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INTRODUCTION 
 
A type member of sobemoviruses - Southern bean mosaic virus (SBMV) - was 

the subject of biochemical and physiochemical studies already since 1940-s 
(Zaumeyer and Harter, 1943a; Zaumeyer and Harter, 1943b; Choe, 1955; Diener, 
1965; Price, 1965; Ghabrial et al., 1967; Weintraub and Ragetli, 1970; Sehgal, 
1973). Subsequently, it served as a prototype for small angle x-ray diffraction and 
neutron scattering applications (Abad-Zapatero et al., 1980; Abad-Zapatero et al., 
1981; Krüse et al., 1982) in scrutinizing organization of icosahedral virions. Also, 
SBMV was the model of virion stability investigations (Wells and Sisler, 1969; 
Erickson and Rossmann, 1982). 

Consequently, the first fully sequenced sobemovirus was a cowpea strain of 
SBMV (SBMV-CP) - later classified as an independent species - Southern cowpea 
mosaic virus (SCPMV; Wu et al., 1987; Hull and Fargette, 2005). Soon after, a 
similar genomic organization was found to be characteristic to Rice yellow mottle 
virus (RYMV; Ngon A Yassi et al., 1994; Pinto and Baulcombe, 1995), Lucerne 
transient streak virus (LTSV, Jeffries et al., 1995) and the bean strain of Southern 
bean mosaic virus (SBMV-B, later known as SBMV; Othman and Hull, 1995; Lee 
and Anderson, 1998). At the same time, the sequence analysis of Cocksfoot mottle 
virus (CfMV) showed substantial sequence similarity but different genome 
structure in the middle part of the genome when compared to the others (Mäkinen 
et al., 1995b; Ryabov et al., 1996). In contrast to SBMV, SCPMV, LTSV and 
RYMV sequences, no individual ORF capable of directing the synthesis of a long 
(ca 100-kDa) protein was found in CfMV genome (Mäkinen et al., 1995a). 
However, in vitro translations of the CfMV genomic RNA revealed a 100-kDa 
protein, characteristic to all sobemoviruses (Mäkinen et al., 1995a). Analysis of the 
genome sequence information revealed a -1 ribosomal frameshifting signal that 
leads translation from one reading frame (ORF2a that encodes a serine protease, 
Pro, and a viral genome-linked protein, VPg) into an overlapping reading frame 
(ORF2b encoding a RNA dependent RNA polymerase, RdRp) enabling generation 
of the 100-kDa polyprotein. Surprisingly, similar frameshifting signals were also 
found in long ORF2 sequences (encoding Pro, VPg and RdRp) of SBMV, SCPMV 
and RYMV (Mäkinen et al., 1995a). Later, re-sequencing of RYMV indicated that 
the genome of RYMV is actually “CfMV-like” (Fargette et al., 2004). Afterwards, 
several new sobemoviruses were sequenced and announced as “SCPMV-like” 
(Lokesh et al., 2001; Zhang et al., 2001) and several as “CfMV-like” (Dwyer et al., 
2003; Callaway et al., 2004; Sérémé et al., 2008; McGavin and MacFarlane, 2008). 
All the other evolutionary related virus groups (polero-, enamo-, luteo-, tombus-, 
diantho-, panico- and umbraviruses) use -1 ribosomal frameshift to control the 
amount and expression of RdRp (Hull, 2002). Thus, “the SCPMV-like” 
organization turns out as unusual. The first objective of the current thesis was to re-
sequence the middle part of the genome of SCPMV-like sobemoviruses to clarify 
their genomic organization. 
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Sobemoviruses are defined as an unclassified genus (Hull and Fargette, 2005). 
The reason for that is a modular nature of sobemovirus genomes – sequence 
comparisons and phylogenetic analyses have identified no similarities with other 
viruses at ORF1 of sobemoviruses, whereas the middle part of the sobemovirus 
genome (encoding Pro-VPg-RdRp) has similarities with that of the genera 
Polerovirus and Enamovirus belonging to the family Luteoviridae, and the 3’ part 
of the sobemovirus genome encoding the coat protein (CP) is related to the genus 
Necrovirus belonging to the family Tombusviridae (Hull and Fargette, 2005). 
Moreover, there exists a potential natural hybrid between polero- and sobemovirus. 
Poinsettia cryptic virus (suggested to be renamed as Poinsettia latent virus, PnLV) 
has been described as a virus showing a close relationship to poleroviruses within 
its first part of the genome encoding the non-structural proteins, whereas its last 
part of the genome that encodes a viral capsid protein is rather similar to 
sobemoviruses. The 5’ and 3’ UTR-s of PnLV are characteristic to poleroviruses 
(aus dem Siepen et al., 2005). Due to the modularity, i.e. the shuffling of genes and 
gene blocks, the key mechanism in the evolution of “the supergroup” luteo-
sobemo-tombusviruses is supposed to be RNA recombination (Martin et al., 1990; 
Gibbs, 1995). For CfMV, five different viral defective interfering RNAs (DI 
RNAs) corresponding to 35-40 nucleotides of the 5’-proximal end of genomic 
RNA linked with 850-950 nucleotides of the 3’ terminus have been identified. That 
is considered to be a proof of the replicase-driven template switching mechanism 
needed for creation of the recombinant RNA molecules (Mäkinen et al., 2000a). 
However, the phylogenetic analyses of sequenced sobemoviruses do not assure 
recombination events inside Sobemovirus genus (Lokesh et al., 2001; Fargette et 
al., 2004; Zhou et al., 2005; Chare and Holmes, 2006; Stuart et al., 2006; Fargette 
et al., 2008; Sérémé et al., 2008). Therefore, the second objective of the current 
study was to experimentally look for potential recombinants between two 
sobemoviruses – CfMV and Ryegrass mottle virus (RGMoV) – under little or no 
selection pressure (i.e. non-transgenic plants infected with wild-type viruses). 

The third objective of this study was to start unraveling the functions of CfMV 
P1 – a highly divergent protein encoded by 5’-proximal ORF1 – that is not related 
to any other known protein. 
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R-domain  random domain 
RdRp   RNA-dependent RNA polymerase 
RGMoV  Ryegrass mottle virus 
RGMoV-Jap  Japanese isolate of RGMoV 
RoMoV  Rottboellia yellow mottle virus 
rms   root mean square 
rpm   revolutions per minute 
RT-PCR  reverse transcriptase PCR 
RuCMV  Rubus chlorotic mottle virus 
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RYMV-Mg1  Madagaskar isolate 1 of RYMV 
RYMV-Nig  Nigerian isolate of RYMV 
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satRNA   satellite RNA 
SBMV   Southern bean mosaic virus 
SBMV-ALM  Almerian isolate of SBMV 
SBMV-Ark  Arkansas isolate of SBMV 
SBMV-B  bean strain of SBMV (now: SBMV) 
SBMV-Col  Colombian isolate of SBMV 
SBMV-CP  cowpea strain of SBMV (now: SCPMV) 
SBMV-Mor  Moroccon isolate of SBMV 
SBMV-SP  São Paolo isolate of SBMV 
SCMoV  Subterranean clover mottle virus 
SCPMV  Southern cowpea mosaic virus 
SCPMV-WI  Wisconsin isolate of SCPMV 
S-domain  surface (or shell) domain 
SeMV   Sesbania mosaic virus 
sgRNA   subgenomic RNA 
siRNA   small interfering RNA 
SMAMV  snake melon asteroid mosaic virus 
SNMoV  Solanum nodiflorum mottle virus 
SoMV   Sowbane mosaic virus 
ssRNA   single-stranded RNA 
TLS   tRNA-like structure 
TNV   Tobacco necrosis virus 
TRoV   Turnip rosette virus  
UTR   untranslated region 
VPg viral genome linked protein 
VTMoV Velvet tobacco mottle virus 
wt   wild-type 
 



14 

1. REVIEW OF THE LITERATURE 
 

1.1. Genus Sobemovirus 
 

In 1969, single-component-RNA beetle-transmitted viruses were proposed to 
classify into a southern bean mosaic virus group (Walters, 1969). Since 1995, this 
group was recognized as a genus Sobemovirus (sigla from Southern bean mosaic 
virus) by the International Committee on Taxonomy of Viruses (ICTV) (Hull, 
1995). The establishment of the genus was based on similarities in particle 
morphology, thermal stability, sedimentation coefficient and sizes of their coat 
protein subunits, size and type of their genomic RNA, distribution of virus particles 
within the cell, features in mode of vector transmission and their rather narrow host 
range. Hitherto, the genus Sobemovirus is not assigned to any family (Hull and 
Fargette, 2005). 

At this time, 13 viruses are accepted as definite species and 4 viruses as 
tentative species for sobemovirus group by the ICTV (Hull and Fargette, 2005). 
The list of definite species involves completely sequenced viruses such as 
Cocksfoot mottle virus (CfMV), Lucerne transient streak virus (LTSV), Rice 
yellow mottle virus (RYMV), Ryegrass mottle virus (RGMoV), Sesbania mosaic 
virus (SeMV), Southern bean mosaic virus (SBMV), Southern cowpea mosaic 
virus (SCPMV), Subterranean clover mottle virus (SCMoV), and Turnip rosette 
virus (TRoV), but also several extensively studied but non-sequenced or partially 
sequenced viruses such as Blueberry shoestring virus (BSSV), Solanum nodiflorum 
mottle virus (SNMoV), Sowbane mosaic virus (SoMV) and Velvet tobacco mottle 
virus (VTMoV) (Table 1, p. 16). The list of tentative species involves Cocksfoot 
mild mosaic virus (CMMV), Cynosurus mottle virus (CnMoV), Ginger chlorotic 
fleck virus (GCFV) and Rottboellia yellow mottle virus (RoMoV) (Table 1). 
However, according to the recent sequencing data, CMMV is not a sobemovirus 
but a panicovirus (Ziegler et al., 2009). CnMoV, GCFV and RoMoV have not yet 
been sequenced. 

In addition, two recently fully sequenced viruses should be classified as 
sobemoviruses. Firstly, Imperata yellow mottle virus (IYMV) was found to be 
consistent with all criteria to assign it into the genus Sobemovirus (Sérémé et al., 
2008). Secondly, Rubus chlorotic mottle virus (RuCMV) was found to be a typical 
sobemovirus according to its genomic sequence (McGavin and MacFarlane, 2008). 
The partial sequence of SoMV (Gratsia et al., 2006) shows 94 % identity with the 
corresponding region of RuCMV RdRp. Moreover, three other viruses presently 
not fully sequenced probably belong to the genus Sobemovirus. The physical and 
chemical properties of Calopo yellow mosaic virus (CAYMV) are similar to those 
reported for the sobemovirus group. CAYMV has been found to be antigenically 
related to SBMV and SCPMV but its host range partially differs from previous 
ones. A 609 bp fragment amplified from the region encoding virus coat protein has 
81.8 % of similarity to the corresponding region of SBMV and 66.1 % to that of 
SCPMV (Morales et al., 1995). The partial sequence of Papaya lethal yellowing 
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virus (PLYV) shows considerable similarity (about 44-51 %) to the polymerase, 
VPg and coat protein genes of sobemoviruses (Lima et al., 2001). The 71 % of 
amino acid sequence similarity has been found between the RYMV RdRp and a 
putative protein-encoding fragment of Snake melon asteroid mosaic virus 
(SMAMV) (Lecoq et al., 2005). 

Some sobemoviruses are distributed throughout the world (CfMV, LTSV, 
RGMoV, SBMV, SCPMV, SoMV) whereas some are limited to only one continent 
(BSSV, RYMV, SNMoV, SCMoV, TRoV, VTMoV) or even to just one endemic 
region (SeMV) (Table 1, p. 16). Distribution is directly related to their host range 
which is relatively narrow, i.e. individual viruses (except SoMV) naturally infect 
plants from one family only (Table 1, p. 16). In some cases, global exchange of 
infected material and introduction of novel crops in existing or new agricultural 
areas have expanded virus areal. For example, SCMoV may have been introduced 
to Australia following European colonisation. The argument for its 
Mediterranenean origin is that SCMoV has a beetle vector there but not in 
Australia (Jones, 2004). Similarly, detection of CfMV in New Zealand is most 
probably of a foreign origin as its host plant cocksfoot is introduced there (Campell 
and Guy, 2001). In Spain, the first infections of SBMV are most probably 
introduced via seeds from infected plants (Verhoeven et al., 2003). Similarly, 
SoMV has been found to be recently imported with seeds from Netherlands to 
Greece (Gratzia et al., 2006). An outbreak of RYMV epidemy reported in last 40 
years is related with intensification of rice cropping in Africa (Traoré et al., 2009). 

The main transmission source of sobemoviruses is mechanical wounding of 
host plants. The transmission study of RYMV shows that it is efficiently 
transferred from plant to plant by farming operations and by grazing donkeys, cows 
and grass rats. It can also spread by wind-mediated leaf contacts and via soil (Sarra, 
2005). For SCMoV, it has been shown that the main source of transmission is 
grazing and trampling by livestock, crushing under vehicle wheels and by mowing 
for hay production, i.e. contact-transmission (Jones, 2004). In addition, insects, 
mostly the different species of leaf-eating beetles, transmit sobemoviruses in a 
semi-persistent manner. Also, aphids, leafminers, leafhoppers, or mirids can 
transmit sobemoviruses (Table 1, p.16). Several but not all sobemoviruses are seed-
transmissible (Table 1, p.16). 

Several sobemoviruses are economically important pathogens. RYMV causes 
one of the most damaging and rapidly spreading diseases of rice in Africa. As a 
result of RYMV infection, yield losses fluctuate between 10 and 100%, depending 
on plant age prior to infection, susceptibility of the rice variety, and environmental 
factors (Traoré et al., 2009). PLYV, causing serious chlorosis, is responsible for 
severe disease of papaya in Northeast Brazil. SCMoV decreases clover seed and 
herbage production in Australia. Over time, SCMoV-infected pastures will become 
weedy and unproductive (Jones, 2004). A severe outbreak of CfMV was observed 
in the cocksfoot fields in Norway in the middle of 1980´s (Rognli et al., 1995). 
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1.2. Genome 
 
All sequenced sobemoviruses have the polycistronic positive sense single-

stranded RNA genomes approximately 4.0 - 4.5 kb in size. Sobemovirus genome 
lacks both 5’-terminal cap and 3’-terminal poly(A) tail (Hull and Fargette, 2005). 

Eukaryotic mRNAs are usually monocistronic, their untranslated regions 
(UTRs) are capped at 5’-terminus, and polyadenylated at 3’-terminus. Both are 
essential for their efficient translation. Lack of cap and poly(A) indicates that the 
sobemoviral UTRs must somehow compensate these functions. The 5’-proximal 
end of sobemovirus genomic and subgenomic RNA (sgRNA) bounds covalently a 
viral genome-linked protein (VPg) that replaces 5’ cap (Ghosh et al., 1979; Ghosh 
et al., 1981; Ke-Qiang et al., 1982; van der Wilk et al., 1998b; Mäkinen et al., 
2000b; Lokesh et al., 2001; Hébrard et al., 2008). The exact roles of phytoviral 
VPg-s are still unclear although interactions between eukaryotic translation 
initiation factors and viral VPg-s have been suggested to be involved in protein 
translation, in RNA replication and in cell-to-cell movement (Sadowy et al., 2001). 
RYMV VPg was identified as a virulence factor (Hebrard et al., 2006). 

Although not much is known about the replication signals required for the 
initiation of sobemoviral RNA synthesis, a conserved 5’-proximal sequence ACAA 
is considered to play role in viral RNA replication by promoting or enhancing the 
binding of viral RdRp (Miller et al., 1995). This motif is characteristic of the 5’-
termini of sobemo-, polero-, diantho- and barnaviruses (Xiong and Lommel, 1989; 
Revill et al., 1994; Miller et al., 1995; Zavriev et al., 1996; Revill et al., 1998; 
Tamm and Truve, 2000b). It is also present upstream from translation initiation 
codon of CP in sobemovirus genome, indicating a possible 5’-terminus of sgRNA 
(Hacker and Sivakumaran, 1997). Differently from other sobemoviruses, such a 
motif is neither present at the 5’-proximal end nor upstream from the CP 
translation initiation codon in the genome of CfMV (Mäkinen et al., 1995b) and it 
is also absent at the 5’-proximal end of IYMV (Sérémé et al., 2008). 
Hypothetically, the different 5’ sequence might provide a great advantage in certain 
cereals. Translational enhancer element CfMVε at the 5´ UTR was specifically 
highly successful in enhancement of the expression of reporter genes in barley 
suspension cells compared to other viral enhancer sequences (TMVΩ, CrTMV 
IRES, PVXαβ and 5´UTR of AMV RNA4) (Mäkeläinen, 2006). Notably, all these 
leader sequences promote efficient translation in wheat germ extract and in tobacco 
cells (Gallie et al., 1987; Jobling and Gherke, 1987; Browning et al., 1988; Gallie 
et al., 1989; Smirnyagina et al., 1991; Pooggin et al., 1992; Ivanov et al., 1997; 
Dorokhov et al., 2002; Gallie, 2002a). TMVΩ has also shown to promote 
translation in maize and rice (Gallie et al., 1989). 

