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Introduction 
Ultrasound imaging technique was introduced to medical analyses in 1950s [1]. 
Since then it has been widely used in clinical application and is one of the most 
popular diagnostic method in medical diagnosis [2],[3]. The principle of 
ultrasound imaging is as follows [4]: an ultrasound transducer produces an 
acoustic wave and this acoustic wave propagates through the tissue and is 
partially reflected back because of the inhomogeneity of the tissue. The 
backscattered wave is received by the same transducer and further converted into 
a grayscale image which is then shown on a screen. Compared to other medical 
imaging techniques such as X-ray, computed tomography (CT) and magnetic 
resonance imaging (MRI), ultrasound imaging has several advantages. Firstly, 
an ultrasound machine has a short acquisition time [5]. The ultrasound machine 
is portable with relatively low cost [6]. And the ultrasound technique is non-
invasive with no hazardous radiation emission [7]. 

 

Limitations of ultrasound imaging 

However, ultrasound imaging has some limitations: 

 Ultrasound image quality is poor compared to MRI and CT images. The 
tissue boundary in an ultrasound image is ambiguous and it is difficult to 
precisely detect the position of the organ on an ultrasound image due to 
the low contrast of the ultrasound image [8]. 

 The quality of an ultrasound image depends highly on the ultrasound 
machine, the acquisition conditions and the operator. The interpretation 
of the ultrasound image is subjective and it needs considerable training 
to obtain the expertise by the clinicians [9].  

The low quality of ultrasound images limits the applications of the ultrasound 
imaging. To improve the quality of ultrasound images, many scientists are 
working on this challenging task [10],[11]. Mainly there are two research 
directions: one research direction is to improve the acquisition modality of 
ultrasound by investigating new probes [5], more sophisticated components [12] 
or more advanced apodization schemes [13],[14]; the other direction is 
ultrasound signal and image processing i.e. improving the ultrasound image by 
signal or image processing methods [15].  

 

Image segmentation for ultrasound image 

Image segmentation plays an important role in medical image analysis [16]. It is 
an important process for higher level image comprehension and is helpful for 
radiologists. It has wide applications such as in surgical path planning [17], in 
early disease detection [18] and in 3D reconstruction [19]. Unfortunately, the 
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noisy properties of ultrasound images decrease the performance of traditional 
algorithms which are developed for natural scenes [20].  

Many scientists are working on the improvement of segmentation algorithms for 
ultrasound images [21],[22]. One way is to treat the speckle noise in ultrasound 
images as a source of information which provides useful information about the 
internal structure of the organ tissue.  This concept is exploited widely in many 
applications such as classification [23], segmentation [24], registration [25].  

 

Challenges in ultrasound image segmentation  

Kidneys are essential organs and are located at the back of the abdomen [26]. 
Kidneys are bean shaped organs and are about 4-5 inches in length. Every year, 
many people suffer from chronic renal diseases due to diabetes mellitus, 
glomerulonephritis [27], etc. In Europe, kidney cancer accounts for nearly 3% of 
all cancer cases [28]. Because the kidney function failure can be life threatening, 
the detection of kidney disorders and diseases in the early stage is very crucial 
[29]. Ultrasound technique is widely used to diagnose kidney diseases in 
hospitals [30],[31]. Ultrasound imaging is the standard technique to examine 
renal abnormal structures such as stones, tumors, cysts [32],[33], etc.    

In clinical practise, the detection of kidney border is usually done manually by 
the radiologist which is time consuming and subjective [34], [35]. A great deal 
of expertise is needed to correctly recognize the organ tissue or the part that the 
radiologist is interested in. Image segmentation methods on the other hand offer 
potential advantages, and can help the radiologist speed up the process and save 
their time from the tedious work. The benefits of using image processing 
methods are [36]: 

 The kidney segmentation can be used in the surgical operations like 
puncturing. It plays an important role in the computer-aided diagnosis 
systems for kidney intervention. 

 The segmentation results of kidney from other tissue by image 
processing methods can further be used for other process steps such as 
reconstruction, registration.   

But due to the low ultrasound image quality and the presence of noise and 
artifacts, the detection of abnormal renal structure is difficult [21],[37].  The in 
vivo segmentation of kidney ultrasound images is a challenging task because of 
the following reasons [38]:  

  The kidney is a deformable organ. The patient posture during the scan, 
as well as the physical conditions of the patient such as stomach and 
intestine can affect the shape of the kidney.  

 The inner area of the kidney is not homogeneous. Its internal structure 
contains  vein, arteries, pelivs, etc.  
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 The border between the kidney and the nearby tissue is not very clear. In 
some cases, it is difficult even for a specialist to tell exactly where the 
border of the kidney is, because there might be an area with no boundary 
at all.  

Figure 0.1 shows an abdomen CT image with kidneys and a kidney ultasound 
image. Both images are obtained from East Tallinn Central Hospital, Estonia. 

 

   
Figure 0.1 CT abdomen image and kidney ultrasound image 

 

Contributions 

This manuscript addresses the segmentation problem of kidney ultrasound image 
by using statistical methods. It focuses on the following methodological aspects: 

  Statistical modeling of the ultrasound image signal to improve the 
detection of the kidney border. 

 Segmentation methods are based on level sets. By using the level sets, 
the algorithms are able to deal with topological change.  

The scientific contributions of this thesis are the following: 

 Developing a region based active contour algorithm which combines the 
Chan & Vese algorithm and the Bhattacharyya distance for ultrasound 
image segmentation. 

 Using the Rayleigh distribution for ultrasound image segmentation. A 
localized active contour framework is used for the kidney ultrasound 
image segmentation.    

 Developing an algorithm which combines the localized active contour 
and the region scalable fitting algorithm together for ultrasound image 
segmentation.  

 Showing that the proposed algorithms can improve the segmentation 
results for ultrasound image.  
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Organization of the thesis 

The manuscript is divided into four main sections. The first section provides the 
background of ultrasound imaging system. The first section mainly focuses on 
the noisy property of ultrasound image and discusses the speckle phenomenon 
and various existing statistical models for ultrasound image. An overview of the 
segmentation algorithms for ultrasound image is also included in the first section.  

In the second section, the speckle in the ultrasound image is exploited as a 
source of information and an algorithm which combines the Chan & Vese and 
the Bhattacharyya distance is proposed. The Rayleigh distribution is chosen as 
the ultrasound image intensity distribution. In the third section, a localized active 
contour framework is used and Rayleigh distribution and shifted Rayleigh 
distribution are chosen as the ultrasound image intensity distribution and a 
comparison between the performances of these two distributions is included. In 
the fourth section, an algorithm is proposed which can improve the segmentation 
result of region scalable fitting algorithm by introducing a localized factor into 
the region scalable fitting algorithm. Both synthetic and ultrasound images are 
used to test the performance of the proposed algorithms.  
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1  Background 
Ultrasound imaging is commonly used in clinical application. Compared to other 
medical image modalities, ultrasound is safe, low cost and relatively cheap. 
Ultrasound imaging is the only non-invasive imaging modality which can 
acquire images in real time [39]–[41]. All of these features make the ultrasound 
imaging one of the most popular medical imaging techniques.   

In this chapter, firstly the ultrasound imaging system is introduced. Then, the 
speckle noise in the ultrasound image is discussed.  After that, various statistical 
distributions of an ultrasound image are presented and an overview about the 
segmentation algorithms for ultrasound images is given. 

 

1.1 Ultrasound imaging system 

Figure 1.1 shows a typical ultrasound system. An ultrasound system usually 
consists of a transducer, an ultrasound machine and an image display screen. 
The display image shown on the screen is obtained through a series of 
transformations from the original signal. The transducer generates an acoustic 
wave which then penetrates into the tissue and reflects back when tissue 
inhomogeneity occurs [42]. The backscattered signal is received by the 
transducer and then passes through different processes to get the final display 
image. Usually an ultrasound imaging system contains the following signals to 
analyze:     

a) Radio-frequency (RF) signal  

The reflected acoustical echo wave is received by the transducer and converted 
to a radio-frequency signal [43]. The RF signal provides the micro information 
about the internal structures.   

 
Figure 1.1 Ultrasound system [44] 
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b) Analytic signal  

Since the RF signal is a real signal, its Fourier transform is symmetric and 
therefore contains redundant information. The negative frequency component in 
the Fourier transform of the RF signal is removable and the resulting signal is 
the analytic signal without a loss of information. The analytic signal is a 
complex signal.  The Fourier transform of the RF signal is usually achieved by 
using the Hilbert transform operator [45]. 

c) Complex In-phase/quadrature (IQ) signal 

The in-phase/quadrature (IQ) signal is obtained by applying demodulation to the 
analytic signal [46]. The maximum frequency of the complex IQ signal is lower 
than the RF and analytic signal. The complex IQ signal preserves the same 
useful information as the RF signal but has a lower frequency than the RF signal.  

d) Envelope detected signal 

An envelope detection is performed on the IQ signal to obtain an envelope 
detected signal [47]. This envelope detected signal is further used for the display 
of the ultrasound image.  

e) Display image 

The envelope detected data is then log compressed to produce a grayscale 
display image for most commercial ultrasound systems. Often post-processing is 
employed to produce a grayscale image. Interpolation and rasterization is then 
carried out to produce the final display image. Several modes of display images 
are used clinically: B-mode M-mode, and Doppler mode [48].  

 

1.2 Speckle phenomenon 

The ultrasound transducer generates a high frequency acoustic wave. When the 
acoustic wave propagates in the tissue, the wave speed is changed by the tissue 
properties. The acoustic impedance of a biological tissue is not constant. 
Therefore, reflection occurs at the places where the acoustic property of the 
tissue is discontinuous. The reflected signal provides useful information about 
the tissue’s internal structure. The echo reflection is received by the transducer 
and is further transformed to make a tissue image. There are two types of 
reflections: specular reflection and diffusive reflection [49].  

 Specular reflection: when a sound wave reaches the region where the 
number of scatterers is large compared to the wavelength, specular 
reflection occurs. The specular reflection enables the visualization of the 
object’s boundary.  

 Diffuse reflection: Diffuse reflection appears when the acoustic wave 
transits in a region where the number of scatterers is smaller than the 
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wavelength of acoustical signal. Diffuse reflection causes the granular 
texture of the ultrasound image.  

The diffuse reflection yields the speckle phenomenon. Speckle is the granular 
pattern in an ultrasound image. The speckle is the undesirable feature of the 
ultrasound image and is responsible for the noisy property of the ultrasound 
image [50]. The speckle depends on the resolution of the ultrasound machine. 
Since speckle is the backscattered wave from the scatterers inside the resolution 
cell, the nature of the scatterers, such as their density affects the speckle. If the 
number of scatterers inside the resolution cell is large and its density is uniform, 
then the speckle is called fully developed [51]. Otherwise, if the number of 
scatterers inside the resolution cell is small, the speckle is partially developed 
[52].  

Though speckle pattern has random appearance, it is not a random process but a 
deterministic process [53]. If an object is scanned two times under the same 
situation, the speckle pattern will be exactly the same. For example, if we move 
the transducer back to the same position, it will create exactly the same image.  

The speckle in the ultrasound image is correlated with the micro structure of the 
organ tissue. The speckle phenomenon causes difficulties in ultrasound image 
processing like ultrasound image segmentation, recognition and reconstruction. 
Speckle leads to intensity inhomogeneities inside the homogeneous tissue 
regions. In literature, the speckle can be viewed as noise or source of 
information [54],[55]. 

If the speckle is considered as noise, several despeckle methods [56]  have been 
designed, for example Wiener filtering [57], anisotropic algorithm [58], wavelet 
algorithm [59], median filtering [60]. It is more common to view the speckle as a 
source of information which provides useful information about the tissue and 
can be exploited for certain applications. Statistical signal theory has been 
applied to analyze the ultrasound signal by modeling the ultrasound image 
formation as a statistical process [53]. The methods of modeling the speckle 
statistical probability distribution of ultrasound image are non-parametric [61], 
[62] and parametric [63],[64].  

 

1.3  Statistical models for ultrasound image 

In literature, statistical models for ultrasound image have been extensively 
studied [65]–[67]. Several distributions such as Rayleigh distribution [68],[69], 
Rician distribution [70],[71], K distribution [52],[72], generalized Gaussian 
distribution[73],[74] and Nakagami distribution [75],[76] are proposed to model 
the ultrasound image signal. In this section, some ultrasound image signal 
distributions are discussed: the generalized Gaussian distribution for RF signal, 
the Rayleigh distribution for envelope detected signal and Fisher-Tippett 
distribution for the display image. 
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1.3.1 Generalized Gaussian distribution 

The RF signal is not commonly accessible for a commercial ultrasound machine. 
The generalized Gaussian distribution (GGD) is used for the RF signal [77]. The 
GGD is defined as: 

 

ܲீ ீ஽ ൌ
ߚ

ሺ2߁ߙሺ1/ߚሻሻ
݌ݔ݁ ቆെ ቚ

ݕ
ߙ
ቚ
ఉ
ቇ (1.1) 

where ߙ is the parameter for the scale control and ߚ is for the shape control,	ߪ is 
the standard deviation and ߁ሺ∙ሻ is the Gamma function. Figure 1.2 shows the 
GGD with different β	values. The estimation methods for the GGD parameters ߙ 
and ߚ  are usually based on maximum likelihood methods [78] and moments 
matching methods [79].   

