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1 Introduction 

Artificial Intelligence (AI) and climate change are among the most pressing topics of the 

current decade, permeating diverse domains such as industry, media, policy, and 

academia. Both are broad topics with multiple intersections. Companies, scholars and 

policymakers agree on the potential contributions of AI to solve many environmental 

challenges (Rolnick et al. 2023; Suleyman and Bhaskar 2023). The optimism does not 

come without concern: scholars, journalists and activists have been making calls about 

the negative environmental impact of some of the largest and most widely used AI 

technologies, and how they can be—by design—unsustainable (Crawford 2021; 

Mezzadra and Neilson 2017; Strubell et al. 2019). As any other general-purpose 

technology, Artificial Intelligence is an encompassing term used to name a very diverse 

array of tools and methodologies, for which its relationship with sustainability is nuanced 

and deserves to be studied in detail by looking at current developments and 

implementations. Additionally, several authors agree on how the common understanding 

of sustainable technologies should not be limited to ecological terms, but also include 

other dimensions such as economic or social (Acemoglu and Johnson 2024; Ahlborg et 

al. 2019; Barocas et al. 2023; Crawford 2021; Rohde et al. 2024). 

On the other hand, environment protection, climate change and sustainability are also 

broad umbrella terms, covering a vast number of issues globally. Complex interactions 

between multiple phenomena are the focus of work by scholars around the world to 

understand their causes and effects and, consequently, inform citizens, policymakers and 

companies’ actions towards mitigation and adaptation. The specific subjects this 

dissertation addresses are biodiversity and deforestation, to shed light on how AI can be 

used to face issues central to the protection of forests and biodiversity. Hooper et al. 

(2012) have shown strong evidence on how biodiversity loss is a major driver of 

ecosystem change, while Fearnside (1999, 2021) has argued about biodiversity having 

significant intrinsic value for Earth because of its environmental functions and services.  

This research project attempts to contribute to the discussion by documenting the case of 

Project Guacamaya: an ongoing partnership of private, public and non-for-profit 

organizations in Colombia that monitors biodiversity and deforestation in the Amazon 

Rainforest using multimodal AI-based data analysis. One major reason to dive deep into 

this project is its context: the global carbon and water cycles depend heavily on the 

ecosystemic services of the Amazon Forest. It is a major climate regulator and therefore 

requires rigorous monitoring in order to achieve international sustainability goals and 

mitigate climate change (Fearnside 2021; Ferreira 2024; Ponce de León et al. 2023). 

Moreover, the Amazon basin covers more than 7 million square kilometers over 9 
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different countries. Monitoring and conservation efforts require coordination across 

different politico-administrative regimes to be truly impactful. As will be discussed later, 

Project Guacamaya has promising features meant to overcome coordination, accessibility 

and scale challenges that are inescapable when dealing with such a massive ecosystem.  

Case study methodology (Flyvbjerg 2006) is used to conduct the research, informed by 

the Sustainability Criteria and Indicators for Artificial Intelligence Systems (SCAIS) 

framework (Rohde et al. 2024), which is helpful to analyze the case as a socio-technical-

ecological system. The multidimensional perspective enables identification of potential 

innovative, replicable or scalable attributes, as well as trade-offs, negative externalities 

or unsustainable practices. 

1.1 The case of Project Guacamaya 

Announced to the public in mid-2023, Project Guacamaya is the partnership between 

Microsoft, the CinfonIA lab of Universidad de Los Andes, Humboldt Institute, Sinchi 

Institute and Planet Labs. This initiative aims to contribute to the protection of the 

Amazon forest by means of permanent real-time monitoring of biodiversity, threat 

signalling and the generation of valuable data to inform policymaking. The design of the 

project is meant to consolidate a model of an integral broad understanding of the forest, 

through the multimodal analysis of data fed in real time, in addition to the combination 

of expertise coming from the different partners and their specialized knowledge (News 

Center Microsoft Latinoamérica 2023). More recently, in March 2025, Peruvian Ministry 

of Environment announced that it had joined the partnership, to expand the project to the 

Peruvian Amazon forest (Ministerio de Ambiente, Perú 2025). 

The core of Guacamaya has initially been a model that captures three types of data: audio 

from microphone traps, images from camera traps and images from satellites. It is 

intended to process through machine learning large amounts of information that exceed 

the capacity of human operators, in search for signs of stress in species or potential 

deforestation activities. The data is owned and shared by Planet Labs, Humboldt, and 

Sinchi institutes, while Microsoft and CinfonIA are in charge of funding and developing 

the model(s) and platform. Since its inception, the platform is open source, so authorities 

and other researchers worldwide are able to use it (News Center Microsoft Latinoamérica 

2023).  

About the partners: Microsoft is a publicly listed multinational company, headquartered 

in the United States, with offices in Colombia. Specifically, its AI for Good Lab1 is in 

 
1 https://www.microsoft.com/en-us/research/group/ai-for-good-research-lab/  

https://www.microsoft.com/en-us/research/group/ai-for-good-research-lab/
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charge of the project. CinfonIA2 is the Centre for Research and Formation in Artificial 

Intelligence at Universidad de Los Andes, a private renowned university based in Bogotá. 

Humboldt Institute3 is a mixed organization, operating as an independent not-for-profit 

scientific organization but also linked to Colombia’s Ministry of Environment. Its mission 

is to promote, coordinate, and conduct research that contributes to the knowledge, 

conservation, and sustainable use of biodiversity, and it is a well-known authoritative 

institution in the fields of biodiversity, ecology and environment conservation. 

Amazonian Scientific Research Institute Sinchi4 is a public organization, also under the 

Colombian Ministry of Environment, dedicated to scientific research on environmental 

issues with jurisdiction over the territory of the Colombian Amazon. Planet Labs5 is 

another publicly listed company, also based in the United States, dedicated to providing 

high frequency satellite data to public and private sector clients, as well as research 

institutions. 

1.2 Contribution to literature 

This section outlines the relevant academic discourse that informs this case study, 

particularly at the intersection of AI, sustainability, and biodiversity monitoring. The 

literature on the intersection of AI and sustainability is recent and has constantly grown 

in the past 10-15 years as scientists in both fields are increasingly working on theoretical 

and empirical research and development. Two main avenues can be identified along two 

overarching lines of inquiry: how can AI be sustainable? And how can AI contribute to 

sustainability efforts? The research addressing the former question belongs to the stream 

that has been called ‘Sustainable AI’ or ‘Green AI’, while the latter has been named by 

academics as ‘AI for sustainability’ (Alzoubi and Mishra 2024; Bolón-Canedo et al. 2024; 

Dhiman et al. 2024; Natarajan et al. 2022; Ofek and Maimon 2023; Raman et al. 2024; 

Tabbakh et al. 2024; Verdecchia et al. 2023; van Wynsberghe et al. 2022). Nevertheless, 

both questions are deeply intertwined, and experts have claimed they are two sides of the 

same coin. 

Until mid-2022 the most popular topics regarding Green AI (or Sustainable AI) research 

were monitoring, hyperparameter tuning, deployment and model benchmarking 

(Verdecchia et al. 2023). In other words, the focus of the scholarship around Green AI 

has been mostly on energy consumption and efficiency at the training stage of AI models. 

Additionally, the systematic literature review conducted by Verdecchia et al. (2023) 

shows that most studies are from laboratory experiments, and only 23% of them involve 

 
2 https://cinfonia.uniandes.edu.co/ 
3 https://www.humboldt.org.co/sobre-el-instituto 
4 https://en.sinchi.org.co/acerca-del-instituto  
5 https://www.planet.com/company/  

https://cinfonia.uniandes.edu.co/
https://www.humboldt.org.co/sobre-el-instituto
https://en.sinchi.org.co/acerca-del-instituto
https://www.planet.com/company/
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industry stakeholders or AI companies. They encourage the scientific community to 

collaborate more closely with private sector actors to increase their involvement, so that 

the potential of Green AI to reduce negative environmental impacts can be fully 

harnessed.  

Dhiman et al. (2024) conducted an even broader study on Sustainability of AI as well as 

AI for Sustainability. Besides a confirmation of most trends identified in the previous 

state-of-the-art articles, they explicitly explore how Sustainability can be analyzed under 

one or more of these dimensions: economic, social and environmental. Their motivation 

lies in the potential of AI not only to diminish energy, water and land usage, but rather to 

enhance and nurture environmental governance at a higher level (Nishant et al. 2020); an 

approach that matches closely the holistic critical view of Crawford (2021), Suleyman 

and Bhaskar (2023), and Acemoglu and Johnson (2024). To understand the design 

characteristics and potential contributions of Project Guacamaya, a multidimensional 

perspective may offer a more comprehensive understanding than approaches focused 

solely on net ecological impact. 

In 2024, Rohde et al. took a step towards substantiating the call for an integral perspective 

of sustainable AI by presenting the Sustainability Criteria and Indicators for Artificial 

Intelligence Systems (SCAIS) Framework, meant to assess AI-based systems across the 

dimensions of organizational embeddedness, society, ecology and economy. The authors 

propose a set of criteria and indicators for each dimension designed to evaluate the 

sustainability impacts of an AI system at concrete specific levels. Their contribution aims 

to provide researchers, developers, companies and policymakers concrete measures to 

improve AI development and deployment. 

On the specific applications of AI for biodiversity and deforestation monitoring, several 

authors have laid important foundations for the discussion and identified open challenges 

to be further researched. On a general note, Xu et al. (2023) and the Global Partnership 

on AI (2022) pointed out challenges regarding policy, resource allocation, planning, 

stakeholder coordination as well as promising trends regarding the use of machine 

learning for biodiversity and conservation. Pollock et al. (2025) exhaustively discuss how 

artificial intelligence can be used to address seven clearly defined shortfalls in 

biodiversity knowledge because of its capacity to integrate disparate and inherently 

complex data types, such as images, video, text, audio and DNA, to subsequently help to 

answer important ecological questions. Reynolds et al. (2025) identified 21 promising 

ways in which AI could support biodiversity conservation, from species recognition and 

improved biodiversity loss predictions to monitoring wildlife trade and mitigating human-

wildlife conflict. However, the study also warns of possible downsides, such as AI 
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colonialism and skill loss, and calls for thoughtful adaptation within the conservation 

field. Sandbrook (2025) adds to the warnings by pointing out the risks of Conservation 

AI, which may enhance conservation efficiency but also introduce challenges such as 

biased data, environmental costs, and disruptive shifts in labor and decision-making. The 

author argues that optimism has outpaced caution and calls for a more responsible 

approach grounded in transparency, risk awareness, and attention to the broader societal 

impacts of AI on biodiversity. 

Regarding the specific context of the Amazon forest, research about the use of AI for 

biodiversity and deforestation monitoring has been published, especially focusing on the 

monitoring of deforestation and illegal mining using satellite data aimed towards law 

enforcement in Brazil (Alshehri et al. 2024; Assuncao et al. 2023; Ferreira 2024; Fonseca 

et al. 2024; Moffette et al. 2021; Saavedra 2024; Torres et al. 2021). On the side of 

biodiversity monitoring, more gaps have been found by researchers, as they seem to agree 

on a gap between the data and models available for ecosystems in the global north and 

those in the global south, where large neotropical forests like the Amazon basin and the 

Congo basin are receiving insufficient camera trap research attention (Mugerwa et al. 

2024). In the case of Colombia, a group of scientists from Humboldt Institute have 

documented and synthesized the main experiences and challenges for machine learning-

aided biodiversity monitoring in Colombian ecosystems (Cañas et al. 2025). Some of the 

open issues identified are related with data sovereignty and governance, transparency, 

organizational capacities and international cooperation, bridging the gap between local 

communities and monitoring tools. Bearing all this in mind, the case study of Guacamaya 

brings findings relevant to the literature on AI for sustainability, particularly in relation 

to its use for biodiversity and monitoring in neotropical ecosystems, and in the socio-

economical context of Latin America. 

1.3 Research objectives and questions  

Building on the contextual background and literature outlined above, this research aims 

to examine Project Guacamaya through a case study lens. The focus is not only on the 

technical performance of the system, but also on how it engages with broader goals of 

environmental governance and sustainable development. The research is guided by the 

following objective and questions: 

Main objective: Assess Project Guacamaya as a case of AI for Sustainability and 

understand its potential to contribute to forest monitoring and conservation. 

Research questions: 
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• How does Project Guacamaya perform across the 19 criteria of the SCAIS 

framework? 

• What does the SCAIS framework reveal about Guacamaya’s ability to contribute 

to the greater efforts of environmental sustainability that drive it (Sustainable 

Development Goals and scientific mandates of its partners)? 

• How can the case of Guacamaya contribute to policymaking for biodiversity 

monitoring and conservation in the Amazon Forest Region? 

As the scholarly work on sustainability and AI increasingly calls for deeper exploration 

of the interaction between social, economic and ecological dimensions, these questions 

aim to contribute to the discourse with the analysis of a real-life case, through an 

operationalizable multidimensional lens. Additionally, they will also contribute to the 

current discussion on the potential of AI to solve conservation challenges in the Amazon 

Forest. Reflections on applying the SCAIS framework to the case of Guacamaya might 

also be relevant for its methodological discussion as it has been published only months 

ago. This research builds directly on the work of Rohde et al. (2024) and aims to respond 

to their call for further research and reflection on the interdependencies between 

sustainability-related impacts. 

1.4 Structure of the paper 

This thesis is structured in six chapters. Following this introduction, Chapter 2 presents a 

literature review that covers the intersection between artificial intelligence and 

sustainability, the Amazon rainforest, biodiversity and deforestation dynamics, and the 

role of environmental monitoring technologies. Chapter 3 explains the methodological 

approach, including the rationale for choosing Project Guacamaya as a paradigmatic case, 

the structure and relevance of the SCAIS framework, and the procedures for data 

collection and analysis. Chapter 4 presents the empirical findings, beginning with a 

description of the data gathered and an in-depth account of the project’s objectives, 

technical activities, organizational dynamics, and early results. It then evaluates 

Guacamaya’s performance against the 19 sustainability criteria defined by the SCAIS 

framework. Chapter 5 discusses the broader relevance of these findings by comparing 

Guacamaya with similar initiatives, exploring its policy implications, reflecting on future 

development paths, and assessing the value and limitations of the framework used. 

Finally, Chapter 6 concludes by summarizing key insights, addressing the research 

questions, acknowledging limitations, and suggesting directions for future research. 
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2 Literature review 

This chapter outlines the key theoretical and empirical literature that informs this 

research. It is divided into three parts: (2.1) the evolving relationship between AI and 

sustainability, (2.2) the ecological and political complexity of the Amazon as a case 

context, and (2.3) the role of environmental monitoring, with focus on biodiversity and 

deforestation, as the focal applications of AI examined in this study. Together, these 

sections establish the conceptual foundation for the case study of Project Guacamaya and 

the application of a multidimensional framework. Despite growing academic interest in 

the intersection of AI, biodiversity, and sustainability, there remains a notable lack of in-

depth case studies documenting the design and implementation of AI systems in 

biodiversity-rich but governance-fragmented regions such as the Amazon. This thesis 

contributes to filling that gap by analyzing Project Guacamaya using the SCAIS 

framework to assess both its technical and socio-ecological dimensions. 

2.1 Intersection between AI and sustainability 

Russell and Norvig (1995)—two of the most influential and pioneering figures in the field 

of artificial intelligence—define it as the attempt to understand and build intelligent 

agents, and adopt a definition of intelligence closely linked with rational action. That is, 

an intelligent (rational) agent takes the best possible action in a situation. Nevertheless, 

Russell and Norvig acknowledge other valid understandings of intelligence, as it can be 

defined in terms of human-likeness in contrast to rationality. Suleyman and Bhaskar  

define AI as “the science of teaching humanlike capabilities” (2023, p. vii). Regardless, 

the field has developed to a point where listing all activities involving AI is virtually 

impossible. Such list includes, at a minimum, robotics, speech recognition, autonomous 

planning and scheduling, language translation, computer vision, prediction and 

forecasting, etc. In other words, it is nowadays a general-purpose technology, and like 

any other general-purpose technology it deserves research and discussion about its impact 

on all spheres of society: economy, politics, environment or arts.   

Concerns over the ecological, economic, and social consequences of AI have increasingly 

fuelled research into both sustainable AI and AI for sustainability. On the ecological side, 

the development of state-of-the-art models, particularly in natural language processing, 

demands massive computational power, translating into high energy consumption and a 

sizable environmental footprint (Strubell et al. 2019). Economically, the rapid adoption 

of AI technologies has raised alarms about stagnant real wages and the potential for labour 

market disruption, especially in sectors vulnerable to automation (Acemoglu and Johnson 

2024; Santor 2020). Socially, issues such as algorithmic discrimination, the spread of 
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misinformation, and the erosion of public trust have sparked ethical debates around 

fairness, accountability, and the unintended consequences of AI systems (Crawford 2021; 

Dastin 2022; Jin et al. 2017). These challenges have motivated scholars to critically 

examine how AI can support or undermine sustainability goals across all three 

dimensions: environmental, economic, and social.  

The intersection between Artificial Intelligence and environmental sustainability covers 

a wide array of topics, and its discussion in academia—as well as in the industry—is very 

much alive. As mentioned in the previous section, two main currents can be identified in 

the literature under the following umbrella questions: how can AI be sustainable? And 

how can AI contribute to sustainability efforts? The research addressing the former 

question belongs to the stream that has been called ‘Sustainable AI’ or ‘Green AI’, while 

the latter has been named by scholars as ‘AI for sustainability’ (Alzoubi and Mishra 2024; 

Bolón-Canedo et al. 2024; Dhiman et al. 2024; Natarajan et al. 2022; Ofek and Maimon 

2023; Raman et al. 2024; Tabbakh et al. 2024; Verdecchia et al. 2023; van Wynsberghe 

et al. 2022). According to Dhiman et al. (2024), most existing literature tends to focus 

narrowly on either AI for sustainability or the sustainability of AI, while a minority of 

scholarly works consider both aspects simultaneously. 