Both genomic and subgenomic RNAs of most of sobemoviruses contain a 
conserved polypurine tract GAAA shortly after the ACAA motif (Mäkinen et al., 
1995a; Ryabov et al., 1996; Hacker and Sivakumaran, 1997; Tamm and Truve 
2000b). Interestingly, a polypurine tract is found to be a key element of CrTMV 
IRES (Dorokhov et al., 2002). 
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The vicinity of sgRNA transcription start site of SBMV, SCPMV, LTSV, 
RYMV and CfMV is predicted to fold into a hairpin loop (Hacker and 
Sivakumaran, 1997; Kokorev et al., 2007). Although the significance of that stem-
loop is not known, it or its complement in minus-strand RNA is considered to play 
a role in sgRNA synthesis. In sequence of CfMV, another potentially stable stem-
loop situated in the middle of CP encoding region has been found to be 
complementary to the one adjacent the transcription site of sgRNA. The 
hypothetical interaction between these loops has been proposed to be involved in 
transactivation of sgRNA synthesis (Kokorev et al., 2007). 

Almost nothing is known about the signals essential for the initiation of 
synthesis of the genomic minus strand potentially provided by the 3’-terminus of 
the genomic RNA. The 3’ UTRs of sobemovirus genomes show only marginal 
sequence conservation. A potential tRNA-like structure (TLS) has been attributed 
to the 3’-end of RYMV and CfMV by computer modelling (Ngon A Yassi et al., 
1994; Ryabov et al., 1996) but no experimental data is available on that. No such 
secondary structure has been found at the 3' end of SBMV, SCPMV or SeMV in 
computational analysis (Wu et al., 1987; Othman and Hull, 1995; Lokesh et al., 
2001). In general, a non-TLS heteropolymeric 3’-termini has been found customary 
among plant viruses (Dreher et al., 1999). 

Interaction of the UTRs is required for efficient translation (Gallie, 1998). 
However, 5’ and 3’ UTRs of CfMV had no synergistic effect on test mRNA 
translation in barley suspension cells. The reason of it was presumed to be a lack of 
the virus encoded proteins or a sequence buried somewhere in the middle part of 
the genome needed for bringing together the genomic termini (Mäkeläinen, 2006).  

The genomic RNA of incoming sobemovirus particles is probably uncoated by 
the co-translational disassembly mechanism and followed by RNA replication.  For 
example, the particles of SBMV can completely disassemble only after their RNA 
has initiated translation (Brisco et al., 1985; Shields et al., 1989). 

Sobemovirus genome consists of four ORFs (Fig. 1). 
 

 
 
Figure 1. CfMV-like genomic organization is represented by CfMV genome according 

to Mäkinen et al., 1995. SCPMV-like genomic organization is represented by SCPMV 
according to Wu et al., 1987. 
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ORF1 as well as the downstream ORF2 is translated from the genomic RNA 
(Salerno-Rife et al., 1980; Ke-Qiang et al., 1982; Wu et al., 1987; Tamm et al., 
1999; Zhang et al., 2001). Initiation of translation of the genomic RNA is 
facilitated at least in case of CfMV by the translational enhancer CfMVε situated at 
5’ UTR. Deletion of 3’ terminal part of CfMVε has no effect on translation yield 
but the first 10 nt-s of CfMVε (possibly forming a stem-loop) together with several 
downstream 6-23 nt stretches complementary to plant 18S rRNA, might be 
involved in translation initiation and binding of the 43S ribosomal preinitiation 
complex (Mäkeläinen, 2006). 

Translation of ORF2 occurs by the process termed leaky scanning of 40S 
ribosomes that can bypass the start codon of ORF1 due to its suboptimal context 
(Hacker and Sivakumaran, 1997; Dwyer et al., 2003) and initiate translation from 
subsequent ORF2 (Sivakumaran and Hacker, 1998; Tamm et al., 1999). It was 
postulated that some sobemoviruses (referred as a “SCPMV-like” genomic 
organization) express their ORF2-encoded proteins from one in-frame ORF, 
whereas the others (named as “CfMV-like” sobemoviruses) express predominantly 
only a part of it whereas they use a –1 translational frameshift mechanism to extend 
translation for the expression of a “full-length” polyprotein (Fig. 1, p. 23)1. Studies 
on CfMV showed that the ribosomal frameshifting takes place with an efficiency of 
approximately 10-20 % (Luccesi et al., 2000; Mäkeläinen and Mäkinen, 2005). 
The -1 ribosomal frameshift signal of CfMV consists of the heptameric slippery 
sequence UUUAAAC, followed by a simple stem-loop structure located 7 
nucleotides downstream of it (Tamm et al., 2009). Notably, the ribosomal 
frameshift signal that was discovered from the sequence of CfMV was found to be 
conserved for all the sobemoviruses (Mäkinen et al., 1995a; Ryabov et al., 1996; 
Lokesh et al., 2001; Zhang et al., 2001; Dwyer et al., 2003; McGavin and 
MacFarlane, 2008; Sérémé et al., 2008; Ozato et al., 2009). In the case of SCPMV-
like genomic annotations, the ribosomal frameshift signal was located upstream of 
the small internal coding region ORF3 having no stops between the –1 frameshift 
signal and the initiation codon of the putative ORF3. Moreover, the beginning of 
ORF3/putative P3 of SCPMV-like viruses and the beginning of ORF2b/putative 
P2B of CfMV-like viruses were found to be similar in sequence comparisons. 
Therefore it has been suggested that ORF3 may be expressed as a part of a smaller 
polyprotein via –1 ribosomal shift (Mäkinen et al., 1995a; Dwyer et al., 2003). 
However, the posterior part of ORF3/P3 sequences has been found to be very 
divergent (Dwyer et al., 2003). No single protein has been attributed to ORF3 
alone (Tamm and Truve, 2000b; Dwyer et al., 2003). 

A sobemovirus coat protein (CP) is encoded by the genome 3’-proximal ORF 
but translated from its copy in subgenomic RNA (Rutgers et al., 1980; Ghosh et 
al., 1981; Chu and Francki, 1983; Morris-Krsinich and Forster, 1983; Morris-
Krsinich and Hull, 1983; Kiberstis and Zimmern, 1984; Tamm et al., 1999). The 
                                                 
1 In this thesis, we will demonstrate that all sequenced sobemoviruses possess a common 
genomic organization characteristic of CfMV-like viruses (publication I). 
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sgRNA has been detected both in sobemovirus-infected tissues and in virus 
particles (Rutgers et al., 1980; Salerno-Rife et al., 1980; Weber and Sehgal, 1982; 
Mäkinen et al., 1995b; Ryabov et al., 1996; Bonneau et al., 1998; Tamm et al., 
1999). In addition to the genomic and sgRNA, some sobemoviruses (LTSV, 
RYMV, SCMoV, SNMoV, VTMoV) can also encapsidate a viroid-like circular 
satellite RNA (satRNA) (Gould et al., 1981; Gould and Hatta, 1981; Randles et al., 
1981; Tien et al., 1981; Francki et al., 1983; Jones et al., 1983; Paliwal, 1983; 
Jones and Mayo, 1984; Dall et al., 1990; Davies et al., 1990; Sehgal et al., 1993; 
Collins et al., 1998). The sizes of sobemovirus-associated satRNAs range from 220 
to 390 nt (Haseloff and Simons, 1982; Keese et al., 1983; AbouHaidar and Paliwal, 
1988; Davies et al., 1990; Collins et al., 1998). The 220 nt-s satRNA of RYMV is 
the smallest of all discovered satRNAs (Collins et al., 1998; Pinel et al., 2003). In 
addition, CfMV is reported to encapsulate DI RNA molecules (Mäkinen et al., 
2000a). The preliminary studies on CfMV DI RNA suggest that it could favour 
accumulation of CP (Kokorev et al., 2007). Also, it has been suspected that a 
sequence lacking nt 231-509 amplified from RNA derived from SeMV particles 
was most probably arose from DI RNA (Lokesh et al., 2001). 

 
1.3. Gene products and their functions 

 
1.3.1. P1 

 
P1 is encoded by the 5’-proximal ORF1 of the genomic RNA of sobemoviruses. 

Translation of P1 occurs with poor efficiency due to the suboptimal context for 
ORF1 initiation (Dwyer et al., 2003). Surprisingly, no considerable homologies 
have been found at nucleic acid as well as amino acid sequence levels between 
different sobemovirus P1s, making this region the most variable one in the genome 
of sobemoviruses (Ngon A Yassi et al., 1994; Mäkinen et al., 1995b; Othman and 
Hull, 1995; Tamm and Truve, 2000b). The molecular masses of sobemoviral P1s 
range between 12-kDa and 25-kDa (Tamm and Truve, 2000b). 

P1s of RYMV and SCPMV are required for systemic infection but not for virus 
replication (Bonneau et al., 1998; Sivakumaran et al., 1998). SCPMV P1 has been 
also shown to be non-essential for viral assembly (Sivakumaran et al., 1998). 
RYMV P1 was first described as a pathogenicity determinant (Bonneau et al., 
1998). Later, it was shown to act as a suppressor of RNA silencing in Nicotiana 
benthamiana, a non-host species for sobemoviruses. P1 of RYMV-Nig prevents a 
systemic spread but not a short-range movement of the silencing signal (Voinnet et 
al., 1999; Hamilton et al., 2002; Himber et al., 2003; Sarmiento et al., 2007). 
Differently, P1s of RYMV-Tz3 and RYMV-Mg1 isolates have been shown to 
affect also the spread of local silencing signal (Lacombe et al., 2010). The 
suppression of silencing was associated with slight reduction in 21 nt siRNA and 
severe reduction in 24 nt siRNA accumulation (Lacombe et al., 2010). Comparison 
of P1s of these two isolates revealed contrasting suppression strength. Interestingly, 
in addition to the ability to suppress silencing RYMV P1 was found to enhance the 
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short distance movement of silencing signal and even to increase the efficiency of 
the systemic spread of silencing (Lacombe et al., 2010). Therefore, it was 
suggested that the dual functions to suppress and activate silencing by RYMV P1 
has a key role for a successful RYMV infection by maintaining equilibrium 
between efficient virus multiplication and preservation of the host integrity. 

Recently, it was shown that also CfMV P1 acts as a silencing suppressor both at 
local and systemic levels in N. benthamiana as well as in N. tabacum (Sarmiento et 
al., 2007). When expressed transgenically in N. benthamiana, RYMV P1 affected 
the normal plant phenotype whereas CfMV P1 did not. Concurrently, both 
suppressors enhance the spread but not the accumulation of crucifer-infecting 
Tobacco mosaic virus (Siddiqui et al., 2008). P1 of CfMV binds ssRNA in a 
sequence-independent manner (Tamm et al., 2000a) but it does not bind double-
stranded small interfering RNAs (siRNAs; Sarmiento et al., 2007). RYMV P1 
nucleic acid binding activity remains to be demonstrated. 

It was demonstrated that RYMV P1 acts as the suppressor also in rice. 
However, it was observed that P1 proteins originated from different RYMV 
isolates had a wide range in their ability to suppress silencing (Siré et al., 2008). 
The investigations on the functional diversity of silencing suppression of a set 
RYMV isolates elucidated that an ability to suppress silencing is not linked to 
RYMV pathogenicity or phylogeny but rather to the cell-to-cell movement ability 
of P1 (Siré et al., 2008). Variations in silencing suppression were correlated with a 
sequence variation of P1. Mutagenesis of P1 demonstrated a strong link between 
some amino acids and silencing suppression features – some conserved amino 
acids of the putative zinc-finger motif of RYMV P1, 
C64(X)2C67(X)24C92(X)2C95, were involved in cell-to-cell movement and in the 
strength of the silencing suppression. In addition, one non-conserved position in 
RYMV P1 in the sequence of the isolate Tz3 (that shows the strongest silencing 
suppression of all isolates tested) was involved in determination of the strength of 
the silencing suppression (Siré et al., 2008). 

Transgenic rice expressing P1 originated either from RYMV-Tz3 or RYMV-
Mg1 displayed inflorescence developmental defects comparable to those 
previously described in a dcl4-1 mutant2 (Lacombe et al., 2010). Similarly to dcl4-
1 mutant, further analysis showed down-accumulation of the Os TAS3 siRNA (21-
nt conserved siRNA) and up-regulation of Os ARF genes that were previously 
described as Os TAS3 siRNA targets. Also, as in dcl4-1 mutant, there was no 
accumulation of transitional small RNAs generated from the AK120922 transcript 
(process dependent on OsDCL4). No effect was observed to other endogenous 
small RNA pathways (miRNA and ca-siRNA) as well as in case of dcl4-1 mutant 
                                                 
2 Dcl4-1 is a mutant rice line generated and studied by Liu et al., 2007. It has a deletion in 
the 5’ extremity of OsDCL4, a gene encoding the Dicer-like protein 4 (which is the 
major Dicer responsible for 21 nt transitional siRNA synthesis playing a key role 
for normal plant development in rice). 
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earlier (Lacombe et al., 2010). It was concluded that the expression of RYMV P1 
in rice specifically affects a pathway required for reproductive development. 

The 5’-proximal half of the genome of sobemoviruses is similar to that of 
poleroviruses in their organization (Hull and Fargette, 2005). Considerably, 
although P0 of poleroviruses (encoded by the 5’-terminal ORF0) is the most 
divergent protein of the viral genome and shares no homology with any other 
known proteins (Mayo and Miller, 1999), P0s of poleroviruses have features 
common with sobemoviral P1s.  Despite of their divergence, P0s of Beet western 
yellows virus (BWYV), Potato leafroll virus (PLRV), Cucurbit aphid-borne 
yellows virus (CABYV) and Sugarcane yellow leaf virus (SCYLV) all operate as 
suppressors of PTGS in 16c N. benthamiana model system (Pfeffer et al., 2002; 
Mangwende et al., 2009). However, P0s of poleroviruses have a conserved F-box-
like3 motif essential for a suppressor activity of P0 (Pazhouhandeh et al., 2006; 
Baumberger et al., 2007; Bortolamiol et al., 2007). F-box-like motifs have not been 
identified for sobemovirus P1 proteins. 
 
1.3.2. Polyprotein 
 

Although the presence of two different types of genomes has been postulated 
amongst the sobemoviruses, in vitro translation products of these viruses have 
similar molecular weights. This phenomenon has been explained by different 
translation strategies of the polyprotein both involving a –1 ribosomal frameshift 
event (Mäkinen et al., 1995a; Tamm et al., 1999; Dwyer et al., 2003). A shorter, ca 
ca 70 kDa polyprotein was supposed to correspond to P2a or to frameshifted partial 
P2-P3, in case of CfMV-like or SCPMV-like viruses, respectively. A longer, ca 
100-kDa polyprotein was supposed to correspond to frameshifted P2a-2b of 
CfMV-like viruses or to the full-length P2 of SCPMV-like viruses. Consequently, 
two different polyproteins with identical N-terminal part but dissimilar C-terminal 
part are translated from different sobemoviral genomic RNAs (Fig.1, p. 23). 

According to in silico analysis, the N-termini of the sobemoviral polyproteins 
(except LTSV that lacks this region according to the sequence analysis) show the 
presence of strongly predicted transmembrane helixes (Ryabov et al., 1996; 
Satheshkumar et al., 2004b; McGavin and MacFarlane, 2008). This N-terminal 
hydrophobic region was proposed to target the polyprotein into cellular membranes 
that can possibly serve as a proteolytic processing site for polyprotein maturation. 
Alternatively, the membrane-anchoring domain of N-terminus is suggested to 
target the Pro-VPg-RdRp polyprotein into membraneous structures for viral minus 
strand synthesis (Nair and Savithri, 2010). 
                                                 
3 The F-box protein family is the largest protein superfamily. F-box proteins are involved in 
plant hormone response and their related signal transduction pathways. F-box proteins are 
also involved into ubiquitin-mediated protein degradation complexes; they regulate lateral 
root formation, light signalling, circadian system and floral development. They probably 
also participate in stress response and regulation of leaf senescence (Yu et al., 2007). 
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The N-terminal part of the polyprotein consists of a serine protease (Pro) and a 
viral genome-linked protein (VPg). The C-terminal part of full-length polyprotein 
consists of an RNA-dependent RNA polymerase (RdRp). The position of the VPg 
in between of the viral Pro and RdRp is unique for sobemo-, polero-, enamo- and 
barnaviruses (Revill et al., 1998; van der Wilk et al., 1998a; van der Wilk et al., 
1998b; Wobus et al., 1998). It has demonstrated that sobemoviral polyprotein 
undergoes a proteolytic processing carried out by sobemovirus-encoded Pro itself 
(Satheshkumar et al., 2004b). 

