., set to zero) resulting in a small network. [9]
implemented a structured-based pruning by eliminating the
low-rank kernel filters of the convolutional layers.

By default, the parameters (e.g., weights, biases, activations,
etc.) of the networks are encoded in 32-bit floating point, [10]
[11] [12] showed the possibility of compressing the networks
by using a low precision fixed-point bit-width to represent
these parameters. [13] [14] trained deep networks with weights
constrained to 1 bit (i.e., -1 and +1) respectively. However, the
extreme case of quantization (i.e., binarization) usually hurts
the model accuracy, especially when the first & last layers are
binarized. This is due to the level of sensitivity of both layers
to binarization.

Another method proposed for deep neural network compres-
sion is the matrix decomposition/factorization technique. This
method treats each layer of the network as matrices/tensors
(e.g., dense and convolutional layers). It involves computing an
approximation of the matrices/tensors using numerical meth-
ods. The approximated matrices/tensors are usually compact
and require lesser parameters, hence, producing a smaller
and faster network. [15] proposed a low-rank approximation
method for factorizing the convolutional filters. [16] [17] [18]
applied tensor decomposition methods to the dense layer of
the network resulting in a smaller network size with a 1-2%
drop in accuracy.

In this paper, we propose an ensemble of tensor train de-
composition and 8-bit quantization for deep compression and
acceleration of deep learning models for resource-constrained
hardware.

III. TENSOR TRAIN DECOMPOSITION

A tensor is a higher-order array, as such, the combination
of the factors of this tensor is referred to as a tensor train.
Tensor Train decomposition (TT-decomposition) factorises a
tensor into sub-tensors (i.e., low-rank cores or factors) with
each core being the low-rank representation of the decomposed
tensor. There are different layers in a convolutional neural
network, however, the computational and memory resources
requirements of each layer vary.

The dense and convolutional layers of the network are the
most computational and memory hungry. However, the dense
layer hogs more memory than the convolutional layer because
it stores about 90% of the overall network weights. This
layer also accounts for a less percentage of the total floating-
point operations during propagation when compared with the
convolutional layer. This gives us the opportunity to explore
and exploit the layer for further optimization.

The weights vectors of all the neurons of the dense layer
can be treated as a matrix, as such, we can transform this
weights matrix into its TT-representation. This compact format
which is controlled by the TT-ranks allows us to represent the

weights tensor with fewer amount of parameters (i.e., weights
and biases), hence, reducing the size of the memory needed
to store the weights and accelerating computation.

A. TENSOR TRAIN REPRESENTATION

Given a weight matrix W of shape (I and J corresponding
to rows and columns of the matrix), we can transform W
into a tensor V. The tensor W is converted into its TT-
representation. YV is formed by combining the indexes (a;(m)
& bj(n) where m & n are the row and column indices and 4
& j are the rows and columns respectively).

A tensor is represented in its TT format using cores or
factors. Each core has a size of ( r,_1 X r,) where rq (i.e., the
TT-rank of the first core) and r,, (i.e., the TT-rank of the last
core) are equal to 1 (i.e., 79 = r,, = 1). The number of cores
scales linearly with the dimension of the input tensor (i.e., G;
€ [G,...,Gy] where n is the dimension of the tensor).

Given a 4D tensor 7 decomposed into its four cores
(Gy,...,G4), we can compute the elements of tensor 7 from
the four cores using Equation (1):

Ry Rz R
T (ir insiasia) = Z Z Z G1(iyr1).
Ty re T3

Ga(r1iar2).G3(r2i3i3).G4(r3i4) (1

where T is the 4D tensor, 7,, represents the tensor element
index, 7, corresponds to the TT-ranks of the cores, R; are the
compressed/contracted hidden indices, and G; are the TT-cores
or factors. The amount of computational and storage resources
needed by the cores scales with the 7 (i.e., the maximal TT-
rank), as such, must be kept as small as possible.

IV. QUANTIZATION

There are different layer operations that are performed in a
deep neural network. A typical convolutional neural network
involves operations such as pooling, convolution, activation,
linear transformation etc. These operations are performed on
the parameters of the network in each layer as shown in Figure
1. These parameters (e.g., weights, biases, activations, input,
and output) are of float data types encoded in 32-bit.

Quantization reduces a full precision 32-bit float parameter
to a small bit width (e.g., 1, 2, 3, 4, 8, etc.).

005
o

040 | 062 | 022 | 059 | 0.10

5

011|020 | 074 | 033 | 0.14

047 | 0.01 | 085 | 0.70 | 0.08

076 | 0.19 | 072 | 0.17 | 057

Fig. 1. The figure shows the different types of layer operations that are
performed in a typical convolutional neural network.
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Fig. 2. A figure showing the conversion of 32-bit floating-point values to
8-bit unsigned integer quantized range.

The lower the number of bits that represents each network
parameter, the lower the storage cost and the faster the
computation in the layer.

This reduction often leads to a little degradation in model
performance (i.e., accuracy) which is usually within an ac-
ceptable limit. However, this acceptance limit is application-
specific. To mitigate the decrease in model accuracy, we
quantized all the network parameters except the input and
output tensors. This allows the model to behave closely to
the uncompressed 32-bit float model.

Given a 32-bit input float tensor X (e.g., the weight
matrix), each weight can be quantized to an 8-bit unsigned
integer using both Equation (2) and Equation (3):

271

_— 2
™= (1 X7) @

qsvir = round(myXy) 3)

where my is the scaling factor or multiplier and gs;; is the
quantized output whose boundary is restricted by the absolute
value of X as shown in Figure 2.

V. ENSEMBLE OF TENSOR TRAIN AND 8-BIT
QUANTIZATION

The Ensemble technique has been proven to be a very
effective approach to improving machine learning model ac-
curacy. The idea of the ensemble in relation to machine
learning involves combining different models trained on the
same dataset such that the final prediction is the average
of the predictions made by the different models. It has also
been shown that instead of combining multiple models during
inference due to the computational and memory requirements,
the information (i.e., model expressiveness) of the ensemble
can be distilled to a single model.