 

 
Figure 1.2 Generalized Gaussian distribution  

 

1.3.2 Rayleigh distribution 

The Rayleigh distribution is the most commonly used distribution for the 
ultrasound envelope-detected image. For fully developed speckle situation, i.e. 
in the resolution cell the number of scatterers are very large, the ultrasound 
envelope image follows the Rayleigh distribution [53]. When the number of 
scatterers per resolution cell is very high, the scatterers phase is uniformly 
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distributed, and using the central limit theorem, the joint probability density 
function is: 

ܲ ൌ
1

ଶߪߨ2
݁ି

௥మା௜మ

ଶఙమ  (1.2) 

Where r is the real and i is the imaginary parts of the corresponding signal. 
Transforming from Cartesian coordinate to Polar coordinate, the Rayleigh 
distribution is obtained by: 

ோܲ௔௬௟௘௜௚௛ ൌ
ߩ
ଶߪ

݁ି
ఘమ

ଶఙమ (1.3) 

where ߩ ൌ ଶݎ√ ൅ ݅ଶ is the magnitude of the signal. The phase of the signal is 
uniformly distributed [െπ, π]. Figure 1.3 represents the Rayleigh distribution 
with different ߪ values.  

 

 

Figure 1.3 Rayleigh distribution 

 

The analytic expression of Rayleigh distribution is simple which makes it 
attractive. The maximum likelihood method (MLE) is usually employed in the 
estimation of the parameter ߪଶ. For n number of elements (ݕଵ,  ௡), the MLEݕ⋯ଶݕ
estimation of the ߪଶ is: 

ොଶߪ ൌ
1
2݊

෍ݕ௜
ଶ

௡

௜ୀଵ

 (1.4) 
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1.3.3 Fisher-Tippett distribution 

The ultrasound envelope-detected image has a large dynamic range. Therefore 
log compression approach is usually employed to produce an image with a 
suitable dynamic range to display on a monitor for most commercial ultrasound 
machines. In [80] the distribution of display image was investigated and it was 
pointed out that the display image distribution was a Fisher-Tippett distribution.  
The Fisher-Tippett distribution is defined as follows: 

ܲ ൌ 2expሺ
1
ଶߪ2

ሻexp൛2ߩ െ lnሺ2ߪଶሻ െ eൣଶఘି୪୬൫ଶఙ
మ൯൧ൟ (1.5) 

where ߪଶ  is the parameter of Fisher-Tippett distribution.  

 

1.4 Segmentation algorithms overview 

Ultrasound imaging is commonly used in clinical diagnostics such as the 
detection of breast abnormality [81]–[83], prostate cancer [84]–[86], liver 
diseases [87]–[89], the 2D/3D visualization of fetus [90],[91], etc. The 
ultrasound imaging also plays an important role in the early detection of the 
kidney diseases [92]–[94]. The real time visualization of ultrasound images 
makes it possible to use it in surgical robotics, for example for the identification 
of the organs of interest [95],[96], or pathology of those organs [97],[98]. 
Compared to other medical imaging techniques, ultrasound imaging is cheaper, 
relatively safer and more adaptable. Therefore, ultrasound imaging has important 
applications in the clinical field. 

Image segmentation is a fundamental step for image analysis and is the basis for 
higher level applications such as registration, visualization, clinical diagnosis 
[99]. However, compared to other medical images, such as computed 
tomography and magnetic resonance imaging, ultrasound images are difficult to 
segment because their quality is relatively poor. The speckle phenomenon in the 
ultrasound images leads to the granular texture in the images. Moreover, because 
of the attenuation of the ultrasonic wave in the tissue, the intensity of the tissue 
always changes and the boundaries of the tissue are often not prominent or 
sometime are completely missing.  

Since the image segmentation plays an important role for ultrasound image 
analysis, different algorithms for segmenting the object boundaries in ultrasound 
images will be presented in this section. In literature, several methods have been 
proposed to semi-automatically [100] or automatically[101] detect the objects’ 
borders in ultrasound images. Methods such as region growing[102]–[104], 
statistical methods[105]–[107], Markov random fields [108]–[110], and active 
contour models [111]–[113] are among the most frequently used. The active 
contour models will be mainly discussed here.  
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Active contour (AC) models are commonly used in ultrasound image 
segmentation for example for intravascular ultrasound images [114],[115], 
breast ultrasound images [116],[117], echocardiography [118],[119] and kidney 
ultrasound images [37],[120]. Active contour models can be classified as 
parametric active contour models [121] or geometric active contour models 
[122]. The parametric active contour models explicitly represent the curve. On 
the other hand, the geometric active contour models represent the curve as the 
zero level set of an implicit function and evolve the level set function in an 
Eulerian framework. The geometric active contours models have several 
advantages over the parametric active contour models. Firstly, the level set 
representation is independent of the curve parametrization and enables to 
topologically change of the curve.  Secondly, the efficient numerical schemes of 
the level set function make the calculation flexible and easy.  

Some level set based active contour methods are calculated by partial differential 
equations (PDE) [123]. Other active contour models, which are known as 
variational level set methods, directly derive the level set evolution function by 
minimizing a certain energy function [124],[125]. Additional information, like 
region information [126] and shape-prior information[127]  can be easily 
incorporated into the variational level sets energy function.   

According to the segmentation methodologies, the active contours can be mainly 
divided into edge based active contours[128]–[130] and region based active 
contours [131]–[133]. Edge based active contours use edge information for 
curve evolution. Region based active contours on the other hand utilize region 
information instead of image gradient. The edge based active contour models are 
sensitive to the noise and poor image contrast, which result in bad segmentation. 
The region based active contours use the region information such as intensity 
statistics in the energy function and are more robust than the edge based active 
contours.  By integrating the prior shape knowledge of the objects into the active 
contours energy functions, the active contours are able to solve the occlusion 
problems or the missing edge problems. More information about the shape prior 
active contours can be found in [134]–[136]. 

 

1.4.1 Level set  

The image segmentation problem can be represented as an optimization 
problem. By evolving the curve according to a certain energy function, the curve 
reaches the optimized position which is also the result of the segmentation. 
Level set method was first introduced in [137]. The level set based segmentation 
methods are efficient, flexible and are able to deal with topological change.  

Let I be a given image. Let	ߛ  be a family of closed curves and let a curve 
Γ：s, t ∈ ሾ0,1ሿ ൈ ࣬ା → Γሺݏ, ሻݐ ൌ ሺݔሺݏ, ,ሻݐ ,ݏሺݕ ,ሻݐ ߗሻ߳ݐ ൈ ࣬ା	 so that ∀ݐ  curve 
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Γ௧: ݏ → ሺݔሺݏ, ,ሻݐ ,ݏሺݕ  The curve Γ can be represented by the  .[138]  ߛ ሻሻ is inݐ
zero level-set of a Lipschitz-continuous function ߶ called level set function: 

൝
߶ ൐ 0 		 		 			 ,ݔ∀ ݕ ∈ Ω୧
߶ ൏ 0	 		 		 			 ,ݔ∀ ݕ ∈ Ω୭
߶ ൌ 0	 		 	 			 ,ݔ∀ ݕ ∈ Γ

 (1.6) 

where x, y is a point coordination in ߗ . 	Ω୧  represents the region inside ߗ 
bounded by Γ and Ω୭ represents the region Ω୭ ൌ ߗ ∖ Ω୧.   

In the level set formulation, for every s and t, the curve can be represented by  

߶൫߁ሺݏ, ሻ൯ݐ ൌ ߶ሺݔሺݏ, ,ሻݐ ,ݏሺݕ ,ሻݐ ሻݐ ൌ 0 (1.7) 

In general, the total derivative of (1.7)   with respect to time t is  

݀߶
ݐ݀

ൌ
߲߶
ݔ߲

ݔ߲
ݐ߲

൅
߲߶
ݕ߲

ݕ߲
ݐ߲

൅
߲߶
ݐ߲

ൌ൏ ,߶ߘ
߁߲
ݐ߲

൐ ൅
߲߶
ݐ߲

ൌ 0 (1.8) 

Let 
ப௰

ப୲
ൌ  where V is the velocity and n is the normal outward direction, the ,࢔ܸ

following equation is obtained:  

߲߶
ݐ߲

ൌ െܸ ൏ ,߶ߘ ࢔ ൐ (1.9) 

The evolution of equation (1.9) only involves the normal velocity. Only the 
normal velocity contributes to the curve evolution, the tangential velocity 
doesn’t change the geometry of the curve [138].     

The segmentation problem can be represented as the minimization of a specific 
energy criterion E of the level set curve evolution. The steady state of the curve 
divides the image into the region of targets and the region of background: 

߶෠ ൌ ݊݅݉݃ݎܽ
థ
ሼܧሺ߶ሻሽ (1.10) 

The first variation of E with respect to ߶ is: 

ܧ߲
߲߶

ൌ ݈݅݉
௧→଴

1
ݐ
ሼܧሺ߶ ൅ ሻߝݐ െ  ሺ߶ሻሽ (1.11)ܧ

Using the gradient descent method the following equation is obtained: 

߲߶
ݐ߲

ൌ െ
ܧ߲
߲߶

 (1.12) 
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Figure 1.4 shows an illustration of the level set method.  

 
Figure 1.4 Level set method illustration  

 

1.4.2  Edge based active contour models 

Many edge based active contour algorithms have been proposed for different 
application purposes. Edge based active contour algorithms use edge 
information to detect the borders of the objects. Generally the edge based 
approaches do not assume homogeneous image intensities. The edge based 
active contours are usually sensitive to the initialization of the curve.  

 

a) Kass-Witkin-Terzopoulos Snake model 

The Kass-Witkin-Terzopoulos snake model was proposed in [139]. The snake 
model drives the curve evolving toward the high image gradient. The snake 
model is based on solving the following energy function: 

௦௡௔௞௘ܧ ൌ න ݍᇱ|ଶ݀ߛ|ߙ ൅
ଵ

଴
න ݍᇱᇱ|ଶ݀ߛ|ߚ
ଵ

଴
െ නߣ ሻሻ|ଶݍሺߛሺܫ|

ଵ

଴
 (1.13) ݍ݀

where ߛሺݍሻ ൌ ሺݔሺݍሻ, ሻሻݍሺݕ ∈ Ωሺݍ ∈ ሾ0,1ሿሻ  is a parametric planar curve. The 
first two terms of (1.13) correspond to the internal energy term which used to 
enforce the smoothness of the curve. The last term of (1.13) is the external 
energy term which determines the curve evolution and drives the curve towards 
the high image gradient.    

The shortcomings of the snake model are several. It is sensitive to noise in the 
image. Also, it is unable to deal with the topology change during the curve 
evolution. Therefore, only the single connected object is segmented from the 
background. 
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b) Geodesic active contour model 

The geodesic active contour model was introduced in [140].  The energy 
function of geodesic active contour model is: 

Eீ஺஼ ൌ න ݃൫หܫ׏൫ߛሺݍሻ൯ห൯|ߛᇱሺqሻ|݀ݍ
௕

௔
 (1.14) 

where ݃ሺ∙ሻ is an edge indicator function. Commonly, the choice of g is: 

݃ ൌ
1

1 ൅ ଶݐ
 (1.15) 

The minimization of the geodesic active contour energy function is obtained by 
solving the following equation: 

ߛ∂
∂t

ൌ െ
∂E
ߛ∂

 (1.16) 

The minimization of the energy function is obtained by the following equation: 

ߛ߲
ݐ߲

ൌ െሺ݃ሺ|ܫߘሺߛሻ|ሻ݇൅൏ ,|ሻߛሺܫߘ|݃ߘ ࢔ ൐ሻ(1.17) ࢔ 

where k is the the curvature of the curve.  

The disadvantage of the geodesic active contour method is that it uses only the 
image information along the curve. So it is easy to get trapped in local minima 
or evolve toward the wrong direction. Also, it is difficult for the geodesic active 
contour to get correct results if the initial curve is too far away from the desired 
position. Figure 1.5 shows the segmentation results of geodesic active contour 
model on a noisy image.  

 

      
Figure 1.5 Segmentation results of geodesic active contour  
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1.4.3 Region based active contour models 

The region based active contours are an alternative to edge based active contours. 
The region based active contours utilize region information instead of the image 
gradient. The most general region based active contour’s energy function can be 
written as: 

ܧ ൌ නߙ ௜݂ሺ߶, ݔሻ݀ݔ ൅ නߚ ௢݂ሺ߶, ݔሻ݀ݔ ൅ නߛ ௖݂ሺ߶, ݔ݀|߶ߘ|ሻݔ
݅ߗ݋ߗ߁ߗ

 (1.18) 

The first two terms are the region term and the last term is called the contour 
term which is associated with the curve Γ.  

