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Introduction

Ultrasound imaging technique was introduced to medical analyses in 1950s [1].
Since then it has been widely used in clinical application and is one of the most
popular diagnostic method in medical diagnosis [2],[3]. The principle of
ultrasound imaging is as follows [4]: an ultrasound transducer produces an
acoustic wave and this acoustic wave propagates through the tissue and is
partially reflected back because of the inhomogeneity of the tissue. The
backscattered wave is received by the same transducer and further converted into
a grayscale image which is then shown on a screen. Compared to other medical
imaging techniques such as X-ray, computed tomography (CT) and magnetic
resonance imaging (MRI), ultrasound imaging has several advantages. Firstly,
an ultrasound machine has a short acquisition time [5]. The ultrasound machine
is portable with relatively low cost [6]. And the ultrasound technique is non-
invasive with no hazardous radiation emission [7].

Limitations of ultrasound imaging

However, ultrasound imaging has some limitations:

e Ultrasound image quality is poor compared to MRI and CT images. The
tissue boundary in an ultrasound image is ambiguous and it is difficult to
precisely detect the position of the organ on an ultrasound image due to
the low contrast of the ultrasound image [8].

e The quality of an ultrasound image depends highly on the ultrasound
machine, the acquisition conditions and the operator. The interpretation
of the ultrasound image is subjective and it needs considerable training
to obtain the expertise by the clinicians [9].

The low quality of ultrasound images limits the applications of the ultrasound
imaging. To improve the quality of ultrasound images, many scientists are
working on this challenging task [10],[11]. Mainly there are two research
directions: one research direction is to improve the acquisition modality of
ultrasound by investigating new probes [5], more sophisticated components [12]
or more advanced apodization schemes [13],[14]; the other direction is
ultrasound signal and image processing i.e. improving the ultrasound image by
signal or image processing methods [15].

Image segmentation for ultrasound image

Image segmentation plays an important role in medical image analysis [16]. It is
an important process for higher level image comprehension and is helpful for
radiologists. It has wide applications such as in surgical path planning [17], in
early disease detection [18] and in 3D reconstruction [19]. Unfortunately, the



noisy properties of ultrasound images decrease the performance of traditional
algorithms which are developed for natural scenes [20].

Many scientists are working on the improvement of segmentation algorithms for
ultrasound images [21],[22]. One way is to treat the speckle noise in ultrasound
images as a source of information which provides useful information about the
internal structure of the organ tissue. This concept is exploited widely in many
applications such as classification [23], segmentation [24], registration [25].

Challenges in ultrasound image segmentation

Kidneys are essential organs and are located at the back of the abdomen [26].
Kidneys are bean shaped organs and are about 4-5 inches in length. Every year,
many people suffer from chronic renal diseases due to diabetes mellitus,
glomerulonephritis [27], etc. In Europe, kidney cancer accounts for nearly 3% of
all cancer cases [28]. Because the kidney function failure can be life threatening,
the detection of kidney disorders and diseases in the early stage is very crucial
[29]. Ultrasound technique is widely used to diagnose kidney diseases in
hospitals [30],[31]. Ultrasound imaging is the standard technique to examine
renal abnormal structures such as stones, tumors, cysts [32],[33], etc.

In clinical practise, the detection of kidney border is usually done manually by
the radiologist which is time consuming and subjective [34], [35]. A great deal
of expertise is needed to correctly recognize the organ tissue or the part that the
radiologist is interested in. Image segmentation methods on the other hand offer
potential advantages, and can help the radiologist speed up the process and save
their time from the tedious work. The benefits of using image processing
methods are [36]:

e The kidney segmentation can be used in the surgical operations like
puncturing. It plays an important role in the computer-aided diagnosis
systems for kidney intervention.

e The segmentation results of kidney from other tissue by image
processing methods can further be used for other process steps such as
reconstruction, registration.

But due to the low ultrasound image quality and the presence of noise and
artifacts, the detection of abnormal renal structure is difficult [21],[37]. The in
vivo segmentation of kidney ultrasound images is a challenging task because of
the following reasons [38]:

e The kidney is a deformable organ. The patient posture during the scan,
as well as the physical conditions of the patient such as stomach and
intestine can affect the shape of the kidney.

e The inner area of the kidney is not homogeneous. Its internal structure
contains vein, arteries, pelivs, etc.
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The border between the kidney and the nearby tissue is not very clear. In
some cases, it is difficult even for a specialist to tell exactly where the
border of the kidney is, because there might be an area with no boundary
at all.

Figure 0.1 shows an abdomen CT image with kidneys and a kidney ultasound
image. Both images are obtained from East Tallinn Central Hospital, Estonia.

Figure 0.1 CT abdomen image and kidney ultrasound image

Contributions

This manuscript addresses the segmentation problem of kidney ultrasound image
by using statistical methods. It focuses on the following methodological aspects:

Statistical modeling of the ultrasound image signal to improve the
detection of the kidney border.

Segmentation methods are based on level sets. By using the level sets,
the algorithms are able to deal with topological change.

The scientific contributions of this thesis are the following:

Developing a region based active contour algorithm which combines the
Chan & Vese algorithm and the Bhattacharyya distance for ultrasound
image segmentation.

Using the Rayleigh distribution for ultrasound image segmentation. A
localized active contour framework is used for the kidney ultrasound
image segmentation.

Developing an algorithm which combines the localized active contour
and the region scalable fitting algorithm together for ultrasound image
segmentation.

Showing that the proposed algorithms can improve the segmentation
results for ultrasound image.
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Organization of the thesis

The manuscript is divided into four main sections. The first section provides the
background of ultrasound imaging system. The first section mainly focuses on
the noisy property of ultrasound image and discusses the speckle phenomenon
and various existing statistical models for ultrasound image. An overview of the
segmentation algorithms for ultrasound image is also included in the first section.

In the second section, the speckle in the ultrasound image is exploited as a
source of information and an algorithm which combines the Chan & Vese and
the Bhattacharyya distance is proposed. The Rayleigh distribution is chosen as
the ultrasound image intensity distribution. In the third section, a localized active
contour framework is used and Rayleigh distribution and shifted Rayleigh
distribution are chosen as the ultrasound image intensity distribution and a
comparison between the performances of these two distributions is included. In
the fourth section, an algorithm is proposed which can improve the segmentation
result of region scalable fitting algorithm by introducing a localized factor into
the region scalable fitting algorithm. Both synthetic and ultrasound images are
used to test the performance of the proposed algorithms.
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1 Background

Ultrasound imaging is commonly used in clinical application. Compared to other
medical image modalities, ultrasound is safe, low cost and relatively cheap.
Ultrasound imaging is the only non-invasive imaging modality which can
acquire images in real time [39]-[41]. All of these features make the ultrasound
imaging one of the most popular medical imaging techniques.

In this chapter, firstly the ultrasound imaging system is introduced. Then, the
speckle noise in the ultrasound image is discussed. After that, various statistical
distributions of an ultrasound image are presented and an overview about the
segmentation algorithms for ultrasound images is given.

1.1 Ultrasound imaging system

Figure 1.1 shows a typical ultrasound system. An ultrasound system usually
consists of a transducer, an ultrasound machine and an image display screen.
The display image shown on the screen is obtained through a series of
transformations from the original signal. The transducer generates an acoustic
wave which then penetrates into the tissue and reflects back when tissue
inhomogeneity occurs [42]. The backscattered signal is received by the
transducer and then passes through different processes to get the final display
image. Usually an ultrasound imaging system contains the following signals to
analyze:

a) Radio-frequency (RF) signal

The reflected acoustical echo wave is received by the transducer and converted
to a radio-frequency signal [43]. The RF signal provides the micro information
about the internal structures.

Figure 1.1 Ultrasound system [44]
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b) Analytic signal

Since the RF signal is a real signal, its Fourier transform is symmetric and
therefore contains redundant information. The negative frequency component in
the Fourier transform of the RF signal is removable and the resulting signal is
the analytic signal without a loss of information. The analytic signal is a
complex signal. The Fourier transform of the RF signal is usually achieved by
using the Hilbert transform operator [45].

¢) Complex In-phase/quadrature (IQ) signal

The in-phase/quadrature (IQ) signal is obtained by applying demodulation to the
analytic signal [46]. The maximum frequency of the complex 1Q signal is lower
than the RF and analytic signal. The complex IQ signal preserves the same
useful information as the RF signal but has a lower frequency than the RF signal.

d) Envelope detected signal

An envelope detection is performed on the IQ signal to obtain an envelope
detected signal [47]. This envelope detected signal is further used for the display
of the ultrasound image.

e) Display image

The envelope detected data is then log compressed to produce a grayscale
display image for most commercial ultrasound systems. Often post-processing is
employed to produce a grayscale image. Interpolation and rasterization is then
carried out to produce the final display image. Several modes of display images
are used clinically: B-mode M-mode, and Doppler mode [48].

1.2 Speckle phenomenon

The ultrasound transducer generates a high frequency acoustic wave. When the
acoustic wave propagates in the tissue, the wave speed is changed by the tissue
properties. The acoustic impedance of a biological tissue is not constant.
Therefore, reflection occurs at the places where the acoustic property of the
tissue is discontinuous. The reflected signal provides useful information about
the tissue’s internal structure. The echo reflection is received by the transducer
and is further transformed to make a tissue image. There are two types of
reflections: specular reflection and diffusive reflection [49].

e Specular reflection: when a sound wave reaches the region where the
number of scatterers is large compared to the wavelength, specular
reflection occurs. The specular reflection enables the visualization of the
object’s boundary.

e Diffuse reflection: Diffuse reflection appears when the acoustic wave
transits in a region where the number of scatterers is smaller than the
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wavelength of acoustical signal. Diffuse reflection causes the granular
texture of the ultrasound image.

The diffuse reflection yields the speckle phenomenon. Speckle is the granular
pattern in an ultrasound image. The speckle is the undesirable feature of the
ultrasound image and is responsible for the noisy property of the ultrasound
image [50]. The speckle depends on the resolution of the ultrasound machine.
Since speckle is the backscattered wave from the scatterers inside the resolution
cell, the nature of the scatterers, such as their density affects the speckle. If the
number of scatterers inside the resolution cell is large and its density is uniform,
then the speckle is called fully developed [51]. Otherwise, if the number of
scatterers inside the resolution cell is small, the speckle is partially developed
[52].

Though speckle pattern has random appearance, it is not a random process but a
deterministic process [53]. If an object is scanned two times under the same
situation, the speckle pattern will be exactly the same. For example, if we move
the transducer back to the same position, it will create exactly the same image.

The speckle in the ultrasound image is correlated with the micro structure of the
organ tissue. The speckle phenomenon causes difficulties in ultrasound image
processing like ultrasound image segmentation, recognition and reconstruction.
Speckle leads to intensity inhomogeneities inside the homogeneous tissue
regions. In literature, the speckle can be viewed as noise or source of
information [54],[55].

If the speckle is considered as noise, several despeckle methods [56] have been
designed, for example Wiener filtering [57], anisotropic algorithm [58], wavelet
algorithm [59], median filtering [60]. It is more common to view the speckle as a
source of information which provides useful information about the tissue and
can be exploited for certain applications. Statistical signal theory has been
applied to analyze the ultrasound signal by modeling the ultrasound image
formation as a statistical process [53]. The methods of modeling the speckle
statistical probability distribution of ultrasound image are non-parametric [61],
[62] and parametric [63],[64].

1.3 Statistical models for ultrasound image

In literature, statistical models for ultrasound image have been extensively
studied [65]-[67]. Several distributions such as Rayleigh distribution [68],[69],
Rician distribution [70],[71], K distribution [52],[72], generalized Gaussian
distribution[73],[74] and Nakagami distribution [75],[76] are proposed to model
the ultrasound image signal. In this section, some ultrasound image signal
distributions are discussed: the generalized Gaussian distribution for RF signal,
the Rayleigh distribution for envelope detected signal and Fisher-Tippett
distribution for the display image.
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1.3.1 Generalized Gaussian distribution

The RF signal is not commonly accessible for a commercial ultrasound machine.
The generalized Gaussian distribution (GGD) is used for the RF signal [77]. The
GGD is defined as:

3 B yP
Foer = Garayp) <_ 2 ) (b

where « is the parameter for the scale control and £ is for the shape control, o is
the standard deviation and I'(-) is the Gamma function. Figure 1.2 shows the
GGD with different  values. The estimation methods for the GGD parameters a
and £ are usually based on maximum likelihood methods [78] and moments
matching methods [79].

07
— =05
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Figure 1.2 Generalized Gaussian distribution

1.3.2 Rayleigh distribution

The Rayleigh distribution is the most commonly used distribution for the
ultrasound envelope-detected image. For fully developed speckle situation, i.e.
in the resolution cell the number of scatterers are very large, the ultrasound
envelope image follows the Rayleigh distribution [53]. When the number of
scatterers per resolution cell is very high, the scatterers phase is uniformly
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distributed, and using the central limit theorem, the joint probability density
function is:

1 2
P = o2 e 20° (1.2)

Where r is the real and i is the imaginary parts of the corresponding signal.
Transforming from Cartesian coordinate to Polar coordinate, the Rayleigh
distribution is obtained by:

p?

PRayleigh = ?e_m (1.3)

where p = Vr? + i? is the magnitude of the signal. The phase of the signal is
uniformly distributed [—, ]. Figure 1.3 represents the Rayleigh distribution
with different o values.

25

0=03
o=04
o=05
Tg=06

1 5! 2

Figure 1.3 Rayleigh distribution

The analytic expression of Rayleigh distribution is simple which makes it
attractive. The maximum likelihood method (MLE) is usually employed in the
estimation of the parameter a2. For n number of elements (y;, y5...y,,), the MLE
estimation of the o2 is:

1
52 = — 2 1.4
0% = E Vi (1.4)
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1.3.3 Fisher-Tippett distribution

The ultrasound envelope-detected image has a large dynamic range. Therefore
log compression approach is usually employed to produce an image with a
suitable dynamic range to display on a monitor for most commercial ultrasound
machines. In [80] the distribution of display image was investigated and it was
pointed out that the display image distribution was a Fisher-Tippett distribution.
The Fisher-Tippett distribution is defined as follows:

P= 2exp(%)exp{2p —In(202%) — el2p~In(20*)]} (1.5)

where o2 is the parameter of Fisher-Tippett distribution.

1.4 Segmentation algorithms overview

Ultrasound imaging is commonly used in clinical diagnostics such as the
detection of breast abnormality [81]-[83], prostate cancer [84]-[86], liver
diseases [87]-[89], the 2D/3D visualization of fetus [90],[91], etc. The
ultrasound imaging also plays an important role in the early detection of the
kidney diseases [92]-[94]. The real time visualization of ultrasound images
makes it possible to use it in surgical robotics, for example for the identification
of the organs of interest [95],[96], or pathology of those organs [97],[98].
Compared to other medical imaging techniques, ultrasound imaging is cheaper,
relatively safer and more adaptable. Therefore, ultrasound imaging has important
applications in the clinical field.

Image segmentation is a fundamental step for image analysis and is the basis for
higher level applications such as registration, visualization, clinical diagnosis
[99]. However, compared to other medical images, such as computed
tomography and magnetic resonance imaging, ultrasound images are difficult to
segment because their quality is relatively poor. The speckle phenomenon in the
ultrasound images leads to the granular texture in the images. Moreover, because
of the attenuation of the ultrasonic wave in the tissue, the intensity of the tissue
always changes and the boundaries of the tissue are often not prominent or
sometime are completely missing.

Since the image segmentation plays an important role for ultrasound image
analysis, different algorithms for segmenting the object boundaries in ultrasound
images will be presented in this section. In literature, several methods have been
proposed to semi-automatically [100] or automatically[101] detect the objects’
borders in ultrasound images. Methods such as region growing[102]-[104],
statistical methods[105]-[107], Markov random fields [108]-[110], and active
contour models [111]-[113] are among the most frequently used. The active
contour models will be mainly discussed here.
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Active contour (AC) models are commonly used in ultrasound image
segmentation for example for intravascular ultrasound images [114],[115],
breast ultrasound images [116],[117], echocardiography [118],[119] and kidney
ultrasound images [37],[120]. Active contour models can be classified as
parametric active contour models [121] or geometric active contour models
[122]. The parametric active contour models explicitly represent the curve. On
the other hand, the geometric active contour models represent the curve as the
zero level set of an implicit function and evolve the level set function in an
Eulerian framework. The geometric active contours models have several
advantages over the parametric active contour models. Firstly, the level set
representation is independent of the curve parametrization and enables to
topologically change of the curve. Secondly, the efficient numerical schemes of
the level set function make the calculation flexible and easy.

Some level set based active contour methods are calculated by partial differential
equations (PDE) [123]. Other active contour models, which are known as
variational level set methods, directly derive the level set evolution function by
minimizing a certain energy function [124],[125]. Additional information, like
region information [126] and shape-prior information[127] can be easily
incorporated into the variational level sets energy function.

According to the segmentation methodologies, the active contours can be mainly
divided into edge based active contours[128]-[130] and region based active
contours [131]-[133]. Edge based active contours use edge information for
curve evolution. Region based active contours on the other hand utilize region
information instead of image gradient. The edge based active contour models are
sensitive to the noise and poor image contrast, which result in bad segmentation.
The region based active contours use the region information such as intensity
statistics in the energy function and are more robust than the edge based active
contours. By integrating the prior shape knowledge of the objects into the active
contours energy functions, the active contours are able to solve the occlusion
problems or the missing edge problems. More information about the shape prior
active contours can be found in [134]-[136].

1.4.1 Level set

The image segmentation problem can be represented as an optimization
problem. By evolving the curve according to a certain energy function, the curve
reaches the optimized position which is also the result of the segmentation.
Level set method was first introduced in [137]. The level set based segmentation
methods are efficient, flexible and are able to deal with topological change.

Let / be a given image. Let y be a family of closed curves and let a curve
I': s,t€[0,1] X Rt - T'(s,t) = (x(s,t),y(s,t),t)eQ x R* so that Vt curve
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[;:s > (x(s,t),y(s,t)) is iny [138]. The curve I' can be represented by the
zero level-set of a Lipschitz-continuous function ¢ called level set function:

¢$>0 Vx,y € Q;
¢p<0 Vx,y € Q, (1.6)
=0 Vx,y €T

where x, y is a point coordination in (2. ; represents the region inside {2
bounded by I' and Q, represents the region Q, = 2 \ ;.

In the level set formulation, for every s and ¢, the curve can be represented by

¢>(F(s, t)) = ¢p(x(s,t),y(s,t),t) =0 (1.7)
In general, the total derivative of (1.7) with respect to time ¢ is
dp 0¢pox 0¢pdy 0¢ or 0
E—aa+ga+a—<\7¢,a>+ﬁ—o (1.8)

or . . . . .
Let e Vn, where V is the velocity and » is the normal outward direction, the
following equation is obtained:
a9

T _ 1.9
o V<Vpn> (1.9)

The evolution of equation (1.9) only involves the normal velocity. Only the
normal velocity contributes to the curve evolution, the tangential velocity
doesn’t change the geometry of the curve [138].

The segmentation problem can be represented as the minimization of a specific
energy criterion £ of the level set curve evolution. The steady state of the curve
divides the image into the region of targets and the region of background:

¢ = argmin{E(¢)} (1.10)

The first variation of £ with respect to ¢ is:

OE 1
— =lim—{E —-E 1.11
5 = lm L (E@ +t) ~ E($)) (1.1)
Using the gradient descent method the following equation is obtained:
09 0E
L __= 1.12
ot d¢ (1.12)
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Figure 1.4 shows an illustration of the level set method.

e "D(.\‘,_l,',U

Figure 1.4 Level set method illustration

1.4.2 Edge based active contour models

Many edge based active contour algorithms have been proposed for different
application purposes. Edge based active contour algorithms use edge
information to detect the borders of the objects. Generally the edge based
approaches do not assume homogeneous image intensities. The edge based
active contours are usually sensitive to the initialization of the curve.

a) Kass-Witkin-Terzopoulos Snake model

The Kass-Witkin-Terzopoulos snake model was proposed in [139]. The snake
model drives the curve evolving toward the high image gradient. The snake
model is based on solving the following energy function:

1 1 1
Esnate = f aly'|dq + f Bly"|2dq - A f (@)1 dg (1.13)
0 0 0

where y(q) = (x(q),v(q)) € Q(q € [0,1]) is a parametric planar curve. The
first two terms of (1.13) correspond to the internal energy term which used to
enforce the smoothness of the curve. The last term of (1.13) is the external
energy term which determines the curve evolution and drives the curve towards
the high image gradient.

The shortcomings of the snake model are several. It is sensitive to noise in the
image. Also, it is unable to deal with the topology change during the curve
evolution. Therefore, only the single connected object is segmented from the
background.
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b) Geodesic active contour model

The geodesic active contour model was introduced in [140]. The energy
function of geodesic active contour model is:

b
Boac = | a(WIGr@))Iy @ldg (1.14)

where g(-) is an edge indicator function. Commonly, the choice of g is:

1

=— 1.15
1+ t? ( )

g

The minimization of the geodesic active contour energy function is obtained by
solving the following equation:

dy  OE (1.16)
ot dy '

The minimization of the energy function is obtained by the following equation:

ay

— = ~(g(TI()Dk+< VgIVIG)|n >)n (1.17)

where £ is the the curvature of the curve.

The disadvantage of the geodesic active contour method is that it uses only the
image information along the curve. So it is easy to get trapped in local minima
or evolve toward the wrong direction. Also, it is difficult for the geodesic active
contour to get correct results if the initial curve is too far away from the desired
position. Figure 1.5 shows the segmentation results of geodesic active contour
model on a noisy image.

