THESIS ON INFORMATICS AND SYSTEM ENGINEERING C129

Covering Algorithms for a Robot Swarm with
Limited Information

ANDRES PUUSEPP

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

This dissertation was accepted for the defence of the degree of Philosophy
in Computer Science on April, 17, 2017.

Supervisor: Professor Tanel Tammet
Institute of Computer Science
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Juha Roning
Computer Science and Engineering
University of Oulu

Professor Alvo Aabloo

Faculty of Science and Technology
Institute of Technology

University of Tartu

Defence of the thesis: December 12, 2017, Tallinn

Declaration:

Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

/Andres Puusepp/

* X %
* o
* *
* *

* 5k

European Union
European Social Fund Investing in your future

Copyright: Andres Puusepp, 2017
ISSN 1406-4731

ISBN 978-9949-83-153-1 (publication)
ISBN 978-9949-83-154-8 (PDF)

INFORMAATIKA JA SUSTEEMITEHNIKA C129

Katvusalgoritmid piiratud teadmusbaasiga
robotiparvede jaoks

ANDRES PUUSEPP

Table of Contents

ABSTRACT .ttt sttt b et aees 6
ACKNOWLEDGEMENTSooiiiiiiteieteteteie ettt 7
LIST OF PUBLICATIONS ...ttt 8
AUTHOR’S CONTRIBUTION TO THE PUBLICATIONSccccoooiiiinee. 9
ol 2 4 U1 LTS 10
| o) i o) (SRS 12
INTRODUCTION ...ttt sttt nee e 13
Background: robots and landmarkscccceeeeeviiriiiniienieeieee e 13
Motivation and problem Statementcceceevveereereereenieeie e 15
Contribution of the thesis.........cceoierierieriiiie e 15
Thesis OrZaniZAtiONccueevveeriieriieriierreereereereereesieesteessaeesseesseeseesseesssenens 16
I RELATED WORKooiiiiiiit et 17
1.1, RoDOt PlatfOrmsccocuiiieiiieiii et 17
1.2. Robot swarm behavioUr...........cccceveeieririeieeeeieseseeee e 18
2 ROBOT PLATFORM.....ccciiiiiiiiieeeee ettt 21
2.1, Memory databasecceeeveeruieriienieeieeie et et et e siee et e 21
2.2, Data model and 1anguagesccceeecveeeiiieriieriee e 22
2.3. Data format in RFID tags..........cceevveeiieriierierieniesie e ere e 24
2.4. Rule based control SYStemccceeeuieriieneenienienie e 25
2.5. Rule engine and rule 1anguage..........c.ccoccveeviierciieeciieciee e 26
2.6. Behaviors and rule 1language.........c.cocvevveevieriiniieie e 29
2.7. Robot communication with the Serverccoceeeerinerreninieeenee, 30
2.8, SUMMATIY .eeoiiiieieiiie ettt ettt e et e e s ebte e e e abeesesnsaeeeeenneeas 31
3 AREA COVERAGE WITH A SWARMoccoiiiiiieeeeeee e 32
3.1, The SIMUIAOT . .coeiiiiiieieceieee e 34
3.2, Turning angle........coceeeuieiiieiieniesie et 37
3.3, Success conditions fOr teSt TUNScccueeeeriiierierieieriete e 38
3.4. The Random algorithmccccccueriiiiiiniienieenieceeere e 39
3.5. The history based algorithm...........c.cccecceevieniiiniiniinieeeeee e, 39
3.6. The map aware algorithmcccceeviiiviiiiecii e 41

3.7. An extended map aware algorithmcccceeveviieiiiienciienie e, 43

3.8. Strong and weak points of each algorithm..............cccevevererrecrienreennnennen. 43
3.9, SUMMALY...ouiiiiiiieiee ettt ettt ettt e st e s s 44
4 EXPERIMENTAL RESULTS......ioteiiieiet ettt 44
4.1. Configuration and comparison datac.ceceerverreecreevreenreeseesnenens 44
42. Testing strategies and simulation areasc.ceeeeevereeeenereeneneene. 45
4.3. Comparison of the simulation resultsc.cceeceerieriieiieriienieene, 48
4.4. Environment versus the SWarm SiZe..........ccecceveerierereenieneeeeneeeeenen 55
4.5. Algorithm performance for very high RFID densities....................... 57
4.6, SUIMIMATY c..eoriiiiiiiiiiieeteeeete ettt ettt e st sane b e e aeesae 58
CONCLUSIONS ...ttt ettt ettt sseeneesse st eseeneeneenes 59
REFERENCES ...ttt ettt ettt 61
KOKKUVOTE ..o sseesse s ssesssesssessss s ssesssessssssesssses 66
APPENAIX A ..ottt et e e e et e bt e e e e e bt e e tbe e ebeeeaaeennraeeareennres 67
o o) 2 PSSO 67
Paper B e n 79
Paper C...oeeee e 87
PaPET D .. et e e seaeas 95
APPENAIX Boooiiiiiieiecec e 105

ABSTRACT

The main goal of the thesis is to investigate and develop algorithms using
navigational tags for enhancing the performance of a swarm of robots when
precise navigation is hard to achieve or not feasible.

We focus our research on robots without communication capabilities, with a
limited set of error-prone sensors and little to no information about the
surrounding environment at the starting point, as is the case for typical cleaning
and lawn-mowing robots. We assume the use of landmark-based navigation and
robots equipped with rfid readers as a concrete scenario.

The first part of thesis designs and presents a detailed knowledge architecture for
intelligent robots able to use RFID tags both as landmarks and communication
channels. This architecture contains a rule system for robots, providing reactive
control while a robot is in action. The system has been successfully implemented
during the the Roboswarm EU FP6 project for running the physical robot swarm.

Then we develop and compare different coverage algorithms for swarms of
robots tasked with cleaning, search or similar activities inside buildings. The
main goals are to find more efficient algorithms and to understand the
improvements gained by increasing the swarm size.

The robot parameters and capabilities are modeled on the actual rfid-equipped
Roomba cleaning robots developed during the Roboswarm EU FP6 project with
the participation of the author. We have implemented a custom simulator of the
Roomba robot, which takes into account the capabilities and operation times of
the robot. Controlled simulations of this robot have been used for testing and
comparing the algorithms.

The main part of our research consists in developing and investigating four main
approaches for the robot control algorithm, all based on the idea of using
recognizable locations (tags) to guide the robot around the mission area. As a
background baseline we also consider “ideal” behaviour with the best possible
performance of the swarm.

We show that a specific parameter of robot behaviour - the default turning angle
- makes a significant difference for the performance of the investigated
algorithms.

We show that the algorithms employing landmarks are almost consistently better
than the parameter-optimized random algorithm and are, on the average, close
enough to the ideal behaviour to be considered as practically sufficient

Most importantly, we show that as the swarm size and density increases, the
performance improvements gained by better algorithms and more knowledge
decrease quickly: in the other words, the size of the swarm trumps sensors and
intelligent behaviour.

ACKNOWLEDGEMENTS

First I would like to sincerely thank Prof. Tanel Tammet for his guidance
and motivation during all these years. Without his support the thesis would have
not reached the finish line.

The thesis got its kickoff from the middleware development for the
Roboswarm project of the EU’s 6™ Framework Program (FP6).

Additionally, I want to thank people who have contributed their time and
knowledge: without them the work presented in the thesis could not have been
completed. Special appreciation to Enar Reilent, who has supported with testing
and developing communications for the real robots and all what concerns C
programming; Madis Puju for developing the in-memory database for the
Roboswarm project; Tanel Tammet for reviewing and brainstorming the
solutions; Prof Jiiri Vain for overall and formal guidance.

LIST OF PUBLICATIONS

A

The work presented in this thesis is based on the following publications:

T. Tammet, J. Vain, A. Puusepp, E. Reilent, A. Kuusik. RFID-based
communications for a self-organizing robot swarm. In: Proceedings
Second IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, SASO 2008: 20-24 October 2008, Venice, Italy:
(Toim.) Brueckner, Sven; Robertson, Paul; Bellur, Umesh. Los Alamitos,
Calif.: IEEE Computer Society, 2008, 45 — 54.

T. Tammet, E. Reilent, M.Puju, A. Puusepp, A. Kuusik, A. Knowledge
centric architecture for a robot swarm. In: 7" IFAC Symposium on
Intelligent Autonomous Vehicles (2010). IFAC-PapersOnLine, 2010,
(Intelligent Autonomous Vehicles; 7/1). 2010.

A. Puusepp, T. Tammet, M. Puju, E. Reilent. Robot movement strategies
in the environment enriched with RFID tags. 16" International
Conference on System Theory, Control and Computing, Sinaia,
Romania, 12-14 October 2012.

Puusepp, A.; Tammet, T.; Reilent, E. (2014). Covering an Unknown
Area with an RFID-Enabled Robot Swarm. Applied Mechanics and
Materials, 490-491, 1157 — 1162.

AUTHOR’S CONTRIBUTION TO THE
PUBLICATIONS

A

[Contributing to the development of the robots inner rule language.
Contributing to the creation of data protocol formats, including data
encoding on RFID. Co-writing the paper.]

[Further development of the rule language. Contributions to the memory
datastore development. |

[Developing the custom simulation environment. Introducing Roomba
protocol for the simulation communication. Developing the coverage
algorithms. Conducting and comparing the test experiments with the
simulated robots.]

[Improving the coverage algorithms previously developed. Conducting
and comparing a larger amount, different and more thorough test
experiments with the simulator.]

List of Figures
Figure 1 Real Roombas equipped with 3 RFID readers each, developed during

the RODOSWAT PIOJECE. ...vvvvvieiieiieiiecieeie ettt sre et re e e e e 14
Figure 3.1 Inheritance of the properties of algorithms.............cccceevieiieniennnnnne. 34
Figure 3.2 Example room setup for testing (published in paper C)................... 36
Figure 3.3 Figure indicating how the robot turns after finding the same tag
sequence for two times during one test TUN.c.oecvevveerveereereerre e ereeeeeeees 40
Figure 3.4 Figure indicating how the robot plans the move after encountering two
or more tags during one straight line drive.cccoovvevievienienciecieeeeeeeeen, 42
Figure 4.1 A single room pseudo-optimal run, takes 420 seconds. 45
Figure 4.2 3-room pseudo-optimal run, takes 518 seconds.cccecverevennnnee. 46
Figure 4.3 Seven-room pseudo-optimal run, takes 512 seconds........................ 46
Figure 4.4 End position of a test run in a single T00Mm.c.cccceeeereniencncennne 47
Figure 4.5 End position of a test run in a 3-room Space.ccceeeveeeveereeennnenne 48

Figure 4.6 A single room with robots starting from one location. Y-axis values
are representing experiment run times in seconds and x-axis shows the number
of robots participating in the eXperiment.c..cocceverereereneereneneeeeeeeene 48

Figure 4.7 A single room with robots starting from different locations. Y-axis
values are representing experiment run times in seconds and x-axis shows the
number of robots participating in the experiment............cccceccevereerenieneneennne 49

Figure 4.8 A three-room space with robots starting from one location. Y-axis
values are representing experiment run times in seconds and x-axis shows the
number of robots participating in the eXperiment..............cceeeveeeveevreerreereenenenen 53

Figure 4.9 A three-room space with robots starting from different locations. Y-
axis values are representing experiment run times in seconds and x-axis shows
the number of robots participating in the experiment.cccceevreereerrenenenn 53

Figure 4.10 Random algorithm with 15 robots, starting from different locations
1N @ SEVETI-TOOITL SPACE. ...uveureeureeureeteeteesteeseeeseresnsesseaseenseesseesseesnsesnseenseenseesses 54

Figure 4.11 Six small rooms with a corridor, robots starting from different
locations. Y-axis values are representing experiment run times in seconds and x-
axis shows the number of robots participating in the experiment...................... 55

Figure 4.12 Six small rooms with a corridor, robots starting from one location.
Y-axis values are representing experiment run times in seconds and x-axis shows
the number of robots participating in the experiment.cceceeeeeverreerercennnns 55

10

Figure 4.13 Averages for all the three algorithms. Y-axis values are representing
experiment run times in seconds and x-axis shows the number of robots
participating in the eXPeriment.coceerieeieerienierie et e st e 56

Figure 4.14 Extreme situation in an experimental room setup with all the available
space covered with tags (published in paper C)........cccccvevveriercveriincieeiieieenen. 57

11

List of tables

Table 2.1 Graphical representation of the RFID memorycccccoeveeeneenee. 25
Table 2.2 Initial data in memory database...........ccveeverieriverienierieeieeeeieeeeen 27
Table 2.3 Fact generated by the derivation process...........cccceevvereereeesieenieennen. 27
Table 2.4 The rule system startup dataset in memory database......................... 28
Table 2.5 Facts generated based on the startup dataset..........cccceeveereereeneenen. 28
Table 2.6 Fact generated after finishing cleaning process..........cccceeevveevveeeennen. 28

Table 2.7 Fact generated during derivation session after cleaning is finished...28

Table 2.8 Dispatcher execution command fact............cceevevieriercreecrieieeieennen. 30
Table 3.1 Summary of data usage by each algorithm............cccooevvrervreirenennen. 33
Table 3.2 Legend of sSimulator items.ceevueerieeriieriieiieniesieeie e 36
Table 3.3 Legend of 1ODOt PAItS.cccueieuiieiiieeiie et 37
Table 3.4 Average test runtimes in seconds by the turning angles.................... 38

Table 4.1 Results represented in seconds for seven robot swarm experiment with
same and various start JoCatioNS.cecevereerieninieriienineee et 51

Table 4.2 Results represented in seconds for eight robot swarm experiment with
same and various Start l0CAtIONS.cevevereveeiieerieeriieieeeeee e ere e eseeeeees 51

Table 4.3 Results represented in seconds for fourteen robot swarm experiment
with same and various start 10Cations.coccoeecveieeninenencneneeeeeeeeeeee 52

Table 4.4 Results represented in seconds for fifteen robot swarm experiment with
same and various Start l0CAtIONS.ceeveerireiiieiiieii et 52

12

INTRODUCTION

The area of this work is swarm robotics: making a set of separate robots work
together as efficiently as possible. While the spectrum of complexities and
capabilities of robots is potentially very wide, we focus on relatively simple
robots with limited sensors, suitable for simple indoor activities like floor
cleaning and searching objects.

This thesis starts with a detailed overview of the knowledge architecture of actual
robots developed during the Roboswarm EU FP6 project with the participation
of the author. After that it concentrates on developing various coverage
algorithms employable by swarms of these or any other robots with a limited set
of error-prone sensors and little or no previous information about the
environment.

Background: robots and landmarks

The background of this research is an actual robot swarm developed during the
Roboswarm EU FP6 project. The solutions reached at during our work generalize
to swarms of robots with similar capabilities.

We assume the use of simple robots with very limited sensory capabilities and no
communication or central coordination. We use the dynamic cleaning problem
[1], [2] as a testbed for our algorithms. In general, such tasks can vary from
cleaning [3], mowing [4], tour guidance [5] and rescue [6] to complex
surveillance [7] assignments and even providing butler services [8]. There exist
plans to use exploration swarms to reach to outer space. NASA is developing a
robot swarm for mining [9].

There exist several approaches for indoor navigation like using a laser range
finder or magnetometer [10]. It is also possible to guide robots using landmark-
like radio beacons (e.g. [11]) or less expensive passive landmarks. Roomba
family’s flagship, the Roomba 980 released 17.09.2015, utilizes the onboard
camera and image recognition to create visual landmarks for itself and cover the
area using the vSLAM algorithm [12].

For guidance in the working area — assumed to be indoor environment - we use
RFID tags marking objects, doors and covering locations which need to be
visited. The same RFID chips can be used to leave messages to other robots,
inspired from ants’ communication using pheromone trace known as stigmergy
[13]. The usage of RFID tags in such a way can reduce the communication
overhead related with coordination [14].

13

Figure 1 Real Roombas equipped with 3 RFID readers each, developed during the
Roboswarm project.

An iRobot Roomba cleaning robot is used together with a small ARM-based
Gumstix computer (S00MIPS) running on BusyBox 2.6 Linux distribution and a
stock RFID reader/writer.

Our robots use RFID tag sequences and potentially other similar landmarks to
detect their location and direction. While moving around the mission area the
robots can take advantage of the tags and adjust their behavior to perform better
compared to the environments without RFIDs. Tags can be placed on either on
the walls [18], [19] or on the floor [20] and positioned as a regular grid [21] or
just randomly. Tags are serving mostly as a navigational graph for robots which
are driving from tag to tag trying to reach their destination [22].

Communication between the robots can be implemented through messages on
RFID' chips planted across the working area or via a central server. In our
experiments we use the central server only for the simulation and analysis
purposes. Communication between the robots is implemented through messages
on RFID? chips planted across the working area or via a central server. Otherwise
a central server is used only for the simulation and analysis purposes.

! Radio-frequency identification

2 Radio-frequency identification

14

Motivation and problem statement

We want to decrease the time it takes for a swarm of robots to either clean a set
of interconnected rooms or to find a tagged object located in some room.

The knowledge engineering goal of the thesis is designing a suitable knowledge
architecture for all layers of the robot swarm — tags, robots, server, rules and
communication - and validating its usability in a real indoor swarm.

The main research goal of the thesis is to find robust and efficient algorithms and
principles for practical area coverage in a swarm of indoor robots relying mainly
on navigational landmarks, with limited and inaccurate sensors. We also want to
compare the algorithms in different room complexity scenarios and analyse the
effects of the swarm size on the coverage time.

The common approach to the problem of coverage in literature is dividing the
map into cells [15], [16] and path planning [17]. We consider only algorithms
which do not take advantage of these methods: the reason being the lack of
orientation and location info of the indoor-moving robot, mainly because of the
accumulating error of odometry and tag detection inaccuracy of simple robots.
Notice that obvious solutions for outdoors navigation - GPS and compass - cannot
be reliably used indoors.

Contribution of the thesis

The thesis gives two different contributions in robotics: a knowledge engineering
contribution and a swarm robotics research contribution.

The knowledge engineering oriented contribution of the thesis consists in
designing the knowledge representation, reasoning and communication
principles and software of the RFID-equipped intelligent cleaning robot on top of
the stock iRobot Roomba cleaning robot, developed by a team with the
participation of the author. The large set of experiments performed by the real
swarm of robots with this knowledge architecture proved that the designed
principles and representations are feasible in practice.

The research contribution of the thesis is a design and comparative investigation
of different simple and robust coverage algorithms for non-communicating
swarms of realistic cleaning and lawn mowing robots with limited and error-
prone sensors in the environment enriched with landmarks detectable at close
range. We note that we have measured the behaviour of the algorithms only on a
simulated swarm, not a physical swarm.

Most of the previous work in coverage algorithms has been conducted with
different assumptions, like exact sensors and a thorough knowledge of the
environment.

15

We show that a specific parameter of robot behaviour - the default turning angle
- makes a significant difference for the performance of the investigated
algorithms.

We show that the algorithms employing landmarks are almost consistently better
than the parameter-optimized random algorithm and are, on the average, close
enough to the ideal behaviour to be considered as practically sufficient. As
expected, the differences between the performance of the algorithms are more
significant in case the environment consists of several rooms or areas with
narrow, hard-to find doors or connections. In particular, the capability to
recognize doors has been shown to be a key aspect for multi-room areas.

Most importantly, we show that as the swarm size and density increases, the
performance improvements gained by better algorithms and more knowledge
decrease quickly: in the other words, the size of the swarm trumps sensors and
intelligent behaviour.

Thesis organization

Thesis starts with the general introduction and overview of the relevant related
work in the area of swarm robotics.

Next we give a detailed overview of the entire robot platform: how the processes
work inside the robot. The particular focus is on knowledge representation and
usage for the robot and the swarm. The author was a part of the team designing
the algorithms and the data representation for the robot. These chapters also
constitute an introduction to the main research contribution of the author given in
the following chapters.

The chapters “Area coverage with a swarm” and “Experimental results” contain
the main research contribution of the author. First we introduce the simulator and
the background details of all the algorithms that have been developed and tested
for the robot. Then we focus on actual tests with the simulator. Finally the test
results are reviewed and explained and main conclusions drawn.

16

1 RELATED WORK

This chapter gives an overview of the work related to the main contribution of
the paper: robust coverage algorithms for a swarm of robots.

The problem of robot navigation and path planning is a classic question of
robotics with a long history.

The widely used practices in literature for robot coverage problem involve
dividing the area into the cells [23] [24] and path planning [25].

The spanning tree covering algorithm [26] works by dividing an area into cells
and creating a spanning tree. There are two main approaches: off-line and on-
line. In the off-line approach we assume full knowledge of the entire area and
create the entire spanning tree at the start. The on-line approach uses sensors to
determinate the surrounding cells and creates the spanning tree incrementally. In
both cases the robot has position and orientation sensors which our robot lacks.

The path planning algorithms [27] also divide an area into cells; then they try to
move to cells which are considered to be obstacle free. Being in a cell means
positioning the robot in the center of the cell. Moving between the cells means
moving from one center point to another center point. This kind of navigation
requires precise positioning and knowledge of the robot orientation.

Our work, however, focuses on scenarios with little or no previous knowledge
about the environment and simple robots with limited and error-prone sensors
where the classic questions of path planning are not applicable. We analyze the
behaviour of swarms of robots and the effect of swarm size to the efficiency of
solving the task. Hence we will concentrate on the related work with platforms,
goals or assumed limitations similar to ours.

1.1. Robot platforms
First we have a look at the developments in related robot platforms.

To start with, the main platform used in our thesis — iRobot Roomba extended
with rfid readers during the Roboswarm project — has seen similar developments
from the iRobot company itself. As reported in [28], iRobot has developed the
Roomba 980 model equipped with a wifi and a camera along with intelligent
navigation capability based on VSLAM (Vision Simultaneous Localization and
Mapping). The robot provides also remote control with a smartphone app.
VSLAM is a way of dynamically building a map while keeping track of your own
position at the same time. To recognize places, the camera takes a picture, and
then looks for distinctive patterns of pixels in that picture. The Roomba 980 also
performs what is known as “sensor fusion,” meaning it combines data from
various proximity sensors with imagery from its camera. The robot will then
remember what the seen features look like and will keep track of them as it
moves.

17

The paper [29] presents technology and experiments converting a large 200kg
non-autonomous floor scrubber into an autonomous one. The robot uses LIDAR,
camera and UWB for navigation. The authors say that Lidar+tAMCL is a good
choice as primary localization tool for the robot module. However, they recognize
that during normal operation, automatized robot scrubber will operate in open
spaces (e.g. warehouses and/or squares) where maximum rage of current Lidar (6
m) will not be adequate and robot might not get sufficient data for such an
accurate localization. Then UWB based localization should be tested for such
environments.

The kilobot project [30] [31] [32] focuses on building a robot swarm with a size
of up to 1000 robots, positioning themselves into preprogrammed 2D shapes.
They use infrared reflection of the surface for communication and distance
sensing between each other. Robots are very small, with a diameter of 33 mm and
a height of 34 mm. The communication distance between two tiny robots can be
up to 70 mm. Forming a single preprogrammed shape takes about 12 hours for
the entire swarm. Kilobots do not have any location sensors and are similar to our
robots in the sense that they do not use path planning. Kilobot is a popular and a
relatively cheap way to perform real world tests with a relatively large robot
swarm.

Mobile Agricultural Robot Swarms (MARS) [33] have a set of objectives similar
to our thesis: use robots with a minimal set of sensors to achieve low cost and
energy efficiency. Differently from our swarm, the members of MARS swarm
are centrally guided and each member has precise knowledge of its location.

1.2. Robot swarm behaviour

Next we will take a look at interesting papers concentrating specifically on the
robot swarm behaviour, navigation and coverage strategies suitable for robot
swarms. We have found no papers dealing with the assumptions and goals exactly
like ours, although several papers focus on very similar tasks and questions, with
somewhat different assumptions on robots/environment. We will start with the
older papers and end up with the newest ones.

The paper [34] develops a swarming navigation algorithm in order to find the
odor sources in an unknown environment, based on the ability of each swarm
member to sense the odor. This task is similar to the task presented in the current
thesis. Each robot in the swarm has a cooperative localization system which uses
wireless network as a mean of measuring the distance from the other robots. At
least three robots act as stationary measurement beacons while the other robots
of the swarm navigate in the environment towards the odor source. The novel
approach of the paper is the usage of the wireless network to estimate the
distances. Our paper assumes simpler robots without such capabilities.

The paper [35] applies automated probabilistic formal verification techniques to
robot swarms, in order to assess whether swarms will indeed behave as required.
The example presented in the paper is a foraging robot scenario, which is similar

18

to the task handled in the current thesis, although the methods applied are widely
different.

The paper [36] proposes a novel motion control method: magnitude-dependent
motion control (MDMC). Similarly to the current thesis the authors focus on
simple robots that lack the capability to detect the orientation of their neighbors.
However, the task of the robots in the paper — flocking together by keeping a
certain distance from its neighbors - is very different from the task we consider
in the thesis.

The paper [37] proposes a sweep coverage formulation for a multi-agent system
to cover a region with uncertain workload density, and provides a decentralized
coverage algorithm based on the formulation. To achieve the coverage, the
covered region is divided into a finite number of stripes, and an algorithm is
proposed by incorporating two operations on stripes: workload partition and
sweeping. The paper presents a theoretical analysis of the upper bound of
coverage time spent more than the optimal time. In our thesis we gain a similar
comparative benchmark by simulating a near-ideal coverage run.

The paper [38] presents a distributed control strategy, enabling agents to converge
onto and travel along a consensually selected curve among a class of closed planar
curves. Individual agents identify the number of neighbors within a finite circular
sensing range and obtain information from their neighbors through local
communication. Again, the work differs from our thesis by having a different
goal: while in our work it is advantageous for robots to spread out, the focus of
the paper is to follow a common path.

The paper [39] presents and investigates Darwinian Particle Swarm Optimization
(DPSO): an evolutionary algorithm using natural selection to enhance the ability
to escape from local optima. The goal of the paper is similar to one of the
assumptions or subgoals of our thesis: decreasing the amount of required
information exchange among robots. The paper presents a stability analysis of the
RDPSO.

The paper [40] investigates a swarm of robots with similar capabilities to ours
and with similar fundamental problems: inexact odometry, both in the sense of
the travel distance and turning angle. However, while one of our main methods
is to spread the robots, the task considered in the paper is the opposite: gathering
robots together.

