
TALLINN UNIVERSITY OF TECHNOLOGY 

Faculty of Information Technology 

Department of Computer Engineering 

 

Tallinn 2015 

 

  

 

 

 

 

 

IAF70LT 

Oyeniran Adeboye Stephen  

IASMM 132085 

DOUBLE PHASE FAULT COLLAPSING 

WITH LINEAR COMPLEXITY IN DIGITAL 

CIRCUIT  

Master thesis 

 

 

Prof. Raimund-Johannes Ubar 

D.Sc. Institute of Computer Engineering, Tallinn University of Technology 

Professor, Chair of Computer Systems Test and Verification 

 

 

 



 

 

 ii   

 

 Author’s Declaration of originality 

I hereby certify that I am the sole author of this thesis. All the used materials, references 

to the literature and the work of others have been referenced. This thesis has not been 

presented for examination anywhere else. 

Author: Adeboye Stephen Oyeniran. 

06.04.05 



 

 

 iii   

 

 Abstract   

The issue of digital systems testing with respect to test pattern generation and fault 

diagnosis was investigated in this thesis work. Hence, we propose a new structural fault 

collapsing method with linear complexity with the aim of reducing the search space for 

test generation and fault diagnosis in digital systems. And this is the main objective and 

concentration of this thesis. Secondly, we proposed a method for estimating the 

achievable size of the collapsed fault set for a given SSBDD. This method is referred to 

as lower and upper bounds estimation for fault collapsing. 

The fault collapsing method proposed in this thesis work is divided into two phases. The 

first phase of the fault collapsing method is regarded as a superposition of binary decision 

diagram (BDD) of logic gates into a model that extracts both function and data about the 

structural path of the circuit. Considerable number of faults can be collapsed at this stage, 

this is because the SSBDD has fewer nodes than the gate level models as a result of the 

compactness of the model. The second phase of this method involves topological analysis 

of the SSBDD model derived from the first phase. Both phases have linear complexity. 

We proved with experimental result that the method proposed in this thesis offers better 

collapsing capabilities when compared with previous structural fault collapsing methods  

 



 

 

 iv   

 

Annotatsioon 

Kahefaasiline lineaarse keerukusega algoritm rikete kollapseerimiseks 

digitaalskeemides 

Käesolevas lõputöös uuriti digitaalsüsteemide testimist testvektorite genereerimise ja 

rikete diagnoosimise vaatepunktist. Töö peamiseks eesmärgiks oli leida meetod, mis 

lihtsustab rikketuvastust testvektorite otsinguhulga vähendamise kaudu. Magistritöö 

põhitulemusena pakutakse välja lineaarselt kasvava keerukusega meetod rikete 

kollapseerimiseks, mis võimaldab kiirendada testide genereerimist ja rikete simuleerimist 

ning muudab lihtsamaks rikketuvastuse digitaalsüsteemides. Töö kõrvaltulemusena leiti 

meetod, mis võimaldab hinnata rikete kollapsi piire. Rikete kollapseerimise meetod 

töötab kahes etapis. Esimene etapp seisneb otsustusdiagrammide SSBDD sünteesis, kus 

erinevate signaaliteedede rikked kollapseeruvad vastavat signaaliteed esindava graafitipu 

riketeks. Suurt hulka rikkeid saab selles etapis elimineerida, kuna SSBDD on 

kompaktsem ja sisaldab vähem sõlmi kui värati-tasemel mudel. Meetodi teine etapp 

seisneb SSBDD mudeli topoloogilises analüüsis ning on samuti lineaarse keerukusega, 

nagu eelmine etappki. Eksperimentide abil tõestati, et töös välja pakutud meetod pakub 

paremaid rikete vähendamise võimalusi võrreldes teiste autorite poolt varem pakututega 

 

 

 

 

 

 

 

 

 



 

 

 v   

 

Acknowledgements 

I will like to thank God for His grace to embark on this degree. I owe it all to Him for His 

grace of life and ability to complete this thesis. 

Secondly, I will like to thank my supervisor, Prof. Raimond Ubar for his supervision and 

valuable advice to be able to complete this research successfully. Your guidance and 

advice have been very valuable, helpful. Thank you, you will never be forgotten. 

I also appreciate Teet Evartson who agreed to review this master’s thesis. Thank you for 

your time.  

I will like to thank my colleagues, Galina Josifovska and Palle Kotta for your friendship 

through these 2 years of new discovery. You have made it easy to adapt to Tallinn Estonia. 

My appreciation also goes to my African friends here in Tallinn, Pastor Chidi, Mr. 

Ogunyemi, Godswill, Ayo, John, Dayo, Funmi, Dami, my lovely baby Praise Nsehe and 

every member of RCCG Tallinn to mention but a few. I love you all; you have made it 

an interesting time so far. I will not forget you quickly. 

My appreciation also goes to my future wife, soon we will be together and you will be 

proud of who I have been. I love you in advance. 

Finally, I will like to thank my family for their support and understanding during these 

two years of absence from them. Your support have been a driving force to completing 

this study. I love you all. 

This work was supported by IT academy under the monitoring of Estonian IT Foundation 

for Education (HITSA). 

 



 

 

 vi   

 

Table of abbreviations and terms 

ATG  Automated Test Generation 

BDD  Binary Decision Diagram 

CMOS  Complementary metal–oxide–semiconductor 

CPU  Central Processing Unit 

CUT  Circuit Under Test 

FFR  Fanout-Free Region 

ICs  Integrated Circuits 

MSF Multiple Stuck-At Fault 

ROBDD  Reduced Ordered Binary Decision Diagram 

S-A-0  Stuck-At-0 

S-A-1  Stuck-At-1 

SAF Stuck-At Fault 

SSF  Single Stuck-At Fault 

TG Test Generation 

SSBDD  Structurally Synthesized Binary Decision Diagram 

S3BDD Shared Structurally Synthesized Binary Decision Diagram 

VLSI  Very Large Scale Integrated circuits 



 

 

 vii   

 

Table of Contents 

1. Introduction .............................................................................................................. 1 

1.1. Background and Problem ................................................................................... 2 

1.2. Description of the task solved ............................................................................ 3 

1.3. Thesis Structure ................................................................................................. 4 

1.4. Overview of work .............................................................................................. 5 

2. Background ............................................................................................................... 6 

2.1. Digital Testing ................................................................................................... 6 

2.2. Fault Modeling ................................................................................................... 8 

2.3. Collapsing ........................................................................................................ 10 

2.3.1. Stuck at fault ............................................................................................. 10 

2.3.2. Test Generation......................................................................................... 12 

2.3.3. Fault Diagnosis ......................................................................................... 15 

2.3.4. Equivalence Faults .................................................................................... 20 

2.3.5. Dominant Faults ....................................................................................... 22 

2.4. Conclusions ...................................................................................................... 23 

3. Double Phase Fault Collapsing .............................................................................. 24 

3.1. Structurally Synthesized BDDs (SSBDD) ....................................................... 24 

3.2. Fault Collapsing on the SSBDD Model ........................................................... 39 

3.3. Lower and Higher Bounds For Fault Collapsing ............................................. 44 

3.4. Algorithm Description ..................................................................................... 48 

3.5. Conclusions ...................................................................................................... 51 

4. Experimental Results .............................................................................................. 53 

5. Conclusions ............................................................................................................ 59 

References ...................................................................................................................... 60 



 

 

 viii   

 

Appendix 1 – Program Description and Manual ............................................................ 63 

Appendix 2 – Source Code ............................................................................................. 65 



 

 

 ix   

 

  List of figures 

Figure 1: Digital Circuit Testing Process ......................................................................... 7 

Figure 2: Stuck-at-Fault on a Circuit .............................................................................. 10 

Figure 3: Testing for Faults ............................................................................................ 11 

Figure 4: Diagnosis Process [2] ...................................................................................... 15 

Figure 5: Example Circuit for Diagnosis ........................................................................ 17 

Figure 6: Fault Dictionary .............................................................................................. 19 

Figure 7: Equivalent Fault Collapsing ............................................................................ 21 

Figure 8: Dominant fault in AND gate ........................................................................... 23 

Figure 9: Binary Decision Diagram ............................................................................... 25 

Figure 10: Reduced Order Binary Decision Diagram .................................................... 25 

Figure 11: Combinational Circuit with Single Output ................................................... 27 

Figure 12: SSBDD for the circuit in Figure 11 .............................................................. 27 

Figure 13: Elementary BDDs for logic gates ................................................................. 28 

Figure 14: Superposition procedure (I) .......................................................................... 29 

Figure 15: Superposition procedure (II) ......................................................................... 29 

Figure 16: Superposition procedure (III) ........................................................................ 30 

Figure 17: Superposition procedure (IV) ....................................................................... 30 

Figure 18: Superposition procedure (V) ......................................................................... 31 

Figure 19: Combinational circuit with internal fan-out .................................................. 32 

Figure 20: SSBDD for FFR1 in Figure 19 ..................................................................... 32 

Figure 21: SSBDD for FFR2 in Figure 19 ..................................................................... 32 

Figure 22: Combinational Circuit with Single Output y ................................................ 33 

Figure 23: SSBDD for the circuit in Figure 22 .............................................................. 34 

Figure 24: Test pattern for detecting the faults SAF/0 or SAF/1 ................................... 34 



 

 

 x   

 

Figure 25: Combinational circuit with labeled interconnecting lines ............................ 36 

Figure 26: Showing paths and nodes .............................................................................. 40 

Figure 27: Equivalent Faults........................................................................................... 41 

Figure 28: Single AND gate with N inputs .................................................................... 45 

Figure 29: Single AND gate with 3 inputs ..................................................................... 45 

Figure 30: Tree-like circuits with increasing complexity ............................................... 46 

Figure 31: Proposed Method Algorithm ......................................................................... 49 

Figure 32: Walkthrough Example circuit (I) .................................................................. 50 

Figure 33: Walkthrough Example circuit (II) ................................................................. 50 

Figure 34: Walkthrough Example circuit (III) ............................................................... 51 

Figure 35: Walkthrough Example circuit (IV) ............................................................... 51 

Figure 36: Collapsed faults for ISCAS'85 Circuit .......................................................... 53 

Figure 37: Collapsed faults for ISCAS'89 Circuit .......................................................... 54 

Figure 38: Collapsed faults for ITC'99 Circuit ............................................................... 55 

Figure 39: Fault collapse time for ISCAS'85 Circuit ..................................................... 55 

Figure 40: Fault collapse time for ISCAS'89 Circuit ..................................................... 56 

Figure 41: Fault collapse time for ITC'99 Circuit .......................................................... 56 

Figure 42: Launching command prompt ........................................................................ 63 

Figure 43: Navigating to application .............................................................................. 64 

Figure 44: Collapsing Fault with Application ................................................................ 64 

 



 

 

 xi   

 

List of tables 

Table 1: Exhaustive Test Time Estimation..................................................................... 14 

Table 2: Diagnostic Fault Response Table ..................................................................... 18 

Table 3: Faults dominating the SSBDD node faults....................................................... 37 

Table 4: Fault collapsed by SSBDD synthesis for ISCAS’85 circuits ........................... 38 

Table 5: Result of Fault collapsing for SSBDD in Figure 23 ......................................... 43 

Table 6: Fault collapsing data of proposed method ........................................................ 57 

Table 7: Comparison with other methods....................................................................... 57 

 

 



 

1 

 

1. Introduction 

This thesis work focuses on improving the efficiency of fault simulation that enhances 

digital circuit testing by the introduction a method of fault collapsing.  

This first chapter begins with the problem statement, followed by a description of task 

solved and methodology. Finally in this chapter is the overview or summary of work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 2   

 

1.1. Background and Problem 

According to Moore’s law, the scale of ICs has doubled every 18 months [1], [2], [3], [4]. 

This consequently explains the exponential growth of digital systems and increases its 

application in different spheres of today’s living. Virtually everyone today depends on 

digital devices.   

Although according to [2], integrated electronics has demonstrated high reliability, but 

this could be challenged as the complexity of digital circuit increases due to the fact that 

in today’s digital systems, lots of transistors are used whereas the reduced size is also 

considered.  However, reliability should not also be compromised. This therefore means 

that a proper test has to be done efficiently on these systems before final use. 

Testing of a system is an experiment in which the system is exercised, and its resulting 

response is analyzed to ascertain whether it behaved correctly [1]. 

During testing, we apply a set of stimuli (test patterns) to the input of a circuit or system 

usually known as circuit under test (CUT) and at the same time observing and analyzing 

the output. The analysis of the output involves comparing with expected circuit response. 

A circuit will be regarded as fault free if upon analysis of the output after subjecting the 

CUT to stimuli correlates to the expected result otherwise the circuit will be assumed 

faulty. 

Since test pattern generation algorithms are time-consuming, it is important that a fault 

list used in a test process is reduced as much as possible. A small fault list reduces 

redundancy in generated test vectors as well as the overall test time [5]. 

This thesis work tries to address the issues of test efficiency by reducing the number of 

test patterns generation during testing and consequently reducing the time needed for 

testing. This is believed to be achievable if the number of faults to be tested is reduced by 

identifying redundant faults in a system or circuit to be tested and collapsing them.  

Hence, a new structural fault collapsing method with linear complexity to reduce the 

search space for test generation and fault diagnosis in digital circuit is presented. 