The Ensemble technique is usually adopted when there are
different possibilities (i.e., methods) to solve a problem or
improve an existing solution. It is also mandatory for these
methods to be capable of being integrated either in a sequential
or parallel manner. This is valid for large model compression
because different methods can be combined sequentially (i.e.,
one method compresses the original model and the resulting
model is further compressed by another compression method).
However, the resulting model format must be supported by
the other compression method. In this paper, our approach
leverages an ensemble of tensor train decomposition and 8-bit
quantization methods as shown in Figure 3.

Base model Tensorized model Quantized model

(32-bit) (32-bit) (8-bit)

Fig. 3. A block representation of our trainable end-to-end compression
pipeline using an ensemble of tensor train decomposition and 8-bit quan-
tization methods.

TABLE 1
BASE CNN MODEL ARCHITECTURE.
Layer Type Output Size Parameters
CONV2D (None, 64, 64, 32) 864
BN (None, 64, 64, 32) 96
MAXPOOL2D (None, 32, 32, 32) 0
CONV2D (None, 32, 32, 64) 18432
BN (None, 32, 32, 64) 192
MAXPOOL2D (None, 16, 16, 64) 0
CONV2D (None, 16, 16, 64) 36928
BN (None, 16, 16, 64) 192
FLATTEN (None, 16384) 0
DENSE (None, 64) 1048576
BN (None, 64) 192
DENSEL1 (None, 11) 704
ACTIVATION (None, 11) 0
\ | TOTAL PARAMETERS | 1106209 |

The end-to-end model compression pipeline using an en-
semble of tensor train decomposition and 8-bit quantization is
described in Figure 4. This pipeline is trainable (i.e., the com-
pression operations are implemented during model training).
The first block of the pipeline is the base model. This has a
set of convolution and dense blocks as shown in Table I. The
architecture of the baseline model was inspired by the work of
[3]. The tensor train block compresses the weights matrix of
the dense layer of the base network. This results in a compact
model (i.e., a tensortrained model with a reduced number of
parameters). The 8-bit quantization block transforms the tensor
trained model parameters (i.e., weights, biases, and activations)
from their 32-bit representations to 8-bit unsigned integer
values. This results in a deeply compressed model without
a significant decrease in accuracy when compared with the
baseline model.

VI. EXPERIMENTS

Tensor train decomposition transforms a network layer into
a tensor train layer. The resulting network is referred to as
a TT-network. The parameters of the tensor train layer (TT-
layer) need to be configured just like any layer of the network.
These parameters include the maximal tensor train ranks of
the weight tensors and the dimensions of both the input &
output tensors of the layer. The baseline network as described
in Table I has a single dense layer in its hidden layer. This
layer accounts for 94.79% (1048576/1106209 parameters) of
the total parameters of the network. The dense layer transforms
an input vector of size (16384) to an output vector of size (64).

We applied tensor train decomposition to the dense layer of
the baseline model.
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Fig. 4. An end-to-end trainable pipeline of compressing a model using an ensemble of Tensor Train decomposition and 8-bit quantization.

TABLE II
THE DIFFERENT PARAMETERS CONFIGURATION OF THE TT-LAYER

Configuration TT-layer Parameters
Type TT-ranks | Input dims | Output dims
TT-1 4 (16,16,8,8) (4,4,2,2)
TT-II 6 (16,16,8,8) (4,4,2,2)
TT-III 8 (16,16,8,8) (442,2)
TT-IV 10 (16,16,8,8) (4422)
TT-V 4 (16,8,16,8) (424,2)
TT-VI 6 (16,8,16,8) (4,2,4,2)
TT-VII 8 (16,16,8,8) (4,4,2,2)
TT-VIII 10 (16,16,8,8) (4,4,2,2)
TT-IX 4 (64,2,64,2) (8,1,8,1)
TT-X 6 (64,2,64,2) (8,1,8,1)
TT-XI 8 (64,2,64,2) (8,1,8,1)
TT-XII 10 (64,2,64,1) (8,1,8,1)

This decomposition transforms the dense layer into a TT-
layer with fewer parameters while maintaining the expressive-
ness of the layer.

We experimented with the different values of the TT-layer
parameters as shown in Table II. We trained the model so that
we can use small TT-ranks because it controls the compression
efficiency, and hence, a small TT-rank is desirable.

The low-rank assumption inherited by the model during
training is minimised by the optimizer. We trained several
models using the different configurations of the TT-layer to
generate different tensor trained models as shown in Table
III. We quantized the parameters of the best tensor trained
model to their 8-bit unsigned integer representations to achieve
a more compact model without a significant decrease in the
model performance.

Our end-to-end trainable pipeline of the ensemble of tensor
train decomposition and 8-bit unsigned integer quantization
was implemented in the T3F framework [19]. T3F is an open-
source tensor train decomposition library built on Keras [20]
and TensorFlow [21].

VII. RESULT AND DISCUSSION

We evaluated the performance of the models — baseline,
quantized only, tensor trained only, and the quantized tensor
trained generated by our ensemble approach. We based our
evaluation on five key performance indicators — model size,
accuracy, model speed, computational cost (total number of
floating-point operations during a single forward pass), and
the peak runtime memory footprint during inference. All the
models were evaluated on the Coral development board having
quad Cortex-A53 & Cortex-M4F processors with an integrated
edge tensor processor unit (TPU) [22].

