
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Alikhan Sailekeyev 194438IVSB

Secure Ethereum Virtual Machine Compatible

Smart Contracts Development Guideline for a

Private Company

Bachelor's thesis

Supervisor: Valdo Praust

 Msc

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Alikhan Sailekeyev 194438IVSB

Turvaline Ethereumi virtuaalmasinaga ühilduv

nutikate lepingute arendusjuhend eraettevõttes

kasutamiseks

Bakalaureusetöö

Juhendaja: Valdo Praust

 Msc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Alikhan Sailekeyev 194438IVSB

14.05.2022

4

Abstract

Smart contracts are set of computer code instructions that are properly executed in a

decentralized way by a network of independent distrusting nodes without the intervention

of a third party.

With the active growth of extensively used modern public blockchain networks that

support the execution of self-written code, more new individuals are getting involved into

the smart contracts’ development. Given the fact that the uploaded smart contract’s logic

source code cannot be overwritten or replaced, the quality and security of final executable

code must be ensured. New start-up companies that want to introduce new decentralized

applications must know the best practice to develop reliable and secure smart contracts.

Therefore, a development guideline needs to be designed for the use of company

employees that would consider best practices that will meet the requirements of security

and business needs.

In this research paper the author’s final guideline mainly focuses on Solidity

programming language and Ethereum Virtual Machine compatible blockchain networks.

Throughout the research, the author examines and compares the existing smart contracts

development best practices solutions to determine the best approaches. The main goal of

the author is to cover the whole development aspects such as smart contracts’ design,

security, testing and deploy that would meet the business requirements.

This thesis is written in English and is 64 pages long, including 8 chapters, 13 figures and

4 tables.

5

List of abbreviations and terms

DAPP Decentralized application

DEFI Decentralized finance

DAO Decentralized Autonomous Organisation

EVM Ethereum Virtual Machine

ETH Ether (native token of Ethereum network)

EIP Ethereum Improvement Proposal

FTP File Transfer Protocol

GDPR Global Data Protection Regulation

HTTP Hyper

ICO Initial Coin Offering

IP Internet Protocol

POW Proof-of-Work

POS Proof-of-Stake

POH Proof-of-History

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

Wei The smallest denomination of ether

6

Table of contents

1 Introduction ... 10

1.1 Company description .. 10

1.2 The main problem ... 11

1.3 Motivation and Objectives .. 11

2 Background on Ethereum Blockchain and Smart contracts .. 13

2.1 Blockchain .. 13

2.1.1 Definition and characteristics of Blockchain .. 13

2.1.2 Blockchain architecture ... 14

2.2 Consensus Mechanism ... 15

2.3 Ethereum ... 15

2.3.1 Addresses ... 16

2.3.2 Ethereum Virtual Machine (EVM) .. 16

2.3.3 Smart contracts .. 17

2.3.4 Execution Fees ... 18

2.4 Blockchain explorers .. 20

2.5 General Data Protection Regulation ... 22

2.5.1 Scope, penalties, and key definitions of GDPR .. 22

3 State of the art .. 24

3.1 Literature Research ... 24

4 Methodology .. 29

5 Smart contracts Vulnerabilities and Data protection analysis 30

5.1 Real-world cases ... 30

5.1.1 The DAO hack ... 30

5.1.2 Solana x Wormhole hack ... 31

5.2 Existing development guidelines .. 32

5.2.1 Cytric’s implementation of Secure Smart Contracts 33

5.2.2 Consensys’ implementation of Secure Smart Contracts 34

5.3 Smart contracts and security ... 36

5.3.1 Security Challenges in Ethereum .. 37

7

5.3.2 Design Challenges and Patterns Usage ... 38

5.3.3 Security analyzer for testing .. 38

5.4 User data protection under GDPR .. 39

5.4.1 Data transparency .. 40

5.4.2 Data Minimization, Accuracy and Storage Limitation 40

5.4.3 Purpose limitation .. 40

5.5 Hardware wallets .. 41

6 Proposed Solution .. 43

6.1 Design ... 43

6.1.1 Development tools ... 43

6.1.2 Standards ... 44

6.1.3 Control and Management .. 45

6.1.4 Upgradeability ... 45

6.1.5 Data regulation .. 46

6.2 Security ... 46

6.2.1 Reentrancy ... 46

6.2.2 Balance limit .. 47

6.2.3 Emergency stop ... 47

6.2.4 Time management ... 48

6.2.5 Integer Overflow ... 48

6.2.6 Phishing with origin of the sender ... 48

6.2.7 Signature Replay ... 49

6.3 Testing .. 49

6.3.1 Truffle suite and Ganache ... 49

6.3.2 Security testing .. 50

6.4 Deploy .. 50

6.4.1 Truffle deploy .. 51

6.4.2 Securing deployer account private key .. 52

7 Discussion .. 53

8 Summary .. 54

References .. 55

Appendix 1 – Source codes .. 58

Appendix 2 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 64

8

List of figures

Figure 1: Centralized vs decentralized ... 13

Figure 2: Blocks sequence .. 14

Figure 3: Blockchain architecture .. 14

Figure 4: Smart contracts working ... 17

Figure 5: Pattern: Checks-effects-interaction ... 58

Figure 6: Pattern: Mutex ... 58

Figure 7: Pattern: Balance limit .. 59

Figure 8: Pattern: Emergency stop ... 60

Figure 9: Pattern: Rate limit pattern ... 60

Figure 10: Pattern: Speed bump ... 61

Figure 11: Pattern: Ownable ... 62

Figure 12: Pattern: Roles .. 62

Figure 13: Pattern: Authorization ... 63

9

List of tables

Table 1: Ether denominations. .. 19

Table 2: Gas costs in gwei. ... 19

Table 3: Securty patterns of solidity development. .. 25

Table 4: Functional design patterns of solidity development. .. 26

10

1 Introduction

Since Bitcoin’s debut in 2009 and its subsequent success in the cyber and financial field,

the term of blockchain has piqued huge attention worldwide. The "disruptive" potential

of this innovative system, the underlying technology of cryptocurrencies, has captivated

industries as well as national governments [1][2]

The current level of worldwide digitalization and high network availability led to the

existence of more global blockchain networks. The widespread and performance of

computing devices are on a such level, that nowadays most users are capable of running

the complex system of blockchain network on their own devices and provide contribution

and support to the progressing software field of decentralized applications. Since the

introduction of Ethereum blockchain network with the support of EVM, lots of

individuals started inventing new applications and protocols using smart contracts as

instructions of code that are executed among various machines.

However, decentralized applications development in context of blockchain networks is a

relatively new concept, and many new ideas are being proposed even nowadays. Those

promising projects evolve into start-up projects. And mostly, start-up companies hire

young talents to implement their design into reality. The final code being executed in a

decentralized way means that it must be secure and bug-free. Therefore, to achieve these

basic and crucial needs, a well-structured secure smart contracts development guideline

needs to be developed to help company employees and interns that additionally would

meet the requirements of security measures and business needs.

1.1 Company description

The case study Company is situated in Kazakhstan and specializes in IT software

development. This company offers various IT development services starting from e-

commerce websites and ending with decentralized applications. The blockchain based

applications development department has been founded in the end of 2020

11

Today, this department is developing a software for internal and outsource projects. The

development team consists of people who are responsible for building front-end, back-

end, and smart contracts solutions. Each member, in turn, is in charge of one or several

projects at the same time.

1.2 The main problem

The author would like to admit that the blockchain developers are the main workers who

have to manage the tasks of several different projects at the same time, while the other

developers of other fields stay focused on their own specific solutions. This situation

clearly shows that the company was in dire need of more talented and experienced

specialists in blockchain technology field. Throughout the author’s working period, he

has seen the several waves of new interns who were hired to fill the gap of active

developers. Hiring of new employees might be enough to resolve the problem of

development speed, but not the development quality. One of the main problems of new

interns were their lack of understanding of how smart contracts work and experience in

development of optimized code. The security issues of blockchain networks and smart

contracts vulnerabilities are a bit different than compared to security of other enterprise

level applications.

1.3 Motivation and Objectives

By observing the situation regarding new interns’ qualification and learning process, the

author has come to the point, that a host company needs a development guideline for the

developers of decentralized applications. This guideline would describe all the critical

parts of designing, development, testing, and deployment that would meet all the business

and security requirements.

Throughout the author’s work experience at the blockchain based start-up company, the

following points have been identified as necessary when developing DAPPs for enterprise

needs:

• The main idea logic of decentralized application must be implemented directly in

smart contracts

12

• The code and logic must be optimized as much as possible to reduce transactions

cost

• The smart contract should not be constantly maintained in order to perform

correctly. However, it depends on the core application idea

• The testing must be performed properly to avoid any possible bugs

• In case of big code and complex logic, the use feature of upgradeability must be

considered

• The application must comply with user’s data protection regulations

The three objectives of this project are:

1. To observe the best existing EVM compatible smart contracts development

practices.

2. To define what are the most important development aspects that would help

avoid possible cyber threats.

3. To develop a guideline that will cover the design, security, testing and deploy

stages of smart-contracts development for the use of company employees

13

2 Background on Ethereum Blockchain and Smart contracts

This chapter covers a number of key concepts that are important to comprehending this

thesis, as well as some of the key technology discussed, such as blockchain and smart

contracts.

2.1 Blockchain

2.1.1 Definition and characteristics of Blockchain

Blockchain is a peer-to-peer, ever-growing, cryptographically secure, hardly immutable,

shared recordkeeping system in which each user, or so-called node, keep a copy of

transaction records, that can only be updated via consensus when all parties involved in

a network agree to update [1]. It is a technology that meets requirements such as

decentralization, traceability, integrity, confidentiality, auditability, transparency,

security [3][4]. When management is centralized on a single entity, the integrity of an

information system is directly dependent on that entity, but in a decentralized system, the

integrity of information is dependent on all members in the network where the system

functions. As a result, one entity's unilateral will is insufficient to change a record. Figure

1 illustrates the difference between centralized and decentralized authorities.

Figure 1: Centralized vs decentralized. Source: coinspectator.com

14

Transactions and blocks are the two types of records that make up a blockchain.

Multiple transactions are compacted and encoded in a Merkle tree in blocks and

cryptographically approved. Each block has its own hash. These blocks are tightly

connected with each other, where each block points to the hash of previous one, creating

a long chain of these blocks, hence the name blockchain.

Figure 2: Blocks sequence. Source: [21]

This cyclical procedure validates the previous block's integrity back to the first block in

the chain, known as the genesis block.