During proteolytic processing, protease catalyzes the hydrolysis of specific 
peptide bonds located between two specific amino acid residues. The N-terminal 
sequencing of VPg-s of sobemoviral VPg-s attached to viral genomes indicated 
that the polyprotein must be processed between E/T for SBMV, between E/N for 
CfMV, and between E/S for RYMV (van der Wilk et al., 1998; Mäkinen et al., 
2000; Hébrard et al., 2008). No proteolytic processing of CfMV polyprotein(s) 
happens in vitro or in E. coli (Tamm et al., 1999). Conversely, SeMV full-length 
polyprotein was shown to undergo proteolytic processing when expressed in E. 
coli. Analysis of cleavage site mutants confirmed the cleavage of E/T between Pro-
VPg at E325/T326 and VPg-RdRp at E402/T403. A third, less efficient cleavage 
site of E/S at E498/S499 was found downstream (Satheshkumar et al., 2004b). 
Comparison of ∆N70-Pro and ∆N92-Pro crystals identified identical parameters 
even though ∆N70-Pro was 22 amino acids longer than ∆N92-Pro. On mass 
spectroscopic analysis, both had the same mass of ~20,000 Da suggesting an 
internal cleavage at N-terminus (Gayathri et al., 2006). Initially, a possible non-
specific cleavage at the residues A134/V135 in both the mutants was suggested 
(Gayathri et al., 2006). However, recent study on SeMV polyprotein processing 
has prooven cleavage at E132/S133 (Nair and Savithri, 2010). Besides, it was 
observed that cleavage at E132/S133 is crucial for an efficent processing of 
polyprotein, in particular for the cleavage at E498/S499 (Nair and Savithri, 2010). 
The trans-cleavage experiments of all the four cleavage sites of SeMV polyprotein 
suggested that cleavages at E132/S133 and E498/S499 did not occur in trans, i.e. 
these sites are only accesible in cis by auto-proteolysis (Nair and Savithri, 2010). 
All these four SeMV polyprotein cleavage sites were demonstrated to be utilized 
also in SeMV-infected sesbania plant (Nair and Savithri, 2010). 

The analysis of CfMV-infected plant material showed that also the 
polyprotein(s) of CfMV is processed at several additional sites besides the verified 
E/N cleavage site between Pro-VPg (Mäkinen et al., 2000b). Unexpectedly, the 
mature 12-kDa VPg was not detected with the antisera generated against VPg or 
P2a. Instead of that, a 24-kDa protein was observed. It was suggested that it 
represents either the N-terminal (Pro-VPg) or the C-terminal fragment (VPg-P2a 
C-terminus) of P2a, as the discrimination between these two was not possible with 
the antisera used. Also, a portion of potential cleavage intermediates with sizes of 
18-kDa to 24-kDa was detected by P2a-antisera. Notably, the only protein detected 
with antisera generated against RdRp had the size of 58-kDa (instead of 100-kDa 
full-length translation product) indicating that the cleavage between RdRp and the 
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N-terminal part of full-length polyprotein must happen in vivo. A computational 
analysis identified a conserved site similar to the one found at the N-terminal 
cleavage site of VPg between the hydrophobic N-terminal region and Pro domain. 
No suitably positioned E/N site was identified downstream of VPg N-terminus 
(Mäkinen et al., 2000b). 

The structure of crystallized protease domain has been determined for SeMV at 
resolution of 2.4 Å. Remarkably, a comparison of the 3D-structure of SeMV 
protease domain with all the available entries in the Protein Data Bank 
(http://www.rcsb.org/pdb/home/home.do) indicated that it is closer to the non-viral 
proteases than to the viral ones (Gayathri et al., 2006). The structure of SeMV 
protease exhibits the characteristic features of trypsin fold with a well-formed 
active site and an oxyanion hole. SeMV Pro domain consists of two β barrels 
connected by a long inter-domain loop. Both active site and the substrate-binding 
cleft of SeMV Pro occur in between the two barrels and are fairly exposed to 
solvent (Gayathri et al., 2006). The studies on sequence alignments have observed 
the similarities between the sobemoviral proteases and their relatives of polero-, 
enamo-, and barnaviruses (Gorbalenya et al., 1988). The proposed consensus 
sequence for them all is H(X32-35)[D/E](X61-62)TXXGXSG, where H, D/E and S 
constitute a catalytic triad and X denotes any amino acid (Gorbalenya et al., 1989; 
Koonin and Dolja, 1993). Also, the glycine and histidine residues downstream 
from the putative catalytic residues are suggested to be the site of substrate binding 
(Gayathri et al., 2006). Mutation analysis of the active site residues H181, D216, 
and S284 of SeMV Pro verified their crucial role in protease activity 
(Satheshkumaret al., 2004b). Mutation analysis of primary substrate-binding 
pocket called S1 binding pocket also showed the importance of downstream 
residues H298, T279, and N308 for protease activity (Gayathri et al., 2006). 

In vitro studies on SeMV Pro activity demonstrated that the uncleaved C-
terminal VPg is crucial for both the cis and trans catalytic activity of SeMV Pro 
(Satheshkumar et al., 2005a). Tryptophan at position 43 of VPg was identified to 
mediate aromatic stacking interaction with the W271 of Pro domain (Satheshkumar 
et al., 2005a; Nair et al., 2008). Interestingly, also H275 of Pro was shown to be 
essential for protease activity. H275 is not a part of exposed aromatic stack in Pro 
but it lies close to the W271 and it faces the substrate-binding pocket (Nair et al., 
2008). It was concluded that most probably a release of free Pro domain from Pro-
VPg during the proteolytic self-processing is changing the conformation of the 
protease in a way that it cannot cleave the substrate any more. Consequently, this 
would lead to the temporal regulation of the processing of the polyproteins (Nair et 
al., 2008). 

Although the region encoding VPg is similarly located in the genomes of 
sobemo-, polero-, enamo-, and barnaviruses, no significant similarity has been 
reported for the amino acid sequence or for the size of the VPg-s. The only 
conserved sequence element observed among them is a WAD or WGD or WNK 
motif followed by a D- or E-rich region (Mäkinen et al., 2000b; McGavin and 
MacFarlane, 2008). VPg of RYMV has been identified as a virulence factor 
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(Hebrard et al., 2006). It was shown to interact directly with rice eIF(iso)4G that 
mediates resistance against RYMV (Hébrard et al., 2008). Further studies have 
identified five positions within a stretch of 15 amino acids in the central region of 
VPg to be associated with virulence. Amino acids 26 and 49 are major candidates 
to modulate the virulence among strains and variants of RYMV (Pinel-Galzi et al., 
2007). The residues 48 and 52 located at the C-terminus of RYMV VPg were 
proposed to participate in the interaction with two antiparallel helices of the 
eIF(iso)4G central domain. In avirulent isolates of RYMV, position 48 is occupied 
by conserved arginine whereas this site is polymorphic in virulent isolates (Hébrard 
et al., 2006; Pinel-Galzi et al., 2007). Interestingly, a reduced translation in the 
eIF4G depleted lysates indicated that translation from internally positioned CfMVε 
was eIF4G-dependent (Mäkiläinen, 2006). 

The studies on VPg of SeMV indicated that it tends to be a disordered protein. 
It resembles the “natively unfolded”4 proteins lacking both secondary and tertiary 
structures (Satheshkumar et al., 2005a). Differently, the secondary structure 
predictions of RYMV VPg have suggested a high proportion (35%) of α-helices 
(Hébrard et al., 2009). However, the regions with a propensity to be disordered are 
predicted in all sobemoviral VPg-s. Sobemoviral VPg-s can be distinguished 
according to their possible phylogenetic relationships. The group of VPg-s of 
RYMV/CfMV/RGMoV has been predicted to be disordered at the N- and C-
termini. In the inner region, the consensus secondary structure prediction indicates 
the presence of α-helix followed by two β-strands and another α-helix whereas the 
disorder prediction shows a disordered state as well. For the group of VPg-s of 
SeMV/SBMV/SCPMV, the predicted disordered regions were shorter and a 
consensus for three β-strands was identified (Hébrard et al., 2009). According to 
the in silico studies of sobemo-, poty- and caliciviral VPg-s, it was proposed that 
intrinsic disorder is a common feature of VPg-s and it confers on them the ability 
to bind to many different partners and to fulfill different functions in viral life cycle 
(Hébrard et al., 2009). Their functions may imply interactions with eIF-s to 
enhance viral translation (calici- and potyviral VPg-s), they may contribute to host 
RNA shutoff due to a ribonuclease activity (potyviral VPg-s), they can be involved 
in viral replication via priming complementary strand synthesis (picorna- and 
polioviral VPg-s), they may have a role in plant cell-to-cell movement via 
interactions with eIF and microtubules (potyviral VPg-s), and they may be crucial 
in the processing of viral polyproteins (sobemoviral VPg-s) (Hébrard et al., 2009). 

None of the sobemoviral RdRp-s has molecularly characterized yet. The RdRp 
has been identified in silico through a highly conserved GDD motif 
(SGSYCTSSTNX19-35GDD) that is conserved amongst the RdRp-s of positive-
strand ssRNA viruses (Gorbalenya et al., 1988). According to sequence 
similarities, RdRp-s of sobemo-, polero-, enamo- and barnaviruses are classified as 
                                                 
4 “Natively unfolded” proteins (also called intrinsically disordered proteins) form a unique 
class of proteins that exhibit their function in the absence of the ordered structure. These 
proteins are believed to adopt a rigid conformation stabilized in vivo upon interaction with 
natural substrates (Uversky, 2002). 
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a “sobemo-lineage” in the supergroup I of plus sense plant RNA viruses. RdRp-s of 
this group, as well as some of supergroup II (luteoviruses and viruses from the 
family Tombusviridae), apparently lack the conserved NTP-binding elements 
characteristic for viral helicases (Koonin, 1991; Buck, 1996). Antibodies generated 
against the putative RdRp of CfMV recognized a 58-kDa protein instead of a single 
large 100-kDa protein in CfMV-infected plants indicating that it must be cleaved 
out from the full-length polyprotein in vivo. The size of RdRp indicates that the 
cleavage must occur in the vicinity of the -1 ribosomal frameshifting site (Mäkinen 
et al., 2000b). 

 
1.3.3. Coat protein and virion structure 

 
The virions of sobemoviruses have an icosahedral capsid with approximate 

diameter of 30 nm. The capsid consists of 180 molecules of a single 26-34 kDa CP 
which is encoded by 3´-proximally located ORF but is translated from sgRNA 
(Hull and Fargette, 2005). The 3D structures of SCPMV (Abad-Zapatero et al., 
1980), SeMV (Bhuvaneshwari et al., 1995), RYMV (Qu et al., 2000), CfMV (Tars 
et al., 2003) and RGMoV (Plevka et al., 2007) virions have been determined 
utilizing X-ray crystallography. Despite the fact that primary sequences of 
sobemoviral CP-s are quite different (the sequence similarities between the CP-s of 
previously mentioned sobemoviruses are 12-30 % with exception of 63 % 
similarity between SeMV and SCPMV) their 3D structure is nearly identical. 
Actually, it is a general observation that 3D structures of structural proteins are 
better conserved than their amino acid sequences (Rossmann and Johnson, 1989). 
The root mean square (rms) deviations between superimposed coordinates of Cα 
atoms of the respective sobemoviral CP residues are in general 1.4-1.5 Ǻ (Plevka et 
al., 2007). The structures of CP-s of SCPMV and SeMV are even closer (0.6 Ǻ) 
and RGMoV seems to be slightly different from other sobemoviruses (1.8-1.9 Ǻ). 
Instead, the 3D-structure of CP of RGMoV appears to be slightly more similar to 
CP of Tobacco necrosis virus (TNV from the family Tombusviridae, genus 
Necrovirus) than to these of sobemoviruses (Plevka et al., 2007). According to the 
sequence similarities, CP-s of sobemoviruses are most closely related to those of 
necroviruses (Dolja and Koonin, 1991; Tamm and Truve, 2000b; Saeki et al., 
2001; Hull and Fargette, 2005). The sequence similarity between TNV CP and 
previously mentioned sobemoviral CPs is 15-27 % and rms deviation between the 
superimposed coordinates of Cα atoms of the respective residues of sobemoviral 
CPs is 1.4-1.5 Ǻ (Plevka et al., 2007). TNV is the only necrovirus that has been 
crystallized (Oda et al., 2000). 

A sobemovirus capsid is assembled according to T=3 icosahedral lattice 
symmetry (Fig. 2, p. 32). The CP monomers are chemically identical but they exist 
in three slightly different conformations, denoted as A, B and C subunits. The A, B 
and C subunits construct one icosahedral subunit. Altogether, there are 60 
icosahedral subunits per sobemoviral T=3 particle. The A subunits interact at the 
icosahedral fivefold axes to form 12 pentamers while the pairs of B and C subunits 
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meet at icosahedral threefold axes to form 20 hexamers. The pentamers and 
hexamers differ significantly in shape — hexamers are generally planar and 
pentamers are substantially bent. The combination of hexamers and pentamers 
gives the particle its characteristic shape (Fig. 2). 

 
 

Figure 2. The structure of the sobemovirus particle. Chemically identical but structurally 
slightly different subunits are marked as follows: blue (A), red (B) green (C). On the left: 
180 copies of CP monomers arranged in T=3 quasi-equivalent symmetry. On the right: 
Zoomed view to icosahedral subunit. Pictures representing CfMV capsid have been adapted 
from website: http://viperdb.scripps.edu. 
 

Studies on TRoV, SCPMV, SeMV and RYMV particles demonstrate that the 
stability of the virions depends greatly on pH and the availability of divalent 
cations, Ca2+ and Mg2+ (Hsu et al., 1976; Hull, 1977; Krüse et al., 1982; 
Satheshkumar et al., 2004a). Upon alkaline pH or removal of the cations, the virus 
particles swell and become less stable. A radius of RYMV and SCPMV particles 
increases about 7 % during the swelling process (Hull, 1977; Tama et al., 2005). 
As the result of particle swelling, prominent protrusions are observed at the 5-fold 
axis, and small protrusions are also revealed at the quasi-3-fold axis. It is proposed 
that removing the Ca2+ ions results in electrostatic repulsions that trigger the 
swelling (Opalka et al., 2000). Indeed, modeling of that process shows that 
separations between proteins interacting at the quasi-3-fold axis increase by 2 Ǻ for 
RYMV and by 2.3 Ǻ for SCPMV (Tama et al., 2005). Calcium binding sites are 
located between the subunits AB, BC and CA. Sobemoviral particles have been 
shown to bind three Ca 2+ ions per icosahedral subunit ABC, i.e. 180 Ca 2+ ions per 
particle (Hermondson et al., 1982). A structure-based alignment of the sobemoviral 
CP sequences has identified eight invariant amino acid residues – three of these 
(e.g. Asp 139, Asp 142 and Asn 234 for RGMoV CP) have involved binding of the 
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Ca 2+ ions. Other five conserved amino acid residues have been suggested to be 
important for the backbone conformation (Plevka et al., 2007). Mutation analysis 
of SeMV CP calcium binding sites demonstrates that cation-mediated interactions 
are mainly needed for particle stability but not for assembly (Satheshkumar et al., 
2004a). The binding of calcium contributes in rigid packing of protein subunits into 
the viral particle (Sangita et al., 2004; Satheshkumar et al., 2004a). Depending on 
the pH and the presence or the absence of calcium, RYMV particles have been 
demonstrated to exist in three forms. The unstable swollen form is present in the 
cytoplasm from where it is proposed to move into the vacuoles for compaction. It 
is proposed that a swollen particle might be an intermediate state before 
disassembly and after assembly of virions in vivo (Opalka et al., 2000; 
Satheshkumar et al., 2004a). In infected rice plants, transitional and swollen forms 
were abundant during early infection (2 weeks post infection), whereas compact 
forms increased during later stages of infection (Brugidou et al., 2002). 

The assembly of SBMV and SeMV virions was proposed to be initiated by 
pentamer of dimeric units or 10-mer at the icosahedral 5-folds (Rossmann et al., 
1983; Lokesh et al., 2002; Satheshkumar et al., 2005b). A single mutation W170K 
in SeMV has been found to result in stable dimers not assembling into particles 
(Anju et al., unpublished results, referred by Pappachan et al., 2008). It is 
presumed that packing of viral nucleic acid requires recognition of a specific region 
within a virus genome by viral CP. In case of SCPMV, a putative stem-loop 
sequence (mapped to the position corresponding to nt 1410–1438) within a 
conserved region encoding serine protease has been reported to bind CP (Hacker, 
1995). However, it has not been demonstrated to nucleate SCPMV assembly. 

In addition to external factors such as pH and divalent metal ions, sobemovirus 
particles are stabilized by protein-protein interactions between subunits and by CP-
RNA interactions (Hull, 1977). 

