
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C129

Covering Algorithms for a Robot Swarm with
Limited Information

ANDRES PUUSEPP

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Department of Software Science

This dissertation was accepted for the defence of the degree of Philosophy
in Computer Science on April, 17, 2017.

Supervisor: Professor Tanel Tammet
Institute of Computer Science
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Juha Röning
Computer Science and Engineering
University of Oulu

Professor Alvo Aabloo
Faculty of Science and Technology
Institute of Technology
University of Tartu

Defence of the thesis: December 12, 2017, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

/Andres Puusepp/

Copyright: Andres Puusepp, 2017
ISSN 1406-4731
ISBN 978-9949-83-153-1 (publication)
ISBN 978-9949-83-154-8 (PDF)

INFORMAATIKA JA S TEHNIKA C129ÜSTEEMI

Katvusalgoritmid piiratud teadmusbaasiga
robotiparvede jaoks

ANDRES PUUSEPP

4

Table of Contents

ABSTRACT .. 6

ACKNOWLEDGEMENTS ... 7

LIST OF PUBLICATIONS ... 8

AUTHOR’S CONTRIBUTION TO THE PUBLICATIONS 9

List of Figures .. 10

List of tables... 12

INTRODUCTION ... 13

Background: robots and landmarks ... 13

Motivation and problem statement .. 15

Contribution of the thesis ... 15

Thesis organization .. 16

1 RELATED WORK .. 17

1.1. Robot platforms ... 17

1.2. Robot swarm behaviour ... 18

2 ROBOT PLATFORM .. 21

2.1. Memory database ... 21

2.2. Data model and languages ... 22

2.3. Data format in RFID tags ... 24

2.4. Rule based control system ... 25

2.5. Rule engine and rule language ... 26

2.6. Behaviors and rule language .. 29

2.7. Robot communication with the server ... 30

2.8. Summary .. 31

3 AREA COVERAGE WITH A SWARM .. 32

3.1. The simulator ... 34

3.2. Turning angle ... 37

3.3. Success conditions for test runs ... 38

3.4. The Random algorithm .. 39

3.5. The history based algorithm ... 39

3.6. The map aware algorithm .. 41

5

3.7. An extended map aware algorithm .. 43

3.8. Strong and weak points of each algorithm ... 43

3.9. Summary ... 44

4 EXPERIMENTAL RESULTS... 44

4.1. Configuration and comparison data ... 44

4.2. Testing strategies and simulation areas .. 45

4.3. Comparison of the simulation results .. 48

4.4. Environment versus the swarm size ... 55

4.5. Algorithm performance for very high RFID densities 57

4.6. Summary .. 58

CONCLUSIONS ... 59

REFERENCES .. 61

KOKKUVÕTE .. 66

Appendix A .. 67

Paper A .. 67

Paper B ... 79

Paper C ... 87

Paper D .. 95

Appendix B .. 105

6

ABSTRACT
The main goal of the thesis is to investigate and develop algorithms using
navigational tags for enhancing the performance of a swarm of robots when
precise navigation is hard to achieve or not feasible.

We focus our research on robots without communication capabilities, with a
limited set of error-prone sensors and little to no information about the
surrounding environment at the starting point, as is the case for typical cleaning
and lawn-mowing robots. We assume the use of landmark-based navigation and
robots equipped with rfid readers as a concrete scenario.

The first part of thesis designs and presents a detailed knowledge architecture for
intelligent robots able to use RFID tags both as landmarks and communication
channels. This architecture contains a rule system for robots, providing reactive
control while a robot is in action. The system has been successfully implemented
during the the Roboswarm EU FP6 project for running the physical robot swarm.

Then we develop and compare different coverage algorithms for swarms of
robots tasked with cleaning, search or similar activities inside buildings. The
main goals are to find more efficient algorithms and to understand the
improvements gained by increasing the swarm size.

The robot parameters and capabilities are modeled on the actual rfid-equipped
Roomba cleaning robots developed during the Roboswarm EU FP6 project with
the participation of the author. We have implemented a custom simulator of the
Roomba robot, which takes into account the capabilities and operation times of
the robot. Controlled simulations of this robot have been used for testing and
comparing the algorithms.

The main part of our research consists in developing and investigating four main
approaches for the robot control algorithm, all based on the idea of using
recognizable locations (tags) to guide the robot around the mission area. As a
background baseline we also consider “ideal” behaviour with the best possible
performance of the swarm.

We show that a specific parameter of robot behaviour - the default turning angle
- makes a significant difference for the performance of the investigated
algorithms.

We show that the algorithms employing landmarks are almost consistently better
than the parameter-optimized random algorithm and are, on the average, close
enough to the ideal behaviour to be considered as practically sufficient

Most importantly, we show that as the swarm size and density increases, the
performance improvements gained by better algorithms and more knowledge
decrease quickly: in the other words, the size of the swarm trumps sensors and
intelligent behaviour.

7

ACKNOWLEDGEMENTS
First I would like to sincerely thank Prof. Tanel Tammet for his guidance

and motivation during all these years. Without his support the thesis would have
not reached the finish line.

The thesis got its kickoff from the middleware development for the
Roboswarm project of the EU’s 6th Framework Program (FP6).

Additionally, I want to thank people who have contributed their time and
knowledge: without them the work presented in the thesis could not have been
completed. Special appreciation to Enar Reilent, who has supported with testing
and developing communications for the real robots and all what concerns C
programming; Madis Puju for developing the in-memory database for the
Roboswarm project; Tanel Tammet for reviewing and brainstorming the
solutions; Prof Jüri Vain for overall and formal guidance.

8

LIST OF PUBLICATIONS
The work presented in this thesis is based on the following publications:

A T. Tammet, J. Vain, A. Puusepp, E. Reilent, A. Kuusik. RFID-based
communications for a self-organizing robot swarm. In: Proceedings
Second IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, SASO 2008: 20-24 October 2008, Venice, Italy:
(Toim.) Brueckner, Sven; Robertson, Paul; Bellur, Umesh. Los Alamitos,
Calif.: IEEE Computer Society, 2008, 45 – 54.

B T. Tammet, E. Reilent, M.Puju, A. Puusepp, A. Kuusik, A. Knowledge
centric architecture for a robot swarm. In: 7th IFAC Symposium on
Intelligent Autonomous Vehicles (2010). IFAC-PapersOnLine, 2010,
(Intelligent Autonomous Vehicles; 7/1). 2010.

C A. Puusepp, T. Tammet, M. Puju, E. Reilent. Robot movement strategies
in the environment enriched with RFID tags. 16th International
Conference on System Theory, Control and Computing, Sinaia,
Romania, 12-14 October 2012.

D Puusepp, A.; Tammet, T.; Reilent, E. (2014). Covering an Unknown
Area with an RFID-Enabled Robot Swarm. Applied Mechanics and
Materials, 490-491, 1157 – 1162.

9

AUTHOR’S CONTRIBUTION TO THE
PUBLICATIONS

A [Contributing to the development of the robots inner rule language.
Contributing to the creation of data protocol formats, including data
encoding on RFID. Co-writing the paper.]

B [Further development of the rule language. Contributions to the memory
datastore development.]

C [Developing the custom simulation environment. Introducing Roomba
protocol for the simulation communication. Developing the coverage
algorithms. Conducting and comparing the test experiments with the
simulated robots.]

D [Improving the coverage algorithms previously developed. Conducting
and comparing a larger amount, different and more thorough test
experiments with the simulator.]

10

List of Figures
Figure 1 Real Roombas equipped with 3 RFID readers each, developed during
the Roboswarm project. ... 14

Figure 3.1 Inheritance of the properties of algorithms. 34

Figure 3.2 Example room setup for testing (published in paper C) 36

Figure 3.3 Figure indicating how the robot turns after finding the same tag
sequence for two times during one test run. .. 40

Figure 3.4 Figure indicating how the robot plans the move after encountering two
or more tags during one straight line drive. ... 42

Figure 4.1 A single room pseudo-optimal run, takes 420 seconds. 45

Figure 4.2 3-room pseudo-optimal run, takes 518 seconds. 46

Figure 4.3 Seven-room pseudo-optimal run, takes 512 seconds. 46

Figure 4.4 End position of a test run in a single room. 47

Figure 4.5 End position of a test run in a 3-room space. 48

Figure 4.6 A single room with robots starting from one location. Y-axis values
are representing experiment run times in seconds and x-axis shows the number
of robots participating in the experiment. .. 48

Figure 4.7 A single room with robots starting from different locations. Y-axis
values are representing experiment run times in seconds and x-axis shows the
number of robots participating in the experiment. ... 49

Figure 4.8 A three-room space with robots starting from one location. Y-axis
values are representing experiment run times in seconds and x-axis shows the
number of robots participating in the experiment. ... 53

Figure 4.9 A three-room space with robots starting from different locations. Y-
axis values are representing experiment run times in seconds and x-axis shows
the number of robots participating in the experiment. 53

Figure 4.10 Random algorithm with 15 robots, starting from different locations
in a seven-room space. ... 54

Figure 4.11 Six small rooms with a corridor, robots starting from different
locations. Y-axis values are representing experiment run times in seconds and x-
axis shows the number of robots participating in the experiment. 55

Figure 4.12 Six small rooms with a corridor, robots starting from one location.
Y-axis values are representing experiment run times in seconds and x-axis shows
the number of robots participating in the experiment. 55

11

Figure 4.13 Averages for all the three algorithms. Y-axis values are representing
experiment run times in seconds and x-axis shows the number of robots
participating in the experiment. ... 56

Figure 4.14 Extreme situation in an experimental room setup with all the available
space covered with tags (published in paper C). .. 57

12

List of tables
Table 2.1 Graphical representation of the RFID memory 25

Table 2.2 Initial data in memory database ... 27

Table 2.3 Fact generated by the derivation process ... 27

Table 2.4 The rule system startup dataset in memory database 28

Table 2.5 Facts generated based on the startup dataset 28

Table 2.6 Fact generated after finishing cleaning process 28

Table 2.7 Fact generated during derivation session after cleaning is finished ... 28

Table 2.8 Dispatcher execution command fact .. 30

Table 3.1 Summary of data usage by each algorithm .. 33

Table 3.2 Legend of simulator items. .. 36

Table 3.3 Legend of robot parts. .. 37

Table 3.4 Average test runtimes in seconds by the turning angles 38

Table 4.1 Results represented in seconds for seven robot swarm experiment with
same and various start locations. ... 51

Table 4.2 Results represented in seconds for eight robot swarm experiment with
same and various start locations. ... 51

Table 4.3 Results represented in seconds for fourteen robot swarm experiment
with same and various start locations. ... 52

Table 4.4 Results represented in seconds for fifteen robot swarm experiment with
same and various start locations. ... 52

13

INTRODUCTION
The area of this work is swarm robotics: making a set of separate robots work
together as efficiently as possible. While the spectrum of complexities and
capabilities of robots is potentially very wide, we focus on relatively simple
robots with limited sensors, suitable for simple indoor activities like floor
cleaning and searching objects.

This thesis starts with a detailed overview of the knowledge architecture of actual
robots developed during the Roboswarm EU FP6 project with the participation
of the author. After that it concentrates on developing various coverage
algorithms employable by swarms of these or any other robots with a limited set
of error-prone sensors and little or no previous information about the
environment.

Background: robots and landmarks

The background of this research is an actual robot swarm developed during the
Roboswarm EU FP6 project. The solutions reached at during our work generalize
to swarms of robots with similar capabilities.

We assume the use of simple robots with very limited sensory capabilities and no
communication or central coordination. We use the dynamic cleaning problem
[1], [2] as a testbed for our algorithms. In general, such tasks can vary from
cleaning [3], mowing [4], tour guidance [5] and rescue [6] to complex
surveillance [7] assignments and even providing butler services [8]. There exist
plans to use exploration swarms to reach to outer space. NASA is developing a
robot swarm for mining [9].

There exist several approaches for indoor navigation like using a laser range
finder or magnetometer [10]. It is also possible to guide robots using landmark-
like radio beacons (e.g. [11]) or less expensive passive landmarks. Roomba
family’s flagship, the Roomba 980 released 17.09.2015, utilizes the onboard
camera and image recognition to create visual landmarks for itself and cover the
area using the vSLAM algorithm [12].

For guidance in the working area – assumed to be indoor environment - we use
RFID tags marking objects, doors and covering locations which need to be
visited. The same RFID chips can be used to leave messages to other robots,
inspired from ants’ communication using pheromone trace known as stigmergy
[13]. The usage of RFID tags in such a way can reduce the communication
overhead related with coordination [14].

14

Figure 1 Real Roombas equipped with 3 RFID readers each, developed during the
Roboswarm project.

An iRobot Roomba cleaning robot is used together with a small ARM-based
Gumstix computer (500MIPS) running on BusyBox 2.6 Linux distribution and a
stock RFID reader/writer.

Our robots use RFID tag sequences and potentially other similar landmarks to
detect their location and direction. While moving around the mission area the
robots can take advantage of the tags and adjust their behavior to perform better
compared to the environments without RFIDs. Tags can be placed on either on
the walls [18], [19] or on the floor [20] and positioned as a regular grid [21] or
just randomly. Tags are serving mostly as a navigational graph for robots which
are driving from tag to tag trying to reach their destination [22].

Communication between the robots can be implemented through messages on
RFID1 chips planted across the working area or via a central server. In our
experiments we use the central server only for the simulation and analysis
purposes. Communication between the robots is implemented through messages
on RFID2 chips planted across the working area or via a central server. Otherwise
a central server is used only for the simulation and analysis purposes.

1 Radio-frequency identification
2 Radio-frequency identification

15

Motivation and problem statement

We want to decrease the time it takes for a swarm of robots to either clean a set
of interconnected rooms or to find a tagged object located in some room.

The knowledge engineering goal of the thesis is designing a suitable knowledge
architecture for all layers of the robot swarm – tags, robots, server, rules and
communication - and validating its usability in a real indoor swarm.

The main research goal of the thesis is to find robust and efficient algorithms and
principles for practical area coverage in a swarm of indoor robots relying mainly
on navigational landmarks, with limited and inaccurate sensors. We also want to
compare the algorithms in different room complexity scenarios and analyse the
effects of the swarm size on the coverage time.

The common approach to the problem of coverage in literature is dividing the
map into cells [15], [16] and path planning [17]. We consider only algorithms
which do not take advantage of these methods: the reason being the lack of
orientation and location info of the indoor-moving robot, mainly because of the
accumulating error of odometry and tag detection inaccuracy of simple robots.
Notice that obvious solutions for outdoors navigation - GPS and compass - cannot
be reliably used indoors.

Contribution of the thesis

The thesis gives two different contributions in robotics: a knowledge engineering
contribution and a swarm robotics research contribution.

The knowledge engineering oriented contribution of the thesis consists in
designing the knowledge representation, reasoning and communication
principles and software of the RFID-equipped intelligent cleaning robot on top of
the stock iRobot Roomba cleaning robot, developed by a team with the
participation of the author. The large set of experiments performed by the real
swarm of robots with this knowledge architecture proved that the designed
principles and representations are feasible in practice.

The research contribution of the thesis is a design and comparative investigation
of different simple and robust coverage algorithms for non-communicating
swarms of realistic cleaning and lawn mowing robots with limited and error-
prone sensors in the environment enriched with landmarks detectable at close
range. We note that we have measured the behaviour of the algorithms only on a
simulated swarm, not a physical swarm.

Most of the previous work in coverage algorithms has been conducted with
different assumptions, like exact sensors and a thorough knowledge of the
environment.

16

We show that a specific parameter of robot behaviour - the default turning angle
- makes a significant difference for the performance of the investigated
algorithms.

We show that the algorithms employing landmarks are almost consistently better
than the parameter-optimized random algorithm and are, on the average, close
enough to the ideal behaviour to be considered as practically sufficient. As
expected, the differences between the performance of the algorithms are more
significant in case the environment consists of several rooms or areas with
narrow, hard-to find doors or connections. In particular, the capability to
recognize doors has been shown to be a key aspect for multi-room areas.

Most importantly, we show that as the swarm size and density increases, the
performance improvements gained by better algorithms and more knowledge
decrease quickly: in the other words, the size of the swarm trumps sensors and
intelligent behaviour.

Thesis organization

Thesis starts with the general introduction and overview of the relevant related
work in the area of swarm robotics.

Next we give a detailed overview of the entire robot platform: how the processes
work inside the robot. The particular focus is on knowledge representation and
usage for the robot and the swarm. The author was a part of the team designing
the algorithms and the data representation for the robot. These chapters also
constitute an introduction to the main research contribution of the author given in
the following chapters.

The chapters “Area coverage with a swarm” and “Experimental results” contain
the main research contribution of the author. First we introduce the simulator and
the background details of all the algorithms that have been developed and tested
for the robot. Then we focus on actual tests with the simulator. Finally the test
results are reviewed and explained and main conclusions drawn.

17

1 RELATED WORK
This chapter gives an overview of the work related to the main contribution of
the paper: robust coverage algorithms for a swarm of robots.

The problem of robot navigation and path planning is a classic question of
robotics with a long history.

The widely used practices in literature for robot coverage problem involve
dividing the area into the cells [23] [24] and path planning [25].

The spanning tree covering algorithm [26] works by dividing an area into cells
and creating a spanning tree. There are two main approaches: off-line and on-
line. In the off-line approach we assume full knowledge of the entire area and
create the entire spanning tree at the start. The on-line approach uses sensors to
determinate the surrounding cells and creates the spanning tree incrementally. In
both cases the robot has position and orientation sensors which our robot lacks.

The path planning algorithms [27] also divide an area into cells; then they try to
move to cells which are considered to be obstacle free. Being in a cell means
positioning the robot in the center of the cell. Moving between the cells means
moving from one center point to another center point. This kind of navigation
requires precise positioning and knowledge of the robot orientation.

Our work, however, focuses on scenarios with little or no previous knowledge
about the environment and simple robots with limited and error-prone sensors
where the classic questions of path planning are not applicable. We analyze the
behaviour of swarms of robots and the effect of swarm size to the efficiency of
solving the task. Hence we will concentrate on the related work with platforms,
goals or assumed limitations similar to ours.

