

TALLINN UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING

Department of Electrical Power Engineering and Mechatronics

DRONE MOVING TARGET LANDING SYSTEM AND
ALGORITHM FOR SEMI- AND FULL AUTONOMOUS

LANDING CONTROL

DROONI LIIKUVAL PLATVORMIL MAANDUMISE SÜSTEEM
JA ALGORITM POOL- NING TÄISAUTONOOMSE

MAANDUMISE JUHTIMISEKS

MASTER THESIS

Student: ANASTASIA KRUTYAKOVA

Student Code: 196645MAHM

Supervisors: Mart Tamre

 Alexander Kapitonov

Tallinn 2020

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“.......” 2020 .

Author: Anastasia Krutyakova ….........................

 /signature /

Thesis is in accordance with terms and requirements “.......” 2020 .

Supervisors: Mart Tamre ….........................

 /signature/

 Alexander Kapitonov ….........................

 /signature/

Accepted for defence

“.......”....................2020 .

Chairman of theses defence commission: ...

 /name and signature/

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

Non-exclusive Licence for Publication and Reproduction of
GraduationTthesis¹

I, Anastasia Krutyakova, (date of birth: 12.11.1996) hereby

1. grant Tallinn University of Technology (TalTech) a non-exclusive license for my thesis

Drone moving target landing system and algorithm for semi- and full autonomous landing

control___,

 (title of the graduation thesis)

supervised by Professor Mart Tamre, Assosiate Professor Alexander Kapitonov ,

1.1 reproduced for the purposes of preservation and electronic publication, incl. to be

entered in the digital collection of TalTech library until expiry of the term of copyright;

1.2 published via the web of TalTech, incl. to be entered in the digital collection of TalTech

library until expiry of the term of copyright.

1.3 I am aware that the author also retains the rights specified in clause 1 of this license.

2. I confirm that granting the non-exclusive license does not infringe third persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

¹ Non-exclusive Licence for Publication and Reproduction of Graduation Thesis is not valid during the

validity period of restriction on access, except the university`s right to reproduce the thesis only for

preservation purposes.

______________ (signature)

______________ (date)

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

5/25/2020

THESIS TASK

Student Anastasia Krutyakova, 194822EV, (name, student code)

 196645MAHM

Supervisor Mart Tamre, professor (name, position)

Supervisor Alexander Kapitonov, associate professor (name, position)

Thesis topic:

(in English) Drone Moving Target Landing System and Algorithm for Semi-

 and Full Autonomous Landing Control

(in Estonian) Drooni liikuval platvormil maandumise süsteem ja algoritm

 pool- ning täisautonoomse maandumise juhtimiseks

1. RESEARCH SCHEDULE

Name of step Deadline

Literature review 1 December

Creating the algorithm 1 February

Tuning the system 1 March

Simulating the algorithm 15 April

Finishing report and presentation 22 May

 Language: English Deadline for submission of thesis:

Student: Anastasia Krutyakova “…….” ………………. 2020

 /signature/

Supervisor: Mart Tamre “…….” ………………. 2020

 /signature/

Supervisor: Alexander Kapitonov “…….” ………………. 2020

 /signature/

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

5

TABLE OF CONTENTS

AUTHOR’S DECLARATION 2

Non-exclusive Licence for Publication and Reproduction of GraduationTthesis¹ 3

THESIS TASK 4

TABLE OF CONTENTS 5

LIST OF FIGURES .. 7

LIST OF TABLES .. 8

LIST OF ABBREVIATIONS ... 9

INTRODUCTION ..10

1. LITERATURE OVERVIEW ..12

1.1. Drone aircraft lands on roof of car travelling at 75 km/h12

1.2. Quadrotor landing on moving platform ...13

1.3. Drone delivery systems ..15

1.3.1. Amazon Prime Air ..15

1.3.2. Uber Eats Drone ..16

1.3.3. Wing ..17

1.4. Conclusion ..17

2. ALGORITHM OVERVIEW ...19

2.1. Description of the algorithm performance..19

2.2. Adverse conditions ..20

2.3. Performance during adverse conditions ...20

2.4. Conclusion ..21

3. DEVELOPMENT OF THE ALGORITHM ..23

3.1. Software installation ...23

3.1.1. Description of rospackages in the workspace24

3.2. Graphical interface ...26

3.2.1. Start menu ..26

3.2.2. Flight management menu ...27

3.2.3. Manual control menu ..28

3.2.4. Landing menu ..29

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

6

3.2.5. Emergency menu ...29

3.3. Landing module ...30

3.3.1. Tracking-Landing Algorithm ...31

3.3.2. Detection and Localization of the Mobile Platform32

3.3.3. Tracking the Mobile Platform ...33

3.4. Manual control module ...34

3.5. Emergency module ..37

3.6. Conclusion ..38

4. SIMULATION ..39

4.1. Design of the Testing Environment ...39

4.2. Testing the system ...40

4.2.1. Performing the landing on the moving platform42

4.2.2. Testing the Emergency Mode ...45

4.2.3. Testing the Manual Control Mode ...46

4.3. Conclusion ..47

5. CONCLUSIONS AND FUTURE RECOMMENDATIONS ..48

5.1. Conclusion ..48

5.2. Future recommendations ..48

REFERENCES ...50

APPENDICES ..53

Appendix 1 The start menu ..53

Appendix 2 The start launch file ...54

Appendix 3 The flight management menu ..56

Appendix 4 The landing mode file ...61

Appendix 5 The landing mode launch file ...62

Appendix 6 The manual mode file ...63

Appendix 7 The manual mode launch file ...64

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

7

LIST OF FIGURES

Figure 1.1 Penguin BE landed on roof of car travelling at 75kmph [4]12

Figure 1.2 Amazon's delivery drone [3] ...15

Figure 1.3 Uber Eats Drone [2] ..16

Figure 1.4 Wing's delivery drone [17] ...17

Figure 2.1 The flowchart of the developed algorithm ...19

Figure 3.1 The Start Menu ...26

Figure 3.2 The Flight Management Menu ...28

Figure 3.3 The Manual Control Menu ...29

Figure 3.4 The Landing Menu ...29

Figure 3.5 The Emergency Menu ...30

Figure 3.7 Pinhole camera geometry [27] ..33

Figure 3.8 The PlayStation 4 Joystick [29] ...34

Figure 3.8 “jstest-gtk” ...37

Figure 4.1 The designed simulated environment ...39

Figure 4.2 The Gazebo simulation and “Flight Management” menu both opened by

“start.py” ..40

Figure 4.3 ROS nodes and ROS topics created ..40

Figure 4.4 The Gazebo simulation and “Landing” menu after performed landing42

Figure 4.5 ROS nodes and ROS topics created ...43

Figure 4.6 The Gazebo simulation and “Landing” menu after performed landing45

Figure 4.7 The Gazebo simulation and “Manual Control” menu46

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

8

LIST OF TABLES

Table 3.1 PS4 Controller Map. Buttons ..35

Table 3.2 PS4 Controller Map. Axes. ...36

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

9

LIST OF ABBREVIATIONS

UAV Unmanned Aerial Vehicle.

ROS Robot Operating System

EKF Extended Kalman Filter

UGV Unmanned Ground Vehicle

PID Proportional-Integral-Derivative

3D Three-Dimensional

IBVS Image-Based Visual Servo

MPC Model Predictive Control

VTOL Vertical Take-Off and Landing

HSV Hue, Saturation, Value

IMU Inertial Measurement Unit

MAE Mean Absolute Error

CSV Comma-Separated Values

GUI Graphical User Interface

URDF Unified Robot Description Format

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

10

INTRODUCTION

Over the past few decades, robotics has become one of the most promising spheres.

Automatization of manufacturing processes makes it possible to perform production

faster and cheaper, mobile robots have turned up to be an enormous help in rescuing

and military missions and companion robots are to become extremely useful assistants.

Unmanned aerial vehicles (UAV) or drones have numerous civilian, commercial, military,

and aerospace applications. The drones have been operated in the delivery business for

a long time now but there are still many issues unsolved.

First of all, drone cannot operate in high winds or rain. Another challenge is

manoeuvring: the vast majority of deliveries would need to be in an urban environment

where potential airborne threats are considerably higher than rural areas. The most

significant challenge is that the use of airborne delivery systems requires a significant

amount of approval. Not only from boards and engineers, but from aviation authorities

across the world. Any aircraft in the world requires flight plans and safety checks before

they are allowed to leave the runway. However using drones in delivering is quite

promising thing as they can be implemented for food delivery along with medicine, mails

and etc. To make that possible not only mentioned problems must be solved but also

there should be no laws broken and UAVs should run as much autonomously as possible.

One of the best solutions of drone-based delivery in the cities is making it possible to

UAVs to perform a landing on roofs of moving cars. It’ll make a landing process safer,

prolong the distance and the speed that drone can reach, help avoid non-flying zones

and etc. There also may be some places where it’s really difficult to perform a drone

landing and it’ll provide an ability for people to catch a drone with a delivered package.

[1] There are some companies that are really interested in performing a drone landing

on a moving target such as Uber [2] or Amazon [3]. Their researches will be overviewed

in Chapter 1.

This work is dedicated to solving the problem of detecting the opportunity for a drone

to land on a target placed on a roof of a moving platform and performing the

autonomous landing if it is possible. The work will include both theoretical and practical

part. Theoretical part will include overview of existing solutions for an autonomous drone

landing systems, autonomous drone landing systems on moving targets and of

companies that already use drone delivery systems or about to implement one. Practical

part will include designing a simple algorithm for automatic landing, implementation of

the algorithm in C++ and Python, designing a graphical user interface (GUI) to control

the system and testing the algorithm under “Gazebo” simulator. ROS will be used as

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

11

the communication framework between the whole set of components in the architecture.