To compress the baseline model efficiently, the appropriate
TT-layer parameters setting is required. This is the same as
fine-tuning any deep learning model using a domain-residual
approach during training. We experimented with different
parameter values as shown in Table II. Each configuration type
(e.g., TT-I, TT-1I, TT-1IL, etc.) results in a tensor trained model.
These models were evaluated and ranked using a weighted
score-based ranking method to obtain the TT-layer configura-
tion that yields the most optimal tensor trained model. The
tensor trained model generated by the TT-V configuration
type ranked highest, hence, was selected as the values for the
parameters of TT-layer for compression.

The baseline model was compressed using the TT-V con-
figuration type obtained via fine-tuning. The resulting tensor
trained model was quantized into its 8-bit unsigned integer
representation. This yields a deep compressed model (i.e., a
quantized tensor trained model produced by the ensemble of
tensor train decomposition and 8-bit quantization methods).

We compared the performance of the QuanTT model (i.e.,
the quantized tensor trained model) trained on our dataset
with the baseline model as shown in Table IV. Our results
showed that QuanTT model achieves an accuracy of 69.45%
on the test data compared with a 77.23% accuracy achieved by
the baseline model. This is approximately a 10% decrease in
the model accuracy. However, QuanTT model utilizes a peak
memory footprint of 1632.81KB, whereas the baseline model
uses 8907.81KB.
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TABLE III

THE PERFORMANCE COMPARISON OF THE TENSOR TRAINED COMPRESSED MODELS WITH DIFFERENT CONFIGURATION

Configuration Key Performance Indicators
Type Model Size (KB) | Peak Memory Footprint (KB) | Accuracy% | Model Speed (ms) | Computational Cost (MFLOPs)
TT-I 243 3617.19 7291 18.53 64.34
TT-II 250 3621.09 72.62 19.40 64.34
TT-II 259 362891 74.06 20.48 64.34
TT-IV 271 3644.53 70.32 21.80 64.34
TT-V 244 3613.28 73.48 18.48 64.34
TT-VI 251 3621.09 74.35 19.38 64.34
TT-VII 260 3632.81 72.62 20.38 64.34
TT-VIII 272 3640.62 70.89 21.78 64.34
TT-IX 278 3652.34 69.74 19.59 64.34
TT-X 321 3695.31 74.35 21.24 64.34
TT-XI 381 3746.09 74.92 23.21 64.34
TT-XII 458 3816.41 70.31 25.73 64.34
TABLE IV
THE PERFORMANCE COMPARISON OF THE UNCOMPRESSED AND COMPRESSED MODELS BASED ON KEY INDICATORS
Model Key Performance Indicators
Type Model Size (KB) | Peak Memory Footprint (KB) | Accuracy (%) | Model Speed (ms) | Computational Cost (MFLOPs)
Baseline 4429.61 8907.81 77.23 22.88 66.44
Quantized 1119.4 3705.47 76.95 13.65 7.29
Tensor trained 244 3613.28 73.48 18.48 64.34
QuanTT* 76.7 1632.81 69.45 12.89 7.06

* Quantized tensor trained model.

This is a 5x reduction in the model overall runtime memory
requirement. The QuanTT model is about 57x (i.e., 76.7 KB)
smaller in model size and 2x (12.89 ms) faster than the
baseline model whose model size and speed are 4429.61KB
and 22.88ms respectively. The total number of floating-point
operations of the baseline is about 9x greater than that of the
QuanTT model.

In this paper, we have shown the effectiveness of an
ensemble of tensor train decomposition and 8-bit quantization
methods for deep compression of CNN model that cannot fit
into the memory of mobile and embedded devices.

It is important to point out the limitation of one of the
proposed methods. There are limiting factors associated with
the application tensor train decomposition to the dense layers
of the networks. These limitations are choosing the appropriate
values of the input & output tensors dimensions and the TT-
ranks of the TT-layer. However, we demonstrated how we
addressed these using a fine-tuning approach as shown in Table
I

VIII. CONCLUSION

Due to the success of CNN, we have seen rapid growth in its
adoption in different vision-based applications such as object
detection, image classification, text processing, etc. However,
there are impeding factors such as the memory and computa-
tional constraints that are limiting its adoption in mobile and
embedded applications. Different methods such as pruning,
quantization, binarization, tensor decomposition, knowledge
distillation etc. have been proposed in different works to
address these impeding factors. In this paper, we leverage an
ensemble of tensor train decomposition and 8-bit unsigned

integer quantization to further improve the compression results
of the existing methods.

The choice of compression methods is dependent on the
application requirements. These requirements determine the
optimization goals (e.g., accuracy, model speed, storage size,
runtime memory usage, FLOPs, etc.). Existing methods such
as pruning and clustering are excellent methods for model size
optimization but do not offer any benefit relating to speed,
FLOPs, and runtime memory usage improvement. Knowledge
distillation relies on the architecture of the student model and
the benefits offered are dependent on the architecture and the
capacity of the teacher model. Our approach leverages an
ensemble of tensor train decomposition and 8-bit quantization
methods that individually offers all the optimization goals i.
As such, combining these methods significantly improves the
overall performance of the compressed model.

