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INTRODUCTION 

Blood vessels in our body supply the tissues with oxygen and nutrients. The 
inner surface of blood vessels is lined with endothelium, a special type of 
epithelium. In contrast to many other epithelial tissues, where constant 
regeneration is taking place, endothelial cells in an adult organism reside mostly 
in quiescence and formation of new blood vessels is initiated via sprouting from 
the pre-existing ones (angiogenesis) only on few occasions, such as wound 
healing or tissue regeneration. Sprouting angiogenesis is a tightly regulated 
pathophysiological process and its misregulation is involved in ischaemic 
diseases, inflammation, and tumour growth. In 1971 Judah Folkman, the pioneer 
of anti-angiogenesis therapy, proposed the idea that tumour growth depends on 
angiogenesis, and thus, reducing tumour blood supply would be benefical for 
anti-tumour therapy (Folkman, 1971). Since 2004, a number of anti-
angiogenesis drugs have been brought to market for use in cancer treatment. 
However, about dozen years of clinical use has also revealed that these drugs 
display only limited long-term benefit due to the intrinsic or acquired resistance 
mechanisms of tumours to anti-angiogenesis therapy. To overcome the 
difficulties in anti-angiogenesis therapy, a clearer insight into the mechanisms 
and factors regulating angiogenesis is needed.  

CD44 is a highly glycosylated cell surface adhesion receptor that mediates its 
functions by binding to its principal ligand hyaluronan (HA) or other 
extracellular matrix (ECM) ligands. Although the functions of CD44 are 
foremost related to leukocyte homing and tumour metastasis, some studies 
describe CD44 also as an angiogenesis regulator. CD44 has been shown to be 
required for tumour vascularization (Cao et al., 2006), as well as for blood vessel 
invasion in response to HA oligomers (Lennon et al., 2014). Furthermore, 
studies by Päll et al. (2004) demonstrated that the recombinant soluble CD44 
HA-binding domain (CD44-HABD) is able to inhibit angiogenesis and tumour 
xenograft growth independently of its HA binding function. To utilize CD44 in 
anti-angiogenic therapy, a better understanding of the role of CD44 in blood 
vessel formation would be beneficial.  

The aim of this thesis was to elucidate the contribution of CD44 to endothelial 
cell proliferation and angiogenesis. To examine the role of CD44 in endothelial 
growth, three different approaches were used. The functions of CD44 in 
angiogenesis and endothelial proliferation were studied by the use of Cd44-/- 
mice, administration of the soluble non-HA-binding analogue of CD44 (CD44-
3MUT), and CD44 silencing in human endothelial cells. As the in vivo use of 
CD44-3MUT was limited due to its rapid removal from circulation, we 
attempted to improve its pharmacokinetic properties as well. 
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ABBREVIATIONS 

aa – amino acid 
ADAM – a disintegrin and metalloproteinase 
ALK – activin receptor-like kinase  
ANG – angiopoietin 
BMDC – bone marrow derived cells 
BMP – bone morphogenetic protein 
CD44-3MUT – non-HA binding CD44-HABD (CD44-HABD21-
132R41AR78SY79S) 
CD44s – standard (hematopoietic) CD44 isoform 
CD44v – variant CD44 isoforms 
CDK1 – cyclin dependent kinase 1 
CSC – cancer stem cells 
CXCL – C-X-C motif chemokine ligand 
CXCR – C-X-C motif chemokine receptor 
DIVAA – directed in vivo angiogenesis assay 
DLL4 – Delta-like ligand 4 
EC – endothelial cells 
ECIS – electrical cell-substrate impedance sensing 
ECM – extracellular matrix 
ELISA – enzyme-linked immunosorbent assay 
EMT – epithelial-to-mesenchymal transition 
ERM – ezrin, radixin and moesin 
FA – focal adhesion 
FAK – focal adhesion kinase 
Fc – Fragment crystallisable 
FGF – fibroblast growth factor 
FGFR – FGF receptor 
GDF-2 – growth differentiation factor-2 
GF – growth factor  
GPCR – G protein coupled receptor 
GST – glutathione S-transferase 
HA – hyaluronan 
HABD – HA binding domain 
HGF – hepatocyte growth factor 
HIF – hypoxia inducible factor 
HMW – high molecular weight 
HUVEC – human umbilical vein ECs 
ICAM-1 – intercellular cell adhesion molecule-1 
ICD – intracellular domain 
IF – intermediate filament  
Ig – immunoglobulin 
LMW – low molecular weight 
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LPS – lipopolysaccharide 
LRP6 – low-density lipoprotein receptor-related protein 6 
MDR1 – multidrug protein-1  
MLEC – mouse lung ECs 
MMP – matrix metalloprotease 
NF2 – neurofibromin 2 (merlin) 
NRARP – NOTCH-regulated ankyrin repeat protein 
NRP1 – Neuropilin-1 
PAI-1 – plasminogen activator inhibior-1 
PDGF – platelet-derived growth factor  
PDGFR – PDGF receptor 
PECAM-1 – platelet/endothelial cell adhesion molecule-1 
PEG – polyethylene glycol 
PHD – prolyl-hydroxylase domain proteins 
PI3K – phosphoinositide 3-kinase 
PKC – protein kinase C 
PLGF – placental growth factor 
RHAMM – a receptor for hyaluronan-mediated motility 
ROS – reactive oxygen species 
RTK – receptor tyrosine kinase  
S1P – platelet derived sphingosine 1 phosphate 
sCD44 – soluble CD44 
SDF1 – stromal derived factor 1 
SIRT1 – NAD+-dependent sirtuin-1  
sVEGFR – soluble vascular endothelial growth factor receptor 
TAM – tumour associated macrophages 
TGF – transforming growth factor 
TGFBR – TGF-β receptor  
TIMP – tissue inhibitor of metalloprotease 
TNF – tumour necrosis factor 
VASP – vasodilator stimulating phosphoprotein 
VCAM-1 – vascular cell adhesion molecule-1 
VEGFR – vascular endothelial growth factor receptor 
VEGF – vascular endothelial growth factor 
vSMC – vascular smooth muscle cells 
YAP1 – Yes-associated protein 1 
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LITERATURE REVIEW  

1 Angiogenesis 

Blood circulation is essential to organisms for delivering oxygen and nutrients, 
removing metabolic waste products and providing gateways for immune 
surveillance (Potente et al., 2011). Blood vessels consist of an inner surface, 
lined with endothelial cells (ECs), a stabilising basement membrane underneath 
them, and an outer layer of mural cells that sheathe the vessels. The blood vessel 
network is formed mainly by vasculogenesis or angiogenesis (Risau, 1997). In a 
developing embryo blood vessels are formed de novo via vasculogenesis, where 
mesoderm-derived endothelial precursor cells differentiate into ECs and 
assemble a primitive vascular network (Swift and Weinstein, 2009). The 
subsequent angiogenesis is the formation of a functional blood vessel network 
by vessels sprouting from the pre-existing ones (Carmeliet and Jain, 2011). 
During embryogenesis, active angiogenesis occurs to guarantee normal 
organogenesis. In adults, ECs reside mostly in quiescence, and only a few 
physiological processes, like wound healing, tissue repair and growth of 
endometrium, induce angiogenesis. Proper blood supply is crucial for tissue 
homeostasis and the body’s functioning, therefore, angiogenesis is tightly 
regulated and its misregulation may lead to several diseases (Goel et al., 2011). 
Insufficient angiogenesis can lead to several ischaemic diseases, such as 
myocardial infarction and neurodegenerative disorders, whereas excessive 
angiogenesis promotes tumour growth, inflammation and eye diseases 
(Carmeliet, 2003; Folkman, 2007). 

Sprouting angiogenesis is a multistep process that relies on different behaviours 
and phenotypes of ECs (Figure 1A). The ”tip/stalk“ cell concept includes the 
activated endothelium with migratory tip cells that lead the vessel sprout and 
proliferative stalk cells trailing the tip cells (De Smet et al., 2009; Gerhardt et al., 
2003). In quiescent vessels, ECs with more cobblestone morphology are called 
phalanx cells (Mazzone et al., 2009). Hypoxic, inflammatory or tumour cells can 
trigger the angiogenic switch from the quiescent to activated phenotype by 
releasing proangiogenic growth factors (GFs). Upon activation, pericytes detach 
from vessel walls, and EC cell–cell junctions are loosened, resulting in increased 
vessel permeability; then the basement membrane is degraded by activated 
proteases. All these processes together allow ECs to migrate towards angiogenic 
signals to initiate sprouting (Carmeliet and Jain, 2011). According to the 
”tip/stalk“ cell concept, only few of the activated ECs are selected as tip cells 
(De Smet et al., 2009; Gerhardt et al., 2003). Tip cells extend filopodia and lead 
the newly established sprouts. Trailing stalk cells, in contrast, do not migrate, 
but instead proliferate to support sprout elongation and also to establish the 
vascular lumen. The tip and stalk cell phenotypes are dynamic, and neighbouring 
cells constantly compete for the tip cell position (Jakobsson et al., 2010). EC 
sprouting continues until tip cells from neighbouring sprouts meet and 
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anastomose, allowing vessel perfusion (Carmeliet and Jain, 2011). To become 
mature and functional, ECs restore their quiescent phalanx phenotype, recruit 
mural cells to cover and stabilise nascent vessels, and deposit a new basement 
membrane (Herbert and Stainier, 2011).  

1.1 Overview of the regulation of sprouting angiogenesis 

The VEGF pathway. The vascular endothelial growth factor (VEGF) signalling 
pathway, consisting of five largely non-redundant ligands and three receptors, is 
denoted as the predominant promoter of new blood vessel formation (Ferrara et 
al., 2003). In general, VEGFR1 is expressed in monocytes and macrophages, 
VEGFR2 in vascular ECs, and VEGFR3 in lymphatic ECs (Koch and Claesson-
Welsh, 2012). VEGF-A, the most potent inducer of angiogenesis, drives 
angiogenesis mainly by binding to VEGFR2 (Ferrara et al., 2003). VEGF-A 
signalling in endothelial tip cells is enhanced by Neuropilin-1 (NRP1), an 
important co-receptor for VEGFR2. VEGF-A is also a ligand for VEGFR1 and 
its soluble isoform (sVEGFR1), which both bind VEGF with ten times higher 
affinity than VEGFR2. However, VEGFR1 is not directly required for signalling 
in ECs, but instead it serves as a decoy receptor for VEGF, and spatially controls 
VEGFR2 signalling and angiogenic sprouting (Kappas et al., 2008). VEGFR1-
specific ligands, VEGF-B and placental growth factor (PLGF), are dispensable 
for normal vascular development, but they have functions in pathological 
angiogenesis (Fischer et al., 2008). VEGF-C/VEGFR3 signalling is important in 
embryogenesis (Dumont et al., 1998), lymphangiogenesis (Karkkainen et al., 
2004) and in tumour angiogenesis (Tammela et al., 2008).  

The NOTCH pathway. In vascular morphogenesis, the NOTCH pathway plays a 
crucial role in EC fate determination, being involved in the specification of 
angioblasts, arteriovenous identity and tip/stalk cell specification (Phng and 
Gerhardt, 2009). Although several members of the NOTCH pathway are 
expressed in vasculature, the specification of ECs into tip and stalk cells is 
mainly regulated by NOTCH1 and its ligand, Delta-like 4 (DLL4) (Hellström et 
al., 2007). NOTCH activity is also required for vessel stabilization and 
maintenance (Phng and Gerhardt, 2009). Overall, NOTCH signalling has been 
thought to serve as a negative regulator of VEGF-induced angiogenic sprouting 
(Blanco and Gerhardt, 2013). 

The HGF/MET pathway. The hepatocyte growth factor (HGF) acts through its 
sole receptor MET (Naldini et al., 1991). The expression patterns of HGF and 
MET indicate that HGF is mainly a mesenchyme-derived factor that acts on 
MET-expressing epithelial cells (Zarnegar, 1995). However, MET is also 
expressed on ECs (Ding et al., 2003). Both HGF and MET are also upregulated 
in several tumours, whereas in many tumours, HGF activates MET in an 
autocrine loop (Ferracini et al., 1995). The HGF/MET pathway can promote 
angiogenesis directly, via inducing migration and motility of ECs (Bussolino et 
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al., 1992; Sengupta et al., 2003), indirectly, by regulating the expression of other 
GFs and angiogenic mediators (Nakamura et al., 2011; Zhang et al., 2003), or in 
synergy with the VEGF pathway, by activating common downstream signalling 
pathways (Sulpice et al., 2009).  

The ANG/TIE pathway is an endothelial-specific binary signalling system that 
allows the blood vessels to switch between vascular quiescence and stimulation 
of angiogenic sprouting (Eklund and Saharinen, 2013). The main axis of this 
pathway is ANG1 and ANG2 signalling via TIE2. ANG2 is stored in the 
Weibel-Palade bodies of ECs (Fiedler et al., 2004) and is upregulated in the tip 
cells during hypoxia and tumourigenesis (del Toro et al., 2010). ANG1 is 
expressed by perivascular cells (Suri et al., 1996), and TIE2 is located on the 
surface of ECs (Dumont et al., 1992). Mural cell-derived ANG1 activates TIE2 
on ECs and enhances vessel integrity (Jeansson et al., 2011; Suri et al., 1996). 
ANG2 is released from angiogenic tip cells by angiogenic stimuli. It promotes 
EC sprouting and tumour angiogenesis by counteracting ANG1/TIE2 signalling 
(Maisonpierre et al., 1997) and by recruiting tumour-associated macrophages 
(TAMs) (De Palma et al., 2005). 

The PDGF pathway. The platelet derived growth factor (PDGF) family is 
structurally related to VEGF, but differently from VEGFs, PDGFs are the major 
mitogens for mesenchymal cells (Andrae et al., 2008). PDGF-BB and PDGFR-β 
are the main components of the PDGF pathway involved in neovascularization. 
Endothelial-derived PDGF-BB promotes EC–mural cell interactions via 
recruiting PDGFR-β-expressing mural cells and thereby increases vascular 
integrity (Bjarnegård et al., 2004; Hellström et al., 1999). PDGF-B is also an 
important player in tumour angiogenesis, as blocking of its signalling pathways 
causes pericyte detachment from tumour vessels, reduces tumour growth due to 
immature vessels and renders vessels more sensitive to anti-VEGF therapy 
(Bergers et al., 2003). On the other hand, lack of PDGF-B signalling can 
promote metastasis due to abnormal and leaky vessels in tumours (Xian et al., 
2006). 

The FGF pathway. The fibroblast growth factor (FGF) signalling occurs in many 
different cell types (Murakami and Simons, 2008). Acidic FGF (aFGF, FGF-1) 
and basic FGF (bFGF, FGF-2), the first angiogenic GFs discovered (Folkman et 
al., 1988; Thomas et al., 1984), regulate different phases of angiogenesis via the 
activation of FGFR1 or FGFR2. It is suggested that these FGFs do not exhibit a 
direct effect on ECs, but instead promote angiogenesis in vivo by acting as 
upstream organizers and coordinators of other GF systems and different 
angiogenic pathways (Murakami and Simons, 2008; Presta et al., 2005). Studies 
with Fgfr1-/- and Vegfr2-/- embryoid bodies show that the FGF pathway controls 
neovascularization upstream of the VEGF pathway (Magnusson et al., 2004). 
FGF also upregulates HGF (Onimaru et al., 2002) and PDGFR (Nissen et al., 
2007), among others. 
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The TGF-β pathway. The most important transforming growth factor beta (TGF-
β) ligands involved in angiogenesis are TGF-β1 and BMP9, which mediate their 
effects on ECs via type I activin receptor-like kinase (ALK) receptors, ALK1 
and ALK5 (David et al., 2007; Goumans et al., 2003). While ALK5 is expressed 
in different cell types, ALK1 expression is mainly restricted to the endothelium 
(Roelen et al., 1997; Seki et al., 2006). TGF-β and BMP-9 signalling is highly 
context-dependent. TGF-β1 signalling through ALK5 or ALK1 causes opposing 
effects on EC proliferation (Goumans et al., 2003). TGF-β1/ALK5 signalling is 
also required for vessel maturation, as it promotes vascular smooth muscle cell 
(vSMC) differentiation and EC–vSMC interactions (Carvalho et al., 2007). 
BMP9 signalling via ALK1 leads to inhibition of EC proliferation and promotes 
EC quiescence (Scharpfenecker et al., 2007; Upton et al., 2009). However, in 
synergy with TGF-β, BMP9 has been shown to promote angiogenesis (Cunha et 
al., 2010).  