2.1.2 Blockchain architecture

As seen in the figure 3, blockchain can be thought of as a layer of a distributed peer-to-

peer network running on top of the internet. It's similar to HTTP, FTP or SMTP, which

all run on top of TCP/IP:

Figure 3: Blockchain architecture. Source: [1]

15

2.2 Consensus Mechanism

In distributed systems, consensus ensures that a state, value, or piece of data is correct

and agreed upon by the majority of nodes. A consensus process ensures that this effort is

carried out properly and independently of any interested parties, or, in the case of private

permissioned networks, to meet other network objectives (such as centralized control).

In a nutshell, the consensus mechanism assures that each new block added to the

blockchain is genuine, legitimate, and accepted by all nodes in the network. [5][6]

Proof-of-Work (PoW) is the most often used and well-known consensus method, and it

is the essential underpinning of Satoshi Nakamoto's Bitcoin Blockchain that is also

utilized by the Ethereum network. In a process known as "mining”, "nodes" solve hard,

asymmetrical mathematical puzzles to produce new blocks, thereby demonstrating proof

of work. Because this mathematical puzzle necessitates computing effort, the nodes must

solve it as rapidly as possible in order to construct the new block and be rewarded for it.

[5][7]

Other blockchain projects use a variety of different consensus algorithms. One of the most

well-known is Proof-of-Stake (PoS), which is expected to replace PoW on the Ethereum

platform by the second quarter of 2022. [8]

Proof-of-Stake is the fundamental mechanism that activates validators when enough stake

is received. To become a validator on Ethereum, users must invest 32 ETH. Validators

are assigned to produce blocks at random and are accountable for double-checking and

confirming any blocks they do not make. The stake of the user is also used to incentivize

positive validator activity. For example, a user can lose a portion of their share if they go

offline (fail to validate) or lose their entire investment if they engage in wilful collusion.

[9]

2.3 Ethereum

Ethereum [10] is a decentralized virtual machine that, at the request of users, executes

programs known as contracts. Contracts are written in EVM bytecode [11], a Turing-

complete bytecode language. A contract is a collection of functions, each of which is

16

defined by a set of bytecode instructions. Contracts have the unique ability to send and

receive ether (a cryptocurrency akin to Bitcoin [12]) from users and other contracts.

2.3.1 Addresses

The Ethereum blockchain is made up of account addresses, or so-called wallets, that may

communicate with each other. Each account has a state and a twenty-byte address

associated with it. An Ethereum address is a one-hundred-and-sixty-bit string that is used

to identify an account. [10]

External accounts and contract accounts are the two types of accounts in Ethereum.

• External accounts: user accounts that are managed by private keys

• Smart contract accounts: Accounts that are governed by programming code that

are known as smart contracts.

User account can send a message to any other external account, such as a simple value

transfer, as well as to a contract, granting access to contract code functionalities. Contract

accounts, on the other hand, are unable to initiate new transactions on their own.

However, contract accounts can only initiate transactions in reaction to the receipt of

additional transactions from an external account.

2.3.2 Ethereum Virtual Machine (EVM)

The Ethereum platform features the Ethereum Virtual Machine (EVM), a Turing-

completely distributed virtual machine that runs scripts on the blockchain. Therefore,

because the transaction is immutable, it is possible to develop a DAPP that works as

programmed without the possibility of censorship, fraud, or third-party interference

[10]. EVM is primarily a transaction-based state machine. This state machine just takes

multiple inputs and transitions to a new state based on those inputs. The state has

information stored at a particular point in time. In this way, the state machine acts as a

computer and always remembers the state of something. If the EVM has a state change,

it resembles a blank sheet, and that state changes each time something is written to the

sheet. When the transaction is executed, the current state changes to the new state [13].

17

2.3.3 Smart contracts

Smart contracts are simply programs stored on a blockchain that run when predetermined

conditions are met. They typically are used to automate the execution of an agreement so

that all participants can be immediately certain of the outcome, without any

intermediary’s involvement or time loss [14].

Simple "if/when...then..." lines of instructions are written into code on a blockchain to

make smart contracts work. When preset circumstances are satisfied and validated, the

activities are carried out by a network of computers. When the transaction is complete,

the blockchain is updated, which means the transaction can't be modified [6].

Figure 4: Smart contracts working: Source [bitpanda.com]

Users transmit transactions to the Ethereum network to construct new contracts, perform

contract functionalities, and send ether to contracts or other users. All transactions are

18

recorded on the blockchain, which is a public, append-only data structure. The condition

of each contract and the balance of each user are determined by the sequence of

transactions on the blockchain.

The settlement of digital relationships through the blockchain is great for decreasing the

danger of breach of any rule specified in an agreement, boosting the security of value

online transactions, because Ethereum smart contracts basically follow the set of

instructions predefined by a developer. This is because the blockchain bears

responsibility for adhering to the rules of the partnership since the smart contract, once

launched on the blockchain, becomes independent of the parties' will, obeying nothing

but their self-execution instructions under the circumstances embedded therein [1].

Because contracts have financial value, it is critical to ensure that they be carried out

accurately. Conflicts in contract execution (due to failures or attacks, for example) are

resolved using a consensus procedure based on PoW problems. When the adversary does

not control the bulk of the network's processing capacity, contract execution is ideally

right.

The smart contract can then be coded by a developer, though firms that use blockchain

for business are increasingly providing templates, web interfaces, and other online tools

to make smart contract construction easier. Therefore, the widespread of blockchain use

in different fields.

2.3.4 Execution Fees

All miners in the Ethereum network should ideally execute each function call. The

execution costs paid by users who call functions motivate miners to execute such work.

Execution costs guard against denial-of-service attacks, which occur when an adversary

attempts to slow down the network by requesting time-consuming calculations.

The cost of executing code is described in terms of gas and gas price, and the product

represents the cost paid by the user. The transaction that initiates the invocation defines

the gas limit that the user is ready to pay as well as the price per unit of gas. In general,

the greater the price per unit, the more likely miners will opt to complete the transaction.

Each EVM operation consumes a particular quantity of gas [1][11], and the overall charge

is determined by the miners' entire sequence of operations. Gwei is the unit of

19

measurement for gas. It's easier to utilize 10 gwei instead of 0.00000001 ETH because

certain transaction fees might be modest. Other units of measurement are shown in the

following table

Table 1: Ether denominations. Source [ethdocs.org]

Unit Wei Value Wei

1 wei 1 wei 1

2 Kwei (babbage) 1e3 wei 1,000

3 Mwei (lovelace) 1e6 wei 1,000,000

4 Gwei (shannon) 1e9 wei 1,000,000,000

5 microether (szabo) 1e12 wei 1,000,000,000,000

6 milliether (finney) 1e15 wei 1,000,000,000,000,000

7 ether 1e18 wei 1,000,000,000,000,000,000

Unless an exception is thrown, miners process a transaction until it completes normally.

If the transaction succeeds, the remaining gas is returned to the caller; otherwise, the

transaction's whole gas allocation is lost. When a computation uses all of the allocated

gas, it throws an "out-of-gas" exception, and the caller loses all of the gas. An adversary

seeking to launch a denial-of-service assault (for example, by running a time-consuming

function) should set aside a large amount of gas and pay the ether associated with it.

Miners will execute the transaction if the attacker picks a gas price that is consistent with

the market; otherwise, if the price is too low, miners will not execute the transaction.

As a result, gas is a metric for computing effort. A predetermined amount of gas is allotted

to each EVM operation. See table below for some examples

Table 2: Gas costs in gwei. Source [eips.ethereum.org]

Value Operation Gwei Description

1 0x01/0x03 ADD/SUB 3 Addition/Subtraction

operation

2 0x02/0x04 MUL/DIV 5 Multiplication/Divisi

on operation

3 0x16/0x17/0x18/0x19 AND/OR/XOR/NOT 3 Bitwise operations

4 0x56 JUMP 8 Unconditional jump

20

5 0x31 BALANCE 400 Get balance of the

given account

6 0x40 BLOCKHASH 20 Get the hash of one

of the 256 most

recent complete

blocks.

7 0x55 SSTORE 5000/20 000 Storage operation

8 0xf1 CALL 25 000 Message-call into an

account

9 0xf0 CREATE 32 000 Create a new account

with associated code.

10 0x3b EXTCODESIZE 700 Get size of an

account’s code.

When it comes to gas prices, the way contracts are written has a direct impact on how

well they function in terms of gas usage. Users may be subjected to unreasonably costly

contracts if blockchain developers are sloppy or uninterested about gas economy. Solidity

developers, on the other hand, who strive to optimize the code a lot might make it tough

to read. As a result, programmers must strike a compromise between their concern about

gas usage and code readability [15].

2.4 Blockchain explorers

Since blockchain is a decentralized and open system, it means that everybody can become

a node and start exploring the stored data in the network. However, not every user will

want or be able to become a member of the whole infrastructure as a full node due to

hardware limitations. For that kind of situations, ordinary users and developers use

blockchain explorers, which act as reliable API for the decentralized network with the

functionality that allow them to examine and analyze recently added blocks and

transactions along with the source code of uploaded smart contracts.

When it comes to the choosing the suitable explorer tool, the first thing that comes into

mind is Etherscan. The reason for that is that was the only tool the author had real

experience working with. However, it would also be good to mention an open-source

alternative named BlockScout.

21

Etherscan

Etherscan is the oldest and most popular Ethereum explorers among other alternatives.

Of course, it is a matter of taste, but here are some advantages of this explorer:

• The search can be performed using user account address, transaction hash, block

number, tags, labels, and smart contracts address.

• It provides all the needed information about the pending and approved

transactions with the sender, receiver, gas limit, price, and consumption.

• It offers developer services, such as an Application Program Interface (API) for

acquiring smart contract code.

• Developers and companies can verify the source code of their contracts and make

it transparent, so users could be convinced about the code quality on their own

• The Graphical-User-Interface (GUI) of the website is user-friendly and look clean

BlockScout

BlockScout is open source blockchain explorer that is not limited only to Ethereum, since

it allows the switching between multiple networks. This project had its first beta version

released in 2018. Here are the benefits:

• It allows the switching between variety of blockchain networks

• As a consequence of user inquiries, it provides block-oriented information.

• It is open project improved by community.