We demonstrated the effectiveness and efficiency of our
proposed method by applying it to the baseline model in
Table I. However, any CNN model of choice (e.g., Mobilenet,
Restnet, Shuflenet, efficient, etc.) can be treated as the baseline
model. The dense layer of our baseline model is transformed
into a TT-layer. We fine-tuned the parameters of the TT-layer
to obtain the parameters that yielded the best compression
result as shown in Table II. We applied the best TT-layer con-
figuration to the baseline model and the parameters (excluding
the input and output tensors) of the tensor trained model
were quantized to their 8-bit representations. The quantized
tensor trained model achieved a 57x reduction in model size
compared to a 4x or 18x compression factor that would have
been achieved with either only 8-bit quantization or tensor
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train decomposition methods respectively.
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ABSTRACT Scene texts serve as valuable information for humans and autonomous systems to make
informed decisions. Processing scene texts poses significant difficulties for computer systems due to several
factors, primarily due to variations in image characteristics. These factors make it very challenging for
computer systems to accurately detect and interpret scene texts, despite being easily understandable to
humans. To address this problem, scene text detection and recognition methods leverage computer vision
and/or deep learning methods. Deep learning methods require substantial resources, including computing
power, memory, and energy. As such, their use in real-time embedded applications, particularly those that run
on integer-only hardware, is very challenging due to the resource-intensive nature of these methods. In this
paper, we developed an approach to address this challenge and to showcase its effectiveness, we trained
end-to-end models for shipping container number detection and recognition. By doing so, we were able to
demonstrate the accuracy and reliability of our proposed method for processing scene texts on integer-only
hardware. Our efforts to optimize the models yielded impressive results. We reduced the model size by a
factor of 3.8x without significantly affecting the models’ performance. Moreover, the optimized models were
1.6x faster, and the maximum RAM usage was 6.6x lower than the base models. These results demonstrate
the efficiency and practicality of our approach for scene text processing on integer-only embedded hardware.

INDEX TERMS Deep learning model quantization, integer-only hardware, resource-constrained devices,
scene text detection, scene text recognition.

I. INTRODUCTION The emergence of resource-efficient hardware for deep

We carried out a thorough review of journal search and index-
ing databases to examine current state-of-the-art methods for
scene text detection and recognition. Based on our analysis,
we found that no prior work has been done to address the
challenges of implementing these methods on integer-only
embedded hardware. This highlights the significance and
novelty of this research work.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li
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learning applications, which only supports integer-based
operations and operates under stringent storage, memory,
and computational power constraints, has been a significant
development.

The possibility of accurately detecting and recogniz-
ing text in natural scene images has created endless use
cases in different embedded applications. One predominant
area is autonomous systems. Autonomous systems have a
wide range of applications and one of the most promi-
nent areas is their use in various tasks that require intelli-
gent decision-making capabilities. These tasks may involve

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 56865
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intelligent navigation, traffic management, parcel sorting,
ticketing, natural language translation, and guiding systems,
among others.

Scene text detection and recognition techniques are based
on computer vision and/or deep learning methods, and deep
learning methods are resource intensive in terms of comput-
ing power, memory, and energy usage. Consequently, imple-
menting these methods in real-time embedded applications,
particularly those that operate on integer-only hardware, can
be highly challenging due to these resource requirements.
Different methods have been proposed for text detection in
natural scenes [1], [2], [3].

Classic methods (i.e., computer vision-based techniques)
utilize sliding windows or connected component analysis to
detect the region of text [4], [5], [6], [7]. The sliding window
uses a window of multiple scales that moves through the
receptive field of the image. The receptive regions (i.e., the
text region candidates) are cropped and a machine learn-
ing classifier such as Support Vector [8], Random Forest
[9], or AdaBoost [10], etc., is trained to predict the text
candidates.

Connected component analysis utilizes manual filters to
extract salient features such as edges, text texture, boundary
points, and text color, among others, from images. These
features are used to train a machine learning model [11], [12],
[13], [14].

Due to the rise in the adoption of deep learning technology
influenced by improved computing resources, availability of
big data, etc., unparalleled results have been achieved in
almost all computer vision-related tasks that require artificial
intelligence such as scene text detection, text recognition,
image classification, multi-object detection, etc [15].

Deep learning methods outperform computer vision-based
methods because distinctive features are automatically
learned using kernel filters instead of relying on manually
designed filters to extract fundamental features. As the tasks
become more complex, such as in the case of scene text where
there are variations in light intensity, surface roughness,
low-quality images, etc., the effectiveness of hand-crafted
filters tends to decrease. This is because these filters are not
able to handle the intricacies of such complex tasks, thus,
leading to reduced efficiency.

Several deep learning-based algorithms have been pro-
posed for detecting scene text [16], [17], [18], [19], [20].
These methods rely on state-of-the-art region-based convolu-
tional neural network frameworks for object detection. The
region proposal network is responsible for computing the
objectness score of the region containing the text region using
sets of predetermined anchors. Proposed regions, also known
as anchors, are cropped and then fed into the fully connected
layer to predict the location of the text region.

Other deep learning methods proposed involve the use of
state-of-the-art image segmentation algorithms that classify
the text using pixels such that the pixels of the regions con-
taining text are classified as the text class and vice-versa [21],
[22], [23], [24], [25].
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The high computational and memory requirements of these
methods make them expensive, which limits their use in
embedded applications running on integer-only hardware.
Our proposed method for scene text detection and recognition
involves using learned features, a quantization technique with
offset, and contour-based character extraction. Our method is
designed to be resource-aware, making it suitable for use in
integer-only hardware where resources such as memory and
compute power are limited.

In summary, our main contributions are as follows:

« We introduced an 8-bit quantization technique for text
detection and recognition models. This makes it possible
to deploy the models on embedded hardware that only
supports integer operations, without a notable drop in
performance.

o We introduced a quantization bias to the ground-truth
labels to offset the quantization-induced error and
improve the accuracy of the models.

« We introduced a module specifically for text orientation
detection to improve our recognition pipeline’s abil-
ity to process text that is oriented both vertically and
horizontally.

This paper is divided into several sections, each focusing
on different aspects of scene text detection and recognition.
The first section provides an introduction, which includes a
discussion of existing methods and their limitations, as well
as the potential use cases for autonomous systems. Addi-
tionally, this section highlights our novel contributions to
addressing the challenges of deploying these methods on
integer-only hardware.

In section two, we describe the problems associated with
implementing text detection and recognition models on
integer-only embedded hardware. We also explain the novelty
of our work and the need for resource-efficient solutions.

Section three provides a comprehensive review of the state-
of-the-art methods for scene-text detection and recognition,
highlighting the limitations of each approach. In section four,
we present our proposed method in detail, which addresses
the challenges of deploying scene text detection and recogni-
tion models on integer-only embedded hardware.