The paper [41] investigates coordination principles inspired by the behaviour of
honeybees and ants for coordination purposes in multi-robot systems. While the
swarm robotics approach with limited resources is similar to ours, the paper does
not give concrete simulation or real-life experiments, but rather proposes possible
approaches using stigmergy, somewhat similar to the approaches used in our
thesis.

In the paper [42] the authors generalize the control law based on minimization of
the coverage functional to such non-Euclidean spaces punctured by obstacles.

19

They propose a practical discrete implementation based on standard graph
search-based algorithms and demonstrate the applicability of the proposed
algorithm by solving efficient coverage problems on a sphere and a torus with
obstacles, and exploration problems in non-convex indoor environments.
Concretely, they consider exploration and coverage of an office environment by
a team of four robots. An important focus is flexibility of the framework with
respect to incorporating human inputs to guide exploration. No comparisons with
other approaches or investigations of swarms with different sizes are presented.
Differently from the assumptions in our thesis, the robots are equipped with
onboard range sensors and can localize themselves in a global coordinate frame.

The paper [43] investigates decision-making strategy to solve the best-of-n
decision problem in a swarm of robots. This problem requires the swarm to
establish a collective agreement on the highest-valued option among a finite set
of alternatives. A certain similarity to our thesis could be seen in a question of
which marker to reach or which room to enter next. However, in the case of our
thesis the main complexity lies in actual navigation, not so much in choosing the
next target.

The papers [44] and [45] analyze methods for patrolling and surveillance in an
environment with a distributed swarm of robots with limited capabilities. The
focus is on structured exploration of unknown spaces with multi-robot systems,
using triangulation that is constructed in a distributed fashion and guarantees
good local navigation properties. Similarly to our thesis, the sensors and robots
have very limited capabilities. However, the papers assume the use of large set of
infra-red beacons and a beacon sensing capability from the robots, somewhat
similar to our rfid tags, but a certain ability to sense distance and direction,
differently from ours. The authors of the papers claim that experimental results
with real robots are very similar to the results obtained by simulation. It is
interesting to note that the effects of increasing the swarm size indicated in the
papers are similar to our results.

The paper [46] considers a complicated superset of the tasks considered in our
paper: creating an integrated 3D-view of the environment using camera-equipped
robots. Irobots equipped with a camera, Kinect and a Raspberry Pi are used as a
test platform.

The paper [47] presents a neural dynamics for complete area coverage navigation
by multiple robots. A bioinspired neural network is designed to model the
workspace and guide a swarm of robots for the coverage mission. The same
platform as used in the thesis — Irobot Roomba — is used for simulation and
testing, with a complex added sensor system including ultrasonic sensors and a
Microsoft Kinect sensor. Unexpectedly, the authors report that two robots cover
the area significantly faster than a single robot; no extensive experiments with
multi-room environments or a large swarm are reported.

20

2 ROBOT PLATFORM

The current chapter presents an overview of the robot platform. The author was
a part of the team designing and programming the robot and contributed
significantly to the knowledge representation and communication tasks. The main
pure research contribution of the author will be presented in the following
chapters “Area coverage with a swarm” and “Testing results”.

The results presented in the current chapter have been published in the papers A
and B in the appendix.

The concept of the robot architecture has stayed the same through all the
published articles: it is based on the layered multi-agent system. Agents are
implemented as continuously running processes. The entire platform is divided
into three layers:

e The sensor-actuator layer responsible for communication robots control
hardware.

e The control layer is a constantly running dispatcher process responsible
for executing behavioral tasks. Behaviors in our context are small
binaries fulfilling several smaller tasks.

e The knowledge layer conducts reasoning — derives new information from
gathered data also communicating with other robots via RFID tags
(passive communication) or optionally via central server (active
communication).

The centre of the architecture is a shared memory RDF-inspired database. Similar
approaches can be found in low latency robot control architectures performing
well without a real time operating system. Agent communication is implemented
by using the memory database. Each agent can access all the data inserted to the
database. This kind of approach is known as a classical blackboard model [48].

The in-memory database serves three basic purposes:

e A postbox between different process agents including external world
communication.

e A fast and relatively simple in memory database implemented as circular
buffer.

e A deductive database, generating new facts based on the rule language.
2.1. Memory database

The entire robot platform runs on the Gumstix computer which is planted to the
Roomba robot. The memory database can be used by all agents running on a
robot. The database itself is not a process: it is implemented as a C library which
can be used through the public API, providing read, write and search
functionality. Data is read and stored in the shared memory.

Data model consists of one single public table with an RDFm structure. Inside
the database there is an additional table for storing unique strings, pointed to from

21

the public table. Strings in the memory database are immutable. Whenever a
string is changed in the main table, a new item is created to the string table and
pointed to it. However, if such a row already exists, then the pointer will be
addressed to already existing value.

All rows are organized as a circular list. The last element will be removed from
the list if the size limit is reached. Exceptions are made for the critical data items
— so called flagged rows — which are kept in the database until they are released
by the agent.

The locking system for the memory database is row based and implemented by
using semaphores. When a row is being written it is hidden for all the concurrent
threads. Reading and search functionality does not lock anything.

The hardware setup with the Gumstix computer takes about 0.14 milliseconds to
write one row. Looping over 2000 rows needs approximately 4.8 milliseconds of
time: these performance numbers are acceptable for our needs.

The memory database is used as a postbox between different agents running
inside the robot. Rows created by one agent can be addressed to another by using
name as addressee. During runtime an agent will look for rows with its name,
process them and then remove or reassign them.

2.2. Data model and languages

The common data model for communication between different counterparties is
based on a RDF triplets. The current architecture has extended RDF triplets with
metadata fields which we call RDFm.

The common data model and the data model in RFID tags has been published in
the paper A in the appendix.

The main parts which have most effect to the robot behavior can be divided to
the following groups:

e Sensors and control software.

e Internal memory database contents.

e RFID tags read.

e Binary executables together with data / rule files from server.

The server collects data from all the robots and affects their behavior by updating
the knowledge of robots. Data sent back to the robots can consist of some new
informational units to improve the behavior or uploading new binaries and rule
files to modify the objective. Robots can acquire new instructions or information
by reading encountered RFID tags during their movement. Data from sensors
generates yet another set of information for the control software. All these layers
must present their data in a unified way to understand each other, resulting in a
use of the following set of languages for the robot platform:

e RDFm encoding in RFID tags.

22

e Our specialized rule language for deriving new information based on the
data in memory database.

e Both CSV-based syntax and an XML-based RDF syntax for data
exchange between robots and the central server or external systems.

While choosing the languages we had to take into account the different key
factors of the mediums: mostly storage space and communication speed. For
example, RFID chips contain very little memory, which requires space efficient
encoding. Also, the transfer rate cannot be compared with WIFL. On the other
hand, communication between the servers does not necessarily require space
efficiency, resulting in the use of self-descriptive XML-based standards for better
understanding.

The RDFm data model itself is inspired by RDF triplets which we have extended
resulting in so-called RDFm consisting of three different groups of data fields:

e RDF triple data fields
e Contextual metadata fields
e Automatically generated fields

Standard RDF triples have the following data fields:

e Subject: id of whatever has the property.
e Property: name of the property of the subject.
e Value: value of the property

The value field has an associated type, indicating the way to interpret the value.
Observe that the property field may determinate the suitable or expected type, but
this not always the case.

The second set of fields in the RDFm data model contains contextual metadata
fields:

e Date/time: when this fact held: in the most cases same as the time of
storing the field data.

e Source: identifies the origin of the data: RFID code, person id who added
the data, other robot id, agent name, etc.

e Context: in most cases identifies the addressee or data group, but can also
indicate the succession of robot commands.

Program units aka agents can enter their own contextual values to the memory
database. Otherwise the default values - current time, current robot id, empty
context - are used.

The third set of fields in the RDFm data model contains metadata fields which
are generated automatically by the memory database during data insertion:

e Id: unique number for data row.
e Timestamp: date / time of the storage.

23

Automatically generated fields are the strictest set of fields: they cannot be
manipulated by the agents and are not available in the other data languages. Their
purpose is to guarantee efficient and convenient data management and they are
used by the reasoner and dispatcher processes.

Instead of using contextual and metadata fields we could have created the data
model using standard RDF triples to store the same information. However, this
would have been memory consuming and inefficient, especially for the RFID
chips, but also for the memory database.

2.3. Data format in RFID tags

Our setup uses RFID tags for external object/location recognition, asynchronous
messaging between robots and for location specific messages/instructions from
humans. Tags can be divided into two main groups — cheaper ones with only an
id value on the chip and more expensive tags with a small internal memory.

While analysing the coverage task, simple tags with only the id values on the chip
can be used as beacons for detecting visited points. The tags with internal memory
can be used for marking objects, giving warnings about dangers on the field or
instructions where to drive next. Such tags behave like information carrying
graffiti distributed all around the working environment. Both human operators
and robots are allowed to write information to the tags with internal memory.

Different sources tend to write different types of data. Humans will usually
provide static or passive types of information, while robots store often-changing
data. Within the environment setup phase a human users are expected to write
information for:

coordinating the robots — “this tag has coordinates X and Y’
giving idea about surroundings — “this tag is located on a chair”
guiding the robot — “there is a tag at direction R at 5 meters”
warning about dangers — “keep away from here”

The robots are expected to write information about the current situation on the
field:

e Informing what has happened in current location, like “robot N brushed
here for 10 minutes on 10.06.2007 at 15:10”.

e Leaving information about its further plans, like “robot N left this place
and moved towards the living room”

Data on the RFID tags must be compact and easily understandable for all the
interested counterparties. External applications, robot software and agents outside
the roboswarm must have a unified understanding of the encoding to read and
write data to tags. Examples provided beforechand are human readable
representations of the RFID contents and are not in any way memory efficient.
All data units written to the tags are essentially data rows with several predefined
fields which can be of a type string, integer or float. The RFID database resembles
the memory database used inside the robot computer — older values are pushed

24

out by the newer items. Rows with the context value of “static” on the RFID
memory database are considered as flagged items and are preserved during
removal process. Data from the tag is read, written or deleted one row at a time.
Updating is allowed only for specific fields — on the value field, the timestamp
field and the source field.

Table 2.1 Graphical representation of the RFID memory

subject property Value source | context

me inRoom Kitchen human static
kitchen hasPriority 7 human static
kitchen dutyStatus cleaingInProgess robot3 work
robot2 wentInDirection 270 robot2 work

Data rows with the static context are inserted by humans during the setup of the
environment. Messages with the “work” context value are written during problem
solving by the swarm members to improve the fulfillment of the tasks at hand.

Similarly to the robot memory, a global table for strings is kept separately and
only the codes are used in place of the strings. Encoding the values is performed
by using the string table on a robots memory database. During startup the global
string information is propagated throughout the roboswarm, providing same data
to each robot to have common understanding of the encoded values. This
approach divides data field contents into the direct/primitive values like integers,
RFID chip ids or indirect values like strings. Direct values are being written to
the tag as-is. Long string values are replaced with the corresponding code from
the global string table. We are allocating 2 bytes of memory for the string table
identifier.

RFID tags always have a built-in unique id. The size of the id may vary,
depending of the manufacturer and chip type. However there are number of
widely known standards for id encoding and majority of the tags are expected to
follow these standards. Our solution uses direct 96-bit EPC?’s for identifying the
RFIDs. It is very common for the tag to know information about the location or
the object that it is being glued on. Keeping in mind the small amount of memory
available we will be using value “me” to refer itself in the data row instead of the
real EPC value.

2.4. Rule based control system

The robot control in our architecture has been divided between several agents
getting the instructions from the memory database. The entire control mechanism
can be divided into two major parts — the main framework with built in agents
and user defined applications which can be executed via the rules. All data —
sensor readings, decisions, reports — will be available to each party via the
memory database.

3 An Electronic Product Code (EPC) is a universal identifier that gives a unique identity to a specific
physical object.

25

The rule based control system has been built around the memory database and is
tightly coupled with the main data processing mechanism: the prover. Based on
the existing user defined rule files and data located in the memory database, the
prover will regularly derive new facts. Newly generated instructions will become
inputs for the other agents and user defined applications controlling the robot.

Based on the process lifecycle the components can be divided into two groups —
ones that work as an endless loop and others that are being executed only on
demand. The prover together with the memory database, the communication
process, the low level hardware access software (sensor agents, actuator process)
and the dispatcher run all the time. The built-in and user-defined applications
which do not have to be running continuously, are executed via the dispatcher
process.

Problem solving algorithms can be divided into modules and rule sets.
Reasonable balance should be kept between the logic implanted into the modules
and rule sets size. Trying to create simpler rule files, the series of low level
commands are gathered together into modules which are meant to perform atomic
tasks. For example, a simple module (binary executable) can play a sound,
calculate an average or achieve a complex goal, like performing a localization
procedure when encountering an RFID tag.

Rules have the role of linking together binary sequences and making decisions
during the runtime. For example: agent A stores the fact B into the memory
database. The prover derives (according to the current rule set) the new fact C
from the fact B, where C is a command for dispatcher to start the agent D. When
the dispatcher process sees the newly derived fact C in the memory database, it
executes the demanded agent D binary, which in turn can change the contents of
the database.

The rule based control system and the rule language has been published in the
paper B in the appendix.

2.5. Rule engine and rule language

The entire robot system is controlled via the memory database where all the
obtained facts, derived facts and commands to execute are inserted. Rules are
written in a prolog-like syntax and stored in the local file system. Rule files can
be stored to the specific robot manually or propagated throughout the swarm via
the central server. New facts are generated by the rule engine integrated into the
robot architecture as a core process. The rule engine work cycle starts with
reading the rule file from the file system. The second step is applying the rules to
the up-to-date facts in the memory database and inserting newly derived facts into
the memory database. The rule engine cannot be used directly by any agent in the
robot architecture: entire communication is performed by inserting facts to the
memory database and reading the output afterwards.

26

In other words, the goal of the rule engine is not to answer queries, but to
automatically derive new facts based on the data inserted to the memory database
by other processes. The rules set must be consistent and should not contain too
many or too complex rules. As a rule engine we are using a special modification
of the Gandalf [49] first order resolution-based theorem prover. The rule engine
process is being executed automatically after each pre-determined interval of
time, typically one second. We call the execution of the prover and one derivation
cycle a “derivation session”. Using a relatively simple set of rules we are able to
keep the derivation session duration under one second: during this time the rule
engine will load the rule set from file system and perform all possible derivations
stemming from the facts added to the memory database after the last run.

The rule system has two main goals:

e Derive generalizations (like chair is furniture) from rules
e Derive commands depending of the situation

For example, if we have a rule
attachedTo (X, furniture) :- attachedTo (X, chair).

and the memory database contains the facts shown in Table 2.2 Initial data in
memory database

Table 2.2 Initial data in memory database

subject property value source context
tag4 attachedTo chair RFID null
then the rule body attachedTo (X,chair) will match the row in the memory
database and during the derivation session rule engine will generate the new fact
and insert it to the memory database as shown in Table 2.3 Fact generated by the
derivation process

Table 2.3 Fact generated by the derivation process
subject property value source context
tagd attachedTo furniture wGandalf null

All the words in the rules starting with the uppercase letter are variables. In our
example here X is a variable.

The following example demonstrates a simple session of rule set usage.
handleTask (me, Task) :-

state (me, stateldle), receivedTask (N, Task), myNamels (me, N).
state (me, stateWorking) :- handleTask (me, T).
startMode (me, cleaningMode) :- handleTask (me, clean).
startMode (me, patrollingMode) :- handleTask (me, patrol).

state (me, stateldle) :- state (me, stateWorking), status (currentTask, finished).

27

Table 2.4 The rule system startup dataset in memory database

subject property value source | Context

me state stateldle init wGandalf
me myNamels robot3 init wGandalf
robot3 receivedTask clean init wGandalf

Based on the rule set the engine will automatically derive and add the facts in
Table 2.5 Facts generated based on the startup dataset into the memory database
during the derivation session.

Table 2.5 Facts generated based on the startup dataset

subject property value source context
me handleTask clean wGandalf null
me startMode cleaningMode wGandalf null

When a cleaning action is finished and the process adds the fact described in
Table 2.6 Fact generated after finishing cleaning process to the database.

Table 2.6 Fact generated after finishing cleaning process
subject property value source context
currentTask status finished cleaningAgent wGandalf
The rule system will derive and insert the fact described in Table 2.7 Fact
generated during derivation session after cleaning is finished into the memory
database during the next derivation session.

Table 2.7 Fact generated during derivation session after cleaning is finished

subject property value source context
me state stateldle wGandalf null
The rule engine uses both the publicly available main memory database and a
temporary storage. Temporary storage holds non-final facts and is being cleaned
up after each derivation session. During the derivation process a large set of new
facts and clauses (temporary rules) are derived. Final facts without variables
(ground unit clauses), not containing nested terms and having a suitable number
of arguments are stored in the shared memory database and are available to all
other processes in the robot.

A derivation session starts with reading and parsing the rule file from the local
file system and adding parsed rules and facts into the temporary space.
Continuous re-loading makes it possible to update the contents of the rule file on
the fly. We employ the widely used discrimination tree index for the unit
subsumption and unit deletion. Only the temporary area, not the facts in the
shared memory database are kept in the index. The engine uses a version of a set-
of-support binary resolution with common optimizations like subsumption and
tautology elimination. See Robinson and Voronkov (2001) [50] for the common
algorithms employed in first-order automated reasoners.

Re-derivation of facts which have been already derived in the last session has to
be avoided, otherwise the reasoner would produce facts causing the robot to do
the same things repeatedly. Hence we have developed a timestamp-oriented

28

special version of the set of support algorithm for rule engine, which avoids
redoing the same derivations in the next session. This has an added effect of
keeping the amount of derived facts during one derivation session down even for
relatively large rule sets.

2.6. Behaviors and rule language

Behaviors are a collection of commands gathered into one group which can be
executed with a single command from the rules side. Each behavior is
implemented as a small binary program written in C language. It is built from
atomic commands or calls to other binaries in order to perform complex
operation. During implementation of the binary we should remember that several
instances of binaries could run at same time.

For example, let us have the following rule set:
behavior (me, “monitorObstacles”) :- state (me, statelnitial).
behavior (me, “goAhead 2007) .-

state (me, stateCanMove), obstacle (me, nothing).
behavior (me, “handleFailState”) :-

result (solveObstacle, fail), state (me, stateDriveAround).

Where

e Dbehavior is a special name, indicating that the fact is the command to
launch the given binary.

e monitorObstacles is a binary program for monitoring whether any
obstacles are getting in the robots path. If there should be an obstacle in
front of the robot, the obstacle (me, front) fact will be added into the
memory database.

e goAhead is a binary program that makes the robot to move forward or
backward with the speed stated as an argument to the command. For the
current example the translational velocity is 200 mm/s and angular
velocity is 0.

e handleFailState is a binary program that is executed in critical situations:
it will stop robot movement and sensors to save power and will
communicate the information of the failure situation to other robots or to
the central server.

e solveObstacle — a binary program that tries to find a way to get past the
obstacle that has gotten in way of the robot.

Binary execution is being handled by the process we call dispatcher. In order to
execute a binary at the desired time the proper command has to be inserted into
the memory database.

29

Table 2.8 Dispatcher execution command fact describes an example of the
command row which makes the dispatcher to execute a binary.

Table 2.8 Dispatcher execution command fact
subject property value source context
me behavior command wGandalf| dispatcher
where command is a string “behaviorName argl ... argN”.

Timing will become critical when implementing the robot control application on
top of the prover and a relatively large set of behaviors. The time elapsed between
the point of giving the command and the actual execution varies greatly
depending of the current contents of the memory database, the size and
complexity of the rule file, the number of processes running in the system, the
length of the reaction chain and other factors. However, in our test cases the
response times have proved to be acceptable.

Based on our testing, let us consider the following example where by cooperation
between the prover, the dispatcher and two behaviors the robot has to avoid
colliding into the obstacle. Typically it takes about 400ms from the moment when
one behavior (currently monitorObstacles) discovers an obstacle to the point
where the prover inserts a command into the memory database to launch another
behavior. After about 20ms has passed the dispatcher has received the command
and is ready to start the given behavior. After additional 100ms the second
behavior (solveObstacle) takes over the robot control and tries to maneuver the
robot past the obstacle. High-level decision making can safely rely on the given
architectural scheme. However life-critical emergency responses like avoiding
robot falling down the stairs after the cliff sensor detects danger should be
implemented into the hardware or handled by the low-level software agents.

2.7. Robot communication with the server

Robots having the wireless network capability can use the robot-server
centralized communication and robot-robot ad hoc communication when no
WIFI access-points are available. A single transfer session consists of two steps:
first the robot sends its data to the server and then downloads new information
addressed to it from the server. Communication is being handled by the separate
process on the robot: it sends all the new data items from the memory database
to the server. Robots have been configured to execute data transfer with a one
second interval. On the server side the data received from each robot is stored
inside the postgresql [51] database for further processing. For example, suppose
data received from robot4 contains information addressed to the robot9. When
the robot9 initiates data transfer, the server has to gather all the facts for robot9,
including the ones arrived from robot4 and send them out.

The server replies to each uploading act with the dataset gathered for this
particular robot, accumulated since the last transfer session. Software agents on
the server side cannot directly send any data or commands to robots: everything
is communicated via the postgresql database. The special communication agent

30

handles the data transfer between the server and robot. Items received from the
server will be stored directly to the robot memory database.

Humans can monitor and send commands to the swarm or a single robot through
the dedicated user interface built on the server. Data will flow through several
processes on the server side and will finally be transferred to the robots via the
communication agent.

The server has an additional swarm coordinating role used in some applications.
For example, the robot swarm can be used to find a certain object in an
environment. After a user gives the task, the server chooses the suitable group of
robots in a swarm and communicates the id of RFID to the selected robots.
Fulfillment of the task begins, robots spread out in the environment and start
looking for the specified tag. As soon as the necessary RFID is being found the
robot who discovered it, reports to the server. The task is now considered
completed, the user is being notified and all the other robots selected for the job
are notified that tag has been found and told to stop.

Communication between the robot and the server is being handled using the CSV*
data format and sent via the http POST. First row of the data bundle is the robot
id where the data is sent from. All the following rows are the CSV representation
of the memory database contents. The CSV protocol is used for both directions:
sending robot data from to the server postgresql database and vice versa,
receiving data from the server side.

2.8. Summary

In this chapter we have presented a high level overview of the architecture and
the design of the entire system and its components. All the components
communicate via the in-memory database described in the section 2.1 “Memory
database”. Data structures used for the robot control and guidance are described
in the sections 2.2 “Data model and languages” and 2.3 “Data format in RFID
tags”. Moving the robot and making it to perform tasks is achieved using the
commands derived from the rules. These are described in a rule language and
enable the rule engine to infer the specific commands and facts. The rules and the
rule language are explained in the sections 2.4 “Rule based control system” and
2.5 “Rule engine and rule language”. We introduce small programs called
behaviours, similar to the simple commands but performing more complex tasks:
we present these in the section 2.6. “Behaviors and rule language”. Robots can
communicate and share their knowledge via the central server which is explained
in the section 2.7. “Robot communication with the server”.

4
comma-separated values

31

3 AREA COVERAGE WITH A SWARM

This and the following chapter contain the main research contribution of the
thesis.

Our task for the robot swarm was to move around the closed two-dimensional
map and to cover it as quickly as possible. The algorithms are mostly introduced
in the last two papers of the author (papers C and D in the appendix) with an
addition of some elements in the current thesis. Task fulfillment is being
measured by the number of location markers (tags) found; the goal is to find a
certain percentage of all the location markers in the environment. We use the
RFID tags as experimented with in the Roboswarm project. However, the same
algorithms are applicable to other types of location markers: for example,
locations recognized by an on-board camera as used in newer iRobot Roombas.
Different map sizes and tag densities were used during the testing. Several
algorithms were created, run and compared on the simulated robot.

Our robot cannot use path planning or divide the area into cells due to the very
limited knowledge of its position and low odometry precision. Path planning
would be hard to achieve due to the underlying robots low precision odometry
which makes it hard to navigate to exact location at a longer distance. Dividing a
map into small cells and moving between them is not possible due to the fact that
we have no knowledge about the map layout where the swarm is operating.

However, orientation of the robot can be approximately determined in a situation
when the robot finds two or more RFID tags during a straight line drive. From
there, the position could be calculated from odometry values, but while the robot
continues driving, precision is quickly lost.

Therefore, our algorithms do not require the knowledge of the robot orientation
or the location of the robot. Some of our algorithms assume limited knowledge
of the environment: the locations of tags. The assumption that we do not have a
map of the area is useful in the situations where the room layouts change often,
like a modern office, hospital environments, etc.

We have developed four separate algorithms taking advantage of different ways
to find tags inside the environment and requiring various level of input data at the
initialization point. In the following we will use the names “random”, “history
based”, “map aware” and “extended map aware” for these four algorithms.

First, the “random” algorithm does not require any knowledge of the surrounding
environment: the robots just drive around the map, bouncing against the walls,
sometimes finding the tags. Importantly, the turning angle after bumping into an
obstacle plays noticeable role in the performance and will be covered later.

The second, “history based” algorithm remembers encountered tag sequences and
tries to use them to change its course when running into the same tag sequence
afterwards. The initiative for this algorithm originates from the idea to find simple
and low cost ways to improve the performance of the random walk: this turns out

32

to be a good starting point (as by [52]) in the cases where sophisticated solutions
exerting FastSLAM (e.g. [53]) are not applicable due to the hardware constraints.
The random algorithm moving principles are used as the base and are put into use
when no help can be gained from the knowledge of travelling history.

Third, the “map aware” algorithm has a higher level of input data at initialization
point: it knows the coordinates of all the tags located around the environment.
The positions of walls, doors and obstacles are unknown. The main goal is to
navigate to the nearest unvisited tag, which can be done only in occasions where
the robot has seen two or more tags during a straight line move. Again, the default
driving principle is based on the random algorithm and is enabled when no tags
have been found and the robot does not know its orientation.

Fourth, the “extended map aware” algorithm knows everything what the regular
map aware algorithm does and has additional knowledge and special handling for
the door tags. These RFIDs are located exactly at the doorstep and have been
specially marked.

The Table 3.1 Summary of data usage by each algorithm summarizes the data
usage for algorithms.

Table 3.1 Summary of data usage by each algorithm

algorithm locations of tags remembers remembers
found tags found sequences
random X
history based X X
map aware X X
map aware ext. XX X

Note: the extended map aware algorithm can differentiate between tags on doors
and all other tags.