1.2 Initiation of angiogenesis and tip/stalk cell specification 

Angiogenesis is induced mainly due to deficiency of oxygen and nutrients. In 
normoxia, oxygen-sensing enzymes, the prolyl hydroxylase domain proteins 
(PHD1-3), regulate hypoxia-inducible transcription factors (HIFs) by 
hydroxylation; after which HIFs are constantly targeted for proteosomal 
degradation (Majmundar et al., 2010). In hypoxia, PHD proteins cannot 
hydroxylate HIF proteins, thus HIFs become stabilised and are able to induce 
angiogenesis by upregulating the transcription of proangiogenic proteins (Fraisl 
et al., 2009). Still, oncogenes and GFs can activate HIFs even in the absence of 
oxygen scarcity. HIF-1α also stimulates angiogenesis indirectly by upregulating 
the chemoattractant SDF-α, which in turn recruits the pro-angiogenic bone 
marrow-derived cells (BMDCs) (Du et al., 2008). Nutrient deprivation can 
stimulate angiogenesis independently of HIFs via metabolic regulators (Arany et 
al., 2008). To enable sprouting, the ECM is proteolytically degraded by matrix 
metalloproteases (MMPs). In addition to remodelling the ECM and basement 
membrane, the activity of MMPs liberates matrix-bound proangiogenic GFs to 
further support sprouting (Deryugina and Quigley, 2010). To counter-balance 
proangiogenic signalling, proteolytic degradation of matrix components 
generates endogenous anti-angiogenic protein fragments (Nyberg et al., 2005). 
ANG2 mediates EC liberation by promoting pericyte detachment from the vessel 
surface (Augustin et al., 2009) . 

Although VEGF activates all targeted ECs through VEGFR2, the negative 
feedback loop between the NOTCH and VEGF pathways defines which of those 
ECs are selected as migratory tip cells (Hellström et al., 2007; Phng and 
Gerhardt, 2009). Activation of VEGFR2 upregulates DLL4 in tip cells, which in 
turn induces the NOTCH pathway in the neighbouring ECs. NOTCH activation 
inhibits tip cell behaviour by downregulating the receptors promoting tip cell 
function - VEGFR2, VEGFR3 and NRP1(Fantin et al., 2013; Tammela et al., 
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2008), while upregulating VEGFR1, which functions as a VEGF trap (Jakobsson 
et al., 2010; Krueger et al., 2011). Although all VEGF-activated ECs upregulate 
DLL4, stochastic differences in local VEGF or in transcription produce an 
imbalance in the expression of DLL4, and the quickest ECs to respond with the 
highest DLL4 levels have the advantage to acquire the tip cell phenotype 
(Blanco and Gerhardt, 2013). Thus, all VEGF-activated ECs that are not directly 
inhibited by neighbours expressing high levels of DLL4 are by default selected 
as tip cells and initiate a new sprout. Another NOTCH ligand, JAGGED1, is 
predominantly expressed in stalk cells and antagonises NOTCH activation 
through DLL4, thereby enhancing differential NOTCH activation in tip and stalk 
cells and providing robustness in tip/stalk cell selection (Benedito et al., 2009). 
Computational modelling suggests that such negative feedback loop between the 
VEGF and NOTCH pathways is sufficient for patterning of tip and stalk cells 
(Bentley et al., 2008). Additionally, the BMP/SMAD pathway adds some 
robustness into this model. It is proposed that the interplay between 
DLL4/NOTCH and BMP/SMAD signalling in ECs leads to nonsynchronous 
oscillatory fluctuations of NOTCH and BMP targets, which results in rapid and 
robust tip/stalk cell selection and at the same time, maintains a dynamic pool of 
permissive, but non-sprouting ECs (Beets et al., 2013; Moya et al., 2012).  

1.3 Tubule elongation 

Tip cells start guiding the sprout towards the VEGF gradient (Gerhardt et al., 
2003). VEGFR1 and its soluble variant (sVEGFR1) are predominantly 
expressed in stalk cells and function as VEGF traps in physiological 
angiogenesis. sVEGFR1 creates a VEGF gradient by depleting the VEGF 
adjacent to stalk cells, leaving higher VEGF levels ahead of the tip cells and 
thereby facilitating the migration of the sprout perpendicular to the mother 
vessel (Chappell et al., 2009). Dynamic shuffling of tip and stalk cells is based 
on their relative VEGFR1 and VEGFR2 expression levels. The constant 
competition for the tip cell position ensures that the most competent cells lead 
the sprout, and such collaborative behaviour of ECs enhances the capability of 
the migrating sprout to sense the direction of the VEGF gradient (Jakobsson et 
al., 2010). In parallel with the VEGF gradient, tip cells also use axonal guidance 
molecules for sprout guidance and are therefore, in a sense, reminiscent of 
axonal growth cones (Adams and Eichmann, 2010). There are several guidance 
receptors expressed in sprouting ECs, including ephrins and their EPH receptors; 
neuropilins and PlexinD1, which bind semaphorins, either alone or in complex 
with each other; ROBO4, which binds SLIT ligands; and UNC5B, which binds 
netrins (Adams and Eichmann, 2010; Carmeliet and Tessier-Lavigne, 2005).  

While tip cells are migratory, stalk cells are more proliferative and are 
responsible for sprout elongation (Gerhardt et al., 2003). It is suggested that 
proliferating stalk cells do not push the sprout, but instead tip cells pull the 
sprout forward by interacting with the surrounding ECM (Geudens and 
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Gerhardt, 2011). However, the proliferation of stalk cells is required for the 
sustained growth of the sprout (Gerhardt et al., 2003; Phng et al., 2009). Tip 
cells have a high VEGF gradient, which, in combination with the high affinity 
receptor complex (VEGFR2 and NRP1), leads to tip cell migration. Stalk cells, 
on the other hand, express less VEGFR2, which, combined with the absence of 
NRP1 and lower local VEGF concentrations leads to EC proliferation (Gerhardt 
et al., 2003; Takahashi et al., 2001). Additionally, FGF and VEGF crosstalk is 
crucial for neovascularization and vessel integrity, as basal FGF stimulation 
maintains the VEGFR2 expression level and its ability to respond to VEGF 
stimulation by upregulating VEGFR2 (Murakami et al., 2011). Although 
NOTCH activation is important for tip/stalk cell specification, subsequent fine-
tuning of the NOTCH activity in stalk cells is needed in order to allow vessel 
growth. Stalk cell proliferation is ensured by the negative feedback regulation of 
NOTCH signalling. NOTCH signalling in stalk cells upregulates the NOTCH-
regulated ankyrin repeat protein (NRARP), which in turn limits NOTCH 
signalling and stimulates WNT signalling (Phng et al., 2009). NRARP-promoted 
WNT signalling induces EC proliferation and supports cell junctions and vessel 
stability. NOTCH activity is also regulated by an acetylation/deacetylation 
mechanism. Acetylation of NOTCH protects it from proteosomal degradation 
and enhances its signalling, whereas deacetylation by NAD+-dependent 
SIRTUIN1 opposes NOTCH stabilisation and leads to decreased signalling 
(Guarani et al., 2011). 

1.4 Vascular lumen formation and anastomosis  

Stalk cells are also responsible for vascular lumen formation. Different 
mechanisms have been proposed for this process. First, the cell hollowing model 
proposes that the lumen of intersegmental vessels in zebrafish form by the fusion 
of intracellular vacuoles in ECs (Kamei et al., 2006). This model was extended 
with the cord hollowing model, which suggests that the intercellular space of 
intersomitic vessels is formed by exocytosis of vacuoles instead (Blum et al., 
2008; Wang et al., 2010). In the lumenal repulsion model, which has been 
proposed for the formation of larger axial vessels, VE-cadherin localises 
negatively charged CD34-sialomucins to the EC-EC contacts, which then 
triggers the initial separation of apical cell surfaces due to electrostatic repulsion 
and relocalisation of VE-cadherin junctions to the lateral cell contacts. A recent 
computational modelling study suggests that vacuolation and the cell–cell 
repulsion mechanism are synergistic and rather work in parallel than in different 
vessel types (Boas and Merks, 2014). A different lumenisation mechanism, EC 
budding, has been proposed for larger capillaries in zebrafish brain vasculature, 
where, in constantly perfused vessels, stalk cells seem to maintain their 
apicobasal polarity and the lumen of the new sprout remains continuous with the 
mother vessel (Ellertsdóttir et al., 2010). Besides these, also unicellular tube 
formation by membrane invagination (Herwig et al., 2011) and lumen 
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ensheatment in common cardinal veins of zebrafish have been proposed (Helker 
et al., 2013). 

VEGFR2 activity in stalk cells during EC lumen formation is regulated by 
phosphatase VE-PTP, which forms TiE2-dependent trimeric complex with 
VEGFR2 and VE-cadherin (Hayashi et al., 2013). VE-PTP dephosphorylates 
VEGFR2 at the cell junctions, and its absence, when tested in gene-targeted Ve-
ptp-/- embryoid bodies, results in defective lumen formation in vessel sprouts. 

Anastomosis occurs when tip cells of adjacent sprouts establish contact with 
each other via their filopodia (Carmeliet and Jain, 2011; Herbert and Stainier, 
2011). VE-cadherin-mediated initial spot-like junctional contacts of filopodia 
later expand into ring-like structures as tip cells slide along each other and 
establish tight EC-EC junctions (Blum et al., 2008; Herwig et al., 2011). The 
fusion of tip cells causes the ECs to form a continuous endothelium and lumen, 
accompanied by the loss of angiogenic properties of tip cells due to filopodia 
disappearance, and allowing perfusion (Herbert and Stainier, 2011; Herwig et 
al., 2011). It has been suggested that macrophages may act as bridges between 
two tip cells to facilitate the fusion of adjacent tubules. A study by Fantin et al. 
(2010) indicated that macrophages interact with ECs during all phases of vessel 
anastomosis, whereas, in some cases, macrophages bridged the adjacent tip cells 
in order to align them to facilitate fusion, in other cases, macrophages migrated 
to vessel junction sites and surrounded the fusing tubules. Rymo et al. (2011), on 
the other hand, suggested that, rather than making direct contact, macrophages 
and ECs communicate with each other in two ways: vessels attract macrophages 
through the secretion of attractive cues, and macrophages, in turn, promote 
sprouting by secreting soluble pro-angiogenic factors. It should be noted, 
however, that macrophages are not an absolute requirement for anastomosis, as 
vessel fusion occurs also in their absence, although, in that case, a reduced 
number of sprout fusion events were observed (Fantin et al., 2010; Rymo et al., 
2011). 

1.5 Vessel maturation 

The recruitment of mural cells and deposition of the ECM are required for the 
stabilisation and maturation of nascent vessels (Jain, 2003; Potente et al., 2011). 
The deposition of the basement membrane is mediated by the upregulation of 
protease inhibitors – tissue inhibitors of metalloproteases (TIMPs) and the 
plasminogen activator inhibitor-1 (PAI-1) (Carmeliet and Jain, 2011). The 
recruitment of pericytes is mainly controlled by the PDGF-B pathway: ECs 
release PDGF-B, which stimulates PDGFR-β-expressing pericytes to migrate 
and establish direct cell–cell contacts with ECs (Gaengel et al., 2009; Jain, 
2003). In addition, mural cell-released ANG1 signalling via its receptor, TIE2, 
has been suggested to promote EC survival, quiescence and pericyte attachment 
(Suri et al., 1996). However, despite being critical for regulating the number and 
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diameter of developing vessels, ANG1 is not required for pericyte recruitment 
(Jeansson et al., 2011). The vessel maturation process can be reversed by ANG2, 
which antagonises the ANG1/TIE2 signalling and causes mural cell detachment 
and vessel destabilisation (Maisonpierre et al., 1997). Activation of different 
TGF-β family members can lead to both the stimulation as well as resolution of 
angiogenesis (Pardali et al., 2010). For instance, low concentrations of BMP9 
have been shown to stimulate EC proliferation, whereas high concentrations 
inhibit this (Scharpfenecker et al., 2007; Suzuki et al., 2010). Likewise, the same 
concentration-dependent effects on EC proliferation and migration apply to 
TGF-β (Goumans et al., 2002). TGF-β signalling is also important in mural cell 
recruitment, as it induces differentiation, proliferation and migration of vSMCs 
(Carvalho et al., 2007; Seki et al., 2006). The NOTCH pathway is involved in 
vessel maturation through endothelial JAGGED1, which promotes recruitment 
and differentiation of vSMCs via activating NOTCH3 in mural cells (Domenga 
et al., 2004; High et al., 2008). 

Quiescent ECs form barriers to regulate the exchange of solutes and fluids 
between blood and tissues (Potente et al., 2011). While tight junctions are 
responsible for maintaining barriers, adherens junctions mediate cell–cell 
adhesion (Dejana et al., 2009). VE-cadherin forms a complex with VEGFR2 at 
cell–cell junctions and prevents VEGF signalling by recruiting phosphatase 
DEP1/CD148, which dephosphorylates VEGFR2 and inhibits its internalization 
(Lampugnani et al., 2006). At the same time, VE-cadherin clustering promotes 
the formation of the TGF-β receptor complex, thereby enhancing TGF-β 
signalling and leading to decreased EC migration and proliferation (Rudini et al., 
2008). ANG1/TIE2 signalling promotes vascular integrity by inducing 
accumulation of adhesion proteins at EC-EC junctions (Eklund and Saharinen, 
2013; Gavard et al., 2008). Adherens junctions between ECs and pericytes are 
strengthened by EC- and platelet-derived sphingosine-1-phosphate (S1P), which 
by binding to its receptor, S1PR1, promotes N-cadherin trafficking to EC–
pericyte contact sites (Paik et al., 2004). It has been proposed that upon vessel 
perfusion, blood flow delivers S1P to the areas of active angiogenesis, and 
subsequent S1P/S1PR1 signalling restricts angiogenic responsiveness of ECs via 
inhibiting VEGFR2 signalling and stabilisation of junctional VE-cadherin 
(Gaengel et al., 2012).  