Security

Security tools are used to analyze smart contracts code statically and automatically. The

author named Durieux, in his paper, selected nine automated security tools and analyzed

a huge amount of Ethereum smart contracts. The two tools with the best results, either

individually or in combination, were as follows [16]:

• Mythril: it is based on taint analysis, concolic analysis and control flow checking

of the EVM bytecode, to search for data that make possible the discovery of

vulnerabilities in the Solidity smart contracts.

• Slither: it is a static analysis framework that converts Solidity smart contracts into

an intermediate representation called SlithIR to runs a suite of vulnerability

22

detectors and print visual information about security failures of the smart

contracts.

2.5 General Data Protection Regulation

The General Data Protection Regulation (GDPR) is the world's most stringent privacy

and security law. Despite the fact that it was designed and passed by the European Union

(EU), it imposes duties on organizations anywhere that target or collect data about EU

citizens. On May 25, 2018, the regulation went into effect. Those who break the GDPR's

privacy and security regulations will face stiff penalties, with fines exceeding tens of

millions of euros [17]. The strength of GDPR has seen it commended as a dynamic way

to deal with how individuals' very own information ought to be taken care of.

2.5.1 Scope, penalties, and key definitions of GDPR

Scope

At the core of GDPR is private information. Extensively this is data that permits a living

individual to be straightforwardly, or by implication, distinguished from information that

is accessible. This can be something self-evident, like an individual's name, area

information, or a reasonable online username, or it very well may be something that might

be less immediately clear: IP locations and treat identifiers can be considered as private

information.

Under GDPR there's additionally a couple of exceptional classifications of delicate

individual information that are given more noteworthy insurances. This individual

information incorporates data about racial or ethnic beginning, political feelings, strict

convictions, enrollment of worker's organizations, hereditary and biometric information,

wellbeing data and information around an individual's sexual coexistence or direction.

The vital thing about what comprises individual information is that it permits an

individual to be distinguished - pseudonymized information can in any case fall under the

meaning of individual information. Individual information is so significant under GDPR

in light of the fact that people, associations, and organizations that are either 'regulators'

or 'processors' of it are covered by the law.

23

Even though GDPR was proposed to European countries, it can be used or applied in

other countries as well. The GDPR applies to companies that process the personal data of

EU residents or citizens. However, it does not matter if your company is situated outside

the EU or not. GDPR will apply to any company as long as they process and collect the

data of European people.

Penalties

The fines for violating the GDPR are very high. There are two tiers of penalties, which

max out at 20 million euro or 4% of global revenue (whichever is higher), plus data

subjects have the right to seek compensation for damages.

24

3 State of the art

This chapter outlines one of the research paper's key objectives: an in-depth examination

of the design, development, and deployment of Solidity smart contracts for business

reasons. To avoid unethical practices, gas consumption difficulties, and security

vulnerabilities, these patterns will be applied to corporate employees for the production

of reusable smart contracts.

3.1 Literature Research

The use of well-known and well-studied approaches can be used to conduct a literature

review. The following four types of reviews were examined for this study:

• Narrative Literature Review: This type of review is frequently used for the

theoretical underpinning of articles, dissertations, theses, and course completion

papers, but it does not utilize complex or thorough search tactics.

• Systematic Mapping Study: this word refers to studies that attempt to determine

the present state of a topic in broad terms. These studies aim to determine who

writers publish the most, as well as the institutions, years of publishing, and

research methodologies used.

• Systematic Literature Review: it is used in scientific research to acquire, select,

and assess the results of relevant studies using systematic and explicit approaches.

• Multivocal Literature Review: The same as previous literature reviews.

However, the fundamental distinction between an MLR and an SLR or an SM is

that, whereas SLRs and SMs solely employ academic peer-reviewed publications

as input, MLRs also incorporate grey literature sources such as blogs, white

papers, and online pages [18].

The style of literature review chosen by the author for this project was Systematic

Literature Review (SMS) with the combination of Multivocal Literature Research

(MLR) because it was thought to be the most suited for the nature of this research paper

and its major focus – EVM compatible smart contracts. Ethereum’s approach of

blockchain and smart contracts is still relatively new technology. Since Ethereum has

25

been launched in 2015, the author collected the needed information from sources

published after the year of Ethereum initial release that contained enough references and

citations.

Because most produced smart contracts currently belong to DAPPs that operate in the

finance sector, conducting many transactions of significant monetary worth [19], the key

element to be examined in this article was development security inside a company. As a

result, smart contract development must be rigorous in order to minimize company

financial losses due to code faults. This paper uses a variety of data sources, starting from

internet resources and ending with academic books that were based on Solidity, smart

contracts and Ethereum.

The authors Wohrer and Zdun, in on of their academic papers, performed a data analysis

where they pointed out some developmental design patterns that would correspond to

security needs of smart contracts [20].

Table 3: Security patterns of solidity development. Source [20]

Category Pattern Problem Solution Example

Contract

1

Security

Checks-

Effects-

Interaction

Reentrancy attack.

External calls from

attackers can alter

contract’s execution

logic

To decrease the attack

surface of a contract

being modified by its

own externally called

contracts, follow a

suggested functional

code order in which

calls to external

contracts are always

the final step.

CryptoKitties

2 Emergency

Stop

Contract must be

stopped in case of

bug exposure

Include an emergency

stop feature in the

contract that may be

used by a trusted

person to halt sensitive

functions.

Augur/REP

3 Speed

Bump

When numerous

heavy logic tasks are

executed at the same

time, a smart contract

might fail

Extend the time it

takes to complete

sensitive tasks in order

to prevent fraud.

TheDAO

26

4 Rate Limit When numerous

heavy logic tasks are

executed at the same

time, a smart contract

might fail

Set a limit on how

many times a job may

be completed in a

certain amount of

time.

etherep

5 Mutex Reentrancy attack.

External calls from

attackers can alter

contract’s execution

logic

To prevent an external

call from re-entering

its caller function, a

mutex must be used.

Ventana

Token

6 Balance

Limit

Contract’s collected

funds can be lost if

attacked by hackers

Limit the maximum

amount of

cryptocurrency that

can be put at risk in a

contract.

CATToken

The authors used Grounded Theory technique to collect their data. Grounded theory

(GT) is a research approach that focuses on the development of theory that is 'grounded'

in evidence that has been collected and analysed in a methodical manner [21].

Moreover, they used the same technique with the combination of Multivocal Literature

Research in another article that extended their previously setup security design patterns.

This article introduces more functional design patterns on top of existing security

principles, which is also a very important part in smart contracts that are focused for

business needs. Some of those patterns are very critical when it comes to management of

business applications such as control, authorization, lifecycle, and maintenance, since the

company is responsible for their application, and they must have some management

possibilities.

Table 4: Functional design patterns of solidity development. Source [22]

Category Pattern Problem Solution Example

Contract

1

Action and

Control

Pull payment It is possible for

money transfers

to fail.

Let payment

receivers withdraw

the funds.

CryptoKitties

2 State machine Multi-scenario

logic is used in

several DAPPs.

Contracts should

be adaptable to a

variety of phases

and transitions.

DutchAuction

3 Commit and

Reveal

Data secrecy is

required in

Give data

transactions

ENS

Registrar

27

several

contracts.

secrecy for a

specific amount of

time before

revealing the

information.

4 Oracle (Data

provider)

Off-chain data is

required by

some contracts.

External data can

be accessed by

sending a request

to an off-chain

data carrier

(mostly

Chainlink).

Etheroll

5

Authorization

Ownership Any account

calls the

execution of any

contract method.

Restrict the access

to some specific

sensitive methods

only to the

contract owner

Euphoria

Lottery

6 Access

Restriction

Contract’s

collected funds

can be lost if

attacked by

hackers

Limit the

maximum amount

of cryptocurrency

that can be put at

risk in a contract.

Etheroll

7

Lifecycle

Mortal

After a certain

amount of time,

some contract

procedures are

no longer

required.

Implement self-

destruction

functionality into a

contract

GTA Token

8 Automatic

Deprecation

Determine the

time interval for a

contract method to

be deprecated.

Polkadot

9

Maintenance

Data

Segregation

When a contract

is updated, data

must be

migrated to the

new version.

Separate contract

data in a separate

contract to avoid

data migrations

when a new

version is made.

SAN Token

10 Satelite Contract updates

are hindered by

the immutability

of deployed

contracts.

By deploying

auxiliary contracts

(proxies), you can

go around the

blockchain's

immutability and

add additional

LATP Token

28

functionality to a

contract.

11 Contract

Register

Contract

participants need

to know its latest

version.

Allow participants

to look up the

address of the

most recent

version of a

contract.

Tether Token

12 Contract

Relay

Create a contract

that operates as a

proxy for all

requests,

forwarding them

to the most recent

version of the

contract.

Numeraire

29

4 Methodology

The main hypothesis of the author is that in order for company employees to develop

more reliable and secure code for decentralized applications, the well-structured guideline

must be developed that could point to the most important parts for business needs. Author

will propose a solution that will be implemented in the practical part of this work.

The paper aims to provide theoretical understanding of how well designed and properly

secured smart contracts for enterprise solutions must be developed. The author followed

the qualitive research methodology. The steps for establishing a methodology framework

for this study were as follows:

• Explain the core characteristics of blockchain security and what kind of

limitations smart contracts have

• Explore the real-world attacks performed on smart contracts to identify the

• Investigate the security design patterns problems of smart contracts

• Describe and show how the testing and deployment of smart contracts must be

accomplished.

• Describe the method of how to keep the private file in a safe way

30

5 Smart contracts Vulnerabilities and Data protection analysis

This chapter’s goal is to cover the real-world attack cases and how the deficiency of

security and data regulation impacts the company and its customers.

5.1 Real-world cases

5.1.1 The DAO hack

5.1.1.1 What is a DAO?

DAO stands for “Decentralized autonomous organization” and it is a blockchain-based

cooperative that is collectively owned by its members and has rules that are defined and

performed by code instructions. DAOs are decentralized management structures that

replace centralized administration with a techno-democratic method in which investor-

stakeholders vote on decisions. DAOs are constructed on top of blockchains and whose

transactions are viewable on the underlying blockchain protocol. While The DAO was an

early implementation of decentralized autonomous governance, decentralized

autonomous models continue to be prominent in blockchain-related applications,

particularly among DeFi platforms. Bitcoin can be considered as a very first

implementation of DAO system [23].

The following describes how a DAO works:

• The smart contracts that will administer the organization are written by a group of

people.

• There is an initial funding period during which people contribute to the DAO by

purchasing ownership tokens – this is known as a crowd sale or an Initial Coin

Offering (ICO) – in order to provide it with the resources it requires.