The Figure 3.1 Inheritance of the properties of algorithms. illustrates the re-use
of the properties of algorithms and the behaviors of more complex algorithms
extending the simpler algorithms.

33

random algorithm

history based map aware
algorithm algorithm

extended map
aware algorithm

Figure 3.1 Inheritance of the properties of algorithms.

Each tag placed into the environment holds a minimal set of data needed for the
robot navigation by the map-aware algorithms:

e X,y coordinates of the RFID tag
e RFID tag id, which has to be unique within the environment
e room id or if it is a doorstep tag, then the special value indicating it

3.1. The simulator

For architectural design and rule engine testing we have been experimenting with
real RFID reader equipped Roomba robots [54]. However using real robots for
testing and developing control algorithms is time consuming and can be heavily
affected by external variables. Physical robots require a person to be located in
the development center, batteries need to be recharged regularly and switching
the environment would mean reorganizing the entire test area. For these reasons
the decision was made to use simulations for control algorithm development.
There are various simulators available, but due to the need for the exact and full
control over the simulated robots we have developed a custom simulator. Our
first simulator was developed using the Panda3D [55] gaming engine using
Python programming language which eventually turned out to be too resource
demanding. Running multiple instances of the simulator in one machine was
almost impossible. Clearly there was a need for lighter solution: hence the
simulator was rewritten to Java using the JGame 2D [56] gaming engine. In the
same development machine ten or more instances of the simulator can be run
without any performance problems.

34

Testing system setup consists of two applications. One is the graphical engine
that visually moves the robots: an actual simulator. The second application is the
so called algorithm runner where the logic is implemented. The latter one
connects to the simulator using sockets and sends byte commands to the simulator
which then starts to move robots accordingly. Commands are based on the
instruction set from the Roomba robot manual. The reason for using original
commands is to be able to connect the algorithm runner directly to our physical
robot system in the future. All the protocol logic and conversion from integer
values to the actual byte messages is performed by the driver class which also
does a small amount of optimizations. For example, if the robot is told to turn 370
degrees, then the actual robot will never turn 370 degrees, but 10 degrees instead,
as it would waste energy and time to make a pointless full turn.

Several configuration files exist for managing the environment, tag locations and
robots. A map is defined in the environment configuration using plain text where
one letter states the wall and another empty space. Tags with locations are listed
in a separate configuration file where each line describes one RFID: an x
coordinate, y coordinate, tag id and a room name which can have a special value
when the tag located at the doorstep. Each robot has its own configuration file,
which states its turning angles, trace color, log file locations, ports etc.
Additionally there exists a global robot configuration file which describes the
robot placements in the environment as well as the starting coordinates and robot
headings. The default configuration tells robots to drive with a constant speed of
500mm/s for straight line movement. When a robot stops and turns standing still,
then the movement speed is set 200mm/s making the Roomba to perform a full
turn in around 8 seconds. For understanding the approximate room size the empty
tile areas are summed. Tile side is equal to the Roomba robots diameter which is
34 centimeters.

The main features of the simulator:

Movement logging.

Automatic screenshots at each test run completion.

Automatic test repetitions for result averages.

Tag management with room identification.

The original Roomba robot communication protocol between the
simulator and the control algorithm.

e Creating test runs with predefined movement data: we use this
functionality to create ideal situations for comparing the results of
different algorithms and to replay previous test runs.

While moving around the simulated environment, each robot leaves behind a
colored trace. After a test run completion it is convenient to get a firsthand
evaluation of the efficiency by looking at the robot traces.

An example of the test run can be seen on the Figure 3.2 Example room setup
for testing. The brick tiles on the figure represent walls and other impassible
terrain. The little antennas around the map represent the RFID tags that are not

yet found.
35

The tags are crossed through when a robot has seen them at least once. The dark
filled circles represent the robot, the little red dots in front of the robot represent
bumpers and the green dots in front of them represent the area where a robot is
able to detect RFID tags. The legends can be seen on Table 3.2 Legend of
simulator items. and Table 3.3 Legend of robot parts.

) o)

Figure 3.2 Example room setup for testing (published in paper C)

Table 3.2 Legend of simulator items.

(&) | Not found RFID b | Found RFID

. Wall == | Robot

36

Table 3.3 Legend of robot parts.

RFID detection area marked with the circle.

Robot bumpers marked with the circle.

Robot body marked with the circle.

3.2. Turning angle

During collision with the obstacle a robot can bump with either the left or right
bumper or hit the barrier at ca 90 degrees, switching on both bumpers. After a
head on impact a robot cannot continue its current path and must change its
direction. Degrees to turn to at this situation are given in the robot configuration.

The turning angle can noticeably affect the robots performance. For finding the
optimal value, tests were executed using a single robot with the turning degree
values from 30 degrees to 120 degrees with a 15 degree step. Each test was run
five times with random, history based and map aware algorithms. Results were
compared and 30 degrees was selected as the most suitable turning angle for a
single bumper (left or right) collision. If both bumpers hit, a random value from
the 75 to 115 degree range is used. At first we experimented with a constant 90
degree turn, but found out that the random value from this range turned out to be
more efficient.

During simulation we do not simulate the battery usage, but for the real world
cases it should be remembered that the bigger the turning angle is the more energy
is consumed to perform the movement.

To illustrate the effect of the turning angle we bring the Table 3.4 Average test
runtimes in seconds by the turning angles of average run times for different angles
(in the single bumper case) and different algorithms, produced by the simulations,
in seconds.

37

Table 3.4 Average test runtimes in seconds by the turning angles

angle (degrees) | history based random map aware
30 1305 1975 1009
45 1188 3976 3101
60 1703 2016 2200
75 1628 5139 3078
90 4247 5800 1974
105 3714 5715 1915
120 2317 1975 2882

Looking at the experimental running times at Table 3.4 Average test runtimes in
seconds by the turning angles we see that the 30 degree angle which was chosen
for the overall testing is not the best angle for all cases. However, the first criteria
for choosing the turning angle is that it must be the same for all algorithms,
otherwise the preconditions would differ and the results are not comparable.
Different values would result in unequal time spent for turning the robot and —
for the real robot case — in a different power consumption during the experiments.
For the random and map aware algorithms the 30 degree turning angle is the best
angle. The history based algorithm has the best performance with a 45 degree
angle and the second best with the 30 degree turning angle. Since the performance
difference for the 30 degree angle is less than 10%, this led us to a decision to use
the 30 degree turning angle also for the history based algorithm. Notice that in
real robots the 30 degree angle would also use less energy for turning and thus
conserve battery.

3.3. Success conditions for test runs

Finding each tag in an environment can take a remarkable amount of time. For
example, a robot may find 18 tags out of the total 20 tags within a reasonable
amount of time and then search for the last 2 RFIDs almost endlessly. Testing has
showed that trying to search all the tags makes the test results vary a lot. We have
implemented a configuration parameter — the so called cutoff value - which marks
the percentage at which point the number of found tags will make the coverage
task to be considered completed.

During the implementation of this parameter we made several test runs to find
out the optimal cutoff value. The best value proved to be 85%. For example, if
during the test run a robot has found 85 unique tags out of the 100 tags located
on the environment then we consider the task to be completed. Various test
experiments showed that all the algorithms are more or less impacted by the
random factor and in some cases finding the last 15% can even take more time
than finding the first 85% of the tags.

38

3.4. The Random algorithm

The random algorithm has the least amount of information known at the startup
and during the entire problem solving time. During the initialization it will be
given knowledge about the total amount of tags located in the environment.
Encountering a tag makes the algorithm to store the tag id. For the random
algorithm that is all the data needed for covering the area. For finding RFIDs in
the area, the random algorithm employs a simple principle: the robot will drive
around the environment and when it bumps into an obstacle the robot will back
up a bit and then change its direction and move forward again.

For every test run the robot starts from the same place in the environment and
drives at a straight line until it hits an obstacle. A robot can collide into an obstacle
under some angle or directly head on. Hitting the wall or another robot under an
angle makes the left or right bumper toggle, giving a signal of the collision.

A collision with a single causes the robot to back by some centimeters and then
turn the robot to an opposite direction of the toggled bumper. For example, if the
left bumper gives a signal, we turn the robot to the right. As described before, the
degree of the turn has a significant effect on the room coverage efficiency [57]:
hence we turn by 30 degrees which has proved to be the optimal for most cases.

A head on collision toggles both the left and right bumper: in such case the
algorithm makes the robot back up and then turn at a random angle between 75
and 115 degrees. After finding the needed amount of tags in the environment,
robot will stop and the simulator will start the next run.

3.5. The history based algorithm

This algorithm uses the previously described random algorithm as a base and
extends it with additional logic. The main idea of this algorithm is to stop repeating
the already passed paths and scatter the robots even more around the environment.

After seeing some tag sequence for the first time, the robot drives straight until it
bumps with an obstacle and then makes a turn according to the principles from the
random algorithm. The robot will store this information: for example, it has
encountered 2 tags and finally turned 30 degrees. Seeing the same sequence of tags
for the second time, the robot will immediately turn 30 plus a small delta of 15
degrees. Notice that the algorithm will not wait for the bump to occur: the turn will
be executed right after the sequence is detected.

For sequence matching two or more tags have to be found during the single straight
line move. There can be situations when the first robot movement line has a small
offset from the second line and more tags are found in this case. Our algorithm takes
these situations into account: when at the first move two tags A and B were found
and during the second move the robot finds tags A, F, T and B, it will still detect a
match with the sequence of A and B and will make the turn right after encountering
the tag B. Encountering the tag sequence for the third time, the robot will turn 60
degrees based on the example, because the very last turn was 45 degrees.

39

The following is an example record for a single move:
StraightLineMove {
distanceMoved: 1200mm, turnAtTheEnd: 30, foundTags: [
tag {id: A, foundAtDistance: 350},
tag {id: B, foundAtDistance: 550}]

}

For each straight line move we store one such record, containing distance passed, the
list of tags found during the drive and the degree turned at the end. Associated with
the tag is the distance passed from the beginning of the current move.

During the moves where only a single tag was found the algorithm tries to scatter the
movement by trying to detect if a similar movement has been recorded in the past,
right after the robot has collided into an obstacle. To do that, the algorithm uses the
foundAtDistance value associated with the tag, telling us the tag distance from the
starting point. In case a similar movement has been performed before, the robot will
turn 30 degrees plus the 15 degree delta. If the same situation occurs multiple times,
the delta will be multiplied by the number of occurrences. The robot will never turn
the entire circle because the driver optimizes the turns: for example, if the algorithm
tells the robot to turn 750 degrees, the robot will actually turn only 30 degrees.

Robot

Figure 3.3 Figure indicating how the robot turns after finding the same tag sequence
for two times during one test run.

40

3.6. The map aware algorithm

This algorithm requires the list of all tags present in the environment as input.
Such information was not available for the previously described two algorithms.
Similarly to the history-based algorithm it will use the random algorithm as the
default strategy and when encountering two or more tags during a single straight
line move the map aware algorithm will engage. The map aware algorithm knows
all the tag locations on the map along with the room name where the tag is located.
No additional information like the position of the walls, obstacles, the position of
the robot starting points or positions of other swarm robots is provided. However,
there are tags that are marked as door tags in order to help the robot to understand
that it has left or entered the room.

The room id is detected from the first tag found in a room. The door tags will
make the algorithm to reset the room id for the robot. The base configuration
values for the turning angles are the same as used for the random algorithm.

In our simulator the tags contain approximate information about their coordinates
— the tile id - not the exact coordinates. Actual precision would depend on the tile
size, but during our tests the tile size is constant, equal to the size of a square with
the side length being the robot body diameter. It can be argued that there is no
need for higher precision due to the fact that while driving and turning the robot
odometry loses accuracy. Robot estimation of its position is always imprecise.

The knowledge of the tag locations allows the robot to calculate the approximate
new heading towards the closest unvisited tag, assuming the robot knows its
direction and location. The robot is able to detect its position and heading only
when it has found two or more tags in a single straight line move: due to the
imprecise odometry it has no other persistent way to determine its location and
direction.

The map aware algorithm starts to drive the robot around, using the random
movement algorithm until it encounters two or more tags during a single straight
line move. The known locations of these two tags are used to find the direction
to the nearest not yet found tag in the same room. The robot is immediately
stopped, the new heading is calculated and the robot is turned towards the nearest
tag, commencing straight driving.

Due to the imprecise odometry the robot can miss the target tag and eventually
bump into the obstacle: this causes the algorithm to switch to the random mode
until two or more tags are again found during the straight line move.

It takes a lot of time to stop and turn. The map aware algorithm optimizes by
calculating the presumed time to reach the next tag, adding the time spent while
turning and the time spent while driving the between the current tag and tag to go
to. For example, suppose we have two tags: one located 100mm away at a
completely different direction and another 120mm away with almost no required
direction change. Reaching the physically closest tag might require an algorithm
to turn the robot for 150 degrees and then drive 100mm, while the tag located at

41

120mm would require only a 10 degree turn. Based on the time calculation it
would be faster to drive to the tag located 120mm from current location.

Since the robot has no knowledge of its actual location, the distance between two
tags is calculated based on the map description the robot has. Distance is
calculated from one center point of the tag to another center point. RFID reader
does not, in most cases, detect the center point of the tag. Stopping the robot takes
some milliseconds as well. All that causes the loss in accuracy.

The map aware algorithm has no knowledge of the walls and obstacles inside the
room. However, the nearest not yet found tag can be located at the other side of
the wall or obstacle. Failing to reach the needed tag with bumpers giving a signal
and seeing that the passed distance is smaller than the distance to the desired tag
means that there is probably an obstacle on the way of the robot. For this situation
the robot remembers that it encountering a tag sequence XY and wanting to reach
the tag Z caused the collision into an obstacle. The algorithm decreases the
probability of reaching the tag Z. Encountering the same XY tag sequence next
time algorithm looks at the closest not yet found tags, sorted first by the distance
and then by the reaching probability, thus moving the tag Z farther in the
suggestion list. Tags in the suggested list of suitable tags are selected only from
the current room.

Robot

l

Figure 3.4 Figure indicating how the robot plans the move after encountering two or
more tags during one straight line drive.

42

3.7. An extended map aware algorithm

Our latest published article (paper 4) mentions the use of the extended map aware
algorithm as a special variation. In the current thesis we treat it as a separate
algorithm, tested apart from the regular algorithm.

The regular map aware algorithm may accidentally move out of the room before
finding all the tags. The extended map algorithm improves the regular map aware
algorithm by trying to keep the robot inside the room until all the tags for the
current room have been found. In order for this feature to work, the room entry
points / doors must be marked with special tags.

Once the robot has found all the tags in the current room, it will attempt to exit
the room by driving towards the special door marker tags. When encountering
two or more tags during a single straight line drive the robot stops and calculates
the angle to turn towards the closest door tag. Reaching the door tag and having
found all tags in the current room, the robot drives over the door tags and exits.
Otherwise it will make an approximately 180 degree turn and drive back to the room
to search the not yet found tags in the room.

3.8. Strong and weak points of each algorithm

Before looking at the concrete results, we will give a brief overview of the most
important observations for these four algorithms.

The random algorithm gives stable results for each environment, is able to offer
competitive performance and is fairly easy to implement.

The history based algorithm is complicated to implement, can lose track in some
situations and does not give as stable results as the random algorithm. The performance
is similar or slightly better than the random algorithm for some cases. When the robot
does not encounter two or more RFID tags in a row on a straight line move then it is
not possible to use the history collected by the previous moves.

The performance of the map aware algorithm depends heavily on the setup of the
rooms: it may exhibit very good or moderate results. The complexity of implementing
the map aware algorithm is between the two beforementioned algorithms. The good
results are achieved with more accurate navigation as a robot is aware of all the tag
locations on the map. Knowing the coordinates of each tag means that after finding at
least two tags in a row the robot is able to calculate the heading for the next closest tag.
The results are greatly dependent of the room setup: for complex rooms the
performance may turn out to be moderate.

The extended map aware algorithm is optimized for moving between the rooms. It tries
to find all the tags in the room before leaving, otherwise the algorithm behaves as the
regular map aware algorithm. Being able to move efficiently from one room to another
results in a much better performance, but only in a multi-room environment. Basically,
the additional ability to move from one room to another easier resolves some of the
weaker points from the regular map aware algorithm.

43

3.9. Summary

The chapter “area coverage with a swarm” gave an overview of algorithms and the test
methodologies. A custom built simulator was used to mimic the Roomba
communication protocol. It has full control over each part of the testing process, as
described in the section 3.1 “The simulator”. The key configuration parameter — turning
angle — which tells a robot how many degrees it has to turn when bumping into the
obstacle is described in the section 3.2 “Turning angle”. A short overview of the
successful test conditions are given in the section 3.3 “Success conditions for test runs”.
All the coverage algorithms created are described in the sections 3.4 “The Random
algorithm”, 3.5 “The history based algorithm”, 3.6 “The map aware algorithm” and 3.7
“An extended map aware algorithm”. Each algorithm has some features that can
either result in a performance gain or loss in some situations. The section 3.8
“Strong and weak points of each algorithm” gives a brief overview of these features.

4 EXPERIMENTAL RESULTS

Experiments with our algorithms can be divided into two parts. In the first part we
compute the pseudo-optimal results. In the second part we compare the experimental
runs of our four algorithms against the pseudo-optimal results obtained earlier. We
will use the word “experiment” for a larger group of activities and test runs for a
certain investigated algorithm. We will use the word “test” for a set of simulations
with specific parameters, typically run during one experiment.

The experimental results have been published in the paper D in the appendix.
4.1. Configuration and comparison data

The simulator replay function was used to gather the data for more or less optimal
runs that we call pseudo optimal test runs. During these test runs a simulated robot
follows precisely the user-defined, nearly shortest path between the tags. The
outcomes of these tests are used for comparison with the results of the previously
described four algorithms to measure their performance.

Pseudo-optimal tests are being run with a single robot and configurations which
correspond to the real algorithm tests. For the swarm case a presumption is made that
adding the robots to the swarm has a linear effect to the results. For example, if a
single robot is able to find all the needed tags in the environment with 60 seconds,
then we presume that for the pseudo optimal test run 10 robots will find the tags in 6
seconds.

All the tests have been run with the same robot algorithm configurations — a single
bumper turning degree 30 degrees, both bumpers turning degree randomly in a range
of 75 to 115 degrees and a mandatory tag finding percentage 85. The swarm sizes for
all beforementioned algorithms have been from a single robot to fifteen robots. Each
test set for the presented results consists of five test runs. The graphs below indicate
the average times of these five test runs. The total number of tests run for algorithm
development and testing exceeds the 10 000 test runs. In addition to previously
published articles the thesis covers also the testing results for the extended map aware
algorithm.

44

4.2. Testing strategies and simulation areas

There are six groups of experiments, with the results of each group depicted on a
graph presented below. The groups stem from three kinds of rooms:

The whole area is just a single room without any obstacles.
The whole area is split into three rooms without any internal obstacles in the
room.

e The whole area is split into seven rooms with one of them being a corridor
connected to all the other rooms.

There are two kinds of initial positions of the robots:

e All the robots start at the (almost) same place.
e The robots start at different places, distributed evenly in the rooms.

Starting from the different places at the beginning of a test run means that robots are
spread around the map. For the next test run the starting positions will be the same:
there is no random shuftling at the beginning of each test. The starting locations and
tag locations are predefined in a configuration file. The following screenshots will
give an overview of how the pseudo-optimal solutions look like when the robot has
to find 85% of tags.

%] ()

(1)

)) (5

Figure 4.1 A single room pseudo-optimal run, takes 420 seconds.

45

)

Figure 4.3 Seven-room pseudo-optimal run, takes 512 seconds.

46

A robot swarm participating in one test run shares the same configuration
parameters and follows the same instructions as others. Scenarios where robots
in the same swarm use different algorithms to solve the task have not been
investigated.

It is important to note that the navigation algorithm of the robot simulates the
random fluctuations of both the robot turning angles, turning times and detecting
tags as they actually occur in the real Roomba cleaning robots.

The following screenshots show the finished state of problem solving of one test
run in a single room with six robots, using the map-aware guidance algorithm and
starting from the same location at the top of the room. The room has 90 tags
randomly laid out as shown on the screenshot. An approximate environment area
where the robot can move in this room is 123 square meters. Observe that some
tags on the environment are not crossed through, meaning they have not been
found: we use the 85% limit for marking the task completed.

))

() () - 2

Figure 4.4 End position of a test run in a single room.

The following screenshot depicts the final state of a test run of a three-room
environment with a swarm of five robots using the random guidance algorithm.
Robots are distributed into various rooms at the startup. This room contains 90
regular RFID tags and nine specially marked tags at the doorsteps. The special
door tags are used only by the map-aware and extended map-aware algorithms.
An approximate size of the environment is 118 square meters. Observe that two
robots have exited the original room where they started from and the other three
have been staying in the initial room throughout the entire test run.

47

Figure 4.5 End position of a test run in a 3-room space.

4.3. Comparison of the simulation results

The next four graphs depict the results for our algorithms with different swarm
sizes. Each graph depicts one group of experiments as described above and shows
a calculated pseudo-optimal (ideal) run line for the current setup. The vertical
axis indicates the average time of five runs. The horizontal axis indicates the
number of robots in a swarm.

1400 -

1200 -

1000 -

800 -

600

400 -

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

=—4—History -—=Random - Mapaware ==—Map aware extended -—Ideal

Figure 4.6 A single room with robots starting from one location. Y-axis values are
representing experiment run times in seconds and x-axis shows the number of robots
participating in the experiment.

48

The results presented on the Figure 4.6 above show that the history-based and the
random algorithm perform almost identically: the timing differences between the
runs are random fluctuations. Hence the seemingly useful idea of avoiding paths
already travelled does not translate into clearly measureable gains for any swarm
size. However, it has to be taken into account that - as mentioned before - the
utilization of a history based algorithm is heavily affected by the environment,
the amount of tags and a random factor. A robot just might not encounter already
found tag sequences and be unable to take advantage of the collected information.

The map-aware algorithm constantly shows better performance than the simpler
map-agnostic algorithms. The largest performance gain achieved from the map-
aware algorithm occurs with small swarm sizes (58% of the coverage time of the
random/history based algorithms for the one-robot case) and it shrinks with
greater swarm sizes (68% for a 7-robot swarm). However, it is important to notice
that the benefit of increasing the swarm size is very strong for swarm sizes of up
to seven robots for our environments. Adding robots to larger swarms does not
bring noticeable changes to the results.

The coverage time of the two-robot case is almost twice smaller than for the one-
robot case (regardless of the algorithm), and the coverage time of the four-robot
case is, again, almost twice smaller than for the two-robot case. However, looking
at the graphs last two points 14 and 15, the difference between problem solving
times is insignificant (again, regardless of the algorithm). We could pose a
hypothesis that one of the reasons for diminishing gains is the need to travel to
the far corners and edges from the common starting point: the time it takes is
roughly the same regardless of the swarm size. This leads us to the next
experiment: the same (single) room with the robots starting from various
locations on the environment chosen randomly. The only restriction is that the
robots are placed near the walls and at the startup they head towards the center of
the room.

1400

1200

1000

800

600

400

200

—4—History =—l—Random Map aware —-—Map aware extended —+—Ideal

Figure 4.7 A single room with robots starting from different locations. Y-axis values are
representing experiment run times in seconds and x-axis shows the number of robots
participating in the experiment.

49

According to our test setup and maps the graphs start to go flat after the 7th or
8th robot joins the swarm. Starting from a single location casuses the robots to
consume more time to reach different parts of the map, compared to the situation
where robots are placed all around the map. Theoretically, for our tests with eight
or more robots the resolving times keep decreasing by tiny steps when adding
robots to swarm, until every tile contains a robot. A map fully covered with robots
would be solved in a couple of seconds — the robots must start, rfid readers must
detect the tags and after merging the info of the tags found the test ends.

Looking at the Figure 4.6 we notice that flattening does not occur as quickly as
on the Figure 4.7. For example, consider the swarm size of seven robots. When
the robots start from one location, the random algorithm is able to perform the
task in 108 seconds, the history based algorithm in 115 seconds, the map aware
in 80 seconds and the extended version of the map aware algorithm in 89 seconds.
The pseudo-optimal time for a swarm size of seven robots is 60 seconds.

Looking at the next point of the graph — the swarm size being eight robots - the
result for the random algorithm is 94 seconds, for the history based it is 130
seconds, for the map aware it is 80 seconds and the extended map aware algorithm
manages to solve the task in 74 seconds. The pseudo optimal time is 52 seconds.

We notice that the history based algorithm with 8 robots performed even worse
than it did with seven robots. The reason is that all the algorithms follow some
percentage of time according to the random movement principles. During that
time they are not able to apply their specific logic, basically meaning having not
found two or more tags during straight line drive. Increasing the robot swarm size
from seven to eight robots has shortened the problem solving times up to 20%.
Moving further and looking at the swarm of size 14 robots, the time consumed
by the random algorithm is 60 seconds, the history based algorithm is able to
complete the task in 64 seconds, the map aware in 60 seconds and the extended
map aware in 56 seconds. The pseudo optimal time for a swarm of 14 robots is
30 seconds.

Comparing the results with swarm sizes of seven (Table 4.1 Results represented
in seconds for seven robot swarm experiment with same and various start
locations.) and fourteen (Table 4.3 Results represented in seconds for fourteen
robot swarm experiment with same and various start locations.) tells us that the
random algorithm time has decreased by 80%, the history based algorithm has
decreased by 79.6%, the map aware by 33.3% and the extended map aware by
59%. The pseudo optimal time has changed 50%.

Looking at the same points for Figure 4.7 with robots starting at various locations
in the environment with seven robots, the random algorithm performs the task in
108 seconds, the history based algorithm is able to finish with 110 seconds, the
map aware completes in 76 seconds and the extended map aware in 85 seconds.

50

Moving forward to the results for swarm with the size of eight robots (Table 4.2
Results represented in seconds for eight robot swarm experiment with same and
various start locations.) the random algorithm gets the job done in 99 seconds,
the history based algorithm completes its task in 105 seconds, the map aware is
able to finish in 78 seconds and the extended map aware in 70 seconds. Pseudo
optimal time for the task completion is the same - for seven robot swarm 60
seconds and for eight robot swarm 52 seconds - as it was for the comparisons for
Figure 4.6. Time difference comparing the swarms with sizes of seven and eight
for random algorithm has decreased around 9%. The history based algorithm has
performed about 5% better, the map aware has almost the same result, but still
the performance has gone down and problem solving time has increased by 2.5%.
The extended map aware has been able to solve the problem with eight robots
21% faster than with the seven robot swarm. Pseudo-optimal performance time
has decreased by 14%.

