
DOCTORAL THESIS

Efficient Deep Learning Model
Optimization for Resource
Constrained Devices

Olutosin Ajibola Ademola

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2025

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

37/2025

Efficient Deep Learning Model
Optimization for Resource Constrained

Devices

OLUTOSIN AJIBOLA ADEMOLA

TALLINN UNIVERSITY OF TECHNOLOGYSchool of Information TechnologiesDepartment of Computer Systems
The dissertation was accepted for the defence of the degree of Doctor of Philosophy in
Computer Systems Engineering, on 5th March 2025

Supervisors:

Defence of the thesis: 13th June 2025, Tallinn
Declaration:Hereby I declare that this doctoral thesis, my original investigation and achievement, submitted for the doctoral degree at Tallinn University of Technology, has not been submitted for any academic degree elsewhere.

signatureOlutosin Ajibola Ademola

Copyright: Olutosin Ajibola Ademola, 2025
ISSN 2585-6898 (publication)
ISBN 978-9916-80-319-6 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9916-80-320-2 (PDF)
DOI https://doi.org/10.23658/taltech.37/2025
Printed by Koopia Niini & Rauam

Opponents:

Tenured Full Professor Eduard Petlenkov, Ph.D.
Department of Computer Systems, School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Mairo Leier, Ph.D.
Department of Computer Systems, School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Professor Andrei Lobov, Ph.D.
Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

Professor Sergio Galvez Rojas, Ph.D.
Universidad de Málaga
Malaga, Spain

Ademola, O. A. (2025). Efficient Deep Learning Model Optimization for Resource
Constrained Devices [TalTech Press]. https://doi.org/10.23658/taltech.37/2025

https://digikogu.taltech.ee/et/Item/183f6305-2924-4e30-a7cc-d06ac86581b8

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

37/2025

Tõhus süvaõppe mudeli optimeerimine
piiratud ressurssidega seadmete jaoks

OLUTOSIN AJIBOLA ADEMOLA

Contents

LIST Of PUBLICATIONS . 10

AUTHOR’S CONTRIBUTION TO THE PUBLICATIONS . 11

Abbreviations . 12

1 INTRODUCTION. 131.1 Background and Motivation . 131.2 Literature Review. 141.2.1 Bit Reduction . 141.2.2 Knowledge Distillation . 151.2.3 Low Rank Tensor Decomposition . 161.2.4 Pruning. 161.2.5 Microarchitecture . 171.2.6 Ensemble of Compression Methods. 181.3 Research Gaps and Research Questions . 191.4 Objectives and Contributions of the Thesis . 201.5 Thesis Structure . 22
2 PRELIMINARIES . 232.1 Model Compression Methods . 232.1.1 Quantization . 232.1.1.1 Binarization: An Extreme Case of Quantization. 252.1.1.2 Challenges and Considerations . 252.1.1.3 8-bit Quantization Impact on CNN Models 262.1.2 Knowledge Distillation . 272.1.2.1 Challenges and Considerations . 282.1.3 Low-Rank Tensor Decomposition . 292.1.3.1 Tensor Train Decomposition . 302.1.3.2 Challenges and Considerations . 312.1.4 Pruning. 312.1.4.1 Challenges and Considerations . 322.1.5 Microarchitecture . 332.1.5.1 Challenges and Considerations . 342.1.6 Ensemble of Compression Methods. 352.1.6.1 Challenges and Considerations . 36
3 COMPRESSIONMETHODS EVALUATIONUSINGNUMERICAL-BASEDMATHEMAT-ICAL APPROACH . 373.1 Evaluation of Deep Neural Network Compression Methods for Edge De-vices Using Weighted Score-Based Ranking Scheme . 373.2 Evaluation Metrics . 373.3 Limitations of Current Metrics. 383.4 The Numerical-Based Mathematical Approach . 383.4.1 Mathematical Formulation . 38

5

Abstract . 8

Kokkuvõte .. 9

10

11

12

13
13
14
14
15
16
16
17
18
19
20
22

23
23
23
25
25
26
27
28
29
30
31
31
32
33
34
35
36

37

37
37
38
38
38

3.4.1.1 Definition of Parameters 383.5 Weighted Score-Based Ranking Scheme 393.5.1 Scaling. 393.5.2 Scoring 403.5.2.1 Adapting Scores for Metric Characteristics 403.5.3 Scoring Formula 403.5.4 Weighting . . 413.5.5 Weighted Score 413.5.6 Weight Score Average 423.5.7 Ranking . 423.5.8 Application of Weighted Score-Based Ranking Scheme 423.5.8.1 Benchmark Model Description . 423.5.8.2 Compression Methods Evaluated 423.5.8.3 Scoring and Weighting Process . 443.5.8.4 Weights Assignment Strategy . 453.6 Results and Discussion . 463.7 Summary . 493.8 Conclusion . 50
4 ENSEMBLE OF COMPRESSION METHODS . 514.1 Limitations of Single Compression Methods . 514.2 Ensemble of Tensor Train Decomposition and Quantization 514.2.1 Architecture of the Ensemble Compression Pipeline 524.2.2 Challenges of the Ensemble Method . 534.3 Experimental Setup and Results . 534.3.1 Architecture of the Baseline Model . 534.3.2 Ensemble End-to-End Trainable Pipeline . 534.3.3 Training and Optimization Process . 544.3.4 Tensor Train Configuration ... 554.3.5 Tensor Trained Model Quantization . 564.3.6 Performance Comparison and Evaluation of Key Metrics 564.4 Summary and Conclusion . 584.4.1 Summary. .584.4.2 Conclusion 58
5 PRACTICAL USE CASE: OPTIMIZATION LIMITATION OF SCENE TEXT DETECTIONAND RECOGNITION MODELS . 595.1 Resource-Aware Scene Text Recognition Using Learned Features, Quanti-zation, and Contour-Based Character Extraction . 595.2 Scene Text Recognition In Embedded Systems . 595.3 Resource Constraints in Embedded Hardware. 595.4 Challenges and Research Objectives . 605.4.1 Challenges in Optimizing Scene Text Detection and RecognitionModels . 605.4.2 Research Objectives . 605.5 Scene Text Detection and Recognition . 615.5.1 Text Detection . 615.5.2 Text Recognition 625.6 Proposed Methodology . . 625.6.1 System Architecture Overview. 62

6

38
39
39
40
40
40
41
41
42
42
42
42
42
44
45
46
49
50

51
51
51
52
53
53
53
53
54
55
56
56
58
58
58

59

59
59
59
60

60
60
61
61
62
62
62

5.6.2 Text Detection: Modified EAST Architecture 635.6.3 Quantization for Integer-Only Hardware . 645.6.4 Text Recognition: Contour-Based Character Extraction 655.7 Experiments . 675.7.1 Experimental Setup . 675.7.2 Evaluation Metrics. 685.8 Results and Discussion . 695.9 Summary and Conclusion . 705.9.1 Summary. 705.9.2 Conclusion . 70
6 CONCLUSION . 71

List of Figures . 72

List of Tables . 73

References . 74

Acknowledgements . 80
Appendix 1 . 81

Appendix 2 . 101

Appendix 3 . 109

Curriculum Vitae . 121

Elulookirjeldus . 122

7

63
64
65
67
67
68
69
70
70
70

71

72

73

74

80

81

101

109

121

122

Abstract
Efficient Deep Learning Model Optimization for Resource Con-
strained Devices
This thesis addresses critical challenges in efficient deep learning (DL) model compressionand optimization, which are essential for deployingmodels on resource-constrained hard-ware. Despite significant advancements, several key research gaps remain: the lack of astandardized quantitativemethod for evaluating and comparing compression techniques,the difficulty of achieving deep compressionwithout significant performance loss, and thechallenge of optimizing models that are highly sensitive to compression. This thesis ex-plores these gaps through three primary research questions.To tackle these challenges, the thesis first develops and validates a robust numerical-basedmethod for objectively evaluating and rankingmodel compression techniques. Thismethod, introduced in Publication I, uses aweighted score-based ranking system to assessthe efficiency, effectiveness, and suitability of each technique across various applications.It provides a systematic and adaptable method for selecting optimal compression strate-gies, enabling informed decision-making tailored to diverse use cases.The second research objective focuses on achieving a deep compression ratio of 32xwhile maintaining acceptable performance. This was accomplished through an innovativeensemble technique combining Tensor Train Decomposition (TTD) and 8-bit quantization,as detailed in Publication 2. This approach significantly exceeded expectations, achieving aremarkable 57x compression ratio, demonstrating the feasibility of high-ratio compressionfor real-world deployment without substantial loss in accuracy.The final research objective addresses the optimization ofmodels that are highly sensi-tive to compression and quantization. Publication 3 introduces a novel quantization offsettechnique, known as quantization bias, tomitigate the sensitivity of state-of-the-art scenetext detection and recognition models to quantization. This technique enabled efficientdeployment on integer-only hardware with minimal performance loss. Additionally, anintegrated text orientation detection module enhances the model’s capability to handlediverse orientations, broadening its applicability across different scenarios.The cumulative contributions of this thesis provide a comprehensive methodology forevaluating, compressing, and optimizing DL models for deployment on low-power, low-cost hardware platforms. The proposed solutions not only advance the state-of-the-art inmodel compression but also ensure that even architectures sensitive to compression canbe effectively optimized without compromising performance. These findings have signifi-cant implications for real-world applications, enabling high-performance DLmodels to op-erate efficiently in environments with stringent computational and memory constraints.

8

Kokkuvõte
Tõhus süvaõppe mudeli optimeerimine piiratud ressurssidega
seadmete jaoks
See lõputöö käsitleb kriitilisi väljakutseid tõhusa sügava õppimise (DL) mudelite tihenda-misel ja optimeerimisel, mis on hädavajalikud mudelite juurutamiseks piiratud ressurssi-dega riistvarale. Vaatamata märkimisväärsetele edusammudele on endiselt mitmeid olu-lisi uurimislünki: standardiseeritud kvantitatiivse meetodi puudumine tihendustehnikatehindamiseks ja võrdlemiseks, raskused sügava tihendamise saavutamisel ilma märkimis-väärse jõudluse vähenemiseta ja tihendamise suhtes ülitundlike mudelite optimeerimiseväljakutse. See uuring uurib neid lünki kolme peamise uurimisküsimuse kaudu.Nende väljakutsetega toimetulemiseks töötatakse lõputöös esmalt välja ja validee-ritakse tugev numbripõhine meetod mudeli tihendamise tehnikate objektiivseks hinda-miseks ja järjestamiseks. Seemeetod, mida tutvustati, valideeritakse I publikatsioonis, ka-sutab kaalutud skooripõhist järjestussüsteemi, et hinnata iga tehnika tõhusust, tulemuslik-kust ja sobivust erinevates rakendustes. See pakub süstemaatilist ja kohandatavat raamis-tikku optimaalsete tihendusstrateegiate valimiseks, võimaldades teha teadlikke otsuseid,mis on kohandatud erinevatele kasutusjuhtudele.Teine uurimiseesmärk keskendub sügava tihendusastme 32-kordsele saavutamisele,säilitades samal ajal vastuvõetava jõudluse. See saavutati uuendusliku ansamblitehnikaabil, mis ühendas Tensor Train Decomposition (TTD) ja 8-bitise kvantimise, nagu on üksik-asjalikult kirjeldatud II publikatsioonis. See lähenemine ületas oluliselt ootusi, saavutadesmärkimisväärse 57-kordse tihendusastme, mis näitab suure tihendussuhte teostatavustreaalseks kasutuselevõtuks ilma täpsuse olulise vähenemiseta.Lõplik uurimiseesmärk käsitleb tihendamise ja kvantiseerimise suhtes ülitundlike mu-delite optimeerimist. III publikatsioon tutvustab uudset kvantimise nihketehnikat, midatuntakse kvantimise eelarvamusena, et leevendada tipptasemel stseeni tekstituvastus- jatuvastusmudelite tundlikkust kvantimise suhtes. See tehnika võimaldas tõhusat juuruta-mist ainult täisarvudega riistvaras minimaalse jõudluskaoga. Lisaks suurendab integreeri-tud teksti orientatsiooni tuvastamise moodul mudeli võimet käsitleda erinevaid orientat-sioone, laiendades selle rakendatavust erinevates stsenaariumides.Käesoleva teadustöö kokkuvõtvad panused pakuvad põhjalikku metoodikat süvaõp-pe mudelite hindamiseks, tihendamiseks ja optimeerimiseks, et neid kasutada madalavõimsusega ja odavatel riistvaraplatvormidel. Pakutud lahendused mitte ainult ei eden-da mudeli tihendamise tipptasemel tehnoloogiat, vaid tagavad ka selle, et isegi tihenda-mise suhtes tundlikke arhitektuure saab tõhusalt optimeerida ilma jõudlust vähendamata.Need tulemused mõjutavad märkimisväärselt reaalmaailma rakendusi, võimaldades suu-re jõudlusega süvaõppemudelitel tõhusalt töötada keskkondades, kus on ranged arvutus-ja mälupiirangud.

9

LIST Of PUBLICATIONS
The present Ph.D. thesis is based on the following publications that are referred to in thetext by Roman numbers.
I Ademola, O.A.; Leier, M.; Petlenkov, E. Evaluation of Deep Neural Network Compres-sionMethods for EdgeDevicesUsingWeighted Score-BasedRanking Scheme. Sensors2021, 21, 7529. https://doi.org/10.3390/s21227529
II O. A. Ademola, E. Petlenkov, and M. Leier, "Ensemble of Tensor Train Decomposi-tion and Quantization Methods for Deep Learning Model Compression", 2022 Inter-national Joint Conference on Neural Networks (IJCNN), Padua, Italy, 2022, pp. 1-6,doi: 10.1109/IJCNN55064.2022.9892626
III O. A. Ademola, E. Petlenkov, and M. Leier, "Resource-Aware Scene Text RecognitionUsing Learned Features, Quantization, and Contour-Based Character Extraction," inIEEE Access, vol. 11, pp. 56865-56874, 2023, doi: 10.1109/ACCESS.2023.3283931.

10

AUTHOR’S CONTRIBUTION TO THE PUBLICATIONS
I In Publication I, as the first author, I developed a numerical-based mathematicalmethod that utilizes a weighted score-based ranking system to evaluate deep learn-ing model compression methods. This approach allows for the ranking of each com-pression method based on their weighted scores, tailored to the specific require-ments of the application. I also authored the manuscript.
II In Publication II, as the first author, I developed an ensemble technique for deepcompression of deep learning models that maintains a modest model accuracy. Thistechnique combines tensor train decompositionwith 8-bit quantization, informed bythe findings from Publication I. The ensemble method achieved a 57x compressionratio, significantly surpassing the 4x ratio, which was the highest achieved by anysingle compression method. I also authored the manuscript.
III In Publication III, as the first author, I addressed the sensitivity issue associated withquantizing state-of-the-art scene text detection and recognition models by introduc-ing a quantization offset (also referred to as a quantization bias). This innovationenhanced the model robustness and sensitivity, enabling efficient quantization forinteger-only hardware with minimal performance degradation. Additionally, I devel-oped a text orientation detectionmodule to support both portrait and landscape textorientations. I authored the manuscript.

11

Abbreviations
Acc AccuracyAI Artificial IntelligenceANN Artificial Neural NetworksBN Batch NormalizationCNN Convolutional Neural NetworkCONV2D 2D ConvolutionCP CANDECOMP/PARAFAC DecompositionCR Compression RatioCV Computer VisionDNN Deep Neural NetworkDL Deep LearningEAST Efficient and Accurate Scene TextFC Fully Connected (Layer)FLOP Floating Point OperationsFLOPS Floating Point Operations Per SecondIT Inference TimeKN Knowledge DistillationML Machine LearningMAXPOOL2D 2D Max PoolingNAS Neural Architecture SearchNN Neural NetworkNLP Natural Language ProcessingPMF Peak Memory FootprintQAT Quantization-Aware TrainingQuanTT Quantized Tensor-Trained ModelRQ Research QuestionRO Research ObjectiveR-CNN Region-based Convolutional Neural NetworkRNN Recurrent Neural NetworkRPN Region Proposal NetworkSTE Straight-Through EstimatorTD Tensor DecompositionTT Tensor TrainTTD Tensor Train DecompositionTTP Tensor Train RepresentationVDS Variational Dropout Sparsification

12

1 INTRODUCTION
1.1 Background and Motivation
In an increasingly connected world, the proliferation of smart devices has generated anunprecedented demand for technologies capable of processing complex data in real-timeat the edge. Marco et al. [1] highlighted adaptive model selection techniques to optimizedeep learning inference on embedded systems, addressing the limitations of limited com-putational power. Han et al. [2] proposed MCDNN, a framework for efficient stream pro-cessing under resource constraints, utilizing approximation-based methods to enhancethe performance of the deep learning model. Liu et al. [3] advanced our understandingof usage-driven model selection for mobile devices, emphasizing dynamic adjustments tomodel compression for improved efficiency.

Deep neural networks (DNNs) have demonstrated remarkable success in driving ad-vancements across various domains. Lukas [4] examined efficient online processingmethodologies for neural networks, emphasizing their role in real-time applications.Zhang et al. [5] investigated compilation and optimization strategies to deploy machinelearningmodels in embedded systems, providing information about overcoming resourcelimitations. Cai et al. [6] presented an extensive review of enabling deep learning onmobile devices, discussing methods such as neural architecture search and model com-pression to improve applicability. Nagarhalli et al. [7] reviewed the impact of machinelearning in natural language processing (NLP), underlining the contributions of DNNs totasks such as speech recognition and sentiment analysis. Saptarshi et al. [8] surveyedrecent trends in deep learning architectures and applications, demonstrating their trans-formative potential in various fields. Minar et al. [9] provided an overview of recentadvances in deep learning, contextualizing its applications in modern computing.
Deep learning (DL), a subset of machine learning (ML), functions as a computationalapproach inspired by the structure and function of the brain’s neural networks (NNs). Zhaiet al. [10] explored the integration of AI in education, providing a broader perspective onits potential applications. Panch et al. [11] discussed the synergy between artificial intelli-gence andhealth systems, highlighting the pivotal role of deep learning in decision-makingprocesses. Ademola et al. [12] focused on resource-aware scene text recognition, detailinghow learned features and quantization techniques enhance performance on constraineddevices. Ademola et al. [13] further explored tensor train decomposition and quantizationmethods, showcasing an ensemble approach for deep learning model compression. Caiet al. [6] emphasized the hierarchical nature of neural network feature extraction, whichenables powerful processing of unstructured data such as text and images.
DL applications extend across computer vision (CV), NLP, healthcare, finance, and en-tertainment. In CV, Wu et al. [14] demonstrated the application of DL in tasks such asobject detection and facial recognition. Rawat et al. [15] provided a comprehensive re-view of convolutional neural networks for image classification, highlighting their robust-ness in complex visual tasks. In NLP, Alshahrani et al. [16] evaluated DL’s capabilities forlanguage translation and sentiment analysis, while Pattanayak et al. [17] emphasized theutility of recurrent neural networks for text processing. Hirschberg et al. [18] discussedDL advancements in NLP, offering insight into state-of-the-art methodologies. Li et al. [19]reviewed the integration of deep learning in signal processing, including its applicationsin speech and text analysis.
In healthcare, Miotto et al. [20] reviewed the transformative role of deep learningin disease diagnosis and personalized treatments. Chensi et al. [21] examined its appli-cations in bioinformatics and genomics, demonstrating the adaptability of DL to various

13

biomedical challenges. Khader et al. [22] explored the contributions of machine learningto cardiovascular medicine, highlighting its clinical implications. Liu et al. [23] conducteda meta-analysis comparing DL’s diagnostic performance against healthcare professionals,establishing its potential in medical imaging. Sendak et al. [24] critically evaluated thechallenges and opportunities of integrating ML into healthcare systems.In finance, Eunsuk et al. [25] demonstrated the use of DL for analysis and predictionof the stock market. Sohangir et al. [26] presented a framework for financial sentimentanalysis, leveraging deep learning for better forecasting. Ahmet et al. [27] surveyed thefinancial applications of DL, including algorithmic trading and risk management. Polat etal. [28] examined ML algorithms for stock trading strategies, underlining DL’s advantagesin detecting complex patterns.Entertainment platformswidely leverage DL for personalization and user engagement.Zhang et al. [29] conducted a survey on DL-based recommender systems, providing afoundation for their use on platforms such as Netflix and Spotify. Dellal-Hedjazi et al.[30] explored the role of collaborative filtering in recommendation systems, emphasizingits synergy with DL techniques. Liu et al. [31] presented a survey of DL applications inrecommendation systems, describing their ability to effectively predict user preferences.Anantrasirichai et al. [32] reviewed the role of AI in creative industries, including its impacton content generation and recommendation systems. Ying et al. [33] highlighted the scal-ability of graph convolutional neural networks for web-scale recommendation systems.Despite these successes, deploying DL models on resource-constrained devices re-mains challenging. Zhang et al. [5] analyzed the trade-offs in adapting ML to embeddedsystems, offering strategies for model optimization. Cai et al. [6] emphasized lightweightarchitectures to improve efficiency on mobile platforms. Mujtaba et al. [34] optimizedCNNdataflow to streamline computations and applied lightweight kernel transformations,ensuring efficiency without compromising accuracy. Liang et al. [35] provided a detailedsurvey of pruning and quantization, emphasizing their importance in reducing computa-tional demands while maintaining model performance.In conclusion, the integration of DL in resource-constrained environments requiresbalancing computational efficiency, memory usage, and energy consumption. This thesiscontributes to advancing compression techniques tailored for these challenges, ensuringDL’s scalability and effectiveness in diverse applications.
1.2 Literature Review
Model compression for resource-constrained devices has been a vital area of research tobring AI to the edge. The state-of-the-art methods for model compression can be catego-rized as follows —bit reduction, knowledge distillation, low-rank tensor decomposition,pruning, microarchitecture (i.e. compact model design) and ensemble of methods. Eachoffers distinct advantages and trade-offs, contributing to the development of resource-aware and efficient models for resource-constrained devices.
1.2.1 Bit Reduction
Bit reduction (i.e., quantization, ternarization, binarization) is a prominent technique inmodel compression, primarily aimed at reducing the size and computational complexity ofDNNs. It involves approximating 32-bit full-precision weights and activations with lower-bit representations (e.g., 8-bit, 2-bit),Jacob et al. [36] quantized the weights and activations using 8 bit, but maintained thebias vector in 32 bit integer. Banner et al. [37] represents theweights and activations using4-bit with a minimal decrease in accuracy.

14

Liu et al. [38] trained a ternary network using 2-bit. Thus, reducing the memory foot-print when compared to using binary weights representation.
To address the decrease in accuracy associated with post-training quantization, Jacobet al. [36] simulated the effect of quantization during training by rounding up full preci-sion weights and activations. This approach is referred to as quantization-aware training.Courbariaux et al. [39] and Mohammad et al. [40] restricted the weights to binary valuesand reported near-state-of-the-art results.
Yongxin et al. [41] introduce a novel approach to overcome representation collapsein Vector Quantization (VQ) models by reparameterizing code vectors using a learnablelinear transformation layer, enabling optimization of the entire codebook space and en-hancing scalability, adaptability, and performance across various applications.
Bit reduction has demonstrated significant potential for compressing large DL models,making it ideal for resource-constrained hardware. However, it presents challenges, suchas accuracy degradation, especially with aggressive bit reduction (e.g., ternary, binary net-works).
Another issue is hardware heterogeneity, as different devices support varying levelsof quantization. Hardwaer efficiency also varies across different hardware architectures,with some platforms unable to fully utilize interger-only precision.
Finally, quantization sensitivity varies by model and tasks. For instance, models withlarge weight variations, such as scene text detection and recognition, are more sensitiveto quantization compared to models for image classification. This requires task-specificoptimization, which can be very complex and challenging.

1.2.2 Knowledge Distillation
Knowledge distillation (KD) is amodel compression technique that has gained prominencein DL research due to its simplicity and effectiveness. The idea of KD, initially proposedby Geoffrey et al. [42], involves transferring the knowledge from a large and complexmodel (ie, teacher) to a smaller and compact model (ie, student) with small computa-tional and memory footprints. The process allows the student model to approximate theperformance of the teacher model.

The concept of KD was rooted in the idea that large models often capture intricatepatterns and relationships in data that smaller models struggle to learn directly. Geoffreyet al. [42] proposed training a student model by mimicking the soft predictions (proba-bility distributions) of the teacher model, rather than just learning from hard labels. Thisapproach takes advantage of the dark knowledge embedded in the teacher’s output prob-abilities, allowing the student model to generalize better than it would by relying only onlabeled data. Their work demonstrated that KD could achieve the predictive capacity ofensembles using smaller and compact models.
The researchers explored various strategies to improve the effectiveness of KD. Onesuch strategy is collaborative teacher-student mutual learning, where both models learnsimultaneously, and the knowledge transfer is bidirectional [43]. Zhang et al. [44] pro-posed a self-distillation framework in which a model distills the knowledge of itself overmultiple iterations or layers, effectively refining its own predictions without requiring aseparate teacher model. This approach has shown potential for further improving modelperformance without increasing complexity.
KD still presents some challenges. One major issue is the performance gap betweenthe teacher and student models. Also, KD does not guarantee that the student model willreach the teacher’s performance level. This is particularly evident when the difference inmodel expressivity is large.

15

Another challenge is the effectiveness of distillation across different domains. Al-though KD has shown remarkable success in image classification, its application in morecomplex tasks, such as natural language processing and scene detection & recognition,has been less straightforward.
1.2.3 Low Rank Tensor Decomposition
Low-rank tensor decomposition (TD) is a mathematical technique that has gained tractionin compression of theDLmodel. It extends the concept ofmatrix decomposition to higher-dimensional data representations (tensors). Low-rank TD leverages to reduce the numberof parameters of the models through a low-rank approximation.Vadim et al. [45] decomposed a 4D convolutional kernel into a sum of vector prod-ucts using CP decomposition (CANDECOMP/PARAFAC decomposition). CP decomposes atensor into a sum of rank one tensors. It is one of the simplest forms of tensor decom-position and is widely used due to its simplicity. However, CP may not always provide thebest approximation for complex tensors present in DL models.Yong-Deok et al. [46] applied Tucker decomposition (TD) to deep CNNs, demonstrat-ing significant reductions in both the number of parameters and computational cost, whilemaintaining competitive accuracy. TD generalizes CP decomposition by allowing the ten-sor to be decomposed into a core tensor and multiple factor matrices. TD offers moreflexibility in the approximation of tensors and has been shown to achieve better com-pression ratios with less loss of accuracy compared to CP decomposition.Novikov et al. [47] employed the decomposition of the tensor train (TT) in the NNs,reducing the number of parameters in the fully connected layers by orders of magnitudewithout significant accuracy loss. TT represents a tensor as a sequence of low-rank matri-ces. This approach is particularly efficient for very large tensors, as it scales linearly withthe tensor dimensions.Low-rank TD offers significant advantages; however, several challenges still exist. Onekey issue is the accuracy trade-offs, as the compression ratio scales with the tensor rank.Another challenge is computational complexity during the process of decomposing a ten-sor, especially for high-dimensional data, which can be computationally expensive. Thiscomplexity can offset someof the gains achieved throughmodel compression, particularlyduring training.Choosing the appropriate rank for decomposition is also critical. A lower rank mayresult in more compression, but at the cost of accuracy degradation, while a higher rankmay preserve accuracy but limit the compression benefits. Automated methods for rank-ing selection are still an area of active research.Lastly, decomposed models may not generalize well across different tasks or datasets,particularly if the decomposition was tuned for a specific application. Ensuring that thecompressed model retains its generalization capabilities is a key challenge.
1.2.4 Pruning
Pruning is another compression technique employed in DL, primarily aimed at reducingthe size and computational footprint of NNs. By eliminating redundant or less significantparameters, pruning creates efficientmodels that require lessmemory and computationalpower, making them suitable for deployment on resource-constrained devices such asmobile phones, embedded systems, and IoT devices. The method has gained significantattention because of its ability to retain the accuracy of the models while reducing themodel size and inference time.Early work on NN pruning dates back to the 1980s and 1990s, with studies by LeCun

16

et al. [48] and Hassibi et al. [49] introducing the concept of optimal brain damage andoptimal brain surgeon, respectively. These methods aimed to prune network connectionsbased on their contribution to the loss function, effectively removing those that had min-imal impact on the model performance.
These early approaches laid the groundwork for more sophisticated pruning tech-niques, emphasizing the potential of pruning, not just for reducing the model size butalso for improving generalization by eliminating unnecessary complexity. Song et al. [50]combined pruning, quantization, and Huffman coding and achieved significant reductionsin model size.
Hao et al. [51] introduced a method to prune convolutional filters based on their L1norm, demonstrating that all filters could be removed with minimal impact on the ac-curacy of the model. Jonathan et al. [52] introduced the "Lottery Ticket Hypothesis,"suggesting that within large networks there exist small, randomly initialized subnetworksthat, when trained in isolation, can achieve performance comparable to the original net-work. This hypothesis has inspired numerous studies on iterative pruning during training.
Lin et al. [53] present the design of a sparsity-aware deep learning hardware acceler-ator that takes advantage of both data and weight sparsity in CNN models. Louizos et al.[54] exploit L0 regularization, which yielded inconsistent compression in larger datasets,while simple magnitude pruning achieves comparable or better results.
Network pruning presents some challenges. One major challenge is accuracy loss,particularly when aggressive pruning strategies are employed. Although fine-tuning canoften recover lost accuracy, there is a limit to how much pruning can be done before themodel’s performance deteriorates significantly.
Another challenge is the trade-off between sparsity and efficiency. Unstructured prun-ing, while effective at reducing the number of parameters, can lead to sparse weight ma-trices that are difficult to optimize on standard hardware, limiting the potential speedup.Structured pruning, although more hardware-friendly, may require more sophisticatedcriteria to determine which filters or neurons to prune, as these components often cap-ture complex, high-level features.
Generalization and overfitting are also concerns in network pruning. As pruning re-duces the number of parameters, it can lead to overfitting, particularly if the remainingparameters are not sufficient to capture the underlying patterns in the data. This is partic-ularly problematic in small datasets or when transferring pruned models to new domainsor tasks.

1.2.5 Microarchitecture
Microarchitectures (i.e., compact models) involve the design of small, compact, and effi-cient model architectures. This approach is based on residual domain knowledge of theblocks needed in the design of NN architectures. Microarchitecture differs from the othercompression methods (i.e., KD, pruning, quantization, TD etc.), because it does not relyon any external compression.

Forrest et al. [55] achieved a similar accuracy with 50x fewer parameters obtained byKrizhevsky et al. [56]. Andrew et al. [57] proposed MobileNets that utilize depth-wisesepable and point-wise convolutions to reduce the number of multiplications. These CNNmicroarchitectures have become the state-of-the-art for image classification and objectdetection base models. Other proposed compact architectures include SqueezeNet[55],ShuffleNet [58], EfficientNet [59], and TinyYOLO [60]. All efficient for edge deployments.
Despite the success of compactmodel design, several challenges persist, including bal-ancing the accuracy-efficiency trade-off, where compact models often struggle to achieve

17

the performance of largermodels on complex tasks. Furthermore, ensuring generalizationacross diverse tasks and datasets remains difficult, particularly when models are heavilyoptimized for specific applications. Scalability also presents a challenge, as adapting com-pact models for more powerful hardware without losing efficiency gains requires furtherresearch.
1.2.6 Ensemble of Compression Methods
Ensemble combines multiple model compression techniques to achieve a better balancebetweenmodel size, inference time,memory, and accuracy. Using the strengths of variouscompression techniques, such as pruning, quantization, TD, and KD, it mitigates the limi-tations/weakness of the individual method. By integrating these methods, the ensembletechnique can effectively compress models while preserving performance, making themparticularly useful for resource-constrained devices.

One commonensemblemethod is the combination of pruning and quantization. Prun-ing reduces the number of parameters in amodel by removing less important/contributingweights, while quantization reduces the precision of the remaining weights. Song et al.[50] demonstrated that combining this technique can significantly reduce the size of neu-ral networks with minimal impact on accuracy. Their work on the "Deep Compression"framework shows that pruning followed by quantization leads to more efficient modelswithout significant performance loss.
Another effective ensemble technique involves combining KD and quantization. KDtransfers knowledge from a large and complex model to a compact model. The compactmodel is then further compressed by quantization. Mishra et al. [61] explored this combi-nation, showing that quantization-aware distillation helps maintain accuracy while allow-ing lower bit quantization of the student model.
More recent research explores the integration of all three methods —KD, pruning,quantization. Li et al. [62] proposed a comprehensive approach that first prunes themodel, distills the knowledge from the prunedmodel, and then applies quantization. Thismultistep process helps maintain the model accuracy while reducing the model size andimproving inference speed. Their results indicate that the ensemble method can outper-form individual techniques in terms of compression efficiency and model performance.
Lin et al. [63] introduced an approach that integrates pruning, quantization, and searchfor neural architecture (NAS). This method allows for automatic model design tailoredto specific hardware constraints, achieving the state-of-the-art compression rates withminimal accuracy degradation.
The ensemble of compression methods, while very powerful, face challenges such asincreased complexity and implementation overhead, as integrating multiple techniques(e.g., pruning, quantization, knowledge distillation, low-rank tensor decomposition) re-quires careful coordination and consideration. Compatibility issues can also arise whendifferent methods interfere with each other, and the sequential application of these tech-niques often leads to longer training times.
Task-specific tuning is also needed to optimize the ensemble for different models,which can be time consuming. Hardware constraints may limit the benefits of compres-sion, and there is a risk of over-compression, leading to accuracy loss.
Lastly, evaluating and benchmarking ensemble methods is difficult due to the lack ofstandardizedmetrics that capture the trade-offs between compression, accuracy, and per-formance across different hardware platforms.
Table 1 provides a summary of the state-of-the-art of model compression methods.Each method is described in terms of its key contributions and the main challenges asso-

18

ciated with it, along with relevant references.
Table 1: Summary of key literature on various model compression methods, describing their contri-butions and challenges.
Technique Year Key Contributions Challenges
Bit Reduction 2015–2024 Enabled reduction in model size by approx-imating 32-bit full-precision weights and ac-tivations with lower-bit representations (e.g.,16-bit, 8-bit, 4-bit) [36]. Extreme cases suchas binarization and ternarization further re-duce memory requirements and inferencespeed [39, 40]. Techniques like post-trainingquantization [37] have been explored for ef-ficient deployment. Vector quantization wasintroduced to improve inference time of themodel by reparameterizing code vectors usinga learnable linear transformation layer [41].

Balancing accuracy and compres-sion, especially for extremely low-bit formats, is challenging. Ad-ditionally, hardware platforms of-ten lack robust support for effi-cient low-bit operations, complicat-ing deployment.

Knowledge Distilla-
tion

2015–2021 Facilitated knowledge transfer from larger,complex teacher models to smaller, simplerstudent models tomaintain accuracy while re-ducing size [42]. Techniques such as collabo-rative teacher-student learning [43] and self-distillation [44] further optimize the distilla-tion process.

Designing effective teacher-studentarchitectures is critical. Optimizingthe knowledge transfer process toensure student models retain per-formance remains a challenge.

Pruning 1989–2019 Reduced network size by removing less signifi-cant weights, neurons, or filters using unstruc-tured pruning [48, 49] or structured pruning[50, 51]. Techniques like the lottery ticket hy-pothesis [52] and variational dropout [54] pro-vided new methods to identify redundant pa-rameters.

Identifying redundant parametersand balancing compression withaccuracy remain significant chal-lenges. Efficient pruning algorithmsthat generalize across different ar-chitectures are needed.
Low Rank Tensor De-
composition

2015–2019 Applied matrix factorization techniques to de-compose tensors in convolutional and fullyconnected layers, reducing parameters [45].Hybrid tensor decomposition approaches [46]and Tensor Train Decomposition frameworks[47] have been developed to optimize compu-tational efficiency.

Selecting appropriate decomposi-tion methods for specific architec-tures, handling non-linear layers,and maintaining performance arekey challenges.

Microarchitecture 2016–2020 Designed lightweight CNN architectures (e.g.,MobileNet [57], SqueezeNet [55], ShuffleNet[58], and EfficientNet [59]) that achieve highaccuracy with fewer parameters. These archi-tectures often reduce dependency on externalcompression techniques [55, 60].

Balancing model complexity, accu-racy, and generalization is challeng-ing. Adapting models for diversetasks and hardware environmentsadds further complexity.
Ensemble of Model
Compression

2016–2020 Combined multiple compression techniquessuch as pruning, quantization, and knowledgedistillation for greater reductions in modelsize while maintaining accuracy [50, 61]. Ap-proaches like dynamic knowledge distillation[62] have demonstrated improved compres-sion outcomes.