 

a) Mumford and Shah model 

The Mumford and Shah (MS) [141] model is an important model in image 
segmentation. The MS model has been intensively studied and has influenced 
numerous methods. The image segmentation problem is treated as image 
smoothing and boundary detection in the MS model. The energy function of the 
MS model is: 

ெௌܧ ൌ න ሺܫ െ ݔሻ2݀ܯ ൅ නߩ ݔ2݀|ܯߘ| ൅ ሻܭሺ݈ߩߣ
ఆ೚ఆ೔

 (1.19) 

where M is a smooth approximation and K is a set of discontinuous edges. The 
first term of the MS model is the data term which drives the curve evolving 
toward the desired place. The second term is the smoothness prior term. The last 
term is the length prior term which is used to regularize the boundaries.  

 

b) Chan & Vese model 

The Chan & Vese (CV) model was proposed in [142]. The CV model is a 
simplified model of MS model. In CV method, the image features are assumed 
to be similar within a segment. In this case, the image I is assumed to be 
consisting of two segments with approximately piecewise-constant intensities. 
Suppose a curve Γ  divides the image domain into two parts: Ω୧  and 	Ω୭ , the 
energy function of CV model is:  

E௖௩ ൌ λଵ න ሺܫ െ ݔሻଶ݀ݑ
ஐ౟

൅ λଶ න ሺܫ െ ݔሻଶ݀ݒ ൅ λଷ න ݏ݀ ൅ λସ න ݔ݀
ஐ౟ஐ౳ஐ೚

 (1.20) 

where u is the mean of the intensity inside the curve Γ  and v is the mean 
intensity of the region outside Γ. The CV model assumes that foreground and 
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background regions can be separated by maximizing the mean intensities 
between them. The energy optimization will move the curve toward the largest 
difference between interior and exterior means.  

For the level-set formulation, the Heaviside function H(߶ሻ is ususally used. The 
Heaviside function is expressed as: 

ሺ߶ሻܪ ൌ ൜
1,		 	݂݅ ߶ ൒ 0
0,		 	݂݅ ߶ ൏ 0 (1.21) 

and the Dirac function	ߜሺ߶ሻ is defined as: 

ሺ߶ሻߜ ൌ
݀
݀߶

 ሺ߶ሻ (1.22)ܪ

the Heaviside function H and the Dirac function	ߜ can be approximated as ܪக, 
and  ߜக	 by the following equations:     

ሻݔఌሺܪ 	ൌ
1
2
൤1 ൅

2
ߨ
ሺ	݊ܽݐܿݎܽ

ݔ
ߝ
ሻ൨ 

ሻݔఌሺߜ ൌ ሻݔఌᇱሺܪ ൌ
1
ߨ

ߝ
ଶߝ ൅ ଶݔ

 (1.23) 

Using Heaviside function H(߶ሻ and the Dirac function ߜሺ߶ሻ, the CV model can 
be written as: 

E௖௩ ൌ λଵ න ሺܫ െ ݔሺ߶ሻ݀ܪሻଶݑ
ఆ

൅ λଶ න ሺܫ െ ሻଶሺ1ݒ െ ݔሺ߶ሻሻ݀ܪ
ఆ

 

The evolution of equation (1.24) is:  

Figure 1.6 illustrates the CV algorithm. 

൅ߣଷ න ݔሺ߶ሻ݀ߜ|߶ߘ|
ఆ

 (1.24) 

߲߶
ݐ߲

ൌ ሺ߶ሻߜ ൤ߣଵሺܫ െ ሻଶݑ െ ܫଶሺߣ െ ሻଶݒ ൅ ߘଷߣ ൬
߶ߘ
|߶ߘ|

൰൨ (1.25) 
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Figure 1.6 Illustration of CV algorithm  

 

1.5 Summary 

In this section, ultrasound imaging system is introduced. Then the speckle 
phenomenon is discussed, and speckle phenomenon is presented. Various kinds 
of ultrasound image distributions are introduced. Later, an overview about the 
image segmentation algorithms is given and various kinds of different existing 
active contour models are presented.  
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2  Region based statistical segmentation 
An ultrasound image is obtained through a chain of transformations from the RF 
signal, the analytic signal, and the envelope detected signal to the final display 
image. B-mode images are the most popular type of ultrasound images in 
clinical applications [143],[144]. For ultrasound image segmentation, it is crucial 
to determine the image intensity by an adequate statistical distribution. In this 
section, an active contour algorithm which combines the Chan & Vese algorithm 
and Bhattacharyya distance together is proposed to solve the ultrasound image 
segmentation problem. The algorithm described in this chapter is related to 
publication B.      

 

2.1 Inhomogeneous image segmentation problem 

The artifacts in an ultrasound image make the tissue borders difficult to 
distiguish from the ultrasound image [145]. The intensity inhomogeneity in the 
ultrasound image leads to blurry boundaries, therefore the segmentation of an 
inhomogenous image is a challenging task. 

In section 1.4 the Chan & Vese (CV) segmentation algorithm is introduced 
which is an important region based active contour algorithm. The CV algorithm 
is a global algorithm, and it is robust to noise and works well on low contrast 
images. But the global minimization of the CV algorithm does not always 
guarantee satisfactory results. The convergence of CV algorithm depends on the 
segmented object’s homogeneity. If the image is very noisy or contains large 
inhomogeneous regions, the CV method has trouble to correctly segment the 
objects. For example Figure 2.1 shows a segmentation result of CV algorithm in 
which the CV algorithm fails to produce correct result.  

 

 

Figure 2.1 Segementaion result of CV algorithm 
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To improve the segmentation result, one approach is to incorporate the prior 
knowledge of the image with the algorithm. A short description about the 
Bhattacharyya distance is given in section 2.2 and a new algorithm is proposed 
which considering the statistics of the ultrasound image with the CV algorithm 
in section 2.3. 

 

2.2 Bhattacharyya distance 

The goal of image segmentation is to partition the image region into a number of 
sub-regions according to certain properties so that each sub-region is 
homogeneous. A more practical way to think of the segmentation problem is to 
decompose the image into distinct fragments. Therefore, statistical methods can 
be applied to model the image fragments.  

For ultrasound image segmentation, under the assumption that the intensity 
distributions between different objects are different, an intuitive way is to define 
a criterion which minimizes the overlap between the image’s objects and the 
background. The ideal measurement is that a measurement that can minimize the 
difference within each segment and maximize the difference between segments.  

In literature, there are many measurement metrics which measure the difference 
between probability distribution functions such as Kullback–Leibler divergence 
[146], the Wasserstein distance [147] and Bhattacharyya distance [148]. The 
Bhattacharyya distance has several advantages such as that it has a simple 
analytical form and it can work with arbitrary distributions, while the Kullback–
Leibler divergence requires mean separated distributions to yield good results 
and the Wasserstein distance based segmentation model assumes an 
independently identical distributed image intensity [149]. 

Also, the Bhattacharyya distance has recently been successfully applied in object 
tracking [150], and image segmentation [151]. In [151] an image segmentation 
algorithm based on the Bhattacharyya distance was introduced. Specifically, the 
algorithm maximized the difference between image regions with respect to the 
given metrics. By incorporating the Bhattacharyya distance, the mutual 
information between the separated regions is maximized.   

The Bhattacharyya distance measures the similarity between two probability 
distribution functions ௜ܲሺݖሻ	and ௢ܲሺݖሻ with z	∈ ܴே. The Bhattacharyya distance 
is defined as D = − log B where B is the Bhattacharyya coefficient: 

ܤ ൌ න ඥ ௜ܲሺݖሻ ௢ܲሺݖሻ݀ݖ
ோಿ

 (2.1) 

The range of Bhattacharyya coefficient is between [0, 1] Since the logarithm 
function is monotonically increasing, the minimization of B is equivalent to the 
maximization of D.  
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2.3 Novel contribution: combining CV and Bhattacharyya distance 

Based on above discussions, an active contour algorithm is proposed here which 
uses the statistical model to segment the ultrasound image. The Rayleigh 
distribution is incorporated with the level set active contour algorithm. This 
choice is made because of the following reasons: 

 Using active contours framework, it is very easy to embed a prior 
statistical knowledge of the image to be segmented.  

 The level set approach allows the geometric change of the curve and 
therefore is able to deal with the topological change of the object.  

 The Rayleigh distribution has been widely used in US image 
segmentation with satisfactory results. 

The CV algorithm is a global algorithm. In CV algorithm, the curve divides the 
image domain into two parts: internal and external regions. The reason why CV 
algorithm fails in producing satisfactory segmentation result for an 
inhomogeneous object is that only the mean value is used, which is not sufficient. 
Therefore, to improve the segmentation result, the whole image intensity 
information should be considered instead of using only the mean value. Under 
the assumption that the intensity between one object and the background is 
different, a criterion is defined which can maximize the difference. As 
mentioned in section 2.2, the Bhattacharyya distance is an efficient metric and it 
can measure the closeness between the segments. The Bhattacharyya distance is 
used to measure the similarity between these segments and the difference of the 
measurement is then added as additional energy term with the CV energy 
function. By properly balancing two parts, the difference within each segment is 
minimized and the difference between separated segments is maximized. The 
new evolution function is implemented in a level set framework and it is able to 
deal with topological changes.         

The whole energy function of the proposed algorithm incorporating the 
Bhattacharyya distance with the CV model is: 

ሻܥሺܧ ൌ ሻܥሺܨߙ ൅ ሺ1 െ ሻܥሺܤሻߙ ൅  ሻ (2.2)ܥሺ݄ݐ݃݊݁ܮߚ

where	α and β are the weighting parameters and α ∈[0,1]. The energy function 
of the proposed algorithm consists of three parts: the region CV fitting term 
F(C), the Bhattacharyya distance term B(C), and the regularization component 
Length(C). The outcome of this algorithm is the minimization of the difference 
within each segment and the maximization of the difference between the 
separated segments. 

Using the level set method, the energy function of (2.2) can then be written as: 
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ሺ߶ሻܧ ൌ ሺ߶ሻܨߙ ൅ ሺ1 െ ሺ߶ሻܤሻߙ ൅  ሺ߶ሻ݄ݐ݃݊݁ܮߚ

ൌ ቊߙන ሺܫ െ ݔሻ൯݀ݔ൫߶ሺܪሻଶݑ ൅ ሺܫ െ ሻଶݒ ቀ1 െ ሻ൯ቁݔ൫߶ሺܪ ݔ݀
ఆ

ቋ 

൅ሺ1 െ ሻනߙ ඥ ௜ܲሺݖሻ ௢ܲሺݖሻ݀ݖ
ோಿ

൅ නߚ หܪߘ൫߶ሺݔሻ൯ห݀ݔ
ఆ

 (2.3) 

Rayleigh distribution is chosen to model the ultrasound image’s statistical 
intensity distribution. According to [152] the Bhattacharyya coefficient with 
Rayleigh distribution is calculated as: 

ሻሻݔሺ߶ሺܤ ൌ 2 ∙
ሻሻݔ௜ሺ߶ሺߪ ∙ ሻሻݔ௢ሺ߶ሺߪ
௜ߪ
ଶሺ߶ሺݔሻሻ ൅ ሻሻݔ௢ଶሺ߶ሺߪ

 (2.4) 

The parameter u and v are calculated by equation (2.5). The parameters ߪ௜
ଶ and 

௜ߪ ௢ଶ are calculated by Maximum-Likelihood (ML) method. The value ofߪ
ଶ and 

 :௢ଶ is obtained by following equationsߪ

ݑ ൌ
׬ ఆݔሻ൯݀ݔ൫߶ሺܪܫ

׬ ఆݔሻ൯݀ݔ൫߶ሺܪ

		 	 ݒ			 ൌ
׬ ఆݔሻ൯݀ݔ൫߶ሺܪܫ

׬ ൫1ܪ െ ߶ሺݔሻ൯݀ݔఆ

 

	

௢ଶߪ ൌ
׬ ൫1ܪଶܫ െ ߶ሺݔሻ൯݀ݔఆ

׬2 ൫1ܪ െ ߶ሺݔሻ൯݀ݔఆ

	 ௢ଶߪ ൌ
׬ ൫1ܪଶܫ െ ߶ሺݔሻ൯݀ݔఆ

׬2 ൫1ܪ െ ߶ሺݔሻ൯݀ݔఆ

 
(2.5)  

The first variation of (2.3) with respect to	߶ can be calculated as: 

ܧ߲
߲߶

ൌ ߙ
ሻሻݔሺ߶ሺܨ߲
߲߶ሺݔሻ

൅ ሺ1 െ ሻߙ
ሻ൯ݔ൫߶ሺܤ߲
߲߶ሺݔሻ

൅ ݒሻሻ݀݅ݔሺ߶ሺߜߚ ൬
ሻݔሺ߶ߘ
|ሻݔሺ߶ߘ|

൰ (2.6) 

The level set equation of (2.6) is derived as: 

߲߶
ݐ߲

ൌ െ
ሻ൯ݔ൫߶ሺܧ߲
߲߶ሺݔሻ

 

ൌ ܫሺ߶ሻሾሺߜߙ െ ሻଶݑ െ ሺܫ െ ሻଶሿݒ െ ሺ1 െ ሻߙ
ሺߪ௜ ∙ ௢ሻߪ ∙ ൫ߪ௜

ଶ െ ௢ଶ൯ߪ

ሺߪ௜
ଶ ൅ ௢ଶሻଶߪ

∙ 

ቊ
1
௜ܣ
ቈ
ሻݔଶሺܫ

௜ߪ2
ଶ െ 1቉ ൅

1
௢ܣ

ቈ
ሻݔଶሺܫ

௢ଶߪ2
െ 1቉ቋ ሻ൯ݔ൫߶ሺߜ ൅ ݒሻሻ݀݅ݔሺ߶ሺߜߚ ൬

ሻݔሺ߶ߘ
|ሻݔሺ߶ߘ|

൰ (2.7) 
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where	A୧ is the interior region and A୭is the exterior region: 

௜ܣ ൌ න ݔ൫߶ሺxሻ൯݀ܪ
ఆ

	 		 				 ௢ܣ ൌ න ቀ1 െ ൫߶ሺxሻ൯ቁܪ ݔ݀
ఆ

  (2.8) 

 

2.4 Implementation 

In this section, the algorithm implentation details will be discussed. The narrow 
band and reinitialization approach will be discussed, following by the numerical 
implementation details of the algorithm.  