 



 

 

 3   

 

1.2. Description of the task solved 

The main contribution of this thesis work is highlighted as below: 

We proposed a new structural fault collapsing method with linear complexity to reduce 

the search space for test generation and fault diagnosis in digital circuits [6]. 

The thesis tries to compare the new algorithm to other fault collapsing algorithms, for 

example, structural fault collapsing by superposition of binary decision diagram BDDs 

proposed by [7]. The proposed method of fault collapsing shows with experimental data 

more efficiency and better time cost compared other structural fault collapsing methods 

[6]. 

The method proposed in this thesis is divided into two phases each with a goal of 

collapsing faults in a circuit. The first phase of this method is regarded as superposition 

of BDD of logic gate into a model that extracts both function and data about the structural 

path of the circuit [6], [8]. This model is known as SSBDD. Fault collapsing in this first 

phase results from the effect of the SSBDD model compaction [6]. 

The second phase of the method involves the topological analysis of the SSBDDs [6]. 

The experimental result of the method described in this thesis work is compared with 

other methods that have aimed at fault collapsing in terms of number of faults collapsed 

and the time. 

 

 

 

 

 

 

 



 

 

 4   

 

1.3. Thesis Structure 

The thesis is organized as follows. In Chapter 2, an overview of testing is given and a 

discussion on the various fault models used in digital circuit was discussed. We also 

looked into the challenges of test generation and fault diagnosis in digital systems. In 

Chapter 3, Double phase fault collapsing with linear complexity in digital circuit is 

discussed and a new method for increasing the number of collapsed faults was developed. 

Chapter 4 Explains the result of proposed method and comparison with other methods of 

fault collapsing. Finally, Chapter 5 The conclusion or summary of work is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 5   

 

1.4. Overview of work 

We propose a new structural fault collapsing method that is based on the two-phase 

topology analysis of the circuit description. The first phase is known as SSBDD synthesis 

which is carried out at the gate level by superposition of elementary BDD of logic gates 

while the second phase involves topological analysis of the SSBDD. 

The proposed method uses SSBDD model which has fewer nodes than the gate-level 

models. Hence, we can already have a reduced number of fault set which could be 

regarded as initial fault collapsing. The fault collapsing capability not only decreases the 

space needed, it also leads to increased speed of fault simulation and test generation. 

The contribution of this thesis is in providing an excellent and scalable collapsing method 

that is very promising for large circuits. This method has been proven to be more efficient 

than previous structural fault collapsing methods 



 

 

 6   

 

2. Background 

In this chapter, background information or topics relating to the focus of this thesis 

research is presented. This begins with a description of the concept of digital testing, 

followed by fault modeling. A discussion on fault collapsing is done in view of equivalent 

faults and dominant faults. The chapter will be concluded with discussion on test 

generation and fault diagnosis. We will draw the motivation for this work and propose 

for the next chapter a method of optimizing these operations. 

2.1. Digital Testing 

Testing, in general, is a process of checking the genuineness, quality, and reliability or 

correct functioning of something. In digital systems, testing is not far from this. It is a 

way to check the correctness of a system. 

According to [1], testing of a system is an experiment in which the system is exercised 

and its resulting response is analyzed to ascertain whether it behaved correctly. If an 

incorrect behavior is detected, the second goal of a testing experiment may be to diagnose, 

or locate, the cause of the misbehavior. Diagnosis assumes knowledge of the internal 

structure of the system under test. These concepts of testing and diagnosis have a broad 

applicability. Consider, for example, medical tests and diagnosis, test-driving a car, or 

debugging a computer program. 

Another interesting definition of testing, as given by [9], is that testing can be 

characterized as a black-box experiment. At each level of complexity, a digital system or 

a part of it can be regarded as a black box having a set of input and output terminals. We 

can determine correct functioning of the box by applying stimuli to the input and 

observing the responses at the output. 

During testing, we apply a set of stimuli (test patterns) to the input of a circuit or system 

usually known as circuit under test (CUT) and at the same time observing or analyzing 

the output. The analysis of the output involves comparing it with expected circuit 

response. A circuit will be regarded as fault-free if upon analysis of the output after 



 

 

 7   

 

subjecting the CUT to stimuli correlates to the expected result, otherwise the circuit will 

be assumed faulty. 

The Figure 1 below explains the testing process on a digital circuit under test. Test 

patterns are applied as input and a comparison is done between the output of the circuit 

and the expected response. Based on this a decision is made on whether the circuit passes 

or fails. 

  

 

Figure 1: Digital Circuit Testing Process 

 

Testing can be done at different levels of attraction, but of interest to this work is the logic 

level of abstraction. At this level of abstraction, we represent the information processed 

by logic values, which are represented as values of 0’s and 1’s [1]. 

 

Benefits of Testing 

Reliability of a system is of utmost importance in today’s world owing to the fact that the 

effect of correct functioning of a system has extended across wider range of applications. 

A key requirement for obtaining reliability of a system is to determine that the system is 

error free. We can also say that the way to achieve system reliability is to check or ensure 

that the system is error free [10]. 



 

 

 8   

 

Quality systems are a product of correct and quality testing process. If the test procedure 

is good, but the system fails testing, then it is either that the fabrication process, design or 

specification is faulty [11]. 

According to [11], quality and economy are benefits of testing, where quality means 

satisfying the user’s need at minimum cost. Economy involves overall cost of 

manufacturing and testing. 

 

2.2. Fault Modeling 

Fault models are necessary for generating and evaluating a set of test vectors. According 

to the text on VLSI test principles, a good fault model should generally satisfy two criteria 

which are: (1) It should accurately reflect the behavior of defects, and (2) it should be 

computationally efficient in terms of fault simulation and test pattern generation [2].  

Many fault models have been proposed, [1] which are: stuck-at faults, bridging fault, 

transistor fault, delay fault and open faults. At the same time, the behavior of all possible 

defects that can occur in a circuit unfortunately cannot be reflected accurately by a single 

fault model [2]. This results in the use of a combination of different fault models in the 

process of generating test vectors and evaluating them for testing purposes.  

A fault model is a description at the digital logic level of the effects of some fault or 

combination of faults in the underlying circuitry. One of the advantages of fault model is 

that it is technology independent and works well in practice. However, it may fail to 

identify certain process specific faults (e.g. CMOS floating gates) and detects static faults 

only [13]. 

In general, structural fault models assume that components are fault-free, and only their 

interconnections are affected [1]. 

On a general view, a fault model could fall under one of the following assumptions: single 

fault assumption or multiple fault assumption. The single fault model assumes that only 

one fault occurs in a circuit at any given time. In this case, we can estimate the total 



 

 

 9   

 

number of possible single faults as m×n. Where m would be different types of faults that 

could occur at each potential fault site. In most cases or models, m is equal to 2 and n 

would be possible fault locations or sites. 

On the other hand, multiple fault model allows more than one fault to occur 

simultaneously in a circuit. The number of possible fault combination in this case, could 

be given as 3n-1, where n is the number of nodes and each node could either be of state 

SAF-0, SAF-1 or correct state with the assumption that each node may have m = 2 faults. 

This is an exponential increase compared to the single fault model. 

[1] pointed that while multiple-fault model is more accurate than the single-fault 

assumption, the number of possible faults becomes impractically large when dealing with 

multiple fault model except in the case of small circuits with small number of fault types 

and fault sites. The good news according to [11], [12] is that 100% test for single stuck-

at fault is known to cover a very high percentage usually greater than 99.6% of multiple 

stuck-at-faults. 

In most cases, the number of single faults that is to be used for test vector generation in a 

circuit is usually less than m×n. This is because when considering the single fault 

assumption, two or more faults could have identical behavior for all possible input 

patterns [1]. These faults are regarded as equivalent faults. When this occurs, equivalent 

faults in such circuit can be represented by a single fault in the set of equivalent faults. 

The redundant equivalent fault could be removed yet preserving the quality of the test, 

and this in general leads to a reduction of the entire set of equivalent faults. This reduction 

is known as fault collapsing.  

The remaining part of this thesis will address this concept of fault collapsing, and different 

methods of achieving this will also be discussed. 

 

 

 



 

 

 10   

 

2.3. Collapsing  

2.3.1. Stuck at fault 

We understood that structural fault models assume that components are fault-free, and 

only their interconnections are affected [1]. This implies that circuits are modeled as an 

interconnection of Boolean gates. These interconnections can also be referred to as 

netlists [11]. The Boolean gates that make up the circuits are fault free, but the 

interconnections are affected by stuck-at faults.  

Interconnections between gates can have any of the two types of faults. It could either be 

stuck-at 1(S-A-1) or stuck-at 0(S-A-0). If a line is stuck-at 0, for instance, it means that 

the line will have a fixed logic value of 0 regardless of the output of the gate driving the 

line. The same applies to stuck-at 1 faults.  

We can also say that a stuck-at fault transforms the correct value on the faulty signal line 

to appear to be stuck at a constant logic value, either a logic 0 or a logic 1, and this again 

is referred to as stuck-at-0 (SA0) or stuck-at-1 (SA1), respectively [2]. 

Let’s take for example an AND gate with two inputs (a and b) and an output z, it has 3 

fault sites (2 on the primary input and 1 on the output) and 6 single stuck-at faults. Each 

fault sites has 2 stuck-at fault which are S-A-0 and S-A-1 respectively. This can be shown 

in the Figure 2 below. 

     

Figure 2: Stuck-at-Fault on a Circuit 

 

Assuming we pass input vectors 1 for both a and b. The value of the output is expected 

to be 1. If the input a is stuck at 0, the value at output z will be 0. This will be regarded a 

faulty circuit value. Figure 3 below explains this. 



 

 

 11   

 

 

 

Figure 3: Testing for Faults 

Stuck at fault model is of two types as mentioned above. They are: single stuck-at fault 

and multiple stuck at faults. 

Single stuck-fault model (SSF) is regarded as classical or standard fault model. It is the 

most common used fault model. According to [1],  the usefulness of SSF results from the 

following attributes: 

• it presents many different physical faults. 

• it is independent of technology. 

• experience has shown that test that detect SSFs detect many non-classical faults 

as well. 

• when compared to other fault models, the number of SSFs in a circuit is small. 

• SSFs can be used to model other types of faults 

• High SSFs coverage provides a high multiple stuck-at faults coverage. 

The multiple stuck-fault (MSF) model is a straightforward extension of the SSF model in 

which several lines can be simultaneously stuck [1]. 

This thesis work will not extend its study into multiple stuck-at faults. The single stuck-

at fault will be sufficient to implement and demonstrate the fault collapsing algorithm. 

And as mentioned previously, 100% test for single stuck-at fault are known to cover a 



 

 

 12   

 

very high percentage usually greater than 99.6% of multiple stuck-at-faults. Hence, we 

will focus only on single stuck-at fault model. 

 

2.3.2. Test Generation 

To simplify the objective of test generation, We would define it as a way to generate a 

test vector or pattern for a given fault in a given circuit or prove that it is untestable. 

According to [15], a set of test must be generated within a given amount of computational 

effort. For some faults known as abortive faults, test generation could be terminated 

before a test is generated or proven untestable. 

The task of test generation is finding a set of patterns or vectors that will fully test the 

circuit. This means that either all faults are detected or a maximal fraction of the testable 

faults are detected. Hence, the goal is to minimize the number of aborted faults within a 

given amount of computational effort. 

When the test patterns are applied to a circuit, they cause all faulty circuit to exhibit 

behaviors different from that of the good circuits at the primary output. This implies that 

if there is a failure, it will be revealed when at least one of the primary output is different. 

Test generation is a complex problem with many interacting aspects. The most important 

are: 

• The cost of TG. 

• The quality of the generated test. 

• The cost of applying the test [1]. 

In view of the above points about test generation, it is safe to say that test set must be 

reasonable in the sense that we must be able to apply it parsimoniously to all circuits 

produced. It is true that using all possible input patterns will reveal faulty circuits, but this 

will be at the expense of cost and other resources like time of test and memory 

consumption.  



 

 

 13   

 

In summary, testing cost can be estimated as test generation time, test application time, 

fault coverage, test storage cost (test length) and availability of automatic test equipment. 

Therefore, the motivation for this project is to reduce as much as possible the cost of 

testing. It is postulated that reducing the cost of test generation will impact the testing 

cost in general. 

The TG cost also depends on the complexity or size of the circuit to be tested. Complex 

and large circuits with many inputs produce a huge set of possible faults. The main 

challenge here will be improving the efficiency, and cost of test generation by reducing 

test sets and search space without compromising the quality. This will considerably 

increase the speed of fault simulation. This is because reduced test sets and search space 

will reduce the number of faults to be simulated and improve the ability to cope with the 

problem of diagnostic resolution during fault diagnosis of digital systems [6]. 

Test generation can be broadly divided into three (3) types. Exhaustive, deterministic and 

random. In a combinational logic block that contains no redundant logic, we can test a 

device by applying all possible 2K possible input patterns, Where K is the number of 

inputs. This type of testing is regarded as exhaustive testing [13]. For small circuits, this 

is not an issue, it is very good as it covers a very high fault, but it becomes impracticable 

as the size of the circuit and number of input increases (unless circuit is partitioned into 

cones of logic less than or equal to 15). 