1.6 Vascular quiescence 

Active cellular signalling is required for maintaining vascular integrity and 
homeostasis (Murakami, 2012). Autocrine signalling of VEGF is required for 
EC survival and vascular homeostasis. It has been demonstrated that endothelial-
specific deletion of VEGF leads to progressive endothelial degeneration, 
whereas paracrine VEGF is not able to compensate for the loss of endothelial 
VEGF (Lee et al., 2007). Furthermore, cell-autonomous activation of the VEGF 
pathway is dispensable for angiogenesis, but crucial for the maintenance of 
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blood vessels, as the intracrine action of VEGF protects ECs from stress-induced 
apoptosis in non-pathological conditions (Lee et al., 2007). In addition, basal 
levels of FGF signalling were shown to be critical for vessel integrity, as 
disrupting FGF signalling in the quiescent endothelium caused increased vessel 
leakiness and disintegration of vasculature (Murakami et al., 2008). The absence 
of FGF signalling leads to the VE-cadherin–p120-catenin complex dissociation 
and subsequent disassembly of adherens and tight junctions, and results in EC 
loss and increased vessel permeability (Murakami et al., 2008). ANG1/TIE2 
signalling either promotes vascular quiescence or stimulates vessel sprouting, 
depending on whether it occurs in the presence or absence of cell–cell contacts. 
In the presence of cell–cell contacts, ANG1 induces quiescence by activating the 
PI3K-AKT pathway via TIE2 transdimer formation, whereas in isolated ECs, 
ANG1 stimulation leads to ERK1/2-mediated cell migration and proliferation 
(Fukuhara et al., 2008; Saharinen et al., 2008). Furthermore, ANG1/TIE2 
signalling augments basal NOTCH activity by upregulating endothelial DLL4, 
which in turn stimulates the deposition of the basement membrane (Zhang et al., 
2011). The NOTCH pathway contributes to the vascular stabilisation process by 
inhibiting vessel sprouting, upregulating NRARP and also by stimulating the 
deposition of the ECM (Hellström et al., 2007; Lobov et al., 2007; Phng et al., 
2009; Suchting et al., 2007; Zhang et al., 2011). In addition to being important 
for vessel maturation, the NOTCH pathway seems to be required for further 
maintenance of vascular quiescence, as endothelial specific inactivation of RBPJ 
(a main downstream regulator of the NOTCH pathway) as well as the blockade 
of DLL4 in adult mice lead to reinitiation of abnormal vascular growth (Dou et 
al., 2008; Yan et al., 2010). Cooperation between NOTCH and ALK1 results in 
the inhibition of retinal angiogenesis: combined disruption of NOTCH and 
ALK1 functions during postnatal development in mice leads to exacerbated 
retinal hypervascularization, while ALK1/BMP9 signalling counteracts 
hypersprouting induced by NOTCH inhibition (Larrivée et al., 2012). BMP9 has 
been described as a circulating quiescence factor, which is present in serum at 
concentrations of 2-12 ng/mL (David et al., 2008). The role of BMP9 in vascular 
quiescence has also been supported by studies showing that BMP9 hinders 
VEGF- and FGF-2-stimulated EC migration and proliferation (David et al., 
2007; Scharpfenecker et al., 2007).  
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Figure 1. Overview of sprouting angiogenesis. (A) Different stages of sprouting 
angiogenesis (adapted from Herbert and Stainier, 2011). The most important mediators of 
each step are shown. Angiogenesis is initiated by hypoxia or inflammatory or tumor 
cells, which release proangiogenic GFs. Initiation process involves pericyte detachment, 
basement membrane (BM) degradation and selection of a tip cell, which leads and 
guides the new sprout. Stalk cells do not migrate, but proliferate and contribute to sprout 
elongation and vascular lumen formation. When tip cells of adjacent sprouts meet, 2 
sprouts fuse (anastomosis) and allow initiation of blood flow. Also macrophages and 
myeloid cells are involved in anastomosis process. Recruitment of mural cells and 
deposition of new BM ensure the maturation of new vessels and restore the vascular 
quiescence. (B) Current anti-angiogenesis therapeutics used in clinic 
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1.7 Challenges in anti-angiogenesis treatment 

While physiological angiogenesis is tightly regulated and results in a structured 
and hierarchically organised vascular network, in tumours, the highly 
unbalanced overexpression of proangiogenic GFs leads to the development of 
structurally abnormal vasculature with heterogeneous, leaky, tortuous and 
chaotically branching vessels (Jain, 2005). The aberrant vascular patterning in 
pathological angiogenesis is thought to be caused by high VEGF concentrations, 
leading to synchronous oscillations of the NOTCH pathway, which in turn cause 
the ECs to oscillate synchronously between tip and stalk cell phenotypes, instead 
of alternating them (Bentley et al., 2008). Hyperpermeability of vessels increases 
the interstitial fluid pressure, which, in combination with proliferating tumour 
mass, leads to heterogeneous tumour perfusion, hypoxia, acidosis and also 
compromised cytotoxic functions of infiltrating immune cells (Jain, 2005). 
Continuous hypoxia forces constant overproduction of proangiogenic GFs, 
which further exacerbates non-productive angiogenesis in a self-reinforcing 
manner and leads to disease progression by promoting the selection of more 
aggressive hypoxia-independent tumour cell clones and facilitating their escape 
through leaky vessels. Furthermore, uneven distribution of oxygen and 
chemotherapeutics due to irregular perfusion leads to limited efficacy of 
radiation therapy and resistance to conventional cancer therapeutics (Goel et al., 
2011). There are at least 6 distinct types of vessels in tumours (Nagy et al., 
2010). The “early“ vessels – unstable, leaky and pericyte-poor mother vessels 
and their more stable daughter vessels (glomeruloid microvascular 
proliferations, vascular malformations and capillaries) – develop via 
angiogenesis. The “late“ vessels – feeder arteries and draining veins – form via 
arteriovenogenesis from pre-existing vessels. Because “early“ vessels are 
dependent on exogenous VEGF, and “late“ vessels, due to their downregulated 
VEGFR2, are not, only VEGF-dependent “early“ vessels are susceptible to anti-
VEGF therapy (Sitohy et al., 2011).  

The concept of anti-angiogenesis therapy is based on the rationale that tumour 
growth is angiogenesis-dependent, and thus inhibition of blood vessel formation 
should result in vascular regression and render tumours dormant (Folkman, 
1971). Given that VEGF is the key activator of angiogenesis, the present anti-
angiogenic strategies (Figure 1B) have mainly focused on blocking the VEGF 
pathway. The first FDA-approved angiogenesis inhibitor was the humanized 
anti-VEGF monoclonal antibody, bevacizumab (Avastin; Genentech) (Presta et 
al., 1997), that is used for the treatment of several cancers, including metastatic 
colorectal cancer and metastatic renal cell carcinoma (Escudier et al., 2007; 
Hurwitz et al., 2004). Other therapeutics targeting VEGF include pegaptanib 
(Macugen; Eyetech) and ranibizumab (Lucentis; Genentech), used for the 
treatment of wet age-related macular degeneration, and aflibercept (Zaltrap; 
Regeneron, Sanofi-Aventis) for the treatment of refractory colorectal cancer. 
Multi-target receptor tyrosine kinase (RTK) inhibitors, which, among others, 
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include sunitinib (Sutent; Pfizer), sorafenib (Nexavar; Bayer), pazopanib 
(Votrient; GSK) and cabozantinib (Cometriq; Exelixis), act via blocking 
different receptors of angiogenic GFs. mTOR inhibitors, temsirolimus (Torisel; 
Wyeth) and everolimus (Afinitor; Novartis), target EC survival and proliferation 
via blocking the formation of the mTOR complex. 

However, the majority of clinical trials concerning VEGF-targeted therapies fail 
due to limited long-term benefit caused by several intrinsic or acquired 
resistance mechanisms (Bergers and Hanahan, 2008; Welti et al., 2013). The 
refractoriness to anti-VEGF therapy may be caused by lost VEGF dependency 
(Sitohy et al., 2011) and a tight pericyte coat in mature “late“ vessels, which 
makes them less sensitive to drugs (Bergers et al., 2003), or by producing 
alternative pro-angiogenic GFs (e.g., FGF-2, PLGF, HGF and SDF1) in 
response to hypoxia (Casanovas et al., 2005; Kopetz et al., 2010). Besides, the 
use of VEGF-independent modes of vascularization in tumours may diminish 
the efficiency of the VEGF blockade (Carmeliet and Jain, 2011). For example, 
vessel co-option, hijacking of the pre-existing vasculature by tumour cells, has 
been reported to occur in well-vascularized tissues, such as brain (di Tomaso et 
al., 2011), and via vasculogenic mimicry highly aggressive tumour cells can 
generate vascular channels themselves (Maniotis et al., 1999). Tumour ECs that 
originate from differentiated CD133+ cancer stem-like cells are more resistant to 
the VEGF blockade (Wang et al., 2010). Furthermore, stromal cells contribute 
significantly to the anti-angiogenic resistance (Bergers and Hanahan, 2008). 
Anti-VEGF refractoriness is conferred in cancer-associated fibroblasts by 
releasing BMDC-mobilizing chemoattractants, such as PDGF-C and SDF1 
(Crawford et al., 2009; Orimo et al., 2005), and in tumour-infiltrating 
CD11b+Gr1+ myeloid cells via the release of angiogenic factors, such as Bv8 
(Shojaei et al., 2009). Finally, anti-angiogenesis therapy itself might cause 
enhanced tumour invasiveness and metastasis, foremost due to the aggravated 
hypoxic and inflammatory milieu (Ebos et al., 2009; Pàez-Ribes et al., 2009). 

To enhance the efficacy of anti-angiogenesis therapy, several strategies have 
been proposed. First, there is an urgent need for predictive biomarkers, because 
to date, only few biomarker candidates (e.g., levels of circulating angiogenic 
GFs and hypertension) are available, whereas none have yet been validated for 
clinical use (Jain et al., 2009). Secondly, combination therapy that targets both 
the angiogenesis as well as resistance pathways could be beneficial, as 
exemplified by the successful treatment of pancreatic neuroendocrine tumours 
with concurrent inhibition of MET and VEGF pathways (Sennino et al., 2012). 
Another alternative anti-angiogenic approach, “sustained vessel normalization“, 
suggests that instead of destroying tumour blood vessels, anti-angiogenesis 
therapeutics should promote vessel maturation and stability (Goel et al., 2011). 
In addition, the emergence of evasive resistance can be blocked in proangiogenic 
TAMs by targeting the ANG2/TIE2 pathway (Mazzieri et al., 2011). 
Consistently, restoring the structure and function of tumour blood vessels has 
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been shown to reduce the interstitial pressure and hypoxia, and improve tumour 
responsiveness to chemotherapy (Koh et al., 2010; Mazzone et al., 2009). 
Finally, to facilitate the translation of new drug candidates into effective clinical 
therapies, more adequate and clinically relevant tumour models should be used 
in preclinical research (Ebos and Kerbel, 2011).  

1.8 Plasma half-life extension strategies of therapeutic proteins 

The in vivo potency of new therapeutic agents is also often limited due to their 
short plasma residence time, immunogenicity and susceptibility to protease 
degradation (Pasut and Veronese, 2012). Several strategies have been developed 
to overcome these limitations and improve the pharmacokinetic properties of 
therapeutics. 

PEGylation, the chemical coupling of polyethylene glycol (PEG) (Abuchowski 
et al., 1977), is one of the most widely used and successful approaches for 
extending the half-life of biopharmaceuticals (Pasut and Veronese, 2012). By 
increasing the hydrodynamic radius and masking the surface of the therapeutic 
substance, PEGylation reduces the renal excretion rate, proteolytic degradation 
and immunogenicity, which all together result in improved in vivo plasma half-
life. In addition to differently sized and structured PEG chains, a variety of non-
selective and site-directed coupling methods have been established for 
PEGylation (Pasut and Veronese, 2012). Successful examples of selective site-
specific PEGylation are N-terminally PEGylated PEG-G-CSF (Pegfilgrastim; 
Neulasta) (Kinstler et al., 2002) and C-terminally thiol-PEGylated PEG-anti-
TNF Fab’ (Certolizumab pegol; Cimzia) (Melmed et al., 2008). Furthermore, 
selective conjugation of branched 40 kDa PEG to the anti-VEGF aptamer 
resulted in clinical approval of pegaptanib (Macugen; Eyetech) for wet age-
related macular degeneration (Ng et al., 2006). The major limitation that often 
seems to co-occur with PEGylation is decreased or abrogated protein bioactivity 
(Kontermann, 2011; Pasut and Veronese, 2012). For example, in the case of 
clinically approved PEG-interferon-α2a (Pegasys), random PEGylation of 
interferon-α2a with 40 kDa branched resulted in almost total loss of its in vitro 
activity (Bailon et al., 2001). Nevertheless, greatly prolonged in vivo residence 
time counterbalanced the reduced bioactivity of the PEG-interferon conjugate 
(Bailon et al., 2001).  

Fc-fusion protein technology is another widely used approach for extending 
plasma half-life of protein based therapeutics. The aim of genetic linking of the 
constant fragment crystallisable (Fc) region of the human immunoglobulin (Ig) 
to therapeutic proteins is to provide the proteins with some of the beneficial 
antibody-like structural properties and thereby improve their pharmacological 
efficiency (Huang, 2009; Schmidt, 2009). The improved therapeutic effect is 
achieved mainly through utilizing the homodimeric nature of these fusion 
proteins. The dimeric nature considerably increases the molecular weight and 
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thereby prolongs in vivo plasma residence time. Furthermore, the bivalency of 
these dimeric drugs increases the ligand-binding affinity, which in turn results in 
enhanced therapeutic activity (Huang, 2009; Schmidt, 2009). The additional 
benefits of this technology include improved solubility and stability of the 
therapeutic proteins, and also a facilitated manufacturing process. Examples of 
Fc-fusion therapeutic proteins include a TNF-α antagonist, etanercept (Enbrel; 
Amgen), for the treatment of different forms of arthritis (Ducharme and 
Weinberg, 2008), and an angiogenesis inhibitor, aflibercept (Zaltrap; Regeneron, 
Sanofi), that functions as a VEGF trap (Holash et al., 2002).  

2 CD44  

CD44 was first identified as a lymphocyte homing receptor (Gallatin et al., 
1983). Later, it was also found to function as the principal receptor for 
hyaluronan (HA) (Aruffo et al., 1990). Although encoded by a single highly 
conserved gene (on chromosome 11 in humans and chromosome 2 in mice), the 
CD44 protein family represents a large and heterogeneous group of 
transmembrane glycoproteins (Screaton et al., 1992). Due to extensive post-
translational modifications and alternative splicing, CD44 displays a great 
number of different, structurally diverse isoforms, with molecular size varying 
from 80 to 200 kDa. All CD44 isoforms are comprised of constant exons 1-5 in 
their N-terminal extracellular part, and exons 16-17 in the membrane proximal 
region, whereas up to 10 variant exons, exons 6-15 (v1-v10) can be inserted 
between them by alternative splicing (Screaton et al., 1992). The transmembrane 
domain is encoded by a constant exon 18 and the cytoplasmic domain either by a 
short variant exon 19 or, more commonly, by exon 20. The smallest, standard 
(hematopoietic) CD44 isoform (CD44s) lacks all variant exons and is 
ubiquitously expressed on the surface of most vertebrate cells (Naor et al., 
1997). Variant CD44 isoforms (CD44v) are expressed mainly during 
development and T cell activation and maturation, otherwise CD44v expression 
is restricted only to a few epithelial cell types and a variety of advanced stage 
carcinomas (Naor et al., 2002). 

2.1 The structure of CD44 

CD44 consists of the N-terminal extracellular domain (ectodomain), the 
transmembrane domain and the C-terminal cytoplasmic domain (Figure 2A). 
The ectodomain of CD44 regulates cell adhesion by associating with a variety of 
ECM components. Although HA has been denoted as the main ligand for CD44, 
it also provides a docking site for other ECM components, such as fibronectin, 
collagen, laminin and osteopontin (reviewed in Orian-Rousseau and Sleeman, 
2014). The ectodomain of CD44 is composed of the N-terminal globular HA-
binding domain (HABD) and the juxtamembrane stem region (Naor et al., 
1997). CD44 HABD contains the evolutionary conserved Link module (aa 32-
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120), shown to be critical for HA binding (Kohda et al., 1996), and a lobular 
extension flanking the Link module (Banerji et al., 1998). While two interchain 
disulphide bridges in the Link module stabilize the structure of the globular HA-
binding domain (Kohda et al., 1996), an additional disulphide bridge in the 
flanking lobe is required for proper folding (Banerji et al., 2007; Teriete et al., 
2004). Thus, the complete CD44-HABD is defined by residues 21-169 
according to human CD44 (Figure 2B) (Banerji et al., 2007; Teriete et al., 2004). 
Four key residues (Arg41, Tyr42, Arg78 and Tyr78) in CD44-HABD have been 
identified as critical for HA binding (Bajorath et al., 1998).  

The HA-binding ability of CD44 is strictly regulated. It has been proposed that 
CD44 occurs in 3 activation states on the cell surface: inactive, non-HA-binding 
CD44; active, constitutively HA-binding CD44; and inducible CD44, in which 
HA binding can be induced by external stimuli (Lesley et al., 1995). These states 
have been shown to correlate with the CD44 N-glycosylation pattern, where the 
inactive CD44 appears to be the most, and the constitutively active CD44 the 
least glycosylated (English et al., 1998; Lesley et al., 1995). Although CD44-
HABD contains five N-glycosylation sites, only two (Asn25 and Asn125) have 
been shown to affect HA binding (English et al., 1998). The O-glycosylation 
sites are mostly located in the variable exons and stem region (Naor et al., 1997; 
Naor et al., 2002). Abundant O-glycosylation in the membrane proximal region 
gives the CD44 stem region a stalk-like structure (Ponta et al., 2003). The stem 
region contains also several putative proteolytic cleavage sites (Okamoto et al., 
1999) and binding sites for GAGs, such as heparan sulphate on exon v3, which 
enable CD44 to interact with heparin binding GFs (Bennett et al., 1995). 
Inclusion of variant exons has been shown to promote clustering of CD44 and 
thereby enhance HA binding (Sleeman et al., 1996). 

In addition to providing a binding site for HA, CD44 also mediates its 
metabolism in tissues. CD44 is one of the main receptors responsible for local 
HA uptake and turnover (Culty et al., 1992; reviewed in Knudson et al., 2002). 
Furthermore, lack of CD44 has been shown to cause HA accumulation in tissues 
and lead to different pathological conditions, thus indicating the physiological 
importance of CD44-mediated HA internalization (Kaya et al., 1997; Nedvetzki 
et al., 2004; Teder et al., 2002). This feature, HA uptake by CD44, has recently 
become the focus of cancer treatment. A growing body of research demonstrates 
that CD44-mediated HA endocytosis could be exploited for targeted delivery of 
siRNAs or chemotherapeutics (reviewed in Jordan et al., 2015). 