 

2.4.1 Narrow band and reinitialization approach 

A narrow band method [153] is used in the  implementation of the algorithm. 
The narrow band method is an efficient method in the evolution of level set. 
Instead of calculating the whole image domain which is computationally 
expensive, the narrow band method performs the calculation only in a 
neighborhood of the zero level set. Figure 2.2  shows an illustration of the 
narrow band. The grid points in the dark area are belonged to the narrow band.   

 

 

Figure 2.2 Illustration of narrow band [154]  

 

In the implentation of the algorithm, reinitialization [137],[155] is necessary to 
keep the level set function from being too flat or too steep. Reinitialization 
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technique has been extensively used to maintain the stablity of the curve 
evolution [156],[157] in traditional level set methods. The reinitialization keeps 
the level set function as a signed distance function during the curve evolution. 
The standard reinitialization method is to solve the following equation:   

߲߶
ݐ߲

ൌ ሺ߶௞ሻሺ1݊݃݅ݏ െ  ሻ (2.9)|߶׏|

where signሺ∙ሻ is the sign function and ߶௞ is the function to be reinitialized. Fast 
marching method [158] is used to reinitialize level set function in the proposed 
algorithm.  

 

2.4.2 Numerical implementation details  

The Heaviside function H can be approximated by a smooth function ܪఌ using 
the following equation [142]: 

ሻݔఌሺܪ ൌ
1
2
൤1 ൅

2
ߨ
ሺ݊ܽݐܿݎܽ

ݔ
ߝ
ሻ൨ (2.10) 

and the Dirac function	ߜ is approximated  by  ߜఌ	 using the following equation:     

ሻݔఌሺߜ ൌ ሻݔఌᇱሺܪ ൌ
1
ߨ

ߝ
ଶߝ ൅ ଶݔ

 (2.11) 

The parameter ߝ is set as ߝ ൌ 1.0  here.  

A Finite difference scheme  [159] is used to calculate the gradient of ׏ϕ. Let h 

be the space step, and x,y be the grid points, the calculation of term ݀݅ݒ ቀ
ఇథ

|ఇథ|
ቁ is 

achieved by using the central difference scheme: 

ݒ݅݀ ൬
߶ߘ
|߶ߘ|

൰ ൌ
߶௫௫߶௬ଶ െ 2߶௫߶௬߶௫௬ ൅ ߶௬௬߶௫ଶ

ሺ߶௫ଶ ൅ ߶௬ଶሻଷ/ଶ
 (2.12) 

where 

߶௫ ൌ
߶௫ାଵ,௬ െ ߶௫ିଵ,௬

2݄
,																							߶௬ ൌ

߶௫,௬ାଵ െ ߶௫,௬ିଵ
2݄

 

߶௫௫ ൌ
߶௫ାଵ,௬ െ 2߶௫,௬ ൅ ߶௫ିଵ,௬

݄ଶ
,						߶௬௬ ൌ

߶௫,௬ାଵ െ 2߶௫,௬ ൅ ߶௫,௬ିଵ
݄ଶ

 

߶௫௬ ൌ
߶௫ାଵ,௬ାଵ െ ߶௫ିଵ,௬ାଵ െ ߶௫ାଵ,௬ିଵ ൅ ߶௫ିଵ,௬ିଵ

4݄ଶ
 (2.13) 
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Upwind scheme [158] is used to calculate the temporal partial derivative 
డథ

డ௧
 . 

The level set evolution equation can be expressed in a general form [138]: 

߲߶
ݐ߲

ൌ ሺܨ െ  (2.14) ‖߶ߘ‖ሻߢߣ

where F is a function depending on time and position, ߣ is a scalar parameter 
and ߢ is the curvature of the contour. Let ∆ݐ  be the time step. The discretization 
of (2.14)  is obtained by: 

߶௜,௝
௡ାଵ െ ߶௜,௝

௡

ݐ∆
ൌ ,ܨሺݔܽ݉ 0ሻ ௜,௝׏

ା ൅ ݉݅݊ሺܨ, 0ሻߘ௜,௝
ି  (2.15) 

where ߘ௜,௝
ା  and  ߘ௜,௝

ି   is calculated by: 

௜,௝ߘ
ା ൌ ሺ݉ܽݔሺܦ௜,௝

ି௫, 0ሻଶ ൅ ݉݅݊	ሺܦ௜,௝
ା௫, 0ሻଶ ൅ ௜,௝ܦሺݔܽ݉

ି௬, 0ሻଶ ൅ ݉݅݊	ሺܦ௜,௝
ା௬, 0ሻଶሻଵ/ଶ 

௜,௝ߘ
ି ൌ ሺ݉݅݊ሺܦ௜,௝

ି௫, 0ሻଶ ൅ ௜,௝ܦሺݔܽ݉
ା௫, 0ሻଶ ൅ ݉݅݊ሺܦ௜,௝

ି௬, 0ሻଶ ൅ ௜,௝ܦሺݔܽ݉
ା௬, 0ሻଶሻଵ/ଶ (2.16) 

௜,௝ܦ
ା௫ is the forward difference of x,	ܦ௜,௝

ି௫ is the backward difference of x;	ܦ௜,௝
ା௬ is 

the forward difference of y,	 ܦ௜,௝
ି௬ is backward difference of y.    

Figure 2.3 shows the pseudo-code of the proposed algorithm:  

 

1) k=0, initialize ࣘ࢑ by ࣘ૙. 

2) Compute the mean value ࢛ and  inside and outside the ࢜
level set according to (2.5). 

3) Compute the ࢏࣌ and ࢕࣌ according to (2.5). 

4) Calculate ࢏࡭and ࢏࡭ according to (2.8). 

5) Evolve the curve according to (2.7) to obtain ࣘ࢑ା૚. 

6) Reinitialize the  ࣘ࢑ା૚ by fast marching method. 

7) Check if ࣘ  is convergent. If not, k=k+1 and go back to 
step 2. 

Figure 2.3. Pseudo-code of the proposed algorithm 
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2.5 Results 

In this section the experimental setup and the evaluation method is described. 
All the proposed algorithms in this thesis are implemented in Matlab. All 
experiments are conducted on a PC workstation (Intel Quad Q8300, 8 GB RAM, 
Windows 7 Professional). 

Dice [160] coefficient is used to quantitatively evaluate the performance of the 
algorithm. The Dice coefficient is defined as: 

Dice ൌ
2ሺܣ ∩ ሻܤ
ܣ ∪ ܤ

  (2.17) 

Where A is the reference region and B is the segmentation result of an 
algorithm. The Dice measurement is often used to measure the accuracy of a 
segmentation algorithm. The Dice coefficient range is [0, 1]. If there is no 
overlap between two regions, the Dice value is 0; if two regions are completely 
overlapping, the Dice value is 1. 

A kidney phantom ultrasound image is firstly used to test the performance of the 
proposed algorithm. An organ phantom is an artificial replica of a real organ 
routinely used in medical training. It usually has a simplified internal structure 
and simpler features than the real human organ. The detailed description of the 
phantom can be found in [161] . Figure 2.4 shows the segmentation result of the 
proposed algorithm on a kidney phantom ultrasound image with a tumor inside it.  
The image size is 360*290 pixels. As we can see from Figure 2.4, the border of 
the tumor is not very clear, but the proposed algorithm can segment the border of 
the tumor with the Dice value of 0.9198.  

 

 

Figure 2.4 Kidney phantom ultrasound image segmentation result  
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Noise free 

 
Salt-and-pepper noise, d=0.1 

 
Salt-and-pepper noise, d=0.3 

Figure 2.5 Segmentation results for (a) CV algorithm and (b) proposed algorithm 

 

To test the performance of the proposed algorithm, kidney cyst phantom images 
with different salt-and-pepper noise are used as the evaluation images. The first 
row of Figure 2.5 shows the original image without adding noise. The image size 
is 520*230 pixels. Then two different salt-and-pepper densities noise (d={ 0.1, 
0.3}) are added to the original image. The larger the value d is, the more noise is 
added to the image. The first column of Figure 2.5 shows the results of the CV 
algorithm. As we can see from the segmentation results, when the image is noise 
free, the CV algorithm works well, but when the amount of noise in the image 
increases, the performance of the CV algorithm decreases. Figure 2.5 b) shows 
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the results of the proposed algorithm the same images. The proposed algorithm 
converges to the desired border even when the image contains high level of 
noise. From Figure 2.5 b) we can see, even when the image contains high level 
of noise (d=0.3), the proposed algorithm can still produce good result. 

In addition to the phantom images, the proposed algorithm is also tested on a 
patient kidney ultrasound image obtained from East Tallinn Central Hospital, 
Estonia. Figure 2.6 a) shows the result of the proposed algorithm. The size of the 
kidney image is 400*240. Figure 2.6 b) is the reference image which is obtained 
manually by an expert radiologist. A value of Dice = 0.9263 is found using the 
proposed approach. The segmentation results of the proposed algorithm on both 
kidney phantom images and the patient image show that the proposed algorithm 
can produce good segmentation even through the image is very noisy.   

 

 

a) Segmentation result of the proposed algorithm 

 

b) Ground truth 

Figure 2.6 Kidney ultrasound image segmentation result 

 

The performance of the proposed algorithm is evaluated using 3 types of images: 
one synthesized ultrasound image (Figure 2.7 b), one ultrasound image of a 
phantom (Figure 2.4), and one ultrasound image of a patient (Figure 2.6). The 
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synthesized image is obtained by adding speckle noise to a predefined image 
(Figure 2.7 a). The variance of speckle noise added into this image is d=0.1. The 
running times, the iteration counts and the Dice values of the proposed algorithm 
are shown in Table 2.1.  

 

Table 2.1 Performance of the proposed algorithm  

Image types 
The proposed algorithm 

Time(s) Iterations Dice 

Synthetic image 

(128*64 pixels) 
1.574 200 0.9854 

Phantom image 

(360*290 pixels) 
14.980 500 0.9198 

Patient image 

(400*240 pixels) 
120.059 4000 0.9263 

 

     

  a)   Original image                                  b) Synthesized ultrasound image  

Figure 2.7 Synthesized images 

 

The proposed method improves the segmentation accuracy compared to the CV 
algorithm because in the proposed algorithm, not only the mean value is 
considered, but also the variance value is considered. While in the CV algorithm, 
only the mean value is considered and it cannot provide enough image intensity 
information. Therefore, some images with intensity inhomogeneity the CV 
algorithm can give inaccurate segmentation results.  
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2.6 Conclusions 

In this section, the limitations of CV algorithm on inhomogeneous image are 
discussed. Then an algorithm which combines the CV algorithm with 
Bhattacharyya distance is proposed to solve segmentation problem of the 
inhomogeneous image. The Rayleigh distribution is used in the Bhattacharyya 
distance. Combining the Bhattacharyya distance with the CV algorithm, the 
proposed algorithm is capable of segmenting inhomogeneous images. 
Synthesized ultrasound image, phantom ultrasound images and patient 
ultrasound image are used to test the performance of the proposed algorithm. 
Compared to the CV algorithm, the proposed algorithm is more robust and 
provides improved segmentation results.   
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3 Localized active contour segmentation  
Ultrasound images usually contain a lot of noise and the granular texture of the 
ultrasound image makes the segmentation a challenging task. Different 
algorithms for ultrasound image segmentation have been proposed in literature 
[21],[162]. In this chapter, a localized active contour algorithm is introduced and 
then novel algorithms based on the localized active contour algorithms using the 
Rayleigh distribution and the shifted Rayleigh distribution are proposed for 
ultrasound image segmentation. The algorithms described in this chapter are 
related to publication C.       