[13] estimated the time required for carrying out an exhaustive test on a digital circuit 

with respect to the size and number of primary inputs of the circuit. This can be seen in 

Table 1 below on the assumption that a tester is capable of applying a test pattern every 

100ns. 

 

 

 

 



 

 

 14   

 

Input Number of Test Test Time 

20 220 0.1 Sec 

40 240 30.5 Hours 

60 260 58500 Years 

Table 1: Exhaustive Test Time Estimation 

 

Random TG is less complex compared to deterministic TG. Random TG may be able to 

initially generate tests quickly, but it would be very inefficient to achieve higher fault 

coverage[16]. Although deterministic TG has possibly high fault coverage and cheaper 

to implement, it is however expensive to generate. It uses the structural and functional 

information from the circuit in the test generation process. 

According to [17] the problem of ATG, which is known to belong to the class of the NP-

complete problems can be viewed as a finite space search problem. For a circuit with N 

primary inputs, there exist 2N combination of input assignments. This 2N combination 

represents all points the finite search consist of [18]. 

The requirement for deterministic test generation is focused on generating test patterns 

for targeted faults. In general, for any 2N combination of input assignments, only small 

portion of these combinations fulfill the requirement described. The problem of 

deterministic TG algorithm suffers from is that they generally are not able to identify the 

entire non-solution areas, but part of them [18]. 

In this case, the problem can be minimized by reducing the number of 2N combination 

and we can be achieve this by collapsing redundant faults. 

 

 



 

 

 15   

 

2.3.3. Fault Diagnosis 

According to [2], during the IC design and manufacturing cycle, a manufacturing test 

screens out the bad chips. 

As we have discussed, a circuit under test (CUT) fails when its observed behavior is 

different from its expected behavior. Hence the task of diagnosis is finding out why the 

CUT fails to behave as expected. This consists of locating the physical fault(s) in a 

structural model of the CUT. 

 

Figure 4: Diagnosis Process [2] 

As illustrated in the Figure 4 above, during diagnosis, a comparison is made in relation 

to the behavior of a fault-free model which could also be referred to as the circuit under-

diagnosis (CUD) to that of the faulty unit. During this process, test patterns are generated 

and introduced to both the CUD and the failing circuits. The responses from both (which 

are expected to differ) are observed in order to locate the faults. 

We can view diagnosis based on two scenarios. One of which focuses on diagnosis in 

order to identify and make decisions about repair. This could be the case for some digital 

systems. The other scenario is in cases of digital VLSI chips where un-repairable and 

faulty chips must be discarded, even in these cases, diagnosis are done in the event where 

chip yield are low and performance are unacceptable [15]. The focus of diagnosis at this 

stage is to improve yield and performance, which will consequently affect the approach 



 

 

 16   

 

to the design. For instance, this will help to change chip design, design rules, design 

methodology, step(s) or fabrication. 

Diagnosis can be either physical or logical. However, from research, it is known that 

physical diagnosis is expensive and destructive. Therefore, logical diagnosis is the first 

to be performed in order to first identify the likely faults before physical diagnosis is done. 

In this discussion, we will only focus on logical diagnosis. 

The quality of a diagnosis can be measured either by identifying if it could pinpoint the 

fault site or by achieving complete diagnosis in considerably good time (which can be 

relative to size).  

According to [2], the quality of pinpointing the fault site can be measured by the following 

indexes.  

 Diagnostic resolution 

 First-hit index 

 Top-10 hit 

 Success Rate 

Diagnostic resolution can be defined as the total number of fault that can be identified by 

diagnosis. For some diagnostic tools, diagnostic accuracy cannot be measured by 

diagnostic resolution. For these tools, accuracy could be measured by first-hit index, top-

10 hits or success rate as the case may be. 

As mentioned previously, I will focus on combinational logic diagnosis. [1] has identified 

that fault diagnosis can be approached in two different ways. These are cause–effect 

analysis and effect–cause analysis. I will therefore shortly describe these approaches and 

point out possible problems that have been faced in these. In concluding this part, I will 

motivate my discussion by discussing the contribution of this thesis in trying to address 

these issues. 

 



 

 

 17   

 

Cause-Effect Analysis  

The cause-effect analysis uses fault simulation to determine the possible responses to a 

given test in the presence of faults. In this case, most of the work is done before the testing 

experiment. The approach here entails a database construction called a fault dictionary 

through an escalated or intensive fault simulation process. This is called cause-effect 

analysis because it starts with analyzing the possible faults (causes) and then determines 

their corresponding effects known as the response. 

The fault dictionary stores the responses of a circuit to a test set in the presence of faults 

under a fault mode [20]. 

In order to locate faults, the task here would be to compare the actual response obtained 

from the CUT with the pre-computed responses stored in the fault dictionary. If the 

response obtained from the CUT matches that of the fault dictionary for one or more 

faults, then the dictionary will indicate the corresponding fault(s) and hence the CUT is 

diagnosed to have one of the faults. 

Let’s take an example of a CUD with four inputs (a, b, c, d) and one output (k) as shown 

in Figure 5 We can make assumption of generating six (6) test vectors {t1, t2, t3, t4, t5, 

t6}. Based on single stuck-at model, we can deduce after equivalent fault collapsing a 

fault universe given as {f1, f2, f3, f4, f5, f6}.  

 

 

Figure 5: Example Circuit for Diagnosis 

 

In Table 2, we show a full response table of the output signal k, which was gotten from 

complete fault simulation. The table includes values for both fault-free and faulty circuits. 



 

 

 18   

 

Row data as in the table represents either faulty or fault-free circuits while column data 

represents the response of one test vector. However, it is safe to say from the simulation 

that the test set has 100% fault coverage. 

 

 

CIRCUIT 

INPUT VECTORS(a, b, c, d) 

VI V2 V3 V4 V5 V6 

Fault Free 0 0 0 0 0 1 

F1 0 1 1 1 1 1 

F2 1 0 1 1 1 1 

F3 1 1 1 0 1 1 

F4 0 0 1 0 1 1 

F5 0 0 0 1 1 1 

F6 0 1 0 1 0 1 

Table 2: Diagnostic Fault Response Table 

 

Figure 6 shows a fault dictionary known as the fault diagnostic tree, which is built from 

the table. With the diagnostic tree, we can quickly know faulty circuits by simply 

traversing from the root of the tree to any of the leaf nodes. An example is for instance, 

we have a faulty chip with response of 101111. Traversing the tree helps us quickly 

identify that the faulty circuit is f2. 



 

 

 19   

 

 

Figure 6: Fault Dictionary 

 

The major issue with diagnosis involving the use of a fault dictionary is that for large 

circuits for instance, the dictionary is usually very large and would require lots of space 

and computational efforts especially if high diagnostic resolution is a focus. This however 

makes it impractical to be used in the diagnosis process. Reducing the computational time 

without reducing the diagnostic resolution is not an easy task. However, [22] evaluated 

this issue with computation time. They proposed that a small amount or number of 

diagnostic runs are sufficient to compensate for the nonrecurring effort of creating a small 

dictionary [21]. The only major issue here is still regarding the size of the dictionary. As 

mentioned previously, digital circuits are increasing in size making memory required for 

fault dictionary to also grow exponentially. 

 



 

 

 20   

 

Several research have been made over the years in order to decrease the size of the fault 

dictionary, one of these was explained in [23], but none of these has been able to bring it 

down to an acceptable level. 

Based on research, it is known that fault dictionary stores the response of the circuit to 

the test set in the presence of each fault, with this in view if we decrease the number of 

test vectors in the test set it will result in reduction in the size of the fault dictionary. This 

means that the smaller the test vectors the smaller the fault dictionary. The focus of this 

research is implementing an efficient way to reduce the size of the test vector without 

compromising the quality of diagnosis of a circuit. Therefore, reducing the number of 

faults reduces the size of fault dictionary and the focus of this research is towards reducing 

the number of faults in a circuit hence reducing the size of the fault dictionary during 

diagnosis. 

 

Effect-Cause Analysis 

This is also known as dynamic diagnosis. In this case, the effect or response of the circuit 

is analyzed or processed in order to determine the faults through Boolean reasoning of 

the CUD. Although this analysis could be superior to the cause-effect method because of 

its suitability for faults that are not stuck at faults and can be used in cases of multiple 

faults [2]. It however fails in the sense of very high computational time. It takes quite a 

long time to complete. 

 

2.3.4. Equivalence Faults 

Definition 2.3.4.1: Two faults of a Boolean circuit are called equivalent iff they transform 

the circuit such that two faulty circuits have identical output functions. Equivalent faults 

are also called indistinguishable and have exactly the same set of tests [11]. 

Single stuck-at faults at the inputs and output of a Boolean gate have structural 

equivalence relations [24]. Hence two faults f1 and f2 are equivalent if all tests that detect 

f1 also detect f2. 



 

 

 21   

 

For example stuck-at 0 for all input and stack-at 1 at the output of a NAND gate are 

equivalent, likewise all stuck-at-0 faults of the input and output lines of an AND gate are 

equivalent. 

The figures below show equivalent fault collapsing for Boolean gates, wires and fanouts.  

 

Figure 7: Equivalent Fault Collapsing 

 

Equivalent fault collapsing principles and theorems could be applied to reduce fault sets 

in a combinational circuit. These theorems as discussed by [2] are as below and form the 

basic motivation behind fault collapsing by equivalence. 

 

Theorem 2.3.4.1 

A set of test vectors that detects all single stuck-at faults on all primary inputs of a fanout-

free combinational logic circuit C will detect all single stuck-at faults in that circuit [1]. 

Proof: Assume, by contradiction, that a set of test Vector T detects all SSFs on the 

primary inputs of a circuit C but does not detect all internal SSFs. Because every line in 

C has only one fan-out, it is sufficient to consider internal faults only on gate outputs. 

Since T detects all SSFs on the primary inputs, there must be some gate G in C such that 



 

 

 22   

 

T detects all faults in the circuit feeding G but does not detect some output fault f. First 

assume G is an AND gate. Then f cannot be the s-a-0 fault, since this is equivalent to any 

input s-a-0. In addition, f cannot be the s-a-1 fault, since this dominates any input s-a-1. 

Hence, such a fault f does not exist. A similar argument holds if G is an OR, NAND, or 

NOR gate. Therefore, all the internal faults in C are detected [1]. 

 

Theorem 2.3.4.2 

A set of test vectors that detect all single stuck-at faults on all primary inputs and all 

fanout branches of a combinational logic circuit will detect all single stuck-at faults in 

that circuit [1]. 

Proof: We can also apply similar contradiction proof as done in theorem 2.3.4.1 [1]. 

When we apply these theorems, faults of a circuit are grouped into sets of equivalent 

faults. From each of these equivalence fault sets, one fault is then selected to form an 

equivalence collapsed set. 

 

2.3.5. Dominant Faults  

A fault is said to dominate another fault if all tests for the second fault detect the first 

fault. i.e. if all tests of some fault F1 detect another fault F2, then F2 is said to dominate 

F1. If we take for example an AND gate as shown in Figure 8, a s-a-1 fault on the output 

line of the gate dominates a s-a-1 fault on any input its line. 

Hence dominant fault collapsing imply that if fault F2 dominates F1, F2 can be removed 

from the fault list. 

In relation to equivalence fault collapsing, dominance fault collapsing also help to reduce 

stuck-at faults in any combinational circuit. 



 

 

 23   

 

 

Figure 8: Dominant fault in AND gate 

 

 

2.4. Conclusions 

The main objective of this chapter was to give background information or topics relating 

to the focus of this thesis. The chapter dealt with a description of the concept of digital 

testing, In this chapter, I also explained the common fault models and a discussion on 

fault collapsing at gate level with respect to equivalent and dominant fault was done. 

Finally, we discussed about test generation and fault diagnosis, here we showed the 

difficulties encountered, one of which is the complexity and size of circuits, which 

produces a huge set of possible faults.  

The performance of the test generation, fault simulation and fault diagnosis depend on 

the size of the model. However, the contribution of this thesis work is to present a way to 

improve the performance of these tasks and reduce the cost. A method, which uses 

SSBDD synthesis and topological analysis, was proposed.  

Reducing the number of faults reduces the size of fault dictionary, improves test 

generation and fault simulation performance. The focus of this research is towards 

reducing the number of faults in a circuit thereby reducing the size of the fault dictionary 

during diagnsis, improving test generation and fault simulation performance. 

The next chapter will discuss the method in detail and its opportunities in terms of 

reducing cost and resource at no trade off to quality. 



 

 

 24   

 

3. Double Phase Fault Collapsing  

In this chapter, the new structural fault collapsing method with linear algorithmic 

complexity is proposed. The method is based on the two-phase topology analysis of the 

circuit description.  

The first section of this chapter discusses the first phase of the fault collapsing which is 

carried out on the gate level during superposition of Binary Decision Diagram(BDD) of 

logic gate [27-29]. 

In the second section of this chapter, I will give an overview of SSBDD and discuss the 

second phase of the procedure which is carried out by topological analysis of SSBDD. 

An overview of SSBDD will be appropriate in this section since the algorithm and method 

proposed involves a topological analysis of SSBDD. 

The third section of this chapter will introduce the concept and develop higher and lower 

bounds of the size of collapsed faults. 

