
DOCTORAL THESIS

Methods for Reliability
Assessment and Enhancement
of Deep Neural Networks
Hardware Accelerators

Mahdi Taheri

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2025

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

4/2025

Methods for Reliability Assessment
and Enhancement of Deep Neural
Networks Hardware Accelerators

MAHDI TAHERI

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems
The dissertation was accepted for the defense of the degree of Doctor of
Philosophy in Information and Communication Technologies on November
19, 2024

Supervisor:

Opponents:

Prof. Dr. Maksim Jenihhin,
Department of Computer Systems
Tallinn University of Technology
Tallinn, Estonia

Adjunct Prof. Dr. Masoud Daneshtalab,
Department of Computer Systems
Tallinn University of Technology
Tallinn, Estonia

Prof. Cristiana Bolchini,
Politecnico di Milano,
Milan, Italy

Dr. Leticia Bolzani Pöhls,
IHP - Leibniz Institute for High-Performance Microelectronics,
Frankfurt Oder, Germany

Defence of the thesis: January 24, 2025, Tallinn
Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Mahdi Taheri _____________________
Signature

Copyright: Mahdi Taheri, 2025
ISSN 2585–6898(publication)
ISBN 978-9916-80-250-2 (publication)
ISSN 2585–6901 (PDF)
ISBN 978-9916-80-251-9 (PDF)
DOI https://doi.org/10.23658/taltech.4/2025
Printed by Koopia Niini & Rauam

Taheri, M. (2025). Methods for Reliability Assessment and Enhancement of Deep
Neural Networks Hardware Accelerators [TalTech Press]. https://doi.org/10.23658/
taltech.4/2025

https://digikogu.taltech.ee/et/Item/9cf79768-17bc-44ec-a828-e4ccf6cf93f1

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

4/2025

Süvanärvivõrkude riistvara
kiirendite töökindluse hindamine ja

täiustamine

MAHDI TAHERI

Contents
List of Publications . 8

Author’s Contributions to the Publications . 10

Abbreviations . 12

1 Introduction . 13
1.1 Motivation . 13
1.2 Problem Formulation . 14
1.3 Research Objectives . 15
1.4 Contributions . 15
1.5 Thesis Organization . 16

2 Background . 18
2.1 Deep Neural Networks . 18
2.2 DNN Platforms . 19

2.2.1 Software Frameworks . 19
2.2.2 DNN Hardware Accelerators . 19

2.3 Reliability, Threats, Fault Models, and Evaluation 21
2.3.1 Reliability Assessment . 22
2.3.2 Reliability Enhancement . 24

2.4 Approximate Computing. 25
2.4.1 Conventional Multipliers . 25
2.4.2 Logarithmic Multipliers . 27

3 Reliability Assessment of DNN Hardware Accelerators 29
3.1 Introduction. 29

3.1.1 Fault Injection Methods . 29
3.1.2 Analytical Methods . 29
3.1.3 Hybrid Methods . 29

3.2 FS method 1: Fault Injection-based Reliability Assessment Frame-
work in Quantized DNN Accelerators . 30
3.2.1 Introduction . 30
3.2.2 Related Works . 31
3.2.3 Proposed Methodology . 33
3.2.4 Experimental Results . 36
3.2.5 Conclusion . 41

3.3 FS method 2: SAFFIRA - Software Level Systolic-Array Simulator
for Reliability Assessment of DNN Accelerators 41
3.3.1 Introduction . 41
3.3.2 Related Works . 42
3.3.3 Proposed Methodology . 43
3.3.4 Experiments Results . 47
3.3.5 Conclusion . 50

3.4 FS method 3: DeepAxe - Approximation and Reliability Trade-offs
in Dataflow DNN Accelerators . 51

5

3.4.1 Introduction . 51
3.4.2 Related Works . 52
3.4.3 Proposed Methodology . 53
3.4.4 Experimental Results . 56
3.4.5 Conclusion . 61

3.5 FE method: APPRAISER - DNN Fault Resilience Analysis Em-
ploying Approximation Errors . 61
3.5.1 Introduction . 61
3.5.2 Related Works . 63
3.5.3 Proposed Methodology . 64
3.5.4 Experimental Results . 66
3.5.5 Conclusion . 70

3.6 Hybrid Analytical and Hierarchical FI-based Reliability Assessment
for Systolic-Array-Based DNN Accelerators . 71
3.6.1 Introduction . 71
3.6.2 Proposed Methodology . 71
3.6.3 Experimental Results . 75
3.6.4 Conclusion . 77

3.7 Chapter Conclusions . 78

4 Reliability Enhancement of DNN Hardware Accelerators 79
4.1 Introduction. 79
4.2 AdAM: Adaptive Approximate Multiplier for Fault Tolerance in

DNN Accelerators . 79
4.2.1 Introduction . 79
4.2.2 Related Works . 81
4.2.3 Proposed Methodology . 82
4.2.4 Experimental Results . 87
4.2.5 Conclusion . 92

4.3 FORTUNE: A Negative Memory Overhead Hardware-Agnostic
Fault TOleRance TechniqUe in DNNs . 93
4.3.1 Introduction . 93
4.3.2 Proposed Methodology . 96
4.3.3 Experimental Results . 100
4.3.4 Conclusion . 101

4.4 Chapter Conclusions . 102

5 Conclusions and Future Directions. 103

List of Figures . 107

List of Tables . 109

References . 110

Acknowledgements. 125

Abstract . 126

6

Appendix 1 . 129

Appendix 2 . 139

Appendix 3 . 145

Appendix 4 . 159

Appendix 5 . 167

Appendix 6 . 173

Appendix 7 . 183

Appendix 8 . 191

Appendix 9 . 199

Appendix 10 . 241

Appendix 11 . 249

Appendix 12 . 261

Appendix 13 . 275

Appendix 14 . 279

Curriculum Vitae . 287

Elulookirjeldus . 288

7

List of Publications
The present Ph.D. thesis is based on the following publications that are referred
to in the text by Roman numbers.

I M. Taheri, N. Cherezova, M. S. Ansari, M. Jenihhin, A. Mahani, M. Danesh-
talab, and J. Raik, “Exploration of Activation Fault Reliability in Quantized
Systolic Array-Based DNN Accelerators,” in 2024 25th International Sym-
posium on Quality Electronic Design (ISQED), 2024.

II M. Taheri, N. Cherezova, S. Nazari, A. Rafiq, A. Azarpeyvand, T. Ghasem-
pouri, M. Daneshtalab, J. Raik, and M. Jenihhin, “AdAM: Adaptive fault-
tolerant approximate multiplier for edge DNN accelerators,” in 2024 IEEE
European Test Symposium (ETS), 2024.

III M. Taheri, N. Cherezova, S. Nazari, A. Azarpeyvand, T. Ghasempouri, M.
Daneshtalab, J. Raik, and M. Jenihhin, “AdAM: Adaptive Approximate
Multiplier for Fault Tolerance in DNN Accelerators,” in IEEE Transactions
on Device and Materials Reliability, doi: 10.1109/TDMR.2024.3523386.

IV M. Taheri, M. Daneshtalab, J. Raik, M. Jenihhin, S. Pappalardo, P. Jimenez,
B. Deveautour, and A. Bosio, “Saffira: a framework for assessing the
reliability of systolic-array-based dnn accelerators,” in 2024 27th International
Symposium on Design & Diagnostics of Electronic Circuits & Systems
(DDECS), pp. 19–24, 2024.

V M. Taheri, et al., “Appraiser: Dnn fault resilience analysis employing ap-
proximation errors,” in DDECS, pp. 124–127, 2023.

VI M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab,
J. Raik, M. Sjödin, and B. Lisper, “Deepaxe: A framework for exploration
of approximation and reliability trade-offs in dnn accelerators,” in 2023 24th
International Symposium on Quality Electronic Design (ISQED), pp. 1–8,
2023.

VII S. Nazari, M. Taheri, A. Azarpeyvand, M. Jenihhin, M. Daneshtalab, et.
al. “FORTUNE: A Negative Memory Overhead Hardware-Agnostic Fault
TOleRance TechniqUe in DNNs,” In 2024 33th IEEE Asian Test Symposium
(ATS 2024).

VIII M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“DeepVigor: Vulnerability value ranges and factors for DNNs’ reliability
assessment,” in 2023 IEEE European Test Symposium (ETS), pp. 1–6,
2023.

IX M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“A systematic literature review on hardware reliability assessment methods
for deep neural networks,” ACM Computing Surveys, vol. 56, no. 6, pp.
1–39, 2024.

8

X M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Enhancing Fault Resilience of QNNs by Selective Neuron Splitting,” in
2023 IEEE 5th International Conference on Artificial Intelligence Circuits
and Systems (AICAS), pp. 1–5, 2023.

XI M. H. Ahmadilivani, M. Barbareschi, S. Barone, A. Bosio, M. Daneshtalab,
S. Della Torca, G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo, et al., “Special
Session: Approximation and Fault Resiliency of DNN Accelerators,” in 2023
IEEE 41st VLSI Test Symposium (VTS), pp. 1–10, 2023.

XII M. H. Ahmadilivani, A. Bosio, B. Deveautour, F. F. Dos Santos, J. D.
Guerrero-Balaguera, M. Jenihhin, A. Kritikakou, R. L. Sierra, S. Pappalardo,
J. Raik, et al., “Special session: Reliability assessment recipes for dnn
accelerators,” in 2024 IEEE 42nd VLSI Test Symposium (VTS), pp. 1–11,
2024.

XIII M. Jenihhin, M. Taheri, N. Cherezova, M. H. Ahmadilivani, H. Selg, A.
Jutman, K. Shibin, A. Tsertov, S. Devadze, R. M. Kodamanchili, et al.,
“Keynote: Cost-Efficient Reliability for Edge-AI Chips,” in 2024 IEEE 25th
Latin American Test Symposium (LATS), pp. 1–2, 2024.

XIV N. Cherezova, S. Pappalardo, M. Taheri, M. H. Ahmadilivani, B. Deveautour,
A. Bosio, J. Raik, and M. Jenihhin, “Heterogeneous Approximation of DNN
HW Accelerators based on Channels Vulnerability,” in IEEE International
Conference on Very Large Scale Integration (VLSI-SOC), 2024.

Other related publications
XV M. Taheri, “DNN Hardware Reliability Assessment and Enhancement,” 27th

IEEE European Test Symposium (ETS), May 2022.

XVI A. Rezaei, M. Taheri, A. Mahani, and S. Magierowski, “LRDB: LSTM Raw
data DNA Base-caller based on long-short term models in an active learning
environment,” arXiv preprint arXiv:2303.08915, 2023.

XVII M. Taheri, M. Taheri, and A. Hadjahmadi, “Noise-tolerance gpu-based age
estimation using resnet-50,” arXiv preprint arXiv:2305.00848, 2023.

XVIII M. Taheri, S. Sheikhpour, A. Mahani, M. Jenihhin, “A novel Fault-Tolerant
Logic Style with Self-Checking Capability,” 2022 IEEE 28th International
Symposium on On-Line Testing and Robust System Design (IOLTS).

9

Author’s Contributions to the Publications
I In Publication I, I initiated the original idea of creating a methodology for

exploring quantization and reliability trade-offs in systolic-array implementa-
tions. As the main author, I wrote the simulation programs, carried out the
simulations and the analysis of the results, prepared the figures, and wrote
the manuscript.

II In Publication II, which is an extension to the conference version (III), I
proposed the original idea of creating an adaptive fault-tolerant approximate
multiplier (AdAM) tailored for ASIC-based DNN accelerators. I synthesized
and tested the designs that were used to carry out experiments, and also
was responsible for the preparation of the manuscript.

III In Publication IV, I pioneered the development of a hierarchical methodology
for hardware-accurate reliability assessment of systolic array (SA) based DNN
accelerators. As the primary contributor, I conceptualized the methodology,
developed the simulation framework, conducted extensive evaluations using
diverse benchmarks, and authored the manuscript.

IV In Publication V, I introduced the novel resiliency assessment method called
APPRAISER, aimed at enhancing the reliability evaluation of Deep Neural
Networks (DNNs) in safety-critical applications. As the principal author, I
conceived the foundational concepts, developed the methodology, conducted
comprehensive evaluations against state-of-the-art fault injection techniques,
and authored the manuscript.

V In Publication VI, I proposed and developed the DeepAxe framework, aimed
at enhancing the reliability and efficiency of FPGA-based Deep Neural Net-
work (DNN) implementations crucial for safety-critical applications. As the
first author, I led the conceptualization, development, and validation of
DeepAxe, contributing significantly to the manuscript by outlining theoreti-
cal foundations, running experiments, analyzing performance metrics, and
interpreting results to underscore the framework’s efficacy and versatility in
real-world applications.

VI In Publication VII, I proposed and developed the FORTUNE, a hardware-
agnostic fault tolerance technique for DNNs that leverages quantization to
enhance reliability without significant performance overhead. During this
work, I led the conceptualization, development, and validation of the idea,
contributing significantly to the manuscript, including running experiments,
analyzing performance metrics, and interpreting results to underscore the
technique’s efficacy and versatility in real-world applications.

VII In Publicationss VIII, and X I was the first co-author, contributing to the
original idea of the papers, participating in weekly brainstorming meetings,
providing codes for benchmarks, and helping with writing the papers.

VIII In Publication IX, I was the first co-author, contributing to Reviewing the
literature for the reliability assessment methods of DNNs, providing the trends
of published papers over different years and characterizing and categorizing
the reliability assessment methods for DNNs and also helping with writing
the manuscript.

IX In Publications XI, and XII that were joint papers with two other research
groups, I was the main author of the TalTech research team and contributed

10

by initiating the original ideas of the papers, writing the simulation programs,
carrying out the simulations and the analysis of the results, prepared the
figures, and wrote the manuscripts.

X In Publication XIII, that was a keynote presented by my supervisor, Maksim
Jenihhin, I was the main author of 7 out of 13 papers that the keynote was
based on.

XI In Publication XIV which is a heterogeneous approximation of DNN hardware
sccelerators based on channels Vulnerability, I was the first co-author from
TalTech, contributing to the original idea of the paper, participating in weekly
brainstorming meetings, providing codes for benchmarks, leading the project,
and helping with writing the paper.

XII In Publication XV, I presented my early research results at the European
Test Symposium conference. My main contributions were preparation of the
manuscript, organizing the results, and paper presentation.

XIII In Publication XVI, I was the first co-author, contributing to the original
idea of the paper, providing codes, developing novel LSTM training process,
and helping with writing the paper.

XIV In Publication XVII, which is the development of a high-accuracy network
for age estimation application, I was contributing to the original idea of the
paper, preparing simulations, and writing the papers.

XV In Publications XVIII, I developed and validated the design of a novel logic
style to enhance hardware reliability at the logic level, particularly focusing
on cryptographic algorithm implementations. As the primary author, I played
a pivotal role in conceptualizing the novel logic style, designing experimental
frameworks, conducting simulations, analyzing results, and documenting
findings.

11

Abbreviations

AI Artificial Intelligence
ASIC Application-specific Integrated Circuit
AxC Approximate Computing
BER Bit Error Rate
CMOS Complementary Metal Oxide Semiconductor
DCIS Design of Circuits and Integrated Systems
DSE Design Space Exploration
DHA DNN Hardware Accelerator
DNN Deep Neural Networks
FE Fault Emulation
FOM Figure-of-Merit
FPGA Field-Programmable Gate Array
FF Flip-Flop
FI Fault Injection
FIT Failure In Time
FS Fault Simulation
HDL Hardware Description Language
LOD Leading One Detection
LSTM Long Short-Term Memory
MAC Multiply and Accumulate
ML Machine Learning
MNIST Modified National Institute of Standards and Technology
PE Processing Element
PAP Power-Area-Performance
RTL Register-Transfer Level
QNN Quantized Neural Network
SA Systolic Array
SDC Silent Data Corruption
SER Soft Error Rate
TSMC Taiwan Semiconductor Manufacturing Company
URE Uniform Recurrent Equations

12

1 Introduction

This PhD thesis addresses the reliability assessment and enhancement of DNNs
for safety-critical applications.

This introductory chapter presents the motivation behind this thesis, formu-
lates the area’s problems, lists a summary of the main contributions, and sketches
the thesis structure.

1.1 Motivation

Deep Neural Networks (DNNs) are nowadays extensively applied to various
applications due to their impressive ability to approximate complex functions
(e.g., classification and regression tasks) via learning. Since powerful processing
systems have evolved in the recent decade, DNNs have emerged to be deeper and
more efficient and employed in an ever broader extent of domains. Meanwhile,
using DNN Hardware Accelerators (DHAs) in safety-critical applications, including
autonomous driving, raises reliability concerns [1], [2]. In compliance with ISO
26262 functional safety standard for road vehicles, the evaluated FIT (Failures In
Time) rates of hardware components must be less than 10 (meaning 10 failures
in 1 billion hours) to pass the highest reliability level [3] which requires diligent
design.

DNNs are deployed in their target application by different DHA platforms,
including Field-Programmable Gate Arrays (FPGAs), Application-Specific Inte-
grated Circuits (ASICs), and Graphics Processing Units (GPUs) [4]. Depending
on the DHA and the application’s environment, different fault types may threaten
the component’s reliability [5]. Fig. 1 demonstrates different possible fault loca-
tions in an AI accelerator and their negative effect on the object detection task.
In the example, a pedestrian has been identified as a bird, and a red light is
misclassified as a green one leading to a potentially disastrous situation. Faults
are originated from hardware, however, they can also be modeled at software
platforms for ease of study. Accordingly, the reliability of DNNs is tightly coupled
with the reliability of DHAs as faults are coming from hardware. It is worth
highlighting that the reliability in this thesis does not relate to the reliability in
software engineering or security issues e.g., adversarial attacks.

Throughout the literature, various methods of DNN reliability assessment and
enhancement are presented. Some review papers have been published on the topic
of DNNs reliability enhancement methods [4], [5], [6], [7], [8], [9]. These works
aim to formulate the reliability problem in DNNs, categorize available reliability
improvement methods in this domain, and overview the fault injection methods for
reliability assessment. Reliability assessment of DNNs is a process for evaluating
the reliability of a DNN that is being executed either as a software model or by a
hardware platform [IX]. The analysis in [9] reviews the subject of fault tolerance in
DNNs and describes different fault models and reliability improvement methods
in DNNs. Subsequent works such as [5], [4], [6] provide extensive reviews on
the reliability improvement methods for DNNs and characterize taxonomies
of different methods. Nevertheless, they do not consider the assessment and

13

evaluation methods of the reliability of DNNs. Other surveys [7], [8] have
reviewed fault injection methods for DNNs reliability assessment, with the former
work focused merely on fault criticality assessment and the latter included only a
few papers in the survey. In [IX], the first Systematic Literature Review (SLR) is
presented and dedicated to all methods of reliability assessment of DNNs.

Figure 1: Reliability threats in an example DHA and their possible impact on the output
[I].

1.2 Problem Formulation

It has been shown in several studies that the functionality of DNNs in terms of
accuracy is remarkably degraded in the presence of faults [10], [11], [12], [13], [14].
As there exist no commonly accepted reliability assessment metrics for DNNs,
they require more study to make them applicable for safety-critical applications.
Existing state-of-the-art fault-tolerant solutions rely on redundant DNNs with
implementation diversity. However, this solution is both costly and does not
contribute to facilitating reliability assessment for the overall system.

Thus, the main problem this thesis addresses is the reliable operation of
DNN hardware accelerators under fault conditions. The aim is to develop novel
assessment frameworks that accurately evaluate the impact of faults on DNNs and
propose enhancement techniques that mitigate these effects while maintaining
computational efficiency. Specifically, this thesis answers the following problems:

• Reliability concerns in DNN hardware accelerators: Hardware accelerators
like FPGAs and ASICs, commonly used for DNN applications, are prone to
faults due to process variations, aging, and environmental factors, which
can degrade system reliability.

• Lack of comprehensive fault assessment frameworks: There are insufficient
tools and methodologies to comprehensively assess the reliability of DNNs
on hardware accelerators across different fault types and abstraction levels.

14

• High resource cost of current fault-tolerant methods: Existing fault-tolerant
techniques, such as hardware redundancy (e.g., Triple Modular Redun-
dancy), are resource-intensive and not scalable for low-power or embedded
DNN applications.

• Absence of standardized reliability metrics: There is no commonly accepted
set of metrics for validating DNN hardware accelerators for safety-critical
applications, hindering their deployment in domains like autonomous driving
and healthcare.

• Under-explored trade-offs between reliability, performance, and energy
efficiency: The balance between fault tolerance, hardware performance,
and energy consumption in DNN accelerators remains insufficiently studied,
leading to inefficient system designs.

• Limited integration of approximation techniques: Approximate computing,
which could reduce resource overhead while maintaining reliability, is
underutilized in existing fault-tolerant designs for DNN accelerators.

• Challenges in fault injection scalability: Current fault injection techniques
for assessing DNN reliability are computationally expensive and do not
scale well for large-scale systems, making it difficult to apply them in
real-time or high-performance environments.