Looking at the resolving times for the swarm with fourteen robots, the random
algorithm solves the problem with 61 seconds, the history based in 59 seconds,
the map aware algorithm in 45 seconds and the extended map aware in 47
seconds.

Looking at the time change percentages against the swarm size change by one
robot it can be seen that in case of a common start location the change in values
is greater than for the configuration where the robots start from various places
around the map.

Importantly, we observe there is no significant time difference for random and
history based algorithms between the results with the same location and varying
location starting placement strategies illustrated on the Figure 4.6 and Figure 4.7.
An exception is a history based algorithm with the swarm size of eight robots,
which is presumably a random fluctuation.

Table 4.1 Results represented in seconds for seven robot swarm experiment with same
and various start locations.

seven robots random | history based | map aware |ext. map aware
same start location 108 115 80 89
various start location 108 110 76 85

0,00% 4,55% 5,26% 4,71%

Table 4.2 Results represented in seconds for eight robot swarm experiment with same
and various start locations.

eight robots random | history based | map aware |ext. map aware
same start location 94 130 80 74
various start location 99 105 78 70

-5,05% 23,81% 2,56% 5,71%

51

Table 4.3 Results represented in seconds for fourteen robot swarm experiment with
same and various start locations.

fourteen robots random | history based | map aware |ext. map aware
same start location 60 64 60 54
various start location 61 59 45 47

-1,64% 8,47% 33,33% 14,89%

Table 4.4 Results represented in seconds for fifteen robot swarm experiment with same
and various start locations.

fifteen robots random | history based | map aware |ext. map aware
same start location 60 56 56 54
various start location 55 54 49 46

9,09% 3,70% 14,29% 17,39%

We see that robots spread very quickly in the same-location scenario and the
initial spreading process has little effect on the overall time for simpler algorithms
or smaller swarm sizes. Quick spreading is made possible by the random
fluctuations of robot behavior as described above. For map aware and extended
map aware the spreading is not that important. Knowing the locations of each tag
and finding a sequence of at least two tags during a single straight line move
directs the robot towards the nearest not yet found tag: this principle causes
spreading.

The next two experiments are conducted in a simple three-room space shown on
the Figure 4.5 End position of a test run in a 3-room space. above. The size of the
space is approximately same and the number of tags is the same as in the previous
one-room experiment, with an exception of nine additional doorstep tags.

The principal complexity of covering a multi-room space stems from the problem
of a robot (or several robots) being stuck in a few rooms and not reaching all the
rooms necessary to obtain the 85% tag coverage condition. In the robot room
coverage literature this problem is typically alleviated by different planning
algorithms. Not so in our simple algorithms: the random and history-based
algorithms are completely unaware of the geometry of the room the robot is in or
the tags located in the room at any given moment.

However, the map-aware algorithm always has the knowledge as to which room
the found tag belongs. It first tries to find all the tags in the room and after this it
attempts to escape the room by driving toward the closest door marking tags.

52

1200

1000

800 -

600 -

400

200

—4—History —=Random -—Mapaware =—==—Mapaware extended —=—I|deal

Figure 4.8 A three-room space with robots starting from one location. Y-axis values are
representing experiment run times in seconds and x-axis shows the number of robots
participating in the experiment.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~—4#—History —#=Random -&—Mapaware =——==—Mapaware extended ~=+Ideal

Figure 4.9 A three-room space with robots starting from different locations. Y-axis
values are representing experiment run times in seconds and x-axis shows the number
of robots participating in the experiment.

A single robot is much more affected by the random factor than the entire swarm,
hence it is hard to give a credible comparison for the results of a single robot for
the three room space. As it can be seen from the graphs, one robot with a random
algorithm is able to solve the task for the three room space even faster at one test
run, when compared to the single room testing. However looking at the Figure
4.9 it can be seen that the time for three room space with the random algorithm
has almost doubled. On Figure 4.8 and Figure 4.9 the one robot test runs are
basically the same: with a single robot the various starting locations do not have
an effect. The history based and map aware algorithms have all constantly
increased the task solving times for the three room space. Increasing the swarm
size causes the fluctuating result time for the random algorithm to diminish.
However, for larger swarms the time difference increases: it takes about twice as

53

long to cover the three-room space for the 7-robot swarm when compared to the
one-room space. The reasons for the performance loss are hidden in the
spreading, which is much more complex for environments with several rooms
when compared to one single open space. However, the overall trend is the same:
increasing the size of a robot swarm first results in a rapid drop of the problem
solving time, but after a while it will decrease less and less.

The next experiment is conducted in the same environment as the previous one
with the difference that all the robots are spread out evenly around the map. At
start there is at least one robot in each room, assuming the swarm size has
increased to three robots or more. Increasing the swarm size, we see that the form
of the graph starts to become similar to the one-room case, which is — again — not
unexpected, since there will be at least one robot for each room in the initial
situation. Again, the positive effect of increasing the swarm becomes smaller and
smaller as the robot swarm grows.

() (o)
()

(n-i'u)(nia)

)

Figure 4.10 Random algorithm with 15 robots, starting from different locations in a
seven-room space.

Finally we have chosen the seven-room setup with six small rooms and a corridor.
The map has about 111 square meters of space and there are 100 tags located
around the environment, including the 18 special tags placed on at the doorways.

For this complex environment the key factor for quick coverage times is
spreading robots across all the rooms. Based on the results it is somewhat
surprising that starting from different locations (robots evenly distributed in the
rooms versus all robots together in a corridor) has a relatively small effect on

54

coverage time. It is also worth noting that increasing the size of a swarm has a
significant effect until the amount of robots is equal or larger than the number of
rooms, after which adding new robots has a negligible effect on the coverage
time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

—4—History —#—Random -—&—Mapaware ——Mapaware extended —+—Ideal

Figure 4.11 Six small rooms with a corridor, robots starting from different locations. Y-
axis values are representing experiment run times in seconds and x-axis shows the
number of robots participating in the experiment.

4500 - i
\

4000 -
3500 - \L

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

—4—History —#—Random —&—Mapaware ——Mapaware extended —+—Ideal

Figure 4.12 Six small rooms with a corridor, robots starting from one location. Y-axis
values are representing experiment run times in seconds and x-axis shows the number
of robots participating in the experiment.

4.4. Environment versus the swarm size

When we compare all the six graphs presented, it can be clearly seen that the
random factor has an effect on the results. It should be expected that a larger
amount of test runs would smoothen out the random factor in results, yet it
remains a significant aspect for the actual use of the swarm.

While single room graphs look smooth, the graphs for multiple room setups have
several “bumps”. The reason for these fluctuations relies on the navigation issues

55

as robots have to move between rooms and are unable to always pass the
doorways. Our hypothesis for the multi-room spaces is that the main speedups
can be gained by spreading the robots evenly in the rooms, which should be
attainable even by employing the tags (or other landmarks) located at doors only.
It is also possible that it would be sufficient to employ a random algorithm for all
the situations except when the robot is located at the door and should decide
whether to enter the door or not. This hypothesis should be tested in future work.

In order to compare the swarm results for all the three environments described
above we present the graph of averages compiled from all the algorithms. Each
line on the graph represents average results for all the algorithm results merged
together. The graphs representing coverage time as a function from the size of the
swarm S are roughly a*S*¢ for a single room, b*S™"% for the three-room setup
and ¢*S™* for the seven-room setup, where a, b and ¢ depend on the room size
and robot speed.

2500

2000

1500

1000

500

0 1 2 3 4 5 6 7 g 9 10 11 12 13 14 15 16

—— Single room —a— 3 rooms —&— 7 rooms

Figure 4.13 Averages for all the three algorithms. Y-axis values are representing
experiment run times in seconds and x-axis shows the number of robots participating in
the experiment.

56

4.5. Algorithm performance for very high RFID densities

v WO "' 0ttt it i i it} Dot v«vovrv'-v-v»v
) 1‘1 00 i J,: 1‘1 1‘1 I‘l I‘l N 1,1 J‘I 10 i.l Q00 J{&WI T e YUY
: e i e S Il
F‘l I iy
}‘\ F‘l i.lw
F‘n .i I“ f‘l r‘
)t U lJ‘tl{r‘l)t
i lo’;' 'n

b IH rL If Ji,HH-

00‘ ;
DX M'M'm-r'-mmm byt

i O 0 it
b e ‘-i’h.‘ ;
0
i Jil J‘l b J.l s Tk
l
Bl 1 0% ;,L il

il Tl =l [Nl u 0 Ot O ey i u:n 0 e
"" %lildl‘il tlll OO0 tlll SR
0 |.1 S0 p‘: OO H0

r,, :,s a,(1‘1 al B - J‘t Ve gl e e G MRl DGl Dl _, gD J,i il $” e
Il 'A"a"'a“_\a‘ ,'] — I J;l o g D) g DS 0 J,L Ak Lt 3}.’4 Jn

g g g r,\ :,i 0 H. M '- @ '. 1 e },l g g o g g gt g O g g gl "t III‘

o g gl I[J,:

Figure 4.14 Extreme situation in an experimental room setup with all the available
space covered with tags (published in paper C).

Finally we present a short overview of the experiments with a three room space
which has a very high tag density, up to every single tile being filled with an
RFID tag. Such tests give valuable input for tuning the algorithms.

The first group of tests has been ran with various room setups and randomly
placed tags with a coverage around 15 — 25%.

The greatest impact of dense tag positioning was observed for the history based
and map aware algorithms, as could be predicted. Both of these algorithms make
decisions based on the observed tag sequences, while the random algorithm is
just driving the robot around. We ran all the beforementioned room setups with
multiple test runs. The results indicated rising solving times. One of the reasons
is that a tag will not always be registered when it is in the radio coverage. Also,
for the map aware algorithms the high density causes the robots to turn very often,
thus losing a lot of time turning, not driving. This is caused by the fact that a robot
almost never discovers the tag at its center point and is not able to navigate
precisely due to its weak odometry.

Running our algorithms in rooms completely filled with RFID tags resulted in an
average run time increase up to 50%. The worst cases actually ended with the
time loss of 200% or more, although the proportion of so bad cases was lower
than 5% of all runs.

57

4.6. Summary

In this chapter we have presented an overview of the results of tests and the
environments where they were tested in. The section 4.1 “Configuration and
comparison data” briefly describes the robots turning angle configuration and the
base data on which the results are compared. Algorithms were tested in various
room setups and different swarm distribution strategies. Each test strategy is
described in the section 4.2 “Testing strategies and simulation areas”. Comparisons
of the results of testing are described in the section 4.3 “Comparison of the
simulation results”. Different room setups have a distinct effect on the
performance of our coverage algorithms. The section 4.4 “Environment versus
the swarm size” gives an overview of these effects. Regular tag coverage of the
room is around 20% and all the algorithms have been tested in these conditions.
Since there could also occur irregular situations, the section 4.5 “Algorithm
performance for very high RFID densities” gives an overview of how do the
extreme tag densities affect the performance of our algorithms.

58

CONCLUSIONS

Our main goal was to investigate and develop algorithms using navigational tags
for enhancing the performance of a swarm of robots when precise navigation is
hard to achieve or not feasible.

First, we have designed and presented a knowledge architecture for intelligent
robots operating as a swarm, able to use RFID tags both as landmarks and
communication channels. The architecture is based on using extended RDF
triples for knowledge represenation on all levels: tags, robot knowledge base and
the swarm knowledge base on the server. We have also designed a rule system
for robots, providing reactive control while a robot is in action.

This architecture was implemented for iRobot Roombas extended with RFID
readers and new control software. The demonstrated ability of the real swarm of
physical robots to solve given tasks indicates the feasibility of the architecture.

Second, we have developed and investigated four different, robust coverage
algorithms for swarms of simple robots tasked with cleaning, search or similar
activities inside buildings. In order to run realistic tests we have developed a
simulator closely matching the actual capabilities and behaviour of the real
cleaning robots. The key findings of the experiments are as follows:

e A specific parameter of the robot behaviour - the default turning angle -
makes a significant difference for the performance of all the investigated
algorithms. One of the main reasons is that bigger turns take more time
than smaller turns, thus wasting time which should be spent covering the
room. As shown in the table 3.4, the 30 degree turn is the best or next
best choice for the algorithms experimented with.

e The algorithms knowing the locations of landmarks are consistently
better than the parameter-optimized random algorithm: roughly
estimated 20% faster for small swarms, with significant variations
stemming from room setups and smaller improvements for larger
swarms: see tables 4.1 —4.4. They are also, on the average, close enough
to the ideal behaviour to be considered as practically sufficient: running
time is roughly 1.2 times of the ideal, although this varies depending on
the room setup and swarm size, see figures 4.6 — 4.12.

e Assuming the tag location reader is inexact, then for rooms with a very
high density of landmark locations it is important to avoid using all the
landmarks for potential optimizations of the search path. The main reason
is misreading the location of closely positioned tags and the time spent
(incorrectly) turning at too many landmarks, thus wasting more time
spent on turning than the optimizations gain. As presented in section 4.5,
in our experiments the time spent in a room with a very high-density tag
cover was roughly 1.5 times the time spent in a “normal” tag density
room.

e As the swarm size and density increases, the performance improvements
gained by better algorithms and more knowledge decrease quickly: in the

59

other words, increasing the size of the swarm dominates the effect of
having better sensors and more intelligent behaviour. This effect can be
seen best on figures 4.6 — 4.12 and as a summary on the figure 4.13. For
example, for our three-room setup increasing the size of the swarm from
one robot to two robots decreases the running time ca two times,
increasing from two robots to seven decreases the time ca four times and
from seven to fourteen ca two times. The coverage time as a function
from the size of the swarm S is roughly b*S™% for the three-room setup,
where b depends on the room size and robot speed. In contrast, the
improvements gained from better algorithms and more knowledge are ca
20%.

For the future work, it would be interesting to consider the swarm algorithms
tuned to the use of the camera module included in the newer cleaning robots, in
contrast to the algorithms focused on finding RFIDs in the environment. While
there are significant similarities between these approaches and we believe that
our key findings still hold, there are also important differences and potential
improvements to be made.

60

REFERENCES

[1] Y. Altshuler Y, A.M. Bruckstein, 1.A. Wagner.: Swarm Robotics for a
Dynamic Cleaning Problem. In "IEEE Swarm Intelligence Symposium”, pages
209-216, 2005.

[2] T. Tammet, J. Vain, A. Kuusik: "Using RFID tags for robot swarm
cooperation”. WSEAS Transactions on Systems, 5(5), pages 1121-1128, 2006.

[3] H. Endres et al., “Field test of a navigation system: autonomous
cleaning in supermarkets,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
1998, pp. 1779-1781.

[4] R. Murphy, “Human-robot interaction in rescue robotics,” IEEE Syst.,
Man, Cybern., C, Appl. Rev., vol. 34, no. 2, pp. 138—153, May 2004.

[5] W. Burgard, A.B. Cremers, D. Fox, D. Hihnel, G. Lakemeyer, D.
Schulz, W. Steiner, S. Thrun. The interactive museum tour-guide robot. Proc.
AAAI-98, Madison, WI (1998)

[6] Y. Huang et al., “Automatic operation for a robot lawn mower,” in
SPIE Conf. Mobile Robots, vol. 727, 1986, pp. 344-354

[7] D. Hougen et al., “A miniature robotic system for reconnaissance and
surveillance,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2000, pp. 501—
507.

[8] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet, R.
Diankov, G. Gallagher, G. Hollinger, J. Kuffner, M. V. Weghe. Herb: A Home
Exploring Robotic Butler. Autonomous Robots, 2009

[9] Space mining at http.//spectrum.ieee.org/automaton/robotics/military-
robots/nasa-training-swarmie-robots-for-space-mining (25.04.2017)

[10] J. Haverinen and A. Kemppainen, “A global self-localization technique
utilizing local anomalies of the ambient magnetic field.”, International
Conference on Robotics and Automation, pp 3142 — 3147, 2009.

[11] M.A. Batalin, and G.S. Sukhatme, “Coverage, Exploration and
Deployment by a Mobile Robot and Communication Network”, in Proc.
International Workshop on Information Processing in Sensor Networks, 2003,
pp. 376 — 391

[12] N. Karlsson, E.D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian
and M.E. Munich, "The vSLAM Algorithm for Robust Localization and
Mapping," Proc. IEEE Int' | Conf. Robotics and Automation, 2005.

[13] Dorigo, M., Bonabeau, E., & Theraulaz, G. (2000a). Ant algorithms
and stigmergy. Future Generation Computer Systems, 16(8), 851-871.

[14] Ziparo, V. A., Kleiner, A., Nebel, B., and Nardi, D. (2007). Rfid-based
exploration for large robot teams. In IEEE International Conference on
Robotics and Automation, 4606-4613.

61

[15] N. Agmon, N. Hazon, and G. A. Kaminka, "Constructing spanning trees
for efficient multi-robot coverage," in Proceedings of the 2006 I[EEE
International conference on robotics and Automation, vol. 1-10, (Orlando, FL,
USA), pp. 1698-1703, 2006.

[16] Burgard, W.; Moors, M., Stachniss, C.; Schneider, F.E., "Coordinated
multi-robot exploration,” Robotics, IEEE Transactions on , vol.21, no.3,
pp.376,386, June 2005

[17] H. Choset and P. Pignon, "Coverage path planning: The boustrophedon
decomposition”, in: Proc. of Int. Conf. on Field and Service Robotics,
Canberra, Australia, December 1997.

[18] S. Schneegans, P. Vorst and A. Zell, “Using RFID Snapshots for Mobile
Robot Self-Localization.”’, European Conference on Mobile Robots, pp. 1 — 6,
2007.

[19] D. Hahnel, W. Burgard, D. Fox, K. Fishkin and M. Philipose,
“Mapping and localization with RFID technology.”, International Conference
on Robotics and Automation, pp. 1015 — 1020, 2004.

[20] J. Bohn and F. Mattern, “Super-Distributed RFID Tag Infrastructures.”
Lecture Notes in Computer Science, vol 3295, pp. 1 — 12, 2004.

[21] 8. Park and S. Hashimoto, “Indoor localization for autonomous mobile
robot based on passive RFID.”, International Conference on Robotics and
Biomimetics, pp 1856 — 1861, 2009.

[22] M. Baglietto, G. Cannata, F. Capezio, A. Grosso, A. Sgorbissa and R.
Zaccaria, “PatrolGRAPH: a Distributed Algorithm for Multi-Robot
Patrolling”, IAS10 - The 10th International Conference on Intelligent
Autonomous Systems, Baden Baden, Germany, pp. 415 — 424, July 2008.

[23] N. Agmon, N. Hazon, and G. A. Kaminka, "Constructing spanning trees
for efficient multi-robot coverage," in Proceedings of the 2006 IEEE
International conference on robotics and Automation, vol. 1-10, (Orlando, FL,
USA), pp. 1698-1703, 2006.

[24] Burgard, W.; Moors, M., Stachniss, C.; Schneider, F.E., "Coordinated
multi-robot exploration,” Robotics, IEEE Transactions on , vol.21, no.3,

pp.376,386, June 2005

[25] H. Choset and P. Pignon, "Coverage path planning: The boustrophedon
decomposition”, in: Proc. of Int. Conf. on Field and Service Robotics,
Canberra, Australia, December 1997.

[26] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. Annals of Mathematics and Artificial Intelligence, 31,
pp 77-98, 2001

62

[27] O.Hachour. Path planning of Autonomous Mobile robot. International
Journal of Systems Applications, Engineering & Development, issue 4, vol 2, pp
178-190, 2008

[28] Ackerman, E. & Guizzo, E. (2015). iRobot Brings Visual Mapping and
Navigation to the Roomba 980
http://spectrum.ieee.org/automaton/robotics/home-robots/irobot-brings-visual-
mapping-and-navigation-to-the-roomba-980

[29] Celan, V., Stancié, I, & Musié, J. (2016, July). Cleaning up smart
cities—Localization of semi-autonomous floor scrubber. In Computer and

Energy Science (SpliTech), International Multidisciplinary Conference on (pp.
1-6). IEEE.

[30] Rubenstein, Michael, Alejandro Cornejo, and Radhika Nagpal.
"Programmable self-assembly in a thousand-robot swarm." Science 345.6198
(2014): 795-799.

[31] Kilobot specifications at http.//www.k-team.com/mobile-robotics-
products/kilobot/specifications (25.04.2017)

[32] Rubenstein, Michael, Christian Ahler, and Radhika Nagpal. "Kilobot: A
low cost scalable robot system for collective behaviors." Robotics and
Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012.

[33] Blender, T., Buchner, T., Fernandez, B., Pichlmaier, B., & Schlegel, C.
(2016, October). Managing a Mobile Agricultural Robot Swarm for a seeding
task. In Industrial Electronics Society, IECON 2016-42nd Annual Conference of
the IEEE (pp. 6879-6886). IEEE.

[34] Marjovi, A., Nunes, J., Sousa, P., Faria, R., & Marques, L. (2010,
May). An olfactory-based robot swarm navigation method. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on (pp. 4958-4963).
IEEE.

[35] Konur, S., Dixon, C., & Fisher, M. (2012). Analysing robot swarm
behaviour via probabilistic model checking. Robotics and Autonomous
Systems, 60(2), 199-213.

[36] Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., &

Dorigo, M. (2012). Self-organized flocking with a mobile robot swarm: a novel
motion control method. Adaptive Behavior, 20(6), 460-477.

[37] Zhai, C., & Hong, Y. (2013). Decentralized sweep coverage algorithm
for multi-agent systems with workload uncertainties. Automatica, 49(7), 2154-
2159.

[38] Sartoretti, G., Hongler, M. O., de Oliveira, M. E., & Mondada, F.
(2014). Decentralized self-selection of swarm trajectories: from dynamical
systems theory to robotic implementation. Swarm Intelligence, 8(4), 329-351.

63

[39] Couceiro, M. S., Martins, F. M., Rocha, R. P., & Ferreira, N. M.
(2014). Mechanism and convergence analysis of a multi-robot swarm approach
based on natural selection. Journal of Intelligent & Robotic Systems, 76(2),
353-381.

[40] Pasztor, A. (2014). Gathering simulation of real robot swarm. Tehnicki
Vjesnik-Technical Gazette, 21(5).

[41] Alers, S., Tuyls, K., Ranjbar-Sahraei, B., Claes, D., & Weiss, G. (2014).
Insect-inspired robot coordination: foraging and coverage. Artificial life, 14,
761-768.

[42] Bhattacharya, S., Ghrist, R., & Kumar, V. (2014). Multi-robot coverage
and exploration on Riemannian manifolds with boundaries. The International
Journal of Robotics Research, 33(1), 113-137.

[43] Valentini, G., Hamann, H., & Dorigo, M. (2015, May). Efficient
decision-making in a self-organizing robot swarm: On the speed versus
accuracy trade-off. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems (pp. 1305-1314). International
Foundation for Autonomous Agents and Multiagent Systems.

[44] Maftuleac, D., Lee, S. K., Fekete, S. P., Akash, A. K., Lopez-Ortiz, A., &
McLurkin, J. (2015, May). Local policies for efficiently patrolling a
triangulated region by a robot swarm. In Robotics and Automation (ICRA),
2015 IEEFE International Conference on (pp. 1809-1815). IEEE.

[45] Becker, A., Fekete, S. P., Kroller, A., Lee, S. K., McLurkin, J., &
Schmidt, C. (2013, June). Triangulating unknown environments using robot
swarms. In Proceedings of the twenty-ninth annual symposium on
Computational geometry (pp. 345-346). ACM.

[46] Zheng, S., Hong, J., Zhang, K., Li, B., & Li, X. (2016). A multi-frame
graph matching algorithm for low-bandwidth RGB-D SLAM. Computer-Aided
Design, 78, 107-117.

[47] Luo, C., Yang, S. X., Li, X., & Meng, M. Q. H. (2017). Neural-
Dynamics-Driven Complete Area Coverage Navigation Through Cooperation
of Multiple Mobile Robots. IEEE Transactions on Industrial Electronics, 64(1),
750-760.

[48] Hayes-Roth, B. (1985). A blackboard architecture for control. Artifcial
Intelligence, 26(3), 251-321.

[49] Tammet, T. (1997). Gandalf. Automated Reasoning, 18(2), 199-204.

[50] Robinson, J.A. and Voronkov, A. (eds.) (2001). Handbook of Automated
Reasoning. MIT press.

[51] PostgreSQOL at https://www.postgresql.org/ (25.04.2017)

64

[52] R Morlok and M. Gini, “Dispersing robots in an unknown
environment”, in 7th International Symposium on Distributed Autonomous
Robotic Systems (DARS), June 2004.

[53] H.S. Jeon, M.-C. Ko, R. Oh and H.K. Kang, “A practical robot
coverage algorithm for unknown environments”, in Proceedings of the 9th
Mexican international conference on Advances in artificial intelligence: Part I
Pages 129-140, 2010.

[54] Tammet, T., Reilent, E., Puju, M., Puusepp, A., & Kuusik, A. (2010).
Knowledge centric architecture for a robot swarm. IFAC Proceedings Volumes,
43(16), 294-299.

[55] Panda3D at https://www.panda3d.org/ (25.04.2017)

[56] Jgame 2D at https://sourceforge.net/projects/jgame-engine/
(25.04.2017)

[57] A. Tanoto, U. Riickert, "Local Navigation Strategies for Multi-Robot
Exploration: From Simulation to Experimentation with Mini-Robots", Procedia
Engineering, vol. 41, 2012, pp. 1197-1203

65

KOKKUVOTE

Dissertatsioon tegeleb robotitega, mis suudavad kasutada RFID mérgiseid nii
orientiirpunktide kui omavahelise suhtluskanalina. T66 annab kodigepealt detailse
iilevaate intelligentsete robotite jaoks loodud teadmus-arhitektuurist. Sellele
jargneb iilevaade erinevatest t60 kdigus loodud katvusalgoritmidest selliste
robotiparvede jaoks, mille eesmérgiks on koristamine, otsing jms. iilesanded
siseruumides. T6o0 pohieesmérgiks ongi leida efektiivseid katvusalgoritme ja
analiilisida parves osalevate robotite arvu mdju lilesande lahendamiseks kuluvale
ajale. Uhe olulise tulemusena niitame, et parves osalevate robotite arvu tdstmine
on iilesande lahendamise ajale oluliselt suurema mojuga, kui roboti teadmiste
tdiendamine ja algoritmi optimeerimine.