Coordinating and managing in-teractions between differentcompression techniques is com-plex. Ensuring overall performancein varied deployment scenarios is amajor challenge.

1.3 Research Gaps and Research Questions
Efficientmodel compression has emerged as a pivotal area of research, driven by the grow-ing demand for resource-aware AI solutions capable of operating on low-cost, low-powerembedded hardware. According to the surveyed literature, several key research gaps havebeen identified.One significant gap is the lack of a standardized, quantitative methodology for assess-ing the efficiency, effectiveness, reliability, and suitability of DL compression methods.This absence leaves researchers and practitioners without a clear framework for objec-tively comparing various compression techniques. As a result, the selection of the mostsuitable method often becomes subjective, relying on inconsistent benchmarks or incom-plete performance metrics.

19

Another critical challenge lies in achieving deep compression without loss of perfor-mance. Fitting large models onto extremely resource-constrained hardware while main-taining acceptable accuracy levels is a very challenging task. There is a pressing need to de-velop compression techniques that are both resource- and performance-aware, enablingefficient operation on devices with extreme storage and memory limitations without sig-nificant degradation in performance.
Balancing model optimization and accuracy also remains a persistent challenge. Opti-mizing deep learning models often introduces trade-offs, where reductions in computa-tional or memory footprints can negatively impact model performance. For highly sensi-tive models, even minor adjustments may result in substantial performance degradation.Developing strategies that minimize resource usage while maintaining robust accuracy iscrucial, ensuring that optimized models remain effective across diverse tasks.
These challenges highlight the gaps in current research and emphasize the need fornew approaches to effectively solve them.
To address these gaps, this thesis aims to explore the following research questions.
Research Question 1 (RQ1): Can a numerically basedmathematical method be devel-

oped to quantitatively evaluate state-of-the-art deep learning (DL) model compression
techniques for diverse application requirements?

RQ1 focuses on developing a standardized numerical approach to objectively evaluateand rank compression methods. The goal is to establish a systematic evaluation frame-work that quantifies the impacts of various methods on the characteristics of the model,providing a clear basis for selecting the most appropriate techniques.
Research Question 2 (RQ2): Can a deep model compression ratio of 32x be achieved

while maintaining an acceptable level of accuracy for practical deployment?
RQ2 examines the feasibility of achieving deep compression while preserving perfor-mance. It aims to explore the practical limits of compression techniques and their ability tomaintain acceptable accuracy levels, offering insights into their application for resource-constrained hardware.
Research Question 3 (RQ3): Can efficient model optimization be achieved without

significantly compromising performance, particularly for compression-sensitive archi-
tecture?

RQ3 investigates strategies for optimizingmodels that are particularly prone to perfor-mance degradation under compression. The focus is on balancing efficiency gains, such asreduced memory and computational requirements, with the need to preserve accuracyand generalizability, especially in sensitive architectures.
1.4 Objectives and Contributions of the Thesis
This thesis aims is to address the research gaps outlined in the preceding section by ex-ploring the three key research questions. This thesis is structured around three researchobjectives (RO1, RO2, and RO3), each designed to address respective highlighted researchquestions (RQ1, RQ2, and RQ3).

The objectives have resulted in contributions to efficient model compression forresource-constrained hardware, which have been validated through publications in peer-reviewed scientific journals and conference presentation. The cumulative findings andcontributions are thoroughly highlighted and discussed in detail throughout this thesis.
Research Objective 1 (RO1): Develop and validate a robust, numerical-based mathe-maticalmethod for objectively evaluating and ranking state-of-the-artmodel compressionmethods. This method will assess each method’s impact on efficiency, effectiveness, and

20

suitability across a wide range of applications, providing a standardized, quantitative ap-proach to guide informed decision-making in selecting optimal compression strategies.
This objective explores the feasibility of developing a standardized, robust, numerical-based method to objectively evaluate compression techniques based on their impact onvarious model characteristics, such as model size, inference time, memory, accuracy, etc.
The goal was to establish a systematic evaluation method that provides a clear andobjective basis for evaluating the compression technique for different application require-ments.
Contribution 1 (addressing RQ1): In Publication I, a numerical-based mathematicalmethod utilizing a weighted score-based ranking system was developed to evaluate com-pression methods. Each method was meticulously evaluated and ranked according to aweighted scoring scheme, allowing for a nuanced evaluation that is finely tuned to theunique demands of various application contexts.
This innovative approach not only offers a systematic and objectivemeans of assessingcompression methods but also provides an adaptable framework that can be tailored tooptimize performance for diverse application requirements. Using this ranking system, amore informed selection of compression techniques is enabled, ensuring that the mostsuitable and efficient methods are used for specific use cases.
Research Objective 2 (RO2): Achieve a deep model compression ratio of 32x whilepreserving acceptable levels of accuracy, thereby demonstrating the practicality and fea-sibility of high-ratio compression techniques for deep learning models.
This objective aims to explore the practical limits of model compression by evaluat-ing whether a 32x compression ratio can be achieved without a significant loss of perfor-mance, particularly for critical edge applications. It seeks to assess the impact of extremecompression techniques on overall model accuracy, providing valuable insights into thepotential to achieve highly efficient model compression.
Contribution 2 (addressing RQ2): In Publication II, I developed an ensemble tech-nique that integrates TT decompositionwith 8-bit quantization, building upon the findingsfrom Publication I. This innovative approach achieved an impressive 57x compression ra-tio, significantly surpassing the 4x compression ratio achieved by individual compressionmethods. This demonstrates the superior efficacy of ensemble techniques in pushing theboundaries of model compression.
Research Objective 3 (RO3): Develop and implement advanced optimization tech-niques specifically designed for models with high sensitivity to compression and quan-tization. The objective is to achieve substantial reductions in computational and memoryrequirements while ensuringminimal to no degradation in accuracy and other critical per-formance metrics.
This research objective addresses the challenge of optimizing deep learning modelsthat are inherently sensitive to precision changes due to their architecture. It seeks topush the limits of what is achievable in model compression and optimization, ensuringthat even the most sensitive models can be efficiently deployed without sacrificing per-formance integrity.
Contribution 3 (addressing RQ3): In Publication III, the inherent sensitivity of cutting-edge scene text detection and recognition models to quantization was effectively miti-gated by the introduction of a novel quantization offset technique, called quantizationbias. This innovation significantly strengthened the robustness of the model, enabling ef-ficient quantization for hardware with integer only with acceptable performance loss. Inaddition, a comprehensive text orientation detection module was incorporated, improv-ing the model’s ability to accurately process text in portrait and landscape orientations,

21

thus broadening its applicability in diverse scenarios.
1.5 Thesis Structure
The organization of this thesis is summarized as follows:Chapter 1 provides an introduction to the background, motivation, research gaps, re-search questions, and objectives of the thesis. The chapter also outlines the contributionsof the thesis and reviews the state of the art in DL compression methods for resource-constrained devices.Chapter 2 establishes the foundation for understanding efficient optimization of theDL model in resource-constrained environments. The chapter discusses key compressiontechniques, examining their principles, strengths, and limitations within the context ofthese environments.Chapter 3 details the development of a numerical-based mathematical method forevaluatingmodel compression techniques. The chapter addressesRO1, which investigatesthe feasibility of creating a standardized, quantitative approach to objectively assess andrank compression methods based on their impact on various model characteristics. Thechapter discusses the proposed method, the experimental setup, and the results.Chapter 4 focuses on RO2, examining the practical limits of achieving extreme modelcompression for embedded devices with extremely limited memory resources. The chap-ter evaluates the feasibility of achieving a deep compression ratio of approximately 32xwhile maintaining acceptable accuracy levels. The chapter presents the methods usedand the results of the evaluation.Chapter 5 addresses the challenge of optimizing DL models that are inherently sensi-tive to precision changes due to their architecture. It seeks to push the limits of what isachievable in model compression and optimization, ensuring that even themost sensitivemodels can be efficiently deployed. The chapter addresses RO3.Chapter 6 concludes the thesis by summarizing the key findings, contributions, andrecommendations for future research directions.

22

2 PRELIMINARIES
This chapter provides a concise foundation for understanding the core concepts and tech-niques underlying efficient optimization of theDLmodel for resource-constrained devices.Key compression methods such as quantization, pruning, tensor decomposition,knowledge distillation, and lightweight architecture design are explored in detail. Theirprinciples, strengths, and limitations are analyzed to provide insight into their practicalapplicability and effectiveness in addressing the challenges.
2.1 Model Compression Methods
Compression methods for DL are designed to minimize the size of the model and compu-tational complexity while preserving acceptable levels of accuracy. Each technique em-ploys a different approach to achieve this objective. Primary methods include quantiza-tion, knowledge distillation (KD), pruning, low-rank tensor decomposition (TD), compactmodel design, and the integration of multiple compression strategies through ensembleapproaches.Quantization is one of the most widely used techniques in model compression, partic-ularly in resource-constrained environmentswherememory and computational resourcesare limited. The core idea behind quantization is to reduce the precision of the numericalvalues used to represent a model’s parameters and activations, thereby decreasing theoverall model size and improving computational efficiency.

Figure 1: A typical CNN architecture with a normalized (5× 5) input image convolved with a normal-ized filter (2× 2 kernel) showing convolution, pooling, and weights matrix multiplication operationsin a deep learning network. This low-level abstraction shows the internal computation performedon the network parameters (i.e., the input tensor (5× 5 image). weights, and activations. Appendix1, Figure 4.

2.1.1 QuantizationIn DL models, parameters (weights, biases, and activations) are typically represented us-ing full-precision 32-bit floating point numbers (FP32) as shown in Figure 1. While the fullprecision allows for accurate representation of values, it also results in models that arememory intensive and computationally demanding, particularly when targetting IOT de-
23

vices or embedded hardware. Quantization addresses this challenge by converting thefull-precision 32-bit floating-point values into lower-bit representations (8-bit, 4-bit, or2-bit).Quantization techniques can be categorized into various types, each offering differ-ent trade-offs between precision, model size, and computational efficiency. Symmetricquantization maps floating point values into uniformly spaced intervals, making it com-putationally efficient and straightforward to implement. In contrast, non-uniform quanti-zation adjusts interval sizes based on data distribution, allocating more precision to areaswith higher variance, thereby reducing quantization errors at the expense of greater com-plexity.Post-training quantization (PTQ) [37] applies quantization to pre-trained models with-out additional training. Calibration on a small dataset helps fine-tune the quantizationparameters, making PTQ a quick and resource-efficient solution. On the other hand,quantization-aware training (QAT) [12] incorporates quantization effects directly into thetraining process, allowing the model to adapt to low bit precision. QAT often achievesbetter accuracy than PTQ, especially for very low-bit representations.Integer-only quantization [12] ensures that all operations use integer arithmetic, mak-ing it an optimal choice for hardware lacking floating-point support. This approach en-ables highly efficient inference, particularly on resource-constrained platforms. Each typeof quantization offers unique advantages and challenges, catering to specific applicationneeds and hardware constraints.The quantization process involves several key steps. First, the range of values forweights and activations is determined, typically by calculating the minimum and maxi-mum values. This range is then divided into discrete levels based on the target bit-width,with a scale factor and zero-point calculated to map the floating-point values to integerrepresentations. Using these parameters, the weights and activations are quantized intointegers, effectively reducing their precision.For inference, the quantized values are dequantized back to floating-point equivalentsusing the same scale and zero-point, enabling compatibility with downstream computa-tions. The model then performs inference with these quantized values, resulting in sig-nificantly reducedmemory requirements and faster computation, especially on hardwareoptimized for integer arithmetic. This streamlined process ensures efficient deploymentwhile maintaining acceptable performance.A 32-bit float range (i.e., weights, biases, activations)maps to an n-bit quantized range.Considering an 8-bit quantizer, the mapping function maps the input float tensor range tothe 8-bit quantized output. The function is defined in Eq. (1):
q8bit = round(m f i f) (1)

where q8bit is the 8-bit quantizer, m f is the multiplier (scale factor), and i f is the inputfloat tensor. Themultiplier is the quantization constant that ismultiplied by the float inputtensor, as expressed in Eq. (2):
m f =

27−1
2

max(|i f |)
(2)

Quantization has been widely adopted in various applications, particularly for deploy-ing state-of-the-art models on resource-constrained edge devices, such as using objectdetectionmodels for real-time surveillance on drones, enabling natural language process-ing onmobile assistants, and powering image classification in wearable healthmonitoringdevices.
24

For example, MobileNet [57], a family of lightweight convolutional neural networks(CNNs), is based on quantization to reduce computational demands, making it suitable formobile devices. Similarly, BERT [64], a transformer-based language model for NLP tasks,benefits from quantization to enable efficient deployment on mobile platforms withoutsignificant loss of accuracy. These examples highlight the critical role of quantization inbridging the gap between high-performance models and the practical constraints of edgecomputing.
2.1.1.1 Binarization: An Extreme Case of QuantizationBinarization is a bit reduction technique that is considered an extreme case of quanti-zation in which the weights and/or activations are encoded using a single bit (i.e., 1 bit)[39, 40]. A single bit can be considered the atomic bit level of a number system; therefore,a significant decrease in themodel accuracy is imminent due to loss of information duringthe binarization process.In the binarization process, updating the weights during backward pass using the stan-dard gradient descent approach is impossible because computing the loss gradient wouldresult in zero in almost all conditions. A Straight-Through-Estimator (STE) pseudo-functionthat has been proven to solve this limitation.The binarization function (a non-zero sign function) b1bit takes the float tensor as inputand returns a binary output (−1, +1), as shown in Eq. (3):

o1bit = b1bit(i f),o1bit ∈ {−1,1}, i f ∈ {R} (3)
where b1bit is the binarization function, o1bit is the binary output generated, and i f isthe input float tensor. During the backward pass, the loss gradient is calculated using theSTE function, which takes the output tensors as input and returns a binary output, whichis constrained to the threshold value, as expressed in (Eq. (4)):

lossgradient =

{
1 abs(i f)≤ thresholdvalue

0 abs(i f)> thresholdvalue
(4)

where the thresholdvalue is the float value that controls the lossgradient and i f is thefloat tensor processed by the STE pseudo gradient function.
2.1.1.2 Challenges and ConsiderationsAs established in the surveyed literature (Section 1.2), bit reduction in DLmodels offers sig-nificant benefits in terms of reducing model size and improving computational efficiency.However, its implementation poses several challenges and considerations that must beaddressed to maintain the integrity and performance of the model.One critical challenge is managing accuracy trade-offs. Reducing the precision ofweights and activations can lead to performance degradation, particularly in DL mod-els where high precision significantly affects output quality. The balance of model size,computational speed, and accuracy is essential. Another key consideration is bit-width se-lection, which requires careful experimentation to determine the optimal level of quanti-zation for different layers. Incorrect bit-width choices can result in excessive performancelosses.Hardware compatibility further complicates quantization. The effectiveness of low-precision arithmetic depends heavily on the target hardware’s ability to execute such op-erations efficiently. Aligning quantization strategies with hardware capabilities is crucial

25

to achieving performance gains. Additionally, model sensitivity can be an issue, as quan-tization may make models more prone to performance instability, especially in criticalapplications. Rigorous validation of quantized models is necessary to ensure they meetaccuracy and performance standards.Although quantization has advanced significantly, several research areas remain open.Adaptive quantization methods that dynamically adjust parameters during inferencecould improve accuracy without sacrificing efficiency. Using higher bit precision in criticallayers while aggressively quantizing others is another promising avenue. Furthermore, asnew neural network architectures emerge, tailored quantization techniques are neededto ensure that these architectures can fully benefit from the advantages of quantization.Addressing these challenges and exploring these research directions will further enhancethe applicability and effectiveness of quantization in deep learning models.
2.1.1.3 8-bit Quantization Impact on CNN ModelsIn CNNs, most of the computations andmemory usage are attributed to themanipulationof large matrices, such as weight matrices and activation tensors. Reducing the precisionof these matrices from 32-bit floats to 8-bit integers not only reduces the memory re-quired to store the parameters, but also accelerates the computation by using integerarithmetic instead of floating-point operations.Quantization is applicable to various layers of CNN —convolutional layers, fully con-nected layers, and activation functions. However, it is common practice to exclude theinput and output layers from quantization to avoid a significant loss in accuracy, as theselayers are highly sensitive to precision reduction. The quantization process is mathemat-ically defined in Eq. (1) and Eq. (2). The transformation allows weights, activations, andother network parameters to be represented as 8-bit integers, reducing the overall mem-ory footprint and computational complexity.8-bit quantization offers significant advantages for optimizing DL models, particularlyin resource-constrained environments. One of the primary benefits is the reduction inmodel size, achieved by representing parameters in an 8-bit integer format instead of 32-bit floats. This transformation reduces the size of the model by approximately 4x [13],which is particularly valuable for applications running on mobile or embedded systemswith limited memory resources.Another key advantage of quantization is faster computation. Integer arithmetic isgenerally faster than floating-point arithmetic, especially on hardware optimized for low-precision operations. This leads to reduced inference times, making quantized modelswell-suited for real-time applications where low latency is critical.Energy efficiency is also a notable benefit of quantization. Lower-precision operationsconsume less power, which is essential for devices with constrained power budgets, suchas edge devices and Internet of Things (IoT) platforms. By combining these advantages,quantization enables the deployment of efficient and effective deep learning models inenvironments with stringent computational, memory, and power limitations.However, quantization comes with trade-offs that need careful consideration to en-sure its effectiveness. One major challenge is accuracy loss. Reducing the precision of pa-rameters can degrade a model’s accuracy, with the impact being particularly pronouncedin sensitive layers, such as input and output layers. These layers are critical to preservingfeature integrity and overall model performance, and aggressive quantization can lead tosignificant reductions in their effectiveness. To mitigate this, quantization is often appliedselectively, targeting less sensitive layers while leaving critical layers at higher precision.Another challenge relates to layer sensitivity. Certain network architectures and spe-

26

cific layers are more vulnerable to lower-precision representations. Layers that capturefine-grained details or make high-level decisions are particularly susceptible to perfor-mance degradation under aggressive quantization. This sensitivity requires a nuancedapproach, in which compression techniques are applied judiciously to ensure a balancebetween efficiency and performance. By understanding and addressing these sensitivi-ties, it is possible to achieve effectivemodel compressionwithout compromising essentialfunctionality.
2.1.2 Knowledge Distillation
KD is a model compression technique that involves transferring the learned informationfrom a large model (teacher) to a small, compact model (student). The objective is for thestudent model to learn the expressive capacity of the teacher model, thus ensuring thepreservation of performance.KD uses the output of the teacher model (usually logits or soft targets) to train thestudentmodel as described in Figure 2. This allows the student to learn the approximationfunction represented by the teacher, which is richer and potentiallymore informative thanlearning directly from the hard labels.

Figure 2: The teacher–student model based on a temperature-based softmax function. [42].

Knowledge distillation encompasses several variants designed to cater to diverse sce-narios and training setups. In self-distillation [44], the same model serves as both theteacher and the student in different phases of training. This approach allows the modelto refine its own predictions iteratively, enhancing its performance without requiring anexternal teacher model.On-line distillation, on the other hand, involvesmultiplemodels being trained simulta-neously. During this process, the models share knowledge with each other [43], learningcollaboratively to improve their overall performance. This variant is particularly effectivein distributed training environments where multiple models can leverage shared insightsdynamically.Mutual distillation takes a slightly different approach by allowing two models to distillknowledge together. This bidirectional exchange helps improve the accuracy and gener-alization capabilities of both models, making it a powerful strategy for scenarios wheremodel collaboration can yield significant performance gains. These variants highlight theversatility of knowledge distillation in addressing various training requirements and re-
27

source constraints.Knowledge distillation (KD) involves a series of well-defined steps, each contributingto the effective transfer of knowledge from the teacher model to the student model.First, the teacher model, a large and highly accurate neural network, is trained on agiven dataset to achieve superior performance. This model serves as the reference pointfor distillation. Next, the teacher model generates soft labels from its output logits. Thesesoft labels, representing the probability distribution over classes, encapsulate richer in-formation about the data compared to standard hard labels. This additional informationhelps the student model to understand the nuances of the dataset.The student model is then trained using a combination of the soft labels and the origi-nal hard labels. This dual training approach enables the student to closely approximate theteacher’s function while retaining essential features of the original dataset. To enhancethe distillation process, temperature scaling is applied during teacher output generation.A temperature parameter is introduced in the softmax activation function to soften theprobability distribution, providing the student model with more informative gradients.These steps collectively ensure that the student model effectively learns from theteacher, achieving a balance between compactness and performance.The teacher–student model uses a temperature-based softmax function at the outputlayer as shown in (Eq. (5)):
Losstotal = α ∗H(y,σ(zs),T = 1))+β ∗
H(σ(zt ;T = t),σ(zs,T = t)) (5)

Losstotal is the total loss, which is the combination of student and distillation losses.The loss of the student is calculated using the standard loss function by making the tem-perature parameter (T = 1). The temperature parameter controls the amount of infor-mation that can be distilled for the student. However, we need to remember that thestudent has a threshold that limits the amount of information that he can retain from theteacher. The α and β are constants associated with the individual loss function taking therespective unnormalized log probabilities (zs, zt) for each class label.
2.1.2.1 Challenges and ConsiderationsKnowledge distillation (KD) provides a practical approach for the deployment of deeplearning models on resource-constrained devices, offering a balance between perfor-mance and efficiency. As research advances, it is expected that improvements in KDtechniques will address existing limitations, expanding their applicability across a broaderrange of tasks and domains.Despite its advantages, KD presents several challenges as established in the surveyedliterature (Section 1.2) that require careful consideration. One critical factor is its depen-dency on the quality of the teacher model. The student’s performance is inherently lim-ited by the teacher’s capabilities, making the selection of an effective teachermodel a cru-cial step in the process. Additionally, the training complexity of KD arises from the need tocarefully tune parameters such as the temperature and loss functions. The temperatureparameter, which softens the output probabilities to facilitate knowledge transfer, mustbe optimized to achieve effective distillation, which adds to the intricacy of the process.While the student model is designed to be resource efficient, the training phase canbe resource intensive because it involves running both the teacher and student modelssimultaneously. This dual execution doubles computational overhead, posing challengesin scenarios with limited training resources. Moreover, balancing model compression and

28

performance retention is a delicate task. Excessive compression may degrade the stu-dent model’s capabilities, while insufficient compression may fail to deliver the desiredefficiency gains.Another challenge is ensuring the student model’s generalization to unseen data.Overfitting to the teacher’s specific characteristics can hinder the student’s ability toperform well on new tasks. Furthermore, KD must be adaptable to different tasks anddomains. This adaptability often requires modifying the distillation process to accountfor varying data characteristics, label granularity, or operational constraints.These challenges highlight the need for careful design and optimization in KD appli-cation, to ensure its effectiveness while maintaining a balance between efficiency andperformance in diverse applications.These challenges strengthen the need for ongoing research, with a focus on creatingmore adaptable, efficient, and compact models that can leverage the full capabilities ofteacher networks.
2.1.3 Low-Rank Tensor Decomposition
A tensor is a multidimensional array that generalizes matrices and vectors to higher di-mensions. While a matrix is a two-dimensional array, a tensor is a higher-dimensionalarray (3 or more). For DNNs, tensors are used to represent weights, activations, and in-put data. Compressing these tensors can lead to significant reductions in memory andcomputational requirements.TD is a technique that divides a tensor into smaller components, which can be rep-resented in compressed format. Among various TD techniques, Tensor Train Decomposi-tion (TTD) is particularly effective for NN compression. TTD represents the original high-dimensional tensor as a sequence (i.e., tensor train) of smaller low-rank tensors, calledcores, which are linked in a chain-like structure.Low-rank TD is another model compression technique that reduces the parametercount and computational complexity of NNs by approximating the weight tensors withlower-rank structures. This method is particularly effective for CNNs and fully connected(FC) layers, where the weights can be represented as high-dimensional tensors.TD decomposes a high-dimensional tensor into its low-rank components, leveragingthe fact that weight tensors in neural networks often contain redundant information thatcan be compactly represented without significantly impacting performance. It capitalizeson the linear dependencies within the tensor to achieve compression.Tensor decomposition (TD) plays a pivotal role in deep learning by enabling efficientrepresentation and computation. Themost widely used TD techniques include CP decom-position, Tucker decomposition, and Tensor Train decomposition, each offering uniqueadvantages for model compression and optimization.CP decomposition (CANDECOMP / PARAFAC) [45] decomposes a tensorX into a sumof rank-one tensors. The mathematical representation is as follows:

X ≈
R

∑
r=1

ar ⊗br ⊗ cr (6)
where ar, br, and cr are the factor vectors in each mode, and R is the rank of thedecomposition.Tucker Decomposition [46] decomposes a tensor X into a core tensor G multipliedby a matrix along each mode. The equation is as follows:

(7)X ≈ G ×1 A×2 B×3 C

29

where A, B, and C are the factor matrices corresponding to each mode, and ×n de-notes the n-mode product of the tensor with a matrix.Tensor train decomposition [47] represents a tensor X in the form of a sequence ofthree-dimensional tensors, expressed as:
X (i1, i2, . . . , iN)≈ G1[i1] ·G2[i2] · · ·GN [iN] (8)

where Gk[ik] are the k-th core tensors of the Tensor Train, and ik are the indices cor-responding to each dimension of the tensor.Tensor decomposition (TD) in DL involves several key steps, ensuring that the modelbenefits from reduced computational and memory requirements while maintaining accu-racy.The first step is to select the appropriate decomposition type based on the modelarchitecture and specific requirements. Options include CP decomposition for simplicity,Tucker decomposition for flexibility, or Tensor Train decomposition for high-dimensionaltensors. Each method offers unique advantages, depending on the context.Once the decomposition type is chosen, the next step involves the decomposition ofthe weight tensors of the neural network. This process transforms high-dimensional ten-sors into lower-dimensional structures, significantly reducing the model’s complexity andmemory footprint. The decomposition is typically applied to layers with the largest pa-rameter counts, such as fully connected or convolutional layers.Finally, during inference, the decomposed tensors are efficiently multiplied accordingto the chosen decomposition rules to reconstruct the approximate weight tensors. Thisstep ensures that the model operates seamlessly with the compressed representation,maintaining performance while benefiting from the reduced computational load.
2.1.3.1 Tensor Train DecompositionConsider a weight matrix W ∈ RI×J , where I and J are the dimensions of the matrix.To apply TTD, the weight matrix is first reshaped into a high-dimensional tensor W . Thetensor is then factorized into a sequence of smaller tensors G1,G2, ...,GN , where each Gnis a core tensor of the decomposition. These cores are connected through shared indices,forming a TTR. Formally, the TTP of a tensor W can be written as:

W (i1, i2, . . . , iN) =
R1

∑
r1=1

R2

∑
r2=1

· · ·
RN−1

∑
rN−1=1

G1(i1,r1)G2(r1, i2,r2) . . .GN(rN−1, iN) (9)

Here, i1, i2, . . . , iN are the indices of the tensor elements, and R1,R2, . . . ,RN−1 are theTT-ranks of the decomposition, which control the level of compression. A lower TT rankleads to a more compressed tensor but could degrade the performance of the model,while a higher TT rank maintains precision but offers less compression.In the context of DL models, particularly CNNs, TTD is applied to compress the weightmatrices of the FC and convolutional layers. These layers are often memory-intensive andcomputation-intensive, and compressing themwill lead to significant reductions in modelsize and inference time.The dense layers in CNNs typically account for the majority of the model’s parame-ters, making them ideal candidates to target. By applying TTD to these layers, the weightmatrices are transformed into their TT representations, reducing the memory required tostore the weights and accelerating computations during both training and inference.
30

Tensor Train Decomposition (TTD) provides significant advantages for compressingconvolutional neural networks (CNNs). By decomposing large-weight matrices intosmaller tensor cores, TTD greatly reduces the memory footprint, making it ideal for de-ploying models on resource-constrained devices such as mobile phones and embeddedsystems.The compact tensor representation also improves computational efficiency by mini-mizing the number of operations required during forward and backward passes. Addi-tionally, TTD’s scalability, which grows linearly with the size of the input tensor, makes itwell-suited for large networks with high-dimensional weight matrices.However, the compression achieved through TTD is governed by the Tensor Train rank(TT rank). Selecting an appropriate TT-rank is critical for balancing compression efficiencyand maintaining model performance, as overly aggressive compression can lead to a lossof accuracy.
2.1.3.2 Challenges and ConsiderationsLow-rank tensor decomposition (TD) is a powerful method for compressing deep neuralnetworks, particularly in scenarios where reducing the size of the model and improvingcomputational efficiency are critical. This technique has significant potential to advancethe deployment of deep learning models in resource-constrained environments. As re-search continues, it is expected that low-rank TD methods will become more robust andadaptable, extending their applicability across diverse architectures and use cases.Despite its advantages, the implementation of low-rank TD comes with several chal-lenges, as established in the surveyed literature (Section 1.2). A primary consideration isthe selection of rank, which directly affects the balance between compression and per-formance retention. Determining the optimal rank is a complex task that often requiresextensive empirical testing and validation. The choice must align with the application’sspecific requirements and the data’s complexity to ensure that the model retains its pre-dictive power.Managing the trade-offs between accuracy and compression is another critical factor.Excessive rank reduction can result in the loss of vital information, leading to significantperformance degradation. Careful evaluation is needed to determine the extent of com-pression that the model can sustain while maintaining acceptable accuracy levels. Addi-tionally, while the goal of low-rank TD is to reduce computational demands during infer-ence, initial decomposition and reconstruction processes can introduce notable compu-tational overhead, which must be managed effectively.Hardware compatibility also plays a pivotal role. Decomposed models must align withthe capabilities of the target hardware, particularly specialized AI accelerators such asTPUs and FPGAs. Ensuring that the optimized models can be efficiently deployed on theintended devices is crucial for leveraging the full benefits of low-rank TD.These challenges emphasize the need for a strategic approach to implementing low-rank TD, balancing the goals of compression and efficiency with the preservation of es-sential model performance.
2.1.4 Pruning
Pruning is a popular model compression technique that systematically removes less im-portant neurons or connections (weights) to reduce a network’s complexity and size. Thisprocess not only decreases the number of parameters and computational demands, butalso enhances model generalization by mitigating overfitting.Pruning operates on the premise that not all weights in a neural network contribute

31

equally to its performance. By eliminating redundant or low-impact weights, the modelbecomes more efficient without significantly compromising accuracy.Deep learning pruning techniques are designed to reduce the size and computationalcomplexity of neural networks by selectively removing certain components. Each ap-proach has its own strategy and implications for network performance.Weight pruning focuses on removing individual weights from the weight matrix. Theweights are ranked on the basis of their magnitudes, as shown in the equation.
rankweight = |wi|,wi ∈W (10)

Weights with the smallest magnitudes are removed under the assumption that theycontribute less to the activation of subsequent layers. This approach leads to a sparsernetwork while retaining its core functionality.Node pruning takes a broader perspective by removing entire neurons or filters fromthe network. This involves eliminating all incoming and outgoing connections associatedwith those nodes. Node pruning is particularly effective in convolutional layers, where itresults in significant computational reductions and a more streamlined architecture.Structured pruning adopts a systematic method by targeting larger elements, such asentire channels, layers, or other structures within the network. This approach is advan-tageous for hardware acceleration, as it simplifies memory access patterns and reducesfragmentation, making it suitable for deployment on modern hardware platforms.Each of these pruning strategies offers unique benefits and trade-offs, requiring carefulconsideration based on the specific application and network architecture.The process of implementing pruning typically involves three key steps. First, the neu-ral network is trained to convergence, ensuring that it achieves high performance on thetraining data set. This initial step provides a robust baseline model with which to work.Next, a pruning criterion is applied to determine which weights, neurons, or othercomponents to remove. Common criteria include the magnitude of weights, their contri-bution to output variation, or specific heuristics tailored to the network architecture. Thisstep effectively reduces the network size and complexity by identifying and eliminatingless significant elements.Finally, the pruned network undergoes fine-tuning, a critical phase in which themodelis retrained on the original dataset to recover any accuracy lost during the pruning process.This step ensures that the network retains its predictive performance while benefitingfrom the reduced computational and memory demands introduced by pruning.
2.1.4.1 Challenges and ConsiderationsPruning, a widely used method for reducing the computational and memory demands ofneural networkmodels, presents several challenges that require thoughtful considerationfor successful implementation as established in the surveyed literature (Section 1.2).One of the primary challenges is selecting the appropriate pruning technique, as op-tions such as weight pruning, unit pruning, and structured pruning offer different trade-offs in terms of model performance and computational efficiency. The choice of methodmust align with the specific requirements of the application and the network’s architec-ture to maximize benefits without compromising critical performance aspects.The impact of pruning on model performance is another significant consideration. Al-though pruning can reducemodel size, excessive pruning can lead to a loss of accuracy andgeneralization capabilities, particularly if essential connections are removed. Striking theright balance between compression and performance retention is crucial for maintainingthe model’s predictive power.

32

Pruning is often an iterative process that involves cycles of pruning followed by fine-tuning to restore or stabilize performance. This iterative approach can be computationallyintensive and requires careful monitoring to prevent overfitting and to ensure the modelremains stable during successive adjustments.
Hardware compatibility further complicates pruning implementation. Structuredpruning, for example, is often more advantageous for deployment on GPUs and special-ized AI accelerators due to its ability to create regular memory access patterns and betterhardware utilization. However, unstructured pruning can lead to sparse matrices that areless efficiently handled by many hardware platforms.
In dynamic environments, where input data characteristics may change over time,static pruning strategies may not be ideal. Adaptive pruning approaches, capable of mod-ifying the network architecture in response to evolving data distributions or task require-ments, may be necessary to maintain optimal performance.
These considerations highlight the complexity of pruning neural networks, underscor-ing the need for a strategic, context-aware approach to fully leverage its benefits whilemitigating potential drawbacks.

2.1.5 Microarchitecture
Microarchitecture, or lightweight architecture, in NN refers to the design of compact net-work structures with a focus on minimizing storage and memory footprints. Unlike othercompression techniques such as pruning, quantization, KD, or low-rank TD,microarchitec-ture involves building efficient models from the ground up, rather thanmodifying existingones.

Microarchitecture directly influences the initial model design, with the aim of effi-ciency and compactness without compromising performance. Examples include modelslike MobileNet and EfficientNet, which are designed inherently to be lightweight and suit-able for deployment on resource-constrained devices.
The design of efficient microarchitectures typically adheres to a set of foundationalprinciples aimed at balancing performance and resource efficiency. A critical aspect islayer optimization, where each network layer is crafted to minimize computational costand parameter count. Techniques such as depth-wise separable convolutions [57] andpoint-wise convolutions [57] exemplify this principle by breaking down complex opera-tions into simpler, less resource-intensive components, significantly improving efficiencyin convolutional neural networks (CNNs).
Another key principle is the use of neural architecture search (NAS) [63]. This approachemploys machine learning techniques to automate the discovery of optimal network ar-chitectures. By exploring various configurations within defined resource and performanceconstraints, NAS enables the creation of architectures that are finely tuned for specificdeployment scenarios, maximizing efficiency and effectiveness. These principles collec-tively drive the development of microarchitectures that are both high-performing andwell-suited for resource-constrained environments.
Several prominent models demonstrate the effective application of microarchitectureprinciples to achieve efficiency and performance. MobileNets leverage depthwise sepa-rable convolutions to create lightweight architectures that are highly suitable for deploy-ment onmobile and edge devices with constrained computational resources. SqueezeNetemploys a unique design strategy centered on 1x1 convolutions, significantly reducingthe parameter count without sacrificing accuracy, making it an ideal choice for memory-constrained applications.
EfficientNet [59] introduces a compound scaling method that uniformly scales the

33

depth, width, and resolution of the network. This approach allows the model to achievestate-of-the-art performance while maintaining computational and parameter efficiency.These models exemplify how thoughtful architectural design can address the challengesof deploying deep learning in resource-constrained environments.
2.1.5.1 Challenges and ConsiderationsThe microarchitecture approach provides substantial advantages in designing efficientneural network models. However, several challenges and considerations must be ad-dressed to optimize its application as established in the surveyed literature (Section 1.2).Developing microarchitectures is a complex process that requires sophisticated designstrategies. It often involves iterative trial-and-error procedures, which can be resource-intensive. Employing a Neural Architecture Search (NAS), although promising, adds an-other layer of complexity. The computational demands of numerous iterations needed toidentify optimal architectures make this approach time-consuming and costly.Scaling microarchitectures to handle more complex tasks or larger datasets presentsanother significant challenge. Maintaining efficiency gainswhile ensuring the scalability ofthemodel can be difficult. This process requires careful adjustments to prevent the trade-offs between performance and resource optimization from diminishing returns. Further-more, creating optimized microarchitectures often leads to extended development andtesting cycles. Each iteration requires extensive simulations, refinements, and validations,which can delay the deployment of the model in practical applications.Balancing computational efficiencywithmodel accuracy is a persistent challenge inmi-croarchitecture design. Although efficiency is vital in resource-constrained environments,overly aggressive optimizations can impair the model’s ability to handle complex taskseffectively. Achieving this balance requires meticulous adjustments to ensure that themodel remains both efficient and capable.These challenges emphasize the importance of employing flexible design strategiesand frameworks. Such approaches enable iterative refinement and optimization, ensuringthatmicroarchitectures deliver balanced performance, scalability, and timely deploymentacross various applications.
2.1.6 Ensemble of Compression Methods
An ensemble of compression methods is a sophisticated strategy that combines mul-tiple techniques, such as pruning, quantization, low-rank tensor decomposition, andknowledge distillation, to maximize model efficiency and performance. Using the uniquestrengths of each approach, this method achieves superior results compared to using anysingle compression technique in isolation [50].The rationale for using an ensemble of compression methods is to achieve deep com-pression of NNs, targeting substantial reductions in model size and computational com-plexity while preserving performance. Each technique addresses specific inefficiencies,and their combined effect enables an unprecedented level of compression that surpassesthe capabilities of any single method.Pruning focuses on reducing redundancy within the NN. By eliminating unnecessaryor less important neurons and connections, pruning helps reduce model size and compu-tational overhead, which enhances the network’s operational efficiency during inference.Quantization aims to reduce the precision of theweights and activations fromfloating-point to lower bit representations, such as 8-bit, 4-bit, 2-bit, or 1-bit . This reduction sig-nificantly decreases themodel storage andmemory footprints. Hence, speed up the com-putation, particularly on hardware that supports integer operations.