By tackling these challenges, this research contributes to the broader goal of
ensuring the reliable deployment of DNN hardware accelerators in critical real-
world applications.

1.3 Research Objectives

Considering the above problems, this PhD thesis aims to address them as follows:

• Develop and introduce innovative techniques and frameworks for assessing
and enhancing the reliability of DNNs.

• Conduct an in-depth analysis of various reliability and hardware optimization
strategies, such as quantization and approximation, to evaluate their
collective impact on DNN accuracy, reliability, and hardware performance.

• Develop and deploy mitigation techniques for DNNs at both the architec-
tural and hardware accelerator levels, including fault-tolerant designs and
redundancy methods.

1.4 Contributions

The contributions of this PhD thesis in tackling the problems explained in section
1.2 consist of:

15

• Providing a comprehensive overview of essential concepts related to DNNs,
reliability assessment, and enhancement, including DNN accelerators and
optimization techniques for edge AI. [IX]

• Proposing methodologies for assessing the reliability of DNNs at different
abstraction levels, ranging from hardware-accurate, simulation-based fault
injection approaches to emulation-based methodologies on actual hardware.
[I,IV,V,VI,VIII,X,XI,XII,VI]

• Introducing various mitigation techniques for DNNs based on the reliability
assessment results. These techniques, categorized into DNN architecture
and DNN hardware accelerator levels, include fault-tolerant designs and
algorithmic-level redundancy methods. [I, II, III, VII, X, X]

• Summarizing the key findings of the conducted research and suggesting
future directions for applying the studied techniques to other accelerators
and further research.

1.5 Thesis Organization

This thesis consists of six main chapters. Each chapter is a novel contribution to
this thesis, and the corresponding details of the chapters after the introduction
are as follows.

• Chapter 2 provides a comprehensive overview of the essential concepts
required to understand the topics discussed in subsequent chapters. It
begins with an introduction to DNNs, followed by key terminologies related
to reliability assessment and enhancement. The chapter also introduces
various DNN accelerators used for deploying DNNs on hardware. Addi-
tionally, it covers Approximate Computing and Quantization as two widely
adopted optimization techniques for edge AI.

• Chapter 3 presents a combination of various proposed methods for as-
sessing the reliability of DNNs like Fault Simulation (FS), Fault Emulation
(FE) and Hybrid methods. In general, these methods range from hardware-
accurate, simulation-based fault injection approaches to emulation-based
methods on actual hardware. The chapter offers a holistic exploration
of reliability and hardware optimization techniques, such as quantization
and approximation, and assesses their trilateral impact on DNN accuracy,
reliability, and hardware performance.

• Chapter 4 focuses on mitigation techniques suitable for DNNs based on
the results from the previous chapter. These techniques are categorized as
follows: DNN architecture and DNN hardware accelerator. They include a
negative overhead fault-tolerant approximate multiplier for MAC arrays of
DNN accelerators and a negative memory overhead technique to store the
most critical bits in the same memory element of each critical parameter
benefitting from quantization of the DNN model.

16

• Chapter 5 concludes the thesis by analysing the key findings and providing
future directions. It suggests that the techniques studied in this thesis can
be applied to other accelerators and proposes further studies to continue
the exploration of the current methods.

At the end, the research papers mentioned in the context of this PhD are
attached as appendices.

17

2 Background

2.1 Deep Neural Networks
Deep Learning (DL) is a sub-domain of Machine Learning (ML) which is the study
of making computers learn to solve problems without being directly programmed
[15]. Regarding the impressive ability of DNNs in learning, they are applicable
in various domains like image and video processing, data mining, robotics,
autonomous cars, gaming, etc.

DNNs are inspired by the human brain, and they have two major phases:
training and inference. In the training phase, which is an iterative process and
performed once, the hyper-parameters (e.g., weights, and biases) of the neural
network are updated on a determined dataset. A loss function is adopted in
the training phase that measures the difference between the expected and the
estimated output of DNN to achieve higher accuracy. Accuracy expresses the
proportion of the DNN outputs coinciding with the expected output. On the other
hand, in the inference phase, representing the DNN deployment, the network is
run several times with the parameters obtained during the training phase [15].

DNNs are constructed ofAfter neurons. Each neuron receives some activation
inputs and multiplies them by the corresponding weights. Then, it conveys the
summation of the weighted activations to its output. A set of neurons builds
up a layer that may have other additional functions, e.g., activation function
(ReLu, sigmoid, etc.), batch normalization, (max or average) pooling, etc. [15].
Equation (1) represents the function of the i-th neuron in layer l (denoted as
N l

i) with input activations from the previous layer l-1 with n outputs (denoted
as Xl−1), where W and b represent weights and bias, respectively.

N l
i = ϕ(

n∑
j=0

Xl−1
j ×W l

ij + bl) (1)

An abstract view of a neuron and a neural network is depicted in Fig. 2. As
shown, inputs are fed into the network through the input layer. The middle
layers, called hidden layers, determine the depth of the network and conduct the
function of the DNN. The output layer is where the network decides. It produces
some probabilities of the possible outputs, i.e., output confidence score, and the
class with the highest value is the top-ranked output.

DNNs have various architectures each suitable for specific applications. Nev-
ertheless, it is worth mentioning some terms which are used in this paper.
Convolutional Neural Networks (CNNs) are extensively used in classification,
object detection and semantic segmentation tasks and consist of multiple convo-
lutional (CONV) and fully-connected (FC) layers. CONV layers have a set of
two-dimensional (2D) weights, called filters, that extract a specific feature from
the input of the layer. A channel is a set of input feature maps (ifmap) that is
convolved with filters resulting in the output feature maps (ofmap) [15].

In the research area of CNNs, there are some models of networks that are
most frequently used. For instance, LeNet-5 [16], AlexNet [17], GoogLeNet [18],
VGG [19], and ResNet [20] are introduced for image classification, and YOLO

18

Input Layer Hidden Layers Output Layer

∑ φ

X1l-1

X2l-1

X3l-1

Wi2
l

Wi3
l

Wi1
l

Output

Activation

function
Summation

Ni
lbl

Figure 2: Abstract view of a simple neural network with the detail of a neuron

[21] is designed for object detection. In addition, prominent datasets that are
mostly used for training networks on image classification tasks are MNIST [22],
CIFAR [23], and ImageNet [24], and on object detection are KITTI [25], and
PASCAL VOC [26].

In addition, due to the large number of parameters and calculations in
DNNs, Quantized Neural Networks (QNNs) [27] and Binarized Neural Networks
(BNNs) [28] are introduced to reduce the complexity, memory usage, and energy
consumption of DNNs. These DNNs are the quantized versions of existing DNNs
that reduce the bit-width of their parameters and calculations with an acceptable
accuracy loss.

2.2 DNN Platforms
2.2.1 Software Frameworks
DNN software frameworks and libraries in high-level programming languages have
been developed to ease the process of designing, training, and testing DNNs.
These frameworks are widely used due to their high abstraction level of modeling
and short design time. Some of well-known software frameworks that are being
used for training the DNNs are: TensorFlow [29], Keras [30], PyTorch [31],
DarkNet [32], and Tiny-DNN [33]. All these frameworks are capable of using
both CPU and GPU to accelerate the training process.

2.2.2 DNN Hardware Accelerators
DHAs are used for the training as well as the inference phase of DNNs. They
are called accelerators due to their dedicated design employing parallelism for
reducing the execution time of the DNN, either in training or inference. DHAs can

19

be generally categorized into four classes: FPGAs, ASICs, GPUs, and multi-core
processors [34], [35].

According to the literature review of DHAs in [35], FPGAs are used more
frequently than other DHA platforms in terms of implementing DNNs, due to
their availability and design flexibility for different applications [36]. FPGAs
are programmed via their configuration bits that determine the functionality of
the FPGA. The system of FPGA-based DNN accelerators usually consists of
a host CPU and an FPGA part with corresponding interconnections between
them. In this design model, the DNN is implemented on the FPGA part and
the CPU controls the accelerator with software, while each part is integrated
with memories [36]. A typical structure of an FPGA-based DNN accelerator is
depicted in Fig. 3, which is based on HW/SW co-design, that means separating
the implementation of DNNs on the integrated CPU (the software) and FPGA
(the hardware) that are communicating with one another [37]. High-Level
Synthesis (HLS) tools which can synthesize high-level programming languages
to RTL are also used for developing FPGA-based DNN accelerators [36].

Figure 3: Typical structure of an FPGA-based DNN accelerator [36]

ASIC-based DNN accelerators are more efficient than FPGAs in terms of
performance and power consumption but less flexible in terms of applications and
require a long design time [38]. There are two general types of architectures for
ASIC-based DHA platforms: spatial and temporal [15]. Fig. 4 depicts an example
of a spatial architecture model that is constructed of 2D arrays of Processing
Elements (PEs) flowing data horizontally and vertically from input/weight buffers
to output buffers. PEs perform Multiply-Accumulate (MAC) operations on inputs
and weights representing a neuron operation in the DNN. Off-chip memories
are required to store the parameters of DNNs and save the intermediate results
from PEs. Tensor Processing Unit (TPU) produced by Google, one of the most
applicable ASIC-based DNN accelerators, is based on this type of architecture [39].

GPUs are a powerful platform for training and inferring deep networks and
are vastly used in safety-critical applications [41]. GPUs include up to thousands
of parallel cores, which make them efficient for DNN algorithms, especially in
the training phase [38]. GPUs are designed to run several threads of a program
and are also exploited to accelerate running DNNs [35]. The general architecture

20

Figure 4: An example of spatial architecture for ASIC-based DNN accelerators [40]

of GPUs is depicted in Fig. 5. There are numerous Streaming Multiprocessors
(SMs) in the GPU, each having several cores with a shared register file and
caches, while a scheduler and dispatchers control the tasks among and within
SMs and cores [42].

Figure 5: General architecture of CUDA-based GPUs [42]

Multi-core processors, e.g., ARM processors, deploy DNNs mostly for edge
processing and Internet of Things (IoT) applications [43], [44], [45]. They
facilitate DNNs with parallel computing and low power consumption and provide
a wider range of applications for DNNs.

2.3 Reliability, Threats, Fault Models, and Evaluation
Terms of robustness, reliability, and resilience are mostly used in the research
pertaining to the reliability of DNNs. These terms are often used interchangeably
and ambiguously. In the following, we present the definitions of these three terms
as applied in the current thesis:

• Reliability concerns DNN accelerators’ ability to perform correctly in the
presence of faults, which may occur during the deployment caused by

21

physical effects either from the environment (e.g. soft errors, electromag-
netic effects) or from within the device (e.g. manufacturing defects, aging
effects, process variations).

• Robustness refers to the property of DNNs expressing that the network is
able to continue functioning with high integrity despite the alteration of
inputs or parameters due to noise or malicious intent.

• Resilience is the feature of DNN to tolerate faults in terms of output
accuracy.

In this work, we are concerned about the reliability of DNNs, which refers to
the ability of accelerators to continue functioning correctly in a specified period
of time with the presence of faults. Reliability in this thesis does not relate to
the reliability and test in software engineering or security issues e.g., adversarial
attacks in which an attacker perturbs the inputs or parameters.

Faults are the sources of threatening the reliability of DNN accelerators
(see Fig. 1) that can be caused by several reasons, e.g., soft errors, aging,
process variation, etc. [1]. Soft errors are transient faults induced by radiation
that are caused by striking charged particles to transistors [46]. Aging is the
time-dependent effect of the increasing threshold voltage of transistors due to
physical phenomena that will lead to timing errors and permanent faults [47].
Process variations are alterations of transistor’s attributes in the process of chip
fabrication. As a consequence, voltage scaling may result in faults at the outputs
of transistors during their operation [48].

Faults as reliability threats are generally modeled as permanent and transient
faults [6], [5], [9]. Permanent faults result from process variations, manufacturing
defects, aging, etc., and they stay constant and stable during the run-time.
On the other hand, transient faults are caused by soft errors, electromagnetic
effects, voltage and temperature variations, etc., and they show up for a short
period of time. Nevertheless, once a faulty value from a component is read
by another component and the propagated value does not coincide with the
expected one, an error happens. Therefore, a fault is an erroneous state of
hardware or software, and an error is a manifestation of it at the output. Failure
or system malfunction is the corruption or abnormal operation of the system
which is caused by errors [9], [49], [50].

Faults may have different impacts on the output of DNNs and can be classified
based on their effects. A fault may be masked or corrected if detected or result in
different outputs compared to the fault-free execution (golden model), in which
case the fault is propagated and observed at the output. Faults observed at the
output of the system can be classified in two categories: Silent Data Corruption
(SDC) and Detected Unrecoverable Errors (DUE), depending on whether a fault
is undetected (SDC) or detected (DUE) [6], [51]. Fig. 6 illustrates this general
fault classification scheme regarding the output of systems adopted from [49].

2.3.1 Reliability Assessment
Is the process in which the target system or platform is modeled or presented, and
by means of simulations, experiments, or analysis, the reliability is measured and

22

Figure 6: The adopted fault classification based on the output point of view, as in [49]

evaluated. Reliability assessment is a challenging process and several methods
can be adopted for modeling and evaluating reliability. In general, evaluating the
reliability of a system can be performed by three approaches: Fault Injection (FI)
methods, analytical methods, and hybrid methods [52]. FI methods are exploited
to inject a model of faults into the system implemented either in software
or hardware, while the system is in simulation or being executed. Analytical
methods attempt to model the function of the system and its reliability with
mathematical equations depending on the target architecture. In hybrid methods,
an analytical model is adopted alongside an FI to evaluate the reliability. Generally,
FI methods are more realistic than analytical and hybrid methods; however, FI is
a time-consuming process with a high computational complexity [53].

In the reliability assessment using FI, it is necessary to determine the target
platform, potential fault locations (logic or memory), and the fault type (transient
or permanent). Transient faults in logic show up in one clock cycle, while in
the memory, they flip a bit that will remain until the end of the execution.
Permanent faults are modeled as stuck-at-0 (sa-0), or stuck-at-1 (sa-1), and
they exist during the whole execution. According to the selected fault model,
perturbation of the model is performed, the system is run, and the outputs are
gathered. The output of faulty execution should be compared with the one of
the golden-model to measure the impact of faults on the system.

FI allows calculating reliability metrics, e.g., Failures-In-Time (FIT), Architec-
tural Vulnerability Factor (AVF), SDC rate, Soft Error Rate (SER), cross-section,
etc. FIT is the number of failures in 109 hours, AVF is the probability of fault
propagation from a component to other components in a design, SDC rate refers
to the ratio of the outputs affected by faults, SER refers to the ratio of soft error
occurrence and cross-section is the proportion of observed errors over all collided
particles. These quantitative evaluation metrics are usually tightly coupled to
each other, yet follow a different purpose to express the reliability of a system.

Exhaustive fault injection into all bits of a platform at every clock cycle
requires an extensive simulation. Therefore, to determine how many faults could

23

be injected into the system in order to be representative statistically, a confidence
level with an error margin is presented [54]. It provides a fault rate or Bit Error
Rate (BER) for an FI experiment. The number of FI experiments’ repetitions
regarding the number of possible bit and clock cycle combinations to support
the number of injected faults determines the execution space for the FI task.

2.3.2 Reliability Enhancement
refers to the strategies implemented to address faults in DNNs. The literature
introduces numerous techniques impacting reliability enhancement across different
abstraction levels, from software to hardware. The main categories can be
summarized as follows [55]:

• Model Compression: This technique aims to reduce the model size,
allowing deployment on low-power, resource-constrained devices without
significantly compromising accuracy. Recent model compression methods
include parameter pruning, quantization, knowledge distillation, low-rank
factorization, and compact convolutional filters, among others [IX].

• Clipped Activations: Traditional activation functions have unbounded
outputs, which can lead to propagation of extreme values when faults
occur. By replacing these with bounded activation functions, the output is
constrained to a specific threshold, mitigating the impact of faults [IX].

• Fault Aware Training (FAT): This approach treats resiliency as a learning
problem, allowing the neural network to learn the effects of faults during
the training phase. Faults are introduced into the network during training
to enhance its fault tolerance [56].

• Fault Aware Pruning and Fault Aware Pruning + Retraining (FAP
and FAP+T): To address faults in DNN accelerators like the Google
TPU, this method uses two fault-tolerant techniques: Fault Aware Pruning
(FAP) and Fault Aware Pruning + Retraining (FAP+T). Pruning eliminates
unimportant connections, thereby bypassing faulty MACs. FAP+T includes
an additional retraining step to recover accuracy loss due to the pruned
MAC units, allowing the model to adapt to changes and maintain its
baseline classification accuracy [57].

• Selective Hardening: Traditional hardware redundancy methods, such as
Dual Modular Redundancy (DMR) and Triple Modular Redundancy (TMR),
involve full hardware replication. TMR, commonly used in industry, provides
the required resiliency but at the cost of increased power consumption
and significant area overhead. Alternative methods to full TMR have
been developed for various safety-critical applications to mitigate these
costs [55].

• Ensemble Learning Based Robustness: Initially proposed to reduce
overfitting and improve generalization, ensemble learning trains multiple
models on the same dataset and combines their outputs to determine
the best prediction during inference. This method enhances reliability by
averaging the predictions of individual models [58].

24

• Knowledge Distillation Based Redundancy: This training-based solution
reduces model size by transferring knowledge from a larger, more complex
teacher model to a simpler student model. This approach uses a task DNN
(teacher) and a checker DNN (student), leveraging knowledge distillation
and architecture compression to reduce the size of the checker model
without significant performance loss [59].

• Algorithm-based Fault Tolerance (ABFT): ABFT is designed to make
matrix multiplications, a core operation in neural networks, fault-tolerant.
Originally proposed in [60], ABFT can both detect and correct errors,
offering an efficient alternative to traditional TMR methods with lower
area overhead. This technique extends error correction codes (ECC) to
numeric structures like vectors and matrices.

• Arithmetic Error Codes: Falling under the ECC category, arithmetic error
codes detect and correct errors during arithmetic operations. These codes
have been utilized in various safety-critical applications to enhance system
reliability [61].

• Inter Frame Spatio-Temporal Correlation: CNNs process each input
image (frame) independently, predicting output for each. However, frames
and their predictions often correlate. By using both input and output
correlation, errors can be detected during processing. If output predictions
deviate from expected correlations, it indicates either a valid change in
input frames or erroneous predictions. This method helps detect and
correct errors by leveraging the temporal and spatial correlations between
frames [62].

2.4 Approximate Computing
The most prevalent arithmetic circuits in use are multipliers, adders, and dividers.
Dividers are less commonly used compared to multipliers and adders, and adders
contribute less to the resource efficiency of DNN hardware accelerators relative
to multipliers [63]. Consequently, this section focuses solely on approximate
multipliers.

Since multiplication consumes more resources and power than addition, the
corresponding works presented in this thesis primarily concentrate on the design
of approximate multipliers. It is important to note that approximate MAC units
are typically constructed using approximate multipliers; therefore, they are not
discussed separately in this section.

Approximate multipliers are categorized into two main groups: (1) conven-
tional approximate multipliers and (2) logarithmic approximate multipliers.

2.4.1 Conventional Multipliers
Conventional approximate multipliers can be classified into two main types: (1)
deliberately designed approximate multipliers and (2) CGP-based approximate
multipliers. These two categories are detailed below.

Deliberately-designed approximate multipliers:

25

Deliberately designed approximate multipliers are created by intentionally
simplifying the truth table of the exact multiplier. Generally, there are three
methods for generating approximate multipliers [63,64]: (1) approximation in
generating the partial products, such as the udm [65]; (2) approximation in the
partial product tree, such as the bam [66] and the etm [67]; and (3) approximation
in the accumulation of the partial products, such as the icm [68], the acm [69],
the approximate multiplier (AM) [70], and the tam [71].

The design of deliberately designed approximate multipliers is reviewed here.
The under-designed multiplier (UDM) [65] is created using an approximate

2×2 multiplier. This multiplier produces ”1112” instead of ”10012” when both
inputs are ”112” to save one output bit.

The broken-array multiplier (BAM) [66] eliminates carry-save adders for
the lsb in an array multiplier, both horizontally and vertically. This effectively
truncates the LSBs, allowing the use of a smaller multiplier for the remaining
bits.

The error tolerant multiplier (ETM) [67] splits the inputs into LSB and
msb sections, which may have different widths. For the LSB part, each bit
position is checked from left to right, and if either operand is ’1’, all remaining
bits from that point are set to ’1’. Normal multiplication is performed for the
MSB part.

The imprecise compressor multiplier (ICM) [68] utilizes an approximate
(4:2) counter to build approximate multipliers, starting with a 4-bit multiplier to
construct larger ones.

The approximate compressor-based multiplier (ACM) [69] is built using
approximate 4:2 compressors. The two proposed compressors (AC1 and AC2)
are implemented in a Dadda multiplier with four different schemes.

The approximate multiplier (AM) [70] employs a novel approximate adder
that produces a sum bit and an error bit. The error is mitigated using the error
bits. The truncated version of this multiplier is known as the TAM [71].