Figure 1.5 Segmentation results of geodesic active contour
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1.4.3 Region based active contour models

The region based active contours are an alternative to edge based active contours.
The region based active contours utilize region information instead of the image
gradient. The most general region based active contour’s energy function can be
written as:

F=a| f@wicp| n@odry [ 160wl (1.18)
; 2, or

The first two terms are the region term and the last term is called the contour
term which is associated with the curve T

a) Mumford and Shah model

The Mumford and Shah (MS) [141] model is an important model in image
segmentation. The MS model has been intensively studied and has influenced
numerous methods. The image segmentation problem is treated as image
smoothing and boundary detection in the MS model. The energy function of the
MS model is:

Eys=| d-M?*dx+p | |VM|*dx + Apl(K) (1.19)
02 N,y

where M is a smooth approximation and K is a set of discontinuous edges. The
first term of the MS model is the data term which drives the curve evolving
toward the desired place. The second term is the smoothness prior term. The last
term is the length prior term which is used to regularize the boundaries.

b) Chan & Vese model

The Chan & Vese (CV) model was proposed in [142]. The CV model is a
simplified model of MS model. In CV method, the image features are assumed
to be similar within a segment. In this case, the image / is assumed to be
consisting of two segments with approximately piecewise-constant intensities.
Suppose a curve I" divides the image domain into two parts: £; and Q,, the
energy function of CV model is:

Eoo =N | (I —uw)?dx + 2, f (I—v)%dx+2A; | ds+2A,| dx (1.20)
Q4 Qo Qr Qi

where u is the mean of the intensity inside the curve I' and v is the mean
intensity of the region outside I'. The CV model assumes that foreground and
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background regions can be separated by maximizing the mean intensities
between them. The energy optimization will move the curve toward the largest
difference between interior and exterior means.

For the level-set formulation, the Heaviside function H(¢) is ususally used. The
Heaviside function is expressed as:

H) =) i;g e (121)
and the Dirac function §(¢) is defined as:
d
5(¢) = @H(dﬂ (1.22)

the Heaviside function H and the Dirac function § can be approximated as H,
and J; by the following equations:

1 2 X
H.(x) = > [1 + Earctan(g)]

5.(x) = HI(x) = - —°

" (1.23)

Using Heaviside function H(¢) and the Dirac function §(¢), the CV model can
be written as:

Eew = Ay f (1 — w2H(@)dx + 2, f (1 - v)2(1 — H($))dx
0 0

1 f V)15()dx (124)
0
The evolution of equation (1.24) is:

09 Ve
= =5 [/11(1 — )2 = 2y (I — V) + AV (ﬁ)] (1.25)

Figure 1.6 illustrates the CV algorithm.
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Fi(c)>0 and Fz(c)>0 F1(c)>0 and Fz(c)=0

(a) (b)

Fi(c)=0 and F2(c)>0 F1(c)=0 and Fz(c)=0

() (d)

Figure 1.6 Illustration of CV algorithm

1.5 Summary

In this section, ultrasound imaging system is introduced. Then the speckle
phenomenon is discussed, and speckle phenomenon is presented. Various kinds
of ultrasound image distributions are introduced. Later, an overview about the
image segmentation algorithms is given and various kinds of different existing
active contour models are presented.
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2 Region based statistical segmentation

An ultrasound image is obtained through a chain of transformations from the RF
signal, the analytic signal, and the envelope detected signal to the final display
image. B-mode images are the most popular type of ultrasound images in
clinical applications [143],[144]. For ultrasound image segmentation, it is crucial
to determine the image intensity by an adequate statistical distribution. In this
section, an active contour algorithm which combines the Chan & Vese algorithm
and Bhattacharyya distance together is proposed to solve the ultrasound image
segmentation problem. The algorithm described in this chapter is related to
publication B.

2.1 Inhomogeneous image segmentation problem

The artifacts in an ultrasound image make the tissue borders difficult to
distiguish from the ultrasound image [145]. The intensity inhomogeneity in the
ultrasound image leads to blurry boundaries, therefore the segmentation of an
inhomogenous image is a challenging task.

In section 1.4 the Chan & Vese (CV) segmentation algorithm is introduced
which is an important region based active contour algorithm. The CV algorithm
is a global algorithm, and it is robust to noise and works well on low contrast
images. But the global minimization of the CV algorithm does not always
guarantee satisfactory results. The convergence of CV algorithm depends on the
segmented object’s homogeneity. If the image is very noisy or contains large
inhomogeneous regions, the CV method has trouble to correctly segment the
objects. For example Figure 2.1 shows a segmentation result of CV algorithm in
which the CV algorithm fails to produce correct result.

Figure 2.1 Segementaion result of CV algorithm
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To improve the segmentation result, one approach is to incorporate the prior
knowledge of the image with the algorithm. A short description about the
Bhattacharyya distance is given in section 2.2 and a new algorithm is proposed
which considering the statistics of the ultrasound image with the CV algorithm
in section 2.3.

2.2 Bhattacharyya distance

The goal of image segmentation is to partition the image region into a number of
sub-regions according to certain properties so that each sub-region is
homogeneous. A more practical way to think of the segmentation problem is to
decompose the image into distinct fragments. Therefore, statistical methods can
be applied to model the image fragments.

For ultrasound image segmentation, under the assumption that the intensity
distributions between different objects are different, an intuitive way is to define
a criterion which minimizes the overlap between the image’s objects and the
background. The ideal measurement is that a measurement that can minimize the
difference within each segment and maximize the difference between segments.

In literature, there are many measurement metrics which measure the difference
between probability distribution functions such as Kullback—Leibler divergence
[146], the Wasserstein distance [147] and Bhattacharyya distance [148]. The
Bhattacharyya distance has several advantages such as that it has a simple
analytical form and it can work with arbitrary distributions, while the Kullback—
Leibler divergence requires mean separated distributions to yield good results
and the Wasserstein distance based segmentation model assumes an
independently identical distributed image intensity [149].

Also, the Bhattacharyya distance has recently been successfully applied in object
tracking [150], and image segmentation [151]. In [151] an image segmentation
algorithm based on the Bhattacharyya distance was introduced. Specifically, the
algorithm maximized the difference between image regions with respect to the
given metrics. By incorporating the Bhattacharyya distance, the mutual
information between the separated regions is maximized.

The Bhattacharyya distance measures the similarity between two probability
distribution functions P;(z) and P,(z) with z € RN. The Bhattacharyya distance
is defined as D = — log B where B is the Bhattacharyya coefficient:

B = f JPDP. @) dz @.1)
RN

The range of Bhattacharyya coefficient is between [0, 1] Since the logarithm
function is monotonically increasing, the minimization of B is equivalent to the
maximization of D.
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2.3 Novel contribution: combining CV and Bhattacharyya distance

Based on above discussions, an active contour algorithm is proposed here which
uses the statistical model to segment the ultrasound image. The Rayleigh
distribution is incorporated with the level set active contour algorithm. This
choice is made because of the following reasons:

e Using active contours framework, it is very easy to embed a prior
statistical knowledge of the image to be segmented.

o The level set approach allows the geometric change of the curve and
therefore is able to deal with the topological change of the object.

e The Rayleigh distribution has been widely used in US image
segmentation with satisfactory results.

The CV algorithm is a global algorithm. In CV algorithm, the curve divides the
image domain into two parts: internal and external regions. The reason why CV
algorithm fails in producing satisfactory segmentation result for an
inhomogeneous object is that only the mean value is used, which is not sufficient.
Therefore, to improve the segmentation result, the whole image intensity
information should be considered instead of using only the mean value. Under
the assumption that the intensity between one object and the background is
different, a criterion is defined which can maximize the difference. As
mentioned in section 2.2, the Bhattacharyya distance is an efficient metric and it
can measure the closeness between the segments. The Bhattacharyya distance is
used to measure the similarity between these segments and the difference of the
measurement is then added as additional energy term with the CV energy
function. By properly balancing two parts, the difference within each segment is
minimized and the difference between separated segments is maximized. The
new evolution function is implemented in a level set framework and it is able to
deal with topological changes.

The whole energy function of the proposed algorithm incorporating the
Bhattacharyya distance with the CV model is:

E(C) = aF(C)+ (1 — a)B(C) + BLength(C) 2.2)

where a and f are the weighting parameters and a €[0,1]. The energy function
of the proposed algorithm consists of three parts: the region CV fitting term
F(C), the Bhattacharyya distance term B(C), and the regularization component
Length(C). The outcome of this algorithm is the minimization of the difference
within each segment and the maximization of the difference between the
separated segments.

Using the level set method, the energy function of (2.2) can then be written as:
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E(¢) = aF(¢) + (1 — a)B(¢) + BLength(p)
_ {af (1= w?H($C0)dx + (1 —v)? (1 - H($(0))) dx}
N

+(1 - a)f VP (2)P,(2)dz + ﬁf [VH(p(x))|dx (2.3)
RN 0

Rayleigh distribution is chosen to model the ultrasound image’s statistical
intensity distribution. According to [152] the Bhattacharyya coefficient with
Rayleigh distribution is calculated as:

9, (¢ (x)) - 9,(P(x))
o (P(x)) + a5 (¢ (x))

B(p(x)) =2 (2.4)

The parameter u and v are calculated by equation (2.5). The parameters o and
02 are calculated by Maximum-Likelihood (ML) method. The value of 67 and
a2 is obtained by following equations:

o 1H(9(0))dx __Jy IH(p00)dx
fn H(¢p(x))dx fn H(1— ¢(x))dx

2 J, PH(1— ¢(x))dx o J, I?H(1 - ¢(x))dx
To2f HA-¢())dx 2, H(1-¢@®)dx 2.5)

The first variation of (2.3) with respect to ¢ can be calculated as:

0E oF(p) . 0B(p()
06~ “apn T 500

The level set equation of (2.6) is derived as:

J¢ _ OE ()
at dp(x)

Vo (x) ) (2.6)

+ B8 (p(x))div <||7¢>(x)|

(0;-0,) - (o7 —03)

(67 +08)?

1 [I%(x) 1 [I?(x) V(%)
(2o 1| 2ol ) oo - monan ()

=as(PII-w?-U-v)?]-1-a)
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where A; is the interior region and A,is the exterior region:

A= L H((P(X))dx A, = L (1 — H(¢(x))) dx (2.8)

2.4 Implementation

In this section, the algorithm implentation details will be discussed. The narrow
band and reinitialization approach will be discussed, following by the numerical
implementation details of the algorithm.

2.4.1 Narrow band and reinitialization approach

A narrow band method [153] is used in the implementation of the algorithm.
The narrow band method is an efficient method in the evolution of level set.
Instead of calculating the whole image domain which is computationally
expensive, the narrow band method performs the calculation only in a
neighborhood of the zero level set. Figure 2.2 shows an illustration of the
narrow band. The grid points in the dark area are belonged to the narrow band.
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Figure 2.2 [lllustration of narrow band [154]

In the implentation of the algorithm, reinitialization [137],[155] is necessary to
keep the level set function from being too flat or too steep. Reinitialization

30



technique has been extensively used to maintain the stablity of the curve
evolution [156],[157] in traditional level set methods. The reinitialization keeps
the level set function as a signed distance function during the curve evolution.
The standard reinitialization method is to solve the following equation:

2 = sign(@) (1 - V1) 29)

where sign(-) is the sign function and ¢, is the function to be reinitialized. Fast
marching method [158] is used to reinitialize level set function in the proposed
algorithm.

2.4.2 Numerical implementation details

The Heaviside function H can be approximated by a smooth function H, using
the following equation [142]:

1 2 x
H.(x) = 3 1 +;arctan(g) (2.10)

and the Dirac function § is approximated by &, using the following equation:

5o(x) = HL(0) = ——

" @11

The parameter ¢ is set as € = 1.0 here.

A Finite difference scheme [159] is used to calculate the gradient of V. Let 4

be the space step, and x,y be the grid points, the calculation of term div (%) is

achieved by using the central difference scheme:

div( V¢ ) _ ¢xx¢32/ - 2¢x¢y¢xy + d)yyd)% (2 12)
Vol (7 + $3)%/2 '
where
¢ _ ¢x+1,y - ¢x—1,y ¢ _ ¢x,y+1 - (»bx,y—l

x 2h ’ Y 2h
¢ _ ¢x+1,y - 2¢x,y + ¢x—1,y ¢ _ ¢x,y+1 - 2¢x,y + ¢x,y—1

xXx — h2 ’ yy — h2
¢xy _ ¢x+1,y+1 - ¢x—1,y+1 - ¢x+1,y—1 + ¢x—1,y—1 (2'13)

4h?

31



Upwind scheme [158] is used to calculate the temporal partial derivative %.

The level set evolution equation can be expressed in a general form [138]:

09
== (F =207l (2.14)

where F' is a function depending on time and position, A is a scalar parameter
and k is the curvature of the contour. Let At be the time step. The discretization
of (2.14) is obtained by:

n+1 (l)
o "y

AL = max(F, O)V + min(F,0)V; (2.15)

where V;; and V;; is calculated by:

i = (max(D;f,0)* + min(D{f, 0)* + max(D;;’, 0)* + mm(DU ,0)2)1/2

= (min(D;},0)? + max (D}, 0)2 + min(D;7,0)* + max(D;},009)*?  (2.16)

iLj’ Lj’ ij’

D o is the forward difference of X, D is the backward difference of x; D

the forward difference of y, D;? is backward difference of y.

Figure 2.3 shows the pseudo—code of the proposed algorithm:

1) =0, initialize ¢¥ by ¢g.

2) Compute the mean value u and v inside and outside the
level set according to (2.5).

3) Compute the o; and o, according to (2.5).

4) Calculate A;and A; according to (2.8).

5) Evolve the curve according to (2.7) to obtain ¢p**1.
6) Reinitialize the ¢**! by fast marching method.

7) Check if ¢ is convergent. If not, k=k+1 and go back to
step 2.

Figure 2.3. Pseudo-code of the proposed algorithm
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2.5 Results

In this section the experimental setup and the evaluation method is described.
All the proposed algorithms in this thesis are implemented in Matlab. All
experiments are conducted on a PC workstation (Intel Quad Q8300, 8 GB RAM,
Windows 7 Professional).

Dice [160] coefficient is used to quantitatively evaluate the performance of the
algorithm. The Dice coefficient is defined as:

_2(ANnB)

Dice = 2.17
ice 0B (2.17)

Where A is the reference region and B is the segmentation result of an
algorithm. The Dice measurement is often used to measure the accuracy of a
segmentation algorithm. The Dice coefficient range is [0, 1]. If there is no
overlap between two regions, the Dice value is 0; if two regions are completely
overlapping, the Dice value is 1.

A kidney phantom ultrasound image is firstly used to test the performance of the
proposed algorithm. An organ phantom is an artificial replica of a real organ
routinely used in medical training. It usually has a simplified internal structure
and simpler features than the real human organ. The detailed description of the
phantom can be found in [161] . Figure 2.4 shows the segmentation result of the
proposed algorithm on a kidney phantom ultrasound image with a tumor inside it.
The image size is 360*290 pixels. As we can see from Figure 2.4, the border of
the tumor is not very clear, but the proposed algorithm can segment the border of
the tumor with the Dice value of 0.9198.

Figure 2.4 Kidney phantom ultrasound image segmentation result
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Salt-and-pepper noise, d=0.3

Figure 2.5 Segmentation results for (a) CV algorithm and (b) proposed algorithm

To test the performance of the proposed algorithm, kidney cyst phantom images
with different salt-and-pepper noise are used as the evaluation images. The first
row of Figure 2.5 shows the original image without adding noise. The image size
is 520*230 pixels. Then two different salt-and-pepper densities noise (d={ 0.1,
0.3}) are added to the original image. The larger the value d is, the more noise is
added to the image. The first column of Figure 2.5 shows the results of the CV
algorithm. As we can see from the segmentation results, when the image is noise
free, the CV algorithm works well, but when the amount of noise in the image
increases, the performance of the CV algorithm decreases. Figure 2.5 b) shows
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the results of the proposed algorithm the same images. The proposed algorithm
converges to the desired border even when the image contains high level of
noise. From Figure 2.5 b) we can see, even when the image contains high level
of noise (d=0.3), the proposed algorithm can still produce good result.

In addition to the phantom images, the proposed algorithm is also tested on a
patient kidney ultrasound image obtained from East Tallinn Central Hospital,
Estonia. Figure 2.6 a) shows the result of the proposed algorithm. The size of the
kidney image is 400*240. Figure 2.6 b) is the reference image which is obtained
manually by an expert radiologist. A value of Dice = 0.9263 is found using the
proposed approach. The segmentation results of the proposed algorithm on both
kidney phantom images and the patient image show that the proposed algorithm
can produce good segmentation even through the image is very noisy.

=

a) Segmentation result of the proposed algorithm

=

b) Ground truth

Figure 2.6 Kidney ultrasound image segmentation result

The performance of the proposed algorithm is evaluated using 3 types of images:
one synthesized ultrasound image (Figure 2.7 b), one ultrasound image of a
phantom (Figure 2.4), and one ultrasound image of a patient (Figure 2.6). The
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synthesized image is obtained by adding speckle noise to a predefined image
(Figure 2.7 a). The variance of speckle noise added into this image is d=0.1. The
running times, the iteration counts and the Dice values of the proposed algorithm
are shown in Table 2.1.

Table 2.1 Performance of the proposed algorithm

The proposed algorithm
Image types
Time(s) Iterations Dice
Synthetic image
1.574 200 0.9854
(128*64 pixels)
Phantom image
14.980 500 0.9198
(360*290 pixels)
Patient image
120.059 4000 0.9263
(400%240 pixels)

a) Original image b) Synthesized ultrasound image

Figure 2.7 Synthesized images

The proposed method improves the segmentation accuracy compared to the CV
algorithm because in the proposed algorithm, not only the mean value is
considered, but also the variance value is considered. While in the CV algorithm,
only the mean value is considered and it cannot provide enough image intensity
information. Therefore, some images with intensity inhomogeneity the CV
algorithm can give inaccurate segmentation results.
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2.6 Conclusions

In this section, the limitations of CV algorithm on inhomogeneous image are
discussed. Then an algorithm which combines the CV algorithm with
Bhattacharyya distance is proposed to solve segmentation problem of the
inhomogeneous image. The Rayleigh distribution is used in the Bhattacharyya
distance. Combining the Bhattacharyya distance with the CV algorithm, the
proposed algorithm is capable of segmenting inhomogeneous images.
Synthesized ultrasound image, phantom ultrasound images and patient
ultrasound image are used to test the performance of the proposed algorithm.
Compared to the CV algorithm, the proposed algorithm is more robust and
provides improved segmentation results.
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3 Localized active contour segmentation

Ultrasound images usually contain a lot of noise and the granular texture of the
ultrasound image makes the segmentation a challenging task. Different
algorithms for ultrasound image segmentation have been proposed in literature
[21],[162]. In this chapter, a localized active contour algorithm is introduced and
then novel algorithms based on the localized active contour algorithms using the
Rayleigh distribution and the shifted Rayleigh distribution are proposed for
ultrasound image segmentation. The algorithms described in this chapter are
related to publication C.

3.1 Localized region based active contour algorithm

Region based active contours have several advantages and have been
successfully applied for medical image segmentation. The region based
approaches are usually derived under the assumption that the region of interest
can be separated by using the global statistical information. But when the image
is inhomogeneous, for example when the intensity profile of a target contains a
lot of noise, the traditional active contour algorithm may produce incorrect
segmentation results. In literature, many studies focus on an alternative way of
image segmentation by using the local region in the segmentation process [163]—
[165].

A localized active contour algorithm has been proposed in [166], in which a
level set formulation is implemented, and a localized region factor is utilized.
The localized active contour is based on the assumption that, if the global
homogeneity requirement is not satisfied in a region, there is a high probability
that it can be satisfied in a small sub region. In the localized active contour
algorithm, a localized factor is defined as:

1, ||x — y|| <r
0, otherwise

W 3.1)

where x, y represents a point in Q respectively and r represents a radius
parameter. Figure 3.1 describes the concept of the localized active contour
algorithm. In the localized region representation, the region inside the curve is
represented by W(x,y) - H(¢ (x,y)) whereas the region outside of the curve is

represented by W(x,y) - (1 — H(¢ (x,¥))).

In localized active contour algorithm, the foreground and background regions
are not represented by global statistical information. The localized active contour
uses a small region in the curve evolution. For each point along the curve, its
neighborhood regions are split into two parts: interior and exterior region. The
energy optimization is calculated at each single point. The general form of the
localized active contour energy function can be written as:
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£= [ s(e@){[ wenr10).6w)dy}dx
(32)
o j SN0 | dx

The above equation provides a simple way to transform the region based
criterion to its localized counterpart. Using equation (3.2), the curve evolution of
the localized active contour can be calculated.

Figure 3.1 Localized active contour algorithm

3.2 Novel contribution : Localized active contour with Rayleigh
distribution

As mentioned before, due to the presence of the speckle noise in ultrasound
image, the standard image processing technics are usually ineffective for
segmenting ultrasound image. One way to improve the result is to adopt the
ultrasound image statistical properties into the evolution criterion for the
segmentation problem.

Using the localized active contour with the statistical intensity distribution of the
ultrasound image, the energy function of the localized active contour becomes:

£= [ (@) {[ we P dy+ [ Wik y)Pu dy}dx
(3.3)
+uf @ENITHCIldx
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where P;,, (1) and P,,:(]) is referred as to the intensity distribution of the region
inside and outside the curve, respectively.

From equation (3.3) we can see that it is crucial to determine P;,, (/) and P,,:({)
to achieve successful segmentation results. Different ultrasound image intensity
distributions were introduced in Chapter 1. Section 1.3.3 points out that the
display image follows the Fisher-Tippett distribution. The Fisher-Tippett
distribution has a very complicated analytical expression and difficult to
implement. Rayleigh distribution is commonly used as the image intensity
distribution for ultrasound envelope-detected image and has a simple analytical
expression. Therefore, Rayleigh distribution is chosen as the image intensity
distribution here. An algorithm using the localized active contour by Rayleigh
distribution is proposed. Since the Rayleigh distribution is used to approximate
the display image intensity distribution, it has a bias from the true image
intensity distribution. The shifted Rayleigh distribution has been used as the
ultrasound image intensity distribution in literature [21],[167]. Therefore,
another algorithm is proposed using the shifted Rayleigh distribution in the same
localized active contour framework and the segmentation results between these
two algorithms are compared in this section. The relation between the Rayleigh
distribution and the shifted Rayleigh distribution is shown in Figure 3.2.