The operative system utilized for running the different processes is Ubuntu 16.04.

In this work will be presented the algorithm that will allow drone to make the landing

decision. If the landing couldn’t be performed drone needs to understand the reason

why it can’t be performed (weather conditions, high speed of the landing platform, losing

the target). Other important thing is that drone has to understand the remaining charge

of the it’s battery. If there are no landing platforms and drone is not able to fly any

more it should perform emergency landing on a safe ground and send its own

coordinated so the operator could understand that there is a problem and rescue the

drone.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

12

1. LITERATURE OVERVIEW

This chapter describes existing methods and solutions for drone landing: (1) drone

aircraft landing on top of a car travelling at 75 km/h (Section 1.1); (2) brief description

of different researches on quadrotor landing on a moving platform (Section 1.2); (3)

brief description of drone delivery services (Section 1.3) and (4) concluding part

(Section 1.4).

1.1. Drone aircraft lands on roof of car travelling at 75

km/h

In 2016 team of researcher from German Aerospace Center landed [4] an unmanned,

electric-powered, autonomous aircraft on top of a car travelling at 75 km/h. Test flight

involved a three-meter, 20 kg fixed-wing UAV Penguin BE. The landing was achieved

using optical targets on the roof of the car, which was equipped with a flat net for the

UAV to rest on. As the aircraft approached the car, it used the targets to line itself up

and gauge distance within 50 cm, bringing itself in for approach and landing under

computer control. This landing technique can be useful when applied to solar-powered

drones operating at altitudes of over 20 km for weeks at a time, by simplifying landings

in adverse weather conditions.

Figure 1.1 Penguin BE landed on roof of car travelling at 75 km/h [4]

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

13

1.2. Quadrotor landing on moving platform

There are quite a few papers dedicated to an autonomous quadrotor landing. They all

use different control techniques but all more or less solve the problem of drone landing

on a moving target. Almost all works use Kalman filter.

The algorithm [5] presents the design of a landing platform and its relative pose

estimation. Two filters were designed to conduct the fusion: an EKF and an Extended

H∞ (EH∞). Simulation was done in Gazebo. The experimental tests were conducted on

the AR.Drone 2.0 quadrotor.

The system [6] was experimentally validated by successfully landing in multiple trials a

commercial quadcopter on the roof of a car moving at speeds of up to 50 km/h. System

architecture was presented, including the structure of the Kalman filter for the

estimation of the relative position and velocity between the quadcopter and the landing

pad, as well as the controller design for the full rendezvous and landing manoeuvres.

The algorithms were implemented in C++ using ROS. Also, several real-flight

experiments were done outdoors. As it was said before, UAV performed landing

satisfyingly on the platform with the speed up to 50 km/h.

Paper [7] also solves the problem of autonomous drone landing on a moving target.

Usually, algorithms are based on tracking the desired target, but in this paper, approach

is based on other three stages: estimation, prediction and fast landing. Simulation was

done in Gazebo. All the software components were developed using C++ and ROS as

the communication framework between the whole set of components in the architecture.

Paper [8] proposes a vision-based neural network controller for the autonomous landing

of a quadrotor on moving targets. The landing is performed with an error of less than

37 cm from the centre of a mobile platform traveling at a speed of up to 12 m/s under

the condition of noisy measurements and wind disturbances. To simulate the developed

controller the ROS framework was used along with Gazebo. The controller was

implemented on the AR.Drone 2.0 quadrotor. No real-life experiments were made.

Landing system [9] is using model predictive control (MPC). To provide the position,

velocity and acceleration of the UAV the EKF was used. The approach consists of vision-

based target following, optimal target localization, and model predictive control, for

optimal guidance of the UAV. To validate the control method for autonomous landing on

a moving platform, the DJI hardware-in-the-loop (HITL) simulation environment was

used. To connect all the components of the system ROS framework was used. Since the

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

14

UAV, that was used in the work, can fly at a speed of up to 18 m/s, the maximum target

speed set in the simulations was 12 m/s for a headwind speed of 5 m/s.

System [10] uses a composite landmark for landing on a moving platform. The landing

system contains four layers: sensor layer, data fusion layer, decision layer and control

layer. The sensor layer consists of a variety of heterogeneous sensors, including the

R2D landmark, encoder, inertial measurement unit (IMU), and GPS. The sensor layer

provides the measurements of the moving platform and drone. The fusion layer uses

the measurement data from the sensor layer to obtain the real-time pose estimation of

the UAV and the moving platform. The decision layer generates the desired waypoint

and trajectory online based on the real-time pose estimation from the data fusion layer.

The control layer realizes the visual tracking of the moving platform and the pose control

of the UAV. EKF is used to deal with temporarily missing visual information, the unknown

measurement bias of encoders caused by wheel-slip and imprecise calibration is taken

into consideration in the target’s dynamical model, and the state of the moving platform.

The Gazebo and ROS simulation software were used to build the experimental

environment. The real-flight experiments were successfully done outdoors.

System [11] is an autonomous landing system that uses only onboard sensing and

computing. Communication between modules happens through ROS. To deal with

missing visual detections, as well as to estimate the full state of the platform (namely

the position, velocity and orientation), EKF was used. Gazebo and RotorS were used to

validate the framework in simulation. A Clearpath Husky UGV simulated model as

ground vehicle, on top of which the detected tag was mounted. In the real-world

experiments a Clearpath Jackal was used as ground vehicle carrying the landing

platform and was controlled manually. In nominal conditions the platform can reach a

maximum speed of 2 m/s. A 150x150 cm wooden landing pad equipped with the tag

was installed on the top of the vehicle, reducing its maximum speed to approximately

1,5 m/s due to the additional weight. Experiment was performed successfully indoors.

Paper [12] suggests to eliminate the need for a landing gear by landing on a mobile

ground vehicle. This would not only increase the payload capacity, but also simplify

landings in crosswind conditions and thus increase the operational availability. A system

with a small UAV and a car-mounted landing platform was prepared as a technology

demonstrator. Different aspects of the landing problem were studied in simulations and

real experiments and algorithms for the cooperative control of both vehicles were

proposed.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

15

Paper [13] does not present any landing system but it describes a robust localization

system. The localization algorithm is done resorting to odometry and global vision data

fusion, applying an EKF.

There are also a couple of patent dedicated to solving the drone landing problem such

as [14], [15] and [16]. It is another proof of importance of such systems.

1.3. Drone delivery systems

As mentioned before, delivery systems are most likely to be interested in suggested

solution. There are some companies that provide delivery serviced, that have already

started to implement drones into their delivery processes.

1.3.1. Amazon Prime Air

Amazon Prime Air is a project made by Amazon [3]. It is a drone-based delivery system.

Amazon has presented different designs of drones but working principal is similar:

customer choses a product, Amazon operator put the product in the box and attaches

this box to a drone. Drone has simple grabbers, which will not let the box to fall off

during the flight. Landing point should be marked by specific QR-marker, so the camera

under the drone will be able to detect it.

Figure 1.2 Amazon's delivery drone [3]

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

16

Still the drone is able to carry only light and compact goods (maximum 2,5 kg), but the

delivery process would be fully autonomous and would not take much time. The delivery

should be performed in no longer than 30 minutes. For example, the first test delivery

was performed in 13 minutes. This is why the company might be interested in using

cars, because in real life 30-minute delivery is really fast. Moreover, it will help to

increase the weight of box that drone is carrying.

1.3.2. Uber Eats Drone

Uber Eats is an exciting delivery project that is done by Uber. In 2019 during the Forbes

30 under 30 Summit the drone’s design was unveiled [2].

Figure 1.3 Uber Eats Drone [2]

This drone can carry dinner for up two people and, featuring rotating wings with six

rotors, the vehicle can vertically take-off and land, and travel a maximum of eight

minutes, including loading and unloading. The total flight range is 18 miles (28,9 km),

with a round-trip delivery range of 12 miles (19,3 km). This mean that the drone can

do up to three six-mile legs: up to 6 miles to the restaurant, up to 6 miles from the

restaurant to the customer and up to 6 miles back to its launch area.

Uber’s plan is to fly meals from restaurants to a staging location where an Uber driver

would then travel the last mile for the hand-off to the customer. It has also considered

landing drones on the roofs of delivery cars, the company said in June when it unveiled

its drone testing plans. At the time, Uber Eats had made a few test deliveries from a

McDonald’s near San Diego State University.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

https://www.forbes.com/sites/jeremybogaisky/2019/06/12/uber-eats-to-test-flying-food-to-customers-by-drone-in-san-diego/#747c49664c31
https://www.forbes.com/sites/jeremybogaisky/2019/06/12/uber-eats-to-test-flying-food-to-customers-by-drone-in-san-diego/#747c49664c31

17

1.3.3. Wing

Wing, an Alphabet company, has built a small, lightweight aircraft and navigation

system that can deliver small packages – including food, medicine and household items

– directly to homes in minutes. Created in 2012, Wing has conducted more than

80,000+ flights across three continents [17]. With an expanded Air Carrier Certificate

from the Federal Aviation Administration (FAA), Wing today became the first company

to operate a commercial air delivery service via drone directly to homes in the United

States.

Figure 1.4 Wing's delivery drone [17]

Wing’s drone hovers at about 24 toes and lowers a package deal to the bottom with a

tether. The drone seems extra like a small aircraft. Its two wings, extending greater

than three toes, every characteristic a propeller and make allowance the drone to fly

additional whilst holding power, the corporate says. Altogether, the drone has 14

propellers designed to cut back noise.

1.4. Conclusion

As it is seen from Section 1.3, delivery companies start to think how to implement

drones into their delivery processes. UAV will not only be able to perform the whole

delivery process, but they can be useful to minimize the average delivery time.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

18

There are several things that people expect from delivery companies [18]: speed of

delivery, size and weight limitations, proof of delivery, customer service, cost to value

and courier insurance. Using drones in delivery will not only increase the speed of

delivery, it can also reduce the cost of delivery and minimize the human factor.