From these primary designs, variants are derived by modifying the configurable
parameters in each design, creating a set of 100 deliberately-designed approximate
multipliers. For instance, different designs of BAM can be obtained by removing
various carry-save adders, and the width of the MSB and LSB parts in the ETM
can be adjusted to produce different multipliers.

CGP-based approximate multipliers:
In contrast to the manually designed approximate multipliers, CGP-based

designs are automatically generated using Cartesian Genetic Programming [72].
Although various heuristic methods exist for approximating digital circuits, CGP is
used here due to its intrinsic multi-objective nature and its success in generating
other high-quality approximate circuits [73].

A candidate circuit in CGP is modeled as a two-dimensional array of pro-
grammable nodes, each representing a 2-input Boolean function such as AND,
OR, XOR, etc. The initial population of CGP circuits includes designs of exact
multipliers and circuits generated by mutating accurate designs. Single mutations,
by randomly altering the gate function, gate input connections, and/or primary
output connections, are used to create more candidate solutions. Further details
are provided in [72] and [73].

26

2.4.2 Logarithmic Multipliers
Let Z = ZnZn−1...Z1Z0 be the n-bit binary representation of a positive integer
N . Without loss of generality, let Zk, where k ≤ n, be the most significant ‘1’:in
Z. Hence, N can be represented as:

N = 2k(1+x), (2)

where : 0≤ x < 1.
Let A and B be the multiplicand and the multiplier, respectively. Following

(2), once the base-2 logarithms of input operands A and B are calculated as:

log2A = k1 + log2(1+x1), (3)

log2B = k2 + log2(1+x2), (4)

their product can be obtained by:

A×B = 2k1+k2(1+x1)(1+x2). (5)

Depending on the computation process, different values for log2A and log2B
and, consequently, different approximate products can be obtained. For example,
the Mitchell algorithm uses the following approximation [74]:

A×B ≈

{
2k1+k2(1+x1 +x2), x1 +x2 < 1, 2k1+k2+1(x1 +x2),
x1 +x2 ≥ 1.

(6)

It was found in [75] that the average error for given k1, k2, x1 ∈ [0,1), and
x2 ∈ [0,1) for the Mitchell algorithm can be expressed as:

EA =−0.08333×2k1+k2 . (7)

Hence, an error correction term c can be added to the Mitchell algorithm to
reduce the average error [75]:

A×B ≈

{
2k1+k2(1+x1 +x2 + c), x1 +x2 < 1, 2k1+k2+1(x1 +x2 + c

2),
x1 +x2 ≥ 1.

(8)
However, this modified technique increases the area and power consumption

compared to the Mitchell algorithm [75].
The approximate LM in [76] uses a so-called soa (ALM-SOA). The set-one-

adder (SOA) with k approximation bits (SOA-k) places ’1’ on the k LSBs,
thus overestimating the actual product. Since the Mitchell multiplier tends to
underestimate the actual product, the SOA compensates for this accuracy loss.
This technique is used in [76] to enhance the accuracy of the Mitchell multiplier
with minimal hardware cost.

A low-power version of the Mitchell multiplier is suggested in [77]. As an
extended work, a parameter w is introduced in [78] for a customizable LM
that considers only the most significant w bits of the operands. Subsequently,
truncation is performed after the approximate logarithms of the operands are

27

calculated using the Mitchell algorithm. This differs from truncating the input
operands before computing their logarithm, making this multiplier more hardware-
efficient but less accurate than the Mitchell multiplier in terms of both mean
and worst-case errors.

Mitchell’s method can have relatively large approximation errors depending on
the application [79]. To improve accuracy, several Mitchell-based multipliers have
been proposed. These usually divide the power-of-two intervals into multiple
regions and apply piecewise linear approximation within each region. Different
designs vary in the number of regions and the piecewise linear approximation
functions used in each region [80].

28

3 Reliability Assessment of DNN Hardware Acceler-
ators

In this chapter, we explain the reliability assessment methods and frameworks
that were introduced in [I, IV, V, VI, VIII, X, XI, and XII].

3.1 Introduction
Reliability assessment of DNNs, are categorized into three main methods: Fault
Injection, Analytical, and Hybrid.

3.1.1 Fault Injection Methods
The works based on FI evaluate the reliability of DNNs by fault injection campaign.
There exist several taxonomies for the fault injection approaches in the hardware
reliability domain [7], [52], [53], [81], [82].In general, FI methods are categorized
into three approaches of fault injection as follows:

• Fault Simulation (FS): DNNs are implemented either in software by
high-level programming languages or Hardware Description Languages
(HDL) and faults are injected into the model of the DNN. In the former
case, some works consider a DHA model in their software implementations
while others do not. We divide works on this approach into hardware-
independent, hardware-aware, and RTL model platforms. RTL models
represent ASIC-based DHAs.

• Fault Emulation in Hardware (FE): Research works on this approach
implement and run DNNs on a DHA (i.e., FPGA, GPU, or processor)
and inject the faults into the components of the accelerator by a software
function, FI framework, etc.

• Irradiation: DNN is implemented on a DHA (i.e., FPGA, GPU, or TPU)
placed under an irradiating facility to inject beams onto it.

Most of the works on DNNs’ reliability assessment use FI methods [IX].

3.1.2 Analytical Methods
Works relying on an analytical method for estimating DNNs’ reliability attempt
to determine how parameters and neurons of a DNN affect the output based
on the connections of neurons and layers. Therefore, they analyze the structure
of DNNs and provide a model for the impact of faults on the outputs to find
more critical and sensitive components in the DNN. Hence, they can evaluate
the reliability of DNNs by means of vulnerability analysis derived by analyses,
and eliminate the complexity of simulating/emulating the faults in reliability
assessment.

3.1.3 Hybrid Methods
Both, fault injection and analytical methods are used in this category of works
to take advantage of both. In this regard, analytical methods can provide some
mathematical models in addition to a straight-forward fault injection into the

29

system for reliability evaluation, so that metrics of reliability evaluation can be
obtained with less complexity than extensive FI experiments and more realistic
than analytical methods.

In this thesis, we categorized the publications presented in this chapter into
two main groups: Fault injection and Hybrid methods. In FI based category, the
subsections are grouped under Hardware-Aware Fault Simulation and FPGA-based
Fault Emulation methods. The works will be presented accordingly.

3.2 FS method 1: Fault Injection-based Reliability Assess-
ment Framework in Quantized DNN Accelerators

This section is based on the following paper: [I]

3.2.1 Introduction
The reliability of DNN accelerators expresses their ability to produce correct
outputs in the presence of hardware faults originating from various phenomena,
e.g., radiation-induced soft errors in memory or logic [XI]. DNNs are known to
be inherently fault-resilient due to the high number of learning process iterations
and several parallel neurons with multiple computation units. Nevertheless, faults
may impact the output accuracy of DNNs drastically [XVII], and in the case of
resource-constrained critical applications, the reliability of DNNs is required to
be evaluated and guaranteed [83]. The complexity of such evaluation motivates
an automated toolchain with quantization and reliability analysis to support
Design Space Exploration (DSE) for DNN accelerators already at the early design
stage, i.e. starting from a high-level description, followed by providing an FPGA
prototype for the selected design.

While the protection of weights stored in ROM can be ensured through error
correction codes (ECC) or similar protection techniques, the dynamic nature of
activations, which are stored for a short period of time in usually unprotected
memories, poses a critical concern. Thus, it is crucial to thoroughly investigate
the consequences of faults in the network’s activations.

This work presents a framework containing a fully automated toolchain to
perform a study on the impact of quantization on network accuracy, hardware
performance, and reliability drop in the presence of activation faults (Fig. 1) in
systolic-array-based FPGA accelerators. To the best of our knowledge, this is the
first framework that holistically considers those parameters. A novel lightweight
mitigation technique is proposed and integrated into the framework to study
potential trade-offs of compensating the reliability drops.

The proposed methodology enables the analysis both at the level of the
network model and at the level of individual layers of the network.

This framework is empowered by techniques for quantizing the networks and
restricting the activation ranges to be limited to a certain level throughout the
whole network execution by applying an extra scaling function in the network
inference. This framework uses the high-level description of a DNN as an input
and is capable of providing a transient-fault-resilient systolic-array-based FPGA
implementation of the network utilizing the design parameters selected by the
DSE. The main contributions in this work are as follows:

30

• A methodology for holistic exploration of quantization and reliability trade-
offs in systolic-array implementation that enables assessing the trilateral
impact of quantization on accuracy, activation fault reliability, and hardware
performance.

• A fully-automated framework that is capable of applying quantization-aware
training, post-training quantization, range-restriction, fault simulation, and
implementing the whole methodology down to hardware implementation
to measure actual hardware parameters like area, latency, etc.

• A lightweight and effective protection technique is developed and adopted
in the framework toolchain to provide the final reliable systolic-array-based
FPGA implementation of the network

• Demonstration and analysis of the results on the impact of quantization on
reliability, hardware performance, and accuracy of the neural networks due
to the transient faults in the activations for two well-known benchmarks.

The rest of this subsection is organized as follows. Related works are discussed
in 3.2.2, the methodology and framework are presented in 3.2.3, the experimental
setup and results are provided in 3.2.4, and finally, the work is concluded in 3.2.5.

3.2.2 Related Works
The related works are categorized in this subsection. 3.2.2.1 DNN reliability
and quantization studies

Several works examine the impact of different fault models on the basis of a
number of layers in DNNs and different data types [84]. Investigation into the
effects of data precision is done in [85], where authors conducted a comparison of
the resilience of FP16, FP32, and FP64 in the context of Matrix Multiplication.
Their findings indicated that the reduction of precision not only enhances GPU
performance and efficiency but also contributes to its overall resilience.

Another study [86] involved the deployment of MNIST Convolutional Neural
Networks (CNNs) on FPGAs utilizing FP32, FP16. The results of the experiment
demonstrated that decreasing the data precision in CNNs can lead to a substantial
enhancement in overall resilience. This improvement was attributed to the
reduced memory usage. Furthermore, [87] noted that the application of binary
quantization to weights in convolutional layers results in decreased vulnerability
factors, although it does increase the criticality of faults. [88] showed that
the impact of faults is higher in most significant bits (MSBs) and, with more
aggressive compression, the most significant bits are more probable to be exposed
to faults. The aforementioned works show that quantization from higher data
representations like FP32 down to INT16 has a positive impact on the performance
and overall resilience, though on the lower quantization ranks this matter should
be studied and is not always impacting positively on the resilience

In [89], it is shown that in some cases, the impact of the faults in the weight
memories of a DNN can be negligible. Even though in the above-mentioned
works, impact of faults (soft errors modeled as bit flips) in the weights of a
DNN during inference is examined, to further enhance our comprehension of the
impact of quantization on the reliability of DNNs in systolic-array-based DNN

31

accelerators, this work is enriched with an FI engine capable of injecting faults
into the activations of the DNNs in the systolic architecture.
3.2.2.2 Fault mitigation techniques The process of quantization and outlier
regularization offers the potential to restrict the numerical range within a DNN,
thereby eliminating the possibility of generating excessively large values due to
faults [90], [XVIII].

Hoang et al. analyzed how various boundary values affect the network’s
accuracy. They have found that the best boundary values for each layer are
not necessarily the maximum values of the layers’ activations [91]. Hence, they
propose an interval search algorithm to find appropriate boundary values for the
ReLU activation function at each layer, named FT-ClipAct. The proposed clipped
activation function maps their outputs to 0 if activations exceed the boundaries.
Although these methods can decrease the effect of faults in DNNs, they remove
a significant portion of non-zero activations by replacing them with zero, leading
to an accuracy drop in high error rates. It is also noteworthy that the mentioned
methods do not consider low integer quantization and are mostly working with
FP32 and FP16. In this work, we introduce a novel lightweight range-checking
circuit that, despite the other works, can consider the maximum values of the
layers’ activations and replace the out-ranged values with either lower- or upper-
bound to avoid fault propagation and also avoid removing a significant portion of
non-zero activations by replacing them with only zero. This protection technique
is employed in the DNN accelerator hardware generation step of the framework
to provide the user with a prototype of the reliable accelerator.
3.2.2.3 DNN hardware accelerator frameworks

The advantages of implementing and deploying DNNs on FPGAs are advocated
in several recent works. The existing FPGA-based toolchains to map CNNs
are presented in the surveys [36,92–94]. The FINN framework [95] is released
by Xilinx for the exploration of quantized CNNs’ inference on FPGAs that also
provide customized data-flow architectures for each network.

Heterogeneous systems are another design strategy in the automated
toolchains that propose hardware/software co-design [96–98]. In these designs,
computational units, e.g., adders and multipliers, are mainly implemented on
Programmable Logic (PL) that is controlled by a control unit in a CPU using a
dedicated framework, e.g., OpenCL [99]. In this work, we introduce a hardware
generation step as part of the framework, to explore DNN inference on an FPGA-
based accelerator with a customizable systolic array. It seamlessly integrates with
the PYNQ framework [100], leveraging the original PYNQ bootable image. This
integration enhances versatility and compatibility, enabling users to implement
their network on different FPGA devices supporting PYNQ. Furthermore, the
reconfigurable systolic array implementation introduced in this step provides
flexibility and scalability. Users can customize this step to meet their specific
network requirements by providing trained parameters and network architectures,
resulting in efficient and high-performance DNN inference.

To the best of our knowledge, none of the previous works explored the impact
of using different levels of full quantization (weights, activations and biases) of
a DNN in the presence of transient faults in the activations on the reliability,
accuracy, and delay/resource utilization of the target DNN accelerator.

32

The approach proposed in this work goes beyond the state of the art by
establishing a fully automated tool for enabling efficient quantization in FPGA-
based DNN accelerators aimed at safety-critical applications. The proposed
framework contains a high-level simulator to study the impact of quantization
on the reliability and accuracy of the network by considering the hardware
architecture, with and without protection techniques, followed by an efficient
and user-friendly heterogeneous FPGA implementation of the selected DNN
configuration.

3.2.3 Proposed Methodology

Figure 7: DeepAxe proposed methodology flow

Fig. 7 illustrates the methodology flow established in the toolchain for reliabil-
ity and hardware performance analysis of quantized DNN hardware accelerators.
This framework takes the DNNs’ Pre-trained model description as the input. The
design, training, and testing of the DNNs are performed in Python. Quantization-
aware training and the Post-training quantization, Range extraction and DSE
steps are seamlessly integrated into the same environment and are responsible
for extracting the required data for the hardware generation step. This step is
responsible for the hardware implementation of the selected configuration to
measure actual hardware parameters like area, latency, etc.
3.2.3.1: Quantization-aware training. For this purpose, a full quantization
is implemented, targeting all activations, weights, and biases. The framework
first takes the description of the network provided by the user and then uses
the TFlite library for quantization-aware training. The user can replace their
preferred quantization library with the toolchain for this step. The main output
of this step is the quantized network’s parameters (weights and biases) and
network architecture.
3.2.3.2: Post-training quantization. In the post-training quantization step,
the user can define any further quantization that can be applied to the network
with a negligible accuracy loss depending on the level of the quantization. This
framework supports quantizing the network down to 4-bit INT. The output
accuracy of the generated network is also provided at this step and is kept as a
baseline for the further steps of the methodology. For this step, the following

33

algorithm is applied to the network parameters:
The mapping equation is defined as:

x̃ = clamp
(⌊x

S

⌋
+Z; qmin, qmax

)
(9)

S = xmax−xmin
2b−1

(10)

Where Z is the offset defined as zero-point, xmax and xmin represent the max-
imum and the minimum value in the vector. The quantization range [qmin, qmax]
is determined by the bit-width. We focus solely on uniform unsigned symmetric
quantization, as it is the most commonly employed quantization setup. Hence,
qmin is equal to 0, and qmax is equal to 2b−1, where b denotes the bit-width,
determining the number of integer grids.
3.2.3.3: Inference and range extraction. In this step, after running the
inference, the ranges of the activations are extracted for evaluation and reliability
study. The ranges are extracted based on the set of validation data, and then
the framework extracts the next set of ranges for each layer based on the test
data and validates the extracted data correspondingly.
3.2.3.4: Design Space Exploration.

3.2.3.4-A: Fault simulation. Reliability analysis relies on a Fault Injection
(FI) in a systolic-array-based simulation of the network in Python, assuming
the single bit-flip faults in the activations. While the multiple-bit fault model
is more accurate, it requires a prohibitively large number of fault combinations
to be considered. Fortunately, it has been shown that high fault coverage
obtained using the single-bit model results in a high fault coverage of multiple-bit
faults [101]. Therefore, a vast majority of practical FI and test methods are
based on the single-bit fault assumption. However, this framework is capable of
applying multiple-bit-flips as a fault model depending on the user demand.

The reliability analysis step applies the accuracy drop comparison of the
network-under-test as one of the assessment metrics. In addition, the framework
assesses the reliability of the DNN by comparing the output probability vector of
the golden run (i.e. the DNN that behaves as expected, without faults) and the
faulty run (i.e. the DNN that includes the fault). These metrics involve the SDC
(Silent Data Corruption) rate. Specifically, one of the two metrics is “absolute”,
and the other one is “relative”. The SDC rate is defined as the proportion of
faults that caused misclassification in comparison with the golden model.

• SDC-1: Fault caused a misclassification in the top-ranked output class.

• SDC-5: Fault caused the top-ranked element not to exist in the top-5
predicted output classes.

• SDC-10%: Fault caused a variation in the output confidence score of the
top-ranked output class more than 10% compared to the golden model.

After choosing the preferred quantization in 3.2.3.2, the designer can go
through the systolic-array-based fault injector provided for the reliability evaluation
of the Quantized DNN (QDNN). The final design is fed to the next step hardware

34

generator for the DNN hardware accelerator generation and hardware performance
evaluation process.

3.2.3.4-B: Fault mitigation. Analyzing the output values of the network’s
intermediary layers post-training reveals identifiable upper and lower bounds for
the neuron’s output values. Leveraging this characteristic, we can ensure that
any out-of-range outputs are reassigned to the respective upper or lower-bound
values. This approach can be effectively implemented using specialized hardware
units, as outlined below.

Out-range Error Detection: If the neuron’s output value exceeds the prede-
termined upper or lower bound, it indicates a fault in the neuron’s input values.
To address this, a comparison is made between the neuron’s output value and
the two pre-established threshold values. For effective error detection, this work
introduces the following strategy.

For each layer, we store two values of upper bound and lower bound as the
reference threshold for the out-ranged values. The output of the MAC (Multiply-
Accumulate) unit is compared with the threshold values using two subtractors
(negative values indicate that the output is beyond the threshold). The result of
this comparison defines the final output (Fig. 8). The general overhead of this
mitigation technique is two stored values for each layer, and two subtractors to
compare the MAC output value with the range threshold values and provide the
select signal for the MUX to make the decision.

Three variations of this protection technique were implemented in the software
to provide users with insights into the reliability enhancements this framework
offers:

1. Method 3.2-1: When out-of-range value is detected it is replaced by the
lower bound (min value).

2. Method 3.2-2: When out-of-range value is detected it is replaced by the
upper bound (max value).

3. Method 3.2-3: When out-of-range value is detected it is replaced by
either lower or upper bound depending on the sign of the MAC output.

This protection technique is designed for easy replacement with any other
protection methods (i.e. FT-ClipAct [91]) within this framework toolchain
without compromising the overall versatility of the framework.
3.2.3.5: Hardware generation.

At this step, a systolic-array-based QNN accelerator for FPGA SoC is generated
based on the parameters of the quantized network provided by 3.2.3.4 to assess
hardware utilization and requirements.

The following tasks are executed at this step:
1. Network parameters are analyzed to determine the size of the systolic array,

bit precision, and AXI bus bandwidth for data transfer. This analysis takes into
account the number of kernels and feature map sizes. The goal is to optimize
hardware accelerator performance for the generated network and improve overall
efficiency.

2. The board is configured with the PYNQ bootable image. PYNQ provides
Python and Jupyter Notebook support to AMD-Xilinx embedded devices. In-
cluded Python APIs allow to control both processing system and programmable

35

Figure 8: Proposed lightweight mitigation technique

Table 1: Lenet-5 layer-level reports of fault criticality (%) based on FI for different
quantized networks

% of critical
faults Unprotected Protected with Method 1

Lenet-5 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit
conv1 0.31 0.52 1.37 3.27 9.12 0.01 0 0.49 2.82 9.06
conv2 0.29 0.46 1.33 3.62 9.38 0.07 0.08 0.84 3.42 8.49

fc1 1.67 2.03 5.65 14.88 21.15 1.04 0.9 2.14 6.67 11.21
fc2 1.6 2.41 5.88 16.31 25.5 1.24 1.23 1.98 4.79 13.68

% of critical
faults Protected with Method 2 Protected with Method 3

Lenet-5 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit
conv1 0.3 0.6 1.45 1.69 3.76 0 0 0.37 1.46 3.49
conv2 0.21 0.57 1.27 2.45 4.71 0.07 0.08 0.51 1.71 4.08

fc1 1.72 1.78 4.91 9.23 11.13 0.82 1.18 1.82 3.2 4.53
fc2 1.59 2.22 5.94 17.42 19.41 0.97 1.26 2.24 3.09 5.07

logic (FPGA). PYNQ setup was selected to provide the users with a familiar
interactive Python environment.