3.1. Structurally Synthesized BDDs (SSBDD) 

SSBDD is a planar, acyclic BDD that is obtained by superposition of elementary BDDs 

for logic gates [26]. SSBDDs were firstly proposed by [25]. 

BDDs were first introduced for logic simulation in [27] and then for test generation in 

[25], [28-29]. Several years after the proposal of BDDs, Bryant proposed a new data 

structure called Reduced Ordered BDDs (ROBDDs). The ROBDD proves the uniqueness 

of Boolean functions. Bryant’s new data structure showed the simplicity of graph 

manipulation. Equivalence of any two Boolean function can be easily checked by 

comparing their ROBDDs. The image below shows a BDD and ROBDDs of a Boolean 

expression given as:  

F = a ¬c + a ¬ b ¬c + b ¬ c 



 

 

 25   

 

 

Figure 9: Binary Decision Diagram 

 

Figure 10: Reduced Order Binary Decision Diagram 

 

In the ROBDD model, all the redundant nodes for cases where both edges point to the 

same node and all equivalent sub-graphs are shared. 

This model however suffers from memory explosion problem which however hindered it 

from being widely adopted in large designs. It cannot also be used as a model for methods 

that require structural information about the design like representation of faults directly 

in the model. 

The limitation of ROBDD has been looked into with the proposal of the SSBDD. In terms 

of size, SSBDD model is linear in respect to the circuit size whereas ROBDD can be of 

exponential size. 



 

 

 26   

 

In [21], [30-32], SSBDDs were proposed for direct modeling of the structural aspects of 

circuits. This is in contrast to the traditional BDD which only represents logical functions. 

However, the most important difference between them is in their method of creation. 

SSBDDs are generated by superposition of BDDs while traditional BDDs are generated 

by Shannon's expansions that extract the function of the logic. 

One other benefit of the SSBDD over the traditional BDD known as the linear complexity 

of the former is that in the SSBDD model, a circuit is represented as a system of SSBDDs, 

where for each fan-out-free region (FFR) of the circuit, a separate SSBDD is generated. 

While in the case of traditional BDD, the complexity is exponential. 

Of interest to this research is one of SSBDD feature which is its stuck-at fault collapsing 

capability [33], eliminating the task of checking whether a fault belongs to the collapsed 

list or not. The application of SSBDD are: fault modeling (fault set collapsing), signal 

path modeling, structure modeling (back-annotation from SSBDDs), delay modeling, 

hazard modeling, test generating for the structural faults, fault simulation (test analysis) 

and fault diagnosis (fault location). All these application possibilities cannot be done by 

traditional BDDs. 

Definition 3.1.1: A BDD is called SSBDD, if there is a one-to-one correspondence 

between non-terminal nodes of the BDD and signal paths in the combinational circuit. 

Non-terminal nodes of an SSBDD are labeled by subscripted input variables, which can 

be inverted or not. In fact, SSBDD model is further defined by construction [33]. 

Figure 11 shows an example of a combinational circuit with a single output y and no 

internal fan-outs. We represent the fan-out-free region (FFR) of the circuit by a single 

SSBDD in Figure 12. 



 

 

 27   

 

 

Figure 11: Combinational Circuit with Single Output 

 

Each labeled section of the circuit maps to its representation on the SSBDD. For instance, 

the part labeled (a) in the SSBDD representation shows the AND of inputs x2 and x3 

(x1x2), while the region labeled (d) (x1v (x2x3) v (x4x5)). 

 

Figure 12: SSBDD for the circuit in Figure 11 



 

 

 28   

 

 

SSBDDs are constructed from a FFR of a combinational circuit beginning usually from 

the output. The output could be either the primary output or a fan-out point of the circuit. 

Each logic gates are replaced by their elementary BDDs in a repeatedly in similar manner.  

Elementary BDDs for logic gates are shown below. 

 

Figure 13: Elementary BDDs for logic gates 

 

After each logic gates in the circuit are recursively substituted by their elementary BDDs, 

the next step involves using superposition procedure to combine them into a single graph. 

The procedure of superposition terminates in those nodes, which represent a primary 

input or a fan-out branch of the circuit [34]. 

The figures below demonstrate in steps the superposition procedure for construction of 

the circuit in Figures (I – V). 



 

 

 29   

 

 

Figure 14: Superposition procedure (I) 

In step 1, applying the rule of the elementary BDD for AND of f and x9. The resulting 

SSBDD is shown above. 

In step 2, the AND logic gate with 3 inputs d, x6 and c are substituted by their elementary 

BDDs and combined to form a single graph by superposition procedure. 

 

Figure 15: Superposition procedure (II) 

 

In step 3, the OR logic gate with 3 inputs x1, a and b are substituted by their elementary 

BDDs and combined to form a single graph by superposition procedure. 



 

 

 30   

 

 

Figure 16: Superposition procedure (III) 

 

Step 4 follows a similar procedure. Here, two AND logic gate with 2 inputs each x1, x2 

and x3, x4 respectively are substituted by their elementary BDDs and combined to form a 

single graph by the same superposition procedure that is applied in the previous steps. 

 

 

Figure 17: Superposition procedure (IV) 

 



 

 

 31   

 

Step 5 is the final step where an OR logic gate with 2 inputs each x7 and x8 are substituted 

by their elementary BDDs and combined with the graph from the step 4 to form a single 

graph by the same superposition procedure that was applied in the previous steps. 

 

Figure 18: Superposition procedure (V) 

 

Let us take example of a circuit with internal fan-out. The Figure 19 below shows an 

example of a circuit with internal fan-out. In this case, there are two FFR in the circuit 

and if we note the property of SSBDDs where for each fan-out-free region (FFR) of the 

circuit, a separate SSBDD is generated. Figures 20 and 21 shows the SSBDDs for each 

FFR on the circuit. 

 

 

 

 

 



 

 

 32   

 

  

 

Figure 19: Combinational circuit with internal fan-out 

 

 

Figure 20: SSBDD for FFR1 in Figure 19 

 

Figure 21: SSBDD for FFR2 in Figure 19 



 

 

 33   

 

Figure 22 shows another example of a combinational circuit also with a single output y 

and no internal fan-outs. We represent the Fan-out-free Region (FFR) of the circuit by a 

single SSBDD as in Figure 23. 

 

 

Figure 22: Combinational Circuit with Single Output y 

 

In the SSBDD, internal nodes are labeled by the input variable of the corresponding FFR. 

Each of the fan-out stem variables is differentiated from the fan-out branch variable by 

another numeric subscript value. For instance, if we have a fan-out branch x2 with two 

fan-out stems, we can represent each of the stem as x21 and x22 respectively. 

We can calculate the output signal of the circuit at any given input pattern by simply 

traversing the SSBDD graph from the root node up to the terminal node guided by the 

values of the node variables. 

In the event that we concur with the idea that each node during simulation are exited to 

the right if the node variable has value 1, or downwards if the node variable has value 0. 

This then means that we would not need to label the edges of the graph by values. Entering 

the terminal node #1 as the result of graph traversing will mean the result of simulation 

as y = 1, and entering the terminal node #0 will mean y = 0. 

 

x1

x2

&x21

x3
&

x4
&

&

1

x5

x6
&

&

x7

&

1
x8

x81

y

x22

&
&x82



 

 

 34   

 

 

Figure 23: SSBDD for the circuit in Figure 22 

 

If we have input pattern Xt as given in Figure 24, the output of y for circuit given in figure 

22 with function y = f(X) will be 1. During simulation of the pattern with SSBDD, the 

following nodes are traversed: x1, x22, x3, x7, x81, #1. 

 

Figure 24: Test pattern for detecting the faults SAF/0 or SAF/1 

 

Definition 3.1.2. Let us call a path L(a,b) in the SSBDD between two nodes a and b, 

activated by a given input pattern Xt, if by traversing the graph under guidance of Xt, the 

node b will be reached from a. 

Each node in the SSBDD represents a signal path in the related circuit. For example, the 

SSBDD in Figure 23 consists of 10 nodes where each of them represents a corresponding 

x1 x21 x81

x22 x3 x7

x6

x4 x5

x82

y 1

0

X x1 x2 x3 x4 x5 x6 x7 x8 y

Xt 0 1 1 0 - - 0 1 1

Tested: x22  0, x3  0, x7  1, x81  0  



 

 

 35   

 

signal path of the total ten (10) paths in the circuit in Figure 22. The one-to-one mapping 

between the nodes in the SSBDD and the signal paths in the related circuit is the result of 

the SSBDD synthesis from the circuit by superposition of BDDs [31]. A node variable in 

the SSBDD is inverted if the corresponding signal path of the circuit has odd numbers of 

inverters. 

Stuck-at faults in SSBDDs are modeled at nodes and each node corresponds to a distinct 

path in an FFR [35]. As explained above in relation to the example of the SSBDD in 

Figure 23, we can generally say that the number of signal paths in an FFR of a 

combinational circuit is proportional (either less than or equal to) to the number of lines 

between the gates in the circuit. This consequently forms the basis for initial collapse of 

fault during SSBDD formation as the one-to-one mapping between nodes in the SSBDD 

and the signal path in the circuit produces fault collapsing as a by-product of the SSBDD 

synthesis [7]. 

For example, the initial number of gate level SAF faults in Figure 22 is 46 (two faults for 

each of 23 lines). During the first step of SSBDD synthesis, we reduced the number of 

representative faults from 46 up to 20, (two faults for each of 10 nodes in the SSBDD 

model). This implies that the procedure of SSBDD synthesis through superposition of 

BDDs compacts the fault location in a combinational circuit by about 50 percent. In the 

case of the circuit in Figure 22, there were 23 fault locations. By superposition, this was 

compacted to 10, which is about 56% in this case. This implies that the process of 

generating SSBDD through superposition of BDD implicitly performs collapsing of fault.  

 

Stuck-at Faults on SSBDD 

We can also apply the concept of stuck-at fault discussed previously in this work as it 

applies to logic gates in a combinational circuit to SSBDD model. In the gate-level 

descriptions of a circuit, stuck-at faults are modeled at the interconnections between the 

gates but are modeled in SSBDD at nodes.  

Stuck-at fault modeling on SSBDD is synonymous to explicit fault collapsing using 

dominance relations along the signal path in a circuit. However, experiments have shown 



 

 

 36   

 

that SSBDD achieves in average even 2 % better compaction of the fault list than the 

traditional approach, reducing the fault lists in average about 1.5 times[33]. 

For example, the node x22 in the SSBDD represents the path from x22 to y in the circuit 

shown by bold lines in Figure 22. On the other hand, the faults SAF y/0 and SAF y/1 

dominate the faults SAF x22/0 and SAF x22/1, respectively. The same dominance relation 

stands for all the faults along the bold path from x22 to y, regarding the related faults at 

x22. 

From this dominance relation, it results that all the faults along the signal path from x22 

to y, except the faults SAF x22/0 and SAF x22/1, will be collapsed. The latter faults will 

form the final representative (collapsed) fault set for the signal path from x22 to y. 

However, these faults are represented in the SSBDD as the two faults of the node x22. 

This fault collapsing effect is similar to that of the fault folding presented in [36] for 

structural collapsing faults.  

 

Figure 25: Combinational circuit with labeled interconnecting lines 

 

In Figure 25 above, we labeled each interconnecting line as a-i. We would try to explain 

how dominance relation in SSBDD operates. In this case, the SSBDD in Figure 23 still 

suffices for the fig above with interconnecting lines labeled.  

As mentioned above, during SSBDD synthesis we reduced the number of representative 

faults from 46 up to 20 (two faults for each of 10 nodes in the SSBDD model). Applying 

the rule of dominance for instance on the circuit, it would mean that all the fault along the 



 

 

 37   

 

signal path from x22 to y (b, e, g, i, and y) will be collapsed. This is because x22 s-a-0 will 

be dominated by b s-a-0, e s-a-0, g s-a-0, i s-a-0 and y s-a-0. The same applies to x22 s-a-

1, it will be dominated by b s-a-1, e s-a-1, g s-a-1, i s-a-1. By rule of dominance, all these 

dominating faults will be collapsed. 

The table below shows Faults dominating the SSBDD node faults of the circuit. 