The transmembrane domain of CD44 contains 23 hydrophobic amino acids (aa) 
and one cysteine residue. It is involved in CD44 oligomerisation and its 
association with the glycolipid-enriched microdomains (Liu and Sy, 1997; 
Neame et al., 1995). The cytoplasmic tail of CD44 (72 aa) binds to many 
intracellular cytoskeleton-linking proteins, which are important for CD44-
mediated signal transduction and cytoskeleton reorganization. The contacts 
between CD44 and actin-based cytoskeleton, which are mediated by ankyrin and 
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ERM proteins (ezrin, radixin and moesin), are involved in HA-dependent cell 
motility and adhesion (Legg et al., 2002; Lokeshwar et al., 1994; Tsukita et al., 
1994). Alternatively, the interaction of CD44 with the tumour suppressor NF2 
mediate inhibition of cell growth and cell migration (Bai et al., 2007; Morrison 
et al., 2001). It has been demonstrated that the affinity of CD44 for its 
cytoplasmic interaction partners is regulated by phosphorylation. Upon PKC 
activation, Ser325 dephosphorylation and Ser291 phosphorylation in the 
cytoplasmic tail of CD44 enhance binding of ERM proteins to CD44, resulting 
in directional cell motility (Legg et al., 2002). On the other hand, NF2 has been 
found to associate with CD44 only when hypophosphorylated (Morrison et al., 
2001). 
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Figure 2. The structure and functions of CD44. (A) The schematic presentation of 
CD44 structure. CD44 is composed of 3 regions: the N-terminal extracellular 
ectodomain, the transmembrane domain and the C-terminal cytoplasmic domain. The 
ectodomain contains the evolutionarily conserved globular HA binding domain (HABD) 
in its N-terminus and the non-conserved stem region in its membrane proximal part. Up 
to 10 alternatively spliced exons can be inserted into the stem region. The membrane 
proximal part contains several proteolytic cleavage sites. The proteolytic cleavage of the 
CD44 ectodomain from cell surface results in release of soluble CD44 into circulation. 
(B) The structure of human CD44-HABD. The protein models are based on the crystal 
structure of CD44-HABD (PDB code: 1UUH) (Teriete et al., 2004). The complete 
human CD44-HABD required for HA binding is defined by residues 21-169 (upper 
panel). Two tyrosine-arginine clusters, R41-Y42 (yellow) and R78-Y79 (pale yellow) 
are critical for HA binding. The flanking structural lobe (green) stabilizes protein 
conformation. In CD44-HABD (middle panel) and CD44-3MUT (lower panel) the 
flanking region is removed and these proteins contain residues 21-132 (Päll et al., 2004). 
In CD44-3MUT the HA binding ability is abolished by substitutions of R41A, R78S and 
Y79S. (C) The functions of CD44 

2.2 The physiological functions of CD44 

CD44 protein family is described as the multidomain signalling platform that 
serves as the regulator of cell–cell and cell–ECM adhesion. By integrating the 
cues from the ECM with signals of GFs and cytokines, CD44 controls cell 
proliferation, migration, differentiation and survival (Orian-Rousseau and 
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Sleeman, 2014). CD44 has been implicated in several physiological and 
pathological processes, such as HA metabolism, lymphocyte homing, leukocyte 
activation, inflammation and metastasis (Figure 2C). Therefore, it is surprising 
that, under normal physiological conditions, Cd44-null mice develop and 
reproduce normally (Protin et al., 1999; Schmits et al., 1997). Still, some mild 
aberrations were found in the immune system and haematopoiesis of Cd44-/- 
mice, showing CD44 as an important physiological receptor for immune and 
hematopoietic cell trafficking (Protin et al., 1999; Schmits et al., 1997). CD44 
has been implicated in the homing of hematopoietic progenitor cells into their 
respective niche, as well as lymphocyte and leukocyte rolling on endothelium 
and their transendothelial migration during extravasation into inflammatory 
sites. For example, CD44 and HA were found to be crucial for SDF1-dependent 
transendothelial migration, as well as recruitment of hematopoietic progenitor 
cells into the bone marrow niche (Avigdor et al., 2004). Besides, CD44 
deficiency caused altered distribution of myeloid progenitors between bone 
marrow and spleen due to defective egress of progenitors from bone marrow 
(Schmits et al., 1997). In regard to lymphocyte homing, CD44s has been shown 
to mediate T cell progenitor homing into thymus, whereas CD44v6 induces 
apoptosis resistance and expansion of thymocytes (Rajasagi et al., 2009). In line 
with this, Cd44-null mice display hindered lymphocyte trafficking into thymus, 
although the development of lymphoid organs was demonstrated to be normal 
(Protin et al., 1999). CD44 supports lymphocyte rolling on ECs by binding to 
different endothelial ligands. Under physiological flow conditions, CD44 has 
been found to mediate lymphocyte rolling and adhesion to ECs by binding to 
endothelial HA (DeGrendele et al., 1996). Efficient adhesion and rolling on HA 
is ensured by conformational transition of CD44-HABD between low and high 
HA-binding affinity states upon HA binding (Ogino et al., 2010). In addition to 
HA, T cells and neutrophils utilize CD44 binding to E-selectin for efficient 
trafficking into inflammatory sites (Katayama et al., 2005; Nácher et al., 2011). 
Furthermore, the association of the CD44 intracellular domain (ICD) with α4β1 
integrin in lymphocytes is required for firm adhesion and subsequent 
transendothelial migration (Nandi et al., 2004).  

In contrast to mild changes in response to the total loss of CD44, conditional 
keratinocyte-specific ablation of CD44 in mice skin results in severely altered 
physiological responses, including delayed hair regrowth and impaired wound 
healing that result from reduced keratinocyte proliferation and impaired HA 
metabolism (Kaya et al., 1997). 

2.3 The role of CD44 in inflammation 

Pathologically challenged Cd44-/- mice display more pronounced defects than 
their counterparts under normal physiological conditions, indicating that CD44 
plays an important role in different inflammatory conditions. Genetic ablation of 
CD44 in ApoE-/- mice leads to significantly decreased atherosclerotic lesion 



29 

formation due to impaired macrophage recruitment and vSMC dedifferentiation 
(Cuff et al., 2001). Interestingly, CD44 was required for maximal upregulation 
of the adhesion protein VCAM-1 on vSMCs in atherosclerotic lesions, whereas 
on ECs, the levels of VCAM-1, ICAM-1 and PECAM-1 in wild-type mice were 
comparable to those in Cd44-/- mice (Cuff et al., 2001). On ECs, as well as 
macrophages and T cells, CD44 supports leukocyte rolling and transendothelial 
migration (Zhao et al., 2008). Decreased neutrophil infiltration was observed in 
the Cd44-/- mouse model of renal ischemia-reperfusion injury, indicating the 
inflammation-promoting function for CD44 in this model (Rouschop et al., 
2005). The protective role of CD44 was discovered in bleomycin induced 
pneumonia, in which case CD44 was shown to be needed for the resolution of 
lung inflammation, as the ablation of CD44 resulted in the accumulation of 
apoptotic neutrophils and HA fragments (Teder et al., 2002). Cd44-null hTNF-α 
transgenic mice suffered from more pronounced inflammatory bone loss due to 
their enhanced sensitivity towards TNF-α, which was caused by increased 
activation of p38 mitogen-activated protein kinase (Hayer et al., 2005). 
Furthermore, exaggerated granuloma formation was observed in Cd44-/- mice in 
response to pathogen infection (Schmits et al., 1997). Together, these studies 
indicate a context specific role for CD44 in inflammation, being involved in both 
promoting as well as limiting excess inflammatory reactions. 

Collectively, studies with Cd44-/- mice suggest that the loss of CD44 may be 
compensated by another protein during early embryogenesis. Indeed, it was 
found that RHAMM can replace functions of CD44 during embryogenesis. 
Nedvetzki et al. (2004) demonstrated that RHAMM substituted CD44 in a 
mouse model of collagen-induced arthritis, where it bound to HA, enhanced 
migration, and upregulated proinflammatory genes instead of CD44. 
Interestingly, the compensation of CD44 ablation by RHAMM did not occur due 
to its increased expression, but rather due to HA accumulation caused by CD44-
deficiency, allowing enhanced RHAMM signalling and leading to aggravated 
inflammatory response (Nedvetzki et al., 2004). Furthermore, another CD44 
compensatory protein, ICAM-1, was shown to take over the MET co-receptor 
function of CD44 in the liver of Cd44-/- mice (Olaku et al., 2011).  

2.4 The functions of CD44 in cancer 

The role of CD44 in malignant transformation is very complex. In many cancers, 
CD44 isoforms are overexpressed and correlate with tumour progression and 
metastasis, whereas in others, CD44 plays a protective role and acts as a tumour 
suppressor. For example, CD44 was implicated in primary tumour formation in 
the ApcMin/+ mouse model of colon cancer, where genetic ablation of CD44 
suppressed the incidence of intestinal adenoma formation, while the introduction 
of variant CD44 promoted this (Zeilstra et al., 2008; Zeilstra et al., 2014). 
Interestingly, CD44-deficiency did not affect the incidence of primary tumour 
formation in the p53+/tm1 mouse model of osteosarcoma, but instead, reduced 
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metastases were observed in these mice, suggesting that CD44 is involved in 
metastasis rather than in tumour initiation (Weber et al., 2002). The supportive 
role of CD44 in the metastatic cascade was further demonstrated by studies, 
where overexpression of CD44v in non-metastatic rat pancreatic carcinoma 
(Günthert et al., 1991) or CD44s in mouse fibrosarcoma cells (Kogerman et al., 
1997) was sufficient for establishing metastatic behaviour. Furthermore, 
transplantation of CD44v-expressing breast cancer cells in mice leads to 
successful formation of lung metastases (Yae et al., 2012). In contrast, the loss 
of CD44 in a spontaneously metastasizing MMTV-PyVmT mouse model of 
breast cancer resulted in enhanced lung metastasis (Lopez et al., 2005), 
indicating a protective role for CD44 against metastasis. In support of this, 
reduced metastases in lungs were observed in case of CD44s overexpression in 
rat prostate cancer cells (Gao et al., 1997). The anti-tumourigenic role of CD44 
was also demonstrated by a study, where SV40-transformed fibroblasts derived 
from CD44-deficient mice formed large subcutaneous tumours, whereas 
reintroduction of CD44s in these fibroblasts resulted in the formation of only 
very small tumours (Schmits et al., 1997). These data suggest that the roles of 
CD44 in tumourigenesis appear to vary in different stages and types of cancer.  

Despite its ambiguous role in malignancy, CD44 has emerged as a widely used 
biomarker for the isolation of cancer stem cells (CSCs). CD44 has been used to 
identify and isolate CSCs from breast (Al-Hajj et al., 2003), colorectal (Dalerba 
et al., 2007), prostate (Collins et al., 2005), pancreatic (Li et al., 2007) and 
ovarian (Zhang et al., 2008) cancer, among others. Several clinical studies have 
also tried to correlate the CD44 expression level with cancer prognosis, but the 
results have been controversial. For example, both favourable and unfavourable 
correlation, as well as no significant correlation between CD44v6 expression and 
overall survival have been demonstrated in breast cancer (Bànkfalvi et al., 1999; 
Friedrichs et al., 1995; Kaufmann et al., 1995). Similarly, many studies indicate 
CD44s as a negative prognostic marker for overall survival in renal cell 
carcinoma (Lim et al., 2008; Mikami et al., 2015), whereas others claim that 
CD44 does not have individual prognostic significance (Tawfik et al., 2007). 
However, a recent meta-analysis by Li et al. (2015) still suggests that high CD44 
expression correlates with the overall survival rate in renal cell carcinoma 
patients.  

To acquire stem cell properties cancer cells frequently undergo epithelial-to-
mesenchymal transition (EMT). CD44 contributes to EMT by forming a 
complex with HA and moesin upon TNF-α stimulation, which is required for 
actin remodelling and activation of TGF-β signalling and results in the induction 
of EMT and cells acquiring mesenchymal phenotype (Takahashi et al., 2010). 
More importantly, CD44 isoform switching from a variant CD44v to the 
standard CD44s isoform has been demonstrated to be critical for cancer cells to 
complete EMT and promote breast and pancreatic cancer metastasis (Preca et al., 
2015; Xu et al., 2014). By contrast, a study by Yae et al. (2012) demonstrated 
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that the opposite CD44 isoform switching, from CD44s to CD44v, is required 
for lung colonization of metastatic breast cancer cells. CD44 is also implicated 
in chemo- and apoptosis resistance. In this regard, CD44 has been shown to 
induce multidrug protein-1 (MDR1) (Bourguignon et al., 2009), attenuate the 
tumour-suppressive HIPPO pathway (Xu et al., 2010) and protect cells from 
reactive oxygen species (ROS)-induced stress signalling via upregulation of 
reduced glutathione, acting thereby as a ROS scavenger (Ishimoto et al., 2011). 
Consistently, p53 has been shown to inhibit CD44 expression, thus allowing 
cells to respond to p53-dependent apoptotic and stress signals (Godar et al., 
2008).  

Altogether, CD44 can be considered as a multifaceted molecule that takes part in 
different aspects of cancer progression and can promote as well as inhibit 
tumourigenesis. 

2.5 The functions of CD44 in angiogenesis 

CD44 plays a role in EC physiology. By using blocking antibodies, it has been 
shown that CD44 is required for promoting EC proliferation, HA-induced EC 
migration, EC adhesion to HA, and also in vitro endothelial tubule formation 
(Savani et al., 2001; Trochon et al., 1996). CD44 can mediate EC functions via 
different signalling pathways depending on its ligands and the origin of ECs. For 
example, in human microvascular cells, repression of CD44 expression disrupted 
the formation of a regular tubule network via upregulation of CXCL9/CXCR3 
and CXCL12/CXCR4 signalling (Olofsson et al., 2014). In human umbilical 
vein cells (HUVECs) high molecular weight (HMW) HA enhanced angiogenic 
sprouting and cell motility via CXCL12/CXCR4 signalling (Fuchs et al., 2013). 
Furthermore, CD44 mediates low molecular weight (LMW) HA-induced 
endothelial tubule formation in HUVECs via activation of SRC, FAK and 
ERK1/2 (Wang et al., 2011), and in bovine aortic ECs via activation of PKCα, γ-
adducin and CDK1 (Matou-Nasri et al., 2009). EC proliferation was also 
enhanced by CD44-stimulated cyclooxygenase induction and accompanying 
VEGF upregulation (Murphy et al., 2005). Tsuneki and Madri (2014) proposed 
that CD44 mediates several of its endothelial functions by modulating the 
expression of cell junctional molecules. In regard to EC proliferation, they 
demonstrated that disruption of CD44 in microvascular ECs leads to reduced 
CD31 and VE-cadherin expression, increased survivin expression and YAP 
nuclear translocation, and results in enhanced cell growth and reduced apoptosis 
(Tsuneki and Madri, 2014).  

Although CD44 is involved in different aspects of EC functions, only few 
studies describe the functions of CD44 in in vivo angiogenesis. Endothelial 
specific silencing of CD44 in vivo resulted in reduced blood vessel invasion into 
Matrigel plugs in response to HA oligomer stimulation (Lennon et al., 2014). In 
response to arterial injury, Cd44-/- mice displayed increased neointima formation 
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and vSMC proliferation (Kothapalli et al., 2007). CD44 was also suggested to be 
involved in tumour angiogenesis, as its expression was specifically upregulated 
in the tumour vasculature and in cultured ECs stimulated by FGF-2 (Griffioen et 
al., 1997). The role of CD44 in tumour angiogenesis was further supported by 
findings that neovascularization of melanoma cells containing Matrigel plugs, as 
well as tumour and wound-induced angiogenesis, were reduced in Cd44-/- mice 
(Cao et al., 2006). Blood vessels in Matrigel plugs from Cd44-/- mice displayed 
abrogated cellular ruffling, irregular surface and thin endothelium. The intact 
leukocyte recruitment during tumour and wound angiogenesis and the inability 
of wild-type bone marrow to restore the normal angiogenic response in Cd44-/- 
mice suggested that primarily endothelial CD44 was involved in in vivo 
angiogenesis. The proliferation, survival and migration of ECs derived from 
either Cd44-null or wild-type mice were comparable. However, the ability to 
form tubular networks in vivo was severely impaired in ECs from Cd44-null 
mice (Cao et al., 2006). These data suggest that endothelial CD44 plays a role in 
the assembly, organization and integrity of newly forming blood vessels (Cao et 
al., 2006). 