 

3.1 Localized region based active contour algorithm 

Region based active contours have several advantages and have been 
successfully applied for medical image segmentation. The region based 
approaches are usually derived under the assumption that the region of interest 
can be separated by using the global statistical information. But when the image 
is inhomogeneous, for example when the intensity profile of a target contains a 
lot of noise, the traditional active contour algorithm may produce incorrect 
segmentation results. In literature, many studies focus on an alternative way of 
image segmentation by using the local region in the segmentation process [163]–
[165].   

A localized active contour algorithm has been proposed in [166], in which a 
level set formulation is implemented, and a localized region factor is utilized. 
The localized active contour is based on the assumption that, if the global 
homogeneity requirement is not satisfied in a region, there is a high probability 
that it can be satisfied in a small sub region. In the localized active contour 
algorithm, a localized factor is defined as: 

 W(x,y)=൜1, ห
ݔ| െ ห|ݕ ൏ ݎ

0, otherwise	
 (3.1) 

where x, y represents a point in Ω respectively and r represents a radius 
parameter. Figure 3.1 describes the concept of the localized active contour 
algorithm. In the localized region representation, the region inside the curve is 
represented by Wሺݔ, ሻݕ ൉ H൫߶	ሺݔ,  ሻ൯ whereas the region outside of the curve isݕ
represented by Wሺݔ, ሻݕ ൉ ሺ1 െ Hሺ߶	ሺݔ,   	.ሻሻሻݕ

In localized active contour algorithm, the foreground and background regions 
are not represented by global statistical information. The localized active contour 
uses a small region in the curve evolution.  For each point along the curve, its 
neighborhood regions are split into two parts: interior and exterior region. The 
energy optimization is calculated at each single point. The general form of the 
localized active contour energy function can be written as: 
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ܧ	 ൌ න ሻ൯ݔ൫߶ሺߜ ൜නܹሺݔ, ,ሻݕሺܫ൫ܨሻݕ ߶ሺݔሻ൯ ൠݕ݀ ݔ݀

൅ නߤ ||ሻݔሺ߶ߘ||ሻሻݔሺ߶ሺߜ ݔ݀  
(3.2) 

The above equation provides a simple way to transform the region based 
criterion to its localized counterpart. Using equation (3.2), the curve evolution of 
the localized active contour can be calculated. 

 
Figure 3.1 Localized active contour algorithm 

 

3.2 Novel contribution ： Localized active contour with Rayleigh 
distribution 

As mentioned before, due to the presence of the speckle noise in ultrasound 
image, the standard image processing technics are usually ineffective for 
segmenting ultrasound image. One way to improve the result is to adopt the 
ultrasound image statistical properties into the evolution criterion for the 
segmentation problem.  

Using the localized active contour with the statistical intensity distribution of the 
ultrasound image, the energy function of the localized active contour becomes: 

 

ܧ	 ൌ න ሻ൯ݔ൫߶ሺߜ ൜නܹሺݔ, ሻݕ ௜ܲ௡ሺܫሻ ݕ݀ ൅ නܹሺݔ, ሻݕ ௢ܲ௨௧ሺܫሻ ൠݕ݀ ݔ݀

൅ නߤ ||ሻݔሺ߶ߘ||ሻሻݔሺ߶ሺߜ ݔ݀  
(3.3) 



40 

where ௜ܲ௡(I) and ௢ܲ௨௧(I) is referred as to the intensity distribution of the region 
inside and outside the curve, respectively.  

From equation (3.3) we can see that it is crucial to determine ௜ܲ௡(I) and ௢ܲ௨௧(I)  
to achieve successful segmentation results. Different ultrasound image intensity 
distributions were introduced in Chapter 1. Section 1.3.3 points out that the 
display image follows the Fisher-Tippett distribution. The Fisher-Tippett 
distribution has a very complicated analytical expression and difficult to 
implement. Rayleigh distribution is commonly used as the image intensity 
distribution for ultrasound envelope-detected image and has a simple analytical 
expression. Therefore, Rayleigh distribution is chosen as the image intensity 
distribution here.  An algorithm using the localized active contour by Rayleigh 
distribution is proposed. Since the Rayleigh distribution is used to approximate 
the display image intensity distribution, it has a bias from the true image 
intensity distribution. The shifted Rayleigh distribution has been used as the 
ultrasound image intensity distribution in literature [21],[167]. Therefore, 
another algorithm is proposed using the shifted Rayleigh distribution in the same 
localized active contour framework and the segmentation results between these 
two algorithms are compared in this section. The relation between the Rayleigh 
distribution and the shifted Rayleigh distribution is shown in Figure 3.2.  

The parameters estimation of the Rayleigh distribution is usually obtained by 
maximum likelihood method. The maximum likelihood estimation for the 
Rayleigh distribution parameters will be firstly introduced in next section and 
then the localized Rayleigh active contour (LRAC) algorithm and the Localized 
shifted Rayleigh active contour (LSRAC) algorithm will be presented. 

 

3.2.1 Maximum a posteriori estimation 

The image segmentation problem can be expressed by the Bayesian maximum a 
posteriori (MAP) estimation. The MAP estimates the possible partitions of a 
given image I by [138]: 

෠࣪ஐ ൌ arg max
࣪ಈ

ܲሺ ஐ࣪|ܫሻ ൌ arg max
࣪ಈ

ܲሺܫ| ஐ࣪ሻܲሺ ஐ࣪ሻ (3.4) 

By taking the negative of the logarithm of equation (3.4) and assuming the 
image partitions ܴ௞ are conditionally independent from each other, the following 
equation is obtained which converts the Bayesian estimation (3.4) into 
minimization problem:  

෠࣪ஐ ൌ arg min
࣪ಈ

෍න െ݈ܲ݃݋ሺܫ|ܴ௜ሻ݀ݔ െ ሺܲ݃݋݈ ஐ࣪ሻ
ோ೔௜

 (3.5) 
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The equation (3.5) is the general function for most of the variational 
segmentation algorithms. The first term is the data term which measures the 
likelihood of the image. The image is modeled by a specified distribution which 
is generally a parametric distribution. The region  ܴ௜  is characterized by the 
estimation of the parameters in the distribution. 

As mentioned in the chapter 2, Rayleigh distribution is commonly used as the 
intensity distribution for the ultrasound envelope-detected image. For an image I, 
the corresponding Rayleigh distribution is: 

ܲሺܫሻ ൌ
ܫ
ଶߪ

ሺെ݌ݔ݁
ଶܫ

ଶߪ2
ሻ (3.6) 

where σଶ is the parameter of the Rayleigh distribution. 

For a curve dividing the image I into regions ܴ௜  , ݅ ∈ 1,2 , the Rayleigh 
distribution with parameter σ௜

ଶ is: 

ோܲ௔௬௟௘௜௚௛ሺܫ|ܴ௜ሻ ൌ
ܫ
ோ೔ߪ
ଶ ሺെ݌ݔ݁

ଶܫ

ோ೔ߪ2
ଶ ሻ (3.7) 

Calculating the negative logarithm of the data term in (3.5) by using the 
Rayleigh distribution, the following equation is obtained: 

ࣦ ൌ෍න ,ܫሺܩ σோ೔
ଶ ሻ݀ݔ

ோ೔௜

 (3.8) 

with	
,ܫ൫ܩ σோ೔

ଶ ൯ ൌ െ log ோܲ௔௬௟௘௜௚௛ሺܫ|ܴ௜ሻ 

ൌ ோ೔ߪ݃݋݈
ଶ ൅

ଶܫ

ோ೔ߪ2
ଶ  (3.9) 

The optimization of parameter σோ೔
ଶ  is obtained by using the ML method: 

 

ோ೔ߪ
ଶ ൌ

׬ ோ೔ݔଶ݀ܫ

2 ׬ ோ೔ݔ݀

 (3.10) 
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3.2.2 Localized Rayleigh active contour   

The Rayleigh distribution has been widely applied in ultrasound image 
segmentation. The Rayleigh distribution has a simple analytical form which 
makes it easy to calculate the integrals of the segmentation flow. In general, 
using the Rayleigh distribution the following energy function is obtained: 

ܧ ൌ ݃݋݈ ௜ܲ௡ ൅ ݃݋݈ ௢ܲ௨௧ ൅ ሺܿሻ݄ݐ݄݈݃݊݁ߤ ൌ 

The level set equation is derived as: 

߲߶
ݐ߲

ൌ ሺ߶ሻߜ ቆݒ݅݀ߤ ൬
߶ߘ
|߶ߘ|

൰ ൅ ݃݋݈
௜௡ߪ
௢௨௧ߪ

൅
ଶܫ

௜௡ߪ
ଶ െ

ଶܫ

௢௨௧ߪ
ଶ ቇ (3.12) 

Using the localized factor Wሺx, yሻ , the curve evolution for the localized 
Rayleigh active contour (LRAC) algorithm is calculated as:   

߲߶
ݐ߲

ൌ ,ݔሻሻනܹሺݔሺ߶ሺߜ ሻ൯ݕ൫߶ሺߜሻݕ ቆ݈݃݋
௜௡ߪ
௢௨௧ߪ

൅
ሻଶݕሺܫ

௜௡ߪ
ଶ െ

ሻଶݕሺܫ

௢௨௧ߪ
ଶ ቇ  ݕ݀	

൅ߜߤሺ߶ሺݔሻሻ݀݅ݒ ൬
ሻݔሺ߶ߘ
|ሻݔሺ߶ߘ|

൰ (3.13) 

The parameters ߪ௜௡
ଶ  and ߪ௢௨௧

ଶ  in the LRAC algorithm are calculated by: 

௜௡ߪ
ଶ ൌ

׬ ܹሺݔ, ,ݔ൫߶ሺܪଶܫሻݕ ఆݕ݀ݔሻ൯݀ݕ

׬2 ܹሺݔ, ,ݔ൫߶ሺܪሻݕ ఆݕ݀ݔሻ൯݀ݕ

 

௢௨௧ߪ
ଶ ൌ

׬ ܹሺݔ, ൫1ܪଶܫሻݕ െ ߶ሺݔ, ఆݕ݀ݔሻ൯݀ݕ

׬2 ܹሺݔ, ൫1ܪሻݕ െ ߶ሺݔ, ఆݕ݀ݔሻ൯݀ݕ

 (3.14) 

 

3.2.3 Localized shifted Rayleigh active contour   

Some approaches [114],[168] use shifted Rayleigh distribution as the intensity 
statistical distribution of ultrasound image. In this section, ultrasound image 
segmentation by using the shifted Rayleigh distribution is investigated. The 
shifted Rayleigh distribution is defined as: 

න ݃݋݈ ௜ܲ௡ሺܫሻ݀ݕ݀ݔ ൅ න ݃݋݈ ௢ܲ௨௧ሺܫሻ݀ݕ݀ݔ
ஐ೚ೠ೟ஐ೔೙

൅ නߤ ݕ݀ݔ݀
ஐ౳

 (3.11) 
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ሻܫሺ݌ ൌ
ሺܫ െ ሻݑ
ଶߪ

ሺെ	݌ݔ݁
ሺܫ െ ሻଶݑ

ଶߪ2
ሻ (3.15) 

where the parameter u is calculated by using the mean intensity of the region. 
Figure 3.2 shows the relation between standard Rayleigh distribution and the 
shifted Rayleigh distribution. 

 

 

Figure 3.2 Shifted Rayleigh distribution 

 

The active contour energy function of the shifted Rayleigh distribution is similar 
to the Rayleigh distribution: 

ܧ ൌ log ௜ܲ௡ ൅ log ௢ܲ௨௧ ൅ ሺܿሻ݄ݐ݄݈݃݊݁ߤ ൌ 

The level set equation of the shifted Rayleigh distribution is derived as: 

߲߶
ݐ߲

ൌ ሺ߶ሻߜ ቆݒ݅݀ߤ ൬
߶ߘ
|߶ߘ|

൰ ൅ ݃݋݈
௜௡ߪ
௢௨௧ߪ

൅
ሺܫ െ ௜௡ሻଶݑ

௜௡ߪ
ଶ െ

ሺܫ െ ௢௨௧ሻଶݑ

௢௨௧ߪ
ଶ ቇ (3.17) 

where ݑ௜௡  is the mean intensity inside of the curve ߶  and ݑ௢௨௧  is the mean 
intensity outside of the curve ߶.  