2.1.1 Sustainable AI 

The definition of ‘Green AI’ is still under debate, and although popularized a few years 

ago, scholars have transitioned to the term ‘Sustainable AI’. Figure 1 shows there is a 

predominant understanding in terms of energy efficiency in the literature, plus a number 

of broader definitions with additional considerations such as carbon footprint or 

ecological footprint; the latter examining the holistic impact AI has on the natural 

environment beyond the greenhouse gas emissions or the energy consumption 

(Verdecchia et al. 2023). Based on these observations, the following definition statement 

is provided: “Green AI regards practices aimed at utilizing AI to mitigate the impact that 

humans have on the natural environment in terms of natural resources utilized, and/or 

mitigating the impact that AI itself can have on the natural environment.” (Verdecchia et 

al. 2023, p.17). 
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Figure 1. Number of publications per type of Green AI definition. Taken from Verdecchia et al., 2023, p. 6 

Alzoubi and Mishra (2024) propose a useful classification of green AI initiatives that 

illustrates the range of emerging tools designed to reduce the environmental footprint of 

artificial intelligence. Based on a review of 55 initiatives, they identify six categories: (1) 

cloud optimization tools like Google AI Platform and Microsoft Azure ML that reduce 

infrastructure energy use; (2) model efficiency tools such as Apple Core ML and Hugging 

Face Transformers that aim to lower computational demand; (3) carbon foot-printing 

tools like the Google Cloud Sustainability Calculator that help track and mitigate 

emissions; (4) sustainability-focused AI development efforts like EarthAI and Microsoft 

AI for Good, which apply AI to tackle environmental issues; (5) open-source initiatives 

that promote collaborative development of greener technologies, including the Green 

Software Foundation; and (6) green AI research and community initiatives such as EcoAI 

and the Green AI Foundation that foster knowledge sharing and interdisciplinary 

dialogue. Their framework helps distinguish ‘Green AI’—focused on the sustainability 

of AI systems themselves—from ‘AI for sustainability’, which uses AI as a tool to support 

environmental objectives, although it can be argued that ‘AI for sustainability’ belongs to 

the 4th category. This analysis shows how the field is evolving, with ongoing debates 

about how best to assess and improve the sustainability of AI systems. 

In complement to the literature reviews published by the end of 2023 (Natarajan et al. 

2022; Verdecchia et al. 2023), Dhiman et al. (2024) conducted an even broader study on 

Sustainability of AI as well as AI for Sustainability, using a Systematic Mapping Study 

approach. In addition to a confirmation of most trends identified in the previous state-of-

the-art articles, Dhiman et al. (2024) explicitly explore how Sustainability can be analysed 

under one or more of these dimensions: economic, social and environmental. Their 

motivation lies in the potential of AI not only to diminish energy, water and land usage, 

but rather to enhance and nurture environmental governance at a higher level; an approach 

that matches closely the holistic critical view of Crawford (2021) and seems more relevant 
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to understand the design characteristics and potential contributions of Project 

Guacamaya. They find that, since 2019, research of Sustainability and AI increasingly 

covers more than one dimension of sustainability, as shown in Figure 26.  

 

Figure 2. Number of papers by year by dimension of sustainability. Taken from Dhiman et al., 2024, p.157 

Following the trend of assessing the Sustainability of AI through a multidimensional 

understanding, Rohde et al. (2024) presented the Sustainability Criteria and Indicators for 

Artificial Intelligence Systems (SCAIS) Framework. By addressing 19 different 

sustainability criteria embedded in four dimensions of sustainability—organizational 

governance, social, ecological and economic—the framework compresses a set of 67 

indicators designed and operationalized based on the existing literature that has been 

extensively reviewed as shown above. The rationale behind this holistic Framework is 

that AI Systems are Socio-Technical-Ecological Systems (STES), and as such, there are 

impacts that need to be addressed on a different level, as seen in Figure 3. Additionally, 

the SCAIS Framework is meant to assess sustainability following 6 life-cycle phases of 

AI artifacts: 1) organizational embeddedness; 2) conceptualization; 3) data management; 

4) model development; 5) model implementation; 6) model use and decision-making 

(Rohde et al. 2024). On a more abstract level, this STES approach is an effort to 

understand interactions between society, environment, and technology, as they are never 

isolated. Technology nowadays mediates human-environment relationships, bringing 

ambivalence while enhancing and transforming human agency (Ahlborg et al. 2019). 

 
6 The cutoff of their review was in mid-2023, which explains the low number of papers found for that year. 
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Figure 3. AI systems as socio-technical–ecological systems, with impact levels and relevant actors for sustainable AI. Taken from 

Rohde et al., 2024, p.3 

2.1.2 AI for sustainability 

Policy strategies like the Sustainable Development Goals (SDG), on top of a generalized 

awareness of climate change and sustainability challenges faced by society, have led to 

multiple attempts of enhancing all kinds of sustainability efforts with AI technologies. 

Table 1 shows a comprehensive list of applications of Machine Learning (ML) to address 

climate change, by domain and type of activity, compiled by Rolnick et al (2023). Some 

of the examples of ML applications observed in these activities include causal inference, 

computer vision, interpretable models, natural language processing, reinforcement 

learning, time-series analysis, uncertainty qualification, unsupervised learning, among 

others.  
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Sustainability 

purpose 
Domain Activities 

M
it

ig
a
ti

o
n

 

Electricity systems 

Enabling low-carbon electricity 

Reducing current-system impacts 

ensuring global impact 

Transportation 

Reducing transport activity 

Improving vehicle efficiency 

Alternative fuels & electrification 

Modal shift  

Buildings and cities 

Optimizing buildings 

Urban planning 

The future of cities 

Industry 

Optimizing supply chains 

Improving materials 

Production & energy 

Farms & forests 

Remote sensing of emissions 

Precision agriculture 

Monitoring peatlands 

Managing forests 

Carbon dioxide removal 
Direct air capture 

Sequestering CO₂ 

A
d

a
p

ta
ti

o
n

 

Climate prediction 
Uniting data, ML & climate science 

Forecasting extreme events  

Societal impacts 

Ecology 

Infrastructure 

Social systems 

Crisis 

Solar geoengineering 

Understanding & improving aerosols 

Engineering a control system 

Modelling impacts 

T
o
o
ls

 f
o
r
 a

c
ti

o
n

 Individual action 
Understanding personal footprint 

Facilitating behaviour change 

Collective decisions 

Modelling social interactions 

Informing policy 

Designing markets 

Education  

Finance   
   

Adapted from Rolnick et al. (2023), p. 42:5 

Table 1. Applications of ML for climate change solutions 

Natarajan et al (2022) explore AI for sustainability in the context of commerce and 

markets. They distinguish four not mutually exclusive application categories: sustainable 

conception, sustainable production, sustainable consumption and sustainable business 

processes. They also identify seven positive affordances: material and product design 
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optimization, process monitoring and optimization, predictive and proactive 

maintenance, anomaly detection, demand-responsive products and services, 

sustainability monitoring, sustainability sensemaking. These set of affordances allow 

organizations to achieve outcomes such as low carbon designs, energy conservation, 

resource efficiency, production efficiency and reduction of GHG and pollutant emissions.  

These examples make clear that AI has the potential to reduce the natural resource and 

energy demands of human activities seems evident because of its capacity to efficiently 

process large amounts of information, automate tasks without supervision, or analyse 

highly heterogenous data. Its many possible applications can lead to the reduction of 

energy, water and land usage, or greenhouse gas (GHG) emissions by individuals, 

organizations and society overall. Additionally, it has great potential to enhance 

environmental governance (Nishant et al. 2020). Through large-scale pattern-recognition 

with vast amounts of data, AI offers tools to overcome controversy and address 

information gaps and cognitive bias, potentially accelerating the development of data-

driven approaches to environmental challenges. However, to grasp this potential, several 

gaps between policy and science must be closed (Nishant et al. 2020). Furthermore, AI 

has significant potential to accelerate other scientific fields, thus contributing indirectly 

to improving environmental sustainability. Chemistry, materials science, or 

biotechnology are fields benefited greatly by the computational power and capabilities 

provided by AI (Greif et al. 2024). 

Conservation, the specific field that encompasses the topics of biodiversity and 

deforestation, has seen extensive use of AI, mostly of computer vision for biodiversity 

monitoring, as supervised learning can be very helpful to identify animals or classify land 

cover. Additionally, AI technologies can be potentially used in prioritization of resources 

within protected areas, and to improve conservation area management activities (Xu et 

al. 2023). More than 24 researchers and practitioners, who met in 2022 for a workshop 

on AI-assisted decision making for conservation at the Center for Research on 

Computation and Society at Harvard University, agree on 3 main conservation priorities 

(Xu et al. 2023): 

1. Understand the world and develop an understanding of species populations, 

distributions, land cover, threats and human activity, in order to inform decision 

making. 

2. Act in the world, through actions such as designating new conservation areas, 

allocating resources, intervening in illegal wildlife trade, supporting sustainable 

economies, among others 
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3. Evaluate impact to learn whether actions are meeting their goals and iteratively 

improve decision making based on results. 

Risks such as undetected or underestimated biases in key datasets, insufficient 

explainability of systems, the eventual reliance on generative tools (highly intensive in 

water, energy and land use), or changes in the working practices, structure and function 

of organizations of the conservation sector are warned by Sandbrook (2025). As in other 

sectors, scalability is not trivial. For example, risks around endangered species, fragile 

socioeconomic conditions of communities, or government restrictions on data sharing 

because of sovereignty reasons (to protect local knowledge, indigenous heritage, etc.) add 

complexity to policy discussions. The hype of AI may distract conservation practitioners 

or policymakers from applying more appropriate techniques (Xu et al. 2023). Moreover, 

the broader adoption of AI, especially the generative technology, is likely to deepen the 

challenges in conservation, not only because of its material footprint, but because of its 

potential to significantly transform society. For example, agriculture techniques and 

scale, patterns of consumption of goods and services, or political discourse on 

environmental issues—all of them drivers of biodiversity loss—might be altered with 

unpredictable consequences (Sandbrook 2025). 

Accordingly, most of these challenges and risks have been identified by practitioners in 

Colombia. Promoting collection and sovereign management of biodiversity data, 

ensuring transparency and human-in-the-loop mechanisms, or empowering communities 

via open data and open models are some of the generalized challenges observed both 

globally and locally in Colombia (Cañas et al. 2025). But as argued earlier, conservation 

and the technologies that leverage the efforts around it are not isolated from socio-

economic phenomena. Practitioners also face context-specific challenges and risks. For 

example, existing biodiversity data is biased in favour of species and ecosystems from 

the Northern Hemisphere as more funding and infrastructure are available for such 

purposes (Daru and Rodriguez 2023; García-Roselló et al. 2023; Pollock et al. 2025). 

Another challenge (with more elaboration further on) is about the coordination of regional 

AI policies and biodiversity strategies. In contrast with the European Union, there is little 

policy coordination or common frameworks for practitioners to follow, even when 

ecosystems are shared across multiple countries like the Andes Mountains or the Amazon 

Forest. Additionally, there is significant dependence on foreign funding and technology 

providers (Cañas et al. 2025). 

2.2 The Amazon Rainforest  

While Section 2.1 discussed the conceptual and technological foundations of AI in the 

sustainability space, the next section shifts focus to the Amazon: a region with unique 
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biodiversity, facing multiple challenges in regards to conservation, governance and 

technology deployment. 

The Amazon Forest region, also called Amazonia or Amazon basin, stands out as the 

most biodiverse biome on the planet, home to an extraordinary variety of microorganisms, 

plants, birds, mammals, reptiles, fish, insects, and invertebrates (IPBES 2018). Endemism 

is notably high, particularly among mammals and freshwater fishes, while diversity varies 

geographically, with peak tree richness in the northwestern and central basin and distinct 

avian and mammalian diversity in the western Amazon and the Andean foothills. At the 

same time, amphibians and fishes exhibit the highest local diversity in the western 

Amazonian lowlands. Despite ongoing species discoveries—occurring at a rate of nearly 

one every two days—large portions of Amazonian biodiversity remain poorly 

documented, and scientific knowledge of their ecology and distributions is still limited 

(Science Panel for the Amazon 2021). 

Its vast network of waterways connects the Andes to the Atlantic Ocean, playing a vital 

role in global climate regulation by shaping air and ocean currents as it connects the 

Andes mountains to the Atlantic Ocean. Its forests release immense amounts of moisture 

into the atmosphere via evapotranspiration, which contributes to cloud formation and 

rainfall, particularly in the Andes and surrounding areas. This recycling of water vapor—

nearly a third of which is generated within the basin itself—sustains precipitation patterns 

and helps extend the rainy season (Science Panel for the Amazon 2021). Moisture 

generated in the Amazon also travels far beyond the basin through narrow atmospheric 

corridors known as aerial or flying rivers, feeding water into ecosystems and agricultural 

regions across central and southern South America. Alongside water vapor, these currents 

also carry smoke and aerosols from forest fires, intensifying pollution in downwind urban 

areas. The Amazon Basin also plays a major role in the global carbon cycle, storing 

between 150 and 200 billion tons of carbon and contributing around 16 percent of 

terrestrial productivity. That is the world’s largest stock of forest carbon, due to its 

immense surface area and dense vegetation (Pan et al. 2011).  
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Figure 4. Main Neotropical biogeographical regions and the Amazon River. Taken from Guayasamin et al. 2024 

The Amazon is not only the world’s largest tropical forest but also home to over 30 

million people, making it a region of immense socio-environmental complexity. It 

supports local and regional livelihoods through both market goods like timber and 

agricultural products, and non-market ecosystem services such as climate regulation and 

biodiversity conservation (FAO (ed.) 2011; Peres et al. 2010; Ponce de León et al. 2023). 

Although extensive research exists on the Amazon's ecological and social dynamics, 

scientific efforts are often criticized for falling short in supporting sustainability goals. 

Key limitations include fragmented, discipline-bound approaches, narrow scopes on 

specific ecological or social problems, and limited engagement with local actors and 

institutions ultimately responsible for shaping land-use decisions and policy 

implementation. (Gardner et al. 2013; Lahsen and Nobre 2007; Perz et al. 2010).  

The Amazon biome spans nine countries: Brazil, Peru, Colombia, Venezuela, Ecuador, 

Bolivia, Guyana, Suriname, and French Guiana. Each with distinct political systems, 

environmental policies, and levels of institutional capacity. This fragmented jurisdictional 
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landscape complicates efforts to coordinate monitoring, conservation, and sustainable 

development across the basin. Differences in land-use policy, enforcement mechanisms, 

and national priorities create barriers to the implementation of basin-wide strategies, 

while ecological processes happen across borders, such as water and wildlife flows, or 

fire and pollution transport. Efforts like the Amazon Cooperation Treaty Organization 

(OTCA) and the Leticia Pact represent important regional commitments to environmental 

protection, knowledge exchange, and sustainable development in the Amazon Basin. 

These agreements aim to coordinate policies that mitigate the impacts of extractive 

industries and promote science, innovation, and a forest-based bioeconomy (Science 

Panel for the Amazon 2021). In this context, the private sector, research institutes, and 

civil society organizations can play a key role by building partnerships at different scales 

to support investment, science, innovation, and research. 

2.2.1 Biodiversity 

Biodiversity in the Amazon supports not only ecological processes but also a wide range 

of benefits to human societies. It underpins the livelihoods of many who depend on forest 

products such as fish, fruits, and medicinal plants, while also serving as a frontier for 

biological research with global implications, including for medicine and sustainability 

science (Fearnside 1999, 2021; Ferreira 2024). Beyond its instrumental value, Amazonian 

biodiversity carries intrinsic worth due to the complex evolutionary and ecological 

relationships it represents. This depth of interconnection suggests that protecting 

biodiversity is not only about conserving species but about maintaining the ecological 

processes they enable. 

The role of biodiversity in ecosystem functioning is increasingly recognized at a global 

scale. Loss of species richness has been shown to affect critical ecological processes such 

as primary productivity and decomposition, at magnitudes comparable to other global 

environmental changes like nutrient pollution, ozone acidification or climate warming 

(Hooper et al. 2012). These processes are essential to regulating carbon and nutrient 

cycles, which in turn support broader ecosystem services. In the Amazon, where 

ecological interactions are highly specialized, such losses could cascade in ways that 

affect regional and global environmental stability. 

However, biodiversity conservation cannot be reduced to preserving forest cover alone. 

Evidence shows that human disturbances within remaining forest areas—such as logging, 

fires, and fragmentation—can result in biodiversity loss even more severe than that 

caused by deforestation itself. For example, in parts of the Brazilian Amazon, 

disturbance-related degradation led to greater losses in conservation value than permitted 

deforestation levels under existing laws (Barlow et al. 2016). These findings highlight the 
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need for policies that go beyond surface-level protection and address the ecological 

integrity of forests more comprehensively. 

At the governance level, biodiversity is increasingly being understood as a source of 

public goods at both local and global scales. While ecosystem services like flood control 

may generate mostly local benefits, others—such as carbon sequestration, species 

existence, and genetic diversity—are global in nature and provide non-market benefits 

that are underprovided by the private sector (Deke 2008). Because many of these services 

are non-rival and non-excludable, they fall into the category of public goods and require 

collective action to be sustained. This perspective underscores the need for policy action 

and private initiatives that capture the broader environmental benefits of biodiversity and 

secure the continued delivery of ecosystem services across different spatial and 

institutional contexts. 

2.2.2 Deforestation 

Deforestation refers to the destruction of forest biomass, typically to convert land for 

economic use. When only part of the forest is cleared or degraded, this process is referred 

to as forest degradation (Ferreira 2024). In the Amazon, the main agricultural products 

linked to deforestation are soy, corn, and cattle, with coca and palm oil contributing on a 

smaller scale. In Brazil, soy was the main driver of deforestation in the early 2000s, but 

by the late 2000s and into the 2010s, deforestation became more strongly linked to cattle 

ranching (Macedo et al. 2012). In Bolivia, Peru, and Colombia, cattle grazing also plays 

a significant role, though in these cases, deforestation is often intertwined with coca 

cultivation (Dávalos et al. 2016). Palm oil expansion, meanwhile, is rapidly replacing 

forest in parts of Ecuador and Peru (Vijay et al. 2016). Timber and mineral extraction, 

such as logging for mahogany and ipê or small-scale gold mining, are also contributors, 

but tend to affect smaller areas due to their dependency on specific local resources. 

The process of deforestation often unfolds in three stages: selective logging of high-value 

species, mechanical clearing and burning of vegetation, and finally, burning of remaining 

biomass to fertilize the soil with ash (De Almeida et al. 2022; Nepstad et al. 1999). Fires 

are typically set at forest edges and allowed to spread inward, weakening vegetation to 

ease further clearing. 