There are lots of papers that solve the problem of the autonomous drone landing on

moving platforms, but there are some issues that don’t allow to implement those

algorithms in real life:

1) Most of the real-life experiments were done indoors and with low-speed landing pads.

2) Experiments, that were done outdoors, were performed during the day and with

sunny conditions.

Designing a system, that will be able not only to perform the autonomous drone landing

on a moving platform but also have an ability to detect whether the landing can be

performed or not, will help to make the landing algorithms actual implementations

dealing with the scenario in which the landing target is non-stationary.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

19

2. ALGORITHM OVERVIEW

This chapter describes the proposed algorithm: (1) general description of the algorithm

(Section 2.1); (2) naming the adverse conditions that can affect the landing process

(Section 2.2); (3) general description of the algorithm performance affected by adverse

conditions (Section 2.3) and (4) concluding part (Section 2.4).

2.1. Description of the algorithm performance

The UAV gets a command to perform the landing on the moving target. After receiving

a command, the drone should check if the landing can be performed. Adverse conditions

are described in Section 2.2. If there are no adverse conditions, the drone will perform

the landing and send the message to the operator. The landing process is described in

Section 3.3. If any of the adverse conditions is present, the drone sends a warning

message to the operator. After getting the warning message operator can take control

over the drone and make a decision of what to do. If operator doesn’t take the control,

the drone will perform the “emergency landing” on the ground and send the operator

another message with its coordinates. A flowchart, describing the algorithm, is

presented on Fig. 2.1.

Figure 2.1 The flowchart of the developed algorithm

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

20

2.2. Adverse conditions

There are different conditions that can affect the precision of the landing process or

make it completely impossible. In general, those conditions can be divided into two

groups: weather conditions and technical conditions.

Weather conditions include the speed of the wind, the temperature, the level of

humidity. The exact numbers are model dependent and have to fulfil the

recommendations in the drone’s datasheet. The high speed of the wind can not only

make the landing process impossible, but it can also make the flight process very

dangerous (on average, absolute speed of 12 m/s is considered to be the critical wind

speed). The low temperature cause the rapid discharge of the UAV battery. Moreover,

some elements of the plastic structure become brittle and also change their volume and

dimensions due to imminent cooling, which in theory can lead to mechanical

malfunctions. High humidity, as well as snow or heavy rain, can damage the drone

(water drops can penetrate inside the UAV, for example, into the motors) [19].

Technical conditions include the remaining charge of the drone’s battery, the availability

of required onboard sensors. At the beginning of the landing, it is suggested to have the

remaining charge of the drone’s battery no lower than 40%. The landing on the moving

pad takes more time than landing on the static one. The low level of the battery charge

can not only force the shutdown of the drone, but it also can be responsible for the

inaccuracy in the sensor’s work. Therewith, before performing the landing the UAV has

to make sure that all its sensors are working properly and providing the drone with all

the required information.

2.3. Performance during adverse conditions

If any of the adverse conditions reveal itself during the flight, the option of the landing

on the moving platform becomes unavailable and the option of emergency landing

becomes available.

Operator gets to choose from a couple of options: switch to the manual control, make

the drone perform the emergency landing or make the drone continue the flight.

However some of the adverse conditions cause the emergency landing even if the

operator doesn’t choose this option (for example, low level of battery charge).

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

21

Manual mode allows the operator to control the UAV actions and movements via

controller or keyboard. This mode allows the operator to perform the landing manually.

Emergency mode lands the quadrotor on the ground and sends the drone coordinates

to the operator. It is possible to switch the emergency mode to the manual mode (but

it is not recommended) or to continue the flight in autonomous mode.

However, the operator can miss the warning message sent by the drone, so to minimize

the human factor it was decided to add the autonomous decision-making algorithm.

Each adverse condition gets a flag, that identifies the level of danger that the condition

can cause, and these flags will set the behaviour of the drone. For example, all the

conditions were divided into three groups: first ones get “Flag #1”, the second ones get

“Flag #2” and the last ones get “Flag #3”.

If the condition has occurred and it has “Flag #1”, the drone will perform the emergency

landing and keep sending the error message with the drone’s coordinates to the

operator. If the condition has “Flag #2”, the drone will continue the flight and keep

sending the message to the operator that the condition has been occurred, but the

drone has continued its route. If the condition has “Flag #3”, the drone will continue the

flight. But it also will keep checking if the condition is still present, and after 3 tries the

drone will make the final decision. If the condition is still present, then the drone will

make the emergency landing, otherwise the drone will continue the route.

2.4. Conclusion

The general idea of the algorithm is to make the operating process as autonomous as

possible. This chapter only describes the algorithm, the programming process is

described in Chapter 3. The adverse conditions described in Section 2.2 can be changed

if needed. The described algorithm can be implemented for any drone model. The

described algorithm should be able to do the following:

1. To perform the landing on the moving platform when it is required.

2. To monitor the flight of the drone.

3. To check if the landing can be performed safely.

4. To make the control process easier for operators.

5. To add a decision-making part.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

22

The algorithm is designed to be easy-to-implement. Many of the algorithms, described

in Chapter 1, can be implemented with only specific drone models. However, this

algorithm should be developed to be able to work on any drone model. But the UAV

should fit in some requirements:

1. The drone should have a bottom camera: no high-resolution is needed.

2. The drone should have IMU sensor.

3. The drone should have an onboard GPS module.

If any of the mentioned requirements is not met, then the algorithm will not work

properly.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

23

3. DEVELOPMENT OF THE ALGORITHM

This chapter describes the process of the development of the algorithm: (1) description

of software installation process (Section 3.1); (2) design of the graphical interface

(Section 3.2); (3) description of the landing module (Section 3.3), (4) description of the

manual control module (Section 3.4), (5) description of the emergency module (Section

3.5) and (6) concluding part (Section 3.6).

3.1. Software installation

ROS is a robotic programming framework that provides functionality for distributed

work. ROS provides standard operating system services, such as: hardware abstraction,

low-level device control, the implementation of frequently used functions, message

passing between processes and packet management. ROS is based on graph

architecture, where data processing occurs at nodes that can receive and transmit

messages between themselves. The library is focused on Unix-like systems [20].

There are two ROS versions that are still supported at the beginning of year 2020: ROS

Kinetic and ROS Melodic. It is also possible to install earlier versions, but it is suggested

to use the supported one. It was decided to use ROS under Ubuntu. Ubuntu is an

operating system based on Debian GNU / Linux. Ubuntu also has versions. But certain

ROS versions can be easily installed only under certain Ubuntu version. That is why it

was decided to choose ROS version at first, and after that choose the Ubuntu version.

ROS Kinetic is the tenth ROS distribution release. It was released May 23rd, 2016 and

is still supported. The release date is the main reason, why it was chosen to use this

version: ROS has a huge amount of different packages, each package solves the

problem either partially or completely and packages are usually available for certain

versions. ROS Kinetic is primarily targeted at the Ubuntu 16.04 (Xenial) release. ROS

Kinetic also uses Python 2. The desktop image allows to try Ubuntu without changing

the computer at all and to install it permanently later. The image can be downloaded

from the official website [21] and installed using instructions given in [22]. After

successful installation of Ubuntu it is time to install ROS. The instructions are given in

[23]. It is suggested to install the full version as it will install Gazebo and other useful

packages as well.

After installing ROS it is required to create a workspace using command “catkin_make”

(catkin was installed with ROS Kinetic). There is an instruction given in [24]. All the

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

24

rospackages installed from GitHub and packages created during this work are put in

created workspace. Also it is needed to install some python modules, C++ libraries and

ROS packages. The Python modules that are needed: Tkinter, Roslaunch, Rospy.

ROS packages that are used in this work are described in Appendix A. Also two ROS

projects were installed from GitHub [25] and [26] and were used in this work. [25] is a

project that allows to control a drone using ROS. It describes messages, actions and

other thing that will be very useful. [26] is a project that performs the autonomous

landing on the moving platform and it will be used as a base for performing the landing.

3.1.1. Description of rospackages in the workspace

ardrone_moves package. This package allows to control the drone moves. The

package contains “ardrone_moves.cpp” that describes the movements of the drone. The

described function listens to the rostopic “keyboard_sub” and publishes data to rostopics

“pub_takeoff”, “pub_land”, “pub_toggle_state” and “pub_vel”. This package also has a

launch file “ardrone_moves.launch” that creates two nodes: “teleop” using

“teleop_twist_keyboard” .

ped_traj_pred package. This package describes the controllers that are used in the

landing part. This package also describes how the landing module tracks the landing

platform.

summit_moves package. This package allows to control the Summit XL robot, that

holds the landing platform. The package contains “summit_moves.cpp” that describes

the movements of the robot. This package also has a launch file “summit_moves.launch”

that creates the node “summit_moves” and includes “ardrone_teleop.launch” from the

“takeoff” package.

takeoff package. This package describes the “Take Off” state of the system. It also

contains the launch file for the world with both the UGV and the UAV.

uav_vision package. This package describes the landing platform detecting algorithm.

hector_quadrotor_actions package. This package allows a drone to perform some

basic actions. The package has three C++ files: “takeoff_action.cpp”, “pose_action.cpp”

and “landing_action.cpp”. “Landing_action.cpp” – describes just simple landing on the

ground. Each of these C++ files calls a header file “base_action.h” that is also kept in

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

25

this package. This package also has a launch file “actions.launch” that creates three

nodes: “pose_action”, “landing_action” and “takeoff_action”.

hector_quadrotor_controller_gazebo package. This package describes the

quadrotor and its sensors in Gazebo. The package contains C++ file

“quadrotor_hardware_gazebo.cpp”. It calls a header file

“quadrotor_hardware_gazebo.h” that is also kept in this package.