Section five discusses the dataset used in our experiments,
its source, and the development hardware we used. In sec-
tion six, we present the results of our experiments in detail.
Finally, section seven provides a concluding discussion on
the need for resource-aware text detection and recognition,
the effectiveness of our proposed method, and a summary of
the results achieved.

Il. PROBLEM STATEMENT

There are numerous potential applications for scene text
detection and recognition in real-time embedded systems.
In this section, we will showcase a case study to illus-
trate this point. In Fig. 1, there are different trucks carrying
shipping containers. The containers have unique identifica-
tion numbers, known as cargo identification numbers, which
consist of both numbers and letters.
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FIGURE 1. Text detection and recognition stages involved in textual information extraction in natural scene images.

Our goal is to efficiently and accurately track every con-
tainer being transported from the port terminal to the decks
of the ship. This ensures that each container, regardless of its
size or type, is placed on the designated deck. This objective
arises from the need for proper stowage management, which
is critical for ensuring the safety of the crew and the success-
ful delivery of the transported containers containing valuable
goods.

Identifying containers by their unique cargo identification
number presents a challenge in text detection and recognition.
While we have reviewed existing methods, none of them
meet the specific needs of our use case. Our requirements are
particularly strict, as we need a solution that is compatible
with integer-only hardware and efficient in terms of storage,
computational power, and memory usage.

lIIl. STATE OF THE ART

Scene text recognition methods rely on text detection algo-
rithms. As such, the accuracy depends on how accurately
the region of interest is estimated. In this section, we will
discuss the state-of-the-art methods for scene text detection
and recognition.

As discussed in the introduction section, scene text
detection and recognition methods are based on two
techniques —computer vision [4], [5], [6] and deep learning
[17], [19], [25]. Deep learning methods have been proven
to outperform computer vision-based approaches [26], [27],
[28], therefore, our work focuses on deep learning-based
techniques.

A. TEXT DETECTION
Jaderberg et al. [16] proposed a single pipeline for text detec-
tion and recognition. The detection module in their approach
relies on a region proposal network. Another method, Deep-
Text [17], utilizes a unified framework that combines a con-
volutional neural network for region proposal and detection.
The region proposal component in DeepText employs an
inception module. In [18], the authors used Faster R-CNN for
detecting multi-orientation text. Faster R-CNN also incorpo-
rates a region proposal network.

Tian et al. [19] introduced CTPN (Connectionist Text
Proposal Network), a text proposal network that combines
convolutional neural network (CNN) and recurrent neural
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network (RNN) with an anchor mechanism for fixed-width
proposals. Zhang et al. [21] combined a Fully Connected Net-
work (FCN) with text line hypotheses to detect multi-oriented
text. In [22], scene text detection was approached as a
segmentation problem, utilizing holistic and multi-channel
prediction.

TextEdge [24] implemented a multi-oriented FCN scene
text detector that employs region segmentation and edge
classification. Zhou et al. [25] introduced EAST, an Efficient
and Accurate Scene Text detector, which utilizes a fully con-
volutional network for scene text detection. Rong et al. [29]
proposed a dense text localization network combined with
context reasoning for scene text retrieval.

B. TEXT RECOGNITION

Jaderberg et al. [16] introduced deep convolutional neural
networks for word-level recognition. Their approach differs
from our work, which employs a character-based classifier
for scene text recognition. In [26], an end-to-end text spotting
method was proposed, utilizing a convolutional recurrent
neural network. This unified pipeline requires both ground
truth labels for the scene text and bounding box labels.

Bagi et al. [30] introduced a lightweight text spotter that
utilizes a lightweight deep neural network for word-level
recognition. Cao et al. [31] employed a fully convolutional
neural network with an attention module for detecting small
text. In [29], the authors utilized a recurrent neural network
for the recognition module.

Liu et al. [32] introduced an adaptive bezier-curve network
for end-to-end text spotting. The text spotter was further
quantized with different bit widths to enhance the network’s
inference time. However, the emphasis was not placed on the
model size and peak runtime memory of the model.

Previous studies have shown that an end-to-end scene
text detection and recognition system can employ a single
pipeline for both tasks [33], [34], [35]. However, to cre-
ate a resource-efficient text detection and recognition model
suitable for hardware limited to integer operations, certain
requirements need to be fulfilled.

Firstly, the model should be lightweight, typically ranging
from a few kilobytes to megabytes in size. Secondly, it should
have a small memory footprint, typically a few kilobytes to
megabytes, to ensure compatibility with the device’s capacity.
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Finally, the model must be optimized to exclusively sup-
port integer-based operations, aligning with the hardware’s
limitations.

The existing state-of-the-art methods are not well-suited
for implementation on integer-only hardware, such as Edge
TPUs or microcontrollers. In order to address this challenge,
we propose a deep learning-based method that is specifically
tailored for such hardware. Our approach takes advantage of
learned features, utilizes a quantization technique with offset,
and integrates contour-based character extraction.

By being resource-aware, our method is specifically
designed to be suitable for integer-only hardware, where lim-
itations in resources such as memory and compute power are
prevalent. This resource awareness allows our method to opti-
mize the utilization of available resources, making efficient
use of the limited memory and computational capabilities
of integer-only hardware. Thus, our method offers a viable
solution for enabling effective text detection and recognition
on integer-only embedded hardware.

IV. PROPOSED METHOD

A. OVERALL ARCHITECTURE

Scene text recognition methods typically follow a two-stage
approach, consisting of text detection and recognition stages,
as depicted in Fig. 1. During the text detection stage, the
system localizes the region of the text in the image by deter-
mining the bounding box coordinates. This stage is of utmost
importance as the subsequent recognition stage heavily relies
on accurate text detection.
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FIGURE 2. The original EAST architecture [25].