1.1. Robot platforms

First we have a look at the developments in related robot platforms.

To start with, the main platform used in our thesis – iRobot Roomba extended
with rfid readers during the Roboswarm project – has seen similar developments
from the iRobot company itself. As reported in [28], iRobot has developed the
Roomba 980 model equipped with a wifi and a camera along with intelligent
navigation capability based on VSLAM (Vision Simultaneous Localization and
Mapping). The robot provides also remote control with a smartphone app.
VSLAM is a way of dynamically building a map while keeping track of your own
position at the same time. To recognize places, the camera takes a picture, and
then looks for distinctive patterns of pixels in that picture. The Roomba 980 also
performs what is known as “sensor fusion,” meaning it combines data from
various proximity sensors with imagery from its camera. The robot will then
remember what the seen features look like and will keep track of them as it
moves.

18

The paper [29] presents technology and experiments converting a large 200kg
non-autonomous floor scrubber into an autonomous one. The robot uses LIDAR,
camera and UWB for navigation. The authors say that Lidar+AMCL is a good
choice as primary localization tool for the robot module. However, they recognize
that during normal operation, automatized robot scrubber will operate in open
spaces (e.g. warehouses and/or squares) where maximum rage of current Lidar (6
m) will not be adequate and robot might not get sufficient data for such an
accurate localization. Then UWB based localization should be tested for such
environments.

The kilobot project [30] [31] [32] focuses on building a robot swarm with a size
of up to 1000 robots, positioning themselves into preprogrammed 2D shapes.
They use infrared reflection of the surface for communication and distance
sensing between each other. Robots are very small, with a diameter of 33 mm and
a height of 34 mm. The communication distance between two tiny robots can be
up to 70 mm. Forming a single preprogrammed shape takes about 12 hours for
the entire swarm. Kilobots do not have any location sensors and are similar to our
robots in the sense that they do not use path planning. Kilobot is a popular and a
relatively cheap way to perform real world tests with a relatively large robot
swarm.

Mobile Agricultural Robot Swarms (MARS) [33] have a set of objectives similar
to our thesis: use robots with a minimal set of sensors to achieve low cost and
energy efficiency. Differently from our swarm, the members of MARS swarm
are centrally guided and each member has precise knowledge of its location.

1.2. Robot swarm behaviour

Next we will take a look at interesting papers concentrating specifically on the
robot swarm behaviour, navigation and coverage strategies suitable for robot
swarms. We have found no papers dealing with the assumptions and goals exactly
like ours, although several papers focus on very similar tasks and questions, with
somewhat different assumptions on robots/environment. We will start with the
older papers and end up with the newest ones.

The paper [34] develops a swarming navigation algorithm in order to find the
odor sources in an unknown environment, based on the ability of each swarm
member to sense the odor. This task is similar to the task presented in the current
thesis. Each robot in the swarm has a cooperative localization system which uses
wireless network as a mean of measuring the distance from the other robots. At
least three robots act as stationary measurement beacons while the other robots
of the swarm navigate in the environment towards the odor source. The novel
approach of the paper is the usage of the wireless network to estimate the
distances. Our paper assumes simpler robots without such capabilities.

The paper [35] applies automated probabilistic formal verification techniques to
robot swarms, in order to assess whether swarms will indeed behave as required.
The example presented in the paper is a foraging robot scenario, which is similar

19

to the task handled in the current thesis, although the methods applied are widely
different.

The paper [36] proposes a novel motion control method: magnitude-dependent
motion control (MDMC). Similarly to the current thesis the authors focus on
simple robots that lack the capability to detect the orientation of their neighbors.
However, the task of the robots in the paper – flocking together by keeping a
certain distance from its neighbors - is very different from the task we consider
in the thesis.

The paper [37] proposes a sweep coverage formulation for a multi-agent system
to cover a region with uncertain workload density, and provides a decentralized
coverage algorithm based on the formulation. To achieve the coverage, the
covered region is divided into a finite number of stripes, and an algorithm is
proposed by incorporating two operations on stripes: workload partition and
sweeping. The paper presents a theoretical analysis of the upper bound of
coverage time spent more than the optimal time. In our thesis we gain a similar
comparative benchmark by simulating a near-ideal coverage run.

The paper [38] presents a distributed control strategy, enabling agents to converge
onto and travel along a consensually selected curve among a class of closed planar
curves. Individual agents identify the number of neighbors within a finite circular
sensing range and obtain information from their neighbors through local
communication. Again, the work differs from our thesis by having a different
goal: while in our work it is advantageous for robots to spread out, the focus of
the paper is to follow a common path.

The paper [39] presents and investigates Darwinian Particle Swarm Optimization
(DPSO): an evolutionary algorithm using natural selection to enhance the ability
to escape from local optima. The goal of the paper is similar to one of the
assumptions or subgoals of our thesis: decreasing the amount of required
information exchange among robots. The paper presents a stability analysis of the
RDPSO.

The paper [40] investigates a swarm of robots with similar capabilities to ours
and with similar fundamental problems: inexact odometry, both in the sense of
the travel distance and turning angle. However, while one of our main methods
is to spread the robots, the task considered in the paper is the opposite: gathering
robots together.

The paper [41] investigates coordination principles inspired by the behaviour of
honeybees and ants for coordination purposes in multi-robot systems. While the
swarm robotics approach with limited resources is similar to ours, the paper does
not give concrete simulation or real-life experiments, but rather proposes possible
approaches using stigmergy, somewhat similar to the approaches used in our
thesis.

In the paper [42] the authors generalize the control law based on minimization of
the coverage functional to such non-Euclidean spaces punctured by obstacles.

20

They propose a practical discrete implementation based on standard graph
search-based algorithms and demonstrate the applicability of the proposed
algorithm by solving efficient coverage problems on a sphere and a torus with
obstacles, and exploration problems in non-convex indoor environments.
Concretely, they consider exploration and coverage of an office environment by
a team of four robots. An important focus is flexibility of the framework with
respect to incorporating human inputs to guide exploration. No comparisons with
other approaches or investigations of swarms with different sizes are presented.
Differently from the assumptions in our thesis, the robots are equipped with
onboard range sensors and can localize themselves in a global coordinate frame.

The paper [43] investigates decision-making strategy to solve the best-of-n
decision problem in a swarm of robots. This problem requires the swarm to
establish a collective agreement on the highest-valued option among a finite set
of alternatives. A certain similarity to our thesis could be seen in a question of
which marker to reach or which room to enter next. However, in the case of our
thesis the main complexity lies in actual navigation, not so much in choosing the
next target.

The papers [44] and [45] analyze methods for patrolling and surveillance in an
environment with a distributed swarm of robots with limited capabilities. The
focus is on structured exploration of unknown spaces with multi-robot systems,
using triangulation that is constructed in a distributed fashion and guarantees
good local navigation properties. Similarly to our thesis, the sensors and robots
have very limited capabilities. However, the papers assume the use of large set of
infra-red beacons and a beacon sensing capability from the robots, somewhat
similar to our rfid tags, but a certain ability to sense distance and direction,
differently from ours. The authors of the papers claim that experimental results
with real robots are very similar to the results obtained by simulation. It is
interesting to note that the effects of increasing the swarm size indicated in the
papers are similar to our results.

The paper [46] considers a complicated superset of the tasks considered in our
paper: creating an integrated 3D-view of the environment using camera-equipped
robots. Irobots equipped with a camera, Kinect and a Raspberry Pi are used as a
test platform.

The paper [47] presents a neural dynamics for complete area coverage navigation
by multiple robots. A bioinspired neural network is designed to model the
workspace and guide a swarm of robots for the coverage mission. The same
platform as used in the thesis – Irobot Roomba – is used for simulation and
testing, with a complex added sensor system including ultrasonic sensors and a
Microsoft Kinect sensor. Unexpectedly, the authors report that two robots cover
the area significantly faster than a single robot; no extensive experiments with
multi-room environments or a large swarm are reported.

21

2 ROBOT PLATFORM
The current chapter presents an overview of the robot platform. The author was
a part of the team designing and programming the robot and contributed
significantly to the knowledge representation and communication tasks. The main
pure research contribution of the author will be presented in the following
chapters “Area coverage with a swarm” and “Testing results”.

The results presented in the current chapter have been published in the papers A
and B in the appendix.

The concept of the robot architecture has stayed the same through all the
published articles: it is based on the layered multi-agent system. Agents are
implemented as continuously running processes. The entire platform is divided
into three layers:

 The sensor-actuator layer responsible for communication robots control
hardware.

 The control layer is a constantly running dispatcher process responsible
for executing behavioral tasks. Behaviors in our context are small
binaries fulfilling several smaller tasks.

 The knowledge layer conducts reasoning – derives new information from
gathered data also communicating with other robots via RFID tags
(passive communication) or optionally via central server (active
communication).

The centre of the architecture is a shared memory RDF-inspired database. Similar
approaches can be found in low latency robot control architectures performing
well without a real time operating system. Agent communication is implemented
by using the memory database. Each agent can access all the data inserted to the
database. This kind of approach is known as a classical blackboard model [48].

The in-memory database serves three basic purposes:

 A postbox between different process agents including external world
communication.

 A fast and relatively simple in memory database implemented as circular
buffer.

 A deductive database, generating new facts based on the rule language.

2.1. Memory database

The entire robot platform runs on the Gumstix computer which is planted to the
Roomba robot. The memory database can be used by all agents running on a
robot. The database itself is not a process: it is implemented as a C library which
can be used through the public API, providing read, write and search
functionality. Data is read and stored in the shared memory.

Data model consists of one single public table with an RDFm structure. Inside
the database there is an additional table for storing unique strings, pointed to from

22

the public table. Strings in the memory database are immutable. Whenever a
string is changed in the main table, a new item is created to the string table and
pointed to it. However, if such a row already exists, then the pointer will be
addressed to already existing value.

All rows are organized as a circular list. The last element will be removed from
the list if the size limit is reached. Exceptions are made for the critical data items
– so called flagged rows – which are kept in the database until they are released
by the agent.

The locking system for the memory database is row based and implemented by
using semaphores. When a row is being written it is hidden for all the concurrent
threads. Reading and search functionality does not lock anything.

The hardware setup with the Gumstix computer takes about 0.14 milliseconds to
write one row. Looping over 2000 rows needs approximately 4.8 milliseconds of
time: these performance numbers are acceptable for our needs.

The memory database is used as a postbox between different agents running
inside the robot. Rows created by one agent can be addressed to another by using
name as addressee. During runtime an agent will look for rows with its name,
process them and then remove or reassign them.

2.2. Data model and languages

The common data model for communication between different counterparties is
based on a RDF triplets. The current architecture has extended RDF triplets with
metadata fields which we call RDFm.

The common data model and the data model in RFID tags has been published in
the paper A in the appendix.

The main parts which have most effect to the robot behavior can be divided to
the following groups:

 Sensors and control software.
 Internal memory database contents.
 RFID tags read.
 Binary executables together with data / rule files from server.

The server collects data from all the robots and affects their behavior by updating
the knowledge of robots. Data sent back to the robots can consist of some new
informational units to improve the behavior or uploading new binaries and rule
files to modify the objective. Robots can acquire new instructions or information
by reading encountered RFID tags during their movement. Data from sensors
generates yet another set of information for the control software. All these layers
must present their data in a unified way to understand each other, resulting in a
use of the following set of languages for the robot platform:

 RDFm encoding in RFID tags.

23

 Our specialized rule language for deriving new information based on the
data in memory database.

 Both CSV-based syntax and an XML-based RDF syntax for data
exchange between robots and the central server or external systems.

While choosing the languages we had to take into account the different key
factors of the mediums: mostly storage space and communication speed. For
example, RFID chips contain very little memory, which requires space efficient
encoding. Also, the transfer rate cannot be compared with WIFI. On the other
hand, communication between the servers does not necessarily require space
efficiency, resulting in the use of self-descriptive XML-based standards for better
understanding.

The RDFm data model itself is inspired by RDF triplets which we have extended
resulting in so-called RDFm consisting of three different groups of data fields:

 RDF triple data fields
 Contextual metadata fields
 Automatically generated fields

Standard RDF triples have the following data fields:

 Subject: id of whatever has the property.
 Property: name of the property of the subject.
 Value: value of the property

The value field has an associated type, indicating the way to interpret the value.
Observe that the property field may determinate the suitable or expected type, but
this not always the case.

The second set of fields in the RDFm data model contains contextual metadata
fields:

 Date/time: when this fact held: in the most cases same as the time of
storing the field data.

 Source: identifies the origin of the data: RFID code, person id who added
the data, other robot id, agent name, etc.

 Context: in most cases identifies the addressee or data group, but can also
indicate the succession of robot commands.

Program units aka agents can enter their own contextual values to the memory
database. Otherwise the default values - current time, current robot id, empty
context - are used.

The third set of fields in the RDFm data model contains metadata fields which
are generated automatically by the memory database during data insertion:

 Id: unique number for data row.
 Timestamp: date / time of the storage.

24

Automatically generated fields are the strictest set of fields: they cannot be
manipulated by the agents and are not available in the other data languages. Their
purpose is to guarantee efficient and convenient data management and they are
used by the reasoner and dispatcher processes.

Instead of using contextual and metadata fields we could have created the data
model using standard RDF triples to store the same information. However, this
would have been memory consuming and inefficient, especially for the RFID
chips, but also for the memory database.

2.3. Data format in RFID tags

Our setup uses RFID tags for external object/location recognition, asynchronous
messaging between robots and for location specific messages/instructions from
humans. Tags can be divided into two main groups – cheaper ones with only an
id value on the chip and more expensive tags with a small internal memory.

While analysing the coverage task, simple tags with only the id values on the chip
can be used as beacons for detecting visited points. The tags with internal memory
can be used for marking objects, giving warnings about dangers on the field or
instructions where to drive next. Such tags behave like information carrying
graffiti distributed all around the working environment. Both human operators
and robots are allowed to write information to the tags with internal memory.

Different sources tend to write different types of data. Humans will usually
provide static or passive types of information, while robots store often-changing
data. Within the environment setup phase a human users are expected to write
information for:

 coordinating the robots – “this tag has coordinates X and Y”
 giving idea about surroundings – “this tag is located on a chair”
 guiding the robot – “there is a tag at direction R at 5 meters”
 warning about dangers – “keep away from here”

The robots are expected to write information about the current situation on the
field:

 Informing what has happened in current location, like “robot N brushed
here for 10 minutes on 10.06.2007 at 15:10”.

 Leaving information about its further plans, like “robot N left this place
and moved towards the living room”

Data on the RFID tags must be compact and easily understandable for all the
interested counterparties. External applications, robot software and agents outside
the roboswarm must have a unified understanding of the encoding to read and
write data to tags. Examples provided beforehand are human readable
representations of the RFID contents and are not in any way memory efficient.
All data units written to the tags are essentially data rows with several predefined
fields which can be of a type string, integer or float. The RFID database resembles
the memory database used inside the robot computer – older values are pushed

25

out by the newer items. Rows with the context value of “static” on the RFID
memory database are considered as flagged items and are preserved during
removal process. Data from the tag is read, written or deleted one row at a time.
Updating is allowed only for specific fields – on the value field, the timestamp
field and the source field.

 Table 2.1 Graphical representation of the RFID memory

Data rows with the static context are inserted by humans during the setup of the
environment. Messages with the “work” context value are written during problem
solving by the swarm members to improve the fulfillment of the tasks at hand.

Similarly to the robot memory, a global table for strings is kept separately and
only the codes are used in place of the strings. Encoding the values is performed
by using the string table on a robots memory database. During startup the global
string information is propagated throughout the roboswarm, providing same data
to each robot to have common understanding of the encoded values. This
approach divides data field contents into the direct/primitive values like integers,
RFID chip ids or indirect values like strings. Direct values are being written to
the tag as-is. Long string values are replaced with the corresponding code from
the global string table. We are allocating 2 bytes of memory for the string table
identifier.

RFID tags always have a built-in unique id. The size of the id may vary,
depending of the manufacturer and chip type. However there are number of
widely known standards for id encoding and majority of the tags are expected to
follow these standards. Our solution uses direct 96-bit EPC3’s for identifying the
RFIDs. It is very common for the tag to know information about the location or
the object that it is being glued on. Keeping in mind the small amount of memory
available we will be using value “me” to refer itself in the data row instead of the
real EPC value.

2.4. Rule based control system

The robot control in our architecture has been divided between several agents
getting the instructions from the memory database. The entire control mechanism
can be divided into two major parts – the main framework with built in agents
and user defined applications which can be executed via the rules. All data –
sensor readings, decisions, reports – will be available to each party via the
memory database.

3 An Electronic Product Code (EPC) is a universal identifier that gives a unique identity to a specific
physical object.

subject property Value source context
me inRoom Kitchen human static
kitchen hasPriority 7 human static
kitchen dutyStatus cleaingInProgess robot3 work
robot2 wentInDirection 270 robot2 work

26

The rule based control system has been built around the memory database and is
tightly coupled with the main data processing mechanism: the prover. Based on
the existing user defined rule files and data located in the memory database, the
prover will regularly derive new facts. Newly generated instructions will become
inputs for the other agents and user defined applications controlling the robot.

Based on the process lifecycle the components can be divided into two groups –
ones that work as an endless loop and others that are being executed only on
demand. The prover together with the memory database, the communication
process, the low level hardware access software (sensor agents, actuator process)
and the dispatcher run all the time. The built-in and user-defined applications
which do not have to be running continuously, are executed via the dispatcher
process.

Problem solving algorithms can be divided into modules and rule sets.
Reasonable balance should be kept between the logic implanted into the modules
and rule sets size. Trying to create simpler rule files, the series of low level
commands are gathered together into modules which are meant to perform atomic
tasks. For example, a simple module (binary executable) can play a sound,
calculate an average or achieve a complex goal, like performing a localization
procedure when encountering an RFID tag.

Rules have the role of linking together binary sequences and making decisions
during the runtime. For example: agent A stores the fact B into the memory
database. The prover derives (according to the current rule set) the new fact C
from the fact B, where C is a command for dispatcher to start the agent D. When
the dispatcher process sees the newly derived fact C in the memory database, it
executes the demanded agent D binary, which in turn can change the contents of
the database.