• When the financing period ends, the DAO becomes operational.

• People can then make ideas to the DAO for how the money should be spent, and

members who have bought in can vote on whether or not these proposals should

be approved.

5.1.1.2 The attack

The Slock company has established a crowdfunding campaign for a project dubbed "The

DAO". The DAO has its own token on Ethereum blockchain network named “TheDAO

31

token” that has been deployed on 30th of April of 2016. Every token is a smart contract,

and the address of this specific token is

0xbb9bc244d798123fde783fcc1c72d3bb8c189413 [24]. The crowdfunding campaign

was a huge success, raising 12.7 million Ether, which was worth $150 million at the time.

However, an attacker discovered a flaw in the code that allowed a recursive withdraw

function to be called without checking the current transaction's settlement. As a result,

the attacker began the attack by making a tiny contribution and requesting withdrawal

using a recursive code. This allowed him to withdraw about $70 million from the

crowdfund [25]. The proceedings then took an intriguing turn. The Ethereum Foundation

issued a warning to the attacker, threatening to halt the attack and freeze the account. The

attacker replied that he was playing according to the contract, and that any intervention

via a soft or hard fork would be a breach of contract, which he might pursue in court.

However, he was able to halt the attack. Later, the Ethereum Foundation used a hard split

to reclaim the funds, however this choice raised many questions about smart contract

autonomy. This arduous work resulted in two Ethereum networks – Ethereum and

Ethereum classic – as well as a great deal of debate.

5.1.2 Solana x Wormhole hack

5.1.2.1 What is a Solana?

Solana the same blockchain platform for decentralized and scalable applications as

Ethereum. However, in comparison to other blockchains, Solana is substantially faster in

terms of transaction processing and has significantly cheaper transaction costs. Its

architecture is based on Proof of History (POH) that is used for confirming the order of

events and the passage of time between them. Combined with consensus algorithms such

as Proof of Work and Proof of Stake helps Solana to reach higher transaction speeds [26].

The project is open-source and was founded in 2017 and currently managed by the Solana

Foundation in Geneva, with the blockchain developed by Solana Labs in San Francisco.

Solana network’s smart contracts are written in another programming language named

Rust rather than Solidity [27].

5.1.2.2 What is a Wormhole?

Wormhole is a communication bridge between Solana and other top decentralized finance

networks, basically a way to move crypto assets between different blockchains. Existing

projects, platforms, and communities are able to move tokenized assets seamlessly across

32

blockchains and benefit from Solana's high speed and low cost. With the advent of a

variety of high-value chains of varying shapes and sizes, interoperability between these

currently segregated networks has become increasingly critical. Wormhole is a cross-

chain messaging protocol secured by a network of Guardian nodes that tries to fill this

gap. These guardians sign off on transfers between chains [28].

5.1.2.3 The attack

On February 2nd, the Wormhole bridge was hacked. The attacker took use of unpatched

Solana Rust contracts, which were manipulated into crediting 120k ETH as having been

deposited on Ethereum, allowing the hacker to mint the equivalent in wrapped whETH

(Wormhole ETH) on Solana.

Wormhole's bridge is made up of two smart contracts, one for each chain. There was one

smart contract on Solana and one on Ethereum in this attack example. Wormhole is an

Ethereum bridge that accepts an Ethereum token, locks it inside a contract on one chain,

and then issues a parallel token on the other chain. The transaction provided by the

attacker contained legitimate signatures from the guardians and the overall processed

went accordingly to smart contracts instructions.

The attacker seemed to use the complete_wrapped function which is called whenever

someone creates whETH on Solana network. A transfer_message, which is essentially a

message signed by the guardians that specifies which token to mint and how much, is one

of the inputs that this method accepts. The problem itself lied in another smart contract

and was based on signature verification.

The load_instruction_at function was utilized by the Wormhole contracts to ensure that

the Secp256k1 function was called first. According to GitHub's internal commits, the load

instruction at function was deprecated to be used on January 13th because it did not check

that signature verification was being conducted by a whitelisted system address [29].

5.2 Existing development guidelines

This section considers solidity guideline development repositories driven by community

and evaluate the design similarities between them. That analysis will help to understand

how the development guideline usually looks like. The selection process was simple. The

author chose the first 2 candidates from search result that corresponded to GitHub

33

repositories. The author decided to search for git repositories because of the possible

contributions made from other people to improve the relevancy of the provided materials.

5.2.1 Cytric’s implementation of Secure Smart Contracts

This repository was the first search result, and it looks simple enough. It has the following

3 sections [30]:

• Development guidelines

• Program analysis

• Learn EVM

Development guidelines

This section has its own subsections that describe 3 stages of development: design (before

development), implementation (during development), and deployment (after

development).

Those sections describe the main and important concepts of Solidity development in a

simple form. This part of repository discusses about the following points:

• Design: documentation, code optimization, contracts upgradeability

• Implementation: Function composition, Inheritance, Events, Dependencies,

Testing, Solidity version

• Deployment: This part describes the best practices to do after the deployment, but

does not discuss about best practices while deployment process

Also, this section of repository describes the checklist regarding the interaction with the

crypto tokens and high-level processes that are recommended to be followed while

developing smart contracts

Program Analysis

In this section, the author examines the possibility of program code analysis using some

of the existing tools as examples and recommendations. Three of the following distinctive

testing and program analysis techniques were proposed:

34

• Static analysis with Slither. All the paths of the program are approximated and

analysed at the same time, through different program presentations (e.g. control-

flow-graph)

• Fuzzing with Echidna. The code is executed with a pseudo-random generation of

transactions. The fuzzer will try to find a sequence of transactions to violate a

given property.

• Symbolic execution with Manticore. A formal verification technique, which

translates each execution path to a mathematical formula, on which on top

constraints can be checked.

Each technique has advantages and pitfalls, and will be useful in specific cases:

Technique Tool Usage Speed Bugs

missed

False

Alarms

Static Analysis Slither CLI & scripts seconds moderate low

Fuzzing Echidna Solidity properties minutes low none

Symbolic

Execution

Manticore Solidity properties &

scripts

hours none* none

5.2.2 Consensys’ implementation of Secure Smart Contracts

Consensys repository has more contributors and therefore, more materials and examples.

The learning materials consists of 4 learning categories: General Philosophy,

Development recommendations, Attacks, Security tools [31].

General philosophy

Smart contract programming necessitates a different approach to engineering than it may

be accustomed to. Because the cost of failure is high and adjustments can be difficult, it's

more related to hardware programming or financial services programming than web or

mobile development. As a result, defending against known vulnerabilities is insufficient.

Instead, the developers will need to master the new following development philosophy:

• Prepare for Failure

• Stay up to Date

35

• Keep it Simple

• Rolling out

• Blockchain Properties

• Simplicity vs. Complexity

Development recommendations

The development recommendations are split into six categories.

Category Description

General Guiding principles that should be kept in mind during development.

Precautions Principles that prevent attacks in general or avoid excessive damage in the

worst-case scenario.

Solidity-

specific

Helpful tips when building smart contracts in Solidity - including

interesting quirks.

Token-specific Recommendations to honour when dealing with or implementing tokens

Documentation Guidelines on how to properly document smart contracts and the processes

surrounding them.

Deprecated Vulnerabilities that were applicable in the past but can be reasonably

excluded nowadays.

Attacks

The following is a list of known attacks which you should be aware of and defend against

when writing smart contracts.

Category Description

Reentrancy Intra- and inter-function reentrancy attacks and potentially faulty

solutions to them.

Oracle Manipulation Manipulation of external data providers and potential solutions to

oracle security issues.

Frontrunning A definition and taxonomy around frontrunning and related attacks.

Timestamp

Dependence

Attacks relating to the timing of a transaction.

Insecure Arithmetic Integer overflows and underflows.

https://consensys.github.io/smart-contract-best-practices/development-recommendations/general/external-calls/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/precautions/general/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/assert-require-revert/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/assert-require-revert/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/token-specific/standardization/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/documentation/general/
https://consensys.github.io/smart-contract-best-practices/development-recommendations/deprecated/division-by-zero/
https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/
https://consensys.github.io/smart-contract-best-practices/attacks/oracle-manipulation/
https://consensys.github.io/smart-contract-best-practices/attacks/frontrunning/
https://consensys.github.io/smart-contract-best-practices/attacks/timestamp-dependence/
https://consensys.github.io/smart-contract-best-practices/attacks/timestamp-dependence/
https://consensys.github.io/smart-contract-best-practices/attacks/insecure-arithmetic/

36

Denial of Service Denial of service attacks through unexpected reverts and the block

gas limit.

Griefing Attacks relating to bad faith players around a smart contract system.

Force Feeding Forcing Ether to be sent to smart contracts to manipulate balance

checks.

Deprecated/Historical Attacks that are part of Ethereum's history and vulnerabilities that

have been fixes on a (Solidity) compiler level.

More Where to find more information about vulnerabilities and

weaknesses.

Security tools

This section is about tools that can detect vulnerabilities or help developers maintain a

high code quality to reduce the likelihood and impact of vulnerabilities.

Category Description

Visualization These tools are aimed at visualizing, EVM bytecode, smart

contracts, and their control flow graphs.

Static and Dynamic

Analysis

Tools that employ various means of program analysis to find

vulnerabilities and weaknesses.

Classification Resources attempting to classify vulnerabilities and weaknesses in

smart contracts.

Testing Tools for running, measuring, and managing smart contract related

tests

Linters and Formatters Any tools that highlight code smells and make smart contract code

adhere to format standards.

5.3 Smart contracts and security

On Ethereum, smart contracts are often authored in a high-level language and then

compiled into EVM bytecodes. Solidity is the most well-known and widely utilized, and

it is even employed in other blockchain platforms. Solidity is a contract-oriented high-

level programming language with JavaScript-like syntax [32].