B. TEXT DETECTION

Our text detection method is architecturally inspired by
the EAST (Efficient and Accurate Scene Text) model [25].
EAST, known as the Efficient and Accurate Scene Text
Detector, utilizes a fully convolutional neural network to pre-
dict the region of interest where text is present. EAST lacks a
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FIGURE 3. The modified EAST architecture using ResNet50 [36] as the
base network for the extraction of features.

recognition module. We selected the EAST architecture due
to its excellent suitability for our specific use case. Moreover,
the EAST architecture seamlessly integrates into our pipeline,
as illustrated in Fig. 1.

Several factors influence the suitability and effective-
ness of scene text detectors in different applications, and
the characteristics and type of the scene text are particu-
larly influential. The architecture consists of three stages:
feature extraction, feature merging, and output generation,
as illustrated in Fig. 2.

In our modified architecture, we opted for ResNet-50 [36]
as the base network for feature extraction, deviating from
the original EAST architecture that employed PVANET [37],
as depicted in Fig. 3. We made this selection for the following
reasons:

o It is faster because it uses a 1 x 1 kernel filter in its
bottleneck design. This design reduces the number of
matrix multiplication and network parameters, there-
fore, reducing the time it takes during propagation.

o ResNet-50 uses a global average pooling rather than
fully connected layers. Thus, reduces the size of the
model.

o ResNet-50 generalized well on our dataset compared to
VGG16 and VGG19.

ResNet-50 is composed of 50 layers, which are divided
into five stages of convolution blocks. Fig. 4 illustrates this
architecture. The first stage contains a convolution block
with 64 filters of size 7 x 7 and a stride of 2, as well as a
max pooling layer with a stride of 2. The input image size is
“320 px x 320 px.” The second stage comprises three sets
of three convolution blocks. These blocks consist of 64 filters
of size 1 x 1, 64 filters of size 3 x 3, and 512 filters of size
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stage 1 stage 2

FIGURE 4. The architecture of ResNet50 used as the base network [36].

1 x 1. The third stage contains four sets of three convolution
blocks.

These blocks consist of 128 filters of size 1 x 1, 128 filters
of size 3 x 3, and 512 filters of size 1 x 1. The fourth
stage consists of six stacks of three convolution blocks. These
blocks consist of 256 filters of size 1 x 1, 256 filters of size
3 x 3, and 1024 filters of size 1 x 1. The fifth stage consists
of three stacks of three convolution blocks. These blocks
consist of 512 filters of size 1 x 1, 256 filters of size 3 x 3,
and 2048 filters of size 1 x 1. The feature merging stage uses
the intermediate output of each ResNet-50 stage to reduce the
computational complexity of processing all merged features
at once, as shown in Fig. 3.

The output of each stage is upsampled so that the output
size (i.e., the feature map size) will be of the same size as the
input of the stage for concatenation along the channel of the
feature maps. 1 x 1 and 3 x 3 kernel filters are applied. This
is repeated for the other stages. A 3 x 3 kernel filter is applied
to the output of the last upsampled stage which serves as the
input of the output stage. The output stage consists of a series
of 1 x 1 kernel filters to produce the confidence score and
the coordinates of the region of interest of the text, as shown
in Fig. 3.

Our approach focuses primarily on obtaining two key
features: the confidence score of text presence, represented
by the score map, and the coordinates of the corresponding
bounding boxes. These bounding boxes can correspond to
horizontal or vertical text regions, as depicted in Fig. 5.

Accurately determining the bounding box type is a cru-
cial aspect of our method. We achieve this by utilizing the
bounding boxes generated at the output stage. The precise
estimation of the bounding box type plays a pivotal role in
the subsequent text recognition stage. It assists in correctly
identifying the first and last characters of a word, which is
essential for the reconstruction of the words.

C. QUANTIZATION

The parameters of the text detection model are typically
represented using 32-bit full-precision floating point values.
However, when it comes to quantization for integer-only
hardware, text detectors can be highly sensitive to dynamic
quantization, where only the model weights are integers, and
even more sensitive to full integer quantization, where all
parameters, including weights, biases, and activations, are
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FIGURE 5. The horizontal and vertical text orientations.

FIGURE 6. Multiple bounding boxes overlapping the scene text caused by
quantization-induced error.

integers. To address this challenge, we introduced a quanti-
zation offset during the generation of ground-truth labels.

The purpose of the tolerance is to account for the error
introduced by quantization, as illustrated in Fig. 6. To ensure
compatibility with integer-only hardware, we applied quan-
tization to the text detection model using an 8-bit symmetric
signed integer quantizer.

The quantizer takes a 32-bit input float tensor Xy (e.g., the
weight matrix of the model), and each parameter is quantized
to an 8-bit signed integer using both “equation (1),” and
“equation (2).”

271
7
mp = —=——, (H
77 max(1Xy))
qspir = round(myXy). 2)
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FIGURE 7. The mapping of floating point weight values to 8-bit quantized
L .
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where my is the scaling factor and gs;; is the quantized output
whose range is limited by the absolute value of Xy as shown
in Fig. 7.

D. TEXT RECOGNITION

The text recognition stage relies on the output of the text
detection model as described in Fig. 1. The text recognition
pipeline has two phases (the preprocessing and recognition
phases) as shown in Fig. 8.

Text Bounding P . Character Constructed
Box > [l Recognition |Jmd Text

FIGURE 8. The two stages involved in text recognition.

The preprocessing phase determines the type of bounding
box (i.e., the text orientation) using the text coordinates pro-
duced by the detection model. This phase extracts the region
of interest from the image and removes unwanted contours.

The extraction method is based on a contour-based extrac-
tion algorithm that we developed. This algorithm computes
the contour of each character, discards unwanted contours,
and uses the computed contours to extract the characters.

