
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Aleksandr Madisson 221249IAPM

STATEFUL STREAM PROCESSING: A COMPARATIVE

ANALYSIS OF APACHE FLINK AND KAFKA STREAMS

FRAMEWORKS

Master’s Thesis

Supervisor: Radu Irbe
M.Sc.

Tallinn 2024



TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Aleksandr Madisson 221249IAPM

OLEKUPÕHINE VOOGTÖÖTLUS: APACHE FLINK JA

KAFKA STREAMS RAAMISTIKE VOOGTÖÖTLUSE

VÕRDLUS

Magistritöö

Juhendaja: Radu Irbe
M.Sc.

Tallinn 2024



Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Aleksandr Madisson

17.05.2024

1



Abstract

The rapid growth of data volumes that must be processed in real-time introduces challenges
for architectural decisions regarding the selection of appropriate streaming technology.
Stream processing is a paradigm that is focused on handling continuous and unbounded
data streams in real-time. Frameworks such as Kafka Streams, Apache Flink, and Apache
Spark are built for fault-tolerant scalable data processing. Their key part is graph-based
data shuffling to guarantee resilent and distributed data processing.

In this study, two prototypes were developed that use rule-based matching service to
demonstrate the proposed approach’s effectiveness in a distributed environment. Rule
based matching service produces labeled data records where each labeled record is unique
state. The main is to figure out how efficiently frameworks recover a state under a high
load in case of unexpected faults. The study involves a series of four experiments, focusing
on the systems’ performance under different failure scenarios using automatic failure
simulator called Chaos Mesh.

Each experiment includes the automatic replicas fault simulation: first experiment, 2 out of
8 replicas, and second experiment, all worker replicas. The experimental setup processes
an input of 200000 1-kilobyte records per second, where records are sourced from a Kafka
cluster. All experiments are executed within an Amazon Elastic Kubernetes Service (EKS)
environment in the AWS cloud. Each experiment comes with a set of metrics such as
input throughput, output through, lag trend, and CPU utilization to analyze rebalancing
processes in case of automatic faults.

Experiment results show that the Apache Flink-based prototype performs with lower
latency and faster state recovery. The study references related work results that demonstrate
better performance for Apache Flink.

The thesis is written in English and is 67 pages long, including 6 chapters, and 38 figures.

2



Annotatsioon
Olekupõhine voogtöötlus: Apache Flink ja Kafka Streams raamistike

voogtöötluse võrdlus

Reaalajas töödeldavate andmemahtude kiire kasv toob kaasa väljakutseid arhitektuursete
otsuste tegemiseks seoses sobiva voogedastustehnoloogia valikuga. Voogtöötlus on
paradigma, mis keskendub pidevate ja piiritlemata andmevoogude töötlemisele reaala-
jas. Sellised raamistikud nagu Kafka Streams, Apache Flink ja Apache Spark on loodud
veatolerantseks skaleeritavaks andmetöötluseks. Need raamistikud pakuvad graafipõhist
andmete segamist, et tagada paindlik ja hajutatud andmetöötlus.

Selles uuringus on välja töötatud kaks prototüüpi, mis kasutavad reeglipõhist sobitamis-
teenust, et demonstreerida väljapakutud lähenemisviisi tõhusust hajutatud keskkonnas.
Reeglipõhine sobitamisteenus toodab märgistatud andmekirjeid, kus iga märgistatud kirje
on unikaalne olek. Peamine eesmärk on välja selgitada, kui tõhusalt raamistikud taastavad
oleku ootamatute rikete korral kõrge koormuse all. Uuring hõlmab nelja eksperimendi see-
riat, keskendudes süsteemide jõudlusele erinevate rikete stsenaariumide korral, kasutades
automaatset rikete simulaatorit Chaos Mesh.

Iga eksperiment hõlmab replikaatide rikete automaatset simuleerimist: esimeses eksperi-
mendis 2 kaheksast replikast ja teises eksperimendis kõik töötajate replikad. Katse ülesehi-
tus töötleb 200 000 1-kilobaidist kirjet sekundis, kus kirjed pärinevad Kafka klastrist. Kõik
eksperimendid viiakse läbi Amazon Elastic Kubernetes Service (EKS) keskkonnas AWSi
pilves. Iga eksperimendi juurde kuulub hulk mõõdikuid, nagu sisendi läbilaskevõime,
väljundi läbilaskevõime, mahajäämus ja protsessori kasutamine, et analüüsida automaatsete
rikete korral toimuvaid tasakaalustamisprotsesse.

Katsetulemused näitavad, et Apache Flinkil põhinev prototüüp töötab madalama la-
tentsusega ja kiirema oleku taastamisega. Uuringus viidatakse varasematele töödele,
mis näitavad Apache Flinki paremat jõudlust.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 67 leheküljel, 6 peatükki, 38
joonist.

3



List of Abbreviations and Terms

EKS Elastic Kubernetes Service
ECR Elastic Container Registry
EC2 Amazon Elastic Computer Cloud
MSK Amazon Managed Streaming
AWS Amazon Web Services
HA High Availability
YARN Yet Another Resource Manager
DAG Directed Acyclic Graph
JVM Java Virtual Machine
K8S Kubernetes
MP MapReduce
TB Terabyte
UC Use Case
JMX Java Management Extension
API Application Programming Interface
CPU Central Processing Unit
IDE Integrated Development Environment
IOT Internet Of Things
VM Virtual Machine
EBS Elastic Block Store
EFS Elastic File System
DAG Directed Acyclic Graph
RAM Random Access Memory
ABS Asynchronous Barrier Snapshotting
RDD Resilient Distributed Dataset

4



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Batch Processing Model Overview . . . . . . . . . . . . . . . . . 11
1.3 Research Question and Objectives . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Selecting a Suitable Framework . . . . . . . . . . . . . . . . . . 12
1.3.2 Deployment Environment . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Requirements Summary . . . . . . . . . . . . . . . . . . . . . . 14

2 Theory Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Scalability Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Stream Processing Challenges . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Directed Acyclic Graph Model in Stream Processing . . . . . . . . . . . 19
2.5 Kafka Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 State Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Distributed Snapshots . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2 Change Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Rule Based Matching Service . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Research Technical Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Kubernetes Cluster Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 EKS Node Groups . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 EFS and EBS Storage Services . . . . . . . . . . . . . . . . . . . 30

3.4 Metrics Exporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Kafka Metrics Exporters . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Kubernetes and Worker Metrics Exporters . . . . . . . . . . . . . 32
3.4.3 Latency Exporter . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Benchmarks Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Chaos Engineering with Chaos Mesh . . . . . . . . . . . . . . . . . . . . 34
3.7 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 Prerequisite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7.2 EKS Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5



3.7.3 Theodolite Configuration . . . . . . . . . . . . . . . . . . . . . . 35
3.7.4 Running Experiments . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Experiments Results and Findings . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Benchmarking Kafka Streams Fault Tolerance . . . . . . . . . . . . . . . 39

4.2.1 Analyzing 2-Pod Failures in an 8-Pod Cluster . . . . . . . . . . . 40
4.2.2 Analyzing 8-Pod Failures in an 8-Pod Cluster . . . . . . . . . . . 43

4.3 Benchmarking Apache Flink Fault Tolerance . . . . . . . . . . . . . . . . 45
4.3.1 Analyzing 2-Pod Failures in an 8-Pod Cluster . . . . . . . . . . . 46
4.3.2 Analyzing 8-Pod Failures in an 8-Pod Cluster . . . . . . . . . . . 48

4.4 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Input Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Output Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.3 Lag Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.4 CPU utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.5 Network Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6



List of Figures

1 Generic model of a batch processing job that should replaced by stateful

stream processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Example of vertical and horizontal scaling where vertical is about using

more powerful node and horizontal about adding more nodes. . . . . . . 15
3 This diagram illustrates a message queue system optimized for handling

unbounded datasets. Each partition has its own queue. . . . . . . . . . . 17
4 This diagram illustrates how data flows from Source to Sink passing

through various shuffling and processing stages using directed acyclic

graphs. The most popular frameworks that use DAG model are: Kafka

Streams, Apache Flink, Apache Spark, Hazelcast Jet, Apache Storm. . . . 19
5 Illustration of simplified Kafka cluster model that is uses in this case study.

In the case study the cluster consists of 3 brokers and 2 topics with 50

partitions for each topic. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Illustration of snapshots applied for data stream. . . . . . . . . . . . . . 23
7 Illustration of snapshots for an Apache Flink-based prototype in this case

study. Snapshots get stored to AWS EFS network storage. . . . . . . . . . 23
8 Illustration of changelogs for Kafka Streams-based prototype in this case

study. Changelogs get stored to Kafka cluster. . . . . . . . . . . . . . . . 24
9 Illustration of the rule based matching service. . . . . . . . . . . . . . . . 25

10 Node groups for the case study experiments. . . . . . . . . . . . . . . . . 28
11 Worker node group with 2 nodes and pods in each node. . . . . . . . . . . 29
12 EBS and EFS network storage diagram. . . . . . . . . . . . . . . . . . . 30
13 Kafka metrics exporter that sends metrics from JMX exporter to Prometheus. 31
14 Kubernetes and worker metrics exporters. . . . . . . . . . . . . . . . . . 32
15 Theodolite manages deployment and undeployment of load generator and

workers during experiment execution. . . . . . . . . . . . . . . . . . . . 33
16 Example of Chaps Mesh periodic Pod kill. Chaos Mesh controller selects

Chas Mesh daemon to and sends a message to kill the worker. . . . . . . . 34

17 Illustrative example of Kafka Streams workers for stateful stream process-

ing. implemented model also includes record match service between input

and grouping blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7



18 Benchmarks for Kafka Streams experiment in case of 2 workers failure.

Red vertical line is a start of the failure green vertical line is a moment

when the system is back to a normal state and producing expected load of

records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
19 Resources consumption during rebalancing a state recovery in case of 2

worker failures. Red vertical line denote a start of a fault, and the green

vertical line is when the system gets back to normal state. . . . . . . . . . 42
20 Benchmarks for Kafka Streams experiment in case of 8 workers failure.

Worker cluster is fully killed. Red vertical line is a start of the failure green

vertical line is a moment when the system is back to a normal state and

producing expected load of records. . . . . . . . . . . . . . . . . . . . . 43
21 Resources consumption during rebalancing and a state recovery in case

of all workers failure. Red vertical line denote a start of a fault, and the

green vertical line is when the system gets back to normal state. . . . . . . 44
22 Illustrative example of Apache Flink workers for stateful stream processing.

implemented prototype also includes record match service between input

and grouping blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
23 Benchmarks for Apache Flink experiment in case of 2 workers failure.

Worker cluster is fully killed. Red vertical line is a start of the failure green

vertical line is a moment when the system is back to a normal state and

producing expected load of records. . . . . . . . . . . . . . . . . . . . . 46
24 Resources consumption during balancing and a state recovery in case of 2

worker failures. Red vertical line denote a start of a fault, and the green

vertical line is when the system gets back to normal state. . . . . . . . . . 47
25 Benchmarks for Apache Flink experiment in case of 8 workers failure.

Worker cluster is fully killed. Red vertical line is a start of the failure green

vertical line is a moment when the system is back to a normal state and

producing expected load of records. . . . . . . . . . . . . . . . . . . . . 48
26 Resources consumption during balancing and a state recovery in case of 8

worker failures. Red vertical line denote a start of a fault, and the green

vertical line is when the system gets back to normal state. . . . . . . . . . 49
27 Input throughput for Kafka records in case of 2 workers. Failure period

for kafka Stream and Apache Flink is not synced but happens within the

same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
28 Input throughput for Kafka records in case of 8 workers. Failure period

for kafka Stream and Apache Flink is not synced but happens within the

same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8



29 Output throughput for Kafka records in case of 2 workers failures. Failure

period for kafka Stream and Apache Flink is not synced but happens within

the same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
30 Output throughput for Kafka records in case of 8 worker failures. Failure

period for kafka Stream and Apache Flink is not synced but happens within

the same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
31 Lag trend for worker cluster consumer group in case of 2 worker failures.