The monomers of sobemovirus CP possess an eight β-strand anti-parallel 
twisted sheet conformation known as a jellyroll β-sandwich or β-barrel topology, 
common in most non-enveloped icosahedral viruses (Richardson, 1981). In 
general, sobemoviral CP has two domains: N-terminal R (random) domain that is 
found to be completely disordered in subunits A and B but partially ordered in 
subunit C; and C-terminal S (shell) domain, which is the core building block of the 
virion (Abad-Zapatero et al., 1980; Hermodson et al., 1982; Rossmann et al., 
1983). It has been proposed that the disordered beginning of R domain interacts 
with RNA in the interior of the virus particle (Abad-Zapatero et al., 1980; Erickson 
and Rossmann, 1982). The partially ordered N-terminal arm of C subunit is 
inserted between the interacting sides of subunits, making the contacts between 
subunits flat (i.e. tensed state). The contacts between the subunits that lack the 
inserted arms are bent (i.e. relaxed state). In that manner, the N-terminal arm acts 
as a molecular switch regulating the curvature of viral capsid and the assembly of 
T=3 particles. The removal of the R domain from CP results in formation of T=1 
particles (composed of 60 identical monomers) only, with all of the bent contacts 
between subunits (Savithri and Erickson, 1983; Lokesh et al., 2002). 
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The first half (ca 30-35 aa residues) of R domain contains a conserved arginine-
rich motif (ARM) whereas the following region (the next 35 aa residues) is 
responsible for the formation of structure called β-annulus (which realizes only in 
case of partially ordered N-terminal arms of C-subunits). The analysis of SeMV CP 
has shown that deletion of the first part involving ARM results in formation of T=1 
and pseudo T=2 particles (Lokesh et al., 2002; Sangita et al., 2004). On the 
contrary, deletion of the amino acid residues that constitute the β-annulus do not 
affect T=3 capsid assembly or stability (Satheshkumar et al., 2005b). Moreover, 
the assembly of such kind of SeMV particles takes place without the formation of 
the β-annulus that, therefore, may be formed only as a consequence of the particle 
assembly (Pappachan et al., 2008). However, SCPMV, SeMV and RGMoV have 
been found to be more sensitive to pH elevation than RYMV and CfMV. The 
difference is associated with the slight differences observed in the arrangement of 
β-annuli of the N-terminal arms of C-subunits (Opalka et al., 2000; Qu et al., 2000; 
Tars et al., 2003; Plevka et al., 2007). Amino acid residues forming the inter-
subunit contacts are not conserved among sobemoviral CPs (Opalka et al., 2000; 
Tars et al., 2003). 

R domain is rich in basic amino acid residues as arginine, lysine, proline, and 
glutamine, which have been considered to be responsible for coat protein contacts 
with RNA (Hermodson et al., 1982; Rossmann et al., 1983). It has been shown that 
the first 30 aa residues (including ARM) of CP are determinant for a nonspecific in 
vitro RNA binding activity (Lee and Hacker, 2001). The overall charge of the 
ARM but not the arginine residues at specific positions is responsible for RNA 
binding in SCPMV and SeMV (Lee and Hacker, 2001; Satheshkumar et al., 
2005b). If only the arginine residues of ARM are replaced with glutamic acid 
residues, formation of empty T=3 particles (but with reduced stability) takes place. 
Hence, ARM is prerequisite for RNA interaction and encapsulation (Satheshkumar 
et al., 2005b). The presence of RNA has been shown to enhance the overall 
stability of the virion (Satheshkumar et al., 2005b). Studies on sobemoviral CP-
RNA interactions do not demonstrate the requirement for specific interactions. 
Similarly to viral RNA, RNA of bacterial origin (23S rRNA or its degraded 
variants) is packed into SeMV particles when expressed in E. coli (Lokesh et al., 
2002). CP of CfMV shows rather a general affinity to bind any kind of ssRNA as 
well (Tamm and Truve, 2000a). Interestingly, it has been postulated that 
nonspecific electrostatic interactions might control both the genome length and 
conformation of all ssRNA/ssDNA viruses with highly basic peptide arms. As the 
result of mathematical modeling, a genome length was found to be linear in the net 
charge of CP peptide arms but not with the geometry and volume of the virion 
(Belyi and Muthukumar, 2006). Albeit the calculated genome packing density is 
similar within sobemovirus group, it varies significantly among different families 
of small single-stranded RNA viruses (Plevka et al., 2007). 

In addition to RNA-binding properties, the highly basic region of the N-
terminus of SCPMV CP (involving ARM) withholds a potential to form α-helix 
and it has been shown to interact with artificial membranes in vitro (Lee et al., 
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2001). Although the actual biological relevance of this membrane interaction is not 
known, several steps in the viral life cycle might be involved. Firstly, it is expected 
that a virus particle expands after the entry to the cell. This results in the 
externalization of R-domain that is believed to be essential for membrane-docking 
of the viral particle at the site of replication. Secondly, it has been speculated that 
viral movement depends on interactions with membranes (Lee et al., 2001). The 
studies on RYMV (Brugidou et al., 1995) and SCPMV (Sivakumaran et al., 1998) 
prove that systemic virus movement is completely abolished in the absence of CP. 
CPs of CfMV (Fedorkin et al., 2001) and TRoV (Callaway et al., 2004) can 
complement the systemic movement of taxonomically distinct plant viruses. 
Systemic movement of SCPMV (Fuentes et al., 1993) and RYMV (Opalka et al., 
1998) has been observed to be dependent on correct particle formation. Our studies 
on CfMV show that ARM is responsible for virus systemic movement (Olspert et 
al., unpublished data). Thirdly, interaction with membranes may be also important 
for beetle transmission. It has been demonstrated that SCPMV enters the hemocoel 
of its beetle vector Diabrotica undecimpunctata howardi through the peritrophic 
membrane-lined midgut but not via the cuticle-lined foregut or hindgut (Wang et 
al., 1994). 

Based on sequence similarity with known amino acid motifs responsible for 
nuclear localization (Dingwall and Laskey, 1991), it has been supposed that the N-
terminal region of CP contains a bipartite nuclear targeting signal (Ngon A Yassi et 
al. 1994; Mäkinen et al., 1995a) largely overlapping with ARM. 

 
1.4. Distribution in cells and tissues, pathology 

 
All sobemoviruses are found in cytoplasm5. SBMV (De Zoeten and Gaard, 

1969), SoMV (Lombardo et al., 1971), BSSV (Hartmann et al., 1973), CfMV 
(Chamberlain and Catherall, 1976; Mohamed and Mossop, 1981), LTSV (Forster 
and Jones, 1979), VTMoV (Randles et al., 1981), CnMoV (Mohamed and Mossop, 
1981), SCMoV (Francki et al., 1983), GCFV (Thomas, 1986) and RoMoV 
(Thottapilly et al., 1992) virions have been detected in vacuoles. Studies with 
RYMV suggest that vacuoles become the storage compartments for virions in the 
course of infection. It is proposed that swollen and less compact virions exist in the 
cytoplasm, whereas vacuoles with acidic pH and higher Ca2+ concentration contain 
compact virions (Opalka et al., 1998; Opalka et al., 2000). 

Sobemovirus particles accumulation into vacuoles is followed by the 
appearance of virus crystals and inclusions in cytoplasm (Opalka et al., 1998, 
2000). SBMV (De Zoeten and Gaard, 1969), SCPMV (Weintraub and Ragetli, 
1970), SoMV (Lombardo et al., 1971), BSSV (Hartmann et al., 1973), CfMV 
(Mohamed and Mossop, 1981), SNMoV (Greber, 1981), VTMoV (Randles et al., 
1981), SCMoV (Francki et al., 1983), GCFV (Thomas, 1986), PLYV (Kitajima et 
al., 1992a; Kitijima et al., 1992b), RoMoV (Thottapilly et al., 1992), CAYMV 
                                                 
5 There is no data available on cellular or tissue distribution of SeMV, IYMV and RuCMV. 
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(Morales et al., 1995), RYMV (Opalka et al., 1998, Brugidou et al., 2002), 
RGMoV (Yao et al., 2002) and SMAMV (Lecoq et al., 2005) have been described 
to constitute crystalline arrays containing mature virions or cytoplasmic fibrils, 
some of which are enveloped in endoplasmic reticulum-derived vesicles. No 
inclusions have been found in cells infected with TRoV (Hollings and Stones, 
1973), LTSV (Forster and Jones, 1979) or CnMoV (Mohamed and Mossop, 1981). 
However, aggregation of virus particles is considered to be a common 
characteristic of plant viruses. A formation of inclusions can be dependent on 
tissue type invaded. For example, crystalline arrays of RYMV have been observed 
in vascular tissues but not usually in mesophyll (Opalka et al., 1998; Brugidou et 
al., 2002). Inclusions may be small and difficult to detect in the beginning of 
infection. Also, both abiotic (environmental conditions like light and temperature) 
and biotic (e.g. tolerance or sensitivity of host) factors can greatly influence 
inclusion development (Christie et al., 1995). In case of CfMV, it has been 
reported that a formation of crystalline or paracrystalline arrays is in positive 
correlation with the amount of virus particles and the severity of symptoms 
(Chamberlain and Catherall, 1976). 

Nuclear targeting signal of CP probably accounts for the presence of 
sobemovirus virions in the nuclei of mesophyll cells infected with SBMV (De 
Zoeten and Gaard, 1969), BSSV (Hartmann et al., 1973), LTSV (Forster and Jones, 
1979), SNMoV (Greber, 1981), CfMV (Chamberlain and Catherall, 1976; 
Mohamed and Mossop, 1981), VTMoV (Randles et al., 1981), SCMoV (Francki et 
al., 1983) and RYMV (Brugidou et al., 2002). CnMoV has been occasionally 
found in the nuclei of its experimental host (wheat and oats) but not in naturally 
infected grasses (Mohamed and Mossop, 1981). It has been suggested that 
sobemoviruses can move into the nucleus as virions because SBMV can be 
visualized in the cytoplasm of young cells before being seen in nuclei. Virions of 
SBMV have been observed in cross-sections of nuclear pores in fixed blocks of 
infected tissue (De Zoeten and Gaard, 1969). 

Sobemovirus particles are usually not detected in mitochondria and 
chloroplasts. However, BSSV particles have been observed to be associated with 
chloroplast membranes (Hartmann et al., 1973). The chloroplasts of SBMV-
infected (Weintraub and Ragetli, 1970) or RYMV-infected (Opalka et al., 1998) 
cells have been reported to form occasionally finger-like extrusions. Further studies 
on RYMV showed that cytoplasmic integrity and structure of chloroplast and 
mitochondria are not affected in infected xylem parenchyma cells whereas in 
mesophyll cells the degenerative changes occur within chloroplasts when particles 
are not stored in vacuoles but appear in large quantities in cytoplasm (Brugidou et 
al., 2002). Other cellular changes include proliferation of tonoplast membranes 
bulging into the vacuole in SoMV-infected (Lombardo et al., 1971) or CfMV-
infected (Chamberlain and Catherall, 1976) host cells. Organelle membranes, 
tonoplast and plasmalemma were destroyed and the remaining cytoplasm formed 
finger-like extrusions extending into the vacuole in cells severely affected by 
CfMV. In case of mild CfMV infection, increase in endoplasmic reticulum and 
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vacuolisation of cytoplasm was characteristic (Chamberlain and Catherall, 1976). 
RYMV infection results with disorganization of the middle lamellae of the cell 
walls of parenchyma and mature xylem cells (Opalka et al., 1998). 

Nothing is known about the subcellular localization of the nonstructural 
sobemovirus proteins. 

Studies on tissue distribution of sobemovirus particles have revealed them in 
leaf mesophyll, epidermis and palisade cells, in guard cells of stomata, in vascular 
tissues (both in xylem and phloem) and in bundle sheath cells surrounding them, 
and even in meristem cells. Differently, sobemoviruses have been observed to be 
restricted to vascular tissues in roots (Hartmann et al., 1973; Opalka et al., 1998; 
Otsus, 2005). Distribution patterns of individual sobemoviruses differ to some 
extent. 

SoMV has been reported to localize into mesophyll and xylem elements but not 
into phloem of infected quinoa leaves. In xylem tissue, it was found in parenchyma 
cells, in young tracheids and in differentiated tracheids of minor veins (Lombardo 
et al., 1971). 

The initial studies on BSSV detected it in leaf palisade cells and in xylem 
parenchyma, but not in mature xylem vessels or in phloem of highbush blueberry 
leaf and root tissues. In root tissues, BSSV was seen in varying amounts in almost 
all xylem parenchyma cells examined, usually in greater concentrations than in leaf 
xylem parenchyma (Hartmann et al., 1973). Further studies have shown that BSSV 
localizes both in xylem and phloem although it was observed to be mainly related 
with xylem tissues (Urban et al., 1989). 

Similarly, RYMV particles have predominantly been detected in leaf 
mesophyll, bundle sheath cells, xylem parenchyma and vessels in rice (Opalka et 
al., 1998; Brugidou et al., 2002). In late infection stadia, RYMV particles have 
been occasionally observed also in phloem parenchyma cells and in sieve elements. 
It is suggested that the virus is transported between xylem cells by binding calcium 
from pit membranes into the composition of virion (Opalka et al., 1998; Opalka et 
al., 2000). In general, the high stability of virions is required for translocation via 
xylem because of the action of proteases during programmed cell death of 
tracheary element (Gergerich, 2002; Kozela and Regan, 2003). 

SBMV and SCPMV have been found in bean or cowpea leaf epidermis, 
mesophyll and phloem companion cells mostly (Worley and Schneider, 1963; 
Fuentes and Hamilton, 1993). Similarly, CAYMV (presently considered as a strain 
of SBMV) has been reported to accumulate mainly in mesophyll and phloem of 
calopo leaf tissue (Morales et al., 1995). When SBMV particles have been 
introduced directly into the xylem of bean stems, they migrated through the 
tracheids (and they were also able to traverse steam-killed parts) causing systemic 
symptoms (Schneider and Worley, 1959a; Schneider and Worley, 1959b; 
Gergerich and Scott, 1988). Systemic spread through xylem has been suggested to 
be characteristic for beetle-transmissible viruses (Gergerich and Scott, 1988). 

CfMV has been reported to localize in cocksfoot leaf mesophyll and in phloem 
(Chamberlain and Catherall 1976; Rabenstein and Stanarius, 1984). Our results 
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demonstrate that both xylem and phloem are involved in CfMV infection (Otsus, 
2005). However, the presence of CfMV in xylem occurs only during the late stadia 
of infection and CfMV is preferentially moving systemically through the phloem 
(Otsus, 2005). Interestingly, CfMV was always detected in few phloem-sided 
bundle sheath cells of minor veins during the first week of infection. By the end of 
the second week, when the first visible symptoms appear, there were a number of 
discrete infection loci in mesophyll surrounding vascular bundles. In vascular 
tissue, CfMV was observed in bundle sheath cells and in phloem parenchyma. In 
the third week (late stage of infection), CfMV had spread all over the inoculated 
leaf – it was abundantly found in mesophyll and in bundle sheath cells, and it was 
also localized both in phloem and xylem parenchyma. This pattern repeats in 
systemic leaves with a delay, except that no xylem localization is usually detected. 
In some systemic leaves, no virus was detected outside the vascular bundle. In 
straw and roots, CfMV was mainly detected in phloem companion cells and 
sometimes also sporadically in xylem (Otsus, 2005). Similarly to CfMV, a phloem 
spread has been found to be characteristic for a beetle-transmissible cowpea mosaic 
comovirus (CPMV) in cowpea plants. It has shown that upon beetle transmission, it 
rapidly reaches into phloem and uses phloem as its vascular movement route 
whereas upon mechanical inoculation, it moves from cell-to-cell until it loads into 
phloem minor veins. Subsequently, it unloads from phloem major veins like other 
viruses that are using phloem-transport (Silva et al., 2002). 

Virus infection causes major rearrangements on host physiology. According to 
the data gained from purification of RYMV-host protein complexes in vivo and in 
vitro, it is supposed that virus infection interferes in host metabolism (by binding 
host proteins involved in glycolysis, malate and citrate cycles), defence (by 
interacting with host proteins involved in elimination of reactive oxygen species 
but also with some pathogenesis-related proteins) and protein synthesis (by mating 
with host proteins involved in translation processes) (Brizard et al., 2006). RGMoV 
has been reported to induce apoptotic cell death in yellow portions but not in green 
portions of infected oat leaves (Yao et al., 2002). 

The external outcome of sobemoviral infections varies from mild to severe 
chlorosis and mottling; also stunting, necrotic lesions, vein clearing and/or sterility 
have been documented (Hull and Fargette, 2005). However, some infections have 
been reported to be symptomless. For example, the infection of TRoV has been 
reported to be mostly without symptoms both in black mustard and field mustard 
(Thurston et al., 2001; Pallett et al., 2002). Also, LTSV may be transient or 
symptomless in lucerne (Blackstock, 1978; Forster and Jones, 1979). 