The rule based control system and the rule language has been published in the
paper B in the appendix.

2.5. Rule engine and rule language

The entire robot system is controlled via the memory database where all the
obtained facts, derived facts and commands to execute are inserted. Rules are
written in a prolog-like syntax and stored in the local file system. Rule files can
be stored to the specific robot manually or propagated throughout the swarm via
the central server. New facts are generated by the rule engine integrated into the
robot architecture as a core process. The rule engine work cycle starts with
reading the rule file from the file system. The second step is applying the rules to
the up-to-date facts in the memory database and inserting newly derived facts into
the memory database. The rule engine cannot be used directly by any agent in the
robot architecture: entire communication is performed by inserting facts to the
memory database and reading the output afterwards.

27

In other words, the goal of the rule engine is not to answer queries, but to
automatically derive new facts based on the data inserted to the memory database
by other processes. The rules set must be consistent and should not contain too
many or too complex rules. As a rule engine we are using a special modification
of the Gandalf [49] first order resolution-based theorem prover. The rule engine
process is being executed automatically after each pre-determined interval of
time, typically one second. We call the execution of the prover and one derivation
cycle a “derivation session”. Using a relatively simple set of rules we are able to
keep the derivation session duration under one second: during this time the rule
engine will load the rule set from file system and perform all possible derivations
stemming from the facts added to the memory database after the last run.

The rule system has two main goals:

 Derive generalizations (like chair is furniture) from rules
 Derive commands depending of the situation

For example, if we have a rule

attachedTo (X, furniture) :- attachedTo (X, chair).

and the memory database contains the facts shown in Table 2.2 Initial data in
memory database

 Table 2.2 Initial data in memory database

then the rule body attachedTo (X,chair) will match the row in the memory
database and during the derivation session rule engine will generate the new fact
and insert it to the memory database as shown in Table 2.3 Fact generated by the
derivation process

 Table 2.3 Fact generated by the derivation process

All the words in the rules starting with the uppercase letter are variables. In our
example here X is a variable.

The following example demonstrates a simple session of rule set usage.

handleTask (me, Task) :-

 state (me, stateIdle), receivedTask (N, Task), myNameIs (me, N).

state (me, stateWorking) :- handleTask (me, T).

startMode (me, cleaningMode) :- handleTask (me, clean).

startMode (me, patrollingMode) :- handleTask (me, patrol).

state (me, stateIdle) :- state (me, stateWorking), status (currentTask, finished).

subject property value source context
tag4 attachedTo chair RFID null

subject property value source context
tag4 attachedTo furniture wGandalf null

28

 Table 2.4 The rule system startup dataset in memory database

Based on the rule set the engine will automatically derive and add the facts in
Table 2.5 Facts generated based on the startup dataset into the memory database
during the derivation session.

Table 2.5 Facts generated based on the startup dataset

When a cleaning action is finished and the process adds the fact described in
Table 2.6 Fact generated after finishing cleaning process to the database.

Table 2.6 Fact generated after finishing cleaning process

The rule system will derive and insert the fact described in Table 2.7 Fact
generated during derivation session after cleaning is finished into the memory
database during the next derivation session.

Table 2.7 Fact generated during derivation session after cleaning is finished

The rule engine uses both the publicly available main memory database and a
temporary storage. Temporary storage holds non-final facts and is being cleaned
up after each derivation session. During the derivation process a large set of new
facts and clauses (temporary rules) are derived. Final facts without variables
(ground unit clauses), not containing nested terms and having a suitable number
of arguments are stored in the shared memory database and are available to all
other processes in the robot.

A derivation session starts with reading and parsing the rule file from the local
file system and adding parsed rules and facts into the temporary space.
Continuous re-loading makes it possible to update the contents of the rule file on
the fly. We employ the widely used discrimination tree index for the unit
subsumption and unit deletion. Only the temporary area, not the facts in the
shared memory database are kept in the index. The engine uses a version of a set-
of-support binary resolution with common optimizations like subsumption and
tautology elimination. See Robinson and Voronkov (2001) [50] for the common
algorithms employed in first-order automated reasoners.

Re-derivation of facts which have been already derived in the last session has to
be avoided, otherwise the reasoner would produce facts causing the robot to do
the same things repeatedly. Hence we have developed a timestamp-oriented

subject property value source Context
me state stateIdle init wGandalf
me myNameIs robot3 init wGandalf
robot3 receivedTask clean init wGandalf

 subject property value source context
me handleTask clean wGandalf null
me startMode cleaningMode wGandalf null

subject property value source context
 currentTask status finished cleaningAgent wGandalf

subject property value source context
me state stateIdle wGandalf null

29

special version of the set of support algorithm for rule engine, which avoids
redoing the same derivations in the next session. This has an added effect of
keeping the amount of derived facts during one derivation session down even for
relatively large rule sets.

2.6. Behaviors and rule language

Behaviors are a collection of commands gathered into one group which can be
executed with a single command from the rules side. Each behavior is
implemented as a small binary program written in C language. It is built from
atomic commands or calls to other binaries in order to perform complex
operation. During implementation of the binary we should remember that several
instances of binaries could run at same time.

For example, let us have the following rule set:

behavior (me, “monitorObstacles”) :- state (me, stateInitial).

behavior (me, “goAhead 200”) :-

 state (me, stateCanMove), obstacle (me, nothing).

behavior (me, “handleFailState”) :-

 result (solveObstacle, fail), state (me, stateDriveAround).

Where

 behavior is a special name, indicating that the fact is the command to
launch the given binary.

 monitorObstacles is a binary program for monitoring whether any
obstacles are getting in the robots path. If there should be an obstacle in
front of the robot, the obstacle (me, front) fact will be added into the
memory database.

 goAhead is a binary program that makes the robot to move forward or
backward with the speed stated as an argument to the command. For the
current example the translational velocity is 200 mm/s and angular
velocity is 0.

 handleFailState is a binary program that is executed in critical situations:
it will stop robot movement and sensors to save power and will
communicate the information of the failure situation to other robots or to
the central server.

 solveObstacle – a binary program that tries to find a way to get past the
obstacle that has gotten in way of the robot.

Binary execution is being handled by the process we call dispatcher. In order to
execute a binary at the desired time the proper command has to be inserted into
the memory database.

30

Table 2.8 Dispatcher execution command fact describes an example of the
command row which makes the dispatcher to execute a binary.

Table 2.8 Dispatcher execution command fact

where command is a string “behaviorName arg1 … argN”.

Timing will become critical when implementing the robot control application on
top of the prover and a relatively large set of behaviors. The time elapsed between
the point of giving the command and the actual execution varies greatly
depending of the current contents of the memory database, the size and
complexity of the rule file, the number of processes running in the system, the
length of the reaction chain and other factors. However, in our test cases the
response times have proved to be acceptable.

Based on our testing, let us consider the following example where by cooperation
between the prover, the dispatcher and two behaviors the robot has to avoid
colliding into the obstacle. Typically it takes about 400ms from the moment when
one behavior (currently monitorObstacles) discovers an obstacle to the point
where the prover inserts a command into the memory database to launch another
behavior. After about 20ms has passed the dispatcher has received the command
and is ready to start the given behavior. After additional 100ms the second
behavior (solveObstacle) takes over the robot control and tries to maneuver the
robot past the obstacle. High-level decision making can safely rely on the given
architectural scheme. However life-critical emergency responses like avoiding
robot falling down the stairs after the cliff sensor detects danger should be
implemented into the hardware or handled by the low-level software agents.

2.7. Robot communication with the server

Robots having the wireless network capability can use the robot-server
centralized communication and robot-robot ad hoc communication when no
WIFI access-points are available. A single transfer session consists of two steps:
first the robot sends its data to the server and then downloads new information
addressed to it from the server. Communication is being handled by the separate
process on the robot: it sends all the new data items from the memory database
to the server. Robots have been configured to execute data transfer with a one
second interval. On the server side the data received from each robot is stored
inside the postgresql [51] database for further processing. For example, suppose
data received from robot4 contains information addressed to the robot9. When
the robot9 initiates data transfer, the server has to gather all the facts for robot9,
including the ones arrived from robot4 and send them out.

The server replies to each uploading act with the dataset gathered for this
particular robot, accumulated since the last transfer session. Software agents on
the server side cannot directly send any data or commands to robots: everything
is communicated via the postgresql database. The special communication agent

subject property value source context
me behavior command wGandalf dispatcher

31

handles the data transfer between the server and robot. Items received from the
server will be stored directly to the robot memory database.

Humans can monitor and send commands to the swarm or a single robot through
the dedicated user interface built on the server. Data will flow through several
processes on the server side and will finally be transferred to the robots via the
communication agent.

The server has an additional swarm coordinating role used in some applications.
For example, the robot swarm can be used to find a certain object in an
environment. After a user gives the task, the server chooses the suitable group of
robots in a swarm and communicates the id of RFID to the selected robots.
Fulfillment of the task begins, robots spread out in the environment and start
looking for the specified tag. As soon as the necessary RFID is being found the
robot who discovered it, reports to the server. The task is now considered
completed, the user is being notified and all the other robots selected for the job
are notified that tag has been found and told to stop.

Communication between the robot and the server is being handled using the CSV4
data format and sent via the http POST. First row of the data bundle is the robot
id where the data is sent from. All the following rows are the CSV representation
of the memory database contents. The CSV protocol is used for both directions:
sending robot data from to the server postgresql database and vice versa,
receiving data from the server side.

2.8. Summary

In this chapter we have presented a high level overview of the architecture and
the design of the entire system and its components. All the components
communicate via the in-memory database described in the section 2.1 “Memory
database”. Data structures used for the robot control and guidance are described
in the sections 2.2 “Data model and languages” and 2.3 “Data format in RFID
tags”. Moving the robot and making it to perform tasks is achieved using the
commands derived from the rules. These are described in a rule language and
enable the rule engine to infer the specific commands and facts. The rules and the
rule language are explained in the sections 2.4 “Rule based control system” and
2.5 “Rule engine and rule language”. We introduce small programs called
behaviours, similar to the simple commands but performing more complex tasks:
we present these in the section 2.6. “Behaviors and rule language”. Robots can
communicate and share their knowledge via the central server which is explained
in the section 2.7. “Robot communication with the server”.

4 comma-separated values

32

3 AREA COVERAGE WITH A SWARM
This and the following chapter contain the main research contribution of the
thesis.

Our task for the robot swarm was to move around the closed two-dimensional
map and to cover it as quickly as possible. The algorithms are mostly introduced
in the last two papers of the author (papers C and D in the appendix) with an
addition of some elements in the current thesis. Task fulfillment is being
measured by the number of location markers (tags) found; the goal is to find a
certain percentage of all the location markers in the environment. We use the
RFID tags as experimented with in the Roboswarm project. However, the same
algorithms are applicable to other types of location markers: for example,
locations recognized by an on-board camera as used in newer iRobot Roombas.
Different map sizes and tag densities were used during the testing. Several
algorithms were created, run and compared on the simulated robot.

Our robot cannot use path planning or divide the area into cells due to the very
limited knowledge of its position and low odometry precision. Path planning
would be hard to achieve due to the underlying robots low precision odometry
which makes it hard to navigate to exact location at a longer distance. Dividing a
map into small cells and moving between them is not possible due to the fact that
we have no knowledge about the map layout where the swarm is operating.

However, orientation of the robot can be approximately determined in a situation
when the robot finds two or more RFID tags during a straight line drive. From
there, the position could be calculated from odometry values, but while the robot
continues driving, precision is quickly lost.

Therefore, our algorithms do not require the knowledge of the robot orientation
or the location of the robot. Some of our algorithms assume limited knowledge
of the environment: the locations of tags. The assumption that we do not have a
map of the area is useful in the situations where the room layouts change often,
like a modern office, hospital environments, etc.

We have developed four separate algorithms taking advantage of different ways
to find tags inside the environment and requiring various level of input data at the
initialization point. In the following we will use the names “random”, “history
based”, “map aware” and “extended map aware” for these four algorithms.

First, the “random” algorithm does not require any knowledge of the surrounding
environment: the robots just drive around the map, bouncing against the walls,
sometimes finding the tags. Importantly, the turning angle after bumping into an
obstacle plays noticeable role in the performance and will be covered later.

The second, “history based” algorithm remembers encountered tag sequences and
tries to use them to change its course when running into the same tag sequence
afterwards. The initiative for this algorithm originates from the idea to find simple
and low cost ways to improve the performance of the random walk: this turns out

33

to be a good starting point (as by [52]) in the cases where sophisticated solutions
exerting FastSLAM (e.g. [53]) are not applicable due to the hardware constraints.
The random algorithm moving principles are used as the base and are put into use
when no help can be gained from the knowledge of travelling history.

Third, the “map aware” algorithm has a higher level of input data at initialization
point: it knows the coordinates of all the tags located around the environment.
The positions of walls, doors and obstacles are unknown. The main goal is to
navigate to the nearest unvisited tag, which can be done only in occasions where
the robot has seen two or more tags during a straight line move. Again, the default
driving principle is based on the random algorithm and is enabled when no tags
have been found and the robot does not know its orientation.

Fourth, the “extended map aware” algorithm knows everything what the regular
map aware algorithm does and has additional knowledge and special handling for
the door tags. These RFIDs are located exactly at the doorstep and have been
specially marked.

The Table 3.1 Summary of data usage by each algorithm summarizes the data
usage for algorithms.

Table 3.1 Summary of data usage by each algorithm

Note: the extended map aware algorithm can differentiate between tags on doors
and all other tags.

The Figure 3.1 Inheritance of the properties of algorithms. illustrates the re-use
of the properties of algorithms and the behaviors of more complex algorithms
extending the simpler algorithms.

algorithm locations of tags
remembers
found tags

remembers
found sequences

random X
history based X X
map aware X X

map aware ext. XX X

34

Figure 3.1 Inheritance of the properties of algorithms.

Each tag placed into the environment holds a minimal set of data needed for the
robot navigation by the map-aware algorithms:

 x, y coordinates of the RFID tag
 RFID tag id, which has to be unique within the environment
 room id or if it is a doorstep tag, then the special value indicating it

3.1. The simulator

For architectural design and rule engine testing we have been experimenting with
real RFID reader equipped Roomba robots [54]. However using real robots for
testing and developing control algorithms is time consuming and can be heavily
affected by external variables. Physical robots require a person to be located in
the development center, batteries need to be recharged regularly and switching
the environment would mean reorganizing the entire test area. For these reasons
the decision was made to use simulations for control algorithm development.
There are various simulators available, but due to the need for the exact and full
control over the simulated robots we have developed a custom simulator. Our
first simulator was developed using the Panda3D [55] gaming engine using
Python programming language which eventually turned out to be too resource
demanding. Running multiple instances of the simulator in one machine was
almost impossible. Clearly there was a need for lighter solution: hence the
simulator was rewritten to Java using the JGame 2D [56] gaming engine. In the
same development machine ten or more instances of the simulator can be run
without any performance problems.

35

Testing system setup consists of two applications. One is the graphical engine
that visually moves the robots: an actual simulator. The second application is the
so called algorithm runner where the logic is implemented. The latter one
connects to the simulator using sockets and sends byte commands to the simulator
which then starts to move robots accordingly. Commands are based on the
instruction set from the Roomba robot manual. The reason for using original
commands is to be able to connect the algorithm runner directly to our physical
robot system in the future. All the protocol logic and conversion from integer
values to the actual byte messages is performed by the driver class which also
does a small amount of optimizations. For example, if the robot is told to turn 370
degrees, then the actual robot will never turn 370 degrees, but 10 degrees instead,
as it would waste energy and time to make a pointless full turn.

Several configuration files exist for managing the environment, tag locations and
robots. A map is defined in the environment configuration using plain text where
one letter states the wall and another empty space. Tags with locations are listed
in a separate configuration file where each line describes one RFID: an x
coordinate, y coordinate, tag id and a room name which can have a special value
when the tag located at the doorstep. Each robot has its own configuration file,
which states its turning angles, trace color, log file locations, ports etc.
Additionally there exists a global robot configuration file which describes the
robot placements in the environment as well as the starting coordinates and robot
headings. The default configuration tells robots to drive with a constant speed of
500mm/s for straight line movement. When a robot stops and turns standing still,
then the movement speed is set 200mm/s making the Roomba to perform a full
turn in around 8 seconds. For understanding the approximate room size the empty
tile areas are summed. Tile side is equal to the Roomba robots diameter which is
34 centimeters.

The main features of the simulator:

 Movement logging.
 Automatic screenshots at each test run completion.
 Automatic test repetitions for result averages.
 Tag management with room identification.
 The original Roomba robot communication protocol between the

simulator and the control algorithm.
 Creating test runs with predefined movement data: we use this

functionality to create ideal situations for comparing the results of
different algorithms and to replay previous test runs.

While moving around the simulated environment, each robot leaves behind a
colored trace. After a test run completion it is convenient to get a firsthand
evaluation of the efficiency by looking at the robot traces.

An example of the test run can be seen on the Figure 3.2 Example room setup
for testing. The brick tiles on the figure represent walls and other impassible
terrain. The little antennas around the map represent the RFID tags that are not
yet found.

36

The tags are crossed through when a robot has seen them at least once. The dark
filled circles represent the robot, the little red dots in front of the robot represent
bumpers and the green dots in front of them represent the area where a robot is
able to detect RFID tags. The legends can be seen on Table 3.2 Legend of
simulator items. and Table 3.3 Legend of robot parts.

Figure 3.2 Example room setup for testing (published in paper C)

Table 3.2 Legend of simulator items.

Not found RFID Found RFID

Wall Robot

37

Table 3.3 Legend of robot parts.

3.2. Turning angle

During collision with the obstacle a robot can bump with either the left or right
bumper or hit the barrier at ca 90 degrees, switching on both bumpers. After a
head on impact a robot cannot continue its current path and must change its
direction. Degrees to turn to at this situation are given in the robot configuration.