Regarding the specific cases of Colombia and Perú, Dávalos et al. (2016) critically 

examine long-standing assumptions about the relationship between coca cultivation and 

deforestation in the Amazon regions of these two countries. Contrary to the prevailing 

‘immiserization’ model, which holds that poor farmers clear forests to grow lucrative 

coca crops in the absence of better economic options, their findings support a ‘frontier’ 
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model. According to this model, state-led infrastructure and colonization projects in the 

1960s and 1970s laid the groundwork for Amazonian deforestation by opening new 

settlement frontiers, with coca cultivation emerging later in already-disturbed landscapes. 

The authors demonstrate that coca does not significantly increase deforestation on its 

own, nor does it drive migration. Instead, it appears more as a symptom of broader land-

use dynamics shaped by road building, expanding legal agriculture, and state presence (or 

absence) on the forest frontier. 

Furthermore, mining—both legal and illegal—has become an increasingly significant 

driver of deforestation in Colombia. González-González et al. (2021) show that between 

2001 and 2018, legal mining alone accounted for over 120,000 hectares of deforested 

land, with a steep increase after 2013. Gold and coal were the primary materials 

associated with this forest loss. Importantly, this deforestation is often concentrated in a 

small number of large-scale concessions, with over 90% of mining-related deforestation 

coming from just 3% of mining leases. Despite these impacts, there is limited compliance 

with environmental regulations: fewer than 2% of mines requested the required permits 

for forest exploitation during that period. The lack of enforcement and transparency 

reflects a broader pattern of weak environmental governance in mining regions, where 

law enforcement is often absent or ineffective. 

Closely related to the mining and illegal crops issues is the role of armed conflict and its 

aftermath. As Liévano-Latorre et al. (2021) argue, the presence of armed groups such as 

the FARC guerilla had complex ambivalent effects on deforestation. On the one hand, 

their military presence often deterred logging and other forms of environmental 

exploitation. On the other hand, these groups financed their operations through illegal 

mining and coca cultivation, contributing to deforestation indirectly. After the 2016 peace 

agreement, areas previously controlled by guerrillas experienced a power vacuum that led 

to spikes in forest loss, particularly due to land grabbing and the expansion of extractive 

frontiers. The study shows that although FARC-occupied regions sometimes acted as de 

facto conservation areas, they also represented zones of latent socio-environmental 

conflict, and their post-conflict trajectories are closely tied to broader governance and 

development failures. 

Across the broader Amazon region, beyond Colombia, the economic gains from 

deforestation come mainly from timber sales and agricultural production, though coca 

and gold are considered among the most profitable per hectare. However, these profit 

calculations often exclude externalities. That is: costs borne by society but not by the 

actors involved. These include greenhouse gas emissions, smoke and particulate matter 

from fires, disruptions to rainfall and water vapor transport, and pollution from mining. 
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According to Ferreira (2024), if such costs were factored in, many deforestation activities 

would likely show negative net economic value, indicating a market failure. 

These externalities can be understood at multiple scales. Globally, deforestation 

contributes to climate change by releasing stored carbon into the atmosphere. Regionally, 

vegetation loss reduces evapotranspiration, leading to declines in rainfall and longer dry 

seasons, while fires contribute to transboundary air pollution (Araujo et al. 2023; Leite‐

Filho et al. 2019; Nepstad et al. 1999). Locally, deforestation disrupts ecosystem services 

and accelerates biodiversity loss by fragmenting habitats and making it harder for species 

to survive and reproduce (Barlow et al. 2016; Ochoa‐Quintero et al. 2015). Other mid-

scale impacts include increased malaria transmission (MacDonald and Mordecai 2019), 

the destruction of cultural and non-use values (Chan et al. 2011), violence linked to 

extractive industries (Pereira and Pucci 2024), and threats to Indigenous communities 

(Barsanetti and Ferreira 2022). 

2.2.3 Social conflict and indigenous rights in the Colombian Amazon region 

As it was mentioned briefly in section 2.2.2, the Colombian Amazon is not only a globally 

significant ecological biome but also a complex social and political landscape shaped by 

decades of armed conflict, extractive development, and Indigenous resistance. Despite 

the 2016 peace agreement between the Colombian government and the FARC-EP 

guerrilla group, violence in the region has not ceased. Instead, the vacuum left by 

demobilized combatants has been filled by new and existing criminal organizations 

competing for control over land, illicit economies, and resource extraction (Krause et al. 

2025; Palau-Sampio 2025). These dynamics have turned Colombia into the world’s most 

dangerous country for environmental and human rights defenders (EHRD), who continue 

to face threats, displacement, and assassination, particularly in Amazonian departments 

like Putumayo and Caquetá (Global Witness 2023; Le Billon and Lujala 2020; Palau-

Sampio 2025). 

EHRDs play a central role in environmental peacebuilding by linking ecological 

protection to broader struggles for social justice, especially for rural and Indigenous 

communities (Krause et al. 2025). Yet, their work is undermined by persistent inequalities 

in land tenure and access to decision-making. Even with increasing cultural and political 

recognition under recent administrations, economic abandonment and environmental 

degradation remain entrenched in the region. The expansion of cattle ranching, coca 

cultivation, and extractive industries has driven deforestation and human displacement, 

while environmental governance efforts often ignore or marginalize local knowledge and 

leadership (Krause et al. 2022; Palau-Sampio 2025). This disconnect between top-down 
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conservation policy and ground realities raises concerns about equity, representation, and 

the long-term legitimacy of environmental interventions. 

Indigenous Peoples of the Colombian Amazon, such as the Uitoto and Andoque 

communities of the Middle Caquetá, have repeatedly denounced initiatives like the 

‘Visión Amazonía REDD Early Movers programme’ for violating their rights to self-

determination, collective property, and customary law (Andoke Andoke et al. 2023). 

Although these programmes often claim to include Indigenous beneficiaries, they are 

typically designed without meaningful consultation and implemented through external 

intermediaries, perpetuating patterns of dependency and internal division. These 

shortcomings not only undermine procedural and distributional justice but also dismiss 

the depth and validity of Indigenous science and territorial care practices. For millennia, 

Indigenous communities have sustained Amazonian ecosystems through holistic 

governance systems that recognize the interconnectedness of human and non-human 

societies. Ignoring these frameworks limits the transformative potential of conservation 

and risks reinforcing colonial power dynamics in new forms. 

The legacy of violence, combined with extractive economic pressures and poorly 

implemented peacebuilding efforts, has left Amazonian communities in a precarious 

position. While courts have recognized the Amazon as a subject of rights and Indigenous 

Peoples as legitimate stewards of their territories, institutional protections remain weak 

or unfulfilled (Krause et al. 2022). Furthermore, the militarization of environmental 

policy, as seen in operations like Artemisa, often criminalizes small-scale farmers and 

Indigenous groups instead of addressing the structural forces behind deforestation and 

land grabs (Krause et al. 2022). Understanding these sociopolitical realities is essential 

for any initiative that aims to monitor and protect biodiversity in the region. Without 

direct engagement with the communities most affected by environmental degradation, 

technological tools risk becoming detached from the justice and sustainability goals they 

claim to serve. 

2.3 Environment monitoring 

Given the Amazon’s global ecological significance and its socio-environmental 

vulnerability, understanding how environmental change is monitored in this region is 

crucial. The following section reviews the literature on environmental monitoring, with 

particular attention to biodiversity and deforestation. 

Environmental monitoring has become a central tool for understanding and responding to 

the growing interdependence between ecological systems and human activity. In the 

context of the Anthropocene—an era in which human influence is embedded in virtually 
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all natural processes—scholars argue that the long-standing conceptual divide between 

nature and society is no longer valid (Keskitalo et al. 2023; Palsson et al. 2013). 

Contemporary environmental challenges such as biodiversity loss, deforestation, climate 

variability, and pollution cannot be interpreted in isolation from the social and economic 

systems that drive them (Bartlein and Matthews 2012; Cline 2014; Stenlid and Oliva 

2016). This shift in understanding requires a parallel transformation in the way 

ecosystems are observed and governed. Monitoring is no longer simply a matter of 

recording environmental variables, but of capturing the evolving relationships between 

human activity, ecological dynamics, and socio-political decision-making. 

According to the European Environment Agency (1999), environmental monitoring 

encompasses both observation and measurement to assess the implementation and impact 

of policies, plans, or programs. It not only informs compliance with environmental 

objectives but also provides feedback that allows institutions to adapt their strategies and 

interventions in real time. This dual function as both a technical and governance tool 

makes monitoring especially relevant for ecologically complex and politically 

fragmented regions like the Amazon. As pressures mount from infrastructure expansion, 

land-use change, and climate impacts, monitoring serves as a critical interface between 

scientific knowledge and environmental management. 

2.3.1 Monitoring biodiversity 

Monitoring biodiversity is a vital tool for understanding the status and trends of species 

and ecosystems, particularly in regions like the Amazon, where ecological complexity 

and human pressures converge. As Allard et al. (2023) explain, biodiversity monitoring 

can take different forms depending on the questions asked, the resources available, and 

the institutions involved. They outline five primary types of monitoring: curiosity-driven, 

mandated, question-driven, citizen science–driven, and community-driven. Each plays a 

role in documenting biodiversity change and informing conservation action. 

Curiosity-driven monitoring emerges from individual or institutional interest without 

formal statistical design or policy mandates. While typically informal, it can generate 

long-term datasets if structured around clear parameters for what, where, and when 

observations occur (Allard et al. 2023; Likens and Lindenmayer 2018). Mandated 

monitoring, by contrast, is policy-driven and often tied to legal or regulatory frameworks, 

such as national biodiversity inventories or environmental impact reporting under 

international conventions. These programs typically monitor broad ecological indicators 

across long timeframes, though they may suffer from overly generic targets. 
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Question-driven monitoring is designed to test hypotheses or detect ecologically 

significant change using rigorous statistical methods. It often underpins adaptive 

management by explicitly defining thresholds, effect sizes, and acceptable levels of 

uncertainty (Allard et al. 2023). Citizen science-driven monitoring shares some of this 

rigor but involves volunteers in data collection. Programs like the UK Butterfly 

Monitoring Scheme and the Swedish Nesting Bird Inventory have shown how citizen 

science can sustain large-scale, long-term datasets (Brlík et al. 2021; Macgregor et al. 

2019). Another well-known example is Audubon’s Christmas Bird Count, which has been 

performed annually since year 1900 and nowadays happens in over 7 countries, including 

Colombia since 1989 (Audubon 2025; Ferner 1977). Finally, community-driven 

monitoring is embedded in specific social contexts, with local actors either collecting data 

or setting monitoring priorities. These approaches are particularly valuable in Indigenous 

and rural settings, where local knowledge and environmental stewardship intersect 

(Allard et al. 2023). 

New technologies have reshaped biodiversity monitoring by increasing both the scale and 

resolution of data collection. Nilsson et al. (2023) describe how remote sensing tools, 

such as satellite and airborne imagery, are used to monitor species distributions, 

vegetation cover, and habitat conditions. When paired with field data, these tools support 

multi-scale assessments of biodiversity, though challenges remain in detecting fine-scale 

biological change. Earth observation systems like Landsat and MODIS (powered by 

satellite technology) are widely used, and new constellations of high-resolution sensors—

along with lidar and radar technologies—are increasingly accessible for biodiversity 

applications. 

Allard et al. (2023 b) discuss how camera traps, drones, and AI-driven classification 

systems have also expanded monitoring possibilities. Camera traps enable non-invasive 

detection of elusive or nocturnal species, while drones provide a flexible platform for 

collecting data in remote or otherwise inaccessible areas. Deep learning techniques, 

especially convolutional neural networks (CNNs), are increasingly used to automate the 

classification of species in images and sounds, reducing the labour intensity of data 

processing and opening space for real-time analysis. 

Despite growing technological capacities, critical gaps persist in our understanding of 

biodiversity. Pollock et al. (2025) outline seven well-established shortfalls that limit the 

global ability to monitor, manage, and conserve species and ecosystems. For each 

challenge, the authors comment on promising AI developments with potential to address 

them. They are as follows: 
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1. The Linnaean shortfall, which refers to the vast number of species that remain 

undescribed. Taxonomic work is slow, and many species—especially in highly 

diverse regions like the Amazon—go extinct before being scientifically recorded. 

AI tools such as image and audio classification algorithms can accelerate species 

identification by helping researchers flag unknown or rare species based on 

morphological or acoustic features. 

2. The Wallacean shortfall involves limited knowledge of species' geographical 

distributions. Many species are known from only a handful of localities. AI-

enabled species distribution models (SDMs), particularly those using machine 

learning, can integrate scattered occurrence data with environmental variables to 

predict likely species ranges more accurately and at higher resolution. 

3. The Raunkiæran shortfall concerns the lack of data on species traits, such as 

reproductive strategies, growth forms, or dispersal capacity, that are essential to 

understanding ecological roles. AI can assist in automating trait extraction from 

digital records, images, and herbarium sheets, and can be used to infer traits from 

closely related species or ecological analogues using pattern recognition and data 

fusion. 

4. The Eltonian shortfall refers to limited understanding of species’ ecological 

interactions. This includes predation, pollination, and competition, complex 

relationships that structure ecosystems. Although harder to observe directly, AI 

can help identify potential interactions by analysing co-occurrence patterns, 

network structures in ecological communities, or synchronized behaviours from 

acoustic and visual data. 

5. The Prestonian shortfall reflects the poor coverage of data on species’ population 

abundances and trends. Traditional monitoring of abundance is labour-intensive, 

but AI can be applied to process large volumes of camera trap or acoustic data to 

estimate relative abundance over time and across sites, enabling better detection 

of population declines or surges. 

6. The Hutchinsonian shortfall relates to the lack of detailed knowledge about 

species’ environmental tolerances or niche dimensions, key for predicting how 

they may respond to climate or land-use change. Machine learning models trained 

on known occurrences and environmental layers can help define and simulate 

species' niches, including responses to novel conditions. 
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7. The Darwinian shortfall deals with incomplete information about species' genetic 

diversity and evolutionary potential, which is crucial for resilience under 

environmental stress. While AI is less central in producing genetic data, it is 

increasingly used to process genomic sequences, identify patterns of variation, 

and flag populations at genetic risk, especially in combination with spatial and 

ecological data. 

Pollock et al. (2025) emphasize that these shortfalls are interconnected and cumulative, 

meaning one gap often reinforces another. While AI cannot substitute for fieldwork or 

taxonomic expertise, it provides an unprecedented capacity to synthesize unstructured 

datasets, identify hidden patterns, and scale biodiversity assessments across time and 

space. Its effectiveness, however, depends on robust, high-quality input data and 

sustained collaboration across disciplines and institutions. 

In sum, biodiversity monitoring today spans a range of practices—from locally driven 

initiatives to high-tech, large-scale systems—and reflects growing recognition of the need 

to bridge ecological knowledge with policy and management. In the Amazon, where 

biological richness is extreme and threats are intensifying, monitoring frameworks that 

integrate local participation, advanced technology, and analytical flexibility are 

particularly needed. The challenge lies not only in capturing data, but in translating it into 

actionable knowledge that can support conservation at multiple levels: from site-specific 

interventions to regional strategies. 

2.3.2 Monitoring deforestation 

Monitoring deforestation has gained significant institutional support and technological 

advancement, particularly in comparison to biodiversity monitoring. In countries like 

Brazil, deforestation monitoring systems are well established, comprehensive, and tightly 

linked to environmental policy enforcement. Assunção et al. (2023) describe how Brazil’s 

DETER system, based on satellite imagery, provides near-real-time alerts that have been 

used to guide environmental law enforcement since the early 2000s. This system has 

proven to be one of the most influential tools in the reduction of deforestation in the 

Amazon. However, satellite-based monitoring also presents challenges, such as persistent 

cloud coverage, which can obscure deforestation activity and affect the frequency and 

accuracy of image capture. 

In Colombia, as Ferreira (2024 b) points out, satellite monitoring also plays a central role, 

but its effectiveness depends on a chain of conditions: that alerts are informative, that 

environmental authorities make active use of them, and that citizens and actors in the 

territory respond accordingly. Without these conditions, the mere availability of satellite-
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based information does not necessarily lead to a decrease in deforestation. This limitation 

is particularly relevant given that enforcement in Colombia has historically struggled due 

to lack of capacity and institutional coordination.  

Another key point is the involvement of citizens in deforestation monitoring, as it also 

happens in biodiversity monitoring. McCallum et al. (2023) and Saavedra (2024) 

highlight how citizen engagement, including crowd validation of satellite image-based 

alerts and the training of AI models through manual labelling, contributes to more 

accurate systems and greater public awareness. These participatory approaches increase 

the legitimacy and transparency of environmental monitoring and have the potential to 

complement top-down enforcement mechanisms. 

In addition to technical and participatory dimensions, deforestation monitoring in 

Colombia is shaped by complex political and institutional dynamics, on top of the armed 

conflict and illicit economies issues mentioned before. According to González-Balaguera 

et al. (2024), the country has developed a legal and institutional framework that includes 

monitoring systems like IDEAM’s Forest and Carbon Monitoring System, as well as 

national commitments linked to international agreements such as the REDD+ program 

(Reducing Emissions from Deforestation and Forest Degradation, funded by the Food 

and Agriculture Organization of the United Nations, FAO). Nonetheless, the 

effectiveness of these mechanisms is often limited by fragmented implementation, weak 

coordination among institutions, and incentives that are not always aligned with 

environmental goals. For example, while deforestation is formally penalized, extractive 

activities such as mining often receive economic incentives or are tolerated despite their 

environmental impact. As mentioned in section 2.2.3, ‘Visión Amazonía’, the initiative 

denounced by the indigenous Communities in the Colombian Amazon is part of the 

REDD+ program (Andoke Andoke et al. 2023). 

Understanding these sociopolitical dynamics is essential for effective deforestation 

monitoring and conservation. As the Colombian case shows, forest loss cannot be 

decoupled from broader issues such as land tenure insecurity, illicit economies, political 

instability, and weak law enforcement. Monitoring systems may provide timely and 

accurate alerts, but their impact ultimately depends on political will, institutional 

coordination, and the ability to align incentives for conservation at multiple scales. 