hector_quadrotor_controllers package. This package describes attitude, position

and velocity controllers. The package contains three C++ files:

“attitude_controller.cpp”, “position_controller.cpp” and “velocity_controller.cpp”. This

package also has a launch file “controller.launch” that declares arg “controllers”, two

rosparams (using files “controller.yaml” and “params.yaml” that are kept in this

package) and creates two nodes: “controller_spawner” and “estop_relay”.

hector_qudrotor_description package. This package provides a URDF model of a

generic quadrotor UAV. The visual geometry is provided as a COLLADA model and the

collision geometry is provided as a STL mesh.

hector_quadrotor_gazebo package. This package provides a quadrotor model based

on hector_quadrotor_urdf that is usable in gazebo.

hector_quadrotor_model package. This package provides libraries that model

several aspects of quadrotor dynamics.

hector_quadrotor_pose_estimation package. This package estimates the 6DOF of

a robot based on the EKF of various sensor sources.

hector_quadrotor_teleop package. This package provides a convenient gamepad-

based control option for quadrotor UAVs and similar vehicles. The stick setup in the

launch files is similar to the "Mode 2" setup commonly used on RC helicopters as

described here. The node publishes geomety_msgs/Twist messages on the /cmd_vel

topic, so the stick input corresponds to desired linear and angular velocities.

hector_uav_msgs package. This package is a message package that contains

messages for UAV controller inputs and outputs and some sensor readings not covered

by sensor_msgs.

interface package. This package has GUI menus and launch files for the developed

algorithm.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

26

3.2. Graphical interface

It was decided to design a GUI to make the controlling process easier to operators and

minimize the number of possible mistakes (like launching the wrong file). There are

many different GUI-programming toolkits for Python, however, it was decided to use

Tkinter module for Python 2.7.

This section describes the developed menu windows: (1) the “Start” menu (Item 3.2.1),

(2) the “Flight Management” menu (Item 3.2.2), (3) the “Manual Control” menu (Item

3.2.3), (4) the “Landing Mode” menu (Item 3.2.4) and (4) the “Emergency Mode” menu.

3.2.1. Start menu

The “Start” menu is the first window to be opened. The menu can be opened by running

the “start.py” file, that is kept in the “interface” package. This window gives the user

two options: “Quit” and “Start”. Clicking the “Quit” button will close the menu and kill

all the process, that were started by the algorithm, by calling the created function

“evCancel”. Clicking the “Start” button will start the algorithm and open the next menu.

The created function “mCreateManagement” will be called. This function launches the

“start.launch” file and runs the “management.py” file. The files, that are launched using

the “start.launch” file, will be described in Section 4.1 of Chapter 4. The GUI of this

menu is presented on Fig. 3.1.

Figure 3.1 The Start Menu

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

27

3.2.2. Flight management menu

The “Flight Management” menu is opened when the user clicks the “Start” button in the

“Start” menu. The “Flight Management” menu is used to control the flight and monitor

different parameter, that can affect the landing as well as the flight itself. The

parameters can be easily changed in the “management.py” file. Every parameter gets

the data using messages, that created ROS nodes are publishing into certain ROS topics.

The required data is gotten by subscribing to the required ROS topics. For every

parameter the range of values is set. The values that are not fitting in this range are

considered as triggers to start the emergency landing. To change or add the parameter

it is needed to change/add the text label block and to change/add the message block in

the “management.py” file. The text label block has the name of the parameter and the

message block contains the information about the message that has the required data

and the ROS topic, where the message has been published.

Also, the “Flight Management” menu gives the user four options: “Quit”, “Manual Mode”,

“Landing Mode” and “Emergency Mode”. Clicking the “Quit” button will close the menu

and kill all the process, that were started by the algorithm, by calling the created

function “evCancel”. Clicking the “Manual Mode” button will allow to control the drone

manually using a controller or keyboard. The “Manual Control” menu will be opened.

The created function “mCreateManual” will be called. This function launches the

“manual.launch” file and runs the “manual.py”. The files, that are launched using the

“manual.launch” file, will be described in Section 3.4. Clicking the “Landing Mode” button

will trigger the landing on the moving platform. The “Landing Mode” menu will be

opened. The created function “mCreateLanding” will be called. This function launches

the “landing.launch” file and runs the “landing.py”. The files, that are launched using

the “landing.launch” file, will be described in Section 3.3. Clicking the “Emergency Mode”

button will trigger the landing on the moving platform. The “Emergency Mode” menu

will be opened. The created function “mCreateEmergency” will be called. This function

launches the “emergency.launch” file and runs the “emergency.py”. The files, that are

launched using the “emergency.launch” file, will be described in Section 3.5. The

function “mCreateEmergency” is also called when the emergency landing is triggered

when any of the parameter’s value is not fitting in the set range. The GUI of the “Flight

Management” menu is presented in Fig. 3.2.

The parameters can be set in the beginning of the “management.py” using function

“rospy.set_param(‘[name]’, value)” or by getting the existing one by using function

“rospy.get_param(‘[name]’)”. In a case, when the parameter can’t be gotten from the

simulation environment (like wind speed in Gazebo 7), then it can be set manually. The

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

28

parameter, that was set manually, can still be changed by running “rosparam set [name]

new_value”.

Also the function “refreshlabel” was created to refresh parameters values. It gets the

new value of the parameter every second. The function is called in the description of

the label.

The “management.py” file is presented in Appendix 3.

Figure 3.2 The Flight Management Menu

3.2.3. Manual control menu

The “Manual Control” menu is opened when the user clicks the “Manual Mode” button

in either the “Flight Management” menu, the “Landing Mode” menu or the “Emergency

Mode” menu. The “Manual Control” menu has the only option – “Quit”. Clicking the

“Quit” button will close the menu and kill all the process, that were started by the

algorithm, by calling the created function “evCancel”. The GUI of the menu is presented

in Fig. 3.3.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

29

Figure 3.3 The Manual Control Menu

3.2.4. Landing menu

The “Landing Mode” menu is opened when the user clicks the “Landing Mode” button in

the “Flight Management” menu. The “Landing Menu” gives the user two options: “Quit”

and “Manual Mode”. Clicking the “Quit” button will close the menu and kill all the

process, that were started by the algorithm, by calling the created function “evCancel”.

Clicking the “Manual Mode” button will allow to control the drone manually using a

controller or keyboard. The “Manual Control” menu will be opened. The created function

“mCreateManual” will be called. This function launches the “manual.launch” file and runs

the “manual.py”. The GUI of the menu is presented in Fig. 3.4.

Figure 3.4 The Landing Menu

3.2.5. Emergency menu

The “Emergency Mode” menu is opened if the user clicks the “Emergency Mode” button

or if the emergency landing has been triggered when any of the parameter’s value is

not fitting in the set range. The “Emergency Mode” menu has the information about the

drone’s coordinates. The coordinates are published in the topic

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

30

“/ardrone/ground_truth/state”. The message type is Odometry from “nav_msgs”. Also

the “Emergency Mode” menu gives the user two options: “Quit” and “Manual Mode”.

Clicking the “Quit” button will close the menu and kill all the process, that were started

by the algorithm, by calling the created function “evCancel”. Clicking the “Manual Mode”

button will allow to control the drone manually using a controller or keyboard. The

“Manual Control” menu will be opened. The created function “mCreateManual” will be

called. This function launches the “manual.launch” file and runs the “manual.py”. The

GUI of the menu is presented in Fig. 3.5.

Figure 3.5 The Emergency Menu

3.3. Landing module

The landing module is executed by the “landing.launch” file. This file launches the

“platform_detection.launch” file, the “platform_tracking.launch” file and the

“kalman_pred.launch” file. The “platform_detection.launch” file starts the node called

“platform_detection” using the “platform_detection.cpp” file. The

“platform_detection.cpp” file will be described in Item 3.3.2. The

“platform_tracking.launch” file starts the node called “platform_tracking” using the

“platfotm_tracking.cpp” file. The “platform_tracking.cpp” file will be described in Item

3.3.3. The “kalman_pred.launch” file starts the node called “prediction_kalman_node”

using the file “ped_traj_pred.cpp”. The “ped_traj_pred.cpp” will be described in Item

3.3.3. The landing platform that is being detected in presented in Fig. 3.6.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

31

Figure 3.6 The landing platform

The landing module is based on [26]. This section described the proposed algorithm in

details: (1) the tracking-landing algorithm based on a finite state machine (Item 3.3.1),

(2) the algorithm of detecting and localizing the moving landing platform (Item 3.3.2)

and (3) the tracking algorithm (Item 3.3.3).

3.3.1. Tracking-Landing Algorithm

The tracking-landing algorithm proposed in [26] is a finite state machine, that has 5

states: “Taking Off”, “Tracking”, “Landing”, “Relocating” and “Landed”. “Landed” is the

default state in [27], but for proposed algorithm it is not always true, as the landing

module is just a part of the system. When the system is launched by clicking the “Start”

button in the “Start” menu, the drone is landed on the landing platform and has a state

“Landed”. The state “Landed” will change to “Taking Off” when the “Landing Mode” is

chosen. If the user doesn’t choose any of the options in the “Flight Management” menu

for 30 seconds, then the drone will take off automatically. If this happens, the state will

be changed to “Taking Off”. The reason why the state is “Taking Off” and not “Tracking”

is that before performing the landing part drone has to reach the nominal height (that

is set to 4 meters in the experiment).

So, after clicking the “Landing Mode” in the “Flight Management” menu, the drone starts

to gain/lower altitude with a constant speed of 1 m/s along its z axis. Despite the fact,

that the state is “Taking Off”, the detection-localization algorithm and the tracking

algorithm are launched at this point. It makes it possible for a drone to start detecting

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

32

and following the platform while reaching the nominal height. The detection-localization

algorithm is described in Section 3.3.2 and the tracking algorithm is described in Section

3.3.3.