Node Fault Dominating Faults 

 

X1 

S-A-0 SAF a/0, SAF h/0, SAF i/0, SAF y/0 

S-A-1 SAF a/1, SAF h/1, SAF i/1, SAF y/1  

 

X21 

S-A-0 SAF a/0, SAF h/0, SAF i/0, SAF y/0 

S-A-1 SAF a/1, SAF h/1, SAF i/1, SAF y/1 

 

X22 

S-A-0 SAF b/0, SAF e/0, SAF g/0, SAF h/0, SAF i/0, SAF y/0  

S-A-1 SAF b/1, SAF e/1, SAF g/1, SAF h/1, SAF i/1, SAF y/1 

 

X3 

S-A-0 SAF b/0, SAF e/0, SAF g/0, SAF h/0, SAF i/0, SAF y/0 

S-A-1 SAF b/1, SAF e/1, SAF g/1, SAF h/1, SAF i/1, SAF y/1 

 

X4 

S-A-0 SAF c/0, SAF e/0, SAF g/0, SAF h/0, SAF i/0, SAF y/0 

S-A-1 SAF c/1, SAF e/1, SAF g/1, SAF h/1, SAF i/1, SAF y/1 

 

X5 

S-A-0 SAF d/0, SAF c/0, SAF e/0, SAF g/0, SAF h/0, SAF i/0, SAF y/0 

S-A-1 SAF d/1,SAF c/1, SAF e/1, SAF g/1, SAF h/1, SAF i/1, SAF y/1 

 

X6 

S-A-0 SAF d/0, SAF c/0, SAF e/0, SAF g/0, SAF h/0, SAF i/0, SAF y/0 

S-A-1 SAF d/1,SAF c/1, SAF e/1, SAF g/1, SAF h/1, SAF i/1, SAF y/1 

X7 

 

S-A-0 SAF f/0, SAF g/0, SAF h/0, SAF i/0, SAF y/0 

S-A-1 SAF f/1, SAF g/1, SAF h/1, SAF i/1, SAF y/1 

 

X81 

S-A-0 SAF i/0, SAF y/0 

S-A-1 SAF i/1, SAF y/1 

 

X82 

S-A-0 SAF j/0, SAF y/0 

S-A-1 SAF j/1, SAF y/1 

Table 3: Faults dominating the SSBDD node faults 

 

The procedure of SSBDD synthesis can be regarded as the first phase of fault collapsing 

for the given circuit. In this first phase the table below shows fault collapsed through the 

process of SSBDD synthesis for ISCAS’85 circuits. 

 

 



 

 

 38   

 

Circuit 
Number of 

Faults 

# Repr. Faults 

Fault collapse SSBDD 

Synthesis 

c1355 2710 1618 1092 

c1908 3816 1732 2084 

c2670 5340 2626 2714 

c3540 7080 3296 3784 

c5315 10630 5424 5206 

c6288 12576 7744 4832 

c7552 15104 7104 8000 

Table 4: Fault collapsed by SSBDD synthesis for ISCAS’85 circuits 

 

In the next section we will present a method for additional fault collapsing directly on the 

SSBDD model. This is regarded as the second phase of the full fault collapsing procedure 

based on SSBDDs. 

 

Summary 

In this section we have seen the major differences between SSBDDs and traditional 

BDDs. It was mentioned that SSBDDs have linear complexity while BDDs have 

exponential complexity and apart from this, traditional BDDs do not represent the 

structure, they only represents logical functions, hence they cannot help in fault 

collapsing.  

Each node in the SSBDD represents a signal path in the related circuit and the one-to-one 

mapping between the nodes in the SSBDD and the signal paths in the related circuit is the 

result of the SSBDD synthesis from the circuit by superposition of BDDs. This already 

results in the fault collapsing in the first stage of the method proposed. 

 

 

 



 

 

 39   

 

3.2. Fault Collapsing on the SSBDD Model 

This section describes the second phase of fault collapsing method proposed in this work. 

In this case, haven discussed the fault collapsing feature of SSBDD synthesis, it is 

however important to stress that topological analysis of SSBDDs at a higher macro level 

could still collapse more faults. This is possible because SSBDD synthesis helps construct 

a higher macro compacted model of the circuit. 

Let us consider a test pattern generation for the fault SAF x22/0 with SSBDD in Figure 

23. As explained in [31], to test a node in the SSBDD we would have to activate three 

paths in the SSBDD modeled in Figure 23. The first path is L(x1, x22) which is from the 

root node x1 to x22, the second path is L(x22, #1) from x22 to the terminal node #1, and the 

last path in this case is L(x4, #1) which is from x4 to #0. The node x4 is the neighbor of 

x22 but does not belong to the path L(x22, #1). As mentioned above, x4 belongs to the path 

L(x4, #1). 

To further our discussion, we need to remember that Figure 24 shows the pattern Xt which 

activates all these paths and make testing of a node in the SSBDD possible. Bold lines in 

Figure 23 show the activated paths in the SSBDD.  

We would also call a path that is activated by a given pattern and terminates in terminal 

node #1 as 1-path and a path that is activated by a given pattern and terminates in terminal 

node #0 as 0-path. Going further, we would call all the nodes that are traversed along the 

activated 1-path in direction 1 1-node and same goes for all the nodes that are activated 

along an activated 0-path in direction of 0 we would call it 0-node. Note that the direction 

1 represents right direction while direction 0 represents the downward direction. 

From the Figure 26 below, we highlighted the 1-path in red and the 0- path in blue. This 

implies that in this example, 1-nodes are X22, X3, ¬X7 and X81 and the 0-nodes are X4 and 

¬X82. 



 

 

 40   

 

 

Figure 26: Showing paths and nodes 

 

According to [26], if a test vector Xt activates in SSBDD a 0-path or 1-path, then only 0-

nodes or 1-nodes have to be considered as candidate fault sites. This means that in the 

case of the SSBDD modeled above, the analysis of the path shows that all nodes except 

x1 may be qualified as candidate fault sites. This property is essentially considered in order 

to speed up fault simulation. Upon further analysis, we would be able to confirm that all 

these candidate faults are detectable by the given test pattern Xt (in Figure 24).  

The introduction of node related fault identification instead of node variable related fault 

identification will further simplify the discussion. In this case, we can represent cases of 

inversion in node variables uniformly to cases where nodes are not inverted. i.e. we can 

handle the fault cases at SSBDD nodes uniformly, independently of whether the node 

variable is inverted or not inverted. For example, we can refer to SAF x7/1 in Figure 23 

as SAF x7/0. 

This means that all the 1-nodes or 0-nodes denoted by the variable a either inverted or 

not are the candidates for testing the faults SAF a/0 (or SAF a/1).  

 



 

 

 41   

 

Theorem 3.2.1. The faults at two connected by an edge nodes a and b are equivalent iff 

the following two conditions are satisfied: (1) the nodes have the same neighbour c, and 

(2) the node b has a single incoming edge from a.   

 

 

Figure 27: Equivalent Faults 

 

The condition that the node a and b must have the same neighbour refers to the fact that 

both nodes can be tested by the same test pattern which activates the paths L(Root, a), 

L(a,#e) where e{0,1}, and the path L(c,#(e)). The second condition refers to the fact 

that this test pattern is the only one which can test both of the node faults SAF a/ e and 

SAF b/ e. 

For example, the faults SAF a/0 and SAF b/0 are equivalent and one of them can be 

collapsed. The same principle can also be applied to the example in Figure 23. Here, the 

faults SAF x22/0 and SAF x3/0 are equivalent, and one of them can be collapsed. 

Another property of SSBDD, which will help us achieve more fault collapse, is that 

SSBDDs have a Hamiltonian path through all the nodes except the terminal nodes #0 and 

#1. The Hamiltonian path determines the unique ranking order of the nodes. According 

to Figure 27 above, the nodes a and b are in the relationship a < b if the node a will be 

traversed before b along the Hamiltonian path. 

 

Theorem 3.2.2. The fault SAF b/0 dominates SAF a/0 (or SAF b/1 dominates SAF a/1) 

iff the following conditions are satisfied: (1) there exists a single 1-path (or a single 0-



 

 

 42   

 

path) through the nodes for detecting both of these faults, (2) a < b, and (3) the node b 

has more than 1 incoming edges.  

It follows from theorem 3.2.2 that The fault SAF a/0 dominates SAF b/0 (or SAF a/1 

dominates SAF b/1) iff the following conditions are satisfied: (1) there exists a single 1-

path through the nodes for detecting both of these faults, (2) a < b, and (3) the node a can 

be tested by activating another path where b is not tested. 

The first conditions demand that these faults can be detected by a single test pattern. This 

condition is same as the condition of the equivalency as explained in theorem 3.2.1. The 

second condition demands that there will be no other path for testing a and not testing b. 

The third condition is needed to give the possibility to test b and not to test a. From 

satisfying these conditions, it follows that any test for a must detect the related fault as 

well at b. Hence, the fault at a is dominated by b. If the third condition is not fulfilled, the 

related node faults at the nodes a and b are equivalent. 

After some faults have been collapsed through synthesis of BDD, Theorems 1 and 2 are 

checked on the remaining nodes in pairs and upon this check we can determine more 

faults that could be collapsed or not. Based on the whole procedure explained in the 

previous section and this section. The combinational circuit in Figure 22 has initial gate 

level SAF of 56. i.e. two faults for each of the 23 lines. When we SSBDD synthesis, we 

reduced the faults to 20 as shown in Table 3. This implies that 36 faults were collapsed at 

this stage. The second procedure of fault collapsing implemented in this work further 

collapsed the faults more by 7. In the entire process, about 43 faults were collapsed (36 

from stage 1 and 7 from stage 2) leaving the fault remaining reduced to 13.  

The Table 5 below shows the faults collapsed during the second procedure of fault 

collapsing proposed with comments. 

 

 

 



 

 

 43   

 

 

Node Collapsed Comments 

x1 SAF x1/0 Equivalent with x21/0 

x21 - Both faults retained 

x22 SAF x22/0 Equivalent with x3/0 

x3 - Both faults retained 

x4 SAF x4/0 Dominates x5/0, x6/0 

x5 SAF x5/1 Equivalent with x6/1 

x6 - Both faults retained  

x7 SAF x7/0 Dominates x22/0, x5/0, x6/0 

x81 SAF x81/0 Dominates x22/0, x5/0, x6/0 

x82 SAFx82/1 Dominates x81/1, and others 

Table 5: Result of Fault collapsing for SSBDD in Figure 23 

 

Summary 

In this section, we described the second phase of fault collapsing method proposed in this 

work. The process of SSBDD synthesis in the first phase helps in the construction of a 

higher macro compacted model. Further analysis on the SSBDD model through the 

application of the rule of dominance and equivalence could help us achieve more fault 

collapsing. This we described in this section as topological analysis of the SSBDD model. 

In addition, we proved with examples that more faults were collapsed on the circuit 

beyond the ones achieved through SSBDD synthesis. The impact of collapsing more fault 

in a circuit enhances the performance and cost of test generation and fault simulation. It 

also reduces the size of the fault dictionary needed during fault diagnosis. This is what 

this research is aimed at achieving. 



 

 

 44   

 

 

 

3.3. Lower and Higher Bounds For Fault Collapsing  

Beside the method of fault collapsing proposed in this work, another contribution that is 

laudable is the proposal of a method of estimating the achievable size of the collapsed 

fault set for the given SSBDD. This concept is referred to as lower and higher bounds for 

fault collapsing. 

To carry out this estimation, we would denote the number of all nodes in the SSBDD 

model of a combinational circuit as N and then denote the number of collapsed fault as 

C. It should be noted that N represents the result of the first phase of the fault collapsing 

done during SSBDD synthesis.  

Given that the number of all SAF in the SSBDD model with N nodes is 2N, after fault 

collapsing in the model, the number of representative faults in the SSBDD model will be 

expressed as R = 2N – C. Fault collapsing effect achieved in the SSBDD model can be 

expressed as R/2N. 

 

Theorem 3.4.1 

The effect of fault collapsing in a given SSBDD model will be always in the boundary 

1/2 < R/2N  5/6.  

As a way to proof Theorem 3.4.1, we can conclude that any tree-like circuit with N input 

which could be represented by SSBDD with N nodes. Let us take for example the simplest 

form is either a single gate AND or OR gate with N number of inputs as shown in Figure 

28 below. For such gates, we can collapse N-1 SAF/0 or SAF/1 faults. Hence C = N-1. 



 

 

 45   

 

 

Figure 28: Single AND gate with N inputs 

 

Substituting the value of C in the representation of representative faults after collapsing 

given as: R = 2N – C. We will however have R = 2N – (N -1). By solving the equation, 

R becomes N + 1. If N increases, we can determine the lower limit for R/2N as follows: 

2

1

222

)1(

22
limlimlim 










 n

n

nN

nN

nN

nR

nnn

 

 

We have therefore proved the above theorem 3.4.1 that the ratio of R/2N for any fault 

collapsed on a circuit is always greater than 1/2. 

 

Figure 29: Single AND gate with 3 inputs 

 

For example, a simple single AND gate with 3 primary input in Figure 29 above. The 

SSBDD model of the gate will also have 3 nodes. In this case, 2N = 6 and knowing that 

we can collapse N-1 SAF/0 or SAF/1 faults. i.e. 3-1 = 2. The number of representative 

faults will be R = 6-2 = 4, and R/2N = 4/6. Hence, 1/2 < 4/6  5/6. 

On the contrary, if we partition the set of N input for more than one gate in the tree-like 

circuit. The effect of this will be a reduction in the total value of C by one fault per added 

gate. This consequently increases the value of R/2N ratio.  



 

 

 46   

 

 

Figure 30: Tree-like circuits with increasing complexity 

 

Let us take for example a single-input logic gate y1 with N = 3 nodes in Figure 30 which 

may represent either an inverter or a buffer. The SSBDD model of this gate will have as 

well 3 nodes, which represent the fan-out stem and its 2 branches. Hence, 2N = 6. There 

are two equivalent SAF/0 faults on the branches (or SAF/1 in case of OR-gate) where one 

of them can be collapsed. Hence, the number of representative faults will be R = 6-1 = 5, 

and R/2N = 5/6. 