The parameters estimation of the Rayleigh distribution is usually obtained by
maximum likelihood method. The maximum likelihood estimation for the
Rayleigh distribution parameters will be firstly introduced in next section and
then the localized Rayleigh active contour (LRAC) algorithm and the Localized
shifted Rayleigh active contour (LSRAC) algorithm will be presented.

3.2.1 Maximum a posteriori estimation

The image segmentation problem can be expressed by the Bayesian maximum «
posteriori (MAP) estimation. The MAP estimates the possible partitions of a
given image / by [138]:

Py =arg maxP(Pg|I) = arg max P(I|Py)P(Pq) (3.4)

Pa Pa ’
By taking the negative of the logarithm of equation (3.4) and assuming the
image partitions R, are conditionally independent from each other, the following

equation is obtained which converts the Bayesian estimation (3.4) into
minimization problem:

Py =arg minz:f —logP(I|R;)dx — logP (Pg) (3.5)
Pa i R;
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The equation (3.5) is the general function for most of the variational
segmentation algorithms. The first term is the data term which measures the
likelihood of the image. The image is modeled by a specified distribution which
is generally a parametric distribution. The region R; is characterized by the
estimation of the parameters in the distribution.

As mentioned in the chapter 2, Rayleigh distribution is commonly used as the
intensity distribution for the ultrasound envelope-detected image. For an image 7,
the corresponding Rayleigh distribution is:

I 12 36
P(I) =§exp(—m ( . )

where o2 is the parameter of the Rayleigh distribution.

For a curve dividing the image / into regions R; ,i € 1,2, the Rayleigh

distribution with parameter 67 is:

I 2
P . (I|R;) = — e 3.7
Raylelgh( | l) O_I%i exp( 20—1%-) ( )

Calculating the negative logarithm of the data term in (3.5) by using the
Rayleigh distribution, the following equation is obtained:

L= Z fR G(l,02,)dx (3.8)

with
G(I, 0%21-) = —log PRayleigh(IlRi)

2

=logoh + — 3.9
JOg; ) O-I%i (3.9
The optimization of parameter 0,231. is obtained by using the ML method:
[ I%dx
of = S (3.10)
2 R, 4%
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3.2.2 Localized Rayleigh active contour

The Rayleigh distribution has been widely applied in ultrasound image
segmentation. The Rayleigh distribution has a simple analytical form which
makes it easy to calculate the integrals of the segmentation flow. In general,
using the Rayleigh distribution the following energy function is obtained:

E =log P, +log P,y + ulenghth(c) =

k

The level set equation is derived as:

logP;,,(Ddxdy + f logP,,:(Ddxdy +u | dxdy (3.11)
Qoult Ql"

in

d¢ (Ve O 12 TP )
— =6 dlv(—)+lo — —— 3.12
Jat (¢) <“ |V¢| g Oout O-i2 O-c?ut ( )

Using the localized factor W(x,y), the curve evolution for the localized
Rayleigh active contour (LRAC) algorithm is calculated as:

0 m 1% 1(y)?
%= 500 [ Wk y)s(e0)) (1og 2 470 - 00 ) ay
v
18 (p(x))div (Ivzg; I) (3.13)

The parameters o7, and 62, in the LRAC algorithm are calculated by:

o2 = Jo W (x, V)I?H (¢ (x,y))dxdy
2, W(x,y)H(p(x,y))dxdy

2 _
o2 = fn W (x, )I?H(1 — ¢(x,y))dxdy G.14)

2f, W(x, V)H(1 — ¢(x,y))dxdy

3.2.3 Localized shifted Rayleigh active contour

Some approaches [114],[168] use shifted Rayleigh distribution as the intensity
statistical distribution of ultrasound image. In this section, ultrasound image
segmentation by using the shifted Rayleigh distribution is investigated. The
shifted Rayleigh distribution is defined as:
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I-w (I —u)?
p() = 2 exp(—T

) (3.15)

where the parameter u is calculated by using the mean intensity of the region.
Figure 3.2 shows the relation between standard Rayleigh distribution and the
shifted Rayleigh distribution.

T T T T T
| Rayleigh distribution

Shifte Rayleigh distribution
with equivalent sigma B

e

Histogram

Figure 3.2 Shifted Rayleigh distribution

The active contour energy function of the shifted Rayleigh distribution is similar
to the Rayleigh distribution:

E =logP;, + log P+ + ulenghth(c) =

k

The level set equation of the shifted Rayleigh distribution is derived as:

logP;,,(I)dxdy + f logPy,(Ddxdy +u | dxdy (3.16)
Qout Qr

in

¢ _ . Vo Oin U uin)z (I - uout)z
2 =5 <udw (W) Hlog G -t > (3.17)

where u;;, is the mean intensity inside of the curve ¢ and u,,; is the mean
intensity outside of the curve ¢.

By incorporating localized factor into the energy function (3.17), the evolution
function for the localized shifted Rayleigh active contour (LSRAC) can be
calculated as:
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o9 i () = ugp)?
E(x) = 8(¢(x))fW(x,y)6(¢(y)). <log U‘Zut + y Giznu
(I(y) = Ugur)® (Vo)
P ) dy + ué(p(x))div <W) (3.18)

The parameter u;;,, and u,,; in (3.18) is obtained by:

_ Jo W0, IH($(x,y))dxdy
Jo W, »)H($(x,y))dxdy

Uin

= fn W (x, MIH(1 — ¢(x,y))dxdy G19)

f_Q W(X,y)H(l - ¢(X»J’))dxdy

The parameter g;,, and g, in (3.18) is calculated by:
Ly WO U~ ui)2H($(x,))dxdy
in —
2 [, W(x,y)H(p(x,y))dxdy

o _ Iy WU — o) H(1 = $(x,))dxdy
2 [, W, y)H(1 - ¢(x,y))dxdy (320)

3.3 Implementation

The proposed algorithm is implemnted in a level set framework. To improve the
efficiency, narrow band method is used. Fast marching method is applied to
prevent the level set from being too flat or too steep. The numerical
implementation of level set has been discussed in section 2.4.

In the proposed localized active contour algorithm, the local region statistical
properties are calculated at each point along the contour. The calculation of local
region statistical properties consists of two parts: initialization and update. In the
initialization step, the local interior and exterior statistics of each pixel in the
narrow band are calculated. When the narrow band moves across a pixel which
is uninitialized, the local region statistical properties of this pixel will be
initialized. The initialization operation is performed only once for each pixel.
The update step happens when a intialized pixel along the contour is moved by
the contour from the exterior to the interior or vice versa. When the contour
moves across a pixel, the local statistical properties of all pixels within the W(x,y)
of this pixel are updated.
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The pseudo-code of the LRAC algorithm is shown in Figure 3.3. The LSRAC
algorithm is implemented in a similar way.

1) k=0, initialize ¢* by ¢p,.

2) Compute the value 0}, and g, inside and outside the
level set ¢p* according to (3.14).

3) Evolve the contour according to (3.13) to obtain ¢¥+1.
4) Reinitialize the ¢**1 by fast marching method.

5) Check if ¢ is convergent. If not, kK =k+1 and go back to
step 2.

Figure 3.3 Pseudo-code of the LRAC algorithm

3.4 Results

In this section, the segmentation results of the proposed two algorithms are
presented. The algorithms are implemented in Matlab and executed on a PC
workstation (Intel Quad Q8300, 8 GB RAM, Windows 7 Professional), as in
section 2. The Dice coefficient is used as the quantitative evaluation method.

Synthesized images are used to test the performance of the proposed two
algorithms. One synthesized image is generated and shown in the first row of
Figure 3.4. The size of the synthesized image is 128*64 pixels. Gaussian noise
with different variances (vI=0.1, v2=0.2, v3=0.3) are added into this image. The
segmentation results of the LRAC algorithm and LSRAC algorithm on the
synthesized images are shown in the second and the third column in Figure 3.4.
As we can see from the segmentation results, both LRAC and LSRAC algorithm
can produce reasonable segmentation results. Table 3.1 shows the Dice values of
LRAC and LSRAC algorithm on the synthetic images.

Table 3.1 Dice values of the proposed algorithms

Y Noise added LRAC LoRAC
0.1 0.9632 0.9615
0.2 0.9578 0.9674
03 0.9285 0.9431
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Original image

a) Synthetic image b) LRAC ¢) LSRAC

Figure 3.4 Segmentation results of the synthesized images

A kidney phantom ultrasound image (520*230 pixels) with a cyst inside it is
used to test the performance of the proposed two algorithms. The segmentation
result of LRAC is shown in Figure 3.5 a). The segmentation result of LSRAC is
shown in Figure 3.5 b).

a) LRAC b) LSRAC

Figure 3.5 Segmentation results of ultsound image without noise
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Salt-and-paper noise (noise density d=0.1) is added to Figure 3.5 to test the
capability of the proposed algorithms. The segmentation result of LRAC is
shown in Figure 3.6 a). The segmentation result of LSRAC is shown in Figure
3.6 b). From the segmentation results we can see that the proposed algorithms
work efficiently on both images.

a) LRAC b) LSRAC

Figure 3.6 Segmentation results of ultrasound image with noise

Ten kidney phantom ultrasound images (251*201 pixels) with a tumor inside are
used to test the performance of the proposed two algorithms. Figure 3.7 shows
one of these images. For a kidney phantom ultrasound image with a tumor, the
segmentation is more difficult because the edge of the tumor is not very clear.
The segmentation of LRAC algorithm on the tumor image is shown in Figure
3.7 a). Figure 3.7 b) shows the segmentation of LSRAC algorithm on the same
image. Table 3.2 shows the average Dice values of LRAC algorithm and
LSRAC algorithm respectively. From Table 3.2, we can see that the LSRAC
algorithm obtain better segmentation results compared to the LRAC algorithm
on the kidney phantom ultrasound images.

a) LRAC algorithm b) LSRAC algorithm ¢) Ground truth

Figure 3.7 Segmentation results of kidney tumor phantom ultrasound image
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Table 3.2 LRAC and LSRAC segmentation results

Algorithm Dice
LRAC 0.9093
LSRAC 0.9452

Figure 3.8 b) shows the segmentation result of the LRAC algorithm on a
pancreas phantom ultrasound image with a tumor and Figure 3.8 c¢) shows the
segmentation result of LSRAC algorithm on the same image. The image size is
395*408 pixels.

a) Original image b) LRAC algorithm ¢) LSRAC algorithm

Figure 3.8 Segmentation results of pancreas tumor phantom ultrasound image

Figure 3.9 a) shows the segmentation result of the LRAC algorithm on a patient
kidney ultrasound image (400*240 pixels) and Figure 3.9 b) shows the
segmentation result of the LSRAC algorithm on the same image. The
segmentation result shows that both the LRAC algorithm and the LSRAC
algorithm can produce desirable segmentation result.

a) LRAC algorithm b) LSRAC algorithm

Figure 3.9 Segmentation results of patient ultrasound image

48



Similar to chapter 2, the performance of the proposed algorithms is also
evaluated by three types of images: one synthesized ultrasound image (Figure
2.7 b), one ultrasound image of a phantom (Figure 3.8), and one ultrasound
image of a patient (Figure 3.9). Table 3.3 shows the evaluation results of the
LRAC algorithm and the LSRAC algorithm including the running time, the
iteration counts and the Dice values.

Table 3.3 Performance of the LRAC algorithm and the LSRAC algorithm

LRAC LSRAC

Image types

Time(s) Iterations Dice Time(s) Iterations Dice
Synthetic image

20.538 300 0.9906 | 22.140 300 0.9877
(128*64 pixels)
Phantom image

37.863 300 0.8866 | 38.623 300 0.9060
(395*408 pixels)
Patient image

179.843 1000 0.9037 | 186.593 1000 0.9146
(400*240 pixels)

From above segmentation results, the LSRAC algorithm in general has better
segmentation performance with higher Dice values than the LRAC algorithm.
The reason is because the LSRAC considers both the mean u and the variance o
of an image in the segmentation process while the LRAC only uses the variance
o of an image.

3.5 Conclusions

In this section, a localized region based active contour algorithm is introduced.
Then a localized active contour method with Rayleigh distribution (LRAC) is
proposed to solve the segmentation problem of ultrasound images. Another
localized active contour algorithm with shifted Rayleigh distribution (LSRAC) is
also proposed. The performances of the LRAC algorithm and the LSRAC
algorithm are evaluated on synthetic ultrasound images, phantom ultrasound
images and patient kidney ultrasound image. From the segmentation results,
both algorithms can work well on the synthetic ultrasound images, phantom
ultrasound images and patient ultrasound image. In general, segmentation results
of the LSRAC algorithm are more accurate compared to the LRAC algorithm.
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4 Localized region scalable fitting and the Bhattacharyya
distance

Due to the noise in the ultrasound images, the ultrasound images are usually
inhomogeneous. For an inhomogeneous image, the boundary of a heterogeneous
object is difficult to segment. The global region methods do not always generate
satisfactory results in an inhomogeneous image. The localized active contour
method is able to segment objects with inhomogeneous features, which is
difficult otherwise if a global method is used [166]. In section 3 showed that
using the local region information can improve the segmentation results. In this
chapter an alternative way of localized active contour method is introduced. The
algorithm described in this chapter is related to publication A.

4.1 Region scalable fitting algorithm

In [169] a region scalable fitting (RSF) algorithm is proposed to solve the
segmentation problem of inhomogeneous images. A kernel factor is used in the
RSF algorithm. The RSF algorithm is capable of solving the segmentation
problem of inhomogeneous images. The results of the RSF algorithm show that
the RSF algorithm is able to deal with noisy images. The general energy
function of the RSF model is:

E=vy, f fﬂ K@) UO) - fordydx +, f jﬂ () U0) - fldydx (1)

where y; and y, are scale parameters; k(x,y) is the kernel function and a
Gaussian kernel function k, is used in [169]; f; and f, are the functions
approximating the intensities inside and outside of the curve respectively. The
calculation of f; and f,, are obtained by using following equations:

_ Jo ko(x = WIH(P)dy
Jo koCx = y)H(¢p)dy

_Ja ke =0IO)( — H@)dy
o ko = )1 = H(@)dy

fi

fo (4.2)

The kernel function k, plays an important role in the RSF algorithm. The kernel
function k, is non-negative and has the following properties:
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L ko(—u) = ks(w)
2. kgs(u) = ky(v),if |lu| < |v],and Illim ky(w) =0
ul|—oo

3. [k,(x)dx=1

In RSF algorithm, the image intensities are calculated in a local region centered
at the point x, and the size of the region is controlled by the kernel function k.
The choice of the kernel function is flexible and usually a Gaussian kernel is
chosen:

1

— —|ul?/20?
= e (43)

ks

The kernel function k, is a local factor and the contribution of intensity /()
decreases as y moves away from the center point x. Therefore the kernel function
k, acts like a low pass filter. The value of Gaussian kernel k;(x — y) function
drops significantly to zero as y moves away from x [169].

While the image is not very noisy, the RSF algorithm can produce good
segmentation results. However, for an extremely inhomogeneous image, the
RSF algorithm could not provide a desirable segmentation result. Figure 4.1
shows an example of such a case.

Figure 4.1 RSF algorithm on noisy image

In section 3 a localized active contour algorithm using localized factor W(x,y)
was discussed. The localized factor W(x,y) considers the neighbor region around
the center point x. Since the kernel function k, in the RSF algorithm and the
localized factor W(x,y) are both local region factors, the intuitive idea is to see if
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using the localized factor in the RSF algorithm can improve the segmentation
result. This leads to the proposed algorithm presented in next section.

4.2 Novel contribution: Localized RSF algorithm

As discussed in section 4.1, for a very inhomogeneous image, the RSF algorithm
cannot successfully produce desirable results. Considering that using the
localized factor W(x,y) can increase the segmentation results in chapter 3, in this
section, a new algorithm which combines the RSF algorithm and the localized
factor will be presented.

Here, the RSF energy function is written as:

Ex =7, f fn ox = )AG) ~up?dyd +, f fn Iy = )AG) ~ )y (4.4)

where kg is the Gaussian kernel function. The u; and u, are the mean values
inside and outside of the curve, respectively.

The localized factor W(x,y) is written as k,, here. Using localized factor k,, and
approximating the Heaviside function H by H,, the localized RSF energy
function is written as:

l%@)=m1£kdx—wUOO—mYHJ@¢MX+

o [[ ke = 900D — 021 - Hog)ayax @.5)
0

The u; and u, are calculated by using the localized factor k,, as follows:

_ Joi Ku(x = NIy
f.(li ku(x - }’)dy

i

_ Joo kux = Gy
f.QO ku(x - Y)dy

(4.6)

In section 2, the Bhattacharyya distance was discussed to measure the difference
between the internal and external regions. In this algorithm, the Bhattacharyya
distance measurement is added into the energy function (4.5) to improve the
segmentation results. Gaussian distribution is used as the image intensity
distribution to calculate the Bhattacharyya distance. The Bhattacharyya distance
can be calculated by using the following equation:
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1 (1(/c? o? 1((u; —u,)?
Dy=-ln{-(S5+=+2)t+-{—5—> 4.7
g 4n{4<002 of )} 4{ of +0? (47

L

where u; and u, are the mean values of the two regions and oand 62 are the
variances of those regions.

The calculation of parameters u;, u,, 57 and 62 are also obtained by using the
localized factor k. The u; and u,, are obtained by equation (4.6) and sand 2
are calculated as follows:

o _ I e = 9)UG) ~u)*He(@)dy
l [, kux = Y)He()dy

oy ke = 9)U0) )21 = Ho(#))dy
’ [, JeuGe = y)(1 — He(¢))dy

(4.8)

Regularization is an important part for active contour method. The role of
regularization in the level set algorithm is to smoothen the curves and is
necessary for the curve to achieve correct results. The regularization term of the
energy function is calculated as follows:

1 1
Ey= gm | (79@I-Ddx+on, [ ITH@E)Ix  (49)

where ; and 7, are scale parameters. The first part of the above equation is to
penalize the level set deviation from a signed distance function [170]. The
second term is to penalize the length to smoothen the curve during evolution as
in most of the active contour methods.

A new active contour algorithm is derived here which combines the localized
RSF algorithm, the Bhattacharyya distance and the regularization. The total
energy function of the proposed algorithm is:

E=1-pB)Eg +BEg +E, (4.10)

where f is a scale parameter, the Ej is the localized RSF term obtained by (4.5),
Ep is the Bhattacharyya distance term obtained by (4.7), and E, is the
regularization term calculated by (4.9).

The level set equation of (4.10) is derived as:

a
a_f: —55(1—,3)()/1'61—]/0@2)+,3€B+€p (4.11)
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According to [171] the calculation of e; and e, can be achieved by using

convolution. Therefore e; can be re-written as:
er= [ kol =) (U —u))dy
0

= 1(y)?[ky(x) * 1] — 2I(M)[ky (x) * w;] + kg (x) * u?

and e, can be re-written as:
er = [ ko =) () —ue)dy
0

= 1(¥)?[kg(x) * 1] = 21()[kg (x) * up] + kg (x) * uj

ep is the Bhattacharyya term which is calculated as:

1 (1/c? o2 1((u; —u,)?
— iz 204 ) S P
o 4n{4<03+0i2+ >}+4{ of + a5

The regularization e), is calculated as:

=1 (A(;b div <|V£|)) + n,6.div (“720

(4.12)

(4.13)

(4.14)

(4.15)

The parameters u;, u,, 67 and 62 in (4.13), (4.14) and (4.15) are calculated by

using convolution:

u = ky(x —y) * [1(y)H:(¢)]
l ky(x —y) * He.(¢)

_ k(= y) + [T (A = He(¢)))]

Yo = T (e —y) * (1 — Ho(@))

o k(=) [U(B) —w)*He(¢)]

%= ey G — ) * Hy()

2 _ kG =)+ [UG) —u,)?(A — He(@))]

O, =

ky(x = y) * (1 = He(¢))
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4.4 Implementation

As mentioned in section 2.4, the reinitialization is important to reshape the
degraded level set function and maintain the stability of the level set. In [170]
proposed a variational formulation to regularize the level set function during the
evolution, and the reinitialization step is eliminated. This variational level set
method without reinitialization is easy to implement compared to the traditional
level set methods. The proposed algorithm in this chapter is implemented using
the variational level set without reinitialization technique. The upwind scheme is
not needed in the proposed algorithm.

The variational level set without reinitialization proposed using the following
equation to penalize the level set function and therefore no reinitialization is
needed:

P@) = 3| 71— 17dxdy @17)

Let T be the time step, the update of ¢™*?! is obtained by:
P = P + TAP™ (4.18)

where A is the Laplacian operator.

The pseudo-code of the proposed algorithm is outlined in Figure 4.2:

1) k=0, initialize ¢* by ¢,.

2) Compute the u;, 6 and u,, 62 according to (4.16).
3) Compute the e; and e, according to (4.12) and (4.13).
4) Compute the ep according to (4.14).

5) Compute the term e, by (4.15).

6) Evolve the curve ¢¥ by (4.11) to obtain ¢¥*1 .

7) Check if ¢ is convergent. If not, k=k+1 and go back to
step 2.

Figure 4.2 Pseudo-code of the proposed algorithm
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4.5 Results

The proposed algorithm is implemented in Matlab and the experimental platform
is the same as in section 2. The performances of the proposed algorithm are
quantitatively measured by calculating the Dice coefficient and the root-mean-
squared error of pairs of images (the segmented image and the ground-truth
image).

The root-mean-squared error (RMSE) [172] measures the distance between the
segmented contour and the ground truth contour. The RMSE is defined as:

RMSE = \/ oo [0 — fi): + (i = 3] (4.19)

where x; and y; are the points on the segmented image; X; and y; are the
corresponding points on the ground truth contour which has the closet distance
to the points x; and y;. Lower RMSE values mean that the contour is closer to
the ground truth, and thus a segmentation result is more accurate.