As the nominal height has been reached, the state changes to “Tracking” and the drone

stopes changing the height. To make the drone follow the landing platform keeping the

required altitude PID controller is used. After 30 seconds of tracking the state will shift

to “Landing” and the landing manoeuvre will start. The drone will start to reduce the

height with a constant speed of 0.3 m/s along its z axis. Another PID controls the speed

of the drone along the x and y axis.

3.3.2. Detection and Localization of the Mobile Platform

In order to detect and localize the landing platform OpenCV was used. There are lots of

different options to detect a landing pad, but here was decided to use simple colour-

and shape-detection, even though the most of the researches described in Chapter 1

used AprilTags and other markers to detect.

The algorithm for detecting and localizing the moving landing platform is presented in

the “platform_detection.cpp” file. The algorithm is working the following way:

1. The image is gotten from the video frame using the ROS topics.

2. The input frame is converted into the HSV colour model using “cvtColor” function.

3. All the pixels that correspond to the red colour are kept by applying a colour mask

using “inRange” function.

4. The Canny algorithm is used to detect the edges using “findContours” function.

5. The Hough Line transform algorithm is used to detect straight lines using “line”

function.

6. “approxPolyDP” function is used to check the lines to find a polynome.

7. The centroid’s coordinates are calculated using functions “Moments” and “Point2f”.

The centroid’s coordinates are used to compute the 3D coordinates of this centroid. To

do so the pinhole inverse transformation (pinhole camera model) is used. This function

is described in [27]. The pinhole camera model is illustrated in Fig. 3.7.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

33

Figure 3.7 Pinhole camera geometry [27]

3.3.3. Tracking the Mobile Platform

To track the moving landing platform the pedestrian trajectory prediction algorithm [28]

was used. This algorithm is presented in the “ped_traj_pred.cpp” file. The position that

was calculated in Item 3.3.2 is sent to this prediction algorithm. This algorithm returns

a vector of future positions of the centroid of the landing platform relative to the world’s

frame. The first element in this vector corresponds to the current position of the moving

platform. The second element in this vector corresponds to the next position of the

moving platform (after a 0,1 seconds). The third element in this vector corresponds to

the position of the moving platform after 0,2 seconds (twice the defined time step).

The predicted future position of the landing platform is transformed from the world’s

frame into the UAV’s body frame. Finally, the x and y coordinates of UAV’s body frame

are used to calculate the controller’s error, i.e., the distance in the xy-plane between

the UAV and the predicted position of the landing platform. Using this error, the speed

commands in x and y can be calculated. This will make the controller’s error converge

to zero. This method is described in [26] in Section 3.3.2.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

34

3.4. Manual control module

To perform the manual control PlayStation4 Joystick is used. It is much easier than

controlling the drone using the keyboard.

Figure 3.8 The PlayStation 4 Joystick [29]

To connect the joystick to the laptop it is required to install ds4drv from GitHub. There

are two ways to connect the joystick to the laptop: via Bluetooth or via USB. Buttons

on the joystick are coded and each button has a certain code. The button codes that

correspond to joystick buttons are presented in Table 3.1. Table 3.2 describes axes that

can be controlled by the joystick and corresponded buttons and sticks on the controller.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

35

Table 3.1 PS4 Controller Map. Buttons

Nr Button code Joystick button

1 joystick button 0 Square

2 joystick button 1 X

3 joystick button 2 Circle

4 joystick button 3 Triangle

5 joystick button 4 L1

6 joystick button 5 R1

7 joystick button 6 L2

8 joystick button 7 R2

9 joystick button 8 Share

10 joystick button 9 Options

11 joystick button 10 L3

12 joystick button 11 R3

13 joystick button 12 PS4 On Button

14 joystick button 13 Touch Pad Press

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

36

Table 3.2 PS4 Controller Map. Axes.

Nr Axis
Joystick

button/stick

1 X-Axis Left Stick X

2 Y-Axis Left Stick Y

3 Z-Axis Right Stick X

4 4th Axis Right Stick Y

5 5th Axis L2

6 6th Axis R2

7 7th Axis Touch Pad X

8 8th Axis Touch Pad Y

The joystick can be tested via “jstest-gtk” command. “Jstest-gtk” can be installed with

“apt-get” command. It is recommended to test the controller before running the

algorithm. If everything is okay, the results should be close to the ones, that are

presented on Fig. 3.8. Notice, that the port the controller has been assigned to have to

match the one that is defined in “ardrone_teleop.launch”.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

37

Figure 3.8 “jstest-gtk”

The created package “interface” has a launch file called “manual.launch” that enables

the manual control by launching the “ardrone_teleop.launch”. The controller has to be

connected before running the whole algorithm, otherwise the error will be occurred and

the manual control won’t be working. The function mCreateManual was created to begin

the work of the manual control module. It launches “manual.launch” file and opens the

“Manual Control” menu by running “manual.py” file.

3.5. Emergency module

Emergency module is actually a landing performing, except for sending the drones

coordinates. The package “interface” has a launch file called “emergency.launch” that

gives a command to the drone to perform the landing on the ground and forces the

execution of the coordinates of the drone. The function mCreateEmergency was created

to begin the work of the emergency module. It launches “emergency.launch” file and

opens “Emergency Mode” menu by running “emergency.py” file.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

38

There are two ways of beginning the “emergency” scenario. The first one is by pressing

the “Emergency mode” button in the “Flight Management” menu. The second one is by

provoking one of the triggers (adverse condition occurring). The triggers are set in

“management.py” file, that sets the GUI of the “Flight Management” menu. Every

measured parameter set in the file gets a minimum and maximum values. If the

parameter changes itself to a value, that is not fitting those numbers anymore, then the

function mCreateEmergency is called. The landing process is a part of basic actions and

is described in “basic_actions.h”.

The drone is using ground truth information from Gazebo for localization that simulates

the work of GPS module. The coordinates are published via PositionXYCommand. This

message type is described in “PositionXYCommand.msg” file and has two data values of

float32 type: “x” and “y”.

3.6. Conclusion

The algorithm was developed and the graphical interface was designed. One of the main

ideas of the algorithm is to make the working process easier to the operator and

minimize the human factor.

The designed GUI allows to the operator to operate with a drone only using pre-

programmed buttons. And it also allows operator to see all the necessary information

on their screen in a human-understanding way.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

39

4. SIMULATION

This chapter describes the results in the simulated environment: (1) design of the

testing environment (Section 4.1); (2) results of the tests (Section 4.2) and (3)

concluding part (Section 4.3).

4.1. Design of the Testing Environment

The simulated environment was designed in Gazebo. A new Gazebo world was designed

for this work. The “ground_plane” model is placed with the coordinates (0,00; 0,00;

0,00). The “summit_xl” model is placed on the “ground-plane” with the coordinates

(0,00; 0,00; 0,00). The “summit_xl” model has a landing platform attached. The

“ardrone” model is placed on the “summit_xl” with the coordinates (-0,01; 0,00; 0,53).

The designed environment is presented in Fig. 4.1.

Figure 4.1 The designed simulated environment

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

40

4.2. Testing the system

Before starting the simulation it is required to source the “setup.bash” file in the “devel”

folder in the root of the workspace. To begin the simulation the file “start.py” from the

package “interface” should be launched. After pressing the start button the Gazebo

simulation will be launched and the “Flight management” menu will be opened.

Figure 4.2 The Gazebo simulation and “Flight Management” menu both opened by

“start.py”

Figure 4.3 ROS nodes and ROS topics created

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

41

As it is seen from Fig. 4.3, the following nodes were created:

“/ardrone_state_publisher”, “/gazebo_gui”, “/gt_atitude_ardrone”, “/joy_node”,

“/ardrone_joystick”, “/summit_moves”, “/gazebo”, “/ground_truth_to_tf”,

“/summit_xl/controller_spawner” and “/summit_xl/joint_state_publisher”.

The following topics were created: “/joy”, “/summit_xl-control/cmd_vel”,

“/ardrone/takeoff”, “ardrone/imu”, “ardorne/cmd_vel”, “ardrone/ground_truth/state”

and “summit_xl/joint_states”.

The node “/joy_node” publishes the data in gets from the joystick into the topic “/joy”.

The node “/ardrone_joystick” gets this data from the topic “/joy” and publishes this data

in two topics: “ardorne/cmd_vel” and “/ardrone/takeoff”. The node “/summit_moves”

gets the data from the “/ardrone/takeoff” topic and publishes it into the “/summit_xl-

control/cmd_vel” topic. The “summit_moves” is response for the Summit XL with the

landing platform movements. The “/gazebo” node gets the information about the robot’s

movements from the “/summit_xl-control/cmd_vel” topic. The “/gazebo” node gets the

information about the drone’s movements from the “ardorne/cmd_vel” topic, that also

gets the information from the “/ardrone_joystick” node. Moreover, the “/gazebo” node

changes the information with “ardrone/imu” and “ardrone/ground_truth/state” topics.

The “ardrone/imu” topic contains the information about the drone’s state. The

“ardrone/ground_truth/state” topic also provides information to the

“/ground_truth_to_tf” node, that is needed to coordinate the world’s frame with the

drone’s and the robot’s ones. The “gazebo” node also publishes messages into the

“summit_xl/joint_states” topic. And the node “/summit_xl/joint_state_publisher” is

subscribed to this topic. The “summit_xl/joint_states” topic contains the information

about Summit’s joints.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

42

4.2.1. Performing the landing on the moving platform

In the “Flight Management” menu the button “Landing Mode” is pressed. The drone

reached the landing platform and performs the landing.