We can apply the same logic to the tree-like circuit y2 with two input gates in Figure 30, 

each of them having 2 input nodes, and with 2 fan-out nodes. The number of 

representative faults for this circuit is R = 2N = 2(6) = 12. There are again two equivalent 

SAF/0 faults for each AND-gates (or SAF/1 in case of OR-gates) where one of them can 

be collapsed each. Hence, the number of representative faults after fault collapsing will 

be R = 2N – 2 = (12 -2) =10, and again we get R/2N = 5/6. 

Circuit y4 in Figure 30 shows a circuit y4 which can be used to illustrate how we can 

expand the series of two circuits y1 and y2 into a series of expanded circuits y1, y2, y3, y4, … 

yn which will consist of an input circuit INn as a chain of n 2-input gates, and an arbitrary 

tree-like circuit Fn. In each such a circuit, the ratio R/2N = 5/6 remains constant. In INn 

for each gate, only a single fault can be collapsed. 

We can easily observe that any structural change inside the sub-circuit Fn will not change 

the ratio R/2N = 5/6. This is because all the faults in Fn will dominate the faults in INn. 

However, by adding n = 1, 2,… non-fan-out inputs to the sub-circuit INn we get R/2N*= 



 

 

 47   

 

(R+n)/(2N+2n), and by adding n = 1,2,… fan-out inputs with 2 branches to INn we will 

get R/2N** = (R+2n)/(2N+6n). Each addition of a fan-out branch is equivalent to the case 

of adding a single input node in the sense of fault collapsing. From above it follows: 

R/2N** < R/2N* < R/2N  5/6 

Corollary 1: From Theorem 3.4.1, it directly follows that for any SSBDD with N nodes, 

the number of collapsed faults C = 2N - R will belong to the interval N/3  C < N. Hence, 

N/3 will serve as the lower pessimistic bound for the number of collapsed faults.  

If we take example of the circuit in Figure 22 with SSBDD in Figure 23. The SSBDD has 

10 nodes which imply that N = 10. From Table 5 where the result of Fault collapsing for 

SSBDD in Figure 23 was presented, we could see that there were 7 faults collapsed which 

implies that C = 7. Hence corollary 1 which implies that N/3  C < N is satisfied as 10/3 

 7 < 10. The same follows if we apply Theorem 3.4.1. here for instance, N=10, meaning 

that 2N = 20. Given also that C = 7. R which is 2N – C is therefore equal to 20 – 7. The 

ratio of R/2N is hence given as 13/20 which still satisfies the range 1/2 < R/2N  5/6 (1/2 

< 13/20  5/6). 

 

Summary 

We proposed in this section a method of estimating the achievable size of the collapsed 

fault set for the given SSBDD. This concept is referred to as lower and higher bounds for 

fault collapsing. Knowing the lower bounds for the given circuit can help in estimating 

the cost for further fault simulation and test generation. This can also help us in 

determining the expected gain of fault collapsing. 

 

 

 



 

 

 48   

 

3.4. Algorithm Description 

We propose a fault collapsing algorithm that is based on topological analysis of SSBDD 

model below. The input to the algorithm is SSBDD model for a given circuit and the 

output is a set of collapsed faults. 

We define notations used in the algorithm as follows:  

 m - number of the current node  

 n - number of the next node to m, n = m + 1 

 n* - next node to n, n* = n + 1 

 M - number of all nodes  

 FI(n) - Fanin flag for the node n  

 FI(n) = 1, If the node n has entries from more than one nodes which has not build 

a group 

 d(m) - direction from node m to its neighbor n 

 !d(m) - inverted direction d(m) 

 m(d) - neighor of the node m in direction d 

 m(d) = Ø, if the neighbor of m is terminal node (#0, #1) 

 IN(m) - direction of input edges to node m 

 C(m) – attribute of fault collapsing at node m 

 C(m) ϵ {0,1,Ø} – possible coding {01, 10, 00} 0 - SAF0, 1 - SAF1, Ø - no fault 

collapsing 



 

 

 49   

 

 

Figure 31: Proposed Method Algorithm 

Let us explain the working principle of the algorithm by tracing some paths through it 

dictated by selected typical node structures of SSBDD models. 

The main idea of the algorithm is in walking through the SSBDD model and analyzing 

during this walk the consecutive pairs of nodes to decide if one of them can be collapsed 



 

 

 50   

 

or not. In the following, we present the typical cases how different pairs of nodes can be 

embedded in SSBDDs, and how they will be handled by the algorithm.  

 

Figure 32: Walkthrough Example circuit (I) 

 

Consider as an example a part of an SSBDD model in Figure 32. The numbers on the top 

of the model refer to the nodes (steps) in the algorithm, traced for this pair of nodes m 

and n (an extracted part of SSBDD model). Applying the algorithm, at step 1, equivalence 

is checked (m and n have neighbours). At step 2, the condition that n has a single 

incoming edge from a is checked(condition for dominance). The condition for 

equivalence is true while the condition for dominance is false. The condition 3 checks 

whether n is a terminal node and the group ends or not. In the case of the circuit above, 

the condition is true which means that the group ends. Equivalent check rule says that the 

node m can be collapsed The node is collapsed at SAF 0 or 1 depending on the inverse 

direction of m. Note that a group will end when the direction of m and n changes. 

Similar walkthroughs for the node pairs (m,n) are illustrated in Fig.33-35. 

 

Figure 33: Walkthrough Example circuit (II) 



 

 

 51   

 

 

Figure 34: Walkthrough Example circuit (III) 

 

 

Figure 35: Walkthrough Example circuit (IV) 

 

3.5. Conclusions 

In this chapter we presented the solutions of the following tasks as the main content of 

the thesis: (1) the method of reasoning fault equivalence and dominance properties on 

SSBDDs, (2) the method of fault collapsing on SSBDDs, (3) developing the higher and 

lower bounds for the number of collapsed faults for the given circuit, and (4) the algorithm 

of fault collapsing, implemented as a software tool. 

For the first task, we developed two theorems, which proved that analysis on the SSBDD 

model through the application of rule of dominance and equivalence could help us achieve 

more fault collapsing. This helped us in developing a fault-collapsing algorithm with 

linear complexity.  



 

 

 52   

 

We described the method in the second task as topological analysis of the SSBDD model. 

This helps up achieve more fault collapsing on the circuit beyond the ones achieved 

through SSBDD synthesis. The impact of collapsing more fault in a circuit enhances the 

performance and cost of test generation and fault simulation. It also reduces the size of 

the fault dictionary needed during fault diagnosis. 

The method described in the third task helps in estimating the achievable size of the 

collapsed fault set for the given SSBDD. Knowing the lower bounds for the given circuit 

can help in estimating the cost for further fault simulation and test generation. This can 

also help us in determining the expected gain of fault collapsing. 

In task four, we described the fault collapsing algorithm and its working principle with 

walthrough examples. This algorithm is of linear complexity and was a result of the 

theorems we described in section 3.2. 

Furthermore, a comprehensive discussion on the new structural fault collapsing method 

with linear algorithmic complexity was done. The method proposed is based on the two-

phase topology analysis of the circuit description. First phase as discuss is SSBDD 

synthesis while the second phase involves topological analysis of the SSBDD. 

We have shown that SSBDD has fewer nodes than the gate-level models, hence we can 

already have a reduced number of fault set. Hence improving fault collapsing. Secondly, 

the fault collapsing capability of the SSBDD proposed helps in eliminating the task of 

checking whether a fault belongs to the collapsed list or not. 

Fault collapsing reduces in turn the model, the complexity of the model is reduced via the 

proposed model hence decreasing the requirement for the memory space for storing the 

model. The fault collapsing capability not only decrease the space needed, it also leads to 

increased speed of fault simulation and test generation. 



 

 

 53   

 

4. Experimental Results  

The fault collapsing experiments were carried out using ISCAS’85 [38], ISCAS’89 [39] 

and ITC’99 [40] benchmark circuits. The experimental platform was Intel(R) Core(TM) 

i7 VproTM L640 at 2.13 GHz, 4 GB RAM. 

Figures 36, 37 and 38 show the percentage of collapsed faults of all fault in the benchmark 

circuits based on their sizes and complexity. Graphs 39, 40 and 41 shows the time for 

fault collapse in the circuits respectively. 

The x-axis of the graphs represents the circuits with increasing increasing number of gates 

or faults. This then shows that the higher the number of faults in a circuit, the more faults 

we can collapse and the higher the time required for the collasing operation. The y-axis 

on the Figures 36-38 shows the number of faults collapsed in a circuit while it shows the 

time (in seconds) needed for the collapse operation on Figures 49-41. 

 

 

Figure 36: Collapsed faults for ISCAS'85 Circuit 

 

In Figure 38, we could see a massive rise in the number of fault collapsed for circuit b18. 

This is because of the size of the circuit. The number of nodes in the circuit after SSBDD 

155
304 247

408
498

630

929

1522

1920 1941

0

500

1000

1500

2000

2500

C 4 3 2 C 4 9 9 C 8 8 0 C 1 3 5 5 C 1 9 0 8 C 2 6 7 0 C 3 5 4 0 C 5 3 1 5 C 6 2 8 8 C 7 5 5 2

FA
U

LT
S 

 C
O

LL
A

SP
ED

CIRCUIT

ISCAS'85 CIRCUIT



 

 

 54   

 

synthesis is 138989, this is about 82% more than that of circuit b20 (23688 nodes). This 

further proofs that the number of fault collapsed is proportional to the number of gates or 

faults in the circuit. The same explanation can be given for Figure 41 where more time 

was needed to collapse the fault in the circuit b18. 

 

 

Figure 37: Collapsed faults for ISCAS'89 Circuit 

 

 

61 92 85 87 123 139 133 142

277
347

828

1189
1107

0

200

400

600

800

1000

1200

1400

S 2 0 8 S 2 9 8 S 3 4 4 S 3 4 9 S 3 8 2 S 3 8 6 S 4 2 0 S 4 4 4 S 9 3 8 S 1 2 6 9 S 3 2 7 1 S 4 8 6 3 S 5 3 7 8

FA
U

LT
S

C
O

LL
A

P
SE

D

CIRCUIT

ISCAS'89 CIRCUIT



 

 

 55   

 

 

Figure 38: Collapsed faults for ITC'99 Circuit 

 

Figure 39: Fault collapse time for ISCAS'85 Circuit 

 

18 415 270 94 206
6004

12545
18686

71496

0

10000

20000

30000

40000

50000

60000

70000

80000

B 0 2 B 0 4 B 0 7 B 0 9 B 1 3 B 1 5 B 2 0 B 2 2 B 1 8

FA
U

LT
S 

C
O

LL
A

P
SE

D

CIRCUIT

ITC'99 CIRCUIT

0.034
0.039

0.03 0.03 0.031

0.041

0.048

0.037

0.07

0.063

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C 4 3 2 C 4 9 9 C 8 8 0 C 1 3 5 5 C 1 9 0 8 C 2 6 7 0 C 3 5 4 0 C 5 3 1 5 C 6 2 8 8 C 7 5 5 2

TI
M

E(
S)

CIRCUIT

ISCAS'85 CIRUIT



 

 

 56   

 

 

Figure 40: Fault collapse time for ISCAS'89 Circuit 

 

Figure 41: Fault collapse time for ITC'99 Circuit 

 

In Table 6, the data are depicted for both, the 1st and 2nd phases of fault collapsing. In 

the table, the first column is the circuit under experiment, the second column with heading 

“# Faults“ represents the total number of SAF faults in the gate-level circuit, the columns 

3 and 4 show the representative fault set sizes after fault collapsing during SSBDD 

synthesis (I Phase), and after fault collapsing directly on SSBDDs (II Phase), respectively. 

0.006 0.006 0.006 0.006 0.007 0.007 0.008 0.008
0.01 0.011

0.024

0.029 0.028

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

S 2 0 8 S 2 9 8 S 3 4 4 S 3 4 9 S 3 8 2 S 3 8 6 S 4 2 0 S 4 4 4 S 9 3 8 S 1 2 6 9 S 3 2 7 1 S 4 8 6 3 S 5 3 7 8

TI
M

E(
S)

CIRCUIT

ISCAS'89 CIRCUIT

0.004 0.005 0.014 0.01 0.007 0.009

0.168
0.208 0.209

0.693

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

B 0 1 B 0 2 B 0 4 B 0 7 B 0 9 B 1 3 B 1 5 B 2 2 B 2 0 B 1 8

TI
M

E(
S)

CIRCUIT

ITC'99 CIRCUIT



 

 

 57   

 

The 5th column shows the total number of the set of collapsed faults. The 6th, 7th and 

8th columns show the time cost needed for fault collapsing during the 1st, and 2nd phases, 

and the total time cost, respectively. 

 

Circuit 
# 

Faults 

# Repr. faults Fault 

collapse 

Time, ms 

I Ph II Ph I Ph II Ph  

c1355 2710 1618 1210 1500 40 6 46 

c1908 3816 1732 1243 2573 50 8 58 

c2670 5340 2626 1996 3344 100 13 113 

c3540 7080 3296 2367 4713 180 13 193 

c5315 10630 5424 3902 6728 180 16 196 

c6288 12576 7744 5824 6752 260 25 285 

c7552 15104 7104 5163 9941 280 21 301 

Table 6: Fault collapsing data of proposed method 

 

The experimented result from the proposed method was compared with previous methods 

of fault collapsing. The Table 7 shows the result of this comparison. However, I could 

only carry out this comparison with former results on fault collapsing on ISCAS’85 

circuits because results in literatures are only available for the ISCAS’85 circuits. 