Failure period for kafka Stream and Apache Flink is not synced but happens

within the same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
32 Lag trend for worker cluster consumer group in case of 8 worker failures.

Failure period for kafka Stream and Apache Flink is not synced but happens

within the same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
33 Average CPU utilization for all workers in case of 2 worker failures.

Failure period for kafka Stream and Apache Flink is not synced but happens

within the same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
34 Average CPU utilization for all workers in case of 8 worker failures.

Failure period for kafka Stream and Apache Flink is not synced but happens

within the same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
35 Average inbound network traffic for all workers in case of 2 worker failures.

Failure period for kafka Stream and Apache Flink is not synced but happens

within the same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
36 Average inbound network traffic for all workers in case of 8 worker failures.

Failure period for kafka Stream and Apache Flink is not synced but happens

within the same period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
37 Average outbound network traffic for all workers in case of 2 worker

failures. Failure period for kafka Stream and Apache Flink is not synced

but happens within the same period. . . . . . . . . . . . . . . . . . . . . 54
38 Average outbound network traffic for all workers in case of 8 worker

failures. Failure period for kafka Stream and Apache Flink is not synced

but happens within the same period. . . . . . . . . . . . . . . . . . . . . 55

9



1. Introduction

1.1 Background and Motivation

Software engineering is a diverse field that addresses various business domain problems.
These domain-specific issues and their corresponding use cases necessitate in-depth anal-
ysis to determine the most suitable technologies for achieving optimal problem-solving
outcomes. One rapidly growing area in software engineering is big data. Although big
data is sometimes regarded as a marketing term, it encompasses complex data processing
frameworks and datasets.

As the volume of produced data has dramatically increased over the years, modern technical
solutions capable of processing massive amounts of data are required. The open-source
community offers decent frameworks and tools, making it challenging to choose the best
option. This research focuses on comparing the most suitable frameworks for specific use
cases, particularly those that are designed for stateful real-time stream processing.

Stream processing use cases are relatively rare compared to typical problems that can
often be solved with traditional batch processing or simple programs that don’t require the
MapReduce model. However, stateful stream processing assumes that real-time processing
relies on previous states and unbounded data flow, which may indicate abnormal system
behavior, such as fraud alerts in financial transactions within a specific time frame. Quick
response can facilitate necessary actions and save time. Therefore, it is crucial to provide
a technical analysis of the most suitable frameworks, assess their advantages and disad-
vantages, and examine the complexities involved in their application for stateful stream
processing based on a given use case. This master’s thesis offers a technical overview,
benchmarks, and comparisons for appropriate use cases. The use case considers that
incoming events trigger state aggregation and re-computation and evaluates how efficiently
Kafka Streams [1] and Apache Flink [2] manage the state under heavy loads, represented
by a stream of Kafka [3] messages. The ideal framework should address existing problems
while offering excellent scalability, state recovery, and cost efficiency.

10



1.2 Problem Statement

The problem comes with business demands that are based on current needs for a more
scalable and efficient solution. Before getting into the problem details, the current model
will be provided to better understand why this research brings value and how streaming
frameworks are comparable with the batch processing model 1.

1.2.1 Batch Processing Model Overview

Data source 1 Data source 2 Data source N

Database

Periodic batch
processing job

State storage

Periodic SQL like queries

State based on query results

Json data
record

State for each
query

Figure 1. Generic model of a batch processing job that should replaced by stateful stream
processing.

Kubernetes Open source platform for managing containerized workloads and services
[4].

Data course N It is an external data source component that sends a json records as
unbounded stream.

Batch processing job Represents a worker that executes queries in the databsase and
saves a query result as a state to the state database. It runs with a predefined interval.

11



State storage Is a storage for states. Each query has its own state.

Database Stores records from data sources.

Some of the main disadvantages of the batch proccessing illustrated on Figure 1l. New
stateful stream processing with Kafka Stream and Apache Flink should overcome these
disadvantages, and provide a brand-new solution to process unbound data streams.

■ The system is not scalable enough.
■ The state gets lost it the job gets killed.
■ Periodic batch processing has higher latency compared to stream proccesig that is

designed to proccess data in real time with a minimal latency.

1.3 Research Question and Objectives

The main question is to figure out how different frameworks behave in case of fault
tolerance, for example, if some processing replicas or workers get killed. How would load
rebalancing work, how much delay would it create, and how long would it take for the
system to restore a state? The research consists of several tasks.

■ Create prototypes with Apache Flink and Kafka Streams.
■ Prepare cloud setup to make experiments repeatable.
■ Define metrics and benchmarks.
■ Execute experiments.
■ Collect results for analysis.
■ Plot the data and make a conclusion.

1.3.1 Selecting a Suitable Framework

They’re lots different frameworks out there available for solving different data streaming
problems. Most of the frameworks were born on top of each other as a new generation
solution [57]. Each new framework is trying to bring better performance and scalability.
Down below is an evolution of streaming frameworks [5] with a brief description:

Apache S4 Apache S4 (Simple Scalable Streaming System) was an early stream process-
ing engine developed at Yahoo! Labs. It was designed for unbounded data stream

12



processing which uses simple programming model based on a publish/subscribe pat-
tern. Apache S4 became an open source project under Apache Software Foundation
but eventually became inactive due to limited community adoption [6].

Apache Storm Apache Storm was a popular distributed stream processing framework.
It was designed for real-time data processing and provided guarantees such as at-
least-once and exactly-once processing semantics. Apache Storm was more popular
comparing to Apache S4, but it provides less performance and flexibility comparing
to next generation frameworks [7].

Apache Flink Originally was developed at the Technical University of Berlin. Apache
Flink is one of the most powerful stream processing framework that unified batch
and stream processing with focusing on streaming. Flink provided low-latency,
high-throughput, and exactly-once processing semantics. With its advanced features,
such as event time processing, watermarks, and savepoints, Flink has become the
one of the most popular stream processing framework which is well-designed for
highly loaded complex data stream processing use cases [2].

Kafka Streams Introduced as part of Apache Kafka, Kafka Streams is a rather a stream
processing library than a framework which allows developers to build real-time
applications and microservices using the Kafka platform. Kafka Streams provides
a simple, functional programming model and is tightly integrated with the Kafka
ecosystem. It’s well-suited for use cases like real-time analytics, data transformation
and event-driven architectures. Kafka Stream can a replacement for Apache Flink
for cases where heavy integration and complex computation is not needed [1].

Apache Spark Is well known alternative for Apache Flink and Kafka Streams, is a popular
solution for most of the cases, but does a micro-batching [8].

However, for this study Apache Flink and Kafka streams were chosen as most popular
real-time processing framework which do not use micro-batching.

1.3.2 Deployment Environment

In 2024, the most popular and advanced application container manager is Kubernetes.
First, stream processing frameworks were designed to be run on YARN clusters. YARN is
no longer considered to be the preferred deployment manager. It means that a framework
must be able to run in Kubernetes using containers. All experiments for this study were
conducted with an AWS cloud provider.

13



1.3.3 Requirements Summary

Apache Flink and Kafka Streams are two leading stream processing frameworks that are
used in prototypes.

As a summary, these important bullet points provided down below which will be considered
during the evaluation for the new solution.

Scalability The current is not scalable enough.

Fault tolerance A state must not be lost if a pod where a running job gets killed. The
system should be able to proceed stream processing with previous state once job is
restarted.

Simple integration A solution, weather it is a programming language, or framework,
should be compatible with the current technology stack, such as JVM and Kubernetes.
It also means that a solution won’t require hiring an entire engineering department
or a team.

Cost effecienty It’s quite important that a highly loaded solution doesn’t cost too much.

Cloud independence A solution must not depend on a cloud provider.

Functionality A solution has to have an API that allows to implement and test a considered
use case.

14



2. Theory Introduction

This chapter provides the theory behind Apache Flink and Kafka Streams, key concepts,
illustrative examples, and main challenges. A reader should be able to understand the
context and why such frameworks are needed. Both frameworks are based on principles of
distributed systems design, which are all covered in the context of a given problem.

2.1 Scalability Problems

Let’s define a simple task that is given by a business. For example, the business wants to
know what songs get more streams in different countries. A straightforward solution is the
code below 2.1.

t o p _ c h a r t s = db . s e l e c t ( " t o p _ c h a r t s " )

o r d e r e d _ b a n d s = t o p _ c h a r t s

. group_by ( c h a r t −> c h a r t . c o u n t r y )

. a g r e g g a t e _ b y ( c h a r t −> c h a r t . s t r e a m s )

. o r d e r _ b y ( c h a r t −> c h a r t . s t r e a m s )

. map ( c h a r t −> { c h a r t . s t r e a m s , c h a r t . song , c h a r t . c o u n t r y } )

EC2 node

pod

Vertical scaling

EC2 node

pod

Horizontal scaling

CPU 
RAM

EC2 node

pod

Number of nodes

Node group Node group

Figure 2. Example of vertical and horizontal scaling where vertical is about using more
powerful node and horizontal about adding more nodes.

The first straightforward solution is to use a more advanced node [9] with more CPU,
RAM, and Cores. Such a solution works until there’s no such powerful node that can
process high volumes of data. Even if such a node still exists, it might lead to processing

15



downtime if the node is down for some reason. Adding additional resources such as CPU
and RAM refers to vertical scaling that scales less than horizontal scaling [10]. Example
on Figure 2.

Even having a scaling setup, big data processing is not that straightforward to scale without
having in an efficient distributed processing model. These models are MapReduce [11, 12,
13] and DAG [14, 15]. There are open-source solutions which implement one of model
and successfully being used in industry [16, 17]. Moreover, they provide an api which look
almost the same as map, filter, reduce functions.

Here are key points about frameworks for data pipelines such as Apache Flink, Kafka
Streams and Apache Flink, that use complex DAG model under the hood.

Scalablity These frameworks are designed to be scalable by default. The main difference
in scalability is that frameworks use models such as MapReduce, DAG. It means
that frameworks know how to be scalable under the hood, using multiple nodes.
Framework knows how to distribute sub-problems across multiple parallel workers
and combines multiple sub-results into a single result. Execution performance is
achieved by having multiple parallel workers that shuffle a data stream by key and
distribute a load between each other.

Fault Tolerance Frameworks are designed to be tolerant to faults. The Common approach
is replication, rebalancing, and a state reprocessing after recovery. However, they’re
different depending on a framework. For example, Kafka Streams is based on
changelog topics [18], Apache Spark uses RDD or resident distributed datasets [19] ,
Apache Flink uses distributed snapshots, the algorithm is well covered in [20].

Kubernets operator Modern frameworks are designed to be run in the Kubernetes envi-
ronment. Kubernetes operators are used to manage such complex deployments in
production [21].

Built-in integrations For example, it can be machine learning pipelines, external data
sources, graph processing algorithms [22, 23, 24].

2.2 Stream Processing

Stream processing is a concept that is dedicated to systems that need to process an infinite
message or event, often called an unbounded dataset [25].

16



A stream has a quite broad meaning, it often gets referred to stdin and stdout of Unix
programming languages [26]. For some developers, stream could mean file stream API
and for an average person it would mean video content stream, for example on YouTube or
on Twitch. In this case study, the stream refers to infinite dataset that represents a infinite
dataset.