Viitekirjas keskendume robotitele, millel puudub sidevoime, mis on varustatud
vaid viheste, seejuures vearohkete sensoritega ning mil iilesande lahendamise
alguses praktiliselt puudub teadmine {imbritsevast keskkonnast. Tiiiipilised
koristus- ja muruniitmis-robotid on taoliste robotite néiteks.

Konkreetne arendatav ja testitav robotitiilip on Roboswarm EU FP6 projekti
kiigus (kus osales ka t66 autor) iRobot Roomba tdiustusena arendatud RFID
lugejaga robot. Algoritmide testimiseks ja vOrdlemiseks kasutame to0s
simulatsioone. Spetsiaalselt antud iilesande jaoks ehitatud simulaatoriga on
koigepealt genereeritud peaagu ideaaltulemustele vastavad baasandmed, mida on
seejarel korvutatud robotiparvede poolt erinevate algoritmide rakendamisel
saadud tulemustega.

66

Appendix A

Paper A

T. Tammet, J. Vain, A. Puusepp, E. Reilent, A. Kuusik. RFID-based
communications for a self-organizing robot swarm. In: Proceedings Second IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, SASO
2008: 20-24 October 2008, Venice, Italy: (Toim.) Brueckner, Sven; Robertson,
Paul; Bellur, Umesh. Los Alamitos, Calif.: IEEE Computer Society, 2008, 45 -
54,

67

Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems

RFID-based Communications for a Self-Organising Robot Swarm

Tanel Tammet, Jiiri Vain,
Andres Puusepp, Enar Reilent
Department of Computer Science,
Tallinn University of Technology
Ehitajate tee 5, 19086 Tallinn, Estonia
tammet @staff.ttu.ee, vain@ioc.ee,
e.reilent@gmail.com, anduoma@hot.ee

Abstract

We investigate the practical questions of building a self-
organising robot swarm, using the iRobot Roomba cleaning
robot as an experimental platform. Our goal is to employ
self-organisation for enhancing the cleaning efficiency of a
Roomba swarm. The implementation uses RFID tags both
Jor object and location-based task recognition as well as
graffiti- or stigmata-style communication between robots.
Easily modifiable rule systems are used for object ontolo-
gies and automatic task generation. Long-term planning
and central coordination are avoided.

1 Introduction

The concept of a robot swarm denotes a large number of
relatively simple physically embodied agents designed in
a way that the desired collective behaviour emerges from
the local interactions of agents and the interactions be-
tween the agents and the environment. The swarms are
meant to perform a wide range of tasks which are infea-
sible to accomplish by a single robot. Their application
ranges from simple cleaning tasks to exploration of large
unknown areas, surveillance, rescue, coordinated weight
lifting, minesweeping etc. where intervention from human
operators is minimized.

The goal of a swarm mission can be considered gener-
ally as an integrated service provided by the swarm mem-
bers collectively over a given period of time. Since swarms
typically act in a dynamic and partially observable environ-
ment, the service requires repetitive and coordinated action
by the swarm members throughout the mission.

The overall goal of our project is to develop simple and
low-cost technologies for making both single robots and
swarms of robots more intelligent. We use the dynamic

978-0-7695-3404-6/08 $25.00 © 2008 IEEE
DOI 10.1109/SAS0.2008.62

45

Alar Kuusik
Department of Electronics,
Tallinn University of Technology
Ehitajate tee 5, 19086 Tallinn, Estonia
kalar@va.ttu.ee

cleaning problem [1], [7] as a testbed for the developed
knowledge architecture, focusing on making swarm clean-
ing more efficient.

The crucial part of the project is to achieve the efficient
cooperative behaviour of robots without any central coordi-
nation and planning.

That, again, requires propagation of understandable and
reusable information among the robots which may be differ-
ent in hardware and software. The target goal can be called
“knowledge centric” architecture approach focusing on uni-
formal (or easily convertible) on-robot and inter-robot data
management.

We use ordinary passive RFID chips for marking objects
like chairs, walls, doors. This is significantly cheaper and
more flexible than using cameras on robots for object recog-
nition. The same RFID chips on objects are also used by
the robots to leave messages to other robots. The solution
is inspired by ants’ communication using pheromone trace
known as stigmery. The usage of RFID tags reduces the
communication overhead related with coordination signifi-
cantly [9].

We use a popular iRobot Roomba cleaning robot and
attach a tiny ARM-based Gumstix computer (500 MIPS
computing power) using a BusyBox 2.6 Linux distribu-
tion (without real-time capabilities) and a stock RFID
reader/writer on the Roomba. The attached computer takes
over control of the Roomba. While a standard Roomba is
fairly simple-minded, will clean places recently cleaned and
does not understand that some places should be avoided - or
vice versa, cleaned often - our system adds necessary intel-
ligence.

First, Roombas understand object descriptions and sim-
ple messages written on RFID chips by humans: like ”go
away”, "fragile”, “clean here”, "this is a chair” etc. When
the robot notices an RFID chip ahead, it will read its content
and behave accordingly, following the configurable rules on
board. The rule engine uses ontologies and allows the robot

IEEE
(@ computer
® psomety

to understand, for example, that chair is a furniture and you
can probably go around furniture.

Second, Roombas write their own messages on RFID
chips. For example, when the robot notices an RFID tag
while cleaning, it will write on the tag that it was cleaning
there at that particular time. Next time when it comes near
the same tag, it will not clean the place, unless enough time
has passed. What is more important, when we use a whole
swarm of Roombas for cleaning, all the other Roombas will
also avoid cleaning on this marked up place for some time,
avoiding wasted work. Similar optimizations are achievable
for spreading our swarm members to different rooms, map-
ping the area, etc.

2 Robot control architecture

The architecture for the robot control is based on a lay-
ered multi-agent system, with agents implemented as con-
tinuosly running processes, and contains three layers (figure

1):

e The sensor-actuator access layer dedicated to commu-
nication with robot control hardware. The lowest part
of robots sensor-actuator layer is executed by the iCre-
ate onboard microcontroller. The external service time
of this microcontroller was set to 20ms as shortest al-
lowed period. Tests showed that the core agent com-
munication solution did not add any additional men-
tionable response delays.

The control layer that includes usual short-term plan-
ning and behavioural layer tasks. Merging two tradi-
tionally separate layers is reasonable due to the fact
that the swarm robots (e.g. cleaning devices, room pa-
trols) are relatively simple and the number of different
behaviours is rather limited.

The knowledge layer that targets reasoning (deriving
new information from acquired data), communicating
with other robots (using RFID tags) and the optional
central server (using WIFL, if available).

The layered architecture is built around a fast and trans-
parent RDF database implemented in shared memory. The
RDF database realizes a core for interprocess communica-
tion of several on-board agents (processes), in particular
the Main Control Agent (Central Control Process, control
layer), Sensor Agent, Actuator Agent (sensor-actuator ac-
cess layer), Reasoner Agent (knowledge layer). Moreover,
the RDF database can manage the inter-robot communica-
tion using different functions/technologies for sending data
to other robots (knowledge layer as well).

The internal knowledge architecture follows the classical
blackboard model [4] In short, the agents communicate by

46

Other robots, servers

KNOWLEDGE
LAYER

Interrobot communication

‘ Reasoner agent ‘

RDF database in shared memory

SENSOR/
ACTUATOR
LAYER

CONTROL
LAYER

Main control ‘ Actuator agent

agent

Other control
agents

Emergency
behavior agent
I

'

‘ Sensor/actuator hardware ‘

Sensor agent

Figure 1. Robot architecture

writing data to the RDF database. The data on the RDF
database is available to all agents.
The RDF database serves three roles:

e A postbox between different process agents (including
external world communication).

e A fast and simple in-memory data store (circular
buffer).

e A deductive database, using a rule language for rule-
based generation of new facts.

Technologically the RDF database is built as a sim-
ple data store operating in shared memory. Shared mem-
ory based database approach is frequently used for low
latency robot control architectures performing sufficiently
well without real time OS. By our benchmarking tests per-
formed with 500MHz 32 bit embedded ARM processor run-
ning non-real-time BusyBox 2.6 Linux distribution, the re-
alized shared memory data store access time was in tens of
microseconds.

3 Languages, common data model and the
RDF database

The behaviour of the robot is primarily influenced by
four players: sensors and control software, internal RDF
database contents, RFID tags read, data and rule files read
from the swarm server.

The swarm server collects data from the robots and influ-
ences them by sending new data and modifications to rule
files in the robots.

The different players above use specialised language rep-
resentations, all based on RDF. Different syntaxes stem
from practical needs: for example, since RFID chips con-
tain very little memory, we have to use a space-efficient en-
coding for information on RFID-s. On the other hand, com-
munication between different servers does not require space
efficiency: rather, it is preferable to use common, verbose
XML-based standards.

We use the following RDF-based languages in the robot
swarm system:

e Our specialised RDF encoding in RFID tags.

e Our specialised rule language for deriving and adding
new data from/to the RDF database.

o Standard XML-based RDF syntax for data exchange
between robots and the central server (using WIFI if
available) and the central server and external systems.

All these languages/use cases share a common data
model and the concrete strings for sensor and task repre-
sentation (robot sensor/task language).

47

3.1 Common data model

The common data model is based on RDF triplets
(proper data fields) to which we add two additional groups
of data fields: contextual data fields and automatically gen-
erated metadata.

Proper data fields:

o Subject: id of whatever has the property.

e Property: name of the property of the subject.
e Object: value of the property.

The value field has an associated type, indicating the
proper way of understanding the value. Observe that the
property field typically - but not always - already determines
the suitable or expected type.

In addition to basic RDF, we will always add three con-
textual fields to the beforementioned proper data fields of
the triplet.

Contextual data fields:

e Date/time: when this fact held (in most cases same as
the time of storing the data).

e Source: identifies the origin of the data (RFID nr, per-
son id, other robot id, etc).

e Context: identifies a data group or addressee or in-
dicates the succession of robot commands, often left
empty.

Agents can enter their own contextual values to the RDF
database. If no values are given by the agent, the default val-
ues (current date/time, robot id, empty context) are entered
automatically.

Automatically generated metadata:

e Id: robot-unique id of the data row, auto-increased.

e Timestamp: date/time of storage.

Automatically generated metadata is present only in the
RDF database, and not in the other data formats/languages.
Agents cannot enter their own values at will. These two
fields are important for efficient and convenient manage-
ment of the data, and are used for example, by the reasoner.

Instead of using additional contextual and metadata
fields we could have chosen to use reification of RDF
triples to store the same information. However, this would
have cumbersome and inefficient both in the internal RDF
database used by agents inside the robot, and even more so
in the data representation inside RFID chips, as described
in the following chapters.

For data exchange between different swarms and exter-
nal applications we will use the reified form of the contex-
tual data fields, represented in the common XML syntax of
RDF.

3.2 RDF database

The RDF database is implemented in the Gumstix com-
puter on the robot as a library for storing and reading infor-
mation to/from shared memory. Agents in the robot use a
simple C API for writing, reading and searching data from
the RDF database. Special RDF query languages are not
used.

Strings in the RDF database are pointed to from the
data fields: they are kept in a separate table, guaranteeing
uniqueness: there is always only one copy of each string.

The data rows are organised as a circular list. The last
data element will disappear when a new one is added. How-
ever, there are exceptions to this order: data items deemed
critical are kept longer.

Although the data store should be normally seen as a
mid-term memory, containing tens of thousands of rows
(old data is thrown away), it is easy to use it as a post-
box between different agents onboard: just put the name
of the addressee agent in the context field and program the
addressee agent to look for the rows with her name, process
them and then delete them.

An agent X may also read “messages” intended to an
agent Y, but should under normal circumstances ignore
these “messages”: it should look for data rows with either
no addressee at all or an addressee with the name X.

4 Data encoding on RFID tags

The roboswarm architecture requires recognising
external objects/locations, reading location-specific mes-
sages/instructions from humans and reading/writing
location-specific messages from/for other robots.

All these three tasks use RFID tags at different locations.
The simplest types of RFID tags contain only the RFID id.
However, we have been using RFID tags with a small in-
ternal memory: both human operators and robots can write
information to the tags. We use the tags as information-
carrying graffiti.

A human user is expected to write to a tag information
like “this tag is located on a chair”, “’this tag has coordinates
X and Y”, "there is a tag at direction R at distance 5 meters”,
“keep away from here” etc.

A robot N is expected to write to a tag information like
”N was here at 10.06.2007 at 15.10”, ”’N did brush the sur-
roundings at 17.10” etc.

48

4.1 Kinds of data on RFID chips: concep-

tual example

The following categorization gives a clearer picture of
kinds of data to be written on RFID:

e Present by default on all RFID tags: built-in RFID id
number, up to 12 bytes.

e Control information written to the tag by a human user:

Stop immediately.

— Keep away from here.

Turn to direction X and move N meters.

Do not clean here.

e General information about objects:

— What kind of object: wall, bed, chair, robot nr X.
— This place needs cleaning very often.
— Danger in direction X distance Y.

— Some object (lift,docking,...) in direction X dis-
tance Y.

— Robot nr X was here at time 7" and cleaned /
could not clean / did not want to clean.

e Localisation of a tag, either:

— Global, for example gps coordinates.

— Local, relative to a given base vector: direction
and distance.

— Information about other tags in the neighbour-
hood: direction and distance.

— Additional useful information: path to door, path
to charger.

e Information about a robot: tag glued on a robot

— I'am a robot.
— Iam a robot nr X.
— Kind/capabilities of a robot: simple cleaner /

complex control robot.

We are using local coordinate vectors and special meth-
ods and algorithms for coordinate vector markup and find-
ing. These methods are not covered in this paper.

4.2 Data encoding principles for RFID
tags

RFID tags contain relatively little memory: we are cur-
rently using tags with 256 bytes. Reading of RFID data over
wireless may be prone to error. Hence:

e The data format has to be extremely compact.
e Old data has to be regularly overwritten.

e There must be a way to indicate that some parts of data
should not be overwritten by robots.

e We need a control sum for data blocks.

We use 32 bytes for encoding one data block, hence we
can put 8 data blocks on our RFID tags.

Data encoded on tags must be easily understood both by
robot software and external applications: software used by
humans to read/write data to tags, agents different from the
roboswarm components.

Hence we provide a simple mapping from RFID data to
both robot internal data format and the generic RDF format
for data.

All data items written to the RFID tags are essentially
data rows with several predefined fields. All fields may con-
tain different data items: strings, integers, floats. Hence the
RFID data store is similar to a single database table.

Data is written, read and deleted one full row at a time:
while changing stored rows is technically possible, we do
not recommend doing that: it is better to add a new full row,
and if necessary, delete the old row(s).

Conceptually, each data row corresponds to several RDF
triplets. Standard RDF triplets contain the subject, property
name and value fields, like this:

[1z,
(12,
[15,
[15,

performingaction, cleaning]
notperformingaction, cleaning]
lookingfortag , 244]
notfoundtag , 244]

The subject field is normally filled with an id of an object
which has the property with the value indicated. The value
field may be filled either with a direct value or an id of some
object (for example, a tag).

Using triplets will inevitably mean that recording one
data item may require several triplets to be written. Sup-
pose that a robot wants to write the message “Robot nr 15
has been here at 14.20 on 28. January looking for tag nr 244
and did not find a tag while here.” on the RFID tag.

Using standard triplet format this would translate to the
following triplet set:

[15, washereattime,
14.20 on 28 January]

49

[15,
[15,

waslookingfortag, 244]
didnotfindtag, 244]

For RFID tags we always add timestamp, context and
source (agent) id contextual fields. In our sextet data model
the information would contain the following fields:

[15, 14.20 on 28 Jan, general,
15,washereattime, 14.20 on 28

[15, 14.20 on 28 Jan, general,
15, waslookingfortag, 244]

[15, 14.20 on 28 Jan, general,
15, didnotfindtag, 244]

Jan]

Data field contents are either direct (integers, RFID chip
id-s) or indirect (identifiers of long strings):

e Direct values are put on the tag as-is.

e Long strings are not kept on the RFID, since we do not
have enough space: we use a string number in a global
string table instead.

The direct values are either 4 or 12 bytes long, depending on
the type of a data block (see later sections). A direct value
may either indicate one concrete measure (say, distance or
time), contain a short string (up to 4 or 12 characters) or
encode several short values, for example, a coordinate.

As the standard RDF format requires, the robot RDF
database uses strings for identifying subjects and property
names. RFID tags do not have enough space for long
strings.

Hence we assume that a roboswarm has a common string
table of predefined strings, where each string has a concrete
number, common for all robots and RFID chips. Robots
can certainly use more and dynamically created strings, but
these strings will not be encodable on RFID chips.

Property names (but normally not property val-
ues) have a namespace prefix. =~ We will commonly
use http://www.roboswarm.eu/lang as a namespace for
property names in the roboswarm. However, other
namespaces may be used as well. For example, a
full name string of a “washereattime” property would
be http://www.roboswarm.eu/lang#washereattime and this
could be encoded as, say, number 135 in a common string
table.

Identifiers for robots and humans are swarm-specific.
We will use namespaces for these as well, however.
The default swarm namespace for our experiments is
http://www.roboswarm.eu/swarm. Concrete swarms may
use different namespaces.

The roboswarm environment may potentially contain a
huge number of different RFID tags. Old tags may be re-
placed, new ones may be glued on objects at any time.
It would be impractical to assume that the robot software

has predefined knowledge of all tags in the environment.
Hence the RFID id on the tags is used “as is”, without en-
coding it via a separate string table (see the next section).
The robot software components will identify RFID tags
by strings with the http://www.roboswarm.eu/RFID names-
pace followed by the hexadecimal encoding of the RFID id
number.

As said before, the RFID data blocks contain both direct
values (date/time, measures, coordinates, RFID id numbers,
short strings) and numbers of strings in a common string
table (external to chips)

The numbers in a string table start from number 0 and
continue with numbers 1, 2 etc. We use 2 bytes for string
table numbers, even if the field containg the string number
is longer.

The global string table is loaded into the robot and has
to be the same for the whole swarm. It is necessary only for
coding and decoding data for the RFID tags.

4.3 RFID tag id numbers and special
strings

RFID tags carry an id. The id size may vary. However,
there are several widely used standards for product encod-
ing, and most RFID tags are expected to conform to these
standards:

e UPC (universal product code): 12 digit numbers iden-
tifiying product type, commonly used on bar codes.

e 64-bit EPC (electronic product code): 64 bit code iden-
tifying concrete items, forward compatible with a 96-
bit version.

e 96-bit EPC (electronic product code): 96 bit code ca-
pable of identifying concrete items.

We use direct 96-bit EPC-s to identify RFID tags. In-
side the robot software the RFID tags numbers are not
used directly (as-is). Instead, they are encoded to iden-
tifier strings (uris) with the following algorithm: the
initial part of the string is always a namespace prefix
http://www.roboswarm.eu/rfid# and the following part of
the string is formed from the RFID id number (of whichever
length) by converting the number to a lower-case hex string
in a conventional manner.

It is very common for a tag to contain information
about its own location or the object it is glued to. In or-
der to avoid putting the full 96-bit EPC into the subject
id field, our string table contains contain a special string:
http://www.roboswarm.eu/lang#me stands for the EPC of
the RFID chip containing this data item.

50

4.4 Encoding details: data fields

We use 32 bytes for one data block (a sextet in our data
model). We have two types of blocks. First type contains a
short, 4-byte subject field and a long, 12-byte (96 bit) object
field. Second type contains a long, 12-byte (96 bit) subject
id field containing EPC and a short 4-byte object field.

Otherwise the structure and meaning of the data blocks
is identical for both types:

o Blocktype 1 byte: contains block type nr, either 1 or 2.

Agent 2 bytes: number of the agent string (robot, hu-
man, ...) writing data.

Datetime 4 bytes: datetime of writing, according to the
robot clock (up to one second), unix format.

Context 2 bytes: number of the context string
(adressee, data group, etc: often ignored)

Subject (blocktype 1) or object (blocktype 2) 4 bytes:
numeric, datetime, short string or string number in the
string table.

Property 2 bytes: number of the property name string
in the name string table.

Object (blocktype 1) or subject (blocktype 2) 12 bytes:
epc, numeric, datetime, short string or string number
in the string table.

Reserved 2 bytes.

Object type 2 bytes: number in the string table indi-
cating type of value (int, short string, some structure
etc).

o Checksum: 1 byte.

We use xml schema datatype names as value type indi-
cator strings, extended by our own specific datatype names.

We use the simplest checksum algorithm: adding bytes
0...31 one after another and keeping the lowest byte of the
sum after each addition.

Multibyte integers and floats have to follow the high-
endian (intel standard) byte order. Direct short strings start
from the leftmost byte and should be terminated with a zero
byte. In case there is no zero byte, the data reader has to ap-
pend the zero byte to the direct string (4 or 12 bytes) read.

In normal cases it is recommended to use the first type
of data blocks with a long value field. The second type
is suited for cases where we want to write information
about a specific RFID chip, different from the current chip
(in the latter case we should use the special 'me’ string
http://www.roboswarm.eu/lang#me).

4.5 Reading and writing data

In case a robot writes data to an RFID tag, it will nor-
mally have to delete some old data to make room for new
data to be written. It will also have to take care that impor-
tant data is not deleted. The robot follows these principles:

It will always delete the oldest data block which is al-
lowed to be deleted. By default all data blocks written by
humans have to be preserved. The internal datastore of a
robot contains information about kinds of writers (block
contains the writer id).

5 Antennas and other practical aspects of
RFID reading and writing

Before writing or reading data, the robot will have to un-
derstand that an RFID tag is in a reading or writing distance.
It will then start reading and - sometimes - also writing the
RFID.

We have conducted a number of RFID reading and writ-
ing experiments with an iRobot Create equipped with a
Gumstix Verdex microcomputer and the Skyetek M9 OEM
RFID reader card, operating frequency was 865MHz, out-
put power 27dBm.

Achieved dependable access ranges for ISO 18000-6B
and 6C tags have been between 0.7 and 1.2 meters, depend-
ing on tag orientation and various other factors.

The practical issue of detecting a tag depends on many
factors, quite significantly also on the shape of the tag’s
antenna and the orientation of tag in the robot’s RF field.
Therefore one antenna should be omnidirectional (e.g. cir-
cular polarization antenna).

However, two switched linearly polarized reader anten-
nas may be used giving additional direction information.
That idea will be evaluated further.

On the figure 2 we have an iRobot Create equipped with
the 6 dBi Yagi antenna. This antenna appeared to be too
sensitive directionally: it was hard to notice tags not directly
in front of the robot.

The figure 3 demonstrates a 13dBi spiral antenna de-
signed during the project. While detecting tags from a
somewhat longer distance than the Yagi antenna, it had
analogous problems with directionality.

The best choice so far has been the patch antenna on the
figure 4. The small loss in tag detection distance is compen-
sated by the significantly wider area of coverage, enabling
the robot to detect tags not directly in front of it. Figure 3. 13dBi spiral antenna

In our experiments it has been somewhat easier to detect
the RFID and read its id number than to read full RFID
memory. Hence, when a tag is detected somehwere in front
of the robot, we keep driving for a short while to get to the
practical reading/writing distance.

Figure 2. iRobot Create with a 6 dBi Yagi an-
tenna

51

Figure 4. iRobot Create with a 6.5dBi patch
antenna

Another important aspect is the frequency of scanning
for the RFID tags: since tag reading and scanning draws sig-
nificant amount of power, high frequency of scanning drains
the Roomba internal battery faster than would be practically
feasible.

6 Rule engine and the rule language

The central command agent uses the RDF database con-
tents as grounds for deciding whether the robot is doing ok,
is in trouble or what to do next.

Programming the robot to act correctly for each case is
hard. We are using a rule engine to perform specific checks
on data and make decisions based on the given set of rules.
Rules are written in a prolog-like syntax and stored initially
as a plain-text rule file in the robots file system. The rule
engine takes all the input data from RDF database and stores
derived facts again into the RDF database. Other agents do
not use the rule engine directly, they just read the output
from the in-memory database.

In other words, the rule engine is not used for answer-
ing queries, but for automatically deriving new facts added
to the RDF database. Obviously, the set of rules has to be
consistent and should not contain too many or too complex
rules. We are using the special modification of the Gandalf
first order resolution-based theorem prover [8] as a rule en-
gine.

The rule engine is fired automatically by the rule engine

52

process after each pre-determined interval. Using a rela-
tively simple set of rules we manage to keep the interval un-
der one second: during this time the rule engine performs
all possible derivations stemming from the facts added to
the RDF database after the last iteration.

The rule system is used for two main kinds of tasks:

e Deriving generalisations (chair is furniture) from on-
tology rules.

e Deriving commands and subcommands, depending on
the situation.

We are not using OWL directly as an ontology language.
Instead, the central server contains a component for convert-
ing given OWL files to the rule language syntax. These rule
files are then preloaded to robots and updated over WIFI, if
available.

The # mark in the following examples stands for the
full default namespace http://www.roboswarm.eu/lang. Al-
though we use the syntax based on Prolog, the derivation
algorithm is a specialized version of the bottom-up resolu-
tion algorithm as often used in automated theorem provers,
starting from the facts and deriving new facts/lemmas.
The derivation process does not attempt to solve a posed
”query”, just to derive new facts. Hence the language does
not contain extralogical predicates like cut and closed-world
not.

Two simple ontology rules, indicating that anything at-
tached to a glass object is attached to a fragile object, and
anything attached to a fragile object is attached to a danger-
ous object:

#attachedTo (X, fragile) :-—
#attachedTo (X,glass) .

#attachedTo (X, dangerous) :—
#attachedTo (X, fragile) .

Sample rules for firing executable commands with argu-
ment 0 and high priority 1 ("me” is a special macro constant
indicating robot itself):

command (escape, 0,1) :-
#attachedTo (X, dangerous) .

command (clean,0,1) :-—
"found-tag" (me, tag2) .

The next rule derives information about a need to keep
away for 10 minutes from the given location. “now” is
a special macro constant indicating current time. There
should be further rules given to make the robot actually use
this information:

#keepaway (Loc, 600) :—
#roombusy (Loc, Time),
lesstime (now, Time) .

7 Robot sensor/task language

The sensor/task language does not have a separate syn-
tax. Rather, it is a collection of strings with predetermined
meanings, designed for two goals: storing robot sensor data
and giving commands to the robot (clean here, drive away,
find a certain item).