The characters that have been extracted from the detected
text region are then inputted into the text recognition model.
The architecture of our lightweight text recognition model
incorporates convolutional and dense blocks, which are out-
lined in detail in Table 1. After the individual characters are
predicted, they are aggregated and combined to form the
complete recognized text, as shown in Fig. 1.

To ensure compatibility with integer-only hardware, the
text recognition model undergoes full quantization using the
8-bit symmetric signed integer quantizer. This quantization
process is defined by “equation (1)”” and “‘equation (2)”.

V. EXPERIMENTS

In our experiment, we utilized a dataset compris-
ing 2000 images. Out of these, 1500 images were allocated
for training the text detection model, while the remain-
ing 500 images were reserved for testing purposes. It is
important to note that the images used in this experiment are
proprietary and specifically developed for this project.

The input images for the text detection model were stan-
dardized to a size of 320 x 320 pixels. The dataset consists
of various images of containers, each displaying their unique
cargo identification number, as depicted in Fig. 1.

For the purpose of training our text recognition model,
we extracted a total of 8750 images. These images were
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TABLE 1. Architecture of the text recognition model.

Layer Type Output Size Parameters
CONV2D (None, 64, 64, 32) 864
BN (None, 64, 64, 32) 96
MAXPOOL2D (None, 32, 32, 32) 0
CONV2D (None, 32, 32, 64) 18432
BN (None, 32, 32, 64) 192
MAXPOOL2D (None, 16, 16, 64) 0
CONV2D (None, 16, 16, 64) 36928
BN (None, 16, 16, 64) 192
FLATTEN (None, 16384) 0
DENSE (None, 64) 1048576
BN (None, 64) 192
DENSEIL (None, 35) 2240
ACTIVATION (None, 35) 0
\ | TOTAL PARAMETERS | 1107712 |

resized to a dimension of 64 pixels by 64 pixels. Each image
contained one of the 35 uppercase characters, including num-
bers (0-9) and letters (A-Z) excluding ‘O’. There were pre-
cisely 250 images per character, resulting in a well-balanced
dataset.

Out of the extracted images, we allocated 7000 for training
the text recognition model, while the remaining 1750 images
were set aside for testing purposes.

To ensure compatibility with our desired integer-only
model, we selected the Google Coral Development Board
as the target hardware. This board is equipped with Quad
Cortex-AS53 and Cortex-M4F processors, along with an Edge
TPU coprocessor. Additionally, it provides 1 GB of RAM
and 8 GB of flash memory [38].

Our text detection and recognition models were trained
until no further improvements in performance were observed.
Nevertheless, we are unable to deploy these models on the
target hardware due to its support for only integer-based oper-
ations, as well as the strict requirements of our application,
which include a small model size footprint, fast inference,
high accuracy, efficient peak RAM usage, and computational
efficiency. Therefore, further optimization is necessary to
meet these requirements.

Quantization plays a significant role in the performance of
text detection and recognition models. It refers to the process
of reducing the precision of numerical values in a model, typi-
cally from floating-point to integer representations. However,
quantization can introduce errors and affect the accuracy of
the models.

To overcome this challenge, we introduced a quantization
offset to the ground-truth labels. This offset is designed to
compensate for the errors induced by quantization, ensuring
that the model’s predictions align closely with the original
floating-point values.

By incorporating the quantization offset, we aim to min-
imize the impact of quantization on the performance of
our text detection and recognition models. This approach
allows us to achieve a balance between model optimization
for integer-only hardware and preserving the accuracy and
reliability of the model’s predictions.
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We applied quantization to both the text detection
and recognition models, reducing the precision of the
model’s parameters such as weights, biases, and activations.
Specifically, the parameters were converted from their origi-
nal 32-bit floating-point representation to 8-bit signed integer
representations.

By quantizing the models, we aimed to make them com-
patible with integer-only hardware and improve their effi-
ciency in terms of memory usage and computational cost.
Quantization helps to reduce the model size and allows for
faster inference, making it suitable for resource-constrained
environments such as edge TPUs or microcontrollers.

The performance of the quantized models was evaluated by
measuring their accuracy and overall effectiveness using five
key evaluation metrics as described in Table 2 and Table 3.
These metrics include the model performance, peak RAM
footprint, model size, computational cost, and inference time.

The evaluation considered the performance metrics out-
lined in Table 2 and Table 3, allowing us to analyze and
compare the impact of quantization on various aspects of the
model’s performance.

By examining these metrics, we gained deep insights
into the trade-offs and improvements achieved through
the quantization process, enabling us to make informed
decisions regarding the suitability of the models for
resource-constrained hardware.

TABLE 2. Performance evaluation metrics for validating quantized model
applicability.

Text Detection Text Recognition

Metrics Original  Quantised  Original Q
Model Size (MB) 96.21 24.83 0.88 0.23
Inference Time (ms) 2356.00 1450.77 3.59 2.18
Computational Cost (MFLOP)  15072.50 0 20.20 0
Peak RAM Usage (MB) 286.23 40.63 5.04 3.29

TABLE 3. Performance evaluation metrics for validating quantized model
applicability.

Text Detection Text Recognition

Mean Loss Accuracy
Metric Original ~ Quantised  Original Quantised
Model Performance (%) 25.51 26.23 99.73 99.62

VI. RESULT AND DISCUSSION

Recognizing text in natural scenes is a challenging task
due to several factors, including variations in image quality,
diverse device types, varying lighting conditions, different
text orientations, and the presence of clustered text in scene
images. The accurate prediction of text heavily relies on the
performance of text detection methods.

It is crucial to highlight that the effectiveness of text
detection algorithms significantly impacts the accuracy and
precision of text recognition methods. Therefore, ensuring
high-quality text detection is essential for achieving reliable
and robust text recognition results.

To assess the suitability of the quantized models for our
intended purpose, we conducted a comprehensive evalua-
tion that considered various key performance metrics. These
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metrics are essential in determining the applicability of the
models on the target hardware.