By incorporating localized factor into the energy function (3.17), the evolution 
function for the localized shifted Rayleigh active contour (LSRAC) can be 
calculated as:  

 

න ݃݋݈ ௜ܲ௡ሺܫሻ݀ݕ݀ݔ ൅ න ݃݋݈ ௢ܲ௨௧ሺܫሻ݀ݕ݀ݔ
ஐ೚ೠ೟ஐ೔೙

൅ නߤ ݕ݀ݔ݀
ஐ౳

 (3.16) 
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߲߶
ݐ߲

ሺݔሻ ൌ ,ݔሻ൯නܹሺݔ൫߶ሺߜ ሻ൯ݕ൫߶ሺߜሻݕ ∙ 	ቆ݈݃݋
௜௡ߪ
௢௨௧ߪ

൅
ሺܫሺݕሻ െ ௜௡ሻଶݑ

௜௡ߪ
ଶ  

െ
ሺܫሺݕሻ െ ௢௨௧ሻଶݑ

௢௨௧ߪ
ଶ ቇ ݕ݀ ൅ ݒሻሻ݀݅ݔሺ߶ሺߜߤ ൬

ሻݔሺ߶ߘ
|ሻݔሺ߶ߘ|

൰ (3.18) 

The parameter ݑ௜௡ and ݑ௢௨௧ in (3.18) is obtained by: 

௜௡ݑ ൌ
׬ ܹሺݔ, ,ݔ൫߶ሺܪܫሻݕ ఆݕ݀ݔሻ൯݀ݕ

׬ ܹሺݔ, ,ݔ൫߶ሺܪሻݕ ఆݕ݀ݔሻ൯݀ݕ

 

௢௨௧ݑ ൌ
׬ ܹሺݔ, ൫1ܪܫሻݕ െ ߶ሺݔ, ఆݕ݀ݔሻ൯݀ݕ

׬ ܹሺݔ, ൫1ܪሻݕ െ ߶ሺݔ, ఆݕ݀ݔሻ൯݀ݕ

 (3.19) 

The parameter ߪ௜௡ and ߪ௢௨௧ in (3.18) is calculated by: 

௜௡ߪ
ଶ ൌ

׬ ܹሺݔ, ܫሻሺݕ െ ,ݔ൫߶ሺܪ௜௡ሻଶݑ ఆݕ݀ݔሻ൯݀ݕ

׬2 ܹሺݔ, ,ݔ൫߶ሺܪሻݕ ఆݕ݀ݔሻ൯݀ݕ

 

 
௢௨௧ଶߪ ൌ

׬ ܹሺݔ, ܫሻሺݕ െ ൫1ܪ௢௨௧ሻଶݑ െ ߶ሺݔ, ఆݕ݀ݔሻ൯݀ݕ

2 ׬ ܹሺݔ, ൫1ܪሻݕ െ ߶ሺݔ, ఆݕ݀ݔሻ൯݀ݕ

 

 

(3.20) 

3.3 Implementation 

The proposed algorithm is implemnted in a level set framework. To improve the 
efficiency, narrow band method is used. Fast marching method is applied to 
prevent the level set from being too flat or too steep. The numerical 
implementation of level set has been discussed in section 2.4.   

In the proposed localized active contour algorithm, the local region statistical 
properties are calculated at each point along the contour. The calculation of local 
region statistical properties consists of two parts: initialization and update. In the 
initialization step, the local interior and exterior statistics of each pixel in the 
narrow band are calculated.  When the narrow band moves across a pixel which 
is uninitialized, the local region statistical properties of this pixel will be 
initialized. The initialization operation is performed only once for each pixel.  
The update step happens when a intialized pixel along the contour is moved by 
the contour from the exterior to the interior or vice versa. When the contour 
moves across a pixel, the local statistical properties of all pixels within the W(x,y) 
of this pixel are updated.    
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The pseudo-code of the LRAC algorithm is shown in Figure 3.3. The LSRAC 
algorithm is implemented in a similar way.  

 

1) k=0, initialize ࣘ࢑ by ࣘ૙. 

2) Compute the value	࢔࢏࣌ and  inside and outside the ࢚࢛࢕࣌
level set ࣘ࢑ according to (3.14). 

3) Evolve the contour according to (3.13) to obtain  ࣘ࢑ା૚. 

4) Reinitialize the  ࣘ࢑ା૚ by fast marching method. 

5) Check if ࣘ  is convergent. If not, k =k+1 and go back to 
step 2. 

Figure 3.3  Pseudo-code of the LRAC algorithm 

3.4 Results 

In this section, the segmentation results of the proposed two algorithms are 
presented. The algorithms are implemented in Matlab and executed on a PC 
workstation (Intel Quad Q8300, 8 GB RAM, Windows 7 Professional), as in 
section 2. The Dice coefficient is used as the quantitative evaluation method.  

Synthesized images are used to test the performance of the proposed two 
algorithms. One synthesized image is generated and shown in the first row of 
Figure 3.4. The size of the synthesized image is 128*64 pixels. Gaussian noise 
with different variances (v1=0.1, v2=0.2, v3=0.3) are added into this image. The 
segmentation results of the LRAC algorithm and LSRAC algorithm on the 
synthesized images are shown in the second and the third column in Figure 3.4. 
As we can see from the segmentation results, both LRAC and LSRAC algorithm 
can produce reasonable segmentation results. Table 3.1 shows the Dice values of 
LRAC and LSRAC algorithm on the synthetic images.  

 

Table 3.1 Dice values of the proposed algorithms 

Values of Gaussian 
Noise added LRAC LSRAC               

0.1 0.9632 0.9615 

0.2 0.9578 0.9674 

0.3 0.9285 0.9431 
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a) Synthetic image                  b)  LRAC                           c) LSRAC 
 
 

Figure 3.4 Segmentation results of the synthesized images 

 

A kidney phantom ultrasound image (520*230 pixels) with a cyst inside it is 
used to test the performance of the proposed two algorithms. The segmentation 
result of LRAC is shown in Figure 3.5 a). The segmentation result of LSRAC is 
shown in Figure 3.5 b).  

 

   

a) LRAC                                                             b) LSRAC 

Figure 3.5 Segmentation results of ultsound image without noise 

Original image v1=0.1 v1=0.1

v2=0.2 v2=0.2 v2=0.2

v3=0.3 v3=0.3 v3=0.3
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Salt-and-paper noise (noise density d=0.1) is added to Figure 3.5 to test the 
capability of the proposed algorithms. The segmentation result of LRAC is 
shown in Figure 3.6 a). The segmentation result of LSRAC is shown in Figure 
3.6 b). From the segmentation results we can see that the proposed algorithms 
work efficiently on both images. 

 

   

a) LRAC                                              b) LSRAC 

Figure 3.6 Segmentation results of ultrasound image with noise 

 

Ten kidney phantom ultrasound images (251*201 pixels) with a tumor inside are 
used to test the performance of the proposed two algorithms. Figure 3.7 shows 
one of these images. For a kidney phantom ultrasound image with a tumor, the 
segmentation is more difficult because the edge of the tumor is not very clear. 
The segmentation of LRAC algorithm on the tumor image is shown in Figure 
3.7 a). Figure 3.7 b) shows the segmentation of LSRAC algorithm on the same 
image. Table 3.2 shows the average Dice values of LRAC algorithm and 
LSRAC algorithm respectively. From Table 3.2, we can see that the LSRAC 
algorithm obtain better segmentation results compared to the LRAC algorithm 
on the kidney phantom ultrasound images.   

 
                                        

          

a) LRAC algorithm                 b) LSRAC algorithm             c)  Ground truth 

Figure 3.7  Segmentation results of kidney tumor phantom ultrasound image 
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Table 3.2  LRAC and LSRAC segmentation results 

Algorithm Dice

LRAC 0.9093

LSRAC 0.9452

 
Figure 3.8 b) shows the segmentation result of the LRAC algorithm on a 
pancreas phantom ultrasound image with a tumor and Figure 3.8 c) shows the 
segmentation result of LSRAC algorithm on the same image. The image size is    
395*408 pixels. 
 

     
a) Original image                  b) LRAC algorithm              c)  LSRAC algorithm             

Figure 3.8  Segmentation results of pancreas tumor phantom ultrasound image 

 

Figure 3.9 a) shows the segmentation result of the LRAC algorithm on a patient 
kidney ultrasound image (400*240 pixels) and Figure 3.9 b) shows the 
segmentation result of the LSRAC algorithm on the same image. The 
segmentation result shows that both the LRAC algorithm and the LSRAC 
algorithm can produce desirable segmentation result.   

 

   

  a) LRAC algorithm                                     b)  LSRAC algorithm             

Figure 3.9  Segmentation results of patient ultrasound image  
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Similar to chapter 2, the performance of the proposed algorithms is also 
evaluated by three types of images: one synthesized ultrasound image (Figure 
2.7 b), one ultrasound image of a phantom (Figure 3.8), and one ultrasound 
image of a patient (Figure 3.9). Table 3.3 shows the evaluation results of the 
LRAC algorithm and the LSRAC algorithm including the running time, the 
iteration counts and the Dice values.   

 

Table 3.3  Performance of the LRAC algorithm and the LSRAC algorithm 

Image types 
LRAC LSRAC 

Time(s) Iterations Dice Time(s) Iterations Dice 

Synthetic image 

(128*64 pixels) 
20.538 300 0.9906 22.140 300 0.9877 

Phantom image 

(395*408 pixels) 
37.863 300 0.8866 38.623 300 0.9060 

Patient image 

(400*240 pixels) 
179.843 1000 0.9037 186.593 1000 0.9146 

 

From above segmentation results, the LSRAC algorithm in general has better 
segmentation performance with higher Dice values than the LRAC algorithm. 
The reason is because the LSRAC considers both the mean u and the variance σ 
of an image in the segmentation process while the LRAC only uses the variance 
σ of an image. 

 

3.5 Conclusions 

In this section, a localized region based active contour algorithm is introduced. 
Then a localized active contour method with Rayleigh distribution (LRAC) is 
proposed to solve the segmentation problem of ultrasound images. Another 
localized active contour algorithm with shifted Rayleigh distribution (LSRAC) is 
also proposed. The performances of the LRAC algorithm and the LSRAC 
algorithm are evaluated on synthetic ultrasound images, phantom ultrasound 
images and patient kidney ultrasound image. From the segmentation results, 
both algorithms can work well on the synthetic ultrasound images, phantom 
ultrasound images and patient ultrasound image. In general, segmentation results 
of the LSRAC algorithm are more accurate compared to the LRAC algorithm.   
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4 Localized region scalable fitting and the Bhattacharyya 
distance 

Due to the noise in the ultrasound images, the ultrasound images are usually 
inhomogeneous. For an inhomogeneous image, the boundary of a heterogeneous 
object is difficult to segment. The global region methods do not always generate 
satisfactory results in an inhomogeneous image. The localized active contour 
method is able to segment objects with inhomogeneous features, which is 
difficult otherwise if a global method is used [166]. In section 3 showed that 
using the local region information can improve the segmentation results. In this 
chapter an alternative way of localized active contour method is introduced. The 
algorithm described in this chapter is related to publication A.  

 

4.1 Region scalable fitting algorithm 

In [169] a region scalable fitting (RSF) algorithm is proposed to solve the 
segmentation problem of inhomogeneous images. A kernel factor is used in the 
RSF algorithm. The RSF algorithm is capable of solving the segmentation 
problem of inhomogeneous images. The results of the RSF algorithm show that 
the RSF algorithm is able to deal with noisy images.  The general energy 
function of the RSF model is: 

ܧ ൌ ௜ඵߛ ݇ሺݔ, ሻݕ
ஐ୧

ሺܫሺݕሻ െ ௜݂ሻଶ݀ݔ݀ݕ ൅ ௢ඵߛ ݇ሺݔ, ሻݕ
ஐ୭

ሺܫሺݕሻ െ ௢݂ሻଶ݀ݔ݀ݕ  (4.1) 

where ߛ௜	 and 	ߛ௢ are scale parameters; ݇ሺݔ, ሻݕ  is the kernel function and a 
Gaussian kernel function ݇ఙ  is used in [169]; ௜݂  and ௢݂ are the functions 
approximating the intensities inside and outside of the curve respectively. The 
calculation of ௜݂ and ௢݂ are obtained by using following equations:  

௜݂ ൌ
׬ ݇ఙሺݔ െ ஐݕሺ߶ሻ݀ܪሻݕሺܫሻݕ

׬ ݇ఙሺݔ െ ஐݕሺ߶ሻ݀ܪሻݕ

 

௢݂ ൌ
׬ ݇ఙሺݔ െ ሻሺ1ݕሺܫሻݕ െ ஐݕሺ߶ሻሻ݀ܪ

׬ ݇ఙሺݔ െ ሻሺ1ݕ െ ஐݕሺ߶ሻሻ݀ܪ

  (4.2) 

The kernel function ݇ఙ plays an important role in the RSF algorithm. The kernel 
function ݇ఙ is non-negative and has the following properties: 
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1. ݇ఙሺെݑሻ ൌ ݇ఙሺݑሻ 
2. ݇ఙሺuሻ ൒ ݇ఙሺvሻ, if	|u| ൏ |v|, and	 lim

|୳|→ஶ
݇ఙሺݑሻ ൌ 0 

ݔሻ݀ݔఙሺ݇׬ .3 ൌ 1 

In RSF algorithm, the image intensities are calculated in a local region centered 
at the point x, and the size of the region is controlled by the kernel function ݇ఙ. 
The choice of the kernel function is flexible and usually a Gaussian kernel is 
chosen: 

݇ఙ ൌ
1

ሺ2ߨሻ௡/ଶఙ೙
݁ି|௨|

మ/ଶఙమ   (4.3) 

The kernel function ݇ఙ  is a local factor and the contribution of intensity I(y) 
decreases as y moves away from the center point x. Therefore the kernel function 
݇ఙ acts like a low pass filter. The value of Gaussian kernel ݇ఙሺݔ െ  ሻ functionݕ
drops significantly to zero as y moves away from x [169].    