 

Circuit 
Fault set size CPU time, s 

[36] [41] [42] [7] New [42] New 

c1355 1234 1210 808 1100 1210 46 0.046 

c1908 1568 1566 753 1286 1243 14 0.058 

c2670 2324 2317 1853 2046 1996 110 0.113 

c3540 2882 2786 2092 2584 2367 831 0.193 

c5315 4530 4492 3443 4404 3902 72 0.196 

c6288 5840 5824 5824 4832 5824 4 0.285 

c7552 6163 6132 4707 5480 5163 232 0.301 

Table 7: Comparison with other methods 

 

In the table, column 2 represents the fault set size after applying structural fault collapsing 

i.e fault folding [36]. column 3 contains data that represents the fault set size of improved 



 

 

 58   

 

structural fault collapsing [41]. column 4 contains data that represents the result of 

functional fault collapsing [42]. Column 5 shows data of result of fault collapsing based 

on Shared SSBDDs(S3BDDs) which is an advanced and more compact version of 

SSBDDs. Column 6 shows the result of the proposed method of fault collapsing. 

Although column 4 gives better fault collapsing it however uses a very time-consuming 

dominance graph analysis and transitive closure calculation and unfortunately, not a 

scalable method, and hence, not usable for complex circuits. Absolute speeds compasion 

of the methods is difficult because of missing data about computing platforms for [42]. 

However, the results clearly show the high dependence of the time cost on circuit size 

and structure for [42] whereas the proposed new method is well scalable and has a linear 

complexity. If we take for example, the difference in time cost needed for c3540 and 

c6288 for the method in [42] is 200 times whereas for the proposed method the time cost 

for both circuits is nearly the same. 



 

 

 59   

 

5. Conclusions 

This thesis aimed at discussing and proposing a new structural fault collapsing method 

with linear algorithmic complexity. Our focus was to reduce the search space for test 

generation and fault diagnosis in digital systems.  

In chapter 2, we gave a background overview of topics relating to the research under 

review. In chapter 3, we made a comprehensive discussion on the proposed method. 

Results of experiment were done in chapter 4 and these we compared with previous 

methods of fault collapsing. 

The method proposed is based on the two-phase topology analysis of the circuit 

description. First phase as discuss is SSBDD synthesis while the second phase involves 

topological analysis of the SSBDD.  

Our focus was not only to capitalize on fault collapsing capability but to also decrease the 

space needed for test generation and fault diagnosis, improve or increase the speed of 

fault simulation and test generation. 

The contribution of this thesis is in providing an excellent and scalable collapsing method 

which is very promising for large circuits. This method has been proven more efficient 

than previous structural fault collapsing methods. 

 

The result of this research was presented in a paper titled double phase fault collapsing 

with linear complexity in digital circuit and was submitted to the 18th Euromicro 

Conference on Digital Systems Design in Funchal, Portugal in August 26-28, 2015. 

 

For the future, I would look at optimizing the algorithm in order to achieve more faults 

collapse on digital circuits. Furthermore, I will also research on the applicability of the 

proposed method as it relates to hardware security.  

 



 

 

 60   

 

References 

[1] Abramovici, Miron; Breuer, Melvin A.; Friedman, Arthur D., “Digital Systems 

Testing and Testable Design”, John Wiley & Sons, Inc., Hoboken, New Jersey, 1990 

[2] Laung-Terng Wang, Cheng-Wen Wu, Xiaoqing Wen., “VLSI Test Principles and 

Architectures Design for Testability,” Morgan Kaufmann Publishers, 2006 

[3] G. Moore. Cramming More Components onto Integrated Circuits. – Reprint from 

IEEE proceedings on Electronics, Vol. 38, No. 8, 1965.  

[4] R. W. Keyes, “The Impact of Moore's Law. – IEEE Solid-State Circuits, Issue”, Sept 

2006.  

[5] Mehran Nadjarbashi, Zainalabedin Navabi and Mohammad R. Movahedin, “Line 

Oriented Structural Equivalence Fault Collapsing”, Electrical and Computer Engineering 

Department Faculty of Engineering – Campus #2 – University of Tehran 14399, Tehran 

– IRAN 

[6] Raimond Ubar, Lembit Jurimae, Elmet Orasson, Galina Josifovska, Stephen Adeboye 

Oyeniran, “Double Phase Fault Collapsing with Linear Complexity in Digital Circuits”, 

2015 

[7] R. Ubar, D. Mironov, J. Raiks, A. Jutman, “Structural Fault collapsing by 

Superposition of BDDs for Test Generation in Digital Circuit”, 2010  

[8] A. Jutman, A. Peder, J. Raik, M. Tombak, “Structurally synthesized binary decision 

diagram” 

[9] Daniel P. Siewiorek, Fellow, IEEE, and Larry Kwok-woon Lai, member, JEEE, 

“Testing of Digital Systems, proceedings of the IEEE”, vol. 69, no. 10, October 1981.  

[10] Breuer, M. A.; Friedman A. D., “Diagnosis and Reliable Design of Digital Systems”, 

Computer Science Press, New York, 1976 

[11] Micheal L. Bushnell, Vishwani D. Agrwal, “Essentials of Electronic Testing for 

Digital, Memory and Mixed-signal VLSI Circuits” 

[12] V.K. Agarwal, A.F.S.Fung, “Multiple Fault Testing of Large Circuit by Single fault 

Test Set, IEEE Trans. On Computers”, vol C-30, no 11, pp855-856, Nov 1981  

[13] Bob Strunz, Colin Flanagan, “Design for Testability in Digital Integrated circuits”, 

Tim Hall University of Limerick, Ireland 

[14] M. RAY MERCER University of Texas, “Algorithms for Pattern Generation”, June 

1998 

[15] Niraj Jha, Sandeep Gupta, “Testing of Digital Systems”, Cambridge University 

Press, 2003 



 

 

 61   

 

[16] Circuits S. Hemalatha, Mrs. K. Srividhya, “Automatic Test Pattern Generation for 

Digital” S. Hemalatha et al Int. Journal of Engineering Research and Applications ,ISSN 

: 2248-9622, Vol. 4, Issue 4 (Version 1), April 2014, pp.345-351 

[17] P. Goel, “An implicit enumeration algorithm to generate test for combinational logic 

circuit” IEEE Trans, Comput.Vol C-30. Pp 215-222 March 1981 

[18] Micheal H. Schulz, Erwin Trischer, Thomas M. Sarfert, “Socretes: A highly efficient 

automatic test pattern generation system” 

[20] Baris Arslan, Alex Orailoglu, “Fault Dictionary Size Reduction through Test 

Response Superposition”, Computer Science and Engineering Department University of 

California, San Diego 

[21] YU-RU HONG, Reducing Fault Dictionary Size for Million-Gate Large Circuits, 

“Purdue University and JUINN-DAR HUANG National Chiao Tung University”  

[22] Irith Pomeranz, Sudhakar M. Reddy, On the Generation of Small Dictionaries for 

Fault Location Electrical and Computer Engineering Department University of Iowa 

[23] Paul G. Ryan, W. Kent Fuchs, Irith Pomeranz “Fault Dictionary Compression and 

Equivalence Class Computation for Sequential Circuits”  

[24] Vishwani D, Agrawal A, V. S. S. Prasad, Madhusudan V. Atre Rutgers University, 

Dept. of ECE Agere Systems Piscataway, NJ 08854, USA Bangalore 560066, India 

[25] R. Ubar. Test Generation for Digital Circuits Using Alternative Graphs (in Russian), 

in Proc. Tallinn Technical University, 1976, No.409, Tallinn TU, Tallinn, Estonia, pp.75-

81. 

[26] Jaan Raik, Raimund Ubar, Sergei Devadze, Artur Jutman, Efficient Single-Pattern 

Fault Simulation on Structurally Synthesized BDDs, Tallinn University of Technology, 

Department of Computer Engineering, Raja 15, 12618 Tallinn, Estonia 

[27] C.Y. Lee. Representation of Switching Circuits by BDDs”, in Bell System Techn. J., 

1959, v.38, No7, pp.985-999. 

[28] S.Akers. Binary Decision Diagrams,” IEEE Trans. on Comp., Vol.27, 1978, pp.509-

516 

[29] R.Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans 

on Comp, 1986, vol. C-35, 677-691 

[30] M.Gorev, R.Ubar, S.Devadze. “Fault Simulation with Parallel Exact Critical Path 

Tracing in Multiple Core Environment”. Proc. of DATE, Grenoble, France, 2015, pp. 1-

6. 

[31] R.Ubar. “Test Synthesis with Alternative Graphs. IEEE Design & Test of 

Computers”. Spring 1996, pp. 48-59.  



 

 

 62   

 

[32] R.Ubar, S.Devadze, J.Raik, A.Jutman. “Parallel X-Fault Simulation with Critical 

Path Tracing Technique”. Proc. of DATE, Dresden, Germany, 2010, pp. 1-6. 

[33] A. Jutman, J. Raik, R. Ubar. “SSBDDs: Advantageous Model and Efficient 

Algorithms for Digital Circuit Modeling, Simulation & Test”. – Proc. of 5th Int. 

Workshop on Boolean Problems, Germany, 2002, pp. 157-166.  

[34] Jaan Raik, “Hierarchical Test Generation for Digital Circuits Represented by 

Decision Diagrams”. 2001 

[35] Margit Aarna, Jaan Raik, Raimund Ubar, “Parallel Fault Simulation of Digital 

Circuits” 

[36] K.To. “Fault Folding for Irredundant and Redundant Combinational Circuits”. IEEE 

Trans. on Computers, Vol. C-22, No. 11, pp.1008-1015, Nov. 1973. 

[37] R. Ubar. “Overview about low and High-Level Decision Diagrams for Diagnostic 

Modelling of Digital Systems”. Facta Universitatis (Nis) Ser.: Elec. Energ. Vol24, no.3, 

Dec. 2011, 303-324 

[38] F.Brglez, H.Fujiwara, "A Neutral Netlist of 10 Combinational Benchmark Circuits 

and a Target Translator in Fortran", Proc. of the International Test Conference, 1985, pp. 

785-794. 

[39] F.Brglez, D.Bryan, K.Kominski, "Combinational Profiles of Sequential Benchmark 

Circuits", Int. Symp. on Circuits and Systems, 1989, pp.1929-1934. 

[40] F.Corno, M.S.Reorda, G.Squillero, "RT-level ITC'99 Benchmarks and First ATPG 

Results", In Proc. Of the IEEE Design & Test of Computers, Vol. 17, No. 3, 2000, pp.44-

53 

[41] A.V.S.S.Prasad, V.D.Agrawal, M.V.Atre. “A New Algorithm for Global Fault 

Collapsing into Equivalence and Dominance Sets”. Proc. of Int. Test Conference, pp.391-

397, Oct.2002.  

[42] R.Sethuram, M.L.Bushnell, V.D.Agrawal. “Fault Nodes in Implication Graph for 

Equivalence Dominance Collapsing, and Identifying Untestable and Independent Faults. 

Proc”. of VTS, pp.329-335, 2008. 



 

 

 

 

Appendix 1 – Program Description and Manual 

 

This application is a command application that runs on windows operating system. The 

application is saved as FaultCollapsing.exe. The following instruction helps successful 

execution of the application 

1. Copy the application, FaultCollapsing.exe into a folder 

2. Copy the agm file you want to collapse to the same folder 

3. Open a command prompt on a window machine 

 

Figure 42: Launching command prompt 

 

From the search program, type cmd and push the enter button on the keyboard. This will 

open up the command prompt 



 

 

 

 

4. Change directory to the folder where the executable file is stored. E.g. cd 

C:\Users\User\Desktop\app  

 

Figure 43: Navigating to application 

 

5. From the directory changed to on the command prompt, run the executable file 

and pass argument which is the agm file name which is in the same folder as the 

executable 

 

 

Figure 44: Collapsing Fault with Application 

 

6. The result of the collapse is displayed on the command prompt, but a 

comprehensive result of the algorithm is saved in the project directory. You can 

open with a standard text file reader. The file contains the nodes collapse and the 

stuck-at faults on these nodes(collapse attributes) 

Note: The result of the algorithm is a text file with the same name as the agm file but with 

a c after it. Eg. For an agm file named c17.agm, the result of collapse will be c17.agmc 



 

 

 

 

Appendix 2 – Source Code 

 

// FaultColapsing.cpp : Defines the entry point for the console 

application. 