Firstly, synthesized images are used to evaluate the performance of the proposed
algorithm. A synthesized image (Figure 4.3 a) is generated and Gaussian noise
with different variances (listed in Table 4.1) is added to this image to produce
the test images. The size of the synthesized image is 128*64 pixels. Figure 4.3 b),
Figure 4.3 c), and Figure 4.3.e) show the synthesized images with Gaussian
variance v=0.02, 0.4, 1.0, respectively. The segmentation results of these images
are shown in Figure 4.3 b), Figure 4.3 d) and Figure 4.3 f), respectively. The
Dice and RMSE results of proposed algorithm are shown in Table 4.1.

Table 4.1 Dice and RMSE values of the proposed algorithm

Gaussian Noise Dice RMSE
0.02 0.9993 0.0191
0.2 0.9783 0.1025
03 0.9730 0.1148
0.4 0.9572 0.1428
0.8 0.9444 0.1639
1.0 0.9202 0.1920
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a) Original image b) Gaussian noise value (v=0.02)

e) Gaussian noise value (v=1.0) f) Segmentation result (v=1.0)

Figure 4.3 Segmentation results of synthesized images

A series of kidney phantom images consisting of a sequence of 110 ultrasound
images are used to test the proposed algorithm. The image size is 191*211 pixels.
Out of the series, 3 images are shown here together with the results in Figure 4.4.
Figure 4.4 a) is the phantom ultrasound image; the second row represents the
results of the proposed algorithm; the third row shows the results of the RSF
algorithm. The kidney phantom’s border is difficult to detect and has a
discontinuous edge in Figure 4.4. However, the proposed algorithm is able to
extract the edge of the kidney correctly while RSF algorithm fails to accurately
segment the kidney’s edge. The average Dice and the RMSE results of the
proposed algorithm are shown in Table 4.2.

Table 4.2 Dice and RMSE value of phantom images

Phantom images

Dice 0.9595

RMSE 0.1425
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c¢) RSF algorithm

Figure 4.4 Segmentation results of phantom images

Figure 4.5 shows the segmentation results of the proposed algorithm on two
human kidney ultrasound images obtained from East Tallinn Central Hospital,
Estonia. Compared to the phantom kidney images, in a human kidney ultrasound
image, the kidney is surrounded by human tissue, therefore the differences in
intensities between the interior kidney and exterior kidney are small and the
segmentation of the kidney becomes more difficult. From the segmentation
results of the human kidney ultrasound images, we can see that the proposed
algorithm is able to segment the kidney ultrasound images with satisfactory
results.

58



b)
Figure 4.5 Segmentation results of patient kidney ultrasound images

Three types of images are used to evaluation the performance of the proposed
algorithm: one synthesized ultrasound image (Figure 2.7 b), one ultrasound
image of a phantom (the first image in Figure 4.4), and one ultrasound image of
a patient (Figure 4.5 a). Table 4.3 shows the running times, the iteration counts
and the Dice values of the proposed algorithm and the RSF algorithm.

Table 4.3 Performance of the proposed algorithm and the RSF algorithm

The proposed algorithm RSF algorithm
Image types
Time(s) Iterations Dice Time(s) Iterations Dice
Synthetic image
1.458 100 0.9857 2.580 100 0.9804
(128*64 pixels)
Phantom image
13.493 400 0.9476 | 12.1472 400 0.7583
(191*211 pixels)
Patient image
34.357 800 0.8739 Not converge

(177*189 pixels)
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4.6 Conclusions

In this section, the drawbacks of RSF algorithm on segmenting very
inhomogeneous images are discussed, and a solution for segmenting such
images is proposed. An algorithm which combines the localized factor with the
RSF algorithm is proposed. To increase the segmentation precision, the
Bhattacharyya distance is also included into the algorithm. Different types of
synthetic images are used to test the performance of the algorithm. The results
show that the proposed algorithm can segment inhomogeneous images and
produce satisfactory results. The performance of the proposed algorithm is also
evaluated on kidney phantom ultrasound images and patient kidney ultrasound
images. The results show that the proposed algorithm is able to deal with
inhomogeneous images and has desirable segmentation results on images with
weak boundaries.
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5 Conclusions

This thesis addresses the segmentation problem of ultrasound images.
Ultrasound image is commonly used in clinical applications. However, the
speckle phenomenon in the ultrasound imaging affects the ultrasound image
quality. Due to the speckle noise in the ultrasound images, the segmentation is a
difficult task. Traditional algorithms which are designed for natural scenes have
difficulty to produce desirable segmentation results. To improve the ultrasound
image segmentation results, the statistical properties of ultrasound images are
investigated in this PhD research. In this thesis, three novel algorithms for
ultrasound image segmentation are proposed by using the statistical properties of
the ultrasound images during the segmentation process.

An algorithm which combined the Chan & Vese algorithm and the
Bhattacharyya distance was proposed in section 2. Phantom images with added
noise and a real patient kidney ultrasound image were used to test the
performance of the algorithm. The segmentation results showed that the
proposed algorithm was able to deal with inhomogeneous ultrasound images.
Compared to the Chan & Vese algorithm, the proposed algorithm was more
robust and provided better segmentation results.

In section 3, a localized region based active contour framework was used. Two
algorithms using the localized region based active contour are proposed: the
localized Rayleigh active contour algorithm and the localized shifted Rayleigh
active contour algorithm. The performances of these two algorithms were
analysed. Synthetic images, phantom ultrasound images and patient ultrasound
image were used as the evaluation images. The results showed that the proposed
algorithms were capable of segmenting ultrasound images and could produce
desirable segmentation results on ultrasound images with blurry edges. The
comparison of the localized Rayleigh active contour algorithm and the localized
shifted Rayleigh active contour algorithm showed that the localized shifted
Rayleigh active contour algorithm had better segmentation performance than the
localized Rayleigh active contour algorithm.

In section 4, a localized active contour algorithm was proposed which combined
the region scalable fitting algorithm and the localized region based algorithm.
The segmentation results of the proposed algorithm were evaluated on synthetic
images, phantom ultrasound images and patient ultrasound images. The results
showed that the proposed algorithms could produce satisfactory segmentation
results on ultrasound images with weak boundaries. The performance of the
proposed algorithm was compared with region scalable fitting algorithm.
Compared to the region scalable fitting algorithm, the proposed algorithm is
more robust. The evaluation and comparison results showed that the proposed
algorithm had better performance than the region scalable fitting algorithm.

By considering the statistical properties of ultrasound images, three novel
segmentation algorithms are proposed in this thesis. Various ultrasound images
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are used to evaluate the performance of the proposed algorithms. The evaluation
results show that the proposed algorithms can improve the ultrasound image
segmentation results.
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Abstract

Ultrasound imaging is commonly used in clinical diagnosis. Ultrasound imaging
has several advantages over other medical imaging techniques such as X-ray,
computed tomography (CT) and magnetic resonance imaging (MRI). The
ultrasound imaging system is cheap, portable and has short acquisition times.
Also the ultrasound technique is safe for patients.

At the same time, ultrasound imaging has some limitations which reduce its
applicability. The quality of ultrasound images is relatively poor with speckle
noise and artifacts. The objects’ edges in an ultrasound image are usually very
blurry or missing at some places. Due to the noisy nature of ultrasound images,
traditional segmentation algorithms have difficulty in producing desirable
results. In this thesis, we focus on using statistical methods for ultrasound
images segmentation, and propose three new algorithms.

The first algorithm combines the Chan & Vese algorithm and the Bhattacharyya
distance. The Chan & Vese algorithm is a global algorithm, and it divides the
image domain into two parts: internal and external regions. By using the
Bhattacharyya distance, the proposed algorithm can maximize the difference
between image regions and minimize the difference within the image regions. In
the second algorithm, a localized region based active contour is used under the
assumption that if the global requirement is not fulfilled in the image domain,
then it can be satisfied in a small sub region with a high probability. Rayleigh
distribution and shifted Rayleigh distribution are used to model the ultrasound
image intensity distribution. The third algorithm combines a localized factor into
the region scalable fitting algorithm and incorporates the Bhattacharyya distance
in this algorithm.

To wvalidate the performance of the proposed three algorithms, synthetic
ultrasound images, phantom ultrasound images and patient ultrasound images
are used as evaluation images. The segmentation results of the proposed
algorithms show that the proposed algorithms are able to deal with ultrasound
images with blurry edges and can produce desirable segmentation results. The
segmentation results of the proposed algorithms are also compared with other
algorithms to prove the efficiency of the proposed algorithms.
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Kokkuvote

Ultrahelivuringuid kasutatakse laialdaselt meditsiinilise diagnostika eesmaérgil.
Ultraheliuuringutel on mitmeid eeliseid vorreldes teiste meditsiinis kasutatavate
uuringumeetoditega nagu rontgeniilesvotted, kompuutertomograafia (KT) ja
magnetresonantstomograafia ~ (MRT).  Ultraheliuuringud on  odavad,
ultraheliseadmeid on lihtne transportida ja uuringud votavad vihe aega. Uhtlasi
on ultraheli patsiendile ohutu.

Samas on ultrahelitehnoloogial puudusi mis piiravad selle kasutatavust.
Ultrahelipiltide kvaliteet on vordlemisi kehv omades teralist tekstuuri ja
artefakte. Objektide servad ultrahelipiltidel on harilikult viga higused ja kohati
puuduvad iildse. Ultrahelipiltide miirasuse tdttu on traditsioonilistel
segmentatsioonialgoritmidel  raskusi  vajalike  tulemuste  saavutamisel.
Kéesolevas viitekirjas keskendutakse statistiliste meetodite kasutamisele
ultraheli piltide segmenteerimiseks ja pakutakse vélja kolm uut algoritmi.

Esimene algoritm kombineerib Chan& Vese algoritmi ja Bhattacharyya kauguse.
Chan&Vese algoritm on globaalne algoritm, mis jagab pildidomeeni kaheks
osaks: sisemine ja vélimine piirkond. Loodud algoritm maksimeerib
Bhattcharyya kaugust kasutades erinevust kahe pildiregiooni vahel ning
minimeerib seda kummagi regiooni sees. Teises algoritmis kasutatakse
lokaliseeritud regioonil pohinevat aktiivse kontuuri meetodit oletusel, et kui
globaalne homogeensus ei ole pildidomeenil tagatud siis suure tdendosusega on
voimalik see tdita véikses alamregioonis. Rayleigh jaotust ja nihutatud Rayleigh
jaotust kasutatakse ultrahelipildi intensiivsuse jaotuse modelleerimiseks. Kolmas
algoritm kombineerib lokaliseeritud regiooni faktoriseerimise ja regiooni
skaleeriva ldhendamise algoritmi ning kasutab Bhattacharyya kauguse meetodit.

Loodud kolme algoritmi toimimise hindamiseks kasutatakse tehislikke pilte ning
fantoomidest ja inimestest tehtud ultrahelipilte. Teostatud segmenteerimise
tulemustest on ndha, et loodud algoritmid suudavad parandada ultrahelipiltide
segmenteerimise tulemusi ja saavad hakkama ka ultrahelipiltidega millel
struktuuride piirjooned on udused. Loodud algoritmidega teostatud
segmenteerimise tulemusi vorreldakse ka teiste algoritmide omadega toestamaks
suuremat efektiivsust.
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Abstract

The introduction of robotic surgery within the operating
rooms has significantly improved the quality of many
surgical procedures. Recently, the research on medical
robotic systems focused on increasing the level of autono-
my in order to give them the possibility to carry out simple
surgical actions autonomously. This paper reports on the
development of technologies for introducing automation
within the surgical workflow. The results have been
obtained during the ongoing FP7 European funded project
Intelligent Surgical Robotics (I-SUR). The main goal of the
project is to demonstrate that autonomous robotic surgical

systems can carry out simple surgical tasks effectively and
without major intervention by surgeons. To fulfil this goal,
we have developed innovative solutions (both in terms of
technologies and algorithms) for the following aspects:
fabrication of soft organ models starting from CT images,
surgical planning and execution of movement of robot
arms in contact with a deformable environment, designing
a surgical interface minimizing the cognitive load of the
surgeon supervising the actions, intra-operative sensing
and reasoning to detect normal transitions and unexpected
events. All these technologies have been integrated using a
component-based software architecture to control a novel

Int J Adv Robot Syst, 2015, 12:37 | doi: 10.5772/60137



robot designed to perform the surgical actions under study.
In this work we provide an overview of our system and
report on preliminary results of the automatic execution of
needle insertion for the cryoablation of kidney tumours.

Keywords Surgical robotics, Autonomous systems, High-
performance robotics

1. Introduction

The introduction of minimally invasive surgery (MIS) first
and, more recently, of surgical robots, has brought new
perspectives to surgery and has significantly improved the
quality of many surgical procedures (e.g., [1, 2, 3, 4, 5].
However, current surgical robots are not the final answer
to surgeon’s demands in terms of (1) high motion accuracy
(to enable interventions that would otherwise be impossi-
ble), (2) dexterity, (3) presenting information in a more
meaningful way (to improve the quality of the clinical
result, e.g., virtual fixtures, active constraints) [6]. In fact,
they are teleoperated devices without any embedded
autonomy (e.g., the Da Vinci by Intuitive Surgical [7] and
the MiroSurge developed by Deutschland fiir Luft- und
Raumfahrt (DLR) [8] and therefore performance-bound by
the perception and dexterity of their human operators.

Although it is well known that automation has been
successfully used to enhance a great variety of human
activities from aircraft control to manufacturing, the whole
area of autonomous interaction of surgical tools with
biological tissues is rather unexplored. In the applications
where it has been used, automation has increased safety,
accuracy, reproducibility, and has decreased human
fatigue [9, 10]. Thus, we hypothesize that similar benefits
could also be gained by introducing automation to specific
aspects of surgery, provided that we can successfully solve
the challenges of this concept [11]. In fact, reports in the
general press [12] and in the FDA listing of safety alerts for
medical devices [13] indicate the increasing occurrence of
potentially dangerous situations during robot-assisted
procedures.

In this paper we report the results achieved during the FP7
European project Intelligent Surgical Robotics (I-SUR)
addressing the autonomous execution of basic surgical
actions. Such technology will in the future allow surgeons
to focus only on the most difficult aspects of the interven-
tion, leaving the basic tasks to the autonomous system. In
this paper we will focus on the puncturing task and in
particular on the needle insertion for the cryoablation
procedure. This procedure requires high accuracy and
precision that a robotic system integrated with a sophisti-
cated sensing system can guarantee.

To prove the feasibility of our approach to this problem, we
develop general methods for a cognitive surgical robotic
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architecture capable of combining sensing, dexterity, and
cognitive capabilities to carry out this action autonomous-
ly. The algorithmic part is integrated with a novel, high
dexterity robot specifically designed and fabricated during
the project.

Currently we are improving the robotic platform to be
able to autonomously execute other surgical tasks such
as cutting and suturing. It is worth highlighting that
several design choices made at the very beginning of this
project (and reported in this paper) were also driven by
these tasks to assure enough dexterity and manipulabili-
ty, and to exploit the re-usability of common software
components.

In summary, as an area of strategic interest and high social
impact, autonomous robotic surgery requires methods and
models for assessing its quality and its impact in operating
room (OR) procedures and instrumentation. The objective
of this paper is to report the results of our initial efforts to

1. design and fabricate a high accuracy robotic platform
based on a macro-micro concept [14],

2. develop an integral diagnostic-planning-intervention
workflow characterized by information and commu-
nication technology (ICT) methods and models.

The paper is organized as follows. In Section 2 we analyse
the medical background relevant to the specific surgical
action we want to automatize. In Section 3 the design of
high accuracy phantom model of the human abdomen is
described whereas Section 4 describes the design of a new
surgical robot. Sections 5 and 6 present the development of
new methods for interactive planning of surgery in
deformable environments, intervention execution and
monitoring, and of new methods for real-time data proc-
essing and medical situation awareness, respectively. In
Section 7 the surgical interface is presented. These new
systems and methods have been integrated and experi-
mentally tested in Section 8. Section 9 discusses the legal
implication and challenges of autonomous robotic surgery.
Finally, conclusions are drawn in Section 10.

2. Medical background

The surgical action we will analyse in this paper is punc-
turing, and to identify a specific procedure we will focus
on the insertion of a needle for the cryoablation of kidney
tumours. Puncturing is defined as the act of penetrating a
biological tissue with a needle, aiming at reaching a
specified target point.

2.1 The cryoablation procedure

Percutaneous cryoablation of a small tumoural mass in the
kidney is the least invasive treatment for kidney cancer
based on thermal ablation, which aims at destroying
neoplastic tissues through a thermal shock caused by short
cycles of freezing and thawing.



The percutaneous approach, in contrast with open or
laparoscopic surgery, is less invasive, decreases morbidity
and ensures high efficacy by accurately targeting the cancer
while preserving the healthy adjacent structures [15, 16].

Percutaneous cryoablation is performed using a tool called
cryoprobe which is directly introduced through the skin
towards the kidney tumour with the aid of clinical imaging
devices (computer tomography CT, magnetic resonance
imaging MRI, ultrasound US). Cryoprobes are hollow
needles, similar to biopsy tools, whose temperature is
conditioned by fluids circulating inside, generally argon for
cooling and helium for heating. The very low temperature
generated around the tip allows the freezing of the sur-
rounding tissue, creating an iceball around the tumour.
Rapid freezing and thawing cycles induce irreversible
damage of the tissue within the iceball.

2.2 How robotics can improve the procedure

The most important issue for a puncturing task is to safely
and correctly reach the target point. In fact the precision of
insertion of the needle tip near the centre of the tumour is
strictly correlated to the success of the treatment. For this
reason, the cryoablation procedure can be improved by
exploiting the intrinsic high accuracy and repeatability of
robotic devices and the pre- and intra-operative images of
the patient’s anatomy.

Several experiences on robot-assisted percutaneous
procedures have been reported in the literature in recent
years. Good results have been obtained in terms of accuracy
[17, 18], number of access attempts, time to successful
access, and estimated blood loss and complications,
compared to standard procedures where the radiologist
has to rely on his/her experience [19]. The standard
procedure usually requires several CT scans during the
needle insertion to assess its actual position, exposing the
patient to a considerable amount of radiation [20]. Thus an
autonomous system able to plan and execute a puncturing
procedure, managing possible hazardous events and
reducing CT scans, represents a significant improvement
in patient safety. Furthermore, this technology could be
easily exploited in different surgical applications where
accuracy and precision are important factors.

2.3 Medical and procedural requirements

To define the requirements of the robotic system it is
necessary to analyse

a. how the procedure is executed by a surgeon, and

b. how the robot can perform the same task interacting
with the operator and the partially unknown environ-
ment.

This analysis is used to ‘translate’ the surgical knowledge,
professional experience and anatomical constraints into a
mathematical formalism for the design of the cognitive

robotic architecture in all its aspects: control, sensing,
dexterity, etc. Although most efficient automation is not
done by duplicating human movements, here we need to
ensure thata surgeon can continue the task by teleoperating
the robots (teleoperation mode) in case of emergency. For
this reason we strive to preserve the dexterity and cognitive
aspects of the manual task.

Preliminarily, the surgical task is partitioned into subtasks
and modelled as a state diagram to represent the sequence
of actions to be performed. Then we select the critical
variables and parameters involved in the procedure (i.e.,
distance to target, maximal force applied to the skin and so
on) needed to trigger the transitions among the states in
normal and emergency situations. Data collected by the
sensing system during the intra-operative phase are used
to compute these parameters and autonomously detect
unexpected events or dangerous situations.

The pre-operative analysis is used to locate the tumour and
to plan the insertion. The planning has to compute the end
points of the cryoprobes so that the volume of the tumour
is completely covered by the iceball. As a precautionary
principle, cryoprobes are placed in order to generate ‘killer’
isotherms extending some millimetres beyond tumour
edges. On the other hand, healthy tissue has to be preserved
from the ablation as much as possible. Hence, we devel-
oped an optimal planning strategy that achieves whole
tumour coverage (hard constraint) and minimizes the
damage of surrounding healthy structures (soft constraint).

During the planning we define a set of forbidden regions from
where the iceball has to be kept away. A safety distance of
5-10 mm is a safe distance to the bowel, ribs, nerves, spleen,
liver and ureters. For this reason, a high accuracy robotic
system is required to insert the needle with a position error
smaller than 1 mm. Moreover, the sensing system should
be able to detect critical/characteristic events such as skin
penetrated, tumour hit, tumour passed and forbidden region
touched.

To verify the plan quality, we developed a cryoablation
simulator that computes the nominal trajectories and
verifies the satisfaction of the constraints [21]. Figure 1
shows the interface of the simulator.
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Figure 1. Graphical user interface of the cryoablation simulator from where
the operator can load the CT scans of the patient
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However, to compensate for registration mismatch, US
guidance is required to monitor the needle path during the
insertion. This is the reason for which a second robotic arm
holding a US probe is needed. The control architecture has
to coordinate the motion of the two arms during the
procedure and avoid collisions.

The system should be able to understand how the tools are
operating and what is happening on the surgical table. The
accuracy of the needle insertion and the reliability of the
procedure are, for the professional users, the most tangible
benefits an autonomous system should offer. These
characteristics are strictly related with (1) the correctness of
the description of the surgical knowledge into technologi-
cal processes, (2) the trustworthiness of procedural and
anatomical models, (3) the acquisition of relevant data and
their right interpretation, (4) the prompt detection of
dangerous events and the possibility to put in action
countermeasures to mitigate their effects (such as re-
planning of the trajectories, teleoperation of the robots).

3. The model of human abdomen

For puncturing tests with US guidance a kidney box
phantom was developed to represent the right side kidney
of a human being and its surrounding structure. In order
to increase the anatomical reality, a human CT scan was
used to reconstruct the spatial location of the organs.
Besides the kidney, the reconstruction considers also a
section of liver, the ascending stretch of colon, ribs covering
the liver, a simplified layer of skin and fat representing the
right back side of the abdomen. The reconstruction of the
models of the organs from the CT scan was made using 3D
Slicer by segmenting a quarter of the right side of the
abdomen as shown in Figure 2.