Finally, it is important to remember that deforestation is a major driver of biodiversity 

loss. Clearing forests not only destroys habitats but also fragments ecosystems, reduces 

species mobility, and increases vulnerability to other pressures such as hunting or climate 

change. As noted earlier in this chapter, maintaining forest cover is crucial to safeguard 

the Amazon’s exceptional biodiversity. Thus, monitoring deforestation is also indirectly 
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an essential tool for biodiversity conservation, reinforcing the need for integrated 

approaches across both fields. 

In summary, this literature review has outlined the theoretical foundations and current 

trends in sustainable AI, detailed the ecological and political complexities of the Amazon 

region, and highlighted how biodiversity and deforestation monitoring are evolving 

through technological and institutional innovation. Despite the rapid advancement of AI 

tools, there remains a lack of critical case studies documenting their real-world 

application in biodiversity-rich, institutionally complex environments. The following 

chapters address this gap by analysing Project Guacamaya as a case study of AI for 

sustainability. 
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3 Methodology 

This research adopts a qualitative case study design to explore how a multi-actor AI-based 

environmental monitoring initiative emerges and operates in the Amazon region. The 

selected case, Project Guacamaya, is a rich example useful for examining the interactions 

between technological innovation, institutional collaboration, and sustainability goals. 

The case study method is especially suited to understanding contemporary, complex 

phenomena within their real-life settings, where boundaries between the phenomenon and 

its context are blurred. As Flyvbjerg (2006) argues, case studies are not limited to 

exploratory or illustrative functions; rather, they are instrumental for generating nuanced 

knowledge and deepening understanding of practice, particularly when conventional rules 

and generalizations fall short. 

To guide the analysis, this study draws on the Sustainability Criteria and Indicators for 

Artificial Intelligence Systems (SCAIS) framework (Rohde et al. 2024). SCAIS was 

developed to assess AI projects through a multidimensional sustainability lens, 

considering ecological, social, and technical dimensions in an integrated manner. Its 

emphasis on both process and outcome, as well as its attention to unintended 

consequences and power asymmetries, makes it a suitable tool for examining socio-

technical systems like Guacamaya. Together, the case study approach and the SCAIS 

framework offer complementary pathways to investigate how technological initiatives 

aimed at environmental governance are conceptualized, negotiated, and implemented in 

practice. Building on the literature reviewed in Chapter 2, and the research questions 

framed in Chapter 1, this chapter details the methodology used to examine Project 

Guacamaya. 

3.1 Case study 

This research adopts a case study approach based on the premise that AI systems—

particularly those deployed for sustainability purposes—are inherently socio-technical-

ecological in nature. As Rohde et al. (2024) argue, such systems are deeply embedded in 

their contexts and shaped by the interplay of institutions, actors, technologies, and 

ecosystems. In this view, context is not a backdrop but a constitutive part of the system 

itself, which makes generalization across cases both analytically risky and 

methodologically premature. Thus, a case study approach is the most appropriate 

methodology for exploring phenomena whose meanings, mechanisms, and implications 

are inseparable from their settings. 

Beyond this conceptual alignment, the case study method also supports the production of 

expert knowledge in emerging research domains. As Flyvbjerg (2006) emphasizes, case 
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studies contribute to the accumulation of context-rich insights that are essential for 

advancing knowledge in fields that are still taking shape. This applies to the intersection 

of AI and sustainability, where the scientific community recognizes the novelty and 

urgency of both Sustainable AI and AI-for-Sustainability as research agendas. Project 

Guacamaya is proposed here as a paradigmatic case: an example that stands out for its 

potential to inform broader theoretical and practical debates. At least three features 

support this claim of Guacamaya being a paradigmatic case. First, it is one of very few 

AI-for-Sustainability initiatives in Latin America with a clear co-creation backbone, as 

only eight comparable cases have been identified by Gutiérrez et al. (2025), alongside 

two additional examples found independently. Second, its design choices (such as the 

open-source publication of models, the use of public datasets, and a transdisciplinary, co-

creative development model) aim explicitly at replication and adaptation. Finally, its real-

world implementation aligns with proposals by Ahlborg et al. (2019) to focus 

sustainability research on the tensions between different knowledge systems and on 

collaborative innovation processes grounded in specific places and change dynamics. 

3.2 SCAIS Framework 

To guide the sustainability assessment of Project Guacamaya, this study applies the 

Sustainability Criteria and Indicators for Artificial Intelligence Systems (SCAIS) 

framework developed by Rohde et al. (2024). The framework provides a structured 

approach to understanding the impacts of AI systems not only from a technical 

perspective but also in relation to broader ecological and social contexts. Its core 

assumption is that AI systems should be analyzed as socio-technical–ecological systems 

(STES), where outcomes are shaped by the interaction between algorithms, institutions, 

human decisions, and environmental constraints. This framing acknowledges that AI 

development and deployment cannot be attributed solely to technical design, nor only to 

human intention, but must be situated in the hybrid space where infrastructure, 

governance, and ecosystems co-evolve (as shown in Figure 3, Chapter 2). 

Rohde et al. organize the analysis of AI systems along six lifecycle phases:  1) 

organizational embeddedness, 2) conceptualization, 3) data management, 4) model 

development, 5) implementation, 6) use in decision-making. Together, these phases 

capture the dynamic process through which AI systems are imagined, built, and operated. 

The sustainability perspective adopted in the framework builds on the triad of social, 

ecological, and economic dimensions, not as isolated categories but as interrelated lenses 

through which tensions and trade-offs can be explored. While this division is presented 

as ideal-typical, the authors recognize the complex entanglements across domains and the 

need to assess how sustainability impacts unfold and interact across scales and systems. 
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To operationalize the assessment, the authors define four levels of impact: the AI system 

itself, the application level, the macro-social level, and the ecological system level. These 

levels reflect the multiple sites where sustainability outcomes may emerge: from the 

material and energy inputs of machine learning infrastructure to the long-term societal 

effects of decision-making processes influenced by AI. Table 2 presents the full set of 

sustainability criteria, and 67 indicators derived from literature reviews and expert 

workshops, covering both cross-cutting concerns and those specific to each dimension. 

These indicators provide an entry point for assessing whether and how AI systems like 

Guacamaya align with sustainability goals, though the authors caution that this list is not 

exhaustive and should evolve alongside new insights. 

Crucially, the framework emphasizes the need to account for interdependencies and 

potential trade-offs between sustainability impacts. For instance, shifting data processing 

to more energy-efficient cloud infrastructures might reduce environmental strain, but also 

reinforce concentration in the tech industry. As Rohde et al. argue, sustainability 

assessments of AI must be paired with broader societal reflection and negotiation. 

Questions about which sustainability impacts deserve priority, and how to address 

tensions between them, cannot be resolved by technical metrics alone. The SCAIS 

framework offers a foundation for this kind of dialogue, combining analytical structure 

with openness to political and ethical dimensions. 
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  Criteria Indicators (operationalization) 
Life-

cycle phase 
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(1) Defined 

responsibilities 

(1) There are contact persons for ethical and social matters 

1 
(2) The allocation of responsibility is clearly and 

transparently regulated and documented 

(3) There are regulations on liability aspects 

(2) Code of conduct 
(4) Norms and values for the implantation and use of AI 

systems defined in a code of conduct 
1 

(3) Stakeholder 

participation 

(5) Identification and classification of stakeholders 

1,2,4,5,6 (6) Integration of stakeholders into design, test, and release 

processes 

(4) Documentation 

(7) Documentation of information regarding objectives, 

domain, users, data, model, feature selection, inputs, tests, 

metrics, and so on (model card) 

1,2,3,4,5,6 

(5) Risk 

management 

(8) Implementation of risk assessment 

1,2,4,6 (9) Implementation of risk monitoring 

(10) Implementation of risk management 

(6) Complaint 

mechanism 

(11) Option to report errors, unfair and discriminatory 

decisions, privacy intrusions, and so on to AI-operating 

company 

  

S
o
c
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l 
d
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(7) Transparency 

and accountability 

(12) Parameter count 

1,3,5,6 

(13) AI type (deep learning vs. statistical learning) 

(14) Use of methods for increasing transparency and 

explainability 

(15) Information about AI usage available 

(16) Access to information about functionality 

(8) 

Nondiscrimination 

and fairness 

(17) Assessment of the potential for discrimination 

1,3,4,5,6 
(18) Usage of methods for measuring fairness and bias 

(19) Definition of vulnerable groups and protected attributes 

(20) Measures to eliminate discrimination 

(9) Technical 

reliability and 

human supervision 

(21) Mechanisms for performance control 

3,5,6 (22) Ensuring appropriate data quality 

(23) Opportunity for human control 

(10) Self-

determination and 

data protection 

(24) Privacy-by-design 

2,3,6 

(25) Users have control over their data 

(26) Earmarked data use 

(27) Notifications regarding data use 

(28) Self-motivated use of AI systems 

(29) Abandonment of addiction-enhancing mechanisms 

(nudging, dark patterns) 

(11) Inclusive and 

participatory design 

(30) Applying codesign principles 
2 

(31) Ensuring accessibility 

(12) Cultural 

sensitivity 

(32) Team diversity 
1,2,5 

(33) Integration of local experts and natives 
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  Criteria Indicators (operationalization) 
Life-

cycle phase 

(34) Transferability of the AI system to adapt to local and 

new application contexts, norms, and values 

E
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(13) Energy 

consumption 

(35) Energy consumption is considered during the system 

development 

1,4,6 

(36) Models with lower complexity are favored during model 

selection 

(37) Pretrained models and transfer learning are used 

(38) Parameters that capture the model efficiency are 

measured 

(39) Methods for model compression are used 

(40) Methods for efficient training of the models are applied 

(41) Measures are used to reduce the amount of data 

(14) CO₂ and GHG 

emissions 

(42) CO₂ footprint 

1,3,4,5,6 (43) CO₂ efficiency 

(44) Emission compensation 

(15) Sustainability 

potential in 

application 

(45) Sustainable target function 

1,2,3,6 

(46) Consideration of sustainability criteria in decision 

systems 

(47) Promotion of sustainable products 

(48) Promotion of sustainable consumption or sustainable 

consumption patterns 

(49) Reduction of resource consumption of processes or 

products 

(50) Impact of the AI system on the product quality and 

service life 

(16) Embodied and 

shared resource 

consumption of 

hardware 

infrastructure 

(51) Certified hardware (energy and resource efficiency) 

1,2 

(52) Certified data center (transparency, energy, and resource 

efficiency) 

(53) Efficiency metrics for data centers (e.g. power-/water-

/carbon usage effectiveness) 

(54) Hardware recycling rate 

(55) Hardware reuse rate 

(56) Use of waste disposal scenarios for hardware 

E
c
o
n

o
m

ic
 d

im
e
n

si
o
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(17) Market 

diversity and 

exploitation of 

innovation potential 

(57) Accessibility of code 

1,3,4,5,6 

(58) Accessibility of data (data pools) 

(59) Accessibility of AI tools 

(60) Interfaces (APIs) 

(61) Multihoming and compatibility 

(18) Distribution 

effect in target 

markets 

(62) Adaptability to data volumes and action requirements 

1,2,5,6 

(63) No differences in accuracy between major and 

marginalized market players 

(64) Diversity of employing customers 

(65) Support for SMEs and NGOs 
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  Criteria Indicators (operationalization) 
Life-

cycle phase 

(19) Working 

conditions and jobs 

(66) Evaluation of effects on working conditions 
1,6 

(67) Fair wages along the AI lifecycle 

Adapted from Rohde et al. 2024, p.4 

Table 2. SCAIS Assessment Framework 

3.3 Data collection 

The primary data for this study was collected through semi-structured interviews with 

individuals directly involved in the design and implementation of Project Guacamaya in 

Colombia. The sampling strategy aimed to include at least one representative from each 

of the core partner institutions operating in Colombia: Microsoft, CinfonIA (Universidad 

de los Andes), Humboldt Institute, and Sinchi Institute. Although the Peruvian Ministry 

of Environment is a Guacamaya partner, it was excluded from the interview pool because 

its involvement began after data collection had already started. Planet Labs was not 

contacted either, as its participation in the project remains indirect. 

To gain an initial understanding of the project’s goals, partner roles, and public framing, 

the research began with a review of publicly available sources such as press releases, 

media coverage, technical documentation, and scientific publications. These materials 

served as a foundation for the development of an initial set of questions and themes, which 

were refined iteratively as interviews progressed. The first iteration of the questionnaire 

was built based on the 67 SCAIS indicators, so answers could be operationalized 

accordingly. In complement, an expert in the use of AI in the public sector in Colombia 

was also interviewed. The first set of interviews focused on exploratory themes 

(background, partnerships, objectives and progress so far) while a second round aimed to 

delve deeper into the project’s institutional dynamics and sustainability-related design 

choices, guided by the 19 criteria of the SCAIS framework. Both groups of interviews 

were semi-structured, following the recommendation of Rohde et al. (2024) to allow 

flexibility in the assessment of a case. Interviews were conducted in Spanish, via videocall 

through Taltech’s institutional Teams account, transcribed and translated using Microsoft 

Teams’ transcription features alongside ChatGPT 4o, and manually revised to ensure 

fidelity and clarity. Transcriptions are available upon request.  

3.4 Data analysis and limitations 

The analysis followed a thematic approach informed by the Sustainability Criteria and 

Indicators for Artificial Intelligence Systems framework. Rather than evaluating impact 

or results—none of which are officially documented for Guacamaya yet—the focus was 

on examining how sustainability considerations were reflected in the project’s design and 
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in the early stages of execution. The SCAIS framework provided a structured lens through 

which to organize and interpret the interview material across technical, social, and 

ecological dimensions, while remaining flexible to emergent themes. Coding was guided 

by the framework’s life-cycle phases and operationalizable criteria, with the goal of 

identifying how sustainability was interpreted, enacted, or negotiated across 

organizational and technical decisions. 

Several limitations must be acknowledged. This study does not include perspectives from 

actors beyond Guacamaya’s core implementation team, such as high-level institutional 

decision-makers. Therefore, it does not examine how Guacamaya fits into each 

organization’s broader institutional strategy, as access and time constraints limited the 

scope of the interviews. Given the field-based nature of many participants’ work, 

scheduling was difficult, and this delayed the research process. Additionally, since the 

project has yet to produce formal outputs or measurable conservation results, this study 

does not assess Guacamaya’s effectiveness in achieving its environmental objectives. 

Instead, it offers an early account of the project’s conceptual and organizational 

development. 

While this limits external validity in the conventional sense, the case holds broader 

relevance as an example of AI-for-sustainability in the Global South, still rare and 

evolving field as it was described earlier. Guacamaya’s emphasis on open-source tools, 

public data, and co-creation makes it a potentially replicable model. As such, the case 

contributes to early theorization and benchmarking efforts in the design of AI-based 

environmental governance systems, especially relevant in the context of the Amazonian 

Region, or neotropical ecosystems in general.  
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4 Results 

This chapter presents the findings of the study, based on a thematic analysis of interviews 

with core actors involved in Project Guacamaya. The analysis is structured around the 

Sustainability Criteria and Indicators for Artificial Intelligence Systems framework, 

allowing for a multidimensional examination of how sustainability considerations shaped 

the project’s design and early implementation. Direct quotes from interviewees are 

included throughout the text to illustrate key themes and provide insight into the 

institutional and technical dynamics at play. The first section describes information 

sources. The second section provides an overview of the project’s goals, structure, 

partners and core activities, organized along the SCAIS lifecycle phases. The third section 

delves into the project's sustainability-related practices, tensions, and challenges across 

the four SCAIS dimensions, based on the 19 criteria. 

4.1 Data collected 

To grasp empirical data and answer the research questions several semi-structured 

interviews with members of the core team of Project Guacamaya were conducted via 

videocall. Although the four organizations comprising the initial partnership were 

contacted with interview requests, responses were obtained from two of them: CinfonIA, 

and Microsoft. A researcher from Instituto Sinchi was effectively contacted with a 

positive reply, but it was not possible to meet their agenda as it was full of fieldwork 

during the time of this research. To help balance the absence of an active Humboldt 

Institute representative, a former researcher from Humboldt Institute was contacted and 

successfully interviewed. In addition, a professor specialized in AI for the public sector 

and public policy in Colombia was interviewed to reflect upon the context of the case and 

scope of the study.  

To preserve the privacy of participants, only initials are used in this document. 

Institutional affiliations are reported as they are necessary for analytical purposes and 

were disclosed with participant awareness. The interviewees are: 

• JC: mathematician, former researcher at Humboldt Institute, and currently 

affiliated with two labs specialized on biodiversity and nature conservation in 

London. Main research tracks: artificial intelligence, biodiversity monitoring with 

focus in bioacoustics. Interview length: 72 minutes. 

• DC: engineer, researcher at both CinfonIA Lab and Microsoft AI for good, 

specialized on Artificial Intelligence. Interview Length: 28 minutes. 
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• AH: engineer, researcher at both CinfonIA Lab and Microsoft AI for good, 

specialized on Artificial Intelligence. Interview Length: 60 minutes. 

• GO: business administrator, Regional Digital Transformation Officer at 

Microsoft, Spanish-speaking Latin America. Interview Length: 75 minutes 

• JG: Lawyer, researcher at Universidad de Los Andes, Escuela de Gobierno. 

Research fields are AI for the public sector, algorithmic transparency,  regulation, 

public policy evaluation. Interview Length: 32 minutes. 

Other primary sources consulted are the paper on Pytorch-Wildlife (Hernandez et al. 

2024)—one of the models developed by Project Guacamaya and published in 2024 as 

open source; as well as press releases by the partner organizations (Instituto Sinchi 2023; 

Lavista Ferrés 2024; Ministerio de Ambiente, Perú 2025; News Center Microsoft 

Latinoamérica 2023; Smith 2024).  

4.2 Project Guacamaya according to empirical findings 

As Guacamaya is still in an early stage of execution with no published results or evaluated 

impact so far, press releases and related publications are insufficient to analyze even 

preliminarily its performance across the SCAIS criteria, nor to understand how it 

functions in general. Interviewing members of the project allows a more complete 

understanding of its objectives, governance mechanisms, challenges and day-to-day 

work, as it is presented in this subsection.  