 

#include "stdafx.h" 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <time.h> 

 

//extern "C" { 

#include "messages.h"  

//} 

#include "mudel.h" 

 

clock_t startm, stopm; 

#define START if ( (startm = clock()) == -1) {printf("Error calling 

clock");exit(1);} 

#define STOP if ( (stopm = clock()) == -1) {printf("Error calling 

clock");exit(1);} 

#define PRINTTIME printf( "%6.3f seconds used by the processor.", 

((double)stopm-startm)/CLOCKS_PER_SEC); 

 

#pragma warning(disable : C4018) 

#pragma warning(disable : C4101) 

#pragma warning(disable : 4996) 

 

#define INV( d ) ( (d) == 0 ? 1 : 0 ) 

int getDirection(mtgt, mtgt1); 

int getNDirection(ntgt, ntgt1); 

FILE *ft; 

 

int main(int argc, char* argv[]) 

{ 

 // collapse count and target (end) node index 

 unsigned int i, j, tgt, mtgt, ntgt, mtgt1, ntgt1, nbtgt, nbtgt1; 

 clock_t start, end; 

 double cpu_time_used; 

 //FILE *ft;  

 

 unsigned int m, n; // number of node m and n where n =m+1 

 unsigned int nb; // number of the neighbour node of n. nb = n+1 

 unsigned int globalm, globaln; // global index of node m and n. 

where globaln = globalm+1 

unsigned int globalnb; // number of the next node globalnb = 

globaln+1 

 unsigned int TM; // number of all nodes in all graphs 

 unsigned int M; // number of all nodes 

 unsigned int md; // neighbor of the node m in direction d 

 unsigned int INm; // direction of input edges to node m 

 unsigned int Cm;  //attribute of fault collapsing at node m 

 unsigned int colapsecount, globalLenght; 

 unsigned int mdirection, ndirection; // direction of nodes m and n 

respectively 

  

 start = clock(); 



 

 

 

 

 START; 

 //Read AGM file and display attributes, otherwise exit 

 if (argc >1  && strlen(argv[1]) > 0) { 

   

  read_ag(argv[1]); 

  TM = NodCount; // number of all nodes 

 } 

 else{ 

  //printf("Please input the ssbdd file"); 

  Error("No model file", -1); 

  end = clock(); 

  STOP; 

  PRINTTIME; 

  cpu_time_used = ((double)(end - start)); 

  printf(" %s: %g\n", "time spent", cpu_time_used); 

   

  } 

 //writing result to file 

 if (argc > 1 && strlen(argv[1]) > 0) { 

  char buffer[20]; 

  char *name = "c.txt"; 

  strcpy(buffer, argv[1]); 

  strcat(buffer, name); 

  ft = fopen(buffer, "wb"); 

 } 

fprintf(ft," MODE#   %s\n", (ModelType == STRUCTURAL_AGM) ? 

"STRUCTURAL" : "FUNCTIONAL"); 

fprintf(ft, " %s: %s\n", "Circuit Name", argv[1]); // Name of 

circuit 

fprintf(ft, " %s: %d\n", "Number of all nodes", TM); // checking the 

total number of nodes 

fprintf(ft," %s: %d\n", "Number of graphs", GrpCount); // checking 

the total number of graphs 

fprintf(ft," %s: %d\n", "Number of variables", VarCount); // 

checking the total number of graphs 

fprintf(ft," %s: %d\n", "Number of inputs", InpCount); // checking 

the total number of inputs  

fprintf(ft," %s: %d\n", "Number of output", OutCount); // checking 

the total number of output 

fprintf(ft," %s: %d\n", "Number of constant", ConCount); // checking 

the total number of constant 

 

 /* Analyze AGM for collapsible faults for each graph*/ 

 //start = clock(); 

 

 globalLenght = 0; 

 colapsecount = 0; 

 

 for (i = 0; i < GrpCount; i++) { 

  m = n = 0; 

  md = -1; 

  M = GLEN(i)-1;  

   

  // Array for storing flag values 

  int *f = malloc(sizeof(int)*(M+1)); 

  memset(f, 0, sizeof(int)*(M+1)); 

 

  //fprintf(stderr, "\n=== GRP: %u\n", i); 

  fprintf(ft, "\n === GRP: %u\n", i); 

  globalLenght = globalLenght + GLEN(i) ; 

 



 

 

 

 

  // check that the number of nodes in a graph is not less than 

2 

  if (GLEN(i) >= 2) 

  { 

   // AND search, for each node in the graph 

   for (int k = 0; k < M ; k++) 

   { 

    if (m < M) 

      { 

     n = m + 1; 

     nb = n + 1; 

     globalm = GBEG(i) + m; 

     globaln = globalm + 1; 

     globalnb = globaln + 1; 

 

mtgt = NDST(globalm, 0);//m target 

downwards 

ntgt = NDST(globaln, 0);// n target 

downwards  

      

mtgt1 = NDST(globalm, 1);//m target to the 

right  

ntgt1 = NDST(globaln, 1);//n target to the 

right 

 

if (nb <= M) // check that n is not 

terminal node otherwise n should be 0 

     { 

nbtgt = NDST(globalnb, 0); //n 

neighbour target downwards 

nbtgt1 = NDST(globalnb, 1); // n 

neighbour target to the right 

     } 

     else{ nbtgt = 0; nbtgt1 = 0;  

//fprintf(ft," neighbour of n is terminal 

node\n"); 

}// if n is terminal node then nb should be 

0 

 

      // Determining joint neighbour 

      if (mtgt == ntgt || mtgt1 == ntgt1) 

      { 

//printf(" m and n have joint 

neighbours\n"); 

       // Checking the fan-in flag. 

       if (f[n]== 1) 

       { 

        //cm = !INm; 

if (NDST(globalm, 

INV(mdirection) != 0)) //if 

the neighbour of n in 

opposite direction is not 

terminal 

        { 

f[NDST(globalm, 

INV(mdirection))] = 1; 

        } 

fprintf(ft," %s: %d\n", 

"collapse found, SAF", 

globalm); 

        colapsecount++; 



 

 

 

 

        m = m + 1; 

        continue; 

       } 

       else 

       { 

         // n is not equal to m 

  

        //direction of m to n 

mdirection = 

getDirection(mtgt, 

mtgt1); 

// direction of n 

to n+1 

ndirection = 

getNDirection(ntgt

, ntgt1); 

 

//if direction 

doesn't change 

        

if (mdirection == ndirection) 

   { 

   //check terminal nodes 

if (ntgt == 0 && ntgt1 == 0) // determine if terminal 

node is reached, no direction is checked. group ends 

   { 

      Cm = INV(mdirection); 

fprintf(ft," %s: %d\t %s: %d\n", "collapse found on", 

globalm, "SA",Cm); 

           

  colapsecount++; 

   m = m + 2; 

           

  continue; 

   } 

   else{ 

   if (f[nb] == 1) // check that FI(n(d)) = 1 

            

   Cm = INV(mdirection); 

fprintf(ft," %s: %d\t %s: %d\n", "collapse found on", 

globalm, "SA", Cm); 

             

  colapsecount++; 

             

  m = m + 2; 

   } 

   else 

   { 

             

  // check joint neighbour between n and n(d) 

if (nb <= M) // to check that index of nb doesnt exceed 

limit 

            

  { 

            

    if (ntgt == nbtgt || ntgt1 == nbtgt1) 

            

    { 

            

   // printf("  n and nb are neighbours"); 



 

 

 

 

            

    Cm = INV(mdirection);  //c(m) = !d(m) 

fprintf(ft," %s: %d\t %s: %d\n", "collapse found 

on", globalm, "SA", Cm); 

            

    colapsecount++; 

            

    m = m + 1; 

            

    continue; 

            

    } 

            

    else 

            

    { 

            

    Cm = INV(mdirection);  //c(m) = !d(m) 

fprintf(ft," %s: %d\t %s: %d\n", "collapse found 

on", globalm, "SA", Cm); 

            

    colapsecount++; 

            

    m = m + 2; 

            

   continue; 

            

   } 

             

     } 

  } 

 

  } 

 } 

 else  //check if direction change 

      { 

 Cm = INV(mdirection); 

           

fprintf(ft," %s: %d\t %s: %d\n", "collapse found on", globalm, "SA", 

Cm); 

if (NDST(globaln, INV(ndirection) != 0)) //if the neighbour of n in 

opposite direction is not terminal 

 { 

            

f[NDST(globaln, INV(ndirection))] = 1; 

 } 

           

colapsecount++; 

 m = m + 2; // change to 2 

 continue; 

 } 

            

} 

 

} 

//if no joint neighbour but FI(m)=1 

else if ((mtgt != ntgt || mtgt1 != ntgt1) && (f[m]== 1)) 

{  

// check if FI(n) =1 

 if (f[n]==1) 

 { 



 

 

 

 

 //C(m)=!IN(m) 

 //Cm = INV(mdirection); 

 //printf(" %s: %d\n", "collapse found, SAF", Cm); 

if (NDST(globalm, INV(mdirection) != 0)) //if the neighbour of n in 

opposite direction is not terminal 

 { 

  f[NDST(globalm, INV(mdirection))] = 1; 

} 

   fprintf(ft," %s: %d\n", "collapse found, SAF", globalm); 

  colapsecount++; 

  m = m + 1; 

  continue; 

 } 

 else  

 { 

 //m and n have no joint neighbours and no flag on m; 

   Cm = INV(mdirection); 

fprintf(ft," %s: %d\t %s: %d\n", "collapse found on", globalm, 

"SA", Cm); 

if (NDST(globalm, INV(mdirection) != 0)) //if the neighbour of n in 

opposite direction is not terminal 

 { 

  f[NDST(globalm, INV(mdirection))] = 1; 

 } 

  colapsecount++; 

  m = m + 1; 

  continue; 

 } 

        

 }  

//if no joint neighbour and FI(m)!=1 

 else if ((mtgt != ntgt || mtgt1 != ntgt1) && (f[m] == 0)) 

 { 

  Cm = INV(mdirection); 

fprintf(ft," %s: %d\t %s: %d\n", "collapse found on", globalm, 

"SA", Cm); 

       

if (NDST(globalm, INV(mdirection) != 0)) //if the neighbour of 

n in opposite direction is not terminal 

  { 

   f[NDST(globalm, INV(mdirection))] = 1; 

  } 

   //printf("  collapse found\n"); 

   colapsecount++; 

   m = m + 1; 

   continue; 

   } 

        

 

  } 

  else if (m == M){ 

   globalm = GBEG(i) + m; 

       

   //CM = !direction of input edge of node m(!IN); 

   //Cm = INV(IN); 

   //Cm = INV(mdirection); 

fprintf(ft," %s: %d\n", "collapse found, SAF", 

globalm); 

   colapsecount++; 

   break; 

  } 



 

 

 

 

  else{ 

   //printf("check this should never happens \n\n"); 

   break; 

    } 

   } 

    

       } 

 

  // skip graphs that are too short, cnt < 2 nodes 

  else if (GLEN(i) < 2)  { 

   //printf(" %s: %d\n", "graph lenght", GLEN(i)); 

   //printf(" %s: %d\n", "global lenght", globalLenght); 

   //printf("this happens \n\n"); 

   continue; 

  }  

 

 } 

  end = clock(); 

  STOP; 

  cpu_time_used = ((double)(end - start) / CLOCKS_PER_SEC); 

  printf(" %s: %g\n", "time spent", cpu_time_used); 

 

  printf("\n"); 

printf(" %s: %d\n", "Number of all nodes", TM); // checking 

the total number of nodes 

printf(" %s: %d\n", "Number of graphs", GrpCount); // checking 

the total number of graphs 

printf(" %s: %d\n", "Number of variables", VarCount); // 

checking the total number of graphs 

printf(" %s: %d\n", "Number of inputs", InpCount); // checking 

the total number of inputs  

printf(" %s: %d\n", "Number of output", OutCount); // checking 

the total number of output 

printf(" %s: %d\n", "Number of constant", ConCount); // 

checking the total number of constant  

  printf("\n\nTotal collapse:  %u \n", colapsecount); 

  

  fprintf(ft, "\n Total collapse:  %u \n", colapsecount); 

  fprintf(ft, " %s: %g\n", "Time spent", cpu_time_used); 

  PRINTTIME; 

  

  fclose(ft);  

  free_ag(); 

  return 0;     

   } 

int getDirection(mtgt, mtgt1){ 

  unsigned int md; // neighbor of the node m in direction d 

  md = 0; 

  if (mtgt != 0 && mtgt1 != 0) 

  { 

   if (mtgt > mtgt1) 

   { 

    md = 1; 

   } 

   else if (mtgt < mtgt1) 

   { 

    md = 0; 

   } 

   //printf(" %s: %d\n", "direction of m to n", md); 

  } 

  else 



 

 

 

 

  { 

   if (mtgt == 0 && mtgt1 >= 1) 

   { 

    md = 1; 

   } 

   else if (mtgt >= 1 && mtgt1 == 0) 

   { 

    md = 0; 

   } 

   //printf(" %s: %d\n", "direction of m to n", md); 

  } 

   return md; 

} 

int getNDirection(ntgt, ntgt1){ 

   unsigned int nd; //neighbor of the node m in direction d 

   nd = 0; 

   if (ntgt != 0 &&  ntgt1 != 0) 

   { 

    if (ntgt > ntgt1) 

    { 

     nd = 1; 

    } 

   else if (ntgt < ntgt1) 

   { 

    nd = 0; 

   } 

   //printf(" %s: %d\n", "direction of n to nd", nd); 

  } 

 

  else 

  { 

   if (ntgt == 0 && ntgt1 >= 1) 

   { 

    nd = 1; 

   } 

  else if (ntgt >= 1 && ntgt1 == 0) 

  { 

   nd = 0; 

  } 

  //printf(" %s: %d\n", "direction of m to n", nd); 

  //return md; 

 } 

 return nd; 

} 

 

 

 

 



 

 

 

 

 