Producer

Producer

Consumer

Consumer

partition

partition

partition

partition

partition

partition

partition

partition

Message partition
queue

Message broker

Figure 3. This diagram illustrates a message queue system optimized for handling un-
bounded datasets. Each partition has its own queue.

17



2.3 Stream Processing Challenges

Since this research is focusing on stateful streaming, a variety of challenges must be
handled by a new solution. Detailed challenges are described in [8].

State Management In stateful stream processing systems, a state represents a unit of
information stored, accessed, and updated by a key. The simplest example of a key-
based state is a counter. Setting up state storage in distributed systems is challenging
due to different state sizes, update frequencies, and storage types. Stream processing
frameworks must ensure consistency and minimal latency while managing state
across multiple workers. Frameworks come with built-in state backends and metrics
exporters that expose information about the system performance. Example of state
metrics: represent state size, memory usage, latency, and read-write metrics.

Fault tolerance It includes snapshot configurations, message commit time interval, stor-
age configurations, state monitoring.

Scalability Since the load in data-intensive production systems may vary over time, it’s
crucial to design the system as auto-scalable. Auto-scalable systems automatically
adjust the number of workers needed for incoming data in real-time. Having redun-
dant workers might lead to additional expenses, while insufficient worker replicas
lead to system crashes and slowness..

Rebalancing Repartition is a core feature that deals with fault tolerance and scalability
in case of fault. It’s part of the rebalancing process. The controller coordinator is
responsible for repartition if a consumer is no longer responsive. An example is
Kafka’s consumer group [27].

Processing latency Apache Flink and Kafka Stream are able to handle a load in a reason-
able time range, but might have different latency in case of stateful stream processing
with different state sizes and input throughout. An example of such benchamarks
[28].

Delivery guarantee The Most common types of semantics in stream processing are at
least once semantics, and exactly once semantics that deal with a complex commit
process. These processes are described here [29, 30].

Deployment At this time, streaming frameworks have already Kubernetes integration
which allows managing deployment and resources. However, complex cloud config-
urations require deep expertise.

18



2.4 Directed Acyclic Graph Model in Stream Processing

 Worker node

Source

Source

map

map

keyBy

keyBy

process

process

Sink

Sink

Worker node

Source

Source

map

map

keyBy

keyBy

process

process

Sink

Sink

Data
shuffling

Figure 4. This diagram illustrates how data flows from Source to Sink passing through
various shuffling and processing stages using directed acyclic graphs. The most popular
frameworks that use DAG model are: Kafka Streams, Apache Flink, Apache Spark, Hazel-
cast Jet, Apache Storm.

In big data and real-time stream processing frameworks, processing and analyzing data as
it flows through systems is crucial. Data streaming frameworks have emerged as powerful
tools to handle such tasks, and at the heart of these frameworks lies a fundamental concept:
the Directed Acyclic Graph (DAG) [20, 25, 14, 15]. DAG model is illustrated on Figure 4.
Stream processing based on DAG consists of the following components [15, 26, 8].

Source A source is the component in a data streaming framework that ingests partitioned

19



streams of data from external systems, initiating the data processing pipeline.

map A map is a data transformation component that applies a specified function to each
element in the input data stream, producing a transformed output stream. It is
commonly used to transform data records from one form to another as they pass
through the processing pipeline.

keyBy A keyBy component in a data streaming framework shuffles and partitions the data
stream based on a key extracted from each data record, ensuring that records with
the same key are sent to the same downstream task for processing.

process A process component in a data streaming framework is responsible for stateful
processing, maintaining and updating the state as it processes each data record. This
allows for complex event processing and aggregation based on the changing state.

Sink A sink is the component in a data streaming framework that sends processed and
partitioned data records to an external system for storage, analysis, or further pro-
cessing.

Data shuffling Data shuffling between the keyBy and process components in a data
streaming framework involves redistributing the data across different partitions or
nodes based on the key extracted from each data record. This is a crucial step for
ensuring that records with the same key are processed together, enabling stateful
operations and accurate aggregation.

20



2.5 Kafka Cluster

The use case in this research uses Kafka cluster of 3 brokers as a data source and data
sink. Kafka cluster plays a crucial role in evaluation fault tolerance performance since
both Apache Flink and Kafka Streams based prototypes represent a cluster of one Kafka
consumer group.

Input topic
partitions

Output topic
partitions

Kafka cluster

Figure 5. Illustration of simplified Kafka cluster model that is uses in this case study. In the
case study the cluster consists of 3 brokers and 2 topics with 50 partitions for each topic.

While the model in Figure 5 illustrates a simple diagram, a real Kafka cluster is composed
of advanced components such as leader election, a control plane for cluster management,
and robust mechanisms for data replication and fault tolerance. This case study does not
evaluate the fault tolerance of the Kafka cluster, but it highlights Kafka’s extensive use as a
core component for data processing. The Full description of Kafka cluster leader election
and control is described in the official Kafka documentation [31]. Down below are the
core components of the Kafka cluster that are described in details [27].

Kafka Consumer Group A Kafka consumer group is a collection of consumers that work
together to read records from one or more Kafka topics. Each consumer in the group
reads data from a different subset of the partitions, allowing for parallel processing
and load balancing.

21



Kafka Consumer A Kafka consumer is a client application that subscribes to one or more
Kafka topics and processes the data records published to those topics. Consumers
read data in real-time and can be part of a consumer group for distributed processing.

Kafka Producer A Kafka producer is a client application that publishes data records to
Kafka topics. Producers send records to specific topics and can partition data across
multiple partitions within those topics for scalability and load balancing.

Kafka Broker A Kafka broker is a server that hosts Kafka topics and manages the storage,
retrieval, and replication of data records. Brokers handle the incoming data from
producers, serve data to consumers, and ensure data durability and fault tolerance
through replication.

Leader Election Leader election in Kafka is the process by which one broker is designated
as the leader for each partition. The leader is responsible for all reads and writes for
the partition, ensuring consistent and orderly data management. Other brokers that
store replicas of the partition data act as followers.

2.6 State Recovery

State recovery is crucial in distributed stream processing systems to ensure fault tolerance
and consistency. When a system encounters failures, it must recover its state and resume
processing without data loss or inconsistency. This section delves into the state recovery
mechanisms that are used in Apache Flink and Kafka Streams, focusing on distributed
snapshots and change logs.

2.6.1 Distributed Snapshots

Distributed snapshots are essential for capturing a consistent global state of a distributed
system. The Chandy-Lamport algorithm, introduced by K. Mani Chandy and Leslie
Lamport in their 1985 paper ”Distributed Snapshots: Determining Global States of a
Distributed System,” provides a robust method to achieve this [32]. Distributed snapshots
are foundational in stream processing frameworks like Apache Flink, enabling them
to maintain accurate states across distributed nodes by consistent state recovery and
fault tolerance. Later, the ideas behind the Chandy-Lamport algorithm were used to
implement Asynchronous Barrier Snapshotting [20] algorithm for Apache Flink. ABS
algorithms quarantine consistence snapshots and are especially efficient in case of frequent
snapshotting starting from 2 seconds period. These benchmarks are provided in [20]. Since
the case study uses Kafka as a data source, snapshots keep track of the latest committed

22



message to ensure state consistency. This allows for rerunning state updates by processing
uncommitted Kafka records during recovery.

Stream record

Part of checkpoint n Part of checkpoint n - 1Part of checkpoint n + 1

{
  "key": "sample_key_10",
  "record": "iVBORw0KGgoAAAANS",
  "timestamp": "2024-04-29T12:00:00Z"
}

Data stream

new records old records

Figure 6. Illustration of snapshots applied for data stream.

Simplified stream snapshotting period is illustrated on Figure 6. The ABS algorithm
performs asynchronous micro-pauses to capture records currently being processed by
a worker. This ensures a proper snapshot is taken and saved in the configured storage,
maintaining data consistency and enabling efficient state recovery. The storage and
snapshot interval for the case study is illustrated on Figure 7.

Worker node

State snapshots every 2 seconds

EFS distributed
network storage

Worker node State snapshots every 2 seconds

Local state

State storage

Figure 7. Illustration of snapshots for an Apache Flink-based prototype in this case study.
Snapshots get stored to AWS EFS network storage.

23



2.6.2 Change Logs

In Kafka Streams, state stores are used to keep track of accumulated state, such as counts,
sums, or other aggregations. These state stores are backed by change logs, which are
special Kafka topics that record every update to the state store [1].

State
changelogs

Kafka topic with
changelogs 

Worker node

Local state

2 seconds chnagelog commits

Local state
storage

Figure 8. Illustration of changelogs for Kafka Streams-based prototype in this case study.
Changelogs get stored to Kafka cluster.

Illustration on Figure 8 demonstrates Kafka Streams stage management model. Change
log topics record every update to the state store. It includes any inserts, updates, or deletes
within the state store. Each state change is logged as a new record in the change log topic. If
the application crashes, it can replay the change log topic from the beginning to reconstruct
the state store with all user sessions up to the point of the crash. By capturing every state
update as an ordered log of key-value pairs, Kafka Streams algorithms ensure that stateful
stream processing applications can recover from failures and continue processing without
data loss. Using 2 seconds commit interval makes the case study comparison more accurate
since Apache Flink based prototype uses 2 seconds snapshot interval.

2.7 Rule Based Matching Service

The core component of prototypes in this case study is the rule based matching service. The
goal of such a service is an emulation of rules based logs matchers. Each rule represents
a logical consumer that has a certain propability matching with an incoming data record.
The core component of prototypes in this case study is the rule-based matching service.
The goal of such a service is to emulate rule-based log matches. Each rule represents a
logical consumer with a specific matching probability with an incoming data record.

24



Input data stream

Rule matcher 1

Rule matcher 2

Rule matcher 3

Key based shuffling

Input record 

Rule based matching service

Labeled input record
with different keys

Figure 9. Illustration of the rule based matching service.

Rule-based matcher in illustrated on Figure 9. Each incoming record is processed through
all the rule matchers. For each match, a new keyed record is generated, where the key
represents the record’s label. All rule matchers have a fixed matching probability in this
use case simulation. For example, if there are 10 rules and the matching probability is
0.1, then it is expected that at least 1 rule will match per record, resulting in at least one
labeled record for further shuffling and processing. If the matching probability is 1, then
10 labeled records get shuffled and processed for 1 incoming record. All rule matchers
are based on the seed that guarantees experiment replication. The real use case might be
implemented with Intel Hyperscan (see Figure [33]), but this case study does not focus on
that.

25



3. Methodology

This chapter describes experiment setup and performance evolution methods that are used
to demonstrate performance difference.

3.1 Introduction

This chapter describes the methods that are used in this research. The main goal of the
thesis is to figure out how Apache Flink and Kafka Streams behave and perform, what
configurations are needed, and how to solve fault tolerance problems in case of a stateful
streaming. They both are designed for use in a streaming domain, but there must be some
difference in how they perform and get configured to run in the Kubernetes cluster. The key
moments for both systems are scalability, resilience, fault tolerance, cost efficiency, setup
complexity, documentation, and learning curve. To get experiments running, it is crucial to
get an execution environment, especially for big data solutions, which are not possible to
run on a laptop. Big data solutions and benchmarks require a cluster of hardware machines
that represent nodes. For this reason, all the benchmarks and execution environments are
done with AWS and EKS in particular. AWS provides services such as Amazon Managed
Streaming. It solves a lot of configuration problems, but it adds additional cost. It should be
suitable for less-loaded streaming solutions where load demand is not that big and there’s
no dedicated team. Heavy-loaded services where latency is also essential rely on their
own Kafka cluster setups and streaming setup, such as Spark Streaming or Apache Flink.
These experiments are based on the execution configuration provided by the Theodolite
framework. Theodolite provides an essential customizable Kafka cluster setup, which
is easy to reconfigure and has more control over running experiments, making it easy to
deploy infrastructure in EKS [34]. Theodolite [35], a robust framework, plays a pivotal role
in acquiring measurable benchmarks. It offers a suite of tools, including Grafana [36] and
Prometheus Operator [37]. These tools are equipped with ready-to-use and configurable
Prometheus [38] pod monitoring agents, enabling the collection of various metrics from
running pods within the EC2 node [9] [39]. The Theodolite operator, in conjunction with
Prometheus and Grafana, is specifically designed for easy deployment in a Kubernetes
cluster environment, providing super low latency real-time metrics.