3. Network weights and biases are loaded on the board as NumPy array files.
The network is described using a provided Python package that interfaces with
the accelerator.

4. FPGA is configured from the Jupyter Notebook with the generated
accelerator. Then, inference can be run using the provided input data.

3.2.4 Experimental Results
Experimental results are reported in this subsection as follows: 3.2.4.1 Experi-
mental setup

Two networks are studied in this work: Lenet-5 and AlexNet. Lenet-5 is trained
on the MNIST dataset, and AlexNet is trained on the CIFAR-10 dataset. Both
networks are trained according to the 3.2.3.1 methodology using quantization-
aware training. Lenet-5 is trained using 16-bit INT data type, AlexNet is trained
using 8-bit INT. For the study, different levels of quantization are applied in
3.2.3.2 using post-training quantization.

Simulations are performed on 2 × Intel Xeon Gold 6148 2.40 GHz (40 cores,

36

Table 2: AlexNet layer-level reports of fault criticality (%) based on FI for different
quantized networks

% of critical
faults Unprotected Protected with Method 3

AlexNet 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit
conv1 0.5 0.79 1.76 4.03 8.81 0.05 0.06 0.52 1.87 3.56
conv2 0.58 1.05 1.35 1.66 4.11 0.03 0.03 1.035 1.39 3.31
conv3 1.46 1.47 5.11 11.48 23.91 0.07 0.08 1.14 1.29 4.38
conv4 0.99 1.63 2.46 7.13 14.26 0.03 0.04 1.30 4.13 5.17
conv5 0.90 2.10 3.69 7.82 14.31 0.04 0.09 1.61 3.44 5.17

fc1 3.02 4.95 8.15 16.38 31.19 0.14 0.20 1.90 5.11 8.66

Table 3: SDC report for two unprotected Lenet-5 examples with different quantization
levels

Metric (%) 16-bit 8-bit
SDC-1 3.18 5.24
SDC-5 28.04 37.26
SDC-10% 14.30 17.65

80 threads per node) with 96 GB RAM. To speed up the simulation process, the
framework supports multi-thread parallelism.

To show the hardware characteristics of the output QDNN, studied networks
are implemented on the Zynq UltraScale+ ZCU104 Evaluation Board (xczu7ev-
ffvc1156-2-e).
3.2.4.2 Fault simulator The fault simulator that is used in 3.2.3.4 calculates the
sufficient number of faults required for the reliability analysis. QDNNs generated
by 3.2.3.2 are validated by means of fault injection over the test set.

Random fault injection. According to the adopted fault model, a random
single bit-flip is injected into a random activation in a random layer of the network,
and the whole test set is fed to the network to obtain the accuracy of the network.
This process is repeated several times to reach an acceptable confidence level,
which depends on the number of neurons and data representation bit length
based on [54]. This work provides an equation to reach 95% confidence level
and 1% error margin. The framework adopts the formula presented in this work
and provides a sufficient number of repetitions required for reliability analysis.
3.2.4.3 Validation results

The accuracy results for the quantized networks are reported in Table 4.
Further, fault injection is applied on each network automatically as part of the
defined configuration of the framework, and reliability drop and fault criticality
are reported in Fig. 9 and Table 1 for the Lenet-5 and in Fig. 10 and Table 2
for AlexNet. Reliability drop is defined as the percentage of accuracy loss in
the presence of the faults in the activations in a systolic-array-based simulation
model of the network. Fault criticality is defined as percentages of the faults that
show a negative impact on the network accuracy and lead to misclassification.
In Fig. 9 and Table 1, the results for all versions of the proposed protection
technique are documented for Lenet-5. Table 2, only the network protected with
Method 3 is compared with the unprotected network for AlexNet, and in Fig.

37

Table 4: Model-level design space exploration results for Lenet-5 and AlexNet

Network BP GIOPS Resource utilization Accu- Reliability HW utilization (LUT) Fault criticality improvement, %
LUT FF DSP racy, % improvement, % M1 M2 M3 M1 M2 M3

Lenet-5

16 0.058 5298 12,892 9 95.41 — 144 144 576 — — —
8 0.079 3475 7003 9 94.02 64.33 72 72 288 57.78 8.75 65.61
7 — — — — 93.93 67.95 68 68 135 71.24 14.95 67.74
6 — — — — 93.52 71.90 63 63 99 57.25 6.16 65.91
5 — — — — 92.49 81.17 68 68 81 36.30 31.34 66.86
4 0.087 2114 3865 9 89.65 81.17 36 36 63 25.85 44.92 69.20

AlexNet

16 0.338 16,654 35,503 64 — — 1024 1024 2048 — — —
8 0.465 12,138 20,539 64 73.03 92.96 512 512 1024 — — 94.27
7 — — — — 72.26 89.79 480 480 960 — — 95.19
6 — — — — 72.11 73.72 448 448 704 — — 58.59
5 — — — — 70.69 66.32 480 480 576 — — 54.13
4 0.562 6428 10,067 64 69.15 78.07 256 256 448 — — 60.08

38

10 the reports the reliability drop without the protection techniques to show
the impact of faults in activations, on different quantization level and layers of
an AlexNet network. Fig. 11 shows the reliability drop of different quantized
versions of AlexNet and LeNe-5 in the presence of different protection techniques.

8 7 6 5 4
92

94

96

98

100

Quantization level (bits)

Re
lia

bi
lit

y
dr

op
(%

) Conv1

8 7 6 5 4
92

94

96

98

100

Quantization level (bits)

Conv2

8 7 6 5 4

85

90

95

100

Quantization level (bits)

Re
lia

bi
lit

y
dr

op
(%

) FC1

8 7 6 5 4
80

85

90

95

100

Quantization level (bits)

FC2

Unprotected DNN Protected with Method 1
Protected with Method 2 Protected with Method 3

Figure 9: Lenet-5 layer-level reports of reliability drop (based on FI for different
quantized networks)

From the previous works [86], it is evident that the reduction in memory
size and quantization can lead to enhanced resilience and mitigate the impact
of weight faults due to a reduced memory footprint. However, according to
the presented charts, quantization may simultaneously heighten the network’s
vulnerability to faults in activations and logic. This is particularly crucial in
lower precision networks, where even minor bit alterations can have significant
ramifications. That is why reliability studies in the DNNs should be done for
each QDNN to ensure the impact of quantization on the network’s reliability.

Fig. 9 shows that protection Method 3 is capable of improving the reliability
of the network in the presence of a fault for more than 34.23% in the worst case
for Lenet-5. These numbers are calculated based on the following equation:

% of Improvement =
(

New Value−Old Value
Old Value

)
×100

The same results are reported for AlexNet in Table 4, which shows an improvement

39

8 7 6 5 4
80

85

90

95

100

Quantization level (bits)

Re
lia

bi
lit

y
dr

op
(%

)

Conv1 Conv2 Conv3
Conv4 Conv5 FC1

Figure 10: AlexNet layer-level reports of reliability drop (%) based on different quanti-
zation levels (unprotected design)

of more than 51.79% in the worst case. Improvements in fault criticality for both
networks at the model level are also reported in Table 4, which demonstrates the
positive impact of the protection technique on reducing the criticality of faults
in both networks. These data also showcase the increasing fault criticality in
different networks by increasing the level of quantization. Based on the results
reported in Table 4, protection Method 3, which shows the best results for
improving reliability among all of the proposed protection techniques, introduces
less than 10% overhead compared to the LUTs required for the unprotected
network implementation. Meanwhile, full protection of the network with TMR
(Triple Module Redundancy) introduces more than 200% hardware overhead.

The fault injection procedure is performed for different quantizations and
different versions of the proposed protection technique, and the accuracy drop,
due to quantization and fault injection, is profiled. Further, in Table 3, SDC
metrics of two examples of quantized Lenet-5 are reported. It can be seen that
these two networks are susceptible to injected faults. Specifically, the SDC-10%
and SDC-5 are very high: on average, about 3.18% of the time the faulty
inference misclassified the input in the 16-bit network and 5.24% in the 8-bit
network; furthermore, in 28.04% cases for the 16-bit network and 37.26% cases
for the 8-bit network, the expected class is not even in the TOP-5 predictions.
In addition, it can be observed that the 16-bit quantized network shows better
performance in the presence of faults compared to the 8-bit network. In general,
these results show that the DNNs used in this experiment are not suitable for a
safety-critical application.

Hardware resource utilization and inference latency in GIOPS (Giga Integer
Operations Per Second) for different quantization levels are reported in Table 4
alongside accuracy, reliability improvement due to the quantization, and hardware
overhead and fault criticality improvement for fault mitigation techniques. These
results of model-level design space exploration are provided for the user to
understand the trade-off between reliability, accuracy, and required computational

40

8 7 6 5 4
90
92
94
96
98

100

Quantization level (bits)

Re
lia

bi
lit

y
dr

op
(%

) AlexNet

8 7 6 5 4
90
92
94
96
98

100

Quantization level (bits)

Lenet-5

Unprotected DNN Protected with Method 1
Protected with Method 2 Protected with Method 3

Figure 11: Model-level reports of reliability drop (%) based on different quantization
degrees for AlexNet (left) and LeNet-5 (right)

resources.

3.2.5 Conclusion
This subsection presents a comprehensive methodology for exploring and enabling
a holistic assessment of the trilateral impact of quantization on model accuracy,
activation fault reliability, and hardware efficiency. A fully automated framework
is introduced that is capable of applying various quantization techniques, fault
injection, and hardware implementation, thus enabling the measurement of
crucial hardware parameters like area and latency. Moreover, this subsection
proposes a novel lightweight protection technique integrated within the framework
to ensure the dependable deployment of the final systolic-array-based FPGA
implementation. The experiments on established benchmarks demonstrate the
analysis flow and the profound implications of quantization on reliability, hardware
performance, and network accuracy, particularly concerning the transient faults
in the network’s activations.

3.3 FS method 2: SAFFIRA - Software Level Systolic-Array
Simulator for Reliability Assessment of DNN Accelerators

This section is based on the following paper: [IV]

3.3.1 Introduction
DNN hardware-accelerator simulation for FI is computationally expensive and
typically demands a substantial amount of time to complete a single inference
[XI]. This subsection introduces a novel simulation flow and FI tailored to
significantly accelerate the injection process on systolic-array-based DNN hardware
accelerators. The systolic-array core of the DNN accelerators is modeled using
the Uniform Recurrent Equations (URE) system. The proposed injection flow
has been implemented as an open-source tool named SAFFIRA, which stands
for Systolic Array simulator Framework for Fault Injection based Reliability

41

Assessment. Simulation-based FI is usually done either without considering the
underlying hardware or through RTL (Register-Transfer Level) simulations known
for their resource-intensive computations and time-consuming nature. SAFFIRA
is based on a systolic Array (SA) simulator, thus offering the advantage of being
more precise than a hardware-agnostic tool, but much faster than traditional RTL-
level simulations. Experimental results show a reduction of the fault injection time
up to 3× compared to the state-of-the-art hybrid (software/hardware) hardware-
aware fault injection frameworks and up to 2000× compared to RT-level fault
injection frameworks — without compromising accuracy.

The key contributions of this work are the following:

• introducing a hierarchical methodology for the hardware-accurate reliabil-
ity assessment of SA using a novel simulation-based fault injection approach
by modeling the systolic-arrays using Uniform Recurrent Equations (URE)
system;

• presenting an open-source tool implementing the aforementioned method-
ology;

• introducing a new metric called faulty distance for reliability assessments
of DNNs;

• evaluating the performance of the framework on state-of-the-art DNN
benchmarks

The rest of this subsection is organized as follows. Subsection 3.3.2 presents
the related works. Subsection 3.3.3 presents the proposed fault injection flow for
SA. Subsection 3.3.4 shows the experimental setup and results. Subsection 3.3.5
concludes the work.

3.3.2 Related Works
This subsection discusses previous works targeting DNN reliability assessment by
using simulation-based FI.
3.3.2.1: Hardware-Agnostic FI Tools

Tools in this category perform fault injection without taking into account
the underlying hardware. Some of these are capable of performing FI directly
in the DNN models. In this category, PyTorchFI [102] and TensorFI [103] can
inject faults into DNN models respectively implemented in PyTorch, Tensorflow,
and Keras. All of these open-source frameworks can inject both permanent and
transient faults into weights as well as activations given specific error rates such
that it is possible to evaluate the accuracy loss.

Moreover, to further enhance the efficiency, additional FI tools have been
introduced. For example, BinFI [104] is an extension of TensorFI that aims at
identifying critical bits in DNN. Another tool, namely LLTFI [105], is able to
inject transient faults into specific instructions of DNN models in either PyTorch
or TensorFlow.
3.3.2.2: Hardware-Aware FI Tools

These tools can perform FI in software, taking into account the relying
hardware using some abstract models of the ‘DNN hardware accelerator.

42

In [106], the authors used an RTL model of a SA to perform their experiments.
Reference [107] maps a DNN into the RTL implementation of the accelerator.
They study the effect of transient faults in memory and datapath accurately. In
these studies, FI is performed in software while all of its parameters are integrated
with the corresponding hardware components. Authors in [108] implemented
their DNN and the fault injector in software, inspired by an FPGA-based DNN
accelerator. Moreover, in [13], DNN and FI are implemented in Keras, and the
architecture of a SA accelerator is considered for a fault-tolerant design. Similarly,
authors in [109] evaluate their proposed reliability improvement technique on
memories in TensorFlow while injecting transient faults into the weights. PyTorch
is used in [110] to implement the DNN, and transient faults are injected into
activations (datapath or MAC units) and weights (memory) regarding the SA
accelerator model. Reference [111] also uses PyTorch and injects faults by a
custom framework called TorchFI to inject faults into the outputs of CONV and
FC layers of the network.

The effect of permanent faults at PEs’ outputs is studied in [112] where
the model of the accelerator is adopted from implementing the DNN in an
N2D2 framework [113]. Furthermore, authors in [114] use PyTorch and study
permanent faults in MAC units of an accelerator while training to improve the
reliability at inference. Authors in [115] developed a Keras-based accelerator
simulator to study the effect of permanent faults on the on-chip memory of
accelerators by injecting permanent faults into activations and weights. Weight
remapping strategy in memory to decrease the effect of permanent faults is
evaluated in [116] using Ares. SCALE-Sim [117], a systolic CNN accelerator
simulator, is adopted in [118] to study permanent faults in PEs and computing
arrays in systolic array-based accelerators.

Similar to the Hardware-Independent platform, faults are injected based on
BER, or fault rate, and experiments are repeated to reach 95% confidence level
and 1% error margin [13]. In general, the main drawbacks in the existing reliability
assessment methods for DNN can be summarized as follows:

• There is no software FI framework in hardware-aware platforms. Hence,
there is a potential for DNN accelerator simulators to be exploited or
developed for the reliability assessment of DNNs;

• Several FI research works carry out accuracy loss and fault classification as
an evaluation of reliability. Also, some works considered FIT (Failure In
Time) [84]. However, there is still an urgent need to present DNN-specific
metrics for reliability evaluation. In this work, we are introducing a new
metric called faulty distance to provide a better understanding of the
network resilience.

3.3.3 Proposed Methodology
The proposed methodology for the SAFFIRA framework is illustrated in Fig. 12.
After providing the trained network parameters and architecture, in step one,
the fault list is generated. Possible fault locations can be defined by the user or
can be a random fault list generated based on the network parameters by the
framework. Faults can be selected as transient or permanent faults targeting

43

Figure 12: SAFFIRA methodology

different activations of the DNN. Then, in step two, the fault injection campaign
is performed at the systolic-array simulation environment in Python, and the
rest of the network is executed at the high-level API (e.g. Pytorch) to speed up
the process. In this step, switching between high-level API and systolic-array
simulator (2-A) is done by a method called LoLif, which is described in below
in this subsection. Finally, the reliability of the network and the impact of the
faults are reported at step three by different metrics.

SAFFIRA supports various data representations, including fixed-point, integer,
and floating-point formats. This framework also supports various relevant
mapping to systolic-array architecture scenarios (e.g. output stationary, weight
stationary, etc.). These flexibilities allow researchers to adapt the framework to
different applications and tailor the reliability assessment to specific hardware
requirements.
3.3.3.1 Hardware simulations:

SAFFIRA is a SA model based on the URE system. As described by [119], it
is possible to generate a SA that solves the problem described by a URE system.
In the case of SAFFIRA, the URE system is the one associated with matrix
multiplication since it is the operation deployed on the SA for DNN execution. The
following subsection presents the formal details needed to perform a simulation
followed by performing fault injection in such a context, and finally, the strategies
strictly related to DNN are covered.
3.3.3.1-A Mathematical formalism

A URE system is defined on top of an integer lattice Ln of points p in the
n-dimensional Euclidean space En. The goal is to solve a system of equations
associated with the variables x1(p),x2(p), · · · ,xm(p) for all points p ∈R, where
R⊆ Ln [119]. This system can be either uni-variate or multi-variate. Here, only
uni-variate case is considered, thus the system would have the following form:

44

x1(p) = f [x1(p−w1), · · · ,xm(p−wp)], (11)
x2(p) = x2(p−w2), (12)

... (13)
xm(p) = xm(p−wp). (14)

The points p−wik
belong to Ln. The vectors wk are constants independent

of p and this is why they are said to have uniform dependence. Each equation
xi(p) depends on the points p−wik

.
The authors of [119] showed a strategy to model a SA starting from the

problem to solve. Specifically, the authors explain three steps:

1. find a URE system for the problem to solve,

2. find a timing function compatible with the dependencies of the URE system,

3. find an allocation function to map the URE onto a finite architecture.

The main idea is to project the space En twice: the first time, the resulting
points will correspond to the spatial arrangement of each PE. The second projec-
tion determines iso-temporal planes, identifying operations that are computed
during the same clock cycle but on different PE; each plane corresponds to a
different clock cycle. The space-projection matrix P and the temporal dimension
vector π are used later.
3.3.3.1-B Convolutions The strategy explained above opens the possibility to
implement a variety of algorithms as a systolic array. Based on the literature,
it is possible to perform a convolution as a matrix multiplication [120]. The
experiments shown below are performed using a systolic array to perform the
matrix multiplication C = A×B. The associated URE is the following:

c(i, j,k) = c(i, j,k−1)+a(i, j−1,k)× b(i−1, j,k) (15)
a(i, j,k) = a(i, j−1,k) (16)
b(i, j,k) = b(i−1, j,k) (17)

initial conditions (18)
a(i,0,k) = aik, ∀i,k (19)
b(0, j,k) = bkj , ∀k,j (20)
c(i, j,0) = 0, ∀i, j (21)

(22)

where p = (i, j,k) ∈R⊆ Ln, in which i, j and k assume values between 1 and
N1, N2, N3 respectively. N1, N2 and N3 are problem parameters such that
A ∈ RN1,N3 ,B ∈ RN3,N2 ,C ∈ RN1,N2 .

When it comes to performing a convolution, the input matrices must be
reshaped such that the result of the SA is a convolution. In this work, this
concept is called LoLif, which stands for Lowering and Lifting strategies. This
idea is explained in [120]. If computing a convolution C = A ∗B is needed,
it can be implemented as a transformation lif of the matrix multiplication of
transformed matrices lowa(A)× lowb(B). In formulas:

45

Figure 13: LoLif example. Applied transformations are similar to im2col and im2row.

C = lif(lowa(A)× lowb(B)), (23)

where Lif , Lowa and Lowb are corresponding transformations, as shown in the
example of Fig. 13
3.3.3.1-C Injections

In order to perform the simulation, it is sufficient to solve the system shown
above. Nevertheless, this method gives the possibility of injecting faults in the
values in a hardware-aware fashion. To achieve the injection, it is sufficient to
change the values a(p), b(p), c(p) for specific points p. The faulty values must
then be propagated to the following PE. Given that each point p is projected to
the physical space r = (x,y) using the physical space-projection matrix, r = Pp, it
can be inferred that how the injected values are propagated through the different
PE. Specifically, for some dependence vector d for the different labeled variables
a,b,c. Looking at the system above, the following can be observed: da = (0,1,0),
db = (1,0,0) and dc = (0,0,1). Afterwards, the propagation direction can be
found using the same relationship shown before: δxi = Pdi, i = {a,b,c}. This
means that the value of a in some PE in position s will be propagated to the PE
in position s + δxa. The same reasoning can be done for the time, supposing
that a fault is propagated not only in space but also in time. We can compute
δti = πdi. For simplicity, π = (1,1,1) is fixed to reduce the exploration space.
In this case, the time dependency δti will always be 1: δti = 1.

Figure 14 shows an example. In this case, an injection in the element
s = (x,y, t) on the generic line i is done between times 0 and ∞. The injected
elements are visible in the figure. Specifically, the fault will propagate in time,
thus injecting also s+δti and s+2δti. In the same way, this fault will propagate
in space, to the element cascading from s. Note that the value propagation only
happens after each clock cycle. This means that the next injected element will
be displaced also in time, thus injecting element s+ δxi + δti. In the same way,
the latter will propagate to the following element on the following clock cycle,
thus injecting element s+2δxi +2δti and so on.