The turning angle can noticeably affect the robots performance. For finding the
optimal value, tests were executed using a single robot with the turning degree
values from 30 degrees to 120 degrees with a 15 degree step. Each test was run
five times with random, history based and map aware algorithms. Results were
compared and 30 degrees was selected as the most suitable turning angle for a
single bumper (left or right) collision. If both bumpers hit, a random value from
the 75 to 115 degree range is used. At first we experimented with a constant 90
degree turn, but found out that the random value from this range turned out to be
more efficient.

During simulation we do not simulate the battery usage, but for the real world
cases it should be remembered that the bigger the turning angle is the more energy
is consumed to perform the movement.

To illustrate the effect of the turning angle we bring the Table 3.4 Average test
runtimes in seconds by the turning angles of average run times for different angles
(in the single bumper case) and different algorithms, produced by the simulations,
in seconds.

RFID detection area marked with the circle.

Robot bumpers marked with the circle.

Robot body marked with the circle.

38

Table 3.4 Average test runtimes in seconds by the turning angles

angle (degrees) history based random map aware
30 1305 1975 1009
45 1188 3976 3101
60 1703 2016 2200
75 1628 5139 3078
90 4247 5800 1974
105 3714 5715 1915
120 2317 1975 2882

Looking at the experimental running times at Table 3.4 Average test runtimes in
seconds by the turning angles we see that the 30 degree angle which was chosen
for the overall testing is not the best angle for all cases. However, the first criteria
for choosing the turning angle is that it must be the same for all algorithms,
otherwise the preconditions would differ and the results are not comparable.
Different values would result in unequal time spent for turning the robot and –
for the real robot case – in a different power consumption during the experiments.
For the random and map aware algorithms the 30 degree turning angle is the best
angle. The history based algorithm has the best performance with a 45 degree
angle and the second best with the 30 degree turning angle. Since the performance
difference for the 30 degree angle is less than 10%, this led us to a decision to use
the 30 degree turning angle also for the history based algorithm. Notice that in
real robots the 30 degree angle would also use less energy for turning and thus
conserve battery.

3.3. Success conditions for test runs

Finding each tag in an environment can take a remarkable amount of time. For
example, a robot may find 18 tags out of the total 20 tags within a reasonable
amount of time and then search for the last 2 RFIDs almost endlessly. Testing has
showed that trying to search all the tags makes the test results vary a lot. We have
implemented a configuration parameter – the so called cutoff value - which marks
the percentage at which point the number of found tags will make the coverage
task to be considered completed.

During the implementation of this parameter we made several test runs to find
out the optimal cutoff value. The best value proved to be 85%. For example, if
during the test run a robot has found 85 unique tags out of the 100 tags located
on the environment then we consider the task to be completed. Various test
experiments showed that all the algorithms are more or less impacted by the
random factor and in some cases finding the last 15% can even take more time
than finding the first 85% of the tags.

39

3.4. The Random algorithm

The random algorithm has the least amount of information known at the startup
and during the entire problem solving time. During the initialization it will be
given knowledge about the total amount of tags located in the environment.
Encountering a tag makes the algorithm to store the tag id. For the random
algorithm that is all the data needed for covering the area. For finding RFIDs in
the area, the random algorithm employs a simple principle: the robot will drive
around the environment and when it bumps into an obstacle the robot will back
up a bit and then change its direction and move forward again.

For every test run the robot starts from the same place in the environment and
drives at a straight line until it hits an obstacle. A robot can collide into an obstacle
under some angle or directly head on. Hitting the wall or another robot under an
angle makes the left or right bumper toggle, giving a signal of the collision.

A collision with a single causes the robot to back by some centimeters and then
turn the robot to an opposite direction of the toggled bumper. For example, if the
left bumper gives a signal, we turn the robot to the right. As described before, the
degree of the turn has a significant effect on the room coverage efficiency [57]:
hence we turn by 30 degrees which has proved to be the optimal for most cases.

A head on collision toggles both the left and right bumper: in such case the
algorithm makes the robot back up and then turn at a random angle between 75
and 115 degrees. After finding the needed amount of tags in the environment,
robot will stop and the simulator will start the next run.

3.5. The history based algorithm

This algorithm uses the previously described random algorithm as a base and
extends it with additional logic. The main idea of this algorithm is to stop repeating
the already passed paths and scatter the robots even more around the environment.

After seeing some tag sequence for the first time, the robot drives straight until it
bumps with an obstacle and then makes a turn according to the principles from the
random algorithm. The robot will store this information: for example, it has
encountered 2 tags and finally turned 30 degrees. Seeing the same sequence of tags
for the second time, the robot will immediately turn 30 plus a small delta of 15
degrees. Notice that the algorithm will not wait for the bump to occur: the turn will
be executed right after the sequence is detected.

For sequence matching two or more tags have to be found during the single straight
line move. There can be situations when the first robot movement line has a small
offset from the second line and more tags are found in this case. Our algorithm takes
these situations into account: when at the first move two tags A and B were found
and during the second move the robot finds tags A, F, T and B, it will still detect a
match with the sequence of A and B and will make the turn right after encountering
the tag B. Encountering the tag sequence for the third time, the robot will turn 60
degrees based on the example, because the very last turn was 45 degrees.

40

The following is an example record for a single move:

StraightLineMove {

 distanceMoved: 1200mm, turnAtTheEnd: 30, foundTags: [

 tag {id: A, foundAtDistance: 350},

 tag {id: B, foundAtDistance: 550}]

}

For each straight line move we store one such record, containing distance passed, the
list of tags found during the drive and the degree turned at the end. Associated with
the tag is the distance passed from the beginning of the current move.

During the moves where only a single tag was found the algorithm tries to scatter the
movement by trying to detect if a similar movement has been recorded in the past,
right after the robot has collided into an obstacle. To do that, the algorithm uses the
foundAtDistance value associated with the tag, telling us the tag distance from the
starting point. In case a similar movement has been performed before, the robot will
turn 30 degrees plus the 15 degree delta. If the same situation occurs multiple times,
the delta will be multiplied by the number of occurrences. The robot will never turn
the entire circle because the driver optimizes the turns: for example, if the algorithm
tells the robot to turn 750 degrees, the robot will actually turn only 30 degrees.

Figure 3.3 Figure indicating how the robot turns after finding the same tag sequence
for two times during one test run.

41

3.6. The map aware algorithm

This algorithm requires the list of all tags present in the environment as input.
Such information was not available for the previously described two algorithms.
Similarly to the history-based algorithm it will use the random algorithm as the
default strategy and when encountering two or more tags during a single straight
line move the map aware algorithm will engage. The map aware algorithm knows
all the tag locations on the map along with the room name where the tag is located.
No additional information like the position of the walls, obstacles, the position of
the robot starting points or positions of other swarm robots is provided. However,
there are tags that are marked as door tags in order to help the robot to understand
that it has left or entered the room.

The room id is detected from the first tag found in a room. The door tags will
make the algorithm to reset the room id for the robot. The base configuration
values for the turning angles are the same as used for the random algorithm.

In our simulator the tags contain approximate information about their coordinates
– the tile id - not the exact coordinates. Actual precision would depend on the tile
size, but during our tests the tile size is constant, equal to the size of a square with
the side length being the robot body diameter. It can be argued that there is no
need for higher precision due to the fact that while driving and turning the robot
odometry loses accuracy. Robot estimation of its position is always imprecise.

The knowledge of the tag locations allows the robot to calculate the approximate
new heading towards the closest unvisited tag, assuming the robot knows its
direction and location. The robot is able to detect its position and heading only
when it has found two or more tags in a single straight line move: due to the
imprecise odometry it has no other persistent way to determine its location and
direction.

The map aware algorithm starts to drive the robot around, using the random
movement algorithm until it encounters two or more tags during a single straight
line move. The known locations of these two tags are used to find the direction
to the nearest not yet found tag in the same room. The robot is immediately
stopped, the new heading is calculated and the robot is turned towards the nearest
tag, commencing straight driving.

Due to the imprecise odometry the robot can miss the target tag and eventually
bump into the obstacle: this causes the algorithm to switch to the random mode
until two or more tags are again found during the straight line move.

It takes a lot of time to stop and turn. The map aware algorithm optimizes by
calculating the presumed time to reach the next tag, adding the time spent while
turning and the time spent while driving the between the current tag and tag to go
to. For example, suppose we have two tags: one located 100mm away at a
completely different direction and another 120mm away with almost no required
direction change. Reaching the physically closest tag might require an algorithm
to turn the robot for 150 degrees and then drive 100mm, while the tag located at

42

120mm would require only a 10 degree turn. Based on the time calculation it
would be faster to drive to the tag located 120mm from current location.

Since the robot has no knowledge of its actual location, the distance between two
tags is calculated based on the map description the robot has. Distance is
calculated from one center point of the tag to another center point. RFID reader
does not, in most cases, detect the center point of the tag. Stopping the robot takes
some milliseconds as well. All that causes the loss in accuracy.

The map aware algorithm has no knowledge of the walls and obstacles inside the
room. However, the nearest not yet found tag can be located at the other side of
the wall or obstacle. Failing to reach the needed tag with bumpers giving a signal
and seeing that the passed distance is smaller than the distance to the desired tag
means that there is probably an obstacle on the way of the robot. For this situation
the robot remembers that it encountering a tag sequence XY and wanting to reach
the tag Z caused the collision into an obstacle. The algorithm decreases the
probability of reaching the tag Z. Encountering the same XY tag sequence next
time algorithm looks at the closest not yet found tags, sorted first by the distance
and then by the reaching probability, thus moving the tag Z farther in the
suggestion list. Tags in the suggested list of suitable tags are selected only from
the current room.

Figure 3.4 Figure indicating how the robot plans the move after encountering two or
more tags during one straight line drive.

43

3.7. An extended map aware algorithm

Our latest published article (paper 4) mentions the use of the extended map aware
algorithm as a special variation. In the current thesis we treat it as a separate
algorithm, tested apart from the regular algorithm.

The regular map aware algorithm may accidentally move out of the room before
finding all the tags. The extended map algorithm improves the regular map aware
algorithm by trying to keep the robot inside the room until all the tags for the
current room have been found. In order for this feature to work, the room entry
points / doors must be marked with special tags.

Once the robot has found all the tags in the current room, it will attempt to exit
the room by driving towards the special door marker tags. When encountering
two or more tags during a single straight line drive the robot stops and calculates
the angle to turn towards the closest door tag. Reaching the door tag and having
found all tags in the current room, the robot drives over the door tags and exits.
Otherwise it will make an approximately 180 degree turn and drive back to the room
to search the not yet found tags in the room.

3.8. Strong and weak points of each algorithm

Before looking at the concrete results, we will give a brief overview of the most
important observations for these four algorithms.

The random algorithm gives stable results for each environment, is able to offer
competitive performance and is fairly easy to implement.

The history based algorithm is complicated to implement, can lose track in some
situations and does not give as stable results as the random algorithm. The performance
is similar or slightly better than the random algorithm for some cases. When the robot
does not encounter two or more RFID tags in a row on a straight line move then it is
not possible to use the history collected by the previous moves.

The performance of the map aware algorithm depends heavily on the setup of the
rooms: it may exhibit very good or moderate results. The complexity of implementing
the map aware algorithm is between the two beforementioned algorithms. The good
results are achieved with more accurate navigation as a robot is aware of all the tag
locations on the map. Knowing the coordinates of each tag means that after finding at
least two tags in a row the robot is able to calculate the heading for the next closest tag.
The results are greatly dependent of the room setup: for complex rooms the
performance may turn out to be moderate.

The extended map aware algorithm is optimized for moving between the rooms. It tries
to find all the tags in the room before leaving, otherwise the algorithm behaves as the
regular map aware algorithm. Being able to move efficiently from one room to another
results in a much better performance, but only in a multi-room environment. Basically,
the additional ability to move from one room to another easier resolves some of the
weaker points from the regular map aware algorithm.

44

3.9. Summary

The chapter “area coverage with a swarm” gave an overview of algorithms and the test
methodologies. A custom built simulator was used to mimic the Roomba
communication protocol. It has full control over each part of the testing process, as
described in the section 3.1 “The simulator”. The key configuration parameter – turning
angle – which tells a robot how many degrees it has to turn when bumping into the
obstacle is described in the section 3.2 “Turning angle”. A short overview of the
successful test conditions are given in the section 3.3 “Success conditions for test runs”.
All the coverage algorithms created are described in the sections 3.4 “The Random
algorithm”, 3.5 “The history based algorithm”, 3.6 “The map aware algorithm” and 3.7
“An extended map aware algorithm”. Each algorithm has some features that can
either result in a performance gain or loss in some situations. The section 3.8
“Strong and weak points of each algorithm” gives a brief overview of these features.

4 EXPERIMENTAL RESULTS
Experiments with our algorithms can be divided into two parts. In the first part we
compute the pseudo-optimal results. In the second part we compare the experimental
runs of our four algorithms against the pseudo-optimal results obtained earlier. We
will use the word “experiment” for a larger group of activities and test runs for a
certain investigated algorithm. We will use the word “test” for a set of simulations
with specific parameters, typically run during one experiment.

The experimental results have been published in the paper D in the appendix.

4.1. Configuration and comparison data

The simulator replay function was used to gather the data for more or less optimal
runs that we call pseudo optimal test runs. During these test runs a simulated robot
follows precisely the user-defined, nearly shortest path between the tags. The
outcomes of these tests are used for comparison with the results of the previously
described four algorithms to measure their performance.

Pseudo-optimal tests are being run with a single robot and configurations which
correspond to the real algorithm tests. For the swarm case a presumption is made that
adding the robots to the swarm has a linear effect to the results. For example, if a
single robot is able to find all the needed tags in the environment with 60 seconds,
then we presume that for the pseudo optimal test run 10 robots will find the tags in 6
seconds.

All the tests have been run with the same robot algorithm configurations – a single
bumper turning degree 30 degrees, both bumpers turning degree randomly in a range
of 75 to 115 degrees and a mandatory tag finding percentage 85. The swarm sizes for
all beforementioned algorithms have been from a single robot to fifteen robots. Each
test set for the presented results consists of five test runs. The graphs below indicate
the average times of these five test runs. The total number of tests run for algorithm
development and testing exceeds the 10 000 test runs. In addition to previously
published articles the thesis covers also the testing results for the extended map aware
algorithm.

45

4.2. Testing strategies and simulation areas

There are six groups of experiments, with the results of each group depicted on a
graph presented below. The groups stem from three kinds of rooms:

 The whole area is just a single room without any obstacles.
 The whole area is split into three rooms without any internal obstacles in the

room.
 The whole area is split into seven rooms with one of them being a corridor

connected to all the other rooms.

There are two kinds of initial positions of the robots:

 All the robots start at the (almost) same place.
 The robots start at different places, distributed evenly in the rooms.

Starting from the different places at the beginning of a test run means that robots are
spread around the map. For the next test run the starting positions will be the same:
there is no random shuffling at the beginning of each test. The starting locations and
tag locations are predefined in a configuration file. The following screenshots will
give an overview of how the pseudo-optimal solutions look like when the robot has
to find 85% of tags.

Figure 4.1 A single room pseudo-optimal run, takes 420 seconds.

46

Figure 4.2 3-room pseudo-optimal run, takes 518 seconds.

Figure 4.3 Seven-room pseudo-optimal run, takes 512 seconds.

47

A robot swarm participating in one test run shares the same configuration
parameters and follows the same instructions as others. Scenarios where robots
in the same swarm use different algorithms to solve the task have not been
investigated.

It is important to note that the navigation algorithm of the robot simulates the
random fluctuations of both the robot turning angles, turning times and detecting
tags as they actually occur in the real Roomba cleaning robots.

The following screenshots show the finished state of problem solving of one test
run in a single room with six robots, using the map-aware guidance algorithm and
starting from the same location at the top of the room. The room has 90 tags
randomly laid out as shown on the screenshot. An approximate environment area
where the robot can move in this room is 123 square meters. Observe that some
tags on the environment are not crossed through, meaning they have not been
found: we use the 85% limit for marking the task completed.

Figure 4.4 End position of a test run in a single room.

The following screenshot depicts the final state of a test run of a three-room
environment with a swarm of five robots using the random guidance algorithm.
Robots are distributed into various rooms at the startup. This room contains 90
regular RFID tags and nine specially marked tags at the doorsteps. The special
door tags are used only by the map-aware and extended map-aware algorithms.
An approximate size of the environment is 118 square meters. Observe that two
robots have exited the original room where they started from and the other three
have been staying in the initial room throughout the entire test run.

48

Figure 4.5 End position of a test run in a 3-room space.

4.3. Comparison of the simulation results

The next four graphs depict the results for our algorithms with different swarm
sizes. Each graph depicts one group of experiments as described above and shows
a calculated pseudo-optimal (ideal) run line for the current setup. The vertical
axis indicates the average time of five runs. The horizontal axis indicates the
number of robots in a swarm.

Figure 4.6 A single room with robots starting from one location. Y-axis values are
representing experiment run times in seconds and x-axis shows the number of robots
participating in the experiment.

49

The results presented on the Figure 4.6 above show that the history-based and the
random algorithm perform almost identically: the timing differences between the
runs are random fluctuations. Hence the seemingly useful idea of avoiding paths
already travelled does not translate into clearly measureable gains for any swarm
size. However, it has to be taken into account that - as mentioned before - the
utilization of a history based algorithm is heavily affected by the environment,
the amount of tags and a random factor. A robot just might not encounter already
found tag sequences and be unable to take advantage of the collected information.

The map-aware algorithm constantly shows better performance than the simpler
map-agnostic algorithms. The largest performance gain achieved from the map-
aware algorithm occurs with small swarm sizes (58% of the coverage time of the
random/history based algorithms for the one-robot case) and it shrinks with
greater swarm sizes (68% for a 7-robot swarm). However, it is important to notice
that the benefit of increasing the swarm size is very strong for swarm sizes of up
to seven robots for our environments. Adding robots to larger swarms does not
bring noticeable changes to the results.