One of the most important step is a data analysis, which is also possible using Theodolite
framework since it provides metrics export interface. All the recorded metrics will be
analysed using Python libraries and tools [40] [41] [35].

26



3.2 Research Technical Tasks

Two frameworks, Apache Flink and Kafka Streams, are written in Java and designed to
run in a cloud environment. Both prototypes are written in Java. For experiments, AWS
was chosen since it is one of the most advanced cloud providers. AWS provides services
for running scalable streaming solutions such as EBS [42], EFS [43], EC2 [39], EKS [34].
The research is split into following steps:

Prototypes development Development of two Java based prototypes with Apache Flink
and Kafka Streams which process the same input and send result to the same output.
Both prototypes are based on Java 11. Input and output are Kafka topics with 50
partitions.

Tools selection AWS as cloud provider, EKS as kubernetes cluster, Theodolite [35] [44]
that is one of the most advanced frameworks for setting up streaming benchmarks in
cloud environment. Theodolite includes out of the box Grafana [36], Prometheus
[38] [37], Kafka [3], Apache Flink and Kafka Streams cloud benchmarking cloud
configurations provides as Helm charts [45]. Chaos Mesh [46] is chosen as it
provides scheduled job failures in a cloud environment.

Kubernetes cluster design The cluster must have different node groups for different
components. For this study were used 3 main node groups, worker node group, infra
node groups, generator node groups, depicted on Figure 10.

Metrics definition Metrics include node network traffic, CPU consumptions, consumer
group lag, lag for each partition, state recovery time. All metrics are implemented
with PromQL [47].

Experiments execution All experiments are defined with Theodolite execution files [48]
that allows to rerun experiments with the same execution conditions.

Results collection Results from PromQL execution are saved in Kubernetes by Theodolite
as scv files.

Results analysis CSV files get analysed with Matplotlib Python library.

27



AWS Cloud

us-east-1

EKS

Kafka node group

node

node

node

Load generator node group

node

Worker node group

node node node node

node node node node

Manager load group

node

Load generator node group

node node

Figure 10. Node groups for the case study experiments.

3.3 Kubernetes Cluster Setup

This section is describing Kubernetes cluster and key components which are running with
during experiments execution to collect metrics.

3.3.1 EKS Node Groups

As shown on Figure 10, the setup is based on 5 node groups and EC2 nodes [9].

Kafka node gorup 3 Kafka brokers, where each broker gets deployed to a separate node.
Such that several brokers never run on the same node. Node types for this group is
m6i.2xlarge [9].

Load generator node group Is Java based application which generates Kafka messages
of 1Kb size to Kafka input topic with 50 partitions. In this study two load generator
instances are used where each generates 100000 messages per second. Node types
for this group is m6i.xlarge.

Manager node group The following node groups is intended only for Apache Flink task

28



manager [49] instance of 1 replica and is not used for experiments with Kafka
Streams.

Infra node group This node group is used for benchmarking tools deployment such
as EBS, EFS controllers, Grafana, Theodolite operator, Prometheus, Chaos Mesh
and additional operators which are used only for data collection and visualisa-
tions. Should not affect workers and load generators. Node types for this group is
m6i.xlarge.

Worker node group This node group is used for Kafka Streams setup and Apache Flink
task managers [49]. Such that stream processing replicas are running on a separate
nodes, where each node has only one worker replica running in the node. Detailed
worked groups is shown on Figure 11. For this case study were chosen 8 nodes with
8 workers replicas. Node types for this group is c5.large.

EC2 Worker node 1

pod

pod

pod

Kafka Streams / Flink woker

Prometheus exporter

Chaos Mesh instance

pod

Amazon EFS provider

pod

Kube DNS

EC2 Worker node 2

pod

pod

pod

Kafka Streams / Flink woker

Prometheus exporter

Chaos Mesh instance

pod

Amazon EFS provider

pod

Kube DNS

Worker node group

Figure 11. Worker node group with 2 nodes and pods in each node.

29



3.3.2 EFS and EBS Storage Services

pod

pvc pv

sc

EC2 worker node

podFlink/Kafka

EBS CSI driver
EFS CSI driver

Amazon EBS

Amazon EFS

Figure 12. EBS and EFS network storage diagram.

Stream processing uce case is data intensive in this study. To be able to handle data loads
during experiments were chosen two storage services for storing the data. These storage
are EFS [43], and EBS [42]. AWS provides networks storage types for EC2 nodes [39]
which are used for storing a big amount of data. The crucial part of this network storage is
that if worker on node goes down for some time, then saved state won’t be lost. A real
physical node is connected to the network storage via a network configuration as it shown
on Figure 12 which is also described in details in the following documentation [50]. Such
a complex model gives pod a network connection to a physical storage such that huge
amount of data gets written and read fast enough for production systems. The diagram on
Figure 12 includes several the following components.

Flink and Kafka pods These are Java application which use networks storage. For thi
study Flink workers use EFS storage for storing stages and Kafka brokers use EBS
for Kafka topics.

EBS and EFS CSI drivers Cloud tool provided by AWS to manage network connection
between nodes and networks storage. Driver runs on the same node as Kafka brokers
and Flink worker to get network storage access.

PV Persistent volume gives networks access to a physical storage, where the state gets
saved.

30



PVC Persistent volume claim is Kubernetes abstraction that connects to PV.

3.4 Metrics Exporters

This section cover how a Theodolite framework [35] is used to get metrics and to run
experiments in cloud environment.

3.4.1 Kafka Metrics Exporters

Theodolite comes with a set of tools which are used to export metrics from running pods.

EC2 worker node

pod pod

kafka-pod-0 kakfa exporter

EC2 worker node

pod pod

kafka-pod-1 kakfa exporter

EC2 worker node

pod pod

kafka-pod-2 kakfa exporter

EC2 infra node

pod

Prometheus

pod

Grafana

EKS

Figure 13. Kafka metrics exporter that sends metrics from JMX exporter to Prometheus.

On Figure 13 is an example of Kafka metrics exporter. It reads metrics from Kafka’s JMX
exporter about consumer groups, commit lag, topics, topic partitions, topic offsets.

31



3.4.2 Kubernetes and Worker Metrics Exporters

Kubernetes setup in this study is coming with Kubernetes metrics services [51] which are
configured by Theodolite. Metrics diagram is depicted on Figure 14.

EC2 Worker node

pod

Worker

pod

Prometheus exporter

EC2 Kafka broker node

pod

pod

Kafka broker

Prometheus exporter

EC2 Infra node

pod

Grafana

pod

Prometheus

Kafka broker
metrics

Kafka streams / Flink
metrics

CPU/ Network
metrics

Kubernetes metrics
service

Sending metrics
Getting metrics

Figure 14. Kubernetes and worker metrics exporters.

Kubernetes metrics services expose metrics about node network utilization and CPU
consumption. All exposed metrics get saved to Prometheus that makes them accessible by
executing PromQL. For example, Grafana queries PromQL queries to plot real time charts
with used cluster resources.

3.4.3 Latency Exporter

The Latency exporter measures the latency between when a message was generated by
load generator and when it was committed to a Kafka log. Provides positive and negative
latencies as metrics that are available in Prometheus as p50, p90, p95. These latencies get
calculated by micrometer [52].

32



Positive Latency If the latency is positive (a message commit time is later than event
time).

Negative Latency If the latency is negative (a message commit time is earlier than event
time)

3.5 Benchmarks Setup

Theodolite is responsible for a full lifecycle of benchmarks execution with a set of Kuber-
netes deployment configurations. The General diagram is depicted on Figure 15.

Worker node 

pod

Worker

Load generator node

pod

Load
generator

Infra node

pod

Theodolite
operator

Kafka node

pod

Kafka
broker

deploy deploy

Manages
kafka topics

Deploys load
generator

Deploys
worker

EC2 instance contents

pod

Grafana

kubectl apply -f flink-execution.yaml

Executes metrics
queries

Saves metrics queries
result as csv files

Kubernetes
storage

Figure 15. Theodolite manages deployment and undeployment of load generator and
workers during experiment execution.

To run execution with Theodolite, some preconfiguration has to be made. Theodolite
needs to get access to Kubernetes deployment files for Kafka Streams, Apache Flink.
Deployment for load generator and monitoring tools comes with Theodolite our of the box.
For custom usage, it is possible to override some deployment configurations. Apache Flink
and Kafka Streams deployment files have to be stored in Kubernetes as config maps [53].
After each benchmark execution, Theodolite automatically undeploys load generator and
workers.

33



3.6 Chaos Engineering with Chaos Mesh

EC2 worker node 1

pod

pod

Worker 1

Chaos mesh

EC2 worker node 2

pod

pod

Worker 2

Chaos mesh

EC2 infra node

pod

Chaos mesh
controller

Pod kill command

Worker node group Infra node group

Figure 16. Example of Chaps Mesh periodic Pod kill. Chaos Mesh controller selects Chas
Mesh daemon to and sends a message to kill the worker.

Chaos Mesh [46] is a tool used in the Kubernetes environment to simulate different kinds
of failures. In this case study it is used to kill worker node by using pod selector. Each
deployed worked has its own label, for example, type:worker. For all experiments, Chaos
Mesh is configured to kill worker pods every 3 minutes. An example use of Chaos Mesh
in this case study is depicted on Figure 16. Chaos Mesh installs Chaos daemon on each
worker node, such that has Chas Mesh contoller has access to worker pods for failure
simulation. However, Kubernetes quite fast redeploys killed worker replicas, but this
time is more than enough to find valuable metrics about how the system would behave.
For example, Kafka Streams and Apache Flink use different re-partitions algorithms to
handle load balancing. Depending on re-partitions strategies, this case study can show this
difference by measurement a stare recovery time.

3.7 Experiment Setup

This section describing experiment execution steps to show how to deploy benchmarks
setup and get benchmarks as csv files from scratch.

3.7.1 Prerequisite

To get started with benchmarks execution, some steps need to be finished first.

34



Prototype compilation Build prototypes source code.

Docker images Once code is compiled, Docker images need to be built and deployed to
ECR [54] service which is AWS image storage.

Kubernetes Deployment configuration Configure deployment configuration files for
Apache Flink and Kafka Streams prototypes.

Built Docker images and configured Kubernetes deployment files are prerequisite to get
started with Theodolite and EKS deployment.