Figure 2. Region of segmented organs

The segmented organs were then imported into a CAD
software (SolidWorks). A watertight box surrounding the
organs, fixators for the organs, moulds for casting the
organs and placement of the markers were designed in the
CAD software. Two 20mm tumours were added to the
lower pole on the posterior face on the kidney model. The
fixators were designed to keep the liver, kidney and fat
layer in place in the box.
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The organ moulds were made of Polylactic Acid (PLA)
using a rapid prototyper 3DTouch (manufactured by Bits
from Bytes Inc). Ribs and the fixators for the liver, kidney
and fat layer were fabricated in the same way.

The liver, kidney and fat layer were casted using gelatin
mixtures which allowed the artificial organs to be visible
on US images and CT scans. The preparation of the gelatin
mixtures is described in [22]. Before casting the organs,
fixators with reinforcing thin mesh were placed into the
moulds. Tumours of the kidney were casted from clear
gelatin mixture and were later fixed on the surface of the
casted kidney by melting the gelatin between two bodies.
The tumours were also covered with silicon (Elite Double
22, Zhermack SpA) mixed with graphite flakes to enhance
border visibility. The box surrounding the organs was
prepared from parts milled out from plywood and assem-
bled using plastic bolts. For the descending colon we used
a simple cylindrical piece of fabric attached to the phantom
walls.

The liver was fixed on the wall after casting the box with
bolts. The kidney was placed on two plastic rods on the box
cover to stay in the middle of the box. The fat layer was
fixed on top of plastic supports, then covered with coloured
silicone (Dragon Skin series silicone) to represent human
skin, and finally fixed from outside with a plastic strip.

Figure 3. Placement of the US/CT markers: four blue balls on greed rods

To calibrate the intra-operative US images with the
preoperative CT scan, four markers were placed inside the
kidney box phantom behind the organs (so that they did
not shadow the organs) and as far away from each other as
possible (for increasing the calibration accuracy). Markers
were made of 10 mm rubber spheres fixed on 3 mm plastic
tubes to the outer wall of the box phantom. Positioning of
the markers can be seen in Figure 3. The visibility of the
markers was further enhanced by painting the rubber balls
with silicon (Elite Double 22, Zhermack SpA) mixed with
graphite flakes.



The surrounding space around the kidney, liver and colon
was filled with water which allows the US-based inspection
of inner structures of the phantom. It was poured into the
phantom box through the round opening, which was later
sealed with transparent Plexiglas. The current version of
the phantom has to be kept in the refrigerator and can be
used for one month before organ degradation.

4. The robotic platform

Most of the existing robotic surgical platforms dedicated to
autonomously achieving parts of or complete surgical
interventions have been designed for one specific task, e.g.,
for joint replacement surgery (ROBODOC, [24], or prostate
resection (Probot'), [25]). The automation of multiple
surgical tasks with a single surgical platform, as described
here, is a new major challenge, which motivated the design
of a versatile and dexterous robotic platform.

Figure 4 shows the robotic platform for the needle inser-
tion under US monitoring. The commercial robot URS5 [26]
holds the US probe: the sensing system detects on the US
images the motion of the needle to guarantee the safety of
the procedure. The ISUR robot holds the needle and
performs the puncturing according to the planned trajecto-
ry. During the needle insertion task, the US probe is first
placed on the surface of the body, aligned with the expect-
ed needle tip trajectory, and then the needles are mounted
on the robot end-effector and automatically inserted one by
one.

Figure 4. The overall ISUR robotic platform. On the left, the UR5 robot
holding the US probe; on the right, the ISUR robot holding the needle; On
the operating table, the phantom of the human abdomen.

4.1 Design Considerations

In order to perform automated puncturing for cryoablation
a large workspace, high structural stiffness and the ability
to generate output forces of up to 15N [27, 28] are required.
In contrast, cutting and suturing, which will be implement-
ed in the future by the same platform, require a dexterous
end-effector capable of holding tools and performing
complex manipulations similar to the hands of a surgeon,
with low interaction force and within a small workspace.
The minimum workspace to perform the three surgical
tasks is the volume of the human abdomen plus a frame of
15 cm allowing the safe movement of the tools. Last but not
least, the design of a surgical robot should consider the
limited amount of space available in the operation room,
and the possible interaction with other surrounding
equipment, such as ultrasound probes and supporting
structures used in procedures relying on intra-operative
imaging.

These requirements motivated the design of a modular
robotic platform based on a macro/micro unit architecture
[14], consisting of two decoupled robotic structures that can
be controlled independently as well as in concert (Figure 5).

* A macro unit with four degrees of freedom (DOF) serves
as a gross positioning unit, to position the micro unit
over the region of interest where the needle is to be
inserted. For this purpose, a 3-DOF linear delta robot [29]
was selected, as this parallel kinematics offers a rigid
platform capable of carrying the weight of the micro unit,
while ensuring high stiffness and positioning accuracy.
The three parallelogram arms of the delta structure are
actuated by three linear spindle drives. An additional
DOF on the moving platform controls the rotation of the
micro unit base to adjust its orientation during the
surgical procedure. For the sake of convenience and
space constraints, the linear delta was attached to a
custom-made table 2 m in length in the first prototype.
However, the arms of the delta structure could easily be
flipped upwards, allowing the linear drives to be fixed
to the ceiling or a supporting structure for installation in
an operating room.

A dexterous micro unit capable of manipulating different
surgical tools is mounted to the moving platform of the
macro unit. The micro unit is based on hybrid kinematics
and offers 4-DOF, mimicking the arm of a surgeon
(shoulder flexion/extension, shoulder rotation, elbow
flexion/extension and forearm pronation/supination). In
the case of the puncturing procedure, the needle is
mounted to the distal end of the robotic arm of the micro
unit. The first three DOF of the micro unit are used to
orient the needle and are actuated remotely (from the
moving platform of the macro unit) while the fourth
DOF allows rotation of the needle around its axis via a
belt and pulley drive located behind the needle holder.

1 Probot is no longer on the market [23] whereas ROBODOC is sold by Curexo Technology Corporation.
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The needle can be easily detached from its holder to
allow for the successive insertion of multiple needles.
The needle holder incorporates a six-axis force/torque
sensor (ATI Nano 17, ATI Industrial Automation Inc.,
NC, USA) to measure interaction forces and torques
during insertion. For more complex surgical tasks such
as suturing, the needle is replaced with a cable-actuated
wrist module that provides three additional DOF (wrist
flexion/extension, radial/ulnar deviation, and a gripper)
and can be easily attached to the force/torque sensor. A
second arm with the same DOF can further be mounted
to the moving base of the macro unit, resulting in a
versatile, bimanual robotic surgical platform with 18-
DOF.

Macro-unit

Force
sensor
18

Figure 5. The robotic platform for automatic needle insertion. The robot
consists of a macro unit (linear delta with 4-DOF, J1-J4) for gross positioning,
and a micro unit (4-DOF, J5-J8) to hold and orient a cryoablation needle. The
needle holder is attached via a six-axis force/torque sensor.

4.2 Control, Safety and Performance

Position sensing is achieved through encoders located at
the level of each actuator, and through potentiometers
along the drives, providing a redundant position measure
for safety purposes. The end-effector position is computed
by solving the kinematics of both the macro and micro units
independently, and then combining them. The control
architecture of the robotic surgical platform is organized in
a hierarchical way. A low-level controller performs
position and velocity control in a cascaded manner [30] at
the joint level, and is used for trajectory following. A high-
level controller implemented on a separate PC generates
the commands for the automatic execution of the surgical
tasks, and includes the reasoning and cognitive processes
required for such tasks (the control architecture and the
reasoning module will be described in the following
Sections 5 and 6, respectively). The low-level control layer
is implemented in real-time LabVIEW 2013 (National
Instruments, USA), and runs on a PC with an eight-core
Intel i-7 (3.4 GHz) processor. For optimal control of the
multi-DOF robot, joint/velocity control runs at 10 kHz on
an integrated field-programmable gate array board, while
trajectory following is performed at 2 kHz on the PC.

Safety is a major requirement in robotic surgery. In the
present scenario of a puncturing procedure, special care has
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been taken to avoid collisions with the robotic arm holding
the ultrasound probe (see Figure 4) and the surgical table
(both during the planning and the real execution of the
intervention). This is achieved by constantly monitoring
the interaction forces/torques from the sensor integrated
into the needle holder, as well as by monitoring motor
current, position and velocity at the level of each joint. In
addition to software limits (on position, velocity and
current) implemented in the low-level controller, mechan-
ical end-stops are integrated at the level of each joint.
During normal operation, actions performed by the robot
will be visualized on the surgical interface together with
plots of the most important sensor readings, allowing the
supervising surgeon to intervene at any moment to stop the
system through emergency switches or take over the
control through the teleoperated mode.

5. The control architecture

In this section we describe the control architecture that
interacts with the low level controller described in the
previous section (by sending reference positions and
receiving force measurements) and with the reasoning
module described in the next section (by sending and
receiving events).

Validation-oriented design is mandatory for the applica-
tion domain of surgical robotics. Therefore, design specifi-
cations for control algorithms and supervisory/
coordination logic have been formalized using a require-
ments engineering approach, which is an increasingly
recommended practice for safety-critical systems design
(see for example the guidelines in [31]. The methodology
applied in this work, described more precisely in [32], is as
follows:

1. Requirement collection: a group of expert surgeons is
interviewed on the objectives of the surgical process,
the main procedures (‘best practice’) to be performed,
the elements of the domain and the critical events
related to the surgical actions.

2. Requirements engineering: surgical requirements are
expressed using a goal-oriented methodology called
FLAGS (Fuzzy Live Adaptive Goals for Self-adaptive
systems, see [33], that has two main features: it focuses
on real objectives of an operation and on complications
that may arise during its execution; and it is based on
a formal language. The goal model is in fact a set of
formal properties in the Alloy language (see [34], a
specification language for expressing complex struc-
tural constraints and behaviour in a software system,
based on first-order logic (FOL) and linear temporal
logic (LTL, [35]. For example, a leaf goal of the cryoa-
blation requires the avoidance of forbidden regions (i.e.,
bones, nerves, other organs) during needle insertion as
explained in Section 2. This constraint is specified by:

MP =>1(FR A (FRneedle = MP.needle))



This formula asserts that every time a movement is
performed (event MP), the needle entity associated to the
movement must not touch a forbidden region (event FR).

3. Operationalization: the goal model is transformed
into a sequence of operations and adaptations, satis-
fying the goals of the surgical procedure. This task is
formally defined as a constraint satisfaction problem
and provides a sequential model equivalent to the
traces of a state machine, representing the whole
system behaviour that guarantees the achievement of
the root goal.

4. Modular System Design: the state model obtained
after goal-oriented analysis is refined and partitioned
into the structural units of the overall automated
system, implementing a collaborative and coordinated
behaviour compatible with the requirements. This task
is performed by applying decomposition methods
from classical discrete systems theory and using
unified modelling language, UML, [36] as a modelling
tool, to ease the software-oriented design specification.

5. System Verification: formal tools such as model
checking (see [37] and the related SMV tool [38] are
applied to verify that the UML system model preserves
the properties expressed by the goal model.

5.1 Supervisor layer

The autonomous robotic system is supervised and control-
led by the following three modules, corresponding also to
software units deployed on different computational
platforms: a Surgical Interface (described in Section 7), the
Robot Controllers, and the Sensing system with Reasoning and
Situation Awareness capabilities (described in Section 6).

The interaction among such system components has been
specified with the help of UML sequence diagrams, which
represent scenarios compatible with a given collaborative
behavioural specification. As an example, Figure 6 shows
an admissible scenario for the cryoablation execution,
focused on needle insertion under US-based monitoring.

The scenario specifies the initial setup of the surgical task,
in which preoperative medical imaging data are processed
by the cryoablation planning algorithm presented in [21],
whose result is the optimal placement of cryoprobe needles
to obtain full tumour coverage with the expected iceball,
without interferences with other organs (i.e., forbidden
regions). The needle placement is referred to the centre of
the tumour, therefore the task plan, once validated by the
surgeon, must be adapted to the operative scenario by
means of the registered coordinate transformations
calculated by the sensing/reasoning module.

The complete behavioural specification of the robot control
and supervision units is given by UML state diagrams
associated to the control logic for the robot holding the
needle and for the robot holding the US probe. Figure 7
shows the hierarchical state machine related to the robot
inserting the needle.

NRC : NeedleRobot| [ USRC : USRobot SR-SA:

SensingReasoning

% lsl  Surgicallnterface]

HS : Surgeon
1: StartCryoPlanner

CryoPlanner

i 2 : LoadPreopData
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Configuration

4 IcebalConfigurati

5 : RegisteredConfigData
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9: (e_USInPlace )

10 : NeedleMounted_ | 11 ( e_NeedleMounted

Figure 6. UML Sequence Diagram of the interaction among system
components during the needle insertion

The UML state diagrams are translated in the program-
ming language Lua [39] and then loaded by a component
of the distributed system architecture. This component acts
therefore as a supervisor of the control architecture [40].

The hierarchical features of UML state diagrams make it
possible to embed exception handling mechanisms by
means of transitions exiting composite states. In both state
machines, in fact, the robotic task can be stopped because
of an exception event that can be triggered either by the
surgeons, through the surgical interface, or by the sensing/
reasoning and situation awareness module. In particular,
the latter is in charge of detecting if the needle is too close
or even touching a forbidden region or any force value
measured by the sensors exceeds a safety threshold.
Whatever the exceptional event, if the task execution can
be restarted after appropriate validation of the surgeons,
the transitions marked by the e_taskRecovered event are
executed. If necessary, the system allows the surgeon to
switch to a teleoperated mode.

AdmittanceControlActive

WaitlceballConfig

e_TaskConfigured

WaitUSInPlace

e_USInPlace

InsertionTask

MoveToNeedleChange

e_NeedleMounted

e_NeedleRemoved

moved
‘ InsertNeedle ‘

\\\_' include / InsertionSeq
e_
/[NewTarget ] oo

e_TumorReached
/ [NoNewTargets ]

e_taskCompleted

et

TaskStopped | e_ForceLimit,
e_FRTouched,

e_NeedleLost WaitCryoCycle

&_TeloperationReq

TeleoperationMode o AutoReq

e_CryoCycleFinished

ExtractionTask

‘ include / ExtractionTaskSeq

oo ‘

Figure 7. UML state diagram of the behavioural specification for the
controller of the robot holding the needle
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5.2 System architecture

The system architecture is organized according to the
classification of system components shown in Figure 8.
Such a classification reflects the definition of the three main
modules previously described, but provides a further
decomposition of software components into those whose
behaviour is mainly event-driven and those performing
data-driven computations.

Sensing Data
rrrrrrrrrrrrrr Events
Needle Robot Situation US Probe
(ISUR Robot) Awareness| |Robot (UR5)
Task Surgical
Supervisor Interface

Figure 8. General scheme of the proposed control and coordination software
architecture

The experimental setup described in Section 8 includes two
different robots as shown in Figure 4: the macro/micro
robotic platform used to perform the needle insertion and
the URS5 robot used to hold and place the ultrasound probe.
It follows that the planning and control system is composed
of two similar control loops, one for each of the two robots.
These control loops interact indirectly by exchanging
events with the task supervisor.

Based on the planning created using the preoperative
knowledge, the control module has to:

1. generate a valid Cartesian path (start pose) from the
current robot pose and a desired one (goal pose)

2. parametrize the pathinaccordance to some constraints
of the motion (i.e., maximum velocity and accelera-
tion)

3. control the robot to make it follow the desired trajec-
tory

Several distributed software frameworks are available in
the literature to implement such architecture. Among
others, the most used are the robot operating system [41]
and the open robot control software [42]. The latter has been
preferred because of its real-time properties [43].

As described in [44], an Orocos component is a basic unit
of functionality that executes one or more (real-time)
programs in a single thread. The high-level control architec-
ture reported in Figure 9 is composed by five components:

Motion Planner: this component is in charge of planning a
valid Cartesian path for a robot taking into account motion
constraints. Since the complete system includes two
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Figure 9. Interconnection scheme of robot motion panning and control
components

instances of the motion planner component (one for UR5
robot and one for the ISUR robot), the path is calculated
taking into account that each pose of the path must be
reachable by the robot (i.e., within its workspace) and that
the tool tip must not collide with anything in the opera-
tional space of the robot, including its own links (self-
collisions), those of the other robot (inter-robot collisions)
and other objects (obstacle collisions).

Trajectory Generator: From the start and goal poses, the
trajectory generator generates a new trajectory given the
path and the velocity and acceleration constraints (i.e.,
properties of the component).

Variable Admittance Control: a variable admittance
control has been chosen for the high-level control of the
ISUR robot. This choice was dictated both by the mechan-
ical properties of the structure itself and by the need to vary
the dynamical behaviour of the robot along the execution
of the task. In this way it is possible to assign a different set
of parameters at each different phase of the task. A passiv-
ity-based interactive control architecture has been imple-
mented to ensure safe and stable time-varying interactive
behaviours [45].

Robot Driver: to each robot a driver component is associ-
ated thatis the only part of the architecture to be dependent
on the specific hardware and software provided with the
robot; these components have the function of being a bridge
between the Orocos architecture and the outside world,
receiving data from the corresponding robot and sending
back set points generated by the control section.

Supervisor: the state machine describing the task is run by
a component with the function of supervising the control
architecture. Every component of the system is able to
generate some elementary events, used to describe the
progress of the architecture in implementing some action
requested by the task, such as the success or failure in
planning a path or generating a trajectory. All the events
generated by the components are received by the supervi-
sor and used, accordingly to the task, for the configuration
and coordination of the system. The supervisor is the only
event-driven component whereas the other components
are updated periodically (time-driven).



5.3 Teleoperation mode

When the cognitive system is no longer able to complete
the execution of the surgical procedure due to unexpected
or unmanageable events, the surgeon has to take over the
control of the surgical robots. We implemented a two-
layered bilateral control architecture that ensures safe
behaviour during the transition between autonomy and
teleoperation and still retains high performance control
after the switch, [46].

When the surgeon switches the robot platform from an
autonomous mode to a teleoperated mode, it is likely that
a kinematic mismatch occurs between the pose of the
master console and that of the surgical robot (i.e., the slave
robot). This mismatch can impose a high workload on the
surgeon to mentally compensate the offset, and can
therefore lead to risks for the patient because of uninten-
tional motions transmitted to the robot. These problems are
highly undesirable because the teleoperation mode is
activated during critical situations, and mistakes in the
teleoperation can cause severe injury to the patient. While
many bilateral teleoperation control strategies ensuring
efficient and safe behaviour have been proposed in the
literature [47], to the best of the authors” knowledge there
are no bilateral teleoperation systems where the safely
switching between autonomous and teleoperated modes
and kinematic mismatches compensation are proved in
formal ways [48]. The passivity-based interactive control
architecture shown in Figure 10 allows the implementation
of safe and stable time-varying interactive behaviours and
a transient-free kinematically-compensated bilateral
teleoperation of a surgical robot.
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Figure 10. The two-layer architecture for the pose offset compensation. In
the Transparency Layer, the desired coupling forces. These commands are
sent to the passivity layer, the role of which is to check and guarantee the
passivity of the total system.

6. The high level reasoning module

This section reports on the design of the real-time reasoning
and situation-awareness module. This module uses intra-
operative real-time sensory data and a priori medical
knowledge to identify the task evolution and to trigger
events for driving the control architecture. The module
addresses the following topics: alignment of the robotic

system, registration of the subsystems (i.e., robots, phan-
tom, US imaging), sensing techniques and, finally, devel-
opment of the algorithms for reasoning and situation
awareness.

6.1 Registration

The surgical scene in Figure 11 is composed of several
objects: the UR5 robot holding the US probe, the ISUR robot
holding the needle, the phantom of the human abdomen
and the tracking system. In order for the robots to work
together and to recognize the location of the phantom in the
surgical scene, the robots and the phantom must be
registered in a common coordinate system. This common
coordinate system will be called in the following world
frame. This preliminary phase is extremely important
because it affects the overall accuracy and precision of the
system and has to be done before starting any surgical
procedure [49, 50].

A 6-DOF tracking system is used to estimate the transfor-
mation matrices between the local coordinate frames of the
robots and the phantom. We used an Accutrack 500 from
Atracsys LLC, Switzerland which is an active tracking
system with a root mean square (RMS) position error of 0.19
mm [51]. The registration procedure goes through four
steps as shown in Figure 11:

1. registration of the robot holding the needle,
2. registration of the URS5 robot,

3. calibration and registration of the images coming from
the US probe,

4. registration of the phantom.

The letters A and B in the Figure refer to the kinematics-
based transformations from the base to the end effector of
the two robots, respectively.

To perform the registration we use a pointer tool attached
to one of the tracking markers. The position of the pointer
tool tip in the frame of the tracking system is estimated by
pivoting the tip in a fixed location. The pointer tip can then
be found using the estimation algorithm found in [52].

Tracking
System

Figure 11. The four steps in the registration procedure, marked 1 to 4. A and
B are the forward kinematics of the ISUR robot and the UR5 robot.
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6.1.1 Robots registration

The base of the ISUR robot was defined as the world frame.
The robot’s base is located on the surgical table. A set of
four points on the table was selected. These four points
were also defined on the CAD model of the robot and
measured by the pointer tool. The transformation between
the world frame and the tracking frame can then be found
using [53], by equating the same set of points in two
different frames. This is step 1 in Figure 11.

For the UR5 robot, four points were defined on the CAD
model of the US probe adapter. This defines the offset
between the end effector of the robot and the measured
points on the US probe adapter. The points are measured
in the tracking system frame using the pointer tool. At the
same time the coordinates of the same points on the base
frame of the robot are obtained by using the forward
kinematics and by adding the offsets from the end effector
to the points. This is repeated for several poses of the robot.
Using the algorithm in [54] on the two sets of points, the
transformation between the base frame of the UR5 and the
tracking frame can be calculated. Having the transforma-
tion between the tracking frame and the ISUR robot base
frame, the transformation between the bases of the two
robots is also known. This is step 2 in Figure 11.