 
1.5 Resistance 
 

In general, production of reactive oxygen species and antioxidant metabolism 
are figured to be involved in symptom development and pathogenesis in plant-virus 
interactions (Riedle-Bauer, 2000; Hernandez et al., 2001; Clarke et al., 2002; Li 
and Burritt, 2003). Production of increased levels of reactive oxygen species are 
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thought to be involved in the regulation of localized cell death and the induction of 
defence genes (Riedle-Bauer, 2000) whereas up- and down-regulation of 
antioxidant enzyme activities are considered to play a role in generation of 
hypersensitive response to virus infection in plants (Fodor et al., 1997, Mittler et 
al., 1998). The measurements of reactive oxygen species and antioxidant enzymes 
of cocksfoot plants susceptible to CfMV and plants with acquired immunity6 to 
CfMV, show completely different patterns in up- and down-regulation after 
inoculation of CfMV (Li and Burritt, 2003). In susceptible plants, H2O2 levels 
declined immediately after inoculation with CfMV and then gradually increased. 
Increase in H2O2 levels induced increased lipid peroxidation and the symptoms 
development. Conversely, recovered plants resistant to new infection showed only 
a brief increase in H2O2 levels, immediately after inoculation, with no significant 
increase in lipid peroxidation. Similarly, a decline in the oxidized forms of 
ascorbate and glutathione as well as a decline in the total glutathione pool in 
susceptible plants inoculated with CfMV were observed but no changes in the 
ascorbate or glutathione pools were observed in recovered plants. In susceptible 
plants, a decline in antioxidant enzyme activities (with the exception of catalase - 
its levels increased for the first 5 days after inoculation and then declined) were 
observed during the early stages of virus establishment, followed by increased 
activity in response to cellular damage. In recovered plants, only transient increases 
occurred in activities of some antioxidant enzymes (ascorbate peroxidase, 
dehydroascorbate reductase and monodehydroascorbate reductase) whereas the 
levels of other antioxidant enzymes measured (glutathione reductase, superoxide 
dismutase and catalase), did not change (Li and Burritt, 2003). 

Natural resistance to sobemoviruses has been detected for CfMV in cocksfoot 
(Engsbro, 1978; Catherall, 1985; Rognli et al., 1995), for CnMoV in Cynosurus 
cristatus (Catherall, 1985), for RYMV in Oryza sativa (Thottapilly and Rossel, 
1993; Ghesquière et al., 1997; Ndjiondjop et al., 1999) and in O. glaberrima 
(Bakker, 1974; Thottapilly and Rossel, 1993; Paul et al., 1995; Ndjiondjop et al., 
1999), for SBMV in beans (Zaumeyer and Harter, 1943) , for SCPMV in cowpea 
(Hobbs et al., 1987), for SCMoV in subterranean clover (Ferris et al., 1996; Wroth 
and Jones, 1992). RYMV infection was shown to be highly dependent on the viral 
dose inoculated (Sorho et al., 2005). 

The molecular mechanisms conferring resistance have been described only for 
RYMV in Oryza species. A monogenic recessive resistance trait Rymv-1 
(Ndjiondjop et al., 1999) has been mapped on chromosome 4 (Albar et al., 2003). 
Rymv-1 has been identified to encode eIF(iso)4G (Albar et al., 2006). Rymv1-1 
allelic variant is characteristic of susceptible varieties whereas three other allelic 
variants are related to different levels of resistance against RYMV. Rymv1-2 has 
been found from O. sativa whereas Rymv1-3 and Rymv1-4 are two distinct 
resistance alleles in O. glaberrima, indigenous African rice species (Albar et al., 
                                                 
6 Plants fully recovered from a previous inoculation, have no detectable CfMV present and 
showed immunity to disease. Susceptible plants were not previously inoculated. 
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2006). All these resistance-conferring allelic variants are suggested to be a result of 
convergent evolution (Albar et al., 2006; Traoré et al., 2009). The difference 
between Rymv1-1 and Rymv1-2 lies in one amino acid substitution E309K in the 
central region of the eIF(iso)4G gene (Albar et al., 2006; Rakotomalala et al., 
2008). Interaction of eIF(iso)4G with viral VPg is responsible for the high 
resistance trait (Hébrard et al., 2006). Breakdown of the resistance conferred by 
Rymv1-2 has been reported for some RYMV isolates (Traoré et al., 2006; Pinel-
Galzi et al., 2007) due to non-synonymous mutations in RYMV VPg (Hébrard et 
al., 2008). However, substitutions in RYMV VPg that were observed to enable 
overcoming of the Rymv1-2 resistance did not operate in Rymv1-4 plants (Albar et 
al., 2006; Hébrard et al., 2008). The interaction mechanisms involved in the 
rice/RYMV pathosystems are still unknown (Hébrard et al., 2008). However, the 
3D topology and the biochemical properties of virulence mutations both suggest a 
direct interaction between RYMV VPg and rice eIF(iso)4G encoded by Rymv1. It 
is proposed that the interaction domain of eIF(iso)4G with RYMV VPg is far from 
the domain interacting with eIF(iso)4A and therefore the functions of eIF(iso)4G 
have not been affected (Hébrard et al., 2008). Besides Rymv1 that expresses high 
resistance against RYMV infection but in limited number of cultivars, there are 
several other quantitative trait loci (QTLs) associated with partial resistance against 
RYMV mapped on chromosomes 1, 2, 7 and 12 (Ghesquière et al., 1997; Albar et 
al., 1998; Ahmadi et al., 2001). Expression of QTL12 has been reported to confer 
partial resistance via delayed movement of RYMV into mestome (bundle sheath 
cells) (Ioannidou et al., 2000). Evaluation of genes from eIF4E and eIF4G 
multigenic families as potential candidates for partial resistance QTLs to RYMV in 
rice identified three other members of the eIF4G as good candidates while 
members of the family eIF4E seemed not to be involved in conferring resistance 
unlike described in several other studies on plant-virus interactions (Boisnard et al., 
2007). 

Pathogen-derived transgenic resistance against RYMV has also been achieved 
by transforming plants with constructs expressing either RdRp (Pinto et al., 1999) 
or CP (Kouassi et al., 2006) sequences of the virus. Transgenic rice containing a 
large fragment of highly conserved region of RYMV RdRp has been reported to be 
moderately resistant to infection. Analysis of the most resistant line indicated that 
resistance was derived via posttranscriptional gene silencing (Pinto et al., 1999; 
Voinnet et al., 1999). Similarly, transgenic lines that were transformed with 
RYMV CP constructs producing untranslatable or antisense mRNA to trigger 
PTGS-mediated defense mechanisms were moderately resistant against RYMV 
(Kouassi et al., 2006). Different results were gained when full-length CP or CP 
without the putative nuclear localization signal was expressed in transgenic plants. 
It appeared that expression of both these RYMV CP variants enhanced virus 
accumulation (Kouassi et al., 2006). The mechanism underlying that process is 
unknown. It is supposed that RYMV CP can either suppress PTGS, enhance virus 
replication and cell-to-cell movement, or it may recruit specific host factors needed 
to enhance infection (Kouassi et al., 2006). 
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Recently, it has been noticed that constitutive expression of AtNPR1 (protein 
that is a key regulator of salicylic acid-mediated systemic acquired resistance in 
Arabidopsis) that confers resistance against fungi and bacterial pathogens, leads to 
a higher susceptibility to RYMV infection and higher sensitivity to salt and drought 
stress in rice (Quilis et al., 2008). Remarkably, several viral RNA silencing 
suppressors have been shown to interfere with SA-mediated resistance (Ji and 
Ding, 2001; Alamillo et al., 2006; Love et al., 2007). Despite of higher 
susceptibility of AtNPR1 transgenic rice to RYMV, no correlation between virus 
concentration and disease severity was observed. This phenomenon was explained 
by overreaction in defense response to viral infection due to AtNPR1 
overexpression and/or by lowered movement of RYMV into vascular tissues. Also, 
the increased expression of OsRDR1 (that encode an RNA dependent RNA 
polymerase in O. sativa) in AtNPR1 transgenic rice was suspected to reduce the 
accumulation of viral RNAs through the activation of RNA-silencing pathways 
(Quilis et al., 2008). RDR1 proteins are known to mediate RNA silencing 
pathways regulating the defense against viruses (Baulcombe, 2004). 

 
1.6. Phylogenetic relationships 

 
The phylogenetic analyses have indicated that three sobemovirus species – 

SeMV, SBMV and SCPMV – which were earlier considered as the strains of 
SBMV are indeed very closely related to each other (Lokesh et al., 2001; Zhou et 
al., 2005; Stuart et al., 2006; Fargette et al., 2008; McGavin and MacFarlane, 
2008; Meier et al., 2008; Sérémé et al., 2008). Nucleotide identity shared between 
SeMV and SBMV is the highest one (71.5 %) within genus Sobemovirus (Sérémé 
et al., 2008). Also, LTSV and SCMoV form a closely related pair (Zhou et al., 
2005; Stuart et al., 2006; Fargette et al., 2008; McGavin and MacFarlane, 2008; 
Meier et al., 2008; Sérémé et al., 2008) with 61 % identity between their genomic 
sequences (Sérémé et al., 2008). Recently sequenced RuCMV is clustered with 
these two according to the comparison of CP sequences (McGavin and 
MacFarlane, 2008). CfMV and RYMV have always been clustered together 
(Lokesh et al., 2001; Zhou et al., 2005; Stuart et al., 2006; Fargette et al., 2008; 
McGavin and MacFarlane, 2008; Meier et al., 2008) sharing 46 % of nucleotide 
identities (Sérémé et al., 2008). However, a newly sequenced IYMV is more close 
to RYMV (with 56.5 % idenity) than CfMV (Sérémé et al., 2008). Nucleotide 
identity between IYMV and CfMV is 45.4 % (Sérémé et al., 2008). In general, 
phylogenetic trees show a split between sobemoviruses infecting monocots 
(RYMV, IYMV and CfMV) and those that infect dicots (SBMV, SCPMV, SeMV, 
LTSV, SCMoV, RuCMV, TRoV). The only exception is RGMoV which is a 
monocot virus grouping together with dicot viruses in genome trees (Zhou et al., 
2005; Fargette et al., 2008; McGavin and MacFarlane, 2008; Sérémé et al., 2008). 
However, RGMoV resembles the other monocot-infecting sobemoviruses on the 
bases of their codon usage patterns (Zhou et al., 2005). 
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A set of 253 CP sequences of RYMV isolates has provided an approach to date 
virus diversification in sobemovirus group. The divergence time of RYMV has 
been found to be ca 200 years which spans the period of extension of the rice 
culture in Africa (Fargette et al., 2008). The divergence time among sobemoviruses 
has been calculated to be approximately 500 - 3000 years. The divergence with 
related viruses has been calculated using RdRp sequences and it has been 
considered to be around 4000 years for sobemoviruses and MBV (Mushroom 
bacilliform virus, a sole member of the family Barnaviridae), 5000 years for 
sobemo-, barna- and poleroviruses, and 9000 years for sobemo-, barna-, polero- 
and luteoviruses (Fargette et al., 2008). This timeline spans the domestification and 
spread of cultivated plants raising a hypothesis that the emergence of plant viruses 
is linked to the development of agriculture (Fargette et al., 2008). 

RdRp sequences instead of CP sequences have been used in divergence 
calculation studies between sobemoviruses and their related viruses because of a 
mosaic structure of the sobemovirus genome. The 5’-terminal part of the 
sobemoviral genomes encoding non-structural proteins resembles those of enamo- 
and poleroviruses in its genomic organization. However, sobemoviral P1 sequences 
are not related to enamo- or poleroviral P0 sequences or to any other known 
sequences (Tamm and Truve, 2000b). While sobemoviral polyprotein (Pro-VPg-
RdRp) shows sequence similarity to that of enamo- and poleroviruses (from the 
family Luteoviridae), sobemoviral CP is related to those of necroviruses (from 
family Tombusviridae) (Coutts et al., 1991; Koonin and Dolja, 1993; Miller et al., 
1997; Tamm and Truve, 2000b; Stuart et al., 2004). MBV, a single member of the 
family Barnaviridae has a genomic organization similar to sobemoviruses (except 
that its ORF1 is not situated at 5´ position characteristic to sobemoviruses but it 
largely overlaps with ORF2 in alternate frame). Its polyprotein (Pro-VPg-RdRp) 
sequence is related with those of sobemoviruses but its CP is distantly related to 
that of carmoviruses (from family Tombusviridae). 

The viruses of the genera Polerovirus and Enamovirus are classified into the 
family Luteoviridae according to their homology with genus Luteovirus at the 3’ 
parts of their genomes, whereas their 5’ parts are related to sobemoviruses and 
clearly distant from luteoviruses. At the same time, the products of ORF1 (Pro) and 
ORF2 (RdRp) of viruses from genus Luteovirus are most similar to those of the 
viruses of the genus Dianthovirus but also to those of the genera Carmovirus and 
Umbravirus, all from the family Tombusviridae (Miller et al., 1997). An extreme 
dichotomy in polymerase sequences indicates that possibly early recombination 
events have played an important role during the evolution of these genera (Martin 
et al., 1990; Gibbs, 1995; Miller et al., 1997). The most likely model suggests that 
recombination arose by strand switching near the subgenomic RNA start sites 
during RNA replication in cells co-infected with two parental viruses (Mayo et al., 
1989; Martin et al., 1990; Mayo and Jolly, 1991; Gibbs and Cooper, 1995; Mayo 
and Ziegler-Graff, 1996; Miller and Rasochova, 1997; Miller et al., 1997; Moonan 
et al., 2000; Moonan and Mirkov, 2002; aus dem Siepen et al., 2005; Silva et al., 
2008). Inconsistency between polero- and luteoviruses has been proposed to be a 
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result of ancient recombination between a polerovirus that was replacing its 
sobemovirus-like 5´ part of the genome with the one of dianthovirus-like (Miller et 
al., 1997) as the subgenomic mRNA start sites of dianthoviruses and poleroviruses 
are known to be homologous (Miller et al., 1995; Zavriev et al., 1996). 

Notably, the recombination seems to be intrinsic for the members of the family 
Luteoviridae, in which one can find lots of recombinant species (Mayo and Jolly, 
1991; Rathejen et al., 1994; Gibbs and Cooper, 1995; Miller et al., 1995; Mayo and 
Ziegler-Graff, 1996; D´Arcy and Mayo, 1997; Miller and Rasochova, 1997; 
Moonan et al., 2000; Smith et al., 2000; Domier et al., 2002; Miller et al., 2002; 
Moonan and Mirkov, 2002; Liu et al., 2007; Robertson and French, 2007; Silva et 
al., 2008). Yet, there exists also a putative polerovirus-sobemovirus hybrid having 
a CP gene similar to the sobemoviruses but the rest of its genome being more 
similar to poleroviruses (aus dem Siepen et al., 2005). 

Based on the phylogenetic analysis, it has been concluded that sobemoviruses 
have evolved in the absence of recombination events (Lokesh et al., 2001; Fargette 
et al., 2004; Zhou et al., 2005; Chare and Holmes, 2006; Fargette et al., 2008; 
Sérémé et al., 2008). However, a recent exhaustive search for recombinants of 
RYMV has identified few intraspecies recombination events in eastern Tanzania 
(Pinel-Galzi et al., 2009). This region is the putative center of origin of RYMV 
with the highest diversity and a fully mixed spatial distribution of the strains 
(Traoré et al., 2009). The first putative recombinant segment is a fragment of 300 
nt encompassing the intergenic region between ORF1 and ORF2a and the 5′ end of 
ORF2a. The other putative 350 nt long recombinant segment matches the 
untranslated 3′ terminus of the genome. However, the number of recombinants was 
low, the recombinant fragments were short, and they occurred on terminal branches 
of the phylogeny. Recombinations are not detected in any of the ORFs analyzed 
individually (Pinel-Galzi et al., 2009). Also, several DI RNA molecules cloned 
from CfMV-infected plants have been considered as an indication for replicase-
driven template-switching mechanism (Mäkinen et al., 2000a). 