3.7.2 EKS Cluster

Execute command with eksctl tool EKS cluster configuration in cluster.yaml 3.7.2.

e k s c t l c r e a t e c l u s t e r − f c l u s t e r . yaml

Once the cluster is created, EBS and EFS network storage have to be configured. For EFS
the following installation guide needs to be done first [55]. The Next step is applying EBS
and EFS storage configuration 3.7.2.

k u b e c t l a p p l y − f kafka − s t o r a g e − c l a s s . yaml
k u b e c t l a p p l y − f f l i n k − s t o r a g e − c l a s s . yaml

3.7.3 Theodolite Configuration

Prerequisite is values.yaml with defined node selector for EKS node groups, it should not
be installed to worker and load generator nodes.

helm i n s t a l l t h e o d o l i t e t h e o d o l i t e / t h e o d o l i t e − f v a l u e s . yaml

These Kubernetes config maps load deployment files to Kubernetes config such that
Theodolite has access to files within Kubernetes.

k u b e c t l c r e a t e conf igmap −−from − f i l e . / s h u f f l e − load − g e n e r a t o r /
k u b e c t l c r e a t e conf igmap −−from − f i l e . / s h u f f l e − l a t e n c y − e x p o r t e r /
k u b e c t l c r e a t e conf igmap −−from − f i l e . / s h u f f l e − k s t r e a m s /
k u b e c t l c r e a t e conf igmap −−from − f i l e . / s h u f f l e − f l i n k /

These commands tell Theodolite how to access config maps created in a previous step
3.7.3.

35



k u b e c t l a p p l y − f t h e o d o l i t e −benchmark − k s t r e a m s . yaml
k u b e c t l a p p l y − f t h e o d o l i t e −benchmark − f l i n k . yaml

At this step, deployment configurations should be ready to be used during experiments.

3.7.4 Running Experiments

To run experiments, Thedolite is listening for execution files to be applied but kubectl.
Theodolite Kubernetes execution file represents instruction for Theodolite operator about
how to run experiments. For example, what services to deploy, how log should experiment
be running, environmental variables, how many repeats have to be. Experiment execution
could be described in the following steps:

Appy execution config Once Theodolite operator found the execution config, it’s starting
deploying components which are need to be running only during the experiment
execution. In this case study, these are: load generator, latency exporter, Kafka
Streams or Apache Flink workers replicas.

Running experiment Based on the execution config, the experiment is running for a
certain time period, in this case study it’s 18 minutes.

Finishing experiment Once the execution time has passed, Theodolite operator undeploy,
deployed services at execution start, executes PromQL queries to get benchmarks
from Grafana, and saves them as CSV files.

Examples of csv files with recorded benchmarks produced by Theodolite operator. Each
experiment has its own set of benchmarks.

exp3_managerNodesDiskReadMB_2s_1 . csv
e x p 3 _ g e n e r i c _ l a t e n c y _ p 9 0 _ 3 0 s _ 1 . csv
e x p 3 _ k a f k a B r o k e r N o d e s C P U s P e r c e n t a g e U t i l i z a t i o n _ 2 s _ 1 . csv
e x p 3 _ w o r k e r N o d e s C P U s P e r c e n t a g e U t i l i z a t i o n _ 2 s _ 1 . csv

36



4. Experiments Results and Findings

4.1 Introduction

This section is covering experiments results that were gotten in this case study. The main
idea behind benchmarks and metrics in the case study is to understand the following
details:

■ How fast two systems recover from unexpected faults.
■ Partition balancing behavior in case of unexpected faults.
■ How much network traffic do systems use.
■ How much CPU is used to find most effective nodes for workers, production cost

depends on the type of nodes.

All experiments were executed in Kubernetes environments, which means all replicas
that get periodically killed by Chaos Mesh automatically restarted by Kubernetes. Both
prototypes based on Kafka Streams and Apache Flink use the same Kafka records commit
time which is 2 seconds for all experiments. Such record commit time is supposed to
achieve similar stateful streaming behavior for both prototypes. For this case study were
chosen two main scenarios, when 2 of 8 cluster workers are killed for a short period and
when all workers 8 of 8 are killed. Such scenarios should give an overview about how two
systems behave if part of workers get killed and a whole worker cluster.

■ Kafka Streams with having 8 worker replicas killed every 3 minutes
■ Kafka Streams with having 2 worker replicas killed every 3 minutes
■ Apache Flink with having 2 worker replicas killed every 3 minutes
■ Apache Flink with having 8 worker replicas killed every 3 minutes

For each experiment were chosen the following parameters:

Workers 8 replicas

Semantics At least once semantics

Experiment execution time 18 minutes

Records per second 200000

37



Record size 1KB

Number of Kafka topic partitions 50

Chaos Mesh failure period 3 minutes

Number of states 1000

Kafka Streams commit time 2 seconds

Apache Flink checkpoint save period 2 seconds

4.1.1 Benchmarks

Input Records per Second records that are coming from a Kafka input topic.

Output Records per Second processed records that get sent to a Kafka output topic.

Lag Trend denotes the difference between the last record produced by the producer and
the offset committed by the consumer group. Defines how fast a cluster of workers
is able to process an incoming load from a Kafka input topic. Such a benchmark
combines all partitions that are assigned to a workers consumer group.

Lag Trend per Partition denotes Lag trend for each partition separately.

CPU Utilization denotes how much CPU worker node consumes during the experiment
in percentages.

Network Recevied denotes how much network traffic in MB worker nodes received
during the experiment.

Network Transmitted denote how much network traffic in MB worker nodes transmitted
during the experiment.

Definitions of vertical red and green lines.

Red vertical line moment when workers get killed by Chaos Mesh.

Green vertical line moment when the system produces the expected output record rate
that is 100k records per second.

38



4.2 Benchmarking Kafka Streams Fault Tolerance

input group by processor output

input group by processor output

Kafka Streams Worker 1

Kafka Streams Worker 2

Kafka as changelog storage for
fault tolerance cases

partition

partition

partition

partition

partition

partition

partition

partition

Stage
changelogs

Kafka Changelogs 

pod

pod

Stream shuffle

State RocksDB as
state storage

Figure 17. Illustrative example of Kafka Streams workers for stateful stream processing.
implemented model also includes record match service between input and grouping blocks.

The model on Figure 17 shows fault tolerance model which is used for experiments with
Kafka Streams. Each Kafka Streams worker has its own local state. In case of a fault
tolerance, the state gets restored using a Kafka changelog topic. Kafka Streams workers
are intended to run only with Kafka cluster.

39



4.2.1 Analyzing 2-Pod Failures in an 8-Pod Cluster

0 200 400 600 800 1000
Time (s)

0k

200k

400k

600k

800k

In
pu

t R
ec

or
ds

 p
er

 S
ec

on
d 10 seconds period

30 seconds period

0 200 400 600 800 1000
Time (s)

0k

50k

100k

150k

Ou
tp

ut
 R

ec
or

ds
 p

er
 S

ec
on

d

10 seconds period
30 seconds period

0 200 400 600 800 1000
Time (s)

0M

2M

4M

6M

8M

10M

La
g 

Tr
en

d

0 200 400 600 800 1000
Time (s)

0k

10k

20k

30k

40k

50k

La
g 

Tr
en

d 
pe

r P
ar

tit
io

n

Figure 18. Benchmarks for Kafka Streams experiment in case of 2 workers failure. Red
vertical line is a start of the failure green vertical line is a moment when the system is back
to a normal state and producing expected load of records.

This set of benchmarks on Figure 18 contains four different benchmarks which describe
system behavior for several repetitive failures.

40



The fault tolerance process based on benchmarks could be described in the following way.

Workers consumer group gets stopped During the failure, the input load and output
load get stopped for a short period of time. At this moment, the consumer group is
busy with rebalancing cluster workers and repartition Kafka input topic. Rebalancing
process also includes state recalculation based on last commited records.

Consumer group lag increasing While a consumer group is not polling new records, the
number of uncommited records in the input topic is actively growing. The input
topic is still getting populated by the Load generator while the consumer group is
being repartitioned. In can be seen on the Lag Trend chart. On the Lag Trend per
Partition repartition can be seen for many partitions.

Repartition is finished Workers in the consumer group start actively polling new records
such that the number of records in the output topic is actively growing to process
records that have come while the consumer group wasn’t polling.

The system is getting back to normal processing state The cluster of workers is able to
process the previously uncommited records and new incomming records. Delayed
records processing is finished once the output is at 100k records per second.

From the green vertical line to the next red line, the system is processing the load in the
normal state. At the next red line, the rebalancing process repeats. Benchmarks show that
rebalacing looks relevantly identically for all recorded failures. However, such frequent
failures are not expected to happen in production. Such a rebalancing process might look
the same way in case of cluster worker redeployment with a new worker version which is
working under a high load. The process is also known as draining or draining in Kubernetes
[4].

Another set of benchmarks on Figure 19 show consumed resources for all workers during
the experiment. These benchmarks show how a network traffic and CPU utilization change
during a state recovery. Network traffic keeps being stable while the system is in a normal
processing state. The average time from a fault to a normal execution state is about 143
seconds.

41



0 200 400 600 800 1000
Time (s)

20

40

60
CP

U 
Ut

iliz
at

io
n 

(%
)

0 200 400 600 800 1000
Time (s)

0

25

50

75

100

125

Ne
tw

or
k 

Re
ce

iv
ed

 (M
B)

0 200 400 600 800 1000
Time (s)

0

20

40

60

Ne
tw

or
k 

Tr
an

sm
itt

ed
 (M

B)

Figure 19. Resources consumption during rebalancing a state recovery in case of 2 worker
failures. Red vertical line denote a start of a fault, and the green vertical line is when the
system gets back to normal state.

42



4.2.2 Analyzing 8-Pod Failures in an 8-Pod Cluster

0 200 400 600 800 1000
Time (s)

0k

100k

200k

300k

400k

500k

In
pu

t R
ec

or
ds

 p
er

 S
ec

on
d

10 seconds period
30 seconds period

0 200 400 600 800 1000
Time (s)

0k

50k

100k

150k

200k

Ou
tp

ut
 R

ec
or

ds
 p

er
 S

ec
on

d

10 seconds period
30 seconds period

0 200 400 600 800 1000
Time (s)

0M

5M

10M

15M

La
g 

Tr
en

d

0 200 400 600 800 1000
Time (s)

0k

10k

20k

30k

40k

La
g 

Tr
en

d 
pe

r P
ar

tit
io

n

Figure 20. Benchmarks for Kafka Streams experiment in case of 8 workers failure. Worker
cluster is fully killed. Red vertical line is a start of the failure green vertical line is a
moment when the system is back to a normal state and producing expected load of records.

This experiment is trying to get metrics for the case when all workers get killed. It has
the same rebalacing life cycle as described in the first experiment. 4.2.1 According to

43



benchmarks on Figure 20 The average time from a fault to a normal execution state is
about 153 seconds, that is only 10 seconds longer than in experiment 4.2.1. However,
network resources consumption is more extensive since all workers are involved Figure 21.
Also, all partitions are involved into repartition, which can be seen on Figure 20 for Lag
Trend and Lag Trend per Partition.

0 200 400 600 800 1000
Time (s)

20

40

60

CP
U 

Ut
iliz

at
io

n 
(%

)

0 200 400 600 800 1000
Time (s)

0
20
40
60
80

100

Ne
tw

or
k 

Re
ce

iv
ed

 (M
B)

0 200 400 600 800 1000
Time (s)

0

10

20

30

40

Ne
tw

or
k 

Tr
an

sm
itt

ed
 (M

B)

Figure 21. Resources consumption during rebalancing and a state recovery in case of all
workers failure. Red vertical line denote a start of a fault, and the green vertical line is
when the system gets back to normal state.