6.1.2 US probe calibration and registration

The third step is to find out the transformation relating
points in the US images and their coordinates in the world
frame. The US probe is held by the UR5 robot, but the
transformation between the US probe adapter and the US
image is unknown and needs to be estimated. The US probe
calibration is done using a single-point target phantom [55],
where the target is a ball of 20 mm diameter in water
mounted on a threaded rod. The location of the ball’s centre
in the tracking frame is obtained by acquiring the position
of the top of the supporting rod before the ball is mounted.
The ball’s centre is also measured in the US image frame.
The US stream is recorded together with the joint positions
while the robot swept the probe over the ball. This acquis-
ition is performed several times and each time the centre of
the ball is manually identified. The scaling factor between
the USimage and the real ball size (i.e., mm/pixel) is known
from the US image information. Using the position of the
ball in both frames, the transformation is found using [53].

6.1.3 Phantom registration

The last step consists of registering the phantom of the
abdomen. The CT scan of the phantom is used to plan the
procedure and therefore the location of the phantom in the
surgical table is needed to execute the procedure. The
phantom has four embedded spherical landmarks (Figure
3) which are imaged using the US probe while it is mounted
on the UR5 robot. Using all the previous transformations,

the position of the balls in the world frame can be calculated
whereas their positions on the CT scan can be extracted via
software. The transformation between the CT scan frame
and the world frame is found using the same techniques as
before. This is shown as step 4 in Figure 11 and completes
the registration procedure.

Remark The current state of the art for the registration of
scene with rigid and deformable objects is to compute a
rigid registration among the objects and then measuring
the deformation at run time by using intra-operative data.
To evaluate the translation/rotation misalignment between
pre-operative and intra-operative data we implemented a
US-based segmentation of the organs inside the phantom.
In this way we can evaluate the mis-registration and
modify accordingly the trajectories planned on the pre-
operative data. This procedure is executed before starting
the autonomous procedure and not during the procedure
itself?. The reason is that it requires the sweeping of the US
probe on the phantom to acquire the images:;when the
needle is partly inserted into the phantom, this procedure
is no longer possible. Deformation due to the needle
insertion cannot be detected in this way and the proposed
solution is to track the needle tip (also using US images but
with the probe away from the insertion point on the skin)
to foresee a wrong path and collision with the forbidden
regions. In the present setup the phantom is quite stiff and
so minor deformations are expected whereas the possibility
of missing the target points or moving close to the forbid-
den regions due to pre- and intro-operative misalignment
has to be taken into account for safety reasons. The imple-
mented algorithms will be explained in the experimental
section.

6.2 Reasoning

From real-time sensor data and a priori knowledge of the
surgical plan, the high level reasoning system is able to
identify the current state in the surgical procedure by
detecting the triggering events. Those events are skin
reached, skin penetrated, tumour hit or tumour passed and
needle extracted. Simultaneously, some risky situations are
continuously monitored such as force limit, needle tracking
failed, forbidden region touched.

In order to detect these events, a three-layer supervised
machine learning engine is implemented

1. upper-layer reasoning with Bayesian networks

2. middle-layer Gaussian clustering with a hidden
Markov model

3. lower-layer sensor filtering.

6.2.1 Bayesian Networks

Bayesian networks are used to represent the probabilistic
relationship between the system inputs and the final

2 This procedure is at the moment not fully automatized: the intervention of the operator is still necessary.
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inference outputs [56]. A Bayesian network is either
defined deterministically or obtained through a structure-
learning method. This work focuses on the deterministic
case.

Figure 12 shows the geometric relationship of the variables
during the needle insertion towards the tumour, while
Figure 13 shows the interpretation of the relationships into
a Bayesian network. The Bayesian network is used for the
detection of tumour hit/passed events with some given
input states such as force state, needle tip distance to the
target, needle base distance to the target and angular error of the
tip orientation to the target. A simpler Bayesian network can
be implemented to use the force and the tip distance to the
forbidden region in order to detect the forbidden region
touched event.

ROBOT
END- EFFECTOR

Tip Distance

Base Distance

Angular Error

KIDNEY

Figure 12. Definition of variables in needle insertion towards the target

Tip Distance

Figure 13. Bayesian network to detect tumour hit/passed events

Once the graphical model and evidence data are given, the
parameter training for the model is performed in two steps:
(1) the graphical model is converted to junction tree form,
(2) the expectation maximization (EM) algorithm is used to
estimate the training parameters.

The trained Bayesian network is able to infer on the
incoming real-time input. The real-time discrete input
states such as force state, needle tip distance to the target etc.
are obtained from the hidden Markov model layer which
is explained in the next section.

6.2.2 Hidden Markov Model based clustering

The hidden Markov model (HMM) method is a key
algorithm in many applications, from hand-written
character recognition to genome analysis and robotics.
HMM is an outstanding machine learning algorithm to deal
with sequential data classification. It involves a learning
process and an inference process.

Figure 14 shows the graphical model for each of the HMMs
being applied for the developed Bayesian network states
such as force state, needle base distance to the target etc.

T / \ Bo)

Measure(0)
/ X
/ \\

Figure 14. Sequence of observable vectors and states in the HMM

Each state of the HMM, namely hidden state, is assigned
with anumber from one to five. A five-dimensional ergodic
HMM graphical structure is used that enables any state
switching from one to five according to the probability
transfer matrix T. Each measured state of the HMM is
linked to a hidden state via a 2D probabilistic density
function B. Because the sensor observation is considered
Gaussian distributed, B is expressed in terms of a mean
vector y and a covariance matrix X [57]. The 5x5 dimen-
sional transfer matrix T together with the matrices y and £
are estimated using the Baum-Welch learning algorithm.
Subsequently, the inference process is performed using the
forward-backward algorithm [58].

Observable vectors are formed by the iteration number k
and the output of the active filters.

6.2.3 Active filtering

The force measurements are usually affected by a signifi-
cant amount of uncertainty and noise; so is the vision-based
needle tracking output. The developed Bayesian networks
and HMM inferences are sensitive to uncertainty and noise
[59]. Hence, active filters should be used to reduce the
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sensor noise from the data to an acceptable level before
being processed by the Bayesian networks and the HMM.

Two kinds of active filters have been implemented: a
Kalman filter and a particle filter. The Kalman filter is
applied to sensor data such as force measurements. A
particle filter is implemented on the needle tracking
algorithm because the input data are not Gaussian [60].

7. The graphical interface

The functionality, layout and appearance design of a
surgical interface critically affects surgeons’ ability to
successfully use new robotic technologies and perform
operations. Symbol size, contrast, colour and display depth
and shape coding are important factors for facilitating the
rapid identification of information from the user interfaces
[61]. There are basic design principles that help to reduce
uncertainty for all graphical user interfaces (GUI): (a)
internal consistency and clear hierarchy of the elements
[62]; (b) correct alignment of visual elements to reduce the
visual load of the user and to help the user to understand
the information structure [63]; and (c) relative scale of the
elements to visualize functions in balance [64].

Various methods such as contextual inquiry, cognitive task
analysis, usability tests, heuristics, cognitive walkthrough
and focus groups have been used to determine design
requirements for surgical interfaces [65]. Heuristic evalua-
tion, which has previously been used to collect user
feedback for radiotherapy systems [66], is an inexpensive
and efficient method. However, heuristic evaluation is not
enough as a standalone method [67]. Semi-structured
interviews [63] and user observation [68] are the other
methods used throughout the process together with user
scenarios, personal and thematic analysis to pinpoint
certain patterns in the surgical interfaces.

The choices for designing the surgical interface (SI) for the
kidney tumour cryoablation procedure have been driven
by (a) literature review, (b) eye-tracking studies [69], and
(c) heuristic evaluation with the different prototypes [70].

The SI has been developed using Microsoft Visual Studio
2010 Development Environment and routines are written
using C Sharp programming language. The visualization
toolkit [71], which is an open source and freely available
software, is used for 3D image processing and visualization
to increase ease of use and efficiency [72, 73, 74].

The panels, buttons, windows in the developed SI have
been organized to increase usability (Figure 15) [69]. The
following functions have been grouped in the new current-
ly used SI:

* surgery presentation: CAD model view, setting func-
tions for CAD model view (organs, objects/tools, view
angle), CT views (axial, coronal and sagittal),

* commands: cryoablation planning tool, iceball config-
ured, new needle, ask extraction, and
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¢ background information: e.g., robot applied forces.

1SUR Surgical Interface

Figure 15. Surgical interface of the cognitive robotic system

Information Structure prev. current
The information is structured in a way that it is easy to

understand the whole system. > >
Related information is grouped. 4 4
It was easy to find where to start from. 4 4
All visual elements on the screen were needed, nothing 4 5
was excessive.

The command language employs user jargon and avoid . 4
computer jargon.

In any given time, it was easy to understand where you . 5
are.

Layout Design

At any time, it was easy to find what I was looking for. 5 5
Related information and components are visibly 5 5
grouped.

When popups and warning messages appear, I was able 5 s
to see the part of the GUI that has the error.

The use of popup and warning screens distracts my ) 1
attention.

Appearance

The visual design of the GUI was consistent. 5 5
Buttons and interactive parts were easily recognizable. 5 5
Texts were readable. 5 5
The system gave feedback to every interaction I made. 5 5
Buttons and interactive components are easily 5 5

manipulated.

Table 1. User Feedback Usability Survey

Important task and information panels (3D phantom, robot
models, CT scan) are placed in the centre, and all log screens
are located on the right side to help surgeon to focus on the
important parts of the cryoablation procedure. Addition-
ally, task-related buttons are placed at the bottom to avoid
the hand covering the screen while “turn off’ buttons for
each robot are placed at the top. Furthermore, patient
information is added on the top of the screen for a consis-
tent interface, and each component (windows, buttons,



texts) is aligned for faster visual grouping and directing of
attention.

Surgeons are informed with a warning and process
dialogue. Warning messages are displayed, overlaying on
the model without covering the background when an
unexpected situation happens, and optional functions are
given by highlighting the regular buttons at the bottom.

A survey has been prepared to evaluate previous Sls and
the currently used SI (Figure 15) in term of usability (i.e.,
information structure, layout design and appearance). The
scores are l-strongly disagree, 2-disagree, 3-neutral, 4-
agree, 5-strongly agree, and the six participants were from
the Department of Faculty of Medicine, Istanbul Universi-
ty: three surgeons (all male) from the Urology Department,
and three radiologists (two female and one male) from the
Radiology Department have filled the survey. All urolo-
gists had experience with laparoscopic surgery, and
radiologists had experience in kidney biopsy process. No
participants had any prior experience using a SI. It could
be seen from Table 1 that the SI currently used has been
improved compared to the previously developed SIin term
of usability [72, 73, 74, 69].

8. Experimental results

In this section we describe a complete puncturing experi-
ment and show how the proposed robotic system autono-
mously performs the insertion of the needle into a phantom
of the human abdomen. The planning was done based on
the CT scan and reference trajectories were designed for the
UR5 robot holding the US probe and the ISUR robot
holding the needle.

8.1 Planning

A CT scan of the kidney box phantom was done in the East-
Tallinn Central Hospital using a multidetector CT scanner
(Brilliance 64, Philips Healthcare) as shown in Figure 16.
This scan is the preoperative model of the abdomen used
during the planning of the surgical procedure. Sub-
millimetre layer thickness is used in order to reconstruct
the forbidden regions with minimal volume loss in the later
phase (the scan layer thickness was 0.9 mm).

Figure 16. CT scan of the kidney box phantom (kidney in the middle of
images, part of the liver seen on the right and left images, colon made out
of cloth visible on the left and middle image)

The CT scan of the kidney box phantom has been segment-
ed using 3D Slicer software and 3D STL format models are

created for the detection of forbidden regions later in the
preoperative planning and also for US-CT registration.
Figure 17 shows the reconstructed kidney box phantom
from the CT scan.

Figure 17. Reconstructed kidney box phantom model from the CT scan

Using this preoperative model the planner provides the
minimum number of cryoablation needles to safely cover
the tumour and the corresponding poses (target positions
of the needle tip and orientations of the needle). Figure 18
shows the 3D rendering of the pose of the cryoablation
needles needed to cover the tumour avoiding the anatom-
ical features.

Figure 18. Cryoablation planning. 3D rendering of the pose of the cryoabla-
tion needles needed to cover the tumour, avoiding the anatomical features:
ribs in white (top-left) and vessels in red (top-right).

Due to the possible deformation of the phantom we
implemented a US image segmentation for detecting the
registration mismatch between pre- and intra-operative
data and to eventually compensate it by modifying the
planned needle poses (this procedure is currently per-
formed manually by the surgeon).

8.2 Ultrasound Image Segmentation

Ultrasound image segmentation plays an important role in
the intra-operative processing. The ultrasound image
segmentation can be used for the detection of the organs’
borders, the guideline of surgical tools, the registration of
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organ deformation, and the localization of the robot end-
effector.

The speckle noise in ultrasound images affects the segmen-
tation result and the segmentation of a heterogeneous
object is difficult. Global region descriptors such as mean,
variance or texture of an image are usually used in image
segmentation. But for an ultrasound image, the global
region descriptors do not always produce a satisfactory
result. In the literature, there are many approaches using
the local region descriptors [75, 76] to solve the segmenta-
tion problem of inhomogeneous images.

To improve the segmentation result, we use an active
contour algorithm which takes into account both the
localized active contour [77] and Bhattacharyya distance
[78]. In localized active contour, instead of using global
statistical information, the curve evolution is driven by
local region statistical information. The curve splits the
neighbourhoods of each point along the curve into two
parts: interior and exterior region. Bhattacharyya distance
is able to measure the discrepancy between two regions and
determine in which region the points near the border
belong to. The segmentation result of a kidney phantom
ultrasound image is shown in Figure 19. Even though the
border of the kidney is weak with a discontinued edge, the
algorithm is able to extract the edge of the kidney. This
result proves the robustness of the algorithm and its
capability to deal with inhomogeneous images. The quality
of the autonomous segmentation is comparable with the
manual segmentation done by expert radiologists.

Figure 19. Segmentation Result of a kidney phantom ultrasound image

8.3 Needle tracking in US images

The US image segmentation is useful before starting the
insertion of the needle. Once the needle is inserted into the
phantom, to monitor the procedure we need to estimate the
needle position independently of the robot kinematics. In
order to track the needle tip in US images during the
execution of the insertion, the method developed in [80] has
been applied. The method is divided into three steps:
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1. needle detection in the image,

2. estimation of the needle axis (i.e., orientation and entry
point on the phantom skin),

3. localization of the needle tip along the axis.

Five features are calculated at run time along the axis and
combined into one objective function by using weights. The
weights are trained to optimize the tracking. The needle tip
is estimated to be where the objective function has its
maximum, and since we use multiple features the estima-
tion is reliable and robust against noise and small needle
bending [80].

Figure 20 shows the detection of the needle tip during the
execution of the surgical task. The knowledge of the pose
of theneedle is exploited in the situation awareness module
to detect when the tip reached the target point or if some
potentially dangerous situation may occur (e.g., the needle
is too close to a forbidden region).

Figure 20. Example of needle tracking during the puncturing

8.4 Situation awareness

Before the ISUR robot starts the needle insertion, the UR5
robot locates the ultrasound probe in a planned pose where
the needle should be seen during the puncturing. This
nominal pose could be changed at run-time by the surgeon
in teleoperated mode if registration errors prevent seeing
the needle in the US images. In the present case the rigid
registration is quite accurate and so no compensations are
needed. However, in the future small translation and
rotation of the US probe around the nominal pose will be
executed by the robot in an autonomous way to optimize
the view of the needle in the US image.

A preliminary step is the offline training of the situation
awareness module. US images, together with force sensing
and robot kinematic information, were acquired in slightly
different needle configurations (i.e., final poses) until the
outcome was reliable and robust. A sample of validation is
shown in Figure 21. The robot base distance to the target
was computed using the ISUR robot kinematics and the



path planning information. The tip distance to the target
and the angle to the target were estimated by the needle
tracking algorithm from the tip position and the needle
orientation. Making use of this information, the Bayesian
network computed the probability of the reasoning
event "tumour hit” as shown on the bottom plot.
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Figure 21. Training of the Bayesian network. L 1 : skin reached, L PR

abdomen wall penetrated, L 5 : needle tracking started, L , : target reached

8.5 Execution

During the puncturing task the ISUR robot must behave in
different ways depending on the environment it interacts
with. Therefore the robot tool stiffness must change
depending on the task phase as described in Section 5. For
example, the robot can be compliant in free motion, while
it has to be stiff for penetrating the skin and the tumour.

To demonstrate that the system remains stable despite the
stiffness changes we also consider different ways of
varying the stiffness profile as shown in Figure 22. For
example, during the movement of the robot to the position
of needle change, the stiffness is augmented gradually
(final part of phase A), whereas when the robot is waiting
for the needle to be mounted, the stiffness is changed
instantly (from phase A to B).

For sake of clarity, the following plots show only the data
regarding the translational coordinates x, y and z. Similar
results have been obtained for the rotational coordinates.
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Figure 22. Evolution over time of the values chosen as diagonal elements for
the variable part of the stiffness matrix during the autonomous needle
insertion. Phases: A Move to start position to needle loading position, B :
Wait until the needle is mounted, C : Approach the phantom, D : Penetrate
the skin, E : Move to the target point inside the tumour, F Wait until the
needle is removed.

The desired Cartesian translational positions computed by
the admittance controller are reported in Figure 23. As
expected, the commanded motion does not diverge
(neither oscillate) over time and the system remains stable
despite the many changes of stiffness. Figure 24 shows that
the tracking error during the insertion of the needle (phase
E) is below the acceptable value of Imm, thanks to the high
values of the stiffness in this phase.

During the insertion of the needle the reasoning module
was active to monitor the execution of the task. The
Bayesian network was processing actual measurements
coming from the sensing system and the needle tracking
algorithm, and was sending events to the supervisor
component within the high-level control architecture.
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Figure 23. Desired Cartesian positions computed by the admittance
controller

10

-12 . I . . . . .
90 91 92 93 94 95 96 97

9ét[s

Figure 24. Tracking error (i.e., difference between the position of the robot
end-effector and the desired trajectory) during the approach and insertion
phases

An initial characterization of the robotic surgical platform
revealed that the workspace is sufficient to cover the entire
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abdominal area of a human, and that positioning precision
is acceptable (<Imm), while accuracy was not (up to 7 mm
positioning error, compared to 1.04 mm [81], 2 mm [82] or
[83]). The latter is currently being improved through a
detailed calibration of the platform. During the needle
insertion the interaction forces was smaller than 5N
satisfying one of the safely requirement.

9. Legal aspects

In this section we analyse the legal barriers to the introduc-
tion of robotic surgery devices in medical facilities. No ad
hoc regulation exists in the European jurisdiction that is
specifically devoted to the topic of autonomous surgery.
Two fundamental aspects have been considered: medical
liability (related also to medical malpractice in case of
robotic devices) and product liability (where “product’ is,
here, a robotic device or machine). Consequently, the
research has focused on the legal consequences deriving
from activities of designing/testing/updating the robotic
machines and their effective implementation.

Referring to the first aspect, we examined complex issues
like “informed consent’ and the exception (or exemption)
of “advancement in scientific knowledge’. Physicians owe
several different duties to the patient, including (1) the duty
to describe the nature of the treatment or of the examination
that the patient should undergo (and alternatives in
diagnostic and/or therapeutic methods), (2) the duty to
describe possible risks, outcomes hoped for and any
possibly predictable negative consequences. Therefore, the
patient has to receive all useful and relevant information,
so that he/she can knowingly decide whether or not to
accept the proposed diagnostic method and whether or not
to undergo the therapeutic treatment. A core aspect of our
analysis has addressed the question whether, and under
what conditions, the lack of specific rules on matters like
health services performed with surgical robots makes it
possible to apply current rules and principles. Moreover,
we have also verified which further (or different) informa-
tion the patient has the right to obtain when surgical
intervention is carried out with the use of a robot machine.

From the side of exception (or exemption) of advancement
in scientific knowledge, ‘we have exemptions from liability
possibly available to producers of products which cause
damages to consumers if producer proves that the state of
scientific and technical knowledge at the time when the
product was put into circulation was insufficient to identify
the product as defective’. We are trying to verify when this
exemption can be invoked and for what kind of damages,
in the field of robotic surgical machines.

From the second aspect of liability (i.e., product liability),
we have considered the relevance of liability in data
processing (collection of data, processing and updating
with state-of-the-art knowledge) and the relevance of
conformity certifications (e.g., ISO certificates) and their
effects on liability standards. Trying to find solutions or
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responses to the above-mentioned issues, we have studied
USA regulations in automated products, in particular
(although it is a quite different field) the ongoing USA
legislative process regarding the lawfulness of producing
and commercializing automatic vehicles. In this case,
automation is limited to steering, accelerating and braking
motor vehicles without human intervention. In both
experimental fields (motor vehicles and surgical robots) it
is possible to find a common core referring to product
liability and liability of users of the product who, in a
negligent way, acting or omitting to act, cause a dangerous
situation for the safety of someone else.

In the absence of general legislation on robot liability and
of well established principles, a great role can be played by
contractual regulation. Through contractual regulation we
can create disclaimers or liability limitations, so that it is
possible to shift the risks related to the use of the surgical
robots from one to the other of the subjects involved in the
surgical operations. It is worth noting that all these provi-
sions are themselves subject to different regulatory limita-
tions, depending on the law applicable to the contract. On
the contrary, in all the cases in which the parties did not
agree on a contractual regulation of the most important
subjects, the lack of common principles and of uniform
existing regulations will impose to verify case-by-case
which is the applicable law, by means of the single conflict
rules provided by the international private law of the
applicable country. In most of the cases this will lead to
consistently different solutions, generating uncertainty in
the application of law.