34

Low-rank tensor decomposition targets the computational complexity of the network.By approximating the weight matrices with lower-rank versions that maintain most of theoriginal matrix’s significant information, this method can reduce the number of parame-ters and the computational cost ofmatrixmultiplications involved in neural computations.Knowledge distillation works by transferring the knowledge from a large model(teacher) to a small, compact model (using fewer layers). KD aims to mimic the per-formance of the large network by ensuring that the compact model achieves similaraccuracy.By integrating these methods, this approach optimally enhances model efficiency,making it highly adaptable for deployment on extremely resource-constrained hardware.This strategy ensures that the model meets stringent requirements for memory, compu-tation, and power consumption.Implementing ensemble of compression techniques involves a strategic and iterativeapproach to achieve optimal efficiency and performance. The process begins with identi-fying compatible techniques, as not all methods work harmoniously across every networkarchitecture. Careful consideration is given to the specific requirements of the target ap-plication and the characteristics of the network to select a complementary set of tech-niques.The selected methods are then applied sequentially to maximize their individual andcollective impact. Typically, the process starts with pruning to eliminate redundancies,followed by quantization to reduce precision and memory requirements. Tensor decom-position may be employed to simplify complex weight structures, and finally, knowledgedistillation is used to fine-tune and optimize the model’s overall performance.After each compression step, iterative optimization is performed to evaluate and fine-tune the model. This ensures that compression does not negatively impact accuracy orgeneralizability. Each phase is followed by rigorous testing to maintain the model’s relia-bility and robustness for its intended application.
2.1.6.1 Challenges and ConsiderationsEnsemblemethods for DLmodel compression, while highly effective, introduce significantcomplexity and unique challenges as established in the surveyed literature (Section 1.2).Integrating multiple compression techniques requires strategic management to han-dle dependencies and interactions. Each method, such as pruning, quantization, or dis-tillation, can introduce changes that affect subsequent layers, adding complexity to theoptimization pipeline. Ensuring that thesemethods complement each other without con-flicts is crucial.A major concern with ensemble methods is the cumulative error introduced by eachtechnique. Although individual methods may only introduce minor inaccuracies, they canadd up across the layers of compression, potentially leading to a noticeable degradation inmodel performance. Addressing this requires a delicate balance between achieving highcompression rates and maintaining model accuracy.The ensemble approach also requires extensive hyperparameter tuning to optimizethe interactions between different compression methods. This tuning process can be re-source intensive, often requiring significant computational power and time to achieve op-timal results. Moreover, maintaining and scaling models compressed with multiple tech-niques can be challenging, particularly when deploying them on different hardware plat-forms or adapting them to new datasets. These challenges highlight the need for robustframeworks andmethodologies to maximize the benefits of ensemble compression whileminimizing its inherent complexities.

35

The ensemble of compression methods represents a sophisticated strategy to achievea very deep compressed neural network models suitable for deployment on resource-constrained devices. This approach requires a deep understanding of each compressionmethod and careful management of their integration and tuning to ensure optimal per-formance and efficiency.

36

3 COMPRESSION METHODS EVALUATION USING NUMERICAL-
BASED MATHEMATICAL APPROACH

This chapter addresses RQ1: "Can a numerically based mathematical method be devel-
oped to quantitatively evaluate state-of-the-art deep learning (DL) model compression
techniques for diverse application requirements?" by presenting and validating a novelmethodology for objectively evaluating and ranking compressionmethods. This approachquantifies the impact of various techniques, allowing informed comparisons and selec-tions tailored to specific needs.
Publication I: (Section 3.1)
Ademola, O.A.; Leier, M.; Petlenkov, E. Evaluation of Deep Neural Network CompressionMethods for Edge Devices Using Weighted Score-Based Ranking Scheme. Sensors 2021,21, 7529. https://doi.org/10.3390/s21227529
3.1 Evaluation of Deep Neural Network Compression Methods for Edge

Devices Using Weighted Score-Based Ranking Scheme
To develop a numerical approach for evaluating and ranking DLmodel compressionmeth-ods, it is essential first to establish a conceptual framework that outlines the key metricsand criteria involved in the evaluation process. This framework will serve as the foun-dation for the subsequent mathematical formulation and implementation. In addition,understanding the underlying mechanisms of each compression method is crucial for acomprehensive evaluation.
3.2 Evaluation Metrics
DL model compression methods are assessed through metrics that capture their impacton both performance and efficiency. These key metrics - compression ratio, accuracy,inference time,maximummemory footprint, and computational cost - offer a holistic viewof the strengths and limitations of different approaches.The compression ratio provides a measure of how much the model size is reduced af-ter compression compared to the original. This metric is a direct indicator of the storageefficiency achieved. Meanwhile, accuracy evaluates the extent to which the compressedmodel preserves the predictive performance of its uncompressed counterpart. Maintain-ing accuracy is essential to ensure that compression does not compromise the model’sutility, especially in critical applications.Inference time, which measures the time required for the model to make predictions,is another vital metric. Reducing the inference time enhances the speed and responsive-ness of themodel, making it suitable for real-time and interactive applications. Closely re-lated to this is the computational cost, which is reflecting the processing resources neededto execute the model. Lower computational costs result in faster processing and reducedenergy consumption, which is critical for devices with limited power or processing capa-bilities.The peak memory footprint measures the maximum memory required during modelexecution. This metric is especially important in resource-constrained environments,where memory is limited. A reduced memory footprint ensures that the model can beefficiently deployed on hardware with stringent memory restrictions.Each of these metrics plays a crucial role in understanding the benefits and drawbacksof different model compression techniques, providing insight into their practical applica-

37

tions.Together, these metrics form a comprehensive framework for evaluating model com-pression methods, helping researchers and developers identify suitable techniques forspecific use cases while balancing performance, efficiency, and resource constraints.
3.3 Limitations of Current Metrics
According to the literature surveyed (Section 1.2), while the aforementioned metrics areinvaluable for evaluating model compression methods, they exhibit certain limitationsthat hinder a comprehensive assessment of compression techniques. These shortcom-ings emphasize the need for more nuanced and integrative evaluation methods.One significant limitation is the lack of comparative analysis. Current metrics do notfacilitate direct comparisons between different types of compression methods. For ex-ample, a method that excels in improving inference speed might sacrifice accuracy [37],making it challenging to evaluate overall performance and rank the methods holistically.Another issue is the absence of a holistic perspective. Many metrics focus on isolatedaspects of compression, such as compression ratio or accuracy, without considering theirinterdependencies. For example, achieving a high compression ratio at the cost of a dras-tic drop in accuracy might render a compression method ineffective, yet existing metricsoften fail to adequately balance these trade-offs.Application-specific variability further complicates evaluations. Metrics typically donot account for the diverse requirements of different application domains. A compressionmethod optimized for image classification may not perform as well for natural languageprocessing or time series analysis. This variability requires metrics that can adapt to theunique constraints and objectives of each domain.Lastly, user and environmental factors are often overlooked. An effective evaluationshould consider user expectations for responsiveness and the computational resourcesavailable in deployment environments. For example, mobile users prioritize fast re-sponses, while IoT devices may operate under stringent memory and energy constraints.Current metrics do not sufficiently reflect these real-world factors, limiting their practicalutility.These limitations underscore the importance of developing a unified evaluationmethodology that integrates multiple metrics into a cohesive numerical-based mathe-matical approach. Such a methodology would enable more comprehensive and objectiveassessments, facilitate meaningful comparisons across methods, and better account forthe diverse conditions and requirements of deployment environments.
3.4 The Numerical-Based Mathematical Approach
3.4.1 Mathematical Formulation
This subsection develops a mathematical method that integrates the key parameters es-sential for evaluatingmodel compressionmethods. These parameters—Compression Ra-tio (CR), Accuracy (Acc), Peak Memory Footprint (PMF), Computational Cost (FLOP) andInference Time (IT) are chosen for their critical impact on the performance and efficiencyof compressed models in practical applications.
3.4.1.1 Definition of ParametersThe definition of key parameters is critical for evaluating and ranking model compres-sion methods, particularly in resource-constrained environments. These parameters cap-ture the trade-offs betweenmodel efficiency and performance, ensuring that compressed

38

models meet the specific demands of applications. By focusing on aspects such as com-pression ratio, inference time, computational cost, model accuracy, and peak runtimememory footprint, a comprehensive understanding of the impact of compression tech-niques can be achieved.The compression ratio (CR) quantifies the reduction in model size achieved after com-pression. It is defined as the ratio of the size of the original model to the size of the com-pressed model, providing a measure of the efficiency in reducing storage requirements.Inference time (IT) represents the time required for the model to process input and pro-duce output. It directly impacts the responsiveness of the model, particularly in real-timeapplications, where lower IT values signify improved performance.The computational cost (FLOPs) reflects the resources needed to train and executethe model. This parameter includes considerations of energy and processing power, mak-ing it critical for scenarios involving devices with limited computational capabilities or en-ergy constraints. The accuracy (Acc) evaluates the predictive performance of the com-pressed model, ensuring that its functionality is retained after compression. Accuracy istypically measured against a validation dataset and compared to the original model.Themaximummemory footprint (PMF) assesses themaximummemory usage duringmodel execution. This parameter is especially important for the deployment of models inenvironments with stringent memory restrictions, such as mobile devices or IoT devices,where minimizing PMF improves the feasibility and efficiency of the deployment.These parameters collectively form a comprehensive framework for evaluating modelcompression methods, ensuring a balance between efficiency and functionality tailoredto resource-constrained environments.
3.5 Weighted Score-Based Ranking Scheme
Theweighted score-based ranking scheme is a comprehensivemethod developed to eval-uate and compare different model compression techniques. It consists of six primarycomponents—Scaling, Scoring,Weighting,Weighted Score,Weighted Score Average, andRanking. Each component plays a crucial role in ensuring that the final ranks are accurateand reflect the models’ performance across the various metrics.
3.5.1 ScalingThe first step in the ranking scheme involves scaling the results of each compressionmethod to a uniform scale, ensuring that all metrics are comparable and weighted ap-propriately. This is achieved using the following scaling function.

nscaled =
n−nmin

nmax −nmin
× (rmax − rmin)+ rmin (11)

where:
• nscaled denotes the scaled value, transforming the raw metric into a uniform scale.
• n is the original unscaled metric value to be transformed.
• nmin and nmax represent theminimum andmaximumobserved values for themetricin all models, respectively.
• rmin = 1 and rmax = c are the endpoints of the target scale range, chosen to stan-dardize the score within a defined and manageable range. Here, c represents thecount of compression methods, adapting the scale to accommodate the number ofmethods that are evaluated.

39

The scaling function linearly transforms the original metric values into a standardizedscale that ranges from 1 to c. The adaptation of rmax to c ensures that the scoring range dy-namically adjusts to the total number of compression methods that are being evaluated,allowing for a direct and objective comparison among a variable number of methods. Thisapproach facilitates equitable scoring and enhances the granularity of the evaluation byscaling the maximum possible score to reflect the number of competing methods.
3.5.2 Scoring
After the scaling process, each scaled metric undergoes a scoring process, where it is as-signed a score based on its performance relative to other results. The scores are calibratedon a scale from 1 to c, where c represents the count of the compression methods and alsothe highest possible score indicating the best performance.
3.5.2.1 Adapting Scores for Metric CharacteristicsThe scoring mechanism for evaluating model compression metrics must account for thenature of each parameter. For metrics like compression ratio and accuracy, where highervalues indicate better performance, the scoring directly corresponds to the scaled values,with higher scaled values receiving higher scores. However, for metrics such as inferencetime, peakmemory footprint, and computational cost, where lower values are preferable,the scoring is inverted to ensure that lower scaled values, reflecting better performance,receive higher scores. This balanced approach ensures that the scoring system accuratelyreflects the desired outcomes across different metrics.
3.5.3 Scoring Formula
The scoring formula translates the scaled values into the final scores based on the specificperformance criteria of each metric. The formula accounts for whether a higher or lowermetric value signifies better performance, as illustrated below.

scorei =

{
rmax − (nscaled −1) if lower values are better
nscaled if higher values are better (12)

where:
• scorei is the score assigned to the i-th metric, reflecting its performance relative tothe desired result.
• nscaled is the scaled value of the metric, adjusted to a range that standardizes allmetrics for a fair comparison.
• rmax = c is the maximum value on the scoring scale, corresponding to the highestpossible score, which is set based on the count of compression methods evaluated(c).
The scoring rules for evaluating compression metrics depend on whether higher orlower values indicate better performance. These rules ensure that the scoring systemappropriately reflects the desired outcomes for each metric.Formetrics where lower values indicate better performance, such as inference time orerror rates, scores are calculated by subtracting the scaled value from rmax. This approachensures that lower values, representing better results, correspond to higher scores. Thescoring is expressed mathematically as:

40

scorei = rmax − (nscaled −1) (13)
In contrast, for metrics where higher values are better, such as compression ratio oraccuracy, the scaled value is directly assigned as the score. This approach aligns the scoringwith the goal of achieving higher values for these metrics. The corresponding formula isas follows:

scorei = nscaled (14)
These equations provide a standardized method for scoring, facilitating objective andconsistent evaluation of different compression techniques.

3.5.4 WeightingWeighting is a crucial step in the evaluation process, as it reflects the relative importanceof each metric in the overall assessment. This subsection explains how weights are as-signed to each metric and discusses the rationale behind these decisions.The weights are determined on the basis of the significance of each metric in achiev-ing the desired outcomes of the compression process. Factors influencing weight assign-ment include the specific requirements of the application, the performance objectives,and the potential impact of each metric on the overall utility of the compressed model.The weighting process involves the following steps:The process of assigning weights to evaluate compression methods involves severalstructured steps to ensure alignment with specific application goals and priorities.First, all relevant metrics are identified that influence the performance and utility ofcompression methods, such as compression ratio, accuracy, and inference time. This ini-tial step establishes the foundation for a comprehensive evaluation.Next, these metrics are prioritized on the basis of their relative importance to the spe-cific objectives of the model compression. For instance, reducing inference timemight bemore critical in real-time applications, whereas minimizing model size could take prece-dence in environments with severe storage constraints.Once the priorities are established, numerical weights are assigned to each metric.These weights reflect their relative importance and ensure that the evaluation processemphasizes the most critical aspects of performance. For example, in scenarios whereminimizing inference time is the primary goal, a higher weight is assigned to that metric.In contrast, when model size is the most critical factor, the compression ratio receivesgreater weight.This systematic weighting process ensures that the evaluation aligns with the applica-tion’s needs, providing a scoring system that accurately reflects the desired performancetrade-offs and objectives.
3.5.5 Weighted ScoreThe weighted score for each metric is calculated by multiplying the score by its respectiveweight. This step integrates the importance of the metric with its performance.

composite_score =
n

∑
i=1

(scorei ×weighti) (15)
where:
• composite_score is the weighted score for each model, indicating its overall perfor-mance.

41

• scorei is the score of the i-th metric, which has been adjusted according to the scaleand importance of the metric.
• weighti is the normalizedweight for the i-thmetric, reflecting its relative importancein the overall assessment.
• n is the total number of metrics used in the evaluation.

3.5.6 Weight Score Average
The weighted score average is computed by averaging the composite scores of all metricsfor each compression method. This average provides a single score that represents theoverall performance of the method.

weighted_score_average =
composite_score

∑
n
i=1 weighti

(16)
3.5.7 Ranking
Finally, the compression results are ranked based on their weighted score averages (i.e.,the mean weighted scores). The method with the highest average receives the highestrank, and the rank proceeds in descending order of the average scores. This rankingmethod highlights themethod that performs best across all consideredmetrics and alignswith the application’s specific requirements.

Rank= order by weighted_score descending (17)
These components collectively form a robust approach for evaluating and rankingmodel compression methods, ensuring that the final decisions are grounded in a thor-ough quantitative analysis.

3.5.8 Application of Weighted Score-Based Ranking Scheme
This subsection details the practical application of the weighted score-based scheme toassess the efficacy of different model compression methods applied to a benchmark CNNmodel (Table 2). The evaluation considers key performance metrics —CR, IT, FLOPs, Acc,and PMF.
3.5.8.1 Benchmark Model DescriptionThe benchmarkmodel, designed for an image classification task, serves as the basemodelfor the experiment. Performance metrics were initially recorded to establish a baselinefor comparison before the application of any compression methods.The architecture of the CNN benchmark is described in Table 3. The architecture takesa three-channel input image of size (64, 6, 3) as input, and (3, 3) convolutional filters (ker-nels) were used throughout the entire network, resulting in a total of 1,106,209 parame-ters. CNN includes a stack of two sets of CONV2D, RELU, BN, and POOL layers, followed bya set of CONV, RELU, and BN. The final block is the dense block, which consists of layersof FC, BN, FC, and SOFTMAX, as shown in Table 2.
3.5.8.2 Compression Methods EvaluatedThe study evaluates the following state-of-the-art compression methods:The 8 bit quantization (Section 2.1.1.3) reduces the precision of the weights from float-ing point to a full 8 bit integer. The full precision base model was quantized using the

42

Table 2: A table showing a summary of all the layers of the baseline model architecture.
Layer Type Output Size ParametersCONV2D (None, 64, 64, 32) 864BN (None, 64, 64, 32) 96MAXPOOL2D (None, 32, 32, 32) 0CONV2D (None, 32, 32, 64) 18,432BN (None, 32, 32, 64) 192MAXPOOL2D (None, 16, 16, 64) 0CONV2D (None, 16, 16, 64) 36,928BN (None, 16, 16, 64) 192FLATTEN (None, 16384) 0DENSE (None, 64) 1,048,576BN (None, 64) 192DENSE1 (None, 11) 704ACTIVATION (None, 11) 0TOTAL PARAMETERS 1,106,209

symmetric mode 8-bit signed full integer quantizer defined in Eq. (1) and Eq. (2). Thescaling function transforms the input float tensors (weights and activations) of the basemodel to a quantized 8 bit output.Binarization (Section 2.1.1.1) minimizes the precision of the weights to binary values,significantly reducing the size of the model. The base model was binarized using Larq, anopen-source Binary Neural Network library built on Keras. The binarization function of thenon-zero sign function b1bit transforms the float tensor of the model to a binary output(−1, +1) as shown in Eq. (3).The weight pruning (Section 2.1.4) removes insignificant weights from the modelto decrease its complexity and size. The base model was pruned using magnitude-based weight pruning as opposed to the neuron-based method, because it was observedthat magnitude-based weight pruning does not affect model accuracy significantly. Theweights of the pruned base model were selected using rank-based criteria, calculatedusing the absolute value of the individual weight in Eq. (10).The decomposition of low-rank tensors (Section 2.1.3.1) decomposes themodel tensorsinto low-rank approximations to reduce computational demands. The dense layer of thebase model was transformed into TT matrices as described in Eq. (8). The transformationparameters used include a TT-rank of 4, an input dims of (16,16,8,8), and an output dimsof (4,4,2,2). The decomposition transforms the dense layer into a TT layer with fewerparameters while maintaining the expressiveness of the layer.Knowledge distillation (Section 2.1.2) Transfers knowledge from the base model to asmaller, more compact model. The class probabilities vector of the base model for eachdata point was computed and stored. These probabilities vectors, also called soft labels,were distilled to a compactmodel. The compactmodelwas trained using both the soft andhard labels, and the overall losses generated by the model were combined and weighted,as defined in Eq. (5). The architecture of the compact model is described in Table 3.

43

Table 3: A table showing a summary of all the layers of the compact model architecture.
Layer Type Output Size ParametersCONV2D (None, 64, 64, 16) 432BN (None, 64, 64, 16) 48MAXPOOL2D (None, 32, 32, 16) 0CONV2D (None, 32, 32, 32) 4,640BN (None, 32, 32, 32) 96MAXPOOL2D (None, 16, 16, 32) 0CONV2D (None, 16, 16, 32) 9,248BN (None, 16, 16, 32) 96FLATTEN (None, 8192) 0DENSE (None, 32) 262,208BN (None, 32) 96DENSE1 (None, 11) 363ACTIVATION (None, 11) 0TOTAL PARAMETERS 277,227

3.5.8.3 Scoring and Weighting ProcessThe scoring and weighting process for evaluating model compression methods involvesseveral key steps, designed to ensure a robust and objective assessment of eachmethod’seffectiveness. This process transforms raw metric data into a normalized score that re-flects both the performance of the models and their relative importance, as determinedby the weighting system.
1. Scaling (Normalizationof RawMetric Values): Thefirst step involves scaling the rawperformance metrics to a normalized scale from 1 to c (where c = 5 in our study,corresponding to the number of evaluated compression methods). This normaliza-tion adjusts the metric values to a uniform scale, allowing for equitable comparisonacross different metrics and models.

nscaled =
n−nmin

nmax −nmin
× (c−1)+1

where n is the raw metric value, nmin and nmax are the minimum and maximumvalues for that metric, respectively, and c is the top score value.
2. Scoring (Adapting Metric Scores): Once metric values are scaled, each is scoredon the adjusted scale from 1 to c. This scoring reflects whether higher or lowervalues indicate better performance, with adjustments made accordingly to ensurethat higher scores always reflect better performance.
3. Weight Assignment: Weights are assigned to each metric based on their impor-tance to the overall effectiveness of the compression method. This importance isdetermined through stakeholder analysis and the specific operational context inwhich the model operates.

Weight for each metric= Assigned based on strategic importance
4. Calculation of Weighted Score Summation: The mean weighted score for eachmodel is calculated by taking the weighted average of the scored metrics.

composite_score =
n

∑
i=1

(scorei ×weighti) (18)
44

where:
• composite_score is the weighted score for each model, indicating its overallperformance.
• scorei is the score of the i-th metric, which has been adjusted according to themetric’s scale and importance.
• weighti is the normalized weight for the i-th metric, reflecting its relative im-portance in the overall assessment.
• n is the total number of metrics used in the evaluation.

5. Weighted Score Average: To normalize the mean weighted score, it is divided bythe total sum of the weights, providing a score average that allows for comparisonacross models with varying numbers of metrics and weight distributions.
weighted_score_average =

composite_score
∑

n
i=1 weighti

(19)
where:

• weighti is the normalized weight for the i-th metric, reflecting its relative im-portance in the overall assessment.
• n is the total number of metrics used in the evaluation.

6. Ranking: Finally, models are ranked based on their weighted score averages. Themodel with the highest score average is ranked highest, indicating it is the mosteffective according to the evaluated metrics and assigned weights.
Rank= order by weighted_score descending (20)

Each step in this process is meticulously designed to ensure that the evaluation ofcompression methods is not only comprehensive and systematic, but also aligned withthe specific needs and constraints of the application domain. This methodical approachprovides a robust framework for making informed decisions about which compressionmethod best meets the operational requirements.
3.5.8.4 Weights Assignment StrategyIn the evaluation of the compression methods of the model applied to the benchmarkmodel detailed in Table 3, the weights were objectively assigned to each performancemetric. These assignments were based on different optimization objectives, each tailoredto meet specific application requirements. To accommodate the comparative analysis,sets of weights were systematically generated such that each weight is an integer be-tween 1 and c - with c = 5, representing the total number of compression methodsevaluated. This ensures that the impact of each metric is scaled appropriately accordingto its importance in various application contexts. The following outlines the simulationof different weighting scenarios, corresponding to five distinct objectives: performance-oriented, efficiency-oriented, balanced approach, memory reduction focus, and cost-sensitive model.Each set of weights is designed to reflect the intended application requirements, en-suring that the evaluation metrics align closely with the performance goals shown in Ta-ble 4. This method allows for a structured and quantifiable approach to evaluating the

45

effectiveness of different compression methods with respect to the requirements of theapplication.
Table 4: Summary of Weight Assignments for Different Optimization Goals

Goals CRa ITb FLOPsc Acc.d PMFePerformance-Oriented 2 3 3 5 2Efficiency-Oriented 4 4 3 2 2Balanced Approach 3 3 3 3 3Memory Reduction Focus 2 2 1 3 5Cost-Sensitive Model 4 3 4 2 2
a CR: Compression Ratiob IT: Inference Timec FLOPs: Floating Point Operationsd Acc.: Accuracye PMF: Peak Memory Footprint

3.6 Results and Discussion
Thebaseline CNNmodel, prior to any compression, serves as the benchmark for the exper-iments. Table 5 shows the performance metrics of the baseline model in several key met-rics—Compression ratio, inference time, computational cost, accuracy, and peakmemoryfootprint.

Table 5: Benchmark Model Metrics
Metrics BaselineCompression Ratio 4429.61Infer. Time (ms) 22.88Comp. Cost (MFLOPs) 66.44Acc. (%) 77.23PMF (KB) 8907.81
a CR: Compression Ratiob Infer. Time: Inference Timec FLOPs: Floating Point Operationsd Acc.: Accuracye PMF: Peak Memory Footprint

Table 6 presents the raw metric values obtained from the compression methods, pro-viding initial insight into their individual impacts.
Table 6: Raw Metric Values.

Metric Quant. Bin. Prun. Distil. Tensor-Tr.
Compression Ratio 3.96 41.99 3.38 4.00 18.23
Infer. Time (ms) 13.65 5.40 22.64 12.55 18.53
Comp. Cost (MFLOPs) 7.29 6.96 66.44 35.12 64.34
Acc. (%) 76.95 67.10 74.64 72.05 72.91
PMF (KB) 3705.47 1775.78 8900.78 2300.48 3617.19

To facilitate an objective comparison across the compression methods, each metricwas scaled using Eq. (11) as shown in Table 7. Each metric was scaled from 1 to 5 (cor-
46

responding to the total number of compression methods evaluated) based on their per-formance relative to others within the same metric category. The normalization processallows to objectively score each method.
Table 7: Scaled Metric Values.

Metric Quant. Bin. Prun. Distil. Tensor-Tr.
Compression Ratio 1.06 5.00 1.00 1.06 2.54
Infer. Time (ms) 2.91 1.00 5.00 2.66 4.05
Comp. Cost (MFLOPs) 1.02 1.00 5.00 2.89 4.86
Accuracy (%) 5.00 1.00 4.06 3.01 3.36
PMF (KB) 2.08 1.00 5.00 1.29 2.03

After the scaling process, each scaled metric undergoes a scoring process by apply-ing Eq. (12), where it is assigned a relevance score is assigned based on its performancerelative to other results.The scores were transformed on a scale from 1 to c, where c = 5 represents the countof compression methods and also the highest possible score indicating the best perfor-mance. The scoring translates the scaled values into final scores based on the specificperformance criteria of each metric as shown in Table 8.
Table 8: Scored Metric Values.

Metric Quant. Bin. Prun. Distil. Tensor-Tr.
Compression Ratio 3.00 5.00 1.00 3.00 4.00
Infer. Time (ms) 3.00 5.00 1.00 4.00 2.00
Comp. Cost (MFLOPs) 4.00 5.00 1.00 3.00 2.00
Acc. (%) 5.00 1.00 4.00 2.00 3.00
PMF (KB) 2.00 5.00 1.00 4.00 3.00

In Table 4, each set of weights is strategically designed to reflect distinct optimizationobjectives—performance, efficiency, balanced, memory-reduction, and cost-sensitive.These categorieswere tailored tomeet specific application requirement contexts, demon-strating the flexibility in evaluating compressionmethods to alignwith varying operationalrequirements. This differentiation in weighting profiles underscores the adaptability ofthe propsed evaluationmethod, allowing it to cater to diverse application needs and high-light the most suitable compression strategies based on targeted optimization goals.
Table 9: Weighted Score of the Performance-Based Weight Set Profile.

Metric Weight Quant. Bin. Prun. Distil. Tensor-Tr.
Compression Ratio 2.00 6.00 10.00 2.00 6.00 8.00
Infer. Time (ms) 3.00 9.00 15.00 3.00 12.00 6.00
Comp. Cost (MFLOPs) 3.00 12.00 15.00 3.00 9.00 6.00
Acc. (%) 5.00 25.00 5.00 20.00 10.00 15.00
PMF (KB) 2.00 4.00 10.00 2.00 8.00 6.00
Weighted Score 56.00 55.00 30.00 45.00 41.00

To illustrate the application of these weight set profiles, the performance-orientedprofile was specifically chosen for detailed analysis. The weighted scores and their cor-responding averages for each compression method, using the performance-based weight
47

set, were calculated according to Equations (18) and (19). The results of these calculationsare presented in Table 9, providing a quantified demonstration of how each compressionmethod performs under a performance-centric evaluation criterion.The weighted score averages were ranked using Eq. (18) as shown in Table 10. Theresults of the performance-based weight set profile for the evaluated compression meth-ods —quantization, binarization, pruning, KD , and TD were summarized in Table 10. Eachmethod was assessed in five key metrics: Compression Ratio, Inference Time, Computa-tional Cost (MFLOP), Accuracy, and Peak Memory Footprint (PMF), with correspondingweights reflecting the relative importance of these metrics in performance-oriented ap-plications.Quantization is highest with a weighted score average of 3.73, demonstrating a strongbalance between maintaining the accuracy of the model (76. 95%) and improve the infer-ence time (13.65ms)& computational cost. Althoughquantization did not lead to themostsignificant reduction in model size, its overall performance across the metrics evaluatedmakes it the most effective compression method under the performance-based profile.Binarization follows closely with a weighted score average of 3.67. This method excelsin compression ratio (41.99) and inference time (5.40ms), but its relatively lower accuracy(67.10%) reduces its overall score. Although binarization significantly reduces the modelsize and speeds up inference, the trade-off in accuracy makes it less favorable for applica-tions that require high predictive performance.Pruning ranks lowest with a weighted score average of 2.00, primarily due to its poorperformance in inference time (22.64 ms) and computational cost (66.44 MFLOPs), de-spite showing improvements in model accuracy (74.64%). Although pruning can effec-tively remove redundant parameters, its computational overhead and slower inferencetime hinder its overall performance in this evaluation.KD and TD rank third and fourth, respectively. KD offers a balanced approach with aweighted score average of 3.00, combining acceptable accuracy (72.05%) and inferencetime (12.55 ms). TD, while effective in reducing model size (Compression Ratio: 18.23),exhibits moderate performance on most metrics, leading to a weighted score average of2.73.
Table 10: Rank of the Performance-Based Weight Set Profile.

Metric Weight Quant. Bin. Prun. Distil. Tensor-Tr.
Compression Ratio 2.00 6.00 10.00 2.00 6.00 8.00
Infer. Time (ms) 3.00 9.00 15.00 3.00 12.00 6.00
Comp. Cost (MFLOPs) 3.00 12.00 15.00 3.00 9.00 6.00
Acc. (%) 5.00 25.00 5.00 20.00 10.00 15.00
PMF (KB) 2.00 4.00 10.00 2.00 8.00 6.00
Weighted Score Avg. 3.73 3.67 2.00 3.00 2.73
Rank 1 2 5 3 4

48

3.7 Summary
This chapter addressed a critical gap in the evaluation of DL model compression methodsby developing a numerically based mathematical method. The primary objective was toestablish a standardized approach that allows for the systematic and objective evaluationand ranking of various compression techniques based on their impact on key performancemetrics, such as compression ratio, inference time, computational cost, accuracy and peakmemory footprint.The core objective of this chapterwas to answer the research questionRQ1: "Can a nu-merically based mathematical method be developed to quantitatively rank the efficiency,effectiveness and suitability of model compression methods?" The presented approachnot only quantifies the effects of different compression techniques on model characteris-tics, but also provides a clear, objective framework for comparing and selecting the mostappropriate compression method based on specific application requirements.To demonstrate the practical application of this method, a performance-based weightset profile was selected and applied to five different compression methods: quantization,
binarization, pruning, knowledge distillation, and tensor decomposition. Each methodwas evaluated based on its ability to balance trade-offs between reducing model size,minimizing computational complexity, and maintaining acceptable accuracy & inferencetimes.The results of the evaluation, summarized in Table 10, showed that quantizationranked highest with the best weighted score average. This method demonstrated anoptimal balance between maintaining model accuracy and improving computational effi-ciency, making it particularly suitable for performance-critical applications. Binarizationranked second, excelling in compression ratio and inference time but suffering fromreduced accuracy, limiting its overall effectiveness. Pruning, although effective in param-eter reduction, was hampered by higher computational costs and slower inference times,which led to its lowest rank in this performance-based profile.The use of the performance-based profile allowed for a focused evaluation of howeach method performs under strict performance requirements, where accuracy, infer-ence time, and computational efficiency are paramount. The weighted score averageswere calculated using the methodology outlined in Equations (18) and (19), providing anobjective basis to rank the compression methods.This chapter makes a significant contribution to the field by introducing a numerical-basedmathematical approach for systematically evaluatingmodel compressionmethods.Provides a standardized yet flexiblemethodology that adapts to diverse application needsthrough customizable weight set profiles. By offering a quantitative framework for rank-ing the efficiency, effectiveness, and suitability of compression techniques, this chapterequips researchers and practitioners with a robust tool to make informed decisions whenoptimizing deep learning models for specific use cases.Although the performance-based profile was used in this demonstration, flexibilityallows the application of other optimization objectives, such as efficiency, memory-
reduction, balanced, or cost-sensitive profiles, depending on the operational contextand requirements of the application. For instance, in scenarios where memory usageis a critical factor, the memory-reduction profile could be applied, where peak memoryfootprint is assigned a higher weight relative to other metrics. Similarly, in cost-sensitiveenvironments, the cost-sensitive profile can be used to prioritize compression ratio andcomputational cost over other performance metrics.This flexibility underscores the utility of the proposed methodology in adapting todifferent operational constraints and priorities, thereby ensuring its broad applicability

49

across a range of deep learning applications. The results also revealed several trade-offsinherent in the use of different compression methods. For example, while binarizationexcels in reducing model size and improving inference time, it significantly compromisesaccuracy, making it less suitable for applications where predictive performance is a toppriority. Conversely, knowledge distillation offers a more balanced approach but is lesseffective in reducing computational complexity compared to other techniques such aspruning or tensor decomposition.
3.8 Conclusion
The development of this numerically basedmathematicalmethod for evaluating and rank-ing model compression methods provides a powerful tool for addressing the challengesassociatedwith the optimization of theDLmodel. By offering a standardized and quantita-tive approach, this method fills a critical gap in the field, enabling systematic comparisonof compression techniques and supporting the selection ofmethods based on the specificrequirements of real-world applications.In addition to the performance-based profile demonstrated in this chapter, the flexi-bility to apply different weight set profiles ensures that the methodology can be adaptedto suit a variety of optimization goals. This enables researchers and practitioners to focuson optimizing models for specific applications, whether that involves minimizing memoryusage, improving computational efficiency, or balancing between multiple objectives.Futurework could focus on further refining the profiles of theweight set by incorporat-ing additionalmetrics or exploring specialized applications, such as edge computing or theInternet of Things (IoT), where resource constraints are evenmore stringent. Additionally,this methodology could be extended to evaluate the impact of compression methods onmore complex DL architectures, such as large language transformers or recurrent neuralnetworks.In conclusion, this chapter has successfully developed and validated a comprehensiveapproach to model compression evaluation, providing theoretical and practical contribu-tions to the optimization of DLmodels for performance-critical applications. The flexibilityof the weight-based evaluation method ensures that it can continue to evolve, providingvaluable information for a wide range of applications.