44



4.3 Benchmarking Apache Flink Fault Tolerance

Flink Kafka
Source 1

Flink Kafka
Source 2

partition

partition

partition

partition

group by

group by

Proccesor

Proccesor

Flink Kafka
Sink 1

Flink Kafka
Sink 2

Stream shuffle

partition

partition

partition

partition

Directed execution graph

Directed execution graph

Flink Task Manager 1

Flink Task Manager 2

Flink Job Manager

Task manage state storage

Task manager state storage

Figure 22. Illustrative example of Apache Flink workers for stateful stream processing.
implemented prototype also includes record match service between input and grouping
blocks.

The prototype model on Figure 22 is based on Apache Flink. It uses the same Kafka input
and Kafka output topics as Kafka Streams prototype on Figure 17. Important difference
for Kafka Streams implementation is that Flink uses checkpoints for state recovery. In this
prototype, the state checkpoints are stored in EFS network storage which is mounted and
connected to Flink workers using Kubernetes and AWS storage configuration.

45



4.3.1 Analyzing 2-Pod Failures in an 8-Pod Cluster

0 200 400 600 800 1000
Time (s)

0k

5000k

10000k

15000k

In
pu

t R
ec

or
ds

 p
er

 S
ec

on
d 10 seconds period

30 seconds period

0 200 400 600 800 1000
Time (s)

0k

50k

100k

150k

200k

Ou
tp

ut
 R

ec
or

ds
 p

er
 S

ec
on

d 10 seconds period
30 seconds period

0 200 400 600 800 1000
Time (s)

0M

1M

2M

3M

4M

5M

La
g 

Tr
en

d

0 200 400 600 800 1000
Time (s)

0k

200k

400k

600k

800k

1000k

La
g 

Tr
en

d 
pe

r P
ar

tit
io

n

Figure 23. Benchmarks for Apache Flink experiment in case of 2 workers failure. Worker
cluster is fully killed. Red vertical line is a start of the failure green vertical line is a
moment when the system is back to a normal state and producing expected load of records.

Balancing process is also the same as described in 4.2.1, Since Flink worker cluster is also
a Kafka consumer group that’s polling records from a Kafka input topic. On the Figure 23

46



depicted the same benchmarks as on Figure 18. Benchmarks on Figure 24 denote resource
consumption. The average time from a fault to a normal execution state is about 113
seconds.

0 200 400 600 800 1000
Time (s)

20

40

60

80

CP
U 

Ut
iliz

at
io

n 
(%

)

0 200 400 600 800 1000
Time (s)

0

25

50

75

100

Ne
tw

or
k 

Re
ce

iv
ed

 (M
B)

0 200 400 600 800 1000
Time (s)

0

10

20

30

40

Ne
tw

or
k 

Tr
an

sm
itt

ed
 (M

B)

Figure 24. Resources consumption during balancing and a state recovery in case of 2
worker failures. Red vertical line denote a start of a fault, and the green vertical line is
when the system gets back to normal state.

47



4.3.2 Analyzing 8-Pod Failures in an 8-Pod Cluster

0 200 400 600 800 1000
Time (s)

0k

5000k

10000k

15000k

20000k

In
pu

t R
ec

or
ds

 p
er

 S
ec

on
d 10 seconds period

30 seconds period

0 200 400 600 800 1000
Time (s)

0k

50k

100k

150k

Ou
tp

ut
 R

ec
or

ds
 p

er
 S

ec
on

d

10 seconds period
30 seconds period

0 200 400 600 800 1000
Time (s)

0M

1M

2M

3M

La
g 

Tr
en

d

0 200 400 600 800 1000
Time (s)

0k

500k

1000k

1500k

La
g 

Tr
en

d 
pe

r P
ar

tit
io

n

Figure 25. Benchmarks for Apache Flink experiment in case of 8 workers failure. Worker
cluster is fully killed. Red vertical line is a start of the failure green vertical line is a
moment when the system is back to a normal state and producing expected load of records.

These benchmarks on Figure 25 and resources consumption benchmarks on Figure 26
denote Apache Flink performance in case of all workers in worker cluster get killed. The

48



average time from a fault to a normal execution state is about 114 seconds. That it’s quite
an impressive result, 1 second difference comparing to benchmarks with 2 workers on
Figure 23.

0 200 400 600 800 1000
Time (s)

20

40

60

80

CP
U 

Ut
iliz

at
io

n 
(%

)

0 200 400 600 800 1000
Time (s)

0

25

50

75

100

Ne
tw

or
k 

Re
ce

iv
ed

 (M
B)

0 200 400 600 800 1000
Time (s)

0

10

20

30

40

Ne
tw

or
k 

Tr
an

sm
itt

ed
 (M

B)

Figure 26. Resources consumption during balancing and a state recovery in case of 8
worker failures. Red vertical line denote a start of a fault, and the green vertical line is
when the system gets back to normal state.

49



4.4 Comparative Analysis

This section is comparing Apache Flink and Kafka Streams benchmarks on the same
chart to observe a behavior difference in two systems. Important notice, workers failures
happened in different moments since for Kafka Streams and Flink, due to Chaos Mesh
cron jobs.

4.4.1 Input Throughput

0 200 400 600 800 1000
Time (s)

0M

5M

10M

15M

Re
co

rd
s p

er
 S

ec
on

d 
(rp

s) Kafka Streams
Flink

Figure 27. Input throughput for Kafka records in case of 2 workers. Failure period for
kafka Stream and Apache Flink is not synced but happens within the same period.

0 200 400 600 800 1000
Time (s)

0M

5M

10M

15M

20M

Re
co

rd
s p

er
 S

ec
on

d 
(rp

s) Kafka Streams
Flink

Figure 28. Input throughput for Kafka records in case of 8 workers. Failure period for
kafka Stream and Apache Flink is not synced but happens within the same period.

In both cases on Figure 27 and Figure 28 Flink is showing extreme high input rate
comparing to Kafka Streams. Flink uses its own offset commit mechanism in case of fault
tolerance [56]. Also, such behavior is due to faster startup time for Flink workers, CPU
metrics on Figures 26 24 for Flink and on Figures 19 21 for Kafka Streams show that Flink
workers get started faster.

50



4.4.2 Output Throughput

0 200 400 600 800 1000
Time (s)

0k

50k

100k

150k

200k

Re
co

rd
s p

er
 S

ec
on

d 
(rp

s) Kafka Streams
Flink

Figure 29. Output throughput for Kafka records in case of 2 workers failures. Failure
period for kafka Stream and Apache Flink is not synced but happens within the same
period.

0 200 400 600 800 1000
Time (s)

0k

50k

100k

150k

200k

Re
co

rd
s p

er
 S

ec
on

d 
(rp

s) Kafka Streams
Flink

Figure 30. Output throughput for Kafka records in case of 8 worker failures. Failure period
for kafka Stream and Apache Flink is not synced but happens within the same period.

Interesting behavior can be seen on Figure 29 and 30. On the Figure 29 Flink workers
produce higher output rate rather than Apache Flink while on Figure 30 Kafka Streams
produce higher rate. This behavioral could be described in the following way. Since CPU
metrics show that Kafka Streams workers need more startup time, especially if a whole
worker cluster was down for a short period. During a downtime time, the load generator
has produced a lot of uncommited records, that Kafka Streams workers start processing
later comparing to Flink. To catch up with real time and process delayed records, Kafka
Streams has to process more records that lead to a higher output. In the case of 2 workers
downtime, Kafka Streams need to wait only for 2 worker. Flink is able to start processing
records sooner, for this reason, Flink needs to process less uncommited records.

51



4.4.3 Lag Trend

Lag trend metric is described in the benchmarks section 4.1.1.

0 200 400 600 800 1000
Time (s)

0M

2M

4M

6M

8M

10M

La
g 

tre
nd

Kafka Streams
Flink

Figure 31. Lag trend for worker cluster consumer group in case of 2 worker failures.
Failure period for kafka Stream and Apache Flink is not synced but happens within the
same period.

0 200 400 600 800 1000
Time (s)

0M

5M

10M

15M

La
g 

tre
nd

Kafka Streams
Flink

Figure 32. Lag trend for worker cluster consumer group in case of 8 worker failures.
Failure period for kafka Stream and Apache Flink is not synced but happens within the
same period.

As described in 4.4.2, due to faster startup time and different records offset processing,
Flink is able to process input records with less delay. For this reason, there is such a lag
difference on Figure 31 and Figure 32.

52



4.4.4 CPU utilization

0 200 400 600 800 1000
Time (s)

10

20

30

40

50

60

CP
U 

Ut
iliz

at
io

n 
(%

)

Kafka Streams
Flink

Figure 33. Average CPU utilization for all workers in case of 2 worker failures. Failure
period for kafka Stream and Apache Flink is not synced but happens within the same
period.

0 200 400 600 800 1000
Time (s)

10

20

30

40

50

60

CP
U 

Ut
iliz

at
io

n 
(%

)

Kafka Streams
Flink

Figure 34. Average CPU utilization for all workers in case of 8 worker failures. Failure
period for kafka Stream and Apache Flink is not synced but happens within the same
period.

CPU metrics on Figure 33 and 34 show faster Flink workers startup for both cases. Kafka
Streams workers show higher downtime.

53



4.4.5 Network Traffic

0 200 400 600 800 1000
Time (s)

0 MB

20 MB

40 MB

60 MB

80 MB

Av
er

ag
e 

Ne
tw

or
k 

Re
ce

iv
ed

 (M
B) Kafka Streams

Flink

Figure 35. Average inbound network traffic for all workers in case of 2 worker failures.
Failure period for kafka Stream and Apache Flink is not synced but happens within the
same period.

0 200 400 600 800 1000
Time (s)

0 MB

20 MB

40 MB

60 MB

80 MB

Av
er

ag
e 

Ne
tw

or
k 

Re
ce

iv
ed

 (M
B) Kafka Streams

Flink

Figure 36. Average inbound network traffic for all workers in case of 8 worker failures.
Failure period for kafka Stream and Apache Flink is not synced but happens within the
same period.

0 200 400 600 800 1000
Time (s)

0 MB

20 MB

40 MB

60 MB

80 MB

Av
er

ag
e 

Ne
tw

or
k 

Re
ce

iv
ed

 (M
B) Kafka Streams

Flink

Figure 37. Average outbound network traffic for all workers in case of 2 worker failures.
Failure period for kafka Stream and Apache Flink is not synced but happens within the
same period.

54



0 200 400 600 800 1000
Time (s)

0 MB

20 MB

40 MB

60 MB

80 MB
Av

er
ag

e 
Ne

tw
or

k 
Re

ce
iv

ed
 (M

B) Kafka Streams
Flink

Figure 38. Average outbound network traffic for all workers in case of 8 worker failures.
Failure period for kafka Stream and Apache Flink is not synced but happens within the
same period.

Inbound and outbound network traffic is used for a state recovery and incoming load
processing. In case of 8 worker failures Figure 36 and Figure 38 Kafka Streams uses higher
network to process faster uncommited records during the downtime. Output record rate on
Figure 20 is higher to due to longer downtime for Kafka Streams workers. However, Flink
workers show high spikes in case of 2 worker failures, but for a shorter period.

55



5. Related Work

Stream processing is a domain that focuses on continuously processing and analyzing data
streams in real-time or near real-time. Compared to traditional batch processing, where
data is collected, stored, and then processed, stream processing deals with unbounded
data sets that are continuously generated and need to be processed on the fly [26, 25, 19,
23]. This approach is essential for applications requiring real-time analytics, such as fraud
detection, network monitoring, and real-time recommendation systems.