10. Conclusions

In this paper we described the design and fabrication of a
cognitive robotic platform for executing autonomously
simple surgical tasks. We integrated new algorithms to
control and monitor the procedure, together with new
methods for reasoning during the execution to promptly
detect errors and possible unsafe situations. A specific user
interface has been designed to continuously provide to the
operator the status of the procedure and through which
eventually s/he can teleoperate the robots if some event
occurs that the system cannot handle autonomously.

We demonstrated that the system is able to plan the
intervention for the cryoablation of the kidney tumour, to
execute the needle insertion, and to monitor the procedure
without any intervention by the operator supervising the
surgical action. The experimental validation has been
performed on an anatomically accurate US/CT compatible
phantom of the human abdomen.

From the viewpoint of the ISUR project, future work aims
at improving the robustness of the system, at better
integrating the different subsystems, and at enlarging the
number of tasks that could be executed autonomously (e.g.,
cutting and suturing).



From the viewpoint of robotic surgery, in this paper we
started to address the following issues related to automa-
tion and technology integration that will be more and more
important in the near future:

Controlled and increased patient safety. Surgical robots
will need automatic control features and monitoring to
make further progress in more demanding surgical
procedures.

Increased surgical automation. In spite of the progress in
computer and robotic assisted surgery (CAS and RAS),
automation in the operating room is still far from being
a reality. The introduction of more automation will
require new procedures and validation methods to
support modularity and testing of the devices.

Expanding user and intervention bases. Currently,
surgical robot users are surgeons with high technology
awareness and who can afford the training and risks
associated with the new technologies. Since, in the near
future, we should expect a significant growth in the
number of surgeons involved in RAS, we need to
simplify the use of the robot by adding advanced
automatic features.

Safety regulations and standards. Using automation and
robotics in the operating room is not just a technological
issue but depends on social acceptance, ethical issues
and safety regulations and standards. We started an
analysis on the ’legal lag’ between technology and
regulations that, if properly driven, will simplify the
introduction of these technologies into the operating
room in the near future.

The solution of all these challenges will help to pave the
way for autonomous and semi-autonomous robotic
systems within the operating room.
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Abstract—In this paper, we study the problem of ultrasound
image segmentation of kidney images. We propose a new region
based active contour algorithm. The energy function of our
algorithm is based on Chan-Vese energy function and the
Bhattacharyya distance. In our framework, a curve is evolved to
partition the image into two parts. Our algorithm minimizes the
differences between each part and maximizes the distance of
density function between each part. In the experiments, we use
images of kidney phantoms and real ultrasound medical images
to validate the performance our method. The results show that by
taking into account the similarity of two different regions, the
proposed method is able to deal with blurry boundaries in an
ultrasound image and provide good results on both phantom and
patient US images.

Keywords-ultrasound image, Bhattacharyya distance,Rayleigh
distribution,segmentation

I.  INTRODUCTION

Ultrasound image (US) analysis has played an important
part in many clinical applications. The ultrasound image has
the advantage of short acquisition times, relatively low cost and
use of non-ionizing radiation. The result of the ultrasound
image segmentation is an organ of interest, for example heart
[1], kidney or liver [3] or more importantly, a pathology of
those organs which can be used for clinical diagnosis. However,
due to speckle in US images [10], US image is usually of low
contrast, with shadows and blurry boundaries. Therefore
precise segmentation is challenging.

Active contour (AC) method is commonly used in
ultrasound image segmentation [4]. In the active contour
method, the segmentation problem can be treated as
optimization problem. By calculating the minimum or
maximum of the energy function, the active contour reaches
the optimization of the energy function which is also the result
of the segmentation. Active contour can be mainly divided into
edge based active contour and region based region contour.
Edge based active contour use image gradient for curve
evolution. Region based active contour on the other hand
utilize region information instead of image gradient.

In region based active contours, the region descriptors are
used to represent the region information. Intensity and texture
are usually meant for region descriptors. The region active
contours are more robust for noisy and weak boundaries
images than the edge based active contours.

Chan and Vese (CV) proposed the known region based
active contour in [5]. Their method partitioned the image into
interior region and exterior region. By maximizing the intensity
difference between the interior region and exterior region, CV
model is able to deal with noisy image. Since the medical
image is usually with noise and low contrast, CV model is
suitable for medical images.

However, the problem with CV method is that the approach
is a global method. The energy function of the CV method does
not guarantee the desired results because it only considers the
global intensity information. If the image has large
inhomogeneous areas, the CV method cannot provide
satisfying results.

A Bhattacharyya distance based active contour method is
introduced in [6]. The energy function is driven by the gradient
flow of Bhattacharyya distance in [6]. In their method, the
objects are identified as image regions. Their algorithm
attempts to maximize the distance between the distribution of
the objects’ interior and the distribution of the background
exterior.

In this paper, we propose a new region-based active contour
algorithm for US image segmentation. The energy function of
our algorithm is based on the Chan-Vese energy and the
Bhattacharyya distance in a level set formulation with Rayleigh
distribution. We test our algorithm on phantom and real patient
US images. The results show that our algorithm can accurately
segment both images.

The organization of this paper is as follows: in Section 2,
we will introduce the mathematical derivation of our algorithm;
in Section 3, we will describe the experimental setup; in
Section 4, we will discuss the results; and Section 5 finishes
with conclusions.



II.  PROPOSED METHOD

A. Overview of the proposed method

In this section, we will present and discuss the details of the
proposed method and its numerical implementation. Unlike
some traditional level set methods using the image gradient or
global information to drive the curve evolving towards the
object boundaries, our method combines the advantages of the
CV model and Bhattacharyya distance. The local intensity
information is considered in our method. By taking into
account the similarity of two different regions, our method is
able to overcome blurry boundaries and noise in an US image.

The energy function of our method consists of three parts:
the region term F(C), the Bhattacharyya distance term B(C),
and the regularization component Length(C). Thus, the overall
energy function is:

E(C) = aF(C) + (1 — a)B(C) + BLength(C) €))
where a and P are the weighting parameters and o €[0,1].

In our model, we would like to seck a curve that partitions
the image into two regions. The outcome of our algorithm is
the minimization of the different between two regions and the
maximization of the distance between two regions’ density
function.

B. Mathematical derivation

In CV active contour method, image features are assumed
to be similar within a segment. In this case, the image I is
assumed to be consisting of two segments with approximately
piecewise-constant intensities. Suppose a curve C divides the

image domain Q into two parts, Q, andQ . the energy
functional of CV model is:
F(C) = f (I —w)?dx +f (I —v)?dx 2)
Qin Qout

where u is the mean of the intensity inside the curve C and v is
the mean intensity of the region outside C.

The CV model assumes that foreground and background
regions can be separated by maximizing the mean intensities
between them. The energy optimization will move the curve
toward the largest difference between interior and exterior
means.

The global minimization of the CV energy functional does
not always guarantee the desired results. When the image is
noisy and the segment is highly inhomogeneous, the CV
algorithm fails to produce correct result. The reason for CV
model failure is that in CV model, only the mean value is used
in the segmentation process. When the image contains large
inhomogeneous regions, the CV method has trouble correctly
segmenting the objects.

Therefore, in our approach, we incorporate the
Bhattacharyya distance with the CV model. Bhattacharyya
distance has a simple analytical form and it can work with
arbitrary distributions [9]. By incorporating the Bhattacharyya
distance, the density functions of different objects are
considered in the energy function.

The Bhattacharyya distance is able to measure the
similarity between two probability density functions P;(z) and
P,(z) with z€ R". The Bhattacharyya distance is defined as D
= —log B where B is the Bhattacharyya coefficient:

B =f VPi(2)P,(z)dz 3)
RN

the range of Bhattacharyya coefficient is between [0, 1]. The
maximization of (3) is equivalent to the minimization of D.

We assume the distribution of ultrasound image is Rayleigh
distribution. The Rayleigh probability function is defined by:

I(x

2
Y exp(— ) )

p(I(0) = —2g7)

where o is the parameter of the Rayleigh distribution.

We use the level set framework in our algorithm. For the
level-set formulation, let us define H(¢) as the Heaviside
function and 8(¢) as Dirac functions:

(L if$=0
H@*%,#¢<0
d
5(p) = %H(fb) (%)

We calculate the inside curve o; and the outside curve o,
by Maximum-Likelihood (ML). The value of o; and o,can be
calculated by using the following two expressions:

Y [, IPH(¢p(x))dx
' 2 [, H(¢(x))dx
[y PH(1 — ¢(x))dx
g, =
2f, H1 — ¢(x))dx

Using the level set framework, the energy function of (1)
can then be rewritten as:

E(¢p) = aF(¢) + (1 — 0)B(¢) + BLength(¢)
{af, - 0?H(PC))dx + (1 - v)? (1 - H($p(x)) ) dx}

(6)

+(1 - a)f JPi(2)P,(2)dz + qu |vH(¢p(x))|dx @)
RN 6

The first deviation of (7) with respect to ¢ can be
calculated as:

OE _ OF(¢(x) 9B(¢(x))
3%~ ot TV 0m
+B8(¢p (x))div (S%) ®

Using Euler-Lagrange equation with respect to ¢, the first
term of (8) can be calculated by:

F(@x) _ N2 g a2
0600 S(dCN[U —w)? — U —v)?] O]



The second term of (8) is the Bhattacharyya distance. We
calculate the Bhattacharyya coefficient with Rayleigh
distribution according to the following form [11]:

0;(¢(x)) - 0, (¢ (x))
ot ($() + a3 (d ()

The first deviation of B(¢ (x)) with respect to ¢ (x) can be
derived as:

B(p(x) =2- (10)

IB(¢(x)) _ (0ia,) " (o — 05)
Ip(x)  (of +02)?

1 [1%(x) 1 [I?(x)
'{A—i[zaf ‘1]+A—o[zag

where 4; is the interior region and 4,is the exterior region:

-1

}6(¢(x>) (11

A= fg H(¢(X))dx A, = fo (1 - H((P(X))) dx  (12)

Hence, the evolution flow associated with minimizing the
energy functional of (7) is derived as:

0p _ OE($(x))

at  9p(x) .
@ —w? = (1 = )] - (1 - o ).
1[1? 1 [1?
Gz 2 lag fowe
\%
+BB(¢(’C))di”(|v£8|> (13)

The pseudo-code of our algorithm is outlined in
TABLE I

TABLEI. Pseudo-code of proposed algorithm
e k=0, initialize ¢p* by ¢,.

e Compute the mean value u and v inside
and outside the level set ¢*.

e  Compute the g; and o, according to (6).
e Calculate A;and A; according to (12).
e Evolve the curve by (13) to obtain ¢**1

e Check if ¢ is convergent. If not, k=k+1
and go back to step 2.

III. EXPERIMENTAL SETUP

In this section we will describe our experimental setup and
the evaluation method. The quantitative performance of our
algorithm is evaluated by DICE coefficient [7]. The DICE
coefficient is defined as:
2(ANB)

AUB

Where A4 is the reference region and B is the segmentation
result of an algorithm. The DICE measurement is often used to

DICE = (14)

measure the accuracy of an automatic segmentation algorithm.
The DICE coefficient ranges is [0, 1]. If there is no overlap
between two regions, the DICE value is 0; if two regions are
completely overlap, the DICE value is 1.

To evaluate the performance of our algorithm, we test it on
3 data sets. The first one is a small kidney tumor US image
data set. This image is obtained from a radiology training
phantom described in [8].

The second data set is a phantom kidney cyst US image
data set consisting of two parts: noise free kidney cyst image
and Salt-pepper image data sets. We first obtained kidney cyst
US images. Those US images were then used to generate the
Salt-Pepper data set. Two different Salt and Pepper noise
density values d ={ 0.1, 0.3} are added to the original kidney
cyst images. The parameter d controls the total amount of noise
added into the image. The larger d value, the more noise is
added into the image. A density of d = 0.3 would be the worst
case in our experiment. The third dataset contains two real
patient medical images: one patient kidney cyst ultrasound
image and one patient kidney ultrasound image. The reference
images are obtained manually by an expert radiologist for
quantitatively evaluating the segmentation results.

IV. RESULT AND DISCUSSION

In this section, we will show the results of the proposed
algorithm on various phantom and real medical images. We
implemented our algorithm in Matlab. All experiments are
done on a PC workstation (Intel Quad Q8300, 8 GB RAM,
Windows 7 Professional).

A. Phantom image segmentation results

The first data set is obtained from a kidney radiology
phantom with a tumor. The border of a tumor is blurry and
therefore difficult to segment. Fig.1 shows the result of the
proposed algorithm on the kidney tumor image. The resolution
of the first data set is 360¥290. The DICE value is DICE=
0.9198.

Fig.1.Kidney tumor phantom US image segment result



B. Sensitivity to noise

To evaluate the noise sensitivity of the proposed algorithm,
we add additional noise to the US image data set. The
resolution of the second data set is 520*230. Fig. 2 a) shows
the result of the CV algorithm on a Salt-Pepper image. The
result shows that the CV AC works well with the noise-free
image, but its performance decreases when more noise is
introduced to the image.

Fig.2 b) is the result of our proposed algorithm on a Salt-
Pepper image data set. Our algorithm converges to the desired
features on the noisy image. As we can see from Fig.2 b), when
the image contains high density of noise (d=0.3), our algorithm
can still produce accurate result.

Salt-Pepper noise, d=0.3
Fig. 2. Segmentation results for (a) CV algorithm and ( b) proposed algorithm.

The proposed method greatly improves the segmentation
accuracy for the following reasons: in our algorithm, not only
local means are considered, but also local variances are
considered. If only the local means are considered, the model
cannot provide enough intensity change information. Therefore,
some images with intensity inhomogeneity can give inaccurate
segmentation results.

C. Performance on real medical images

Our algorithm was also tested on patient images. We tested
our algorithm on a kidney cyst and image of a patient’s kidney
ultrasound image. The resolution the kidney image is 310¥210.
Fig. 3 is the segmentation result of the kidney cyst. The DICE
value for the kidney cyst is DICE=0.9029.

Fig.3 Kidney cyst image segmentation result

Fig.4a) shows the result of our algorithm on a patient
kidney image. The resolution the kidney image is 400*240.
Fig.4b) is the manual segmentation drawn by an expert. A
value of DICE = 0.9263 is found using our approach. We can
see that our algorithm can provide good segmentation result on
both kidney cyst ultrasound image and the patient kidney
image.

-

a)Segmentation result of the proposed algorithm

=y

b)Ground truth

Fig.4. Kidney image segmentation result

V. CONCLUSION

In this paper, a novel AC method is proposed. The
proposed algorithm is based on CV model with a combination
of Bhattacharyya distance. Under the assumption that the



ultrasound image can be modeled by Rayleigh distribution, and
by adding an additional Bhattacharyya coefficient term into the
energy function, our algorithm can drive the curve moving
toward the desired edge of the object. In our algorithm, the
segmentation is obtained by minimizing the difference within
one segment and maximizing the distances between different
regions’ density function. By using the level-set framework,
the proposed algorithm is able to adapt to the changing
topology. Our proposed algorithm was demonstrated to
accurately segment real medical images, an image of a kidney
cyst and a patient’s kidney. We compared the results of
proposed algorithm with the CV algorithm on a noisy image
data with Salt and Pepper noise. The results show that our
algorithm is more robust than the CV algorithm and able to
segment blurry boundaries in an ultrasound image. Currently,
we only test our algorithm on static US image. Further work
will test more complex or moving images.
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Abstract— In this paper, we present a new region based active
contour algorithm for ultrasound image segmentation. An
energy function based on a localized region-based active contour
and shifted Rayleigh distribution is formulated. In our active
contour framework, the target and background are represented
as small local regions and the energy optimization is calculated at
each point separately. The proposed algorithm drives the
evolving curve according to the shifted Rayleigh distribution in a
small local area. Using this framework, our algorithm is able to
handle noisy and blurry boundaries object in ultrasound image.
We test our algorithm on several ultrasound images and the
results show the efficiency of our algorithm.

Keywords— ultrasound image, rayleigh distribution, level set,
segmentation

I INTRODUCTION

Ultrasound (US) image segmentation nowadays plays an
important role in computer aided diagnosis system. Compared
to CT and MRI, ultrasound has an advantage of shorter
acquisitions time and smaller doses of radiation. But ultrasound
images contain strong speckle noises and artifacts. Therefore
the quality of an US image usually is low. An US image
usually contains shadows and weak borders, which makes it
difficult to properly segment the correct positions and shapes of
interesting objects.

In the literature, several approaches have been reported to
automatically or semi-automatically detect the borders of
objects from ultrasound images. Methods like region growing
[4], statistical methods [5], and active contour [7] are among
the most frequently used.

Active contour methods have been used in US image
segmentation in recent years. Region-based active contour
method [11] is one of the main categories of the active contour
methods. Intensity, texture usually are used as region
descriptors in region based active contour. Compared to other
active contour methods, region based models generally are
more robust to noise and weak image.

An US image usually contains speckle and noise which
significantly affect the segmentation result. Therefore, it is
important and critical to reduce the speckle and noise in an US
image. Many region-based active contour algorithms are based
on the assumption that an image can be approximated by global
intensity [6]. However for heterogeneous objects, global

Maarja Kruusmaa

Center for Biorobotics,
Tallinn University of Technology
Tallinn, Estonia
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statistical region modeling techniques are usually not ideal for
segmenting. In such an image, usually the objects and the
background cannot easily distinguish by global methods.
Because in heterogeneous images such as US images, the
objects and the background usually don’t have clear border, the
global methods have difficulty to correctly separate the objects
from background.

Chan and Vese in [2] introduced the known region based
active contour algorithm. In [1] proposed an algorithm based
on Chan and Vese’s algorithm. The algorithm in [1] used
Rayleigh distribution as a prior knowledge of ultrasound image
and maximum likelihood (ML) was used in their algorithm.
Because the algorithm proposed in [2] was a global method,
when the image contained heterogeneous object or incomplete
edges, this algorithm could not produce correct result.

Instead of using global methods, many groups study local
intensity active contour. The segmentation results can be
improved by using local intensity. For example, a local binary
fitting energy region based model was proposed in [10], which
is capable to deal with intensity inhomogeneity. The results in
[10] showed that using local intensity information, active
contour is possible to segment weak border object.

In [3] introduces a localized active contour framework. The
object and background are represented by local region in the
localized active contour framework. Energy optimization is
calculated at each point along the curve separately. The results
in [3] show that using the localized framework, active contour
is able to segment objects with inhomogeneity intensity which
is difficult to segment by global method.

In this paper, we propose an algorithm which is based on
localized active contour framework. Since ultrasound images
usually contain speckle and noise, using local region has the
advantage to capture the inhomogeneous object boundary. In
our method, shifted Rayleigh distribution is used as a prior
knowledge of the ultrasound image gray scale intensity. Under
this assumption, the proposed algorithm drives the active
contour evolved according to the shift Rayleigh distribution of
the ultrasound image in the local region at each point along the
curve. We test our algorithm on different ultrasound images:
phantom US images and real patient US image. From the
results we can see that, our algorithm works efficiently in noisy
and inhomogeneous ultrasound images.



The organization of this paper is as follows: in Section 2,
we will show the Rayleigh distribution estimator; in Section 3,
we will derive the localized shifted Rayleigh active contour
algorithm; in Section 4, we will discuss the experimental set up
and results; Section 5 is the conclusions.

II.  MAXIMUM LIKELIHOOD ESTIMATOR

We will show how to derive a maximum likelihood
estimator for segmentation using region-based active contours.
We derive the variational flow from Rayleigh distributions of
the ultrasound image.

For image I, we suppose the image intensities are
independently distributed. Thus we can use the probability
density function p(I) to represent the image.

For a closed curve I' which partitions the image domain
into two parts: ; and (. Q; represents the region inside the
curve I' and (), represents the region outside the curve I'. We
define p; = [Iaip(I) as the probability of that pixel being
inside of the curve and py = [[qo p(I) as the probability that
the pixel is outside of the curve.

A. Rayleigh distribution estimator

We assume that an ultrasound image can be represented by
a prior distribution. In this paper we use Rayleigh distribution.
The Rayleigh probability function is defined as:

I(x,
PUC),0) =12 exp(-

where ¢ is a parameter of Rayleigh distribution. Let o; be the
parametric values for the pixels inside the curve and g, for the
pixels outside of the curve.

1(x,y)?
o) )]

For the level-set formulation, let us define H(¢) as the
Heaviside function and §(¢) as the Dirac function. The energy
function E(¢) of Rayleigh distribution is obtained by:

E@)= [, 6(¢(x, 1))V (x,y)|dxdy +

g I?
f (loga— + F)H((j)(x, y))dxdy +
Q ° t

12
f S (1= Cx.y))dxdy @)
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The first term p [, §(¢(x,y))IVo(x,y)|ldxdy is the
regularization term. The parameter 4 is a scalar. The o; and o,
can be calculated as:

2o [, IPH(¢(x,y))dxdy

Y2 [y H(¢Cx,))dxdy
o2 = 1o 2H(1 - ¢(x,y))dxdy 3
2f, H(1 - ¢(x,y))dxdy

Using Euler-Lagrange equation with respect to ¢, the
evolution equation minimizing (2) can be computed by:
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B. Shifted Rayleigh distribution estimator

We consider the shifted Rayleigh distribution as the
intensity function of the ultrasound image. The shifted
Rayleigh distribution is defined by:

I(x,y) —u)
e exp | —

(I(x,y) - u)z) )

p(U(x,y),1,0) = o2

Using Euler-Lagrange equation, the evolution equation of
the shifted Rayleigh distribution can be calculated as:

= 5(¢) (,udw ( m) (6)
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where u; is the mean intensity inside of the curve ¢ and u, is
the mean intensity outside of the curve ¢.The parameter u; and
U, can be calculated by:

[, IH(p(x,y))dxdy
B Q H(¢(x, y))dxdy
_ [, TH(1 — ¢(x,y))dxdy ™
Q H(l - (,b(x,y))dxdy
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III.  LOCALIZED LEVEL-SET-BASED CURVE EVOLUTION

In [3] proposed a framework which utilized the information
of local region in active contour evolution. The results in [3]
show that using local intensity information can increase the
accuracy of segmentation. In localized active contour
framework, the foreground and background region are not
represented by global statistical information. The localized
active contour used the small region in the curve evolution.
Each point along the curve, its neighborhoods are split into two
parts: interior and exterior region. The energy optimization is
calculated at each single point. We use this localized active
contour framework in our approach. Our method incorporates
the shifted Rayleigh distribution with the localized active
contour.