A smart contract analysis carried out by Bartoletti and Pompianu [19] shows that Bitcoin

and Ethereum primarily focus on financial contracts, which are critically important in

business field. The direct handling of the assets means that the flaws are more likely to

https://consensys.github.io/smart-contract-best-practices/attacks/denial-of-service/
https://consensys.github.io/smart-contract-best-practices/attacks/griefing/
https://consensys.github.io/smart-contract-best-practices/attacks/force-feeding/
https://consensys.github.io/smart-contract-best-practices/attacks/deprecated/
https://consensys.github.io/smart-contract-best-practices/attacks/more/
https://consensys.github.io/smart-contract-best-practices/security-tools/visualization/
https://consensys.github.io/smart-contract-best-practices/security-tools/static-and-dynamic-analysis/
https://consensys.github.io/smart-contract-best-practices/security-tools/static-and-dynamic-analysis/
https://consensys.github.io/smart-contract-best-practices/security-tools/classification/
https://consensys.github.io/smart-contract-best-practices/security-tools/testing/
https://consensys.github.io/smart-contract-best-practices/security-tools/linters-and-formatters/

37

be relevant to the security and have greater financial consequences that the errors on

typical applications, as evidenced by the DAO attack on Ethereum described on section

5.1.1

5.3.1 Security Challenges in Ethereum

For a variety of reasons, security is a top priority in Ethereum programming. Based on

author’s development experience, the following limitations of Ethereum blockchain can

be specified:

• Unfamiliar execution environment. Ethereum is not like any other centrally

managed execution environment, whether mobile, desktop, or cloud. Developers

aren't used to their code being run by an anonymous, mutually distrusting network

of profit-driven nodes

• EVM stack. The Ethereum stack (the Solidity compiler, the EVM, the consensus

layer, and so on) is still in development, with security flaws being revealed all the

time

• Contracts immutability. Patching a deployed contract is not possible. It means

that if a bug is found after a smart contract deploy, then users’ security, who have

interacted with the contract, will be in danger, since no authorities are able to alter

the deployed contract source code

• Attackers who are financially motivated by anonymity. When compared to

other forms of cybercrime, smart contract exploitation provides more profits (the

prices of cryptocurrencies have been rapidly increasing), easier cashing out (ether

and tokens are instantly marketable), and a reduced chance of punishment due to

anonymity.

• The rate of development is extremely fast. Companies that use blockchain

technology try to release goods quickly, since they want to be the first to adopt

existing centralized application in a decentralized world or come up with a new

innovative DAPP. By doing that, they typically sacrifice the security of a final

product.

38

• High-level language that isn't up to par. Some think that Solidity encourages

programmers to use risky development techniques [33][34][35].

In this paper, the author will ignore the security flaws of Ethereum core system and will

concentrate on security from the perspective of a smart contract developer who use

Solidity as his main programming language.

5.3.2 Design Challenges and Patterns Usage

Understanding how smart contracts are used and executed may aid smart contracts

designers in developing new decentralized applications, through their designs, avoid

vulnerabilities such as those discussed below. A basic summary of the usual design

patterns that are intrinsically frequent or practical when talking about the codification of

smart contracts is provided in the following points.

5.3.3 Security analyzer for testing

Every piece of application code must be tested to verify the proper work of the base

functionality. However, before doing manual testing and code reviews, the developer

should use automatic vulnerability detection tools, to find common and obvious security

pattern flaws.

By examining some academic works [36][37][38] and relying on previous development

experience, the author has chosen 2 security analysis tools that suit best the business

needs. Initially, Smartcheck and Oyente were also on the author's radar. However, it

seemed that Smartcheck left out being outdated and abandoned by developers. Oyente

also left the comparison out since it only works with Solidity up to version 0.4.19.

5.3.3.1 Mythril

Mythril is an EVM bytecode security analysis tool. It finds security flaws in EVM-

compatible blockchains' smart contracts. It means that the smart contracts not necessarily

need to be written using Solidity. It detects a variety of security flaws using symbolic

execution, SMT solution, and taint analysis. It's also utilized in the MythX security

analysis platform (together with other tools and approaches) [39].

5.3.3.2 Securify 2.0

Securify 2.0 is a continuation of tool Securify that has been described in [40]. The

Ethereum Foundation and ChainSecurity have cooperated to create Securify 2.0, a

39

security scanner for Ethereum smart contracts. Securify's main research was carried out

at ETH Zurich's Secure, Reliable, and Intelligent Systems Lab. The main features of this

tool are following:

• It supports 37 different vulnerabilities

• Uses Datalog to implement a unique context-sensitive static analysis.

• Analyzes contracts written in Solidity version equal or higher than 0.5.8.

5.3.3.3 Tools performance

To compare the two above chosen tools, the author decided to use publicly available smart

contracts with vulnerabilities obtained from not-so-smart-contracts repository on GitHub

and SWC Registry. These sources contain a variety of smart contracts with potential

weaknesses. Here what the author has to say:

Mythril

Mythril recognized array out of bounds access, arithmetic overflows and underflows,

poor randomization, and unprotected ether withdrawal. However, it didn’t consider an

outdated compiler version, and solidity coding best practices such as deprecated

functions, state variables default visibility.

Securify 2.0

Securify 2.0 didn’t perform numerical analysis; hence it did not identify arithmetic

overflow and underflow, a problematic randomness, or unprotected ether withdrawal.

However, it did detect out-of-bounds array access and transaction order dependency.

Overall, Securify 2.0 discovered more vulnerabilities than Mythrill.

5.4 User data protection under GDPR

User’s data security is very important to data owners. Companies are also interested in

secure data storage because of the high penalties applied by GDPR. Based on regulations

of GDPR and Blockchains systems basic characteristics and limitations, the following

points are defined regarding user data protection:

40

5.4.1 Data transparency

Since blockchain is an open and transparent system, all the stored data is publicly

accessible. It means that every user can get access to any information without any extra

authorization and authentication. GDPR also proposes the another understanding of

user’s data transparency. However, by analyzing both versions of definition of

“transparency”, it can clearly be seen said that they mean different understandings of

publicity and availability. Blockchain’s “transparency” means that stored data is fully

public to anyone, while GDPR insist that the data is also public and available, but only to

the initial owner

5.4.2 Data Minimization, Accuracy and Storage Limitation

GDPR require the applications to allow user to modify his provided data. The user can

alter the data handling by recalling the contest on which the data can be processed with

further possibilities to completely erase the data from service provider’s storage.

However, the blockchain by the core design doesn’t allow the modification of stored data

because integrity is a strong part of Blockchain technology. That is why the blockchain

does not meet the user’s data control requirement of GDPR. However, Ethereum

blockchain, gives opportunity to alter the data stored in smart contracts, which makes it

possible to follow the needed regulations. But the ordinary transactions executed in

Ethereum blockchain are immutable.

5.4.3 Purpose limitation

Sometimes the personal information can be used not for the purposes it has been collected

for. Since Ethereum’s Blockchain smart contracts can be deployed by any authority, the

regulation of data collection gets almost impossible to track. That is why, depending on

the use of the specific smart contract, the personal data must be collected for specified,

explicit and legitimate purposes and not further processed in a manner that is incompatible

with those purposes. This principle depends on who is the data manager, since it is the

controller who decides the purposes of the processing. Each smart contract code must

therefore be reviewed uniquely including the purposes for which it is built.

41

5.5 Hardware wallets

A portable hardware wallet is physical device used to assist clients with overseeing and

store cryptographic forms of money in a safe way. Hardware wallets are decentralized,

expecting clients to assume total command and responsibility for private keys (recovery

phrase). During the signing process of transaction, an equipment wallet will just utilize

the private keys to sign in an offline environment to stay away from openness to online

assaults. There are lots of companies that provide ready solutions like Ledger, Trezor,

SecuX, ELLIPAL, Keystone, etc. For this paper, the author decided to review a Keystone

portable wallet project as an example. The choice was made based on author’s hand on

experience with that device.

Keystone hardware wallet is an offline device that store the private credentials of

blockchain account. The Keystone developers do not collect the users’ personal

credentials. However, they track the usage from their mobile companion applications with

the intent to make the service better to the end user [41]. The official webpage states that

the Keystone companion app collects data only for debugging and performance or

stability improvement purposes. Here are the benefits of this portable wallet:

Air-gapped design

This design means that no credential information is being transmitted using wireless or

wired data-transfer and communication technologies such as Bluetooth, NFC, LTE, USB,

etc. Since your portable device is never connected to the internet and it does not transmit

any data and emit signals, it makes it hard for attackers to intercept the data and get access

to user’s credentials. Therefore, the Keystone wallet uses a QR code approach, where user

scans and verifies every transaction that he sees on mobile companion application.

Secure element storage and open-source firmware

Keystone Hardware Wallet utilizes a bank-grade Secure Element to produce true random

numbers, derive private and public keys, sign transactions, and protect private keys from

being leaked if an attacker has physical access to the device. Keystone Hardware Wallet

is the first hardware wallet that has open-source Secure Element firmware code. Having

that, allows you to verify all core cryptographic operations such as how private keys are

generated and contained entirely within the Secure Element.

42

Self-destruct mechanism

Portable wallets are meant to be always near the owner, and it makes them physically

vulnerable if it is lost. To prevent an attacker from performing a side-channel attack from

succeeding if you lose your device, the Keystone wallet has been assigned with a self-

destruct mechanism. Upon detection of disassembly, the mechanism will wipe the private

keys and any sensitive information so that an attacker cannot extract it from your device.

43

6 Proposed Solution

This section aims to practically demonstrate the proposed guideline that covers the design,

security, testing, and deploy parts of smart contracts development that would correspond

to business needs.

6.1 Design

6.1.1 Development tools

The following tools were chosen according to their relevance and this paper’s host

company employees’ experience with them. Those tools will be good to be familiar with

in order to perform well as a blockchain developer. These choices are following:

• Remix or Visual Studio Code as Integrated Development Environment for

Solidity programming language. The familiarity with both is preferred. For the

beginning purposes the author would suggest using Remix because it is online and

has built-in debugger all covered in good-looking and user-friendly Graphical-

User-Interface (GUI)

• Truffle as Solidity Developmental Environment. This tool was chosen on the

choice basis made by the author and host company blockchain development

leader.

• JavaScript scripting language and NodeJS runtime environment are chosen

because of popularity of those technologies’ usage in Front-End applications

because it is natively supported in modern web browsers.

• Web3.js is a JavaScript set of libraries that let you use HTTP, IPC, and

WebSocket to communicate with a local or distant blockchain node [38]. It

supports the connection to all networks that has a compatibility with Ethereum

Virtual Machine (EVM) [42].

• OpenZeppelin is the standard for secure blockchain applications. The core team

have developed ready-to-use solidity libraries and smart contracts that have been

44

properly tested and comply with all the highest standards of secure decentralized

software development [43].

• Ganache is a personal blockchain that enables the building of

Ethereum distributed applications quickly. Ganache can be used throughout the

development cycle, allowing you to build, deploy, and test your DAPPs in a secure

and predictable environment. In a nutshell, it's a local blockchain emulator [44].