Figure 4.4 The Gazebo simulation and “Landing” menu after performed landing

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

43

Figure 4.5 ROS nodes and ROS topics created

The Fig. 4.5 presents all the ROS nodes and ROS topics that have been created on the

moment of the landing. The following nodes were created: “/ardrone_state_publisher”,

“/gazebo_gui”, “/joy_node”, “/ardrone_joystick”, “/summit_moves”, “/gazebo”,

“/ground_truth_to_tf”, “/platform_detection”, “/summit_xl/controller_spawner”,

“/summit_xl/joint_state_publisher”, “platform_tracking, “/prediction_kalman_node”

and “/gt_altitude_ardrone”.

The following topics were created: “/joy”, “/summit_xl_control/cmd_vel”,

“/platform/current_platform_position_in_world”, “/ardrone/takeoff”, “/ardrone/imu”,

“/ardrone/force_land”, “/ardrone/land”, “/ardrone/navdata” “/ardorne/cmd_vel”,

“/ardrone/ground_truth/state”, “/ardrone/bottom/camera_inf0”,

“/ardrone/bottom/image_raw”, “/ardrone/altimeter”, “/ardrone/sonar_height”,

“/ardrone/groundtruth_altitude”, “/groundtruth/ardrone”, “/groundtruth/summit”,

“/kalman_prediction_path” and “/summit_xl/joint_states”.

The node “/joy_node” publishes the data in gets from the joystick into the topic “/joy”.

The node “/ardrone_joystick” gets this data from the topic “/joy” and publishes this data

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

44

in four topics: “/ardrone/force_land”, “/ardrone/land” “ardorne/cmd_vel” and

“/ardrone/takeoff”. The node “/summit_moves” gets the data from the

“/ardrone/takeoff” topic and publishes it into the “/summit_xl-control/cmd_vel” topic.

The “summit_moves” is response for the Summit XL with the landing platform

movements. The “/gazebo” node gets the information about the robot’s movements

from the “/summit_xl-control/cmd_vel” topic. The node “/platform_tracking” also get

the information from the “/ardrone/takeoff” topic, as well as from the

“/ardrone/force_land” and “/ardrone/land” topics. The node “/platform_tracking”

publishes information into the “/ardrone/cmd_vel”. The “/gazebo” node gets the

information from “/ardrone/ground_truth_state” (and publishes information there at the

same time), “/ardrone/cmd_vel”, “/ardrone/imu” (and publishes information there at

the same time) and “/ardrone/navdata” topics. Alongside with the previously mentioned

topics, the “/gazebo” node also publishes messages into the following topics:

“/summit_xl/joint_states”, “/ardrone/altimeter”, “/ardrone/sonar_height”,

“/ardrone/bottom/image_raw” and “/ardrone/bottom/camera_info.

The “/platform_detection” node, which is created with the “platform_detection.cpp” file,

subscribes to the following topics: “/ardrone/imu”, “/ardrone/bottom/image_raw”,

“/ardrone/bottom/camera_info”, “/ardrone/altimeter”, “/ardrone/sonar_height” and

“/ardrone/groundtruth_altitude”. The results of the detection-localization algorithm (the

landing platform's centroid coordinates) are published in the

“/platform/current_platform_position_in_world” topic.

The “/platform/current_platform_position_in_world” topic shares this information with

the “/prediction_kalman_node” node which runs the “ped_traj_pred.cpp” file and

published the vector of future positions of the landing platform into the

“/kalman_prediction_path” topic. The “/platform_tracking” node is subscribed to the

“/kalman_prediction_path” topic and uses this information to track the platform.

The “/platform_tracking” node is subscribed to the following topics: “/ardrone/takeoff”,

“/ardrone/imu”, “/ardrone/force_land”, “/ardrone/land”, “/ardrone/altimeter”,

“/ardrone/sonar_height”, “/ardrone/groundtruth_altitude”, “/groundtruth/ardrone”,

“/groundtruth/summit” and “/kalman_prediction_path”. The “platform_tracking” node

not only tracks the landing platform, but also performs the lading.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

45

4.2.2. Testing the Emergency Mode

In the “Flight Management” menu the button “Emergency Mode” is pressed. The drone

starts to land on the ground. The Emergency menu is opened, that also shows the

coordinates of the drone. The drone lands on the ground and it kept there until the

“Manual Mode” is chosen. The results of this test are shown in Fig. 4.6. It was decided

not to include the list of nodes and topics, as there are no special ones (emergency

landing is being performed by calling the simple landing command, that is described in

the ardrone controller description).

The “Emergency Mode” was also tested by turning the parameter “Drone Battery

Charge” to the value of 10%. The emergency landing started automatically right after

the parameter was changed, without clicking the “Emergency Mode” in the “Flight

Management” menu.

Figure 4.6 The Gazebo simulation and “Landing” menu after performed landing

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

46

4.2.3. Testing the Manual Control Mode

In the “Flight Management” menu the button “Manual Control” is pressed. The drone

follows the command that are given through the PlayStation4 joystick. The robot with

the landing platform continues to move, but the drone is fully controlled by the operator.

It was decided not to include the list of nodes and topics, as there are no special ones

(the node /ardrone_joystick was created as the simulation started to force the Summit

XL movements).

Figure 4.7 The Gazebo simulation and “Manual Control” menu

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

47

4.3. Conclusion

Four tests were held: the test of the “Landing Mode”, the test of the “Emergency Mode”

and the test of the “Manual Mode”. The “Emergency Mode” was tested twice: the first

time it was launched from the “Flight Management” menu and the second time it was

triggered by changing the parameter “Drone Battery Charge” to the value of 10%. All

the test were successfully done using the algorithm, described in this work.

The results of the test of the “Landing Mode” also contain the description of the ROS

nodes and ROS topics, that were created. Also the description of their communication

was provided. Description of every test is provided with the screenshot of Gazebo after

finishing the performance of the certain module.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

48

5. CONCLUSIONS AND FUTURE RECOMMENDATIONS

This chapter concludes the obtained results and gives the recommendations for the

future improvements.

5.1. Conclusion

The purpose of this work is to design a drone moving target landing system and

algorithm for semi- and full autonomous landing control. The landing module was

described in Chapter 3 and tested in Chapter 4. The algorithm for the landing control is

presented in a form of the number of the menus, that allow the user to monitor the

flight and perform the landing when it is needed.

The landing control algorithm presented in this work allows to minimize the human

factor and to prevent the performance of complicated manoeuvre in the adverse

conditions. The algorithm can be applied to any drone model and can be easily changed,

if needed. The adverse conditions, listed in Section 2.2, may depend on many things:

the drone model, the region, where algorithm is to be used.

The landing algorithm was chosen to be working on any drone, but the UAV should fit

in some requirements:

1. The drone should have a bottom camera: no high-resolution is needed.

2. The drone should have IMU sensor.

3. The drone should have an onboard GPS module.

5.2. Future recommendations

Despite the fact that the simulation results are acceptable, there are still some future

recommendations:

1. Change the detection method to make the landing algorithm more precise. However

the detection method should not set any new requirement for the drone (except for the

ones listed in Section 5.1) or for other hardware. The algorithm should remain easy-to-

implement.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

49

2. After changing the detection method, make the new landing module get tested with

a high-speed landing platform. This will allow to land a drone on a roof of a fast-moving

car.

3. To make a full conclusion about the proposed system, it should be tested in a real

environment.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

50

REFERENCES

[1] J. Crucchiola, “There May Actually Be a Good Reason to Teach Drones to Land on

Cars, January 25, 2016. [Online], Available: https://www.wired.com/2016/01/there-

may-actually-be-a-good-reason-to-teach-drones-to-land-on-cars/ [Accessed Dec. 1,

2019]

[2] B. Carson, “First Look: Uber Unveils New Design For Uber Eats Delivery Drone”,

Forbes, 2019. [Online]. Available:

https://www.forbes.com/sites/bizcarson/2019/10/28/first-look-uber-unveils-new-

design-for-uber-eats-delivery-drone/#52616e7778f2 [Accessed Dec. 10, 2019].

[3] "Amazon Prime Air," Amazon, 2016. [Online]. Available:

https://www.amazon.com/AmazonPrime-Air/b?ie=UTF8&node=8037720011 [Accessed

Dec. 10, 2019].

[4] Geospatial World. DLR Germany lands UAV on a moving vehicle. (Jan 25, 2016).

[Online Video], Available: https://www.youtube.com/watch?v=TWUM8DcEDhQ

[Accessed Dec. 1, 2019]

[5] O. Araar, N. Aouf and I. Vitanov. “Vision Based Autonomous Landing of Multirotor

UAV on Moving Platform”, Journal of Intelligent & Robotic Systems February 2017,

Volume 85, Issue 2, pp 369–384.

[6] A. Borowczyk, D.-T. Nguyen, A. P.-V. Nguyen, D. Q. Nguyen, D. Saussié, and J. Le

Ny, “Autonomous landing of a multirotor micro air vehicle on a high velocity ground

vehicle,” IFACPapersOnLine, vol. 50, pp. 10488–10494, 2017.

[7] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, Z. Milosevic, A. Garcia-Vaquero and

P. Campoy.“ Towards fully autonomous landing on moving platforms for rotary

Unmanned Aerial Vehicles”, presented at International Conference on Unmanned

Aircraft Systems (ICUAS), 2017.

[8] Y. Feng, C. Zhang, S. Baek , S. Rawashdeh and A. Mohammadi, “Autonomous

Landing of a UAV on a Moving Platform Using Model Predictive Control”, Drones 2018,

2, 34; doi:10.3390/drones2040034.

[9] A. M. Almeshal and M. R. Alenezi, “A Vision-Based Neural Network Controller for the

Autonomous Landing of a Quadrotor on Moving Targets”, Robotics 2018, 7, 71;

doi:10.3390/robotics7040071.