The sensor/task language uses the RDF database for stor-
ing both tasks (commands) and sensor information. In other
words, all the commands to the robot and sensor informa-
tion items are stored in the RDF database as ordinary data
objects with a special meaning to the robot control process.

The sensor/task language contains several different cate-
gories of object strings:

o Task data items: used for giving general kinds of com-
mands to the robot (clean here, drive away, look for
object, exit room etc).

o Sensor/status values: information added by sensor pro-
cesses or derived using rules.

o Generally useful special values (me, now etc).

A typical task data item contains the following fields:

e Subject: a string indicating actual command, like “es-
cape” or “clean”.

e Property: special predicate command”.

e Object: used for tasks or commands requiring extra in-
formation (like how far to drive). In case the command
requires several information fields, these are encoded
into a single value.

e Context: used to indicate both the succession of com-
mands and nesting of commands.

Say we have two main commands c¢; and ce which
should be performed in succession. Command c; has two
subcommands s; and so. The command c¢; will be auto-
matically replaced by s; and sy by the corresponding rule.
These three commands will then have the following context
sequences:

e si:[1,1]
e so: [1,2]
e o [2]

Tasks are represented as data items the RDF database.
The robot control process starts fullfilling the task as soon
as it is seen in the database. The same process should mark
this task as being currently fullfilled. In case of conflict or
impossibility the robot control process should choose the
action itself.

53

There can be complex tasks that consist of number of
smaller subtasks. These kinds of tasks are presented using
rules. Suppose somebody adds a task into the in-memory
database. After a while the rule engine will take this task,
find the matching rules and add derived subtasks into the
database. The derived subtasks could again match some
rules, in which case they will also be derived and added
to database.

The sequence of tasks is encoded in the context field of
data item. Task and subtasks should be seen as an ordered
forest of trees with branches corresponding to subtasks.

Tasks are loosely grouped into four levels starting from
high-level down to low-level tasks. A high-level task is an
abstract representation of what should the robot do: for ex-
ample, clean a room for whole day. A typical low-level task
would be turning the robot 50 degrees.

Long-term activity - normally defined by human.

While fullfilling this type of task, the robot can also fill
subtasks like recharging, exiting room etc. These tasks do
not restrict robot from doing subtasks.

For example: property “shalldocleaning”, object time in
seconds until which activity holds. Robot should be in the
general cleaning mode: driving around and cleaning.

Short-term activity - normally given by rules or control
process, but can also be defined by human.

Fullfilling this kind of task may consist of several small
tasks like turning and moving some distances.

The associated rules are expected to generate atomic
commands, which are put into in-memory database waiting
to be fullfilled one after another. Only one task is fullfilled
at time. Here the time information is not relevant, rather,
the succession should be followed.

Atomic activities - basically procedural, normally gen-
erated by rules or the control process.

For example:

robot

”

e command (turn, Degrees,Context):
should turn the indicated amount of degrees. “turn
here is a constant string indicating the actual pre-
programmed procedure the robot should follow.
Context should contain a task order/priority indicator
as explained before.

command (move, Centimeters, Context):
robot should move (with 'normal’ speed) the given
amount of centimeters.

Direct activities - these kinds of tasks can be directly
delegated to the robot API for execution. The Roomba robot
has very few such direct commands available: the most im-
porant command is “drive with speed X and radius N”.

8 Related work

The SHAGE/Alchemist] framework [5] can be men-
tioned as one solution for robot knowledge exchange using
data repositories and component brokers.

Using high level data representation is a trend of modern
robotics. For example, XML based data coding has been
used on robots [5]. However, besides the benefits of uni-
versal high level representation the XML encoding requires
additional conversions between exchange and machine con-
trol domains.

Conventional XML based RDF format is used for time
uncritical inter-robot or server communication, the descrip-
tion can be found in [2]. A special, compact RDF format is
used for storing real-time algorithms of robot operation.

The RFID technologies with goals similar to our experi-
ments have been investigated in [9]. The authors use RFIDs
to allow an autonomous mobile robot to acquire a target and
approach it for task execution. The robot is equipped with
a dual directional antenna that communicates with control-
lable RF transponders.

See also [3], [6], [10].

9 Conclusions and future work

We have designed the architecture for the robot swarm
and started actual implementation and testing with real
tags and robots. So far we have successfully implemented
both the robot hardware and software, including the RDF
database, RFID and rule engine usage as described in the
paper. The experiments have been encouraging when we
consider processing power and reaction times: the tiny
onboard Gumstix computer manages to run the described
agents, use the RFID chips, RDF database and the rule en-
gine without slowing down the robot reactions. On the other
hand, detecting, reading and writing RFID tags requires
considerable care when selecting tag types, antennas and
the scanning frequency. A usable solution has been worked
out, but further optimisations and improvements are needed.

We have also started to implement components of the
central server and open connections to other robot swarms
and external software. However, this work is still ongoing,
specific details are being filled in and it is too early to report
experiments from the high-level perspective.

Acknowledgements. The work was
ported by FP6 ICT “"ROBOSWARM” project,
http://www.roboswarm.eu.

sup-
see
References

[1] Y. Altshuler Y, A.M. Bruckstein, I.A. Wagner: Swarm
Robotics for a Dynamic Cleaning Problem. In "IEEE

54

Swarm Intelligence Symposium”, pages 209-216,
2005.

[2

—_

E. Ardizzone, A. Chella, I. Macaluco, D. Peri: A
Lightweight software architecture for robot navigation
and visual logging through environmental landmarks
recognition, in Proc of International Conference on Par-
allel Processing Workshops, ICPPW 2006.

—
W
—_

A. Elci, B. Rahnama: Human-Robot Interactive Com-
munication Using Semantic Web Tech. in Design and
Implementation of Collaboratively Working Robots,
RO-MAN 2007. The 16th IEEE International Sympo-
sium, pages 273-278 (2007).

[4

=

B. Hayes-Roth: A blackboard architecture for con-
trol. Artificial Intelligence, 26(3): pages 251-321, July
1985.

[5

—

S. Lee, I.LH. Suh and M.S. Kim (Eds): Recent Progress
in Robotics, LNCIS 370, Springer, pages 385-397,
2008.

[6

—_

C. Stanton, M.-A. Williams: Grounding Robot Sensory
and Symbolic Information Using the Semantic Web in
RoboCup 2003: Robot Soccer World Cup VII, Springer
LNCS 302072004, pages 757-764, 2004.

[7] T. Tammet, J. Vain, A. Kuusik: “Using RFID tags
for robot swarm cooperation”. WSEAS Transactions on

Systems, 5(5), pages 1121-1128, 2006.
[8

—

T. Tammet: Gandalf. Journal of Automated Reasoning
vol 18 No 2, pages 199-204, 1997.

[9

—

V. A. Ziparo, A. Kleiner, B. Nebel, D. Nardi: RFID-
Based Exploration for Large Robot Teams. In Proc.
IEEE International Conference on Robotics and Au-
tomation, pages 4606-4613, 2007.

[10] L. Vasiliu, B. Sakpota, K. Hong-Gee: A semantic Web
services driven application on humanoid robots. in the
Second International Workshop on Collaborative Com-
puting, Integration, and Assurance. SEUS 2006/WC-
CIA 2006. The Fourth IEEE Workshop, 2006.

Paper B

T. Tammet, E. Reilent, M.Puju, A. Puusepp, A. Kuusik, A. Knowledge centric
architecture for a robot swarm. In: 7th IFAC Symposium on Intelligent
Autonomous Vehicles (2010). IFAC-PapersOnLine, 2010, (Intelligent
Autonomous Vehicles; 7/1). 2010.

79

Knowledge Centric Architecture for a
Robot Swarm

Tanel Tammet, Enar Reilent, Madis Puju, Andres Puusepp

*

Alar Kuusik **

* Department of Computer Science, Tallinn University of Technology
Ehitajate tee 5, 19086 Tallinn, Estonia (e-mail: tammet@staff.ttu.ee,
e.reilent@gmail.com, pudismaju@gmail.com, anduoma@hot.ee).

** Department of Electronics, Tallinn University of Technology
Ehitajate tee 5, 19086 Tallinn, Estonia (e-mail: kalar@ua.ttu.ee).

Abstract: We have built and tested a knowledge centric system for a robot swarm. Our
implementation enhances iRobot Roomba cleaning robots with a tiny linux computer, RFID
tag reader/writer and optionally a WIFI card. Robots use the RFID tags for object recognition
and message passing. The knowledge architecture of the system is inspired by semantic web
principles, spanning over several layers: RFID tags on objects, process interaction in a single
robot via a main memory datastore and a rule system, central database for a swarm. The
communication components of the system have been already ported to the larger Pioneer and
Mugiro robots via the Player middleware. The paper presents our solutions to the knowledge
management and communication problems stemming from the robotics issues and demonstrates
feasibility of using the semantic web principles in the robotics domain.

1. INTRODUCTION

The overall goal of the project is to develop simple and
low-cost technologies for making both single robots and
swarms of robots more intelligent. We use the dynamic
cleaning problem Altshuler et al. (2005), Tammet et al.
(2006) as a testbed for the developed knowledge architec-
ture, focusing on making swarm cleaning more efficient.

Our goal requires propagation of understandable and
reusable information among the robots which may be
different in hardware and software. There are several
well-known frameworks (like Player and Orca) address-
ing mostly low level data management in robots, how-
ever, robotics industry expresses need for an environment
supporting hardware-independent data presentation and
exchange among robots.

The target goal of this paper can be called a ”knowl-
edge centric” architecture, focusing on uniform (or easily
convertible) on-robot and inter-robot data management
Tammet et al. (2008), which is achieved by using semantic
web principles, prolog-like rules, and first-order logic. The
modular system of independent asynchronous software
components for reactive control of cleaning robots was
created as a proof of concept.

We use the popular iRobot Roomba cleaning robot and
attach a tiny ARM-based Gumstix computer (500 MIPS)
using a BusyBox 2.6 Linux distribution (without real-
time capabilities) and a stock RFID reader/writer on
the Roomba. The attached computer takes over control
of the Roomba. While the standard Roomba is fairly
simple-minded, will clean places recently cleaned and does
not understand that some places should be avoided - or
vice versa, cleaned often - our system adds necessary
intelligence.

We use ordinary passive RFID chips for marking objects
like chairs, walls, doors, as well as locations in the environ-
ment. This is significantly cheaper and more flexible than
using cameras on robots for object recognition. The same
RFID chips on objects are also used by the robots to leave
messages to other robots. The solution is inspired by ants’
communication using pheromone trace known as stigmery.
The usage of RFID tags reduces the communication over-
head related with coordination Ziparo et al. (2007).

The main components of the architecture have been al-
ready ported by the industrial project partner Fatronik to
two different robots (Pioneer and Mugiro) via the Player
middleware.

2. ROBOT KNOWLEDGE ARCHITECTURE

The architecture for the robot control is based on a
layered multi-agent system, with agents implemented as
continuosly running processes. Three layers can be brought
out:

e The sensor-actuator access layer dedicated to commu-
nication with the robot control hardware. The lowest
part of robots sensor-actuator layer is executed by the
Roomba onboard microcontroller.

e The control layer consists of dispatcher process which
executes behavioral tasks in our context called bina-
ries.

e The knowledge layer that targets reasoning (deriving
new information from acquired data), communicating
with other robots (using RFID tags) and the optional
central server (using WIFI, if available).

The layered architecture is built around a fast and trans-
parent RDF inspired datastore implemented in shared
memory. This kind of approach is frequently used for low

latency robot control architectures performing sufficiently
well without using a real time OS. The internal knowledge
architecture follows the classical blackboard model Hayes-
Roth (1985). In short, the agents communicate by writing
data to the memory datastore and every agent can access
all data inserted to datastore.

The memory datastore serves three roles:

e A postbox between different process agents (including
external world communication).

e A fast and simple in-memory data store (circular
buffer).

e A deductive database, using a rule language for rule-
based generation of new facts.

3. COMMON DATA MODEL AND LANGUAGES

The behavior of the robot is primarily influenced by four
players:

sensors and control software

internal memory datastore contents

RFID tags read

binary executables plus data and rule files read from
the swarm server.

The swarm server collects data from the robots and
influences them by sending new data back to the robot
datastore, updating rule files in the robots and sending
new binary executables to the robots.

The different players above use specialised language rep-
resentations, all based on RDF triples plus metadata: the
combination which we will call RDFm. Different syntaxes
stem from practical needs. For example, since RFID chips
contain very little memory, we have to use a space-efficient
encoding for information on RFID-s. On the other hand,
communication between different servers does not require
space efficiency: rather, it is preferrable to use common,
verbose XML-based standards.

We use the following languages in the robot swarm system:

e RDFm encoding in RFID tags.

e Our specialised rule language for deriving new infor-
mation based on data in memory datastore.

e Both a CSV-based syntax and an XML-based RDF
syntax for data exchange between robots and the cen-
tral server (using WIFT if available) and the central
server and external systems.

All these languages share a common data model and the
concrete predefined strings for adressing data to agents.

3.1 Common data model

The common data model is inspired by RDF triples to
which we add two additional groups of data fields (meta-
data): contextual data fields and automatically generated
metadata.

Data fields taken from RDF triple:

e Subject: id of whatever has the property.
e Property: name of the property of the subject.
e Value: value of the property.

The value field has an associated type, indicating the
proper way of understanding the value. Observe that
the property field typically - but not always - already
determines the suitable or expected type.

In addition to basic RDF, we will always add three contex-
tual metadata fields to the beforementioned proper data
fields of the triplet.

Contextual metadata fields:

e Date/time: when this fact held (in most cases same
as the time of storing the data).

e Source: identifies the origin of the data (RFID nr,
person id, other robot id, agents, etc).

e Context: usually identifies addressee or data group,
can also indicate the succession of robot commands.

Agents can enter their own contextual values to the
memory datastore. If no values are given by the agent, the
default values (current date/time, robot id, empty context)
are entered automatically.

Automatically generated metadata:

e Id: unique data row nr for a robot, auto-increased.
e Timestamp: date/time of storage.

Automatically generated metadata is present only in the
memory datastore, and not in the other data languages.
Agents cannot enter their own values at will. These two
fields are important for efficient and convenient manage-
ment of the data and are used for example, by the reasoner
and dispatcher processes.

Instead of using additional contextual and metadata fields
we could have chosen to use reification of RDF triples to
store the same information. However, this would have been
cumbersome and inefficient both for the internal memory
datastore used by the agents inside the robot, and even
more so for the data representation inside RFID chips, as
described in the following chapters.

4. MEMORY DATASTORE

The memory datastore is implemented in the Gumstix
computer on the robot as a library for storing and reading
information to/from shared memory. Agents in the robot
use only a simple C API for writing, reading and searching
data from the memory datastore. Agents sce datastore as
one table based on RDFm format. Using shared memory
instead of classical socket-based data exchange increases
flexibility as potential consumers of data do not have to
be known in advance.

Strings in the memory datastore are pointed to from the
data fields: they are kept in a separate table, guaranteeing
uniqueness: there is always only one copy of each string.

The data rows are organised as a circular list. The last
data element will disappear when a new one is added.
However, there are exceptions to this order: data items
deemed critical are kept longer.

Locking is implemented using semaphores and is row-
based. Reading operations do not lock anything. When
a row is being written it is invisible for all the concurrent
reads.

Writing one row on Gumstix platform takes about 0.14 ms
while looping over 2000 rows takes approximately 4.8 ms,
which is acceptable for our needs.

Although the data store should be normally seen as
a mid-term memory, containing thousands of rows (old
data is thrown away), it is easy to use it as a postbox
between different agents onboard: just put the name of
the addressee agent in the context field and program the
addressee agent to look for the rows with its name, process
them and then delete them.

5. DATA ENCODING ON THE RFID TAGS

The roboswarm architecture requires recognising ex-
ternal objects/locations, reading location-specific mes-
sages/instructions from humans and reading/writing lo-
cation specific messages from/for other robots. All these
three tasks use RFID tags at different locations. Exerting
RFID tags for coordination purposes increases swarm size
scalability.

The simplest types of RFID tags contain only the RFID id.
However, we have been using RFID tags with a small inter-
nal memory: both human operators and robots can write
information to the tags. We use the tags as information-
carrying graffiti, in other words, tiny data stores dis-
tributed all over the environment.

A human user is expected to write to a tag information like
7this tag is located on a chair”, "this tag has coordinates
X and Y”, there is a tag at direction R at distance 5
meters”, "keep away from here” etc.

A robot N is expected to write to a tag information like
”N brushed here for 10 minutes on 10.06.2007 at 15.10”,
?N left this place for the living room” etc.

Data encoded on tags must be easily understood both by
the robot software and the external applications: software
used by humans to read and write data to tags as well as
agents outside the roboswarm.

All data items written to the RFID tags are essentially
data rows with several predefined fields which may contain
strings, integers or floats. The RFID data store is very
similar to the robot’s memory datastore. Data is read,
written and deleted one full row at a time, updating is
allowed only on the value field, the timestamp field and the
source field are updated at the same time automatically.

For example, one tag might carry the following data:

subject property value source context
me inRoom kitchen | human static
kitchen hasPriority 7 human static
kitchen dutyStatus cIP robot3 work
robot2 wentInDirection | 270 robot2 work

* ¢cIP - cleaningInProgress

where the ”static” context is used for data describing the
surrounding enviroment and the ”work” messages are writ-

ten to the tag by swarm members to improve cooperation
while performing tasks.

Data field contents are either direct (integers, RFID chip
ids) or indirect (long strings). Direct values are put on the
chip as-is. Long strings are not kept on the RFID, since
we do not have enough space: we use a string number

in a global string table instead. This global string table
is loaded into the robot and has to be the same for the
whole swarm. It is necessary only for coding and decoding
data for the RFID tags. We use 2 bytes for the string table
numbers.

5.1 Reading and writing RFID tags

RFID tags carry a built-in id. The id size may vary.
However, there are several widely used standards for
product encoding, and most RFID tags are expected to
conform to these standards.

We use direct 96-bit EPC-s to identify RFID tags. It is
very common for a tag to contain information about its
own location or the object it is glued to. While referring
to itself we use the string "me” in the data row instead of
the real EPC value.

In case a robot writes data to an RFID tag, it will normally
have to delete some old data to make room for new
data to be written. It will also have to take care that
important data is not deleted. The robot follows these
principles: It will always delete the oldest data block which
is allowed to be deleted. By default all data blocks written
by humans and the blocks with the context ”static” have
to be preserved.

6. KNOWLEDGE BASED CONTROL SYSTEM

The robot control and decision making responsibilities in
our system are divided between several different agents.

The control system architecture has two layers: the sup-
porting framework and the user applications built upon
the framework.

The crucial element in our system is the memory datastore.
All the other subsystems are meant to be built around
the datastore and interact with each other only via the
datastore. As a consequence, all data - sensor readings,
decisions, commands, reports, etc - ever created by some
agent will be available to all the agents.

Gathering all kinds of knowledge into one place and
representing it in the same format encourages us to attach
a general data processing mechanism - the prover - to the
memory datastore. The prover is used to derive new data
items based on the existing data in the memory datastore
and predefined logic rules.

The supporting components like the prover, the communi-
cation process and the low level hardware access software
(sensor process, actuator process) run all the time as sepa-
rate never-ending processes. However, the control-specific
modules are not required to run all the time. Therefore, in
addition to the prover the control support framework uses
a special dispatcher process with the task to launch other
agent processes during runtime.

The implementation of ”the real” control software is very
flexible. The algorithm can be divided to various modules
and rules. For several subtasks we have created dedicated
modules (binary executables) which are relatively small
and simple. A binary executable can perform an atomic
task, for example play a sound or calculate an average, or
comprise a set of actions to achieve a complex goal, like

performing a localization procedure at the reference point
(RFID tag).

Rules have the role of linking binaries together and mak-
ing decisions during runtime. For example: the agent A
stores the fact B into the datastore. The prover derives
(according to the given rule files) the new fact C from the
fact B, where C is a command to start the agent D. When
the dispatcher sees the derived fact C in the datastore, it
launches the demanded agent D, which in turn can change
the contents of the datastore.

7. RULE ENGINE AND THE RULE LANGUAGE

The control system uses the memory datastore contents as
grounds for deciding whether the robot is doing ok, is in
trouble or what to do next.

Programming the robot to act correctly for each case
is hard. We are using a rule engine to perform specific
checks on data and make decisions based on the given
set of rules. Rules are written in a prolog-like syntax and
stored initially as a plain-text rule file in the file system
of the robot. The rule engine takes all the input data
from memory datastore and inserts derived facts into the
memory datastore. Other agents do not use the rule engine
directly, they just read the output from the datastore.

In other words, the rule engine is not used for answering
queries, but for automatically deriving new facts added
to the memory datastore. Obviously, the set of rules has
to be consistent and should not contain too many or too
complex rules. We are using the special modification of
the Gandalf first order resolution-based theorem prover
Tammet (1997) as a rule engine.

The rule engine is fired automatically by the rule engine
process after each pre-determined interval. In the following
we will call this "firing” process the derivation session.
Using a relatively simple set of rules we manage to keep
the derivation session interval under one second: during
this time the rule engine performs all possible derivations
stemming from the facts added to the memory datastore
after the last iteration.

The rule system is used for two main kinds of tasks:

e Deriving generalisations (chair is furniture) from
rules.
e Deriving commands depending on the situation.

While the rule system is working, it uses memory datastore
as the main source of facts.

For example, if we have a rule

attachedTo (X, furniture) :-
attachedTo(X, chair).

and the following facts in the memory datastore

[subject { property
‘ tagd ‘ attachedTo ‘ chair

{ value { source { context ‘
‘ RFID ‘ null ‘

then the rule body attachedTo(X,chair) will match the
datastore row and the rule will generate the new fact and
add it to the memory datastore as follows:

l subject [property [value [source [context ‘
‘ tag4d ‘ attachedTo ‘ furniture ‘ wGandalf ‘ null ‘

All the words in the rules starting with uppercase are
variables. In our example X is a variable.

The following example demonstrates a simple session of
robot rule usage.

handleTask(me, Task) :-
state(me, stateldle),
receivedTask (N, Task),
myNameIs(me, N).

state(me, stateWorking) :-
handleTask(me, T).

startMode(me, cleaningMode) :-
handleTask(me, clean).

startMode(me, patrollingMode) :-
handleTask(me, patrol).

state(me, stateldle) :-
state(me, stateWorking),
status(currentTask,finished) .

We start the rule system and then add the following fact
to the datastore:

subject property value source context

me state stateldle | init wGandalf
me myNamels robot3 init wGandalf
robot3 receivedTask | clean init wGandalf

The rule system will automatically derive and add these
facts to the datastore:

subject property value source context
me handleTask | clean wGandalf | null
me startMode cleaningMode wGandalf | null

When we later add the fact

l subject [property [value [source [context ‘
| currentTask | status | finished | cleaningAgent | wGandalf |

the rule system will automatically derive and add this fact
to the datastore:

[subject { property { value { source { context ‘
| me | state | stateldle | wGandalf | null |

The rule engine uses both the main memory database and
a temporary storage area which is cleaned up after each
derivation session, typically after every second.

During the derivation process a large set of new facts and
clauses (temporary rules) is derived. Most of them are
stored in the temporary area and are not accessible to
other processes in the robot. Only positive singleton facts
without variables (ground unit clauses), not containing
nested terms and having a suitable number of arguments
are stored in the shared database available to all the
processes.

Each rule engine derivation session starts with reading and
parsing the rule file and adding all the read rules and

facts into the temporary space. Hence the rule file can
be changed on the fly.

We employ the widely used discrimination tree index for
unit subsumption and unit deletion. Only the temporary
area, not the facts in the shared memory database are kept
in the index.

The engine uses a version of a set-of-support binary
resolution with common optimisations like subsumption
and tautology elimination. See Robinson and Voronkov
(2001) for the common algorithms employed in first-order
automated reasoners.

We have to avoid re-derivation of facts which were already
derived during the last session. We cannot rely solely on
the subsumption algorithm for this. For example, the robot
should not get the derived command facts again each time
the derivation session finishes.

Hence we developed a timestamp-oriented special version
of the set of support algorithm. The initial facts in the
derivation are only those which have been added (or
modified) in the database after the previous derivation
session. This is possible, since all the facts in the database
have the automatically stored timestamp field.

We cannot use, for example, hyperresolution, since this
derivation algorithm is not complete in combination with
set of support. Hence the use of binary resolution.

The new facts and (partial) rules derived using a binary
resolution step can then be used for deriving new facts and
rules, guaranteeing that in each derivation chain at least
one of the sumption facts has been added/modified after
the previous derivation session.

Using the timestamp-oriented set of support algorithm is
also crucial for efficiency. The number of new facts added
in one second is normally not very big, and most of them
typically do not match any or most rules. This keeps the
amount of derived facts during one derivation session down
even for relatively large rulesets.

7.1 Behaviors

Behaviors are collections of operations that the robot
will perform and which are called with one command.
Implementation of a behavior is a little binary executable
written in the C language. It contains a sequence of
commands and conditions to perform a relatively complex
operation by the robot.

For example, let us consider the following ruleset:

behavior(me, "monitorObstacles"):-
state(me, stateInitial).

behavior(me, "goAhead 200"):-
state(me, stateCanmove),
obstacle(me, nothing).

behavior (me, "handleFailState"):-
result(solveObstacle, fail),
state(me, stateDriveAround).

e behavior - a special name, indicates that the fact is
the command to launch the given binary.

e monitorObstacles - a binary monitoring whether any
obstacles are getting in the robots way. If there is an
obstacle in front of the robot, the obstacle(me, front)
row will be added to the datastore.

e goAhead - a binary that makes the robot to start
moving forward with the given speed (in the current
case with the translational velocity 200 mm/s and
angular velocity 0)

e handleFailState - a binary that stops the motors
and sensor equipement to save power, then tries
to communicate the information about the failure
situation to other robots or the central server. Used
when the robot is stuck and unable to move or
trapped in the place where it cannot find the way
out.

e solveObstacle - a binary that tries to drive the robot
away or around the obstacle which has gotten in the
way.

All the behaviours are handled by the process we call
dispatcher. The dispatcher executes binaries: small exe-
cutable programs implementing the behaviours. In order
to make the dispatcher to execute one binary, it must
be copied to a predefined folder on the robot and at the
desired time the proper command must be inserted to the
memory datastore.