• Developers need to follow the design patterns mentioned in Tables 3 and 4,

where the reasons for their selection were explained

6.1.2 Standards

Developers might have to develop smart contracts with functionality that has already been

implemented and standardized by community. In order to develop applications following

established concepts, develop must stick to Ethereum standards and use existing libraries

and smart contracts that have proved to be reliable and secure. Since most of the projects

and start-ups interact with tokens, the company employees must be familiar with the

different type of token standards.

Here is the list of existing and widely used and approved standards that a company

employee must be familiar with:

• ERC-20 - An open standard for fungible (interchangeable) tokens such as voting

tokens, staking tokens, and virtual currencies.

• ERC-721 - A non-fungible token interface, such as a deed for artwork or a music.

• ERC-777 is a new token standard that improves on ERC-20.

• ERC-1155 is a token standard that allows both fungible and non-fungible assets

to be included [45].

Moreover, in case if a developer has to implement and deploy one of the tokens of

type listed above, then the use of OpenZeppelin libraries must be ensured. The team

behind OpenZeppelin have already developed a tokens implementation that follow

the established standards.

45

6.1.3 Control and Management

Problem: If there are no restrictions, any Ethereum account or contract address can call

public methods from other contracts. Mostly, business projects require some

administration from the company authorities. It's understandable that determined

procedures in a contract should only be called from the contract owner's address.

Solution: This technique may be used to tackle that challenge in a reusable fashion every

time the contract owner has to perform a sensitive task.

6.1.3.1 Ownership

This pattern is simple enough. Demonstrated in Appendix 1.7, this pattern allows to

specify the owner of the smart contract, who can execute the specific methods that are

restricted to be run by owner address only.

6.1.3.2 Roles

This design pattern gives you an opportunity to distinct sorts of addresses (users) to have

different roles. In Appendix 1.8 an example of smart contract code enables the design of

reusable methods for adding and removing addresses from certain roles, as well as

determining whether or not a particular address has a specified role

6.1.3.3 Multiple ownership authorization

Problem: Having all the access granted to one address is very risky, since private key of

owner address might be hacked due to variety of reasons. That is why, like in centralized

apps, in the realm of DAPPs, it's only logical that some duties are carried out by a group

of people rather than a single owner address. This eliminates single points of failure in a

decentralized manner.

Solution: Appendix 1.9 illustrates design code example that allows contract methods to

be run only if a set of participants has given their permission.

6.1.4 Upgradeability

Problem: Contracts on Ethereum blockchain are immutable by the nature. It means that

after deployment, nobody has an opportunity to change the code of the smart contract.

Therefore, it is critically important to fix all the bugs before final release of your code on

blockchain network. However, no company is safe from bugs occurrence in their

46

applications. If a serious bug is found after official launch of smart contract, then the

consequences are unpredictable and mostly are negative.

Solution: Use upgradeability pattern and deploy proxy that would interact with separate

contract with implementation of main business logic.

OpenZeppelin provides a good documentation and ready-to-use libraries that would help

any developer to start making their smart contracts mutable and fixable in case of failures.

6.1.5 Data regulation

Based on the outcomes of section 5.3, the author suggests that the following points must

be followed and considered by a company to comply with Global Data Protection

Regulation:

• Keep the needed data requirements as simple as possible. Collect only that data,

that will fully be used by the contract and nowhere else

• Do not store the user’s private information that could identify a user such as name,

age, geolocation, IP address, document ids, etc.

• The data usage and purposes must be documented and clearly stated in the source

code or frontend

• Give user an opportunity to alter his own data by calling a method from the

contract

6.2 Security

This section is going to describe critical security vulnerabilities with the proper solution

that have to be considered properly to develop reliable and secure smart contracts.

Following subpoints examine only serious security flaws that might harm the logic of

smart contracts used for enterprise needs.

6.2.1 Reentrancy

Problem: Smart Contracts on EVM Blockchains can invoke other contracts to perform

their duties by performing external calls, which is the foundation for reentrancy attacks,

47

in which a called contract fraudulently alters the caller contract's existing internal state.

Solution: Following patterns below help to solve this vulnerability.

6.2.1.1 Checks-effects-interaction

The design illustrated in Appendix 1.1 provides a systematic code instructions ordination

every time external calls are needed to avoid reentrancy. The caller contract performs

validations (checks) first, then any necessary internal state modifications (effects), and

finally the external call (interaction)

6.2.1.2 Mutex

This pattern, like checks-effects-interaction, aims to eliminate reentrancy attacks, but

makes it possible using different approach. By looking at Appendix 1.2, it can be seen

that contract initializes a Boolean variable that acts as a lock for external calls. To make

code reusable, this logic is defined as modifier that can be applied to several different

methods at the same time. When a contract calls an external contract, the locker is

engaged before the call and deleted when the call is completed.

6.2.2 Balance limit

Problem: Due to their popularity of cryptocurrencies original intent to manage valuable

transactions, financial concerns became critical in Ethereum smart contracts. As a result,

Solidity programmers should constantly keep this condition in mind, especially when

developing a contract for a business need. As “TheDAO” attack has shown, little bug in

a smart contract can lead to a big financial loss that is followed with a huge drop of

company’s reputation.

Solution: The balance limit pattern aids in the function demonstrated in Appendix 1.3,

by allowing the setting of a monetary amount threshold to monitor and validate operations

that cannot exceed a specified limit.

6.2.3 Emergency stop

Problem: Testing is essential in Solidity programming. Smart contracts developers have

to strictly follow the Test-Driven-Development (TDD) technique and pay a huge attention

to testing while development process. It helps to eliminate defects and failures in final

application before the final deploy. However, they can nonetheless occur.

48

Solution: The design pattern in Appendix 1.4 allows a contract's operation to be paused

in an emergency, such as the discovery of flaws or security vulnerabilities in important

activities or methods.

6.2.4 Time management

Problem: Some methods in smart contracts might require an execution at specific time

period because of business logic. Controlling time operations, for example, is quite

prevalent in Solidity contracts in the gaming or gambling sectors

6.2.4.1 Rate limit

By restricting the frequency of how many times a certain job may be completed over a

defined period, pattern in Appendix 1.5 aims to regulate and manage time

6.2.4.2 Speed Bump

Some of the key purposes of the Ethereum platform, which is critical to modernize and

speed operations, include automating jobs and removing intermediaries. Nonetheless, it

is occasionally more convenient to perform some sensitive duties more slowly. Appendix

1.6 demonstrates a pattern that makes it possible to slow down task execution in

accordance with contract constraints.

6.2.5 Integer Overflow

Problem: An integer overflow happens in computer programming when arithmetic

operations attempt to produce a numeric value that is outside of the range that can be

represented with a given number of digits - either higher than the maximum or lower than

the lowest representable value.

Solution: When using Solidity version of 0.8.0 or higher, then the arithmetic overflows

by default throws and error and reverts the transaction. However, in case of development

with a lower compiler version, the use of SafeMath library must be considered. That

library is included in OpenZeppelin’s repository as well.

6.2.6 Phishing with origin of the sender

Problem: An attacker can convince user to call a contract’s method on his behalf via

attacker’s contract that acts as a bridge. It can be harmful because a malicious contract

can deceive the owner of a contract into calling a function that only the owner should be

49

able to call. That happens a lot among new developers, because they assume that

msg.sender and tx.origin are similar keywords.

Solution: The tx.origin refers to the initial external account that initiated the original

transaction, but the msg.sender refers to the last account that invoked the function (which

might be external or another contract account). When a method has to validate that the

transaction has been initiated directly by the user, then the msg.sender has to be used

instead of tx.origin.

6.2.7 Signature Replay

Problem: Sometimes it might sound good to use a pattern of signing messages off-chain

and transfer it further to the contract that needs that signature before performing some

specific function. This technique is helpful when you need to reduce the transaction

numbers performed by user and the overall gas consumption per each transaction.

However, the same signature can be used to execute a contract method more than once.

If the signer's goal was to authorize a transaction just once, this may be dangerous.

Solution: Sign messages with the nonce and address of the smart contract to make each

transaction hash unique.

6.3 Testing

Testing is the most important part in smart contracts development because any bugs found

after a final deploy become impossible to fix. That is why code logic testing has to be

done in two environments, local and public test networks.

6.3.1 Truffle suite and Ganache

For the local testing, there are bunch of tools that help writing tests easier. The author had

a real experience writing tests using built-in automated testing framework tools of Truffle

suite. It requires Ganache virtual blockchain environment to be installed and configured.

Truffle allows you to write test cases using both Solidity and JavaScript languages.

6.3.1.1 Writing Tests in JavaScript

Truffle provides a strong foundation for writing JavaScript tests by using the Mocha

testing framework and Chai for assertions. It is advised to see Mocha's official

documentation if you're not comfortable with developing unit tests in Mocha.

50

6.3.1.2 Writing Tests in Solidity

As.sol files, Solidity test contracts coexist with Javascript tests. They will be added as a

distinct test suite per test contract when the truffle test is run. These contracts keep all of

the advantages of Javascript testing. When writing test using this approach, the following

points must be taken into account:

• Solidity tests should not extend from any contract. This reduces the number of

tests you have to run and provides you total control over the contracts you build.

• No assertion library should be used in solidity testing contract because Truffle

comes with a default assertion library. However, this can be changed at anytime

6.3.2 Security testing

There are tons of vulnerability analyzer tools available for smart contracts written in

Solidity. However, the use of these tools does not fully guarantee the absence of bugs in

final code. They only help to automize the security analysis part of smart contracts

development. Therefore, any of these tools must be used only as additional checking

before committing the code for audition.

Based on the analysis in section 5.5 the author suggests using either Mythril or Securify

2.0 security analyzer tools.

6.4 Deploy

Before putting company’s funds and reputation on the line, contracts should have a long

and thorough testing phase. The following points have to be ensured before deployment:

1. Have a complete test suite with 100% coverage (or close to it)

2. Deploy it on your local blockchain network node such as Ganache

3. Deploy your contract on a public test network

4. Make a public beta testing, involving other users to interact with your contract

51

6.4.1 Truffle deploy

Since the author chose Truffle as main smart contracts development framework, the

deploy part will also be maintained using it.

6.4.1.1 Migrations

Migrations are scripts written in JavaScript that aid in the deployment of Ethereum

contracts. These files are in charge of staging your deployment activities, and they're

created with the expectation that your deployment requirements may evolve over time.