The coverage time of the two-robot case is almost twice smaller than for the one-
robot case (regardless of the algorithm), and the coverage time of the four-robot
case is, again, almost twice smaller than for the two-robot case. However, looking
at the graphs last two points 14 and 15, the difference between problem solving
times is insignificant (again, regardless of the algorithm). We could pose a
hypothesis that one of the reasons for diminishing gains is the need to travel to
the far corners and edges from the common starting point: the time it takes is
roughly the same regardless of the swarm size. This leads us to the next
experiment: the same (single) room with the robots starting from various
locations on the environment chosen randomly. The only restriction is that the
robots are placed near the walls and at the startup they head towards the center of
the room.

Figure 4.7 A single room with robots starting from different locations. Y-axis values are
representing experiment run times in seconds and x-axis shows the number of robots
participating in the experiment.

50

According to our test setup and maps the graphs start to go flat after the 7th or
8th robot joins the swarm. Starting from a single location casuses the robots to
consume more time to reach different parts of the map, compared to the situation
where robots are placed all around the map. Theoretically, for our tests with eight
or more robots the resolving times keep decreasing by tiny steps when adding
robots to swarm, until every tile contains a robot. A map fully covered with robots
would be solved in a couple of seconds – the robots must start, rfid readers must
detect the tags and after merging the info of the tags found the test ends.

Looking at the Figure 4.6 we notice that flattening does not occur as quickly as
on the Figure 4.7. For example, consider the swarm size of seven robots. When
the robots start from one location, the random algorithm is able to perform the
task in 108 seconds, the history based algorithm in 115 seconds, the map aware
in 80 seconds and the extended version of the map aware algorithm in 89 seconds.
The pseudo-optimal time for a swarm size of seven robots is 60 seconds.

Looking at the next point of the graph – the swarm size being eight robots - the
result for the random algorithm is 94 seconds, for the history based it is 130
seconds, for the map aware it is 80 seconds and the extended map aware algorithm
manages to solve the task in 74 seconds. The pseudo optimal time is 52 seconds.

We notice that the history based algorithm with 8 robots performed even worse
than it did with seven robots. The reason is that all the algorithms follow some
percentage of time according to the random movement principles. During that
time they are not able to apply their specific logic, basically meaning having not
found two or more tags during straight line drive. Increasing the robot swarm size
from seven to eight robots has shortened the problem solving times up to 20%.
Moving further and looking at the swarm of size 14 robots, the time consumed
by the random algorithm is 60 seconds, the history based algorithm is able to
complete the task in 64 seconds, the map aware in 60 seconds and the extended
map aware in 56 seconds. The pseudo optimal time for a swarm of 14 robots is
30 seconds.

Comparing the results with swarm sizes of seven (Table 4.1 Results represented
in seconds for seven robot swarm experiment with same and various start
locations.) and fourteen (Table 4.3 Results represented in seconds for fourteen
robot swarm experiment with same and various start locations.) tells us that the
random algorithm time has decreased by 80%, the history based algorithm has
decreased by 79.6%, the map aware by 33.3% and the extended map aware by
59%. The pseudo optimal time has changed 50%.

Looking at the same points for Figure 4.7 with robots starting at various locations
in the environment with seven robots, the random algorithm performs the task in
108 seconds, the history based algorithm is able to finish with 110 seconds, the
map aware completes in 76 seconds and the extended map aware in 85 seconds.

51

Moving forward to the results for swarm with the size of eight robots (Table 4.2
Results represented in seconds for eight robot swarm experiment with same and
various start locations.) the random algorithm gets the job done in 99 seconds,
the history based algorithm completes its task in 105 seconds, the map aware is
able to finish in 78 seconds and the extended map aware in 70 seconds. Pseudo
optimal time for the task completion is the same - for seven robot swarm 60
seconds and for eight robot swarm 52 seconds - as it was for the comparisons for
Figure 4.6. Time difference comparing the swarms with sizes of seven and eight
for random algorithm has decreased around 9%. The history based algorithm has
performed about 5% better, the map aware has almost the same result, but still
the performance has gone down and problem solving time has increased by 2.5%.
The extended map aware has been able to solve the problem with eight robots
21% faster than with the seven robot swarm. Pseudo-optimal performance time
has decreased by 14%.

Looking at the resolving times for the swarm with fourteen robots, the random
algorithm solves the problem with 61 seconds, the history based in 59 seconds,
the map aware algorithm in 45 seconds and the extended map aware in 47
seconds.

Looking at the time change percentages against the swarm size change by one
robot it can be seen that in case of a common start location the change in values
is greater than for the configuration where the robots start from various places
around the map.

Importantly, we observe there is no significant time difference for random and
history based algorithms between the results with the same location and varying
location starting placement strategies illustrated on the Figure 4.6 and Figure 4.7.
An exception is a history based algorithm with the swarm size of eight robots,
which is presumably a random fluctuation.

Table 4.1 Results represented in seconds for seven robot swarm experiment with same
and various start locations.

seven robots random history based map aware ext. map aware

same start location 108 115 80 89

various start location 108 110 76 85

 0,00% 4,55% 5,26% 4,71%
Table 4.2 Results represented in seconds for eight robot swarm experiment with same
and various start locations.

eight robots random history based map aware ext. map aware

same start location 94 130 80 74

various start location 99 105 78 70

‐5,05% 23,81% 2,56% 5,71%

52

Table 4.3 Results represented in seconds for fourteen robot swarm experiment with
same and various start locations.

fourteen robots random history based map aware ext. map aware

same start location 60 64 60 54

various start location 61 59 45 47

‐1,64% 8,47% 33,33% 14,89%
Table 4.4 Results represented in seconds for fifteen robot swarm experiment with same
and various start locations.

fifteen robots random history based map aware ext. map aware

same start location 60 56 56 54

various start location 55 54 49 46

9,09% 3,70% 14,29% 17,39%

We see that robots spread very quickly in the same-location scenario and the
initial spreading process has little effect on the overall time for simpler algorithms
or smaller swarm sizes. Quick spreading is made possible by the random
fluctuations of robot behavior as described above. For map aware and extended
map aware the spreading is not that important. Knowing the locations of each tag
and finding a sequence of at least two tags during a single straight line move
directs the robot towards the nearest not yet found tag: this principle causes
spreading.

The next two experiments are conducted in a simple three-room space shown on
the Figure 4.5 End position of a test run in a 3-room space. above. The size of the
space is approximately same and the number of tags is the same as in the previous
one-room experiment, with an exception of nine additional doorstep tags.

The principal complexity of covering a multi-room space stems from the problem
of a robot (or several robots) being stuck in a few rooms and not reaching all the
rooms necessary to obtain the 85% tag coverage condition. In the robot room
coverage literature this problem is typically alleviated by different planning
algorithms. Not so in our simple algorithms: the random and history-based
algorithms are completely unaware of the geometry of the room the robot is in or
the tags located in the room at any given moment.

However, the map-aware algorithm always has the knowledge as to which room
the found tag belongs. It first tries to find all the tags in the room and after this it
attempts to escape the room by driving toward the closest door marking tags.

53

Figure 4.8 A three-room space with robots starting from one location. Y-axis values are
representing experiment run times in seconds and x-axis shows the number of robots
participating in the experiment.

Figure 4.9 A three-room space with robots starting from different locations. Y-axis
values are representing experiment run times in seconds and x-axis shows the number
of robots participating in the experiment.

A single robot is much more affected by the random factor than the entire swarm,
hence it is hard to give a credible comparison for the results of a single robot for
the three room space. As it can be seen from the graphs, one robot with a random
algorithm is able to solve the task for the three room space even faster at one test
run, when compared to the single room testing. However looking at the Figure
4.9 it can be seen that the time for three room space with the random algorithm
has almost doubled. On Figure 4.8 and Figure 4.9 the one robot test runs are
basically the same: with a single robot the various starting locations do not have
an effect. The history based and map aware algorithms have all constantly
increased the task solving times for the three room space. Increasing the swarm
size causes the fluctuating result time for the random algorithm to diminish.
However, for larger swarms the time difference increases: it takes about twice as

54

long to cover the three-room space for the 7-robot swarm when compared to the
one-room space. The reasons for the performance loss are hidden in the
spreading, which is much more complex for environments with several rooms
when compared to one single open space. However, the overall trend is the same:
increasing the size of a robot swarm first results in a rapid drop of the problem
solving time, but after a while it will decrease less and less.

The next experiment is conducted in the same environment as the previous one
with the difference that all the robots are spread out evenly around the map. At
start there is at least one robot in each room, assuming the swarm size has
increased to three robots or more. Increasing the swarm size, we see that the form
of the graph starts to become similar to the one-room case, which is – again – not
unexpected, since there will be at least one robot for each room in the initial
situation. Again, the positive effect of increasing the swarm becomes smaller and
smaller as the robot swarm grows.

Figure 4.10 Random algorithm with 15 robots, starting from different locations in a
seven-room space.

Finally we have chosen the seven-room setup with six small rooms and a corridor.
The map has about 111 square meters of space and there are 100 tags located
around the environment, including the 18 special tags placed on at the doorways.

For this complex environment the key factor for quick coverage times is
spreading robots across all the rooms. Based on the results it is somewhat
surprising that starting from different locations (robots evenly distributed in the
rooms versus all robots together in a corridor) has a relatively small effect on

55

coverage time. It is also worth noting that increasing the size of a swarm has a
significant effect until the amount of robots is equal or larger than the number of
rooms, after which adding new robots has a negligible effect on the coverage
time.

Figure 4.11 Six small rooms with a corridor, robots starting from different locations. Y-
axis values are representing experiment run times in seconds and x-axis shows the
number of robots participating in the experiment.

Figure 4.12 Six small rooms with a corridor, robots starting from one location. Y-axis
values are representing experiment run times in seconds and x-axis shows the number
of robots participating in the experiment.

4.4. Environment versus the swarm size

When we compare all the six graphs presented, it can be clearly seen that the
random factor has an effect on the results. It should be expected that a larger
amount of test runs would smoothen out the random factor in results, yet it
remains a significant aspect for the actual use of the swarm.

While single room graphs look smooth, the graphs for multiple room setups have
several “bumps”. The reason for these fluctuations relies on the navigation issues

56

as robots have to move between rooms and are unable to always pass the
doorways. Our hypothesis for the multi-room spaces is that the main speedups
can be gained by spreading the robots evenly in the rooms, which should be
attainable even by employing the tags (or other landmarks) located at doors only.
It is also possible that it would be sufficient to employ a random algorithm for all
the situations except when the robot is located at the door and should decide
whether to enter the door or not. This hypothesis should be tested in future work.

In order to compare the swarm results for all the three environments described
above we present the graph of averages compiled from all the algorithms. Each
line on the graph represents average results for all the algorithm results merged
together. The graphs representing coverage time as a function from the size of the
swarm S are roughly a*S-0.86 for a single room, b*S-1.09 for the three-room setup
and c*S-1.58 for the seven-room setup, where a, b and c depend on the room size
and robot speed.

Figure 4.13 Averages for all the three algorithms. Y-axis values are representing
experiment run times in seconds and x-axis shows the number of robots participating in
the experiment.

57

4.5. Algorithm performance for very high RFID densities

Figure 4.14 Extreme situation in an experimental room setup with all the available
space covered with tags (published in paper C).

Finally we present a short overview of the experiments with a three room space
which has a very high tag density, up to every single tile being filled with an
RFID tag. Such tests give valuable input for tuning the algorithms.

The first group of tests has been ran with various room setups and randomly
placed tags with a coverage around 15 – 25%.

The greatest impact of dense tag positioning was observed for the history based
and map aware algorithms, as could be predicted. Both of these algorithms make
decisions based on the observed tag sequences, while the random algorithm is
just driving the robot around. We ran all the beforementioned room setups with
multiple test runs. The results indicated rising solving times. One of the reasons
is that a tag will not always be registered when it is in the radio coverage. Also,
for the map aware algorithms the high density causes the robots to turn very often,
thus losing a lot of time turning, not driving. This is caused by the fact that a robot
almost never discovers the tag at its center point and is not able to navigate
precisely due to its weak odometry.

Running our algorithms in rooms completely filled with RFID tags resulted in an
average run time increase up to 50%. The worst cases actually ended with the
time loss of 200% or more, although the proportion of so bad cases was lower
than 5% of all runs.

58

4.6. Summary

In this chapter we have presented an overview of the results of tests and the
environments where they were tested in. The section 4.1 “Configuration and
comparison data” briefly describes the robots turning angle configuration and the
base data on which the results are compared. Algorithms were tested in various
room setups and different swarm distribution strategies. Each test strategy is
described in the section 4.2 “Testing strategies and simulation areas”. Comparisons
of the results of testing are described in the section 4.3 “Comparison of the
simulation results”. Different room setups have a distinct effect on the
performance of our coverage algorithms. The section 4.4 “Environment versus
the swarm size” gives an overview of these effects. Regular tag coverage of the
room is around 20% and all the algorithms have been tested in these conditions.
Since there could also occur irregular situations, the section 4.5 “Algorithm
performance for very high RFID densities” gives an overview of how do the
extreme tag densities affect the performance of our algorithms.

59

CONCLUSIONS
Our main goal was to investigate and develop algorithms using navigational tags
for enhancing the performance of a swarm of robots when precise navigation is
hard to achieve or not feasible.

First, we have designed and presented a knowledge architecture for intelligent
robots operating as a swarm, able to use RFID tags both as landmarks and
communication channels. The architecture is based on using extended RDF
triples for knowledge represenation on all levels: tags, robot knowledge base and
the swarm knowledge base on the server. We have also designed a rule system
for robots, providing reactive control while a robot is in action.

This architecture was implemented for iRobot Roombas extended with RFID
readers and new control software. The demonstrated ability of the real swarm of
physical robots to solve given tasks indicates the feasibility of the architecture.

Second, we have developed and investigated four different, robust coverage
algorithms for swarms of simple robots tasked with cleaning, search or similar
activities inside buildings. In order to run realistic tests we have developed a
simulator closely matching the actual capabilities and behaviour of the real
cleaning robots. The key findings of the experiments are as follows:

 A specific parameter of the robot behaviour - the default turning angle -
makes a significant difference for the performance of all the investigated
algorithms. One of the main reasons is that bigger turns take more time
than smaller turns, thus wasting time which should be spent covering the
room. As shown in the table 3.4, the 30 degree turn is the best or next
best choice for the algorithms experimented with.

 The algorithms knowing the locations of landmarks are consistently
better than the parameter-optimized random algorithm: roughly
estimated 20% faster for small swarms, with significant variations
stemming from room setups and smaller improvements for larger
swarms: see tables 4.1 – 4.4. They are also, on the average, close enough
to the ideal behaviour to be considered as practically sufficient: running
time is roughly 1.2 times of the ideal, although this varies depending on
the room setup and swarm size, see figures 4.6 – 4.12.

 Assuming the tag location reader is inexact, then for rooms with a very
high density of landmark locations it is important to avoid using all the
landmarks for potential optimizations of the search path. The main reason
is misreading the location of closely positioned tags and the time spent
(incorrectly) turning at too many landmarks, thus wasting more time
spent on turning than the optimizations gain. As presented in section 4.5,
in our experiments the time spent in a room with a very high-density tag
cover was roughly 1.5 times the time spent in a “normal” tag density
room.

 As the swarm size and density increases, the performance improvements
gained by better algorithms and more knowledge decrease quickly: in the

60

other words, increasing the size of the swarm dominates the effect of
having better sensors and more intelligent behaviour. This effect can be
seen best on figures 4.6 – 4.12 and as a summary on the figure 4.13. For
example, for our three-room setup increasing the size of the swarm from
one robot to two robots decreases the running time ca two times,
increasing from two robots to seven decreases the time ca four times and
from seven to fourteen ca two times. The coverage time as a function
from the size of the swarm S is roughly b*S-1.09 for the three-room setup,
where b depends on the room size and robot speed. In contrast, the
improvements gained from better algorithms and more knowledge are ca
20%.

For the future work, it would be interesting to consider the swarm algorithms
tuned to the use of the camera module included in the newer cleaning robots, in
contrast to the algorithms focused on finding RFIDs in the environment. While
there are significant similarities between these approaches and we believe that
our key findings still hold, there are also important differences and potential
improvements to be made.

61

REFERENCES
[1] Y. Altshuler Y, A.M. Bruckstein, I.A. Wagner: Swarm Robotics for a
Dynamic Cleaning Problem. In ”IEEE Swarm Intelligence Symposium”, pages
209–216, 2005.

[2] T. Tammet, J. Vain, A. Kuusik: ”Using RFID tags for robot swarm
cooperation”. WSEAS Transactions on Systems, 5(5), pages 1121–1128, 2006.

[3] H. Endres et al., “Field test of a navigation system: autonomous
cleaning in supermarkets,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
1998, pp. 1779–1781.

[4] R. Murphy, “Human-robot interaction in rescue robotics,” IEEE Syst.,
Man, Cybern., C, Appl. Rev., vol. 34, no. 2, pp. 138–153, May 2004.

[5] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D.
Schulz, W. Steiner, S. Thrun. The interactive museum tour-guide robot. Proc.
AAAI-98, Madison, WI (1998)

[6] Y. Huang et al., “Automatic operation for a robot lawn mower,” in
SPIE Conf. Mobile Robots, vol. 727, 1986, pp. 344–354

[7] D. Hougen et al., “A miniature robotic system for reconnaissance and
surveillance,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2000, pp. 501–
507.

[8] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet, R.
Diankov, G. Gallagher, G. Hollinger, J. Kuffner, M. V. Weghe. Herb: A Home
Exploring Robotic Butler. Autonomous Robots, 2009

[9] Space mining at http://spectrum.ieee.org/automaton/robotics/military-
robots/nasa-training-swarmie-robots-for-space-mining (25.04.2017)

 [10] J. Haverinen and A. Kemppainen, “A global self-localization technique
utilizing local anomalies of the ambient magnetic field.”, International
Conference on Robotics and Automation, pp 3142 – 3147, 2009.

[11] M.A. Batalin, and G.S. Sukhatme, “Coverage, Exploration and
Deployment by a Mobile Robot and Communication Network”, in Proc.
International Workshop on Information Processing in Sensor Networks, 2003,
pp. 376 – 391

[12] N. Karlsson, E.D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian
and M.E. Munich, "The vSLAM Algorithm for Robust Localization and
Mapping," Proc. IEEE Int',l Conf. Robotics and Automation, 2005.