CD44 has been shown to play a protective role in vascular barrier integrity. 
Cd44-/- mice display significantly enhanced microvascular permeability 
following vasoactive histamine or lipopolysaccharide (LPS) challenge (Flynn et 
al., 2013). The loss of CD44 caused also decreased EC barrier strength, 
accompanied by altered expression and localization of cell adhesion proteins, 
VE-cadherin, PECAM-1 and β-catenin, and increased the expression of MMPs, 
which all together resulted in abnormal EC morphology. These data suggest that 
CD44 plays a role in restoring vascular integrity after vasoactive challenge, as 
well as in maintaining the vascular barrier function in the quiescent state. The 
regulation of the EC barrier function by CD44 was suggested to occur through a 
PECAM-1-dependent mechanism, as reconstitution of PECAM-1 expression in 
CD44-deficient ECs restored the EC barrier strength to the normal level (Flynn 
et al., 2013).  

However, CD44 can regulate the EC barrier function differentially, depending 
on its ligands and isoforms. While HMW-HA and HGF enhance the endothelial 
barrier integrity and protect against induced vascular leakiness in a murine 
model of LPS-induced lung vascular permeability (Singleton et al., 2007), 
LMW-HA, on the contrary induces EC barrier disruption in pulmonary 
microvascular EC monolayers (Singleton et al., 2006). It was shown that HMW-
HA strengthens the EC barrier via binding to CD44s in caveolin-1-enriched 
plasma membrane microdomains (CEMs). This, in turn, leads to the 
transactivation of the barrier-promoting SIP1 receptor and results in RAC1 
activation, cortical actin formation and enhanced EC-EC contacts. In contrast, 
LMW-HA binding to CD44v10 isoform transactivates the barrier-disrupting 
SIP3 receptor, which leads to RhoA activation and stress fibre formation and 
results in decreased vascular integrity (Singleton et al., 2006). Interestingly, both 
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CD44v10 as well as CD44s isoforms were shown to contribute to HGF-mediated 
EC barrier integrity by functioning as MET co-receptors (Singleton et al., 2007). 
HGF induces MET binding to CD44v10, which subsequently leads to MET 
translocation to CEMs, where it temporally associates with CD44s. The 
recruitment of MET to CEMs and binding to CD44 is required for RAC1 
activation and cortical actin formation (Singleton et al., 2007). 

2.6 CD44 as a co-receptor 

CD44 can function as a signalling hub by binding GFs and regulating the 
activity and signalling of a variety of cell surface receptors. First, it was noted 
that the heparin sulphate-modified CD44v3 isoform is able to bind several 
heparin-binding GFs, such as FGF-2, VEGF, HGF and HB-EGF (Bennett et al., 
1995). However, later studies demonstrated that HS modification is not an 
absolute requirement for binding GFs to CD44. Various CD44 isoforms have 
been shown to modulate signalling of different cell surface receptors, including 
several RTKs, GPCRs and members of the TGF-β receptor family (Orian-
Rousseau and Sleeman, 2014).  

MET. CD44 functions as an important co-receptor for MET. The physiological 
relevance of this function of CD44 was revealed by a study showing the 
haploinsufficiency of MET in the Cd44-/- background (Matzke et al., 2007). 
HGF binding to CD44v10 promotes HGF/MET signalling and regulates the 
vascular barrier function of ECs (Singleton et al., 2007). CD44v6 isoform, 
however, is required and sufficient for the full activation of HGF-induced MET 
signalling in several primary and cancer cell lines (Olaku et al., 2011). 
Introduction of the v6 isoform into tumour cells lacking CD44v6 induced MET 
activation and downstream signalling, whereas inhibition of the 
HGF/MET/CD44v6 complex formation with v6-specific antibodies blocked 
MET activation (Orian-Rousseau et al., 2002). Both extra- and intracellular parts 
of CD44 were shown to be needed for its co-receptor function. While the CD44 
ectodomain presents HGF to MET and is needed for its activation, CD44-ICD 
link to cytoskeleton is required for promoting downstream signalling (Orian-
Rousseau et al., 2002) and MET internalization (Hasenauer et al., 2013). In 
addition, CD44v6 mediates MET activation in ECs (Tremmel et al., 2009).  

VEGFR2 and other RTKs. Interestingly, in ECs CD44v6 has been shown to 
function also as a VEGFR2 co-receptor, whereas, in a similar manner to MET, 
the CD44 ectodomain is required for binding to VEGFR2, and CD44-ICD 
promotes downstream signalling of activated VEGFR2 (Tremmel et al., 2009). 
Differently from MET, which requires HGF to associate with CD44v6, 
VEGFR2 forms a constitutive complex with CD44v6. The function of CD44v6 
as a MET and VEGFR2 co-receptor has been suggested to be important in 
several in vitro and in vivo angiogenic processes, as the CD44v6-blocking 
peptide was able to impair VEGF- and HGF-induced EC migration, sprouting 
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and tubule formation, as well as in vivo tumour angiogenesis in pancreatic 
carcinoma (Tremmel et al., 2009).  

In regard to other RTKs, CD44 can associate with and regulate the activity of 
several members of the ErbB family (Meran et al., 2011; Sherman et al., 2000; 
Yu et al., 2002) and form a complex with FGFR in chondrosarcoma cells 
(Wakahara et al., 2005). In addition, CD44 associates with PDGFRβ in foreskin 
fibroblasts, where it negatively regulates fibroblast migration by mediating HA-
dependent recruitment of tyrosine phosphatases thereby reducing PDGFRβ 
activity (Li et al., 2006).  

TGF-β receptor family. CD44 forms a ternary complex with PDGFRβ and 
TGFBRI in dermal fibroblasts and by affecting the stability of the receptors, 
negatively modulates their signalling (Porsch et al., 2014). In accordance with 
this, HA engagement of CD44 attenuates TGF-β signalling in renal proximal 
tubular cells by promoting redistribution of TGFβ-RI into CEMs and thus 
increasing receptor turnover (Ito et al., 2004). In contrast, CD44 has been 
suggested to stabilize TGFBRI at the plasma membrane of T cells (Flynn et al., 
2013). CD44 interaction with TGFBRII is required for TGF-β-dependent EMT. 
TNF-α-induced HA-CD44-moesin complex interacts with TGFBII in clathrin-
coated pits and leads to downstream SMAD2/3 phosphorylation and EMT in 
retinal pigment epithelial cells (Takahashi et al., 2010). Furthermore, galectin9-
stimulated CD44/BMPRII complex formation is required for SMAD1/5/8 
activation in the osteoblast differentiation process (Tanikawa et al., 2010). In 
chondrocytes, CD44 provides a binding site for SMAD1 in its cytoplasmic 
domain, and thus mediates BMP7-induced signalling via facilitating SMAD1 
phosphorylation and nuclear translocation (Peterson et al., 2004).  

GPCRs, WNT and MMPs. CD44 is also involved in the activation of GPCRs, 
regulating WNT signalling and acting as a signalling platform for MMPs. The 
crosstalk between CD44 and a chemokine receptor, CXCR4, was demonstrated 
by a study, where CD44-blocking antibodies as well as soluble CD44 were able 
to impair SDF1-dependent CD34+ stem/progenitor cell homing to bone marrow 
(Avigdor et al., 2004). Furthermore, the SDF1-induced CD44 complex with 
CXCR4 in ECs was shown to be crucial for angiogenesis (Fuchs et al., 2013). 
CD44 acts as a positive regulator of WNT signalling by modulating LRP6 
membrane localization and its signalling (Schmitt et al., 2015). CD44 provides a 
docking site for several MMPs. It binds to MMP-7 (Yu et al., 2002), associates 
with MT1-MMP at the leading edge of migrating cells to promote tumour cell 
migration (Mori et al., 2002), and facilitates tumour invasion and angiogenesis 
by docking MMP-9 to the cell membrane (Yu and Stamenkovic, 2000). 
Nevertheless, the MMP-9–CD44 axis is not essential for blood vessel invasion 
into the collagen matrix (Chun et al., 2004). 
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2.7 Soluble CD44 

Besides the membrane-anchored form, soluble CD44 has been found to circulate 
in the serum and lymph of different species (Nagano and Saya, 2004). Soluble 
CD44 is mainly generated by releasing the ectodomain from the cell membrane 
via proteolytic cleavage (Okamoto et al., 1999). Shedding of soluble CD44 is 
regulated by several signalling pathways, including the activation of PKC, the 
activity of oncogenic RAC and RAS, and extracellular Ca2+ influx (Okamoto et 
al., 1999). Although only a small fraction of membrane CD44 is subjected to 
shedding (Hartmann et al., 2015), the proteolytic cleavage can be triggered by 
multiple external stimuli, such as serum, HGF, PDGF, TGF-β or fragments of 
HA and chondroitin sulphate E (Cichy and Puré, 2004; Hartmann et al., 2015; 
Sugahara et al., 2008). The main proteases responsible for CD44 shedding are 
the members of MMPs, such as MT1-MMP, ADAM10 and ADAM17 
(Anderegg et al., 2009; Kajita et al., 2001; Nagano and Saya, 2004). A recent 
study revealed that CD44 shedding is regulated by an inside-out signalling 
mechanism, where CD44 dimerization is the prerequisite for transmitting the 
cleavage-inducing signal from CD44-ICD to the ectodomain (Hartmann et al., 
2015). It was shown that CD44 is associated with ADAM10 at the cell surface 
prior to stimulation, and that a considerable amount of CD44 exists at the cell 
membrane as dimers, which are stabilized by putative ectodomain interactions 
and cysteine bridges in their transmembrane/intracellular domains. However, 
effective cleavage of CD44 occurs only when cells are stimulated, because 
stimulation triggers specific modifications in CD44-ICD, which in turn induce 
conformational change in the CD44 ectodomain, enabling MMPs to access the 
CD44 cleavage site (Hartmann et al., 2015).  

The ectodomain shedding is followed by intramembranous cleavage of CD44 by 
γ-secretase, whereupon the released CD44-ICD translocates to the nucleus and 
upregulates the transcription of its target genes, including CD44 itself among 
others (Okamoto et al., 2002). More interestingly, a study by Miletti-González et 
al. (2012) revealed, that by binding to a novel CD44-ICD-specific promoter 
response element (CCTGCG), CD44-ICD can regulate transcription of multiple 
genes involved in cell survival, metabolism, inflammation and also tumour cell 
invasion. Consistently, increased serum levels of soluble CD44 seem to correlate 
with inflammatory diseases and tumour progression. For example, aberrant 
levels of soluble CD44 indicated tumour burden and metastasis in gastric and 
colon carcinoma (Guo et al., 1994), differentiate malignant cervical carcinoma 
from premalignant cases (Dasari et al., 2014) and could be associated with 
lymph node metastasis in breast cancer patients (Mayer et al., 2008). CD44 
shedding is also associated with immune cell activity. While immunodeficient 
mice displayed reduced levels of soluble CD44, autoimmune diseases and 
tumours led to significantly increased expression of soluble CD44 (Katoh et al., 
1994). Cleavage of CD44 regulates cell–ECM interactions during cell migration 
and is thus thought to be critical for enhanced cellular motility. For example, 
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shedding of CD44 facilitated cell detachment from the ECM and promoted 
CD44-mediated migration of lung and pancreatic cancer cells (Kajita et al., 
2001; Okamoto et al., 1999).  

Soluble CD44 may act as a dominant negative regulator of the functions of 
membrane-bound CD44. By serving as a decoy receptor, soluble CD44 can 
prevent ligand binding, as was shown in metastatic mammary carcinoma and 
melanoma cells, where overexpression of soluble CD44 blocked HA binding to 
cell surface and resulted in the inhibition of tumour growth (Ahrens et al., 2001; 
Yu et al., 1997). Furthermore, soluble CD44 and its non-HA-binding mutant 
inhibit cell growth in logarithmically growing schwannoma cells, whereas in 
confluent, non-dividing cells these effects are reversed (Morrison et al., 2001). 
In line with this, it has been demonstrated that recombinant soluble CD44-
HABD and its modified non-HA-binding form inhibit EC proliferation, in ovo 
angiogenesis, and tumour growth (Päll et al., 2004). 

3 Vimentin and its functions in ECs 

Vimentin, a 57 kDa intermediate filament (IF) protein, is broadly expressed 
during development and also in several mesenchyme-derived cells of the adult 
organism, such as fibroblasts and ECs (Evans, 1998). Vimentin is responsible 
for the mechanical stability of the cell. It provides cells with the cytoskeletal 
structural framework and maintains cytoplasm integrity via linking the cell 
nucleus to the plasma membrane (Goldman et al., 1996). The vimentin monomer 
consists of non-helical N-terminal and C-terminal tail domains and the central α-
helical rod domain between them (Figure 3) (Fuchs and Weber, 1994). Vimentin 
IF assembly starts with lateral association of α-helical coiled-coil vimentin 
dimers into more stable tetrameric subunits, which gradually elongate into unit-
length-filaments and give rise to mature IFs (Strelkov et al., 2003). Vimentin IFs 
are highly dynamic and motile structures that constantly change their 
configuration and shape, which is regulated by phosphorylation (Yoon et al., 
1998). Vimentin phosphorylation has generally been shown to increase IF 
disassembly and release soluble vimentin subunits, whereas dephosporylation 
favours vimentin IF stabilization (Eriksson et al., 2004). 

Although vimentin is the only IF protein expressed in a variety of mesenchymal 
cell types and its protein sequence is highly conserved in different species, Vim-/- 
mice develop and reproduce normally (Colucci-Guyon et al., 1994). However, 
Vim-null mice display several phenotypic changes under certain stress and 
pathological conditions. Vim-/- mice display impaired wound healing due to 
delayed granulation tissue formation and decreased fibroblast mobility, whereas 
reduced fibroblast migration results from aberrant organisation of actin 
cytoskeleton and focal adhesion (FA) proteins (Eckes et al., 2000). Furthermore, 
vimentin depletion has an effect on vascular functions. Lack of vimentin resulted 
in abnormal lymphocyte extravasation due to impaired endothelial integrity 
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(Nieminen et al., 2006), reduced corneal and hypoxia-induced retinal 
neovascularization (Bargagna-Mohan et al., 2007; Lundkvist et al., 2004), and 
also reduced flow-induced vasodilation of arteries (Henrion et al., 1997; Terzi et 
al., 1997). These altered phenotypes imply that vimentin may have important 
functions in cell adhesion and migration (Ivaska et al., 2007). Depletion of 
vimentin in ECs resulted in decreased invasion of ECs into the collagen matrix, 
indicating its involvement in angiogenic sprouting (Kwak et al., 2012). It has 
been shown that a soluble pool of vimentin, generated by proangiogenic GF-
induced calpain cleavage, facilitates MT1-MMP membrane translocation and 
ECM degradation, and results in successful endothelial tubulogenesis. 
Furthermore, vimentin regulates FA architecture and cell motility. In rat heart 
vessels and ECs, vimentin acts as a mechanosensitive scaffold for vasodilator 
stimulating phosphoprotein (VASP), which is essential for VASP localization to 
FAs and its phosphorylation (Lund et al., 2010). Additionally, vimentin is 
upregulated in activated ECs, where it modulates EC-ECM adhesion and 
endothelial invasion by regulating focal adhesion kinase (FAK) expression and 
activation (Dave et al., 2013).  