An example of a command row which forces the dispatcher
to execute a binary:

[subject { property { value { source { context ‘

| me | behavior | command | wGandalf | dispatcher |

* command - "behaviorName argl .. argN”

While implementing the robot control application on top
of the prover and a relatively large set of behaviours,
timing becomes a critical issue. The elapsed time between
a stimulus and its reaction varies greatly depending on the
current contents of the memory datastore, the length and
the complexity of the rule file, the number of processes
running in the system, the length of the reaction chain
and other factors. However, in our case study the response
times have proved to be acceptable.

For example, let us consider a cooperation between the
prover, the dispatcher and two behaviours to avoid the
robot colliding with an obstacle. Typically it takes about
400 ms from the moment when one behaviour (monitorOb-
stacles) discovers an obstacle to the moment where the
prover inserts a command into the memory datastore to
launch another behaviour. After about 20 ms the dis-
patcher has received the command and is ready to start
the given behaviour. After additional 100 ms the second
behaviour (solveObstacle) takes over the control of the
robots movement.

High-level decision making can safely rely on the given ar-
chitectural scheme. However, critical emergency responses
like avoiding the robot falling down the stairs after the cliff
sensor detects descent should be implemented in hardware
or low-level software agents.

8. ROBOT DATA STORAGE ON THE SERVER

Robots using WIFI can use the robot-server centralised
communication and robot-robot ad hoc communication
in case no WIFI access-points are available. A separate

process on the robot sends new data items from the
memory datastore to the server. On the server side the
data of the whole swarm is stored in a postgresql database
for further processing.

The server replies each uploading act with the new data
items intended for this particular robot, accumulated since
the last communication session. Software agents on the
server cannot directly send any data or commands to
robots, in lieu of that they will write the data into the same
postgresql database. The special communication agent
then passes it to the selected robot as soon as the robot
contacts the server. The selected robot adds the data items
received from the server to its own memory datastore.

The CSV protocol version sends data over http POST.
The first row in the data block contains a sender id, the
following rows contain the memory datastore rows in the
standard CSV format. The protocol is used to both send
data from the robot datastore to the swarm postgresql
database on the server, and vice versa: from the swarm
database to the single robot datastore.

The CSV protocol data format:

robot id
subject,propery,...,usecstamp
subject,property,...,usecstamp

with the rows containing the same fields as the memory
datastore: subject, property, value, valuetype, source, con-
text and two timestamps both comprising seconds and
microseconds.

Human users can control and monitor swarm or single
robots via dedicated user interfaces built on the server
database. It is technically possible to assign a direct task
to the robot, even though the data flow normally passes
several intermediate agents on the server. Data produced
by the user interface is sent to the task decomposition
module which specifies and assigns proper subtasks for the
robots.

The server has an additional swarm coordination role in
some applications. For example, if we consider the task
where a group of robots must search for an RFID-tagged
object, it is reasonable to use the server. After the user has
given the task, the server distributes the task information
down to the suitable set of robots which then spread out
in the environment and start performing the search. As
soon as one of the robots has found the demanded object,
it will communicate the knowledge to the server which
then informs the user and notifies the other robots to stop
searching.

9. RELATED WORK

The SHAGE/Alchemist] framework Lee et al. (2008)
should be mentioned as a solution for robot knowledge
exchange using data repositories and component brokers.

High level data representation is a trend of modern
robotics. For example, XML based data coding has been
used on robots Lee et al. (2008). However, besides the
benefits of universal high level representation the XML en-

coding requires additional conversions between exchange
and machine control domains.

Conventional XML based RDF format is used for time
uncritical inter-robot or server communication, the de-
scription can be found in Ardizzone et al. (2006). A spe-
cial, compact RDF format is used for storing real-time
algorithms of robot operation.

10. CONCLUSIONS AND FUTURE WORK

We have designed the robot swarm system and are con-
ducting actual testing with real tags and robots. So far we
have successfully implemented both the robot hardware
and software, including the memory datastore, RFID and
rule engine usage, communications with the server and the
server database as described in the paper. The experiments
have been encouraging, especially when we consider the
weak processing power and high reaction times: the tiny
onboard Gumstix computer manages to run the described
agents, use the RFID chips, memory datastore and the rule
engine without slowing down the robot reactions. Porting
the system to the larger Pioneer and Mugiro robots via the
Player interface was relatively easy. As a consequence, we
now have three very different robots able to communicate
through the same infrastructure.

On the other hand, detecting, reading and writing RFID
tags requires considerable care when selecting tag types,
antennas and the scanning frequency. A usable solution
has been worked out, but further optimisations and im-
provements are needed. Optimization of different aspects
of collective cleaning task is ongoing work and to be
described in forthcoming papers.

REFERENCES

Altshuler, Y., Bruckstein, A., and Wagner, 1. (2005).
Swarm robotics for a dynamic cleaning problem. IEEE
Swarm Intelligence Symposium 2005 (SIS05), 209-216.

Ardizzone, E., Chella, A., Macaluco, 1., and Peri, D.
(2006). A lightweight software architecture for robot
navigation and visual logging through environmental
landmarks recognition. In International Conference on
Parallel Processing Workshops.

Hayes-Roth, B. (1985). A blackboard architecture for
control. Artificial Intelligence, 26(3), 251-321.

Lee, S., Suh, I, and (Eds), M.K. (2008). Recent progress
in robotics. In Lecture Notes in Control and Information
Sciences 370, 385-397. Springer.

Robinson, J.A. and Voronkov, A. (eds.) (2001). Handbook
of Automated Reasoning. MIT press.

Tammet, T. (1997). Gandalf. Automated Reasoning, 18(2),
199-204.

Tammet, T., Vain, J., and Kuusik, A. (2006). Using rfid
tags for robot swarm cooperation. WSEAS Transactions
on Systems, 5(5), 1121-1128.

Tammet, T., Vain, J., Kuusik, A., Puusepp, A., and
Reilent, E. (2008). Rfid-based communications for a
self-organising robot swarm. In Self-Adaptive and Self-
Organizing Systems.

Ziparo, V.A., Kleiner, A., Nebel, B., and Nardi, D. (2007).
Rfid-based exploration for large robot teams. In IEEE
International Conference on Robotics and Automation,
4606-4613.

Paper C

A. Puusepp, T. Tammet, M. Puju, E. Reilent. Robot movement strategies in the
environment enriched with RFID tags. 16th International Conference on System
Theory, Control and Computing, Sinaia, Romania, 12-14 October 2012.

87

Robot movement strategies in the environment enriched with RFID

tags

Andres Puusepp, Tanel Tammet, Madis Puju, Enar Reilent

Abstract— The robot navigation in the environment with
RFID tags was investigated during a series of simulated tests.
Passive RFID tags were placed on the floor to irregular
positions not forming a grid. Environments with different room
configurations were considered. A robot with bumper sensors,
RFID reader, and odometry is given the task to drive around the
environment and search for the specified number of tags.
Minimizing time needed for accomplishing the task is taken for
the target. Three different strategies were investigated and
corresponding algorithms evaluated on the simulator. One
approach is minimalistic and uses only random movement and
bouncing back from walls and obstacles. The second strategy
tries to remember the sequence of encountered tags and adjust
its movements when finds itself on the same path that was
passed before to diversify its routes. The last algorithm uses
predefined map of locations of tags and the robot has to visit the
tags using navigation, provided that it is able to determine its
own location and heading beforehand. The performance of
different algorithms is compared based on the results of multiple
test runs on the simulator.

I. INTRODUCTION

Autonomously moving robots tend to become gradually
more and more common in our everyday lives for performing
tasks like vacuum cleaning of floors, guiding visitors in
buildings, doing some environment surveillance or amusing
people. Independently from the specific purposes or use cases
they all rely on localization and navigation capabilities, it
makes no difference if indoor or outdoor, (however, chaotic
motion proves to be usable for coverage [12]). While
focusing on the indoor navigation there exist several
approaches and sensor equipment, for example orienteering
methods based on laser range finder, magnetometer [5],
visual image processing, etc. Another possibility is to place
special landmarks into the environment and use them for
guiding robot’s movements. The landmarks could be active or
passive, active radio beacons (e.g. [2]) seen from long
distance enable triangulation; passive landmarks could be less
expensive and computationally not so demanding.

One option is to make use of inexpensive RFID (Radio-
frequency identification) tags as passive landmarks which
depending on the details of the set-up might not provide the
best accuracy but can suit well in the cases of less
sophisticated robots. RFID tags have many possible exerting

A. Puusepp, T. Tammet and M. Puju are with the Department of
Computer Science, Tallinn University of Technology, Ehitajate tee 5,

19086, Tallinn, Estonia (corresponding author e-mails: anduoma@hot.ee,
tammet@staff.ttu.ee, pudismaju@gmail.com)

E. Reilent is with the ELIKO Competence Centre, Teaduspargi 6/2, 12618
Tallinn, Estonia (corresponding author e-mail: enar.reilent@eliko.ee)

strategies: they could be mounted either on the walls ([11],
[4]) or on the floor ([3]), positioned into a regular grid (e.g.
[9]) or randomly. When a small number of tags are used in a
rather large and complex set of rooms then the tags serve
mostly as a navigational graph for robots which drive from
tag to tag whereas trying to reach their destination area as
described by [1].

Supposing the robots are equipped only with odometers
and RFID readers (plus collision detection) they could not
navigate on the graph for a long time without regular updates
of position and direction because of the accumulating
odometry error and tag detection inaccuracy (antenna is not
underneath the robot). However, resetting location is a slow
process and if done frequently it consumes considerable
amount of time. Nevertheless, the robot gets lost occasionally
and has to wander around until able to position itself again.

If the task of the robot rests on coverage, like cleaning for
example, and the robot itself lacks additional means for
localization then in some cases it might be preferable to spend
more time on moving and abandon the idea of precise
navigation. However, the robot could still make use of tags to
adjust its behavior to perform better compared to the
environment with no tags.

Our goal is to investigate potential uses of RFID tags for
enhancing robot’s performance in the situations where precise
navigation is not feasible or desired. Based on the same setup
as described by [13] — using the Roomba vacuuming robot
(diameter 30 cm) with mounted embedded computer, Skyetek
RFID reader (European UHF 865,7 MHz — 867,9 MHz, 24
dBm) and patch antenna, passive RFID tags (ISO18000-6b,
effective reading distance is comparable to the robot’s
dimensions) on the floor) — simulated experiments were
conducted to evaluate robot’s performance under various
different conditions.

A custom made simulator was used in the experiments to
have fine-grained control over the test setup and make the
robot and RFID as similar as possible to the real world case.
The task was specified for the robot to move around in the
closed two-dimensional environment until it has found the
given number of different tags — in other words, it is coverage
in the sense of visiting RFID tags with focus on minimizing
the time spent on the task. Different room configurations and
densities of tags were used while testing. Several control
algorithms were created, run, and compared on the simulated
robot.

We considered three different approaches for robot’s
control algorithm based on the usage of tags to guide the
robot. The “random” algorithm (lower bounder) has no initial
knowledge about the environment and does not adjust its

movement according to the encountered tags. The opposite
“map aware” solution (upper bounder) knows coordinates of
all tags and tries to navigate to the nearest unvisited tag. The
third algorithm lies between those two extremities and is
called “history based” as it remembers and uses the sequence
of seen tags to change its course. The motivation for this
algorithm is to find simple and low-cost ways to improve the
performance of random walk which turns out to be a quite
good starting point (as by [8]) in the cases where
sophisticated solutions exerting FastSLAM (e.g. [6]) are not
applicable due to the hardware constraints.

The paper is organized as follows. The next section
describes the background details of all algorithms that were
used in testing. Section 3 focuses on the issues of
experimenting itself and discussion of results.

II. ALGORITHMS

Currently there have been three different algorithms
surveyed — random, history based and map aware algorithm.
Each test of an algorithm has the set of configuration
properties which tell how many times the test should be
executed with the current configuration, what percentage of
tags must be found to consider a test run successfully
finished, connection parameters to the simulator and some
values concerning the algorithm itself (e.g. angles, velocities).
Percentage calculation of found tags is the same for all
algorithms and is based on the number of encountered unique
tags and the total number of tags in the current room. Total
number of RFID tags in a room is taken from configuration
(room definition), all tags have unique identifiers in the scope
of the test envirenment.

A. Random algorithm

Random algorithm is the simplest, basically doing two
things — in the case of seeing a tag registering it and in the
case of bouncing into an obstacle changing robot’s direction
by a degree taken from the test run’s configuration
(performing minimalistic random walk). When a test starts
then the robot is always placed on to the same coordinates in
the given room. Robot starts moving and drives straight until
it bumps into an obstacle (including walls), depending on the
direction of the collision heading will be changed. There are
two types of collisions, firstly, when both robot’s bumpers
give the signal, and secondly, when just one (left or right) of
the bumpers gives the signal.

Configuration holds four different values of angles for this
occasion:

* Degree to turn when the left bumper is set

* Degree to turn when the right bumper is set

* Degree value to turn left when both bumpers are set

* Degree value to turn right when both bumpers are set

Bumping with the left or the right bumper makes the
algorithm to use the specific degree value from the
configuration. When the robot hits an obstacle directly in
front of it and both bumpers are set then one of the both
bumpers’ degree values is taken from the configuration
randomly. Using two values makes it possible to turn robot
left and right randomly in direct collisions. Turning direction

is defined by the degree value — positive value turns right and
negative value turns left.

Random algorithm has been tested with different rooms
having seven test sets with different configuration per room.
In each set the robot must find 85 percent of tags in the room
and test is repeated multiple times to find statistical averages.
All seven sets have the same configuration values (90 and -90
degrees) for both bumper collisions. Left and right bumper
collisions will make robot turn to opposite direction
according to our algorithm configuration. For example if the
robot hits an obstacle with the left bumper then its direction
will change by given degrees to the right. Those values differ
in each test set by 15 degrees, starting from 30, -30 degrees
for the first set and ending with 120, -120 degrees for the last
set.

B. History based algorithm

History based algorithm is a bit more complex than the
random algorithm, basically sharing random behavior’s logic
for situations where history is not able to offer any help for
decision making. The general idea is not to go again by the
same path that the robot has passed before during that test
run. To be able to recognize these paths the robot must keep
the chronological history of seen tags.

Algorithm collects and uses the history of seen RFID tags
to adjust the robot's movement. In general it works similarly
to the random algorithm, especially when concerning task
completion, moving principles and default collision handling.
But in this case all tags that the robot sees during its
maneuvering are carefully stored into the so called moving
history together with odometry information.

The moving history consists of straight moving episodes
where each of them records all tags seen during that drive, the
length of the drive and the angle turned at the end. For
individual tags there are also distances from the beginning
point of the drive. That structure is used for changing the
robot's course when needed which can happen near to the
obstacle / wall as a part of collision handling as well as in the
open ground in the middle of one moving episode.

Main goal is to compare the current move to the previous
moves, suppose that the robot has found at least two tags
during its ongoing drive and the similar episode is found from
the moving history - there is an episode with at least two tags
matching, then the current move is finished right away and the
robot turns to another direction which is also saved into the
moving history. The exact number of degrees to be turned is
calculated with the angle from the last similar move and a
value specified in the configuration.

If the robot happens to visit the very same area again and
recognizes the situation, it changes its course once again and
turns by some number of degrees which is calculated from the
degrees turned at the same place last time plus parameter
“delta” value — so that every next time the new course change
is delta degrees larger than the previous one.

However, if the calculation is starting to give values once
already used, the robot is driven further by given small
distance and only then turned to different heading. The

general collision handling procedure is also affected by the
moving history and the robot checks history at the end of
every straight moving episode. If the move can be identified
by the tags seen and their distances from the endpoints of the
moving episode, the direction of the next move is tried to be
diversified as much as possible according to the delta
mechanism. This history check is applied also when only one
tag was seen during the moving episode.

Configuration file contains the same parameters as they
are for the random algorithm. Additionally there is the delta
parameter which tells how many degrees to increase turning
value if the same situation has already been met during the
current test run.

Similarly to the previous algorithm, this one is also tested
in different rooms and with seven different configuration sets
according to the principles used with the random algorithm.
Shared configuration values are the same and the additional
delta value is set to 15 degrees, however, the very first turn
made by the robot at the given spot for changing the course is
30 degrees (then 45, 60, 75, etc).

C. Map aware algorithm

Similarly to the history based algorithm we use the same
random movement principles for this algorithm’s base.
Additionally, here we know the location of all tags in the
room. There is no knowledge of other objects like walls,
furniture etc. Most configuration parameters are the same as
they are for the random algorithm, additionally the parameter
for location of tag coordinates database file is needed. Tag
information is provided from the same source as it is for the
simulator instance, no conversions needed. The file holds
three values for each tag, tile’s x and y coordinate and id of
the tag.

Tags placement in the room is described loosely. Objects
in the simulator’s world are described tile by tile and so are
the RFID tags. The robot has approximate knowledge of
tag’s locations and using that information it tries to locate the
tag. There is no need to use precise location markers due to
the fact that while driving and turning the robot’s odometry
loses accuracy and the robot’s estimation of its position is
always imprecise. It could be also noted that the effective
reading area for the RFID tag is comparable to the
dimensions of the robot but considerably larger than a tag.
Knowing the tags locations is more like a guiding advice not a
situation where the robot should be able to drive exactly to
the center of a tag.

Algorithm moves the robot around the room based on the
random movement’s principals until able to localize itself,
then starts to navigate. General principles of the robot
navigation are presented in [7], however, we try to avoid
planning ahead complex paths. Finding more than one tag
during a single straight moving episode makes the algorithm
stop the current move, choose the closest not yet visited tag
to the current position as the next target location, and then
continue moving.

Even if the robot misses the target tag it has moved closer
to the area where the tag is and there might be also other
unvisited tags close by. When the robot finds the tag it

continues navigation, otherwise it simply switches to random
movement until accidentally passes two tags and regains its
location and direction. The scenario is used mainly for
reference to evaluate other algorithms. It relies on the
predefined map which is not available in the real case if not
made by the robot itself beforehand. If the robot has to gather
the map information during the test run there is no significant
advantage of using the (incomplete real-time) map as the
robot cannot know the positions of tags which it has not yet
discovered.

Algorithm has been tested like others with different room
setups and seven separate configuration sets. Angle turning
values and finishing conditions are also the same as with the
random algorithm, no delta parameter used here.

III. RESULTS

A. About the testing process

Due to the time consuming process of developing
algorithms on the real robots and running considerable
amount of tests in different room configurations the decision
was made to use custom virtual environment for better
control over interfaces and automated test execution with
logging images, statistics etc. First simulator was built in
Python using Panda3D framework which turned out to be too
resource consuming. Next version was built on Java JGame
framework and is used currently. Lower resource
requirements allow running multiple instances of simulator at
once so we are able to run more tests in less time. Starting
from the beginning of research and development of algorithms
total count of test runs is approaching to 5000.

Environment contains of two programs — simulator and
the algorithm program, both are written entirely in Java.
Communication between them is done by using sockets
interface and commands from Roomba’s specification. During
the testing process of an algorithm one simulator instance and
one algorithm program instance with test set specific
configuration is used. The same test is being run number of
times specified in configuration. While a test set is running the
simulator generates easily readable HTML reports with the
image of the simulator window, test duration and tag finding
statistics for each test. The image represents the last state of
the simulator when the test successfully ended. Statistics
contain data for each tag: identifier, at which point of time the
tag was found, what percentage of time was spent to find the
tag, the sequence number of the tag in the chronological list
of discovered unique tags, also the count of how many times
that tag was seen during the test run.

All algorithms have been tested in the same environments
and under the same conditions. Maps presented below are
approximately the same size being equivalent to the real
world’s size of 60 square meters each except for the room 4
(see Figure 4, all referred room numbers match with the
numbers of the figures) which has 28 square meters of size.
Rooms 2 and 3 have been covered with 68 tags, room 1 with
55 tags, room 4 with 17 tags and room 5 with 669 tags. Each
test has been considered successfully completed when the
robot has found 85% of tags on the map.

The idea to search for specified percentage of tags came
from the earliest tests. Spending approximately 1/3 of each
test run time to find the last 15% of tags did not seem to be
healthy. The very first test sets showed that the first 1/3 of the
tags could be found around 10-15% of entire test run time,
finding 2/3 of tags took about 35-50% of the time. Looking
at multiple test results and statistics of tag finding the decision
was made to set the limit to finding 85% of tags during each
run.

In all these mentioned scenarios the robot moves only by
straight lines with a constant translational velocity or turns on
the spot with a constant angular velocity, all velocities are the
same for all tests. Turning by given number of degrees is done
by odometers reading only. No wall following is present in
the current case. The random algorithm has also been tested
with non-straight movement. Straight movement episodes
were replaced with circular movements with radius constantly
growing until upper limit. Obstacle resolving logic remained
the same. Unfortunately this approach ended up with much
worst problem resolving times and therefore not discussed
further.

On the following figures brick tiles represent walls and
other impassible terrain. Little antennas around the map
represent RFID tags, when they are crossed through then the
robot has seen them at least once. The black circle is the
robot, little red dots in front of the robot represent bumpers
and green dots in front of them represent the area where the
robot is able to detect RFID tags.

B. Outcomes

The tests give best results when turning robot 30 to 60
degrees after finding similar sequence of tags from history or
by bumping with one of the bumpers. The map aware
algorithm performs extremely well in one large room setup,
but with multiple rooms setup the robot can get stuck. For
multiple rooms setup with this algorithm the robot can get
stuck for some time because of knowing only about the tags
and nothing of other surrounding objects. Removing this flaw
could make this algorithm give far better results than two
others. Map aware algorithm has the best performance in
multiple rooms’ setup if it is able to resolve the test without
getting stuck.

While moving around in the simulated environment the
robot always leaves a trace of black line. After tests have
finished it is convenient to give firsthand evaluation how well
each test went by the coverage of black line on the map. An
example of quite unsuccessful run can be seen in “Fig. 17
where the random algorithm spends lots time on visiting the
same places over and over again.

Average test duration values point out of which are the
best turning degrees (in the case of one bumper hit) to be
used for achieving good results. An initial thought could be
that with bigger turning angles the covering process of rooms
will also be faster as the robot is more likely to bounce back
towards the center of the room instead of staying near the
walls, but in multiple room setups it actually makes harder for
the robot to go from one room to another through a door

(opening).

The “table 1” describes results from seven test episodes.
Each episode has thirty runs and results are average values of
these runs in seconds. (Smaller number indicates better
result.) Episodes configuration parameters differ by the
turning angle after one of the bumpers gets hit. These values
are obtained from the test runs in room setup number 2
illustrated on the “Fig 2”.

Based on the results it became clear that 30, 45 and 60
degrees are the best configuration values to be used. There
might be a chance to get good results also with 75 degree
turning angle, other values start taking almost double the time
which is too much. Decision is made by looking at the history
based and random algorithms because they have comparable
amount of knowledge at the start. Results also indicate that
bigger angles make robot to spend more time on turning.

The history based algorithm depends less on the bouncing
angle than the random algorithm, but still more than the map
aware algorithm. Even as it depends on the room
configuration the history based approach tends to be better
than the random, according to the intuition, however,
outperforming the map aware algorithm is only apparent. For
getting better understanding of these three algorithms it is
reasonable to look at the peak times spent at each episode.
Minimum and maximum values will give an idea of potential
of an algorithm but also how stable the algorithm is.

TABLE L. AVERAGE TEST RUN TIMES IN SECONDS
Angle History based Random Map aware
(degrees) (seconds) (seconds) (seconds)
30 1305 1975 1009
45 1188 1975 1915
60 1628 2016 2200
75 1703 5139 3078
90 4247 5800 1974
105 3714 5715 3101
120 3317 3976 2882

@

i@

\u@

™

Figure 1. Room setup no. 1 — random algorithm having a really awful run

and getting stuck in rooms.

Each column shows minimum or maximum test run value
for all three algorithms in room setup number 2 illustrated on
“Fig. 2” and are in the same order as in “table 1” — the first
line with 30 degrees bumping angle, the second with 45
degrees, etc.

Peak values seen in “table 2” indicate that the random
algorithm’s minimum problem solving times can be slightly
better if compared to the history based algorithm. Due to the
fact that the random algorithm does not remember anything it
can also get badly stuck or visit the same areas too many
times, which increases the maximum resolving times really
high. Based on these test results, it can be concluded that the
history based algorithm is able to give more persistent results
even if the random bouncing seems to give some really good
performance examples.

The history based algorithm is worse than the map aware
as expected but not very much in the cases of better (smaller)
turning angles, if minimum values are considered. On the
other hand, if minimums of the map aware are compared to
averages of the history based, it is clear that the current
history based algorithm has room for improvement. Currently
the weak point of the history based algorithm is when the
robot enters into the same state multiple times which ends up
with suggesting angles that have been already covered. These
situations occur mostly when the last tag, seen before
changing direction, is near the wall and instead of diversifying
the route the robot spends time on bumping the wall. Still, the
history based algorithm has some advantages over the random
movement.

Figure 2. Room setup no. 2 — an example of random algorithm having a
good run.

TABLE II. MINIMUM AND MAXIMUM TEST RUN TIMES IN SECONDS
Min Max Min Max Min Max
history history random rand map map
864 1656 582 2450 574 2153
786 1965 1136 2836 622 9109
1033 2412 1055 10838 840 5351
591 3700 984 5577 523 10331
1643 8402 1610 12132 589 3670
1185 8237 2980 10714 526 3516
1406 4418 1320 12967 878 5806

The map aware algorithm also has large maximum
problem resolving times, which are consequences of getting
stuck in some cases, e.g. as in “Fig 3”. Potential of this
algorithm can be seen from minimum values, where it outruns
every other algorithms execution time and indicates the best
possible solution where the robot smoothly passes all tags.
The lack of knowledge about the objects for this algorithm
could possibly be solved with remembering the obstacles and
avoiding repeating unsuccessful moves. This kind of approach

might trim down map aware algorithm’s maximum and also
average running times drastically (but would not improve
minimum times).

As said before, the map aware algorithm is applicable only
in the case where the robot knows the locations of all tags in
advance. Fast performance is the result of using navigation. In
the case where no map exist the robot must still drive around
by the history based algorithm and gradually gather
information for composing the map which can be used later
for speeding up next tasks in the room. For making map the
robot first measures distances between tags using odometry
and then calculates coordinates of tags from incomplete and
inaccurate data [10].