4.2.1 Project origins and strategic framing 

According to two of the Microsoft affiliated interviewees, the main goal is to preserve 

and protect the Amazon forest. JC explained from a more scientific-oriented perspective 

“it's mostly about sensing and monitoring, not about direct intervention or policy 

enforcement.”, and invoked Xu et al’s (2023) distinction of AI used to understand the 

world (instead of acting in the world to undertake conservation actions, or evaluating 

impact of performed actions). As JC stated: 

It’s hard to measure [the impact these projects have in the Amazon or in 

conservation more broadly]. Reforestation and deforestation operate on different 

timelines and involve complex social-ecological dynamics. Some projects aim to 

empower communities, but Guacamaya is more model- and data-oriented. Any 

societal or policy impact would be indirect and long-term — if at all. 
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Microsoft’s senior officer claimed the initiative comes from their company, as it is framed 

by broader strategic corporate objectives to be carbon neutral by 2030 and water positive 

by 2050. As they realized how important is the Amazon basin to regulate climate through 

carbon and water cycles, the company began its search for partners and a roadmap to 

implement impactful actions in that direction. They eventually partnered with the expert 

organizations, discussed and conceived Project Guacamaya as a long run effort to 

improve the knowledge of the Amazon forest that is necessary to inform climate action. 

The multimodality of Guacamaya (i.e. collecting data from cameras, microphones and 

satellites) is a key first step, as they are aware of how it enables an integral analysis of 

ecosystemic behaviour. According to AH, Guacamaya has internally established more 

specific objectives operationalizable in the short- and mid-term, but they are not officially 

shared to the public.  

4.2.2 Multimodal approach: three data verticals 

The core technical activities of Project Guacamaya are structured around three data 

verticals: camera traps, satellite imagery for deforestation monitoring, and bioacoustics. 

According to DC, each vertical has its own objectives, models, and associated 

institutional collaborators, but all share the broader goal of enabling improved sensing 

and monitoring of the Amazon ecosystem. In DC’s words, “the idea is to understand the 

ecosystem using complementary, multimodal data sources.” 

In the camera trap vertical, AI models are trained to detect the presence of animals in 

images captured by motion-activated field cameras. The models allow for the automatic 

classification of species or, when classification granularity is limited, higher-order 

taxonomic groups. So far, these systems have significantly reduced the time and manual 

effort previously required from researchers, particularly those at Instituto Sinchi, who are 

currently the main operational partner for this branch. The framework upon which these 

models have been developed has also been published as open-source and hosted on 

GitHub under the name Pytorch-Wildlife. It is iteratively updated based on user feedback, 

aiming to increase their accuracy and usability in real-world research settings.  

The second vertical focuses on deforestation monitoring through satellite imagery. AI 

models in this branch use semantic segmentation to classify every pixel in a satellite 

image as either “forest” or “non-forest.” The data used comes from Planet Labs, though 

access and use of such imagery involve licensing and cost considerations. Guacamaya 

has access to them thanks to a global agreement between Planet and Microsoft. A 

particularly important technical innovation in this area was introduced to solve the 

challenge posed by persistent cloud cover in Amazonian regions. As GO explained, “you 

look up in Bogotá this time of year, and it’s always cloudy… [the] satellite photos [are] 



38 

 

full of clouds—those cloud shadows mess up the model completely.” To address this 

issue, the engineering team led by researchers at CinfonIA implemented spectral filtering 

and image compositing techniques, resulting in 30-day “mosaics” that stitch together 

clearer portions of images across time. This solution improves model reliability and 

enables clearer analysis of forest loss. The improved visibility not only enhanced 

classification performance but also laid the groundwork for a shift in modelling focus, 

from detecting deforestation that has already happened to predicting where it is most 

likely to occur in the near future. Models from this vertical have not been released to the 

public yet, as refinement is still ongoing. 

In the bioacoustics vertical, the team developed a model and a graphical interface that 

allows users to search for specific sounds using natural language queries. Users can, for 

example, ask if the sound of a specific bird, or perhaps heavy machinery, were detected. 

The system highlights corresponding patterns in spectrograms, streamlining the process 

of annotating large audio datasets. Without a system like these, scientists would normally 

spend hundreds of hours listening to audio recordings where nothing of their interest 

happens. The tool was delivered to the Humboldt Institute and was integrated into 

ongoing biodiversity research workflows. According to DC, the bioacoustics line is 

currently paused, though it is expected to be reactivated soon with the help of a new 

technological component: a field-deployable device called Sparrow. 

Sparrow is a new-generation edge device that integrates camera trap, acoustic, and 

satellite transmission functionalities into a single unit. Designed by Microsoft’s AI for 

Good alongside CinfonIA, and shared with Guacamaya partners for pilot deployment, 

Sparrow enables real-time data collection and model execution directly in the field, 

without relying on high-speed terrestrial internet. As explained by DC, “Sparrow 

combines cameras, microphones, and satellite connection (via Starlink) into one unit.” 

According to Microsoft’s researchers, openness is a key feature of this development, as 

its software and hardware plans to its 3D-printable designs are open source and accessible 

to all kinds of researchers (Lavista Ferrés 2024). The device aims to reduce friction 

between data collection and analysis while also enabling faster response times to 

ecological changes. AH explained: 

“I was actually out in the field installing these devices, and all the different 

organizations that are part of the Guacamaya project are receiving them. For 

example, we installed one at the Universidad de los Andes' reserve, one at the 

Fundación Biodiversa reserve, which is another foundation, and we’re going to 

install one at Sinchi in another month. So there will also be announcements 

related to that. These monitoring stations run Python scripts in the background. 
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They run the models we trained with each of the institutes… The devices at Sinchi 

run with the Guacamaya model, trained with Sinchi’s data. The ones at Fundación 

Biodiversa—which is in the Magdalena Medio region—also run with Sinchi’s 

models for now, because we don’t yet have a model trained specifically with data 

from that ecosystem. The same goes for Universidad de los Andes. But the idea is 

that as these devices collect more data, we’ll have the opportunity to refine the 

models. Through Sparrow and the data it collects, we hope to improve Sinchi’s 

model even further so it serves them better.” 

Although each vertical currently operates semi-independently with their respective 

partner institutions, interviewees indicated that the long-term vision is to develop fully 

integrated, multimodal models that analyse combined data from all three sources: image, 

sound, and satellite. According to DC, the team is working toward standardizing data 

collection protocols to allow interoperability and fusion between verticals. A more unified 

model would, in theory, be capable of correlating animal presence (camera traps), species 

activity (bioacoustics), and habitat change (deforestation models) to create more holistic 

insights into Amazonian ecological dynamics. 

4.2.3 Institutional collaboration and co-creation philosophy 

The coordination of these activities is guided by a co-creation philosophy, as repeatedly 

emphasized by multiple interviewees. Regular coordination occurs through multi-

stakeholder meetings such as the Guacamaya Summit, where representatives from each 

partner institution share updates and collaboratively define yearly priorities. The 

decision-making model privileges consensus, and each institution contributes according 

to its expertise and needs: Microsoft provides the infrastructure (cloud computing, 

storage, AI engineering) while CinfonIA contributes academic and algorithmic 

knowledge. The scientific institutes, namely Sinchi and Humboldt, provide biological 

expertise, long-term ecological data, and logistical capacity for fieldwork and community 

engagement. 

GO highlighted the trust-based nature of these relationships, especially with institutions 

that are protective of their data or have experienced extractive partnerships in the past. In 

their words: “This kind of arrangement—what we call co-creation—has been key. Not 

just in terms of operations, but also for building trust.” The choice to distribute decision-

making and embed partners’ perspectives into the design and iteration of models appears 

to be one of Guacamaya’s distinctive organizational features. 

While Project Guacamaya operates through a collaborative framework, each participating 

organization brings distinct institutional goals, constraints, and forms of expertise to the 
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alliance. As previously noted, for Microsoft, the initiative aligns with broader corporate 

commitments to become carbon neutral and water positive by 2030 and 2050, 

respectively. The project is framed within Microsoft’s regional sustainability agenda, 

which recognizes the Amazon as a vital climate regulator and biodiversity hotspot. From 

this perspective, Guacamaya allows the company to operationalize its sustainability 

objectives through long-term investment in environmental data infrastructure and 

technological support. 

From the academic side, the CinfonIA Lab at Universidad de los Andes and Microsoft’s 

AI for Good Lab contribute the core machine learning expertise and coordinate most of 

the model development work. According to AH, the AI for Good Lab is “entirely 

dedicated to social good” and operates independently from Microsoft’s commercial lines 

of business. While the two labs had previously worked together in open science projects, 

particularly during the COVID-19 pandemic as described by AH, Guacamaya marked a 

transition into long-term environmental monitoring. CinfonIA plays a key role by 

anchoring the technical development process in Colombia and ensuring continuity 

through a research group that bridges academia and industry. It is led by prof. Pablo 

Arbeláez, and covers global health, computer vision, sustainability and ethics in AI as its 

main research tracks. CinfonIA has other partnerships in the sector, both Colombian and 

international. For example, Google-DeepMind offers scholarships for admitted graduate 

students aiming to partake in research projects at CinfonIA (Universidad de Los Andes 

2025).  

From the perspective of environmental science and biodiversity conservation, the 

Humboldt Institute plays a complementary but no less crucial role. GO pointed out the 

leadership of this organization in knowledge and research of biodiversity, as it is thanks 

to their work that Colombia is regarded as the second most biodiverse country in the 

world, holding the record for largest number of bird species found in a single country, for 

example. To JC, Humboldt “doesn’t have the computational resources to develop models 

itself,” but instead focuses on identifying scientifically relevant problems and building 

structured datasets. In this sense, the institute acts as a problem-framing hub, working to 

articulate research questions that can be addressed using advanced analytical tools and 

their robust datasets. JC described this strategy as one of targeted alliances: “Humboldt 

seeks alliances with Microsoft, CinfonIA, universities, to make these problems actionable 

through technical development.” This model has been applied in other projects beyond 

Guacamaya, such as amphibian detection and camera trap research, where Humboldt led 

the design and curation of datasets while leaving the development of detection algorithms 

to collaborating institutions (for instance, the Camera Trap Days (CTD) project, launched 

in 2021 in collaboration with the google-powered platform Wildlife-Insights (Interlace 
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Hub 2023)). In terms of values, JC emphasized the Institute’s commitment to social 

relevance and local benefit, noting that many of its biodiversity monitoring initiatives aim 

to be community-centred. Nonetheless, this varies by project, and some technically 

oriented lines of work—like Guacamaya—tend to have less direct community 

engagement. 

4.2.4 Governance structure 

Guacamaya’s governance structure is formally anchored in a Memorandum of 

Understanding (MoU) signed by the participating institutions. According to AH, the MoU 

serves to establish co-creation as the foundational principle of the partnership. It allows 

partners to share information securely, coordinate development efforts, and maintain 

parity in decision-making. Each organization retains control over its own data and 

models, and responsibilities are distributed to reflect their respective areas of expertise. 

The MoU also outlines that no single institution can unilaterally admit new members into 

the project; any expansion of the partnership must be agreed upon by all current members. 

As explained by AH, this clause ensures that each organization’s voice is respected and 

that new alliances do not undermine existing arrangements. 

While the MoU provides a formal basis for collaboration, interviewees repeatedly 

emphasized that governance in Guacamaya is not just a matter of institutional procedure: 

it is deeply shaped by the need to build trust among partners. GO offered a detailed 

account of the process that led to the incorporation of Instituto Sinchi into the project 

before it was formally conceived. At the beginning, there was visible scepticism. GO 

recalled that after numerous invitations, a first meeting was held between Microsoft and 

Sinchi’s executive director, which started with cautious, even confrontational questions: 

“Why do you want to meet with me? What’s the point?” and later, “You’re a gringo 

multinational. Others like you have already come here and tried to take everything. They 

left nothing for the communities, nothing for the institutions, nothing for the scientists.” 

The tone shifted only after the Microsoft team presented the project’s core premise: that 

all models developed through Guacamaya would be open source. This principle, 

according to GO, proved pivotal. It helped move the conversation away from suspicion 

and toward a possible collaboration. GO narrated how Sinchi’s team emphasized three 

key conditions for their support: they would not accept payment, the data must remain 

open, and the project could not exploit communities or their information. These 

conditions were accepted and later formalized in the MoU. The director of Sinchi at the 

time, described by GO as a long-standing leader based in Leticia, played a central role in 

facilitating this agreement. According to GO, this episode exemplifies how co-creation, 
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beyond being a design principle, became a tool for repairing or pre-empting trust deficits 

rooted in past experiences with extractive partnerships. 

The operational side of governance is equally distributed. AH described Guacamaya as a 

“roundtable,” where all institutions meet regularly to align technical decisions with 

organizational needs. Model development is coordinated collectively, with each vertical 

having shared objectives but partner-specific requirements. Microsoft contributes cloud 

resources to ease budgetary pressure on public institutions and ensures that model 

deployment is accessible. CinfonIA leads algorithmic development and iterates on model 

architecture based on partner feedback. Scientific institutes contribute the field data and 

domain-specific knowledge essential for training and validating the models. In practice, 

this means that if different institutions have preferences regarding model outputs (for 

instance, formatting standards or integration into existing systems) these are discussed 

and resolved collaboratively. 

AH noted that even though models are built on data from specific institutions, the training 

data itself is not necessarily published. Data publication remains at the discretion of the 

institution that owns it. However, the trained models are meant to be released as open 

source, fulfilling a baseline commitment of the partnership. This allows others, inside and 

outside the project, to benefit from the technical outputs while respecting data governance 

boundaries. 

The process for integrating new partners further illustrates how governance decisions 

operate in practice. When the Ministry of Environment of Peru joined Guacamaya, it 

brought its own acoustic datasets and specific goals, such as detecting the presence of the 

“Gallito,” Peru’s national bird. According to DC, Peru was treated as “another ally in a 

new territory.” While the project was originally developed in Colombia, its design is 

intentionally regional, and scaling across the Amazon basin is considered both a technical 

aspiration and a political commitment. Still, the inclusion of a new partner, even one as 

prominent as a national ministry, was contingent upon agreement from all active 

members. 

In sum, governance in Guacamaya combines formal mechanisms with deliberate 

practices of transparency, negotiation, and reciprocity. While the MoU provides a legal 

and procedural backbone, the legitimacy of the partnership appears to derive equally from 

how well it embodies the co-creation ethos in day-to-day interaction. Interviewees 

consistently emphasized that Guacamaya is not led by one actor, but jointly held, 

developed, and maintained by a distributed network of institutions, each with agency and 

accountability. 
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4.2.5 Community engagement and indirect participation 

Guacamaya’s relationship with local communities is largely indirect and mediated 

through the partner institutions. Interviewees acknowledged that neither Microsoft nor 

CinfonIA have established direct contact with communities in the Amazon region. This 

decision, while sometimes misunderstood in international contexts, is the result of both 

legal constraints and a strategic division of labour within the co-creation model. 

According to GO, Colombian legislation requires that any formal interaction with local 

or Indigenous communities be preceded by a legal mechanism known as consulta previa 

(prior consultation). In practice, GO noted, this often translates into complex negotiations 

involving compensation or financial incentives. For technology-driven environmental 

projects such as Guacamaya, which do not involve infrastructure or direct exploitation of 

natural resources, navigating this legal framework can still prove cumbersome. “It’s not 

pretty to say,” GO remarked, “but when you’re dealing with oil drilling, fiber optic cables, 

or anything involving infrastructure, you end up facing the same thing. The lawyers 

handle it.” In this context, Microsoft and CinfonIA have opted to rely on the scientific 

institutes—particularly Sinchi—as intermediaries that already have established 

relationships and ongoing engagement with the communities. 

This arrangement does not mean communities are excluded from the project. Rather, their 

involvement takes place through existing collaboration channels managed by 

Guacamaya’s institutional partners. For instance, in the deployment of camera traps and 

Sparrow devices, members of local communities often play a key role in the field 

logistics. They assist with placement, movement, and maintenance of the equipment. As 

described by GO, “Sinchi puts cameras out in the field. The local communities set up and 

move them around.” AH provided a similar account from firsthand experience with the 

Sparrow pilots, explaining that local collaborators provided practical advice based on 

lived experience in the territory, such as which trees receive sufficient sunlight, where 

animal corridors are likely to pass, and how to protect antennas from lightning. In many 

cases, their knowledge shaped design adaptations. “They told us, for example, ‘The 

battery is too heavy to carry through the jungle,’” AH recalled, or “‘You’re hanging the 

antenna too high, it could get hit by lightning.’” Feedback like this was frequently offered 

and integrated into the ongoing development of the devices. 

Despite this indirect model, interviewees emphasized that community participation is not 

peripheral. According to AH, “even if we don’t interact with communities directly, each 

of the partner institutes does,” and in the field, it is community knowledge that often 

determines the success of deployments. From selecting camera trap locations to 

maintaining solar-powered hardware, the technical operation of Guacamaya depends on 
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a tacit knowledge base that resides in the territories themselves. While the community 

members involved may not be formally documented as participants or beneficiaries of the 

project, they contribute insight that shapes both data quality and device functionality. 

In some cases, participation also generates excitement and curiosity. AH described how 

people in the field reacted with interest to the Sparrow units, often asking about durability 

and technical function: “Will it hold up in the humidity? What about the monkeys? What 

if it gets struck by lightning?” Such reactions suggest that even if community engagement 

is not formalized through direct governance or participation mechanisms, it still plays a 

role in shaping the practical implementation of the project and may grow into more 

defined collaboration lines over time. Future ambitions, according to GO, include 

enabling community-led data uploads through improved internet access and further 

training in device use, although legal hurdles around formal engagement remain. 

Overall, Guacamaya’s interaction with local communities is not structured as a 

component of its core governance but unfolds in practice through co-creation. The 

institutes serve as intermediaries, absorbing the complexity of working in socially and 

legally sensitive territories while also ensuring that local knowledge feeds into the 

technological design and deployment processes. From the project’s perspective, this 

model of indirect engagement is both a practical necessity and a reflection of its broader 

commitment to collaborative, non-extractive research. 

4.2.6 Early outcomes and gains 

While Project Guacamaya is still in an early stage and has not yet published peer-

reviewed results or conducted external impact evaluations, several of the models 

developed and shared among partners are already being used to support ongoing scientific 

work. Interviewees from both Microsoft and CinfonIA offered concrete examples of how 

the tools are currently saving time, improving analytical workflows, and increasing the 

scale and speed of biodiversity and deforestation monitoring. 