You'll write fresh migration scripts as your project grows to keep up with the blockchain's

progress. To run the migrations (deploy), execute the following command

This will perform all migrations in the “migrations” directory of your project. Migrations

are, at their most basic level, a set of controlled deployment scripts. If your migrations

were previously successful, truffle migrate will begin execution with the most recent

migration and only run freshly generated migrations. If no fresh migrations are available,

truffle migrate will do nothing. You may use the —reset option to start again with all of

your migrations. However, in order to keep track of deployed smart contracts, an

additional contract named Migrations.sol must be deployed initially.

Initial migration

To utilize the Migrations functionality in Truffle, a “Migrations” contract must be

deployed. This contract must have a specified interface, but you are allowed to change it

as you see fit. This contract will be deployed as the first migration in most projects and

will not be modified again.

Upgradeability

Truffle deploy can also be used to deploy upgradeable contracts. Since, upgradeability is

achieved using proxy contracts, truffle will need additional functionality to automatically

deploy additional contracts as proxy and check your source contracts for upgradeability

errors. The author recommends using the combination truffle deploy with the

truffle migrate

// or

truffle deploy

// both of the commands perform the same actions

52

combination of OpenZeppelin upgradeable contracts. For that purpose, the OpenZeppelin

team developed an additional dependency for Truffle framework and can be accessed via

this link.

Configuration

The truffle_config.js file is configured to setup the contracts compilation and configure

deploy settings like on what specific blockchain network to migrate contracts and from

what account address. The most important part in that file is the user’s private key or

mnemonic phrase. It is prohibited, from developers’ concepts to hardcode any sensitive

information directly inside of config files. That is why the private key of main accounts

must be stored separately and injected into the configuration while the script execution

time. The author would suggest at least using environmental variables to load sensitive

information from one single file that would be well-encrypted and stored.

6.4.2 Securing deployer account private key

It is very crucial for the business company to keep the private keys of their main

decentralized accounts under control. The best approach of keeping the private keys

safe, by the author’s own opinion, is by using hardware wallets.

Being reviewed in section 5.5, the use of Keystone Pro is recommended, or any other

alternative of portable hardware wallets can also be implemented.

In case if company can’t afford or does not trust hardware wallets, the private key file

must be well-encrypted and saved at least in 2 storages that are physically far from each

other to prevent a single point of failure.

53

7 Discussion

This chapter will discuss the findings that were collected and examined in the previous

chapter.

Most of the development guidelines and best-practices have almost the same structure.

They recommend variety of techniques and tool for design, development, testing and

deploy steps and how to secure code from vulnerabilities. The existence of such

guidelines clearly points to the fact that EVM compatible smart contract is a relatively

new concept and that it needs more clarification and research. The author’s proposed

practical solution also followed the same structure established by community to ensure

the full coverage of development process.

Moreover, the author reviewed the GDPR rules in the use with smart contracts and

noticed that other development recommendations do not consider any kind of data

protection regulation. It is a very crucial part for every business company that collects

data of its users. Blockchain’s open nature is a critical issue when it comes to user’s

data protection. Design of Ethereum blockchain assure that smart contract’s storage

information will always be available for read purpose, which makes it impossible to

provide the private data using authorization.

54

8 Summary

This paper analyzed the known smart contracts vulnerabilities and risky solidity

development patterns to build a secure guideline that covers all the aspects of smart

contracts development with the best practices for the business needs.

In theoretical part it defined and compared the existing security guidelines. Then, it

investigated the theoretical design of blockchain technology to understand what kind of

limitations it has and how the future applications would harm from it. Also, the use

GDPR has been considered to examine the compatibility of smart contracts environment

with existing data protection rules.

In practical part the author combined all the theory and analysis results to build a secure

smart contract development guideline for use in a private company. In that guideline the

whole development cycle from designing till final deploy has been discussed. The

author’s chosen methods and tools were based on paper reviews, performed analysis,

and the own experience in smart contracts field.

Moreover, the author recommends reviewing the development guideline every year to

make additional changes in the structure of paper to be up to date. Also, it is advised for

the developers to always monitor the latest resource to find more vulnerabilities,

possible attacks, and new design patterns.

55

References

[1]. Imran Bashir, Mastering Blockchain - Third Edition, 2020.

[2]. Nomura Research Institute, “Survey on blockchain technologies and related

services”, 2016.

[3]. Tao Zhang, Zhigang Huang - Blockchain and central bank digital currency.

[4]. Mohamed Torky, Aboul Ella Hassanien, “Integrating Blockchain and the

Internet of Things in Precision Agriculture: Analysis, Opportunities, and

Challenges”, 2020.

[5]. Parma Bains, “Blockchain consensus mechanisms: a primer for supervisors”,

2018.

[6]. Tapscott, Don and Alex Tapscott, “Blockchain revolution: how the

technology behind bitcoin and other cryptocurrencies is changing the world”,

2018.

[7]. Ammous, Saifedean, “The bitcoin standard: the decentralized alternative to

central banking”, 2018.

[8]. Proof-of-stake (PoS) | ethereum.org.

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/ [Online;

accessed 01-March-2022]

[9]. The Ethereum Oracle: An Interview with DARMA Capital’s Andrew Keys

On The Future Of Ethereum.

https://www.gfinityesports.com/cryptocurrency/ethereum-oracle-interview-

andrew-keys-darma-capital-future-eth/ [Online; accessed 01-March-2022]

[10]. Buterin Vitalik, “Ethereum: A Next-Generation Smart Contract and

Decentralized Application Platform”, 2014.

[11]. Gavin Wood, “Ethereum: a secure decentralised generalised transaction

ledger”, 2014.

[12]. Satoshi Nakamoto, “Bitcoin: a peer-to-peer electronic cash system”, 2008.

[13]. Antonopoulos, Andreas M and Gavin Wood, “Mastering ethereum: building

smart contracts and dapps”, O’Reilly Media, 2018.

[14]. What are smart contracts on blockchain? - IBM.

https://www.ibm.com/topics/smart-contracts. [Online; accessed 05-March-

2022]

[15]. Zou, Weiqin et al, “Smart contract development: Challenges and

opportunities”, In: IEEE Transactions on Software Engineering, 2019.

[16]. Durieux, Thomas et al, “Empirical Review of Automated Analysis Tools on

47,587 Ethereum Smart Contracts”. In: arXiv preprint arXiv:1910.10601,

2019.

[17]. What is GDPR, the EU’s new data protection law?. https://gdpr.eu/what-is-

gdpr/ [Online; accessed 02-March-2022]

[18]. Vahid Garousi, Michael Felderer, Mika V. Mäntylä, „The need for multivocal

literature reviews in software engineering: complementing systematic

literature reviews with grey literature”, 2017.

[19]. M. Bartoletti and L. Pompianu, “An empirical analysis of smart contracts:

Platforms, applications, and design patterns”, 2017.

http://www.meti.go.jp/english/press/2016/pdf/0531_01f.pdf
http://www.meti.go.jp/english/press/2016/pdf/0531_01f.pdf
https://www.researchgate.net/publication/341202879_Integrating_Blockchain_and_the_Internet_of_Things_in_Precision_Agriculture_Analysis_Opportunities_and_Challenges
https://www.researchgate.net/publication/341202879_Integrating_Blockchain_and_the_Internet_of_Things_in_Precision_Agriculture_Analysis_Opportunities_and_Challenges
https://www.researchgate.net/publication/341202879_Integrating_Blockchain_and_the_Internet_of_Things_in_Precision_Agriculture_Analysis_Opportunities_and_Challenges
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://www.gfinityesports.com/cryptocurrency/ethereum-oracle-interview-andrew-keys-darma-capital-future-eth/
https://www.gfinityesports.com/cryptocurrency/ethereum-oracle-interview-andrew-keys-darma-capital-future-eth/
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://bitcoin.org/bitcoin.pdf
https://www.ibm.com/topics/smart-contracts
file:///C:/Users/saile/Desktop/Thesis/What%20is%20GDPR,%20the%20EU’s%20new%20data%20protection%20law%3f
https://gdpr.eu/what-is-gdpr/
https://gdpr.eu/what-is-gdpr/
https://www.researchgate.net/publication/318336961_Guidelines_for_including_the_grey_literature_and_conducting_multivocal_literature_reviews_in_software_engineering
https://www.researchgate.net/publication/318336961_Guidelines_for_including_the_grey_literature_and_conducting_multivocal_literature_reviews_in_software_engineering
https://www.researchgate.net/publication/318336961_Guidelines_for_including_the_grey_literature_and_conducting_multivocal_literature_reviews_in_software_engineering

56

[20]. Wohrer, Maximilian and Uwe Zdun, “Smart contracts: security patterns in the

ethereum ecosystem and solidity”, 2018.

[21]. Helen Noble, Gary Mitchell, “What is grounded theory?”, 2016.

[22]. Wohrer, Maximilian and Uwe Zdun, “Design patterns for smart contracts in

the ethereum ecosystem”, 2018.

[23]. What is a DAO? An attempt to clarify a complex idea.

http://web.archive.org/web/20201101015803/https://daobase.org/what-is-a-

dao/. [Online; accessed 03-March-2022]

[24]. TheDAO Token on Etherscan.

https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c18941

3. [Online; accessed 03-March-2022]

[25]. The story of the DAO, and how it shaped Ethereum.

https://www.coininsider.com/what-happened-to-the-dao/. [Online; accessed

03-March-2022]

[26]. Anatoly Yakovenko, “Solana: A new architecture for a high performance

blockchain”, 2017.

[27]. History | Solana Docs. https://docs.solana.com/history. [Online; accessed 03-

March-2022]

[28]. FAQs - Wormhole. https://docs.wormholenetwork.com/wormhole/faqs.

[Online; accessed 03-March-2022]

[29]. Kelvinfichter’s post on twitter.

https://twitter.com/kelvinfichter/status/1489041221947375616?s=21.

[Online; accessed 03-March-2022]

[30]. Ethereum secure smart contract development guideline. crytic/building-

secure-contracts: Guidelines and training material to write secure smart

contracts. https://github.com/crytic/building-secure-contracts. [Online;

accessed 03-March-2022]

[31]. Ethereum Smart Contract Best Practices. https://consensys.github.io/smart-

contract-best-practices/about/. [Online; accessed 03-March-2022]

[32]. Anonymous, “Solidity documentation”, 2022.

https://buildmedia.readthedocs.org/media/pdf/solidity/develop/solidity.pdf

[Online; accessed 03-March-2022]

[33]. M. Alharby and A. van Moorsel, “Blockchain-based smart contracts: A

systematic mapping study”, Fourth International Conference on Computer

Science and Information Technology, 2017.