46

s
s

+δti

s
+2δti

s
+δxi

+δti

s
+δxi

+2δti

s
+δxi

+3δti

s
+2δxi

+2δti

s
+2δxi

+3δti

s
+2δxi

+4δti

time

space
Figure 14: When injecting element s, the fault is propagated in time (thus affecting
elements s + δti and s + 2δti) and in space (forwarding the faulty value to neighboring
elements s + δxi + δti, s + 2δxi + δti and so on).

The set of points belonging to the injection can be transposed back into the
iteration space En using the pseudo-inverse P −1. The set of points identified
with this strategy will be subject to injection. Formally, injection is as a function
h applied to a variable:

a(p) = h(a(p−wa)) (24)

3.3.4 Experiments Results
Two different sets of experiments are performed using SAFFIRA. First, a fault
injection based on the permanent-fault model is performed on two different
quantization versions of the LeNet-5 network (8-bit and 16-bits integers). The
second set of experience is performing fault injection based on the transient fault
model in the three different benchmarks (AlexNet, VGG-16 and ResNet-18). All
networks are fully quantized to INT data type, including all activations, weights,
and biases. The base accuracies are reported in the table 5

Table 5: Base accuracy of networks under test

DNN accuracy (%)
8-bit LeNet-5 (MNIST) 93.8
16-bit LeNet-5 (MNIST) 95.4

AlexNet (CIFAR-10) 78.0
VGG-16 (CIFAR-10) 93.4

ResNet-18 (CIFAR-10) 93.8

The SA model for these experiments is output stationary. This means that
its physical-space projection matrix P is as follows:

P =
(

1 0 0
0 1 0

)
Such a matrix corresponds to a rectangular SA with N1×N2 PE. Please

47

note that with this projection, the variable c (i.e. the partial sum) is a stationary
variable since it is always available on the same PE regardless of the iteration.
Whether a variable is stationary or not depends on the employed projection.

In all experiments, fault injection is repeated several times to reach an
acceptable confidence level, based on [54]. This work provides an equation to
reach 95% confidence level and 1% error margin.

A: Fault Classification:
The DNN resilience is evaluated by comparing the output probability vector

of the golden run (i.e. the DNN that behaves as expected, without faults) and
the faulty run (i.e. the DNN that includes the fault). The SDC rate is defined
as the proportion of faults that caused misclassification in comparison with the
golden model [121].

In addition, the targeted hardware reliability can be calculated by differentiat-
ing SDC rates of injected transient faults into defined classes and calculating
FIT for the accelerator (accel) by its components (comp) with (25) in which
FITraw is provided by the manufacturer, Sizecomp is the total number of the
component bits, and SDCcomp is obtained by FI.

FITaccel =
∑

comp

FITraw×Sizecomp×SDCcomp (25)

Finally, faulty distance is proposed. This metric can be used to evaluate
the resilience of classifications DNN. Supposing the golden probability vector is
G, the faulty probability vector is F and the function ag(·) corresponds to the
argmax function, then the faulty distance function df is defined as follows.

df = (1− G ·F
G ·F

) · (ag(F)−ag(G)) (26)

In this metric, cosine similarity is being used cosθ = G·F
G·F . Cosine similarity

serves as a metric for assessing the resemblance between two non-zero vectors
within an inner product space. Representing the cosine of the angle between
the vectors, this measure calculates similarity by normalizing their dot product.
In our study, we utilize cosine similarity to evaluate the entirety of generated
probabilities across various classes in both faulty and golden modes. The cosine
similarity metric yields values within the range of -1 to 1. Proximity to 1 signifies
a high degree of similarity between vectors. Therefore, the faulty distance metric
gives 0 when the faulty output corresponds to the correct classification. The
bigger the metric, the worse the misclassification is.

B: Results:
Table 6 shows the results of the FI for permanent fault injection experiments

on LeNet-5 with the different metrics. It can be seen that this network was
highly susceptible to the injected permanent faults. Specifically, the SDC-1 and
SDC-5 are very high: on average, about 82% of the time, the faulty inference
misclassified the input; furthermore, about 93.5% of the inputs were completely
missed since the correct label was below the fifth position. The SDC-10% and
SDC-20% rates are very high as well: more than 95% of the inputs had the
correct class with a probability much too low than expected. Average Faulty
Distance (AFD) is also reported that shows the 16-bit network in this particular

48

case, is more reliable compared to the 8-bit network in the presence of permanent
faults in the systolic architecture.

(a) Faulty Distance on the 8bit network

(b) Faulty Distance on the 16bit network

Figure 15: Histogram plot of the Faulty distance values

These results show that the DNN used was not usable in a safety-critical
environment. This result was expected since the network was not trained to
withstand stuck-at faults like the ones injected.

For the second experiment, only SDC and AFD are reported in table 7.
Faulty Distance: In the previous subsection, only the average faulty distance

was shown. Nevertheless, this metric can be looked through with more details
when plotted as a histogram. Figure 15 shows the histograms (both with 50 and
100 bins) of the metrics per each experiment. It is possible to see a peak at
0, which corresponds to all the correctly classified inputs. The height of that

49

Table 6: FI experiments results on two LeNet-5

Metric 16bit 8bit
SDC-1 (%) 77.84 87.70
SDC-5 (%) 93.05 94.49
FIT (failures/109 hours) 4.9e-4 5.0e-4
SDC-10% (%) 98.16 98.53
SDC-20% (%) 96.21 96.97
AFD -0.04 -0.53

Table 7: Reliability analysis of different state-of-the-art DNN benchmarks
DNN SDC-1% SDC-5% SDC-10% SDC-20% AFD

AlexNet (CIFAR-10) 4.3 29.1 13.1 9.7 7.1×10−2

VGG-16 (CIFAR-10) 3.0 40.0 46.5 84.5 1.9×10−3

ResNet-18 (CIFAR-10) 1.5 23.0 16.5 82 1.6×10−3

column is precisely the same as the complement of the SDC-1 metric. On top of
that, it is possible to see two different, yet similar, trends for the two networks.
Figure 15a shows other three peaks: around +1, −1 and −5. This means that,
although most of the inputs were mis-classified, the difference with the golden
vector was not extremely big, in general. On the other hand, figure 15b shows
many more peaks, this means that it is more difficult to predict how a fault will
propagate in this case.

Computation Time: The experiments were performed on a server using
python3 with an Intel Xeon Silver 4210, with a total number of 40 cores. SAFFIRA
completes 500 inferences of two convolutional layers, with the same systolic array,
in about 10 minutes with minimal optimization. This means a total of about 16.3
simulations per second. For comparison, by utilizing the framework presented
in [122] to perform fault injection on the same networks as this work, on average,
5.8 simulations per second are executed. The mentioned framework is the state-
of-the-art hybrid (software/hardware codesign) hardware-aware fault injection
framework. Therefore, SAFFIRA provides about 2.8× speed up by performing
the same analysis. Also, the same fault injection campaign is performed at the
RT level using QuestaSim. The results show 0.007 simulation per second, which
is 2100× slower than the proposed method in this work.

3.3.5 Conclusion
This work presents a novel hierarchical fault injection strategy for systolic ar-
rays, addressing the time efficiency issue by introducing a novel hierarchical
software-based hardware-aware fault injection strategy tailored for systolic array-
based DNN implementations. The approach demonstrates a reduction of the
fault injection time up to threefold compared to the state-of-the-art hybrid
(software/hardware) hardware-aware fault injection frameworks and more than
2000× compared to RT-level fault injection frameworks — without compro-
mising accuracy. Additionally, we propose and evaluate a new reliability metric
through experimental assessment. The performance of the framework is studied
on state-of-the-art DNN benchmarks.

50

3.4 FS method 3: DeepAxe - Approximation and Reliability
Trade-offs in Dataflow DNN Accelerators

This section is based on the following paper: [VI]

3.4.1 Introduction
deployment of a DNN accelerator for the safety-and mission-critical applications
(e.g., autonomous driving) requires addressing the trade-off between different de-
sign parameters of hardware performance, e.g., area, power, delay, and reliability.

A compromise between conflicting requirements can be achieved by simplifying
the implementation to sacrifice the precision of results but benefiting from
lower resource utilization, energy consumption, and higher system efficiency.
Approximation Computing (AxC) is one of such concepts in hardware design [123].

Moreover, the assessment of the reliability of DNN accelerators is a challenging
issue by itself. Reliability of DNNs concerns DNN accelerators’ ability to execute
correctly in the presence of faults [4] originating from either the environment
(e.g., soft errors, electromagnetic effects, temperature variations) or from inside
of the chip (e.g., manufacturing defects, process variations, aging effects) [5].

The ability to tolerate the impact of faults on the output accuracy is called fault
resiliency and, in practice, it is one of the contributors to the DNN accelerators’
reliability [124]. DNNs are known to be inherently fault-resilient due to the
high number of learning process iterations and also several parallel neurons with
multiple computation units.

Nevertheless, faults may impact the output accuracy of DNNs drastically [125],
and in case of resource-constrained critical applications, DNNs’ fault resiliency is
required to be evaluated and guaranteed [126], [83].

The complexity of such evaluation motivates an automated tool-chain with
AxC and resiliency analysis to support Design Space Exploration (DSE) for DNN
accelerators already at the early design stage, i.e. starting from a high-level
description.

High-Level Synthesis (HLS) tools bridge high-level programming and hard-
ware implementation and allow overcoming the complexity of the process and
reducing the design time. Recently, DNN-tailored HLS tools were proposed,
e.g., CNN2gate [127], fpgaConvNet [127] and DeepHLS [128]. Such tools are
capable of providing a synthesizable C implementation of DNNs for FPGAs from
a high-level description in a language such as e.g., Keras.

This subsection presents a novel framework and a fully automated tool-chain
DeepAxe to provide a design space exploration for FPGA-based implementation of
DNN accelerators by analyzing approximation and soft-error reliability trade-offs.
To the best of our knowledge, this is the first framework that holistically considers
both the transient fault resiliency and hardware performance of DNN accelerators
as design parameters. DeepAxe is empowered by techniques for quantizing the
networks and providing the capability of substituting the exact computing (ExC)
units of the network with AxC units and identifying the optimal design points
for selective approximation.

DeepAxe uses the Keras description of a DNN as the input and is capable
of providing an FPGA-ready approximated and transient-fault-resilient inference
implementation of the network based on the design parameters selected based

51

on the DSE results. The main contributions in this work are as follows:

• A methodology for selective approximation of reliability-critical DNNs
providing a set of Pareto-optimal DNN implementation design space points
for the target resource utilization requirements.

• A framework DeepAxe for holistic exploration of approximation and reliabil-
ity trade-offs in DNN accelerator FPGA-based implementation that enables
assessing the trilateral impact of approximation on accuracy, reliability, and
hardware performance.

• Integration of the fully automated DeepAxe tool-chain into the DeepHLS
environment.

• Demonstration and validation of the framework on representative custom
and state-of-the-art DNNs and datasets.

The rest of this subsection is organized as follows. Related works are discussed
in 3.4.2, the methodology and framework are presented in 3.4.3, the experimental
setup and results are provided in 3.4.4, and finally, the work is concluded in 3.4.5.

3.4.2 Related Works
The advantages of implementing and deploying DNNs on FPGAs are advocated in
several recent works. The existing FPGA-based tool-chains to map Convolutional
Neural Networks (CNNs) are presented in the surveys [36, 92–94]. The FINN
framework [95] is released by Xilinx for the exploration of quantized CNNs’
inference on FPGAs that also provides customized data-flow architectures for
each network. Research works [129] and [130] provide Register-Transfer Level
(RTL) models using conventional synthesis tools, e.g., Vivado HLS, where the
outputs can be directly synthesized on an FPGA. Heterogeneous systems are
also another design strategy in the automated tool-chains that propose hardware-
software co-design [97, 98, 130]. In these designs, computational units, e.g.,
addition, or multiplication, are mainly implemented on Processing Logic (PL)
that is controlled by a control unit in a CPU using a dedicated framework, e.g.,
OpenCL [99].

Using Fixed-point (FxP) data type instead of Floating Point (FP) is becoming
more popular due to the lesser resource utilization while keeping the output
accuracy degradation at an acceptable level [131–133]. Throughout the literature,
comprehensive simulations exist that prove that merely an 8-bit data type for
MAC operations in DNN execution is sufficient to provide a practical accuracy
along with favorable resource utilization [39,134]. In this work, we considered
8-bit as the base data type for the simulations and implementations.

A number of works in the literature explore the reliability of the DNNs
[135, 136]. Some works examine the impact of different fault models on the
basis of a number of layers in DNNs and different data types [84]. Studying the
significant impact of transient faults vs permanent faults is also done by [137].
The fault analysis of exact DNNs has drawn a lot of attention in the state-of-
the-art research, and only recently, researchers have started to investigate also
the reliability of approximated DNN accelerators (AxDNNs) [83]. A somewhat

52

expected conclusion in [136] is that the error induced by approximation, along
with the faults in the DNN structure, are not evenly propagated. The impact of a
fault may differ based on different parameters, like fault type, fault location, the
approximation error resiliency for each layer, etc. To the best of our knowledge,
none of these works explored the impact of using different combinations of
approximated layers of a DNN in the presence of transient faults on the reliability,
accuracy and delay/resource utilization of the target DNN accelerator.

The approach proposed in this subsection goes beyond the state of the art by
establishing a fully automated tool for enabling efficient AxC in FPGA-based DNN
accelerators aimed at reliability-critical applications. The proposed DeepAxe
framework is integrated into DeepHLS environment [128], which is capable of
providing completely synthesizable code for efficient FPGA implementations. In
particular, this work extends DeepHLS with fault simulation, resiliency analysis
and also the use of AxC. The new features allow providing the designers a
guideline to choose optimal configurations based on specific requirements for
latency, accuracy, resource utilization, and fault resiliency.

3.4.3 Proposed Methodology

Create data

dump files

Pre-trained Keras
model

Model

parameters
Preprocessing Keras to

C

DSE

Fault simulator

Approximate
design

Exact
designHLS implementation

Selected

Configuration

Python level C level Output generation

Preprocessing

DNN quantization*
 Running Inference
Extracting Accuracy
Creating memory dump
files

Keras to C

Automatic creation of
inference
implementation
Type definitions and
knobs

Reliability analysis
DNN fault resiliency

DNN accuracy
drop

Explore various approximation modules and their
effect on resiliency, resource utilization, latency

Substitution multipliers
with approximated ones
Selection between
different approximate
multiplier type

Fault injection
Fault model: single-
bit flip
Location:
Parameters, Internal
data

Approximation
Accuracy

Accuracy of
approximate
implementation

Reliability analysis of
the approximate
implementation

Fault injection
Accuracy

The resilience of
the approximate
design

DSE - HLS

Evaluation metric

Model parameters

D
ee

pH
LS

D
eepA

xe

Pre-trained Keras model

* New feature added to
DeepHLS

Figure 16: DeepAxe methodology flow

53

Pre-trained Keras
model

Quantization

Yes
Quantization
using TFlite

No

Preprocessing

Required data
extraction

Approximation
Yes

No

Generating
AxDNN based on
the selected config

Fault simulation
Yes Fault resilience

analysis

No

DNN accelerator
generation using

Vivado HLS

12

3

4

5

Accuracy
check

Satisfied

Resiliency
check

Satisfied

unsatisfied

unsatisfied

Sufficient #of
fault for analysis

Figure 17: DeepAxe flowchart

Fig. 16 illustrates the methodology flow established in the DeepAxe tool-
chain for reliability and hardware performance analysis of approximated DNN
hardware accelerators. DeepAxe is a framework taking the DNNs’ Pre-trained
Keras model description as the input. Then, DeepAxe feeds the extracted model
parameters through the flow to apply the initialization needed before creating
the C code. The design, training and test of the DNNs are performed in Python,
the Preprocessing step is seamlessly integrated into the same environment and
is responsible for extracting the required data for the next step.

DeepAxe also supports quantizing the network down to 8-bit INT as a part
of the preprocessing step. For this purpose, a full quantization is implemented,
targeting all activations, weights and biases. The framework first takes the
description of the network in Keras, and then uses the TFlite library to generate
a training-aware quantized network. The user can replace their preferred Keras-
based quantization library to the tool-chain for this step. The main output of this

54

step is the quantized network’s parameters (i.e., weight/bias) and also the files
containing the memory dump of the test data. Specifically, the Keras to C step
implies converting all the above-mentioned parameters to multidimensional arrays
in C format. The output accuracy of the generated network is also provided at
this step and is kept as a baseline for the further steps of the methodology.

Reliability analysis relies on a fault injection (FI) in C assuming the single
bit-flip faults in the network’s activation layers for resiliency assessment. While
the multiple-bit fault model is more accurate, it requires a prohibitively large
number of fault combinations to be considered (3n−1 combinations, where n
is the number of bits). Fortunately, it has been shown that high fault coverage
obtained using the single-bit model results in a high fault coverage of multiple-bit
faults [101]. Therefore, a vast majority of practical FI and test methods are
based on the single-bit fault assumption.

The reliability analysis step applies the accuracy loss comparison of the
network-under-test as the assessment metric. Approximate design (see the yellow
region in Fig. 16) refers to the selective approximation of DNNs by layers provided
by DeepAxe. It instruments the user with the flexibility of choosing between
a) different AxC models provided by any library of approximate computing
units, such as AxC multipliers in EvoApproxLib, and b) the subset of layers, for
setting up different configurations of the network. As an example, in a network
with n computing layers (containing both convolutional and fully connected
layers), the user has 2n combinations for exploring the exact and approximate
implementations for each layer individually.

After choosing the preferred approximation configuration, the designer can go
through the fault injector provided for the resiliency evaluation of the AxDNN.
Eventually, the final design can be fed to the HLS implementation step for DNN
hardware accelerator generation process by the HLS tool.

To illustrate the DeepAxe methodology, the flowchart provided in Fig. 17
shows the step-by-step process from the beginning to the end of DeepAxe tool-
chain. After providing the Keras description of the network in Step 1, the user
can decide if they need to quantize the network. Then, preprocessing step can
be performed, enabling the user to apply a pre-analysis on the network to extract
the sufficient number of faults for the reliability assessment, considering the
number of its neurons.

Steps 3 and 4 in Fig. 17 show an iterative process to examine different
approximated DNN combinations and, accordingly, their fault resiliency analysis
to build the DSE. By enabling the fault simulation process in Step 4, the user
can follow the impact of their chosen AxC model and also the approximation
configuration on the resiliency of the network compared to the other AxC
model/configurations and also to the exact model. Finally, the selected design
and its configuration are fed into the HLS tool for implementation.

It is noteworthy that all steps in the yellow box of Fig. 16 can be iterative,
and the user can repeat these steps to find the optimal point based on their
requirements. For instance, the user might decide to analyze an assumed
approximation configuration, i.e. AxC model for the multiplier and also the
layers to approximate. If, after applying approximation, the accuracy check does
not satisfy the user, they can try another approximation configuration. Once

55

the requirements are satisfied, it is possible to proceed to the fault vulnerability
analysis. If, after applying the fault injection, the resiliency of the network is
also satisfying, the next step is generating the DNN accelerator based on the
selected configuration.

3.4.4 Experimental Results
Experimental results are reported in this subsection as follows: 3.4.4.1 Experi-
mental Setup

First, all DNNs are implemented, trained and tested in Keras. The required
data for further steps of DeepAxe are also generated in the same environment.
In the DeepAxe flowchart (Fig. 17), the green parts, including steps 1 and 2,
refer to the steps of the framework implemented in this high-level environment.
Both a three-layer MLP and LeNet-5, trained on the MNIST dataset, and
AlexNet, trained on the CIFAR-10 dataset, are representative DNNs and efficient
to perform the validation of the proposed methodology and framework. All
networks use ReLu as an activation function.

All networks are quantized down to 8-bit INT data type, including all acti-
vations, weights, and biases, by using the TFlite [138] library in Python. The
yellow parts in Fig. 17 are implemented in C. Simulations are performed on 2 x
Intel Xeon Gold 6148 2.40 GHz (40 cores, 80 threads per node) with 96GB RAM.
To speed up the simulation process, DeepAxe supports multi-thread parallelism,
and users can benefit from this feature based on the number of cores their CPU
provides.

All implementations in C are synthesizable by DeepHLS. The approximate
multipliers in the C implementation of the network (referring to step 3 in Fig.
17) are adopted from the C codes provided by EvoApproxLib library [139]. In this
subsection, three 8-bit INT approximate multipliers are picked from EvoApproxLib
with different error, area, and power characteristics reported in Table 8. The
error parameters reported in this table are as follows:

• MAE - Mean Absolute Error (Mean Error Magnitude)

• WCE - Worst-Case Absolute Error (Error Magnitude / Error Significance)

• MRE - Mean Relative Error (Mean Relative Error Distance)

• EP - Error Probability (Error Rate)
Power (power consumption in mW) and area (area on the chip in µm2) are also
reported as the design parameters in the last two columns of the table. To show
the hardware characteristics of the output AxDNN, the Lookup Table (LUT) and
Flip Flop (FF) utilization, as well as the number of required clock cycles for a
one-time execution of the output AxDNN accelerator, are reported as the results
based on the reports produced by Xilinx Vivado HLS tool on a Xilinx Spartan-7
FPGA with part number xc7s100-fgga676-1 and 100 MHz frequency.
3.4.4.2 Fault simulator: The fault simulator that is used in step 4 in Fig.
17 is implemented in the automated tool-flow of DeepAxe in a way that users
can select the sufficient number of faults they need for their resiliency analysis.
AxDNNs generated by step 3 in Fig. 17 are validated by means of fault injection
over the test set.