50

4 ENSEMBLE OF COMPRESSION METHODS
This chapter addresses the research question (RQ2): "Can a deep model compression
ratio of 32x be achieved while maintaining an acceptable level of accuracy for practical
deployment"? It explores the practical limits of model compression techniques, assessingthe feasibility of attaining such a significant compression ratio while ensuring that perfor-mance levels remain suitable for application requirements.
Publication II: (Section 4.2)
O. A. Ademola, E. Petlenkov and M. Leier, "Ensemble of Tensor Train Decompositionand Quantization Methods for Deep Learning Model Compression", 2022 InternationalJoint Conference on Neural Networks (IJCNN), Padua, Italy, 2022, pp. 1-6, doi: 10.1109/I-JCNN55064.2022.9892626.
4.1 Limitations of Single Compression Methods
Single compressionmethods as evaluated in Section 1.3 often struggle to strike an optimalbalance between key model metrics —CR, Acc, IT, FLOPs, and PMF. Each method has itsadvantages, but also has inherent limitations that restrict its effectiveness when appliedindividually.

To overcome these limitations that individual methods pose, combining two or morecompression methods into an ensemble (Section 2.1.6) can provide deeper compressionwhile preserving the performance of the model. The ensemble method leverages thestrengths of each technique and compensates for their weaknesses, resulting in a moreefficient and compact model suitable for deployment in resource-constrained environ-ments.
Although deepmodel compression using ensemble offers the potential to deploy com-pressed models on resource-limited devices, several challenges arise when attempting tocompress models at high ratios, such as 32x or more, without significantly impacting ac-curacy. The possibility is explored in this chapter.

4.2 Ensemble of Tensor Train Decomposition and Quantization
DLmodels, particularly CNNs, are often too large and computationally expensive to deploydirectly on edge devices or embedded systems with limited resources. Although individ-ual compression techniques such as TTD and 8-bit quantization offer substantial improve-ments in reducing the size and inference time of the model, each has its own limitationswhen applied independently (Table 6). TTD achieves an impressive compression ratio,while quantization offers computational speedup and reduced precision storage.

The choice of combining tensor TTD and 8-bit quantization was inspired by the resultsof my first publication, Evaluation of Deep Neural Network Compression Methods for
EdgeDevices UsingWeighted Score-Based Ranking Scheme inAppendix 1 (also discussedin Section 3.1). In this publication, different DNN compressionmethodswere ranked basedon a weighted score-based system.

The motivation behind combining these methods is to leverage the strengths of bothtechniques, achieving deepermodel compression thanwhat either method could achieveindividually. By first applying TTD to reduce the memory and computation demands ofdense layers and then quantizing the resulting model, a significant compression wasachieved without sacrificing too much accuracy. This two-stage approach allows forgreater flexibility in optimizing both memory and computational efficiency.
51

4.2.1 Architecture of the Ensemble Compression PipelineThe proposed ensemble compression pipeline integrates Tensor Train Decomposition(TTD) and 8-bit integer quantization in a sequential process to achieve effective compres-sion of deep learning models, as described in Figure 3. Each step contributes uniquely tooptimizing themodel, resulting in a compact but efficient version suitable for deploymenton resource-constrained devices.The pipeline begins with a CNN base model (Table 2), which comprises convolutionaland fully connected (FC) layers. TTD is then applied specifically to the dense layer, whichtypically contains the majority of the model’s parameters. By decomposing the weighttensors of this layer into low-rank tensor cores, TTD substantially reduces the memoryfootprint while retaining the model’s structural integrity. Following TTD, 8-bit integerquantization is performed on the weights, biases, and activations of the tensor-trainedmodel. This step reduces the parameter precision from 32-bit floating point to 8-bit inte-gers, effectively decreasing the model size and computational demands. Careful calibra-tion ensures minimal performance loss during this quantization process.The final output of the pipeline is a highly optimized, quantized tensor-trained modelthat combines the advantages of TTD and 8-bit quantization, offering reduced memoryand computational requirements while maintaining accuracy. This makes the model par-ticularly well suited for applications on low-resource platforms such as embedded systemsand mobile devices.

Figure 3: An illustration of the trainable pipeline formodel compression using the ensemble of TensorTrain Decomposition (TTD) and 8-bit quantization. The pipeline begins with a trained base model,followed by TTDapplied to dense layers, and concludeswith 8-bit quantization of the resulting tensortrained model. Appendix 2, Figure 3

The integration of TTD and 8-bit quantization offers several advantages over using ei-ther technique individually, creating a synergistic effect that enhances the compressionand efficiency of deep learning models.One key benefit is the ability to achieve deep compression ratios by leveraging thestrengths of both methods. TTD significantly reduces the memory requirements of fullyconnected layers, while 8-bit quantization further compresses the model by reducing pa-rameter precision. This combination delivers a level of compression that neither methodcould achieve independently (Table 6).Furthermore, the ensemble method provides a balanced reduction in both memoryusage and computational demands (Table 6). TTD minimizes memory footprints, particu-larly in dense layers, and quantization accelerates computations through the use of low-precision 8-bit integers. Together, these methods enable real-time inference on resource-constrained devices, making the compressed model well suited for edge and embeddedapplications.The ensemble approach is also designed to retain accuracy despite aggressive com-pression. Careful selection of TT-ranks and the selective application of quantization en-sure that the resulting quantized tensor-trainedmodelmaintains acceptable performancelevels. In most cases, the accuracy degradation is kept within 10% of the original uncom-
52

pressed model, offering a practical trade-off between the compression efficiency and themodel performance.
4.2.2 Challenges of the Ensemble Method
While the ensemble method offers substantial benefits, its implementation poses cer-tain challenges that require careful consideration as established in the surveyed literature(Section 1.2). One critical factor is selecting the appropriate TT-ranks during tensor traindecomposition. Lower TT-ranks achieve higher compression but may significantly impactmodel performance. Striking the right balance requiresmeticulous tuning and experimen-tation to ensure optimal performance for the specific model and data set.

Another challenge lies in managing accuracy loss during 8-bit quantization. Althoughquantization substantially reduces the size of the model and improves speed, it can de-grade accuracy, especially in sensitive architectures and layers. The ensemble methodmust carefully calibrate the quantization tomaintain the overall performance of themodelwithin acceptable limits.
By addressing these challenges through careful tuning and applying both techniquesin tandem, the ensemble method delivers a compact and efficient model that meets thedemands of the application.

4.3 Experimental Setup and Results
4.3.1 Architecture of the Baseline Model
The experiments in this study were carried out using a baseline CNN model, which wastrained on a custom data set. The architecture of the baseline model is shown in Table2. The model consists of several convolutional layers followed by max-pooling layers andan FC layer. The FC layer contributes to the majority of the model parameters (weights),making it an ideal target for TTD.

The performance of themodel was evaluated using thesemodelmetrics—model size,
peak memory footprint, accuracy, model speed, and computational cost as evaluatedin Section 3.2. The objective of the experiments was to evaluate the effects of applyingTTD and 8-bit quantization on this baseline model in terms of the model metrics. This isto fulfill the goal of exploring the practical limits of model compression and to evaluatethe feasibility of achieving a very deep compression ratio while maintaining acceptableperformance limits required by applications.
4.3.2 Ensemble End-to-End Trainable Pipeline
To fully exploit the advantages of TTD and 8-bit quantization, I developed an end-to-endtrainable pipeline that compresses the CNN model of benchmark using an ensemble ofthese two techniques, as shown in Figure 4. The pipeline was designed to be trainablefrom scratch, meaning that the model was optimized with compression methods appliedduring training, ensuring that the compressed model maintains an acceptable level ofperformance while achieving significant reductions in size and computational complexity.

The pipeline integrates three core components to achieve efficientmodel compressionand performance optimization.
The pipeline begins with a trained baseline CNN model, comprising convolutional lay-ers and a fully connected (FC) layer. The FC layer is the primary target for compression asit typically contains the majority of the model parameters. By focusing on this layer, thepipeline aims to address the significant memory and computational demands associatedwith dense connections in deep learning models.

53

Figure 4: A block representation of the end-to-end trainable pipeline for model compression usingan ensemble of Tensor Train Decomposition (TTD) and 8-bit quantization. The pipeline first appliesTTD to compress the dense layers, followed by 8-bit quantization to further reduce the model sizeand computational cost. Appendix 2, Figure 4

TTD (Section 2.1.3.1) is then applied to the FC layer during training. This process fac-torizes large weight matrices into smaller tensor cores, significantly reducing the memoryfootprint of the model. TTD enables the network to maintain its performance by learningan efficient low-rank representation, ensuring that the reduced parameter set retains thecritical features required for effective predictions.Finally, 8-bit integer quantization (Section 2.1.1.3) is used to further compress themodel. In this step, the weights, biases, and activations of the tensor-trained modelare converted from 32-bit floating point to 8-bit integers. By incorporating quantization-aware training, the model adjusts to the lower-precision format, ensuring minimal accu-racy degradation while achieving substantial reductions in computational and memoryrequirements.The final compressed model generated by the pipeline is called the quantized tensortrained model (QuanTT). This model combines the strengths of TTD, which reduces thenumber of parameters in memory, and 8-bit quantization, which accelerates inference byusing low-precision integer arithmetic.
4.3.3 Training and Optimization ProcessThepipelinewas designed for end-to-end training, incorporating both TTDandquantization-aware during the forward and backward passes. This approach allows the model toadapt to the compressed structure and reduced precision of the weights and activa-tions throughout the training. Although actual quantization was applied post-training,quantization-aware induction ensures that the model learns to operate effectively underthe constraints of lower precision, thereby minimizing potential accuracy loss that couldoccur.The optimization process includes the following.

• Backpropagation with TTD: As the model trains, the tensor cores are updatedthrough backpropagation, ensuring that the compressed tensor representationsare optimized to minimize the loss function. The TT-ranks, which control the de-gree of compression, are also tuned during this process.
• Quantization-Aware Training: 8-bit quantization was integrated into the trainingprocess, allowing the model to learn how to operate effectively with low precisionweights and activations. Quantization-aware training helps the model mitigate theaccuracy degradation that typically accompanies post-training quantization.

54

The end-to-end trainable pipeline enables deep learning model compression for de-ployment in resource-constrained environments. By integrating TTD with 8-bit quanti-zation, this approach produces highly compressed models that maintain strong perfor-mance, making them ideal for real-world applications with limited computational andmemory resources.
4.3.4 Tensor Train ConfigurationTTD was applied to the dense layer of the baseline model, which accounts for approxi-mately 94.79% of the model’s parameters. This layer, with an input dimension of 16,384and an output dimension of 64, was converted into a TT layer to significantly reduce thememory footprint.Various TT configurations were tested to find the optimal TT rank for compression.Table 11 presents the different combinations of TT-ranks, input dimensions, and output di-mensions explored in the experiments. The objective was to achieve the smallest possibleTT-ranks while maintaining satisfactory model performance.

Table 11: Tensor Train Layer Configurations.
Configuration TT-layer Parameters

Type TT-ranks Input dims Output dimsTT-1 4 (16,16,8,8) (4,4,2,2)TT-II 6 (16,16,8,8) (4,4,2,2)TT-III 8 (16,16,8,8) (4,4,2,2)TT-IV 10 (16,16,8,8) (4,4,2,2)TT-V 4 (16,8,16,8) (4,2,4,2)TT-VI 6 (16,8,16,8) (4,2,4,2)TT-VII 8 (16,16,8,8) (4,4,2,2)TT-VIII 10 (16,16,8,8) (4,4,2,2)TT-IX 4 (64,2,64,2) (8,1,8,1)TT-X 6 (64,2,64,2) (8,1,8,1)TT-XI 8 (64,2,64,2) (8,1,8,1)TT-XII 10 (64,2,64,1) (8,1,8,1)

The original weight matrix of the dense layer, which has a shape of (16384,64), wasreshaped into a higher order tensor. The input dimension of 16,384 and the output di-mension of 64 were factored into smaller dimensions. For example:
• (16,16,8,8) refers to the factorized shape of the input tensor (in this case a 4-dimensional tensor), where each element represents the size of the factorized di-mensions. These dimensions were chosen on the basis of the TT-ranks and theshape of the original tensor. For the input dimension of 16,384, it was decomposedinto (16,16,8,8), and similarly, the output dimension of 64 is decomposed into
(4,4,2,2).

• (4,4,2,2) refers to the factorized dimensions of the output tensor after decompo-sition. These dimensions correspond to the TT-ranks and how the original outputdimension (64) was divided into smaller tensor cores.
By decomposing the weight matrix into these smaller tensor cores, the overall num-ber of parameters stored in memory was reduced due to the lower-rank approximation,

55

Table 12: Performance comparison of tensor trained compressed models with different configura-tions
Config. Key Performance Indicators
Type MS (KB)a PMF (KB)b Acc. (%)c Speed (ms)d CC (MFLOPs)eTT-I 243 3617.19 72.91 18.53 64.34TT-II 250 3621.09 72.62 19.40 64.34TT-III 259 3628.91 74.06 20.48 64.34TT-IV 271 3644.53 70.32 21.80 64.34TT-V 244 3613.28 73.48 18.48 64.34TT-VI 251 3621.09 74.35 19.38 64.34TT-VII 260 3632.81 72.62 20.38 64.34TT-VIII 272 3640.62 70.89 21.78 64.34TT-IX 278 3652.34 69.74 19.59 64.34TT-X 321 3695.31 74.35 21.24 64.34TT-XI 381 3746.09 74.92 23.21 64.34TT-XII 458 3816.41 70.31 25.73 64.34

aMS: Model Size, bPMF: Peak Memory Footprint, cAcc.: Accuracy, dSpeed: Model Speed, eCC: Com-putational Cost

allowing efficient compression without sacrificing too much accuracy. The TT-ranks (e.g.4, 6, 8, 10) control the level of compression, as shown in Table 12, with smaller TT-ranksleading to higher compression, but potentially greater loss in accuracy.Each configuration type (e.g., TT-I, TT-II, TT-III, TT-IV, TT-V, etc.) results in a tensor-trained model, as shown in Table 12. These models were evaluated and ranked using theweighted score-based ranking method discussed in Section 3.1 to obtain the configura-tion of the TT layer that produces the best performing tensor-trained model. The tensortrained model generated by the TT-V configuration type was the highest ranked and wasselected for the final TT-layer configuration used in compression.
4.3.5 Tensor Trained Model Quantization
The parameters of the optimized tensor-trained model were quantized to 8-bit unsignedintegers, further reducing memory, storage, and computational footprints. Quantizationwas applied to all layers except input and output layers to prevent significant accuracyloss, resulting in the quantized tensor-trained model (QuanTT).QuanTT preserves the compressed structure introduced by TTD while enhancingmemory efficiency and inference speed through 8-bit precision for parameter storage. Byselectively quantizing only certain layers, accuracy loss typically associated with quanti-zation was minimized, maximizing the compression benefits from tensor train decompo-sition.
4.3.6 Performance Comparison and Evaluation of Key Metrics
To evaluate the performance of the ensemble method, the base model was comparedwith three compressed variants: tensor trained only, quantized only and the quantized
tensor trained model (QuanTT) produced by the ensemble method. Table 13 summarizes

56

Table 13: This table compares the baseline model with TTD, 8-bit quantization, and the ensemblemethod (QuanTT)
Model MS (KB)a PMF (KB)b Acc (%)c IS (ms)d MFLOPseBaseline 4429.61 8907.81 77.23 22.88 66.44Quantized Only 1119.40 3705.47 76.95 13.65 7.29Tensor Trained Only 244.00 3613.28 73.48 18.48 64.34
QuanTT 76.70 1632.81 69.45 12.89 7.06

aMS: Model SizebPM: Peak Memory FootprintcAcc: AccuracydIS: Inference SpeedeMFLOPs: Million Floating Point Operations

the results, highlighting key performance indicators such as model size, accuracy, infer-ence speed, computational cost, and peak memory footprint.
Evaluation of key metrics highlights substantial improvements across various aspectsof compressed models, particularly in the QuanTT model.
TheQuanTTmodel achieves an exceptional reduction in size, compressing the baselinemodel from 4429.61 KB to just 76.7 KB, resulting in a remarkable 57x reduction. This levelof compression far exceeds the individual effects of tensor train decomposition or quan-tization alone, rendering the model highly compact and ideal for deployment in memory-constrained environments.
In terms of accuracy, the QuanTT model maintains a performance level of 69.45%,despite experiencing a 10% reduction compared to the baseline. This balance betweenaccuracy and efficiency ensures its suitability for scenarios that prioritize memory andcomputational efficiency over minor accuracy losses.
Inference speed is significantly improved, and the QuanTT model produces 2x fasterinference times than baseline. This improvement positions the model as an excellentchoice for real-time applications on resource-limited devices, reducing latency, and im-proving response times.
The computational cost is another area ofmajor improvement, and theQuanTTmodelachieving a 9x reduction in mega floating-point operations (MFLOPs) compared to base-line. This efficiency makes it well-suited for devices with limited processing power, suchas edge and embedded systems.
Peak memory usage sees a substantial decrease as well, with the QuanTT model con-suming 1632.81 KB, which is 5x lower than the baseline’s 8907.81 KB. This significant re-duction enables efficient deployment on devices with strict memory constraints, ensuringsmooth operation in resource-limited environments.
Overall, the QuanTT model, produced by the TTD and 8-bit quantization ensemble,outperformed the other compressed models in every key metric. It provides the mosteffective balance between model size, speed, and computational efficiency while main-taining acceptable accuracy for practical applications. These results highlight the poten-tial of this compression pipeline for real-world use-case in memory and computation-constrained environments.

57

4.4 Summary and Conclusion
4.4.1 SummaryThis chapter introduced a novel ensemble method for deep compression of CNN modelsby integrating Tensor Train Decomposition (TTD) with 8-bit integer quantization.The primary objectivewas to address the research question (RQ2): "Can a deepmodel
compression ratio of 32x be achieved while maintaining an acceptable level of accuracy
for practical deployment?". The objectivewas to enable the deployment of deep learningmodels on devices with highly resource-constrained devices, where both memory andcomputational resources are severely limited.Through a comprehensive review of traditional compression techniques such as prun-ing, quantization, knowledge distillation (KD), and tensor decomposition (TD), I high-lighted their limitations when used in isolation. Although each technique is effective onits own, they often struggle to strike a balance between high compression ratios andpreserving model accuracy. To overcome these limitations, an ensemble approach thatcombines TTD and 8-bit quantization was proposed to achieve substantial compressionwhile maintaining performance within acceptable bounds.The experimental results validated the effectiveness of this approach. By applying TTDto the dense layer and quantizing the parameters to 8-bit integers, the resulting com-pressed model, QuanTT, achieved a remarkable 57x reduction in model size, a 5x reduc-tion in memory usage, and a 2x increase in inference speed, with only a 10% reduction inaccuracy. These results demonstrate the potential of the proposed method for real-worldapplications in environments with stringent resource constraints.Not only was the initial goal of a 32x compression ratio achieved, but it was signif-icantly surpassed. The QuanTT model achieved a 57x compression ratio, far exceedingexpectations. Despite this substantial reduction in model size, the compressed model re-tained a satisfactory level of accuracy, with only a minor 10% decrease compared to thebaseline. This confirms that it is feasible to achieve deep compression without sacrificingthe performance required for practical deployment.The synergy between TTD and 8-bit quantization proved to be an optimal solutionfor this challenge. TTD effectively reduced the number of parameters stored in memory,while quantization improved computational efficiency by lowering parameter precision.The combination of these techniques allowed themodel to balance compression and per-formance, making it a robust solution for deployment in resource-limited environments.
4.4.2 ConclusionIn conclusion, this chapter presented an end-to-end trainable pipeline for DL model com-pression that combines TTD and 8-bit quantization. By addressing RQ2, I demonstratedthat it is possible to achieve a compression ratio far beyond the original 32x goal, reaching57x, while maintaining a performance level suitable for different application contexts.This offers a practical and scalable solution for deploying DL models on devices withvery limited resources. The ability to compress models so drastically, without compromis-ing critical performance metrics, is a significant step forward for the deployment of theDL model on the edge.

58

5 PRACTICAL USE CASE: OPTIMIZATION LIMITATION OF SCENE
TEXT DETECTION AND RECOGNITION MODELS

This chapter addresses RQ3: "Can efficient model optimization be achieved without
significantly compromising performance, especially for network architectures that are
highly sensitive to compression and quantization?" focusing on scene text detection andrecognition models. The aim is to overcome their sensitivity to compression by develop-ing a method for efficient optimization that preserves performance, even on integer-onlyhardware.
Publication III: (Section 5.1)
O. A. Ademola, E. Petlenkov, andM. Leier, "Resource-Aware Scene Text Recognition UsingLearned Features, Quantization, and Contour-Based Character Extraction," in IEEE Access,vol. 11, pp. 56865-56874, 2023, doi: 10.1109/ACCESS.2023.3283931.
5.1 Resource-Aware Scene Text Recognition Using Learned Features,

Quantization, and Contour-Based Character Extraction
5.2 Scene Text Recognition In Embedded Systems
Scene text recognition refers to the detection and interpretation of textual informationembedded within natural images or video frames. This task is crucial in a wide rangeof real-world applications, particularly those where decision making is based on visualcontext, such as intelligent transportation systems, autonomous navigation, and parcelsorting. In these scenarios, the recognition of text, such as road signs, traffic warnings,markers, or container numbers, allows systems to make intelligent and informed deci-sions.While text in natural scenes is often easily recognizable to humans, for machines, itremains a challenging task. Variations in font size, orientation, background clutter, lightingconditions, and text distortions all contribute to the complexity of this problem. Detectingand recognizing scene text typically requires sophisticated algorithms that can adapt tothese variations and extract accurate information in real-time.Embedded systems, including autonomous robots, handheld & IoT devices, increas-ingly rely on scene text recognition for applications like navigation, labeling, and smarttracking. However, unlike general-purpose computing systems, embedded devices oper-ate under stringent hardware constraints. These devices often lack the processing power,memory, and energy resources required to run large-scale DL models, which are typicallyused for tasks such as scene text recognition.
5.3 Resource Constraints in Embedded Hardware
Embedded systems, especially those used in real-time applications, are typically built onhardware platforms optimized for power efficiency rather than computational through-put. Microcontrollers and edge devices, for instance, often rely on integer-only hardware,restricting their ability to perform floating-point operations common in deep learning sys-tems. These devices also have limited memory and processing power, making it impracti-cal to deploy large, resource-intensive models directly.Although modern deep learning methods excel at detecting and recognizing text incomplex scenes, they require substantial resources in terms of storage, memory, andcomputation. For example, models based on convolutional neural networks (CNN) or re-current neural networks (RNNs) require extensive floating-point computations, numerous

59

filter layers, and significantmemory to achieve high accuracy. This poses a significant chal-lenge when deploying these models on devices with constrained computational capacityand memory.Given these constraints, there is a critical need for techniques that reduce the resourcerequirements of scene text recognitionmodels while preserving high performance. This isparticularly essential for systems operating on integer-only hardware, such as edge TPUsor microcontrollers, where all computations must be performed using integer arithmetic.
5.4 Challenges and Research Objectives
5.4.1 Challenges in Optimizing Scene Text Detection and Recognition Models
Optimizing scene text detection and recognitionmodels, particularly those based on deeplearning architectures, poses significant challenges. These models must handle the inher-ent variability of natural scenes, including various text orientations, lighting conditions,and background clutter, necessitating sophisticated algorithms for high accuracy. How-ever, they are highly sensitive to compression, which can cause severe performance degra-dation if not managed carefully.A primary challenge is that scene text recognition models often depend on floatingpoint arithmetic for tasks like feature extraction, classification, and recognition. Com-pression techniques such as quantization and pruning, essential for deploying models onresource-constrained hardware, can introduce quantization errors and reducemodel pre-cision, severely affecting performance. In scene text recognition, even minor errors intext detection can lead to complete recognition failures, making these models especiallyvulnerable to optimization-induced errors.Additional difficulties arise when deploying these models on embedded devices withinteger-only hardware, such as edge TPUs and microcontrollers, which lack support forfloating-point operations. Converting floating-point models to integer-based ones with-out careful management of quantization errors can lead to unacceptable accuracy losses.The challenge lies in achieving efficient compression while preserving the accuracy re-quired for effective scene text recognition.Moreover, while techniques such as quantization and pruning reduce model size andcomplexity, they also introduce new challenges. Quantization, for example, can causea loss of precision that is particularly detrimental to text recognition models, which aresensitive to even small errors. The key challenge is to strike a balance between resourceefficiency and maintaining the high level of accuracy needed for applications that rely onrobust scene text recognition, especially when thesemodels are deployed on integer-onlyhardware.
5.4.2 Research Objectives
This chapter seeks to address these optimization limitations inherent in scene text detec-tion and recognition models, specifically addressing their sensitivity to model compres-sion. The primary objective was to develop a method for efficient model optimizationwithout significantly compromising the performance of the model, particularly when im-plemented on integer-only hardware.The key research objectives focus on addressing the challenges associated with opti-mizing scene text recognition models for resource-constrained environments:Handling Sensitivity to Compression: The research aims to develop strategies to miti-gate the negative impact of quantization on scene text recognition models. This includesintroducing mechanisms to counteract quantization-induced errors, thereby minimizingperformance degradation.

60

Efficient Quantization Strategy: A tailored 8-bit quantization technique is proposed,designed specifically for scene text recognition models. This strategy accounts for themodels’ sensitivity to precision loss, ensuring accuracy retention while maintaining com-patibility with integer-only hardware.
Resource-Efficient Solution: The research seeks to ensure that the optimized modeloperates efficiently on resource-constrained devices, such as microcontrollers and EdgeTPUs, by reducingmemory and computational requirements without compromising func-tionality.
Minimizing Performance Trade-Offs: Efforts are made to balance model size with per-formance, ensuring that compression techniques do not significantly impair the model’sability to detect and recognize text, even in challenging and noisy scene images.
Deploying on Integer-Only Hardware: The study emphasizes optimizing both text de-tection and recognition pipelines to function seamlessly on integer-only hardware. Thisallows for real-time text recognition in embedded systems that lack floating-point sup-port.
The solution proposed in this chapter addresses the key issue of optimization sensitiv-ity in scene text recognition models, offering a balanced approach that enables efficientdeployment on embedded systems while maintaining an acceptable accuracy in challeng-ing environments.

5.5 Scene Text Detection and Recognition
Scene text detection and recognition have evolved significantly over the past few yearswith advancements in both computer vision and DL methods. These methods have beendeveloped to solve the complex task of extracting and identifying text in natural scenes,which poses several challenges due to varying lighting conditions, text orientations, fonts,and background clutter.
5.5.1 Text Detection
Text detection is the process of identifying regions in an image that contain text. Earlyapproaches to text detection relied on traditional computer vision techniques, such assliding windows, connected component analysis, and machine learning classifiers such asSupport VectorMachines (SVM), RandomForests, andAdaBoost. Thesemethods involvedmanually designed filters to detect candidate text regions based on features such as edges,contrast, and color. Although computationally efficient, these methods struggled withaccuracy in complex scenes and text that varied in orientation or size.

With the advent of DL, modern text detection methods have significantly improved inaccuracy and robustness. State-of-the-art techniques, such as Faster R-CNN, introducedby Ren et al. [65], and Connectionist Text Proposal Network (CTPN), developed by Tian etal. [66], rely on deep CNNs to propose regions that are likely to contain text. The FasterR-CNN method incorporates a region proposal network (RPN) to detect multi-orientatedtext, while CTPN combines CNN and RNN to enhance the detection of text in complexorientations.
One prominent text detection model is EAST (Efficient and Accurate Scene Text Detec-tor), proposed by Zhou et al. [67]. EAST utilizes a fully CNN for efficient text detectionby directly predicting text regions. EAST is known for its balance between accuracy andspeed, making it well suited for real-time applications. However, despite these advances,the deployment of these methods on resource-constrained hardware poses significantchallenges due to their computational complexity.

61

5.5.2 Text Recognition
Text recognition refers to the process of recognizing and converting detected text regionsinto readable format. Early recognition methods involved the use of hand-made featuresand machine learning algorithms to classify text. However, these methods suffered fromlimited accuracy, especially when faced with low resolution or distorted text.

Deep learning-based text recognition methods have since become the state-of-the-art, using convolutional and recurrent neural networks to recognize text in natural scenes.Jaderberg et al. [68] pioneered the use of deep CNN for word-level recognition, achiev-ing significant improvements in accuracy. These models excel at learning complex textpatterns directly from data, making them robust to variations in font, orientation, andbackground noise.
More recently, attention-based methods have been introduced to improve the accu-racy of text recognition in challenging conditions. Thesemethods, such as those proposedby Shi et al. [69], use sequence-to-sequence models with attention mechanisms to focuson relevant parts of the image during the recognition process.
Recent efforts have focused on addressing the resource constraints of embeddedsystems by developing lightweight models and optimization techniques. For example,lightweight text spotters such as the method introduced by Bagi et al. [70] have beendesigned to operate efficiently in resource-limited environments while still providingaccurate text detection and recognition.
Quantization-aware training (QAT) is another approach that has been used to mitigatethe negative effects of quantization on model accuracy. Adaptive bezier curve networks,such asABCNet [71], further optimize the text recognition pipeline by reducing the numberof parameters and operations required, making themmore suitable for real-time applica-tions on devices with limited resources.
Despite these advancements, there remains a need for more efficient methods thatcan handle the sensitivity of scene text recognitionmodels to optimization techniques likequantization and pruning, particularly, on hardware supports integer-only operations.

5.6 Proposed Methodology

The focus of this methodology is to overcome the optimization limitations of scene textdetection and recognitionmodelswhendeployed on resource-constrained hardware, par-ticularly integer-only devices. My approach achieves efficient model compression whilepreserving performance, adapted for embedded systemswith limited resources. This sec-tion elaborates on the architecture of the system, the enhancements made to the basemodels, the quantization techniques, and the unique text recognition strategies devel-oped.
5.6.1 System Architecture Overview
The overall system follows a two-stage architecture that begins with text detection, fol-lowed by text recognition. As shown in Figure 5, the detectionmodel localizes text regionswithin the image, while the recognition model decodes the text contained within theseregions.

I designed the system using a modified EAST detector for the detection stage and anovel contour-based extractionmethod for the recognition stage. Bothmodels are heavilyoptimized to run efficiently on integer-only hardware, such as microcontrollers or edgeTPUs, without compromising accuracy.
62

Figure 5: System Architecture for Scene Text Detection and Recognition. Appendix 3, Figure 1

5.6.2 Text Detection: Modified EAST Architecture
The text detection stage is built on the original EAST architecture, which performs directprediction of text regions. Figure 6 illustrates the original EAST architecture, highlightingits three main stages: feature extraction, feature merging, and output generation.

Figure 6: Original EAST Architecture for Scene Text Detection, [67]

To better suit the needs of resource-limited hardware, I introduced key modifica-tions to the base EAST model. My approach replaces the original PVANet backbone withResNet-50, which offers a more efficient trade-off between speed and accuracy. TheResNet-50 backbone, illustrated in Figure 7, uses a bottleneck design that reduces thenumber of operations, making it ideal for further compression for real-time embeddedsystems.The modified EAST architecture, as shown in Figure 8, retains the three core stages of
63

Figure 7: ResNet-50 Backbone Architecture. Appendix 3, Figure 4

the original design while incorporating ResNet-50 for feature extraction. This enhance-ment significantly reduces the model’s size and computational footprint, making it moreamenable to further optimization. This improvement is attributed to two key aspects ofResNet-50’s design.First, ResNet-50 employs a bottleneck architecture with 1x1 kernel filters, which re-duces the number of matrix multiplications and network parameters, leading to fasterpropagation times. Second, it replaces fully connected layers with global average pooling,which effectively minimizes the overall size of the model. These features make ResNet-50a more efficient backbone for the modified EAST architectureThe architecture is composed of three essential stages.Feature extraction leverages ResNet-50, illustrated in Figure 7, as the backbone to ex-tract high-level features from input images. It consists of five convolutional blocks, eachdesigned to capture progressively more complex features from the input data.Feature merging employs 1x1 and 3x3 convolutions to combine intermediate outputsfrom various stages of ResNet-50. This approach reduces computational complexity whileretaining important feature information.Output generation produces bounding boxes, shown in Figure 9, alongwith confidencescores for detected text regions. These outputs are then passed to the recognition modelfor further processing.
5.6.3 Quantization for Integer-Only Hardware
One of the critical challenges in deploying deep learning models on embedded devicesis ensuring efficient computation on hardware that only supports integer arithmetic. Toaddress this, I applied an 8-bit quantization technique to both the weights and activationsof the models. This reduces the precision of parameters from 32-bit floating-point valuesto 8-bit integer values, drastically cutting memory usage and computational demands.The quantization process followed a structured approach tominimize errors andmain-tain model performance.A key innovationwas the introduction of a quantization offset, or bias, to address smallerrors introduced by reduced precision in the integer-only representation. These errors,particularly significant in sensitive regions like bounding box coordinates in the text detec-tionmodel, weremitigated by introducing an offset during ground-truth label generation.This adjustment compensated for quantization-induced errors during training, ensuringaccuracy in regions most susceptible to small deviations.Quantization-aware training (QAT) was employed to further enhance performance.By simulating quantization-induced errors during the training phase, the model adaptedto lower precision values. This approach preserved accuracy even when static quantiza-tionwas applied post-training, countering the typical performance degradation associated

64

Figure 8: Modified EAST Architecture with ResNet-50 Backbone. Appendix 3, Figure 3

with static post-training quantization.Finally, scaling and quantization were applied to convert 32-bit floating-point valuesinto 8-bit integers using equations (1) and (2). This process, supported by the quantiza-tion offset, maintained robust bounding box accuracy, ensuringminimal deviation despitereduced precision. This stepwas critical in upholding the overall detection and recognitionpipeline’s reliability.By combining QATwith the quantization offset, the final model achieves the necessaryprecision for accurate text detection.
5.6.4 Text Recognition: Contour-Based Character Extraction
After detecting the text regions, the next step was to extract and recognize individualcharacters within those regions, as illustrated in Figure 11. I developed a contour-basedcharacter extraction method, which improves recognition accuracy even in challengingscenarios like distorted or low image resolution text.

65

Figure 9: Bounding boxes generated by the text detection model. Appendix 3, Figure 5

The recognition pipeline is structured into three key stages to ensure accurate andefficient processing of detected text regions.The first stage, pre-processing, involves cropping and normalizing the detected text re-gions based on the bounding-box coordinates provided by the detection model. This stepensures that only regions containing text are passed to the recognition pipeline, reducingcomputational overhead and eliminating noise from surrounding areas.Next, contour-based character extraction is employed to isolate individual characterswithin the detected text regions. Contours are computed for each character, effectivelyseparating them even in cases of close clustering or varying orientations. Irrelevant con-tours, such as those belonging to background objects, are discarded to prevent interfer-ence. This method significantly improves recognition accuracy by ensuring that only validcharacter candidates are processed.Finally, the character recognition stage identifies specific characters using a CNN-basedrecognition model. The architecture, as detailed in Table 3, balances efficiency and accu-racy. The model begins with convolutional layers that extract high-level features, captur-ing unique characteristics like edges and strokes essential for classification. Pooling layersfollow, reducing the spatial dimensions of featuremaps to enhance efficiency without los-ing critical information. Fully connected layers conclude the pipeline, mapping extractedfeatures to character labels such as letters and numbers. This structured design ensuresrobust and accurate text recognition suitable for a variety of applications.The text recognition model was quantized to support integer-only computations, en-suring both real-time performance and accuracy. The output of the character recognitionmodel was aggregated string, representing the text recognized within the region of inter-est as seen in Figure 12.By combining contour-based extraction with a lightweight CNN and quantization, therecognitionmodel was able to deliver high accuracy in detecting and recognizing text. Thismethod ensures that the system remains suitable for real-time embedded applicationswithout the performance degradation typically associated with compressed or quantizedscene text detection and recognition models.The contour-based method has shown exceptional performance in addressing thechallenges posed by the variability of real-world text. It effectively manages diverse textorientations, including horizontal and vertical layouts commonly seen in scene images.
66

Figure 10: The bounding boxes generated without the introduction of quantization offset. Appendix3, Figure 6

Figure 11: The text recognition pipeline. Appendix 3, Figure 8

Using deep feature extraction from convolutional layers, the method generalizes wellacross a wide range of fonts and styles, ensuring robust recognition irrespective of visualvariations. In addition, it is adept at handling low-resolution or blurred text, making itparticularly useful for applications where image quality fluctuates. This versatility under-scores its suitability for complex real-world scenarios.This approachwas specifically designed to overcome the limitations of previous recog-nitionmodels that struggled with resource constraints and real-world variability, ensuringthat the model remains robust in different application scenarios.
5.7 Experiments
In this section, I present the experiments conducted to evaluate the performance of theproposed resource-aware scene text detection and recognition method, optimized forinteger-only embedded hardware. The experiments include training and evaluation ofboth text detection and recognitionmodels, followed by a comprehensive analysis of theirperformance in terms of model size, inference time, accuracy, computational cost, andpeak memory footprint.
5.7.1 Experimental Setup
The experiments were carried out using a proprietary dataset. It comprises of 2000 im-ages, with 1500 allocated for training the text detection model and 500 reserved for test-

67

Figure 12: Scene text detection and recognition results. Appendix 3, Figure 9

ing. Each image contains a shipping container with a unique cargo identification number,consisting of both letters and numbers. These container images were standardized to asize of 320×320 pixels to facilitate processing by the detection model.For the text recognition model, 8750 character images were extracted. These images,resized to 64×64 pixels, included 35 characters, consisting of the digits 0-9 and the lettersA-Z, excluding ‘O’ due to its visual similarity to digit 0. Each character class contained 250images, ensuring a balanced dataset. From this set, 7000 images were used for training,while the remaining 1750 were reserved for testing.To evaluate themodels on embedded hardware that supports only integer operations,I selected the Google Coral Development Board as the target hardware platform. TheCoral board is equipped with Quad Cortex A53 and Cortex M4F processors, along witha dedicated Edge TPU coprocessor. It includes 1 GB of RAM and 8 GB of flash memory,making it an ideal candidate for testing the performance of compressed models.
5.7.2 Evaluation MetricsThe performance of the quantized models was evaluated using these key metrics:

• Model Size: The size of the model in memory after quantization.
• Inference Time: The time required to process an input image and produce an out-put.
• Computational Flop: The total number of floating point operations during modelinference.
• Peak Memory footprint: The peak memory usage during model inference.
• Mean Loss: A combination of dice loss and intersection-over-union (IoU) loss forthe text detection model.
• Accuracy: It measures the predictive capacity of the text recognition model.
These metrics assess the trade-offs between model performance, memory footprint,and inference speed, which are critical in resource-constrained environments.