The most consistently cited outcome was the reduction in manual labour previously 

required for image and audio analysis. According to DC, the camera trap model has 

reduced Sinchi’s image review time by approximately 90 percent, while the bioacoustics 

tool has helped researchers skip over 80 percent of audio segments, accelerating the 

review of more than 600 hours of field recordings. In practical terms, this means 

researchers no longer have to sift manually through long stretches of uninformative 

material. GO provided a similar account, recalling that one researcher told the team: “We 

went from having to listen to 600 hours of audio manually to focusing only on the 20 

percent that actually contained bird calls or relevant sounds.” These time savings are not 
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only operationally significant, they also open analytical possibilities. As GO described it, 

the freed-up time allows biologists to ask more complex questions: Why is a species 

vocalizing more in one location than another? Are there signs of distress? Is illegal 

activity like logging detectable in the background soundscape? 

The deforestation monitoring model has also begun to show practical utility, particularly 

in reducing the time required to generate land cover classifications. According to DC, the 

production of national deforestation maps, which previously took days or even weeks, 

can now be completed in a matter of hours. GO illustrated this with the case of the Meta 

department in Colombia, an area spanning 83,000 square kilometres. With Guacamaya’s 

current tools, a deforestation map for Meta can be generated in around 30 minutes. A map 

for all of Colombia takes approximately one hour, and a map of the entire Amazon basin 

(covering over 14 million square kilometres) can be processed in about six hours. These 

gains in processing speed do not only streamline internal workflows; they potentially 

allow for more regular and responsive monitoring, a capacity that is critical in regions 

experiencing rapid land use change. 

Beyond operational improvements, interviewees highlighted that the tools have been 

designed to be open and accessible. The camera trap model, published as open-source 

code, has been downloaded more than 35,000 times. However, GO pointed out a 

geographical asymmetry in this uptake: “Most of those downloads are not from Latin 

America. They’re from Europe and the United States.” While the statistic is seen as a 

marker of technical interest and tool quality, it also underscores the challenge of ensuring 

that innovation developed in and for the Amazon reaches and benefits researchers and 

institutions in the region.  

The interviewees also discussed a more experimental functionality that is beginning to 

mature: a generative AI interface for querying audio recordings. The system allows 

researchers to upload an audio file and ask, in natural language, whether a certain event 

occurred, such as the presence of a bird. The model then returns a timestamped response 

and classifies the species, offering a starting point for deeper behavioural analysis. 

According to GO, this type of tool functions not just as a productivity enhancer, but as 

what they described as “the jungle’s early warning system.” Beyond saving time, it allows 

researchers to detect patterns that may signal larger environmental changes: species 

stress, mating behaviour, or background noise indicating habitat disturbance. 

Taken together, these early results point to a set of concrete gains in efficiency, usability, 

and access. While it is still too soon to assess Guacamaya’s broader impact in terms of 

conservation outcomes, the internal feedback from partner institutions suggests that the 

project is achieving meaningful progress toward its short-term operational goals. As more 
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models reach maturity and are deployed at scale, further evaluation will be necessary to 

assess how these tools are shaping ecological research, institutional workflows, and 

potentially, policy-relevant environmental monitoring in the Amazon basin. 

4.2.7 Challenges to policy uptake and future aspirations 

While Guacamaya has delivered early technical outputs with measurable internal benefits 

for its partner institutions, translating those gains into formal adoption or integration 

within public sector decision-making remains a significant challenge. Interviewees 

identified several factors that complicate the pathway from model development to policy 

impact, ranging from institutional distrust in artificial intelligence to administrative 

instability and political fragmentation. 

One example shared by GO involved a recent meeting with Colombia’s newly appointed 

Minister of Environment, a figure described as deeply familiar with the Amazon region 

and its violent history of extractive practices. According to GO, the minister responded 

enthusiastically to the project’s goals and requested direct access to Guacamaya’s 

deforestation monitoring data. However, the request could not be fulfilled through official 

channels, as Guacamaya’s outputs are not formally recognized by IDEAM, the national 

agency in charge of climate and environmental information systems. GO noted that while 

IDEAM scientists are highly respected, they have shown resistance toward the project’s 

tools, in part due to a general scepticism about AI and cloud-based solutions. Preference 

remains for on-premises data processing infrastructure, which slows down operations 

considerably. As GO put it, “they still want a physical server of their own to process 

thousands of images, and that’s just not going to cut it.” 

This institutional reluctance exists alongside broader political instability. In GO’s 

account, Colombia has changed 53 ministers in just over two years (under a single 

government), a level of turnover that makes follow-through difficult even when interest 

is expressed. In contrast, Peru’s Ministry of Environment, which more recently joined 

Guacamaya, was described as more agile and receptive. Peruvian authorities brought their 

own datasets and clearly defined goals, such as detecting the presence of the Gallito bird. 

The difference in pace between countries was attributed not only to political openness but 

also to technical culture and willingness to adopt cloud-based, open-source technologies. 

Guacamaya’s open-source model is intended to facilitate broader international uptake, 

and this is beginning to happen, albeit unevenly. For instance, Norway currently pays 

Planet Labs to provide open access to satellite imagery for environmental monitoring in 

several countries, including Colombia. Despite having access to the same datasets used 

in Guacamaya, GO noted that IDEAM still takes up to 18 months to process and publish 
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results, whereas Guacamaya’s models can deliver comparable outputs in a matter of 

hours. The availability of faster, open tools does not guarantee their adoption when 

institutional preferences and frameworks remain unchanged. 

To address this, the team is developing a variety of strategies for broader participation 

and validation. GO recalled an example they are finding inspiration from: another 

Microsoft-led initiative in Chile involves user participation through a feature embedded 

in Microsoft Flight Simulator, a game that integrates Planet’s satellite imagery. As players 

fly over the Andes Mountain range, they can visually identify signs of deforestation and 

tag coordinates. Similar reporting mechanisms are intended to be integrated into 

Guacamaya’s datasets as a form of crowdsourced validation. While not real-time, this 

form of human feedback could improve the model’s accuracy and increase public 

awareness of deforestation events. 

Another element of the expansion strategy is Project Sparrow. These units have been 

deployed in a range of research reserves including those of Universidad de los Andes, 

Fundación Biodiversa, and Sinchi. While the devices currently run models trained on 

Sinchi data, the long-term goal is for them to support model refinement through 

continuous, location-specific data collection. In AH’s words, “as these devices collect 

more data, we’ll have the opportunity to refine the models… to serve them better.” 

Despite these advances, interviewees were careful to note that Guacamaya’s predictive 

models still require validation before being used to inform public action at scale. The 

team’s aspiration is to reach a level of technical robustness and institutional credibility 

that would allow models to inform policy across borders. As GO remarked, one possible 

route forward involves leveraging the role of Sinchi’s director, who also leads an Amazon 

research network that includes Colombia, Peru, Bolivia, Ecuador, and Brazil. If models 

can demonstrate sufficient accuracy and relevance, there is hope they could be taken to 

regional authorities in Brazil, despite that country’s existing satellite monitoring 

infrastructure. While Brazil’s public systems are considered more advanced than those in 

neighbouring countries, they still rely on lower-resolution imagery and slower analysis 

workflows. By contrast, Guacamaya offers high-resolution, cloud-processed tools that 

could support integrated monitoring of deforestation and biodiversity. 

Yet, as GO put it, these ambitions are still “a dream”, especially the broader aspiration of 

monitoring “ríos voladores,” or flying rivers, which refers to the Amazon’s role in 

generating rainfall patterns that sustain ecosystems and urban water supplies throughout 

the continent. For now, the challenge remains twofold: to refine the existing models and 

to foster the institutional relationships needed for their formal adoption. According to 
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interviewees, that process will require not only technical validation but also shifts in 

political will, epistemic trust, and inter-agency cooperation. 

4.3 SCAIS criteria performance of Guacamaya  

This subsection presents a structured analysis of Project Guacamaya based on the SCAIS 

framework (Rohde et al. 2024). It is designed to assess the sustainability of AI systems 

by considering their full lifecycle across six phases: organizational embeddedness, 

conceptualization, data management, model development, implementation, and use in 

decision-making. It organizes 19 sustainability criteria into four main dimensions: 

governance (as cross-cutting), social, ecological, and economic. These criteria are 

operationalized through a set of 67 indicators, which served as a reference for the coding 

and interpretation of empirical material gathered in this study. 

As it has been mentioned, Guacamaya is still in the early stages of implementation. As 

such, this assessment does not cover all six lifecycle phases in full. Certain aspects—

particularly those related to the system’s deployment and use in formal decision-

making—remain under development. Nevertheless, the analysis presented here reflects 

the current state of the project according to the data collection methods explained 

previously. Findings are reported criterion by criterion, grouped by dimension, and 

illustrated with excerpts from the interviews when relevant. 

4.3.1 (Organizational) governance dimension (cross-cutting criteria) 

(1) Defined responsibilities 

Project Guacamaya’s responsibilities are outlined and operationalized through a MoU 

signed by all core partner institutions. As explained by one of the interviewees, the 

agreement serves as the primary governance mechanism, defining the co-creation model 

and enabling data and knowledge sharing while preserving institutional autonomy. 

Although the MoU itself was not shared in full due to confidentiality reasons, multiple 

interviewees confirmed that it clarifies who is responsible for what within the partnership. 

Rather than centralizing accountability in a single coordinating body, the document 

affirms that each institution retains ownership and control over its own data, 

infrastructure, and internal standards. 

In this distributed model, responsibility is not externally imposed but arises from 

negotiation and coordination among partners. For example, the definition of priorities and 

outputs for each data vertical takes place through regular collaborative meetings. Each 
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institution is responsible for ensuring that outputs from shared AI models meet their 

internal operational needs. As one interviewee explained: 

“If Sinchi wants the output format from the AI model to look a certain way, and 

Humboldt wants it in another format, we sit down together, evaluate everyone’s 

needs, and come up with an action plan that benefits the majority as soon as 

possible.” 

This process reflects a shared, transparent allocation of responsibility, even if it does not 

follow a rigid hierarchical structure. The governance arrangement does not include formal 

contact persons or ombudspersons for ethical or social matters as defined by institutional 

ethics boards, but discussions of data use and institutional roles appear to be handled 

directly within the partner network. 

(2) Code of conduct 

While Project Guacamaya does not appear to maintain a centralized code of conduct of 

its own, several boundary conditions have been agreed upon and serve as informal ethical 

guidelines. These conditions were originally proposed by the scientific partners, 

particularly Sinchi, as prerequisites for collaboration. As summarized in one interview: 

“1. You don’t pay me. 2. The data stays open. 3. You don’t exploit the information or the 

communities.” These principles, although not codified in a formal document, function as 

a shared normative framework for the project and were critical for building trust among 

institutions. They echo values frequently associated with ethical AI initiatives, such as 

openness, non-extractivism, and respect for local sovereignty. 

Instead of a uniform ethical policy, each institution within Guacamaya appears to be 

adhering to its own internal codes and regulations. The project’s governance structure 

thus reflects a federated approach to values and norms, where alignment is achieved 

through negotiation rather than a single binding directive. This may be seen as both a 

strength because it allows for flexibility and contextual sensitivity, and a potential 

limitation, especially if the project grows and new actors enter the partnership as intended. 

(3) Stakeholder participation 

Stakeholder participation in Project Guacamaya is deeply embedded in its co-creation 

model and is formalized through the project’s Memorandum of Understanding. Core 

institutional stakeholders have all been integrated into the design and implementation of 

the project from the outset. Each organization contributes distinct expertise and maintains 

ownership over its contributions, including data, infrastructure, or scientific knowledge. 

According to interviewees, Guacamaya functions as a roundtable: all partners meet 
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regularly to align objectives, define outputs, and adjust priorities. Coordination occurs 

through mechanisms such as the Guacamaya Summit and smaller roundtable working 

groups, which allow for shared planning and mutual adaptation. Each institution has an 

equal voice in determining priorities and use cases within their respective verticals, 

ensuring that model development aligns with real institutional needs. 

Although stakeholders external to the partner institutions (such as local communities or 

government agencies) are not formally integrated into the design or testing processes, the 

project’s core collaborators have been systematically identified, their roles classified, and 

their participation operationalized through ongoing collaboration. As such, stakeholder 

participation can be considered one of the better-articulated and actively maintained 

aspects of Guacamaya’s governance model. 

(4) Documentation  

At the current stage of the project’s development, comprehensive external documentation 

remains limited. Interviewees acknowledged that most of the project's models and outputs 

are still under refinement and have not yet been formally published. As such, public-

facing documentation materials—such as model cards or detailed release notes describing 

objectives, domain relevance, datasets, feature selection, performance metrics, or 

limitations—are not yet available for most components of the project. 

The only model fully released and documented to date is PyTorch-Wildlife, an open-

source tool for processing camera trap images. According to interviewees, further releases 

for other verticals are planned and will include accompanying documentation, sample 

datasets (pending partner approval), and use-case examples intended to support 

replicability and transparency. The intention, as expressed by project members, is to make 

not only the code but also the methodology and context explicit, particularly to foster trust 

and accountability in regions like Latin America, where skepticism about extractive 

scientific collaborations remains justified. Although this criterion cannot yet be fully 

assessed based on outcomes, the project demonstrates awareness of the importance of 

documentation and has begun to lay the groundwork for more robust, outward-facing 

communication in the future. 

(5) Risk management 

Interviewees identified several risks that have already been considered in the project’s 

design, along with initial strategies to mitigate them. These risks relate primarily to the 

potential unintended consequences of data disclosure, especially in sensitive ecological 

and security contexts. 
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One of the clearest examples involves the risk of publishing location data related to 

endangered species. As described by project members, early design discussions around a 

unified, multimodal monitoring platform raised concerns about how such information 

might be misused if released without filtering or delay. In response, the future platform 

is being planned with two access levels: a restricted layer for registered researchers 

affiliated with trusted institutions, and a public-facing version with blurred location data 

and delayed updates. This layered access model is intended to reduce the risk of 

contributing to wildlife exploitation, while still supporting transparency and open science 

in a controlled manner. 

A second form of risk emerged in conversations with Colombian law enforcement. When 

presented with Guacamaya’s deforestation alerts, police authorities expressed enthusiasm 

but also requested that data be published with a 30-day delay, or a similar mechanism. 

Their concern was that public disclosure of deforestation hotspots in real time could 

compromise ongoing investigations or prematurely reveal the locations of planned 

enforcement actions. As a result, the project team is exploring options to adjust the 

temporal release of certain outputs in coordination with state actors, while maintaining its 

commitment to openness and public accountability. 

Although a formal risk management plan or framework has not been described, these 

examples demonstrate that risk identification and mitigation are already part of the 

project’s internal discussions. Risk assessment is being carried out at the design stage, 

particularly in relation to data sensitivity and potential downstream consequences of 

information release. Monitoring and management mechanisms, such as differentiated 

access protocols and time-delayed outputs, are being developed to address those risks. 

Given the project's lifecycle stage, these strategies remain preliminary, but they suggest 

a proactive approach to anticipating and responding to ethical and operational concerns. 

(6) Complaint mechanism 

At the time of writing, Project Guacamaya does not have a dedicated, project-level 

complaint mechanism for reporting model errors, discriminatory outputs, or privacy-

related concerns. This is not unexpected given that the project is still in development and 

not yet directly interfacing with public users or policy decision-makers in a formal way. 

From the perspective of practical implementation, user-facing mechanisms for complaint 

or correction may not be necessary within Guacamaya itself, so long as they are upheld 

by the institutions conducting fieldwork, engaging communities, or publishing outputs. 

These institutions—such as Sinchi and the Humboldt Institute—typically have their own 

protocols for managing ethical concerns and public communication, especially when 

research involves sensitive ecological or social dimensions. 
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Additionally, Guacamaya’s emphasis on open-source publication of models and data 

offers a degree of public transparency and informal accountability. Users accessing and 

deploying these tools can inspect, adapt, or critique the models directly, which may serve 

as a de facto mechanism for feedback and iterative improvement. While this approach 

does not substitute for formal complaint channels, it reflects a broader commitment to 

openness and responsiveness. If Guacamaya’s tools are eventually integrated into public-

facing platforms or decision-making systems, more structured mechanisms for redress 

may become necessary. 

4.3.2 Social dimension 

(7) Transparency and accountability 

Transparency is one of the pillars of Project Guacamaya’s co-creation model. Although 

many outputs remain under development, the team has consistently emphasized its 

commitment to open-source publishing and reproducibility. This has been already pointed 

out in detail. While technical details such as parameter count or precise model architecture 

are not yet published for most models, the intention is to make this information available 

upon release. The use of deep learning is the predominant AI type, particularly for image 

and acoustic analysis. As models mature, their release is expected to include not only the 

code but also documentation, datasets (when permissible), and applied results, allowing 

external users to understand, replicate, and evaluate the tools. 

At present, formal explainability mechanisms such as interpretable AI methods or user-

facing diagnostics are not central to the models’ design. However, the emphasis on 

transparency is evident in the open-source strategy and in the collaborative, feedback-

driven development process. Information about AI usage is shared with partners during 

each stage of the lifecycle, and public-facing documentation is planned as models 

stabilize. In this sense, while some indicators are not fully addressed yet, transparency 

and accountability are active commitments within the project’s technical and governance 

philosophy. 

(8) Non-discrimination and fairness 

At this stage of Project Guacamaya’s lifecycle, non-discrimination and fairness are not 

addressed through formal frameworks or structured measurement processes. Interviewees 

did not mention any explicit assessment of protected attributes or the identification of 

vulnerable groups, which reflects the project’s current orientation toward environmental 

monitoring rather than direct engagement with social decision-making systems. 
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Nevertheless, model developers are aware of the issue of bias and have articulated 

informal strategies to mitigate it. 

As noted in interviews, all data-driven models inevitably reflect the biases inherent in 

their training datasets. Guacamaya’s approach to this limitation focuses on expanding 

data diversity and geographic scope, particularly through the deployment of additional 

devices like Sparrow and the inclusion of new institutional partners. The strategy 

emphasizes improving model generalizability over time, especially through the 

integration of data from multiple regions across the Amazon basin. While these efforts 

represent a valuable starting point, the absence of systematic fairness auditing or methods 

for quantifying bias means this criterion remains only partially addressed. 

Given that Guacamaya’s outputs may eventually inform public decision-making or be 

used in regions with distinct ecological and social contexts, a reassessment of this 

criterion may be warranted in later stages of the lifecycle, particularly during broader 

deployment and use. 