56

Table 8: Exact and approximate multipliers used in this subsection and their parameters

Circuit name MAE WCE MRE EP Power Area
Exact multiplier 0.0000 0.0000 0.00 00.00 0.425 729.8
mul8s_1KVP 0.0510 0.2100 2.73 74.80 0.363 635.0
mul8s_1KV9 0.0064 0.0260 0.90 68.75 0.410 685.2
mul8s_1KV8 0.0018 0.0076 0.28 50.00 0.422 711.0

Table 9: Networks trained and quantized down to 8-bit INT for evaluation of this work

Network Dataset Accuracy
8-bit quantized network (%)

3-layer MLP MNIST 80.40
LeNet-5 MNIST 85.80
AlexNet CIFAR-10 78.50

Random Fault Injection. According to the adopted fault model, a random
single bit-flip is injected into a random neuron in a random layer of the network,
and the whole test set is fed to the network to obtain the accuracy of the network.
This process is repeated several times to reach an acceptable confidence level
which depends on the number of neurons and data representation bit length
based on [54].

To find the required number of repetitions for the fault simulation experiments,
[54] provides an equation to reach 95% confidence level and 1% error margin.
However, it can pessimistically obtain a larger number, and the execution time of
the iterative fault simulation experiments would be very long. Therefore, we have
performed a fault simulation for each neural network to find a smaller number
of experiments in a way that the difference of the average accuracy is less than
0.1% in comparison with the average accuracy of the network achieved using the
statistical fault injection approach [54]. As a result, we have selected for injection
600, 800, and 1000 random single bit-flip faults for 3-layer MLP, LeNet-5, and
AlexNet fault simulation, respectively.
3.4.4.3 Validation Results

The proposed methodology is validated on three networks, i.e. a 3-layer MLP,
LeNet-5 and AlexNet, trained on two representative datasets MNIST and Cifar-10.
Each network is fully quantized down to 8-bit INT as a part of the preprocessing
step of the methodology. The accuracy results for the quantized networks are
reported in Table 9. Further, all possible combinations of approximate layers in
the network are tested for selective approximation. For each experiment, three
different multipliers reported in Table 8 are examined separately for efficiency to
substitute the original exact multipliers.

The fault injection procedure is performed for all different configurations, and
the accuracy drop, due to approximation and fault injection, is profiled. Further,
the HLS synthesis results of all configurations are generated, and the resource
utilization in the number of FF, LUTs as well as the number of clock cycles
required for processing one image for each network, are collected. A Pareto
frontier for resource utilization and accuracy drop due to applying FI on different

57

(a)

(b)

Figure 18: (a) Resource utilization of the approximate implementation vs. accuracy
loss when the approximate implementation is fault-simulated (b) Approximation config-
uration of each point on the Pareto frontier

approximation configurations is plotted, and the results for LeNet-5 are reported
in Fig. 18(a).

Fig. 18(b) shows the points on the Pareto frontier. The first column is the
accuracy drop due to performing fault injection on that particular AxDNN config-
uration, the second column is resource utilization of the AxDNN in percentage,
and finally, the last column is the selected approximate multiplier (AxM) and
order of layers in ad-hoc (ones means that particular layer is approximated and
dashes represent the non-computational layers like maxpooling). The coloured
rows are some extreme and mid-range points of the Pareto chart. The same
experiment is repeated for MLP and AlexNet networks, and the results for some
extreme and mid-range points of their pareto charts are presented in Table 10.

It can be observed from this table that, generally, by approximating more
layers, the latency and resource utilization are less. It is also noteworthy that the

58

(a)

(b)

(c)

Figure 19: Reports of accuracy drop (due to approximation for different configurations),
fault vulnerability, and resource utilization of (a) 3-layer MLP network, (b) LeNet-5
and (c) AlexNet

fault vulnerability of the network, which can be defined as the accuracy drop of
the AxDNN due to applying FI, also becomes less. Fault vulnerability is opposite

59

Table 10: The impact of approximation configuration and fault injection for MLP,
LeNet-5, and AlexNet.

DNN
dataset Multiplier Layer configuration Base

accuracy (%)
Accuracy loss (%)
[Exact network -

AxDNN]

AxDNN accuracy loss (%)
[AxDNN -

FI on AxDNN]

Latency
(#of clk cycles)

Resource utilization (%)
#of[FF + LUT] /

Total #of[FF + LUT]

MLP
MNIST

mul8s_1KVP 111 5.8 7.62 206644 0.72
mul8s_1KVP 101 2.5 11.62 272180 0.81
mul8s_1KV9 101 80.40 1.5 12.78 274740 0.87
mul8s_1KV9 100 0.4 14.03 274740 0.90
mul8s_1KV8 001 0.3 14.72 285010 0.95

LeNet-5
MNIST

mul8s_1KVP 1-1–111 10.6 2.82 164864 6.27
mul8s_1KVP 1-1–011 8.8 4.67 195584 6.51
mul8s_1KV9 0-1–111 85.80 1.7 12.70 206408 7.93
mul8s_1KV9 0-1–101 1.0 13.66 206504 8.19
mul8s_1KV8 0-1–111 0.7 13.23 175784 9.12

AlexNet
CIFAR-10

mul8s_1KVP 0-0-11-0–011 16.0 9.12 19933514 11.75
mul8s_1KVP 0-0-11-0–100 17.0 10.41 20324170 11.84
mul8s_1KVP 0-0-00-0–001 2.0 11.10 20467530 12.35
mul8s_1KV9 0-1-11-1–111 18.5 9.58 19799882 11.04
mul8s_1KV9 0-1-11-1–110 17.5 11.80 19945802 11.93
mul8s_1KV9 0-0-00-0–001 3.0 12.60 20470090 12.45
mul8s_1KV8 1-1-11-1–110 78.50 6.5 10.90 20470090 12.18
mul8s_1KV8 0-1-11-1–111 6.0 11.70 20470090 12.19
mul8s_1KV8 0-1-11-1–110 4.5 12.00 20470090 12.21
mul8s_1KV8 0-0-11-0–011 3.5 12.00 20470090 12.35
mul8s_1KV8 0-0-11-0–100 2.5 12.15 20470090 12.33
mul8s_1KV8 0-0-00-0–001 0.0 12.64 20470090 5

Table 11: Case study: the impact of full approximation on three different MLP
architectures

Network
MNIST dataset

Exact network
accuracy (%)

Normalized
resource

utilization (%)
[exact network]

AxM Accuracy drop
(%)

Fault
vulnerability

Normalized
latency

Normalized
resource

utilization (%)

7-layer
MLP 98.80 100

mul8s_1KV8 0.2 2.45 1.00 96
mul8s_1KV9 1.4 1.03 1.00 90
mul8s_1KVP 0.9 1.33 0.75 76

5-layer
MLP 86.30 69

mul8s_1KV8 0.0 3.33 1.00 96
mul8s_1KV9 1.9 2.12 1.00 89
mul8s_1KVP 3.1 3.84 0.78 76

3-layer
MLP 80.40 36

mul8s_1KV8 0.4 14.14 1.00 95
mul8s_1KV9 4.6 7.62 1.00 88
mul8s_1KVP 5.8 9.54 0.76 74

to fault resiliency and means the more the accuracy of an AxDNN drops due
to applying FI, the more vulnerable the network is against faults. Generally, by
increasing the level of approximation, the network shows better resiliency to
faults. Still, there are several configurations that do not follow this trend and
a tailored analysis using a framework such as DeepAxe is necessary for higher
confidence.

Fig. 19 depicts the impact of different approximation units on the case-study
DNNs’ accuracy, resource utilization and fault vulnerability. For each network,
three approximation units are chosen. For approximating the networks, the
same configurations are picked to observe the impact of different AxM on the
networks. Then all approximation units are applied, and the accuracy drop, fault
vulnerability and resource utilization are reported. The correlation between the
AxM error metrics reported in Table 8, their area overhead, and the accuracy
drop of the AxDNN impacted by AxMs lead us toward a conclusion that the
network accuracy is generally impacted by a) the level of approximation and the
configuration of the layers that are substituted by AxM; b) the error metrics of
the AxM that is used as a substitution of ExC unit.
3.4.4.4 Approximate multipliers case-study:

60

As a case study, three MLP networks with different architectures on the basis
of a number of layers are selected. The base accuracy for each quantized network
is 98.80% for the network with 7 layers, 86.30% for a network containing 5 layers
and 80.40% for 3-layer MLP network. The results for full approximation of the
MLP networks with each case-study approximate multiplier (AxM) are reported
in Table 11.

All the values in the table are normalized to the corresponding values of the
ExC networks.

For the 7-layer MLP, it is shown that the multiplier mult8s_KVP is the best
option for full approximation, in the sense that the accuracy of the network drops
only 0.9%, and yet, latency and resource utilization of the network are better
than for the other two multipliers. Therefore, based on the application of the
network, if the designer can sacrifice the accuracy for 0.9%, they can gain 25%
improvement in network latency and 24% improvement in resource utilization of
the implemented network on FPGA.

The situation is different for the 5-layer MLP network. Based on the results
of Table 11, the best multiplier can be mult8s_KV9 since the accuracy does
not drop dramatically and yet, it gains a better resiliency than the other two
multipliers. Similarly, in the 3-layer MLP, the best candidate for full approximation
of the network is mult8s_KV9 multiplier since it shows the best resiliency with a
little accuracy drop and still, provides 12% improvement in resource utilization
compared to the exact design.

In summary, this case study shows the importance of exploring different
AxMs for optimal implementation, i.e. not to compromise the accuracy of the
network and, at the same time, to improve the network resiliency and hardware
performance of the target design.

3.4.5 Conclusion
In this subsection, we proposed a framework DeepAxe for design space explo-
ration for FPGA-based implementation of DNNs by considering the trilateral
impact of applying functional approximation on accuracy, reliability and hardware
performance. The framework enables selective approximation of reliability-critical
DNNs, providing a set of Pareto-optimal DNN implementation design space
points for the target resource utilization requirements The design flow starts
with a pre-trained network in Keras, uses an innovative high-level synthesis
environment DeepHLS and results in a set of Pareto-optimal design space points
as a guide for the designer. The framework is demonstrated on a case-study of
custom and state-of-the-art DNNs and datasets.

3.5 FE method: APPRAISER - DNN Fault Resilience Analysis
Employing Approximation Errors

This section is based on the following papers: [V, and XI]

3.5.1 Introduction
In today’s applications, network parameters, e.g., weights, occupy most of the
inference accelerator’s areal footprint, making them natural targets for soft-

61

errors-caused disturbances. Unlike other logic structures, DNNs are known to
be relatively resilient to transient faults. However, in practice, such faults still
may cause a significant accuracy drop in DNNs because of the large area and
memory requirements for the state-of-the-art DNNs accelerators. Although
numerous techniques have been proposed recently to evaluate the architectural
fault resilience of DNNs, they are still rather costly. Throughout the literature,
Fault Injection (FI) is the most commonly used method for resilience evaluation
of DNNs.

Fault injection by emulation in hardware, usually in FPGAs, is widely adopted
by the industry [4] because of its ability to evaluate real-scale DNN acceler-
ator designs with significantly shorter run times compared to software-based
simulation.

Figure 20: DNN fault resiliency assessment methods: (a) Fault injection by emulation
in FPGA; (b) APPRAISER approach using errors by AxC units.

However, the state-of-the-art approaches for fault injection by emulation in
hardware imply iterative procedures for each injected fault, including numerous
extra memory accesses, which make them time-consuming and imply complex
implementation. Fig. 20(a) illustrates the execution overheads of the general
flow of FI by emulation in hardware. In particular, such an iterative approach
is breaking the pipeline and requires a complex FI Controller and an extra FI
control interconnect [12,140–142].

Fig. 20 (b) illustrates the proposed approach APPRAISER, which allows for
reducing the fault resiliency assessment overheads. The ability to tolerate the
impact of faults on the output accuracy is called fault resiliency and, in practice,
it is one of the contributors to the final DNN accelerators’ reliability [124].

In this subsection, our contribution is a novel method of fault resiliency

62

analysis for DNN architectures that applies functional approximation for a non-
conventional purpose and harnesses approximate computing errors for its interest.
To the best of our knowledge, for the first time, Approximate Computing (AxC)
units are adopted to improve the processing time-, design-, and control-complexity
for DNN fault resiliency analysis process.

APPRAISER provides a rapid exploration of different options of the network
architecture, training, dataset, etc., to study the fault resilience of the DNNs. In
particular, it enables efficient analysis of subsequent layers’ resilience to faults in
the weights of a compromised layer.

The new method has the following advantages:

• It eliminates the need for designing and deploying an extra complex con-
troller for the fault injection procedure. A simple approximate units enabling
circuitry (AxC Activator) is employed instead.

• The inference pipeline process executes a batch of inputs with no need to
break this process.

• The resilience assessment process is performed without an extra intercon-
nect for weight sampling.

• The proposed approach is not iterative for each potential fault location,
unlike the traditional fault injection. Thus, the analysis complexity is vastly
reduced.

The rest of this subsection is organized as follows. Related works are discussed
in 3.5.2, the methodology and framework are presented in 3.5.3, the experimental
setup and results are provided in 3.5.4, and finally, the work is concluded in 3.5.5.

3.5.2 Related Works
The extensive growth of the memory footprint size in today’s practical DNN
inference HW accelerators increases the chances of soft errors’ occurrences
causing prediction failures. Even a minor change in the DNN architecture may
cause a notable difference in the DNNs’ architectural fault resiliency. Evaluating
the resiliency of DNNs with FI by emulation in hardware is a practical method
used today by the industry. There are several works emulating fault injection on
FPGAs as a hardware platform.

Fiji-FIN [142] is one of such DNNs’ resiliency evaluation frameworks. It
considers the model’s accuracy degradation as a metric to study the impact
of soft errors on the network’s parameters, such as weights and activation.
Unfortunately, it implies severe effort for designing the fault injection campaigns.
For each single fault injection, the execution of the inference should be halted
for manipulating the DNN parameters, and it has to be resumed thereafter. It
means that the classification time for a batch of inputs should be interrupted to
apply fault injection between the classification process of two consecutive inputs.

A similar method is also used in [12,141]. These works also propose injecting
transient faults into on-chip memories of the design implemented on the FPGA.
In these works, the bit stream file of the FPGA is obtained by a High-Level
Synthesis (HLS) tool and imported to the FPGA. While the system is running, the

63

Figure 21: Proposed APPRAISER method evaluation

faults are generated and injected by the embedded processor and the reliability
is evaluated in comparison with the golden model.

In contrast to the works mentioned above, this subsection proposes a novel
non-iterative fault resilience analysis by exploiting the approximation errors instead
of fault injection

It enables keeping the inference pipeline process to be executed on a batch of
inputs unbroken.

3.5.3 Proposed Methodology
AxC is commonly used to approximate hardware components to improve compute
efficiency while maintaining functional accuracy. However, in practice, the errors
induced by approximation can be used to mimic the errors caused by faults in logic
circuits. These errors affect the outputs of the corresponding units and propagate
to subsequent layers, impacting their activations (Fig. 21). The proposed
approach for evaluating DNN’s fault resiliency using approximate computing
(AxC) units is presented in Fig. 21. To implement our proposed method, an
AxMult, or an AxMult + a bit suppression unit (AxMult+) is implemented
along with the exact implementation of the multipliers (ExMult) in the network,
depending on whether the network is being run in functional or fault resilience
assessment mode. The golden inference for the validation dataset is run only
once, and the layer outputs are stored and compared with a Comparator unit.
The Bit Suppressor unit is meant to increase the probability of more significant
bits of the neuron being impacted by faults. The less significant bits of the layer
Output Feature Map are already affected by the AxMult with proper randomness
depending on the data distribution in the network and layers.

64

The overall flow of the proposed method is illustrated in Fig. 22. In Step
1, the user initializes the method by selecting the compromised layer in the
DNN structure, the validation dataset (i.e., DNN inputs), and the application-
specific target fault rate assumed for the analysis. In Step 2, suitable AxC
units are selected for Approximate Processing Elements (AxPEs), such as the
AxC multipliers from a relevant library, e.g., the EvoApproxLib [139], or their
variants with bit suppression. In Step 3, the selected AxMults started executing
the compromised layer by enabling corresponding AxPEs along with the Exact
Processing Elements (ExPE) in the DNN architecture. The DNN inference is run
while keeping the network pipeline intact, and the resulting DNN output accuracy
drop is recorded as the primary metric for analyzing DNN fault resilience. A more
significant drop in accuracy with induced errors implies a less fault-resilient DNN
implementation. At the same time, the outputs of the AxMults are compared
with the ExMults outputs to calculate the actual error at each neuron. The rest
of the inference is executed by ExMults for both erroneous and exact outputs,
and the comparison is performed for all the subsequent neurons of the network.

Figure 22: APPRAISER methodology flow

The characteristics of the approximation-induced errors can be evaluated
using different metrics such as normalized error, number of flipped bits, and
impact on the neural network classification accuracy drop. In this study, we rely
on a simple set of metrics that includes:

• Normalized error: the average error on the output of each layer is calculated
by subtracting the neurons’ outputs of that layer from the golden output
and dividing all the error values by the maximum value.

• Network accuracy: calculated by executing the network under different
circumstances (faulty, AxMult, AxMult + bit suppressor and bit suppressor)
over the test set.

• Bitflips in subsequent layers: calculated by comparing all bits in the next
layers’ outputs with the golden model and counting the bits that do not
match as flipped bits.

Accelerator Model:
Fig. 23 illustrates the accelerator model to perform resilience analysis on

FPGA. It consists of two different systolic architecture designs based on the

65

network under test. The N ×N systolic architecture is used based on the
convolution layers’ kernel size to perform the most optimum dot matrix. At the
same time, all designs have ExPE and AxPE to perform the resilience analysis
and benefits of a dual register to store the results of both approximate systolic
and exact systolic for further comparisons. An Error Detector (ED) module is
also provided to compute the error generated at each neuron’s output compared
to the exact output and can be used for the neuron’s vulnerability evaluation.

This implementation provides us with the following features:

1. Understanding the vulnerability of neurons by computing the error generated
through the hardware and further layers by comparing the exact and
approximate systolic design outputs;

2. Increasing the controllability for enabling errors in each layer individually
and keeping the other layers correct;

3. Eliminating the need for designing and deploying an extra complex controller
for the fault injection procedure. A simple approximate unit enabling
circuitry is employed instead;

4. The inference pipeline process executes a batch of inputs with no need to
break this process;

5. The resilience assessment process is performed without an extra intercon-
nect for weight sampling;

6. The proposed approach is not iterative for each potential fault location
(unlike the traditional fault injection). Thus, the analysis complexity is
vastly reduced.

Note that the features (3)-(6) are specific for FI emulation in Programmable
Logic and generally not available in Processing Logic based methods such as
Fiji-FIN.

3.5.4 Experimental Results
Experimental results are reported in this subsection as follows:

3.5.4.1 Evaluation methodology To assess the feasibility of the proposed
method, we implemented the same flow as shown in Fig. 21 with fault injection
(FI). Using Table I, we narrowed down the list of candidate approximate multipliers
from the EvoApproxLib library [139] based on several relevant metrics, with
a primary focus on two established features, namely, the Variance of Error
Distance (Var-ED) and Root Mean Square (RMS-ED) presented in [143]. These
metrics are crucial in determining the approximation-induced errors that affect
the performance of an AxC unit in DNNs. We selected mul8s_1L2N for the
experiment based on these metrics and results achieved from the high-level
experiments on the network through the proposed GPU accelerated framework
for CNN approximation in Section II.

For the reference part, we repeated the fault resiliency evaluation on the
original network, which was instrumented with a state-of-the-art FI method [142].
In this study, we considered the injection of multiple bitflips at a random location

66

Figure 23: Proposed systolic architecture for our Resiliency assessment DNN accelerator
framework

in all OFM’ bits of the compromised layer for every input in the DNN validation
test set. In this case, we assumed that 10% of the weights’ bits were faulty.

To achieve a high FI confidence level using the statistical fault injection
approach [54], we repeated the experiment for each fault model with 1000
random faults per image. The average accuracy of all repetitions was then
reported.