68

5.8 Results and Discussion
The results are presented in this section. The evaluation focuses on several key perfor-mance metrics that assess the applicability and efficiency of quantized models for bothtext detection and recognition tasks. The performance of both the original and quantizedmodels was evaluated based on the size of the model, the inference time, the computa-tional cost, and the maximum RAM usage.

Table 14: Evaluation metrics of the text detection and recognition models
Text Detection Text RecognitionMetrics Original Quantized Original QuantizedModel Size (MB) 96.21 24.83 0.88 0.23Inference Time (ms) 2356.00 1450.77 3.59 2.18Computational Cost (MFLOP) 15072.50 0 20.20 0Peak RAM Usage (MB) 286.23 40.63 5.04 3.29Mean Loss AccuracyModel Performance (%) 25.51 26.23 99.73 99.62

As seen in Table 14, the quantizedmodels significantly outperformed the original mod-els in terms of resource efficiency. Quantized models achieved a reduction in model size.The size of the text detection model was reduced from 96.21 MB to 24.83 MB, while thesize of the text recognition model decreased from 0.88 MB to 0.23 MB. This reductionhighlights the efficiency of the quantization technique, making the models more suitablefor deployment on resource-constrained devices like microcontrollers or TPUs.A reduction in inference time was observed in both models after quantization. Thetext detection model’s inference time improved from 2356.00 ms to 1450.77 ms, whilethe recognition model saw a reduction from 3.59 ms to 2.18 ms. This improvement iscrucial for real-time applications as it ensures faster processing of text regions and overallsystem responsiveness.The computational cost for both the quantized detection and recognition models wasreduced to zero floating-point operations (FLOPs), demonstrating that the models werefully optimized to operate exclusively on integer-only hardware, thereby eliminating theneed for any floating-point computations.Quantizedmodels demonstrated a reduction inmaximumRAMusage. The RAMusageof the text detection model decreased from 286.23 MB to 40.63 MB, while the usageof the recognition model decreased from 5.04 MB to 3.29 MB. This reduction ensuresthat the models can run smoothly on devices with limited memory resources, improvingoverall system stability and efficiency.In terms of performance, the mean loss and accuracy of the original and quantizedmodels were compared. The results show that the quantizedmodelsmaintained accuracyand performance, with only minimal deviations from the original models.After quantization, the mean loss of the text detection model increased slightly from25.51% to 26.23%, but this minor change did not significantly affect overall performance.The use of quantization bias and quantization-aware training (QAT) during training effec-tively mitigated quantization-induced errors, addressing a key factor contributing to themodels’ sensitivity to compression.In terms of text recognition accuracy, the quantizedmodel performed remarkablywell,maintaining an accuracy of 99.62%, compared to 99.73% in the original model. The min-
69

imal difference of 0.11% shows that the quantized model is highly reliable, making it asuitable option for real-time applications without significant performance degradation.
5.9 Summary and Conclusion
5.9.1 SummaryThis chapter addresses the research question (RQ3): "Can efficientmodel optimization be
achieved without significantly compromising model performance, particularly for net-
work architectures that are very sensitive to compression?". The focus of this case studywas on scene text detection and recognitionmodels, which are known for their sensitivityto quantization. The primary objective was to develop amethod for efficient optimizationwhile maintaining acceptable model performance, especially when the models are de-ployed on integer-only hardware.The results demonstrate that the quantization techniques introduced was effective.The quantized text detection model saw a reduction in size from 96.21 MB to 24.83 MB,and the inference time improved from 2356 ms to 1450.77 ms. Similarly, the size of thequantized text recognitionmodel decreased from 0.88MB to 0.23MB, with the inferencetime dropping from 3.59 to 2.18 ms. Despite these optimizations, the accuracy of bothmodels remained largely unaffected, with only minimal reductions observed.By reducing the computational cost to zero for quantizedmodels due to integer-basedoperations, the study confirms that efficient model optimization can indeed be achievedwithout a significant compromise in performance. These findings highlight the viability ofmodel compression and quantization techniques for use in scene text processing.
5.9.2 ConclusionThe results clearly demonstrate that the applied quantization technique provides a sub-stantial improvement in resource efficiency without significantly sacrificing performance.The quantized models exhibit reduced memory and computational requirements, mak-ing them ideal for deployment in embedded systems with constrained resources, such asmicrocontrollers and edge TPUs.Despite the minimal increase in mean loss, the overall performance of the quantizedmodels remains highly competitive with the original models. The slight decrease in accu-racy in the recognition model is negligible in practical applications and is outweighed bythe significant improvements in inference time, model size, and RAM usage.The combination of quantization-aware training (QAT) and the introduction of a quan-tization offset successfully mitigated most of the adverse effects typically associated withquantization of scene text models. This approach proves effective for optimizing scenetext detection and recognition models.

70

6 CONCLUSION
This thesis has addressed the research gaps described through three key research ob-jectives (RO1, RO2, and RO3), each corresponding to the research questions (RQ1, RQ2,
and RQ3). The contributions made towards efficient model compression for resource-constrained hardware have been validated through peer-reviewed publications and con-ference presentations—detailed in Appendix I, 2, and 3. The cumulative findings andcontributions are extensively discussed throughout this thesis.

ResearchQuestion 1 (RQ1): Can a numerically basedmathematicalmethod be devel-
oped to quantitatively evaluate state-of-the-art deep learning (DL) model compression
techniques for diverse application requirements?

Research Objective 1 (RO1) focused on developing a robust numerically based math-ematical method to objectively evaluate and rank state-of-the-art model compressiontechniques. This method, detailed in Publication I (Appendix I) , utilized a weightedscore-based ranking system that assessed the efficiency, effectiveness, and suitability ofeach compression technique across various applications. The proposed method providesa standardized and adaptable approach for objectively selecting optimal compressionstrategies tailored to specific use cases, ensuring that the most effective methods areemployed.
Research Question 2 (RQ2): “Can a deepmodel compression ratio of 32x be achieved

while maintaining an acceptable level of accuracy for practical deployment?”
Research Objective 2 (RO2) aimed to achieve a deep model compression ratio of 32xwhile maintaining acceptable levels of accuracy. This objective explored the practical lim-its of extreme compression for deep learning models, particularly in critical edge applica-tions. The ensemble method developed in Publication II (Appendix 2), which combinesTensor Train Decomposition (TTD) and 8-bit quantization, successfully achieved a remark-able 57x compression ratio, far exceeding the initial target. This demonstrates the viabilityof high-ratio compression techniques for practical deployment without significant perfor-mance loss.
Research Question 3 (RQ3): “Can efficient model optimization be achieved without

significantly compromising performance, especially for network architectures that are
highly sensitive to compression and quantization?”

ResearchObjective 3 (RO3) addressed the challenge of optimizing deep learningmod-els that are highly sensitive to compression and quantization. The goal was to significantlyreduce computational and memory requirements while preserving model performance.
Publication III (Appendix 3) introduced a novel quantization offset technique, known asquantization bias, which effectively mitigated the sensitivity of state-of-the-art scene textdetection and recognition models to quantization. This innovation enabled efficient de-ployment on hardware that is only integerwithminimal accuracy degradation. In addition,a comprehensive text orientation detection module was integrated, improving the abilityof the model to process text in various orientations, thus broadening its applicability.In conclusion, the research presented in this thesis has made significant advance-ments in the field of efficient deep learning (DL) model compression and optimization.By addressing the research questions described here, this thesis has developed innova-tivemethods to evaluate, compress, and optimizemodels, providing valuable insights andpractical solutions to implement high performance DL models on resources-constraineddevices. The proposedmethods not only push the boundaries of model compression, butalso ensure that even sensitive architectures can be efficiently deployed without compro-mising performance, making them well suited for a wide range of applications.

71

List of Figures

1 A typical CNN architecture with a normalized (5 × 5) input image con-volved with a normalized filter (2 × 2 kernel) showing convolution, pool-ing, and weights matrix multiplication operations in a deep learning net-work. This low-level abstraction shows the internal computation per-formed on the network parameters (i.e., the input tensor (5 × 5 image).weights, and activations. Appendix 1, Figure 4. 232 The teacher–student model based on a temperature-based softmax func-tion. [42]. 273 An illustration of the trainable pipeline for model compression using theensemble of Tensor Train Decomposition (TTD) and 8-bit quantization.The pipeline begins with a trained basemodel, followed by TTD applied todense layers, and concludeswith 8-bit quantization of the resulting tensortrained model. Appendix 2, Figure 3 . 524 A block representation of the end-to-end trainable pipeline for modelcompression using an ensemble of Tensor Train Decomposition (TTD) and8-bit quantization. The pipeline first applies TTD to compress the denselayers, followed by 8-bit quantization to further reduce the model sizeand computational cost. Appendix 2, Figure 4. 545 System Architecture for Scene Text Detection and Recognition. Appendix3, Figure 1 . 636 Original EAST Architecture for Scene Text Detection, [67] . 637 ResNet-50 Backbone Architecture. Appendix 3, Figure 4 . 6489 Modified EAST Architecture with ResNet-50 Backbone. Appendix 3, Figure 3. 65 Bounding boxes generated by the text detection model. Appendix 3, Fig-ure 5 . 6610 The bounding boxes generated without the introduction of quantizationoffset. Appendix 3, Figure 6 . 6711 The text recognition pipeline. Appendix 3, Figure 8 . 6712 Scene text detection and recognition results. Appendix 3, Figure 9 68

72

23

27

52

54

63
63
64
65

66

67
67
68

List of Tables

1 Summary of key literature on various model compression methods, de-scribing their contributions and challenges. 192 A table showing a summary of all the layers of the baseline model archi-tecture. 433 A table showing a summary of all the layers of the compact model archi-tecture. 444 Summary of Weight Assignments for Different Optimization Goals 465 Benchmark Model Metrics . 466 Raw Metric Values. 467 Scaled Metric Values. 478 Scored Metric Values. 479 Weighted Score of the Performance-Based Weight Set Profile. 4710 Rank of the Performance-Based Weight Set Profile. 4811 Tensor Train Layer Configurations. 5512 Performance comparison of tensor trained compressed models with dif-ferent configurations .. 5613 This table compares the baseline model with TTD, 8-bit quantization, andthe ensemble method (QuanTT) . 5714 Evaluation metrics of the text detection and recognition models 69

73

19

43

44
46
46
46
47
47
47
48
55

56

57
69

References
[1] V. S. Marco, B. Taylor, Z. Wang, and Y. Elkhatib, “Optimizing deep learning inferenceon embedded systems through adaptive model selection,” ACM Trans. Embed. Com-put. Syst., vol. 19, feb 2020.
[2] S. Han, H. Shen,M. Philipose, S. Agarwal, A.Wolman, and A. Krishnamurthy, “Mcdnn:An approximation-based execution framework for deep stream processing underresource constraints,” in Proceedings of the 14th Annual International Conferenceon Mobile Systems, Applications, and Services, MobiSys ’16, (New York, NY, USA),p. 123–136, Association for Computing Machinery, 2016.
[3] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deepmodel compressionfor mobile devices: A usage-driven model selection framework,” in Proceedings ofthe 16th Annual International Conference on Mobile Systems, Applications, and Ser-vices, MobiSys ’18, (New York, NY, USA), pp. 389—-400, Association for ComputingMachinery, 2018.
[4] L. Hedegaard, “Efficient online processing with deep neural networks,” in EfficientProcessing of Deep Neural Networks, pp. 145–282, Cham: Springer Nature Switzer-land, 2020.
[5] X. Zhang, Y. Chen, C. Hao, S. Huang, Y. Li, and D. Chen, Compilation and Optimizationsfor Efficient Machine Learning on Embedded Systems, pp. 37–74. Cham: SpringerNature Switzerland, 2024.
[6] H. Cai, J. Lin, Y. Lin, Z. Liu, H. Tang, H. Wang, L. Zhu, and S. Han, “Enable deep learningon mobile devices: Methods, systems, and applications,” ACM Trans. Des. Autom.Electron. Syst., vol. 27, mar 2022.
[7] T. P. Nagarhalli, V. Vaze, and N. K. Rana, “Impact of machine learning in natural lan-guage processing: A review,” in 2021 Third International Conference on IntelligentCommunication Technologies and Virtual Mobile Networks (ICICV), pp. 1529–1534,2021.
[8] S. Sengupta, S. Basak, P. Saikia, S. Paul, V. Tsalavoutis, F. Atiah, V. Ravi, and A. Peters,“A review of deep learning with special emphasis on architectures, applications andrecent trends,” Knowledge-Based Systems, vol. 194, p. 105596, 2020.
[9] X. Wang, Y. Zhao, and F. Pourpanah, “Recent advances in deep learning,” Interna-tional Journal of Machine Learning and Cybernetics, vol. 11, no. 4, pp. 747–750, 2020.
[10] X. Zhai, X. Chu, C. S. Chai, M. S. Y. Jong, A. Istenic, M. Spector, J.-B. Liu, J. Yuan, Y. Li,and N. Cai, “A review of artificial intelligence (ai) in education from 2010 to 2020,”Complex., vol. 2021, jan 2021.
[11] T. Panch, P. Szolovits, and R. Atun, “Artificial intelligence, machine learning and healthsystems,” Journal of Global Health, vol. 8, p. 020303, Dec 2018.
[12] O. A. Ademola, E. Petlenkov, and M. Leier, “Resource-aware scene text recognitionusing learned features, quantization, and contour-based character extraction,” IEEEAccess, vol. 11, pp. 56865–56874, 2023.

74

[13] O. A. Ademola, E. Petlenkov, and M. Leier, “Ensemble of tensor train decompositionand quantization methods for deep learning model compression,” in 2022 Interna-tional Joint Conference on Neural Networks (IJCNN), pp. 1–6, 2022.
[14] Q. Wu, Y. Liu, Q. Li, S. Jin, and F. Li, “The application of deep learning in computervision,” in 2017 Chinese Automation Congress (CAC), pp. 6522–6527, IEEE, 2017.
[15] W. Rawat and Z.Wang, “Deep convolutional neural networks for image classification:A comprehensive review,” Neural Comput., vol. 29, pp. 2352–2449, Sep 2017.
[16] S. Alshahrani and E. Kapetanios, “Are deep learning approaches suitable for natu-ral language processing?,” in Natural Language Processing and Information Systems(E. Métais, F. Meziane, M. Saraee, V. Sugumaran, and S. Vadera, eds.), vol. 9612 ofLecture Notes in Computer Science, (Cham), Springer, 2016.
[17] S. Pattanayak, “Natural language processing using recurrent neural networks,” in ProDeep Learning with TensorFlow, Berkeley, CA: Apress, 2017.
[18] J. Hirschberg and C. D. Manning, “Advances in natural language processing,” Science,vol. 349, pp. 261–266, 2015.
[19] L. Deng and D. Yu, “Deep learning: Methods and applications,” Foundations andTrends® in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.
[20] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare:review, opportunities and challenges,” Briefings in Bioinformatics, vol. 19, pp. 1236–1246, 05 2017.
[21] C. Cao, F. Liu, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo, and Z. Xie, “Deep learningand its applications in biomedicine,” Genomics, Proteomics & Bioinformatics, vol. 16,no. 1, pp. 17–32, 2018.
[22] K. Shameer, K. W. Johnson, B. S. Glicksberg, J. T. Dudley, and P. P. Sengupta, “Ma-chine learning in cardiovascular medicine: are we there yet?,” Heart, vol. 104, no. 14,pp. 1156–1164, 2018.
[23] X. M. Liu, L. M. Faes, A. U. M. Kale, S. K. B. Wagner, D. J. P. Fu, A. M. Bruynseels, andet al., “Comparison of deep learning performance against health-care professionalsin detecting diseases frommedical imaging: a systematic review and meta-analysis,”Published in Open Access, September 25 2019.
[24] M. Sendak, M. Gao, M. Nichols, A. Lin, and S. Balu, “Machine learning in health care:A critical appraisal of challenges and opportunities,” eGEMs (Generating Evidence &Methods to improve patient outcomes), vol. 7, no. 1, p. 1, 2019.
[25] E. Chong, C. Han, and F. C. Park, “Deep learning networks for stock market analysisand prediction: Methodology, data representations, and case studies,” Expert Sys-tems with Applications, vol. 83, pp. 187–205, 2017.
[26] S. Sohangir, D.Wang, A. Pomeranets, and et al., “Big data: Deep learning for financialsentiment analysis,” J Big Data, vol. 5, no. 3, 2018.
[27] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, “Deep learning for financial appli-cations : A survey,” Applied Soft Computing, vol. 93, p. 106384, 2020.

75

[28] K. Polat, D. Lv, S. Yuan, M. Li, and Y. Xiang, “An empirical study of machine learningalgorithms for stock daily trading strategy,” Mathematical Problems in Engineering,vol. 2019, p. 7816154, 04 2019.
[29] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system: Asurvey and new perspectives,” ACM Comput. Surv., vol. 52, feb 2019.
[30] B. Dellal-Hedjazi and Z. Alimazighi, “Deep learning for recommendation systems,”in 2020 6th IEEE Congress on Information Science and Technology (CiSt), pp. 90–97,2020.
[31] J. Liu and C.Wu,Deep Learning Based Recommendation: A Survey, vol. 424 of LectureNotes in Electrical Engineering. Singapore: Springer, 2017.
[32] N. Anantrasirichai and D. Bull, “Artificial intelligence in the creative industries: a re-view,” Artif Intell Rev, vol. 55, pp. 589–656, 2022.
[33] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph con-volutional neural networks for web-scale recommender systems,” in Proceedings ofthe 24th ACM SIGKDD International Conference on Knowledge Discovery &DataMin-ing, KDD ’18, (New York, NY, USA), p. 974–983, Association for ComputingMachinery,2018.
[34] A. Mujtaba, W.-K. Lee, and S. O. Hwang, “Low latency implementations of cnn forresource-constrained iot devices,” IEEE Transactions on Circuits and Systems II: Ex-press Briefs, vol. 69, no. 12, pp. 5124–5128, 2022.
[35] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quantization fordeep neural network acceleration: A survey,” Neurocomputing, vol. 461, pp. 370–403, 2021.
[36] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, andD. Kalenichenko, “Quantization and training of neural networks for efficient integer-arithmetic-only inference,” in 2018 IEEE/CVF Conference on Computer Vision and Pat-tern Recognition, pp. 2704–2713, IEEE, 2018.
[37] R. Banner, Y. Nahshan, andD. Soudry, Post training 4-bit quantization of convolutionalnetworks for rapid-deployment. Red Hook, NY, USA: Curran Associates Inc., 2019.
[38] B. Liu, F. Li, X. Wang, B. Zhang, and J. Yan, “Ternary weight networks,” in ICASSP2023 - 2023 IEEE International Conference onAcoustics, Speech and Signal Processing(ICASSP), pp. 1–5, 2023.
[39] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: training deep neural net-works with binary weights during propagations,” in Proceedings of the 29th Inter-national Conference on Neural Information Processing Systems - Volume 2, NIPS’15,(Cambridge, MA, USA), p. 3123–3131, MIT Press, 2015.
[40] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classifi-cation using binary convolutional neural networks,” in Computer Vision – ECCV 2016(B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.), (Cham), pp. 525–542, SpringerInternational Publishing, 2016.
[41] Y. Zhu, B. Li, Y. Xin, and L. Xu, “Addressing representation collapse in vector quantizedmodels with one linear layer,” ArXiv, vol. abs/2411.02038, 2024.

76

[42] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”ArXiv, vol. abs/1503.02531, 2015.
[43] L. Sun, J. Gou, B. Yu, L. Du, and D. Tao, “Collaborative teacher-student learning viamultiple knowledge transfer,” Pattern Recognition, vol. 118, p. 108004, 2021.
[44] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your own teacher: Improvethe performance of convolutional neural networks via self distillation,” in Proceed-ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),pp. 3713–3722, IEEE, 2020.
[45] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. S. Lempitsky, “Speeding-up convolutional neural networks using fine-tuned cp-decomposition,” CoRR,vol. abs/1412.6553, 2014.
[46] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deepconvolutional neural networks for fast and low power mobile applications,” CoRR,vol. abs/1511.06530, 2015.
[47] A. Novikov, P. Izmailov, V. Khrulkov, M. Figurnov, and I. Oseledets, “Tensor train de-composition on tensorflow (t3f),” Journal of Machine Learning Research, vol. 20,no. 84, pp. 1–7, 2019.
[48] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in Advances in Neural In-formation Processing Systems (D. Touretzky, ed.), vol. 2, Morgan-Kaufmann, 1989.
[49] B. Hassibi, D. G. Stork, T. Watanabe, and G. Wolff, “Optimal brain surgeon: Exten-sions and performance comparisons,” in Advances in Neural Information ProcessingSystems (NIPS), vol. 6, pp. 263–270, MIT Press, 1994.
[50] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural net-works with pruning, trained quantization and huffman coding,” in 4th InternationalConference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, May 2-4,2016, Conference Track Proceedings, 2016.
[51] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficientconvnets,” in International Conference on Learning Representations, 2017.
[52] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainableneural networks,” in International Conference on Learning Representations, 2019.
[53] Y. Lin, S. Han, H.Mao, Y.Wang, andW. J. Dally, “Sparsity-aware deep learning acceler-ator design supporting cnn and lstm models,” IEEE Transactions on Computer-AidedDesign of Integrated Circuits and Systems, vol. 39, no. 4, pp. 799–812, 2020.
[54] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural networks throughl0 regularization,” in International Conference on Learning Representations (ICLR),2017.
[55] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer,“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb modelsize,” ArXiv, vol. abs/1602.07360, 2016.

77

[56] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-volutional neural networks,” in Advances in Neural Information Processing Systems(F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds.), vol. 25, Curran Associates,Inc., 2012.
[57] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile visionapplications,” ArXiv, vol. abs/1704.04861, 2017.
[58] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ ShuffleNet: An Extremely Efficient Convolu-tional Neural Network for Mobile Devices ,” in 2018 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA), pp. 6848–6856, IEEE Computer Society, June 2018.
[59] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neuralnetworks,” ArXiv, vol. abs/1905.11946, 2019.
[60] D. Barry, M. Shah, M. Keijsers, H. Khan, and B. Hopman, “xyolo: A model for real-time object detection in humanoid soccer on low-end hardware,” 2019 InternationalConference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6, 2019.
[61] A. Mishra and D. Marr, “Apprentice: Using knowledge distillation techniques to im-prove low-precision network accuracy,” in International Conference on Learning Rep-resentations (ICLR), 2017.
[62] H. Li, P. Li, Y. Liu, L. Zhang, and X. Hou, “Dynamic knowledge distillation for efficientnetwork compression,” in Proceedings of the European Conference on Computer Vi-sion (ECCV), 2020.
[63] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Hr-nas: Searching efficient high-resolution neuralarchitectures with lightweight transformers,” in Proceedings of the IEEE/CVF Con-ference on Computer Vision and Pattern Recognition (CVPR), pp. 10767–10776, IEEE,2020.
[64] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-tional transformers for language understanding,” in North American Chapter of theAssociation for Computational Linguistics, 2019.
[65] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-tion with region proposal networks,” in IEEE Transactions on Pattern Analysis andMachine Intelligence, vol. 39, pp. 1137–1149, Jun. 2015.
[66] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao, “Detecting text in natural image withconnectionist text proposal network,” in Proceedings of the European Conference onComputer Vision (ECCV), (Amsterdam, The Netherlands), pp. 56–72, 2016.
[67] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “East: An efficient andaccurate scene text detector,” in Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition (CVPR), pp. 2642–2651, Jul. 2017.
[68] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Reading text in thewild with convolutional neural networks,” International Journal of Computer Vision,vol. 116, no. 1, pp. 1–20, 2016.

78

[69] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-basedsequence recognition and its application to scene text recognition,” IEEE Transactionson Pattern Analysis and Machine Intelligence, vol. 39, pp. 2298–2304, Nov. 2017.
[70] R. Bagi, T. Dutta, and H. P. Gupta, “Cluttered textspotter: An end-to-end train-able light-weight scene text spotter for cluttered environments,” IEEE Access, vol. 8,pp. 111433–111447, 2020.
[71] Y. Liu, C. Shen, L. Jin, T. He, P. Chen, C. Liu, and H. Chen, “Abcnet v2: Adaptive bezier-curve network for real-time end-to-end text spotting,” IEEE Transactions on PatternAnalysis and Machine Intelligence, vol. 44, pp. 8048–8064, Nov. 2022.

79

Acknowledgements
First and foremost, I would like to express my deepest gratitude to my supervisors, Pro-fessor Eduard Petlenkov and Dr. Mairo Leier. Professor Petlenkov, your unwavering guid-ance, insightful feedback, and immense support have been instrumental in shaping myresearch journey. Your dedication to academic excellence and your belief in my abilitieshave continually inspired me to push beyond my limits. Dr. Leier, your support and con-stant encouragement have greatly influenced the quality of this work. You have both beenincredible mentors, and I am deeply grateful for the opportunity to learn under your su-pervision.Tomy family, your love and unwavering support have been the foundation uponwhichthis thesis rests. My mother, Mrs. Olutosin Adenike, your prayers, encouragement, andboundless faith in me have given me the strength to persevere through the most chal-lenging moments. To my elder brother, Tolulope, and my younger siblings, Michael andTobiloba, thank you for your constant love, understanding, and patience. Your belief inme has been a beacon of hope and motivation throughout this journey.Tomy fiancée, Fatima, your love, patience, and understanding have beenmy rock dur-ing this demanding period. Your presence has brought balance and joy into my life, and Iamdeeply grateful for your unwavering support and encouragement. Thank you for stand-ing by me through the highs and lows, for your constant cheerleading, and for believingin my dreams as much as I do.Tomy friends, Dr. Stephen, Dr. Nafisat, Tomisin, and Richard, thank you for your friend-ship, laughter, and for being there whenever I needed a listening ear or a word of encour-agement. Your support has made this journey more bearable, and I am thankful for thememories we have shared.Finally, I would like to extend my sincere gratitude and appreciation to the organiza-tions that provided financial support duringmy PhD studies. Thiswasmy dream, but theseorganizations made it a reality.

• Estonian Research Council through the Institutional Research Project PRG620 andPUT1435
• TTU Development Program 2016-2022, Project Code 2014-2020.4.01.16-0032
• Study IT in Estonia Programme
• ICT Doctoral School at Tallinn University of Technology
• DoRa Programme
• TALTECH ERASMUS CHARTER FOR HIGHER EDUCATION 2021-2027
This thesis is not just a reflection ofmyefforts but also a testament to the love, support,and guidance of all the amazing people aroundme. I am truly blessed to have each of youin my life. Thank you all, from the bottom of my heart.

80

Appendix 1

I

O. A. Ademola, M. Leier, and E. Petlenkov, “ Evaluation of deep neural net-work compression methods for edge devices using weighted score-basedranking scheme,” inMDPI, Sensors, 21(22):7529, 2021

81

sensors

Article

Evaluation of Deep Neural Network Compression Methods for
Edge Devices Using Weighted Score-Based Ranking Scheme

Olutosin Ajibola Ademola 1,* , Mairo Leier 1,† and Eduard Petlenkov 2,†

����������
�������

Citation: Ademola, O.A.; Leier, M.;

Petlenkov, E. Evaluation of Deep

Neural Network Compression

Methods for Edge Devices Using

Weighted Score-Based Ranking

Scheme. Sensors 2021, 21, 7529.

https://doi.org/10.3390/s21227529

Academic Editor: Alex Alexandridis

Received: 13 September 2021

Accepted: 5 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Embedded AI Research Laboratory, Department of Computer Systems, Tallinn University of Technology,
Ehitajate tee 5, 19086 Tallinn, Estonia; mairo.leier@taltech.ee

2 Centre for Intelligent Systems, Department of Computer Systems, Tallinn University of Technology,
Ehitajate tee 5, 19086 Tallinn, Estonia; eduard.petlenkov@taltech.ee

* Correspondence: olutosin.ademola@taltech.ee
† These authors contributed equally to this work.

Abstract: The demand for object detection capability in edge computing systems has surged. As
such, the need for lightweight Convolutional Neural Network (CNN)-based object detection models
has become a focal point. Current models are large in memory and deployment in edge devices is
demanding. This shows that the models need to be optimized for the hardware without performance
degradation. There exist several model compression methods; however, determining the most
efficient method is of major concern. Our goal was to rank the performance of these methods using
our application as a case study. We aimed to develop a real-time vehicle tracking system for cargo
ships. To address this, we developed a weighted score-based ranking scheme that utilizes the model
performance metrics. We demonstrated the effectiveness of this method by applying it on the baseline,
compressed, and micro-CNN models trained on our dataset. The result showed that quantization is
the most efficient compression method for the application, having the highest rank, with an average
weighted score of 9.00, followed by binarization, having an average weighted score of 8.07. Our
proposed method is extendable and can be used as a framework for the selection of suitable model
compression methods for edge devices in different applications.

Keywords: deep neural network compression; compression method evaluation; weighted score-
based ranking; embedded deep learning; edge computing

1. Introduction

In deep learning, object classification tasks are solved using Convolutional Neural
Networks (CNNs). CNNs are variants of Deep Neural Network (DNN) architectures that
accept batches of images as input and return the probability vectors of all the possible
outcomes [1]. These architectures are used as the backbone of state-of-the-art DNN-based
object detection methods. R-CNN [2] was one of the most successful methods proposed to
solve object classification, localization, and segmentation problems. R-CNN used AlexNet
(a variant of the CNN architecture developed in [1], having over 62M trainable parameters
and requiring a storage size of 250MB) as the backbone of the network. Other CNN
architectures used as the backbone of object detection models are ResNet-50 [3], which
requires over 95MB of storage space, and VGG16 [4].

Recent works have shown that microarchitectures (e.g., SqueezeNet [5], ShuffleNet [6],
EfficientNet [7], MobileNet [8]) with fewer parameters and small model sizes can achieve
the same level of accuracy as the macroarchitectures (e.g., Inception [9], AlexNet [1],
ResNet-50 [3], VGG16 [4]).

Modern object detection methods have shown excellent results in terms of accuracy
and generalization. This is due to the complexity of the networks used as the models’
backbone. This complexity hinders their applications on edge computing devices that are
usually liable to computational power and memory constraints. To deploy such models on

Sensors 2021, 21, 7529. https://doi.org/10.3390/s21227529 https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 7529 2 of 17

these pieces of hardware while maintaining the performance (i.e., accuracy, robustness), it
is necessary to optimize the models efficiently.

Different studies have proposed different compression methods, such as bit reduction,
low-rank matrix decomposition, network pruning, sparsity, domain residual, knowledge
distillation, etc. These methods have shown excellent results in terms of model size
reduction, fast inference, and computational efficiency, without a significant decrease in
accuracy when compared with the original model [5,10]. However, identifying the most
effective and efficient methods based on the application requirements is challenging.

In this work, we propose a weighted score-based ranking scheme to address this
problem. Our proposed scheme utilizes the performance metrics of the compressed models
to evaluate and rank the compression methods. We show the effectiveness of this scheme
by applying it on the baseline, compressed, and micro-CNN models trained on our dataset.

2. Project Description
2.1. Project Background

The research projects ROROGREEN and Smart Car Deck Solution (SCDS) are initia-
tives developed by DFDS, Denmark (Europe’s largest Ferry operator), and Tallink AS, Esto-
nia (an Estonian based shipping company), respectively. These projects set out to develop
an automatic vehicle detection (classification and localization), positioning, and tracking
system for the cargo ships operated by both companies. The projects aim to digitize, auto-
mate, and optimize the end-to-end process of vessel stowage, loading/discharge of cargo
units, and terminal operations. The actualization of these projects is crucial because it is
envisioned that other shipping companies in Europe will also benefit from the projects’
results in the future.

2.2. Project Requirements

The ROROGREEN and SCDS projects require a real-time automated solution that can
track and monitor different objects on the decks of a cargo ship. Our goal is to achieve this
using a cost-effective camera-based edge device that is capable of processing the images
from the camera locally and in real-time. Our proposed solution is based on modern
CNN-based object detection methods, which will be optimized for the proposed hardware.
For the evaluation of the optimization methods implemented in this work, we used a
portion of the entire dataset that consisted of 1400 images of different categories gathered
locally. The sample of the dataset is described in Figure 1.

Figure 1. Sample of objects, including a person class, to be detected in the ROROGREEN and SCDS
projects. There are eleven images and each corresponds to the respective target class.

Sensors 2021, 21, 7529 3 of 17

To fulfil the goal of the projects, we proposed a solution that leverages modern object
detection methods. These methods serve as the backbone for the other functionalities
of the system (e.g., tracking, positioning, monitoring). We extracted the requirements
of the projects from the projects’ goals, use cases, and areas of use. We found that the
requirements of both projects are quite similar. The ROROGREEN project aims to classify,
localize, and track two classes of vehicles according to DFDS vehicle grouping. The SCDS
project aims to detect and track ten classes of vehicles with people inclusive, which makes
it a total of eleven classes. It is worth noting that DFDS’s vehicle classes are also embedded
in Tallink’s vehicle categories.

The base networks of modern CNN-based object detection methods are usually deep.
These usually require hardware having high processing power, high memory (flash size),
and high RAM size. These requirements are usually lacking in resource-constrained
devices; as such, deploying the models without optimization is impossible. Therefore,
model compression is mandatory for efficient computation and storage, which, in turn,
reduces the inference time without a significant drop in model accuracy. This will also
minimize the overall power consumption of the system.

As discussed above, it is evident that our goal is to develop a real-time, low-power,
cost-effective, and efficient solution using camera-based embedded hardware. This im-
plies that the trained custom model must be optimized to meet the system/hardware
requirements as highlighted below.

• High accuracy;
• Small model size;
• Small peak memory footprint;
• Fast inference;
• Computational efficiency.

3. Problem Statement

The ROROGREEN and SCDS projects aim to automate the loading and offloading
operations of the cargo units by using the real-time data generated (e.g., vehicle type, object
bounding coordinates, lane position, and other application parameters) by the camera-
based embedded hardware installed on each deck. The generated data are processed by
the external server, which automatically generates the loading/offloading plan, which is
validated with the standard deck plan.

Predicting the vehicle type, bounding box coordinates, and position of each object
requires modern object detection and position estimation algorithms. These methods must
be energy-efficient, less computationally intensive, and accurate. This is quite onerous
because of the choice of hardware required. The contrived visual representation of a ship
deck containing different vehicle types on respective lanes is described in Figure 2.

Figure 2. A contrived deck plan showing the vehicle loading operation. Each vehicle type occupies
different regions and the respective lane position.