All the members of the family Tombusviridae cluster into a well supported 
group in phylogenetic analyses that has been considered as a sign of high 
homogenity but also as the result of extensive gene sharing among the genera 
(Stuart et al., 2006). Different from a previous study, Xi et al. (2008) suggest that 
Galinsoga mosaic virus (GaMV) might originate from the recombination between 
a necro- and a carmovirus, as its RdRp gene and all small ORFs of GaMV cluster 
with necroviruses whereas its CP gene clusters into the carmovirus branch. Melon 
necrotic spot virus (MNSV), another carmovirus, also has been speculated to be a 
recombinant between necro- and carmoviruses (Xi et al., 2008). Similarly, Olive 
mild mosaic virus (OMMV), considered before as a GP isolate of Tobacco necrosis 
virus D (TNV-D) that was not involved in the study carried out by Stuart et al. 
(2006), shows high similarity with TNV-D within its CP but with Olive latent virus 
1 (OLV-1) within its RdRp thus being a possible example of interspecies 
recombination in genus Necrovirus (Cardoso et al., 2005). 
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Despite a weak sequence homology between sobemo-, polero- and 
necroviruses, it has been speculated that their CPs might have a common ancestor 
as their 3D-structures are similar (Terradot et al., 2001). This hypothesis bases on a 
model structure of Potato leafroll virus (PLRV) from genus Polerovirus assessed 
by Profiles-3D calculation, which obtained the best hits with SeMV, SCPMV and 
RYMV (Terradot et al., 2001). Comparisons of their CP sequences show 17 % 
identity and 33 % similarity between RYMV and PLRV (Terradot et al., 2001), 17 
% identity and 33 % similarity between SCPMV and TBSV (Terradot et al., 2001), 
whereas there is 21 % identity and 41 % similarity between RYMV and SCPMV 
(Opalka et al., 2000). Sequence alignments between the CPs of sobemoviruses 
(SeMV, SBMV, LTSV and CfMV) and a CP of Tobacco necrosis virus (TNV, a 
type member of the genus Necrovirus) show similarity ranges of 31 - 45 % (Saeki 
et al., 2001). At the same time, CP similarities in genus Necrovirus range between 
43 – 65 % and the overall similaritiy values of CPs of Tombusvirus and 
Carmovirus species from the family Tombusviridae ranges of 22 – 28 %. The TNV 
CP similarities with those of genera Machlomovirus and Dianthovirus from the 
family Tombusviridae are under 20 % (Saeki et al., 2001). 
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2. AIM OF THE STUDY 
 

The aim of this study was to extend our knowledge about the molecular biology 
of sobemoviruses. 

 
For this purpose the following tasks were carried out: 
 
1. Re-evaluation of the genomic organization of sobemoviruses. 
2. Screening for recombinants occurring in plants co-infected by two 

sobemoviruses – Cocksfoot mottle virus (CfMV) and Ryegrass mottle virus 
(RGMoV). 

3. Determination of a necessity of P1 of CfMV in virus replication and 
systemic infection. 
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3. MATERIALS AND METHODS 
 

The methods used are described in detail in the articles presented in this thesis. 
Briefly, the methods used were as follows: 
 
3.1. Plants and growing conditions 
 

Oat cv. Jaak and barley cv. Kymppi were grown in a climate chamber (60 % 
relative humidity, 16 h light at 23 °C, 8 h dark at 16 ºC) (publications II, III). 

Barley suspension culture line (cv. Pokko, VTT-G-93001) was grown at 22 °C 
in dark and subcultured weekly onto fresh solid (0.35 % Gelrite) modified B5-
medium supplemented with 2,4-D (4 mg/l) (publication III). 
 
3.2. Insect cell culture and growing conditions 
 

Sf9 insect cell culture was grown at 28 °C in Sf900 II serum-free medium as 
recommended by Life Technologies (publication III). 
 
3.3. Viruses 
 

CfMV-No was in our lab collection. RGMoV (Japanese isolate, PV-307043) 
was obtained from MAFF GeneBank, SBMV-Col (Colombian isolate, PV-0100) 
was obtained from German Collection of Microorganisms and Cell Cultures 
(DSMZ), SCPMV-WI (Wisconsin isolate, PV-114) and LTSV-Can (Canadian 
isolate, PV-454) were obtained from American Tissue Culture Collection (ATCC). 

CfMV-No as well as RGMoV was propagated in oats cv. Jaak or barley cv. 
Kymppi. Infected plant material was frozen in liquid nitrogen and stored at -70 °C.  

The inoculums were prepared by crushing the symptom bearing leaves from the 
stock of frozen material in a mortar with 1 ml 100 mM phosphate buffer (pH=7.0), 
supplemented with 0.5 % Celite per 1 g of leaf material. 50 µl of freshly prepared 
sap was rubbed onto the leaves of 2-leaf stage plants 10 days after sowing 
(publication II). 

For recombination study, co-inoculation of CfMV-No and RGMoV was 
performed as described in publication II. 

In case of engineered viruses, i.e. CfMV icDNA and its derivates, icDNA 
construct was linearized after the 3’ terminus of viral sequence and used as 
templates for 5’ capped RNA synthesis. In vitro transcription was carried out with 
T7 RNA polymerase (Fermentas) and template DNA was thereafter degraded by 
RQ DNase I (Promega). The viral RNA was purified using RNeasy kit (Qiagen) or 
phenol: chloroform extraction and ethanol precipitation (Sambrook and Russell, 
2001) (publication I, II). Plant material was infected biolistically with in vitro 
transcribed 5’ capped viral RNA bound onto 1.0 µm gold particles at 1100 psi 
using Biolistic PDS-1000 (Bio-Rad) equipment (publication III). 
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3.4. Primers 
 

Primers used to amplify different sobemoviruses in publication I are described 
in table 2. 
 
Table 2. The primers used to amplify different sobemoviruses (publication I). 
 

Primers used in publications II and III are described there. 
 
3.5. DNA cloning 

 
CfMV icDNA was engineered as described in publication III. Construction of 

the P1-deficient CfMV icDNA and the replication-deficient CfMV icDNA are also 
described in publication III. Construction of artificial viruses containing the 
elements both from CfMV and RGMoV was represented in publication II. 
pUbi:EGFP and pUbi:P1:EGFP were constructed to express EGFP or 
CfMV P1:EGFP under the control of maize ubiquitin gene promoter. Recombinant 
bacmid bMON:P1 was created to express CfMV P1 under the control of polyhedrin 
promoter in  Sf9 insect cells. Preparation of these constructs was described in detail 
in publication III. 

All obtained clones were sequenced for validation. 

Primer sequence Corresponding to (nt) Restrictase site 
added (shown 
in italics in the 
primer 
sequence) 

5’-GACGACTCCTTGCCCC-3’ SBMV 1646-1661 - 
5’-ACAAACCCCTGCGAACC-3’ SBMV 2333-2317 - 
5’-GACGATGATGATTTACCCCTTCC-3’ SCPMV 1707-1729 - 
5’-TCACACAAGCCCATCTCTACC-3’ SCPMV 2407-2387 - 
5’-GGGCTGATGAGGAAACCA-3’ LTSV 1716-1733 - 
5’-CCGCACCTTGTTGGC-3’ LTSV 2509-2495 - 
5’-CGGACATACGTGAGCGGGAG-3’ RGMoV 3076-3095 - 
5’-TGTGACGCGTACTAAAGAGCCA-3’ RGMoV 3529-3508 - 
5’-CTCGGCACGCGCTGTCG-3’ RGMoV 2157-2141 - 
5’-GCCCATTCATGCTCAACCCG-3’ RGMoV 1440-1459 - 
5’-CTGGTGACCGTACTCCCTCGGC-3’ RGMoV 599-611 Eco 91 I 
5’-AGAGCCGGCGCCTGGAAGAGCA-3’ RGMoV 2104-2092 Pdi I 
5’-AGAGCCGGCAGGCAGATTCCGC-3’ RGMoV 2105-2117 Pdi I 
5’-GACCTAGGAGAGCACCGTGCCG-3’ RGMoV 3571-3559 Xma J I 
5’-CATCCTAGGTTAGTACGCGTCACAT-3’ RGMoV 3515-3530 Xma J I 
5’-GAGATTGGTATCCCCCTACGCTAG -3’ RGMoV 4195-4184 Bsa B I 
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3.6. Expression and analysis of CfMV P1 in insect cells 
 

To gain a recombinant baculovirus stock, Sf9 cells were transfected with 
bacmid bMON:P1 using CellFECTIN liposome reagent (Life Technologies) 
following the manufacturer’s instructions. For further studies, Sf9 monolayer cells 
were infected with recombinant baculovirus stocks at MOI=1. Cells were harvested 
after 24 to 96 h by mechanical detachment, centrifuged and washed twice with 1 x 
PBS at 2500 rpm for 5 min at 4 °C. Washed intact cells were homogenized using a 
loose-fit glass homogenisator on ice. The homogenate was fractionated according 
to two separate differential centrifugation protocols in parallel (Hockenbery et al., 
1990; Schreiber et al., 1989). 

30 µg of total protein from each fraction was analyzed on 15 % SDS-PAGE. 
For Western blot analysis, the primary antiserum against CfMV P1 (Tamm et al., 
1999) was used in 1:5000 dilution and goat anti-rabbit IgG conjugated to HRP 
(Calbiochem) was used as a secondary antiserum in 1:5000 dilution. The 
chemoluminescence reaction was triggered with SuperSignal Chemiluminescent 
Substrate (Pierce) and detected using Molecular Imager System GS-525 (BioRad) 
(publication III). 
 
3.7. Expression and analysis of CfMV EGFP:P1 in oat leaves 
 

Oat leaves were used for biolistic delivery of pUbi-EGFP or pUbi-P1:EGFP 
DNA at 1100 psi. After incubation for 24 to 48 hours in the dark, bombarded plant 
tissues were mounted into a mixture of 1:1 water and glycerol for microscopical 
examination. Fluorescence of GFP was visualised with Olympus IMT-2 inverted 
microscope with reflected light fluorescence attachment using XF-100 filter set 
(Omega Optical) and 40 x oil objective, NA 1.3. Recording was performed by 
digital CCD camera (CF 8/1 DX, KAPPA) and KAPPA ImageBase software 
(publication III). 
 
3.8. RNA isolation and analysis 
 

RNA from plant material was extracted with RNAEasy kit (Qiagen) or 
according to the protocol adapted from Logemann et al. (1987). The integrity of 
extracted RNA was checked in 6 % formaldehyde - 0.8 % agarose gel 
electrophoresis buffered with 1 X MOPS, pH=7 (publications II, III). 

For replication analysis of CfMV P1(-) (publication I), RNA was extracted 20 h 
after bombardment from barley suspension culture cells as well as from oat leaves 
and analyzed for virus replication by negative-strand specific RT-PCR. To test the 
infectivity of CfMV P1(-), inoculated leaves and newly emerged systemic upper 
leaves were collected at 14 days post infection (dpi) for RT-PCR analysis. 

For recombination study of CfMV and RGMoV (publication II), RNA was 
extracted from inoculated leaf material harvested at 7 dpi and from newly emerged 



49 

systemic leaves at 21 dpi. Possible recombinants were scouted by RT-PCR 
analysis. 

SuperScript One-Step RT-PCR kit with Platinum Taq Polymerase (Invitrogen) 
was used for RT-PCR analysis in publications I and II. For virus replication 
analysis, only a negative-strand specific primer was used to start a reaction. After 
the synthesis of cDNA, the mixture of negative and positive strand specific primers 
were directly added into the reaction, followed by heat-activated PCR. For 
infectivity analysis from systemic leaves, both positive and negative-strand specific 
primers were supplemented in the beginning of reaction as suggested by the 
manufacturer. 

To evaluate a specificity of primer pairs in RT-PCR analysis, 10-fold serial 
dilutions of in vitro transcribed RNA were mixed with RNA extracted from non-
infected oat leaves (publications II, III). 

For sequencing of samples of sobemoviruses obtained from international gene 
banks (publication I), RNA was extracted directly from lyophilized infectious plant 
material. First-strand cDNA syntheses were performed using Superscript III 
reverse transcriptase (Invitrogen). Dynazyme DNA polymerase (Finnzyme) was 
used for cDNA amplification. 

All RT-PCR products were ligated into pTZ57R/T (Fermentas) for 
amplification and DNA purification. Taq terminator sequencing kit version 3.1 
(Applied Biosystems) was used for sequencing reactions. The products were 
analyzed on Applied Biosystems 3130 sequencer. 
 Novel sequences obtained in this study were uploaded to the NCBI GenBank. 
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4. RESULTS AND DISCUSSION 
 
4.1. CfMV-like genome organization is common for all sobemoviruses 
 

Based on the determined structural differences in the central part of the genome, 
sobemoviruses have been subdivided into SCPMV-like and CfMV-like types of 
genomic organization. 

Historically, the first fully sequenced sobemovirus was SCPMV in 1987. 
Analysis of sequencing data revealed four ORFs (Wu et al., 1987). Earlier, 
translation of virion-extracted RNAs in cell-free extracts yielded four major 
products for SCPMV– 105-kDa, 60-kDa, 28-kDa and a family of 3 proteins (21 to 
25-kDa) (Ke-Qiang et al., 1982). Tryptic analysis of 60-kDa protein showed that it 
is a subset of 105-kDa protein (Ke-Qiang et al., 1982). Wu et al. (1987) suggested 
that they are encoded by long ORF2 whereas 60-kDa protein is derived from 105-
kDa protein by proteolytic processing. 28-kDa protein was not translated from full-
length RNA but sgRNA and it was shown to be a capsid protein (Ke-Qiang et al., 
1982). 28-kDa protein size was found to be consistent with ORF4 that potentially 
encodes a 30.3-kDa protein (Wu et al., 1987). Wu et al. (1987) suggested that 21 to 
25-kDa proteins might be a single protein that is post-transcriptionally modified – 
it can be encoded by 5´ small ORF1 consistent with translation of the 21 to 25-kDa 
protein from both genomic and 3´ degraded RNA. None of the translation products 
were found to correspond to small ORF3 situated in the middle of ORF2 in 
alternative reading frame (Wu et al., 1987). 

Soon after, sequences of three other sobemoviruses - SBMV (Othman and Hull, 
1995), RYMV (Ngon A Yassi et al., 1994; Pinto and Baulcombe, 1995) and LTSV 
(Jeffries et al., 1995) - followed. These viruses were annotated similarly. In 
contrast to these sequences, the sequencing data of CfMV indicated no individual 
ORF capable of directing the synthesis of 100-kDa protein (Mäkinen et al., 1995b). 
Instead of that, the middle part of the genome contained two overlapping reading 
frames called ORF2a and ORF2b. However, in vitro translations of the CfMV 
genomic RNA revealed four major products of 100-, 71-, 34- and 16-kDa 
(Mäkinen et al., 1995a). Analysis of sequence information revealed a -1 ribosomal 
frameshifting signal that leads ribosomes during the translation process from 
ORF2a into an overlapping reading frame ORF2b generating 100-kDa polyprotein. 
Moreover, similar frameshifting signals were also found in the sequences of 
SBMV, SCPMV and RYMV at the beginning of putative ORF3 region (Mäkinen 
et al., 1995a). 

In 2001, two new sobemoviruses – SeMV and RGMoV – were reported to 
possess SCPMV-like genomic organization (Lokesh et al., 2001; Zhang et al., 
2001). In 2003, sequencing of SCMoV indicated the genomic organization similar 
to CfMV (Dwyer et al., 2003). In 2004, a genomic organization of TRoV was 
shown to be alike CfMV (Callaway et al., 2004). 

In 2004, 14 new isolates of RYMV were sequenced and found to have the 
CfMV-like genomic organization (Fargette et al., 2004). Moreover, previously 
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published sequences of RYMV-Nig (Nigerian isolate) and RYMV-CI (Ivory Coast 
isolate) were re-sequenced. Deletion of an erroneous extra nucleotide U2244 from 
the former sequences established CfMV-like genomic organization also for those 
isolates (Fargette et al., 2004). 

Later, two novel SBMV isolates were found and partially sequenced 
(Verhoeven et al., 2003; Segundo et al., 2004). Interestingly, the alignment of these 
isolates [SBMV-Almerian, (SBMV-Alm) and SBMV-Morocco, (SBMV-Mor)] to 
previously published SBMV Arkansas isolate (SBMV-Ark; Lee and Anderson, 
1998) reveals GG instead of GGG at position 2176-2178. If the putative extra 
nucleotide were to be removed from the full-length sequence of SBMV-Ark, a 
CfMV-like genomic organization would be established. 

In current study, we re-sequenced the central part of SBMV-Col (Colombian 
isolate of SBMV), SCPMV-WI (Wisconsin isolate of SCPMV), LTSV-Can 
(Canadian isolate of LTSV) and RGMoV-Jap2 (Japanese isolate of RGMoV; 
named as Jap2 to distinguish it from previously published independent sequence 
that also originates from Japan) genomes. Three clones from each virus isolate 
were sequenced in forward and reverse directions. 

Sequencing of SBMV-Col revealed the presence of GG instead of GGG at 
position 2176-2178 (publication I, Fig. 1) like in SBMV-Alm and SBMV-Mor 
when compared with the SBMV-Ark sequence. SBMV-Ark is known to cluster 
together with SBMV-Alm whereas SBMV-Col, SeMV and SCPMV form different 
clusters in phylogenetic analysis (Verhoeven et al., 2003). Remarkably, the very 
recent sequencing data of SBMV Brazilian isolate (SBMV-SP) from São Paolo 
demonstrate CfMV-like genome organization (Ozato et al., 2009). SBMV-SP 
clusters together with SBMV-Ark (Ozato et al., 2009). 