We evaluated the impact of AxMult, AxMult + Bit Suppression (AXMult+),
Bit Suppression alone, and fault injection, along with normalized error and the
number of flipped bits, on the DNN accuracy. The results show a drop in DNN
accuracy due to these factors. We compared the normalized error and the number
of flipped bits for each scenario.
3.5.4.2 Experimental Setup

To evaluate the feasibility of the proposed method, a case-study Convolutional
Neural Network (CNN) with two convolutional layers, two max-pooling, and
one Fully-Connected (FC) layer was implemented and trained. The simulations
were performed on an Intel® Core™ i7-6800K CPU @ 3.40GHz × 12, and the
proposed method was implemented with Python 3. The hardware synthesis and
implementation results are produced by the Xilinx Vivado HLS tool on a Xilinx
Versal VCK190 FPGA (xcvc1902-vsva2197-2MP-e-S) at 166 MHz operational
frequency.

The CNN under study is trained on a dataset of 2000 images of animals (cats
and dogs) and humans for binary classification. The accuracy of the network
over the test set (including 450 images of animals and humans) is 93.34%. Bit
truncation quantization is applied in network parameters during training, and
data precision is reduced to 8-bit.
3.5.4.3 Evaluation Results

We analyzed the similarity of the fault resiliency analysis results obtained by

67

Figure 24: Normalized output error of Pool2: Applying AxMult,
AxMult+ , Bit Suppression and FI on the Conv1

Figure 25: Normalized output error of Conv2: Applying AxMult,
AxMult+ , Bit Suppression and FI on the Conv1

fault emulation and our proposed method using the metrics identified in Section
3.5.3.

Fig. 25 shows the distribution of normalized error in the output of the second
convolutional layer (Conv2) in the presence of 10% random faults in the first
convolution layer (grey), errors induced by AxMult (blue), and errors induced
by AxMult + bit suppressor (orange) enabled in the first convolution layer,
respectively. Fig. 24 reports the impact of applying FI and our proposed method
on the same convolutional layer and its effect on the second pooling layer of the
network. These results demonstrate the similarity in error propagation trends
between the proposed and reference methods.

In practice, by analyzing these charts, users can set a criticality threshold
on the output error of the neurons based on their application and determine
the number and indices of neurons to be used for any protection techniques.
Generally, if we set the threshold at some error value, all methods suggest some
neuron indices for mitigation techniques. As it can be concluded, both AxMult
+ bit suppression and FI show very similar behaviors. However, relying solely on
the AxMult or bit suppression techniques is quite inaccurate for high fault ratios
like this case study here.

For example, by setting the error threshold to 0.7, FI will recommend the

68

Figure 26: Multiplication output error generated by AxMult,
AxMult+ and Bit Suppression

Figure 27: Normalized Multiplication output error generated by
AxMult, AxMult+, and Bit Suppression

user to protect 50 out of 1024 neurons of the Conv2 network’s second CONV’s
neurons, while AxMult + bit suppression will recommend 53 out of 1024 neurons,
including all the critical neurons recognized by FI. Fig. 26 and Fig. 27 show
the error distribution of the three different methods, i.e., AxMult, AxMult + bit
suppressor, and bit suppressor on the output of a multiplication operation with
all the combinations of two 8-bit inputs. From Fig. 26, it is evident that the
error values generated by AxMult + bit suppressor can almost cover a vast range
of different values, and Fig. 27 shows that the error is evenly distributed on all
different input combinations.

Table. 12 is reporting the number of bitflips and accuracy drop in subsequent
layers caused by the compromised first convolution layer. These results also
demonstrate the strong similarity of the trends in error propagation by the AxMult
and its variants with the reference method. In case of accuracy drop, AxMult +
bit suppression shows a strong correlation with the FI method and surpasses the
other two methods.

Table 13 reports details of the hardware accelerator implementation. Based
on the results, the proposed implementation can be executed on the FPGA at
166 MHz clock frequency, and only by using ∼16% of the available LUTs on the
board all three mentioned systolic-array size architectures can be implemented
to improve the efficiency of the accelerator. The timing comparison of the

69

Table 12: Bitflips and Accuracy drop induced by our proposed method vs. the reference
fault injection method by fault rate 10% in OFM of the first convolution layer

Measured Layer
Bitflips in subsequent layers

FI (reference)
[%]

AxMult
[%]

AxMult+
[%]

Bit suppressor
[%]

Conv1 10 10.30 10 10.20
Pool1 9.07 9.20 9.06 9.15
Conv2 16.76 16.80 16.77 16.83
Pool2 16.51 16.66 16.53 16.62

Accuracy drop [%]
16.73 9.33 18.33 24.73

Table 13: Hardware implementation of the proposed hardware accelerator
Resource Utilization (%)

Conv2D
systolic size LUT FF BRAM Data Path

Delay
CLK

Frequency
3*3 0.03 0.00 0.83 Logic: ∼20%

Route: ∼80% 166 MHz5*5 0.09 0.00 0.83
32*32 15.30 0.91 0.85

proposed method and the state-of-the-art fault injection method are presented
in Table. 14. As it can be concluded, by keeping an acceptable accuracy of FI
in identifying the critical neurons, we get thousands of times speed-up in the
resilience assessment of the DNNs. (Specifically, it is 5417 times in this example).
At the same time, the proposed method does not need extra interconnects to
manage the assessment process, and the original controller of the accelerator
can take care of the fault resiliency assessment process.

Table 14: Timing overheads of the proposed method vs. the reference fault injection
method (Conv1 layer)

Network Analysis Control
Circuitry Interconnects DNN execution

time in FPGA

Base CNN N/A Data Exchange
Interconnect ∼120ms

Fault Resilience Assessment
CNN instrumented

with FI Complex FI Controller (Data Exchange + FI)
Interconnect ∼650,000ms

CNN instrumented
with AxMult+

Accelerator
Controller

Data Exchange
Interconnect ∼120ms

3.5.5 Conclusion
The state-of-the-art methods for fault injection by emulation incur a spectrum
of time-, design- and control-complexity problems. To overcome these issues, a
novel resiliency assessment method called APPRAISER is proposed that applies
functional approximation for a non-conventional purpose and employs approximate
computing errors for its interest. By adopting this concept in the resiliency
assessment domain, APPRAISER provides thousands of times speed-up in the
assessment process, while keeping high accuracy of the analysis. In this subsection,
APPRAISER is validated by comparing it with state-of-the-art approaches for
fault injection by emulation in FPGA. By this, the feasibility of the idea is
demonstrated, and a new perspective in resiliency evaluation for DNNs is opened.

70

3.6 Hybrid Analytical and Hierarchical FI-based Reliability
Assessment for Systolic-Array-Based DNN Accelerators

This section is based on the following papers: [VIII, X, and XII]

3.6.1 Introduction
Simulation-based FI is less expensive in terms of equipment, but at the same time,
it implies the most resource-intensive computations and is very time-consuming.
On the other hand, analytical and hybrid approaches are proposed to reduce the
complexity of exploiting FI for the reliability assessment of DNNs [IX]. Analytical
approaches attempt to provide mathematical approaches to estimate reliability,
nonetheless, their evaluation accuracy is challenging to address and they are
mostly hardware-agnostic. Whereas hybrid FI-analytical approaches can take
advantage of both FI and analytical approaches in terms of scalability, accuracy
and hardware-based analysis [IX]. To our knowledge, there is no work assessing
the reliability of Systolic Arrays (SAs) running DNNs using hybrid methods to
accelerate the analysis process.

This section introduces a novel hybrid analytical and hierarchical simulation-
based reliability assessment for systolic-array-based DNN accelerators based on FI.
This methodology is tailored to significantly accelerate the fault injection process
on systolic-array-based DNN hardware accelerators. The systolic-array core of the
DNN accelerators is modeled using a URE system [119]. The proposed injection
flow has been implemented based on an SA simulator [IV], thus offering the
advantage of being more precise than a hardware-agnostic tool, yet much faster
than traditional RTL-level simulations. An analytical method [VIII] is used to
prune the fault space to further optimize the tool and speed up the reliability
assessment process.

3.6.2 Proposed Methodology
The methodology for the proposed framework is illustrated in Fig. 28. After
providing the trained network parameters and architecture, in Step 1, the fault
list is generated. Possible fault locations can be defined by the user or can be a
random fault list generated based on the network parameters by the framework.
In this work, we consider random transient faults in the registers of the systolic
array’s processing elements.

In Step 2, to prune the fault space, we adopt and extend the DeepVigor
methodology presented in [VIII] that provides vulnerability analysis for DNNs and
QNNs, respectively. To this end, we find error values for each output fmap that
misclassifies the network output. Let δl

k(Xi) be an added positive or negative
error value to an output fmap by a fault in the k-th neuron at layer l with input
data Xi. For each neuron, we find the minimum positive and maximum negative
δl

k(Xi) that misclassifies the output from the golden classification. This value is
obtained for all input data X and aggregated over them. The aggregation leads
to a vulnerability value range for each neuron, as shown in Fig. 29. It is labeled
as follows:

• Vulnerable (red area): if a fault deviates the output of a neuron as in this
range, it will certainly lead to misclassification for any input.

71

Figure 28: The proposed methodology for hybrid analytical and hierarchical reliability
assessment for systolic array DNN-HAs

72

• Non-Vulnerable (green area): if a fault deviates the output of a neuron
as in this range, it will not change the output classification for any input.

• Semi-vulnerable (grey area): if a fault deviates the output of a neuron as
in this range, it might or might not lead to misclassification for any input.

-∞ +∞
min_neg max_neg min_pos max_pos

non-vulnerablesemi-vulnerablevulnerable

Figure 29: Vulnerability ranges for fault space pruning

This analysis enables pruning the fault space in a way that we map the
deviations at the erroneous outputs of neurons induced by fault to the obtained
vulnerability ranges for neurons. If the error corresponds to the red or green
areas, we immediately classify them respectively as critical or non-critical and
do not continue the fault simulation. Otherwise, if the error corresponds to a
semi-vulnerable range, the fault simulation is required to be performed.

In Step 3-A, the simulation is performed from the beginning of the DNN to
the fault’s location to obtain the erroneous output of the corresponding neuron.
The error is mapped to the vulnerability values of the corresponding neuron
(shown in Fig. 29). If the fault is pruned (corresponding to green or red areas),
the fault impact is determined (Step 4). Otherwise, the simulation continues
(Step 3-B) to obtain the fault impact (Step 4).

In Steps 3-A and 3-B, switching between high-level API and systolic-array
simulator is done by solving the URE system mentioned before; this step is
described later in this section and Fig. 30. In Step 4, the reliability of the
network and the impact of the faults are reported by different metrics. After
evaluating the impact of one fault, the next fault is selected for evaluation.

The hardware simulation in Step 3-A is based on a formalization of the
problem to solve through a URE system. Such a system can describe the problem
to be solved by the architecture through a set of recurrence relations. In our
specific case, we are interested in solving the problem of matrix multiplication.
We associate the following system to such a task.

c(i, j,k) = c(i, j,k−1)+a(i, j−1,k)× b(i−1, j,k) (27)
a(i, j,k) = a(i, j−1,k) (28)
b(i, j,k) = b(i−1, j,k) (29)

(30)

The generalization of this process is described in [119]. This equation system
can be associated with actual hardware processing by projecting the iteration
space to the physical space. The iteration space contains all the points (i, j,k) of
the equation system. The physical space describes where (i.e., which processing
element) and when (i.e., at what clock cycle) each computation happens in
the real world. To achieve that, the iteration space is projected twice: the

73

Figure 30: Fault injection across hierarchical and analytical abstractions

first time, the resulting points will correspond to the spatial arrangement of
the processing elements; the second projection determines iso-temporal planes,
identifying operations that are computed during the same clock cycle but on
different processing elements; each plane corresponds to a different clock cycle.
The space-projection matrix P and the temporal dimension vector π are used
later.

In order to perform the simulation, it is sufficient to solve the system shown
above. Nevertheless, this method gives the possibility of injecting faults in the
values in a hardware-aware fashion. To achieve the injection, it is sufficient to
change the values a, b and c at specific iterations (i, j,k). The faulty values
must then be propagated to the following PE. Given the system of equations,
the propagation can be computed easily, taking into account the transformation
matrix. Figure 31 shows the concept. In this case, an injection in the element
s = (x,y, t) on the generic line i is done between times 0 and ∞. The injected
elements are visible in the figure. Specifically, the fault will propagate in time,
thus injecting also s+δti and s+2δti. In the same way, this fault will propagate
in the space to the element cascading from s. The value propagation only
happens after each clock cycle, which means that the next injected element will
be also displaced in time, thus injecting element s+ δxi + δti. In the same way,
the latter will propagate to the following element on the following clock cycle,
thus injecting element s + 2δxi + 2δti and so on. The injected points can be
translated into iteration vectors i, j,k using the inverse transformation. Formally,
it is sufficient to consider the injection as a function h applied to one of the
three values, e.g. a(i, j,k) = h(a(i, j−1,k)

74

s
s

+δti

s
+2δti

s
+δxi

+δti

s
+δxi

+2δti

s
+δxi

+3δti

s
+2δxi

+2δti

s
+2δxi

+3δti

s
+2δxi

+4δti

time

space
Figure 31: Fault propagation in systolic array. When injecting element s, the fault
is propagated in time (thus affecting elements s + δti and s + 2δti) and in space
(forwarding the faulty value to neighboring elements s + δxi + δti, s + 2δxi + δti and
so on).

3.6.3 Experimental Results
To evaluate the methodology, experiments were performed using a 16-bit quan-
tized LeNet-5 trained on the MNIST dataset. The network was injected with
random transient faults (assuming that they are caused by Single-Event Upsets).
More specifically, a fault affects a random bit in the weight register of a random
processing element. The fault causes an error, which manifests itself by fixing the
value of a bit to either 0 or 1. The target architecture is an Output-Stationary
Systolic Array. In this experiment, faults are injected only in the first layer
of the network. It is simulated using the URE system to obtain its output
values. The output is compared against the vulnerability ranges obtained by the
analytical approach, which determines whether the injected fault is vulnerable,
semi-vulnerable or non-vulnerable (see Fig. 29). If the fault happens to be
semi-vulnerable, the simulation must be carried out until the end to determine
whether the fault produced misprediction or not; in the other two cases, the
output is pre-determined, and there is no need to complete the simulation until
the end. It is worth mentioning that the vulnerability ranges are obtained in
less than one minute on an NVIDIA 3090 GPU. This methodology allows to
accelerate the process of fault injection simulations.

The produced fault list includes 964 random faults, each simulated with 100
random input images.

Table 15 shows the number of simulations in each category. The simulations
are grouped by channel for better understanding. The first column indicates
the channel in which the faults are injected. The “non-vulnerable", “semi-
vulnerable", and “vulnerable" columns indicate the number of simulations with
the corresponding vulnerability. The “speed-up" column indicates the percentage
of simulations that do not need to be fully performed because of the vulnerability
ranges gathered in the previous step. More specifically, speed-up is the percentage
of pruned simulations.

As observed in Table 15, no fault was pruned as vulnerable using the analytical
approach. This is because the analytical approach did not provide any red area

75

Table 15: Channel-wise analysis of the fault injection speedup. The last column (su)
indicates the percentage of vulnerable and non-vulnerable simulations with respect to
the total.

Channel Non-vulnerable Semi-vulnerable Vulnerable Speed-up (%)
0 13673 3127 0 81.38
1 12606 3594 0 77.81
2 13044 2956 0 81.52
3 10392 5508 0 65.35
4 11811 3589 0 76.69
5 13173 2927 0 81.82

for the first layer of LeNet-5, yet it provides an effective green area in which up
to 81.52% of faults are pruned. Table 15 shows that consistently, for each layer,
at least 65% of the simulations are predetermined using the analytical approach
leading to a remarkable time-saving for simulations.

If we assume that x is the time needed to perform a single hardware simulation
(computing a convolution between a kernel and a feature map), we would need
a total time t for a single inference as follows:

t = x×
∑

Ki,j,l ∀(i, j, l) ∈NNf ⊆NN (31)

where K is always equal to 1 and indicates a single convolution and (i, j, l)
is the triple (fmapinput,fmapout, layer) in the neural network NN . NNf

represents subset of the convolutions affected by the fault f .
For example, in our LeNet-5, the set NN has 6 elements for the first layer:

(1,1,1),(1,2,1), . . .(1,6,1). The second layer has 6×16 elements: every fmap
of the output of the first layer has to be convoluted with every kernel of the
second layer, so we will have (1,1,2),(1,2,2), · · ·(1,16,2), · · ·(2,1,2), · · ·(6,16,2).
Note that the first layer only has one input fmap: the input image itself, this
we only have 6 convolutions in that case. The subset NNf corresponds to all
those convolutions whose input fmap is different than the golden and thus needs
to be recomputed, taking into account the errors introduced by the fault. In
our case, with the type of fault chosen, we would have an error affecting only
one value in the first channel. Such an error is propagated to the following
layers, although it may be masked. Especially when considering permanent
faults, we would be forced to simulate every convolution until the output to
determine the criticality of the fault. In our setup, NNf would have a total
of 102, considering that our systolic array only computes convolutional layers.
Using the analytical approach made it possible to interrupt the simulation just
after the first layer. In the conducted fault injection campaign, about 76% of
the total simulations were pre-determined, allowing us to simulate the systolic
array only once in 76% of the total inferences. This gave us an average time
per simulation t′ = x× (0.24×102+0.76)≈ 0.24× t and a total 86% of fault
injection speed up.

Figure 32 shows the speed-up in percentage concerning the injected bit
position. It can be concluded that the most significant bits (0 to 7) are the
ones that produce a smaller speed-up in general. Most of these faults fall in

76

Figure 32: Speedup per injected bit position

the "semi-vulnerable“ category, thus it is necessary to propagate the error to
infer the fault criticality. The least significant bits (14 to 31), on the other hand,
provide great speed-up since the error is small enough for the simulation to be
classified as "non-vulnerable".

Finally, the methodology is applied for SDC-1 (i.e., Silent Data Corruption
leading to misclassification) analysis.

Table 16: SDC1 computed over each channel. The second column (misclassified) shows
how many “semi-vulnerable" simulations ended up misclassifying the output. The third
column (SDC1) shows the metric computed over the whole batch.

Channel Misclassified SDC1 (%)
0 48 0.29
1 50 0.31
2 41 0.26
3 93 0.58
4 69 0.45
5 60 0.37

Using the data in table 15, we could compute a lower bound corresponding
to the number of “non-vulnerable" simulations. Since there is consistently
no “vulnerable" simulation, the lower bound effectively corresponds to the
complement of the speed-up. Furthermore, the SDC-1 was calculated for the
“semi-vulnerable" faults. Table 16 shows the metric computed for the network
under analysis. The second column shows the number of simulations that ended
up in misclassification. The third column shows the metric itself. The network
shows great resilience to this type of fault. In total, the SDC1 is 0.37%.

3.6.4 Conclusion
The presented approach is capable of significantly reducing the fault injection
simulation time. This method will be extended to larger DNNs considering
various fault models for obtaining reliability evaluation metrics and combining

77

the assessment with selective hardening techniques [X].

3.7 Chapter Conclusions
In conclusion, the assessment of DNN reliability is a multifaceted domain cat-
egorized primarily into Fault Injection, Analytical, and Hybrid methods. Fault
Injection methods, which are the most commonly utilized, simulate various fault
scenarios to evaluate the robustness of DNNs under different conditions. This
category includes approaches such as Fault Simulation, Emulation in Hardware,
and Irradiation, each offering unique insights into the potential vulnerabilities of
DNN implementations across different hardware platforms. Analytical methods,
on the other hand, focus on understanding the intrinsic structural weaknesses of
DNNs by analyzing the connections and interactions between neurons and layers.
This approach facilitates a theoretical evaluation of DNN reliability without
the extensive overhead of practical fault injection experiments. Hybrid meth-
ods combine the strengths of both Fault Injection and Analytical approaches,
providing a balanced methodology that enhances reliability assessment through
comprehensive analysis and practical fault simulation. The works reviewed in
this chapter highlight the advancements in these methodologies, emphasizing
their roles in ensuring the dependable operation of DNNs in various applications.

78

4 Reliability Enhancement of DNN Hardware Accel-
erators

4.1 Introduction
This chapter proposes techniques aimed at enhancing the reliability of Deep
Neural Networks (DNNs) when deployed on hardware accelerators such as FPGAs
and ASICs. The chapter presents two primary techniques: AdAM (Adaptive
Approximate Multiplier) and FORTUNE (Fault TOleRance Technique). These
techniques are designed to mitigate the effects of hardware faults while maintain-
ing performance efficiency. AdAM allows dynamic adjustment of approximation
levels to reduce resource usage while maintaining fault tolerance, making it
suitable for fault-prone environments. FORTUNE, a hardware-agnostic method,
provides fault resilience by optimizing memory overhead and ensuring critical
bits are protected, enhancing DNN reliability without adding significant resource
consumption. The chapter combines theoretical frameworks with experimental
results, demonstrating substantial improvements in power consumption, accuracy,
and fault tolerance over existing methods.

4.2 AdAM: Adaptive Approximate Multiplier for Fault Toler-
ance in DNN Accelerators

This subsection is based on the following papers: [II, and III]

4.2.1 Introduction
In the past decades, Deep Neural Networks (DNNs) demonstrated a significant
improvement in accuracy by adopting computationally intense models IX. Conse-
quently, the size of these models has increased drastically, imposing challenges
in their deployment on resource-constrained platforms [144].