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

51

[10] B.-Y. Xing, F. Pan, X.-X. Feng, W.-X. Li, and Q. Gao, “Autonomous landing of a

micro aerial vehicle on a moving platform using a composite landmark,” International

Journal of Aerospace Engineering, vol. 2019, 2019.

[11] D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza, “Vision-

based autonomous quadrotor landing on a moving platform,” in 2017 IEEE International

Symposium on Safety, Security and Rescue Robotics (SSRR), pp. 200–207, Shanghai,

China, 2017.

[12] T. Muskardin, G. Balmer, S. Wlach, K. Kondak, M. Laiacker, and A. Ollero, “Landing

of a fixed-wing uav on a mobile ground vehicle” in 2016 IEEE International Conference

on Robotics and Automation (ICRA), pp. 1237–1242, Stockholm, Sweden, 2016.

[13] J. Gonalves, J. Lima, and P. Costa, “Real time tracking of an omnidirectional robot

- an extended Kalman filter approach,” in Proceedings of the Fifth International

Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,

pp. 5–10, Funchal - Madeira, Portugal, 2015.

[14] Y.-M. Lee, “System and method for controlling takeoff and landing of drone” U. S.

Patent 10,046,856, 14 August 2018.

[15] D. Banerjee and A. A. Kandhadai, “Systems and methods for landing a drone on

a moving base” U. S. Patent 10,152,059, 11 December 2018.

[16] J. P. G. Moresve “Method and system for controlling the automatic landing/take-

off of a drone on or from a circular landing grid of a platform, in particular a naval

platform” U. S. Patent 8,626,364, 7 January 2014.

[17] A. J. Hawkins, “Wing’s delivery drones take flight for the first time in Virginia”, The

Verge, 2019 [Online]. Available:

https://www.theverge.com/2019/10/18/20921310/wings-delivery-drones-virginia-

first-flight [Accessed Dec. 10, 2019].

[18] N. Libby, “How To Find The Best Courier Service For Your Business” , 2017 [Online].

Available: https://blog.linnworks.com/best-courier-services [Accessed Dec. 10, 2019].

[19] S. Merkov, “Мультикоптеры: что нужно знать, чтобы купить дрон (или вовремя

отказаться от покупки)”, 2018 [Online]. Available:

https://www.ixbt.com/dv/multicopter-buyers-guide-2018 [Accessed Mar. 3, 2020].

[20] ROS install [Online]. Available: https://www.ros.org/install/. [Accessed May. 1,

2020]

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

52

[21] Ubuntu website [Online]. Available: https://ubuntu.com/. [Accessed May. 1, 2020]

[22] Ubuntu website [Online]. Available: https://ubuntu.com/tutorials/tutorial-install-

ubuntu-desktop#1-overview. [Accessed May. 1, 2020]

[23] Wiki ROS [Online]. Available: http://wiki.ros.org/kinetic/Installation/Ubuntu.

[Accessed May. 1, 2020]

[24] Wiki ROS [Online]. Available:

http://wiki.ros.org/catkin/Tutorials/create_a_workspace. [Accessed May. 1, 2020]

[25] GitHub – hector_quadrotor [Online]. Available: https://github.com/tu-darmstadt-

ros-pkg/hector_quadrotor. [Accessed May. 1, 2020]

[26] GitHub - uav-autonomous-landing [Online]. Available:

https://github.com/pablorpalafox/uav-autonomous-landing. [Accessed May. 1, 2020]

[27] OpenCV Documentation [Online]. Available:

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconst

ruction.html. [Accessed May. 1, 2020]

[28] Garzón, M.; Garzón-Ramos, D.; Barrientos, A.; Cerro, J.D. Pedestrian Trajectory

Prediction in Large Infrastructures. In Proceedings of the 13th International Conference

on Informatics in Control, Automation and Robotics, Lisbon, Portugal, 29–31 July 2016;

pp. 381–389.

[29] Sony DualShock 4 Gamepad PlayStation 4 Analogue / Digital Bluetooth Black

[Online]. Available: https://nl.icecat.biz/en-sg/p/sony/cuh-zct2/gaming+controllers-

dualshock+4-36468958.html. [Accessed May. 1, 2020]

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

https://ubuntu.com/
https://ubuntu.com/tutorials/tutorial-install-ubuntu-desktop#1-overview
https://ubuntu.com/tutorials/tutorial-install-ubuntu-desktop#1-overview
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/catkin/Tutorials/create_a_workspace

53

APPENDICES

Appendix 1 The start menu

from sys import *

from Tkinter import *

from management import *

import roslaunch

import rospy

class main():

 def __init__(self, master):

 self.master = master

 self.master.geometry("153x49+426+169")

 self.master.resizable(width=False, height=False)

 self.master.title("Start")

 self.master.configure(highlightcolor="black")

 #Quit Button

QUIT=Button(self.master,text=u'Quit',activebackground="#f9f9f9",com

mand=self.evCancel)

 QUIT.place(relx=0.065, rely=0.204, height=28, width=57)

 #Start Button

START=Button(self.master,text=u'Start',activebackground="#f9f9f9",co

mmand=self.mCreateManagement)

 START.place(relx=0.523, rely=0.204, height=28, width=66)

 self.master.mainloop()

 #Quiting function

 def evCancel(self):

 self.master.destroy()

 #Starting the simulation function

 def mCreateManagement(self):

 uuid = roslaunch.rlutil.get_or_generate_uuid(None, False)

 roslaunch.configure_logging(uuid)

 launch =

roslaunch.parent.ROSLaunchParent(uuid,["/interface/launch/start.launch"])

 launch.start()

 self.management=management(self.master)

root = Tk()

main(root)

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

54

Appendix 2 The start launch file

<launch>

 <arg name="debug" default="false"/>

 <arg name="gui" default="true"/>

<!-- The world is launched -->

 <include file="$(find gazebo_ros)/launch/empty_world.launch">

 <arg name="world_name" value="$(find

summit_xl_gazebo)/worlds/summit_xl.world"/>

 <arg name="debug" value="$(arg debug)" />

 <arg name="gui" value="$(arg gui)" />

 <arg name="paused" value="false"/>

 <arg name="use_sim_time" value="true"/>

 <arg name="headless" value="false"/>

 <gui>

 <camera name="user_camera">

 <pose>0 0 0 0 0 0</pose>

 </camera>

 </gui>

 </include>

<!-- Launch the Summit XL model in simulation -->

 <group ns="summit_xl">

 <param name="tf_prefix" value="summit_xl"/>

 <param name="robot_description" command="$(find xacro)/xacro.py '$(find

summit_xl_description)/robots/summit_xl.urdf.xacro'" />

 <!-- Created a node for joints -->

 <node name="summit_state_publisher" pkg="robot_state_publisher"

type="robot_state_publisher"

 respawn="false" output="screen">

 <remap from="/joint_states" to="/summit_xl/joint_states" />

 </node>

 <!-- Call a python script to the run a service call to gazebo_ros to spawn a URDF

robot -->

 <arg name="x" default="0"/>

 <arg name="y" default="0"/>

 <arg name="z" default="0"/>

 <arg name="R" default="0"/>

 <arg name="P" default="0"/>

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

55

 <arg name="Y" default="0"/>

 <node name="spawn_summit_xl" pkg="gazebo_ros" type="spawn_model"

respawn="false" output="screen"

 args="-param robot_description

 -urdf

 -x '$(arg x)'

 -y '$(arg y)'

 -z '$(arg z)'

 -R '$(arg R)'

 -P '$(arg P)'

 -Y '$(arg Y)'

 -model summit_xl " />

 </group>

<!-- Joint controller configurations are loaded from YAML file to parameter server -->

 <rosparam file="$(find summit_xl_control)/config/summit_xl_control.yaml"

command="load"/>

 <node name="controller_spawner" pkg="controller_manager" type="spawner"

respawn="false"

 output="screen" ns="/summit_xl" args="--namespace=/summit_xl

 joint_blw_velocity_controller

 joint_brw_velocity_controller

 joint_frw_velocity_controller

 joint_flw_velocity_controller

 joint_read_state_controller

 "/>

<!-- Launch the drone model in simulation -->

 <include file="$(find cvg_sim_gazebo)/launch/spawn_quadrotor.launch" >

 <arg name="model" value="$(find

cvg_sim_gazebo)/urdf/quadrotor_sensors.urdf.xacro"/>

 </include>

<!-- Start the groundtruth state publisher -->

 <node name="gt_altitude_ardrone" pkg="takeoff" type="robot_state_broadcaster"

/>

<!-- Launch summit's move -->

 <include file="$(find summit_moves)/launch/summit_moves.launch" />

</launch>

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

56

Appendix 3 The flight management menu

from sys import *

from Tkinter import *

import management_support

import tkMessageBox as msg

import start_support

from manual import *

from landing import *

from emergency import *

import roslaunch

import rospy

import rospkg

import genmsg

import roslib.message

import rosbag

import yaml

from std_msgs.msg import *

#setting the parameters

rospy.set_param('wind_speed', 0.6)

rospy.set_param('drone_speed', 8)

rospy.set_param('control_battery', 50)

rospy.set_param('drone_battery', 80)

rospy.set_param('temp', 15)

class management():

 def __init__(self, master):

 self.win=Toplevel(master)

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

57

 self.win.title(u'Flight Management')

 self.win.geometry("570x256+423+236")

 self.win.resizable(width=False, height=False)

 self.win.configure(highlightcolor="black")

 #Manual mode Button

MANUAL=Button(self.win,text=u'Manual

Mode',activebackground="#f9f9f9",command=self.mCreateManual)

 MANUAL.place(relx=0.035, rely=0.781, height=48, width=169)

 #Landing mode Button

LANDING=Button(self.win,text=u'Landing

Mode',activebackground="#f9f9f9",command=self.mCreateLanding)