 
Figure 3. Vimentin IFs. (A) The schematic presentation of vimentin structure. Vimentin 
consists of N-terminal head, C-terminal tail and central rod domains. The rod domain 
contains alpha-helical coiled-coil subdomains (ellipses), connected with the linker 
regions (L1, L12 and L2). (B) An immunofluorescence image of anti-vimentin V9 
antibody-stained HUVECs (T. Päll, unpublished, with permission of T. Päll) 

Vimentin IFs regulate cell–matrix adhesions by associating with integrins, the 
core components of FAs. In most cases, vimentin is anchored to integrins via the 
cytoskeletal linker protein, plectin (Bhattacharya et al., 2009; Burgstaller et al., 
2010). Disruption of the connection of vimentin or plectin with β1 integrin at 
FAs in fibroblasts results in reduced FA turnover and impaired directional 
migration (Gregor et al., 2014). Consistently, vimentin expression has been 
shown to correlate with enhanced FA dynamics (Mendez et al., 2010). Robust 
FAs and impaired motility were caused by attenuated FAK activity, which led 
the cells to try to compensate for the reduced tension by RhoA overactivation 
and upregulation of the activated (stretched) integrins (Gregor et al., 2014). 
Vimentin IFs associate also with collagen-binding α2β1 integrin in ECs, whereas 
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this interaction has been suggested to occur independently of plectin presence, 
and to be lost in confluent cells (Kreis et al., 2005). It has been demonstrated 
that vimentin mediates membrane traffic of β1 integrin (Ivaska et al., 2005) and 
EC adhesion molecules, ICAM-1 and VCAM-1, important mediators of 
lymphocyte homing, transmigration and vascular integrity (Nieminen et al., 
2006). In addition, vimentin participates in endosomal trafficking by functioning 
as a reservoir for a synaptosome-associated tSNARE protein SNAP23 (Faigle et 
al., 2000), and by binding an adaptor protein complex, AP-3, which regulates 
sorting of late endosome/lysosome membrane proteins (Styers et al., 2004). 

Besides its main subcellular location in the cytoplasm, vimentin can also be 
found at the cell surface. Cell-surface vimentin has been implicated in several 
functions, such as bacterial killing and ROS production on activated 
macrophages (Mor-Vaknin et al., 2003), activating latent TGF-β on the EC 
surface (Nishida et al., 2009), rolling of circulating vascular cells across 
endothelium (Xu et al., 2004) and providing attachment sites for pathogens 
(Koudelka et al., 2009; Zou et al., 2008). More importantly, vimentin has been 
identified as a specific marker for tumour vasculature, whereas targeting of 
endothelial vimentin in in vivo mouse colorectal carcinoma tumour model 
resulted in effective inhibition of tumour growth and decreased microvessel 
density (van Beijnum et al., 2006). Furthermore, it has been suggested that cell 
surface vimentin could also serve as a common marker for metastatic cancers 
(Steinmetz et al., 2011).  
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MATERIALS AND METHODS 

The following methods were used in this thesis: 

 DNA cloning (Publications I, II, Manuscript and Patent) 

 Cell culture and DNA transfection (Publications I, II, Manuscript and 
Patent) 

 siRNA transfection (Manuscript) 

 Quantitative RT-PCR (Manuscript) 

 GST-pulldown and co-immunoprecipitation (Publication II and Patent) 

 ELISA (Publications I, II and Manuscript) 

 Western blot analysis (Publications I, II, Manuscript and Patent) 

 Immunofluorescence microscopy (Publications I, II and Manuscript) 

 Endocytosis assay (Publications I and II) 

 Electric cell-substrate impedance assay (Publication I and Manuscript) 

 Apoptosis and cell viability assays (Manuscript) 

 In vivo angiogenesis assay (Manuscript) 

 Recombinant protein in vivo half-life studies (Publication I and 
Manuscript) 

 Recombinant protein expression and purification (Publications I, II, 
Manuscript and Patent) 

 PEGylation, Fc-fusion technology (Publication I and Manuscript) 

 MALDI-TOF MS (Publications I and II) 

 Statistical data analysis (Publications I, II, Manuscript and Patent) 
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AIMS OF THE STUDY 

The role of CD44 in lymphocyte homing and cancer progression has been 
extensively studied. At the same time, only scarce data demonstrate the 
involvement of CD44 in neovascularization and endothelial proliferation, and its 
many aspects are still unclear. The study by Päll et al. (2004) suggested that the 
recombinant soluble HA-binding domain of CD44 (CD44-HABD) and its non-
HA-binding mutant CD44-3MUT could function as angiogenesis inhibitors. 
Nevertheless, CD44-3MUT displayed very short in vivo residence time, limiting 
its in vivo use. Together, these data provide the rationale for the present thesis. 

The aims of this thesis were as follows: 

1. Further elucidate the role of CD44 in angiogenesis and EC growth. 

2. Improve the pharmacokinetic properties of CD44-3MUT by the use of two 
different half-life extension approaches (PEGylation and Fc-fusion). 
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RESULTS AND DISCUSSION 

The majority of the anti-angiogenic drugs in tumour therapy have been focused 
on targeting the VEGF signalling pathways. However, due to intrinsic and 
acquired resistance mechanisms, these therapeutics exhibit limited long-term 
benefits. Thus, there is a need for new anti-angiogenesis therapies that could be 
used in combination with anti-VEGF or as a second-line therapy. Moreover, to 
develop more effective therapies and new drugs, a better understanding of 
factors and mechanisms affecting EC proliferation and blood vessel formation is 
needed. 

1 Circulation half-life of CD44-3MUT and its modified versions 

We have shown that bacterially expressed recombinant unmodified CD44-
3MUT is able to inhibit EC growth in vitro (Päll et al., 2004). However, our 
initial in vivo studies in mice showed that with only 0.04 h half-life this 
unmodified version of CD44-3MUT exhibits very short circulation residence 
time (Publication I). Such a short half-life can limit its in vivo efficacy. 
Consequently, we decided to improve the pharmacokinetic properties of CD44-
3MUT. To this end, we used two different approaches: PEGylation and Fc-
fusion technology. PEGylation is a well-known and FDA-approved strategy for 
extending the half-life of recombinant therapeutic proteins. Addition of the 
human IgG Fc region to a therapeutic protein in combination with the 
mammalian expression system, on the other hand, provides proteins with some 
beneficial antibody-like structural properties, facilitates their production process 
and maintains native post-translational modifications of proteins.  

1.1 PEGylation of CD44-3MUT (Publication I) 

Having already established a large-scale purification protocol for bacterially 
expressed CD44-3MUT (Publication I), we first decided to PEGylate CD44-
3MUT in order to improve its pharmacokinetic properties. We chose to 
PEGylate our protein with a 20 kDa methoxy-PEG-propionaldehyde, resulting in 
CD44-3MUT PEG-conjugate with the expected molecular weight of 31.6 kDa. 
20 kDa aldehyde-functionalized PEG, which has been shown to preferentially 
couple to the N-terminal α-amino group at pH 5-8 (Kinstler et al., 2002), was 
chosen for several reasons. First, in order to reduce the possibility that PEG 
would mask the CD44-3MUT surface and thereby interfere with its functional 
activity (Pasut and Veronese, 2012), we chose a PEG chain that would site-
specifically react with the N-terminus of CD44-3MUT. Second, for minimizing 
the possibility of PEG-CD44-3MUT accumulating in the liver and causing the 
macromolecular syndrome, which is common for high molecular weight 
polymers, we used a PEG chain that was as small as possible. While 20 kDa 
PEG is relatively small, it would still most probably keep the PEG-CD44-3MUT 



42 

in the circulation and avoid rapid urinary excretion, as its molecular weight 
clearly exceeds the threshold of glomerular filtration, which has been 
demonstrated to be 30 kDa (Veronese and Pasut, 2005). 

PEG-specific BaI2 staining showed that PEGylation of CD44-3MUT resulted in 
the formation of predominantly mono-PEGylated form of CD44-3MUT. 
However, we were unable to purify the mono-PEG-CD44-3MUT to 
homogeneity and the presence of minor amounts of unmodified and di-
PEGylated CD44-3MUT were still observed after all purification steps. 
Densitometric analysis showed that PEG-CD44-3MUT batches contained 
roughly 2/3 of mono-PEGylated, 1/10 of di-PEGylated and 1/4 of unmodified 
CD44-3MUT.  

As we used methoxy-PEG-propionaldehyde for PEGylation, which should 
preferentially have attached to the N-terminus of CD44-3MUT in our reaction 
conditions, we analysed the PEG-attachment site using the MALDI-TOF MS 
fingerprinting of Glu-C protease-digestion peptides. The depletion of N-terminal 
peptides from the mass spectrum compared to non-PEGylated CD44-3MUT 
indicated that PEG indeed coupled to the N-terminal α-amino group of 
PEGylated CD44-3MUT. No other peptides were missing or reduced in the mass 
spectrum, as could be expected because of the presence of the di-PEGylated 
form of CD44-3MUT in the analysed preparation. It is possible that the PEG 
dimer, instead of the PEG monomer, couples to the N-terminus of CD44-3MUT 
and this represents the di-PEGylated form of CD44-3MUT in the PEG-modified 
CD44-3MUT preparations. This suggestion was supported by the observation 
that besides the PEG monomer also the PEG dimer formed during PEGylation. 
Thus, it is most probable that instead of two PEG chains binding to different 
sites of CD44-3MUT, it is rather one PEG dimer that reacts with the N-terminus 
of CD44-3MUT. 

PEGylated proteins commonly suffer from the complete or partial loss of their 
bioactivity due to the large hydrodynamic volume of PEG, which may limit the 
access to receptor/ligand binding sites (Kontermann, 2011; Pasut and Veronese, 
2012). To exclude this possibility, we compared the in vitro activities of 
unmodified and PEGylated CD44-3MUT. The results of the cell proliferation 
assay confirmed the preserved bioactivity of PEGylated CD44-3MUT. 

1.2 Half-life of PEGylated CD44-3MUT (Publication I) 

To determine the half-life of CD44-3MUT proteins we injected rats 
intravenously with untagged or PEGylated CD44-3MUT. After blood sampling, 
the half-life and other pharmacokinetic properties were calculated from the 
results of the ELISA assay. The calculated pharmacokinetic parameters 
(summarised in Table 1) showed that while untagged CD44-3MUT was 
eliminated from rat blood very rapidly, PEGylation of CD44-3MUT extended its 
blood residence time about 70-fold. In line with this, PEG-CD44-3MUT 



43 

displayed considerably enhanced systemic exposure (AUC) and diminished 
clearance (CL) when compared to its unmodified version. Both proteins 
displayed similar volume-of-distribution values (from 2% to 4% of total body 
weight), indicating that unmodified as well as PEGylated CD44-3MUT are 
confined to plasma water. In contrast, the initial pharmacokinetic studies in mice 
determined the volume of distribution for CD44-3MUT as 23% of total body 
weight, suggesting the distribution to extracellular water. Such discrepancy may 
have been caused by the different doses of injected proteins used in rats and 
mice (1 mg vs 50 μg, respectively). It is plausible that the severalfold higher 
doses used in rats may have saturated the extracellular water compartment and 
therefore resulted in different volume-of-distribution values. When tissue protein 
binding is saturable, the dose of administrated drug and the volume of 
distribution may be negatively correlated. 

In conclusion, PEGylation improved the pharmacokinetic properties of CD44-
3MUT while retaining its cell proliferation inhibitory activity. Nevertheless, the 
production process of PEG-CD44-3MUT was still quite complicated and 
resulted in a mixture of unmodified, di- and mono-PEGylated species of CD44-
3MUT. 

Table 1: Pharmacokinetic parameters of CD44-3MUT and its derivatives in rats, 
calculated from the ELISA data performed after intravenous administration of proteins. 

Protein C0, μg/ml 
(95% CI) 

AUC, 
μg·h/ml  

CL (ml/h) Vd 
(%TBW)1 

T1/2, h (95% 
CI) 

CD44-
3MUT 

315 

(293- 337) 

13.6 

 

79.0 1.8 0.027 

(0.023-0.032) 

PEG-CD44-
3MUT 

142 

(130-155) 

803 

 

1.2 3.9 1.84 

(0.69-2.98) 

CD44-
3MUT-Fc 

66 

(53-87) 

19.0 

 

158 18 0.28 

(0.13-0.40) 
1, volume of distribution (Vd) is expressed as % of total body weight (%TBW)  

 

1.3 Plasma half-life of CD44-3MUT-Fc (Manuscript) 

In order to simplify the manufacturing process of CD44-3MUT and produce a 
protein that is more akin to native CD44, we next sought to express the protein 
in a mammalian expression system. In addition, to improve pharmacokinetics, 
we decided to add human IgG Fc fragment to the C-terminus of CD44-3MUT. 
Producing CD44-3MUT-Fc in the mammalian expression system has several 
advantages (Figure 4). First, when compared to bacterially purified CD44-
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3MUT, the mammalian expression of CD44-3MUT-Fc yields a roughly 8-fold 
increased amount of protein (unpublished data). Secondly, the production 
process of CD44-3MUT-Fc contains only two different stages instead of four as 
in the bacterial production of CD44-3MUT. Thirdly, the purity of CD44-3MUT-
Fc is considerably higher, as it contains significantly less endotoxins than the 
bacterially expressed CD44-3MUT. Lastly, the production in a mammalian 
expression system provides CD44-3MUT-Fc with post-translational 
modifications similar to those of native CD44. 

The pharmacokinetic parameters of CD44-3MUT-Fc in rats were calculated 
after intravenous administration of proteins and are shown in Table 1. The 
results show that the blood residence time of CD44-3MUT-Fc was increased 
more than 10-fold compared to untagged CD44-3MUT. However, it still 
remained nearly 7-fold shorter than the blood residency of PEGylated CD44-
3MUT. Still, CD44-3MUT-Fc exhibited greater biodistribution when compared 
to untagged or PEGylated CD44-3MUT. The value of the volume of distribution 
– 18% of total body weight – indicates that CD44-3MUT-Fc is most probably 
distributed to extracellular water. 

Due to considerably easier production, native structural properties and better 
biodistribution we decided to use the Fc-modified version of CD44-3MUT in 
our further functional studies. 

 
Figure 4. Comparison of CD44-3MUT and its derivatives. CD44-3MUT (red 
globular domain) is produced in bacterial expression system. PEG-CD44-3MUT, a 20 
kDa linear PEG (pale blue linear string) is added to the N-terminus of purified CD44-
3MUT. CD44-3MUT-Fc, CD44-3MUT is provided with the human IgG-Fc region 
(green ellipses), genetically fused to its C-terminus. CD44-3MUT-Fc is produced in a 
mammalian expression system as a dimer 
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2 CD44 functions as an inhibitor of angiogenesis (Manuscript) 

2.1 CD44-3MUT-Fc inhibits in vivo neovascularization  

Previously it has been shown in our laboratory that bacterially expressed non-
HA-binding CD44 (CD44-3MUT) reduces the angiogenic response in the chick 
chorioallantoic membrane and inhibits tumour xenograft growth in mice (Päll et 
al., 2004).  

We asked whether the observed anti-angiogenic effects of bacterially expressed 
CD44-3MUT could be reproduced in a different model. For this, we performed 
in vivo angiogenesis assays in nude mice and used CD44-3MUT produced in a 
mammalian expression system as a therapeutic agent. To this end, we used a 
commercially available Matrigel plug assay (DIVAA), where angiogenesis was 
measured by blood vessel invasion into the tumour ECM-filled silicone tubes 
(angioreactors) (Guedez et al., 2003). In DIVAA, the angiogenic response is 
stimulated by FGF-2 and VEGF premixed into the matrix of angioreactors.  

We treated nude mice carrying subcutaneously implanted angioreactors with 
human IgG1 Fc region-modified CD44-3MUT (CD44-3MUT-Fc). The results of 
the DIVAA showed that the intraperitoneal treatments with CD44-3MUT-Fc 
resulted in significantly reduced blood vessel ingrowth into angioreactors when 
compared to PBS- or rhIgG-Fc- treated control groups (Figure 5A). As PBS- and 
rhIgG-Fc-treated control groups displayed similar angiogenic response, it could 
be concluded that the anti-angiogenic effect of CD44-3MUT-Fc was not caused 
by the IgG Fc, but the CD44-3MUT portion of the protein.  

The efficacy of CD44 non-HA-binding mutant in our studies demonstrates that 
the anti-angiogenic property of this molecule is independent of its HA-binding 
function. This suggests that a different mechanism than directly blocking HA 
binding to cells is responsible for the observed effects. Besides, the allosteric 
inhibitory effect of CD44-3MUT on CD44-HA interaction could be excluded, as 
Päll et al. (2004) had shown that CD44-3MUT had no effect on HMW HA-
induced EC migration in vitro. Nevertheless, HA oligomers can induce 
angiogenesis and such angiogenesis can be blocked by EC-specific CD44 
silencing (Lennon et al., 2014). 

Together, by showing that systemic administration of mammalian CD44-3MUT-
Fc is able to efficiently inhibit angiogenesis in a preclinical mouse model, this 
study validates Päll et al. (2004) results, which demonstrated anti-angiogenic 
activity of bacterially purified CD44-3MUT in an in ovo model. Furthermore, 
these results exclude the possibility that the anti-angiogenic effect of CD44-
3MUT is solely the property of the bacterially expressed recombinant protein. 
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2.2 Cd44-null mice display enhanced angiogenic response  

CD44 has been shown to be involved in tumour angiogenesis as an angiogenesis 
supporting molecule (Cao et al., 2006; Lennon et al., 2014), and thus, in this 
context, recombinant soluble CD44-3MUT appears to function as an antagonist 
to endogenous CD44.  