[13] Dorigo, M., Bonabeau, E., & Theraulaz, G. (2000a). Ant algorithms
and stigmergy. Future Generation Computer Systems, 16(8), 851–871.

[14] Ziparo, V.A., Kleiner, A., Nebel, B., and Nardi, D. (2007). Rfid-based
exploration for large robot teams. In IEEE International Conference on
Robotics and Automation, 4606-4613.

62

[15] N. Agmon, N. Hazon, and G. A. Kaminka, "Constructing spanning trees
for efficient multi-robot coverage," in Proceedings of the 2006 IEEE
International conference on robotics and Automation, vol. 1-10, (Orlando, FL,
USA), pp. 1698-1703, 2006.

[16] Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F.E., "Coordinated
multi-robot exploration," Robotics, IEEE Transactions on , vol.21, no.3,
pp.376,386, June 2005

[17] H. Choset and P. Pignon, "Coverage path planning: The boustrophedon
decomposition", in: Proc. of Int. Conf. on Field and Service Robotics,
Canberra, Australia, December 1997.

[18] S. Schneegans, P. Vorst and A. Zell, “Using RFID Snapshots for Mobile
Robot Self-Localization.”, European Conference on Mobile Robots, pp. 1 – 6,
2007.

[19] D. Hahnel, W. Burgard, D. Fox, K. Fishkin and M. Philipose,
“Mapping and localization with RFID technology.”, International Conference
on Robotics and Automation, pp. 1015 – 1020, 2004.

[20] J. Bohn and F. Mattern, “Super-Distributed RFID Tag Infrastructures."
Lecture Notes in Computer Science, vol 3295, pp. 1 – 12, 2004.

[21] S. Park and S. Hashimoto, “Indoor localization for autonomous mobile
robot based on passive RFID.”, International Conference on Robotics and
Biomimetics, pp 1856 – 1861, 2009.

[22] M. Baglietto, G. Cannata, F. Capezio, A. Grosso, A. Sgorbissa and R.
Zaccaria, “PatrolGRAPH: a Distributed Algorithm for Multi-Robot
Patrolling”, IAS10 - The 10th International Conference on Intelligent
Autonomous Systems, Baden Baden, Germany, pp. 415 – 424, July 2008.

[23] N. Agmon, N. Hazon, and G. A. Kaminka, "Constructing spanning trees
for efficient multi-robot coverage," in Proceedings of the 2006 IEEE
International conference on robotics and Automation, vol. 1-10, (Orlando, FL,
USA), pp. 1698-1703, 2006.

[24] Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F.E., "Coordinated
multi-robot exploration," Robotics, IEEE Transactions on , vol.21, no.3,
pp.376,386, June 2005

[25] H. Choset and P. Pignon, "Coverage path planning: The boustrophedon
decomposition", in: Proc. of Int. Conf. on Field and Service Robotics,
Canberra, Australia, December 1997.

[26] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. Annals of Mathematics and Artificial Intelligence, 31,
pp 77-98, 2001

63

[27] O.Hachour. Path planning of Autonomous Mobile robot. International
Journal of Systems Applications, Engineering & Development, issue 4, vol 2, pp
178-190, 2008

[28] Ackerman, E. & Guizzo, E. (2015). iRobot Brings Visual Mapping and
Navigation to the Roomba 980
http://spectrum.ieee.org/automaton/robotics/home-robots/irobot-brings-visual-
mapping-and-navigation-to-the-roomba-980

[29] Čelan, V., Stančić, I., & Musić, J. (2016, July). Cleaning up smart
cities—Localization of semi-autonomous floor scrubber. In Computer and
Energy Science (SpliTech), International Multidisciplinary Conference on (pp.
1-6). IEEE.

[30] Rubenstein, Michael, Alejandro Cornejo, and Radhika Nagpal.
"Programmable self-assembly in a thousand-robot swarm." Science 345.6198
(2014): 795-799.

[31] Kilobot specifications at http://www.k-team.com/mobile-robotics-
products/kilobot/specifications (25.04.2017)

[32] Rubenstein, Michael, Christian Ahler, and Radhika Nagpal. "Kilobot: A
low cost scalable robot system for collective behaviors." Robotics and
Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012.

[33] Blender, T., Buchner, T., Fernandez, B., Pichlmaier, B., & Schlegel, C.
(2016, October). Managing a Mobile Agricultural Robot Swarm for a seeding
task. In Industrial Electronics Society, IECON 2016-42nd Annual Conference of
the IEEE (pp. 6879-6886). IEEE.

[34] Marjovi, A., Nunes, J., Sousa, P., Faria, R., & Marques, L. (2010,
May). An olfactory-based robot swarm navigation method. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on (pp. 4958-4963).
IEEE.

[35] Konur, S., Dixon, C., & Fisher, M. (2012). Analysing robot swarm
behaviour via probabilistic model checking. Robotics and Autonomous
Systems, 60(2), 199-213.

[36] Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., &
Dorigo, M. (2012). Self-organized flocking with a mobile robot swarm: a novel
motion control method. Adaptive Behavior, 20(6), 460-477.

[37] Zhai, C., & Hong, Y. (2013). Decentralized sweep coverage algorithm
for multi-agent systems with workload uncertainties. Automatica, 49(7), 2154-
2159.

[38] Sartoretti, G., Hongler, M. O., de Oliveira, M. E., & Mondada, F.
(2014). Decentralized self-selection of swarm trajectories: from dynamical
systems theory to robotic implementation. Swarm Intelligence, 8(4), 329-351.

64

[39] Couceiro, M. S., Martins, F. M., Rocha, R. P., & Ferreira, N. M.
(2014). Mechanism and convergence analysis of a multi-robot swarm approach
based on natural selection. Journal of Intelligent & Robotic Systems, 76(2),
353-381.

[40] Pásztor, A. (2014). Gathering simulation of real robot swarm. Tehnicki
Vjesnik-Technical Gazette, 21(5).

[41] Alers, S., Tuyls, K., Ranjbar-Sahraei, B., Claes, D., & Weiss, G. (2014).
Insect-inspired robot coordination: foraging and coverage. Artificial life, 14,
761-768.

[42] Bhattacharya, S., Ghrist, R., & Kumar, V. (2014). Multi-robot coverage
and exploration on Riemannian manifolds with boundaries. The International
Journal of Robotics Research, 33(1), 113-137.

[43] Valentini, G., Hamann, H., & Dorigo, M. (2015, May). Efficient
decision-making in a self-organizing robot swarm: On the speed versus
accuracy trade-off. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems (pp. 1305-1314). International
Foundation for Autonomous Agents and Multiagent Systems.

[44] Maftuleac, D., Lee, S. K., Fekete, S. P., Akash, A. K., López-Ortiz, A., &
McLurkin, J. (2015, May). Local policies for efficiently patrolling a
triangulated region by a robot swarm. In Robotics and Automation (ICRA),
2015 IEEE International Conference on (pp. 1809-1815). IEEE.

[45] Becker, A., Fekete, S. P., Kröller, A., Lee, S. K., McLurkin, J., &
Schmidt, C. (2013, June). Triangulating unknown environments using robot
swarms. In Proceedings of the twenty-ninth annual symposium on
Computational geometry (pp. 345-346). ACM.

[46] Zheng, S., Hong, J., Zhang, K., Li, B., & Li, X. (2016). A multi-frame
graph matching algorithm for low-bandwidth RGB-D SLAM. Computer-Aided
Design, 78, 107-117.

[47] Luo, C., Yang, S. X., Li, X., & Meng, M. Q. H. (2017). Neural-
Dynamics-Driven Complete Area Coverage Navigation Through Cooperation
of Multiple Mobile Robots. IEEE Transactions on Industrial Electronics, 64(1),
750-760.

[48] Hayes-Roth, B. (1985). A blackboard architecture for control. Artifcial
Intelligence, 26(3), 251-321.

[49] Tammet, T. (1997). Gandalf. Automated Reasoning, 18(2), 199-204.

[50] Robinson, J.A. and Voronkov, A. (eds.) (2001). Handbook of Automated
Reasoning. MIT press.

[51] PostgreSQL at https://www.postgresql.org/ (25.04.2017)

65

[52] R. Morlok and M. Gini, “Dispersing robots in an unknown
environment”, in 7th International Symposium on Distributed Autonomous
Robotic Systems (DARS), June 2004.

[53] H.S. Jeon, M.-C. Ko, R. Oh and H.K. Kang, “A practical robot
coverage algorithm for unknown environments”, in Proceedings of the 9th
Mexican international conference on Advances in artificial intelligence: Part I
Pages 129-140, 2010.

[54] Tammet, T., Reilent, E., Puju, M., Puusepp, A., & Kuusik, A. (2010).
Knowledge centric architecture for a robot swarm. IFAC Proceedings Volumes,
43(16), 294-299.

[55] Panda3D at https://www.panda3d.org/ (25.04.2017)

[56] Jgame 2D at https://sourceforge.net/projects/jgame-engine/
(25.04.2017)

[57] A. Tanoto, U. Rückert, "Local Navigation Strategies for Multi-Robot
Exploration: From Simulation to Experimentation with Mini-Robots", Procedia
Engineering, vol. 41, 2012, pp. 1197-1203

66

KOKKUVÕTE

Dissertatsioon tegeleb robotitega, mis suudavad kasutada RFID märgiseid nii
orientiirpunktide kui omavahelise suhtluskanalina. Töö annab kõigepealt detailse
ülevaate intelligentsete robotite jaoks loodud teadmus-arhitektuurist. Sellele
järgneb ülevaade erinevatest töö käigus loodud katvusalgoritmidest selliste
robotiparvede jaoks, mille eesmärgiks on koristamine, otsing jms. ülesanded
siseruumides. Töö põhieesmärgiks ongi leida efektiivseid katvusalgoritme ja
analüüsida parves osalevate robotite arvu mõju ülesande lahendamiseks kuluvale
ajale. Ühe olulise tulemusena näitame, et parves osalevate robotite arvu tõstmine
on ülesande lahendamise ajale oluliselt suurema mõjuga, kui roboti teadmiste
täiendamine ja algoritmi optimeerimine.

Väitekirjas keskendume robotitele, millel puudub sidevõime, mis on varustatud
vaid väheste, seejuures vearohkete sensoritega ning mil ülesande lahendamise
alguses praktiliselt puudub teadmine ümbritsevast keskkonnast. Tüüpilised
koristus- ja muruniitmis-robotid on taoliste robotite näiteks.

Konkreetne arendatav ja testitav robotitüüp on Roboswarm EU FP6 projekti
käigus (kus osales ka töö autor) iRobot Roomba täiustusena arendatud RFID
lugejaga robot. Algoritmide testimiseks ja võrdlemiseks kasutame töös
simulatsioone. Spetsiaalselt antud ülesande jaoks ehitatud simulaatoriga on
kõigepealt genereeritud peaagu ideaaltulemustele vastavad baasandmed, mida on
seejärel kõrvutatud robotiparvede poolt erinevate algoritmide rakendamisel
saadud tulemustega.

67

Appendix A

Paper A

T. Tammet, J. Vain, A. Puusepp, E. Reilent, A. Kuusik. RFID-based
communications for a self-organizing robot swarm. In: Proceedings Second IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, SASO
2008: 20-24 October 2008, Venice, Italy: (Toim.) Brueckner, Sven; Robertson,
Paul; Bellur, Umesh. Los Alamitos, Calif.: IEEE Computer Society, 2008, 45 -
54.

��������	
�����������������	�������������������������������� !"#$%&'�&�!(�)%�*+$$*�,,!-��%.�&��� /�,�% ��� 0120�,$ �%34&��4�!����&��5�&6�%*& 701��48�0�097-8& �:� � ��;!<=>?@����&��!-* 0�&� ���� A* �11B $B��!6�&�A&04B��!�B%�&��� A9��&�B40�!��)$0��A80 B�� (��%C$$*&D/�,�% ��� 01-��4 %0�&4*!����&��5�&6�%*& 701��48�0�097-8& �:� � ��;!<=>?@����&��!-* 0�&�D���%A6�B $B��E�������FGHIJGKLHMNLGLOGPQNRLHRNSTUGKLHVIKVWXUHSYHIMNKGSWZVQMNIHKHIMQVXVLK[NQ\]UKHIMLOGĤVXVL̂VV\XNRSGNIHIMQVXVLNKNIG_PGQH\GILNSPSNLWVQ\̀ aUQMVNSHKLVG\PSVbKGSWZVQMNIHKNLHVIWVQGIONIRHIMLOGRSGNIHIMGWcRHGIRbVWNV̂V\XNK[NQ\̀ dOGH\PSG\GILNLHVIUKGK̂ efgLNMKXVLOWVQVXhGRLNIYSVRNLHVIZXNKGYLNKiQGRVMIHLHVINK[GSSNKMQNWcLHZVQKLHM\NLNZKLbSGRV\\UIHRNLHVIXGL[GGIQVXVLK̀jNKHSb\VYHcNXSGQUSGKbKLG\KNQGUKGYWVQVXhGRLVILVSVZMHGKNIYNULV\NLHRLNKiMGIGQNLHVÌ kVIMZLGQ\PSNIIHIMNIYRGILQNSRVVQYHINLHVINQGNJVHYGỲl �����
�������8�40�4�, 01�%0m0 *n�%�)��0 �*���%9��$�m�%01%��� &6��7*&�,��,87*&4���7��m0)&�)�9�� *)�*&9��)&��n�7 8� 8�)�*&%�)40���4 &6�m�8�6&0$%���%9�*1%0� 8��04��&� �%�4 &0�*01�9�� *��) 8�&� �%�4 &0�*m�o n��� 8��9�� *��) 8���6&%0���� B�8�*n�%�*�%����� 0,�%10%��n&)�%��9�01 �*D*n8&48�%�&�1��o*&m�� 0�440�,�&*8m7�*&�9��%0m0 B�8�&%�,,�&4� &0�%��9�*1%0�*&�,��4����&�9 �*D* 0�p,�0%� &0�01��%9�$�D�0n��%��*!*$%6�&����4�!%�*4$�!400%)&�� �)n�&98 �&1 &�9!�&��*n��,&�9� 4Bn8�%�&� �%6�� &0�1%0�8$���0,�%� 0%*&*�&�&�&q�)B�8�90��01�*n�%��&**&0�4��m�40�*&)�%�)9���%o���7�*��&� �9%� �)*�%6&4�,%06&)�)m7 8�*n�%����om�%*40���4 &6��706�%�9&6��,�%&0)01 &��B3&�4�*n�%�* 7,&4���7�4 &��)7���&4��),�% &���70m*�%6�m����6&%0�o��� ! 8�*�%6&4�%�r$&%�*%�,� & &6���)400%)&�� �)�4 &0�m7 8�*n�%����m�%* 8%0$980$ 8��&**&0�B�8�06�%���90��010$%,%0:�4 &* 0)�6��0,*&�,����)�0no40* �48�0�09&�*10%��D&�9m0 8*&�9��%0m0 *��)*n�%�*01%0m0 *�0%�&� ���&9�� Bs�$*� 8�)7���&4

4����&�9,%0m���t<u!tvu�*� �* m�)10% 8�)�6��0,�)D�0n��)9��%48& �4 $%�!104$*&�90���D&�9*n�%�4����o&�9�0%��1w4&�� B�8�4%$4&��,�% 01 8�,%0:�4 &* 0�48&�6� 8��1w4&�� 400,�%� &6�m�8�6&0$%01%0m0 *n& 80$ ��74�� %��400%)&o�� &0���),����&�9B�8� !�9�&�!%�r$&%�*,%0,�9� &0�01$�)�%* ��)�m����)%�$*�m��&�10%�� &0���0�9 8�%0m0 *n8&48��7m�)&11�%o�� &�8�%)n�%���)*01 n�%�B�8� �%9� 90��4��m�4����)xD�0n��)9�4�� %&4x�%48& �4 $%��,,%0�48104$*&�90�$�&o10%���y0%��*&�740�6�% &m��z0�o%0m0 ��)&� �%o%0m0)� �����9���� Bs�$*�0%)&��%7,�**&6�.{|/48&,*10%��%D&�90m:�4 *�&D�48�&%*!n���*!)00%*B�8&*&**&9�&w4�� �748��,�%��)�0%�}�p&m�� 8��$*&�94���%�*0�%0m0 *10%0m:�4 %�409o�& &0�B�8�*���.{|/48&,*0�0m:�4 *�%���*0$*�)m7 8�%0m0 * 0���6���**�9�* 00 8�%%0m0 *B�8�*0�$ &0�&*&�*,&%�)m7�� *~40��$�&4� &0�$*&�9,8�%0�0�� %�4�D�0n��** &9��%7B�8�$*�9�01.{|/ �9*%�)$4�* 8�40��$�&4� &0�06�%8��)%��� �)n& 8400%)&�� &0�*&9�&wo4�� �7t=uBs�$*��,0,$��%&.0m0 .00�m�4����&�9%0m0 ��)� �48� &�7(.�om�*�)�$�* &p40�,$ �%y;>>�|+340�,$ &�9,0n�%z$*&�9��$*7�0p�B@�&�$p)&* %&m$o &0�yn& 80$ %���o &��4�,�m&�& &�*z��)�* 04D.{|/%��)�%�n%& �%0� 8�.00�m�B�8�� �48�)40�,$ �% �D�*06�%40� %0�01 8�.00�m�Bs8&���* ��)�%).00�m�&*1�&%�7*&�,��o�&�)�)!n&��4����,��4�*%�4�� �74�����)��))0�*�0 $�)�%* ��) 8� *0��,��4�**80$�)m��60&)�)o0%6&4�6�%*�!4�����)01 ��o0$%*7* ���))*��4�**�%7&� ��o�&9��4�B{&%* !.00�m�*$�)�%* ��)0m:�4)�*4%&, &0�*��)*&�o,����**�9�*n%& ��0�.{|/48&,*m78$���*��&D�x90�n�7x!x1%�9&��x!x4����8�%�x!x 8&*&*�48�&%x� 4Bs8�� 8�%0m0 �0 &4�*��.{|/48&,�8��)!& n&��%��)& *40� �� ��)m�8�6��440%)&�9�7!10��0n&�9 8�40�w9$%�m��%$��*0�m0�%)B�8�%$����9&��$*�*0� 0�09&�*��)���0n* 8�%0m0

���

 ¡¢�£�¡¤ ¥�¦§£§�¤̈£¢�©ª¥«££�¬�ª££¢��������®£«®®£ ̈����«ª££¢«¤ª §¥

°̄±²³́�µ¶¶¶�µ³·°̧³¹·º²³¹»�¼²³½°̧°³±°�²³�̄°»½¾¿́¹À·ºÁ°�¹³́�̄°»½¾Â̧Ã¹³ºÄº³Ã�̄ÅÆ·°ÇÆ

ÈÉÊ¾Ë¾ÉÌÈÍ¾ÎÏËÏ¾ÌÐËÊ�ÑÒÍÓËË�Ô�ÒËËÊ�µ¶¶¶ÕÂµ�ÖËÓÖÖËÈÐ̄¿̄ ÂÓÒËËÊÓÌÒ ÏÍ

79

Paper B

T. Tammet, E. Reilent, M.Puju, A. Puusepp, A. Kuusik, A. Knowledge centric
architecture for a robot swarm. In: 7th IFAC Symposium on Intelligent
Autonomous Vehicles (2010). IFAC-PapersOnLine, 2010, (Intelligent
Autonomous Vehicles; 7/1). 2010.