(9) Technical reliability and human supervision 

Guacamaya’s model development process includes multiple layers of human validation 

and quality control. Interviewees described a structured pipeline in which training, 

validation, and test datasets are carefully prepared and reviewed both by the model 

developers and by the researchers who originally collected the data. This process ensures 

that the data is of adequate quality, correctly distributed, and appropriate for the intended 

model outputs. Before any public release, data also undergoes an additional curation 

process to align with each institution’s internal publication standards. As the project 

scales and enters broader implementation contexts, further mechanisms for ongoing 

performance monitoring and in-the-loop human decision-making may become necessary.  

(10) Self-determination and data protection 

Although Guacamaya does not directly engage with individual users or collect personal 

data, concerns about data ownership, sovereignty, and ethical use have been addressed 

extensively within the partnership. One of the foundational agreements put forward 

particularly by Sinchi included three non-negotiable conditions: the data must remain 

open, communities must not be exploited, and no financial compensation would be 

accepted in exchange for participation. Humboldt Institute, the other scientific partner 

also signalled the need of establishing principles alike upfront. These stipulations helped 

define the boundaries of acceptable data use and reflect a strong normative stance on 

institutional autonomy and privacy. 
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Data remains under the control of the institutions that collected it, and model outputs are 

only released following explicit approval from the relevant partners. While the project 

does not implement privacy-by-design in the sense of user-level data protections (given 

the nature of its environmental monitoring focus) it has developed clear conventions 

around data earmarking and non-exploitative practices. Notifications and consent 

mechanisms for third-party users may become more relevant in future phases, particularly 

if public-facing platforms or community data contributions are introduced. 

(11) Inclusive and participatory design 

Guacamaya exemplifies the use of co-design principles throughout its development. As 

described in earlier sections, the project operates through a roundtable governance 

structure in which all partners contribute to decision-making processes, from defining 

model outputs to coordinating technical improvements. Feedback loops are integral to 

this arrangement, ensuring that tools are adapted to meet institutional needs and reflect 

the working conditions of field researchers. 

In terms of accessibility, there are two notable features aimed at reducing barriers to entry. 

First, models like PyTorch-Wildlife are made available via open repositories such as 

Hugging Face, and Microsoft has contributed free cloud resources to host and run them, 

removing the need for users to maintain local GPU infrastructure (Hernandez et al. 2024). 

Second, the Sparrow hardware is designed for open replication: its components are 3D 

printable, and its deployment does not involve proprietary restrictions. These design 

choices reflect an intentional effort to ensure that the tools developed can be adopted 

widely, especially by under-resourced institutions in the Global South (Lavista Ferrés 

2024). 

(12) Cultural sensitivity 

Guacamaya’s approach to cultural sensitivity is shaped by the institutional diversity of its 

partner network and the socio-legal constraints of operating in the Amazon region. While 

the project does not have a formal cultural sensitivity policy, its design reflects an 

awareness of ethical obligations in territories with complex histories of scientific 

extractivism and marginalization. Interviewees emphasized that institutions like the 

Humboldt Institute are especially mindful of the need to ensure that scientific work 

benefits local communities, even if the degree of community engagement varies from 

project to project. This ethical stance is supported by a broader concern with respecting 

local autonomy and avoiding practices that might replicate historical patterns of external 

imposition. 
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The project’s current structure does not involve direct engagement between Microsoft or 

CinfonIA and local or Indigenous communities. Instead, community connections are 

mediated through Sinchi and Humboldt, who bring longstanding relationships and 

contextual expertise. Colombian legal frameworks around consulta previa (prior 

consultation) add a layer of complexity to direct engagement, particularly for technology-

driven initiatives that do not involve direct extraction or infrastructure development but 

are still subject to similar regulatory scrutiny. As such, Guacamaya’s operational model 

places cultural sensitivity within the responsibilities of its field-facing partners, who are 

better equipped to manage local dynamics. 

From a technical perspective, the project is designed to be adaptable to different 

ecological and institutional contexts. Sparrow devices are being deployed with the help 

of local collaborators who provide input on where and how they should be installed. 

Interviewees noted that field teams often include people from the communities 

themselves, who contribute practical and ecological knowledge to improve deployment. 

Plans to expand data collection across various parts of the Amazon including Peru, and 

eventually Bolivia or Brazil, also reflect a commitment to making the models more 

generalizable and regionally grounded. While there is limited information on team 

diversity or formal recognition of culturally specific norms in model design, the overall 

structure of the project encourages local integration through co-creation and indirect field 

participation. 

4.3.3 Ecological dimension 

(13) Energy consumption 

Energy efficiency has been considered during Guacamaya’s model development, 

particularly in relation to the hardware constraints of field deployment. According to 

interviewees, a key design goal is to ensure that models can run on low-power machines, 

including edge devices like the Sparrow stations. To achieve this, models have been kept 

intentionally small, using lightweight architectures that can operate without the need for 

GPU-intensive infrastructure. Some models have even been tested on mobile devices. 

While the use of specific methods such as transfer learning, model compression, or 

energy-aware optimization techniques was not explicitly mentioned, the overall emphasis 

on small model size reflects a practical orientation toward minimizing energy demands. 

At this stage, no detailed metrics are being tracked regarding energy use during training 

or deployment, and parameters for model efficiency have not been formally reported. 

However, the design logic of running models in the field on solar-powered, low-spec 

devices, suggests that the project is oriented toward energy-conscious implementation. 
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As Guacamaya scales and enters broader usage phases, there may be opportunities to 

document and optimize energy consumption more systematically. 

(14) CO₂ and greenhouse gas emissions 

Project Guacamaya does not currently measure or report on its carbon footprint, nor does 

it engage in formal CO₂ efficiency assessments or offsetting. However, interviews suggest 

that the project team is aware of the environmental implications of machine learning and 

has made early design choices to limit computational intensity. The models developed so 

far are lightweight and, in the words of one interviewee, “can even run on a mobile 

phone.” Compared to the training and deployment of large language models, 

Guacamaya’s environmental impact is described as minor, close to negligible. 

At the same time, interviewees acknowledged that the project’s energy use is not zero. 

One participant noted that while the carbon footprint exists, the potential positive impact 

on biodiversity conservation by accelerating monitoring, analysis, and policy-relevant 

insights, offers a form of indirect environmental benefit. The team’s current strategy 

appears to rest on minimizing model size, enabling efficient edge deployment, and 

avoiding the need for large-scale cloud computing wherever possible. As the project 

matures, more formal tools for estimating emissions and assessing trade-offs may become 

useful, especially if broader deployment increases system use across different contexts. 

(15) Sustainability potential in application 

Guacamaya is explicitly oriented toward sustainability, although the realization of its 

potential is still unfolding and subject to institutional timelines. The project’s target 

function could be declared as automated environmental monitoring of deforestation and 

biodiversity, and it clearly aligns with global sustainability objectives. However, as 

interviewees noted, the system’s societal and policy impact is expected to be indirect and 

long-term. The models are not designed to directly enforce environmental policy or 

intervene in ecological systems; rather, they aim to generate more timely and accurate 

data to support conservation-oriented decision-making by scientific and government 

institutions. 

So far, early indicators suggest that the models are having a measurable impact on process 

efficiency. At Humboldt, pilot use of the bioacoustics tool reduced the time needed to 

analyse bird call recordings by approximately 80 percent. At Sinchi, animal classification 

from camera trap imagery saw a reported 90 percent reduction in manual effort. While 

results from the forest cover model are not yet available in public form, the models are 

reportedly being integrated into institutional workflows as part of an iterative 
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development process. In other words, interviewees claim that models are already 

contributing to resource savings in ongoing scientific projects and improving the speed 

and scale at which monitoring can take place. 

Guacamaya’s design also supports long-term sustainability by extending the service life 

and functional reach of conservation hardware. Devices such as the Sparrow wildlife 

monitoring stations are configured to run the project’s lightweight models directly in the 

field, enabling real-time, low-resource analysis. This not only reduces dependence on 

remote cloud services but also allows for a flexible deployment of tools across different 

reserves and research contexts. As data from these deployments accumulate, model 

refinement will further improve performance across diverse ecological conditions, 

increasing their usefulness for adaptive conservation management. While Guacamaya 

does not directly promote sustainable products or consumption patterns in a conventional 

sense, its contribution to optimizing environmental monitoring processes may lead to 

more effective use of conservation resources, indirectly advancing sustainability 

outcomes. 

(16) Embodied and shared resource consumption of hardware infrastructure 

Project Guacamaya does not currently track or report on embodied resource consumption 

related to its hardware infrastructure. Indicators such as the use of certified hardware, data 

centre efficiency metrics, hardware recycling or reuse rates, and waste disposal strategies 

are not directly addressed in the project’s current scope. This is not unexpected, given 

Guacamaya’s relatively limited scale and focus on low-resource edge deployments rather 

than large-scale centralized computing. While the project benefits from Microsoft’s cloud 

infrastructure and engineering support, interviewees made no mention of specific 

efficiency certifications or sustainability standards associated with the hardware or data 

centres used. Additionally, no systematic measures have been introduced for hardware 

lifecycle management, such as recycling or disposal protocols.  

Although these indicators are not yet addressed, their relevance may increase if 

Guacamaya’s models and devices are adopted more widely or integrated into national-

level monitoring systems. At that stage, questions of embodied energy, component reuse, 

and hardware lifecycle management could become more salient, particularly if the scale 

of deployment grows beyond research pilots. 

4.3.4 Economic dimension 

(17) Market diversity and exploitation of innovation potential 
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Guacamaya’s model of co-creation and open-source development supports some aspects 

of market diversity, even though the project is not structured around commercialization. 

Several of the technical outputs such as PyTorch-Wildlife and future model iterations are 

shared openly through platforms like GitHub and Hugging Face. These tools are designed 

to be compatible with low-power devices, allowing broader accessibility, including for 

institutions in the Global South with limited infrastructure. While no dedicated APIs or 

multi-platform interfaces have been publicly released at this point, the design of models 

and hardware reflects a strong orientation toward technical openness and interoperability. 

Guacamaya’s use of Microsoft cloud services comes with donated resources, but hosting 

is decentralized, and no single partner holds exclusive access, supporting multihoming in 

practice. Overall, while this criterion was likely conceived with commercial ecosystems 

in mind, Guacamaya does promote inclusive access to innovation through open design 

choices and shared infrastructure. 

(18) Distribution effect in target markets 

Although Guacamaya does not operate within a conventional market, the project’s 

structure encourages equitable participation among scientific and public-sector partners. 

The models are being developed with adaptability in mind, both in terms of input data 

(e.g., diverse formats, volumes, and geographies) and intended use (e.g., reserve-level 

monitoring, national assessments). The emphasis on lightweight models further enhances 

accessibility across institutions with varying capacities. While there is no formal tracking 

of accuracy differentials between major and marginalized users, the open-source model 

and field validation approach reduce the risk of exclusionary design. In practice, 

Guacamaya’s outputs are explicitly intended for use by public institutions and NGOs, 

particularly those in Latin America, suggesting a prioritization of non-commercial actors 

in the project’s deployment. Support for under-resourced partners, including free access 

to infrastructure and training, aligns with the spirit of this criterion, even if many 

indicators are not directly measurable under current conditions. 

(19) Working conditions and jobs 

No information was collected during this study regarding the effects of Guacamaya on 

working conditions or wages. Given the project’s non-profit structure and research-

oriented goals, no employment is generated directly by the project beyond what is 

sustained through the participating institutions. Likewise, no mechanisms are in place to 

evaluate impacts on labour standards or job quality along the AI lifecycle. Each partner 

retains responsibility for employment practices under its own jurisdiction and mandate. 

While the project may influence the skills and workflows of participating researchers (e.g.  

by reducing time spent on manual classification or enabling new types of analysis) these 
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effects are currently anecdotal and not systematically tracked. This criterion may become 

more relevant if Guacamaya’s tools are integrated into operational processes in the public 

sector or if new roles emerge around their use, maintenance, or adaptation. 
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5 Discussion 

5.1 Guacamaya compared with the literature and other cases 

Project Guacamaya stands on shared ground within the typologies of AI and sustainability 

found in the literature. From a design perspective, its emphasis on openness, accessibility, 

and low computational demand makes it a relevant case of sustainable AI. However, 

Guacamaya’s primary goal is not to be green by itself but to deploy AI as a tool to address 

environmental challenges. Its core activities align it more clearly with the field of AI for 

sustainability, as its outputs are meant to support scientists, inform conservation policy, 

and eventually assist in environmental law enforcement. Moreover, it contributes to 

bridge the gap in conservation and monitoring between global north ecosystems and 

global south ecosystems, not only by developing tools to be implemented in the 

Neotropics, but also publishing the models trained on data captured in the Amazon Forest. 

This position becomes clearer when Guacamaya is examined through the lens of Rolnick 

et al.’s (2023) classification of machine learning for climate action. According to their 

taxonomy, Guacamaya contributes to at least three categories: mitigation, by helping 

monitor forest loss and degradation; adaptation, by offering the possibility of forecasting 

ecosystem changes that result from climate stressors; and tools for action, through its 

capacity to provide timely, structured information to policymakers and scientific 

institutions. Although its most tangible use cases currently relate to deforestation and 

biodiversity monitoring, the multimodal capacity and planned scalability of the project 

position it to contribute across a wider spectrum of environmental challenges. 

Guacamaya also reflects a plurality of motivations for environmental monitoring, if it 

were analysed under the typology described by Allard et al. (2023). For Microsoft and 

CinfonIA, the project was initially curiosity-driven, launched as part of a broader 

institutional interest in sustainability. However, from the perspective of Sinchi and 

Humboldt, Guacamaya is a means to strengthen ongoing question-driven monitoring, by 

automating and scaling their data analysis workflows. Microsoft interviewees have also 

expressed the intention to incorporate citizen science–driven mechanisms, for example 

through community validation of alerts or signals captured via the Flight Simulator 

platform. While still in early stages, this layered combination of motivations suggests a 

level of innovation in how monitoring technologies are imagined and deployed. 

In the realm of biodiversity science, Pollock et al. (2025) identify knowledge shortfalls 

where AI can play a transformative role. Guacamaya is explicitly oriented toward 

addressing several of these, including the Wallacean shortfall (gaps in species distribution 

data), the Prestonian shortfall (uncertainty around population abundance), and potentially 
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the Hutchinsonian shortfall (limited understanding of species’ ecological niches). The 

models developed in the project are designed to enhance the generation and classification 

of spatiotemporal biodiversity data, which could help narrow these gaps over time. 

One area where the empirical narratives from Guacamaya appear to diverge from 

established literature is in the assessment of Brazil’s deforestation monitoring capacity. 

Interviewees from Microsoft described Brazil’s systems as outdated and limited in 

resolution, implying that Guacamaya could outperform them. However, researchers such 

as Assunção et al. (2023) and Ferreira (2024) provide evidence of the effectiveness of 

Brazil’s DETER system in supporting law enforcement and reducing deforestation 

through satellite-based alerts. While it is not within the scope of this research to evaluate 

the accuracy of these competing claims, the contrast suggests a possible opportunity: 

Guacamaya’s open-source infrastructure and regional aspirations could serve as a 

platform to collaborate or cross-analyse data with established systems in Brazil, 

potentially enriching both efforts and opening the way for interoperability. 

Finally, it should be noted that the Humboldt Institute has collaborated with other tech 

companies such as Google and Huawei on related projects. Because this study did not 

include a current Humboldt representative, it was not possible to determine how 

Guacamaya fits within Humboldt’s broader institutional strategy for biodiversity science 

and technology transfer. As a result, this remains an open question for future research, 

particularly in understanding how different partnerships compare in terms of governance, 

openness, and long-term scientific value. 

5.2 Policy relevant insights 

Project Guacamaya offers several insights for environmental policy and digital 

governance, particularly in the context of AI-enabled conservation efforts in the Amazon 

region. While its primary outputs are technical, the project’s evolution and institutional 

structure raise questions about how co-created, open-source AI systems can inform or be 

integrated into public decision-making, and what policy conditions are necessary to 

support this. 

A first insight relates to scalability and regional coordination. As the project aspires to 

expand across the Amazon basin, the Memorandum of Understanding (MoU) that 

governs its operations will likely face pressure. Under the current framework, the 

inclusion of new partners requires unanimous approval from all existing members. This 

mechanism has been useful for building trust, but may become a constraint as the network 

grows. At some point, greater flexibility may be needed, even if it comes at the cost of 

slower consensus or more complex internal negotiations. This raises broader governance 
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questions: Should Guacamaya adopt new legal structures or shared institutions to 

accommodate growth? Could regional mechanisms such as the Amazon Cooperation 

Treaty Organization (OTCA) or the Leticia Pact provide a platform for multilateral 

coordination? These options remain unexplored but are worth consideration as the project 

matures. 

There is also significant potential to formalize citizen involvement in the project. 

Initiatives such as the Flight Simulator–based crowdsourcing and in-field validation by 

local communities demonstrate Microsoft’s interest in hybrid forms of monitoring, where 

public participation complements AI predictions. Studies like McCallum et al. (2023) and 

Saavedra (2024) have shown that citizen-generated data not only improves system 

accuracy but also fosters public awareness and legitimacy. Guacamaya’s next 

development cycle could benefit from formally incorporating these elements and 

encouraging institutional frameworks for citizen engagement. 

Another policy lesson concerns the importance of co-creation for building institutional 

trust. Interviewees repeatedly emphasized that the open, iterative development model, 

where no single partner owns the system or the data, has allowed the project to overcome 

scepticism among scientific institutions, especially those wary of extractivist practices. 

While this lesson is not new, it reinforces findings from other fields of public-sector 

innovation and sustainability governance, where co-creation has been shown to foster 

ownership and innovation across organizational boundaries.  

However, the project also reveals regulatory and institutional barriers to policy adoption. 

In Colombia, Guacamaya has struggled to find formal pathways to integrate its outputs 

into national monitoring and enforcement systems. Legal frameworks restrict government 

agencies from acting on non-official data, while bureaucratic inertia and mistrust toward 

private sector–led innovation have further slowed collaboration. As one interviewee 

noted, even the Ministry of Environment faces institutional resistance to incorporating 

predictive deforestation maps generated by Guacamaya’s models. IDEAM, the agency in 

charge of official deforestation reporting, continues to rely on traditional processes that 

take up to 18 months to publish results, in contrast to Guacamaya’s ability to produce 

near real-time data. While these dynamics are context-specific, they reflect broader 

tensions between open-source innovation and formal environmental governance, and 

highlight the need for legal frameworks that recognize and validate co-produced data 

systems. 