Sensors 2021, 21, 7529 4 of 17

We proposed a CNN-based object detection method. This was adopted due to the
remarkable results it has shown. Modern object detection models are quite large in depth
and sometimes width. The depth is usually characterized by the number of hidden
layers in the backbone of the CNN architectures used. The depth contributes to the
total number of parameters (i.e., the weights in each layer), which usually result in large
models, as described in Figure 3. These models are power-inefficient, computationally
expensive, and require large memory for storage. This cannot be processed by our low-
power camera-based edge device. As such, the models need to be optimized/compressed
for the hardware.

Figure 3. A visual representation of a deep neural network (right) and a shallow neural network (left).

There are existing compression methods for large CNN models’ compression. Each
method has its drawbacks and determining the most suitable and effective method is of
major concern. To properly evaluate the effectiveness of each method, it is important to
understand how the method affects the original models. Therefore, we can rank all the
methods based on the following key parameters: model size, accuracy, memory footprint,
computational cost, and inference time.

4. Related Work

CNN models have shown unprecedented results in solving problems related to com-
puter vision (e.g., image classification, object detection, tracking). Due to the high computa-
tional power and memory that are required, this has impeded their adoption in embedded
applications. This problem led to a new area of research (i.e., deep neural network com-
pression) to tackle such challenges.

Several methods for model compression have been proposed in different studies.
These methods have shown remarkable results, albeit with certain drawbacks. In this
section, we categorize the methods into five groups: bit reduction, knowledge distillation,
tensor decomposition, network pruning, and microarchitecture.

4.1. Bit Reduction

Bit reduction techniques have been around for quite a while [11,12]. These techniques
aim to reduce the size of the model without a significant loss in the model performance.
In practice, this is somewhat difficult to achieve due to the loss of information when
approximating the 32-bit full precision weights and activations to a fixed point integer
representation [13,14]. Quantization can be implemented using (16, 8, or 4 bits); however,
there can be extreme cases where 2 bits or 1 bit are used to represent the weights and/or
activations. These are referred to as binarization and ternarization. Binary networks encode
the weights and activations with 1 bit (–1, 1), in contrast to ternary, which uses 2 bits (–1, 0,
1) [15].

The works of [11,12,16,17] showed the possibility of training deep networks with low
bit-width weights. The weights and activations of the networks were discretized and a
drastic reduction in model size with an insignificant drop in accuracy was achieved in [14].
An adaptive quantization framework that achieved a 20–40% higher compression rate,
in contrast to non-adaptive quantization methods that relied on a uniform quantizer, was
proposed in [18]. A vector-based quantization method that reduces the reconstruction in
the network output was introduced in [19]. The work of [18] also showed that the network

Sensors 2021, 21, 7529 5 of 17

layers contribute differently to the model prediction result; therefore, it is logical not to use
uniform bit-width quantization.

Quantization techniques have shown promising results for large model compression.
This breakthrough has caused different industries developing on-device/edge-based ar-
tificial intelligence solutions to adopt the methods. It is worth noting that the lower the
bit-width used in quantization, the higher the compression rate and the model sensitivity
to accuracy degradation.

4.2. Knowledge Distillation

The idea of transferring the knowledge learnt by a large model to a small model
is primordial. This has shown quite a reasonable result (i.e., accuracy). Ensembles (i.e.,
combining the predictions of several models) of large models were compressed using this
method [20]. The authors used the parameters learned by the large, slow, and complex
models to train an ensemble of small and fast models. This method gained traction from
the results shown by the authors. The authors of [21] trained a single model by transferring
the attributes of the ensemble of models to the single model. This achieved higher accuracy
than the prediction of the individual model of the ensemble.

The transfer of knowledge from a large and accurate model does not guarantee that
the small model will be accurate. It was demonstrated that not all the students (small
models) can learn effectively from the teachers (large models) in [22]. The authors also
pointed out that past work has not addressed this area but rather focused on the trend of
the subject.

Knowledge distillation has proven to be very relevant in many applications. This is
due to its simplicity and the ability to use synthetic data (data generated artificially) where
real data are not readily available; however, the statistical attributes of the synthetic data
must conform with the mimic real data [22].

4.3. Low-Rank Tensor Decomposition

Tensor decomposition is the generalization of low-rank matrix decomposition. Its use
case has been extended to CNNs. CNN models are composed of different layers, which
are defined by the types of mathematical operations performed in the layer. These layers
include the convolutional layer (CL), activation layer (AL), fully connected layer (FCL), etc.
A layer in the network is an array of nodes or neurons that can be expressed as a matrix
or tensor (i.e., a generalized form of a matrix). Each node is a regression function that
performs some computations (e.g., matrix multiplication) on higher-dimensional input
data and a weights matrix. Matrix-based optimization techniques (e.g., singular value
decomposition, eigendecomposition) can be applied to the convolutional and/or the fully
connected layers [10,23] to reduce the number of parameters in these layers.

When a tensor (e.g., weights matrix) is factorized into its sub-components (i.e., sub-
tensors or factors), all the sub-tensors do not contribute equally to the main tensor. This
implies that the sub-tensors can be ranked based on the order of importance. An approxi-
mate tensor can be derived, which results in having a low rank in contrast to the original
high-order tensor. Singular value decomposition (SVD) (the most commonly used matrix
decomposition method) was used to compress the weights matrix in the fully connected
layer to reduce the model size. A two-times increase was achieved in computation time
by decomposing the weights in the convolutional layers in [24]. Kholiavchenko [25] pro-
posed an iterative-based tensor decomposition technique and showed that a layer can be
decomposed several times.

It is also worth pointing out that the compression ratio of the model when adopting
this method is greatly dependent on the rank value (i.e., the most significant to the least
significant). In the case of an extreme rank value, the model size will be drastically small
and vice versa.

Sensors 2021, 21, 7529 6 of 17

4.4. Network Pruning

It has been shown in several studies that deep neural networks are usually overpa-
rameterized. This is quite common in large and complex networks [26]. It affects the model
convergence time and contributes to the computation and storage overheads. The goal
of pruning is to reduce a large network to a smaller and faster network. This is possible
because the parameters of the network do not contribute equally to the model output.
As such, the level of contribution can be ranked by the order of importance and the less
significant parameters can be pruned (i.e., set to zero). A penalty factor was introduced
to the loss function to penalize the weights that do not contribute significantly to the
network output, resulting in a smaller network, in [27]. A stochastic gradient descent (SGD)
momentum-based pruning method for setting redundant weights to zero was proposed
in [28].

The network parameters that can be pruned include the weights (connections), neu-
rons (nodes), or convolutional filters (kernels). The choice of the parameters to be explored
for pruning is dependent upon the application requirements (e.g., memory footprint, com-
putational cost, bandwidth). A weights- or connections-only-based pruning technique is
also referred to as unstructured pruning, in contrast to structured pruning, which involves
the removal of low-rank neurons or filters [28]. Redundant weights were eliminated to
compress the network size and compensate for the accuracy drop by retraining the network
in [29].

Pruning is a very old compression method [30] and has shown its strength in the
reduction of model size. The effectiveness varies with the techniques adopted (e.g., brute-
force [30], penalty-factor [31], sensitivity error [32,33]). Network pruning usually results
in an accuracy drop. When a network is over-pruned, it can render the network useless.
This is why it is important to estimate the pruning threshold, evaluate the network after
pruning, and retrain to compensate for the decrease in accuracy.

4.5. Microarchitecture

Microarchitecture is a concept for designing small and compact models. This method
is based on the background information (i.e., residual knowledge) of the critical and most
important blocks needed in the design of the CNN architecture. This is quite different from
the other methods (i.e., pruning, quantization, binarization, tensor decomposition) because
it does not rely on any external compression techniques that are usually applied to the CNN
model either after or during training. It focuses on using domain knowledge to carefully
design the network architecture. The same level of accuracy obtained by AlexNet [1] with
50-times fewer parameters was achieved in [5]. Before the term miroarchitecture was
standardized by these authors [5], smaller kernel sizes (i.e., smaller-sized convolutional
filters) were used in practice, and this has shown significant improvements in terms of
model performance (i.e., speed, accuracy) [34–36].

The research on the design of efficient and lightweight CNN models has increased
as a result of the exponential growth in the demand for real-time, efficient, and power-
consumption-aware embedded computer vision applications in diverse areas. A category of
models called MobileNet was proposed in [8]; these CNN microarchitectures have become
some of the state-of-the-art methods for image classification and object detection for low-
power and resource-constrained devices. Other models in this category are SqueezeNet [5],
ShuffleNet [6], EfficientNet [7], and TinyYOLO [37].

5. Compression Methods, Evaluation, and Ranking

Our goal is to evaluate and develop a novel method for ranking the performance of
state-of-the-art techniques for compressing deep learning models. The performance of
each technique will be ranked using the following five key metrics: model size, accuracy,
peak runtime memory usage, computational cost, and inference time. In this section, we
describe each compression method and its implementation.

Sensors 2021, 21, 7529 7 of 17

5.1. Baseline Model Description

This section describes the architecture of our baseline model. This simple and
lightweight network was developed to serve as the reference model for evaluating the
different compression methods for this work. The input layer of the network takes an RGB
image of shape (64, 64, 3) and (3, 3) kernel filters were used throughout the entire network,
resulting in a total of 1,106,209 parameters. The choice of the convolutional filter size was
inspired by the work of [34]. The network includes a stack of two sets of CONV2D, RELU,
BN, and POOL layers, followed by a set of CONV, RELU, and BN. The final block is the
dense block, which consists of FC, BN, FC, and SOFTMAX layers, as shown in Table 1.

Table 1. A table showing a summary of all the layers of the baseline model architecture.

Layer Type Output Size Parameters

CONV2D (None, 64, 64, 32) 864

BN (None, 64, 64, 32) 96

MAXPOOL2D (None, 32, 32, 32) 0

CONV2D (None, 32, 32, 64) 18,432

BN (None, 32, 32, 64) 192

MAXPOOL2D (None, 16, 16, 64) 0

CONV2D (None, 16, 16, 64) 36,928

BN (None, 16, 16, 64) 192

FLATTEN (None, 16384) 0

DENSE (None, 64) 1,048,576

BN (None, 64) 192

DENSE1 (None, 11) 704

ACTIVATION (None, 11) 0

TOTAL PARAMETERS 1,106,209

5.2. Compression Methods

CNNs play a vital role in deep learning methods for object detection. A CNN is
composed of different layers. Each layer is made up of computational nodes (i.e., neurons)
that process the input signals. The contribution made by each layer to the computation
and memory requirements of the whole network is usually unevenly distributed. This
is because of the different operations and parameters that are associated with each layer.
The majority of the weights are in the dense layers (i.e., fully connected layer), but these
account for a lesser percentage of the total floating-point operations. This implies that
optimizing the FC layers alone will result in only a dramatic reduction in the model size,
without a significant improvement in the overall speed, in contrast with optimizing the
convolutional layers.

Several methods have been proposed for CNN model compression for resource-
constrained devices. Each of these methods has its advantages and drawbacks. This makes
it very challenging to identify the most appropriate, effective, and efficient compression
method to adopt. The choice of the method is strictly dependent on the requirements of
the application. In this section, we describe the compression methods that we considered
in this work.

5.2.1. Quantization

Bit precision reduction is an important concept in mathematics that has been widely
adopted in different applications, including deep neural network compression. Quantiza-
tion limits the width of the bit that is used to represent a digit or number. The bit width

Sensors 2021, 21, 7529 8 of 17

of the operands controls the precision level of the output when mathematical operations
are performed.

The most common types of operations that are performed in CNNs are convolution
operation, bias addition, and the dot product of the weights matrix and float input tensor,
as described in Figure 4. These operations are computed in a 32-bit full precision floating
point. Quantization aims to replace the 32-bit floating-point operations with low-precision
number formats such as 1 bit, 4 bit, 8 bit, or 16 bit. Binarization transforms full precision
models into a single-bit model (the weights and activations are encoded using 1 bit).
Binarization can be described as an extreme case of quantization where the weights and
activations are encoded using 4 bit, 8 bit, or 16 bit.

Figure 4. A CNN architecture with a normalized (5× 5) input image convolved with a normalized fil-
ter (2 × 2 kernel) showing the three most common operations (convolution, pooling, and weights ma-
trix multiplication operations) in a CNN. This low-level abstraction shows the internal computation
performed on the network parameters (i.e., the input tensor (5 × 5 image), weights, and activations).

A model can be quantized either during training (Bit-Reduction-Aware Training, also
called Quantization-Aware Training) or after training (Post-Quantization). The latter often
results in a significant decrease in accuracy. However, this can be mitigated by retraining
the network to compensate for the decrease in accuracy as a result of the error induced
during the quantization operation.

We quantized the weights and activations of the baseline model using a symmetric
mode 8-bit signed full integer quantizer implemented in Keras [38], using TensorFlow [39]
as the computing engine. The mapping of the 32-bit input float tensors (i.e., weight matrix,
activations) to the 8-bit quantized range is described in Figure 5. The mapping function (i.e.,
8-bit quantizer) maps the input float tensors of the baseline model to the 8-bit quantized
output. This function is defined in Equation (1):

q8bit = round(m f i f) (1)

where q8bit is the 8-bit quantizer, m f is the multiplier, and i f is the input float tensor.
The multiplier is the quantization constant that is multiplied with the float input tensor,
as expressed in Equation (2):

m f =
27−1

2
max(|i f |)

(2)

Sensors 2021, 21, 7529 9 of 17

Figure 5. This figure shows the mapping of the input tensor float range to the 8-bit signed integer
quantized range in symmetric mode.

5.2.2. Binarization

Binarization is a bit reduction technique that is considered an extreme case of quanti-
zation in which the weights and/or activations are encoded using a single bit (i.e., 1 bit).
A single bit can be considered the atomic bit level of a number system; therefore, a signif-
icant decrease in the model accuracy is imminent due to loss of information during the
binarization process. We did not binarize the first and last layer of the baseline model to
minimize this loss.

In the binarization process, updating the weights during backward pass using the
standard gradient descent approach is impossible because computing the loss gradient
would result in zero in almost all conditions. We adopted a Straight-Through-Estimator
(STE) pseudo function that has been proven to solve this issue.

We binarized the baseline model using Larq [40], an open-source Binary Neural
Network library built on Keras [38]. The binarization function (a non-zero sign function)
b1bit takes the float tensor as input and returns a binary output (−1 and +1), as shown in
Equation (3):

o1bit = b1bit(i f), o1bit ∈ {−1, 1}, i f ∈ {R} (3)

where b1bit is the binarization function, o1bit is the binary output generated, and i f is the
input float tensor. During the backward pass, the loss gradient is calculated using the STE
function, which takes the output tensors as input and returns a binary output, which is
constrained to the threshold value, as expressed in Equation (4):

lossgradient =

{
1 abs(i f) ≤ thresholdvalue

0 abs(i f) > thresholdvalue
(4)

where the thresholdvalue is the float value that controls the lossgradient and i f is the float
tensor processed by the STE pseudo gradient function.

5.2.3. Network Pruning

Pruning is one of the oldest methods for compressing large CNN models for low-
power and resource-constrained devices. Pruning explores and exploits redundant param-
eters that do not contribute significantly to the model performance. The effectiveness of
the pruning method is dependent on how efficiently we can evaluate the parameters that
are redundant in the network.

Over-pruning the baseline model will decrease the accuracy and damage the network
completely. This can be mitigated by evaluating the model based on certain criteria after
each pruning operation in an iterative manner. There are different pruning methods (e.g.,
weight-only pruning, node-only pruning, or layer pruning).

In this work, we pruned the baseline model using the magnitude-based weight
pruning approach as opposed to the neuron-based method. We implemented this pruning
method because it does not affect (i.e., decrease) the model accuracy significantly, especially
when the base model is not complex (i.e., having few hidden layers, as with the baseline
model). The weights of the baseline model pruned were selected using rank-based criteria,
calculated using the absolute value of the individual weight in Equation (5):

rankweight = |wi|, wi ∈W (5)

Sensors 2021, 21, 7529 10 of 17

where rankweight is the rank of the individual weight, wi is the weight, and W is the weight
matrix associated with each neuron within the respective layer of the network.

5.2.4. Knowledge Distillation

Distilling knowledge (i.e., useful information) from a large model (the teacher) to a
small model (the student) has shown excellent results in model compression. The concept
of knowledge transfer is based on the idea that large models are robust and can learn
complex patterns from data such that useful information can be transferred to the small
model to mimic the behaviour of the large model.

We implemented the teacher-student model using a temperature-based softmax func-
tion at the output layer in Keras [38]. This technique was inspired by [21]. The teacher
model (i.e., VGG16) was trained on our dataset, and the class probabilities vector for each
data point (i.e., observation) was calculated and extracted. These probabilities vectors, also
called soft labels, were distilled to the small model as the target label during training. We
also trained the small model using the hard labels, and the overall losses generated by the
small model were combined and weighted, as shown in Equation (6):

Losstotal = α× H(y, σ(zs), T = 1)) + β×
H(σ(zt; T = t), σ(zs, T = t)) (6)

Losstotal is the total loss, which is the combination of the student and distillation losses.
The student loss is computed using the standard loss function by making the temperature
parameter (T = 1). The temperature parameter controls the amount of information that
can be distilled to the student. However, we need to keep in mind that the student has a
threshold that limits the amount of information that it can retain from the teacher. The α
and β are constants associated with the individual loss function taking the respective
unnormalized log probabilities (zs, zt) for each class label.

5.2.5. Tensor Train Decomposition

The decomposition of a matrix into its low-rank embedding is a very important
concept in linear algebra. Matrix decomposition is used extensively in applied data
processing for computation acceleration and data compression. Tensor decomposition is
a means of generalizing the concept of low-rank matrix decomposition by treating the
matrix as a tensor (i.e., a higher-order array). There are standard matrix decomposition
methods (e.g., QR, LU, Eigen, singular value decomposition (SVD), etc). SVD is the most
widely used method but cannot operate directly on higher-order data structures such as
tensors. Working directly on tensors offers the benefit of keeping the correlation between
data points intact.

Tensor decomposition is still relatively new. Few methods have been developed (e.g.,
Canonical Polyadic (CP), Tucker, Tensor-Ring, Tensor-Train, etc.). We adopted the TT
decomposition method due to the computational time (i.e., reconstruction and decompo-
sition time) and storage space advantages that it has over CP, Tucker, and other tensor
decomposition methods.

TT decomposition factorizes a tensor into sub-tensors called cores/factors. The num-
ber of cores is dependent on the dimensions of the input tensor. TT is based on SVD and the
factorized outputs are expressed as a train of tensors (i.e., a product of smaller core tensors).
The dense layer in the baseline model has a set of weights in its nodes transformed into TT
matrices (i.e., 4D tensor shape). The TT matrices are factorized into four TT cores and each
element of the tensor can be reconstructed as defined in Equation (7):

T(i1,i2,i3,i4) =
R1R2R3

∑
r1,r2,r3

G1(i1r1).

G2(r1i2r2).G3(r2i3i3)G4(r3i4) (7)

Sensors 2021, 21, 7529 11 of 17

where T is the original tensor, in represents the tensor indices, rn corresponds to the ranks
of the tensor, Ri are the compressed/contracted hidden indices, and Gi are the TT cores.

We retrained the baseline model using TT, which transforms the input and output
parameters of the dense layer, excluding the softmax layer, into TT matrices, and the
outputs were decomposed into tensor cores. We implemented this method using the t3f
framework [41], a tensor train library built on TensorFlow [39].

5.2.6. Microarchitecture

The concept of designing sub-blocks/modules as a micro-unit in CNNs has shown
promising results in terms of model size reduction and improved inference time without a
significant decrease in model accuracy. The CNN microarchitecture relies on the residual
knowledge that is adopted to carefully design each of the CNN sub-blocks that make up
the entire network. The microarchitecture defines the dimensions and structure of each
sub-module and how they are integrated to form the entire network.

There are several CNN microarchitectures that have been proposed for resource-
constrained devices. In this work, we trained our dataset on MobileNet V1, MobileNet V2,
MobileNet V3, and ShuffleNet. The results of these models were compared with those of
the compressed models.

5.3. Evaluation and Ranking

An object detection model performs a detection task by fusing object classification
and localization methods. Some methods involve using two separate algorithms (i.e.,
MobileNet and SSD). Other methods (e.g., YOLO) use a single model to perform both
the classification and localization tasks. To optimize such a model for memory compres-
sion, speed, and accuracy, the parts of the model contributing to these metrics need to
be optimized.

Much of the memory and computational power is expended by the base network of the
object detection model. This formed the basis of our evaluation of the compression methods
on the classification model instead of both the classification and localization models.

We based our evaluation and ranking on five key metrics: model size, accuracy,
peak runtime memory footprint, computational cost, and inference time. The results
corresponding to the key metrics obtained from the compressed models, micro-CNN
models, and the base model are described in Table 2. These results were mean values
calculated over a small number of experiments in order to reduce the error margin due to
the stochastic nature of training CNN models.

Table 2. Evaluation metrics results of the compressed models, base model, and micro-CNN models.

Uncompressed Compressed Micro-CNN

Metric Baseline Quantized Binarized Pruned Distilled Tensor-
Trained V1 V2 V3 ShuffleNet

Model Size (KB) 4429.61 1119.54 105.50 1308.82 4429.61 258.02 12,856.38 8935.84 12,171.81 7761.17

Accuracy (%) 77.23 76.95 67.10 74.64 72.04 71.47 68.88 64.43 71.18 65.99

Inference Time (ms) 22.88 13.65 5.40 22.64 22.87 17.31 39.09 20.79 16.79 40.09

Computational Cost
(MFLOPs) 66.44 7.29 6.96 66.44 66.44 64.05 94.01 52.88 15.24 158.63

Peak Memory
Footprint (KB) 8907.81 3705.47 1775.78 8900.78 8907.59 4971.88 19,857.04 12,582.8 10,550.02 12,796.72

We evaluated the baseline, compressed, and micro-CNN models on a Google Coral
Development Board with the following technical specifications: Quad Cortex-A53 and
Cortex-M4F processors, Edge TPU co-processor (supports only int8 operations), 1 GB
LPDDR4 RAM, and 8 GB eMMC flash memory [42]. The performance (i.e., key metrics) of
the compressed, micro-CNN, and base models was evaluated using the weighted score-
based ranking scheme that we developed.

Sensors 2021, 21, 7529 12 of 17

Our ranking scheme relies on two major components: the weights (i.e., relevance
scores) assigned to the criteria (i.e., key metrics) and the computed scores of the results
generated by the compressed models, base model, and micro-CNN models. It is critical
that the weights and scores should have the same scale (i.e., value range). The raw results
generated in Table 2 were not scaled and this does not meet the requirement of the weighted
score-based ranking method.

We applied a scaling and scoring function to the unscaled results generated in Table 2.
This function maps and scores each unscaled result to a value in the range (1–10). The scal-
ing function is defined as:

nscaled =
n−mmin

mmax −mmin
× (rmax − rmin) + rmin (8)

where nscaled is the scaled output value, n is the metric value to be scaled into [rmin–rmax],
nmin is the minimum of the metric value range, and nmax is the maximum of the metric
value range. The rmin and rmax represent the minimum and maximum value of the target
scale range (i.e., 1–10 as used in our experiment). The scale corresponds to the range of the
weighted relevance score assigned to each evaluation metric.

Each metric was assigned a weighted relevance score in the range (1–10); a high
weighted relevance score (e.g., 10) indicates that the corresponding metric has the highest
priority (i.e., most significant) and vice versa, as shown in Table 3. The scores (i.e., the scaled
metric values) and weights assigned to the evaluation metrics are described in Table 3.

The weighted relevance score controls the significance score of a metric during the
evaluation of the performance of the compressed models, base model, and micro-CNN
models. The weight of each metric is determined based on the application requirements.
We assigned a weight value to the individual metric, as shown in Table 3. These values
were generated based on our application requirements. The values can be adjusted to suit
other applications.

The scaled values were scored on a scale of (1–10). A score of 10 assigned to the model
per metric value means that the model with respect to the metric is the most significant,
while a score of 1 means that the model is less significant. Table 4 shows the score of
each model per metric value computed from the results (scaled metric values) obtained in
Table 3.

The weighted score was calculated by computing the product of the corresponding
weight of the relative importance score assigned to the metric and the score of the model
corresponding to the metric. The mean weighted scores of the compressed models, micro-
CNN models, and base model were ranked using an inverse ranking method similar to
Spearman’s rank approach (i.e., the largest mean weighted score was assigned a rank of
1, the second-largest mean weighted score was assigned a rank of 2, and as the mean
weighted score decreases, the rank number increases by 1 until the maximum rank number
n is reached, where n is the count of the models evaluated), as shown in Table 5.

Table 3. Weighted relevance score assigned to evaluation criteria and model results scaled to (1–10), which corresponds to
evaluation metrics’ scale range.

Uncompressed Compressed Micro-CNN

Metric Weight Baseline Quantized Binarized Pruned Distilled Tensor-
Trained V1 V2 V3 ShuffleNet

Model Size (KB) 8 4.05 1.72 1.0 1.85 4.05 1.11 10.00 7.23 9.52 6.40

Accuracy (%) 10 10.00 9.80 2.88 8.18 6.35 5.95 4.13 1.00 5.75 2.10

Inference Time (ms) 6 4.87 2.82 1.00 4.81 4.86 3.63 8.45 4.40 3.52 10.00

Computational Cost
(MFLOPs) 6 4.53 1.02 1.00 4.53 4.53 4.39 6.17 3.72 1.49 10.00

Peak Memory
Footprint (KB) 7 4.55 1.96 1.00 4.55 4.55 2.59 10.00 6.38 5.37 6.49

Sensors 2021, 21, 7529 13 of 17

Table 4. Metric scores corresponding to the scaled metric value.

Uncompressed Compressed Micro-CNN

Metric Weight Baseline Quantized Binarized Pruned Distilled Tensor-
Trained V1 V2 V3 ShuffleNet

Model Size (KB) 8 6.00 8.00 10.00 7.00 6.00 9.00 2.00 4.00 3.00 5.00

Accuracy (%) 10 10.00 9.80 2.88 8.18 6.35 5.95 4.13 1.00 5.75 2.10

Inference Time (ms) 6 3.00 9.00 10.00 5.00 4.00 7.00 2.00 6.00 8.00 1.00

Computational Cost
(MFLOPs) 6 5.00 9.00 10.00 5.00 5.00 6.00 4.00 7.00 8.00 3.00

Peak Memory
Footprint (KB) 7 7.00 9.00 10.00 7.00 7.00 8.00 3.00 5.00 6.00 4.00

Table 5. Compressed models, base model, and micro-CNN models ranked by the weighted mean score.

Uncompressed Compressed Micro-CNN

Metric Weight Baseline Quantized Binarized Pruned Distilled Tensor-
Trained V1 V2 V3 ShuffleNet

Model Size (KB) 8 48.00 64.00 80.00 56.00 48.00 72.00 16.00 32.00 24.00 40.00

Accuracy (%) 10 100.00 98.00 28.80 81.80 63.50 59.50 41.30 10.00 57.50 21.00

Inference Time (ms) 6 18.00 54.00 60.00 30.00 24.00 42.00 12.00 36.00 48.00 6.00

Computational Cost
(MFLOPs) 6 30.00 54.00 60.00 30.00 30.00 36.00 24.00 42.00 48.00 18.00

Peak Memory
Footprint (KB) 7 49.00 63.00 70.00 49.00 49.00 56.00 21.00 35.00 42.00 28.00

Weighted Mean Score 6.62 9.00 8.07 6.67 5.80 7.18 3.09 4.19 5.93 3.05

Rank 5 1 2 4 7 3 9 8 6 10

We calculated the mean weighted score per model for all metrics by computing the
ratio of the arithmetic mean of the weighted scores and the sum of the weights assigned to
all metrics. The equation is defined as:

W =
∑n

i=1 wimi

∑n
i=1 wi

(9)

where W is the mean weighted score, i is the metric index, n is the total number of
evaluation metrics, wi is the weighted relevance score assigned to each metric, and mi is
the calculated score of the model corresponding to the metric.

The ranking result showed that the application’s most effective, efficient, and suit-
able compression method is quantization with the rank of 1 (having the largest mean
weighted score of 9.0), followed by binarization (having a mean weighted score of 8.07),
as shown in Figure 6. As the rank number increases, the methods’ effectiveness, efficiency,
and suitability to meet the application requirements decrease.

Sensors 2021, 21, 7529 14 of 17

Figure 6. Compression methods ranked by the mean weighted score.

6. Discussion

The state-of-the-art methods for compressing deep learning models have shown
excellent results in terms of peak runtime memory reduction, low latency, model size
reduction, and computational efficiency, without a significant decrease in accuracy. These
results vary from one compression method to another. The application requirements
also differ, thus making it challenging to choose the optimal compression method for
different applications (e.g., our ROROGREEN and SCDS projects). To address this, we
propose a weighted score-based ranking scheme that enables us to evaluate and rank the
compression methods based on their computed weighted mean scores. The weighted mean
score is dependent on the metric scores and the weights assigned to the evaluation criteria,
as shown in Table 4. The values in Table 4 correspond to the metric scores computed for
each scaled evaluation criterion with respect to all the models evaluated.

The weight assigned to each evaluation metric determines the relevance score of the
individual criterion. A high relevance score assigned to the metric with respect to the score
range gives the metric a high effect when calculating the weighted metric score and the
weighted mean score, as shown in Table 5. The metric scores correspond to the scaled
metric values in Table 3. The scaled metric values correspond to the scaled model results in
Table 2. The scaling ensures that all the values (i.e., the results obtained for all the metrics
during model evaluation) use a common range. This eliminates the dominance effect of
larger values regardless of the units when calculating the weighted mean scores. The metric
scores ensure that the least and the most significant values of the evaluation metrics have
the same interpretation (e.g., the lower the model size, the higher the compression rate
with respect to the original model, whereas the higher the accuracy, the better).

Sensors 2021, 21, 7529 15 of 17

We compare and rank the result of the computed weighted mean score of the baseline,
compressed (i.e., quantized, binarized, pruned, distilled, and tensor-trained), and micro-
CNN (i.e. MobileNetV1, MobileNetV2, MobileNetV3, and ShuffleNet) models, as shown
in Figure 6. The weighted mean score for each model indicates the suitability score of
the compression method that produces the model. A higher suitability score is desirable.
The higher the weighted mean score (i.e., suitability score), the higher the rank (the highest
rank is equivalent to 1 and it decreases as the rank value increases). The model with the
highest weighted mean score (i.e., a rank of 1) is considered the most efficient and effective
model for the hardware. As such, the compression technique that produces the model
is considered the most suitable compression method for optimizing the base model for
the application.

The limitation of our proposed scheme is the selection of weights for the performance
metrics. These weights must reflect the priorities (i.e., level of significance) of the appli-
cation criteria. This is considered a limiting factor because the weights are dependent on
the application requirements, such as the available hardware resources (e.g., processor
capability, flash size, RAM, etc.), model requirements, and the other requirements that are
specific to the application (e.g., real-time capability, on-device model performance, etc.),
and thus must be chosen appropriately. We do not consider this a major limiting factor
because we have demonstrated how we selected the weights that are appropriate for the
performance metrics in our case studies (ROROGREEN and SCDC projects).

Choosing the optimal model compression method for on-device AI applications is
challenging due to the lack of an application-specific framework for evaluating methods
for deep learning model compression for resource-constrained edge devices. We addressed
this issue using our proposed weighted score-based ranking scheme. The scheme helps us
to identify the quantization technique as the optimal method for compressing our object
detection and tracking models for the application based on our requirements.

7. Conclusions and Future Work

In this work, we evaluated and ranked the state-of-the-art methods for CNN model
compression for resource-constrained edge devices using a weighted score-based ranking
scheme that we developed. Our ranking method uses five key metrics (i.e., model size,
accuracy, inference time, computational cost, and peak memory footprint) computed for
each model generated by the compression methods. We introduced an individual weight
to these key metrics. The individual weight reflects how relevant/important the metric is
in our application.

This work was motivated by the lack of a clear framework/method for selecting
the most efficient methods for compressing CNN models for edge computing devices
(e.g., micro-controllers, small computer boards, portable devices, mobile devices, DNN
hardware accelerators, etc.). As such, we developed a weighted score-based ranking
scheme to address this issue.

We applied our method to the baseline model developed, compressed versions of
the baseline model produced by the state-of-the-art compression methods that we imple-
mented, and the micro CNN models trained on a portion of the SCDS and ROROGREEN
dataset. According to the ranking of the mean weighted scores computed, the quantized
model obtained the highest rank, with a mean weighted score of 9.00, followed by the
binarized, model having a mean weighted score of 8.07. ShuffleNet has the lowest rank
in Table 5, with a mean weighted score of 3.05. This clearly shows that the quantiza-
tion technique is the most suitable model compression method for both the SCDS and
ROROGREEN projects.

Determining the most effective, efficient, and optimal method/methods for optimizing
deep learning models for edge devices can be very challenging. We addressed this issue
using our weighted score-based evaluation and ranking method.

In the future work, we will focus on how we can further improve the metrics of the
best-ranked method (i.e., the quantized model).

Sensors 2021, 21, 7529 16 of 17

Author Contributions: O.A.A.: conceptualization, methodology, data curation, software, resources,
validation, visualization, writing—original draft. M.L.: conceptualization, investigation, resources,
data curation, writing—review and editing, supervision, project administration, funding acquisition.
E.P.: conceptualization, supervision, funding acquisition, writing—review and editing. All authors
have read and agreed to the published version of the manuscript.

Funding: This work has been conducted as part of the project “ICT programme”, which was sup-
ported by the European Union through the European Social Fund. This work was also supported by
the Innovation Fund Denmark “Green RORO shipping through digital innovation (ROROGREEN)”.
We also want to express our gratitude to the Estonian Research Council for partially supporting this
work through grant PRG658.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ROROGREEN and SCDC datasets used are not publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AL Activation Layer
BN Batch Normalization
CNN Convolutional Neural Network
CP Canonical Polyadic
Conv2D Convolution 2D
DNN Deep Neural Network
F-RCC Faster Region-Based Convolutional Neural Network
FC Fully Connected
FCL Fully Connected Layer
ReLU Rectified Linear Unit
SVD Singular Value Decomposition
SGD Stochastic Gradient Descent
TT Tensor Train

References
1. Zhao, Z.Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,

1, 1–21. [CrossRef] [PubMed]
2. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
4. Liu, S.; Deng, W. Very deep convolutional neural network-based image classification using small training sample size. In

Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November
2015; pp. 730–734.

5. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and less than 0.5 mb model size. arXiv 2016, arXiv:1602.07360.

6. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. arXiv
2017, arXiv:1707.01083.

7. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2020, arXiv:1905.11946.
8. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
9. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2014.

10. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A survey of model compression and acceleration for deep neural networks. arXiv 2017,
arXiv:1710.09282.

11. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

Sensors 2021, 21, 7529 17 of 17

12. Courbariaux, M.; Bengio, Y.; David, J.-P. Binaryconnect: Training deep neural networks with binary weights during propagations.
In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12
December 2016.

13. Nahshan, Y.; Chmiel, B.; Baskin, C.; Zheltonozhskii, E.; Banner, R.; Bronstein, A.M.; Mendelson, A. Loss aware post-training
quantization. arXiv 2020, arXiv:1911.07190.

14. Long, X.; Zeng, X.; Ben, Z.; Zhou, D.; Zhang, M. A novel low-bit quantization strategy for compressing deep neural networks.
Comput. Intell. Neurosci. 2020, 2, 1–7. [CrossRef] [PubMed]

15. Deng, X.; Zhang, Z. An embarrassingly simple approach to training ternary weight networks. arXiv 2020, arXiv:2011.00580.
16. Shayer, O.; Levi, D.; Fetaya, E. Learning discrete weights using the local reparameterization trick. arXiv 2018, arXiv:1710.07739.
17. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-Net: Imagenet Classification Using Binary Convolutional Neural Networks;

Springer: Cham, Swizterland, 2016.
18. Zhou, Y.; Moosavi-Dezfooli, S.-M.; Cheung, N.-M.; Frossard, P. Adaptive quantization for deep neural network. arXiv 2017,

arXiv:1712.01048.
19. Stock, P.; Joulin, A.; Gribonval, R.; Graham, B.; Jegou, H. And the bit goes down: Revisiting the quantization of neural networks.

arXiv 2020, arXiv:1907.05686.
20. Buciluundefined, C.; Caruana, R.; Niculescu-Mizil, A. Model compression. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Ser. KDD’06, New York, NY, USA, 20–23 August 2006; pp. 535–541.
21. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
22. Cho, J.H.; Hariharan, B. On the efficacy of knowledge distillation. In Proceedings of the 2019 IEEE/CVF International Conference

on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.
23. Lu, Y.; Kumar, A.; Zhai, S.; Cheng, Y.; Javidi, T.; Feris, R. Fullyadaptive feature sharing in multi-task networks with applications in

person attribute classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2016.