The suitability of the quantized models was evaluated by
measuring their accuracy and overall effectiveness in text
detection and recognition tasks. Additionally, we assessed
the peak RAM usage, which indicates the maximum amount
of memory consumed by the models during operation.
Model size, another important metric, reflects the storage
requirements of the models.

Furthermore, we analyzed the computational cost associ-
ated with running the quantized models, considering factors
such as the number of operations performed and the process-
ing power required. Lastly, we measured the inference time,
which indicates the speed at which the models can process
input data and provide output.

By evaluating these performance metrics, we gained valu-
able insights into the practicality and efficiency of the
quantized models for deployment on resource-constrained
devices, especially integer-only hardware. This information
is crucial for designing effective and optimized solutions that
meet the requirements of our target hardware.

To conduct a comprehensive comparison between the
base models and their quantized counterparts, we utilized
the key performance indicators presented in Table 2 and
Table 3. These indicators were derived from a series of
experiments conducted using diverse sample data, ensuring a
representative evaluation.

The results presented in Table 2 and Table 3 are
derived from a thorough evaluation conducted through mul-
tiple experiments using diverse sample data. This rigorous
approach of averaging the performance metrics over vari-
ous experiments enhances the reliability and validity of the
reported findings.

By using different data samples, we obtain a comprehen-
sive evaluation that provides a more accurate representation
of the models’ performance. This ensures that the conclu-
sions drawn from the comparison between the base models
and their quantized counterparts are robust and applicable in
real-time embedded applications.

The model size refers to the amount of flash memory
required to store the model’s parameters, such as weights
and biases. By default, the weights are stored using a 32-bit
full-precision float. In our approach, we applied an 8-bit sym-
metric quantizer, as described in Figure 7 and Equations (1)
and (2), to both the text detection and recognition models.
As a result, we achieved a 3.87x reduction in the flash size
required to store the quantized text detection model.

Similarly, the quantized text recognition model demon-
strated a 3.82x reduction in model size compared to the
uncompressed text recognition model, as indicated in Table 2.
Notably, the quantized models maintained their performance,
as evidenced by the results presented in Table 3.

We evaluated the text detection model’s performance using
the mean loss metric, which is a combination of the dice and
intersection over union (IoU) losses. The lower the mean loss
value, the better the model’s performance.
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FIGURE 9. End-to-end text detection and recognition

of our prop

The quantized text detection model demonstrated a 2%
increase in mean loss compared to the base model. On the
other hand, the quantized text recognition model showed no
significant decrease (only a 0.11% decrease) in performance
despite having undergone significant model compression.

The speed of a model during inference is affected by mul-
tiple factors, including but not limited to the number of reads
and write operations, memory bit width, and types of oper-
ations performed. We achieved an improvement of approxi-
mately 1.65x in model speed for both quantized models.

In real-time embedded applications, the availability of ran-
dom access memory (RAM) is crucial for the application’s
smooth operation without interruptions or delays. RAM is
used to store dynamic data that the application requires to
function properly.

Deep learning models, such as our base text detection
and recognition models, are computationally expensive, espe-
cially in terms of RAM resource usage. As indicated in
Table 2, the text detection model requires at least 286.23 MB
of RAM, while the text recognition model requires at least
5.04 MB. This results in a total RAM requirement of
291.27 MB for the end-to-end pipeline.

Our proposed method enabled us to achieve a significant
reduction in RAM usage for the quantized models, resulting
in a total of only 43.92 MB of RAM required. This represents
a compression factor of 6.63x when compared to the RAM
requirements of the base models.

We need to acknowledge a limitation of our proposed
method, which is its applicability to less clustered text in
scene images. This limitation arises from the need to intro-
duce a quantization bias when preparing the ground-truth
labels to compensate for the quantization-induced error.

56872

It’s important to note that scene text can vary greatly, and
our method may not be suitable for all types of scene text.

VIl. CONCLUSION

The increasing utilization of deep learning technology in
computer vision tasks owes to a multitude of factors, includ-
ing advancements in computing power, the availability of vast
datasets, and the development of sophisticated algorithms.

Deep learning technology has brought about remarkable
breakthroughs, especially in the domain of scene text detec-
tion and recognition. The process involves the precise local-
ization of text regions within scene images and subsequent
identification of the text contained within these regions.

Scene text detection and recognition have become pro-
nounced due to the rise in the number of portable and
embedded devices. These devices are capable of running
different intelligent applications. Some of these applications
require understanding textual information in scene images
for decision-making. Such applications include an intelligent
transportation system, text-to-speech, auto navigation, object
detection, etc.

The emergence of resource-efficient hardware for deep
learning applications, that only supports integer-based oper-
ations and operates under stringent constraints on storage,
memory, and computational power, has been a significant
development.

The current state-of-the-art methods for scene text detec-
tion and recognition rely heavily on deep learning approaches
that demand significant resources, such as computing power,
memory, and energy. As such, the implementation of these
methods in real-time embedded applications, especially those
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operating on integer-only hardware, poses a considerable
challenge.

We developed a resource-efficient method to tackle
this issue. To demonstrate its effectiveness and suitability
for integer-only hardware, we trained end-to-end models
specifically designed for detecting and recognizing shipping
containers. Subsequently, these models were deployed on the
target hardware.

We demonstrated the accuracy and reliability of our pro-
posed method for processing scene texts on this piece of hard-
ware. Our efforts to optimize the models yielded impressive
results as shown in Table 2 and Table 3.

Our optimization efforts resulted in a significant reduction
in model size, achieving a compression factor of 3.8x while
maintaining comparable performance to the base models.
Additionally, the optimized models exhibited a 1.6x increase
in speed, accompanied by a substantial decrease in maximum
RAM usage by a factor of 6.6x compared to the original
models. These results highlight the efficiency and feasibility
of our approach for processing scene text on integer-only
embedded hardware.
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