In the localized active contour, the localized factor is
calculated by:

1, ||x - y|| <r
Wi(x, :{
x.) 0, otherwise

®)

where x, y represents a point in Q and r represents a radius
parameter. In the local region representation, the intensity
distribution inside the curve is represented by W(x, y)-H(¢ (x,
y)), whereas outside the curve is represented by W(x,

y)>-(I=H(9 (x, ).

Using this framework, we derived our evolution equation
for the localized shifted Rayleigh active contour (LSRAC)
algorithm as:

5}
0 =8(60) [ W s(60))
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The parameter u; and u, in the localized framework is
obtained by:

k8 0)div ©
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The parameter o; and g, in the localized framework is
calculated by:

o = Jo W)U —u)?*H($(x,y))dxdy

2 [, W(x,)H($(x,y))dxdy
2o Jo W)U —uo)*H(1 — ¢(x,y))dxdy
2 [, W, H(1 = ¢(x,y))dxdy

We compared the proposed algorithm with localized
Rayleigh active contour (LRAC) algorithm. The curve
evolution for the LRAC algorithm is calculated as:

(10)
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IV. RESULT AND DISCUSSION

In this section, we will describe the experimental setup and
discuss the results. All our algorithms were implemented with
Matlab on a PC workstation (Intel Quad Q8300, 8 GB RAM,
Windows 7 Professional).

To validate the result, Dice coefficient is used here. The
Dice coefficient is defined as:

DI 2(ANnB)

= TATB 13)
where A and B are the reference region and the segmentation
result of an algorithm. The Dice Similarity coefficient is often
used to measure the accuracy of an automatic segmentation
algorithm [8]. Dice similarity coefficient expresses the overlap
of two regions relative to the sum of the two areas. The ranges
of Dice value is [0 1]. If two regions have no overlap, the Dice
value is 0; if two regions are completely match, the Dice value
is 1. Segmentation results are compared with manual
segmentation by a radiology expert.

We validate our algorithm on 4 different US image data
sets. The first one is a kidney cyst phantom US image data set,
consisting of 10 gray scale images. The images are obtained
from a radiology training phantom described in [9]. We didn’t

apply any filter on the original images. The segmentation result
is shown in Fig.l. Table I is the Dice value of LSRAC
algorithm.

Fig.1. Segmentation result of LSRAC algorithm on US image without noise

In order to evaluate the capability of LSRAC algorithm to
cope with noisy images, we created the second data set by
adding salt-paper noise to the first data set. The density value
for salt-pepper noise is d = 0.1. The result is show in Fig. 2.
The Dice value of LSRAC algorithm is in Table 1. From Table
I, we can see that, the LSRAC algorithm works efficiently on
both on the US image without noise and in the present of noise.

TABLE I. LSRAC results on US images without noise and with noise

Dice

OSlimaceyitiong 09319 £0.0124
noise

US image with noise 0.8993 + 0.0132

Fig.2.Segmentation result of LSRAC algorithm on US image with noise.

The third data set is obtained from a kidney radiology
phantom with a tumor. The third data set also contains 10 gray
scale images. Compared to a kidney cyst US image, the border
of a tumor is more blurry and therefore more difficult to
segment. Fig.3 (a) shows the final result of LSRAC algorithm.
In Fig. 3 (b), the result of LRAC algorithm is shown. Fig. 3 (c)
is the ground truth, which is segmented manually. Table II is
the Dice value for LSRAC and LRAC algorithm. From Table
II, we can see that, the LSRAC algorithm produces a better
result than LRAC algorithm.



a) LSRAC algorithm b) LRAC algorithm

¢) Ground truth

Fig.3. Kidney tumor phantom US image segmentation result.

TABLE II. LSRAC and LRAC segmentation results

Algorithm Dice
LSRAC 0.9452+ 0.0222
LRAC 0.909310.0229

Furthermore, we tested our algorithm on a patient’s US
image of a kidney cyst. The kidney cyst can be divided into
two groups: simple cyst and complex cyst. The simple kidney
cyst is harmless. The complex cyst is susceptible to kidney
cancer. Fig. 4 is the results of a simple cyst, in Fig. 4 (a), the
segment result of the LSRAC algorithm. The Dice value for the
LSRAC algorithm is Dice= 0.9152. Fig. 4 (b) is the result of
the LRAC algorithm and for the LRAC algorithm; Dice value
is Dice=0.8386. Fig. 4 (c) is the ground truth, which is also
obtained manually.

(a) LSRAC algorithm (b) LRAC algorithm

(c)Ground truth

Fig.4. Kidney cyst US image segmentation result.

We can see from the segmentation results, the LSRAC
algorithm has higher Dice values than LRAC algorithm.
Because the LSRAC uses both the mean u and the variance ¢ of
an image in the segment process while the LRAC only
considers the variance ¢ of an image, the LSRAC produces
better results.

V.  CONCLUSION

In this paper, we proposed an algorithm based on localized
region based active contour for ultrasound images. In this
algorithm, an energy function is formulated based on the
localized active contour model and the shifted Rayleigh
distribution. We presented the segmentation results on
ultrasound images of radiology phantoms: on a kidney cyst and
a kidney tumour. The experimental results show that the
proposed method can accurately segment the boundaries of a
cyst and a tumor. We also applied the proposed method on a
real ultrasound medical image of a kidney cyst. The
segmentation results of the proposed method were compared to
the segmentation result obtained with the localized Rayleigh
active contour algorithm. The Dice values show that the
proposed method produces better results. In our future work,
we will apply the proposed algorithm on more complicated
ultrasound images such as for example kidney tumor
ultrasound images.
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ABSTRACT

In this paper we introduce an ultrasound image segmentation
evaluation framework for kidney tumor. Ultrasound image
segmentation algorithms can be divided into edge based, region
based, texture based, active contour and model base technique.
We tested the performance of algorithms in each category using a
kidney phantom and kidney cyst ultrasound image. We found that
the algorithms we implemented are more suitable for relatively
homogeneous kidney tumors. For more heterogeneous tumors we
should use more complicated segmentation techniques and some
of these advanced techniques are discussed in this paper.

Keywords

Kidney tumor, ultrasound image, segmentation, algorithm

1. INTRODUCTION

In Europe, kidney cancer accounts for nearly 3% of all cancer
cases [l]. Laparoscopic partial nephrectomy or minimally
invasive surgery is the standard treatment for kidney surgeon for
small tumors (4cm or less). A successful partial nephrectomy
means the tumor is completely remove, but some amount of
healthy tissue is left in the organ. In order to do this, identification
of the location and shape of the tumor inside the kidney is
important. Ultrasound(US), computed tomography (CT) and
magnetic resonance imaging (MRI) are currently utilized by
doctor to predetermine the location, size and shape of the tumor
before surgeon. Compare to CT and MRI, ultrasound has the
advantage of short acquisition time, less radiation. But ultrasound
images usually contain strong speckle noises and artifacts, which
make it difficult to properly segment the interested objects with
correct position and shape. Segmentation remains as a challenge
task in pre-operative surgical planning.
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Several approaches have been proposed to segment ultrasound
tumor images for diagnosis of tumors, such for the breast tumor
[8]. However, very little has been done in kidney tumor
segmentation. In [3] the authors proposed using Ultrasound (US)
to acquire images of the tumor and the surrounding tissues, then
segmenting these US images to present the tumor as a three
dimensional (3D) surface. In [3], it also introduced that their
kidney phantom was made by poly(vinyl alcohol) cryogel
material.

In this paper we will introduce our kidney phantom made from
gelatin material. And we will also discuss and compare several
algorithms that can be used for tumor segmentation and we will
present the evaluation metrics and the evaluation results.

The organization of this paper as follows: in section 2, we will
introduce a kidney phantom made from gelatin gel; In section 3,
five categories of ultrasound image segmentation algorithms that
used for kidney tumor segmentation are discussed; in section 4,
we will present evaluation criteria; section 5, discuss the
experiment set up and results; in section 6 conclusion will be
presented with an outline of future research direction.

2. PHYSICAL PHANTOM

Ultrasound imaging phantoms are tissue-mimicking objects
designed to match the tissue properties. Phantoms designed
should possess the same acoustic properties as for the
conventional ultrasound. Kidney phantoms is an useful tool for
performance testing and also can be used as a training tool for
medical school student to practice ultrasound guided
interventional procedures like biopsy, fine needle aspirations.

The kidney phantoms that we used are based on gelatin gels
which have numerously been reported in the literature as a
suitable material to mimic the ultrasound properties of living
tissues [4-7]. Both the ultrasound attenuation and wave
propagation speed are tuned by adjusting the precise gel
composition. The kidney mould is based on an actual human
kidney that is segmented from a CT scan, processed to create a
negative, and finally printed with a rapid prototyper. Tumors or
cysts of different sizes are premanufactured using various
materials and fixed in a proper location inside the mold prior to
casting. By using this procedure an organ phantom with realistic



shape, ultrasound parameters and pathology is created. In this
work we use a kidney phantom with ultrasound propagation speed
1450 m/s, broadband ultrasound attenuation -0.45 dB/(cm*MHz),
and with tumors of 20 mm and 40 mm in diameter and 30-50 %
lower stiffness/attenuation. Figure 1, a) is the picture of the kidney
mould model; Figure 1, b) is the picture of the kidney phantom
mould; Figure 1, ¢) is the kidney phantom with tumor inside.

a)

Figure 1. Kidney phantom.

3. IMAGE SEGMENTATION METHODS

The algorithms that we used for ultrasound lesions image
segmentation can be divided into the following 5 categories:

¢ Edge or boundary based methods
*  Region based methods

¢ Texture based methods

*  Active contour methods

*  Model base methods

3.1 Edge or boundary based methods

Edge or boundary based methods attempt to solve the image
segmentation by detecting the edge between different regions. The
edge method has the advantage that it analysis the images by
drastically reducing the amount of data to be processed, while at
the same time preserving useful structural information about
object boundaries [9].

For ultrasound images which have inherent speckle noise and
texture characteristics, edge detector only algorithms cannot
achieve high quality result. Therefore, traditional edge detection
method rarely used alone [13]. In [14], it introduced a
combination of canny edge detector with gradient vector flow
algorithm. By coupling the smoothness of the edge map to the
initial size of the snake, enhancing the tumor boundaries, better
tumor boundary have obtained. Different from [14], we use canny
edge operator with levelset function.

3.2 Region based methods

Region based techniques is frequently used in ultrasound image
segmentation. Region based method use a set criteria, like image
intensity, texture, histograms, and gradient to distinguish and
connect neighborhood pixels, then assign pixels to object [17-21].

Region growing as one of the most common region based
algorithm, starts from seed and seed area, continues merge the
neighbour pixels until the completion of all pixels of the
connection. We combine region growing and other algorithms for
kidney tumor segmentation. Firstly, Otu method [11] is used to
assign image pixels into different class. Morphology operation,
such as erosion and dilation[10] is applied later to smooth the
sharp edge. After that region growing is used to obtain the
interesting tumor area.

3.3 Texture based methods

Each texture can be thought as containing a narrow range of
frequency and orientation components. Thus textures can be used
to perform tasks such as the segment the ultrasound image into
distinct objects and then analysis surface geometries. By using
texture filter like multiple band-pass filters filter, the image tuned
to the frequency dominant and orientation component, it is
possible to localize similarities in texture image. The output of the
filters can be used to determine the regions occupied by the
textures.

Gabor filters is used here as our test algorithm. The Gabor
filters[16], are band-pass filters with tunable center frequency,
orientation and bandwidth. The filter outputs reflect the spatial
and orientation composition of a texture.

3.4 Active contour methods

The active contour model, more widely known as snake, has been
extensively used for US images. In active contour model, the
contour deforms to minimize the contour energy that includes the
internal energy from the contour and the external energy from the
image. Active contour model can be divided into based on the
boundary, based on region and based on hybrid active contour
model and so on. We use an algorithm ACWE which was
introduced in[15] for our evaluation test.

3.5 Model based methods

Markov random field (MRF) model has been used for US image
segmentation[22][25]. The algorithm alternatively approximates
the maximization of the posterior estimation of the class labels,
and estimates the class parameters. Image segmentation using
MRF model include: definition of neighborhood system; the
choice of energy function and parameter estimation; minimization
of energy function in order to obtain maximum a posteriori
probability of the strategy.

Here, we use k-means algorithm to get initial label image
estimation for MRF. K-means algorithm is a clustering algorithm.
It iteratively assigns pixels to the closest cluster using a distance
function, such as the Euclidean distance measure. After obtain
label image, MRF is applied to segment the tumor from image.

4. EXPERIMENT SETUP

The objective of the experiments is to provide insights about both
the strength and weakness of the various algorithms described in
section 2 when they used for ultrasound image segmentation for
kidney tumors. Section 4.1 presents the image test set. Section 4.2
presents the evaluation scheme that we used in this research.

4.1 Test Image set

A small set of 2D ultrasound images is selected to serve as the
representative test set. The first image set is 40 ultrasound images
taken from the Gelatin Kidney phantom. We also apply the
segmentation algorithms on a patient kidney cyst image. All our
experiments were done on a PC workstation (Intel Quad Q8300, 8
GB RAM, Windows 7 Professional).

4.2 Evaluation metrics

In this section, we will introduce our comparison criteria. We
would like to qualitatively and quantitatively measure the
performance of each algorithm. We validate our segmentation
methods using a variety of evaluation methods [12]. Particularly,
our segmentation is compared with the manual results that done
by radiologist. The following three criteria are used to compute
different between segmentation result and the reference images:



2(ANB)

*  Dice criterion: Dice = ,where A and B are the

reference region and the segmentation result of an algorithm;

* Peak signal-to-noise ratio: PSNR = 10log,, (M) s

where d is the maximum possible value of the image;
*  Hausdorff distance:

Hausdorff = max(D1(4, B), D1(B, A)), where A and B are the
reference contour and the result contour of an algorithm and
Dy(4, B) = max(minyep (llx — y11).

The Dice Similarity Coefficient is often used to measure the
accuracy of an automatic segmentation algorithm. The coefficient
ranges from 0 (no overlap), to 1 (a complete overlap). Dice
similarity coefficient expresses the overlap of two regions relative
to the sum of the two areas.

PSNR often uses as a quality measurement between the original
and a compressed image. The higher the PSNR, the better the
quality of the compressed, or reconstructed image.

The Hausdorff identifies the point of A that is farthest from any
point of B, and measures the distance from A to its nearest
neighbor in B. Thus the Hausdorff distance, H(A,B), measures the
degree of mismatch between two sets, as it reflects the distance of
the point of A that is farthest from any point of B and vice versa.
The small number of Hausdorff distance means the two data sets
are closer to each other.

5. RESULTS AND DISCUSSION

In section 2, we introduced 5 ultrasound image segmentation
algorithm categories. We test 40 kidney tumor ultrasound images
from gelatin kidney phantom. Figure 2 is one example of the
segmentation result from gelatin kidney phantom. In Figure 2, the
blue contour is groundtruth and the white contour is the
segmentation results.

5.1 Accuracy

The accuracy is one of the significant features of every algorithm.
We use Dice Similarity Coefficient as evaluation of accuracy in
our experiments. As we can see from table 1, the Dice Coefficient
for 5 algorithms, texture segmentation, ACWE and Model base
have the similar value.

b) Region growing  c¢) Texture

d) Active contour

¢) MRF Model base

Figure 2. Segmentation results for kidney phantom.

Analysing the contours shown in Figure 2, we observed that all
lesions could be detected by the segmentation methods proposed
in section 2 and Dice values in table 1 for all algorithms are very
similar. This is, basically, due to the fact that the gray levels of the
kidney tissue are different from the lesions.

We can also observe that the shape of lesions in the images is very
close to the real objects for practical purposes. Comparing the
parameters in Table 1, we can notice that the Dice value of the
phantom are close to 1, respectively, which indicates that
segmentation contour are very close to groundtruth contour.

Table 1. Evaluation results for gelatin kidney phantom

Algorithms Dice PSNR | Hausdorff
Edge 0.9469 14.9842 8.7934
Region 0.9488 15.1398 9.2195
growing
Texture 0.9694 17.0774 7.2655
segment
Active 0.9669 16.7072 8.2804
contour
MRF Model 0.9653 16.7768 10.6862
base

We also tested the algorithm on a kidney cyst ultrasound image.
There are two significant categories of kidney cysts: simple cyst
and complex cyst. The simple kidney cyst is very common and
has no risk of becoming a kidney cancer. The complex cyst refers
to a spectrum of cysts that have different characteristics which
may make them suspicious for kidney cancer[23]. In Figure3, a) is
groundtruth defined by radiologist; b) to f) are the segmentation
results from 5 algorithms.

a) Grountruth b) Edge ¢) Region growing

d) Texture

¢) Active contour  f) MRF Model base

Figure 3. Kidney cyst segmentation results.

Table 2 is the comparable result of kidney cyst. From table 2 we
can see that, canny edge, region growing and gabor texture
algorithm have similar Dice value. Due to the speckle and noisy
of ultrasound image nature, the boundary of tumor is blur. Since
Hausdorff distance measures the maximum distance between two
contour, Hausdorff distance is larger than table 1.

Comparing Table 1 and Table 2, we observed that the results for
kidney phantom are better than patient cyst. For example, for edge
algorithm, the Dice value is 0.9469 for phantom image and 0.8942



for kidney cyst. The Dice value expresses the similarity between
segmentation and the groundtruth. The high value means the
segment results are more overlap to groundtruth. Higher PSNR
value, the better the quality or reconstructed image. The PSNR for
phantom is 14.9842 and 12.4931 for kidney cyst, which also mean
the phantom images has better result. The Hausdorff distance
evaluates the maximum contours distance between the
segmentation image and the groundtruth. The low Hausdorff
distance means the segment contour closer to groundtruth contour.
The Hausdorff distance is 8.7934 for phantom image and 23.0217
for kidney cyst image. Therefore, the canny edge algorithm
produces better result on phantom image than kidney cyst image.
The other four algorithms also have the same situation.

Table 2. Evaluation results for kidney cyst

Algorithms Dice PSNR | Hausdorff
Edge 0.8942 12.4931 23.0217
Region 0.8915 12.5479 22.6716
growing
Texture 0.9072 12.8794 19.4165
segment
Active 0.8330 10.9452 26.9258
contour
MRF Model 0.8699 11.8220 26.4008
base

When implementing segmentation algorithm, the parameter
initialization or definition is important. For region growing, one of
the problems of region growing is seed point selection. The seed
point usually need user predefined. Adaptive region growing, such
as in [2], give a solution for automotive region growing
segmentation which can select a seed point without user
participation.

Canny edge has several parameters. The crucial parameter is 8,
which is the standard deviation of the low pass smoothing filter
parameter. According to [14], if the tumor was large, a larger
sigma (6 =3 or 4) was applied on the US image and for small
tumors smaller sigma (8 =1.5) is chosen.

The gabor filter parameter estimation can be divide in to two
group: the filter-bank approaches and the filter-design approaches.
In filter-bank approaches, the filter parameters are present ad hoc
and are not necessarily optimal for a particular processing task. In
filter-design approaches only one or a few filters for a particular
application are designed in an effort to reduce the difficulties of
filter-bank approaches [26].

For ACWE, this algorithm has one specific parameter that can be
modified, the curvature term. It weights the influence of the

regularization term of equation. For our experience, we choose 0.2.

More detail can be found in [12].

5.2 Computational Time

We compared the computational time demands of the tested
methods for the Gelatin Kidney phantom. The image data sets for
Gelatin Kidney phantom were used for this purpose. Moreover,
we resized these images to the different sizes in order to highlight
the dependence of the methods computational time demands on
the image size. The image size are 50 x 50 pixels, and image data
set were resized to the sizes 100 x 100, 200 x 200, 400 x 400,
500% 500 and 600 x 600 pixels.

Figure 4 is the calculation time for five algorithms. As we can see
from Figure 4, the calculation time increase as the pixels in image
increase. MRF Model base and gabor texture have higher
calculation time when dimension of image increase, while active
contour ACWE, canny and region growing the increase rate is
small, especially for region growing. For gabor texture filter,
because it contains a bank of filer, the speed is usually slow.
Because the model base method we use MRF and k-mean
algorithm, and calculation time for k-mean is account for half the
total time. Therefore, the whole running time for MRF model base
algorithm is large.

calcutation Sme

400 500 60

a
pinel in one axis

Figure 4. Calculation time of five algorithms.

6. CONCLUSION

In this paper, a phantom adequate to mimic the appearance of
kidney lesions with regular contour in ultrasound images, was
developed. Based on the evaluation of parameters, the contour of
the simulated lesions was found to be regular and consistent with
the real physical phantom.

We also evaluated different kinds of techniques for medical image
segmentation on the kidney phantom. The tested algorithms could
be divided into five categories: edge based, texture, region
growing, active contour, and MRF Model based algorithm. We
focused on the method accuracy, computational time and
implemented the 5 algorithms in experimental tests. The
evaluation metrics we use here are Dice, PSNR, and Hausdorff
distance.

It is noted that the algorithms we implemented are more suitable
for relatively homogeneous kidney tumors, and would not be that
effective in heterogeneous lesions. For heterogeneous lesions,
which contain inhomogeneous area, a more sophisticated
segmentation technique that relies on local image intensity
discontinuities is needed to get precise result. More powerful
techniques, such as level sets with texture, and shape prior
statistics information, may be used to adapt to segmenting
structures with more geometric complexity and reducing
underestimations of the tumor’s boundary.

Considering calculation time, in [24], the authors presented a
modification model for ACWE. They use a global minimization
method with a dual formulation of the total variation norm
perform the contour evolution. From their result, the calculation
time reduces significantly and it is possible to realize real time
calculation, which makes it a possible solution to real time tumor
ultrasound image segmentation.
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