���������	��
������
�
�����������
�������������������� !�"�����#�$"%&'('�)�$ �%&''%�**+)�� ,''%"-+++./01234/5367864093/2:;</5;/=>1??<55@5<A/2B<3C67>/;D56?6ECFD<31G13/3//H=IJKLM>1??<55=FB365<1N/O41<?P3144/3QB31RS339S//=/S2/<?/53QE41<?S;64=09T<B41G9QE41<?S;64=15T9641QD63S//US++./01234/5367F?/;3265<;B=>1??<55@5<A/2B<3C67>/;D56?6ECFD<31G13/3//H=IJKLM>1??<55=FB365<1N/O41<?PV1?12QA1S339S//US)W%� �X�YZ[\]̂[_̀abc]dec[fc[e]gdhib[ej[k[dclakfmfc[n ohl]lh_hcfi]lnpq̀ lanrb[n[dc]cahd[d\]dk[fash_hcshhn_]kb[]dadjlh_hcfiac\]cadmbad̀tkhnr̀c[lusvwxc]jl[]e[lyilac[l]dehrcahd]bbm]Zwvwk]lepsh_hcf̀f[c\[svwxc]jfohlh_z[kcl[khjdacahd]den[ff]j[r]ffadjp{\[gdhib[ej[]lk\ac[kc̀l[hoc\[fmfc[nafadfral[e_mf[n]dcaki[_rladkarb[fufr]ddadjĥ[lf[̂[l]bb]m[lf|svwxc]jfhdh_z[kcfurlhk[ffadc[l]kcahdad]fadjb[lh_hc â]]n]adn[nhlme]c]fchl[]de]l̀b[fmfc[nuk[dcl]be]c]_]f[ohl]fi]lnp{\[khnǹ dak]cahdkhnrhd[dcfhoc\[fmfc[n\]̂[_[[d]bl[]emrhlc[echc\[b]lj[l}ahd[[l]de~ j̀alhlh_hcf̂ a]c\[}b]m[lnaeeb[i]l[p{\[r]r[lrl[f[dcfh̀lfhb̀cahdfchc\[gdhib[ej[n]d]j[n[dc]dekhnǹ dak]cahdrlh_b[nffc[nnadjolhnc\[lh_hcakfaff̀[f]dee[nhdfcl]c[fo[]fa_abacmhòfadjc\[f[n]dcaki[_rladkarb[fadc\[lh_hcakfehn]adp�pw�{sqx��{wq�{\[ĥ[l]bbjh]bhoc\[rlhz[kcafche[̂[bhrfanrb[]debhi�khfcc[k\dhbhja[fohln]gadj_hc\fadjb[lh_hcf]defi]lnfholh_hcfnhl[adc[bbaj[dcpZ[f̀[c\[emd]nakkb[]dadjrlh_b[n�bcf\̀b[l[c]bp������u{]nn[c[c]bp������]f]c[fc_[eohlc\[e[̂[bhr[egdhib[ej[]lk\ac[k�c̀l[uohk̀fadjhdn]gadjfi]lnkb[]dadjnhl[[�ka[dcpq̀ ljh]bl[�̀al[frlhr]j]cahdho d̀e[lfc]de]_b[]del[̀f]_b[adohln]cahd]nhdjc\[lh_hcfi\ak\n]m_[ea�[l[dcad\]lei]l[]defhoci]l[p{\[l[]l[f[̂[l]bi[bb�gdhidol]n[ihlgf�bag[}b]m[l]deqlk]�]eel[ff�adjnhfcbmbhib[̂[be]c]n]d]j[n[dcadlh_hcfu\hi�[̂[lulh_hcakfadèfclm[trl[ff[fd[[eohl]d[d̂alhdn[dcf̀rrhlcadj\]lei]l[�ade[r[de[dce]c]rl[f[dc]cahd]de[tk\]dj[]nhdjlh_hcfp{\[c]lj[cjh]bhoc\afr]r[lk]d_[k]bb[e]�gdhib�[ej[k[dclak�]lk\ac[kc̀l[uohk̀fadjhd d̀aohln�hl[]fabmkhd̂[lca_b[�hd�lh_hc]deadc[l�lh_hce]c]n]d]j[n[dc{]nn[c[c]bp������ui\ak\af]k\a[̂[e_m̀ fadjf[n]dcaki[_rladkarb[furlhbhj�bag[l̀b[fu]de�lfc�hle[lbhjakp{\[nhèb]lfmfc[n hoade[r[de[dc]fmdk\lhdh̀ffhoci]l[khnrhd[dcfohll[]kcâ[khdclhbhokb[]dadjlh_hcfi]fkl[]c[e]f]rlhhohokhdk[rcpZ[f̀[c\[rhr̀b]lash_hcshhn_]kb[]dadjlh_hc]de]cc]k\]cadm�s~�_]f[e�̀ nfcatkhnr̀c[l����~w}��f̀adj]�̀ fm�ht�p��ad̀teafcla_̀cahd�iac\h̀cl[]b�can[k]r]_abaca[f�]de]fchkgsvwx l[]e[lyilac[lhdc\[shhn_]p{\[]cc]k\[ekhnr̀c[lc]g[fĥ[lkhdclhbhoc\[shhn_]pZ\ab[c\[fc]de]leshhn_]afo]albmfanrb[�nade[euiabbkb[]drb]k[fl[k[dcbmkb[]d[e]deeh[fdhc̀ de[lfc]dec\]cfhn[rb]k[ff\h̀be_[]̂hae[e�hlâk[[̂lf]ukb[]d[ehoc[d�h̀lfmfc[n]eefd[k[ff]lmadc[bbaj[dk[p

Z[̀ f[hlead]lmr]ffâ[svwxk\arfohln]lgadjh_z[kcfbag[k\]alfui]bbfuehhlfu]fi[bb]fbhk]cahdfadc\[[d̂alhd�n[dcp{\afaffajda�k]dcbmk\[]r[l]denhl[�[ta_b[c\]df̀adjk]n[l]fhdlh_hcfohlh_z[kcl[khjdacahdp{\[f]n[svwxk\arfhdh_z[kcf]l[]bfh̀ f[e_mc\[lh_hcfchb[]̂[n[ff]j[fchhc\[llh_hcfp{\[fhb̀cahdafadfral[e_m]dcf�khnǹ dak]cahd̀ fadjr\[lhnhd[cl]k[gdhid]ffcajn[lmp{\[̀ f]j[hosvwxc]jfl[èk[fc\[khnǹ dak]cahdĥ[l�\[]el[b]c[eiac\khhlead]cahd�ar]lh[c]bp������p{\[n]adkhnrhd[dcfhoc\[]lk\ac[kc̀l[\]̂[_[[d]b�l[]emrhlc[e_mc\[adèfcla]brlhz[kcr]lcd[lv]clhdagchcihea�[l[dclh_hcf�}ahd[[l]de~ j̀alh�̂ a]c\[}b]m[lnaeeb[i]l[p�psq�q{��qZ��x���s��w{��{�s�{\[]lk\ac[kc̀l[ohlc\[lh_hckhdclhbaf_]f[ehd]b]m[l[eǹ bca�]j[dcfmfc[nuiac\]j[dcfanrb[n[dc[e]fkhdcad̀hfbml̀ddadjrlhk[ff[fp{\l[[b]m[lfk]d_[_lh̀j\ch̀c|�{\[f[dfhl�]kc̀]chl]kk[ffb]m[le[eak]c[echkhnǹ �dak]cahdiac\c\[lh_hckhdclhb\]lei]l[p{\[bhi[fcr]lcholh_hcff[dfhl�]kc̀]chlb]m[laf[t[k̀c[e_mc\[shhn_]hd_h]lenaklhkhdclhbb[lp�{\[khdclhbb]m[lkhdfafcfhoeafr]ck\[lrlhk[ffi\ak\[t[k̀c[f_[\]̂ahl]bc]fgfadh̀lkhdc[tck]bb[e_ad]�la[fp�{\[gdhib[ej[b]m[lc\]cc]lj[cfl[]fhdadj�e[lâadjd[iadohln]cahdolhn]k�̀al[ee]c]�ukhnǹ dak]cadjiac\hc\[llh_hcf�̀fadjsvwxc]jf�]dec\[hrcahd]bk[dcl]bf[l̂[l�̀fadjZwvwuao]̂]ab]_b[�p{\[b]m[l[e]lk\ac[kc̀l[af_̀abc]lh̀de]o]fc]decl]df�r]l[dcsxvadfral[ee]c]fchl[anrb[n[dc[eadf\]l[en[nhlmp{\afgadeho]rrlh]k\afol[�̀[dcbm f̀[eohlbhi

87

Paper C

A. Puusepp, T. Tammet, M. Puju, E. Reilent. Robot movement strategies in the
environment enriched with RFID tags. 16th International Conference on System
Theory, Control and Computing, Sinaia, Romania, 12-14 October 2012.

� �
�� ��������	�
�� ����������!�"���������������������# �$����������� ���������� ��#�������������������������!�%�����������������������������$�����������������$��������!�&��������������#��������'����������'�����������(�����������������)�������������������������������������$����������#�$�������������������!�*�����+��������������������$$��# ��������������)������)���������������!�
��$���#�������� ����������� ����������������� ���!�,����##��$����������� ����$������������ (������������������������$������$)������� �����������$ ��!�
�����$����������(����������������������-���$�������$�������������������.��������������������������������� ��������������#�������������#����������������������(����������!�
��� ����� ������������#�����������#���� �$��'�#�������������������� ���������������������� �$���������������������������!�
���#������$��������������� �����������$��#�������������������� �������� ��# ���������������������� ���!�/0�/12345672/41�89:;<;=;9>?@�=;AB<C�D;E;:>�:F<G�:;�EFH;=F�CDIG9I??@�=;DF�I<G�=;DF�H;==;<�B<�;9D�FAFD@GI@�?BAF>�J;D�KFDJ;D=B<C�:I>L>�?BLF�AIH99=�H?FI<B<C�;J�J?;;D>M�C9BGB<C�AB>B:;D>�B<�E9B?GB<C>M�G;B<C�>;=F�F<ABD;<=F<:�>9DAFB??I<HF�;D�I=9>B<C�KF;K?F0�/<GFKF<GF<:?@�JD;=�:NF�>KFHBJBH�K9DK;>F>�;D�9>F�HI>F>�:NF@�I??�DF?@�;<�?;HI?BOI:B;<�I<G�<IABCI:B;<�HIKIEB?B:BF>M�B:�=ILF>�<;�GBJJFDF<HF�BJ�B<G;;D�;D�;9:G;;DM�PN;QFAFDM�HNI;:BH�=;:B;<�KD;AF>�:;�EF�9>IE?F�J;D�H;AFDICF�RSTUV0�WNB?F�J;H9>B<C�;<�:NF�B<G;;D�<IABCI:B;<�:NFDF�FXB>:�>FAFDI?�IKKD;IHNF>�I<G�>F<>;D�FY9BK=F<:M�J;D�FXI=K?F�;DBF<:FFDB<C�=F:N;G>�EI>FG�;<�?I>FD�DI<CF�JB<GFDM�=IC<F:;=F:FD�RZUM�AB>9I?�B=ICF�KD;HF>>B<CM�F:H0�8<;:NFD�K;>>BEB?B:@�B>�:;�K?IHF�>KFHBI?�?I<G=IDL>�B<:;�:NF�F<ABD;<=F<:�I<G�9>F�:NF=�J;D�[\]̂]_[�̀abacde�faghfh_cei�jkh�lm_̂fm̀ne�oa\l̂�bh�moc]gh�à�KI>>BAFM�IH:BAF�DIGB;�EFIH;<>�PF0C0�RTUV�>FF<�JD;=�?;<C�GB>:I<HF�F<IE?F�:DBI<C9?I:B;<p�KI>>BAF�?I<G=IDL>�H;9?G�EF�?F>>�FXKF<>BAF�I<G�H;=K9:I:B;<I??@�<;:�>;�GF=I<GB<C0�4<F�;K:B;<�B>�:;�=ILF�9>F�;J�B<FXKF<>BAF�3q/5�P3IGB;rJDFY9F<H@�BGF<:BJBHI:B;<V�:IC>�I>�KI>>BAF�?I<G=IDL>�QNBHN�GFKF<GB<C�;<�:NF�GF:IB?>�;J�:NF�>F:r9K�=BCN:�<;:�KD;ABGF�:NF�EF>:�IHH9DIH@�E9:�HI<�>9B:�QF??�B<�:NF�HI>F>�;J�?F>>�>;KNB>:BHI:FG�D;E;:>0�3q/5�:IC>�NIAF�=I<@�K;>>BE?F�FXFD:B<C��80�s99>FKKM�20�2I==F:�I<G�t0�s9u9�IDF�QB:N�:NF�5FKID:=F<:�;J�7;=K9:FD�vHBF<HFM�2I??B<<�6<BAFD>B:@�;J�2FHN<;?;C@M�wNB:IuI:F�:FF�ZM�Sxyz{M�2I??B<<M�w>:;<BI�PH;DDF>K;<GB<C�I9:N;D�Fr=IB?>|�I<G9;=I}N;:0FFM�:I==F:}>:IJJ0::90FFM�K9GB>=Iu9}C=IB?0H;=V�w0�3FB?F<:�B>�QB:N�:NF�w~/�4�7;=KF:F<HF�7F<:DFM�2FIG9>KIDCB�{�TM�ST{Sz�2I??B<<M�w>:;<BI�PH;DDF>K;<GB<C�I9:N;D�Fr=IB?|�F<ID0DFB?F<:}F?BL;0FFV��

>:DI:FCBF>|�:NF@�H;9?G�EF�=;9<:FG�FB:NFD�;<�:NF�QI??>�PRSSUM�R�UV�;D�;<�:NF�J?;;D�PR�UVM�K;>B:B;<FG�B<:;�I�DFC9?ID�CDBG�PF0C0�RxUV�;D�DI<G;=?@0�WNF<�I�>=I??�<9=EFD�;J�:IC>�IDF�9>FG�B<�I�DI:NFD�?IDCF�I<G�H;=K?FX�>F:�;J�D;;=>�:NF<�:NF�:IC>�>FDAF�=;>:?@�I>�I�<IABCI:B;<I?�CDIKN�J;D�D;E;:>�QNBHN�GDBAF�JD;=�:IC�:;�:IC�QNFDFI>�:D@B<C�:;�DFIHN�:NFBD�GF>:B<I:B;<�IDFI�I>�GF>HDBEFG�E@�RSU0��v9KK;>B<C�:NF�D;E;:>�IDF�FY9BKKFG�;<?@�QB:N�;G;=F:FD>�I<G�3q/5�DFIGFD>�PK?9>�H;??B>B;<�GF:FH:B;<V�:NF@�H;9?G�<;:�<IABCI:F�;<�:NF�CDIKN�J;D�I�?;<C�:B=F�QB:N;9:�DFC9?ID�9KGI:F>�;J�K;>B:B;<�I<G�GBDFH:B;<�EFHI9>F�;J�:NF�IHH9=9?I:B<C�;G;=F:D@�FDD;D�I<G�:IC�GF:FH:B;<�B<IHH9DIH@�PI<:F<<I�B>�<;:�9<GFD<FI:N�:NF�D;E;:V0��;QFAFDM�DF>F::B<C�?;HI:B;<�B>�I�>?;Q�KD;HF>>�I<G�BJ�G;<F�JDFY9F<:?@�B:�H;<>9=F>�H;<>BGFDIE?F�I=;9<:�;J�:B=F0�1FAFD:NF?F>>M�:NF�D;E;:�CF:>�?;>:�;HHI>B;<I??@�I<G�NI>�:;�QI<GFD�ID;9<G�9<:B?�IE?F�:;�K;>B:B;<�B:>F?J�ICIB<0��/J�:NF�:I>L�;J�:NF�D;E;:�DF>:>�;<�H;AFDICFM�?BLF�H?FI<B<C�J;D�FXI=K?FM�I<G�:NF�D;E;:�B:>F?J�?IHL>�IGGB:B;<I?�=FI<>�J;D�?;HI?BOI:B;<�:NF<�B<�>;=F�HI>F>�B:�=BCN:�EF�KDFJFDIE?F�:;�>KF<G�=;DF�:B=F�;<�=;AB<C�I<G�IEI<G;<�:NF�BGFI�;J�KDFHB>F�<IABCI:B;<0��;QFAFDM�:NF�D;E;:�H;9?G�>:B??�=ILF�9>F�;J�:IC>�:;�IGu9>:�B:>�EFNIAB;D�:;�KFDJ;D=�EF::FD�H;=KIDFG�:;�:NF�F<ABD;<=F<:�QB:N�<;�:IC>0��49D�C;I?�B>�:;�B<AF>:BCI:F�K;:F<:BI?�9>F>�;J�3q/5�:IC>�J;D�h_km_o]_[�̀abacde��h̀�àfm_oh�]_�ckh�e]c\mc]a_e��kh̀h��̀ho]eh�<IABCI:B;<�B>�<;:�JFI>BE?F�;D�GF>BDFG0��I>FG�;<�:NF�>I=F�>F:9K�I>�GF>HDBEFG�E@�RS�U���9>B<C�:NF�3;;=EI�AIH99=B<C�D;E;:�PGBI=F:FD��y�H=V�QB:N�=;9<:FG�F=EFGGFG�H;=K9:FDM�vL@F:FL�3q/5�DFIGFD�Pw9D;KFI<�6�q�z{ZM��t�O���z{�Mx�t�OM�T��G�=V�I<G�KI:HN�I<:F<<IM�KI>>BAF�3q/5�:IC>�P/v4Szyyyr{EM�FJJFH:BAF�DFIGB<C�GB>:I<HF�B>�H;=KIDIE?F�:;�:NF�D;E;:d>�GB=F<>B;<>V�;<�:NF�J?;;DV���>B=9?I:FG�FXKFDB=F<:>�QFDF�oa_̂\ocĥ�ca�hgml\mch�̀abacde��h̀�àfm_oh�_̂h̀�AIDB;9>�GBJJFDF<:�H;<GB:B;<>0�8�H9>:;=�=IGF�>B=9?I:;D�QI>�9>FG�B<�:NF�FXKFDB=F<:>�:;�NIAF�JB<FrCDIB<FG�H;<:D;?�;AFD�:NF�:F>:�>F:9K�I<G�=ILF�:NF�D;E;:�I<G�3q/5�I>�>B=B?ID�I>�K;>>BE?F�:;�:NF�DFI?�Q;D?G�HI>F0�2NF�:I>L�QI>�>KFHBJBFG�J;D�:NF�D;E;:�:;�=;AF�ID;9<G�B<�:NF�H?;>FG�:Q;rGB=F<>B;<I?�F<ABD;<=F<:�9<:B?�B:�NI>�J;9<G�:NF�CBAF<�<9=EFD�;J�GBJJFDF<:�:IC>���B<�;:NFD�Q;DG>M�B:�B>�H;AFDICF�B<�:NF�>F<>F�;J�AB>B:B<C�3q/5�:IC>�QB:N�J;H9>�;<�=B<B=BOB<C�:NF�:B=F�>KF<:�;<�:NF�:I>L0�5BJJFDF<:�D;;=�H;<JBC9DI:B;<>�I<G�GF<>B:BF>�;J�:IC>�QFDF�9>FG�QNB?F�:F>:B<C0�vFAFDI?�H;<:D;?�I?C;DB:N=>�QFDF�HDFI:FGM�D9<M�I<G�H;=KIDFG�;<�:NF�>B=9?I:FG�D;E;:0���h�oa_e]̂h̀ĥ�ck̀hh�̂]��h̀h_c�m��̀amokhe��à�̀abacde�H;<:D;?�I?C;DB:N=�EI>FG�;<�:NF�9>ICF�;J�:IC>�:;�C9BGF�:NF�àbaci�jkh��̀m_̂af��ml[à]ckf�P?;QFD�E;9<GFDV�NI>�<;�B<B:BI?�L<;Q?FGCF�IE;9:�:NF�F<ABD;<=F<:�I<G�G;F>�<;:�IGu9>:�B:>�

��$�������������������8<GDF>�s99>FKKM�2I<F?�2I==F:M�tIGB>�s9u9M�w<ID�3FB?F<:�

95

Paper D

Puusepp, A.; Tammet, T.; Reilent, E. (2014). Covering an Unknown Area with
an RFID-Enabled Robot Swarm. Applied Mechanics and Materials, 490-491,
1157 - 1162.

� �������	�
������������
�����
���������
������������
��������� �!"" �##$%�&'�(&��)�(&**�+$%,�&���-�&��.�/)��+0%1��$(&))/���2�/3�� /+4�56�(�17�5)584%�(&))/��%�- +5�/&�0-9:;<�=5*#�+��1��=��+��%�(&))/��%�- +5�/&�&&��"5*&>75+?��%�,+&��)?+&**�+>++"?��%�1�?��/)��+>8*&/)?15*�@�A���BC�D")+/�5,5+� 4 +�* %��5,5+/1 %�.E:F%��5,5+� G&�*?�HIJKLMNKO�PQR�STUV�WX�YT�WZ[RT\]�Ŷ]�_T\]RUS]�T̀�Ua�UR]U�QXWaS�RTbTYX�cWŶ�XWZ[V]�X]aXTRX�Uad�XWZ[V]e�RTbQXY�UVSTRWŶZX�QXUbV]�̀TR�Uaf�gWad�T̀�RTTZh�i]�Wa\]XYWSUY]�Ŷ]�Ud\UaYUS]�T̀�Ŷ]�XcURZ�j�_TZ[UR]d�YT�U�XWaSV]�RTbTY�k�Uad�ŶR]]�dẀ̀]R]aY�UVSTRWŶZX�̀TR�Ŷ]�YUXg�T̀�X]UR_̂WaS�VUadZURgX�Wa�U�[R]\WTQXVf�QagaTca�UR]Uh�l̂]�SQWdUa_]�T̀�Ŷ]�RTbTY�WX�bUX]d�Ta�VUadZURgXe�WZ[V]Z]aY]d�bf�mnop�YUSX�WRR]SQVURVf�[VU_]d�Wa�Ŷ]�RTTZh�l̂]�]q[]RWZ]aYX�UR]�_TadQ_Y]d�QXWaS�U�_QXYTZ�ZUd]�XWZQVUYTR�T̀�mnopj]rQW[[]d�mTTZbU�_V]UaWaS�RTbTYXe�bUX]d�Ta�TQR�[R]\WTQX�cTRg�cWŶ�R]UVjVẀ]�mTTZbU�XcURZXh�i]�X̂Tc�ŶUY�̀TR�Ŷ]�XWZ[V]�RTTZ�_T\]RUS]�UVSTRWŶZX�Ŷ]�X[]]dQ[�SUWa]d�̀RTZ�Wa_R]UXWaS�Ŷ]�XWs]�T̀�Ŷ]�XcURZ�dWZWaWX̂]X�UX�Ŷ]�XcURZ�SRTcX�Uad�ZTXY�WZ[TRYUaYVfe�̀TR�VURS]R�XcURZ�XWs]X�Ŷ]�WàTRZUYWTa�U\UWVUbV]�Uad�Ŷ]�WaY]VVWS]a_]�T̀�Ŷ]�UVSTRWŶZ�b]_TZ]X�V]XX�WZ[TRYUaYh�tuKLvwxNKyvu�zWZ[V]�UQYTaTZTQX�RTbTYX�UR]�b]_TZWaS�_TZZTa�̀TR�U[[VW_UYWTaX�VWg]�_V]UaWaS�{|}e�R]X_Q]�{~}e�ZTcWaS�{�}�Uad�XQR\]WVVUa_]�{�}h�m]SURdV]XX�T̀�Ŷ]�RTbTYX��ZWXXWTa�Ŷ]f�UVV�d][]ad�Ta�VT_UVWsUYWTa�Uad�aU\WSUYWTa�_U[UbWVWYW]Xh�l̂]�S]a]RUV�_TaY]qY�T̀�TQR�[U[]R�WX�WZ[RT\WaS�Ŷ]�VUadZURg�X]UR_̂�UVSTRWŶZX�k�XWZWVUR�YT�RTTZ�_T\]RUS]�j�T̀�U�RTTZ�bf�U�XcURZ�T̀�RTbTYXh�i]�UXXQZ]�Ŷ]�XcURZ�YT�b]�U�X]Y�T̀�RTbTYX�̀TVVTcWaS�Ŷ]�XUZ]�UVSTRWŶZ�T̀�b]̂U\WTQR�Uad�XTV\WaS�U�_TZZTa�YUXg�Wa�[URUVV]Vh��l̂]R]�]qWXY�X]\]RUV�U[[RTU_̂]X�Uad�X]aXTR�]rQW[Z]aY�gWYX�̀TR�WadTTR�aU\WSUYWTae�VWg]�QXWaS�U�VUX]R�RUaS]�̀Wad]Re�ZUSa]YTZ]Y]R�{�}�]Y_h�oY�WX�UVXT�[TXXWbV]�YT�SQWd]�RTbTYX�QXWaS�VUadZURgjVWg]�RUdWT�b]U_TaX��]hSh�{�}��TR�V]XX�]q[]aXW\]�[UXXW\]�VUadZURgXh�l̂]�X[]_ẀW_�STUV�T̀�Ŷ]�[U[]R�WX�YT�Wa\]XYWSUY]�Ŷ]�VUadZURg�X]UR_̂�b]̂U\WTQR��̂]a_]̀TRŶ�_UVV]d�_T\]RUS]��T̀�XcURZX�T̀�RTbTYX�cWŶTQY�[R]_WX]�aU\WSUYWTa�_U[UbWVWYW]Xe�]rQW[[]d�cWŶ�XWZ[V]�VUadZURgjbUX]d�aU\WSUYWTa�Uad�̀TVVTcWaS�RTbQXY�UVSTRWŶZXh�oa�[URYW_QVURe�c]�UR]�WaY]R]XY]d�Wa�Ŷ]�]̀̀]_Y�T̀�Ŷ]�XWs]�T̀�Ŷ]�XcURZ�Uad�Ŷ]�]̀̀]_YX�T̀�Ŷ]�X]UR_̂�UVSTRWŶZ�YT�Ŷ]�YWZ]�WY�YUg]X�YT�_T\]R�U�RTTZh��l̂]�Wa\]XYWSUYWTaX�R][TRY]d�Wa�Ŷ]�_QRR]aY�[U[]R�UR]�[]R̀TRZ]d�Ta�Ŷ]�_QXYTZ�d]\]VT[]d�XWZQVUYTR�cWŶ�U�b]̂U\WTR�\]Rf�_VTX]�YT�Ŷ]�[̂fXW_UV�mnopj]rQW[[]d�mTTZbUX�d]X_RWb]d�UbT\]h�mnop�YUSX�_Ua�b]�X[R]Ud�URTQad�Ŷ]�UR]U�Wa�\URWTQX�cUfX��Ŷ]�WàTRZUYWTa�dWX_T\]R]d�bf�U�XWaSV]�Z]Zb]R�T̀�Ŷ]�XcURZ�WX�[RT[USUY]d�YT�UVV�Ŷ]�RTbTYXh��l̂]�YUXg�T̀�Ŷ]�XcURZ�cUX�YT�ZT\]�URTQad�Ŷ]�_VTX]d�YcTjdWZ]aXWTaUV�ZU[�Uad�YT�dWX_T\]R�U�SW\]a�aQZb]R�T̀�YUSX�UX�rQW_gVf�UX�[TXXWbV]�k�Wa�TŶ]R�cTRdXe�ZWaWZWsWaS�Ŷ]�YWZ]�T̀�RTTZ�_T\]RUS]�Wa�Ŷ]�X]aX]�T̀�\WXWYWaS�U�SW\]a�[]R_]aYUS]�T̀�mnop�YUSX�Wa�Ŷ]�RTTZh��URWTQX�ZU[X�Uad�YUS�d]aXWYW]X�c]R]�QX]d�ĉWV]�_TadQ_YWaS�Ŷ]�Y]XYXh�z]\]RUV�_TaYRTV�UVSTRWŶZX�c]R]�_R]UY]de�RQae�Uad�_TZ[UR]d�Ta�Ŷ]�XWZQVUY]d�RTbTYh��l̂]�ZTXY�_TZZTa�XTVQYWTaX�Wa�VWY]RUYQR]�̀TR�RTbTY�_T\]RUS]�UR]�dW\WdWaS�Ŷ]�ZU[�WaYT�_]VVX�{�}e�{�}�Uad�[UŶ�[VUaaWaS�{�}h�PQR�UVSTRWŶZX�dT�aTY�UXXQZ]�gaTcV]dS]�T̀�Ŷ]�TRW]aYUYWTa�TR�VT_UYWTa�T̀�Ŷ]�RTbTY�Uad�dT�aTY�YUg]�Ud\UaYUS]�T̀�Ŷ]�_WY]d�U[[RTU_̂]Xh�oa�_TaYRUXYe�c]�̂U\]�]q[]RWZ]aY]d�cWŶ�Ŷ]�T̀VVTcWaS�XWZ[V]�UVSTRWŶZXh��nWRXYe�Ŷ]��RUadTZ��UVSTRWŶZ�̂UX�aT�gaTcV]dS]�T̀�U�XQRRTQadWaS�]a\WRTaZ]aY�Uad�WX�XWZ[Vf�dRW\WaS�URTQade�bTQa_WaS�USUWaXY�cUVVX�UX�WY�YRW]X�YT�̀Wad�Ŷ]�YUSXh�i]�̂U\]�]URVW]R�{|�}�X̂Tca�ŶUY�Ŷ]�UaSV]�T̀�U�YQRa�ÙY]R�bTQa_WaS�WaYT�U�cUVV�WX�Ua�WZ[TRYUaY�̀U_YTR�̀TR�Ŷ]�]̀̀W_W]a_fh�l̂]�X]_Tade��̂WXYTRf�bUX]d��UVSTRWŶZ�R]Z]Zb]RX�Uad�QX]X�Ŷ]�X]rQ]a_]�T̀�YUSX�X]]a�YT�_̂UaS]�WYX�_TQRX]h��l̂WRde�Ŷ]��ZU[�

��������������������������������������� ¡¢� £�¤¥¡£�¦����££§̈¢££©¥ ª�����«¥¡£�¢¡£¢¥¬�¤¥¡£�¦�®�����®����̄°±���������²�³́��µ���������«£¡��¡¥¬¶́´́ ��������·������¶����� ¡¢� £�££§̈

¹̧¹�º»¼½¾¿�ºÀ¿ÀºÁÀÂÃ�ÄÅ�ÆÇº¾�ÅÈ�ÉÅÊ¾ÀÊ¾¿�ÅÈ�¾½»¿�ÆÇÆÀº�ËÇÌ�ÍÀ�ºÀÆºÅÂÎÉÀÂ�Åº�¾ºÇÊ¿Ë»¾¾ÀÂ�»Ê�ÇÊÌ�ÈÅºË�Åº�ÍÌ�ÇÊÌ�ËÀÇÊ¿�Ï»¾½ÅÎ¾�¾½À�Ïº»¾¾ÀÊ�ÆÀºË»¿¿»ÅÊ�ÅÈ�ÐºÇÊ¿ÐÀÉ½�ÑÎÍ¹»ÉÇ¾»ÅÊ¿Ò�ÏÏÏÃ¾¾ÆÃÊÀ¾Ã�ÓÔÕÖ�×ØÙÃ×ÚÛÃ×ÜÚÃ××ÚÒ�ÝÊ»ÁÀº¿»¾Ì�ÅÈ�Þº»¾»¿½�ßÅ¹ÎËÍ»ÇÒ�àÀ¹ÅÏÊÇÒ�ßÇÊÇÂÇá××âÚãâ×äÒ×ÙÖÛãÖÛÜå

105

Appendix B

CURRICULUM VITAE

Personal data

Name: Andres Puusepp

Date of birth: 28.11.1982

Place of birth: Estonia

Citizenship: Estonian

Education

2001 – 2006 Tallinn University of Technology,

MSc in Computer Science

1989 – 2001 Pärnu Koidula Gümnaasium

Language competence

Estonian Native language

English Fluent

Russian Basic

Professional employment

2007 – … Swedbank AS, developer

2005 – 2007 WebMedia AS (Nortal AS), developer

106

ELULOOKIRJELDUS

Isikuandmed

Nimi: Andres Puusepp

Sünniaeg: 28.11.1982

Sünnikoht: Eesti

Kodakondsus: Eesti

Hariduskäik

2001 – 2006 Tallinna Tehnikaülikool, informaatika magister

1989 – 2001 Pärnu Koidula Gümnaasium

Keelteoskus

Eesti keel Emakeel

Inglise keel Kõrgtase

Vene keel Algtase

Teenistuskäik

2007 – … Swedbank AS, arendaja

2005 – 2007 WebMedia AS (Nortal AS), arendaja

107

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods
for Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:
Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

108

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum
Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой
фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n
переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired
Underwater Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

109

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit
State Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands
Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-
Level Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and
Synthesis for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User
Interfaces. 2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

110

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-
Silicon Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting
Algorithms Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

111

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance
Spectroscopy of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation
Method. 2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application
to University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

112

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and
Visual Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic
Surgery and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in
High-Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood
of Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation
Factors of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL
SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed
Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic
Electrical Impedance. 2016.

115. Aivo Anier. Model Based Framework for Distributed Control and Testing
of Cyber-Physical Systems. 2016.

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016.

117. Sergei Astapov. Distributed Signal Processing for Situation Assessment in
Cyber-Physical Systems. 2016.

118. Erkki Moorits. Embedded Software Solutions for Development of Marine
Navigation Light Systems. 2016.

113

119. Andres Ojamaa. Software Technology for Cyber Security Simulations.
2016.

120. Gert Toming. Fluid Body Interaction of Biomimetic Underwater Robots.
2016.

121. Kadri Umbleja. Competence Based Learning – Framework,
Implementation, Analysis and Management of Learning Process. 2017.

122. Andres Hunt. Application-Oriented Performance Characterization of the
Ionic Polymer Transducers (IPTs). 2017.

123. Niccolò Veltri. A Type-Theoretical Study of Nontermination. 2017.

124. Tauseef Ahmed. Radio Spectrum and Power Optimization Cognitive
Techniques for Wireless Body Area Networks. 2017.

125. Andre Veski. Agent-Based Computational Experiments in Two-Sided
Matching Markets. 2017

126. Artjom Rjabov. Network-Based Hardware Accelerators for Parallel Data
Processing. 2017.

127. Fatih Güllü. Conformity Analysis of E-Learning Systems at Largest
Universities in Estonia and Turkey on the Basis of EES Model. 2017

128. Margarita Spitšakova. Discrete Gravitational Swarm Optimization
Algorithm for System Identification. 2017.

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