To independently assess the pro-angiogenic role of CD44, we studied 
angiogenesis in Cd44-/- mice. We used the same in vivo angiogenesis assay as 
described in the Section 2.1 of this thesis to measure the angiogenesis induction 
in response to VEGF/FGF-2 stimulation. We found that the angiogenic response 
was significantly higher in Cd44-null mice than in wild-type mice (Figure 5A). 
It is important to note that our initial experiments were performed in Cd44-/- 
mice of mixed genetic backgrounds. Nevertheless, as shown by others, different 
genetic factors, besides CD44, may influence the angiogenic response in 
different inbred mouse strains (Rohan et al., 2000). Therefore, to reduce the 
possibility that confounding genetic factors cause the observed differences in 
angiogenesis induction, we used Cd44-null mice from homogenous inbred 
backgrounds for the next series of experiments. To this end, Cd44-/- mice were 
backcrossed six generations into the C57BL/6 background. The angiogenesis 
assay with the Cd44-/- mice of the C57BL/6 background corroborated our 
primary results, and showed that CD44-/- mice displayed significantly increased 
angiogenesis compared to their Cd44+/+ or Cd44+/- littermates. Statistical analysis 
revealed that the induction of angiogenic response was associated with the Cd44 
genotype in VEGF/FGF2- stimulated mice, but not in GF-unstimulated mice.  

These results demonstrate that the absence of CD44 leads to elevated angiogenic 
response in mice, suggesting that CD44 functions as an angiogenesis inhibitory 
molecule. In the light of these findings, CD44-3MUT-Fc seems to mimic 
endogenous CD44 rather than antagonise its function. According to this model, 
systemic delivery of CD44-3MUT-Fc increased the dose of CD44 and enhanced 
the anti-angiogenic balance. 

The differences between our study and previous studies showing CD44 as an 
angiogenesis promoting molecule may lie in the use of different models and 
different inducers of angiogenesis. Reduced blood vessel invasion into Matrigel 
plugs in Cd44-/- mice was observed in response to CD44-positive B16 melanoma 
cells (Cao et al., 2006), as well as in response to HA oligomers in mice with 
silenced endothelial CD44 expression (Lennon et al., 2014). In case of both of 
these models, CD44 was to some extent still present in the system and thus could 
function as a super inhibitor. This could also explain why wild-type bone 
marrow reconstitution in Cd44-/- mice did not restore the angiogenesis to normal 
levels (Cao et al., 2006). In contrast, we used a completely CD44-free system – 
Cd44-null mice and angiogenesis induction by VEGF and FGF-2.  
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Additionally, the duration of experiment to allow blood vessels to grow after 
induction can affect the results. It has been reported that CD44-/- ECs exhibit a 
lower growth rate in the early phase of proliferation, but increased secondary 
proliferation in dense cultures compared to wild-type ECs (Tsuneki and Madri, 
2014). Therefore, while in Cao et al. (2006) study the blood vessels were 
allowed to invade the Matrigel plugs for 5 days, in our experiments, the ECs that 
had invaded the angioreactors were quantitated after 14 days. Still, Cd44-/- mice 
displayed inhibited tumour growth and vessel density in the melanoma and 
ovarian carcinoma xenograft models, where tumours were grown for two to nine 
weeks (Cao et al., 2006).  

Given that soluble CD44-3MUT-Fc blocks in vivo angiogenesis and EC 
proliferation (see Sect. 2.1 and 3.1) and thereby mimics endogenous CD44, it is 
also possible that in Cao et al. (2006) study, CD44-deficient ECs were inhibited 
in trans by tumour cell expressed CD44. This hypothesis is also supported by 
our finding that the level of angiogenesis in Cd44-heterozygotes was similar to 
wild-type mice. This suggested that CD44 is not haploinsufficient and even 
reduced levels of CD44 are sufficient for the regulation of angiogenesis.  

CD44 plays context specific roles in malignant transformation and metastasis, as 
well as in inflammatory reactions. The role of CD44 in tumourigenesis seems to 
be isoform-dependent, but it also depends on the stage and origin of the cancer 
(Gao et al., 1997; Kito et al., 2001; Kogerman et al., 1997; Lopez et al., 2005; 
Zeilstra et al., 2014). Regarding the context specific nature of CD44 in 
inflammatory reactions, blocking its functions by CD44-specific antibodies 
resulted in anti-inflammatory effects in experimental arthritis (Hutás et al., 
2008), whereas aggravated inflammatory response was observed in Cd44-
deficient mice (Nedvetzki et al., 2004). It has been demonstrated, that the loss of 
CD44 could be compensated by other molecules in early embryogenesis, but not 
at the later stages of development (Nedvetzki et al., 2004; Olaku et al., 2011). 
This suggests that the seemingly contradictory phenotypes in inflammatory 
responses of CD44-deficient mice versus CD44 targeting in wild-type mice 
could partly be explained by the molecular redundancy of CD44. 

To conclude, our results together with Cao et al. (2006) and Lennon et al. (2014) 
studies fit into the context of and adds to the current paradigm about the context 
specific behaviour of CD44 in different pathophysiological processes. More 
specifically, we showed that CD44 can function as an endogeneous inhibitor of 
angiogenesis. 
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Figure 5. CD44 is a negative regulator of angiogenesis. (A) Blood vessel invasion into 
the subcutaneous (SC) angioreactors is enhanced in Cd44-/- mice and suppressed in 
CD44-3MUT-Fc (3MUT-Fc)-treated mice when compared to wild-type mice (Cd44+/+). 
(B) The reduction of CD44 level by siRNA transfection augments and the increase of 
CD44 dose by CD44-3MUT-Fc treatment inhibits endothelial cell (EC) growth. The 
effect of CD44 is independent of EC growth promoting effect of pro-angiogenic growth 
factors (GF; VEGF/bFGF/HGF). GFR, growth factor receptor (VEGFR2, FGFR1, MET) 

3 CD44 as a negative regulator of EC proliferation 

3.1 CD44-3MUT restrains EC growth (Publication I, Manuscript) 

Bacterially purified CD44-3MUT inhibits angiogenesis by inhibiting EC 
proliferation (Päll et al., 2004). Thus, we asked, whether the anti-angiogenic 
effect of CD44-3MUT-Fc might be similarly caused by its effects on ECs. To 
answer this question, we used a cell proliferation assay, which is based on real-
time measurement of adherent cells using electrical cell-substrate impedance 
sensing (ECIS). Monitoring the growth of asynchronously growing mouse lung 
ECs (MLEC) treated with bacterially purified CD44-3MUT confirmed that 
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CD44-3MUT inhibits EC growth, as CD44-3MUT treatment resulted in reduced 
cell density, measured by the electrical resistance of the MLEC layer 
(Publication I). In the second series of experiments, we wanted to model the 
initial stages of angiogenesis induction by releasing the quiescent ECs from cell 
cycle block by angiogenic GF stimulation. Growth-arrested HUVECs were 
released from quiescence by stimulation with VEGF. As expected, the real-time 
monitoring of cell growth by ECIS revealed that VEGF stimulation resulted in 
HUVEC proliferation. At the same time, treatment of HUVECs with CD44-
3MUT-Fc dose-dependently blocked VEGF-induced HUVEC proliferation 
(Manuscript; Figure 5B). The inhibitory effect of CD44-3MUT-Fc on EC 
growth was confirmed in cell viability assays, where we tested CD44-3MUT-Fc 
potency to inhibit cell proliferation stimulated by VEGF, FGF-2 or HGF. The 
results demonstrated that, while FGF-2 and VEGF proved to be strong inducers 
of cell proliferation, HGF induction, in contrast, showed only weak induction of 
proliferation. We found that the effect of CD44-3MUT-Fc on HUVEC growth 
was inversely related to the GF potency to induce cell growth. While CD44-
3MUT-Fc caused relatively small inhibition of cell growth in HUVECs 
stimulated with strong inducers like VEGF and FGF-2, we observed much 
stronger inhibition of cell proliferation in HGF-stimulated cells. The same trend 
was also observed when the effect of CD44-3MUT-Fc was tested in HUVECs 
stimulated with the vascular quiescence factor GDF-2 (BMP-9). GDF-2 showed 
a strong anti-mitotic effect on HUVEC growth, and CD44-3MUT-Fc treatment 
further augmented this effect.  

Further, we wanted to see, whether apoptosis is involved in the reduction of cell 
numbers in response to CD44-3MUT-Fc treatment. We found that the basal 
levels of apoptosis were expectedly in inverse correlation with the EC growth-
inducing potency of the cytokine. The number of apoptotic cells was the lowest 
in FGF-2- and VEGF-stimulated cultures and the highest in GDF-2-stimulated 
cultures. Moreover, the effect of CD44-3MUT-Fc on apoptosis was found to be 
in correlation with its effects on cell proliferation. While VEGF- and FGF-2-
induced ECs displayed a modest increase in apoptotic cell numbers in response 
to CD44-3MUT-Fc treatment, the increase was more noticeable in HGF-induced 
cells and GDF-2-induced ECs. Our results suggest that cells under stress are 
more sensitive to CD44-3MUT-Fc treatment, and therefore more prone to 
undergo apoptosis. 

Together, our results indicate that CD44-3MUT affects angiogenesis primarily 
by inhibiting EC proliferation. 

3.2 Knockdown of CD44 enhances EC proliferation and viability 
(Manuscript) 

CD44 is a coreceptor for receptor tyrosine kinases MET, VEGFR2, EGFR and 
ErbB2 (Meran et al., 2011; Tremmel et al., 2009; Yu et al., 2002). Accordingly, 
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its coreceptor function is involved in epithelial cell signaling, cancer, and 
angiogenesis. However, it is not clear, whether and how CD44 expression 
affects EC proliferation. Lung ECs derived from Cd44-/- mice displayed 
impaired in vitro ability of tube formation, but the proliferation and migration of 
those ECs remained unaltered (Cao et al., 2006). Another study showed a 
reduced initial proliferation rate of Cd44-/- mice-derived brain ECs compared to 
wild type-cells, whereas secondary proliferation in dense Cd44-/- EC cultures 
was increased (Tsuneki and Madri, 2014). This suggests that CD44 expression 
associates with reduced proliferation under certain conditions. We interrogated 
CD44 in ECs first by increasing CD44 dose by adding CD44-3MUT-Fc to the 
culture and, alternatively, by silencing its expression by siRNA transfection. We 
saw that treating ECs with soluble recombinant CD44-3MUT-Fc resulted in the 
inhibition of EC proliferation (see Sect. 3.1), which is in agreement with the 
findings of Tsuneki and Madri (2014) study. 

Given that the Cd44 gene deficiency resulted in augmented angiogenic response 
in our experiments and CD44-3MUT inhibited EC proliferation, we decided to 
study whether the knockdown of CD44 expression results in increased EC 
proliferation. We used CD44-siRNA transfected HUVECs in cell proliferation 
assays. CD44-silenced HUVECs were initially growth-arrested by serum 
starvation, and thereafter released from quiescence by stimulation with serum or 
different concentrations of VEGF, FGF-2, or GDF-2. The real-time tracking of 
cell culture impedance revealed that silencing of CD44 expression by transient 
siRNA transfection increased proliferation in ECs stimulated either by serum, 
VEGF, or FGF-2. At the end of the experiment, the increased cell numbers of 
siCD44-transfected ECs were confirmed by assessment of viable cells and also 
by modelling of the barrier formation. Consistent with the higher cell density, 
CD44-silenced ECs formed more robust barrier. Although the ECIS 
measurements showed that CD44 silencing could not rescue GDF-2-induced 
ECs, the cell viability assay showed more viable cells also in this group. 
Together, these results suggest that CD44 silencing results in augmented cell 
proliferation in response to different GFs (Figure 5B), further suggesting that 
CD44 is not involved with any specific GF pathway.  

Consistently with our results, Cd44-/- mice displayed increased neointima 
formation and vSMC proliferation in response to arterial injury (Kothapalli et 
al., 2007). This suggests that CD44 expression regulates proliferation also in 
other cell types than ECs. In this case, HMW-HA binding to CD44 was shown 
to induce the growth suppression of vSMCs and other mesenchymal cell types 
(Kothapalli et al., 2007). As the previous studies demonstrated that CD44 is 
upregulated in tumour blood vessels as well as in FGF-2- and VEGF-stimulated 
ECs (Griffioen et al., 1997), it is plausible that CD44 controls EC proliferation 
via negative feedback signalling. Interestingly, we found that CD44-3MUT 
binding to ECs was increased in response to VEGF stimulation (Publication II). 
Taking into account that CD44 dimerizes partly via its ectodomain interactions 
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(Hartmann et al., 2015), and HMW-HA has been shown to increase CD44 
clustering (Yang et al., 2012), it could be speculated that CD44-3MUT might 
enhance the EC growth-suppressive properties of endogenous CD44 by inducing 
CD44 clustering similarly to HMW-HA. 

In summary, as silencing of CD44 in ECs resulted in elevated proliferation, in 
vitro data support the results of the in vivo angiogenesis assay, and indicate that 
enhanced angiogenic response in Cd44-/- mice might result from increased 
growth rates and survival of CD44-deficient ECs. 

3.3 The molecular mechanism behind CD44 effects (Manuscript) 

We tested one of the possible molecular mechanisms behind the CD44-mediated 
control of cell proliferation on ECs. Our initial hypothesis was based on the fact 
that CD44 is extensively endocytosed and it is a co-receptor for several 
angiogenic GF receptors, such as MET (Orian-Rousseau et al., 2002) and 
VEGFR2 (Tremmel et al., 2009). We proposed that endocytosis of CD44 would 
decrease the level of GF receptors on the EC surface and thereby render ECs 
unresponsive to GF stimulation. To test this hypothesis, we used serum-starved 
HUVECs, treated them with CD44-3MUT-Fc, and then induced these cells with 
different CD44-related angiogenic GFs. However, we found no changes in 
activation or the level of GF receptors in response to CD44-3MUT-Fc. In 
addition, CD44-silenced HUVECs displayed no changes in basal VEGFR2 or 
FGFR1 levels. These results again indicate that CD44-3MUT-Fc does not target 
the signalling of these specific GF receptors directly, but rather causes EC 
growth inhibition downstream of GF receptor activation.  

Another possible mechanism of CD44-mediated growth inhibition might be 
related to the employment of CD44 in TGF-β signalling (Bourguignon et al., 
2002; Peterson et al., 2004; Tanikawa et al., 2010). Our own results showed 
increased cell cycle block and apoptosis in response to CD44-3MUT-Fc 
treatment in GDF-2 induced HUVECs (see Sect. 3.1). This led us to the 
hypothesis that CD44 may exert its anti-angiogenic functions by enhancing 
GDF-2 signalling. Therefore, we tested whether GDF-2-mediated SMAD1/5 
activation is affected by silencing of CD44 expression. As expected, we found 
that HUVEC stimulation with GDF-2 led to phosphorylation and nuclear 
localisation of SMAD1/5, and resulted in the activation of BMP-responsive 
element reporter and transcription of selected SMAD1/5 target genes. However, 
silencing of CD44 expression or CD44-3MUT-Fc treatment showed no effect on 
those GDF-2-mediated responses in HUVECs. In line with this, no changes in 
the expression levels of SMAD1/5 target genes in the lungs of CD44-3MUT-Fc-
treated mice were observed. These results show that GDF-2 mediated SMAD1/5 
signalling is not affected by CD44 or CD44-3MUT-Fc. 

A study by Morrison et al. (2001) shows that CD44 is required for recruiting the 
tumour suppressor NF2 to the plasma membrane to mediate contact inhibition. 
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Based on this, it is possible that silencing of CD44 abolishes NF2 function and 
leads to defective contact inhibition and enhanced proliferation. However, 
embryonic fibroblasts derived from Cd44-/- mice displayed functional contact 
inhibition, yet faster growth rates compared to their wild-type counterparts 
(Lallemand et al., 2003). Moreover, we observed steadily increased growth rates, 
barrier formation, and unchanged cell adhesion in CD44-silenced ECs after they 
were released from quiescence by GF stimulation (see Sect. 3.2). Thus, it seems 
that mechanisms other than impaired contact inhibition are responsible for 
enhanced cell proliferation. 