While the image is not very noisy, the RSF algorithm can produce good 
segmentation results. However, for an extremely inhomogeneous image, the 
RSF algorithm could not provide a desirable segmentation result. Figure 4.1    
shows an example of such a case.   

 

 
Figure 4.1 RSF algorithm on noisy image 

 

In section 3 a localized active contour algorithm using localized factor W(x,y) 
was discussed. The localized factor W(x,y) considers the neighbor region around 
the center point x. Since the kernel function ݇ఙ in the RSF algorithm and the 
localized factor W(x,y) are both local region factors, the intuitive idea is to see if 
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using the localized factor in the RSF algorithm can improve the segmentation 
result. This leads to the proposed algorithm presented in next section.   

 

4.2 Novel contribution: Localized RSF algorithm 

As discussed in section 4.1, for a very inhomogeneous image, the RSF algorithm 
cannot successfully produce desirable results. Considering that using the 
localized factor W(x,y)  can increase the segmentation results in chapter 3, in this 
section, a new algorithm which combines the RSF algorithm and the localized 
factor will be presented.   

Here, the RSF energy function is written as: 

ோܧ ൌ ௜ඵߛ ݇௚ሺݔ െ ሻݕሺܫሻሺݕ െ ݔ݀ݕ௜ሻଶ݀ݑ
ఆ௜

൅ ௢ඵߛ ݇௚ሺݔ െ ሻݕሺܫሻሺݕ െ ݔ݀ݕ௢ሻଶ݀ݑ
ఆ௢

 (4.4) 

where ݇௚  is the Gaussian kernel function. The ݑ௜	and 	ݑ௢  are the mean values 
inside and outside of the curve, respectively. 

The localized factor W(x,y) is written as ݇௨ here. Using localized factor ݇௨ and 
approximating the Heaviside function H by ܪఌ , the localized RSF energy 
function is written as: 

ோሺ߶ሻܧ ൌ ௜ඵߛ ݇௨ሺݔ െ ሻݕሺܫሻሺݕ െ ݔ݀ݕఌሺ߶ሻ݀ܪ௜ሻଶݑ
ఆ

൅ 

௢ඵߛ ݇௨ሺݔ െ ሻݕሺܫሻሺݕ െ ௢ሻଶሺ1ݑ െ ݔ݀ݕఌሺ߶ሻሻ݀ܪ
ఆ

 (4.5) 

The  ݑ௜	and 	ݑ௢ are calculated by using the localized factor ݇௨ as follows: 

௜ݑ ൌ
׬ ݇௨ሺݔ െ ఆ௜ݕሻ݀ݕሺܫሻݕ

׬ ݇௨ሺݔ െ ఆ௜ݕሻ݀ݕ

 

௢ݑ ൌ
׬ ݇௨ሺݔ െ ఆ௢ݕሻ݀ݕሺܫሻݕ

׬ ݇௨ሺݔ െ ఆ௢ݕሻ݀ݕ

 (4.6) 

In section 2, the Bhattacharyya distance was discussed to measure the difference 
between the internal and external regions. In this algorithm, the Bhattacharyya 
distance measurement is added into the energy function (4.5) to improve the 
segmentation results. Gaussian distribution is used as the image intensity 
distribution to calculate the Bhattacharyya distance. The Bhattacharyya distance 
can be calculated by using the following equation: 
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௚ܦ ൌ
1
4
݈݊ ቊ

1
4
ቆ
௜ߪ
ଶ

௢ଶߪ
൅
௢ଶߪ

௜ߪ
ଶ ൅ 2ቇቋ ൅

1
4
ቊ
ሺݑ௜ െ ௢ሻଶݑ

௜ߪ
ଶ ൅ ௢ଶߪ

ቋ (4.7) 

where ݑ௜ and ݑ௢ are the mean values of the two regions and ߪ௜
ଶand ߪ௢ଶ are the 

variances of those  regions.  

The calculation of parameters ݑ௜, ,௢ݑ ௜ߪ
ଶ	and ߪ௢ଶ are also obtained by using the 

localized factor ݇௨. The ݑ௜ and ݑ௢ are obtained by equation (4.6) and ߪ௜
ଶand ߪ௢ଶ 

are calculated as follows: 

௜ߪ
ଶ ൌ

׬ ݇௨ሺݔ െ ሻݕሺܫሻሺݕ െ ఆݕఌሺ߶ሻ݀ܪ௜ሻଶݑ

׬ ݇௨ሺݔ െ ఆݕఌሺ߶ሻ݀ܪሻݕ

 

௢ଶߪ ൌ
׬ ݇௨ሺݔ െ ሻݕሺܫሻሺݕ െ ௢ሻଶሺ1ݑ െ ఆݕఌሺ߶ሻሻ݀ܪ

׬ ݇௨ሺݔ െ ሻሺ1ݕ െ ఆݕఌሺ߶ሻሻ݀ܪ

 (4.8) 

Regularization is an important part for active contour method. The role of 
regularization in the level set algorithm is to smoothen the curves and is 
necessary for the curve to achieve correct results. The regularization term of the 
energy function is calculated as follows: 

௣ܧ ൌ 	
1
2
ଵߟ න ሺ|ߘ߶ሺݔሻ| െ 1ሻଶ݀ݔ

ఆ
൅
1
2
ଶߟ න ݔ݀|ሻሻݔሺ߶ሺܪߘ|

ఆ
 (4.9) 

where ߟଵ  and  	ߟଶ  are scale parameters. The first part of the above equation is to 
penalize the level set deviation from a signed distance function [170].  The 
second term is to penalize the length to smoothen the curve during evolution as 
in most of the active contour methods.  

A new active contour algorithm is derived here which combines the localized 
RSF algorithm, the Bhattacharyya distance and the regularization.  The total 
energy function of the proposed algorithm is: 

ܧ ൌ ሺ1 െ ோܧሻߚ ൅ ஻ܧߚ ൅  ௣ (4.10)ܧ

where ߚ is a scale parameter, the ܧோ is the localized RSF term obtained by (4.5), 
஻ܧ  is the Bhattacharyya distance term obtained by (4.7), and ܧ௣  is the 
regularization term calculated by (4.9). 

The level set equation of (4.10) is derived as: 

߲߶
ݐ߲

ൌ െߜఌሺ1 െ ௜݁ଵߛሻሺߚ െ ௢݁ଶሻߛ ൅ ஻݁ߚ ൅ ݁௣ (4.11) 



54 

According to [171] the calculation of ݁ଵ  and ݁ଶ  can be achieved by using 
convolution. Therefore  ݁ଵ can be re-written as: 

݁ଵ ൌ න ݇௚ሺݔ െ ሻݕ
ఆ

ሺሺܫሺݕሻ െ  ݕ௜ሻଶሻ݀ݑ

ൌ ሻݔሻଶሾ݇௚ሺݕሺܫ ∗ 1ሿ െ ሻݔሻሾ݇௚ሺݕሺܫ2 ∗ ௜ሿݑ ൅ ݇௚ሺݔሻ ∗ ௜ݑ
ଶ (4.12) 

and  ݁ଶ can be re-written as: 

݁ଶ ൌ න ݇௚ሺݔ െ ሻݕ
ఆ

ሺሺܫሺݕሻ െ  ݕ௢ሻଶሻ݀ݑ

ൌ ሻݔሻଶሾ݇௚ሺݕሺܫ ∗ 1ሿ െ ሻݔሻሾ݇௚ሺݕሺܫ2 ∗ ௢ሿݑ ൅ ݇௚ሺݔሻ ∗  ௢ଶ (4.13)ݑ

݁஻ is the Bhattacharyya term which is calculated as: 

݁஻ ൌ
1
4
݈݊ ቊ

1
4
ቆ
௜ߪ
ଶ

௢ଶߪ
൅
௢ଶߪ

௜ߪ
ଶ ൅ 2ቇቋ ൅

1
4
ቊ
ሺݑ௜ െ ௢ሻଶݑ

௜ߪ
ଶ ൅ ௢ଶߪ

ቋ (4.14) 

The regularization ݁௣  is calculated as: 

݁௣ ൌ ଵߟ ൭∆߶ െ ݒ݅݀ ൬
߶ߘ
|߶ߘ|

൰൱ ൅ ݒఌ݀݅ߜଶߟ ൬
߶ߘ
|߶ߘ|

൰ (4.15) 

The parameters ݑ௜,	ݑ௢,	ߪ௜
ଶ and ߪ௢ଶ  in (4.13), (4.14) and (4.15) are calculated by 

using convolution: 

௜ݑ ൌ
݇௨ሺݔ െ ሻݕ ∗ ሾܫሺݕሻܪఌሺ߶ሻሿ

݇௨ሺݔ െ ሻݕ ∗ ఌሺ߶ሻܪ
 

௢ݑ ൌ
݇௨ሺݔ െ ሻݕ ∗ ሾܫሺݕሻሺ1 െ ఌሺ߶ሻሻሿܪ

݇௨ሺݔ െ ሻݕ ∗ ሺ1 െ ఌሺ߶ሻሻܪ
 

௜ߪ
ଶ ൌ

݇௨ሺݔ െ ሻݕ ∗ ሾሺܫሺݕሻ െ ఌሺ߶ሻሿܪ௜ሻଶݑ
݇௨ሺݔ െ ሻݕ ∗ ఌሺ߶ሻܪ

 

  

௢ଶߪ	 ൌ
݇௨ሺݔ െ ሻݕ ∗ ሾሺܫሺݕሻ െ ௢ሻଶሺ1ݑ െ ఌሺ߶ሻሻሿܪ

݇௨ሺݔ െ ሻݕ ∗ ሺ1 െ ఌሺ߶ሻሻܪ
 (4.16) 
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4.4 Implementation 

As mentioned in section 2.4, the reinitialization is important to reshape the 
degraded level set function and maintain the stability of the level set. In [170] 
proposed a variational formulation to regularize the level set function during the 
evolution, and the reinitialization step is eliminated. This variational level set 
method without reinitialization is easy to implement compared to the traditional 
level set methods.  The proposed algorithm in this chapter is implemented using 
the variational level set without reinitialization technique. The upwind scheme is 
not needed in the proposed algorithm.  

The variational level set without reinitialization proposed using the following 
equation to penalize the level set function and therefore no reinitialization is 
needed: 

ܲሺ߶ሻ ൌ
1
2
න ሺ|ߘ߶| െ 1ሻଶ݀ݕ݀ݔ
ఆ

 (4.17) 

Let ߬  be the time step, the update of  ߶௡ାଵ is obtained by: 

߶௡ାଵ ൌ ߶௡ ൅ ߬∆߶௡ (4.18) 

where ∆ is the Laplacian operator.  

The pseudo-code of the proposed algorithm is outlined in Figure 4.2: 

 

1) k=0, initialize ࣘ࢑ by  ࣘ૙. 

2) Compute the  ࢏࢛, ࢏࣌
૛	and ࢕࣌ ,࢕࢛૛   according to (4.16). 

3) Compute the  ࢋ૚ and ࢋ૛ according to (4.12) and (4.13). 

4) Compute the ࡮ࢋ according to (4.14). 

5) Compute the term ࢖ࢋ	by (4.15). 

6) Evolve the curve ࣘ࢑ by (4.11) to obtain  ࣘ࢑ା૚ . 

7) Check if ࣘ  is convergent. If not, k=k+1 and go back to 
step 2. 

Figure 4.2 Pseudo-code of the proposed algorithm 
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4.5 Results 

The proposed algorithm is implemented in Matlab and the experimental platform 
is the same as in section 2. The performances of the proposed algorithm are 
quantitatively measured by calculating the Dice coefficient and the root-mean-
squared error of pairs of images (the segmented image and the ground-truth 
image).  

The root-mean-squared error (RMSE) [172]  measures the distance between the 
segmented contour and the ground truth contour. The RMSE is defined as: 

ܧܵܯܴ ൌ ඨ
∑ ሾሺݔ௜ െ ௜ሻଶݔ̅ ൅ ሺݕ௜ െ ത௜ሻଶሿݕ
௡ିଵ
௜ୀ଴

݊
 (4.19) 

where ݔ௜  and ݕ௜	 are the points on the segmented image; ௜ݔ̅	 and ݕത௜  are the 
corresponding points on the ground truth contour which has the closet distance 
to the points ݔ௜	and  ݕ௜.  Lower RMSE values mean that the contour is closer to 
the ground truth, and thus a segmentation result is more accurate. 

Firstly, synthesized images are used to evaluate the performance of the proposed 
algorithm. A synthesized image (Figure 4.3 a) is generated and Gaussian noise 
with different variances (listed in Table 4.1) is added to this image to produce 
the test images. The size of the synthesized image is 128*64 pixels. Figure 4.3 b), 
Figure 4.3 c), and Figure 4.3.e) show the synthesized images with Gaussian 
variance v=0.02, 0.4, 1.0, respectively. The segmentation results of these images 
are shown in Figure 4.3 b), Figure 4.3 d) and Figure 4.3 f), respectively. The 
Dice and RMSE results of proposed algorithm are shown in Table 4.1.    