 LANDING.place(relx=0.354, rely=0.781, height=48, width=169)

 #Emergency mode Button

EMERGENCY=Button(self.win,text=u'Emergency

Mode',activebackground="#f9f9f9",command=self.mCreateEmergency)

 EMERGENCY.place(relx=0.674, rely=0.781, height=48, width=169)

#Quit Button

QUIT=Button(self.win,text=u'Quit',activebackground="#f9f9f9",comman

d=self.evCancel)

 QUIT.place(relx=0.86, rely=0.039, height=48, width=69)

 #Wind speed

 MessageWind=Label(self.win,text=str(rospy.get_param('wind_speed'))

+' m/s',width=125)

 MessageWind.place(relx=0.474, rely=0.039, relheight=0.121,

relwidth=0.219)

 #Drone speed

MessageDroneSpeed=Label(self.win,text=str(rospy.get_param('drone_s

peed')) +' m/s',width=125)

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

58

 MessageDroneSpeed.place(relx=0.474, rely=0.156, relheight=0.121,

relwidth=0.219)

 #Sensors

MessageSensors=Label(self.win,text=str(rospy.get_param('/use_sim_ti

me')),width=125)

 MessageSensors.place(relx=0.474, rely=0.273, relheight=0.121,

relwidth=0.219)

 MessageSensors.after(1000, self.refresh_label)

 #Controller Battery

MessageConBattery=Label(self.win,text=str(rospy.get_param('control_b

attery')) +'%',width=125)

 MessageConBattery.place(relx=0.474, rely=0.391, relheight=0.121,

relwidth=0.219)

 #Drone Battery charge

MessageBattery=Label(self.win,text=str(rospy.get_param('drone_batter

y')) +'%',width=125)

 MessageBattery.place(relx=0.474, rely=0.508, relheight=0.121,

relwidth=0.219)

 #Temperature

 MessageTemprature=Label(self.win,text=str(rospy.get_param('temp'))

+' degrees',width=125)

 MessageTemprature.place(relx=0.474, rely=0.625, relheight=0.121,

relwidth=0.219)

#Wind speed Label

LabelWind=Label(self.win,background="#d9d9d9",foreground="#00000

0",relief="flat",anchor='w',justify='left',text=u'Wind speed')

 LabelWind.place(relx=0.125, rely=0.039, height=26, width=103)

 #Drone speed Label

LabelDroneSpeed=Label(self.win,background="#d9d9d9",foreground="

#000000",relief="flat",anchor='w',justify='left',text=u'Drone speed')

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

59

 LabelDroneSpeed.place(relx=0.125, rely=0.156, height=26, width=109)

 #Sensors Label

LabelSensors=Label(self.win,background="#d9d9d9",foreground="#00

0000",relief="flat",anchor='w',justify='left',text =u'Sensors')

 LabelSensors.place(relx=0.125, rely=0.273, height=26, width=68)

 #Controllers battery charge Label

LabelOpportunity=Label(self.win,background="#d9d9d9",foreground="

#000000",relief="flat",anchor='w',justify='left',text =u'Controller battery

charge')

 LabelOpportunity.place(relx=0.125, rely=0.391, height=26, width=168)

 #Battery charge Label

LabelBattery=Label(self.win,background="#d9d9d9",foreground="#000

000",relief="flat",anchor='w',justify='left',text =u'Drone battery charge')

 LabelBattery.place(relx=0.125, rely=0.508, height=26, width=133)

 #Temperature Label

LabelTemprature=Label(self.win,background="#d9d9d9",foreground="#

000000",relief="flat",anchor='w',justify='left',text =u'Temprature')

 LabelTemprature.place(relx=0.125, rely=0.625, height=28, width=97)

 self.win.grab_set()

 self.win.focus_set()

 self.win.wait_window()

 def evCancel(self):

 self.win.destroy()

 def mCreateManual(self):

 uuid = roslaunch.rlutil.get_or_generate_uuid(None, False)

 roslaunch.configure_logging(uuid)

 launch =

roslaunch.parent.ROSLaunchParent(uuid,["/interface/launch/manual.launch"])

 launch.start()

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

60

 self.manual=manual(self.win)

 def mCreateLanding(self):

 uuid = roslaunch.rlutil.get_or_generate_uuid(None, False)

 roslaunch.configure_logging(uuid)

 launch =

roslaunch.parent.ROSLaunchParent(uuid,["/interface/launch/landing.launch"])

 launch.start()

 self.landing=landing(self.win)

 def mCreateEmergency(self):

 uuid = roslaunch.rlutil.get_or_generate_uuid(None, False)

 roslaunch.configure_logging(uuid)

 launch =

roslaunch.parent.ROSLaunchParent(uuid,["/interface/launch/emergency.launch"])

 launch.start()

 self.emergency=emergency(self.win)

 def refresh_label(self):

self.MessageSensors.configure(text=str(rospy.get_param('/use_sim_tim

e')))

 self.MessageSensors.after(1000, self.refresh_label)

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

61

Appendix 4 The landing mode file

from sys import *

from Tkinter import *

import management_support

import tkMessageBox as msg

import landing_support

class landing():

 def __init__(self, win):

 self.gin=Toplevel(win)

 self.gin.title(u'Landing Mode')

 self.gin.geometry("417x103+467+142")

 self.gin.resizable(width=False, height=False)

 self.gin.configure(highlightcolor="black")

 #Text

LabelLanding=Label(self.gin,background="#d9d9d9",foreground="#000

000",relief="flat",anchor='center',justify='center',cursor="fleur",text=u'Landin

g has been performed succesfully')

 LabelLanding.place(relx=0.048, rely=0.097, height=36, width=377)

 #Quit Button

Quit=Button(self.gin,text=u'Quit',activebackground="#f9f9f9",command

=self.evCancel)

 Quit.place(relx=0.072, rely=0.485, height=48, width=159)

 #Manual Button

Manual=Button(self.gin,text=u'ManualMode',activebackground="#f9f9f9

",command=self.evCancel)

 Manual.place(relx=0.552, rely=0.485, height=48, width=159)

 self.gin.grab_set()

 self.gin.focus_set()

 self.gin.wait_window()

 def evCancel(self):

 self.gin.destroy()

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

62

Appendix 5 The landing mode launch file

<launch>

 <node name="platform_detection" pkg="uav_vision" type="platform_detection"

output="screen">

 <param name="use_trackbars" value="false"/>

 <param name="height_landing_platform" value="0.497"

 <param name="platform_position_in_ardrone_topic"

value="/platform/current_platform_position_in_ardrone"/>

 <param name="platform_position_in_world_topic"

value="/platform/current_platform_position_in_world"/>

 <param name="indicator_position_in_ardrone_topic"

value="/platform/current_indicator_position_in_ardrone"/>

 <param name="image_topic" value="/ardrone/bottom/image_raw"/>

 <param name="cam_info_topic" value="/ardrone/bottom/camera_info"/>

 <param name="altimeter_topic" value="/ardrone/altimeter"/>

 <param name="sonar_topic" value="/ardrone/sonar_height"/>

 <param name="gt_altitude_topic" value="/ardrone/groundtruth_altitude"/>

 <param name="imu_topic" value="/ardrone/imu"/>

 <param name="cmd_topic_vel" value="/ardrone/cmd_vel"/>

 </node>

 <param name="/use_sim_time" value="true" />

 <node pkg="ped_traj_pred" type="ped_traj_pred" respawn="false"

name="prediction_kalman_node" output="screen">

 <param name="pose_topic"

value="/platform/current_platform_position_in_world" />

 <param name="path_id" value="1" />

 <!-- For a given path, time between predictions -->

 <param name="time_step" value="0.1" />

 <!-- Maximum predicted time for the given path -->

 <param name="path_time" value="0.1" />

 <!-- Rate at which we predict new paths -->

 <!-- at rate of 2 means we predict a new path every 0.5 seconds -->

 <param name="pub_freq" value="10" />

 <param name="model_covariance" value="2.0" />

 <param name="observation_covariance" value="2.0" />

 <param name="future_path_topic" value="/kalman_prediction_path"/>

 </node> </launch>

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

63

Appendix 6 The manual mode file

from sys import *

from Tkinter import *

import management_support

import tkMessageBox as msg

import manual_support

class manual():

 def __init__(self, win):

 self.gin=Toplevel(win)

 self.gin.title(u'Manual Control')

 self.gin.geometry("417x103+467+142")

 self.gin.resizable(width=False, height=False)

 self.gin.configure(highlightcolor="black")

 #Text

LabelManual=Label(self.gin,background="#d9d9d9",foreground="#000

000",relief="flat",anchor='center',justify='center',cursor="fleur",text=u'Manual

control is ON')

 LabelManual.place(relx=0.192, rely=0.097, height=36, width=267)

 #Quit Button

Quit=Button(self.gin,text=u'Quit',activebackground="#f9f9f9",command

=self.evCancel)

 Quit.place(relx=0.312, rely=0.485, height=48, width=159)

 self.gin.grab_set()

 self.gin.focus_set()

 self.gin.wait_window()

 def evCancel(self):

 self.gin.destroy()

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

64

Appendix 7 The manual mode launch file

<launch>

 <node pkg="teleop_twist_keyboard" type="teleop_twist_keyboard.py"

name="teleop" output="screen">

 </node>

 <node pkg="ardrone_moves" type="ardrone_moves" name="ardrone_moves"

output="screen">

 </node>

</launch>

DocuSign Envelope ID: 40A8E015-1A4B-48A4-805F-6352E60FE1AFDocuSign Envelope ID: 9D067188-4ADA-45C1-960A-33A7BC1AEB96

		2020-05-25T11:22:56-0700
	Digitally verifiable PDF exported from www.docusign.com