Taken together, our results suggest that the exertion of the effects of CD44 is 
independent of specific angiogenic GF signalling. 

4 Vimentin is involved in the EC growth-inhibiting function of CD44 
(Publications I-II, Manuscript, Patent, unpublished data) 

We identified a CD44-binding protein on the EC surface. Suprisingly, we found 
that CD44-3MUT binds to the intermediate filament protein vimentin 
(Publication II and Patent). Vimentin is abundantly expressed in ECs and is also 
exposed to the cell surface. The pull-down assays with vimentin deletion 
mutants showed that vimentin N-terminal head domain was responsible for 
CD44-3MUT binding (Publication II and Patent). In order to locate the CD44 
binding site in vimentin more precisely, we used synthetic peptides covering the 
vimentin N-terminal domain and CD44-3MUT in the MicroScale Thermoforesis 
binding assay (performed by NanoTemper Technologies). The analysis showed 
that CD44-3MUT binds to vimentin peptides that contain amino acids 14-37 (Kd 
461 ± 45.8 nM), 38-60 (Kd 8.5 ± 0.3 µM) and 50-72 (Kd 9.4 ± 0.9 µM), but 
does not bind to peptides containing amino acids 2-25, 62-85 and 75-97 
(unpublished results). These data suggest that amino acids 26-62 in the vimentin 
head domain are sufficient for CD44 binding. The Surface Plasmon Resonance 
analysis revealed that there were two CD44-3MUT binding sites in vimentin 
(Publication II). The Kd values for high-affinity and low-affinity binding sites 
were 74 nM and 15 µM, respectively. The results of the MicroScale 
Thermoforesis assay support the two-site ligand model of CD44-3MUT and 
suggest that aa residues 26-37 in the vimentin N-terminus mediate high-affinity 
binding and aa 38-62 mediate low-affinity binding. 

Endogenous CD44 HABD contains five N-linked glycosylation sites (English et 
al., 1998). CD44-3MUT, on the other hand, is a bacterially purified recombinant 
protein without any post-translational modifications. Thus, we asked whether 
EC-endogenous CD44 and vimentin could also interact. By using co-
immunoprecipitation with an anti-CD44 antibody, we demonstrated that full-
length endogenous CD44 is able to form a complex with minor amounts of 
vimentin. However, the anti-vimentin antibody was not able to co-precipitate 
full-length CD44. This discrepancy may result from very high vimentin 
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expression in HUVECs, of which only a small population interacts with CD44. 
Vimentin is present in cells in different forms, most abundantly as long IFs, but 
also as short squiggles and particles (Prahlad et al., 1998). Filaments are 
concentrated around the nucleus, in the trailing edge and in the cell tail. 
Squiggles are located at the ends of filaments and non-filamentous particles are 
located in lamellipodia. It is plausible that CD44 interacts with the minor, non-
filamentous vimentin fraction. Thus, the co-precipitated CD44 may just remain 
below the detection limit. Nevertheless, we confirmed the full-length CD44 and 
vimentin association by co-immunoprecipitation of over-expressed proteins. 
Together, these results show that vimentin can also form a complex with post-
translationally modified CD44, indicating, therefore, that this interaction may 
have physiologically relevant functions in ECs.  

The possible physiological importance of CD44–vimentin interaction is also 
supported by the studies where CD44 and vimentin were both found to form a 
complex with a (Na+ K+)/H+ exchanger at the membrane of breast cancer cells 
(Kagami et al., 2008). CD44 and vimentin colocalize during E.coli-induced 
neutrophil transmigration across brain microvascular ECs (Che et al., 2011), and 
direct MT1-MMP to the front of migrating cells to allow the ECM degradation 
(Kwak et al., 2012; Mori et al., 2002). CD44 and vimentin are also well-known 
EMT markers in cancer cells, whereas both proteins mutually regulate each 
other’s expression in breast and colon cancer cells (Brown et al., 2011; Lehtinen 
et al., 2013). More importantly, CD44 and vimentin are upregulated on the 
activated tumour endothelium (Griffioen et al., 1997; van Beijnum et al., 2006), 
and disruption of the functions of either CD44 or vimentin results in 
compromised vascular integrity (Flynn et al., 2013; Nieminen et al., 2006). 

In order to study the CD44–vimentin interaction, we first carried out the CD44-
3MUT internalization assay. CD44 and vimentin were shown to associate with 
the vesicles of the clathrin-independent endocytic pathway (Howes et al., 2010). 
Our results demonstrated that CD44-3MUT was rapidly internalized by MLECs 
isolated from wild-type mice (Publication I and II), but not by MLECs derived 
from vimentin-deficient mice (Publication II). To test whether the EC growth-
inhibiting function of CD44-3MUT might be dependent on vimentin, we used 
MLECs isolated from vimentin-deficient mice. The results showed that CD44-
3MUT treatment inhibited the growth of wild-type MLECs, whereas this effect 
was not observed in vimentin-deficient MLECs. These data indicate that CD44-
3MUT inhibits EC proliferation via a vimentin-dependent mechanism 
(Publication I). The ECIS cell growth assay showed that silencing of CD44 
enhanced EC survival (see Sect 3.2). In case of CD44–vimentin signalling, we 
expected a similar effect in vimentin-silenced ECs. Indeed, the initial growth 
rate and barrier formation of vimentin-silenced ECs was increased after seeding 
and before serum starvation, and was comparable to CD44-silenced HUVECs 
(Manuscript). Nevertheless, after release from quiescence the impedance 
measured at high frequencies (e.g. 64000 Hz), which indicates the cell density 
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on the measuring electrode, was similar to controls. The similar-to-controls cell 
density of vimentin-silenced cells was confirmed by the quantitation of viable 
cells at the end of the experiment (Manuscript). Thus, it is possible that in 
vimentin-silenced ECs, the re-entry into the cell cycle after serum deprivation is 
not as efficient as in CD44-silenced cells. Low frequency impedance 
measurements of vimentin-silenced ECs (≤1000 Hz; reporting mostly cell-cell 
and cell-matrix adhesions) suggested increased cell adhesion in these cells 
(Manuscript). Consistently, vimentin expression was shown to correlate with 
enhanced FA dynamics (Gregor et al., 2014; Mendez et al., 2010). Furthermore, 
vimentin-deficient fibroblasts display aberrant actin stress fibres lacking 
geodome structures (Eckes et al., 1998), along with more robust FAs and 
impaired motility (Eckes et al., 1998; Gregor et al., 2014). It was suggested that 
the enlarged FAs and FA reduced turnover in cells with disrupted vimentin IFs 
are caused by diminished cytoskeletal tension. Decreased cytoskeletal tension, in 
turn, leads to impaired integrin-mediated mechanotransduction. The absence of 
vimentin IFs at FAs resulted in attenuated FAK and ERK1/2 activity and RhoA 
overactivation. Via a compensatory positive feedback loop these alterations 
consequently result in the upregulation of activated, high-affinity, but 
functionally inefficient integrins (Gregor et al., 2014). Interestingly, the 
disruption of actin cytoskeleton was shown to restrict re-entry into the G1-phase 
from quiescence (G0), but not progression to the G1-phase from mitosis in 
cycling cells (Margadant et al., 2013). This observation may provide a plausible 
explanation for the differences in vimentin-silenced EC growth kinetics before 
and after cell cycle arrest.  

In summary, our results indicate that vimentin might be involved in the EC 
growth-restraining properties of CD44. It remains to be elucidated, what the 
molecular mechanism behind this is, and whether vimentin is also required for 
CD44-mediated anti-angiogenic signalling in vivo. 
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CONCLUSIONS 

1. The pharmacokinetic properties of CD44-3MUT were improved by 
using two different approaches: 

 PEGylation increased the circulation half-life of CD44-3MUT. 

 Attachment of the human IgG Fc fragment to the C-terminus of 
CD44-3MUT resulted in increased half-life and improved 
biodistribution of the protein conjugate 

2. CD44 is an endogenous inhibitor of angiogenesis. 

 Cd44-/- mice display enhanced angiogenesis. 

 Systemic administration of CD44-3MUT-Fc inhibits 
angiogenesis in mice. 

3. CD44 controls EC proliferation. 

 CD44-silenced ECs display increased proliferation and survival. 

 CD44-3MUT-Fc inhibits EC growth and viability. 

 The EC growth inhibitory effects of CD44 are independent of 
specific pro-angiogenic GF signalling pathways. 

4. Vimentin binds to CD44 via its N-terminal amino acids 26 to 62 and is 
involved in the growth inhibitory effect of CD44 in ECs. 
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ABSTRACT 

CD44 is the principal receptor for hyaluronan (HA). CD44 functions in a variety 
of physiological as well as pathological processes, such as HA metabolism, cell 
adhesion, migration, lymphocyte trafficking, inflammation and cancer 
progression. CD44 is also involved in angiogenesis, the growth of new blood 
vessels, but how exactly CD44 regulates angiogenesis is not clear. Angiogenesis 
is deregulated in cancer, and treatments targeting angiogenesis show clinical 
benefit in cancer therapy. However, the efficacy of anti-angiogenic treatments in 
cancer is limited due to eventual acquisition of drug resistance via several 
mechanisms. A more detailed understanding of the mechanisms and factors 
regulating angiogenesis is crucial for the development of more effective anti-
angiogenic therapies. In this thesis, our findings on the role of CD44 in 
angiogenesis and endothelial cell (EC) growth are presented.  

Angiogenesis was investigated in vivo in two mouse models, in Cd44-null mice 
and in immuno-deficient nude mice. In nude mice, we studied the effect of the 
recombinant, non-HA-binding mutant of CD44 (CD44-3MUT). However, 
CD44-3MUT displayed very short serum half-life, which may compromise its in 
vivo efficacy. Therefore, we decided to improve the pharmacokinetic properties 
of CD44-3MUT. We tested two different approaches. First, we used the 
chemical addition of the polyethylene glycol (PEG) moiety to the N-terminus 
and, second, we cloned the Fc region of human IgG to the C-terminus of CD44-
3MUT. Both resulting fusion proteins, PEG-CD44-3MUT and CD44-3MUT-Fc, 
exhibited improved pharmacokinetic properties. CD44-3MUT-Fc displayed 
shorter serum residence time, but better biodistribution and was easier to 
produce than PEG-CD44-3MUT. Thus, we chose to use CD44-3MUT-Fc for 
further in vivo studies. In vivo angiogenesis assays suggested that CD44 
functions as an endogenous inhibitor of angiogenesis. We found that 
angiogenesis was reduced in CD44-3MUT-Fc-treated nude mice, whereas Cd44-
null mice displayed augmented angiogenic response compared to wild-type 
controls. To study the effects of CD44 at cellular level, real-time impedance-
based monitoring of cell growth as well as end-point cell viability assays were 
used. These experiments demonstrated that CD44 is involved in the inhibition of 
EC proliferation and survival. We found that silencing of CD44 enhanced EC 
proliferation induced by different growth factors, whereas CD44-3MUT-Fc 
treatment suppressed EC proliferation. CD44 functions as a co-receptor for 
several receptor tyrosine kinases and is involved in TGF-β signalling. However, 
we found no changes in the activation or protein levels of growth factor 
receptors in response to CD44-3MUT-Fc treatment or CD44-silencing. These 
results suggest that CD44 inhibited EC proliferation independently of specific 
angiogenic growth factor signalling. Finally, we found that intermediate filament 
protein vimentin interacts with CD44-HABD via its N-terminus and might also 
contribute to CD44-mediated EC growth inhibition.  
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In summary, this study suggests a novel role for CD44 as the inhibitor of 
angiogenesis and endothelial proliferation. This study also provides some data 
and implications regarding the molecular mechanism behind this function. Our 
results suggest that CD44 is important for retaining normal levels of 
angiogenesis and might thus serve as a target for therapeutic angiogenesis or 
anti-angiogenesis. 
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KOKKUVÕTE 

Veresooned varustavad organismi kudesid hapniku ja toitainetega. Täiskasvanud 
organismis on veresooned enamasti vaikeolekus ning uute veresoonte teke 
olemasolevatest veresoontest väljapungumise teel (angiogenees) toimub ainult 
vähestel juhtudel. Sellisteks juhtudeks on näiteks haava paranemine ja kudede 
taastumine. Angiogenees on väga täpselt reguleeritud protsess ning sellest 
kõrvalekalded on seotud isheemiliste haiguste, põletikukollete ja ka 
vähkkasvajatega. Angiogeneesi reguleerivatest mehhanismidest ja selles 
osalevatest faktoritest parem arusaamine võimaldab uute ja efektiivsemate 
angiogeneesi ravistrateegiate väljatöötamist.  

Üheks angiogeneesi reguleerivaks valguks on glükovalk CD44. CD44 üheks 
olulisemaks ligandiks on hüaluroonhape, mida ta seob üle oma 
aminoterminaalse hüaluroonhapet siduva domeeni. CD44 osaleb organismis 
mitmetes erinevates füsioloogilistes ja patoloogilistes protsessides, näiteks 
hüaluroonhappe metabolismis, rakuadhesioonis ja migratsioonis, lümfotsüütide 
liikluses, põletikulistes protsessides ning ka vähitekkes. CD44 funktsioon 
vererakkude liikluses ning vähkkasvaja siirete moodustumises on hästi teada. 
Samas, CD44 rolli veresoonte tekkes ja veresoonte sisepinnal paiknevate 
endoteelirakkude jagunemises on vähem uuritud ning paljud aspektid on veel 
ebaselged. Sellest lähtuvalt oli käesoleva töö eesmärgiks uurida CD44 seotust 
angiogeneesiga ning täpsustada tema rolli endoteelirakkude kasvus.  

CD44 funktsiooni uurimiseks kasutati kahte erinevat lähenemist. Angiogeneesi 
uuriti nii CD44-knockout hiirtes kui immuunpuudulikes hiirtes. 
Immuunpuudulikes hiirtes kavatseti kasutada CD44 toime uurimiseks 
rekombinantset hüaluroonhapet mittesiduvat CD44 mutanti (CD44-3MUT). 
CD44-3MUT poolestusaeg hiire veres on väga lühike, mis võib põhjustada tema 
mõju vähenemist. Seetõttu parandati antud töös kahe erineva lähenemise abil ka 
CD44-3MUT farmakokineetilisi omadusi. Selleks liideti esmalt keemilise 
reaktsiooni abil CD44-3MUT aminoterminaalsesse otsa polüetüleenglükool 
(PEG) ahel. Teise lähenemisena liideti kloonimise teel CD44-3MUT 
karboksüterminaalsesse otsa inimese immuunoglobuliini konstantne Fc domeen. 
Nii PEG-CD44-3MUT kui ka CD44-3MUT-Fc farmakokineetilised omadused 
paranesid tunduvalt võrreldes modifitseerimata CD44-3MUT valguga. CD44-
3MUT-Fc poolestusaeg oli küll lühem kui PEG-CD44-3MUT valgul, kuid tänu 
tema paremale jaotusele kudedes ning kergemale tootmisprotsessile, kasutati 
edasistes funktsiooniuuringutes just CD44-3MUT-Fc versiooni. 
Angiogeneesikatsed hiirtes viitasid, et CD44 pidurdab organismis uute 
veresoonte teket. Kui CD44-knockout hiirtes oli angiogenees suurenenud, siis 
CD44-3MUT-Fc manustamine vastupidiselt vähendas angiogeneesi. 
Tõenäoliselt pidurdab CD44 uute veresoonte moodustumist, surudes alla 
endoteelirakkude jagunemist ja elulemust. Rakukasvu katsed näitasid, et CD44 
taseme vähendamine RNA vaigistamise teel võimendas endoteelirakkude 
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jagunemist. Seevastu CD44 hulga suurendamine CD44-3MUT-Fc söötmesse 
lisamise abil pidurdas endoteelirakkude kasvu. Edasised uuringud näitasid, et 
raku tsütoplasma valk vimentiin, mis seondub CD44-le läbi oma 
aminoterminaalse otsa, osaleb CD44 poolt vahendatud endoteelirakkude kasvu 
pidurdamises. 

Kokkuvõttes viitavad käesolevas doktoritöös olevad andmed, et CD44 toimib 
kui endoteelirakkude jagunemise ja angiogeneesi negatiivne regulaator. Saadud 
tulemused viitavad, et CD44 funktsioon on oluline normaalse angiogeneesi 
taseme säilitamiseks, mis annab alust CD44 valku uurida kui uudset sihtmärki 
terapeutilises angiogeneesis või angiogeneesivastases vähiravis.  
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