In contrast, the Peruvian Ministry of Environment has joined the Guacamaya partnership 

with enthusiasm. Interviewees noted that the Peruvian authorities were more willing to 

adopt and experiment with open-source models, enabling faster coordination and 
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implementation. This contrast suggests that political openness, ministerial continuity, and 

institutional culture play a significant role in determining whether co-created AI systems 

can be adopted by state actors. Guacamaya’s experience thus offers an entry point to 

broader discussions about public sector digital maturity, data governance, and the role of 

open infrastructure in national and regional environmental policy. 

Finally, Guacamaya’s development highlights structural challenges in local AI capacity-

building. As an interviewee noted, Colombia still lacks the institutional bridges to align 

ecological researchers with machine learning communities. This gap is not just technical: 

it reflects a disconnect between academic fields and between national development 

priorities and research infrastructure. AI for sustainability initiatives often rely on 

imported tools and generic models, while country-specific problems remain 

underexplored (Cañas et al. 2025). Guacamaya’s co-creation approach is a promising step 

toward localization, but it remains an early-stage effort. Policy frameworks that support 

interdisciplinary collaboration, improve research pipelines, and promote context-

sensitive AI development will be essential if such projects are to reach their full potential. 

5.3 Towards the future of Guacamaya 

Although Project Guacamaya has demonstrated promising early results, its long-term 

impact remains dependent on how it evolves technically, institutionally, and politically. 

As a monitoring tool, Guacamaya has so far been developed primarily to assist scientific 

institutions and, potentially, environmental law enforcement. However, monitoring has 

broader functions than merely describing environmental conditions. According to the 

European Environment Agency (1999) and elaborated by Keskitalo et al. (2023), 

environmental monitoring should also serve as a tool for continuous feedback, allowing 

institutions to adapt their interventions and strategies dynamically. Based on the findings 

of this case study, Guacamaya has not yet been configured with that feedback loop in 

mind. Its integration into public sector governance, particularly as a mechanism for 

adjusting or evaluating policy performance, seems to be a possibility rather than an 

established trajectory. 

This uncertainty is reflected in the project’s declared objectives. The goal of “preserving 

and protecting the Amazon Forest,” as expressed by several interviewees, is clearly 

aligned with global sustainability aspirations, but remains broad and difficult to 

operationalize. For instance, Microsoft’s corporate sustainability targets (carbon 

neutrality by 2030, water positivity by 2050) frame the rationale for Guacamaya, but the 

relationship between the project’s outputs and those milestones is not explicitly defined. 

Interviewees mentioned that the project has internal objectives that are more concrete, yet 

these were not shared during the study. The lack of transparent, measurable goals makes 
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it difficult for external observers to assess progress or to evaluate the project’s alignment 

with broader climate and biodiversity commitments. 

The assessment conducted through the SCAIS framework further highlights several areas 

that may require attention as Guacamaya scales and enters later lifecycle stages. Some 

criteria were only partially fulfilled, not due to neglect, but because they are more relevant 

once the project’s tools are widely used by public authorities or exposed to broader user 

bases. For example, complaint mechanisms (criterion 6) may not be necessary in a 

research context, but will become important if Guacamaya’s tools are embedded into 

decision-making systems or used by third parties beyond the initial partners. Likewise, 

non-discrimination and fairness (criterion 8) will require more systematic approaches if 

the models are deployed across regions with different social and ecological contexts. At 

present, bias mitigation is informal and focused on data expansion. More explicit 

definitions of protected groups and auditing processes may be needed in future stages. 

The criterion of cultural sensitivity (12) also deserves attention. Although the project 

encourages local integration through partnerships with institutions like Sinchi and 

Humboldt, there is limited information on team diversity or formal incorporation of 

culturally specific norms into model design. As the project expands into other countries 

or engages more directly with communities, these questions will become more pressing, 

particularly if the project engages with Indigenous territories or transboundary 

governance frameworks. 

In this regard, future developments of Guacamaya must go beyond indirect institutional 

channels and engage Indigenous communities through direct, respectful, and sustained 

dialogue. As highlighted in recent research (Andoke Andoke et al. 2023; Krause et al. 

2025; Palau-Sampio 2025), merely informing Indigenous peoples about technological 

deployments does not suffice, especially when such deployments might produce outputs 

that inform state policies with tangible effects on their territories and ways of life. 

Responsible engagement should include free, prior, and informed consent as established 

in international human rights instruments, and should avoid reproducing extractivist 

patterns seen in previous conservation initiatives such as the aforementioned ‘Visión 

Amazonía REDD Early Movers programme’. Indigenous peoples’ holistic knowledge of 

forest ecosystems, rooted in long-standing territorial care practices and reciprocal 

relations with non-human life, offers not only ethical guidance but practical insights for 

long-term environmental stewardship. By involving Indigenous representatives early and 

meaningfully in the design, deployment, and interpretation of monitoring efforts, 

Guacamaya can help prevent harm, promote intercultural legitimacy, and strengthen the 

quality and relevance of its scientific contributions. Failure to do so could undermine trust 
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and reinforce harmful dynamics of exclusion and marginalization already present in many 

parts of the Amazon. 

From a technical and environmental perspective, energy consumption (13) and CO₂/GHG 

emissions (14) have been intentionally minimized through the development of 

lightweight models suitable for low-power devices. Still, as Guacamaya grows and its 

models are deployed more widely, there may be opportunities to track and optimize these 

impacts more systematically. While the models are far from the scale of large commercial 

AI systems, formal assessment of energy and resource use will help position the project 

more clearly within the sustainable AI conversation. 

Finally, the project’s impact on working conditions and jobs (criterion 19) remains 

anecdotal at this stage. Interviews suggest that researchers at partner institutions are 

experiencing time savings and workflow improvements, but no systematic evaluation of 

labour effects has been conducted. Acemoglu and Johnson (2024) categorically warn their 

readers to stay vigilant towards uses of AI where intensive automation happens. In 

contrast to narratives of displacement, Guacamaya appears to offer a case where AI 

augments rather than replaces human expertise. Also, if Guacamaya’s tools become 

embedded in public sector operations or conservation strategies, they may give rise to 

new roles in model maintenance, field deployment, or data interpretation. These 

transformations could be beneficial but are worth of careful tracking to ensure they 

improve—instead of undermining—working conditions in the sector. 

In summary, Guacamaya’s future will depend not only on technical refinement but also 

on its ability to navigate complex institutional ecosystems, scale responsibly, and 

maintain the trust-based governance model that has been one of its most distinctive 

features.  

5.4 Lessons and limitations of using the SCAIS framework 

The application of the Sustainability Criteria and Indicators for Artificial Intelligence 

Systems framework proved useful for structuring a multidimensional assessment of a 

complex socio-technical-ecological initiative. However, the experience also surfaced 

several limitations that are worth reflecting on. First, Guacamaya has not yet progressed 

through the full lifecycle envisioned in the SCAIS framework. While model development 

is ongoing, and some verticals have entered early implementation stages within partner 

institutions, the later phases remain aspirational. As a result, several criteria and their 

indicators could not be meaningfully assessed at this time. This limitation is not specific 

to Guacamaya; it is common to early-stage AI-for-sustainability projects. Yet it raises an 

important methodological consideration: the framework may benefit from a more explicit 
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acknowledgement of maturity stages. Although the framework suggests in which stages 

of the lifecycle the indicators are observable, it does not consider its application before 

the lifecycle is completed. In larger projects, an iterative approach to the SCAIS 

framework might come as beneficial because it would help raise early alerts of lacking 

elements or unsustainable practices. 

Second, the framework’s economic dimension appears to be less applicable to non-

commercial, co-creation-based projects like Guacamaya. Indicators focused on market 

dynamics, APIs, and customer diversity may be meaningful in private-sector settings, but 

they offer limited traction in cases where no monetization is involved. A more suitable 

set of indicators for such contexts might instead address issues like funding sustainability, 

donor transparency, infrastructure dependence, and the long-term integration of AI tools 

into public institutions or non-governmental partners. These would allow for a richer 

understanding of economic sustainability that goes beyond commercial viability. 

A third insight concerns the broader use and uptake of comprehensive frameworks like 

SCAIS within the research community. As JC observed during one of the interviews, few 

researchers currently apply socio-technical-ecological frameworks rigorously. The 

challenge lies partly in measurement methodologies and partly in incentives. Most 

projects aim to demonstrate functionality, publish results, or release open datasets and 

tools. Critical self-assessment, particularly along sustainability metrics, is rarely a formal 

requirement and often falls outside the scope of funded work. This suggests that while 

frameworks like SCAIS offer valuable structure, institutional support and policy 

incentives may be needed to encourage their widespread use, particularly in Global South 

contexts where resource constraints are more pressing. 

That said, the framework helped identify not only where Guacamaya performs strongly—

such as in governance, openness, and co-design—but also where future work will be 

required to fulfil its long-term ambitions. It allowed for a granular assessment of project 

choices, and surfaced considerations that might otherwise have remained implicit. In this 

way, applying SCAIS contributed not only to the evaluation of Guacamaya, but also to a 

broader reflection on what sustainability means in the context of early-stage, 

interdisciplinary, collaborative AI initiatives. Moreover, this research contributes not only 

to Guacamaya’s evaluation, but to the broader discussion on how frameworks like SCAIS 

can evolve to better accommodate hybrid, transdisciplinary projects emerging in the 

Global South. 
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6 Conclusion 

Project Guacamaya offers a paradigmatic case through which to examine the emerging 

field of AI for sustainability, particularly in the context of environmental monitoring in 

the Amazon rainforest. As a collaborative initiative that brings together research 

institutes, technology providers, and conservation stakeholders, Guacamaya sheds light 

on how artificial intelligence can support biodiversity monitoring and deforestation 

tracking efforts in one of the world’s most ecologically significant regions. It is not only 

an example of how AI technologies can be adapted for sustainability goals, but also a 

valuable lens through which to explore broader governance, technical, and political 

dynamics that shape the development and deployment of such systems. 

The central aim of this thesis was to analyze how Project Guacamaya performs in relation 

to the 19 criteria of the SCAIS (Sustainable and Critical AI Systems) framework, and 

what insights can be drawn from it to inform sustainability-oriented AI policies in the 

Amazon region and beyond. The case study method allowed for an in-depth exploration 

of Guacamaya’s governance structure, technical design, field-level implementation, and 

institutional relationships, based primarily on semi-structured interviews with members 

of the project’s core team, complemented by document analysis and relevant literature. 

Overall, the findings confirm that Guacamaya is a rich example of AI for sustainability, 

with clear potential to support scientific research, conservation strategy, and potentially 

even policy enforcement. However, as the project is still in relatively early phases of 

development, some aspects of its impact and sustainability performance remain incipient. 

While model development is underway and implementation has begun at a pilot scale, the 

use of AI-generated outputs in formal decision-making remains largely aspirational. 

These findings illustrate both the promise and the limitations of current AI-for-

environmental-monitoring projects, especially in complex sociopolitical contexts like the 

Amazon basin.  

6.1 Answering the research questions 

RQ1: How does Project Guacamaya perform across the 19 criteria of the SCAIS 

framework? 

Across the governance dimension (criteria 1–6), Guacamaya demonstrates strong 

performance. The Memorandum of Understanding signed by partners lays out shared 

responsibilities, provides channels for coordination, and ensures that no single 

organization has unilateral control over data or models. Each partner contributes 

according to their own institutional strengths while respecting each other's autonomy. 
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Although the project does not yet have formalized complaint mechanisms or a unified 

code of conduct, these aspects are partially covered by each partner’s internal policies 

and the open-source nature of the tools. 

In the social dimension (criteria 7–12), Guacamaya scores well due to its emphasis on co-

creation, data ownership respect, and transparency. The decision to release models and 

tools as open source not only increases their accessibility but also allows for community-

driven feedback and adaptation. However, direct engagement with local communities is 

still mediated through institutional partners such as Sinchi, which may limit the extent to 

which local knowledge, cultural norms, and social inclusion are fully integrated into the 

project. As the project matures, criteria such as cultural sensitivity and participatory 

design should be revisited and more systematically incorporated. As the project matures, 

criteria such as cultural sensitivity and participatory design should be revisited and more 

systematically incorporated. As shown in recent critiques of top-down conservation 

efforts in the Amazon, projects that fail to secure free, prior, and informed consent or 

disregard Indigenous law and knowledge cannot be considered socially sustainable in a 

meaningful sense. This has significant implications for the long-term legitimacy and 

effectiveness of Guacamaya if it expands into territories governed by Indigenous peoples, 

or if its outputs are used formally to inform conservation policy in their territories.  

The ecological dimension (criteria 13–16) highlights Guacamaya’s potential as a 

sustainable AI system. Developers are actively minimizing energy consumption through 

model compression and design choices that allow AI to run on low-power hardware such 

as edge devices. While no precise metrics are currently collected on carbon emissions or 

energy use, the project's design philosophy aligns with the broader goals of Green AI. As 

usage increases, however, more robust monitoring and reporting may be needed to ensure 

continued ecological responsibility. 

Guacamaya’s performance in the economic dimension (criteria 17–19) is harder to 

evaluate. Because the project is explicitly non-commercial, many of the indicators (e.g. 

market exploitation, wage structures, business impact) do not apply directly. Nonetheless, 

the project promotes inclusive access to innovation and is adaptable across institutional 

contexts, including NGOs and public agencies. Future applications may create new jobs 

or transform research workflows, but such effects are currently anecdotal and not 

systematically measured. 

RQ2: What does the SCAIS framework reveal about Guacamaya’s ability to contribute 

to the broader efforts of environmental sustainability that drive it? 
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Guacamaya’s primary contribution to sustainability lies in its ability to support and 

enhance scientific research, particularly by reducing the manual workload associated with 

biodiversity and deforestation monitoring. Its technical outputs streamline the processing 

of large ecological datasets and allow researchers to focus on more analytical and 

interpretive tasks. 

At the same time, Guacamaya holds indirect but important potential to support policy 

enforcement and real-time decision-making. While this is not yet a formalized component 

of the project, interviewees expressed a strong interest in collaborating with law 

enforcement and government agencies. Realizing this potential will require legal and 

institutional changes, particularly to recognize and validate co-produced data within 

national monitoring systems. 

In scientific terms, Guacamaya contributes to addressing several foundational knowledge 

gaps identified by Pollock et al. (2025), such as the Wallacean shortfall (species 

distribution data), the Prestonian shortfall (species abundance), and the Hutchinsonian 

shortfall (ecological niche understanding). It also aligns with Rolnick et al.’s (2023) 

classification of AI for climate action, functioning across multiple categories including 

mitigation, adaptation, and decision-support tools. 

RQ3: How can the case of Guacamaya contribute to policymaking for biodiversity 

monitoring and conservation in the Amazon Forest Region? 

Guacamaya demonstrates how a regional, non-governmental initiative can develop and 

deploy technological infrastructure for conservation across borders. Because it is not tied 

to any single government or funding cycle, it enjoys a degree of flexibility in its 

operations, including partner selection and deployment strategy. The open-source nature 

of its models ensures that even institutions not formally part of the MoU can potentially 

benefit from its tools and findings. 

However, this flexibility comes with trade-offs. As the project expands, the consensus-

based governance structure may become a bottleneck. Future governance models might 

require more layered or federated structures to maintain trust while enabling agility. 

Institutions such as the Amazon Cooperation Treaty Organization (OTCA) or multilateral 

frameworks like the Leticia Pact may provide platforms for such regional collaboration. 

Another area of potential growth lies in public engagement. Initiatives like the Flight 

Simulator–based citizen monitoring and in-field validation of AI predictions show that 

hybrid monitoring approaches (combining automated systems with human input) are not 
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only feasible but potentially powerful. Formalizing these efforts into policy frameworks 

could help improve data accuracy, public trust, and democratic legitimacy. 

Finally, Guacamaya shows how co-creation models can foster institutional trust and 

overcome initial scepticism, particularly among organizations that have experienced 

extractive partnerships in the past. This is a policy-relevant lesson for other initiatives 

seeking to operationalize AI in sensitive or contested regions. 

6.2 Limitations 

The main limitation of this study is that Project Guacamaya has not yet undergone all 

phases of the SCAIS lifecycle. Model development is still ongoing for some verticals, 

and implementation is taking place only in limited capacity. Full-scale use in decision-

making has not yet occurred. Therefore, the findings represent a preliminary assessment 

that may need to be revisited once the project matures and moves into new phases. 

Interviews with project members representing Humboldt Institute and Sinchi institute are 

also lacking in this study, as it they were not available because of their fieldwork agendas. 

Including their vision and concerns would lead to a more complete picture of the Project, 

as well as a better understanding of the place Guacamaya takes in their own institutional 

strategy as scientific organizations.  

Additionally, while this case study approach allowed for a detailed understanding of 

Guacamaya, it does not offer a comparative perspective. Other AI-for-sustainability 

projects in Latin America, such as those identified by Gutiérrez et al. (2025), may present 

different governance models, technical approaches, or political dynamics. Finally, public 

authorities were not interviewed as part of this study. This limits the analysis of 

institutional barriers to adoption, particularly within the Colombian regulatory and 

bureaucratic context. 

6.3 Directions for Future Research 

Future research should revisit the case of Guacamaya once it enters broader 

implementation and begins to influence decision-making processes more directly. At that 

point, it would be valuable to assess how public sector agencies use its outputs, whether 

its models remain transparent and inclusive at scale, and what new organizational 

challenges emerge as more partners join the initiative. 

In parallel, more empirical research is needed on how AI is used by actors whose activities 

contribute to deforestation and biodiversity loss. While AI-for-good narratives dominate 

the current literature, less attention has been paid to how similar technologies may be 
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used to maximize extraction, evade detection, or consolidate control over land and 

resources. Understanding the ambivalent nature of AI in forested regions is essential to 

designing countermeasures and anticipating future threats. 

Lastly, there is an urgent need to evaluate and possibly revise sustainability assessment 

frameworks like SCAIS to better accommodate non-commercial, collaborative AI 

initiatives. Many of the current indicators, particularly within the economic dimension, 

assume a for-profit logic that may not be applicable to multi-stakeholder research 

collaborations. Developing complementary tools or adapting existing frameworks to 

account for such cases would enhance the relevance and usability of sustainability 

assessments in this rapidly evolving field. 
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