One of the first mentions of the stream processing concept appeared in the early 1990s when
databases evolved into data stream management systems (DSMS). Early research focused
on developing algorithms and systems that could process data incrementally as it arrived
rather than relying on the conventional batch processing model. One of the pioneering
projects in this field was the Continuous Query Language (CQL) developed at Stanford
University, which allowed users to express continuous queries over data streams. The first
Complex Event Processing (CEP) systems appeared in the 2000s. Early CEP systems
like Esper and Apache Storm provided the groundwork for modern stream processing
frameworks by introducing concepts such as event windows, stateful processing, and
real-time analytics. The rise of big data in the late 2000s and early 2010s brought new
challenges and opportunities for stream processing. Traditional CEP systems struggled
to handle the massive scale and high velocity of big data, leading to the development of
distributed stream processing frameworks capable of scaling horizontally across many
clusters of nodes. Modern systems from this era include Apache Flink [14], Apache Spark
[8], Kafka Streams [1]. The history of stream processing is well described in A Survey on
the Evolution of Stream Processing Systems [57].

Choosing the most suitable stream processing system for a specific use case can be chal-
lenging. In such cases, benchmarks provide a clearer understanding of system performance
under various conditions. The Theodolite framework [35] was developed to evaluate the
performance of big data systems, particularly in cloud environments based on Kubernetes.
This framework includes scalability benchmarks for Apache Flink and Kafka Streams.
One use case involves processing data from thousands of sensors in real-time.

Results show how Apache Flink can be efficient in case of increasing data volumes, such
that Flink requires fewer replicas to handle the same amount of data. Another study
covers benchmarks for windowing aggregations [58]. Apache Flink, Apache Storm, and

56



Apache Spark are considered for SQL-based windowing, where Apache Flink shows
higher throughput. The recent release of ShuffleBench [28] that is focusing on scalability
benchmarks evaluation of Apache Flink, Hazelcast Jet, Apache Spark, and Kafka Streams.

The following studies [59] [60] focus primarily on checkpoints and state recovery use cases.
The foundation covered in these studies gives a full overview of Flink’s performance in
case of a state recovery, especially in case of extensive data streams. Research conducted
by colleagues from Tartu University offers additional insights into performance [61],
demonstrating that Apache Flink perform having a low latency even under high input
throughput compared to other frameworks.

57



6. Conclusion

This section provides results and future work that should provide deep knowledge about
systems performance.

6.1 Summary

Both prototypes based on the Apache Kafka and Apache Flink frameworks demonstrated
robust capabilities in state restoration during short-term replica failures. However, several
performance insights appeared in the distributed environment while processing the same
input data for all experiments. In an experiment involving a cluster of 8 workers, the
average recovery time to return to normal processing after 2 workers failed was 143
seconds for Kafka Streams and 113 seconds for Apache Flink. When the entire cluster
of 8 workers gets killed, the average recovery time to return to normal processing was
153 seconds for Kafka Streams and 114 seconds for Apache Flink. For both experiments,
Apache Flink has shown better performance, for the first is about 30 seconds and for the
second is 40 seconds. The main reason behind this behavior is Apache Flink’s ability to
complete rebalancing faster and start processing of incoming records sooner. CPU metrics
from the case study show that the Kafka Streams cluster experiences higher downtime. The
lag trend metric in this case study showed better performance for Apache Flink. This means
that, despite latency after rebalancing and state recovery, Apache Flink processes incoming
records with less latency for all experiments. A significant difference was recorded when
the entire cluster gets killed.

6.2 Future work

Such results just depict one of use cases, however, benchmarks could be significantly
extended with having set of additional configurations. This research could be extended
with additional configurations.

JVM Different Java versions should be able to show a performance difference especially
with new Java 21 garbage collector release. Both Apache Flink and Kafka Streams
are JVM based frameworks.

State Backend The main state backend for Kafka Streams is RocksDB. However, Apache
Flink provides different state backend setups and RocksDB as well.

58



State Size Different state size in a case of fault tolerance should bring more insights about
frameworks for real production systems that use large states.

Another direction of benchmarking involves testing various failure scenarios that are
common in production systems, such as slow networking, disk backpressure, and running
out of disk space. That would help extend chaos engineering knowledge for the critical
real-time systems.

59



References

[1] Kafka Streams. URL: https://kafka.apache.org/documentation/
streams/.

[2] Apache Flink. URL: https://flink.apache.org/.

[3] Apache Kafka. URL: https://kafka.apache.org/.

[4] Kubernetes. URL: https://kubernetes.io/.

[5] Marios Fragkoulis, Paris Carbone, and Vasiliki Kalavri Asterios Katsifodimos.
“A survey on the evolution of stream processing systems”. In: arXiv preprint

arXiv:2103.10169 (2023). URL: https://link.springer.com/article/
10.1007/s00778-023-00819-8.

[6] Apache S4. URL: https://incubator.apache.org/projects/s4.
html.

[7] Jeyhun Karimov et al. “Benchmarking Distributed Stream Data Processing Systems”.
In: https://arxiv.org/abs/1802.08496 (2018).

[8] Matei Zaharia et al. “Structured Streaming: A Declarative API for Real-Time Appli-
cations in Apache Spark”. In: Proceedings of the 2018 International Conference

on Management of Data. 2018. URL: https://people.eecs.berkeley.
edu/~matei/papers/2018/sigmod_structured_streaming.pdf.

[9] Amazon Web Services. Amazon EC2 Instance Types. Accessed: 2024-05-05. 2024.
URL: https://aws.amazon.com/ec2/instance-types/.

[10] Xiangqun Meng and Zhiying Wang. “Cloud Computing Research and Development
Trend”. In: 2014 Second International Conference on Future Generation Commu-

nication Technology (FGCT). IEEE, 2014, pp. 89–92. DOI: 10.1109/FGCT.
2014.7066349. URL: https://ieeexplore.ieee.org/document/
6847479.

[11] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: OSDI’04: Sixth Symposium on Operating System Design and

Implementation. San Francisco, CA, 2004, pp. 137–150.

[12] Ralf Lämmel. “Google’s MapReduce programming model — Revisited”. In:
Science of Computer Programming 70.1 (2008), pp. 1–30. ISSN: 0167-6423.
DOI: https://doi.org/10.1016/j.scico.2007.07.001. URL:
https : / / www . sciencedirect . com / science / article / pii /

S0167642307001281.

60

https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://flink.apache.org/
https://kafka.apache.org/
https://kubernetes.io/
https://link.springer.com/article/10.1007/s00778-023-00819-8
https://link.springer.com/article/10.1007/s00778-023-00819-8
https://incubator.apache.org/projects/s4.html
https://incubator.apache.org/projects/s4.html
https://people.eecs.berkeley.edu/~matei/papers/2018/sigmod_structured_streaming.pdf
https://people.eecs.berkeley.edu/~matei/papers/2018/sigmod_structured_streaming.pdf
https://aws.amazon.com/ec2/instance-types/
https://doi.org/10.1109/FGCT.2014.7066349
https://doi.org/10.1109/FGCT.2014.7066349
https://ieeexplore.ieee.org/document/6847479
https://ieeexplore.ieee.org/document/6847479
https://doi.org/https://doi.org/10.1016/j.scico.2007.07.001
https://www.sciencedirect.com/science/article/pii/S0167642307001281
https://www.sciencedirect.com/science/article/pii/S0167642307001281


[13] Rabi Prasad Padhy and Rabi Prasad Padhy. “Big Data Processing with Hadoop-
MapReduce in Cloud Systems”. In: International Journal of Cloud Computing and

Services Science (IJ-CLOSER) 2.1 (Nov. 2012). DOI: 10.11591/closer.v2i1.
1508. URL: https://journal.iaescore.com/index.php/IJ-
CLOSER/article/view/1508.

[14] Paris Carbone et al. “Apache Flink: Stream and Batch Processing in a Single Engine”.
In: Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

36.4 (2015), pp. 28–38. URL: https://research.tudelft.nl/en/
publications/apache-flink-stream-and-batch-processing-

in-a-single-engine.

[15] Confluent. Kafka Streams Architecture. 2024. URL: https://docs.confluent.
io/platform/current/streams/architecture.html.

[16] Apache Flink. Powered by Apache Flink. Accessed: Your Access Date. 2023. URL:
https://flink.apache.org/what-is-flink/powered-by/.

[17] Netflix Technology Blog. Streaming SQL in Data Mesh. Accessed: Your Access
Date. Apr. 2023. URL: https://netflixtechblog.com/streaming-
sql-in-data-mesh-0d83f5a00d08.

[18] Confluent. Stateful Fault Tolerance. Accessed: Your Access Date. 2023. URL:
https://developer.confluent.io/courses/kafka-streams/

stateful-fault-tolerance/#stateful-fault-tolerance.

[19] Matei Zaharia et al. “Resilient distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing”. In: Proceedings of the 9th USENIX Conference on Net-

worked Systems Design and Implementation. Accessed: Your Access Date. San Jose,
CA: USENIX Association, Apr. 2012, p. 2. DOI: OptionalDOIifavailable.
URL: https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/zaharia.

[20] Paris Carbone et al. “Lightweight Asynchronous Snapshots for Distributed
Dataflows”. In: 2015. URL: https://arxiv.org/abs/1506.08603.

[21] Flink Kubernetes Operator. Accessed on: 01/02/2024. URL: https://nightlies.
apache.org/flink/flink-kubernetes-operator-docs-stable/.

[22] Xiangrui Meng et al. “MLlib: Machine Learning in Apache Spark”. In: Journal of

Machine Learning Research 17.34 (2016), pp. 1–7. URL: http://jmlr.org/
papers/v17/15-237.html.

[23] Asterios Katsifodimos and Sebastian Schelter. “Apache Flink: Stream Analytics at
Scale”. In: 2016 IEEE International Conference on Cloud Engineering Workshop

(IC2EW). 2016, pp. 193–193. DOI: 10.1109/IC2EW.2016.56.

61

https://doi.org/10.11591/closer.v2i1.1508
https://doi.org/10.11591/closer.v2i1.1508
https://journal.iaescore.com/index.php/IJ-CLOSER/article/view/1508
https://journal.iaescore.com/index.php/IJ-CLOSER/article/view/1508
https://research.tudelft.nl/en/publications/apache-flink-stream-and-batch-processing-in-a-single-engine
https://research.tudelft.nl/en/publications/apache-flink-stream-and-batch-processing-in-a-single-engine
https://research.tudelft.nl/en/publications/apache-flink-stream-and-batch-processing-in-a-single-engine
https://docs.confluent.io/platform/current/streams/architecture.html
https://docs.confluent.io/platform/current/streams/architecture.html
https://flink.apache.org/what-is-flink/powered-by/
https://netflixtechblog.com/streaming-sql-in-data-mesh-0d83f5a00d08
https://netflixtechblog.com/streaming-sql-in-data-mesh-0d83f5a00d08
https://developer.confluent.io/courses/kafka-streams/stateful-fault-tolerance/#stateful-fault-tolerance
https://developer.confluent.io/courses/kafka-streams/stateful-fault-tolerance/#stateful-fault-tolerance
https://doi.org/Optional DOI if available
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://arxiv.org/abs/1506.08603
https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-stable/
https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-stable/
http://jmlr.org/papers/v17/15-237.html
http://jmlr.org/papers/v17/15-237.html
https://doi.org/10.1109/IC2EW.2016.56


[24] Flink ML. Accessed on: 01/02/2024. URL: https://nightlies.apache.
org/flink/flink-ml-docs-release-2.3/docs/try-flink-

ml/java/quick-start/.

[25] Tyler Akidau et al. “The dataflow model: A practical approach to balancing cor-
rectness, latency, and cost in massive-scale, unbounded, out-of-order data process-
ing”. In: Proceedings of the VLDB Endowment 8.12 (2015), pp. 1792–1803. DOI:
10.14778/2824032.2824076.