24. Denton, E.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within convolutional networks for efficient
evaluation. In Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 1 (NIPS’14),
Montreal, QC, Canada, 8–13 December 2014; pp. 1269–1277.

25. Kholiavchenko, M. Iterative low-rank approximation for CNN compression. arXiv 2020, arXiv:1803.08995.
26. Sankararaman, K.A.; De, S.; Xu, Z.; Huang, W.R.; Goldstein, T. The impact of neural network overparameterization on gradient

confusion and stochastic gradient descent. arXiv 2020, arXiv:1904.06963.
27. Huynh, T.Q.; Setiono, R. Effective neural network pruning using cross-validation. In Proceedings of the 2005 IEEE International

Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; Volume 2, pp. 972–977.
28. Ding, X.; Ding, G.; Zhou, X.; Guo, Y.; Han, J.; Liu, J. Global sparse momentum sgd for pruning very deep neural networks. arXiv

2019, arXiv:1909.12778.
29. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. In Proceedings of the

28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015.
30. Reed, R. Pruning algorithms—A survey. IEEE Trans. Neural Netw. 1993, 4, 740–747. [CrossRef]
31. Chang, J.; Sha, J. Prune deep neural networks with the modified l1/2 penalty. IEEE Access 2019, 7, 2273–2280. [CrossRef]
32. Mozer, M.C.; Smolensky, P. Skeletonization: A technique for trimming the fat from a network via relevance assessment. In

Proceedings of the 1st International Conference on Neural Information Processing Systems, Ser. NIPS’88; MIT Press: Cambridge, MA,
USA, 1988; pp. 107–115.

33. Augasta, M.; Kathirvalavakumar, T. A novel pruning algorithm for optimizing feedforward neural network of classification
problems. Neural Process. Lett. 2011, 34, 241–258. [CrossRef]

34. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2016, arXiv:1409.1556.
35. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2015.
36. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.

arXiv 2016, arXiv:1602.07261.
37. Barry, D.; Shah, M.; Keijsers, M.; Khan, H.; Hopman, B. xyolo: A model for real-time object detection in humanoid soccer on

low-end hardware. arXiv 2019, arXiv:1910.03159.
38. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 14 July 2021).
39. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 14 July 2021).
40. Geiger, L.; Team, P. Larq: An open-source library for training binarized neural networks. J. Open Source Softw. 2020, 5, 1746.

[CrossRef]
41. Novikov, A.; Izmailov, P.; Khrulkov, V.; Figurnov, M.; Oseledets, I. Tensor train decomposition on tensorflow (t3f). J. Mach. Learn.

Res. 2020, 21, 1–7. Available online: http://jmlr.org/papers/v21/18-008.html (accessed on 16 July 2021).
42. Google Coral Products Page. Available online: https://coral.ai/docs/dev-board/datasheet/ (accessed on 30 September 2021).

Appendix 2

II

O. A. Ademola, P. Eduard, and L. Mairo, “ Ensemble of tensor train decom-position and quantization methods for deep learning model compression,”in 2022 International Joint Conference on Neural Networks (IJCNN),, pp.1–6, IEEE, 2022

101

Ensemble of Tensor Train Decomposition and
Quantization Methods for Deep Learning Model

Compression
Olutosin Ajibola Ademola

Department of Computer Systems
Tallinn University of Technology

Embedded AI Research Laboratory
Ehitajate tee 5, 19086 Tallinn, Estonia

olutosin.ademola@taltech.ee

Petlenkov Eduard
Department of Computer Systems
Tallinn University of Technology

Centre for Intelligent Systems
Ehitajate tee 5, 19086 Tallinn, Estonia

eduard.petlenkov@taltech.ee

Leier Mairo
Department of Computer Systems
Tallinn University of Technology

Embedded AI Research Laboratory
Ehitajate tee 5, 19086 Tallinn, Estonia

mairo.leier@taltech.ee

Abstract—We have seen tremendous growth in the adoption of
convolutional neural networks (CNNs) over the years in solving
real-world problems such as image analysis, object detection,
auto-translation, etc. This exponential growth has been due to
the unprecedented outcomes achieved over traditional methods.
However, these remarkable achievements come at a cost. Convo-
lutional neural networks are memory intensive, computationally
expensive, and usually cause the underlying pieces of hardware
running the models to consume an excessive amount of power
during inference. These factors impede its deployment in mobile
and embedded applications due to the availability of limited
hardware resources. To address this problem, different methods
for compressing deep learning models have been presented in
different works. In this paper, we propose an approach to further
improve the compression results. Our approach leverages an
ensemble of two model compression methods — tensor train
decomposition and 8-bit integer quantization. Our goal is to
demonstrate the efficiency and effectiveness of the ensemble
technique by applying it to the baseline CNN model trained
on our dataset. We compared the performance of the baseline
and compressed model produced by the ensemble. We achieved
a 57x reduction in model size compared with 4x and 17x com-
pression factors that would have been achieved with either only
quantization or tensor train decomposition methods respectively.
We further demonstrated an end-to-end trainable pipeline for
training any CNN model based on our proposed method.

Index Terms—model compression, an ensemble of compression
methods, 8-bit quantization, tensor train representation, and
tensor decomposition.

I. INTRODUCTION

Convolutional neural networks have gained traction over
the years in solving problems related to vision processing
(e.g., image recognition, pose estimation, object detection,
etc.) as a result of the remarkable results shown over non-
deep learning-based methods. This landmark was achieved
due to the availability of powerful processing units, a large
number of datasets, the capability of the networks to learn

This work was fully funded by the IT Academy Programme, Estonia. We
also want to express our gratitude to the Estonian Research Council for
partially supporting this work through the grant PRG658.

automatically, and most importantly the complexity of the
network architectures used in generating the models.

Owing to this breakthrough, there has been a shift from
classical computer vision/machine learning-based models run-
ning in edge applications to deep learning-based models (e.g.,
CNN). However, there are impeding factors hindering this
transition such as the computation & storage cost, runtime
memory usage, and the power requirements of the CNN mod-
els [1]. As such, few compression techniques (e.g., binariza-
tion, pruning, quantization, tensor decomposition, clustering,
distillation, etc.) have been proposed to address these factors
[2].

The performance of the compressed models varies with the
compression techniques. In this paper, we present an ensemble
of tensor train decomposition and 8-bit quantization methods
for compressing large CNN models. This method offers a deep
compression of more than a factor of 20x when compared
with the individual compression method such as binarization,
quantization, tensor decomposition, distillation, pruning, etc.
This allows low-power and resource-constrained devices such
as micro-controllers and other portable/small devices to run
deep learning models seamlessly and efficiently.

The choice of the compression methods to coalesce was
inspired by the results produced based on the weighted score-
based ranking scheme proposed by [3].

II. RELATED WORK

Deep learning models (e.g., CNN) have been proven to be
very efficient in solving vision-based tasks such as image
recognition [4]. This efficiency comes at some cost (e.g.,
computation, memory, energy, time, etc.). This has hindered
its application in portable devices [5]. Different methods have
been proposed for optimizing these large models for the
devices and have shown remarkable results. However, the
performance of the optimized models usually varies with the
compression methods.

The variation in performance of the compressed model
is dependent on the layers (i.e., convolutional or fully con-

978-1-7281-8671-9/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-7
28

1-
86

71
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
55

06
4.

20
22

.9
89

26
26

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 27,2024 at 17:20:28 UTC from IEEE Xplore. Restrictions apply.

nected layers) being optimized by the compression techniques.
The objectives of optimization also vary (e.g., model size,
bandwidth, energy consumption, runtime memory, accuracy,
inference speed, etc.) [3]. In the works of [6] [7] [8], the
network weights that are inconsequential to the network output
are pruned (i.e., set to zero) resulting in a small network. [9]
implemented a structured-based pruning by eliminating the
low-rank kernel filters of the convolutional layers.

By default, the parameters (e.g., weights, biases, activations,
etc.) of the networks are encoded in 32-bit floating point, [10]
[11] [12] showed the possibility of compressing the networks
by using a low precision fixed-point bit-width to represent
these parameters. [13] [14] trained deep networks with weights
constrained to 1 bit (i.e., -1 and +1) respectively. However, the
extreme case of quantization (i.e., binarization) usually hurts
the model accuracy, especially when the first & last layers are
binarized. This is due to the level of sensitivity of both layers
to binarization.

Another method proposed for deep neural network compres-
sion is the matrix decomposition/factorization technique. This
method treats each layer of the network as matrices/tensors
(e.g., dense and convolutional layers). It involves computing an
approximation of the matrices/tensors using numerical meth-
ods. The approximated matrices/tensors are usually compact
and require lesser parameters, hence, producing a smaller
and faster network. [15] proposed a low-rank approximation
method for factorizing the convolutional filters. [16] [17] [18]
applied tensor decomposition methods to the dense layer of
the network resulting in a smaller network size with a 1-2%
drop in accuracy.

In this paper, we propose an ensemble of tensor train de-
composition and 8-bit quantization for deep compression and
acceleration of deep learning models for resource-constrained
hardware.

III. TENSOR TRAIN DECOMPOSITION

A tensor is a higher-order array, as such, the combination
of the factors of this tensor is referred to as a tensor train.
Tensor Train decomposition (TT-decomposition) factorises a
tensor into sub-tensors (i.e., low-rank cores or factors) with
each core being the low-rank representation of the decomposed
tensor. There are different layers in a convolutional neural
network, however, the computational and memory resources
requirements of each layer vary.

The dense and convolutional layers of the network are the
most computational and memory hungry. However, the dense
layer hogs more memory than the convolutional layer because
it stores about 90% of the overall network weights. This
layer also accounts for a less percentage of the total floating-
point operations during propagation when compared with the
convolutional layer. This gives us the opportunity to explore
and exploit the layer for further optimization.

The weights vectors of all the neurons of the dense layer
can be treated as a matrix, as such, we can transform this
weights matrix into its TT-representation. This compact format
which is controlled by the TT-ranks allows us to represent the

weights tensor with fewer amount of parameters (i.e., weights
and biases), hence, reducing the size of the memory needed
to store the weights and accelerating computation.

A. TENSOR TRAIN REPRESENTATION

Given a weight matrix W of shape (I and J corresponding
to rows and columns of the matrix), we can transform W
into a tensor W . The tensor W is converted into its TT-
representation. W is formed by combining the indexes (ai(m)
& bj(n) where m & n are the row and column indices and i
& j are the rows and columns respectively).

A tensor is represented in its TT format using cores or
factors. Each core has a size of (rn−1 × rn) where r0 (i.e., the
TT-rank of the first core) and rn (i.e., the TT-rank of the last
core) are equal to 1 (i.e., r0 = rn = 1). The number of cores
scales linearly with the dimension of the input tensor (i.e., Gi

∈ [G1,...,Gn] where n is the dimension of the tensor).
Given a 4D tensor T decomposed into its four cores

(G1,...,G4), we can compute the elements of tensor T from
the four cores using Equation (1):

T (i1,i2,i3,i4) =

R2∑

r1

R2∑

r2

R3∑

r3

G1(i1r1).

G2(r1i2r2).G3(r2i3i3).G4(r3i4) (1)

where T is the 4D tensor, in represents the tensor element
index, rn corresponds to the TT-ranks of the cores, Ri are the
compressed/contracted hidden indices, and Gi are the TT-cores
or factors. The amount of computational and storage resources
needed by the cores scales with the r (i.e., the maximal TT-
rank), as such, must be kept as small as possible.

IV. QUANTIZATION

There are different layer operations that are performed in a
deep neural network. A typical convolutional neural network
involves operations such as pooling, convolution, activation,
linear transformation etc. These operations are performed on
the parameters of the network in each layer as shown in Figure
1. These parameters (e.g., weights, biases, activations, input,
and output) are of float data types encoded in 32-bit.

Quantization reduces a full precision 32-bit float parameter
to a small bit width (e.g., 1, 2, 3, 4, 8, etc.).

Fig. 1. The figure shows the different types of layer operations that are
performed in a typical convolutional neural network.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 27,2024 at 17:20:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. A figure showing the conversion of 32-bit floating-point values to
8-bit unsigned integer quantized range.

The lower the number of bits that represents each network
parameter, the lower the storage cost and the faster the
computation in the layer.

This reduction often leads to a little degradation in model
performance (i.e., accuracy) which is usually within an ac-
ceptable limit. However, this acceptance limit is application-
specific. To mitigate the decrease in model accuracy, we
quantized all the network parameters except the input and
output tensors. This allows the model to behave closely to
the uncompressed 32-bit float model.

Given a 32-bit input float tensor Xf (e.g., the weight
matrix), each weight can be quantized to an 8-bit unsigned
integer using both Equation (2) and Equation (3):

mf =
27−1

2

max(|Xf |)
(2)

q8bit = round(mfXf) (3)

where mf is the scaling factor or multiplier and q8it is the
quantized output whose boundary is restricted by the absolute
value of Xf as shown in Figure 2.

V. ENSEMBLE OF TENSOR TRAIN AND 8-BIT
QUANTIZATION

The Ensemble technique has been proven to be a very
effective approach to improving machine learning model ac-
curacy. The idea of the ensemble in relation to machine
learning involves combining different models trained on the
same dataset such that the final prediction is the average
of the predictions made by the different models. It has also
been shown that instead of combining multiple models during
inference due to the computational and memory requirements,
the information (i.e., model expressiveness) of the ensemble
can be distilled to a single model.

The Ensemble technique is usually adopted when there are
different possibilities (i.e., methods) to solve a problem or
improve an existing solution. It is also mandatory for these
methods to be capable of being integrated either in a sequential
or parallel manner. This is valid for large model compression
because different methods can be combined sequentially (i.e.,
one method compresses the original model and the resulting
model is further compressed by another compression method).
However, the resulting model format must be supported by
the other compression method. In this paper, our approach
leverages an ensemble of tensor train decomposition and 8-bit
quantization methods as shown in Figure 3.

Fig. 3. A block representation of our trainable end-to-end compression
pipeline using an ensemble of tensor train decomposition and 8-bit quan-
tization methods.

TABLE I
BASE CNN MODEL ARCHITECTURE.

Layer Type Output Size Parameters
CONV2D (None, 64, 64, 32) 864

BN (None, 64, 64, 32) 96
MAXPOOL2D (None, 32, 32, 32) 0

CONV2D (None, 32, 32, 64) 18432
BN (None, 32, 32, 64) 192

MAXPOOL2D (None, 16, 16, 64) 0
CONV2D (None, 16, 16, 64) 36928

BN (None, 16, 16, 64) 192
FLATTEN (None, 16384) 0

DENSE (None, 64) 1048576
BN (None, 64) 192

DENSE1 (None, 11) 704
ACTIVATION (None, 11) 0

TOTAL PARAMETERS 1106209

The end-to-end model compression pipeline using an en-
semble of tensor train decomposition and 8-bit quantization is
described in Figure 4. This pipeline is trainable (i.e., the com-
pression operations are implemented during model training).
The first block of the pipeline is the base model. This has a
set of convolution and dense blocks as shown in Table I. The
architecture of the baseline model was inspired by the work of
[3]. The tensor train block compresses the weights matrix of
the dense layer of the base network. This results in a compact
model (i.e., a tensortrained model with a reduced number of
parameters). The 8-bit quantization block transforms the tensor
trained model parameters (i.e., weights, biases, and activations)
from their 32-bit representations to 8-bit unsigned integer
values. This results in a deeply compressed model without
a significant decrease in accuracy when compared with the
baseline model.

VI. EXPERIMENTS
Tensor train decomposition transforms a network layer into

a tensor train layer. The resulting network is referred to as
a TT-network. The parameters of the tensor train layer (TT-
layer) need to be configured just like any layer of the network.
These parameters include the maximal tensor train ranks of
the weight tensors and the dimensions of both the input &
output tensors of the layer. The baseline network as described
in Table I has a single dense layer in its hidden layer. This
layer accounts for 94.79% (1048576/1106209 parameters) of
the total parameters of the network. The dense layer transforms
an input vector of size (16384) to an output vector of size (64).

We applied tensor train decomposition to the dense layer of
the baseline model.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 27,2024 at 17:20:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. An end-to-end trainable pipeline of compressing a model using an ensemble of Tensor Train decomposition and 8-bit quantization.

TABLE II
THE DIFFERENT PARAMETERS CONFIGURATION OF THE TT-LAYER

Configuration TT-layer Parameters
Type TT-ranks Input dims Output dims
TT-1 4 (16,16,8,8) (4,4,2,2)
TT-II 6 (16,16,8,8) (4,4,2,2)
TT-III 8 (16,16,8,8) (4,4,2,2)
TT-IV 10 (16,16,8,8) (4,4,2,2)
TT-V 4 (16,8,16,8) (4,2,4,2)
TT-VI 6 (16,8,16,8) (4,2,4,2)
TT-VII 8 (16,16,8,8) (4,4,2,2)
TT-VIII 10 (16,16,8,8) (4,4,2,2)
TT-IX 4 (64,2,64,2) (8,1,8,1)
TT-X 6 (64,2,64,2) (8,1,8,1)
TT-XI 8 (64,2,64,2) (8,1,8,1)
TT-XII 10 (64,2,64,1) (8,1,8,1)

This decomposition transforms the dense layer into a TT-
layer with fewer parameters while maintaining the expressive-
ness of the layer.

We experimented with the different values of the TT-layer
parameters as shown in Table II. We trained the model so that
we can use small TT-ranks because it controls the compression
efficiency, and hence, a small TT-rank is desirable.

The low-rank assumption inherited by the model during
training is minimised by the optimizer. We trained several
models using the different configurations of the TT-layer to
generate different tensor trained models as shown in Table
III. We quantized the parameters of the best tensor trained
model to their 8-bit unsigned integer representations to achieve
a more compact model without a significant decrease in the
model performance.

Our end-to-end trainable pipeline of the ensemble of tensor
train decomposition and 8-bit unsigned integer quantization
was implemented in the T3F framework [19]. T3F is an open-
source tensor train decomposition library built on Keras [20]
and TensorFlow [21].

VII. RESULT AND DISCUSSION

We evaluated the performance of the models — baseline,
quantized only, tensor trained only, and the quantized tensor
trained generated by our ensemble approach. We based our
evaluation on five key performance indicators — model size,
accuracy, model speed, computational cost (total number of
floating-point operations during a single forward pass), and
the peak runtime memory footprint during inference. All the
models were evaluated on the Coral development board having
quad Cortex-A53 & Cortex-M4F processors with an integrated
edge tensor processor unit (TPU) [22].

To compress the baseline model efficiently, the appropriate
TT-layer parameters setting is required. This is the same as
fine-tuning any deep learning model using a domain-residual
approach during training. We experimented with different
parameter values as shown in Table II. Each configuration type
(e.g., TT-I, TT-II, TT-III, etc.) results in a tensor trained model.
These models were evaluated and ranked using a weighted
score-based ranking method to obtain the TT-layer configura-
tion that yields the most optimal tensor trained model. The
tensor trained model generated by the TT-V configuration
type ranked highest, hence, was selected as the values for the
parameters of TT-layer for compression.

The baseline model was compressed using the TT-V con-
figuration type obtained via fine-tuning. The resulting tensor
trained model was quantized into its 8-bit unsigned integer
representation. This yields a deep compressed model (i.e., a
quantized tensor trained model produced by the ensemble of
tensor train decomposition and 8-bit quantization methods).

We compared the performance of the QuanTT model (i.e.,
the quantized tensor trained model) trained on our dataset
with the baseline model as shown in Table IV. Our results
showed that QuanTT model achieves an accuracy of 69.45%
on the test data compared with a 77.23% accuracy achieved by
the baseline model. This is approximately a 10% decrease in
the model accuracy. However, QuanTT model utilizes a peak
memory footprint of 1632.81KB, whereas the baseline model
uses 8907.81KB.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 27,2024 at 17:20:28 UTC from IEEE Xplore. Restrictions apply.

TABLE III
THE PERFORMANCE COMPARISON OF THE TENSOR TRAINED COMPRESSED MODELS WITH DIFFERENT CONFIGURATION

Configuration Key Performance Indicators
Type Model Size (KB) Peak Memory Footprint (KB) Accuracy% Model Speed (ms) Computational Cost (MFLOPs)
TT-I 243 3617.19 72.91 18.53 64.34
TT-II 250 3621.09 72.62 19.40 64.34
TT-III 259 3628.91 74.06 20.48 64.34
TT-IV 271 3644.53 70.32 21.80 64.34
TT-V 244 3613.28 73.48 18.48 64.34
TT-VI 251 3621.09 74.35 19.38 64.34
TT-VII 260 3632.81 72.62 20.38 64.34
TT-VIII 272 3640.62 70.89 21.78 64.34
TT-IX 278 3652.34 69.74 19.59 64.34
TT-X 321 3695.31 74.35 21.24 64.34
TT-XI 381 3746.09 74.92 23.21 64.34
TT-XII 458 3816.41 70.31 25.73 64.34

TABLE IV
THE PERFORMANCE COMPARISON OF THE UNCOMPRESSED AND COMPRESSED MODELS BASED ON KEY INDICATORS

Model Key Performance Indicators
Type Model Size (KB) Peak Memory Footprint (KB) Accuracy (%) Model Speed (ms) Computational Cost (MFLOPs)
Baseline 4429.61 8907.81 77.23 22.88 66.44
Quantized 1119.4 3705.47 76.95 13.65 7.29
Tensor trained 244 3613.28 73.48 18.48 64.34
QuanTT∗ 76.7 1632.81 69.45 12.89 7.06
∗ Quantized tensor trained model.

This is a 5x reduction in the model overall runtime memory
requirement. The QuanTT model is about 57x (i.e., 76.7 KB)
smaller in model size and 2x (12.89 ms) faster than the
baseline model whose model size and speed are 4429.61KB
and 22.88ms respectively. The total number of floating-point
operations of the baseline is about 9x greater than that of the
QuanTT model.

In this paper, we have shown the effectiveness of an
ensemble of tensor train decomposition and 8-bit quantization
methods for deep compression of CNN model that cannot fit
into the memory of mobile and embedded devices.

It is important to point out the limitation of one of the
proposed methods. There are limiting factors associated with
the application tensor train decomposition to the dense layers
of the networks. These limitations are choosing the appropriate
values of the input & output tensors dimensions and the TT-
ranks of the TT-layer. However, we demonstrated how we
addressed these using a fine-tuning approach as shown in Table
III.

VIII. CONCLUSION

Due to the success of CNN, we have seen rapid growth in its
adoption in different vision-based applications such as object
detection, image classification, text processing, etc. However,
there are impeding factors such as the memory and computa-
tional constraints that are limiting its adoption in mobile and
embedded applications. Different methods such as pruning,
quantization, binarization, tensor decomposition, knowledge
distillation etc. have been proposed in different works to
address these impeding factors. In this paper, we leverage an
ensemble of tensor train decomposition and 8-bit unsigned

integer quantization to further improve the compression results
of the existing methods.

The choice of compression methods is dependent on the
application requirements. These requirements determine the
optimization goals (e.g., accuracy, model speed, storage size,
runtime memory usage, FLOPs, etc.). Existing methods such
as pruning and clustering are excellent methods for model size
optimization but do not offer any benefit relating to speed,
FLOPs, and runtime memory usage improvement. Knowledge
distillation relies on the architecture of the student model and
the benefits offered are dependent on the architecture and the
capacity of the teacher model. Our approach leverages an
ensemble of tensor train decomposition and 8-bit quantization
methods that individually offers all the optimization goals i.
As such, combining these methods significantly improves the
overall performance of the compressed model.

We demonstrated the effectiveness and efficiency of our
proposed method by applying it to the baseline model in
Table I. However, any CNN model of choice (e.g., Mobilenet,
Restnet, Shuflenet, efficient, etc.) can be treated as the baseline
model. The dense layer of our baseline model is transformed
into a TT-layer. We fine-tuned the parameters of the TT-layer
to obtain the parameters that yielded the best compression
result as shown in Table II. We applied the best TT-layer con-
figuration to the baseline model and the parameters (excluding
the input and output tensors) of the tensor trained model
were quantized to their 8-bit representations. The quantized
tensor trained model achieved a 57x reduction in model size
compared to a 4x or 18x compression factor that would have
been achieved with either only 8-bit quantization or tensor

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 27,2024 at 17:20:28 UTC from IEEE Xplore. Restrictions apply.

train decomposition methods respectively.

REFERENCES

[1] N.O. Mahony, S. Campbell, A. Carvalho, , S. Harapanahalli, G. Velasco-
Hernández, L. Krpalkova,D. Riordan, & J. Walsh (2019). Deep Learning
vs. Traditional Computer Vision. CVC.

[2] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” 10 2017.

[3] O. A. Ademola, M. Leier, and E. Petlenkov, “Evaluation of Deep Neural
Network Compression Methods for Edge Devices Using Weighted
Score-Based Ranking Scheme,” Sensors, vol. 21, no. 22, p. 7529, Nov.
2021, doi: 10.3390/s21227529.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Ima-
geNet classification with deep convolutional neural networks. In Pro-
ceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1 (NIPS’12). Curran Associates Inc., Red
Hook, NY, USA, 1097–1105.

[5] Mahony, Niall O’ et al. “Deep Learning vs. Traditional Computer
Vision.” CVC (2019).

[6] T. Q. Huynh and R. Setiono, “Effective neural network pruning using
cross-validation,” in Proceedings. 2005 IEEE International Joint Confer-
ence on Neural Networks, 2005., vol. 2, 2005, pp. 972–977 vol. 2.

[7] X. Ding, G. Ding, X. Zhou, Y. Guo, J. Han, and J. Liu, “Global sparse
momentum sgd for pruning very deep neural networks,” 2019.

[8] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” 2015.

[9] J. Chang and J. Sha, “Prune deep neural networks with the modified
l1/2 penalty,” IEEE Access, vol. 7, pp. 2273–2280, 2019.

[10] Y. Nahshan, B. Chmiel, C. Baskin, E. Zheltonozhskii, R. Banner, A. M.
Bronstein, and A. Mendelson, “Loss aware post-training quantization,”
2020.

[11] X. Long, X. Zeng, Z. Ben, D. Zhou, and M. Zhang, “A novel low-bit
quantization strategy for compressing deep neural networks,” Computa-
tional Intelligence and Neuroscience, vol. 2020, pp. 1–7, 02 2020.

[12] O. Shayer, D. Levi, and E. Fetaya, “Learning discrete weights using the
local reparameterization trick,” 2018.

[13] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” 2016.

[14] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
2016.

[15] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob
Fergus. 2014. Exploiting linear structure within convolutional networks
for efficient evaluation. In Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume 1 (NIPS’14).
MIT Press, Cambridge, MA, USA, 1269–1277.

[16] Dechun Song, Peiyong Zhang, and Feiteng Li. 2020. Speeding Up Deep
Convolutional Neural Networks Based on Tucker-CP Decomposition. In
Proceedings of the 2020 5th International Conference on Machine Learn-
ing Technologies (ICMLT 2020). Association for Computing Machinery,
New York, NY, USA, 56–61.

[17] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting
linear structure within convolutional networks for efficient evaluation,”
in Advances in Neural Information Processing Systems, vol. 2. Neural
information processing systems foundation, 2014, pp. 1269–1277, 28th
Annual Conference on Neural Information Processing Systems 2014,
NIPS 2014 ; Conference date: 08-12-2014 Through 13-12-2014.

[18] M. Kholiavchenko, “Iterative low-rank approximation for CNN com-
pression,” 2019.

[19] A. Novikov, P. Izmailov, V. Khrulkov, M. Figurnov, I. Oseledets, Tensor
train decomposition on tensorflow (t3f). J. Mach. Learn. Res. 2020, 21,
1–7, Available online: http://jmlr.org/papers/v21/18-008.html (accessed
on 16 July 2021).

[20] F. Chollet, Keras. 2015. Available online: https://github.com/fchollet/
keras (accessed on 14 July 2021).

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G.S. Corrado, A. Davis, J. Dean, M. Devin. ”TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems”. 2015. Available online:
tensorflow.org (accessed on 14 July 2021).

[22] Google Coral Products Page. Available online: https://coral.ai/docs/
dev-board/datasheet/ (accessed on 30 September 2021).

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 27,2024 at 17:20:28 UTC from IEEE Xplore. Restrictions apply.

Appendix 3

III

O. A. Ademola, E. Petlenkov, and M. Leier, “Resource-aware scene textrecognition using learned features, quantization, and contour-based char-acter extraction,” IEEE Access, 11:56865–56874, 2023

109

Received 8 May 2023, accepted 28 May 2023, date of publication 7 June 2023, date of current version 13 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3283931

Resource-Aware Scene Text Recognition Using
Learned Features, Quantization, and
Contour-Based Character Extraction
OLUTOSIN AJIBOLA ADEMOLA 1, EDUARD PETLENKOV 2, (Member, IEEE),
AND MAIRO LEIER 1
1Embedded AI Research Laboratory, Department of Computer Systems, Tallinn University of Technology, 19086 Tallinn, Estonia
2Centre for Intelligent Systems, Department of Computer Systems, Tallinn University of Technology, 19086 Tallinn, Estonia

Corresponding author: Olutosin Ajibola Ademola (olutosin.ademola@taltech.ee)

This work was supported in part by the ‘‘Information and Communications Technology (ICT) Program’’ through the European Union via
the European Social Fund, in part by the Innovation Fund Denmark under the Project ‘‘Green Roll-on/Roll-off (RORO) Shipping through
Digital Innovation (ROROGREEN)’’ under Grant 0177-00022B, and in part by the Estonian Research Council under Grant PRG658.

ABSTRACT Scene texts serve as valuable information for humans and autonomous systems to make
informed decisions. Processing scene texts poses significant difficulties for computer systems due to several
factors, primarily due to variations in image characteristics. These factors make it very challenging for
computer systems to accurately detect and interpret scene texts, despite being easily understandable to
humans. To address this problem, scene text detection and recognition methods leverage computer vision
and/or deep learning methods. Deep learning methods require substantial resources, including computing
power, memory, and energy. As such, their use in real-time embedded applications, particularly those that run
on integer-only hardware, is very challenging due to the resource-intensive nature of these methods. In this
paper, we developed an approach to address this challenge and to showcase its effectiveness, we trained
end-to-end models for shipping container number detection and recognition. By doing so, we were able to
demonstrate the accuracy and reliability of our proposed method for processing scene texts on integer-only
hardware. Our efforts to optimize the models yielded impressive results. We reduced the model size by a
factor of 3.8x without significantly affecting the models’ performance.Moreover, the optimizedmodels were
1.6x faster, and the maximum RAM usage was 6.6x lower than the base models. These results demonstrate
the efficiency and practicality of our approach for scene text processing on integer-only embedded hardware.

INDEX TERMS Deep learning model quantization, integer-only hardware, resource-constrained devices,
scene text detection, scene text recognition.

I. INTRODUCTION
We carried out a thorough review of journal search and index-
ing databases to examine current state-of-the-art methods for
scene text detection and recognition. Based on our analysis,
we found that no prior work has been done to address the
challenges of implementing these methods on integer-only
embedded hardware. This highlights the significance and
novelty of this research work.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

The emergence of resource-efficient hardware for deep
learning applications, which only supports integer-based
operations and operates under stringent storage, memory,
and computational power constraints, has been a significant
development.
The possibility of accurately detecting and recogniz-

ing text in natural scene images has created endless use
cases in different embedded applications. One predominant
area is autonomous systems. Autonomous systems have a
wide range of applications and one of the most promi-
nent areas is their use in various tasks that require intelli-
gent decision-making capabilities. These tasks may involve

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 56865

O. A. Ademola et al.: Resource-Aware Scene Text Recognition

intelligent navigation, traffic management, parcel sorting,
ticketing, natural language translation, and guiding systems,
among others.
Scene text detection and recognition techniques are based

on computer vision and/or deep learning methods, and deep
learning methods are resource intensive in terms of comput-
ing power, memory, and energy usage. Consequently, imple-
menting these methods in real-time embedded applications,
particularly those that operate on integer-only hardware, can
be highly challenging due to these resource requirements.
Different methods have been proposed for text detection in
natural scenes [1], [2], [3].
Classic methods (i.e., computer vision-based techniques)

utilize sliding windows or connected component analysis to
detect the region of text [4], [5], [6], [7]. The sliding window
uses a window of multiple scales that moves through the
receptive field of the image. The receptive regions (i.e., the
text region candidates) are cropped and a machine learn-
ing classifier such as Support Vector [8], Random Forest
[9], or AdaBoost [10], etc., is trained to predict the text
candidates.
Connected component analysis utilizes manual filters to

extract salient features such as edges, text texture, boundary
points, and text color, among others, from images. These
features are used to train a machine learning model [11], [12],
[13], [14].
Due to the rise in the adoption of deep learning technology

influenced by improved computing resources, availability of
big data, etc., unparalleled results have been achieved in
almost all computer vision-related tasks that require artificial
intelligence such as scene text detection, text recognition,
image classification, multi-object detection, etc [15].
Deep learning methods outperform computer vision-based

methods because distinctive features are automatically
learned using kernel filters instead of relying on manually
designed filters to extract fundamental features. As the tasks
becomemore complex, such as in the case of scene text where
there are variations in light intensity, surface roughness,
low-quality images, etc., the effectiveness of hand-crafted
filters tends to decrease. This is because these filters are not
able to handle the intricacies of such complex tasks, thus,
leading to reduced efficiency.
Several deep learning-based algorithms have been pro-

posed for detecting scene text [16], [17], [18], [19], [20].
These methods rely on state-of-the-art region-based convolu-
tional neural network frameworks for object detection. The
region proposal network is responsible for computing the
objectness score of the region containing the text region using
sets of predetermined anchors. Proposed regions, also known
as anchors, are cropped and then fed into the fully connected
layer to predict the location of the text region.
Other deep learning methods proposed involve the use of

state-of-the-art image segmentation algorithms that classify
the text using pixels such that the pixels of the regions con-
taining text are classified as the text class and vice-versa [21],
[22], [23], [24], [25].

The high computational andmemory requirements of these
methods make them expensive, which limits their use in
embedded applications running on integer-only hardware.
Our proposedmethod for scene text detection and recognition
involves using learned features, a quantization technique with
offset, and contour-based character extraction. Our method is
designed to be resource-aware, making it suitable for use in
integer-only hardware where resources such as memory and
compute power are limited.
In summary, our main contributions are as follows:
• We introduced an 8-bit quantization technique for text
detection and recognitionmodels. This makes it possible
to deploy the models on embedded hardware that only
supports integer operations, without a notable drop in
performance.

• We introduced a quantization bias to the ground-truth
labels to offset the quantization-induced error and
improve the accuracy of the models.

• We introduced a module specifically for text orientation
detection to improve our recognition pipeline’s abil-
ity to process text that is oriented both vertically and
horizontally.

This paper is divided into several sections, each focusing
on different aspects of scene text detection and recognition.
The first section provides an introduction, which includes a
discussion of existing methods and their limitations, as well
as the potential use cases for autonomous systems. Addi-
tionally, this section highlights our novel contributions to
addressing the challenges of deploying these methods on
integer-only hardware.
In section two, we describe the problems associated with

implementing text detection and recognition models on
integer-only embedded hardware.We also explain the novelty
of our work and the need for resource-efficient solutions.
Section three provides a comprehensive review of the state-

of-the-art methods for scene-text detection and recognition,
highlighting the limitations of each approach. In section four,
we present our proposed method in detail, which addresses
the challenges of deploying scene text detection and recogni-
tion models on integer-only embedded hardware.
Section five discusses the dataset used in our experiments,

its source, and the development hardware we used. In sec-
tion six, we present the results of our experiments in detail.
Finally, section seven provides a concluding discussion on
the need for resource-aware text detection and recognition,
the effectiveness of our proposed method, and a summary of
the results achieved.

II. PROBLEM STATEMENT
There are numerous potential applications for scene text
detection and recognition in real-time embedded systems.
In this section, we will showcase a case study to illus-
trate this point. In Fig. 1, there are different trucks carrying
shipping containers. The containers have unique identifica-
tion numbers, known as cargo identification numbers, which
consist of both numbers and letters.

56866 VOLUME 11, 2023

O. A. Ademola et al.: Resource-Aware Scene Text Recognition

FIGURE 1. Text detection and recognition stages involved in textual information extraction in natural scene images.

Our goal is to efficiently and accurately track every con-
tainer being transported from the port terminal to the decks
of the ship. This ensures that each container, regardless of its
size or type, is placed on the designated deck. This objective
arises from the need for proper stowage management, which
is critical for ensuring the safety of the crew and the success-
ful delivery of the transported containers containing valuable
goods.
Identifying containers by their unique cargo identification

number presents a challenge in text detection and recognition.
While we have reviewed existing methods, none of them
meet the specific needs of our use case. Our requirements are
particularly strict, as we need a solution that is compatible
with integer-only hardware and efficient in terms of storage,
computational power, and memory usage.