 

Table 4.1  Dice and RMSE values of the proposed algorithm 

Variances of 
Gaussian Noise  Dice RMSE 

0.02 0.9993 0.0191 

0.2 0.9783 0.1025 

0.3 0.9730 0.1148 

0.4 0.9572 0.1428 

0.8 0.9444 0.1639 

1.0 0.9202 0.1920 
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a) Original image                                b) Gaussian noise value (v=0.02) 

  

 c) Gaussian noise value (v=0.4)         d) Segmentation result (v=0.4) 

  

             e) Gaussian noise value (v=1.0)        f) Segmentation result (v=1.0) 

Figure 4.3 Segmentation results of synthesized images 

 

A series of kidney phantom images consisting of a sequence of 110 ultrasound 
images are used to test the proposed algorithm. The image size is 191*211 pixels. 
Out of the series, 3 images are shown here together with the results in Figure 4.4. 
Figure 4.4 a) is the phantom ultrasound image; the second row represents the 
results of the proposed algorithm; the third row shows the results of the RSF 
algorithm. The kidney phantom’s border is difficult to detect and has a 
discontinuous edge in Figure 4.4. However, the proposed algorithm is able to 
extract the edge of the kidney correctly while RSF algorithm fails to accurately 
segment the kidney’s edge. The average Dice and the RMSE results of the 
proposed algorithm are shown in Table 4.2.  

 

Table 4.2 Dice and RMSE value of phantom images 

 Phantom images 

Dice 0.9595 

RMSE 0.1425 
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a) Original image 

   

b) Proposed algorithm 

   

c) RSF algorithm 

Figure 4.4 Segmentation results of phantom images 
 

Figure 4.5 shows the segmentation results of the proposed algorithm on two 
human kidney ultrasound images obtained from East Tallinn Central Hospital, 
Estonia. Compared to the phantom kidney images, in a human kidney ultrasound 
image, the kidney is surrounded by human tissue, therefore the differences in 
intensities between the interior kidney and exterior kidney are small and the 
segmentation of the kidney becomes more difficult. From the segmentation 
results of the human kidney ultrasound images, we can see that the proposed 
algorithm is able to segment the kidney ultrasound images with satisfactory 
results. 
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             a)                                                           b)   

Figure 4.5 Segmentation results of patient kidney ultrasound images 
 

Three types of images are used to evaluation the performance of the proposed 
algorithm: one synthesized ultrasound image (Figure 2.7 b), one ultrasound 
image of a phantom (the first image in Figure 4.4), and one ultrasound image of 
a patient (Figure 4.5 a). Table 4.3 shows the running times, the iteration counts 
and the Dice values of the proposed algorithm and the RSF algorithm.   

 

Table 4.3 Performance of the proposed algorithm and the RSF algorithm  

Image types 
The proposed algorithm RSF algorithm 

Time(s) Iterations Dice Time(s) Iterations Dice 

Synthetic image 

(128*64 pixels) 
1.458 100 0.9857 2.580 100 0.9804 

Phantom image 

(191*211 pixels) 
13.493 400 0.9476 12.1472 400 0.7583 

Patient image 

(177*189 pixels) 
34.357 800 0.8739 Not converge 
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4.6 Conclusions 

In this section, the drawbacks of RSF algorithm on segmenting very 
inhomogeneous images are discussed, and a solution for segmenting such 
images is proposed. An algorithm which combines the localized factor with the 
RSF algorithm is proposed. To increase the segmentation precision, the 
Bhattacharyya distance is also included into the algorithm. Different types of 
synthetic images are used to test the performance of the algorithm. The results 
show that the proposed algorithm can segment inhomogeneous images and 
produce satisfactory results. The performance of the proposed algorithm is also 
evaluated on kidney phantom ultrasound images and patient kidney ultrasound 
images. The results show that the proposed algorithm is able to deal with 
inhomogeneous images and has desirable segmentation results on images with 
weak boundaries.    
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5 Conclusions 
This thesis addresses the segmentation problem of ultrasound images. 
Ultrasound image is commonly used in clinical applications. However, the 
speckle phenomenon in the ultrasound imaging affects the ultrasound image 
quality. Due to the speckle noise in the ultrasound images, the segmentation is a 
difficult task. Traditional algorithms which are designed for natural scenes have 
difficulty to produce desirable segmentation results. To improve the ultrasound 
image segmentation results, the statistical properties of ultrasound images are 
investigated in this PhD research. In this thesis, three novel algorithms for 
ultrasound image segmentation are proposed by using the statistical properties of 
the ultrasound images during the segmentation process. 

An algorithm which combined the Chan & Vese algorithm and the 
Bhattacharyya distance was proposed in section 2. Phantom images with added 
noise and a real patient kidney ultrasound image were used to test the 
performance of the algorithm. The segmentation results showed that the 
proposed algorithm was able to deal with inhomogeneous ultrasound images. 
Compared to the Chan & Vese algorithm, the proposed algorithm was more 
robust and provided better segmentation results.   

In section 3, a localized region based active contour framework was used. Two 
algorithms using the localized region based active contour are proposed: the 
localized Rayleigh active contour algorithm and the localized shifted Rayleigh 
active contour algorithm. The performances of these two algorithms were 
analysed. Synthetic images, phantom ultrasound images and patient ultrasound 
image were used as the evaluation images. The results showed that the proposed 
algorithms were capable of segmenting ultrasound images and could produce 
desirable segmentation results on ultrasound images with blurry edges. The 
comparison of the localized Rayleigh active contour algorithm and the localized 
shifted Rayleigh active contour algorithm showed that the localized shifted 
Rayleigh active contour algorithm had better segmentation performance than the 
localized Rayleigh active contour algorithm. 

In section 4, a localized active contour algorithm was proposed which combined 
the region scalable fitting algorithm and the localized region based algorithm.  
The segmentation results of the proposed algorithm were evaluated on synthetic 
images, phantom ultrasound images and patient ultrasound images. The results 
showed that the proposed algorithms could produce satisfactory segmentation 
results on ultrasound images with weak boundaries. The performance of the 
proposed algorithm was compared with region scalable fitting algorithm. 
Compared to the region scalable fitting algorithm, the proposed algorithm is 
more robust. The evaluation and comparison results showed that the proposed 
algorithm had better performance than the region scalable fitting algorithm.  

By considering the statistical properties of ultrasound images, three novel 
segmentation algorithms are proposed in this thesis. Various ultrasound images 
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are used to evaluate the performance of the proposed algorithms. The evaluation 
results show that the proposed algorithms can improve the ultrasound image 
segmentation results.  
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Abstract 
Ultrasound imaging is commonly used in clinical diagnosis. Ultrasound imaging 
has several advantages over other medical imaging techniques such as X-ray, 
computed tomography (CT) and magnetic resonance imaging (MRI). The 
ultrasound imaging system is cheap, portable and has short acquisition times. 
Also the ultrasound technique is safe for patients.  

At the same time, ultrasound imaging has some limitations which reduce its 
applicability. The quality of ultrasound images is relatively poor with speckle 
noise and artifacts.  The objects’ edges in an ultrasound image are usually very 
blurry or missing at some places. Due to the noisy nature of ultrasound images, 
traditional segmentation algorithms have difficulty in producing desirable 
results. In this thesis, we focus on using statistical methods for ultrasound 
images segmentation, and propose three new algorithms.   

The first algorithm combines the Chan & Vese algorithm and the Bhattacharyya 
distance. The Chan & Vese algorithm is a global algorithm, and it divides the 
image domain into two parts: internal and external regions. By using the 
Bhattacharyya distance, the proposed algorithm can maximize the difference 
between image regions and minimize the difference within the image regions. In 
the second algorithm, a localized region based active contour is used under the 
assumption that if the global requirement is not fulfilled in the image domain, 
then it can be satisfied in a small sub region with a high probability. Rayleigh 
distribution and shifted Rayleigh distribution are used to model the ultrasound 
image intensity distribution. The third algorithm combines a localized factor into 
the region scalable fitting algorithm and incorporates the Bhattacharyya distance 
in this algorithm.  

To validate the performance of the proposed three algorithms, synthetic 
ultrasound images, phantom ultrasound images and patient ultrasound images 
are used as evaluation images. The segmentation results of the proposed 
algorithms show that the proposed algorithms are able to deal with ultrasound 
images with blurry edges and can produce desirable segmentation results. The 
segmentation results of the proposed algorithms are also compared with other 
algorithms to prove the efficiency of the proposed algorithms.  
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Kokkuvõte 
Ultraheliuuringuid kasutatakse laialdaselt meditsiinilise diagnostika eesmärgil. 
Ultraheliuuringutel on mitmeid eeliseid võrreldes teiste meditsiinis kasutatavate 
uuringumeetoditega nagu röntgenülesvõtted, kompuutertomograafia (KT) ja 
magnetresonantstomograafia (MRT). Ultraheliuuringud on odavad, 
ultraheliseadmeid on lihtne transportida ja uuringud võtavad vähe aega. Ühtlasi 
on ultraheli patsiendile ohutu. 

Samas on ultrahelitehnoloogial puudusi mis piiravad selle kasutatavust. 
Ultrahelipiltide kvaliteet on võrdlemisi kehv omades teralist tekstuuri ja 
artefakte. Objektide servad ultrahelipiltidel on harilikult väga hägused ja kohati 
puuduvad üldse. Ultrahelipiltide mürasuse tõttu on traditsioonilistel 
segmentatsioonialgoritmidel raskusi vajalike tulemuste saavutamisel. 
Käesolevas väitekirjas keskendutakse statistiliste meetodite kasutamisele 
ultraheli piltide segmenteerimiseks ja pakutakse välja kolm uut algoritmi. 

Esimene algoritm kombineerib Chan&Vese algoritmi ja Bhattacharyya kauguse.  
Chan&Vese algoritm on globaalne algoritm, mis jagab pildidomeeni kaheks 
osaks: sisemine ja välimine piirkond. Loodud algoritm maksimeerib 
Bhattcharyya kaugust kasutades erinevust kahe pildiregiooni vahel ning 
minimeerib seda kummagi regiooni sees. Teises algoritmis kasutatakse 
lokaliseeritud regioonil põhinevat aktiivse kontuuri meetodit oletusel, et kui 
globaalne homogeensus ei ole pildidomeenil tagatud siis suure tõenäosusega on 
võimalik see täita väikses alamregioonis. Rayleigh jaotust ja nihutatud Rayleigh 
jaotust kasutatakse ultrahelipildi intensiivsuse jaotuse modelleerimiseks. Kolmas 
algoritm kombineerib lokaliseeritud regiooni faktoriseerimise ja regiooni 
skaleeriva lähendamise algoritmi ning kasutab Bhattacharyya kauguse meetodit. 

Loodud kolme algoritmi toimimise hindamiseks kasutatakse tehislikke pilte ning 
fantoomidest ja inimestest tehtud ultrahelipilte. Teostatud segmenteerimise 
tulemustest on näha, et loodud algoritmid suudavad parandada ultrahelipiltide 
segmenteerimise tulemusi  ja saavad hakkama ka ultrahelipiltidega millel 
struktuuride piirjooned on udused. Loodud algoritmidega teostatud 
segmenteerimise tulemusi võrreldakse ka teiste algoritmide omadega tõestamaks 
suuremat efektiivsust. 
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Appendix A 
 

Muradore, R., Fiorini, P., Akgun, G., Barkana, D. E., Bonfe, M., Bonfe, F., 
Caprara, A., De Rossi, G., Dodi, R., Elle, O. J., Ferraguti, F., Gasperotti, L., 
Gassert, R., Mathiassen, K.; Handini, D., Lambercy, O., Li, L., Kruusmaa, 
M.,Oberman Manurung, A., Meruzzi, G., Nguyen, H. Q. P., Preda, N., Riolfo, 
G., Ristolainen, A., Sanna, A., Secchi, C., Torsello, M., Yantac, A. E., 
"Development of a Cognitive Robotic System for Simple Surgical Tasks", 
International Journal of Advanced Robotic Systems, 2015, 12(37), pp.1 - 20.  
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Appendix B 
 

Lin Li, Peeter Ross, Maarja Kruusmaa, "Ultrasound Image Segmentation by 
Bhattacharyya Distance with Rayleigh Distribution", in Proc. IEEE Int. Conf. on 
Signal Processing: Algorithms, Architectures, Arrangements, and Applications 
(SPA), 2013, pp.149-153.  
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Appendix C 
 

Lin Li, Maarja Kruusmaa, "Ultrasound Image Segmentation with Localized 
Level Set Based Curve Evolution and Rayleigh Distribution", in Proc. IEEE Int. 
Conf. on Systems, Signals and Image Processing (IWSSIP), 2013, pp. 139-142.  
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Appendix D 
 

Lin Li, Peeter Ross, Maarja Kruusmaa, Xiaosong Zheng, "A Comparative Study 
of Ultrasound Image Segmentation Algorithms for Segmenting Kidney 
Tumors", In Proceedings of the 4th International Symposium on Applied 
Sciences in Biomedical and Communication Technologies, ACM, 2011. 
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