[26] Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind

Reliable, Scalable, and Maintainable Systems. O’Reilly Media, 2017. ISBN: 978-
1449373320.

[27] Gwen Shapira, Neha Narkhede, and Todd Palino. Kafka: The Definitive Guide.
2nd ed. O’Reilly Media, 2020. ISBN: 978-1492043072.

[28] Sören Henning et al. “ShuffleBench: A Benchmark for Large-Scale Data Shuffling
Operations with Distributed Stream Processing Frameworks”. In: Proceedings

of the 15th ACM/SPEC International Conference on Performance Engineering.
ICPE ’24. ACM, May 2024. DOI: 10.1145/3629526.3645036. URL: http:
//dx.doi.org/10.1145/3629526.3645036.

[29] Confluent. Enabling Exactly-Once in Kafka Streams. Accessed: Your Access Date.
2023. URL: https://www.confluent.io/blog/enabling-exactly-
once-kafka-streams/.

[30] Apache Flink. An Overview of End-to-End Exactly-Once Processing in Apache Flink,

with Apache Kafka Too. Accessed: Your Access Date. Feb. 2018. URL: https://
flink.apache.org/2018/02/28/an-overview-of-end-to-end-

exactly-once-processing-in-apache-flink-with-apache-

kafka-too/.

[31] Confluent. Control Plane. Accessed: Your Access Date. 2023. URL: https :
//developer.confluent.io/courses/architecture/control-

plane/.

[32] K. Mani Chandy and Leslie Lamport. “Distributed Snapshots: Determining Global
States of a Distributed System”. In: ACM Transactions on Computer Systems

(Feb. 1985), pp. 63–75. URL: https://www.microsoft.com/en-us/
research/publication/distributed-snapshots-determining-

global-states-distributed-system/.

[33] Intel. Introduction to Hyperscan. Accessed: Your Access Date. 2023. URL: https:
//www.intel.com/content/www/us/en/developer/articles/

technical/introduction-to-hyperscan.html.

62

https://nightlies.apache.org/flink/flink-ml-docs-release-2.3/docs/try-flink-ml/java/quick-start/
https://nightlies.apache.org/flink/flink-ml-docs-release-2.3/docs/try-flink-ml/java/quick-start/
https://nightlies.apache.org/flink/flink-ml-docs-release-2.3/docs/try-flink-ml/java/quick-start/
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1145/3629526.3645036
http://dx.doi.org/10.1145/3629526.3645036
http://dx.doi.org/10.1145/3629526.3645036
https://www.confluent.io/blog/enabling-exactly-once-kafka-streams/
https://www.confluent.io/blog/enabling-exactly-once-kafka-streams/
https://flink.apache.org/2018/02/28/an-overview-of-end-to-end-exactly-once-processing-in-apache-flink-with-apache-kafka-too/
https://flink.apache.org/2018/02/28/an-overview-of-end-to-end-exactly-once-processing-in-apache-flink-with-apache-kafka-too/
https://flink.apache.org/2018/02/28/an-overview-of-end-to-end-exactly-once-processing-in-apache-flink-with-apache-kafka-too/
https://flink.apache.org/2018/02/28/an-overview-of-end-to-end-exactly-once-processing-in-apache-flink-with-apache-kafka-too/
https://developer.confluent.io/courses/architecture/control-plane/
https://developer.confluent.io/courses/architecture/control-plane/
https://developer.confluent.io/courses/architecture/control-plane/
https://www.microsoft.com/en-us/research/publication/distributed-snapshots-determining-global-states-distributed-system/
https://www.microsoft.com/en-us/research/publication/distributed-snapshots-determining-global-states-distributed-system/
https://www.microsoft.com/en-us/research/publication/distributed-snapshots-determining-global-states-distributed-system/
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html


[34] Amazon Web Services. Amazon EKS: Managed Kubernetes Service. Accessed:
2024-05-05. 2024. URL: https://aws.amazon.com/eks/.

[35] Sören Henning and Wilhelm Hasselbring. “Theodolite: Scalability Benchmark-
ing of Distributed Stream Processing Engines in Microservice Architectures”. In:
ResearchGate 208 (2021). DOI: 10.1016/j.bdr.2021.100209.

[36] Grafana Labs. Grafana: The open observability platform. Accessed: 2024-05-05.
2024. URL: https://grafana.com/grafana/.

[37] Prometheus Operator. Prometheus Operator: Easy monitoring definitions for Ku-

bernetes services. Accessed: 2024-05-05. 2024. URL: https://prometheus-
operator.dev/.

[38] Prometheus. Prometheus: Open-Source Systems Monitoring and Alerting Toolkit.
Accessed: 2024-05-05. 2024. URL: https://prometheus.io/.

[39] Amazon Web Services. Amazon EC2: Secure and resizable compute capacity in the

cloud. Accessed: 2024-05-05. 2024. URL: https://aws.amazon.com/ec2/.

[40] Kelsey Hightower, Brendan Burns, and Joe Beda. Kubernetes: Up and Running.
O’Reilly Media, Inc., 2019. ISBN: 9781492046530.

[41] Julien Pivotto and Brian Brazil. Prometheus: Up & Running. O’Reilly Media, Inc.,
2023. ISBN: 9781098131142.

[42] Amazon Web Services. Amazon Elastic Block Store (EBS). 2024. URL: https:
//aws.amazon.com/ebs/.

[43] Amazon Web Services. Amazon Elastic File System (EFS). 2024. URL: https:
//aws.amazon.com/efs/.

[44] Sören Henning and Wilhelm Hasselbring. “A configurable method for benchmarking
scalability of cloud-native applications”. In: Empirical Software Engineering 27
(2022). DOI: 10.1007/s10664-022-10162-1.

[45] Helm Project. Helm: The Package Manager for Kubernetes. Accessed: Your Access
Date. 2024. URL: https://helm.sh/.

[46] Chaos Mesh Project. Chaos Mesh: A Powerful Chaos Engineering Platform for

Kubernetes. 2024. URL: https://chaos-mesh.org/.

[47] Prometheus Project. Querying Basics. 2024. URL: https://prometheus.io/
docs/prometheus/latest/querying/basics/.

[48] Theodolite Project. Creating an Execution. 2024. URL: https : / / www .

theodolite.rocks/creating-an-execution.html.

[49] Apache Flink Project. Flink Architecture. 2024. URL: https://nightlies.
apache.org/flink/flink-docs-master/docs/concepts/flink-

architecture/.

63

https://aws.amazon.com/eks/
https://doi.org/10.1016/j.bdr.2021.100209
https://grafana.com/grafana/
https://prometheus-operator.dev/
https://prometheus-operator.dev/
https://prometheus.io/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://doi.org/10.1007/s10664-022-10162-1
https://helm.sh/
https://chaos-mesh.org/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://www.theodolite.rocks/creating-an-execution.html
https://www.theodolite.rocks/creating-an-execution.html
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/


[50] Amazon Web Services. Persistent Storage for Kubernetes. 2024. URL: https:
//aws.amazon.com/blogs/storage/persistent-storage-for-

kubernetes/.

[51] Kubernetes. Resource Metrics Pipeline. 2024. URL: https://kubernetes.
io/docs/tasks/debug/debug- cluster/resource- metrics-

pipeline/.

[52] Micrometer Project. Micrometer: Application Monitoring for JVM-based Systems.
2024. URL: https://micrometer.io/.

[53] Kubernetes. ConfigMaps. 2024. URL: https://kubernetes.io/docs/
concepts/configuration/configmap/.

[54] Amazon Web Services. Amazon Elastic Container Registry (ECR). 2024. URL:
https://aws.amazon.com/ecr/.

[55] Amazon Web Services. Amazon EFS CSI Driver. 2024. URL: https://docs.
aws.amazon.com/eks/latest/userguide/efs-csi.html.

[56] Flink Kafka Offset. 2024. URL: https : / / nightlies . apache . org /
flink/flink-docs-release-1.19/docs/connectors/datastream/

kafka/#consumer-offset-committing.

[57] Marios Fragkoulis et al. A Survey on the Evolution of Stream Processing Systems.
2023. arXiv: 2008.00842 [cs.DC].

[58] Jeyhun Karimov et al. “Benchmarking Distributed Stream Data Processing Systems”.
In: 2018 IEEE 34th International Conference on Data Engineering (ICDE). 2018,
pp. 1507–1518. DOI: 10.1109/ICDE.2018.00169.

[59] Paris Carbone et al. Lightweight Asynchronous Snapshots for Distributed Dataflows.
2015. arXiv: 1506.08603 [cs.DC].

[60] George Siachamis et al. CheckMate: Evaluating Checkpointing Protocols for Stream-

ing Dataflows. 2024. arXiv: 2403.13629 [cs.DC].

[61] Elkhan Shahverdi, Ahmed Awad, and Sherif Sakr. “Big Stream Processing Systems:
An Experimental Evaluation”. In: 2019 IEEE 35th International Conference on

Data Engineering Workshops (ICDEW). 2019, pp. 53–60. DOI: 10.1109/ICDEW.
2019.00-35.

64

https://aws.amazon.com/blogs/storage/persistent-storage-for-kubernetes/
https://aws.amazon.com/blogs/storage/persistent-storage-for-kubernetes/
https://aws.amazon.com/blogs/storage/persistent-storage-for-kubernetes/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/
https://micrometer.io/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://aws.amazon.com/ecr/
https://docs.aws.amazon.com/eks/latest/userguide/efs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/efs-csi.html
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/kafka/#consumer-offset-committing
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/kafka/#consumer-offset-committing
https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/datastream/kafka/#consumer-offset-committing
https://arxiv.org/abs/2008.00842
https://doi.org/10.1109/ICDE.2018.00169
https://arxiv.org/abs/1506.08603
https://arxiv.org/abs/2403.13629
https://doi.org/10.1109/ICDEW.2019.00-35
https://doi.org/10.1109/ICDEW.2019.00-35


Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Aleksandr Madisson

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Stateful Stream Processing: A Comparative Analysis of Apache Flink and
Kafka Streams frameworks”, supervised by Radu Irbe
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

17.05.2024

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

65


	Introduction
	Background and Motivation
	Problem Statement
	Batch Processing Model Overview

	Research Question and Objectives
	Selecting a Suitable Framework
	Deployment Environment
	Requirements Summary


	Theory Introduction
	Scalability Problems
	Stream Processing
	Stream Processing Challenges
	Directed Acyclic Graph Model in Stream Processing
	Kafka Cluster
	State Recovery
	Distributed Snapshots
	Change Logs

	Rule Based Matching Service

	Methodology
	Introduction
	Research Technical Tasks
	Kubernetes Cluster Setup
	EKS Node Groups
	EFS and EBS Storage Services

	Metrics Exporters
	Kafka Metrics Exporters
	Kubernetes and Worker Metrics Exporters
	Latency Exporter

	Benchmarks Setup
	Chaos Engineering with Chaos Mesh
	Experiment Setup
	Prerequisite
	EKS Cluster
	Theodolite Configuration
	Running Experiments


	Experiments Results and Findings
	Introduction
	Benchmarks

	Benchmarking Kafka Streams Fault Tolerance
	Analyzing 2-Pod Failures in an 8-Pod Cluster
	Analyzing 8-Pod Failures in an 8-Pod Cluster

	Benchmarking Apache Flink Fault Tolerance
	Analyzing 2-Pod Failures in an 8-Pod Cluster
	Analyzing 8-Pod Failures in an 8-Pod Cluster

	Comparative Analysis
	Input Throughput
	Output Throughput
	Lag Trend
	CPU utilization
	Network Traffic


	Related Work
	Conclusion
	Summary
	Future work

	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis

