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Abstract 

This master’s thesis is about implementing Apache top level project Spark cluster computing 

framework in Amazon cloud. The aim of the implementation is to elaborate Spark cluster 

implementation method for small and medium size enterprises (SME). This is necessary for 

SMEs to whom the traditional relational data warehouse (DW) solutions are too expensive and 

meets scaling limits when processing big data. Nowadays Hadoop Distributed File System 

(HDFS) and MapReduce (MR) parallel processing framework are used as alternatives. This 

paradigm is efficient in big data processing, but suffers under high latency, which is not 

acceptable for data querying and analysis. The aim of using the Spark cluster implementation 

is derived from Spark’s low latency, high scalability and fault tolerance. 

The first goal of this master’s thesis is to use a distributed system that offers low latency and 

fast response time to analyse data in ad-hoc querying manner. After researching various Hadoop 

compliant platforms, the author of the thesis decided to continue with analysis of Apache Spark 

cluster computing framework and introduce a method for implementing it on Amazon Elastic 

Cloud. Apache Spark stack is suitable for interactive ad-hoc data analysis, iterative machine 

learning, graph processing, data mining in logs and all kinds of batch processes, i.e. 

MapReduce. The thesis is focused on interactive ad-hoc data analysis and therefore describes 

the Apache Shark Command Line Interface and Shark Scala Shell. Both of the mentioned Shark 

user interfaces enable the end user to query data on Hadoop Distributed File System in an SQL 

compatible environment. Amazon Simple Storage is used for data storing. Spark cluster 

implementation is a precondition for launching data profiling tests. 

The second goal of this master’s thesis is to analyse the outcomes of performance tests of data 

profiling. Spark on traditional Hadoop cluster should be 10 to100 times faster than Hive. 

Spark’s outstanding performance is achieved by memory and Resilient Distributed Dataset 

usage. As a result it appears that ten node Spark cluster on AWS platform is capable of 

processing 10 gigabytes and 470 million rows of data within seconds. This outcome is 

comparable to Massively Parallel Processing (MPP) databases and therefore it can be said that 

Spark cluster is suitable for big data ad-hoc analysis. The current implementations of the 

traditional Hadoop MapReduce systems are outdated and not suitable for interactive data 

analysis. 



 

The thesis is in English and contains 64 pages of text, 6 chapters, 14 figures, 5 tables. 

  



 

 

 

Annotatsioon 

Andmeait on platvorm, kuhu koondatakse kokku organisatsiooniülesed äri arenduse aluseks 

olevad andmed. Varasemalt on andmeaida lahendustes koondatud üldjuhul väiksemahulised 

transaktsiooniliste andmebaasisüssteemide andmed normaliseeritud kujul. Tänapäeval 

kasvavad andmemahud eksponentsiaalselt, kuna statistika ja telemeetria salvestamine on 

oluline osa tarbijakäitumise analüüsimisel. Selle andmemahu töötlemine analüütilises 

anmdebaasis on kulukas. Seetõttu valitakse enam tee, kus protsessitakse petabaitidesse 

ulatuvaid andmemahte hajussüsteemides, kuna see on madalama maksumusega, 

veasituatsioonides vastupidav, efektiivsem tänu paralleelsetele arvutustele ja asukoha suhtes 

paindlik. Suurte andmemahtude töötlemiseks on arendatud hästi skaleeruvad hajussüsteemid, 

mis suudavad veaolukordi käsitleda ilma, et andmed kaduma läheks. Üheks populaarsemaks 

võib tänapäeval pidada Hadoop hajusüsteemi ja MapReduce paralleelarvutust. Hadoop’i 

eeliseks teiste andmetöötluse süsteemidega võrreldes on kõnealuse platvormi võime töötada 

laiatarbe infrastruktuuril. Hadoop hajussüsteem on horisontaalselt laiendatav ja andmetöötlus 

toimub paralleelselt masinates, kus andmed asuvad. Paralleelsuse aspekt on oluline, kuna 

võimaldab töötleda suuri andmemahte efektiivsemalt võrreldes mitte-hajussüsteemidega. 

Hadoop platvormi miinuseks võib pidada süsteemi vaates kõrget latentsust ja aeglast kõveketta 

kasutamist. Praktikas tähendab see kirjete lugemist minutite jooksul ja keerulisemate 

summeerimiste korral tundideni ulatuvat tööaega, kuna MapReduce ülesannete tekitamine ja 

jagamine toimub viitega.  Hadoop MapReduce sobib andmete ettearvutamiseks ja 

agregeerimiseks, kus väljundiks on väiksem andmehulk, mida saab importida kiire 

reaktsiooniajaga analüütilistesse andmebaasisüsteemidesse. Reaalajas andmete pärimiseks 

Hadoop ei sobi.  

Käesoleva magistritöö üheks eesmärgiks on töötada välja kiire reaktsiooniajaga Hadoop 

MapReduce paralleelarvutuse põhimõttel töötav andmeanalüüsi implementatsiooni metoodika. 

Selleks analüüsitakse Apache Spark lahendust, mis kannab Hadoop MapReduce skaleeritavuse 

ja veakäitluse põhimõtteid. Apache Spark’i võib pidada perspektiivikaks interaktiivsel andmete 

pärimisel, andmekaevandamisel, masin –ja automaatõppe süsteemide ning graafide 

arvutusmudelite teostamisel. Käesolev töö kõiki eelpool nimetatud valdkondi ei vaatle ning 

keskendub ainult interaktiivsele andmeanalüüsile. Töö tulemusena valmib Apache Spark 



 

hajussüsteemi juurutamise metoodika Amazon pilves. See on keerukuse ja maksumuse suhtes 

jõukohane igale väiksema või keskmise suurusega ettevõttele. Apache Spark hajussüsteem ei 

vaja ressursimahukat skaleerivuse planeerimist ning kulumahuka süsteemi üles seadmist. 

Amazoni pilves maksab kasutaja selle ressursi eest, mida kasutab ja skaleerib süsteemi 

horisontaalselt laiemaks või õhemaks vastavalt vajadusele, hoides süsteemi pidevalt töös.  

Teiseks eesmärgiks on testida ja hinnata implementeeritud süsteemi latentsust. Selleks 

rakendatakse implementeeritud hajussüsteemis andmete profileerimise teste ja hinnatakse 

testide läbimise põhjal päringute interaktiivsust. Töö tulemused näitavad, et suurte 

andmemahtudega manipuleerimine Apache Spark platvormil on võrreldav suure jõudlusega 

analüütiliste andmebaaside tulemustega. Käesoleva magistritöö tulemusena saab tõdeda, et 10 

GB pakkimata andmemahu töötlemine (sealhulgas filtreerimine, summade liitmine, kirjete 

loendamine) on kiire reaktsiooniajaga. Kiireks reaktsiooniajaks võib lugeda antud juhul alla 

minutilist käitlemist alustades päringu käivitamisest kuni tulemuse kuvamiseni. Antud juhul 

saab tõdeda, et 470 miljoni rea lugemine ning süsteemi reageerimine toimib loetud sekundite 

jooksul. Seni kasutatud Hive Hadoop hajussüsteemis suudab antud ülesande lahendada minutite 

jooksul. Seega laialt kasutatud Hadoop MapReduce hajussüstemiga ei saa neid tulemusi 

võrrelda, pigem on tulemused võrreldavad analüütiliste andmebaasi süsteemidega, mis 

töötlevad andmeid sekunditega. Spark hajussüsteemis on võimalik päringuid teha nii päringu 

konsooliaknas kui ka ühendada mõne andmeanalüüsi tulemusi visualiseeriva tööristaga. Lisaks 

on edasijõudnud kasutajal võimalik kasutada funktsionaalse programmeerimise töövahendeid. 

Lõputöö on inglisekeelne ning sisaldab teksti 64 leheküljel, 6 peatükki, 14 joonist, 5 tabelit. 



 

Abbreviations and terms 

AMI Amazon Machine Image 

Amazon virtual operation system image provided by Amazon Web 

Services for use on Amazon Elastic Compute Cloud [1]. In current thesis 

is used Linux AMI. 

DSM Distributed Shared Memory 

Distributed system shared virtual memory space. 

HDFS Hadoop Distributed File System 

Java based distributed file system. 

RDD Resilient Distributed Dataset 

Immutable partitioned collection of records, that can be built based in 

lineage data [2]. 

SME Small and Medium size Enterprises 

Defined by European Commission these are enterprises employed less than 

250 employees [3]. 

SSH Secure Shell 

Secure data communication protocol over network. 

Big data By Gartner it is innovative high-volume, high-velocity and high-variety 

information [4]. 

Business 

intelligence 

Raw data transformation to meaningful data and presenting it for business 

purposes. By Gartner it gathers data analysis best practices, data storage 



 

infrastructure, data reporting and visualisation tools to improve business 

driven decisions [5]. 

Data warehouse Analysis and querying database, which gathers transactional data over 

organisation [6]. 

Hadoop Open source distributed framework for large amount of data processing. 

Developed by Yahoo [7]. 
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1. Introduction 

Today business intelligence (BI) analysis is an essential part of successful business. BI is 

defined as data usage for making business driven decisions. Actual implementation combines 

organisation-wide data from disparate sources by giving meaning to the data and present it in a 

comprehensive form. [8] Data warehouse (DW) infrastructure and data is basis for BI. Ralph 

Kimball defines DW as ”a copy of transaction data specifically structured for query and 

analysis” [9]. The broader definition for data warehouse is a data analytics platform from an 

infrastructure perspective and data inside warehouse is used for answering questions about 

organisational data [8]. A working data warehouse solution is a prerequisite for rich and deep 

data analysis and an insight on how to plan business. Traditional data warehouse building can 

be very time and human resource consuming. In additional to that hardware and software costs 

might make the end solution highly expensive. It is hard to say which one prevails: insight from 

proper data analysis or data warehouse implementation and maintenance costs. During the past 

decades DW has gathered organisation’s transactional data from relational database systems. 

There are many small and medium size enterprises that could benefit from big data analytics 

(i.e. customer activity clickstreams, statistics server logs, web service logs, network telemetry, 

sensors data). Business decision makers need quick data driven answers. Thus cloud computing 

framework could be an efficient solution since you pay only per usage and scale up based on 

actual need with no downtime.   

According to Kimball we are witnessing an era of big data revolution today [10]. Big data is 

not just large amounts of data, but rather a high-variety structures and high-velocity input 

produced by online user activities, ad tracking information, sensors activities, logs, 

clickstreams, heuristics and social CRM [11]. Traditional relational data warehouse databases 

are not efficient enough for big data analytics. Hadoop cluster computing framework is cost 

effective, highly scalable and fault tolerant. This is why a lot of companies are using Hadoop 

Distributed File System (HDFS) and MapReduce data processing framework for big data 

analytics. Hadoop is implemented on commodity infrastructure and scale horizontally to 

petabytes of data. MapReduce on HDFS idea is to process data, located in data nodes. This 

approach is suitable for organisations using large amounts of data but not being able to afford 

a full data warehouse solution. There are also some trade-offs. One of the largest shortcoming 

is high latency, which is seen as a major hindrance to Hive and Hadoop prevalence in ad-hoc 
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data analysis perspective. End users do not tolerate long response times up to hours of 

calculation time. The aim of the thesis is to come up with a solution for big data analytics in 

cluster computing framework that can be as responsive as MPP, but be fault tolerant and highly 

scalable at the same time. After all, these are the essential parts of highly distributed systems. 

1.1 Background 

This thesis is initiated by the need for storing big data and performing real-time analysis on this 

data. Hadoop Distributed File System in cloud framework is an appropriate platform for this 

purpose – it is highly scalable and fault tolerant. The most significant drawbacks from the end 

user perspective are high latency and a very long response time. This system is suitable for data 

preparative calculation and data cleaning operations, but not for real-time data analysis - the 

end user does not want to run queries for several hours only to find out about incorrect filters, 

which might mean they have to run queries again for several hours. The author of the thesis has 

run across this kind of performance on large Hadoop clusters, which is understandable, because 

Hadoop is a batch processing system.  

Small and medium size enterprises often give up using a proper data warehouse solution, due 

to its high expenses and complexity. HDFS on cloud infrastructure is a reasonable alternative 

thanks to its less expensive infrastructure. Apache Spark cluster represents Hadoop benefits, 

such as fault tolerance and scalability. In addition to that Spark adds low latency, which is 

essential for real-time data analysis. Compared to the traditional Hive querying engine on 

Hadoop Distributed File System, Spark is approximately a hundred times faster due to memory 

and Resilient Distributed Dataset usage in intermediate results. Spark stack solution is suitable 

for SMEs – in cloud you can start small by only paying for  actual resources used and scaling 

up to petabytes with no downtime. Gathering of Apache Spark implementation background 

information has been an ongoing research for the past year. Implementation testing started in 

spring 2014. 

1.2 Goals 

This thesis is driven by the need for a responsive data analytics platform feasible for small and 

medium size enterprises. The thesis has two objectives. 
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The main aim of the thesis is to analyse a distributed system for a data analytics platform and 

describe the method of Spark cluster computing framework implementation. By its nature it 

should be feasible for small and medium size enterprises budget and complexity-wise. 

The second goal of the thesis is to perform data analysis tests following the description of the 

implementation method. Several hundred million rows of data have been processed to execute 

data profiling tests. The testing is expected to show low latency and responsive results. 

1.3 Method 

This thesis introduces Hadoop Distributed File System utilization with in-memory cluster 

computing framework Apache Spark. The author of this thesis implements and provides a step 

by step description of the end-to-end solution for big data analytics on top of cloud computing 

framework, that is, Hadoop Distributed File System compliant  and works on Amazon Web 

Services platform. AWS platform provides Elastic MapReduce web service, which is suitable 

for Apache Spark open source cluster analytics framework implementation. The end solution 

is expected to query data sources on Amazon Simple Storage (S3) platform through Shark query 

engine and provide additional alternatives to the end user according to the user profile (highly 

skilled user can write user defined functions and perform complex operations with Scala 

language interface, intermediate users can query big data via Shark as Hive Query Language 

interface and business users can make reports in Tableau or MS Excel platform via Hive JDBC 

connector to Spark cluster).  

1.4 Outline 

The first chapter describes the background and the initiation of the thesis, which to a large 

extent are inflicted by the outdated usage of Hive on Hadoop. The first chapter also sets forth 

the main objectives of the thesis.  

The second chapter introduces the background information and gives an overview of the 

technologies used to achieve the same goals as the thesis.  

The third chapter introduces the method of Spark cluster computing framework building and 

launching steps on Amazon Elastic Cloud. Tests performed and respective results achieved on 

the implemented cluster are also described in order to demonstrate the effectiveness of big data 

analytics in Spark cluster launched in Amazon cloud.  
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The fourth chapter describes the outcome of this thesis and explains the results achieved by 

implementing the suggested method. 

The fifth chapter gives an overview of expanding the Spark cluster outputs in association with 

other platforms. Spark integration with different visualisation tools is a potential topic for a 

follow-up study. 

The sixth chapter draws conclusions on the technology examined, its potential implementation 

and on-boarding activities launched with Spark cluster. The outcome of the main goals of the 

thesis are provided and a general impression about Spark cloud computing framework is given. 
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2. Background knowledge 

Background information is derived from the need to explain the core elements of Spark stack. 

Hadoop Distributed File System is an essential part of Spark implementation and carries the 

effective data distribution model over data nodes. The Hadoop project provides an open source 

platform for distributed data processing on commodity hardware. MapReduce framework 

enables to run batch processing tasks on distributed big data. Resilient Distributed Dataset is 

the core element of Spark cluster and Shark data retrieval model. Apache Spark is a cloud 

computing framework that is able to effectively use server memory in purpose to gain 

performance in data calculation process. Apache Shark is a data analysis service, which runs 

on Spark’s platform. [8] 

2.1 Hadoop Distributed File System 

Hadoop distributed file system (HDFS) is a Java based and Hadoop purposed highly scalable 

and distributed file system. Hadoop cluster is based on HDFS. In cluster there is one namespace 

and several data-nodes. Metadata name-node is able to survive failure and automatically 

recover. Files or file portions and archives are usually large at HDFS. Files are stored across 

nodes – this is called file distribution. Fault tolerance is achieved by replication between nodes. 

The default option means that data is stored in three machines: two are in the same rack and 

one in a different rack. This approach preserves data during nodes’ failures. During failures 

nodes are able to communicate to each other and thanks to this rebalancing data over the 

network is possible. [12] 

HDFS’s main benefit is that it is designed to run on low cost commodity hardware. It provides 

high throughput and bulk data processing. On the other hand HDFS supports high latency data 

access. This is caused by fact that by design HDFS is meant for batch processing and not for 

interactive work. [13] 

A cluster could consist of several thousand machines which enables a large dataset storage and 

processing. Files are append-only, which means that no updates are available. This simplifies 

the HDFS model and enables a high throughput. The latter is achieved by computation near 

data. By the model architecture, the calculation is executed in the node, where data is actually 

located and intermediate results are kept in nodes, where data was pulled or returned final 

results back to master node, which drove calculation flow. This abstraction avoids pulling large 
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amount of data through the network connection and evades overhead with performance on 

calculation launching machine. [13] 

HDFS cluster consists of one name-node, which is considered as master, and data-nodes, which 

are considered as slaves. Master manages cluster namespace and access to data-nodes. In 

practice, the master is responsible for managing file operations, i.e. open, close, rename, 

append, handle data blocks mapping. If the file is stored in HDFS cluster, then it is distributed 

over cluster nodes by blocks. The file can be defined as sequence of blocks. Data-nodes are 

responsible for data-node implicit activities, i.e. data block read, write, creation, deletion or 

replication to other data-node. Data-node is usually one per machine and its main purpose is to 

manage machine storage on top of which it is created on. If data-nodes are added or removed, 

then existing data should be rebalanced to maintain even sized blocks for balanced distribution 

at all times. This will ensure equal data access or calculation in nodes and in addition reduce 

I/O. If data storage is in skew, operations over HDFS suffer under poor performance. [13] 

 

Figure 1. Master node and data nodes. 

 

Blocks in HDFS are 64MB by default and this option is mutable. This option is derived from 

fact, that most of the files are large that are stored in HDFS. If stored files are smaller than 

64MB, then it is good idea to decrease block size or even better is to concatenate smaller files 

to bigger ones. Smaller number of larger files means less overhead with I/O, metadata memory 

etc [14]. All blocks are by default replicated, but this option is mutable of how many replications 



18 

of one block is kept. Replication information is important to master node, which receive 

periodical heartbeat report from slaves. If message is missing for certain amount of time, then 

node is considered as dead with no operations in the future. Master trace all influenced blocks 

and replication into another node will start. This is possible, because slaves send periodically 

block report to master and this metadata is a basis for master replication decisions. [15] 

2.2 MapReduce 

MapReduce is an abstraction of cluster computing, where master node can execute parallel 

processes in slave nodes. It is designed for processing large amount of data and by design it is 

fault tolerant. On the other hand MapReduce is reflection of high latency, because tasks 

generation is based on nodes heartbeat report and delays up to 10 seconds per node are 

inevitable.  Mapper compose intermediate result operations, like filter, group by, sort, join, left 

outer join, right outer join. Reduce operation finalize intermediate result and perform following 

operations like count, reduce by key, group by key, first, union, cross. [16] 

 

Figure 2. MapReduce by letter count example. 

 

Task solving precondition with MapReduce is to have large dataset and data is distributed over 

cluster in a way that computation is possible to perform in parallel. MapReduce perform all 

computations in local node, where data is placed. This approach gives boost in performance, 

because network throughput and master capabilities are not impediment. [16] 
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MapReduce workflow is following: mapper reads input and according to the input and actions 

performed on this, tasks are divided into subtasks and sent to the slave node to launch. Slave 

node can also divide received tasks into smaller chunks, if needed. Execution answer (data is 

not sent back, instead written to disk) is sent back to master. Mapper function result is a 

collection of key-value pairs sorted by key and divided into partitions corresponding to reducers 

amount.  Sorting purpose is more compact and more effective datasets as reducer input. Mapper 

intermediate results are written to disk. Mapper output can be compressed and this is effective 

in perspective of write speed and network throughput (datasets transferred to reducers). Mapper 

subtasks can run independently in parallel and reduce subtasks can run independently in 

parallel, but reduces cannot start before mapper tasks are finished. [17] 

Most of the network traffic happens during shuffle phase and writing final results into disk. 

Shuffle phase takes place between map and reduce actions. Shuffle means that mapper result 

as key-value pairs are sorted by key, transferred to the reducers and then merged into reducer 

inputs. Reduce action is performed for each input key and end result is appended directly to 

disk. This result in replicated by default into 3 nodes. [18] 

In case of failure in mapping or reducing action, master node has knowledge of slave node 

heartbeat and can reschedule new task until input data is available. [16] 

2.3 Resilient Distributed Dataset 

By UC AMPLap Resilient Distributed Dataset is a fault-tolerant abstraction for in-memory 

cluster computing. On the other hand RDD is also defined as immutable collection of objects. 

[2] 

Resilient Distributed Dataset (RDD) is the core of Spark framework. It can be compared with 

Distributed Shared Memory (DSM), which has also been under extensive studies. There are 

two main differences: [2] 

• DSM gain fault tolerance by creating checkpoints and revert back in case of failures. 

This cause significant overhead, because reconstruct could interfere several other 

datasets, besides the failed one. RDD is more efficient. In case of failure during 

creating a RDD, it can be rebuilt by ancestor data. Spark preserve lineage graph for 

every RDD and therefore is possible to recalculate only lost RDD at any time 

needed. 
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• DSM pull data into global namespace and update fine-grained data. RDD act like 

MapReduce and push data calculation to local node and created by coarse-grain 

transformations that are persistent over operations. 

Memory is expensive, but efficient memory usage is a key to great performance. Latest studies 

has shown that only small fraction of data is pulled from large datasets into memory. This 

support the usage of columnar storage, because analysis is performed usually by a small number 

of attributes, compared to the all attributes in dataset. [19] 

One key advance of RDD is reusability. For example in Hadoop framework between 

MapReduce jobs is possible to reuse same data. But after user has changed the query filter or 

other conditions, then previously generated data is not reusable and should be pulled from 

source again. In case of RDD, it is reusable after creation. RDD is a key component of Spark 

framework. If analyst is using Scala interface and perform data load into RDD, which will 

preserve it in the cache, then user can query the same generated RDD with different filters and 

conditions. Same example is for end user who creates ad-hoc query via Shark (Hive on Spark), 

then during first execution, the subset of data is loaded into cache and all the next executions 

are performed on top of dataset in memory. [2] 

In Spark framework RDD-s can be created via map, filter, join operations from data on disk or 

previously created RDD. There are 2 options, that user can control on RDD – persistence and 

partitioning. First option gives user an ability to decide which RDD to keep in memory or on 

disk. Latter option manage RDD-s partitions. In case user join RDD-s using same key for 

partitioning, then join is performed in an optimized manner as map join. [20] 

RDD-s are immutable [21]. Persistent RDD can be stored as: [2] 

• in-memory storage as deserialized Java objects. This is the fastest option, because 

Java VM can access object natively. 

• in-memory storage as serialized data. 

• data on disk. This is the slowest option, but some cases faster to read intermediate 

result from disk, rather than reconstruct. 

Memory capacity is small compared to disk storage. Although in most cases all the memory is 

not utilized, but it could happen. Spark framework handles this situation in a way that during 
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creating new RDD partition memory flats out, then latest accessed RDD will be sacrificed for 

the new one. To avoid loops, then sacrificed previous RDD cannot be the same RDD as new 

one. In this case old one will be preserved and reused to gain in performance. [22] 

RDD operations on Spark are transformations and actions. First one is lazy operation that create 

new RDD structure. Latter are computations on input data and usually return result back. [2] 

Table 1. Spark framework RDD usage. 

Operation Function usage Input=>output 

Transformations map(T=>U) RDD[T]=>RDD[U] 

flatMap(T=>Sequence(U)) RDD[T]=>RDD[U] 

filter(T=>Boolean) RDD[T]=>RDD[T] 

groupByKey() RDD[(K,V)] => 

RDD[(K, Sequence[V])] 

reduceByKey((V,V)=>V)  RDD[(K, V)] ) => RDD[(K, V)] 

join () (RDD[(K, V],RDD[(K, W)]) ) => RDD[(K, 

(V, W))] 

Actions Count(), sum() RDD[T] => numeric 

collect() RDD[T] => Sequence[T] 

reduce() RDD[T] => T 

 

Spark master (driver) keep fine-grained lineage data of created RDD-s. This is essential in RDD 

model, because keeping track of provenance provide ability to recreate RDD, if needed. This 

lineage track is kept until RDD exists and this benefit promotes reusability. [19] 
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Figure 3. RDD recovery via lineage data. 

 

As described on figure, input is basis for RDD1. This could represent a fraction of data filtered 

from input file. RDD2 and RDD3 could represent next level filtering or aggregation. If RDD2 

does not fit into memory or the node fail, then RDD2 can be easily rebuilt on lineage data, 

because master node has knowledge that RDD2 was built based on RDD1. Reconstruction is 

carried out in other random available node. 

2.4 Apache Spark 

Apache Spark is UC Berkley AMPLab open source framework project, designed for big data 

analytics. It is implemented in functional programming language Scala which runs in Java VM. 

Spark fits into Hadoop Distributed File System (HDFS) framework and utilize MapReduce 

paradigm with in-memory resilient distributed datasets (RDD). This allows users to load data 

from cloud storage into memory as RDD and gain performance via in-memory data 

calculations. This approach is suitable for machine learning algorithms and ad-hoc queries for 

data analysis. Spark was Apache incubator project since June 2013 and became Apache top-

level project in February 2014. [23] 



23 

 

Figure 4. Spark cluster architecture. 

  

It is widely spread to use commodity hardware for big data analytics in cloud. Therefore 

predecessor Hadoop MapReduce and its successors have gained popularity due to high 

scalability, fault tolerance and low infrastructure costs. On the other hand this approach is 

lacking performance, which growth ratio is linear with cluster size. In my own experience I 

have seen that scaling Hadoop cluster three times larger, improves Hive query performance 3-

4 times depending on cluster load. Hadoop high latency causes discontent for analysts who are 

used to work with massively parallel processing (MPP) data analytics database. For example if 

Hive query runs in Hadoop cluster for 2 hours and same query on same dataset runs 30 seconds 

in MPP, then this is the reason to find alike solution on cloud computing framework. [22] 

Therefore this thesis utilize Spark as highly scalable and fault tolerant in-memory cluster 

computing framework. The main abstraction of MapReduce is maintained with Spark, but in-

memory resilient distributed dataset (RDD) will improve performance in iterative and 

interactive analytics approach by reusing data across multiple parallel operations. RDD is 

abstraction of read-only shared distributed memory collection, which objects are partitioned 

and distributed across nodes in cluster and lost data can be rebuilt based on lineage graph. RDD-

s detailed description is in chapter 2.3. [22] 
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Currently Hadoop is built on assumption, that query is handled as several separate jobs and 

Hadoop reads data from disk and stores intermediate results also on disk. This pattern main 

purpose is to handle fault-tolerance. If same dataset is queried repeatedly, then it is done from 

disk. In case of Spark, intermediate results can be stored in memory. In case of big datasets that 

could reach up to several terabytes or even petabytes and the question always remain, what if 

memory runs out. Caching intermediate results in memory is considered as hint. If memory 

runs out for all dataset partitions at the locality of nodes, then RDD is stored on disk. Another 

option is to recalculate dataset when it is needed again. This could be memory managing 

challenge in case of many users utilize cluster shared memory. Actually users can choose in 

Scala interface whether persist data in memory and set memory usage priority to datasets 

collected into RDD-s. This is the user choice to trade-off between fast performance and change 

of losing data and recalculate it. In addition to cache option, Scala interface allows users to 

create RDD-s, user defined functions in Java, Scala functions, define variables and classes and 

on top of that use those to define, create and launch parallel processing flow. [22] 

Resilient distributed dataset and parallel operations in cluster over those datasets are core of 

Spark. There are supported restricted types of shared variables that can be used in launched 

functions: [24] 

• broadcast variable – user defined attribute that is copied to each node. In case of one 

dataset is used in all nodes, it can boost the performance by copying it to every 

worker node only once, instead querying it separately in each machine. Broadcast 

initial value cannot change during processing. 

• accumulator – this action is useful in case of aggregating total counts and sums. 

Master node generates empty values and worker fill those and send back to master, 

who is the only machine that can read created and filled values. 

Spark keep fine-grained lineage information for calculated datasets. This is inexpensive and 

efficient fault tolerance implementation. If data partition is lost during calculation, then Spark 

has information which dataset was based on it and can calculate again only lost data. 

Furthermore, it can be done in parallel in every other node. The need for recalculation of only 

lost partition data is derived from the fact that dataset does not fit into cluster memory or node 

fails. In case of extensive failures, that kind of recovery may continue up to the initial dataset 

on disk. There are no need to revert back to checkpoint and handle this overhead. Although it 
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could be useful when provenance graphs are exploding into very complex ones. This is user 

decision in Scala interface. [22] 

Spark cluster is designed to run in low latency. It can manage tasks in milliseconds in thousand 

cores cluster. On the other hand Hadoop needs 5-10 seconds or even more to launch every task. 

[21] 

Great benefit is also not replicating backup over the network, because even 10-Gigabit network 

is much slower than modern RAM. Spark keep only one copy of RDD in memory. [19] 

If node is very slow, then backup copy is launched in other node. This is achieved by lineage 

graph. Recovery is fast. All lost data partitions can be recalculated simultaneously as many 

nodes cluster has. [19] 
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2.5 Apache Shark 

Apache Shark is data analysis system, which utilize fully Hive Query Language and cooperate 

with Spark cluster computing framework. Deep data analysis via SQL-like engine is the main 

functionality Shark offers. 

 

Figure 5. Shark architecture. 

 

Shark is compatible with Hive and therefore all Hive queries work on Shark also. Syntax is the 

same and also the usage of User Defined Functions (UDF). Shark support Scala, Java and 

Python. Even analytical functions are supported as Shark is fully Hive compatible. 

Shark runs Hive queries over Spark similar to Hive. Both parse the query and generate logical 

query plan with optimization option. Third step for Hive is to create physical query plan – that 

means MapReduce tasks. Shark on the other hand generates also physical query plan – instead 

of MapReduce jobs, Shark generates RDD transformations and actions. Generated plan is 

launched in Spark cluster as final step. 

Shark uses Spark memory store, but Shark keep data in memory as column oriented and 

compressed. This approach utilize memory efficiently and reading this data from memory gives 
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exceptional boost to performance and represent low latency in all aspects. Columnar storage is 

most efficient in data analysis, where user launch queries, which will aggregate only certain 

data columns. When physical query plan is executed by Spark engine, then Spark utilize 

distributed data loading functionality to achieve the situation, where data is queried only in 

node where data is distributed. Only selected columns are extracted from rows in file on HDFS 

and then stored in memory columnar way. Each partition is compressed separately and 

compression decision is done during loading into memory. Compression choice is made by 

decision of distinct values in column. There are no unified compression for all columns, because 

this might result inefficient compression. Compression information is stored by partition. 

Lineage graph has no knowledge about how RDD columns are partitioned, instead this can be 

considered as RDD creation parameter. 

Joining two datasets in Spark could end up very expensive. That is why Shark interface allows 

user to drive some parameter through optimal joins. Join performance is dependable of data 

distribution and partition in cluster. This is general approach in distributed systems. In Shark, 

user can apply “distributed by” clause to distribute tables with same key. If this option is used 

to join two tables, then joins are local and query parser generates map join task. If two tables, 

that are joined, are distributed by different key, then Shark query parser generates shuffle join 

task. This is more expensive approach, because it will include data repartitioning and 

redistribution (shuffling in MapReduce context). [19] 
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3. Spark implementation on Amazon Elastic Cloud 

 

3.1 Description of method 

This chapter describes launching Shark and Spark cluster on Amazon Elastic MapReduce 

(EMR). EMR is a web service, that provides Hadoop compliant cluster deployment on Amazon 

Elastic Cloud virtual server instances. After a successful cluster launch it is possible to increase 

or decrease the number of cluster nodes according to customer needs. Therefore an outline of 

steps to be taken for successful deployment is provided.  Detailed steps are provided in the 

following chapters. 

1. Create security key pair in AWS console. 

2. Create micro instance in AWS console using Linux AMI. 

3. Log into created micro instance via SSH. Configure security key pair. 

4. Download Spark source code and Scala archive. Compile Spark. 

5. Launch cluster. 

6. Log into master node and configure parameters.  

7. Start using Shark Command Line Interface and Shark Scala Shell on Spark cluster. 

8. Start Shark server service and open in master node security group port for external 

access. 

9. Connect to Shark server with data visualisation tools. 

10. Monitor activities and cluster load through provided interfaces. 

3.2 Amazon Web Services platform 

Amazon Web Services (AWS) platform is a comprehensive self-service cloud computing and 

storage cluster. In the current thesis the following services are used, that are just fraction of the 

overall AWS platform capabilities. Cloud computing means providing software, platform and 
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infrastructure as service over network. In addition to the mentioned service layers, the cloud 

can also be divided into public and private. [25] 

Amazon Elastic MapReduce (EMR) is a web service for big data processing. Amazon uses the 

Hadoop cluster paradigm to distribute and process data on Amazon EC2 instances. [26] 

Amazon Elastic Compute Cloud (EC2) is a web service for configuring and managing instances 

on AWS platform. It is possible to launch preconfigured instances in just minutes and therefore 

save time on servers managing overhead. Easy scaling capacity up and down and “pay as you 

use” model resembles the cost effectiveness of using cloud instances. EC2 dashboard manages 

servers created in the cloud where the first instance should be created. In this thesis it is Amazon 

preconfigured Linux AMI. [26] 

Amazon Simple Storage Service (S3) is a scalable and a secure storage in network. Through 

this interface it is possible to load and retrieve data anywhere over the network. Data is stored 

in buckets - the main containers for data. The purpose of containers as buckets is related to 

accessing control and namespace organizing. For different sources different buckets could be 

used as subdirectories. [26] 

AWS Identity and Access Management (IAM) enables control over AWS services and 

resources. IAM covers users’ and roles’ access management. [27] 
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Figure 6. Shark and Spark architecture on AWS platform. 
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3.3 Apache Spark cluster deployment 

There is a security and access management console in IAM. In order to access instances 

remotely over SSH it is necessary to create key pairs. The private key is stored by the user and 

public key is stored by AWS’s instance. Together these allow connecting to the instances 

securely. 

 

Figure 7. Key-pair selection in AWS console. 

 

Spark cluster deployment on EC2 is feasible with an automatic Python script provided by 

Apache Spark. It is called spark-ec2. This enables to deploy and manage a cluster. It will 

automatically setup HDFS, Shark and Spark cluster. The user can even manage several clusters 

in one cloud.   

An instance is needed for deploying a cluster. Instance setup in AWS console consists of a few 

steps with configuring options. Previously described access keys should be determined to grant 

secure access during the instance launch. 

AWS Free Tier covers t1.mirco type instance with 8GB volume and this is enough for the 

instance to start deploying Spark cluster. As soon as an AMI instance is up and running SSH 

connection should be established. The user can connect to instance by specifying public IP 

allocated to server and by using security keys. 
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Figure 8. AMI instance console. 

 

Preconditions for launching Spark cluster in test instance: 

• private key with read option only to use it on SSH connection to master and slave nodes. 

• AWS access keys as environment variables 

• Scala home directory as environment variable or as export to spark-env configuration. 

• Spark cluster installation archive 

• Scala installation archive 

Next step in AMI instance is downloading Spark source code Spark 0.8.1 and compiling it. 

[ec2-user@ip-172-31-23-111 ~]$ wget http://d3kbcqa49mib13.cloudfront.net/spark-0.8.1-

incubating.tgz 

[ec2-user@ip-172-31-23-111 spark-0.8.1-incubating]$ sbt/sbt assembly 

After a successful compilation, the spark-ec2 script is ready to be launched. The following 

script deploys a master node and 10 m1.large slave nodes. Slave nodes are used as data nodes. 

By distributing data over many computer nodes, this enables to process data simultaneously in 

each data node. [28] Parallel processing on balanced data loads is the key to fast performance. 

In total there will be 22 CPU-s with 64-bit architecture, 80 gigabytes of memory and 9 terabytes 

HDD. Instance type m1 means that this is suitable for tasks where additional memory is needed. 

It is good to set the waiting time longer than the default time to ensure that all slave nodes will 

be started in time and cluster deployment is ended successfully. [29] 

 [ec2-user@ip-172-31-23-111 ec2]$ ./spark-ec2 -k spark_test_cluster -i /home/ec2-

user/.ssh/spark_test_cluster.pem -s 10 launch spark_test -w 300 
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Table 2. Useful parameters when launching Spark cluster on Amazon Cloud. 

Parameter Explanation 

 -s Number of slaves to launch (default: 1) 

-w Seconds to wait for nodes to start (default: 120) 

-k Key pair to use on instances 

-i SSH private key file to use for logging into instances 

-t Type of instance to launch (default: m1.large) and must be 64-bit; small 

instances won't work 

-r EC2 region zone to launch instances in  (default:us-east-1) 

--resume Resume installation on a previously launched cluster 

--spot-price If specified, launch slaves as spot instances with the given maximum price 

(in dollars) 

 

After the deployment is done the master and slave nodes are described via cluster monitoring 

options. Master scheduler web user interface is accessible via http port to master node. In 

addition to this the Ganglia monitoring web interface is set up. 

 

Figure 9. Spark cluster deployment done. 

Spark cluster is deployed and ready to use. Final steps cover some Spark configurations in 

master node. 
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Figure 10. SSH connection to master node. 

 

The aim is to process data on S3 storage, therefore it is necessary to configure S3 access by 

adding S3 security credentials into to the configuration file ~/ephemeral-hdfs/conf/core-

site.xml in master node. This file contains Hadoop distribution configuration [30]. 

  <property> 

    <name>fs.s3.awsAccessKeyId</name> 

    <value>accesskey</value> 

  </property> 

  <property> 

    <name>fs.s3.awsSecretAccessKey</name> 

    <value>accessecretkey</value> 

  </property> 

Google 1-gram dataset [31] (file format: ngram TAB year TAB match_count TAB page_count 

TAB volume_count NEWLINE) is used for testing. The whole dataset is divided into 10 equal 

archives. ZIP archive is downloaded into the master machine, unzipped and gzipped to the 

compressed archive. Spark is able to read gzip format data and this way the network footprint 

is decreased. This dataset is not effective in splitting, but the size is only around 200MB per 

file. Block size by default is 64 MB, which makes it necessary to set the block size to 256 MB 

for utilizing non-extractible files in a proper way. Therefore HDFS block size parameter must 

be changed in the HDFS configuration file ~/ephemeral-hdfs/conf/hdfs-site.xml in master node 

[30]. 
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<property> 

  <name>dfs.block.size</name> 

  <value>268435456</value> 

</property> 

Block size modifications apply only to files that are added to the storage. Current files are stored 

with configuration that was applied when files were appended to the disk. 

 

Figure 11. Google 1-gram dataset on S3 storage. 

 

Amazon Web Services platform offers suitable instances, volumes and security options for 

Spark cluster deployment. In addition to that Apache Spark provides a script for cluster 

deployment on Elastic Cloud instances. Once the cluster is up and running there are two easy 

options to monitor the cluster: 

• master-public-ip:8080 to monitor master and slaves task scheduling process and task 

completion output. 

• master-public-ip/ganglia to monitor system business via system parameter, like 

memory, CPU usage etc. 
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3.4 Test description 

The idea of the testing is to access data on S3 storage and to perform operations over this dataset. 

To get the first impression of how Shark performs on Spark cluster the thesis covers the 

following test cases described below. 

Table 3. Test cases description. 

Test 

number 

Test description 

TC_1 Count total number of rows. No memory allocated. 

TC_2 Count total number of rows. Use in-memory table. 

TC_3 Count total number of rows when filter is applied. No memory allocated. 

TC_4 Count total number of rows when filter is applied. Use cached table. 

TC_5 Apply filter as function, aggregate totals and sort by highest total and return top 

10. No memory allocated. 

TC_6 Apply filter as function, aggregate totals and sort by highest total and return top 

10. Use cached table. 

TC_7 Aggregate totals and sort by highest total and return top 10. No memory 

allocated. 

TC_8 Aggregate totals and sort by highest total and return top 10. Use cached table. 

 

The purpose of the testing is to determine how the essential operators behave in Shark Shell 

and Shark querying interfaces. The outcomes of the tests are aggregated numbers that are 

validated by reading data into Postgres database and perform the same queries against the 

described dataset. Validation results are described in Appendix 4. Test cases are formulated by 

the actions that describe new dataset initial investigation. Those actions are data profiling 

activities, i.e. counting total numbers of records, aggregating numeric values per one common 

descriptive value and filtering out only the interesting rows. These actions are performed on 
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two kinds of data structures: one that is written on disk and one that is read into memory. The 

first one should show a good performance thanks to the RDD architecture and usage by Shark 

and Spark. The latter is expected to return values in a very short time (estimated time amount 

up to 10-15 seconds). Testing data consists of compressed comma separated value files stored 

on S3 as 2GB (uncompressed size is ~10 GB) total and consist of 470 million rows. 

3.5 Test execution in Shark 

The first iteration of testing is done by using Shark Command Line Interface (CLI). It connects 

directly to Shark Metastore, which is Hive compatible. It is also possible to run CLI in debug, 

info and non-verbose mode. First 2 options outputs all verbose output to the console, but 

verbose options is possible to direct into file. 

The preconditions to testing are tables that are queried during test executions. Appendix 1 

describes creation of structures. Fully detailed test executions are available in Appendix 2. 

Table 4. Test results in Shark Command Line Interface. 

Test 

number 

Memory or 

only disk 

used 

Iterati

on 

Query execution time 

TC_1 Disk 1 Time taken: 39.697 seconds 

 2 Time taken: 36.891 seconds 

 3 Time taken: 36.213 seconds 

TC_2 Memory 1 Time taken: 5.821 seconds 

 2 Time taken: 5.269 seconds 

 3 Time taken: 5.167 seconds 

TC_3 Disk 1 Time taken: 44.128 seconds 

 2 Time taken: 82.416 seconds 
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 3 Time taken: 40.393 seconds 

TC_4 Memory 1 Time taken: 4.398 seconds 

 2 Time taken: 4.089 seconds 

 3 Time taken: 4.096 seconds 

TC_5 Disk 1 Time taken: 45.991 seconds 

 2 Time taken: 52.285 seconds 

 3 Time taken: 46.481 seconds 

TC_6 Memory 1 Time taken: 11.479 seconds 

 2 Time taken: 11.509 seconds 

 3 Time taken: 11.075 seconds 

TC_7 Disk 1 Time taken: 36.296 seconds 

 2 Time taken: 39.625 seconds 

 3 Time taken: 39.714 seconds 

TC_8 Memory 1 Time taken: 2.615 seconds 

 2 Time taken: 3.023 seconds 

 3 Time taken: 2.523 seconds 

 

Test results in Table 4 show that Spark cluster processed 470 million rows in less than a minute. 

This is achieved by RDD and columnar storage usage. If data is read from disk (no memory is 

used), then aggregates run up to 50 seconds. Performance improves up to 15 times, when 

Spark’s key feature, in-memory RDD, is used. Simple count over cached dataset takes 5 

seconds and filtered aggregation up to 11 seconds. This response time is comparable to MPP 
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databases, which is nowadays broadly used in BI analytics. In case of the traditional Hadoop 

MapReduce and Hive solutions, the first minute is spent on job creation overhead and 

processing up to 500 million rows might take several minutes. The author of this thesis came 

to a conclusion based on results in Table 4, that Shark on top of Spark framework with Amazon 

S3 cloud storage is interactive for large scale data analytics in traditional SQL environment. 

3.6 Test execution in Scala Shell 

Shark Scala Shell offers a console interface for advanced end users to manipulate data in the 

Scala environment. It is possible to unify SQL executions with functional programming 

capabilities. Tests are executed according to the scenarios described in Table 3. Fully detailed 

test results are described in Appendix 3. 

Table 5.  Test results in Shark Scala shell. 

Test 

number 

Memory or 

only disk used. 

Iteration Query execution time 

TC_1 Disk 1 35 seconds 

TC_2 Memory 1 35 seconds 

2 4 seconds 

3 4 seconds 

TC_3 Disk 1 45 seconds 

TC_4 Memory 1 45 seconds 

2 4 seconds 

3 3 second 

TC_5 Disk 1 45 seconds 
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TC_6 Memory 1 45 seconds 

 

2 15 seconds 

3 15 seconds 

TC_7 Disk 1 35 seconds 

TC_8 Memory 1 35 seconds 

2 3 seconds 

 

Shark Scala Shell tests in Appendix 3 show that SQL-like operations are executable also in the 

Scala environment in a functional programming interface. This interface needs some 

on-boarding time, but in general it has more operations available from the developer’s point of 

view. The main advantage here is that the Scala interface allows to execute SQL and combine 

resulted RDD-s with functional programming operations. The Scala interface test executions 

performed as expected. Test results in Table 5 are the same and the performance is comparable 

to the Shark CLI test results in Table 4. That means cached data rows are counted, filtered and 

aggregated in no more than 5 seconds. Data spilled to disk and processed as RDD execution 

lasted less than a minute.  

3.7 Conclusion of testing  

Data profiling test experiments showed that Spark environment processed 470 million of rows 

in less than a minute. When intermediate results were read into memory, then performance 

improved up to 15 times and resulted query results in 3-15 seconds. Memory usage makes the 

Spark cluster computing framework comparable to MPP analytics databases. 
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Figure 12. Ganglia monitoring interface during test executions. 

 

Ganglia monitoring graph shows a 10 slave node cluster utilization. There are in total 22 CPU-

s and 11 nodes with master. During a 4-hour test iteration, the 80 GB memory was never used 

to the total of 100 per cent. 

3.8 Shark integration with BI analytics engine 

To connect the Shark cluster with BI visualisation tools it is necessary to set up a Shark server 

service and open an incoming port 10000. Running Shark server means executing command in 

master node: 

shark/bin/shark --service sharkserver 10000 

This command starts a service named sharkserver listening to port 10000, which should be 

opened in master security group. Otherwise external clients cannot interact with the service. 

Shark server preserves all of the created cached tables and provides convenient environment 

for the end user. There is an option to connect from master node to server with Shark Command 

Line Interface: 

shark/bin/shark -h localhost -p 10000 

To connect the Shark server from an external network it is necessary to establish a connection 

to: 

master_public_ip:<port 10000> 
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The Shark server could be connected with many tools. The only precondition here is a Hive 

connector which is usually a Hive compatible ODBC driver.  

The first attempt to connect Shark server with a visualization tool was made by MS Excel. The 

connection to Shark server was established with Claudera Hive ODBC driver. Excel pivot 

table’s “select statement” is not smart enough to make an aggregation and filter out only top 10 

results. Therefore a pre-calculated aggregate is essential for visualizing the end results. A better 

alternative could be a Microsoft compatible analysis services instance setup. 

 

Figure 13. Excel Pivot report based on TC5 

 

The second attempt to connect to Shark server was established with a visualization tool called 

Tableau. The connection was established with a built-in Claudera Hadoop connector. It is 

necessary to specify the Shark’s server IP and port number. The tableau report is generated 

based on aggregated data. Tableau itself is not able to make a Shark compatible query –it tries 

to select all data and perform aggregate data in the client’s computer instead which is not the 

aim of cluster computing. The fully functional operation of Tableau and Shark servers is 

possible when Tableau report is refreshed exactly at the time when the report has its final 

structure placed. Intermediate refreshes cause selecting all of the data and this will end up 

pulling all the data from data nodes to master and transferring data through master node to an 

external tool. This pattern results the Tableau Desktop analytics’ interface to crash and Spark 

cluster overhead with unintentional traffic. 
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Figure 14. Tableau report based on TC7 
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4. Results 

This thesis described the Spark cluster implementation method and an actual cluster was set up 

in Amazon Elastic Compute Cloud. Cluster launching implied some configuration changes, but 

in general it is feasible with a script written in Python and provided by Apache. Amazon S3 

was used for data storage and changes to HDFS block size configuration were made. Cluster 

usage was monitored by Ganglia and tasks scheduling by a web interface. 

Performance tests on the launched cluster were executed. Tests were initiated from new data 

profiling and the need for analysis. This covered data rowcounts, filtering and aggregations 

over specific columns and applied filters. The main purpose of the thesis was to introduce the 

behaviour of the Shark interface when querying large dataset (structured uncompressed 10 GB 

and 470 million rows) on AWS S3 storage. The first iteration of tests was executed in Shark 

Command Line Interface locally in master node. The second iteration of tests was executed in 

Shark Scala Shell. Both test iteration results showed that simple counts, filtering and 

aggregations against dataset took 3 to 15 seconds, with maximum memory usage, although  

never 100 per cent. This leads to the conclusion that in-memory cluster computing performs 

well. The optimal usage of memory could be explained by the fact that Shark compresses 

intermediate results in columnar store and even if the initial dataset on the disk is large, only a 

fraction of initial dataset - a queried column data - is held in memory. 

Querying dataset on disk showed results up to 15 times slower, but still ran less than one minute, 

which is a very impressive result for Hadoop MapReduce-like batch processing. Execution time 

less than a minute is acceptable for analysis, when querying a dataset of 470 million rows. This 

leads to a conclusion that Shark querying interface tests on Spark cluster resulted in an 

acceptable output in an acceptable time. Although transformations a lot more resource 

demanding operations, i.e. shuffle join were not executed, test cases described initially helped 

to understand Spark and Shark performance and usability in big data analytics. 

BI visualisation tools are not currently smart enough to perform ad-hoc queries and visualise 

results on the fly. The two tools that were tested both select all of the data at first and then 

aggregate data inside the tool ending up with no response and freezing of the tool. This is not 

the acceptable for cluster computing and therefore pre-calculated aggregates or analysis 

services are essential from end user perspective. On the other hand, Shark on Spark does not 
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provide the form of database views and all the visualised data should be pre-calculated 

aggregates, which stands for some overhead with scheduling and dependencies. 

The inferential viewpoint of the author is that Spark cluster with Shark interface is a platform 

suitable enough for SMEs to use as a data analysis platform. Cluster is easily expandable and 

user pays for the actual usage of resources. 
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5. Future work 

This thesis was on-boarding with Spark and Shark on Amazon cloud. Next tasks are related to 

the diversification of SME data analysis. These tasks could be explored in Spark cluster for 

more complex data manipulation operations like map joins and shuffle joins and finding an 

optimal solution for storing data locally on HDFS or on Amazon S3 storage. Tests based on 

one and two datasets are good for proof of concept. There are more complex tasks for building 

data warehouse solution in cloud, i.e. storage pattern and model architecture, in order to achieve 

the best performance in calculations, joins and aggregations. 

Amazon Web Services is not the only solution where to deploy Spark cluster. There are many 

other options to explore and test for an optimal approach to customer needs. For example 

Microsoft Azure cloud might be a reasonable alternative to the AWS. 

The third important and a very interesting trend is connecting Shark with different BI data 

visualisation tools available in the market. 
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6. Conclusions 

Business intelligence and business analysis is an important part in today’s business. This stands 

for proper analytics platforms and competent analysts. Nowadays the focus is on all kinds of 

insight and data is collected in a way which makes scalability a constant problem. At least in 

the near future. Cloud computing is a solution to an overhead for continuous scalability limits. 

Cloud computing means that there is no commitment to resources, one can just pay for actual 

usage and build new instances on actual need. Companies can start small and scale up to 

petabytes of data. There are no downtimes during scaling up or down. This is why the cluster 

computing framework Hadoop MapReduce is already very popular. It provides a parallel 

processing of large datasets on HDFS. Although compromises have to made when it comes to 

very high latency and overhead caused by job launching delays. 

This thesis introduced an alternative to Hadoop MapReduce - Spark cluster computing 

framework implementation method and data usage. Spark is HDFS compliant and benefits from 

in-memory calculations. Spark’s task launching has no delays without sacrificing fault 

tolerance. Spark is written in Java and supports Scala interface for experienced users. Ad-hoc 

query interface Shark benefits from Hive query parser and creates Spark MapReduce tasks. 

Shark benefits from Spark platform in-memory calculations in iterations and intermediate 

results. In addition it compresses intermediate results in a columnar way to improve 

performance during data movements. End user can execute Hive queries in Shark, which are 

very similar and as functional as the traditional SQL. 

Spark’s cluster implementation is instantly feasible with Apache Spark provided Python script 

in Amazon Elastic Cloud instance. Scalable cluster is up and running in minutes. From 

administrating point of view, there are several monitoring interfaces. Best overview from the 

on-going processes is easily accessible from logs and Ganglia active web user interface. Tests 

executed on Spark cluster show that Shark and Scala interfaces are very responsive. Low 

latency is comparable with MPP databases. This performance is achieved by using memory 

instead of traditional MapReduce disk reading and writing operations. If cache usage is 

suppressed, the query performance suffers, but still offers less than 1 minute response after 

several hundred millions of processed rows. Impressive results are mainly gained by Resilient 

Distributed Dataset usage. RDD is a coarse-grained immutable collection that takes advantage 

of memory usage and can be spilled to disk when memory runs out. By nature, RDD is lazy and 

it can be created by lineage information. If RDD is read into memory then Spark uses this 
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opportunity by all means and benefits from queries that are running against same dataset with 

different filter or grouping functions. In those cases Spark provides a continuously improving 

performance. BI analysts can slice and dice the same dataset after reading it into memory only 

once and transforming this dataset into several smaller fractions. In typical Hadoop MapReduce 

abstraction this stands for a very high latency caused by tasks scheduling overhead – continuous 

disk read and write operations during mapper and reducer tasks. Spark actions in general are 

Hadoop-like, but Spark can benefit from memory and Resilient Distributed Dataset usage. 

Spark cluster integration with data visualisation tools are still very primitive. An intervening 

layer - an analysis service platform or an aggregation layer in cluster - to produce interactive 

reporting capabilities is needed.  

In general, this thesis demonstrated that Spark cluster computing framework is suitable for real-

time data analysis. Cluster setup is feasible for small and medium size enterprises. The cost of 

the tests executed for the thesis in AWS platform was less than $100, including testing several 

scenarios over and over for more than a month. Amazon credit $50 for an educational purpose 

is very appreciated.  
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Summary (in Estonian) 

Suuremahuliste andmete analüüs Apache Spark hajussüsteemi näitel. 

Magistritöö (30 EAP) 

Erkki Suurna 

Tänapäeval kasutatakse järjest enam hajussüsteemi lahendusi suuremahuliseks andmete 

analüüsiks. Hadoop MaprReduce on hajussüsteemi üldine arvutusmudel, mis on laialt levinud 

ja mida kasutatakse eelkõige seetõttu, et skaleerub suurte andmemahtude juures. Suuri 

andmemahte töödeldakse paralleelselt süsteemis asuvates arvutites ja tõrgete ilmnemisel on 

võimalik ülesanne suunata juhislikku arvutisse, mis vajaliku töö teostab. Andmeid töödeldakse 

üldjuhul seal, kus andmed asuvad. Selle süsteemi arhitektuuriliseks miinuseks on aeglane 

reaktsioonikiirus. Apache Spark hajussüsteem kasutab Hadoopi MapReduce tööpõhimõtteid, 

aga sealjuures suudab tarbida efektiivselt serveri mälu ja hajutada vahepealsed andmehulgad 

nii, et neid saab vajadusel pärinemise järgi uuesti luua. See lähenemine on eeliseks suurte 

andmemahtude töötlemisel hajussüsteemis. 

Antud magistritöö keskendus hajussüsteemi leidmisele, millega oleks võimalik teostada 

andmete analüüsi Hadoop hajussüsteemis nii, et andmete interaktiivsed päringud oleksid 

madala latentsusega. Analüüsi tulemusena osutus valituks Apache Spark hajussüsteem, kuna 

olemuselt esindab see Apache Hadoop hajussüsteemi, kuid võrreldes Hadoopiga on Spark 10-

100 korda kiirem. See kriteerium sobib interaktiivseks andmete analüüsiks. Magistritöö 

eesmärgiks oli Apache Spark hajusüsteemi juurutamise metoodika kirjeldamine ja üles seatud 

süsteemis andmete profileerimise testide läbiviimine ning tulemuste hindamine. Testide 

eesmärgiks oli leida kinnitus Apache Spark efektiivsele ressursikasutusele ja madalale 

latentsusele. Need seatud eesmärgid leidsid kinnituse. Süsteem juurutati Amazoni 

pilvelahendusel. Selleks on võimaldatud Apache poolt Pythoni skript, millega saab süsteemi 

käivitada, kuid enne tuleb teha mõned konfiguratsiooni muudatused. Kokkuvõttes on tegemist 

hästi dokumenteeritud ning kergesti arusaadava protsessiga.  

Kaks põhilist uurimisvaldkonda olid hajussüsteemi juurutamise metoodika väljatöötamine ja 

testimine suure andmemahu peal. Juurutamise osas leidis kinnitust fakt, et see on teostatav ja 

süsteem on vastavalt vajadusele laiendatav või kitsendatav. See toetab ka eesmärki julgustada 

väiksemaid ettevõtteid pilvetehnoloogial hasjussüsteemi kasutama, kuna esialgsed 
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väljaminekud on võrreldes täisfunktsionaalse andmeaida platvormi loomise ja ülalpidamise 

kuludega minimaalsed. Andmete testimise osas leidis kinnitust fakt, et Spark hajussüsteem on 

väga kiire reaktsiooniajaga ja võrreldav tänapäevaste analüütiliste andmebaaside jõudlusega. 

Lihtsamad andmete loendused, liitmised ja filtreerimised tagastasid tulemused sekunditega. 

Andmemaht pakkimata kujul oli 10 GB ja ridade arv umbes 470 miljonit. Andmeid saab pärida 

nii Shark konsooliaknas, kui ka kasutada funktsionaalse programmeerimise keskkonda Shark 

Scala. Lisaks on veel Shark’iga võimalik ühendada andmetöötluse ja visualiseerimise tööriistu, 

mis suunavad päringud juba ise Shark liidesele. Andmete visualiseerimise tööriistad Spark 

süsteemiga väga optimaalselt ei suhelnud. Selle parandamiseks tuleks mõelda andmete analüüsi 

teenuse kasutamisele või andmete viimisele agregeeritud kujule. 

Kokkuvõtvalt võib öelda, et Spark hajussüsteemi lahendus pakub väga head jõudlust ja selle 

kasutusele võtmine on jõukohane ka väikese ja keskmise suurusega ettevõtetele. Pilvelahenduse 

puhul saab ettevõte alustada väiksema klastriga ja skaleeruda vastavalt vajadusele. Spark 

hajussüsteemis toimub suuremahuliste andmete töötlus pigem sekundite kui minutite jooksul. 

 



51 

Bibliography 

 

[1]  Amazon Web Services, “Amazon Linux AMI,” [Online]. Available: 

http://aws.amazon.com/amazon-linux-ami/. [Accessed 01 04 2014]. 

[2]  M. C. T. D. A. D. J. M. M. M. M. J. F. S. S. I. S. Matei Zaharia, “Resilient Distributed 

Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” University 

of California, Berkeley, 2012. 

[3]  Centre for Strategy and Evaluation Services, “Evaluation of the SME Definition,” 

Sevenoaks, 2012. 

[4]  Gartner Inc, “IT Glossary, Big Data,” [Online]. Available: http://www.gartner.com/it-

glossary/big-data/. [Accessed 01 04 2014]. 

[5]  Gartner Inc, “IT Glossary, Business Intelligence,” [Online]. Available: 

http://www.gartner.com/it-glossary/business-intelligence-bi/. [Accessed 01 04 2014]. 

[6]  1KeyData, “Data Warehouse Definition,” [Online]. Available: 

http://www.1keydata.com/datawarehousing/data-warehouse-definition.html. [Accessed 

01 04 2014]. 

[7]  M. C. B. B. J. B. R. D. C. R. A. H. B. James Manyika, “Big data: The next frontier for 

innovation, competition, and productivity,” McKinsey Global Institute, San Francisco, 

2011. 

[8]  M. Manoochehri, Data Just Right, New Jersey: Pearson Education, 2013.  

[9]  R. Kimball, The Data Warehouse Toolkit, Wiley, 1996.  

[10]  R. Kimball, “Newly Emerging Best Practices for Big Data,” Kimball Group, 2012. 

[11]  R. Kimball, “The Evolving Role of the Enterprise Data Warehouse in the Era of Big 

Data Analytics,” Kimball Group, 2011. 

[12]  W. Foundation, “Apache Hadoop,” [Online]. Available: 

http://en.wikipedia.org/wiki/Apache_Hadoop. [Accessed 01 04 2014]. 

[13]  D. Borthakur, “HDFS Architecture Guide,” Apache Hadoop, [Online]. Available: 

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. [Accessed 01 04 2014]. 

[14]  H. Wiki, “FAQ,” [Online]. Available: http://wiki.apache.org/hadoop/FAQ. [Accessed 

01 04 2014]. 

[15]  A. Wiki, “Apache Hadoop,” [Online]. Available: http://wiki.apache.org/hadoop/. 

[Accessed 01 04 2014]. 

[16]  Wikimedia Foundation Inc, “MapReduce,” [Online]. Available: 

http://en.wikipedia.org/wiki/MapReduce. [Accessed 01 April 2014]. 

[17]  T. White, Hadoop: The Definitive Guide, O'Reilly Media, 2012.  

[18]  B. Duxbury, “Analyzing network load in Map/Reduce,” [Online]. Available: 

http://blog.liveramp.com/2010/08/24/analyzing-network-load-in-mapreduce/. [Accessed 

01 April 2014]. 

[19]  J. R. M. Z. M. J. F. S. S. I. S. Reynold S. Xin, “Shark: SQL and Rich Analytics at 

Scale,” 2013. 

[20]  M. Zaharia, “An Architecture for Fast and General Data Processing on Large Clusters,” 

University of California at Berkeley, 2013. 



52 

[21]  M. Zaharia, “Parallel Programming With Spark,” in Strata Conference: Making Data 

Work, Santa Clara, California, 2013.  

[22]  M. C. M. J. F. S. S. I. S. Matei Zaharia, “Spark: Cluster Computing with Working Sets,” 

2010. 

[23]  Wikimedia Foundation, “Apache Spark,” [Online]. [Accessed 01 April 2014]. 

[24]  H. Karau, Fast Data Processing with Spark, Birmingham: PACKT Publishing, 2013.  

[25]  W. Foundation, “Cloud computing,” [Online]. Available: 

http://en.wikipedia.org/wiki/Cloud_computing. [Accessed 01 04 2014]. 

[26]  S. M. Jinesh Varia, “Overview of Amazon Web Services,” Amazon, January 2014. 

[Online]. Available: http://media.amazonwebservices.com/AWS_Overview.pdf. 

[Accessed 01 April 2014]. 

[27]  Amazon, “Introduction to Amazon S3,” Amazon, [Online]. Available: 

http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html. [Accessed 01 

April 2014]. 

[28]  P. Deyhim, “Run Spark and Shark on Amazon Elastic MapReduce,” Amazon, [Online]. 

Available: http://aws.amazon.com/articles/Elastic-MapReduce/4926593393724923. 

[Accessed 01 04 2014]. 

[29]  “Amazon EC2 Instances,” Amazon, [Online]. Available: 

http://aws.amazon.com/ec2/instance-types. [Accessed 01 04 2014]. 

[30]  T. G. Srinath Perera, Hadoop MapReduce Cookbook, Packt Publishing, 2013.  

[31]  Google, “The Google Books Ngram Viewer,” [Online]. Available: 

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html. [Accessed 01 April 

2014]. 

[32]  Apache Spark, “Spark Programming Guide,” [Online]. Available: 

https://spark.apache.org/docs/0.9.0/scala-programming-guide.html#shared-variables. 

[Accessed 01 April 2014]. 

 

 



53 

Appendix 1 

Table structures created in Shark Command Line Interface. 

shark>CREATE EXTERNAL TABLE english_1grams (gram string,year int,occurrences 

bigint,pages bigint,books bigint) ROW FORMAT DELIMITED FIELDS TERMINATED BY 

'\t' location 's3n://erkkisuurna/google_ngram/'; 

Time taken: 3.018 seconds 

shark> select count(1) from english_1grams; 

OK 

472764897 

Time taken: 81.905 seconds 

shark> create table grams_cached as select * from english_1grams; 

Moving data to: hdfs://ec2-54-86-17-159.compute-

1.amazonaws.com:9000/user/hive/warehouse/grams_cached 

OK 

Time taken: 153.935 seconds 
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Appendix 2 

Detailed Shark test results. 

Test 

numb

er 

Test execution Outcome Query execution time 

TC_1 select count(1) 

from english_1grams; 

472764897 Time taken: 39.697 seconds  

Time taken: 36.891 seconds  

Time taken: 36.213 seconds 

TC_2 select count(1) 

from grams_cached; 

472764897 Time taken: 5.821 seconds 

Time taken: 5.269 seconds 

Time taken: 5.167 seconds 

TC_3 select count(1) 

from english_1grams 

where year = 2008; 

6025121 Time taken: 44.128 seconds 

Time taken: 82.416 seconds 

Time taken: 40.393 seconds 

TC_4 select count(1)   

from grams_cached 

where year = 2008; 

6025121 Time taken: 4.398 seconds 

Time taken: 4.089 seconds 

Time taken: 4.096 seconds 

TC_5 select gram 

, sum(occurrences) as 

sum_occurrences 

from english_1grams 

where length(gram) = 4 

group by gram 

that 2992927085 

with 1954985010 

from 1279324656 

this 1111252699 

have 1062309274 

were 881057384 

they 770541348 

been 636350692 

Time taken: 45.991 seconds 

Time taken: 52.285 seconds 

Time taken: 46.481 seconds 
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order by 

sum_occurrences desc 

limit 10;   

more 577448203 

will 538555205 

TC_6 select gram 

, sum(occurrences) as 

sum_occurrences 

from grams_cached 

where length(gram) = 4 

group by gram 

order by sum_occurrences 

desc limit 10; 

that 2992927085 

with 1954985010 

from 1279324656 

this 1111252699 

have 1062309274 

were 881057384 

they 770541348 

been 636350692 

more 577448203 

will 538555205 

Time taken: 11.479 seconds 

Time taken: 11.509 seconds 

Time taken: 11.075 seconds 

TC_7 shark> select gram 

, year 

, sum(occurrences) as 

sum_occurrences 

from english_1grams 

where gram = 'query' 

group by gram, year 

order by 

sum_occurrences desc limit 

10; 

query 2003 199069 

query 2007 176635 

query 2005 166032 

query 2006 164645 

query 2004 161903 

query 2002 157523 

query 2008 151867 

query 2001 124849 

query 2000 92283 

query 1999 73328 

 

Time taken: 36.296 seconds 

Time taken: 39.625 seconds 

Time taken: 39.714 seconds 

TC_8 shark> select gram, year 

, sum(occurrences) as 

sum_occurrences 

query 2003 199069 

query 2007 176635 

query 2005 166032 

query 2006 164645 

query 2004 161903 

Time taken: 2.615 seconds 

Time taken: 3.023 seconds 

Time taken: 2.523 seconds 
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from grams_cached 

where gram = 'query' 

group by gram, year 

order by 

sum_occurrences desc limit 

10; 

query 2002 157523 

query 2008 151867 

query 2001 124849 

query 2000 92283 

query 1999 73328 
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Appendix 3 

Detailed Scala Shell tests results. 

Test 

numb

er 

Test execution Outcome Query execution 

time 

TC_1 scala> val testFile1 = 

sc.textFile( 

"s3n://erkkisuurna/google_ngra

m") 

testFile1: 

org.apache.spark.rdd.RDD

[String] = MappedRDD[1] 

at textFile at <console>:17 

1 second 

scala> testFile1.count() res0: Long = 472764897 35 seconds 

TC_2 scala> testFile1.cache() 

 

 

 

 

res8: 

org.apache.spark.rdd.RDD

[String] = MappedRDD[1] 

at textFile at <console>:17 

1 seconds 

scala> testFile1.count() 

 

res9: Long = 472764897 35 seconds 

scala> testFile1.count() res10: Long = 472764897 4 seconds 

scala> testFile1.count() res11: Long = 472764897 4 seconds 

TC_3 scala> val year_2008 = 

testFile1.filter(_.split("\t")(1) == 

"2008") 

year_2008: 

org.apache.spark.rdd.RDD

[String] = FilteredRDD[2] 

at filter at <console>:19 

1 second 

scala> year_2008.count() res1: Long = 6025121 45 seconds 
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TC_4 scala> year_2008.cache() res2: 

org.apache.spark.rdd.RDD

[String] = FilteredRDD[2] 

at filter at <console>:19 

1 second 

scala> year_2008.count() res3: Long = 6025121 45 seconds 

scala> year_2008.count() res4: Long = 6025121 4 seconds 

scala> year_2008.count() res5: Long = 6025121 3 second 

TC_5 scala> val testFile= 

sc.textFile("s3n://erkkisuurna/go

ogle_ngram") 

res0: 

org.apache.spark.rdd.RDD

[String] = MappedRDD[1] 

at textFile at <console>:17 

1 

scala> 

testFile.filter(_.split("\t")(0).size

==4).map(line=>line.split("\t"))

.map(line=> (line(0), 

line(2).toInt)).reduceByKey(_ + 

_,1).map{case(x,y) => 

(y,x)}.sortByKey(false).map{case

(i,j) => (j, i)}.take(10) 

res1: 

Array[(java.lang.String, 

Int)] = 

Array((that,2992927085), 

(with,1954985010); 

(from,1279324656), 

(this,1111252699), 

(have,1062309274), 

(were,881057384), 

(they,770541348), 

(been,636350692), 

(more,577448203), 

(will,538555205)) 

 

45 seconds 

TC_6 scala> val testFileCached = 

sc.textFile("s3n://erkkisuurna/go

ogle_ngram") 

testFileCached: 

org.apache.spark.rdd.RDD

1 second 
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 [String] = MappedRDD[1] 

at textFile at <console>:17 

scala> testFileCached.cache() res0: 

org.apache.spark.rdd.RDD

[String] = MappedRDD[1] 

at textFile at <console>:17 

1 second 

scala> 

testFileCached.filter(_.split("\t")

(0).size==4).map(line=>line.spl

it("\t")).map(line=> (line(0), 

line(2).toInt)).reduceByKey(_ + 

_,1).map{case(x,y) => 

(y,x)}.sortByKey(false).map{case

(i,j) => (j, i)}.take(10) 

res3: 

Array[(java.lang.String, 

Int)] = 

Array((that,2992927085), 

(with,1954985010); 

(from,1279324656), 

(this,1111252699), 

(have,1062309274), 

(were,881057384), 

(they,770541348), 

(been,636350692), 

(more,577448203), 

(will,538555205)) 

 

45 seconds 

Every next execution 

5 seconds. 

TC_7 scala> val testFile= 

sc.textFile("s3n://erkkisuurna/go

ogle_ngram") 

testFile: 

org.apache.spark.rdd.RDD

[String] = MappedRDD[1] 

at textFile at <console>:17 

1 second 

scala> 

testFile.filter(_.split("\t")(0)=="

query").map(line=>line.split("\t

")).map(line=> 

(line(1),line(2).toInt)).reduceBy

Key(_+_).map{case(x,y) => 

res0: 

Array[(java.lang.String, 

Int)] = Array 

((2003,199069), (2007

 ,176635), 

(2005,166032), 

35 seconds 
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(y,x)}.sortByKey(false).map{case

(i,j) => (j,i)}.take(10) 

(2006,164645), 

(2004,161903), 

(2002,157523), 

(2008,151867), 

(2001,124849), 

(2000,92283), 

(1999,73328)) 

TC_8 scala> val testFileCached = 

sc.textFile("s3n://erkkisuurna/go

ogle_ngram") 

testFileCached: 

org.apache.spark.rdd.RDD

[String] = MappedRDD[1] 

at textFile at <console>:17 

1 second 

scala> val 

wordCached=testFileCached.filt

er(_.split("\t")(0)=="query").cac

he() 

wordCached: 

org.apache.spark.rdd.RDD

[String] = FilteredRDD[2] 

at filter at <console>:19 

1 second 

scala> 

wordCached.map(line=>line.spl

it("\t")).map(line=> 

(line(1),line(2).toInt)).reduceBy

Key(_+_).map{case(x,y) => 

(y,x)}.sortByKey(false).map{case

(i,j) => (j,i)}.take(10) 

res0: 

Array[(java.lang.String, 

Int)] = Array 

((2003,199069), 

(2007,176635), 

(2005,166032), 

(2006,164645), 

(2004,161903), 

(2002,157523), 

(2008,151867), 

(2001,124849), 

(2000,92283), 

(1999,73328)) 

35 seconds 

scala> 

wordCached.map(line=>line.spl

res1: 

Array[(java.lang.String, 

3 seconds 
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it("\t")).map(line=> 

(line(1),line(2).toInt)).reduceBy

Key(_+_).map{case(x,y) => 

(y,x)}.sortByKey(false).map{case

(i,j) => (j,i)}.take(10) 

Int)] = Array 

((2003,199069), 

(2007,176635), 

(2005,166032), 

(2006,164645), 

(2004,161903), 

(2002,157523), 

(2008,151867), 

(2001,124849), 

(2000,92283), 

(1999,73328)) 
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Appendix 4 

Dataset validation in Postgres. 

 

Data in server in compressed archive 

[ersuurna@server google_ngram]$ ll -lha 

total 2.0G 

drwx------  2 ersuurna 680010513 4.0K Apr 21 13:18 . 

drwxr-xr-x 23 ersuurna 680010513 4.0K Apr 21 12:32 .. 

-rw-r--r--  1 ersuurna 680010513 197M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

0.csv.gz 

-rw-r--r--  1 ersuurna 680010513 197M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

1.csv.gz 

-rw-r--r--  1 ersuurna 680010513 197M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

2.csv.gz 

-rw-r--r--  1 ersuurna 680010513 196M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

3.csv.gz 

-rw-r--r--  1 ersuurna 680010513 196M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

4.csv.gz 

-rw-r--r--  1 ersuurna 680010513 197M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

5.csv.gz 

-rw-r--r--  1 ersuurna 680010513 196M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

6.csv.gz 

-rw-r--r--  1 ersuurna 680010513 196M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

7.csv.gz 

-rw-r--r--  1 ersuurna 680010513 196M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

8.csv.gz 

-rw-r--r--  1 ersuurna 680010513 196M Dec 14  2010 googlebooks-eng-all-1gram-20090715-

9.csv.gz 

 

Create Postgres external table to read data from server via GPFDIST. 

DROP EXTERNAL TABLE ersuurna.google_ngram_ext; 

CREATE EXTERNAL TABLE ersuurna.google_ngram_ext 

( 

  ngram text, 

  year integer, 

  match_count bigint, 

  page_count bigint, 

  volume_count bigint 

) 

 LOCATION ( 

    'gpfdist://xxx.xx.x.xxx:8011/googlebooks-eng-all-1gram-20090715-?.csv.gz' 

) 

 FORMAT 'text' (delimiter ' ' null '\\N' escape 'OFF') 

ENCODING 'LATIN7'; 

ALTER TABLE ersuurna.google_ngram_ext OWNER TO ersuurna; 

--/ 

 

Create database table, which will hold test data 

CREATE TABLE ersuurna.google_ngram 
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( 

  ngram character varying(100), 

  year integer, 

  match_count bigint, 

  page_count bigint, 

  volume_count bigint 

) 

WITH (APPENDONLY=true, ORIENTATION=column,  

  OIDS=FALSE 

) 

DISTRIBUTED randomly ; 

ALTER TABLE ersuurna.google_ngram OWNER TO ersuurna; 

--/ 

 

Insert data from disk to Postgres database 

insert into ersuurna.google_ngram 

select * from ersuurna.google_ngram_ext; 

NOTICE:  External scan from gpfdist(s) server will utilize 64 out of 672 segment databases 

Query returned successfully: 472764897 rows affected, 61586 ms execution time. 

analyze ersuurna.google_ngram; 

 

Test execution 

TC1&2 

test=# select count(1) from ersuurna.google_ngram;  --766 ms 

   count 

----------- 

 472764897 

(1 row) 

 

TC3&4 

test=# select count(1) from ersuurna.google_ngram where year=2008; --319 ms 

  count 

--------- 

 6025121 

 

TC5&6 

test=# select ngram, sum(match_count) as sum_occurrences from ersuurna.google_ngram 

where length(ngram) = 4 group by ngram order by sum_occurrences desc limit 10; --1165 ms 

 ngram | sum_occurrences 

-------+----------------- 

 that  |      2992927085 

 with  |      1954985010 

 from  |      1279324656 

 this  |      1111252699 

 have  |      1062309274 

 were  |       881057384 

 they  |       770541348 

 been  |       636350692 

 more  |       577448203 

 will  |       538555205 
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(10 rows) 

 

TC7&8 

test=# select ngram, year, sum(match_count) as sum_occurrences from 

ersuurna.google_ngram where ngram = 'query' group by ngram, year order by 

sum_occurrences desc limit 10; --921 ms 

 ngram | year | sum_occurrences 

-------+------+----------------- 

 query | 2003 |          199069 

 query | 2007 |          176635 

 query | 2005 |          166032 

 query | 2006 |          164645 

 query | 2004 |          161903 

 query | 2002 |          157523 

 query | 2008 |          151867 

 query | 2001 |          124849 

 query | 2000 |           92283 

 query | 1999 |           73328 

(10 rows) 
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