[34]. I. Wöhrer and U. Zdun, “Smart contracts: Security patterns in the Ethereum

ecosystem and solidity”, In the 2018 International Workshop on Blockchain

Oriented Software Engineering, 2018.

[35]. The bug which the DAO hacker exploited was not merely in the DAO itself,

2016. https://redd.it/4opjov [Online; accessed 03-March-2022]

[36]. Gernot Salzer, Monika Di Angelo, “A Survey of Tools for Analyzing

Ethereum Smart Contracts”, 2019.

[37]. Mauro C. Argañaraz, Mario M. Berón, Maria J. Varanda Pereira, Pedro

Rangel Henriques, “Detection of Vulnerabilities in Smart Contracts”, 2020.

[38]. Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Bünzli, Martin Vechev, “Securify: Practical Security Analysis of Smart

Contracts”, 2018.

[39]. Securify v2.0. https://github.com/eth-sri/securify2 [Online; accessed 05-

March-2022]

https://ebn.bmj.com/content/ebnurs/19/2/34.full.pdf
http://web.archive.org/web/20201101015803/https:/daobase.org/what-is-a-dao/
http://web.archive.org/web/20201101015803/https:/daobase.org/what-is-a-dao/
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://www.coininsider.com/what-happened-to-the-dao/
https://www.coininsider.com/what-happened-to-the-dao/
https://solana.com/solana-whitepaper.pdf
https://solana.com/solana-whitepaper.pdf
https://docs.solana.com/history
https://twitter.com/kelvinfichter/status/1489041221947375616?s=21
https://github.com/crytic/building-secure-contracts
https://consensys.github.io/smart-contract-best-practices/about/
https://consensys.github.io/smart-contract-best-practices/about/
https://consensys.github.io/smart-contract-best-practices/about/
https://buildmedia.readthedocs.org/media/pdf/solidity/develop/solidity.pdf
https://buildmedia.readthedocs.org/media/pdf/solidity/develop/solidity.pdf
https://redd.it/4opjov
https://www.researchgate.net/publication/334786201_A_Survey_of_Tools_for_Analyzing_Ethereum_Smart_Contracts
https://www.researchgate.net/publication/334786201_A_Survey_of_Tools_for_Analyzing_Ethereum_Smart_Contracts
https://drops.dagstuhl.de/opus/volltexte/2020/13015/pdf/OASIcs-SLATE-2020-2.pdf
https://drops.dagstuhl.de/opus/volltexte/2020/13015/pdf/OASIcs-SLATE-2020-2.pdf
https://arxiv.org/pdf/1806.01143.pdf
https://arxiv.org/pdf/1806.01143.pdf
https://arxiv.org/pdf/1806.01143.pdf
https://github.com/eth-sri/securify2

57

[40]. ConsenSys/mythril: Security analysis tool for EVM bytecode. Supports smart

contracts built for Ethereum, Hedera, Quorum, Vechain, Roostock, Tron and

other EVM-compatible blockchains. https://github.com/ConsenSys/mythril

[Online; accessed 05-March-2022]

[41]. Privacy Promises - Keystone. https://keyst.one/keystone-hardware-wallet-

privacy-promises [Online; accessed 15-March-2022]

[42]. web3.js - Ethereum JavaScript API.

https://web3js.readthedocs.io/en/v1.7.3/#web3-js-ethereum-javascript-api

[Online; accessed 15-March-2022]

[43]. OpenZeppelin | About. https://openzeppelin.com/about/. [Online; accessed

15-March-2022]

[44]. Ganache | Overview - Truffle Suite. https://trufflesuite.com/docs/ganache/.

[Online; accessed 15-March-2022]

[45]. Ethereum Development Standards.

https://ethereum.org/en/developers/docs/standards/. [Online; accessed 15-

March-2022]

https://github.com/ConsenSys/mythril
https://keyst.one/keystone-hardware-wallet-privacy-promises
https://keyst.one/keystone-hardware-wallet-privacy-promises
https://web3js.readthedocs.io/en/v1.7.3/#web3-js-ethereum-javascript-api
https://openzeppelin.com/about/
https://trufflesuite.com/docs/ganache/
https://ethereum.org/en/developers/docs/standards/

58

Appendix 1 – Source codes

1.1 Checks-effects-interaction

Figure 5: Pattern: Checks-effects-interaction

1.2 Mutex

Figure 6: Pattern: Mutex

pragma solidity ^0.8.0;

contract checksEffectsInteraction {

 bool public publicSaleEnded = false;

 function endPublicSale() public {

 // Check

 require(this.timestamp >= publicSaleEnd);

 require(!publicSaleEnded);

 // Alter the state

 publicSaleEnded = true;

 // External contract call

 externalContract.externalMethod();

}

}

pragma solidity ^0.8.0;

contract MutexPattern {

 bool private locked = false;

 modifier nonReentrant() {

 require(!locked, “No re-entrancy allowed”);

 locked = true;

 _;

 Locked = false;

}

function someMethod() nonReentrant external returns (uint256) {

 msg.sender.call()

 return 1;

}

}

59

1.3 Balance limit

Figure 7: Pattern: Balance limit

1.4 Emergency stop

pragma solidity ^0.8.0;

import “@openzeppelin/contracts/access/Ownable.sol”

contract BalanceLimit is Ownable {

 uint256 public maxLimit = <LIMIT>;

 function setLimit(uint256 newLimit) external onlyOwner {

 maxLimit = newLimit;

}

 modifier limitedPayable() {

require(this.balance <= limit, “Limit has already been
exceeded”);

_;

}

function depositETH() public payable limitedPayable {

// transfer some ETH

}

}

pragma solidity ^0.8.0;

import “@openzeppelin/contracts/access/Ownable.sol”

contract EmergencyStop is Ownable {

 bool public paused = false;

modifier whenPaused {

 require(!paused)

 _;

 }

modifier whenNotPaused {

require(paused)

_;

}

function toggleContractPaused() public onlyOwner {

paused = !paused;

}

60

Figure 8: Pattern: Emergency stop

1.5 Rate limit pattern

Figure 9: Pattern: Rate limit pattern

1.6 Speed bump

function deposit() public payable whenNotPaused {

// some code

}

function withdraw() public view whenPaused {

// some code

}

}

pragma solidity ^0.8.0;

contract RateLimit {

uint lastExecution = time.timestamp;

modifier enabledEvery(uint t) {

if (time.timestamp >= lastExecution) {

 lastExecution = time.timestamp + t;

 _;

 }

 }

function f() public enabledEvery(1 minutes) {

// some code

 }

}

pragma solidity ^0.8.0;

contract SpeedBump {

 struct Withdrawal {

 uint amount;

 uint requestedAt;

 }

 mapping (address => uint) private balances;

 mapping (address => Withdrawal) private withdrawals;

 uint constant WAIT_PERIOD = 7 days;

function deposit() public payable {

 if(!(withdrawals[msg.sender].amount > 0)) {

 balances[msg.sender] += msg.value;

 }

61

Figure 10: Pattern: Speed bump

1.7 Ownable

 }

function requestWithdrawal() public {

 if (balances[msg.sender] > 0) {

 uint amountToWithdraw = balances[msg.sender];

 balances[msg.sender] = 0;

 withdrawals[msg.sender] = Withdrawal({ amount: amountToWithdraw,
requestedAt: now });

 }

 }

function withdraw() public {

 if(withdrawals[msg.sender].amount > 0 && now >
withdrawals[msg.sender].requestedAt + WAIT_PERIOD) {

 uint amount = withdrawals[msg.sender].amount;

 withdrawals[msg.sender].amount = 0;

 msg.sender.transfer(amount);

 }

 }

}

pragma solidity ^0.8.0;

contract Ownable {

address private _owner;

constructor() {

_setOwner(msg.sender);

 }

function owner() public view virtual returns (address) {

 return _owner;

 }

modifier onlyOwner() {

 require(owner() == _msgSender(), "Ownable: caller is not the
owner");

 _;

 }

function transferOwnership(address newOwner) public onlyOwner {

require(newOwner != address(0), "Ownable: new owner is the
zero address");

 _setOwner(newOwner);

 }

62

Figure 11: Pattern: Ownable

1.8 Roles

Figure 12: Pattern: Roles

1.9 Multiple ownership authorization

function _setOwner(address newOwner) private {

 address oldOwner = _owner;

 _owner = newOwner;

}

}

library Roles {

sturct Role {

 mapping (address => bool) bearer;

}

Function add(Role storage role, address account) internal {

 require(!has(role, account), “Roles: account already has a
role”);

 role.bearer[account] = true;

}

Function remove(Role storage role, address account) internal {

 require(has(role, account), “Roles: account does not have a
role”);

 role.bearer[account] = false;

}

Function has(Role storage role, address account) internal view
returns (bool) {

 Require(account != address(0), “Roles: account is the zero
address”);

 Return role.bearer[account];

}

}

pragma solidity ^0.8.0;

contract Authorization {

 uint256 public nonce = 0;

uint256 public threshold;

mapping(address => bool) isOwner;

63

Figure 13: Pattern: Authorization

address[] public ownersArr;

constructor(uint256 _threshold, address[] _owners) {

 if(_owners.length > 10 || _threshold > _owners.length ||
_threshold == 0) {

 throw;

}

for (uint256 i=0; i < _owners.length; i++) {

 isOwner[_owners[i]] = true;

}

ownersArr = _owners;

threshold = _threshold;

}

Function execute(uint8[] sigV, bytes32[] sigR, bytes32[] sigS,
address destination, uint256 value, bytes data) {

 if(sigR.length != threshold) {

 throw;

}

If(sigR.length != sigS.length || sigR.length != sigV.length)
{

 throw;

}

bytes32 txHash = sha3(byte(0x19), byte(0), this,
destination, value, data, nonce);

address lastAdd = address(0);

for(uint256 i=0; i < threshold, i++) {

 address recovered = ecrecover(txHash, sigV[i],
sigR[i], sigS[i]);

 if(recovered <= lastAdd || !isOwner[recovered]) {

 throw;

}

lastAdd = recovered;

}

nonce += 1;

if(!destination.call.value(value)(data)) {

 throw;

}

}

}

64

Appendix 2 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Alikhan Sailekeyev

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis "Secure Ethereum Virtual Machine Compatible Smart Contracts Development

Guideline for a Private Company", supervised by Valdo Praust

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

14.05.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