Sequencing of SCPMV-WI showed that G2232 (publication I, Fig. 1) was 
missing when compared with the published SCPMV sequence (Wu et al., 1997). 
Sequencing of LTSV-Can revealed the extra nucleotides GC after position 2299 
(publication I, Fig. 1) when compared with the LTSV sequence available from 
GenBank (Jeffries et al., 1995). Sequencing of RGMoV-Jap2 revealed the 
GGGGGG instead of GGGGGGG at position 2203-2209 (publication I, Fig. 1; 
Balke et al., 2007) when compared with the RGMoV sequence published earlier 
(Zhang et al., 2001). In accordance with these results, recent data on re-sequencing 
of SeMV verified the presence of C instead of CC at position 2177-2178 in the 
previously published sequence (Lokesh et al., 2001; Lokesh et al., 2006). 

In all cases, the revision of the genomic sequence revealed a stop codon in the 
middle of ORF2 shortly after the –1 frameshift signal similarly to ORF2a of 
“CfMV-like” viruses. Also, the correction indicated a single continous ORF 
(ORF2b) in –1 frame like in CfMV-like viruses (publication I, Fig. 2). Earlier, 
considerable similarity was found between the N-terminal part of RdRp proteins 
encoded by “CfMV-like” viruses and P3 proteins of “SCPMV-like” viruses over 
the first 150 amino acid residues (Mäkinen et al., 1995a; Dwyer et al., 2003). 
Downstream from the point where a similarity was lost, it immediately continued 
between the C-terminal part of RdRp of “CfMV-like” viruses and the C-terminal 
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part of the RdRp of “SCPMV-like” viruses. Hence, the “similarity shift” was 
observed at the exact location of previous sequencing errors. 

In conclusion, all the re-sequenced viruses previously described as SCPMV-
like, exhibit a common, CfMV-like genomic organization (publication I, Fig. 3). 
We propose that the RdRp-s of all sobemoviruses are translated by a –1 ribosomal 
frameshift. Argument favoring the common CfMV-like genomic organization is 
that both the genomic organization and the primary structures of Pro-VPg-RdRp 
proteins of sobemoviruses are related to those of the polero- and enamoviruses that 
also exhibit the CfMV-like genome arrangement in the central part of their genome 
(Hull and Fargette, 2005). 

 
4.2. No recombinants found between CfMV and RGMoV in doubly 
infected oat plants 
 

Studies on mixed infections are pertinent for understanding the role of 
recombination in virus evolution. In the current study, the experiments were carried 
out under little or no selection pressure (i.e. non-transgenic plants infected with two 
wild-type viruses) selected to gain a varied pool of recombinants and to avoid a 
positive selection of escape-recombinations which may reflect the results of 
selective pressure rather than the mechanism of recombination itself (Aaziz and 
Tepfer, 1999). 

To investigate the possibility of RNA recombination occurrence between two 
sobemoviruses, we co-infected oat and barley plants with CfMV and RGMoV. 
Although the natural co-infections of RGMoV and CfMV have not been reported, 
their distribution overlaps at least in Japan. Cocksfoot, wheat, barley and oats are 
among their common natural and experimental host species (Serjeant, 1964; 
Toriyama et al., 1983; Mäkinen et al., 2000b). 

At first, virus propagation and symptom development of both viruses in barley 
and oats was examined visually and then tested by RT-PCR using virus-specific 
primers. 

Both viruses generated quite strong infection symptoms in oats. RGMoV was 
lethal for barley, whereas CfMV infection was nearly symptomless. RT-PCR 
analysis revealed 100 % infection with both viruses in oats but not in barley (Fig. 
1, publication II). Therefore, oat plants were chosen for recombination 
experiments. 

In the recombination study, 105 oat plants were co-inoculated with CfMV and 
RGMoV. Since the length of a replication cycle of CfMV and RGMoV is not 
known, co-inoculations were performed in five groups within three days (at “day 
0”, 25 plants were co-inoculated with both viruses, 40 plants were individually 
inoculated with RGMoV and 40 with CfMV; half of the individually inoculated 
plants were inoculated with the other virus at “day 1” and another half at “day 2”) 
to provide the possibility of simultaneous replication and potential recombination 
between the two viruses. At “day 7”, the inoculated leaves were collected for RT-
PCR analysis to obtain an original pool of possible recombinant molecules and to 
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avoid loss of those with lower fitness. According to the tests, 99 of the 105 plants 
contained both viruses. 

A replicase-driven template switching mechanism is considered to need 
secondary structures and homologous blocks for priming between the donor and 
acceptor strands (White and Morris, 1999). The sequence identity between the 
genomes of CfMV and RGMoV was found to be 48 % when aligned pairwisely by 
NCBI-BLAST2 (publication II). 

Regions of the –1 ribosomal frameshifting signal and the putative subgenomic 
RNA promoter were selected to screen for recombination events as they probably 
possess secondary structure elements that have been suggested to be potential hot 
spots for RNA recombination. The –1 ribosomal frameshift signal characteristic of 
all sobemoviruses consists of a slippery sequence (UUUAAAC) and a stem-loop 
structure several nucleotides downstream from it (Tamm and Truve, 2000b). The 
position and secondary structure of the sobemoviral subgenomic promoter is not 
experimentally proven. Ryabov et al. (1996) have postulated that the start position 
of CfMV sgRNA might be 35 bases upstream from the first AUG codon of CP at 
position 3057. In this study, the subgenomic RNA promoter was expected to lie in 
the range of –150 and +150 nt from the CP translation start point, as characteristic 
of other plant viral subgenomic promoters (Miller and Koev, 2000). The reason for 
considering sgRNA promoter region as the potential hot spot is the presence of DI 
RNA molecules corresponding to 35-40 nucleotides of the 5’-proximal end of 
genomic RNA linked with 850-950 nucleotides of the 3’ terminus in case of CfMV 
infection (Mäkinen et al., 2000a). That is considered to be proof of a replicase-
driven template switching mechanism (White and Morris, 1999). Moreover, 
evolution of the “supergroup” of luteo-sobemo-tombusviruses indicates a 
recombinational hot spot between the gene blocks encoding Pro-VPg-RdRp and CP 
(Mayo et al., 1989; Martin et al., 1990; Mayo and Jolly, 1991; Gibbs and Cooper, 
1995; Mayo and Ziegler-Graff, 1996; Miller and Rasochova, 1997; Miller et al., 
1997; Moonan et al., 2000; Moonan and Mirkov, 2002; aus dem Siepen et al., 
2005; Silva et al., 2008). 

The alignment made by BLAST2 tool was used to design virus-specific primer 
pairs for RT-PCR analysis. The primers were designed to amplify the area between 
1535 nt and 1967 nt in the sequence of CfMV (primers were named as Cfs5’ and 
Cfs3’) and between 1440 nt and 2157 nt in the sequence of RGMoV (primers were 
named as Rfs5’ and Rfs3’) in case of screening the –1 ribosomal frameshifting 
signal. In case of screening the putative subgenomic RNA promoter region, the 
primers were designed to amplify the area between 2818 nt and 3380 nt in the 
sequence of CfMV (primers were named as Csg5’ and Csg3’) and between 3076 nt 
and 3529 nt in the sequence of RGMoV (primers were named as Rsg5’ and Rsg3’). 

Before using these primers for screening of recombinant molecules possibly 
arisen in co-infected plants, the specificity of these primers were checked by using 
RNA extracted from plant material singly infected with CfMV or RGMoV, or the 
artificial mixture of them both in RT-PCR (Fig. 2, publication II). No unspecific 
amplification was observed with primer pairs of Cfs5’+Cfs3’, Csg5’+Csg3’, 
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Rfs5’+Rfs3’, Rsg5’+Rsg3’, Csg5’+Rsg3’, Rsg5’+Csg3’ and Cfs5’+Rfs3’. 
Unfortunately, the primer combination of Rfs5’+Cfs3’ amplified several non-
specific fragments. Therefore, this primer pair was not involved in the 
recombination study. 

To estimate the sensitivity of recombinant primer pairs Csg5’+Rsg3’, 
Rsg5’+Csg3’ and Cfs5’+Rfs3’, several artificial CfMV-RGMoV chimerical virus 
templates were cloned (Fig. 3, publication II). These chimerical templates were 
used for in vitro RNA synthesis. The synthesized chimerical RNAs were diluted in 
tenfold series as low as 0.1 pg per reaction. Every reaction was mixed with 0.5 µg 
of RNA extracted from uninfected oat leaves to mimic a natural situation providing 
the diversity of cellular mRNA molecules as possible priming templates. The 
primer pairs Cfs5’+Rfs3’ and Rsg5’+Csg3’ had very good sensitivity – they 
detected down to 0.1 pg of the in vitro synthesized template RNA from the mixture 
of 0.5 µg total oat RNA whereas the primer pair Csg5’+Rsg3’ detected the 
presence of recombinant template RNA in the mixture at a sensitivity level down to 
100 pg only. 

Next, the recombinant primer pairs Csg5’+Rsg3’, Rsg5’+Csg3’ and 
Cfs5’+Rfs3’ were used to screen the pool of 105 co-inoculated plants. No 
recombinant molecules were detected. Altogether, approximately one quarter of the 
CfMV and RGMoV genomes were monitored for recombination events between 
two sobemoviruses. It remains unknown whether recombinations occured 
elsewhere between two genomes. 

There can be various reasons for no detection of recombinant virus molecules. 
After co-infection of the host, the viruses must co-infect the same cell. Also, virus 
replication must happen at the same time to provide a possibility for template 
switching (Worobey and Holmes, 1999). The priming between the donor and 
acceptor strands as well as re-initiation of the dissociated replicase/nascent RNA 
complex has specific requirements (Suzuki et al., 2003; Cheng et al., 2005; de 
Wispelaere et al., 2005). Studies on plant virus recombination demonstrate that the 
properties of the viral replicase and several host factors play a role in RNA 
recombination (Bousalem et al., 2000; Desvoyes and Scholthof, 2002; Ohshima et 
al., 2002; Panaviene and Nagy, 2003; Dzianott and Bujarski, 2004; Shapka and 
Nagy, 2004; Cheng et al., 2005). It has been shown that host genes involved in 
RNA degradation were suppressing the generation of new viral RNA recombinants 
whereas the host genes contributing to the intracellular transport of proteins were 
identified as viral RNA recombination accelerators (Serviene et al., 2005; Serviene 
et al., 2006; Cheng et al., 2006). 

Our findings that no recombinants were identified between two sobemoviruses 
in doubly infected plants are in accordance with the results gained by phylogenetic 
analyses of sobemoviral sequences (Lokesh et al., 2001; Fargette et al., 2004; Zhou 
et al., 2005; Chare and Holmes, 2006; Stuart et al., 2006; Fargette et al., 2008; 
Sérémé et al., 2008). However, the newest exhaustive search for recombinants has 
found a few recombinations between close isolates of RYMV in Tanzania (Pinel-
Galzi et al., 2009). The short recombinations were detected in the region near/at the 
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beginning of ORF2a and at the 3´ UTR of RYMV. Unfortunately, these segments 
were not involved in our screening for putative recombinants between CfMV and 
RGMoV. 

Our study was the first experimental survey of recombinations between 
sobemoviruses. 

 
4.3. P1 of Cocksfoot mottle virus is required for systemic infection in oat 
 

P1 is encoded by the 5’-terminal ORF of the sobemoviral genomic RNA and it 
is the most divergent protein of sobemoviruses. Moreover, no sequence similarity 
has found between P1 proteins neither nucleic acid nor at the amino acid level 
(Ngon A Yassi et al., 1994; Mäkinen et al., 1995b; Othman and Hull, 1995). There 
are no conserved regions in P1 sequences offering a hint about their functions. 
Despite of the sequence difference both RYMV P1 and SCPMV P1 have been 
shown to be dispensable for viral RNA synthesis (Bonneau et al., 1998; 
Sivakumaran et al., 1998). Both RYMV P1 and CfMV P1 act as the supressors of a 
post-transcriptional gene silencing (PTGS) in non-host species of Nicotiana 
benthamiana and N. tabacum (Voinnet et al., 1999; Himber et al., 2003; Sarmiento 
et al., 2007; Siddiqui et al., 2008). Recently, RYMV P1 has been shown to 
function as a silencing suppressor in rice, the host plant of RYMV (Siré et al., 
2008; Lacombe et al., 2010). 

The objective of current study was to start unraveling the functions of CfMV P1 
in oats, the experimental host plant of CfMV. 

At first, CfMV cDNA was amplified from RNA isolated from CfMV-NO 
infected oat plants. It was amplified as a cDNA copy and subcloned into a carrier 
plasmid under the control of T7 promoter. Viral 5’-capped RNA synthesized from 
cDNA copy was amplified in vitro and tested to be infectious in oat plants. CfMV 
infecious cDNA (icDNA) was used as a template to create a P1-deficient CfMV 
cDNA clone CfMV P1(-) by introducing a point mutation in order to convert the 
first AUG codon of ORF1 to UUG. Also, a replication-deficient CfMV cDNA 
clone CfMV RdRp(-) was generated by raising a stop codon into the beginning of 
RdRp-coding region. The 5’-capped RNAs were synthesized and biolistically 
delivered into the cells of barley suspension culture or into the oat leaves. 
Replication was tested after 24 hours by RT-PCR analysis. Differently from a 
replicase-deficient virus, it was observed that elimination of the expression of P1 
does not abolish a virus replication neither in oat leaves nor in barley suspension 
culture (publication III, Fig. 1). However, although the P1 of CfMV was not 
strictly needed for virus replication, the absence of P1 expression lowered the virus 
accumulation so much that it was not detectable by Northern blot analysis. 

Next, 5’-capped transcripts of CfMV P1(-) were biolistically delivered into the 
oat plants. The presence of CfMV was tested after 14 days by negative-strand 
specific RT-PCR analysis. It appeared that P1-defective virus was able to replicate 
as it was still present in inoculated leaves (of 49 plants out of 57). Systemic 
infection was detected only in case of a spontaneous transversion of mutated ORF1 
initiation codon to wildtype (in 3 plants out of 57) that restored expression of P1 
(publication III, Table 1). Consequently, the absence of P1 does not abolish CfMV 
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replication but systemic spread is inhibited. The same is true for RYMV and 
SCPMV (Bonneau et al., 1998; Sivakumaran et al., 1998). 

Despite of a great diversity of sobemoviral P1, it has been speculated to 
function as a viral movement protein7 (Othman and Hull, 1995; Mäkinen et al., 
1995b). Numerous studies have demonstrated that one of the functional hallmarks 
of MPs is their capability to bind single-stranded nucleic acids (Waigmann et al., 
2004). Therefore, the ability of CfMV P1 to bind ssRNA but not dsDNA (Tamm 
and Truve, 2000a) led to the suggestion that it may act as a virus movement 
protein. To test the movement ability, CfMV P1:EGFP and EGFP alone were 
expressed in oat leaves under the control of maize ubiquitin promoter 
independently from the context of other CfMV proteins. Expression was monitored 
during the next 48 hours using fluorescence microscopy. EGFP alone remained in 
single cells without detectable cell-to-cell movement whereas P1:EGFP showed 
limited cell-to-cell movement to neighboring cells within the epidermal tissue in 3 
out of 100 individually bombarded cells (publication III, Fig. 2). 

In parallel with our experiments, similar results have been gained with SCMoV 
P1 – the expression of GFP:P1 fusion protein was observed in the nucleus of single 
cells, cytoplasm and cell periphery of neighboring cells. It was found that there was 
limited spread of that fusion protein from one cell to another 36-48 hours after 
transformation. Finally, it was concluded that P1 of SCMoV cannot move 
independently from cell to cell, probably due to missing viral components (Fosu-
Nyarko, 2005). 

Both CfMV P1 and RYMV P1 have been shown to act as the suppressors of 
PTGS (Voinnet et al., 1999; Sarmiento et al., 2007). Interestingly, recent data on 
RYMV P1 show a connection between the silencing suppression and cell-to-cell 
movement abilities (Siré et al., 2008). The single amino acid mutation C95S (in 
putative zinc finger motif) impairs the ability of RYMV P1 to suppress constitutive 
silencing of uidA in distal part of leaf but not in biolistic delivery spot suggesting 
that this mutation affects the cell-to-cell movement of RYMV P1 (Siré et al., 
2008). Whether PTGS restricts CfMV movement in P1(-) background, is not 
known at the moment. 

Our attempts to localize CfMV P1 in wt CfMV-infected oat leaves by 
polyclonal antiserum generated against P1 (Tamm et al., 1999) revealed expression 
of P1 neither by Western blot analysis nor by immunohistochemical staining 
(Tiismus, 2005). It remained unclear whether P1 was poorly accumulated in 
infected plants or the P1 antiserum was not suitable for the detection of P1 
expressed in plant cells. 
                                                 
7 Plant viruses spread from an initially infected cell to neighbouring cells through 
plasmodesmata. This process is termed as local or cell-to-cell movement. The viral 
movement proteins (MPs) have a central role in cell-to-cell movement. During local 
movement, viral MPs either interact with the viral genomes to form nucleoprotein 
complexes that cross through plasmodesmata into adjacent cells or they become a part of 
virus-induced tubules that extend through the cell wall (presumably replacing 
plasmodesmata and serving as a conduit for the spread of virus particles). 
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Studies on phylogenetically related poleroviruses provide results that may 
explain that result. It has been shown that despite that BWYV P0 is dispensable for 
systemic infection (Ziegler-Graff et al., 1996) the amount of P0 has clear effects on 
virus accumulation. Experiments on BWYV mutant with optimized context for 
ORF0 revealed deleterious effect to viral RNA accumulation. Moreover, 
appearance of the spontaneous mutations predicted to lower the efficiency of 
translation initiation at the P0 start codon was detected (Pfeffer et al., 2002). Also, 
it was shown for PLRV that although P0 is undetectable in infected plants (van der 
Wilk et al., 1997) it is necessary for virus accumulation (Sadowy et al., 2001). 

