
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Konstantin Dmitrijev 175798IDSR

Analysis of Data Quality Management Service

Component in Financial Institution’s Data

Warehouse

Diploma thesis

Supervisor: Nadežda Furs

 MBA

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Konstantin Dmitrijev 175798IDSR

Andmekvaliteedi juhtimise teenuskomponendi

analüüs finantsettevõte andmeaidas

Diplomitöö

Juhendaja: Nadežda Furs

 MBA

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Konstantin Dmitrijev

17.05.2021

4

Abstract

The aim of the thesis is to update existing Architectural Description of the Data Quality

Management Component of Enterprise Data Warehouse environment in Financial

Institution N., and to do its performance analysis in EDW.

In the scope of the thesis, in its first part, author performed component analysis and

updated existing documentation and created a DQM component introduction tutorial for

component users. In second part author did a performance analysis of the component’s

executable file’s source code and its validation scripts. As a result, author described issues

that caused bad performance, suggested solutions, and made an appropriate update.

The results of the work helped updated common knowledge base of component and

drastically increased performance of the EDW processes built upon the DQM

Component.

This thesis is written in English as official working language of the Financial institution

is English. Thesis is 41 pages long, including 4 chapters, 10 figures and 4 tables.

5

Annotatsioon

Käesoleva diplomitöö eesmärgiks on täiendada finantsettevõte andmeaida

andmekvaliteedi juhtimise teenuskomponendi (ingl.k Data Quality Management

Component) puuduliku arhitektuurse dokumentatsiooni ja teostada jõudluse analüüsi

andmeaidas. Töö metoodikaks on komponendi analüüs, mis eeldab, et enne praktiliste

probleemide lahendamist, tuginedes olemasolevatele informatsiooni allikatele tehakse

selgeks vaadeldava komponendi struktuur ja töökäik.

Püstitatud eesmärkide saavutamiseks teostas autor teenuskomponendi analüüsi,

dokumenteerides komponendi struktuuri ja selle töökäigu. Analüüsi aluseks oli kehtiv

arhitektuurne kirjeldus, komponendi programmi lähtekood ning andmeaida arhitekti ja

komponendi praeguse arendaja konsultatsiooni ajal saadud informatsioon. Komponendi

analüüsi tulemuseks oli täiendatud arhitektuurne kirjeldus ja uus komponendi tutvustatav

koolitus.

Komponendi analüüsile järgnevas jõudluse analüüsi esimeses osas vaatas autor üle

teenuskomponendi programmi lähtekoodi ning tegi selgeks kehva jõudluse põhjuse ja

pakkus lahenduse ning lõi toimiva prototüübi. Prototüüp sai testitud ja testimise

tulemused esitatud teenuse juhile. Teises osas vaatas autor üle valideerimise SQL skripte

jõudluse ja selle tulemusena uuendas tulemuste resümeerimiseks käivitatava skripti.

Töö esimeses pooles annab autor üldise ülevaate andmeaitadest, selle olulisematest

komponentidest, laadimise protsessist, selgitab andmekvaliteedi mõistet ja selle olulisust.

Töö teine pool sisaldab teostatud analüüsi tulemusi: toodud välja jõudluse põhjustatavad

probleemid ning nende lahendused.

Lõputöö on kirjutatud inglise keeles kuna finantsettevõte ametlik töökeel on inglise keel.

Lõputöö sisaldab teksti 37 leheküljel, 4 peatükki, 8 joonist, 3 tabelit.

6

List of abbreviations and terms

AMP Access Module Processor - Linux process responsible for handling

its individual share of data

DM Data Mart

DQM Data Quality Management

EDW Enterprise Data Warehouse

ETL Extract, transform, load

ODI Oracle Data Integration tool

SA Staging Area

SQL Structured Query Language

UML Unified Modeling Language

7

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon ... 5

List of abbreviations and terms .. 6

Table of contents .. 7

List of figures ... 9

List of tables ... 10

1 Introduction ... 11

1.1 The Background and the Problem .. 11

1.2 The Task of the Thesis.. 11

1.2.1 Role of the author .. 12

1.3 Methodology ... 12

1.3.1 Unified Modeling Language .. 13

1.4 Overview of the Thesis ... 14

2 Data Warehousing and Data Quality Management ... 15

2.1 Data Warehousing .. 15

2.2 Data Integration and ETL processes ... 16

2.2.1 Performance of the ETL processes in Data Warehouse 18

2.3 Data Quality .. 19

2.3.1 Data Quality Management and data profiling ... 20

3 Current state of the DQM Service Component ... 22

3.1 General description ... 22

3.1.1 Use-Case view ... 22

3.1.2 Oracle Data Integrator tool package .. 24

3.1.3 Java-executable file ... 26

3.2 Outcome of the Component analysis .. 27

3.2.1 Alternative data quality tools ... 27

4 Performance enhancement ... 30

4.1 JAVA Component source code review .. 30

4.1.1 Source code review results .. 30

8

4.1.2 Solution for connection issue .. 31

4.1.3 Comparison of the validation results ... 33

4.1.4 Current state of the change .. 34

4.2 Review of the CPU consumption of the validation scripts 34

4.2.1 Performance review results ... 34

4.2.2 Current state of the change .. 36

5 Summary .. 37

References .. 38

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 41

Appendix 2 – Validation result summary for DQM process .. 42

Appendix 3 –Source code of Fastload prototype added to DQM component source code

 .. 43

9

List of figures

Figure 1. UML diagram types according to UML specification 13

Figure 2. EDW architecture with a Staging Area and Data Marts 16

Figure 3. ETL process flow .. 17

Figure 4. ELT process flow .. 18

Figure 5. Stages of Data Warehouse Susceptible for DQ Problems 20

Figure 6. EDW architecture with a Staging Area and Data Marts 24

Figure 7. Activity diagram of ODI_DQM_PROCESS execution 25

Figure 8.Activity diagram of JAR_DQM_EXECUTOR execution 26

Figure 9. Activity diagram of validations execution in JAR_DQM_EXECUTOR 31

Figure 10.Activity diagram of validations execution in JAR_DQM_EXECUTOR after

refactoring ... 33

10

List of tables

Table 1. Superordinate Use Case ‘Validate data’ ... 23

Table 2. Comparison of the executions of the Component before and after source code

refactoring ... 34

Table 3. Comparison of CPU usage of the DQM processes validation scripts before and

after update ... 35

Table 4. Comparison of the execution time of the DQM processes before and after script

update ... 36

11

1 Introduction

1.1 The Background and the Problem

Data Quality Management Component (DQM component) is a service component within

the Financial Institution’s N. data warehouse (EDW) environment developed for the

purposes of data validation. Its aim is to perform validation of data in EDW based on

user’s input parameters and predefined validation scripts, store results of validations and

inform interested parties regarding validation results.

Throughout the lifecycle of the service component several modifications and migration

to a different platform were applied. As a result, all the mistakes made during the initial

development and modification process over time started to cause poor performance on

certain stages of the execution of the Component and big part of implemented and

modified functionality was not properly documented.

In context of increasing number of new validation scripts added to DQM component the

cumulative effect of the poor performance caused the significant part of the EDW

resources to be used by EDW processes built upon the DQM component.

Additional difficulties also appeared after transferring the maintenance and development

responsibilities to another team within the company. New team lacks full overview of the

DQM component and its structure.

1.2 The Task of the Thesis

Based on the problems described above aims of the thesis are:

1. Analyze the structure and workflow of the Data Quality Management Service

Component and document its current state.

2. Based on results of the analysis

a. create a comprehensive Architectural Description to provide developers

and users of the DQM component with a relevant knowledge asset.

b. analyze poor performance of the DQM component

12

c. work out the solution to improve performance

Parties, interested in results of the thesis, is the maintaining team of the Component, Data

Quality team and the Data Warehouse department in general. The estimated benefit of the

work is to prepare a solid knowledge base for future maintenance and enhancements and

to decrease resource consumption and the overall processing time of DQM processes in

the EDW and its’ infrastructure.

1.2.1 Role of the author

Author of the thesis performed analysis of the DQM component and of its initial state.

During the analysis phase author collected all the existing documentation, source code of

the component, interviewed the EDW architect and current developer of the component.

Based on collected information author supplemented an architectural description of the

component.

Author of the thesis conducted the performance analysis of the component on the database

level. Based on the results in cooperation with colleague developer author created a

prototype of the component with significantly improved performance. Working version

of the improved component is currently in the testing phase and will be released after the

testing and approving according to the company’s release s procedures. Additionally to

the new version performance of some validation scripts were also analyzed and improved.

During the work on the tasks author cooperated with two colleague developers and EDW

architect. All stages of development and implementations were performed according to

company’s efficient process of work organization.

1.3 Methodology

Thesis methodology is built upon Component Analysis. Component Analysis will include

study of existing documentation, component source code and database structure and

based on the results of the analysis author will create the description of the key processes.

Based on the result DQM component analysis author will introduce new version of DQM

Service Component architectural description to responsible party.

13

After the Component Analysis author will review the performance issues of the

Component. To do so author will analyze the DQM processes’ executions data stored in

EDW metadata schema. After that author is dedicated to solving the issue or in case

solution cannot be performed by the author suggest a solution measures to a responsible

development team.

1.3.1 Unified Modeling Language

For the purpose of the visualization of the current state of the component and future

enhancement Unified Modelling Language (UML) is planned to be used.

The objective of UML is to provide system architects, software engineers, and software

developers with tools for analysis, design, and implementation of software-based systems

as well as for modeling business and similar processes [1].

There are two major types of UML diagrams: structure diagrams and behavioral diagrams

(and within those categories lie multiple others, see Figure 1). These variations exist to

represent the numerous types of scenarios and diagrams that different types of people use

[1].

UML Diagram Type

Structural Diagrams Behavioral Diarams

Composite Structure Diagram

Deployment Diagram

Package Diagram

Profile Diagram

Class Diagram

Object Diagram

Component Diagram

State machine Diagram

Communication Diagram

Use Case Diagram

Activity Diagram

Sequence Diagram

Timing Diagram

Interaction Overview Diagram

Figure 1. UML diagram types according to UML specification [1]

14

In this thesis author uses Use Case and Activity diagrams to describe work of the DQM

Component.

1.4 Overview of the Thesis

Thesis consists of three parts. In the first part author gives an overview of the concepts of

Data Warehousing and data loading procedure, Data Quality Management and its

importance.

In second part author will introduce the results of DQM Component analysis and describe

its outcome.

Third part will include the description of the performance analysis and measures applied

for its improvement.

In the end of the thesis author summarizes all activities done in the scope of the thesis.

15

2 Data Warehousing and Data Quality Management

It is commonly recognized that data is a vital business asset [2]. Collected data and

information formulated upon this data give a valuable insight on customers, products, and

services. It helps to identify problems in business models, improve offered services or

products and reach strategic goals. All that is only possible if data management activities

are applied in everyday work of organization and if organization can verify its data to get

strategic value from it.

Below in this chapter there will be given an of data warehousing, its related services, and

data quality management concepts.

2.1 Data Warehousing

Data Warehouse enables organizations to integrate data from range of sources into a

common data model. The primary driver for data warehousing is to support operational

functions, compliance requirements and Business Intelligence activities. Data Warehouse

(DW) is a combination of two primary components: an integrated decision support

database and the related software programs used to collect, cleanse, transform and store

data from variety a of operational and external sources [3, p359].

According to Oracle Database Data Warehousing Guide Data Warehouse is ‘designed to

enable business intelligence activities: it exists to help users understand and enhance their

organization's performance. It is designed for query and analysis rather than for

transaction processing, and usually contains historical data derived from transaction data,

but can include data from other sources. Data warehouses separate analysis workload

from transaction workload and enable an organization to consolidate data from several

sources’ [4].

There are different common DW architectural solutions that are widely used across the

world. DW architecture vary depending on each organization’s needs and requirements.

Some may or may not include Staging Area or Data Marts, source data may be loaded

from external database, form source file or from both simultaneously. Figure 2 is

illustrating an Enterprise Data Warehouse architecture with different types of Data

Sources, Staging Area and Data Marts.

16

Figure 2. EDW architecture with a Staging Area and Data Marts [4, Figure 1-3]

The core part of the data warehouse is a consolidated storage that keeps all the relevant

business information. Before data gets loaded it must be cleaned and processed. For that

most data warehouses use staging area. It simplifies cleansing and processing for data

coming from multiple sources. After data is loaded it can be accessible to its end-users

via the data marts – databases that are designed for a part of organization and includes

only certain type of data or through the direct access to data warehouse.

2.2 Data Integration and ETL processes

Data Integration describes processes related to the movement and consolidation of data

within and between data stores, applications, and organizations. Integration consolidates

data into consistent forms wither physically or virtual [3, p257]. A common problem that

organizations face is how to gather data from multiple sources, in multiple formats, and

move it to one or more data stores. The destination may not be the same type of data store

as the source, and often the format is different, or the data needs to be shaped or cleaned

before loading it into its destination. That task is fulfilled by three basic processes: extract,

transform and load (ETL). Extract, transform, and load (ETL) is a data pipeline used to

collect data from various sources, transform the data according to business rules, and load

17

it into a destination data store. The transformation work in ETL takes place in a

specialized engine, and often involves using staging tables to temporarily hold data as it

is being transformed and ultimately loaded to its destination [5]. Figure 3 is illustrating

common ETL process flow.

Figure 3. ETL process flow [5, Figure 1]

The extract process includes selecting the required data and extracting it from the source.

After extraction depending on the architecture it can be loaded to staging area or directed

straight to the transformation process. At that next step data need to be transformed to

make data compatible with the structure of the target database. Final process loads

transformed data for target system.

There is also an alternative type of ETL processes – ELT. ELT allows transformations to

occur after data is loaded to the target system. Figure 4 is illustrating alternative ELT

process flow.

18

Figure 4. ELT process flow [5, Figure 2]

Extract, load, and transform (ELT) differs from ETL solely in where the transformation

takes place. In the ELT pipeline, the transformation occurs in the target data store. Instead

of using a separate transformation engine, the processing capabilities of the target data

store are used to transform data. This simplifies the architecture by removing the

transformation engine from the pipeline [5].

2.2.1 Performance of the ETL processes in Data Warehouse

As part of the general ETL workflow performance of each ETL process is crucial for

common stability and efficiency. For example, simple movement of 1TB of data between

a Data Store and Data Warehouse (which use magnetic disks with a typical 200MB/s)

takes 2.7 hours by an ETL process. Resource consumption and the overall processing

time are further increased by complex tasks executed within the process, including

integrating, cleaning, and de-duplicating data [6].

The problem behind the performance lay in the constant growth of the data amount. As

new requirements and changes increase amount of data old satisfying solution may

become poorly performed and cause delays in the whole system. To achieve acceptable

performance each process should be periodically reviewed on performance issues and

optimized if needed. As a criterion for periodical review and optimization ETL best

practices that are accepted in organization should be used [7].

19

2.3 Data Quality

Using data as a valuable asset is only effective if data itself is reliable and trustworthy.

Data is of high quality to the degree that it meets the expectations and needs of consumers.

That is, if the data is fit for the purposes to which they want to apply it. It is low quality

if it is not fit for those purposes [3, p427]. Data quality is a critically important and

underestimating or unconsciously ignoring that fact may cost an organization a lot.

According to the research done by IBM in 2016 economy of the United States loses 3.1

billion US dollars yearly because of decisions made from low-quality data [8]. Many of

the costs thereby are hidden and indirect and therefore hard to measure. There is also a

risk that low-quality data may be misunderstood, and decision made from that could be

wrong.

Organization only get value from data if it is high quality – it is accurate, up to date, has

no or not relevant gaps, complete, consistent, and relevant. The corresponding benefits of

high data quality includes: [3, p26]

• Improved customer experience

• Higher productivity

• Reduced risk

• Ability to act on opportunities

• Increased revenue

• Competitive advantage gained from insights from customers, products, processes,

and opportunities

• Correct regular reporting

According to study “A Descriptive Classification of Causes of Data Quality Problems in

Data Warehousing” made by Ranjit Singh and Dr. Kawaljeet Singh, data quality issues

can arise at any stage of data warehousing: in data sources, in data integration and

profiling, in data staging, in ETL and database modeling [9] (see Figure 5).

20

Figure 5. Stages of Data Warehouse Susceptible for DQ Problems [9, Figure 3]

Quality of data can be compromised depending upon how data is received, entered,

integrated, maintained, processed (Extracted, Transformed and Cleansed) and loaded.

Data is impacted by numerous processes that bring data into your data environment, most

of which affect its quality to some extent. All these phases of data warehousing are

responsible for data quality in the data warehouse [9].

2.3.1 Data Quality Management and data profiling

Data quality management (DQM) refers to planning, implementation and control of

activities that apply quality management techniques to data, to assure it is fit for use of

data consumers. Formal data quality management is similar to continuous quality

management for other products. It includes managing data through its lifecycle by setting

standards, building quality into the process that create, transform, and store data, and

measuring data against standards [3, p424].

21

Data profiling is one of the key processes of data quality management. Data profiling is

an assessment that uses a toolbox of business rules and analytical algorithms to discover,

understand and potentially expose inconsistencies in data. This knowledge is then used to

improve data quality as an important part of monitoring and improving the health of these

newer, bigger data sets [10].

Data profiling involves [11]:

• Collecting descriptive statistics like min, max, count and sum.

• Collecting data types, length, and recurring patterns.

• Tagging data with keywords, descriptions, or categories.

• Performing data quality assessment, risk of performing joins on the data.

• Discovering metadata and assessing its accuracy.

• Identifying distributions, key candidates, foreign-key candidates, functional

dependencies, embedded value dependencies, and performing inter-table analysis.

22

3 Current state of the DQM Service Component

In this chapter there will be given an overview of current state of the DQM Service

Component and brought out main problems that are currently actual.

3.1 General description

Data Warehouse DQM Service Component (hereinafter DQM component) is a custom

data profiling tool that is used on daily basis to validate loaded data and perform

assessment of quality characteristics. DQM Service Component is built of several parts:

• Oracle Data Integrator tool package (hereinafter ODI_DQM_PROCESS)

• Java-executable file (hereinafter JAR_DQM_EXECUTOR)

• Validation scripts (stored in dedicated EDW schema DQMRULE)

• Multiple EDW schemas for storing metadata, validation results, error messages

etc.

DQM Service Component is used for different validations by various data consumers but

for each consumer target and result of validation would be individual and depend on the

input parameters. To use DQM Component for a particular set of parameters new unique

ODI_DQM_PROCESS should be created in Oracle Data Integrator tool. Execution of

the ODI_DQM_PROCESS can be performed manually on ODI agent server or

automatically on periodical basis through the workflow automation tool (Scheduler).

3.1.1 Use-Case view

To represent a high-level functionality and how user is handling the component author

describes use cases using UML Use-Case diagram.

A use case is a written description of how users will perform tasks on within the system. It

outlines, from a user’s point of view, a system’s behaviour as it responds to a request.

Each use case is represented as a sequence of simple steps, beginning with a user's goal,

and ending when that goal is fulfilled [12].

23

Based on the information collected from the current documentation and DQM component

users author created a superordinate use-case ‘Validate data’. The result is presented in

Table 1 as a use-case description and on Figure 4 as a use-case diagram.

Table 1. Superordinate Use Case ‘Validate data’

Use case Validate data

Active Actor Data Steward, Scheduler

Passive Actor DQM Database

Use case overview

1. Actor initiates the execution of the Component and

passes required information for validation (validation

reference, period, country context etc.).

2. Executable performs data validation

a. Executable runs validation scripts (superordinate

use-case ‘Validate data’)

b. Executable logs execution flow (subordinate use-

case ‘Log execution’)

c. Executable registers validation results in

dedicated EDW schema DQMResult

(subordinate use-case ‘Register results’)

Alternative flow

If any of the validation scripts fails, executable raises an alert,

sends an error notification email, and proceeds the execution

(subordinate use-case ‘Alert error’).

Trigger
Data validation is initiated manually by Data Steward or

automatically by Automated Workload Scheduler

24

In the below use case diagram (see Figure 6), there are three actors - Data Steward,

Scheduler and DQM DB and four use cases – superordinate use case ‘Validate data’ and

three subordinate use cases ‘Register results’, ‘Log execution’ and ‘Alert error’.

Data Steward

Scheduler

VALIDATE DATA

REGISTER RESULTS

<<include>>

ALERT ERROR

<<include>>

LOG EXECUTION

<<include>>

DQMResult

0..1

1

0..1

1

0..* 1

Figure 6. EDW architecture with a Staging Area and Data Marts

Both Data Steward and Automated Workload Scheduler (Scheduler) are active actors

who may initiate the validation process. DQMResult is a passive actor - it stores validation

results in dedicated EDW DQMResult schema for further use of interested parties.

3.1.2 Oracle Data Integrator tool package

Oracle Data Integrator (ODI) features an active integration platform that includes all

styles of data integration: data-based, event-based, and service-based. ODI unifies silos

of integration by transforming large volumes of data efficiently, processing events in real

time. It also provides data integrity control features, assuring the consistency and

correctness of data [13].

Being part of daily execution routine data validations are executed as a regular ETL

process. To do that for each implementation of the Component should be created a unique

ODI_DQM_PROCESS. Within the ODI_DQM_PROCESS there are certain parameters

(e.g. Validation_ShortName, Country_ShortName and System_Version_No, etc.) need

to be defined to make each implementation unique and aim at the target data set.

25

Each ODI_DQM_PROCESS is made up of a sequence of steps organized into an

execution order. The flow of the activities within the ODI_DQM_PROCESS is described

on Figure 7.

Overview of ODI_DQM_PROCESS workflow

ODI_DQM_PROCESS JAR_DQM_EXECUTOR

Declare variables

Execute
JAR_DQM_EXECUTOR

Fnish execution

Register process execution

Pass variables to
JAR_DQM_EXECUTOR

Send notification email

Register process execution
status

Start ODI_DQM_PROCESS
execution

Figure 7. Activity diagram of ODI_DQM_PROCESS execution

Series of initial steps is responsible for preparing mandatory parameters (e.g. period,

country context etc.) for further package execution. When those mandatory parameters

are prepared, they are passed to the step that executes JAR_DQM_EXECUTOR that

performs actual validation activity. After validation is finished ODI_DQM_PROCESS

finalizes execution by logging it and performing required preparation for next execution

(status and period bookmarks update, email notification).

26

3.1.3 Java-executable file

JAR_DQM_EXECUTOR is responsible for actual data validation processing. It receives

required parameters from ODI_DQM_PROCESS package and depending on theirs

values prepares and performs validations. The flow of the activities within the

ODI_DQM_PROCESS is described on Figure 8.

Overview of JAR_DQM_EXECUTOR workflow

JAR_DQM_EXECUTOR

Define passed
variables

Start JAR_DQM_EXECUTOR

Prepare validation
parameters

Prepare validation
scripts

Execute validation
scripts

Log execution
session

Save validation
results

Finish execution

Figure 8.Activity diagram of JAR_DQM_EXECUTOR execution

At start of the execution JAR_DQM_EXECUTOR declares variables and sets values

from passed parameters. Based on these variables it queries for validation scripts from

dedicated EDW schema DQM.RULE and prepares them for the execution. Throughout

27

the whole process it logs all the execution in the EDW schemas

DQMRESULT.RUN_PARAM for the execution session parameters’ values and

DQMRESULT.RUN for the execution on query level. After validation scripts are prepared

JAR_DQM_EXECUTOR performs the validation itself, saves and summarizes results of

the validation and passes the status of the execution and summary for the email

notification to ODI_DQM_PROCESS.

3.2 Outcome of the Component analysis

As a result of the Component analysis author created description of the key components

of the DQM Service component, described its workflow and based on that information

updated existing architectural description. Additionally to that author prepared the

introduction tutorial for new users of the component. In the scope of the Component

analysis author also performed a brief review of third-party alternative tools for data

quality assessment.

3.2.1 Alternative data quality tools

There are several data quality tools currently available worldwide that serve the aim of

data quality processing. Some of them are standalone solutions and others are integrated

into more complex data management systems. Below author gives a short overview of

three existing solutions and their functionality.

3.2.1.1 AB Initio

Ab Initio is an American company specialises in high-volume data processing

applications. Its software platform ‘Ab Initio’ is built of several built-in components.

Additionally to data transformations, selection/filtering, de-duplication and

joining/merging components it also includes data quality processing component.

Data quality processing component includes the following functionality:

• A subsystem that detects and possibly corrects data quality problems (using user

defined validation rules)

• A data quality reporting system (integrates with the rest of an enterprise’s

metadata, data quality metrics and error counts, and data profile results)

28

• An issue reporting database

This DQ processing component is typically run as part of existing applications. If an

application has been built with Ab Initio, the DQ component can easily be plugged into

it. For applications not built with Ab Initio, the DQ processing component has to be

explicitly invoked. The DQ component can also be implemented as an independent job

that sources data directly [14].

3.2.1.2 Informatica Data Quality tool

Informatica Data Quality tool is developed by an American company Informatica and it

is built upon a cloud-based Data Management Platform. Informatica Data Quality tool

includes the following functionality:

• Pre-built business rules and accelerators and re-use common data quality rules

• Manage and transform data with data standardization, validation, enrichment, de-

duplication, and consolidation capabilities

• Review, correct, and approve exceptions throughout the automated process

• Profile data and perform iterative data analysis to uncover relationships and better

detect problems

Data Quality tool may also integrate plug-ins and may be integrated to other platforms

(Informatica PowerCenter) [15].

3.2.1.3 Datamartist

Datamartist developed by a Canadian company nModal Solutions. Datamartist is a

flexible, visual, data profiling and data transformation tool. Datamartist includes the

following functionality:

• Create data profiling and transformation tasks that detect data quality issues

• Schedule automated runs to write the results with timestamps to allow tracking

• Monitor trends in data quality and take action quickly when new issues arise

29

Datamartist is a visual tool that is installed on a user’s workstation and can access multiple

data sources, (SQL Server, MySQL, Oracle, ODBC, Text files and Excel) [16].

30

4 Performance enhancement

One of the main problems behind the DQM Service component is its poor performance.

Throughout the whole period of using DQM component it was noticed that executions

take abnormally much time and EDW server resources (detailed information regarding

poorly performed processes is introduced in section 4.2.2 of the thesis). To investigate

the performance issues author reviewed performance in two stages: review of the java

component source code and process CPU consumption of the validation queries.

4.1 JAVA Component source code review

As it was noticed that execution time of the DQM processes vary depending on the

validated data set size so author assumed that the performance issue may be caused by

the database multiple connections. A common problem with Java applications that access

a database is that they sometimes access the database too often, resulting in long response

times and unacceptable overhead on the database [17].

4.1.1 Source code review results

As a result of the review it was discovered that potential issue that affected performance

is an implementation of EDW connection within the result submission functionality. The

flow of the activities within the result submission functionality is described on Figure 9.

31

Overview of validation reslut submitting workflow

JAR_DQM_EXECUTOR

Finish execution

Next validation script ?

Save validation result
to array

No

Submiting one
validation result to

DQMResult

Next validation result?

Yes

No

Yes

Start validation scripts
execution

Execute validation
scrpit

Figure 9. Activity diagram of validations execution in JAR_DQM_EXECUTOR

After the execution of each validation script the results of validations are stored in an

array. Submitting results is performed by parsing the array one by one and for each

iteration of result submission new connection is created. As creating multiple connections

for passing results is causing unnecessary load for the EDW and

JAR_DQM_EXECUTOR itself this part of code had to be refactored.

4.1.2 Solution for connection issue

The issue of multiple connections can be solved by applying Teradata Fastload utility.

Fastload is parallel load utility used to load data in bulk mode to Teradata Database. This

32

command-driven utility feeds one table per job. Fastload can be used interactively or in

batch mode using scripts [18].

Fastload was developed to load millions of rows into empty Teradata tables so it expected

to be fast. Fastload will create a Teradata session for each AMP to maximize parallel

processing. This gives good performance in loading data. [19]

There are several reasons why Fastload is more efficient for data loading than regular

load functionality [19]:

1. No Secondary Indexes are allowed on the Target Table

2. No Referential Integrity is allowed:

3. No Triggers are allowed at load time

4. Duplicate Rows (in Multi-Set Tables) are not supported

5. No AMPs may go down (i.e., go offline) while Fastload is processing

6. No more than one data type conversion is allowed per column

According to Teradata Documentation. Fastload Reference [18] to implement Fastload

utility there are several actions had to be done:

1. Creating new table in Staging area for passing validation results from file

2. Refactor source code to enable DQM component to:

a. Save validation results to file

b. Execute Fastload to load data from file to Staging area

c. Insert data from staging area to DQMResult schema

3. Disabling of previous solution

Figure 10 is illustrating proposed workflow of the result submission functionality.

33

Overview of validation result submitting workflow with
Fastload

JAR_DQM_EXECUTOR

Finish execution

Next validation script?

Save validation result
to a file

No

Submiting data from
file to SA using
Fastload utility

Yes

Start validation scripts
execution

Execute validation
scrpt

Submiting data to
DQMResult

Figure 10.Activity diagram of validations execution in JAR_DQM_EXECUTOR after refactoring

After defining required steps for the change author also created a prototype in

development environment of EDW for further estimation of possible improvements in

DQM component performance.

4.1.3 Comparison of the validation results

For testing purposes author compared the total consumed CPU and processing time of

execution of one of the DQM processes with original result submission functionality and

with applied Fastload utility using same amount of source data. Results brought out in

Table 2.

34

Table 2. Comparison of the executions of the Component before and after source code refactoring

DQM Process Name Loading type
Total CPU Impact
(CPU-second)

Processing time

DQM_PROCESS_1 ORIGINAL 3,170.88 0:09:29

DQM_PROCESS_1 FASTLOAD 1,659.46 0:00:51

As it was expected execution of the DQM process with Fastload utility applied showed a

better performance in terms of CPU consumption (48% less CPU-seconds than original

solution) and in term of processing time - 8 minutes 38 seconds less than the original

solution.

4.1.4 Current state of the change

Results of the applied changes were demonstrated to stakeholder and it is decided to

proceed with updating of the Fastload utility functionality to the production environment.

Currently the updated component is in testing phase and will be applied after the required

testing and validations of the change are finalized.

4.2 Review of the CPU consumption of the validation scripts

Data warehouse performance is dependent on a number of factors including the nature of

the queries being run against the physical database, the hardware and software resources

available and the underlying physical distribution of the data in the database [20]. In the

scope of the performance analysis author review the issues that may be caused by

validation scripts.

Analyzing performance of the validation scripts is more complex task comparing to

executor source code analysis as it comes from the perspective of big amount of the scripts

and from their consistency. According to frequently changing business requirements

validation complexity and amount may vary (in most case it is constantly increasing). For

that reason, scripts performance analysis is constantly ongoing process.

4.2.1 Performance review results

To review the performance author was using the collected metadata of the executed

validation scripts stored in dedicated system information schema of the EDW (sys_info

schema). As a metric total CPU impact is used to estimate the performance of the script.

35

CPU impact is chosen for a metric as there is a company standard for evaluating

performance based on CPU consumption limits for a single query [7].

Author figured out that there were 20 DQM processes that exceeded the limit of allowed

10000 CPU-seconds [7]. Analysis of poorly performed scripts brought out the issue of

the one script templates used by all DQM processes for summarizing the validation and

reporting the results. Problem of poor performance was related to the fact that indexed

parameters used in template was not enough for sufficient select request. Using of

additional indexed input parameter "query_id" helped to reduce CPU consumption.

After implementation of the changes in production environment new results were

collected for the same processes (see Table 3).

Table 3. Comparison of CPU usage of the DQM processes validation scripts before and after update

DQM Process Name

Total CPU
before script
enhancement
(CPU-seconds)

Total CPU after
script
enhancement
(CPU-seconds)

DQM_PROCESS_1 20170.44 118.98

DQM_PROCESS_2 19818.74 8,263.18

DQM_PROCESS_3 19615.76 216.35

DQM_PROCESS_4 16030.79 79.37

DQM_PROCESS_5 14698.66 171.5

DQM_PROCESS_6 12284.36 63.74

DQM_PROCESS_7 11867.97 107.11

DQM_PROCESS_8 11769.05 60.23

DQM_PROCESS_9 11640.83 4,248.00

DQM_PROCESS_10 11633.91 123.6

DQM_PROCESS_11 11618.6 50.23

DQM_PROCESS_12 11533.26 56.1

DQM_PROCESS_13 11508.48 964.02

DQM_PROCESS_14 11043.56 159.12

DQM_PROCESS_15 10470.89 154.62

DQM_PROCESS_16 10447.79 1,703.68

DQM_PROCESS_17 10402.07 108.29

DQM_PROCESS_19 10318.57 714.55

DQM_PROCESS_19 10244.96 90.25

DQM_PROCESS_20 10168.7 115.58

36

Applied script enhancement made a significant improvement of CPU consumption for all

reviewed processes decreasing it in average for 93.8%. Additionally, total processing time

for the DQM processes was compared.

Table 4. Comparison of the execution time of the DQM processes before and after script update

DQM Process Name

Processing time before
validation script
enhancement
(hh:mm:ss)

Processing time after
validation script
enhancement
(hh:mm:ss)

DQM_PROCESS_1 00:06:56 00:01:54

DQM_PROCESS_2 00:06:50 00:01:27

DQM_PROCESS_3 00:06:08 00:01:03

DQM_PROCESS_4 00:01:55 00:00:42

DQM_PROCESS_5 00:07:54 00:01:27

DQM_PROCESS_6 00:05:27 00:00:17

DQM_PROCESS_7 00:05:02 00:02:47

DQM_PROCESS_8 00:11:47 00:01:12

DQM_PROCESS_9 00:16:10 00:03:44

DQM_PROCESS_10 00:09:51 00:00:22

DQM_PROCESS_11 00:02:08 00:00:17

DQM_PROCESS_12 00:04:36 00:03:38

DQM_PROCESS_13 00:08:45 00:40:56

DQM_PROCESS_14 00:07:18 00:01:32

DQM_PROCESS_15 00:01:53 00:00:51

DQM_PROCESS_16 00:17:23 00:05:18

DQM_PROCESS_17 01:50:41 01:03:20

DQM_PROCESS_19 00:03:24 00:00:27

DQM_PROCESS_19 00:07:18 00:01:09

DQM_PROCESS_20 00:04:47 00:00:34

As for CPU consumption processing time spent on process execution also significantly

decreased.

4.2.2 Current state of the change

To improve overall validation script quality and to avoid further after-release script

corrections it was proposed to use new testing requirements for all new DQM processes

and validation scripts. Previously validation scripts could be changed directly in EDW

Schema DQMRule.Query table bypassing general release process and testing. From now

on all validation scripts are a tested and are not allowed to production environment unless

performance tests are passed.

37

5 Summary

The aim of the thesis was to update existing Architectural Description of the Data Quality

Management Component of Enterprise Data Warehouse environment in Financial

Institution N., and to do its performance analysis in EDW. For that purpose, author of the

thesis performed a Component analysis of DQM component and reviewed performance

issues.

As a result of the thesis author created description for the key parts of the DQM service

component, described its workflow and based on that information updated existing

architectural description.

Author also investigated the performance issues of the Component and found out that

poor performance was caused by bad solution of validation result submission

functionality in Java-executable file’s sources code and insufficient use of indexes in

validation summarizing script. Author defined activities for refactoring Java-executable

file and created a prototype to test it. Testing results showed that prototype used 48%

less CPU-seconds than original solution. Testing results were presented to stakeholders

and it was decided to proceed with the change to the production environment as

performance has significantly increased. Also, validation summarizing script got

updated by adding additional indexed parameter into common validation summarizing

script template. Applied script enhancement decreased CPU consumption in average for

93.8%. This change was applied to production environment right after testing activities

were done.

To avoid further need for validation scripts’ performance problems review, it was decided

that the release process for validation scripts must be updated. According to new release

process all validation scripts must pass testing for performance issues.

After the introduced changes in Java-executable file sources code and in validation

summarizing script were applied the overall performance of the DQM processes has

drastically improved.

38

References

[1] “Unified Modeling Language”, Object Management Group, 12.2017. [Online],

Available: https://www.omg.org/spec/UML/About-UML/

[2] Paramita Ghosh, “The Evolution of Data as an Asset”, 9.12.2020. [Online].

Available: https://www.dataversity.net/the-evolution-of-data-as-an-asset/#

[3] “DAMA-DMBOOK. Data Management Body of Knowledge. Second edition”,

Technics Publications, New/Jersey, 2017.

[4] “Oracle Database Data Warehousing Guide. Introduction to Data Warehousing

Concepts”, Oracle Corporation, 2017. [Online], Available:

https://docs.oracle.com/database/121/DWHSG/concept.htm#GUID-C3AD27A3-

970A-442D-8B18-86B79D643F25

[5] “Azure Data Architecture Guide”, Microsoft Corporation, 2.12.2018. [Online],

Available: https://docs.microsoft.com/en-us/azure/architecture/data-

guide/relational-data/etl

[6] M. Bodziony, S. Roszyk, R. Wrembel, “On Evaluating Performance of Balanced

Optimization of ETL Processes for Streaming Data Sources”, DOLAP 2020,

Copenhagen, Denmark, 30.03.2020.

[7] “Performance evaluation guide of EDW processes”, Financial Institution’s N.

Internal Documentation, Tallinn, Estonia, 2014.

[8] T. C. Redman, “Bad Data Costs the US 3 Trillion Per Year”, Harvard Business

Review Digital, 2016. [Online], Available: https://hbr.org/2016/09/bad-data-

costs-the-u-s-3-trillion-per-year

[9] R. Singh, Dr. K. Singh, “A Descriptive Classification of Causes of Data Quality

Problems in Data Warehousing”, International Journal of Computer Science

Issues, 2.05.2010. [Online], Available: http://www.ijcsi.org/papers/7-3-2-41-

50.pdf.

https://www.omg.org/spec/UML/About-UML/
https://www.dataversity.net/author/paramita-ghosh/
https://www.dataversity.net/the-evolution-of-data-as-an-asset/
https://docs.oracle.com/database/121/DWHSG/concept.htm#GUID-C3AD27A3-970A-442D-8B18-86B79D643F25
https://docs.oracle.com/database/121/DWHSG/concept.htm#GUID-C3AD27A3-970A-442D-8B18-86B79D643F25
https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-data/etl
https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-data/etl
file:///C:/Users/p998qdj/AppData/Roaming/Microsoft/Word/Thomas%20C.%20Redman
https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-year
https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-year
http://www.ijcsi.org/papers/7-3-2-41-50.pdf
http://www.ijcsi.org/papers/7-3-2-41-50.pdf

39

[10] J. Bauman, “What is data profiling and how does it make big data easier?”, SAS

Insights. [Online], Available: https://www.sas.com/en_us/insights/articles/data-

management/what-is-data-profiling-and-how-does-it-make-big-data-

easier.html#close

[11] “Building an Analytics Stack: A Guide”, Panoply. [Online], Available:

https://panoply.io/analytics-stack-guide/data-profiling-best-practices/

[12] “Use Cases”, U.S. General Services Administration, 2006. [Online], Available:

https://www.usability.gov/how-to-and-tools/methods/use-cases.html

[13] “Fusion Middleware Getting Started with Oracle Data Integrator”. Oracle

Corporation. [Online], Available:

https://docs.oracle.com/cd/E17904_01/integrate.1111/e12641/overview.htm#OD

IGS111

[14] “Data Quality”, AB Initio, 2020. [Online], Available:

https://www.abinitio.com/en/system/data-quality

[15] “Cloud Data Quality”, Informatica, 2021. [Online], Available:

https://www.informatica.com/products/data-quality/cloud-data-quality-

radar.html

[16] “A Visual easy to use Data Profiling tool”, nModal Solutions Inc., 2021.

[Online], Available: http://www.datamartist.com/a-visual-easy-to-use-data-

profiling-tool

[17] S. Haines, “Top 10 most common Java performance problems”, AppDynamics,

2014. [Online], Available:

www.rockvalleycollege.edu%2Fwebadmin%2Fupload%2FTop-10-Java-

Performance-Problems.pdf&usg=AOvVaw0h2zxNIguBbm2PArV1plZZ

[18] “Teradata Documentation. Fastload Reference”, Teradata, 2021. [Online],

Available:

https://docs.terada.com/r/r_6Z4JwVMhANtZFCIKEx7Q/r6v__Jr1IohFGHmWl

qeidA

https://www.sas.com/en_us/insights/articles/data-management/what-is-data-profiling-and-how-does-it-make-big-data-easier.html#close
https://www.sas.com/en_us/insights/articles/data-management/what-is-data-profiling-and-how-does-it-make-big-data-easier.html#close
https://www.sas.com/en_us/insights/articles/data-management/what-is-data-profiling-and-how-does-it-make-big-data-easier.html#close
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://docs.oracle.com/cd/E17904_01/integrate.1111/e12641/overview.htm#ODIGS111
https://docs.oracle.com/cd/E17904_01/integrate.1111/e12641/overview.htm#ODIGS111
https://www.abinitio.com/en/system/data-quality
http://www.datamartist.com/a-visual-easy-to-use-data-profiling-tool
http://www.datamartist.com/a-visual-easy-to-use-data-profiling-tool
https://docs.terada.com/r/r_6Z4JwVMhANtZFCIKEx7Q/r6v__Jr1IohFGHmWlqeidA
https://docs.terada.com/r/r_6Z4JwVMhANtZFCIKEx7Q/r6v__Jr1IohFGHmWlqeidA

40

[19] “Fast Load”, Teradata Wiki, 2013. [Online], Available:

https://www.teradatawiki.net/2013/10/teradata-utilities-Fastload.html

[20] A. Taylor, “Practical Advice for Managing Poor Warehouse Performance”, The

Data Administration Newsletter, 2.09.1998. [Online], Available:

https://tdan.com/practical-advice-for-managing-poor-warehouse-

performance/4262

https://tdan.com/practical-advice-for-managing-poor-warehouse-performance/4262
https://tdan.com/practical-advice-for-managing-poor-warehouse-performance/4262

41

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Konstantin Dmitrijev

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Analysis of Data Quality Management service component in Financial

Institution’s Data Warehouse”, supervised by Nadežda Furs

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

17.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

42

Appendix 2 – Validation result summary for DQM process

***This is an automatically generated email, please do not reply! ***

The JAR_DQM_EXECUTOR package verified validation results at

(Process: DQM_PROCESS_1)

Validation results were verified (using predefined expected result values).