The “Fig. 4” gives an example of a map which contains a
single room. Looking at test results (illustrated in “table 3”)
of one single room which has some small randomly placed
obstacles we get proportionally more or less the same results
compared to other room setups. The map aware algorithm
has especially good results, because it has the best results
almost for every configuration and still having the flaw of not
being able to avoid the walls and obstacles.

()

)

Figure 3. Room setup no. 3 — map aware algorithm is getting stuck at the

door but finding last tags quickly.

Figure 4. Room setup no. 4 — history based algorithm having a good run.

C. Qutcomes of extreme tag coverage

Tests have been running with different room setups and
randomly placed tags with coverage about 15 — 25%. One
idea was to try extreme situation where all movable space in
room is covered with tags as illustrated on “Fig. 5”. The goal
was to see how it affects the performance and will it make the
algorithms to start doing stupid moves.

This approach was tested with all algorithms, but the
greatest impact was to history based and map aware
algorithms. Comparison was done with three different room
setups with multiple test episodes (each executed multiple
times). Results indicated slight rise in test run times. One of
the reasons is that tag will not always be registered as soon as
it is in the radio coverage. For map aware algorithms case this
means that sometimes robot thinks that it is better to turn,
than to drive straight forward. Unfortunately in real world
this means additional time spent to turning, which will result
in time loss and also means worse performance. Running
algorithms against room setups with full of RFID tags
resulted with average run time increase up to 50%. Worst
cases ended with time loss of 200% or more, but the
proportion of these cases was minimal — lower than 5% of all
runs.

N ¥ PN
)
oA
)
LIRO 1))

ety
.“i..x.){.q..
OO
¢
O
P

-4
TN
¥ i
Oy
.
OO OB OB T s U

Figure 5. Room setup no. 5 (the same layout as room no. 3) - extreme
situation where all movable space is covered with tags

TABLE III. AVERAGE TEST RESULT TIMES FOR A SINGLE ROOM IN
SECONDS
Angle History based Random Map aware
(degrees)
30 244 340 184
45 337 632 227
60 296 284 267
75 256 291 220
90 287 291 290
105 359 351 211
120 390 367 173

IV. CONCLUSION

Three different algorithms were implemented and tested in
the custom-made simulated environment to investigate
different possibilities of using RFID tags for guiding the robot
which has no reliable odometry, abundant processing power
or other sensor equipment (laser range finders, sonars,

cameras, GPS, etc.). The history based algorithm (an
unpretentious alternative to random walk and preceding phase
to map aware algorithm) is able to find tags with good
persistent times, but still remains behind the random
algorithm’s best result times. The map aware approach has
the shortest problem resolving times but average can be quite
low due to the shortcomings of the present implementation. It
has relevance only when the map is constructed beforehand.
Using loose tag data as input for algorithm has great potential
to produce the best average times, so it should be considered
a way to go.

Making map aware algorithm smarter by recognizing
“stupid” moves from the past would be one solution for better
performance. When the robot has some understanding of
walls and obstacles it would be possible to make use of more
sophisticated navigation and drive to the distant target
without line of sight by applying multi-hop. Also map making
should be added to the history based algorithm in the future.

REFERENCES

[1] M. Baglietto, G. Cannata, F. Capezio, A. Grosso, A. Sgorbissa and R.
Zaccaria, “PatrolGRAPH: a Distributed Algorithm for Multi-Robot
Patrolling”, IAS10 - The 10th International Conference on Intelligent
Autonomous Systems, Baden Baden, Germany, pp. 415 — 424, July
2008.

[2] M.A. Batalin, and G.S. Sukhatme, “Coverage, Exploration and
Deployment by a Mobile Robot and Communication Network”, in Proc.
International Workshop on Information Processing in Sensor Networks,
2003, pp. 376 — 391

[3] J. Bohn and F. Mattern, “Super-Distributed RFID Tag Infrastructures."
Lecture Notes in Computer Science, vol 3295, pp. 1 — 12, 2004.

[4] D. Hahnel, W. Burgard, D. Fox, K. Fishkin and M. Philipose,
“Mapping and localization with RFID technology.”, International
Conference on Robotics and Automation, pp. 1015 — 1020, 2004.

[5] J. Haverinen and A. Kemppainen, “A global self-localization technique
utilizing local anomalies of the ambient magnetic field.”, International
Conference on Robotics and Automation, pp 3142 — 3147, 2009.

[6] H.S. Jeon, M.-C. Ko, R. Oh and H.K. Kang, “A practical robot
coverage algorithm for unknown environments”, in Proceedings of the
Oth Mexican international conference on Advances in artificial
intelligence: Part I Pages 129-140, 2010.

[7] J.-A. Meyer and D. Filliat, “Map-based navigation in mobile robots. II.
A review of map-learning and path-planning strategies”, Cognitive
Systems Research, pp. 283 — 317, 2003

[8] R. Morlok and M. Gini, “Dispersing robots in an unknown
environment”, in 7th International Symposium on Distributed
Autonomous Robotic Systems (DARS), June 2004.

[9] S. Park and S. Hashimoto, “Indoor localization for autonomous mobile
robot based on passive RFID.”, International Conference on Robotics
and Biomimetics, pp 1856 — 1861, 2009.

[10] J. Schlitter, “Calculation of coordinates from incomplete and incorrect
distance data.”, Journal of Applied Mathematics and Physics, vol 38,
pp. 1 -9, 1987.

[11] S. Schneegans, P. Vorst and A. Zell, “Using RFID Snapshots for
Mobile Robot Self-Localization.”, European Conference on Mobile
Robots, pp. 1 — 6, 2007.

[12] A. Sekiguchi and Y. Nakamura, “The Chaotic Mobile Robot”, IEEE
Transactions on Robotics and Automation, volume 17, issue 6, pp 898
—904, 2001.

[13] T. Tammet, J. Vain, A. Puusepp, E. Reilent, and A. Kuusik, “RFID-
based communications for a self-organizing robot swarm.”, Second
IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, pp. 45 — 54, 2008.

Paper D

Puusepp, A.; Tammet, T.; Reilent, E. (2014). Covering an Unknown Area with
an RFID-Enabled Robot Swarm. Applied Mechanics and Materials, 490-491,
1157 - 1162.

95

Applied Mechanics and Materials Vols. 490-491 (2014) pp 1157-1162 Online: 2014-01-28
© (2014) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/AMM.490-491.1157

Covering an Unknown Area with an RFID-enabled Robot Swarm

Andres Puusepp” ?, Tanel Tammet'® and Enar Reilent**
'Tallinn University of Technology, Tallinn, Estonia
2ELIKO Competence Center, Tallinn, Estonia

2anduoma@hot.ee, "tanel.tammet@ttu.ee, °e.reilent@gmail.com
Keywords: Multirobot systems, robotics, RFID, robot swarm.

Abstract. Our goal is to improve the coverage of an area using robots with simple sensors and simple,
robust algorithms usable for any kind of room. We investigate the advantage of the swarm - compared
to a single robot — and three different algorithms for the task of searching landmarks in a previously
unknown area. The guidance of the robot is based on landmarks, implemented by RFID tags
irregularly placed in the room. The experiments are conducted using a custom made simulator of
RFID-equipped Roomba cleaning robots, based on our previous work with real-life Roomba swarms.
We show that for the simple room coverage algorithms the speedup gained from increasing the size of
the swarm diminishes as the swarm grows and most importantly, for larger swarm sizes the
information available and the intelligence of the algorithm becomes less important.

Introduction

Simple autonomous robots are becoming common for applications like cleaning [1], rescue [2],
mowing [3] and surveillance [4]. Regardless of the robots’ mission they all depend on localization
and navigation capabilities. The general context of our paper is improving the landmark search
algorithms — similar to room coverage - of a room by a swarm of robots. We assume the swarm to be
a set of robots following the same algorithm of behaviour and solving a common task in parallel.

There exist several approaches and sensor equipment kits for indoor navigation, like using a laser
range finder, magnetometer [5] etc. It is also possible to guide robots using landmark-like radio
beacons (e.g. [6]) or less expensive passive landmarks. The specific goal of the paper is to investigate
the landmark search behaviour (henceforth called coverage) of swarms of robots without precise
navigation capabilities, equipped with simple landmark-based navigation and following robust
algorithms. In particular, we are interested in the effect of the size of the swarm and the effects of the
search algorithm to the time it takes to cover a room.

The investigations reported in the current paper are performed on the custom developed simulator
with a behavior very close to the physical RFID-equipped Roombas described above.

RFID tags can be spread around the area in various ways; the information discovered by a single
member of the swarm is propagated to all the robots.

The task of the swarm was to move around the closed two-dimensional map and to discover a
given number of tags as quickly as possible — in other words, minimizing the time of room coverage in
the sense of visiting a given percentage of RFID tags in the room. Various maps and tag densities were
used while conducting the tests. Several control algorithms were created, run, and compared on the
simulated robot.

The most common solutions in literature for robot coverage are dividing the map into cells [7], [8]
and path planning [9]. Our algorithms do not assume knowledge of the orientation or location of the
robot and do not take advantage of the cited approaches. In contrast, we have experimented with the
following simple algorithms.

First, the “random” algorithm has no knowledge of a surrounding environment and is simply
driving around, bouncing against walls as it tries to find the tags. We have earlier [10] shown that the
angle of a turn after bouncing into a wall is an important factor for the efficiency. The second, “history
based” algorithm remembers and uses the sequence of tags seen to change its course. Third, the “map

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans
Tech Publications, www.ttp.net. (ID: 142.103.160.110, University of British Columbia, Kelowna, Canada-11/07/15,12:37:36)

1158 Mechanical Design and Power Engineering

aware” algorithm knows the coordinates of all tags and attempts to navigate the robot to the nearest
unvisited tag.

The paper is organized as follows. The next section describes the background details of all the
algorithms that were used in our experiments. The third section focuses on the experiments and the
discussion of results.

Algorithms

As mentioned above, we have experimented with three simple algorithms — the random, history based
and map aware algorithms. Our algorithms can be divided into three categories based on the amount
of information obtained from tags found. All the algorithms can read the room name from the tag,
understand whether a tag is a special door tag and decide whether the task is completed.

The Random Algorithm. The random algorithm does two things — registers each encountered tag
and changes robot’s direction each time it bounces into an obstacle. The degree of a turn has
significant effect on the room coverage efficiency [11]: hence we turn by 30 degrees which appears to
be the best in most cases.

For each test run the robot starts from the same place and drives straight until it bumps into an
obstacle. There are two types of collisions: one where a single bumper (left or right) of the robot is
toggled and another where both bumpers are toggled. In the first case we turn 30 degrees to the
opposite direction of the toggled bumper. In the second case (both bumpers toggled) we will turn a
random angle in the interval between 75 and 115 degrees.

The random algorithm has been tested with different maps with one to fifteen robots moving
around simultaneously. During each test run all the robots together must find 85 percent of the tags
spread around the map. The test is repeated multiple times to find statistical averages.

The History Based Algorithm. This algorithm adds additional logic to the random algorithm. The
main idea of the algorithm is to avoid repeating already passed paths. The chronological history of
tags seen during a single test run is stored and distributed throughout the robot swarm.

After seeing some tag sequence for the first time, the robot keeps driving straight until it bumps
into an obstacle and then turns, based on the same principles as the random algorithm. However, when
the robot detects a tag sequence which has been already followed (either by itself or any other robot) it
will turn away to a direction different from the last visit and will then continue driving forward. The
exact degree of a turn is increased by a small delta of 15 degrees each time the same sequence is
travelled again by some robot.

The Map Aware Algorithm. This algorithm relies on the predefined map which is not available
for the previous two algorithms.

Differently from the previous algorithms, the map aware algorithm knows all the tag locations on
the map along with the room name the tag belongs to. No additional knowledge like the position of
walls or obstacles or the location of the robot is provided. However, there are special tags for marking
doors, used by the robot to stay in one room until all the tags in a specified area are found and the robot
is free to move on to another area. The base parameters for the angle of a turn are the same as for the
random algorithm.

The core of the algorithm is the same random movement as described above. However, finding
more than one tag during a single straight line drive makes the algorithm stop the current move, find
the closest not yet visited tag to the current position in the same room, turn the robot to that tag’s
direction and continue moving. The angle to turn is calculated by using the first and the last tag’s
coordinates from the current straight moving episode and the coordinates of the tag chosen as the next
target. When the robot finds the target tag it continues to navigate to the next closest tag in the room,
if it fails to find a target tag, it will simply switch to random movement until it accidentally passes two
tags and regains its location and direction. Once the robot has found all the tags in the room it will
attempt to exit the room by driving towards the special door marker tags.

Applied Mechanics and Materials Vols. 490-491 1159

Results

Testing Process. We conduct the experiments with the three before-mentioned algorithms for swarm
sizes between one and fifteen.

There are four groups of experiments, with the results of each group depicted on a graph presented
below. There are two kinds of rooms — single room without obstacles; whole map split into three
rooms without any internal obstacles; and two kinds of starting configurations of the robots — all the
robots start at the (almost) same place; the robots start at different places, distributed evenly in the
space.

The robots participating in one test run share the same configuration values and follow the same
algorithm. It is important to note that the guiding algorithm of the robots simulates the random
fluctuations of both the robot turning angles, turning times and detecting tags as they actually occur in
the real Roomba cleaning robots.

Each test set has its own specific configuration describing turning angles, start coordinates etc.
Each test is run five times. The graphs below indicate the average time of these five runs.

The results and the graph on the Fig. 1 below show that the history-based and the random algorithm
perform almost identically: the timing differences between the runs are random fluctuations. Hence
the seemingly useful idea of avoiding paths already travelled does not translate into measureable gains
for any swarm size.

On the other hand, the map-aware algorithm consistently outperforms the simpler map-agnostic
algorithms. In particular, the gains obtained from the map-aware algorithm are most significant for
small swarm sizes (58% of the coverage time of the random/history based algorithms for the
one-robot case) and become somewhat less marked as the swarm grows (68% for a 7-robot swarm).

Most importantly, for all the three algorithms the benefit from increasing the swarm sizes is
initially very strong but starts diminishing quickly after a certain point.

The coverage time of the two-robot case is almost twice smaller than for the one-robot case
(regardless of the algorithm), and the coverage time of the four-robot case is again almost twice
smaller than for the two-robot case. However, the coverage time of the last point of the graph
(15-robot swarm) when compared to the 14-robot swarm is insignificant (again, regardless of the
algorithm). We could pose a hypothesis that one of the reasons for diminishing gains is the need to
travel to the far corners and edges from the common starting point: the time it takes is roughly the
same regardless of the swarm size.

This leads us to the next experiment: the same (single) room with the robots starting from different
locations near the walls of the room and initially headed towards the center.

Most importantly, there is no significant difference between the results of the previous
same-location start experiment on Fig. 1 and the different-location start experiment depicted on the
Fig. 2 below. This basically indicates that robots spread very quickly in the same-location scenario
and the initial spreading process has little effect on the overall time. Quick spreading is made possible
by the random fluctuations of robot behaviour as described above.

1000 1000
900 200
800 1—+ 800 "
700 \ 700 .\
600 \\ 600 \\
500 500
400 .\ \ 400 \ \
300 \ 300 \
200 \\\ 200 \\.E-'\L
————
0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 ° 0o 2o #1518
| —e— History Mapaw are Rand ‘ ‘ —e—History —m— Mapaw are —a— Random ‘
Figure 1. A single room with robots starting Figure 2. A single room with robots starting

from one location. from different locations.

1160 Mechanical Design and Power Engineering

The next two experiments are conducted in a simple three-room space. The size of the space and
the number of tags is the same as in the previous one-room experiment.

The principal complexity of covering a multi-room space stems from the problem of a robot (or
several robots) being stuck in a few rooms and not reaching all the rooms necessary to obtain the 85%
tag coverage condition. In the robot room coverage literature this problem is typically alleviated by
different planning algorithms. Not so in our simple algorithms: the random and history-based
algorithms are completely agnostic of the room the robot or the tags are located in at any given
moment.

However, the map-aware algorithm always knows the room of the tag it has recently found. It first
tries to find all the tags in the room and after this it attempts to escape the room by driving toward the
closest door marking tags.

1000 1000

900 A 900 A\

800 \ 800 \\

700 F‘\\ 700

600 L] \\ 600 L! \\

500 \\ 500 \

400 \ 400

300 \l \\ 300 \}\—A{\

200 \ 200 W\h(‘ -

P L-Q‘%‘\ 100 A%
0 o —
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

‘ —e—Hstory —m—Mapaware —a— Random ‘ —e—History —=— Mapaw are —a—Random ‘

Figure 3. A three-room space with robots
from different locations.

Figure 4. A three-room space with robots starting
starting from one location.

First of all, observe that, as expected, for one robot it takes slightly more time (ca 15% for random
and ca 25% for the map-aware) to cover the three-room space. However, for larger swarms the
difference increases: it takes about twice as long to cover the three-room space for the 7-robot swarm
when compared to the one-room space.

The diminished efficiency is mainly due to the abovementioned problem of spreading a swarm out
evenly in multiple rooms. On the other hand, the effect of increasing the size of the swarm gives
diminished returns somewhat similarly to the one-room space experiments

Most interestingly, the efficiency of the history-based algorithm has become noticeably different
from the random algorithm. The history-based algorithm is a bit faster for the one-robot case and
becomes a bit slower for the multi-robot swarms. The next experiment covers the three-room space
with robots starting from different locations in different rooms (Fig. 3).

Obviously, there is no difference for a one-robot case when compared to the experiment on Fig. 4.
As the swarm size increases, we see that the coverage time becomes similar to the one-room case,
which is — again — not unexpected, since there will be at least one robot for each room in the initial
situation. Again, the positive effect of increasing the swarm becomes smaller and smaller.

1000
s00 i
00 \
700
\
800 h T
=00 i
400
300 \\%
. . .
100 —a—g—
’ 1z 3 4 & 7 8 9 10 11 12 13 14 15 18
| —+—Single room —m— 3 rooms |

Figure 5. Averages for all the three algorithms

Applied Mechanics and Materials Vols. 490-491 1161

Finally we present a comparison of the average swarm behaviour for the two spaces described
above. Each line in the following graph represents an average behaviour of a swarm for all the three
algorithms considered.

The graphs (Fig. 5) representing coverage time as a function from the size of the swarm S are
roughly a*$% for a single room, b*S™"*’ for the three-room setup, where a and b depend on the room
size and robot speed.

Conclusions and Future Work.

Three different simple guidance algorithms were tested on four experimental room/initial position
configurations for swarm sizes between one and fifteen. One of the goals of the experiments was to
measure the impact of increasing the robot swarm on the time of room coverage by the swarm. As
expected, for all the algorithms in all the experiments, gradually increasing the size of the swarm
brings a smaller and smaller decrease of the coverage time.

Second, the experiments consistently showed relatively small differences between the random and
optimized map-aware and history-based algorithms, leading to a conclusion that our
medium-complexity algorithms do not give substantial benefits. Nevertheless, in simple rooms and a
few robots the map-aware algorithm demonstrates practical speed improvement: for a single robot in
one large room the coverage time was 58% of the random algorithm time. Also note that the paper [8]
reports an almost consistent speedup of two times obtainable by their sophisticated coordination
algorithm with robots having very detailed information about the rooms and their relative positions.

To summarize, for robots with limited knowledge the intelligence of the algorithm becomes less
important as the swarm size increases.

Finally, we pose a hypothesis to be tested in the future work: it would be practical to optimize the
spreading behaviour of the swarm by using only the tags located at doors to decide whether a robot
should enter the door or not, disregarding all the other tags.

References

[1] H. Endres et al., Field Test of a Navigation System: Autonomous Cleaning in Supermarkets,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 1998, pp. 1779-1781.

[2] R. Murphy, Human-robot Interaction in Rescue Robotics, IEEE Syst., Man, Cybern., C, Appl.
Rev., vol. 34, no. 2, pp. 138-153, May 2004.

[3] Y. Huang et al., “Automatic Operation for a Robot Lawn Mower, in SPIE Conf. Mobile Robots,
vol. 727, 1986, pp. 344-354

[4] D. Hougen et al., “A Miniature Robotic System for Reconnaissance and Surveillance, in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), 2000, pp. 501-507.

[5] J. Haverinen and A. Kemppainen, “A Global Self-localization Technique Utilizing Local
Anomalies of the Ambient Magnetic Field, International Conference on Robotics and
Automation, pp 3142 — 3147, 2009.

[6] M. A. Batalin and G. S. Sukhatme, Coverage, Exploration and Deployment by a Mobile Robot
and Communication Network, in Proc. International Workshop on Information Processing in
Sensor Networks, 2003, pp. 376 — 391

[71 N. Agmon, N. Hazon, and G. A. Kaminka, "Constructing Spanning Trees for Efficient
Multi-robot Coverage, in Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, vol. 1-10, (Orlando, FL, USA), pp. 1698-1703, 2006.

[8] W. Burgard, M. Moors, C. Stachniss, Schneider, F.E., Coordinated Multi-robot Exploration,
Robotics, IEEE Transactions on, vol.21, no.3, pp.376,386, June 2005

1162 Mechanical Design and Power Engineering

[9] H. Choset and P. Pignon, "Coverage path planning: The boustrophedon decomposition", in: Proc.
of Int. Conf. on Field and Service Robotics, Canberra, Australia, December 1997.

[10]Puusepp, A.; Tammet, T.; Puju, M.; Reilent, E., "Robot movement strategies in the environment
enriched with RFID tags," in Proceedings of the 16th International Conference on System Theory,
Control and Computing (ICSTCC), pp. 1 — 6, Oct. 2012

[11]A. Tanoto, U. Riickert, "Local Navigation Strategies for Multi-Robot Exploration: From
Simulation to Experimentation with Mini-Robots", Procedia Engineering, vol. 41, 2012, pp.
1197-1203

Mechanical Design and Power Engineering
10.4028/www .scientific.net/ AMM.490-491

Covering an Unknown Area with an RFID-Enabled Robot Swarm
10.4028/www.scientific.net/ AMM.490-491.1157

Appendix B
CURRICULUM VITAE

Personal data
Name: Andres Puusepp
Date of birth: 28.11.1982
Place of birth: Estonia
Citizenship: Estonian
Education
2001 — 2006 Tallinn University of Technology,
MSc in Computer Science
1989 — 2001 Parnu Koidula Giimnaasium
Language competence
Estonian Native language
English Fluent
Russian Basic
Professional employment
2007 — ... Swedbank AS, developer
2005 — 2007 WebMedia AS (Nortal AS), developer

105

ELULOOKIRJELDUS

Isikuandmed
Nimi: Andres Puusepp
Stinniaeg: 28.11.1982
Stinnikoht: Eesti
Kodakondsus: Eesti
Hariduskaik
2001 — 2006 Tallinna Tehnikaiilikool, informaatika magister
1989 — 2001 Péarnu Koidula Giimnaasium
Keelteoskus
Eesti keel Emakeel
Inglise keel Korgtase
Vene keel Algtase
Teenistuskiik
2007 — ... Swedbank AS, arendaja
2005 — 2007 WebMedia AS (Nortal AS), arendaja

106

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON
INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.
2. Kalle Tammemée. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments — Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods
for Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:
Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia kididuhaldussiisteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

107

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Okonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level 1.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum
Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.
28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Bukrop BoiitoBuu. Pa3paboTka TEXHOJOTHIA BBIpAIIUBAHUS U3 JKUAKOU

(ha3bl AMUTAKCHAIBHBIX CTPYKTYp apCeHHJa Taulusi C BBICOKOBOJBTHBIM p-N
Mepex0J0M U U3TOTOBJIEHUS AMO0I0B Ha uX ocHoBe. 2006.

31. Tanel Alumée. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired
Underwater Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

108

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit
State Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands
Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-
Level Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tsahhirov. Security Protocols Analysis in the Computational Model —
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.
46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivosei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.
50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tonso. Computer Algebra Tools for Modelling, Analysis and
Synthesis for Nonlinear Control Systems. 2010.

54. Aivo Jiirgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User
Interfaces. 2010.

56. Jiirgo-Soren Preden. Enhancing Situation — Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

109

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja SleptSuk. Investigation of the Intermediate Layer in the Metal-
Silicon Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.
66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavsin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting
Algorithms Using Tree-like Structures and HFSM Models. 2012.

70. Anton TSertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web — Analysing and Recommending Web
Users™ Behaviour. 2012,

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

110

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko Kaidramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance
Spectroscopy of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tonis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Tiks. An Automated Legal Content Capture and Visualisation
Method. 2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton TSepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Miiiirsepp. Robust Detectors for Cognitive Radio. 2013.
89. Jaas JeZov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

94. Jaan Ubi. Methods for Coopetition and Retention Analysis: An Application
to University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p'-pin-n" Structures. 2014.

97. Taavi Salumie. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

111

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mbolder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina GavrijaSeva. Coin Validation by Electromagnetic, Acoustic and
Visual Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic
Surgery and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in
High-Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood
of Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation
Factors of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL
SystemC. 2016.

112. Arvo Kaldmiée. Advanced Design of Nonlinear Discrete-time and Delayed
Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic
Electrical Impedance. 2016.

115. Aivo Anier. Model Based Framework for Distributed Control and Testing
of Cyber-Physical Systems. 2016.

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016.

117. Sergei Astapov. Distributed Signal Processing for Situation Assessment in
Cyber-Physical Systems. 2016.

118. Erkki Moorits. Embedded Software Solutions for Development of Marine
Navigation Light Systems. 2016.

112

119. Andres Ojamaa. Software Technology for Cyber Security Simulations.
2016.

120. Gert Toming. Fluid Body Interaction of Biomimetic Underwater Robots.
2016.

121. Kadri Umbleja. Competence Based Learning — Framework,
Implementation, Analysis and Management of Learning Process. 2017.

122. Andres Hunt. Application-Oriented Performance Characterization of the
Ionic Polymer Transducers (IPTs). 2017.

123. Niccolo Veltri. A Type-Theoretical Study of Nontermination. 2017.

124. Tauseef Ahmed. Radio Spectrum and Power Optimization Cognitive
Techniques for Wireless Body Area Networks. 2017.

125. Andre Veski. Agent-Based Computational Experiments in Two-Sided
Matching Markets. 2017

126. Artjom Rjabov. Network-Based Hardware Accelerators for Parallel Data
Processing. 2017.

127. Fatih Giilli. Conformity Analysis of E-Learning Systems at Largest
Universities in Estonia and Turkey on the Basis of EES Model. 2017

128. Margarita SpitSakova. Discrete Gravitational Swarm Optimization
Algorithm for System Identification. 2017.

113

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