In current study, CfMV P1 was expressed at high level in Sf9 insect cell culture 
for subcellular localization studies using baculovirus vector system. Samples of 
total protein were collected at 24, 48, 72 and 96 h post infection. All samples were 
treated in parallel according to two differential centrifugation protocols to obtain 
subcellular fractions. Western blot analysis showed the presence of 12-kDa CfMV 
P1 in pellets of cell nuclei and membranes but not in the fraction of soluble 
cytoplasmic proteins. A further treatment of nuclear pellets with NP-40 or high salt 
did not dissolve any P1 into nuclear extract (publication III, Fig. 3). Thus, it was 
obvious that P1 of CfMV is coupled with cellular membranes and/or it is heavily 
aggregated when expressed in insect cells. Similarly, when recombinant CfMV P1 
was expressed in E. coli – the majority of it remained aggregated and unsoluable 
(Tamm and Truve, 2000a) and therefore not appropriate for functional studies. 
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CONCLUSIONS 
 
1. CfMV-like genomic organization is common for all sobemoviruses. 
Consequently, the expression and amount of sobemoviral RdRp is regulated by -1 
ribosomal frameshifting similar to other evolutionary related viruses. 
 
2. Albeit the phylogenetic analyses show that a recombinational shuffling of genes 
and gene blocks has played an important role in the formation of contemporary 
species of “the supergroup” luteo-sobemo-tombusviruses, no recombinations has 
been found between sobemovirus species. Accordingly, no recombinant virus 
molecules were found experimentally when 99 oat plants were co-infected with 
CfMV and RGMoV under no or little selection pressure. 
 
3. P1 of CfMV is not required for virus replication but it is essential for the 
systemic infection of CfMV. 
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ABSTRACT 
 
Sobemoviruses 
 

The vector and host range of sobemoviruses is quite narrow. Despite of that, 
some sobemoviruses seriously impact global agriculture – mainly due to their 
particle stability and effective transmission via mechanical wounding of host plants 
during farming operations. The best-known example is Rice yellow mottle virus 
(RYMV) that is the main cause for rice failure in Africa. The outbreaks of 
Subterranean clover mottle virus (SCMoV) are the main reason for decreases of 
herbage production of clover pastures in Australia, whereas Cocksfoot mottle virus 
(CfMV) has been reported to severely affect hay yields in Norway. 

A genus Sobemovirus consists of small viruses with icosahedral capsids and a 
single-stranded polycistronic mono-component RNA genome. Their genome 5´ 
terminus bounds covalently a virus-encoded protein (VPg) and their 3´ terminus 
has not been polyadenylated. Sobemovirus genome has in size 4000-4500 
nucleotides, bearing four ORFs only. The non-structural proteins (P1 and 
polyprotein) are translated from genomic RNA, whereas capsid protein (or coat 
protein, CP) is translated from sgRNA. A polyprein will be processed at least into 
three functionally different proteins. To date, there are 11 sobemoviruses which 
genome has been fully sequenced. 

The genus Sobemovirus is not assigned to any family. A reason for this is a kind 
of mosaic nature of sobemovirus genome. The 5’-terminal part of the sobemoviral 
genomes encoding non-structural proteins resembles those of enamo- and 
poleroviruses from the family Luteoviridae in its genomic organization, whereas 
sobemoviral genome 3´ terminal part encoding CP is related to those of 
necroviruses from the family Tombusviridae. The reason for that is considered to 
be early recombination events that happened during the evolution of these genera. 

Differently from enamo- and poleroviruses, the middle part of sobemovirus 
genome has been reported to have two different organizations – either “SCPMV-
like” or “CfMV-like”. Similarly to enamo- and poleroviruses, “CfMV-like” viruses 
can synthesize their polyproteins in two variants – the shorter one (that consists of 
VPg and Pro only) is translated from ORF2a whereas the longer one (consists of 
VPg, Pro and RdRp) needs -1 ribosomal frameshifting from ORF2a to ORF2b 
during translation. The efficiency of that -1 ribosomal frameshift has been 
measured to be 10-25 % in case of CfMV. “SCPMV-like” genomes were believed 
to be translated in-frame as long polyproteins (consisted of VPg, Pro and RdRp). 
Such appearance of two different strategies for RdRp synthesis in one virus family 
would be exceptional in virus world. However, a signal for -1 ribosomal 
frameshifting has also been found in genomes of “SCPMV-like” sobemoviruses. 
Moreover, it has been found to be conserved between all sobemoviruses. One 
possible function given, proposes that it may lead ribosomes into ORF3 that is 
shortly translated thereafter until the ribosomes meet stop codon. 

The first goal of this thesis was to verify the existence or the non-existence of 
“SCPMV-like” genomic organization. A reason for that was the sequence 
homologies found in different reading frames between sobemovirus genomes with 
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“SCPMV-like” and “CfMV-like” organization. Also, it was known that RYMV 
that was announced as the virus with “SCPMV-like” genomic organization was 
recently re-sequenced and appeared to have “CfMV-like” genome. Thus, 
questionable genomic areas of Lucerne transient streak virus (LTSV), Ryegrass 
mottle virus (RGMoV), Southern bean mosaic virus (SBMV) and SCPMV were re-
sequenced in current study. The results of the sequencing project showed clearly 
that the “SCPMV-like” genomic annotation is an artefact and it does not exist. Re-
sequencing of Sesbania mosaic virus (SeMV) by Dr. Savithri confirmed that view. 
Thus, all sobemoviruses harbour similar genomic organization, previously known 
as “CfMV-like”, also common for evolutionarly related enamo- and poleroviruses. 
Hence, all sobemoviruses regulate the synthesis of RdRp via -1 ribosomal 
frameshift. 

The second goal of this thesis was to estimate recombination ability between 
two sobemoviruses (CfMV and RGMoV, Ryegrass mottle virus) in co-infected test 
plants. RT-PCR affirmed the co-infection of 99 test plants. Two possible 
evolutionary “hot spots” were screened for possible recombination events. Several 
previous studies have shown that both a strong secondary structure and a sequence 
homology are required for recombination events. The first possible “hot spot” area 
was supposed to be localized adjacent to -1 ribosomal frameshift area that has both 
of these qualities. Secondly, recombination events were screened from sgRNA 
promter vicinity. The region (encoding non-structural proteins) preceding 
sobemovirus sgRNA promoter is similar to enamo- and poleroviruses, whereas the 
subsequent sequence (encoding CP) is more similar to necroviruses. This is 
considered as a clue to an early evolutionary recombination event. RT-PCR used in 
the current study was extremely sensitive – it was able specifically amplify 0.1-100 
pg of artificially synthesized recombinant template from reaction mixed with 0.5 
µg RNA purified from non-infected plants. However, no recombinants were found 
from doubly infected test plants. We cannot exclude that recombination might have 
happened between these two viruses in non-screened genomic regions. 

Finally, we started unraveling the functions of CfMV P1. As sobemoviral P1 
proteins are highly divergent - they are not related to any other known protein – 
their functions cannot be presumed according to sequence homologies. In this 
current study, P1 translation initiation codon of infectious clone of CfMV was 
mutated to abolish P1 translation but not to harm virus RNA structure. Analysis of 
infected plants showed that P1-deficient virus was able to replicate in inoculated 
leaves but not able to infect plants systemically. However, 3 of 57 plants that were 
inoculated showed systemic infection caused by a spontaneous transversion of 
mutated ORF1 initiation codon to wildtype. Hence, it was concluded that P1 is 
required for systemic infection. 

Recently, it was demonstrated by our group that CfMV P1 functions as a 
suppressor of systemic silencing. Such knowledge is also gained in studies of 
RYMV P1 (that however has no sequence homology with CfMV P1). Recent 
mutation analysis of RYMV P1 showed that cell-to-cell movement ability and the 
strength of silencing suppression have related to each other and needed for 
infectivity. 
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KOKKUVÕTE 
 
Sobemoviirused 
 

Sobemoviirustele on iseloomulik kitsas vektorputukate ja peremeestaimede 
ring. Sellest hoolimata on mõned sobemoviirused tõsiseks probleemiks globaalsele 
põllumajandusele – seda põhiliselt tänu viiruspartiklite stabiilsusele ja heale 
edasikandumisvõimele mehhaaniliste vigastuste kaudu. Näiteks, riisi kollalaiksuse 
viirus (RYMV) on põhiline riisiikalduste põhjustaja Aafrikas. Austraalias ohustab 
ristikupõlde maaristiku laiguviirus (SCMoV) ning Norras on tulnud ette keraheina 
laiguviiruse (CfMV) poolt põhjustatud heinasaagi drastilist vähenemist. 

Sobemoviiruste perekonda kuuluvad väikesed ikosaeedrilise kapsiidi ning 
positiivse polaarsusega polütsistroonsed üheahelalised ühekomponentsed RNA 
viirused. Sobemoviiruste genoomi 5´ otsa on kovalentselt seondunud viiruse enda 
poolt kodeeritud valk VPg ja nende genoomi 3´ ots on polüadenüleerimata. 
Sobemoviiruste genoomi suurus jääb vahemikku 4000-4500 nukleotiidi, sisaldades 
nelja avatud lugemisraami. Tänaseks on teada 11 sobemoviiruse genoomi 
järjestused. Mittestruktuursed valgud nagu P1 ja polüproteiin transleeritakse 
genoomselt RNAlt, samal ajal kui viiruse kattevalgu translatsiooniks on vajalik 
subgenoomse RNA (sgRNA) süntees. Polüproteiin protsessitakse peale sünteesi 
vähemalt kolmeks erineva funktsionaalsusega valguks. 

Sobemoviiruste perekonna süstemaatiline kuuluvus on määratlemata, kuna 
genoomi osa, mis kodeerib mittestruktuuseid valke (v.a P1, mis on täiesti 
unikaalne), on järjestuselt lähedane enamo- ja poleroviirustele luteoviiruste 
sugukonnast, kuid genoomi osa, mis kodeerib viiruse kattevalku, on lähedane 
hoopis nekroviirustele tombusviiruste sugukonnast. Sellise genoomi mosaiiksuse 
põhjuseks arvatakse olevat rekombinatsioon eellasviiruste vahel. 

Erinevalt enamo- ja poleroviirustest arvatati senini, et sobemoviiruste genoomi 
polüproteiini kodeeriv osa võib olla kahe erineva struktuuriga – nn. lehmaherne 
lõunamosaiigi viiruse (SCPMV) või CfMV-tüüpi. CfMV-tüüpi viirustele (samuti 
kui polero- ja enamoviirustele) on iseloomulik, et polüproteiin sünteesitakse kahes 
variandis – lühem variant sisaldab vaid VPg ja seriinproteaasi (Pro) domääne, mis 
transleeritakse ORF2a-lt ning pikema variandi sünteesiks peab toimuma -1 
ribosomaalne raaminihe raami ORF2b, mis kodeerib RNA-sõltuvat RNA 
polümeraasi (RdRp). Katsed CfMV-ga on näidanud, et raaminihke efektiivsus on 
10-25% sõltuvalt reaktsiooni tingimustest. SCPMV-tüüpi genoomilt arvati 
transleeritavat kogu polüproteiin ühest raamist, mis ei võimalda viirusel reguleerida 
RdRp hulka. Selline kahe erineva RdRp sünteesi strateegia esinemine ühes viiruste 
perekonnas oleks täiesti unikaalne. Seda veelgi enam seetõttu, et -1 raaminihke 
signaal on konserveerunud ka SCPMV-tüüpi viiruste genoomis. Ühe mudeli 
kohaselt võiks raaminihe toimuda ka nendel viiruste translatsioonil, jätkudes 
lühikeses lugemisraamis ORF3, alternatiivina täispika polüproteiini sünteesile. 

Käesoleva töö üheks eesmärgiks oli kontrollida, kas selline unikaalne SCPMV-
tüüp ikkagi eksisteerib, kuna sobemoviiruste genoomsete järjestuste võrdlused 
ilmutasid märke järjestushomoloogiatest erinevates lugemisraamides. Samuti oli 
teada, et RYMV, mis algselt arvati olevat SCPMV-tüüpi, osutus ülesekvenee-
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rimisel CfMV-tüüpi genoomi ülesehitusega viiruseks. Seetõttu sekveneeriti 
käesoleva projekti käigus üle lutserni transientse triibuviiruse (LTSV), raiheina 
laiguviiruse (RGMoV), põldoa mosaiigiviiruse (SBMV) ja SCPMV genoomide 
osad, mille struktuuri suhtes oli kahtlusi. Sekveneerimisprojekti tulemusena selgus, 
et tõepoolest, varasem SCPMV-tüüpi annotatsioon on artefaktne. Seega on kõik 
sobemoviirused oma genoomilt CfMV-tüüpi, sarnaselt evolutsiooniliselt lähedaste 
enamo- ja poleroviirustega, ning reguleerivad RdRp sünteesi -1 ribosomaalse 
raaminihke abil. 

Käesoleva töö teises osas nakatati testtaimi samaaegselt kahe sobemoviirusega, 
et hinnata nende rekombineerumisvõimet. RT-PCR kinnitas 99 taime nakatumist 
mõlema viirusega. Rekombinatsioone otsiti kahest oletatavast evolutsioonilisest 
„kuumast kohast“. Mitmed varasemad tööd on näidanud, et rekombinatsioonide 
toimumiseks on vajalik nii homoloogne järjestus kui ka tugev sekundaarstruktuur. 
Esiteks otsiti rekombinatsioone -1 ribosomaalse raaminihke signaali ümbrus-
konnast, mis sisaldab tüviaas sekundaarstruktuuri ja on sobemoviiruste seas 
äärmiselt konserveerunud, pakkudes võimalust homoloogiliseks rekombinat-
siooniks. Teiseks otsiti võimalikke rekombinatsioone sgRNA promootori 
piirkonnast, kuna sobemoviiruste genoom sarnaneb sgRNA promootorile eelnevas 
piirkonnas (mis kodeerib mittestruktuurseid valke) enamo- ja poleroviirustele, kuid 
sgRNA promootorile järgnevas piirkonnas (mis kodeerib viiruse kattevalku) 
nekroviirustele. Käesolevas töös kasutatud RT-PCR meetod osutus ülitundlikuks, 
suutes tuvastada 0.1-100 pg kunstlikult sünteesitud rekombinantset RNAd 
reaktsioonisegust, millele oli rekombinantse RNA mimikeerimiseks lisatud 0.5 µg 
nakatamata taimedest eraldatud RNAd. Sellest hoolimata, topeltnakatatud taimedes 
rekombinantseid viiruseid ei tuvastatud. Ei saa siiski välistada, et rekombinat-
sioonid võisid toimuda genoomi piirkondades, mida ei vaadeldud. 

Töö viimases osas alustati CfMV P1 valgu rolli selgitamist viiruse elutsüklis. 
Kuna sobemoviiruste P1 valgud on äärmiselt unikaalsed, siis ei ole homoloogiate 
põhjal võimalik järeldada, millist rolli need võiksid täita. Käesolevas töös 
punktmuteeriti CfMV P1 translatsiooni initsiatsioonikoodon, et välistada P1 
translatsioon, samal ajal võimalikult vähe kahjustades genoomse RNA struktuuri. 
Selliselt muteeritud viirusega nakatatud taimede analüüsist selgus, et P1 mitte-
ekspresseeriv viirus on nakatatud lehes võimeline replitseeruma, kuid ei suuda 
taime süsteemselt nakatada. Kolmel juhul 57-st leiti, et viirus oli ka süsteemselt 
levinud, kuid saavutanud selle initsiatsioonikoodoni tagasimuteerumise kaudu. 
Seega järeldati, et P1 valk on vajalik CfMV süsteemseks levimiseks. Hiljuti on 
meie rühma poolt kindlaks tehtud, et CfMV P1 on oma funktsioonilt süsteemse 
vaigistamise supressor. Sama on teada ka RYMV P1 kohta, kuigi need kaks valku 
ei oma järjestushomoloogiat. RYMV P1 hiljutine mutatsioonanalüüs on näidanud, 
et P1 valgu rakust rakku liikumise võime ja vaigistamise supressiooni tugevus on 
omavahel seotud ning vajalikud viiruse infektsioonilisuseks. 
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