Validation results verification summary at validated period

Total count of verified rules = 1
 Count of failed rules = 1
 Count of not-failed rules = 0
Total count of verified records = 15
 Count of failed records = 9
 Count of not-failed records = 6
Validation results changes in time verification summary at validated period

Total count of verified rules = 1
 Count of failed rules = 1
 Count of not-failed rules = 0
Total count of verified records = 6222
 Count of failed records = 18
 Count of not-failed records = 6204

Query_id: 12706 failed in verification at validated period
Query_id: 12704 failed in change in time verification at validated period
Query_id: 12701 failed in change in time verification at validated period

43

Appendix 3 –Source code of Fastload prototype added to

DQM component source code

a) Creating new table in Staging area for passing validation results from file

.SET SESSION CHARSET "ASCII";

.LOGMECH KRB5;

.LOGON */hostname*;

DATABASE SA ;

drop table SA.SSESSION_DQM;

drop table SA.SSESSION_DQM_ERR1;

drop table SA.SSESSION_DQM_ERR2;

CREATE TABLE SA.SSESSION_DQM

(

 Query_Column_sequence_no INTEGER NOT NULL

,Result_Row_Sequence_No INTEGER NOT NULL

,Query_Column_Result_Cnt INTEGER

,Query_Column_Result_Date DATE FORMAT 'YYYY-MM-DD'

,Query_Column_Result_Amt DECIMAL(18,2)

,Query_Column_Result_Desc VARCHAR(100) CHARACTER SET UNICODE NOT

CASESPECIFIC

,Query_Id INTEGER NOT NULL

,Run_Id INTEGER NOT NULL

,Validation_Rule_Id INTEGER

,Result_Data_Type_Code SMALLINT NOT NULL COMPRESS (1 ,2 ,3 ,4 ,5)

,Database_Name VARCHAR(30) CHARACTER SET UNICODE NOT CASESPECIFIC

,Table_Name VARCHAR(30) CHARACTER SET UNICODE NOT CASESPECIFIC

,Measure_Ind CHAR(1) CHARACTER SET UNICODE NOT CASESPECIFIC NOT NULL

DEFAULT 'Y' COMPRESS ('N','Y')

,Column_Name VARCHAR(30) CHARACTER SET UNICODE NOT CASESPECIFIC)

;

SET RECORD VARTEXT '|';

DEFINE

 C1 (VARCHAR(1000))

 ,C2 (VARCHAR(1000))

,C3 (VARCHAR(1000))

,C4 (VARCHAR (1000))

,C5 (VARCHAR(1000))

,C6 (VARCHAR(1000))

,C7 (VARCHAR(1000))

,C8 (VARCHAR(1000))

,C9 (VARCHAR(1000))

,C10 (VARCHAR(1000))

,C11 (VARCHAR(1000))

,C12 (VARCHAR(1000))

,C13 (VARCHAR(1000))

,C14 (VARCHAR(1000))

FILE=Y: \DQM\datafile_for_1283085.txt;

RECORD 1;

BEGIN LOADING SA.SSESSION_DQM

 ERRORFILES SA.SSESSION_DQM_ERR1, SA.SSESSION_DQM_ERR2;

44

INSERT INTO SA.SSESSION_DQM

(

 Query_Column_sequence_no

 ,Result_Row_Sequence_No

 ,Query_Column_Result_Cnt

,Query_Column_Result_Date

 ,Query_Column_Result_Amt

 ,Query_Column_Result_Desc

,Query_Id

 ,Run_Id

 ,Validation_Rule_Id

 ,Result_Data_Type_Code

 ,Database_Name

 ,Table_Name

 ,Measure_Ind

,Column_Name

)

VALUES (:c1,:c2,:c3,:c4,:c5,:c6,:c7,:c8,:c9,:c10,:c11,:c12,:c13,:c14);

END LOADING;

LOGOFF;

b) Saving validation results to file

private void writeToFile(String filePath, String[] dataRows) {

 try {

 File file = new File(filePath);

 if (file.createNewFile()) {

 System.out.println("File created at: " + file.getPath());

 } else {

 System.out.println("File already exists");

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 try {

 BufferedWriter bw = new BufferedWriter(new FileWriter(filePath,

true));

 for (int i = 0; i < dataRows.length; i++) {

 if (i != 0) bw.newLine();

 bw.write(dataRows[i]);

 }

 bw.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

c) Executing Fastload to load data from file to Staging area

private void executeFastload() {

 String command = "Fastload < \"Y:\\

DQM\\dev\\dqm_validation\\resources\\party_script.fl\"";

 try {

 Runtime rt = Runtime.getRuntime();

 Process process = rt.exec("cmd.exe /c SET GUILOGON=NO && " +

45

command);

 BufferedReader stdInput = new BufferedReader(new

InputStreamReader(process.getInputStream()));

 BufferedReader stdError = new BufferedReader(new

InputStreamReader(process.getErrorStream()));

 // Read the output from the command

 System.out.println("Here is the standard output of the

command:\n");

 String s = null;

 while ((s = stdInput.readLine()) != null) {

 System.out.println(s);

 }

 // Read any errors from the attempted command

 System.out.println("Here is the standard error of the command

(if any):\n");

 while ((s = stdError.readLine()) != null) {

 System.out.println(s);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

d) Inserting data from staging area to DQMResult schema

private void InsertFromOsaToDqmResult(Connection conn, String

sessioonid, String insertStatement) throws Exception {

 String insertQuery = String.format(insertStatement);

 PreparedStatement stmt = null;

 try {

 stmt = conn.prepareStatement(insertQuery);

 //collectLog("Executing InsDetailQueryColumnResult:");

 //collectLog(InsDetailQueryColumnResult);

 stmt.executeUpdate();

 } catch (Exception ex) {

 collectLog("Insert from SA to DQMRESULT failed"

 + ex.getMessage());

 throw new Exception(ex.getMessage());

 } finally {

 if (stmt != null) {

 stmt.close();

 }

 }

}