III. STATE OF THE ART
Scene text recognition methods rely on text detection algo-
rithms. As such, the accuracy depends on how accurately
the region of interest is estimated. In this section, we will
discuss the state-of-the-art methods for scene text detection
and recognition.
As discussed in the introduction section, scene text

detection and recognition methods are based on two
techniques —computer vision [4], [5], [6] and deep learning
[17], [19], [25]. Deep learning methods have been proven
to outperform computer vision-based approaches [26], [27],
[28], therefore, our work focuses on deep learning-based
techniques.

A. TEXT DETECTION
Jaderberg et al. [16] proposed a single pipeline for text detec-
tion and recognition. The detection module in their approach
relies on a region proposal network. Another method, Deep-
Text [17], utilizes a unified framework that combines a con-
volutional neural network for region proposal and detection.
The region proposal component in DeepText employs an
inception module. In [18], the authors used Faster R-CNN for
detecting multi-orientation text. Faster R-CNN also incorpo-
rates a region proposal network.
Tian et al. [19] introduced CTPN (Connectionist Text

Proposal Network), a text proposal network that combines
convolutional neural network (CNN) and recurrent neural

network (RNN) with an anchor mechanism for fixed-width
proposals. Zhang et al. [21] combined a Fully Connected Net-
work (FCN) with text line hypotheses to detect multi-oriented
text. In [22], scene text detection was approached as a
segmentation problem, utilizing holistic and multi-channel
prediction.
TextEdge [24] implemented a multi-oriented FCN scene

text detector that employs region segmentation and edge
classification. Zhou et al. [25] introduced EAST, an Efficient
and Accurate Scene Text detector, which utilizes a fully con-
volutional network for scene text detection. Rong et al. [29]
proposed a dense text localization network combined with
context reasoning for scene text retrieval.

B. TEXT RECOGNITION
Jaderberg et al. [16] introduced deep convolutional neural
networks for word-level recognition. Their approach differs
from our work, which employs a character-based classifier
for scene text recognition. In [26], an end-to-end text spotting
method was proposed, utilizing a convolutional recurrent
neural network. This unified pipeline requires both ground
truth labels for the scene text and bounding box labels.
Bagi et al. [30] introduced a lightweight text spotter that

utilizes a lightweight deep neural network for word-level
recognition. Cao et al. [31] employed a fully convolutional
neural network with an attention module for detecting small
text. In [29], the authors utilized a recurrent neural network
for the recognition module.
Liu et al. [32] introduced an adaptive bezier-curve network

for end-to-end text spotting. The text spotter was further
quantized with different bit widths to enhance the network’s
inference time. However, the emphasis was not placed on the
model size and peak runtime memory of the model.
Previous studies have shown that an end-to-end scene

text detection and recognition system can employ a single
pipeline for both tasks [33], [34], [35]. However, to cre-
ate a resource-efficient text detection and recognition model
suitable for hardware limited to integer operations, certain
requirements need to be fulfilled.
Firstly, the model should be lightweight, typically ranging

from a few kilobytes to megabytes in size. Secondly, it should
have a small memory footprint, typically a few kilobytes to
megabytes, to ensure compatibility with the device’s capacity.

VOLUME 11, 2023 56867

O. A. Ademola et al.: Resource-Aware Scene Text Recognition

Finally, the model must be optimized to exclusively sup-
port integer-based operations, aligning with the hardware’s
limitations.
The existing state-of-the-art methods are not well-suited

for implementation on integer-only hardware, such as Edge
TPUs or microcontrollers. In order to address this challenge,
we propose a deep learning-based method that is specifically
tailored for such hardware. Our approach takes advantage of
learned features, utilizes a quantization technique with offset,
and integrates contour-based character extraction.
By being resource-aware, our method is specifically

designed to be suitable for integer-only hardware, where lim-
itations in resources such as memory and compute power are
prevalent. This resource awareness allows our method to opti-
mize the utilization of available resources, making efficient
use of the limited memory and computational capabilities
of integer-only hardware. Thus, our method offers a viable
solution for enabling effective text detection and recognition
on integer-only embedded hardware.

IV. PROPOSED METHOD
A. OVERALL ARCHITECTURE
Scene text recognition methods typically follow a two-stage
approach, consisting of text detection and recognition stages,
as depicted in Fig. 1. During the text detection stage, the
system localizes the region of the text in the image by deter-
mining the bounding box coordinates. This stage is of utmost
importance as the subsequent recognition stage heavily relies
on accurate text detection.

FIGURE 2. The original EAST architecture [25].

B. TEXT DETECTION
Our text detection method is architecturally inspired by
the EAST (Efficient and Accurate Scene Text) model [25].
EAST, known as the Efficient and Accurate Scene Text
Detector, utilizes a fully convolutional neural network to pre-
dict the region of interest where text is present. EAST lacks a

FIGURE 3. The modified EAST architecture using ResNet50 [36] as the
base network for the extraction of features.

recognition module. We selected the EAST architecture due
to its excellent suitability for our specific use case. Moreover,
the EAST architecture seamlessly integrates into our pipeline,
as illustrated in Fig. 1.
Several factors influence the suitability and effective-

ness of scene text detectors in different applications, and
the characteristics and type of the scene text are particu-
larly influential. The architecture consists of three stages:
feature extraction, feature merging, and output generation,
as illustrated in Fig. 2.
In our modified architecture, we opted for ResNet-50 [36]

as the base network for feature extraction, deviating from
the original EAST architecture that employed PVANET [37],
as depicted in Fig. 3. Wemade this selection for the following
reasons:

• It is faster because it uses a 1 × 1 kernel filter in its
bottleneck design. This design reduces the number of
matrix multiplication and network parameters, there-
fore, reducing the time it takes during propagation.

• ResNet-50 uses a global average pooling rather than
fully connected layers. Thus, reduces the size of the
model.

• ResNet-50 generalized well on our dataset compared to
VGG16 and VGG19.

ResNet-50 is composed of 50 layers, which are divided
into five stages of convolution blocks. Fig. 4 illustrates this
architecture. The first stage contains a convolution block
with 64 filters of size 7 × 7 and a stride of 2, as well as a
max pooling layer with a stride of 2. The input image size is
‘‘320 px × 320 px.’’ The second stage comprises three sets
of three convolution blocks. These blocks consist of 64 filters
of size 1 × 1, 64 filters of size 3 × 3, and 512 filters of size

56868 VOLUME 11, 2023

O. A. Ademola et al.: Resource-Aware Scene Text Recognition

FIGURE 4. The architecture of ResNet50 used as the base network [36].

1 × 1. The third stage contains four sets of three convolution
blocks.
These blocks consist of 128 filters of size 1 × 1, 128 filters

of size 3 × 3, and 512 filters of size 1 × 1. The fourth
stage consists of six stacks of three convolution blocks. These
blocks consist of 256 filters of size 1 × 1, 256 filters of size
3 × 3, and 1024 filters of size 1 × 1. The fifth stage consists
of three stacks of three convolution blocks. These blocks
consist of 512 filters of size 1 × 1, 256 filters of size 3 × 3,
and 2048 filters of size 1 × 1. The feature merging stage uses
the intermediate output of each ResNet-50 stage to reduce the
computational complexity of processing all merged features
at once, as shown in Fig. 3.
The output of each stage is upsampled so that the output

size (i.e., the feature map size) will be of the same size as the
input of the stage for concatenation along the channel of the
feature maps. 1 × 1 and 3 × 3 kernel filters are applied. This
is repeated for the other stages. A 3× 3 kernel filter is applied
to the output of the last upsampled stage which serves as the
input of the output stage. The output stage consists of a series
of 1 × 1 kernel filters to produce the confidence score and
the coordinates of the region of interest of the text, as shown
in Fig. 3.
Our approach focuses primarily on obtaining two key

features: the confidence score of text presence, represented
by the score map, and the coordinates of the corresponding
bounding boxes. These bounding boxes can correspond to
horizontal or vertical text regions, as depicted in Fig. 5.
Accurately determining the bounding box type is a cru-

cial aspect of our method. We achieve this by utilizing the
bounding boxes generated at the output stage. The precise
estimation of the bounding box type plays a pivotal role in
the subsequent text recognition stage. It assists in correctly
identifying the first and last characters of a word, which is
essential for the reconstruction of the words.

C. QUANTIZATION
The parameters of the text detection model are typically
represented using 32-bit full-precision floating point values.
However, when it comes to quantization for integer-only
hardware, text detectors can be highly sensitive to dynamic
quantization, where only the model weights are integers, and
even more sensitive to full integer quantization, where all
parameters, including weights, biases, and activations, are

FIGURE 5. The horizontal and vertical text orientations.

FIGURE 6. Multiple bounding boxes overlapping the scene text caused by
quantization-induced error.

integers. To address this challenge, we introduced a quanti-
zation offset during the generation of ground-truth labels.
The purpose of the tolerance is to account for the error

introduced by quantization, as illustrated in Fig. 6. To ensure
compatibility with integer-only hardware, we applied quan-
tization to the text detection model using an 8-bit symmetric
signed integer quantizer.
The quantizer takes a 32-bit input float tensor Xf (e.g., the

weight matrix of the model), and each parameter is quantized
to an 8-bit signed integer using both ‘‘equation (1),’’ and
‘‘equation (2).’’

mf =

27−1
2

max(|Xf |)
, (1)

q8bit = round(mf Xf). (2)

VOLUME 11, 2023 56869

O. A. Ademola et al.: Resource-Aware Scene Text Recognition

FIGURE 7. The mapping of floating point weight values to 8-bit quantized
signed integer representations.

where mf is the scaling factor and q8it is the quantized output
whose range is limited by the absolute value of Xf as shown
in Fig. 7.

D. TEXT RECOGNITION
The text recognition stage relies on the output of the text
detection model as described in Fig. 1. The text recognition
pipeline has two phases (the preprocessing and recognition
phases) as shown in Fig. 8.

FIGURE 8. The two stages involved in text recognition.

The preprocessing phase determines the type of bounding
box (i.e., the text orientation) using the text coordinates pro-
duced by the detection model. This phase extracts the region
of interest from the image and removes unwanted contours.
The extraction method is based on a contour-based extrac-

tion algorithm that we developed. This algorithm computes
the contour of each character, discards unwanted contours,
and uses the computed contours to extract the characters.
The characters that have been extracted from the detected

text region are then inputted into the text recognition model.
The architecture of our lightweight text recognition model
incorporates convolutional and dense blocks, which are out-
lined in detail in Table 1. After the individual characters are
predicted, they are aggregated and combined to form the
complete recognized text, as shown in Fig. 1.
To ensure compatibility with integer-only hardware, the

text recognition model undergoes full quantization using the
8-bit symmetric signed integer quantizer. This quantization
process is defined by ‘‘equation (1)’’ and ‘‘equation (2)’’.

V. EXPERIMENTS
In our experiment, we utilized a dataset compris-
ing 2000 images. Out of these, 1500 images were allocated
for training the text detection model, while the remain-
ing 500 images were reserved for testing purposes. It is
important to note that the images used in this experiment are
proprietary and specifically developed for this project.
The input images for the text detection model were stan-

dardized to a size of 320 × 320 pixels. The dataset consists
of various images of containers, each displaying their unique
cargo identification number, as depicted in Fig. 1.
For the purpose of training our text recognition model,

we extracted a total of 8750 images. These images were

TABLE 1. Architecture of the text recognition model.

resized to a dimension of 64 pixels by 64 pixels. Each image
contained one of the 35 uppercase characters, including num-
bers (0-9) and letters (A-Z) excluding ‘O’. There were pre-
cisely 250 images per character, resulting in a well-balanced
dataset.
Out of the extracted images, we allocated 7000 for training

the text recognition model, while the remaining 1750 images
were set aside for testing purposes.
To ensure compatibility with our desired integer-only

model, we selected the Google Coral Development Board
as the target hardware. This board is equipped with Quad
Cortex-A53 and Cortex-M4F processors, along with an Edge
TPU coprocessor. Additionally, it provides 1 GB of RAM
and 8 GB of flash memory [38].
Our text detection and recognition models were trained

until no further improvements in performance were observed.
Nevertheless, we are unable to deploy these models on the
target hardware due to its support for only integer-based oper-
ations, as well as the strict requirements of our application,
which include a small model size footprint, fast inference,
high accuracy, efficient peak RAM usage, and computational
efficiency. Therefore, further optimization is necessary to
meet these requirements.
Quantization plays a significant role in the performance of

text detection and recognition models. It refers to the process
of reducing the precision of numerical values in amodel, typi-
cally from floating-point to integer representations. However,
quantization can introduce errors and affect the accuracy of
the models.
To overcome this challenge, we introduced a quantization

offset to the ground-truth labels. This offset is designed to
compensate for the errors induced by quantization, ensuring
that the model’s predictions align closely with the original
floating-point values.
By incorporating the quantization offset, we aim to min-

imize the impact of quantization on the performance of
our text detection and recognition models. This approach
allows us to achieve a balance between model optimization
for integer-only hardware and preserving the accuracy and
reliability of the model’s predictions.

56870 VOLUME 11, 2023

O. A. Ademola et al.: Resource-Aware Scene Text Recognition

We applied quantization to both the text detection
and recognition models, reducing the precision of the
model’s parameters such as weights, biases, and activations.
Specifically, the parameters were converted from their origi-
nal 32-bit floating-point representation to 8-bit signed integer
representations.
By quantizing the models, we aimed to make them com-

patible with integer-only hardware and improve their effi-
ciency in terms of memory usage and computational cost.
Quantization helps to reduce the model size and allows for
faster inference, making it suitable for resource-constrained
environments such as edge TPUs or microcontrollers.
The performance of the quantizedmodels was evaluated by

measuring their accuracy and overall effectiveness using five
key evaluation metrics as described in Table 2 and Table 3.
These metrics include the model performance, peak RAM
footprint, model size, computational cost, and inference time.
The evaluation considered the performance metrics out-

lined in Table 2 and Table 3, allowing us to analyze and
compare the impact of quantization on various aspects of the
model’s performance.
By examining these metrics, we gained deep insights

into the trade-offs and improvements achieved through
the quantization process, enabling us to make informed
decisions regarding the suitability of the models for
resource-constrained hardware.

TABLE 2. Performance evaluation metrics for validating quantized model
applicability.

TABLE 3. Performance evaluation metrics for validating quantized model
applicability.

VI. RESULT AND DISCUSSION
Recognizing text in natural scenes is a challenging task
due to several factors, including variations in image quality,
diverse device types, varying lighting conditions, different
text orientations, and the presence of clustered text in scene
images. The accurate prediction of text heavily relies on the
performance of text detection methods.
It is crucial to highlight that the effectiveness of text

detection algorithms significantly impacts the accuracy and
precision of text recognition methods. Therefore, ensuring
high-quality text detection is essential for achieving reliable
and robust text recognition results.
To assess the suitability of the quantized models for our

intended purpose, we conducted a comprehensive evalua-
tion that considered various key performance metrics. These

metrics are essential in determining the applicability of the
models on the target hardware.
The suitability of the quantized models was evaluated by

measuring their accuracy and overall effectiveness in text
detection and recognition tasks. Additionally, we assessed
the peak RAM usage, which indicates the maximum amount
of memory consumed by the models during operation.
Model size, another important metric, reflects the storage
requirements of the models.
Furthermore, we analyzed the computational cost associ-

ated with running the quantized models, considering factors
such as the number of operations performed and the process-
ing power required. Lastly, we measured the inference time,
which indicates the speed at which the models can process
input data and provide output.
By evaluating these performance metrics, we gained valu-

able insights into the practicality and efficiency of the
quantized models for deployment on resource-constrained
devices, especially integer-only hardware. This information
is crucial for designing effective and optimized solutions that
meet the requirements of our target hardware.
To conduct a comprehensive comparison between the

base models and their quantized counterparts, we utilized
the key performance indicators presented in Table 2 and
Table 3. These indicators were derived from a series of
experiments conducted using diverse sample data, ensuring a
representative evaluation.
The results presented in Table 2 and Table 3 are

derived from a thorough evaluation conducted through mul-
tiple experiments using diverse sample data. This rigorous
approach of averaging the performance metrics over vari-
ous experiments enhances the reliability and validity of the
reported findings.
By using different data samples, we obtain a comprehen-

sive evaluation that provides a more accurate representation
of the models’ performance. This ensures that the conclu-
sions drawn from the comparison between the base models
and their quantized counterparts are robust and applicable in
real-time embedded applications.
The model size refers to the amount of flash memory

required to store the model’s parameters, such as weights
and biases. By default, the weights are stored using a 32-bit
full-precision float. In our approach, we applied an 8-bit sym-
metric quantizer, as described in Figure 7 and Equations (1)
and (2), to both the text detection and recognition models.
As a result, we achieved a 3.87x reduction in the flash size
required to store the quantized text detection model.
Similarly, the quantized text recognition model demon-

strated a 3.82x reduction in model size compared to the
uncompressed text recognition model, as indicated in Table 2.
Notably, the quantized models maintained their performance,
as evidenced by the results presented in Table 3.
We evaluated the text detection model’s performance using

the mean loss metric, which is a combination of the dice and
intersection over union (IoU) losses. The lower the mean loss
value, the better the model’s performance.

VOLUME 11, 2023 56871

O. A. Ademola et al.: Resource-Aware Scene Text Recognition

FIGURE 9. End-to-end text detection and recognition results of our proposed method.

The quantized text detection model demonstrated a 2%
increase in mean loss compared to the base model. On the
other hand, the quantized text recognition model showed no
significant decrease (only a 0.11% decrease) in performance
despite having undergone significant model compression.
The speed of a model during inference is affected by mul-

tiple factors, including but not limited to the number of reads
and write operations, memory bit width, and types of oper-
ations performed. We achieved an improvement of approxi-
mately 1.65x in model speed for both quantized models.
In real-time embedded applications, the availability of ran-

dom access memory (RAM) is crucial for the application’s
smooth operation without interruptions or delays. RAM is
used to store dynamic data that the application requires to
function properly.
Deep learning models, such as our base text detection

and recognitionmodels, are computationally expensive, espe-
cially in terms of RAM resource usage. As indicated in
Table 2, the text detection model requires at least 286.23 MB
of RAM, while the text recognition model requires at least
5.04 MB. This results in a total RAM requirement of
291.27 MB for the end-to-end pipeline.
Our proposed method enabled us to achieve a significant

reduction in RAM usage for the quantized models, resulting
in a total of only 43.92 MB of RAM required. This represents
a compression factor of 6.63x when compared to the RAM
requirements of the base models.
We need to acknowledge a limitation of our proposed

method, which is its applicability to less clustered text in
scene images. This limitation arises from the need to intro-
duce a quantization bias when preparing the ground-truth
labels to compensate for the quantization-induced error.

It’s important to note that scene text can vary greatly, and
our method may not be suitable for all types of scene text.

VII. CONCLUSION
The increasing utilization of deep learning technology in
computer vision tasks owes to a multitude of factors, includ-
ing advancements in computing power, the availability of vast
datasets, and the development of sophisticated algorithms.
Deep learning technology has brought about remarkable

breakthroughs, especially in the domain of scene text detec-
tion and recognition. The process involves the precise local-
ization of text regions within scene images and subsequent
identification of the text contained within these regions.
Scene text detection and recognition have become pro-

nounced due to the rise in the number of portable and
embedded devices. These devices are capable of running
different intelligent applications. Some of these applications
require understanding textual information in scene images
for decision-making. Such applications include an intelligent
transportation system, text-to-speech, auto navigation, object
detection, etc.
The emergence of resource-efficient hardware for deep

learning applications, that only supports integer-based oper-
ations and operates under stringent constraints on storage,
memory, and computational power, has been a significant
development.
The current state-of-the-art methods for scene text detec-

tion and recognition rely heavily on deep learning approaches
that demand significant resources, such as computing power,
memory, and energy. As such, the implementation of these
methods in real-time embedded applications, especially those

56872 VOLUME 11, 2023

O. A. Ademola et al.: Resource-Aware Scene Text Recognition

operating on integer-only hardware, poses a considerable
challenge.
We developed a resource-efficient method to tackle

this issue. To demonstrate its effectiveness and suitability
for integer-only hardware, we trained end-to-end models
specifically designed for detecting and recognizing shipping
containers. Subsequently, these models were deployed on the
target hardware.
We demonstrated the accuracy and reliability of our pro-

posedmethod for processing scene texts on this piece of hard-
ware. Our efforts to optimize the models yielded impressive
results as shown in Table 2 and Table 3.
Our optimization efforts resulted in a significant reduction

in model size, achieving a compression factor of 3.8x while
maintaining comparable performance to the base models.
Additionally, the optimized models exhibited a 1.6x increase
in speed, accompanied by a substantial decrease in maximum
RAM usage by a factor of 6.6x compared to the original
models. These results highlight the efficiency and feasibility
of our approach for processing scene text on integer-only
embedded hardware.

REFERENCES
[1] D. Cao, Y. Zhong, L. Wang, Y. He, and J. Dang, ‘‘Scene text detection in

natural images: A review,’’ Symmetry, vol. 12, no. 12, p. 1956, Nov. 2020,
doi: 10.3390/sym12121956.

[2] X. Li, J. Liu, and S. Zhang, ‘‘Text recognition in natural scenes: A review,’’
in Proc. Int. Conf. Culture-Oriented Sci. Technol. (ICCST), Oct. 2020,
pp. 154–159, doi: 10.1109/ICCST50977.2020.00036.

[3] B. Zhi-Cheng, L. Qing, C. Peng, and G. Li-Qing, ‘‘Text detection in natural
scenes: A literature review,’’ Chin. J. Eng., vol. 42, no. 11, pp. 1433–1448,
2020, doi: 10.13374/j.issn2095-9389.2020.03.24.002.

[4] C. Gopalan and D. Manjula, ‘‘Sliding window approach based text binari-
sation from complex textual images,’’ 2010, arXiv:1003.3654.

[5] K. Wang and S. J. Belongie, ‘‘Word spotting in the wild,’’ in
Proc. Eur. Conf. Comput. Vis. Glasgow, U.K.: Springer, Sep. 2010,
pp. 591–604.

[6] J. Fabrizio, B. Marcotegui, and M. Cord, ‘‘Text detection in street level
images,’’ Pattern Anal. Appl., vol. 16, pp. 519–533, Nov. 2013.

[7] T. He, W. Huang, Y. Qiao, and J. Yao, ‘‘Text-attentional convolutional
neural network for scene text detection,’’ IEEE Trans. Image Process.,
vol. 25, no. 6, pp. 2529–2541, Jun. 2016.

[8] Y. C. Wei and C. H. Lin, ‘‘A robust video text detection approach
using SVM,’’ Exp. Syst. Appl., vol. 39, no. 12, pp. 10832–10840,
Sep. 2012.

[9] Y. Zhang, C. Wang, B. Xiao, and C. Shi, ‘‘A new method for text verifica-
tion based on random forests,’’ in Proc. Int. Conf. Frontiers Handwriting
Recognit., Sep. 2012, pp. 109–113.

[10] S. M. Hanif and L. Prevost, ‘‘Text detection and localization in com-
plex scene images using constrained AdaBoost algorithm,’’ in Proc.
10th Int. Conf. Document Anal. Recognit., Barcelona, Spain, 2009,
pp. 1–5.

[11] X. Zhao, K.-H. Lin, Y. Fu, Y. Hu, Y. Liu, and T. S. Huang,
‘‘Text from corners: A novel approach to detect text and caption in
videos,’’ IEEE Trans. Image Process., vol. 20, no. 3, pp. 790–799,
Mar. 2011.

[12] Q. Ye, Q. Huang, W. Gao, and D. Zhao, ‘‘Fast and robust text detection in
images and video frames,’’ Image Vis. Comput., vol. 23, no. 6, pp. 565–576,
Jun. 2005.

[13] W. Wu, X. Chen, and J. Yang, ‘‘Detection of text on road signs from
video,’’ IEEE Trans. Intell. Transp. Syst., vol. 6, no. 4, pp. 378–390,
Dec. 2005.

[14] Y. Zhu, C. Yao, and X. Bai, ‘‘Scene text detection and recognition:
Recent advances and future trends,’’ Frontiers Comput. Sci., vol. 10, no. 1,
pp. 19–36, Feb. 2016.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-
tion with deep convolutional neural networks,’’ in Proc. NIPS, vol. 1.
Red Hook, NY, USA: Curran Associates, 2012, pp. 1097–1105.

[16] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, ‘‘Reading
text in the wild with convolutional neural networks,’’ Int. J. Comput. Vis.,
vol. 116, pp. 1–20, Jan. 2015.

[17] Z. Zhong, L. Jin, S. Zhang, and Z. Feng, ‘‘DeepText: A unified framework
for text proposal generation and text detection in natural images,’’ 2016,
arXiv:1605.07314.

[18] Y. Jiang, X. Zhu, X. Wang, S. Yang, W. Li, H. Wang, P. Fu, and Z. Luo,
‘‘R2CNN: Rotational region CNN for orientation robust scene text detec-
tion,’’ 2017, arXiv:1706.09579.

[19] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao, ‘‘Detecting text in
natural image with connectionist text proposal network,’’ in Proc. Eur.
Conf. Comput. Vis. Amsterdam, The Netherlands: Springer, Sep. 2016,
pp. 56–72.

[20] D. Xiang, Q. Guo, and Y. Xia, ‘‘Robust text detection with vertically-
regressed proposal network,’’ in Proc. Eur. Conf. Comput. Vis.Amsterdam,
The Netherlands: Springer, 2016, pp. 351–363.

[21] Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and X. Bai, ‘‘Multi-oriented
text detection with fully convolutional networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 4159–4167.

[22] C. Yao, X. Bai, N. Sang, X. Zhou, S. Zhou, and Z. Cao, ‘‘Scene text
detection via holistic, multi-channel prediction,’’ 2016, arXiv:1606.09002.

[23] X. Li, W. Wang, W. Hou, R.-Z. Liu, T. Lu, and J. Yang, ‘‘Shape
robust text detection with progressive scale expansion network,’’ 2018,
arXiv:1806.02559.

[24] C. Du, C. Wang, Y. Wang, Z. Feng, and J. Zhang, ‘‘TextEdge: Multi-
oriented scene text detection via region segmentation and edge classifica-
tion,’’ in Proc. Int. Conf. Document Anal. Recognit. (ICDAR), Sep. 2019,
pp. 375–380.

[25] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
‘‘EAST: An efficient and accurate scene text detector,’’ inProc. IEEEConf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2642–2651, doi:
10.1109/CVPR.2017.283.

[26] K. Wang, B. Babenko, and S. Belongie, ‘‘End-to-end scene text recogni-
tion,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011, pp. 1457–1464, doi:
10.1109/ICCV.2011.6126402.

[27] G. Li, ‘‘CSNet-PGNet: Algorithm for scene text detection and recogni-
tion,’’ in Proc. 3rd Int. Conf. Comput. Vis., Image Deep Learn. Int. Conf.
Comput. Eng. Appl. (CVIDL ICCEA), May 2022, pp. 1217–1224, doi:
10.1109/CVIDLICCEA56201.2022.9824815.

[28] A. Khalil, M. Jarrah, M. Al-Ayyoub, and Y. Jararweh, ‘‘Text detection and
script identification in natural scene images using deep learning,’’Comput.
Electr. Eng., vol. 91, May 2021, Art. no. 107043.

[29] X. Rong, C. Yi, and Y. Tian, ‘‘Unambiguous text localization,
retrieval, and recognition for cluttered scenes,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 3, pp. 1638–1652, Mar. 2022, doi:
10.1109/TPAMI.2020.3018491.

[30] R. Bagi, T. Dutta, and H. P. Gupta, ‘‘Cluttered TextSpotter:
An end-to-end trainable light-weight scene text spotter for cluttered
environment,’’ IEEE Access, vol. 8, pp. 111433–111447, 2020, doi:
10.1109/ACCESS.2020.3002808.

[31] Y. Cao, S. Ma, and H. Pan, ‘‘FDTA: Fully convolutional scene text detec-
tion with text attention,’’ IEEE Access, vol. 8, pp. 155441–155449, 2020,
doi: 10.1109/ACCESS.2020.3018784.

[32] Y. Liu, C. Shen, L. Jin, T. He, P. Chen, C. Liu, and H. Chen, ‘‘ABCNet
v2: Adaptive Bezier-curve network for real-time end-to-end text spotting,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 8048–8064,
Nov. 2022, doi: 10.1109/TPAMI.2021.3107437.

[33] J. Guo, R. You, and L. Huang, ‘‘Mixed vertical-and-horizontal-text
traffic sign detection and recognition for street-level scene,’’ IEEE
Access, vol. 8, pp. 69413–69425, 2020, doi: 10.1109/ACCESS.2020.
2986500.

[34] C. Zhang, Y. Tao, K. Du, W. Ding, B. Wang, J. Liu, and W. Wang,
‘‘Character-level street view text spotting based on deep multisegmen-
tation network for smarter autonomous driving,’’ IEEE Trans. Artif.
Intell., vol. 3, no. 2, pp. 297–308, Apr. 2022, doi: 10.1109/TAI.2021.
3116216.

[35] Y. Liu, L. Jin, and C. Fang, ‘‘Arbitrarily shaped scene text detection with
a mask tightness text detector,’’ IEEE Trans. Image Process., vol. 29,
pp. 2918–2930, 2020, doi: 10.1109/TIP.2019.2954218.

VOLUME 11, 2023 56873

O. A. Ademola et al.: Resource-Aware Scene Text Recognition

[36] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[37] C. Zaharia, D. Dinu, and A. Caliman, ‘‘PVANet optimization for person
detection,’’ in Proc. Int. Conf. Optim. Electr. Electron. Equip. (OPTIM),
Int. Aegean Conf. Electr. Mach. Power Electron. (ACEMP), May 2017,
pp. 959–964, doi: 10.1109/OPTIM.2017.7975094.

[38] Google Coral Products Page. Accessed: Jan. 5, 2023. [Online]. Available:
https://coral.ai/docs/dev-board/datasheet/

OLUTOSIN AJIBOLA ADEMOLA received the
M.Sc. (Eng.) degree from the School of Infor-
mation Technology, Tallinn University of Tech-
nology, Tallinn, Estonia, in 2020. His research
interests include deep learning, machine learning,
edge AI, intelligent systems, and computational
intelligence.

EDUARD PETLENKOV (Member, IEEE) received
the B.Sc., M.Sc., and Ph.D. degrees in computer
and systems engineering from the Tallinn Uni-
versity of Technology, in 2001, 2003, and 2007,
respectively. He is currently a tenured Full Pro-
fessor with the Department of Computer Systems,
Tallinn University of Technology, and the Head
of the Centre for Intelligent Systems. His main
research interests include the domain of intelli-
gent control, system analysis, and computational
intelligence.

MAIRO LEIER received the Ph.D. degree in
computer systems from the Tallinn University of
Technology, in 2016. He was a Research Scien-
tist with the Department of Computer Systems,
Tallinn University of Technology, where he leads
the Embedded AI Research Laboratory. His cur-
rent research interests include machine learning on
embedded systems, optimization techniques, and
edge computing.

56874 VOLUME 11, 2023

Curriculum Vitae
1. Personal data

Name Olutosin Ajibola AdemolaDate and place of birth 31 December 1990, Ilorin, NigeriaNationality Nigeria
2. Contact information

Address Poorise 5, 4-21Tallinn, EstoniaPhone +37253564286E-mail olutosin.ademola@ttu.ee
3. Education

2020–Present Tallinn University of Technology, PhD studies2018–2020 Tallinn University of Technology, School of Information TechnologiesCommunicative Electronics, MSc2008–2013 University of Ilorin, Department of Electrical and Electornics Engineer-ingElectical/Electronics Engineering, BSc
4. Language competence

English FluentYoruba FluentEstonian A1
5. Professional employment

2018–2022
2017–20182016–20172014–2015

Tallinn University of Technology, Tallinn, Estonia, Software Engineer, Machine LearningCitrans Global Limited, Lagos, Nigeria, Head of ITHausba Smarthomes, Lagos, Nigeria, System IntegratorT-One Technologies, Lagos, Nigeria, IT Support Engineer

121

Elulookirjeldus
1. Isikuandmed

Nimi Olutosin Ajibola AdemolaSünniaeg ja -koht 31.12.1990, Ilorin, NigeriaKodakondsus Nigeria
2. Kontaktandmed

Aadress Poorise 5, 4-21Tallinn, EstoniaTelefon +37253564386E-post olutosin.ademola@ttu.ee
3. Hariduskäik

2020–Tänapäev Tallinna Tehnikaülikool, doktoriõpe
2018–2020 Tallinna Tehnikaülikool, Infotehnoloogia teaduskondKommunikatsioonielektroonika, MSc2008–2013 Ilorini Ülikool, elektri- ja elektroonikatehnika osakondelektroonika/elektroonikatehnika, BSc
4. Keelteoskus

inglise keel kõrgtaseyoruba keel kõrgtaseeesti keel A1
5. Teenistuskäik

2018–2022 Tallinna Tehnikaülikool, Tallinn, Eesti , Tarkvarainsener, masinõpe2017–2018 Citrans Global Limited, Lagos, Nigeeria, IT-valdkonna juht,2016–2017 Hausba Smarthomes, Lagos, Nigeeria, süsteemiintegraator,2014–2015 T-One Technologies, Lagos, Nigeeria, IT-tugiinsener,

122

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-320-2 (PDF)

	Abstract
	Kokkuvõte
	LIST Of PUBLICATIONS
	AUTHOR’S CONTRIBUTION TO THE PUBLICATIONS
	Abbreviations
	INTRODUCTION
	Background and Motivation
	Literature Review
	Bit Reduction
	Knowledge Distillation
	Low Rank Tensor Decomposition
	Pruning
	Microarchitecture
	Ensemble of Compression Methods

	Research Gaps and Research Questions
	Objectives and Contributions of the Thesis
	Thesis Structure

	PRELIMINARIES
	Model Compression Methods
	Quantization
	Binarization: An Extreme Case of Quantization
	Challenges and Considerations
	8-bit Quantization Impact on CNN Models

	Knowledge Distillation
	Challenges and Considerations

	Low-Rank Tensor Decomposition
	Tensor Train Decomposition
	Challenges and Considerations

	Pruning
	Challenges and Considerations

	Microarchitecture
	Challenges and Considerations

	Ensemble of Compression Methods
	Challenges and Considerations

	COMPRESSION METHODS EVALUATION USING NUMERICAL-BASED MATHEMATICAL APPROACH
	Evaluation of Deep Neural Network Compression Methods for Edge Devices Using Weighted Score-Based Ranking Scheme
	Evaluation Metrics
	Limitations of Current Metrics
	The Numerical-Based Mathematical Approach
	Mathematical Formulation
	Definition of Parameters

	Weighted Score-Based Ranking Scheme
	Scaling
	Scoring
	Adapting Scores for Metric Characteristics

	Scoring Formula
	Weighting
	Weighted Score
	Weight Score Average
	Ranking
	Application of Weighted Score-Based Ranking Scheme
	Benchmark Model Description
	Compression Methods Evaluated
	Scoring and Weighting Process
	Weights Assignment Strategy

	Results and Discussion
	Summary
	Conclusion

	ENSEMBLE OF COMPRESSION METHODS
	Limitations of Single Compression Methods
	Ensemble of Tensor Train Decomposition and Quantization
	Architecture of the Ensemble Compression Pipeline
	Challenges of the Ensemble Method

	Experimental Setup and Results
	Architecture of the Baseline Model
	Ensemble End-to-End Trainable Pipeline
	Training and Optimization Process
	Tensor Train Configuration
	Tensor Trained Model Quantization
	Performance Comparison and Evaluation of Key Metrics

	Summary and Conclusion
	Summary
	Conclusion

	PRACTICAL USE CASE: OPTIMIZATION LIMITATION OF SCENE TEXT DETECTION AND RECOGNITION MODELS
	Resource-Aware Scene Text Recognition Using Learned Features, Quantization, and Contour-Based Character Extraction
	Scene Text Recognition In Embedded Systems
	Resource Constraints in Embedded Hardware
	Challenges and Research Objectives
	Challenges in Optimizing Scene Text Detection and Recognition Models
	Research Objectives

	Scene Text Detection and Recognition
	Text Detection
	Text Recognition

	Proposed Methodology
	System Architecture Overview
	Text Detection: Modified EAST Architecture
	Quantization for Integer-Only Hardware
	Text Recognition: Contour-Based Character Extraction

	Experiments
	Experimental Setup
	Evaluation Metrics

	Results and Discussion
	Summary and Conclusion
	Summary
	Conclusion

	CONCLUSION
	List of Figures
	List of Tables
	References
	Acknowledgements
	Appendix 1
	Appendix 2
	Appendix 3
	Curriculum Vitae
	Elulookirjeldus