Different DNN compression techniques such as model quantization and
pruning [144] as well as approximate computing (AxC) [145] VI enable the use of
DNNs in edge devices. While these techniques decrease the accuracy of DNNs,
they bring the benefits of lower resource utilization and energy consumption and
higher system efficiency XII. As an example, quantizing DNNs down to 8-bit
INT gained popularity in edge AI applications, because of the minimal impact
on accuracy drop and a significant reduction in memory footprint [146].

On the other hand, the role of DNNs in a wide range of safety- and mission-
critical applications e.g., autonomous driving, is expanding. Therefore, deploying
a DNN accelerator requires addressing the trade-off between different design pa-
rameters and reliability VI. Although DNNs possess certain intrinsic fault-tolerant
and error-resilient characteristics, it is insufficient to conclude the reliability of
DNNs without considering the characteristics of the corresponding hardware
accelerator.

Consider Fig. 33 that demonstrates different possible fault locations in an AI
accelerator and their negative effect on the object detection task. In the example,
a pedestrian has been identified as a bird, and a red light is misclassified as a
green one leading to a potentially disastrous situation. In this work, the faults in
the computational core of the AI chip are considered.

79

Figure 33: Possible locations of faults in AI chip I

Moreover, with the continuous scaling-down of the process, there is a dis-
cernible trend indicating that the Soft Error Rate (SER) of combinational circuits
may surpass that of sequential circuits [147], [148]. Therefore, the main focus of
this study is introducing a novel reliability technique to mitigate soft errors in
the combinational logic of DNN accelerators while keeping resource utilization
and energy consumption low.

This work presents an architecture of an adaptive fault-tolerant approximate
multiplier (AdAM) tailored for ASIC-based DNN accelerators. The multiplier is
based on the logarithmic Mitchell’s multiplier that substitutes multiplication with
the addition of approximated logarithms of the operands. The proposed multiplier
protects higher-order bits of the product based on the maximum position of
the leading one bit in the input strands of the multiplier. This multiplier is a
negative overhead fault tolerance approximate multiplier compared to the exact
multipliers. The contributions of this subsection are as follows:

• The architecture of a novel adaptive fault-tolerant approximate multiplier
tailored for DNN accelerators, including an adaptive adder relying on an
unconventional use of the leading one position value of the inputs for fault
detection through optimizing unutilized adder resources.

• DNN accelerator fault detection and protection methodology with formal
definitions for scalability and reproducibility.

• Implementation and validation of the multiplier design. Reliability and
hardware performance trade-off assessment and comparison of the proposed
multiplier with exact and approximate state-of-the-art multipliers using
several state-of-the-art DNN benchmarks.

The proposed multiplier provides a reliability level close to the multipliers
protected by Triple Modular Redundancy (TMR) while utilizing 2.74 × less area
and having 39% less power-delay product compared to the unprotected exact
multiplier. In fact, it has similar area, delay, and power consumption parameters

80

compared to the state-of-the-art approximate multipliers with similar accuracy
while providing fault detection and mitigation capability.

The remainder of this subsection is organized as follows: 4.2.2 summarizes re-
lated works. 4.2.3 presents the proposed method. 4.2.4 presents the experimental
setup and discusses the results. Finally, 4.2.5 concludes the work.

4.2.2 Related Works
Multipliers are one of the primary arithmetic building blocks widely used in
DNNs. Approximate computing is a promising technique for designing digital
circuits with lower area and power consumption while achieving a higher working
frequency, particularly when the target application has some error resiliency, such
as DNNs [145], XII. Various approximate multipliers are proposed in the literature.
These options encompass dynamic segment multiplier (DSM) structure [149],
dynamic range unbiased multiplier (DRUM) structure [150], memristor-based
multipliers [151], simplified adder-based or truncated multipliers [152], utilization
of inexact compressors [153], and approximate booth multipliers [154]. One
of the other approximation techniques to further speed up the multiplication
is to move to the logarithmic numbering system to compute addition instead
of multiplication. The general idea is to obtain the logarithm of the inputs,
calculate their sum, and convert the output value to the final result through an
antilogarithm operation [155], [156]. The complexity and accuracy of this method
come from the logarithm and antilogarithm steps. Truncating the input operand
of multiplication and using logarithmic approximation also has a dual effect on
the area, speed, and power consumption improvement. The first approximate
logarithmic multiplier was proposed by Mitchell, who used binary logarithms
to approximate multiplication [156]. There are several studies conducted on
improving the performance and accuracy of this method by considering DNN
application [157]. Tosam is a scalable approximate multiplier that reduces the
number of partial products by truncating each of the input operands based on their
leading one-bit position and improves delay, area, and energy consumption up to
41%, 90%, and 98%, respectively, [152]. ScaleTRIM is a scalable approximate
unsigned LOD multiplier for DNNs that exploits curve fitting and linearization
for fitting input products and a novel error compensation method using lookup
tables [155].

The error introduced by the approximation is deterministic, and its impact
can be studied comprehensively on the accuracy drop of the network. However,
soft errors are unpredictable in contaminated and harsh environments that can
lead to DNNs malfunction and accuracy drop drastically [158]. In contrast to the
proposed approximate multipliers, AdAM considers reallocating resources saved
by approximation for fault tolerance. Recent research investigates the reliability
of DNNs alongside approximation XII, VI. In [159], DNNs and approximated
DNNs are tested in the presence of stuck-at faults, and the results demonstrated
that approximated DNNs are more resilient under special conditions.

Triple Modular Redundancy (TMR) and Gate-Sizing (GS) are two well-
established hardening methods widely employed to mitigate soft errors in combi-
national circuits. Despite achieving 100% fault coverage for a single fault in one
module of a combinational circuit, TMR incurs a substantial near 200% area

81

and power overhead [6]. Therefore, numerous algorithms and frameworks are
developed to enhance the efficiency of applying these methods and balance their
hardening effects and design costs [160].

A relaxed fault-tolerant (RFT) hardening method that exploits the inherent
fault tolerance of different applications to reduce implementation costs was pro-
posed in [161]. However, RFT lacks generality and flexibility. Approximate TMR
(ATMR) is a technique that replaces some modules of TMR with approximate
ones while ensuring that the majority voter gives the correct output [162]. This
technique is investigated for various purposes and platforms, including some that
are exclusive to FPGAs and some that work with both FPGAs and ASICs [160].
However, ATMR still requires duplicating the whole combinational circuit, even
at the finest level of granularity.

To address the high overhead incurred by traditional fault tolerance methods,
this work presents an adaptive approximate multiplier that provides a high level
of reliability while using less area and PDP than an exact multiplier.

Figure 34: AdAM architecture (the contributions and extensions to the logarithmic
Mitchell multiplier are marked with red color)

4.2.3 Proposed Methodology
We propose an architecture for adaptive fault-tolerant approximate multiplier
tailored for DNN accelerators. This architecture includes an adaptive adder
relying on an unconventional use of input Leading One Detector (LOD) values
for fault detection and mitigation through the optimization of unutilized adder
resources. A gate-level optimized LOD design and a lightweight triplicated hybrid
adder design are used to enhance further the proposed architecture’s reliability,
resource utilization, and efficiency. The base for the proposed multiplier is the

82

classical Mitchell multiplier [156]. However, the methodology can be applied
to all logarithmic approximate multipliers. Another level of approximation is
introduced in the adaptive adder (Fig. 34) considering the application of this
multiplier in DNNs with a proven negligible impact on the network accuracy
(see Table 22 in the results section). Mitchell multiplier employs approximate
logarithms of the input values. By adding these logarithms, Mitchell’s algorithm
estimates the product. The final result is obtained by taking the antilogarithm
of this sum.

Figure 35: Comparison of absolute error distribution between the original 8-bit Mitchell’s
multiplier and AdAM: top point shows the maximum absolute error for Adam, lower
point shows the maximum absolute error for Mitchell’s multiplier

4.2.3.1 Definitions
Consider two n-bit positive integers A and B that can be represented as

A =
kA∑
i=0

2iai,B =
kB∑
i=0

2ibi, ai = bi = {0,1} (32)

where k is the position of the leading one bit, 0≤ k < n. By factoring 2k we get

A = 2kA

(
1+

kA−1∑
i=0

2i−kAai

)
= 2kA(1+XA) (33)

B = 2kB

(
1+

kB−1∑
i=0

2i−kB bi

)
= 2kB (1+XB) (34)

Since k ≥ 0, X is in the range 0≤X < 1 and is the fraction term of the number.
The logarithms of A and B then can be expressed as

log(A) = kA + log(1+XA) (35)
log(B) = kB + log(1+XB) (36)

83

Mitchell’s method approximates log(1 + X) with the value of X. This way,
logarithms are approximated as

log(A)≈ kA +XA (37)
log(B)≈ kB +XB (38)

The logarithm of AB can be approximated as

log(AB)≈ kA +XA +kB +XB (39)

The antilogarithm of the above expression is the final product:

P̂ = 2kA+kB (1+XA +XB) (40)

AdAM architecture introduces a truncation parameter t that defines the level of
fault tolerance, i.e. the number of protected higher-order bits of the fractional
part. Considering the truncation parameter, fractional part X is defined as

Xt
A =

kA−1∑
i=0

2i−kAai ·
[
i-kA ≥ n− t

]
(41)

Xt
B =

kB−1∑
i=0

2i−kB bi ·
[
i-kB ≥ n− t

]
(42)

where n is the number of bits, t is the truncation parameter, [·] are the Iverson
brackets. The final product then is expressed as

P̂ = 2kA+kB (1+Xt
A +Xt

B) (43)

Truncation of the fractional parts introduces additional errors to the result.
The absolute error (P − P̂) behavior of the original 8-bit Mitchell’s multiplier and
AdAM is compared in Fig. 35 over the entire input domain. The maximum errors
introduced by each method are marked in the figure. There is no additional error
when the truncated bits in both operands are ’0’, as the number of ’1’ in the
truncated bits increases, additional error increases as well.

However, it has been shown that the trained synaptic weights in NN applica-
tions do not have a uniform distribution, and they are mostly centered around
zero [163]. Therefore, the impact of the proposed multiplier on the accuracy of
different networks is reported in the result section.

The level of fault tolerance of the proposed multiplier is defined by two
parameters: the aforementioned truncation parameter t and duplication level
h. The truncation parameter t defines the minimum number of protected bits,
and duplication level h defines the maximum possible number of protected bits.
Smaller operands have smaller mantissa values that do not require the whole
adder. Therefore, more adder resources can be used for fault tolerance by
duplicating the addition of more higher-order bits. Duplication level h does not
affect the accuracy of the multiplier, it affects area, power, and delay. A higher
h value means a higher level of fault tolerance and higher resource utilization. A

84

smaller value means a lower level of fault tolerance and lower resource utilization.
Different configurations of the proposed multiplier are denoted as AdAM(t,h).
4.2.3.2 Hardware Implementation

The proposed architecture of the multiplier is presented in Fig. 34 (the
contributions and extensions to the logarithmic Mitchell multiplier are marked
with red color). First, a novel optimized Leading One Detector (LOD) circuit
(subsection 4.2.3) is used to find the index of the first ‘1’ bit in each operand.
This index denoted as k, is the characteristic or integer part of the logarithm
and has log2(n) bits. Then, the operands are shifted left by k bits, aligning the
leading one with the Most Significant Bit (MSB). (n˘1) bits after the leading
one represent the mantissa part denoted as m. The mantissa is truncated to
(n−1− t) bits. The truncated operands are passed to the adaptive (n˘1)-bit

Figure 36: Adaptive adder architecture: A and B are inputs, C is carry values and
PFA stands for partial full adder, m here denotes the size of the truncated mantissa
(n − 1 − t)

adder that adds mantissa together and duplicates the addition of several higher-
order bits depending on the k value of the biggest operand for fault detection
and mitigation. As it was already mentioned, the number of duplicated bits
depends on truncation parameter t and duplication level h.

The architecture of the adaptive adder is shown in Fig. 36 (subsection 4.2.3).
The adder is based on the carry-lookahead adder, and the carry generation logic
is excluded from the figure to save space. Duplicated results are compared, and
if there is a fault, the faulty bit is set to zero using AND gates (marked on the
figure with a red rectangle). Due to the truncation of the mantissa, up to t
lower-order bits are excluded from the calculation, which affects only the bigger
numbers with the k > (n− t). This introduces a small error compared to the
original Mitchell algorithm (discussed in the following section).

The k values of the operands are added separately using a small hybrid
adder. A hybrid between a resource-intensive but fast carry look-ahead adder
and a lightweight but slow due to the accumulated delay ripple carry (CR) adder
is selected for this task. This adder is replicated three times, for extra fault

85

tolerance, as the order of the final output depends on the result of this addition.
A majority voter selects the final result. Then, the antilogarithm algorithm is
used to get the product of multiplication. The sum of k values determines the
position of the leading one in the output product, followed by the sum of the
mantissa parts using the appropriate shift operation.

Figure 37: Fault-tolerance and error introduced based on different input values (n =
8, t = 2,h = 3)

4.2.3.3 Adaptive Adder
The adaptive adder is designed to detect and mitigate faults based on the

multiplier inputs’ k values. The adder is divided into three parts: t PFAs
(Partial Full Adders) for duplicating the addition of t higher-order bits, (h− t)
PFAS with multiplexers on inputs that can duplicate the addition of up to
(h− t) higher-order bits or add lower-order bits, and (n−1−h) PFAs for the
addition of the mantissa. This way, for smaller operands that have smaller
mantissa and do not require the whole adder, more resources can be used
for fault tolerance. The size of the truncated mantissa can be expressed as
WXt = k · [k < n− t] + (n−1− t) · [k ≥ n− t] using Iverson brackets notation.
The available adaptive adder resources can be expressed as WAR = (n−1)−WXt .
Thus, the number of protected bits is WP B = WAR · [WAR < h]+h · [WAR ≥ h].

As an example, Fig. 37 shows the scheme in which the proposed multiplier
introduces fault tolerance considering 8-bit inputs with a truncation parameter
t = 2 and duplication level h = 3. As shown in this figure, five cases are considered.
If the maximum LOD of the inputs is 7, two lower-order bits are discarded, and
a two-bit adder of the adaptive adder is dedicated to recomputing the addition
of two higher-order bits. These results are compared, and the mismatched bits
are set to zero.

For k = 6, only the Least Significant Bit (LSB) is discarded, and two higher-
order bits are protected the same way as in the previous case. When k = 5, no
bits are discarded, and two higher-order bits are protected. For k = 4, three
higher-order bits are protected, and only LSB is not monitored. In the case

86

of k ≤ 3, all bits are protected, enabling the proposed multiplier to provide
comprehensive fault detection and mitigation for all inputs.
4.2.3.4 LOD Design

The gate-level structure of the proposed LOD circuit is presented in Fig.
38. The circuit is divided into two functional parts: zero flag calculation and
leading-one position detection (LOPD). LOPD consists of several stages. During
the first stage, input is divided into nibbles that are processed in parallel. For
each nibble, except for the first one, three signals are calculated: a, b, and c.
For the first nibble, only two signals are calculated: b and c. Signal a defines
whether there is a ’1’ bit in the nibble; signal b defines whether the output is
even or odd; and signal c defines whether there is ’1’ in the two higher bits of
the nibble. During the second stage, those signals form the final result based on
the highest nibble with a ’1’ bit. Since the zero flag is only required at the last
stage of the multiplier to determine whether the final product should be zero, it
is calculated using the LOPD output values. The proposed design requires fewer
logic gates (as demonstrated in the results section) than designs found in the
literature (e.g., ScaleTRIM [155]) by reusing the output values for calculating
the zero flag, knowing that it can have a longer delay.

Figure 38: Gate-level structure of the proposed LOD

4.2.4 Experimental Results
Experimental results are reported in this subsection as follows: 4.2.4.1 Experi-
mental Setup

In this subsection, the FreePDK 45 nm Nangate technology library is used
in Cadence Genus 2023 to compare the hardware characteristics (area, latency,
power consumption) of the proposed methods with the state-of-the-art. The

87

accuracy is reported using Mean Absolute Relative Error (MARE) calculated as

MARE = 1
N

N∑
i=1

(
Pi− P̂i

Pi

)
(44)

where N is the number of tested input combinations, Pi and P̂i are the exact
and approximate results.

Additionally, a design of a MAC (multiply-accumulate) unit in a systolic array
is synthesized for ASIC to better illustrate the results in an AI core. The impact on
the accuracy of the proposed adaptive multiplier is studied on different networks
(i.e., LeNet-5, AlexNet, ResNet-18, VGG-16, DenseNet) trained on MNIST and
CIFAR-10 using 8-bit INT with the help of the AdaPT framework [164]. Finally,
the impact of the proposed multiplier on the reliability of DNNs is studied using
the mentioned benchmarks.

Random fault injection. Fault injection is performed, assuming the single
bit-flip faults in the network’s MAC operation of a systolic array for reliability
assessment. According to the adopted single-bit fault model, a random bit-flip is
injected into a random MAC unit of the systolic array core at a random execution
time of the network, and the whole test set is fed to the network to obtain
the accuracy of the network. This process is repeated several times to reach
an acceptable confidence level, following the approach in [54]. This reference
provides an equation to reach 95% confidence level and 1% error margin.
4.2.4.2 Hardware Utilization

In this section, the proposed LOD, and adaptive multiplier are compared in
terms of power and area with state-of-the-art designs. Power–Delay Product
(PDP) is used to show the efficiency of the design.

Table 17 shows the area, power, and delay of the proposed 8-bit LOD
architecture compared to the state-of-the-art design. The proposed design has
fewer gates and a smaller critical path compared to the other methods in the
literature.

Table 17: LOD hardware comparison between the proposed method and the state-of-
the-art

LOD
Architecture

Delay
(ps)

Power
(µW)

PDP
(ps×µW)

Area
(µm2)

ScaleTrim [155] 156 1.12 174.72 9.84
Proposed 136 1.09 148.24 9.57

Tables 18, 19 and 20 report the accuracy, efficiency, and fault tolerance (FT)
of 8-bit, 16-bit, and 32-bit approximate multipliers compared with the proposed
method. Wallace, DRUM [150], TOSAM [152], and ScaleTrim [155] are used
for this comparison. The proposed multiplier has similar hardware parameters to
the state-of-the-art approximate multipliers with similar accuracy while providing
reliability improvement with fault detection and mitigation capability.

88

Table 18: Accuracy and efficiency of 8-bit approximate multipliers compared with the
proposed method

Multiplier
Architecture

Delay
(ns)

Power
(µW)

Area
(µm2)

MARE
(%) FT PDP

(pJ)
Exact (Wallace) 0.85 360 417 0.00 No 306

DRUM(3) 0.70 104 143 12.6 No 72.8
TOSAM(0,2) 0.58 120 186 10.1 No 69.6
TOSAM(0,3) 0.68 144 198 7.7 No 97.9

DRUM(4) 1.00 172 208 6.4 No 172
TOSAM(1,5) 0.88 231 291 4.1 No 203.2
AdAM(2,3) 1.13 165 152 4.7 Yes 186.4

ScaleTrim(4,8) 1.8 143 216 3.3 No 257.4

Figure 39: Hardware efficiency (area) and fault resilience (fault coverage consid-
ering SDC-1 and SDC-10%) trade-offs in different benchmarks: AlexNet (MNIST),
DenseNet(CIFAR), Inception(CIFAR), ResNet-18 (CIFAR), ResNet-34 (CIFAR), ResNet-
50 (CIFAR), VGG-11 (CIFAR), VGG-13 (CIFAR), VGG-16 (CIFAR). Unp-Exact: un-
protected exact multiplier, Unp-AxM: unprotected approximate multiplier, Pro-TMR:
exact multiplier protected with TMR, Pro-AdAM: proposed multiplier

Table 21 shows the results of MAC implementation with different multipliers.
The MAC unit with the proposed multiplier takes less area and has a lower PDP

89

Table 19: Accuracy and efficiency of 16-bit approximate multipliers compared with the
proposed method

Multiplier
Architecture

Delay
(ns)

Power
(mW)

Area
(µm2)

MARE
(%) FT PDP

(pJ)
Exact (Wallace) 1.22 2.08 1785 0.00 No 2537.6

DRUM(3) 0.88 0.13 257 11.9 No 114.4
TOSAM(0,2) 0.74 0.16 342 10.9 No 118.4

ScaleTrim(3,4) 1.35 0.20 281 9.23 No 279.0
TOSAM(0,3) 0.84 0.21 423 7.6 No 176.4

DRUM(4) 1.12 0.27 381 5.9 No 302.4
ScaleTrim(7,0) 2.38 0.36 492 4.06 No 871.3
TOSAM(1,5) 1.00 0.35 532 4.0 No 350.0
AdAM(6,7) 1.00 0.10 440 3.97 Yes 100.0
AdAM(4,7) 1.06 0.13 451 3.87 Yes 137.8
AdAM(4,4) 0.96 0.12 434 3.87 Yes 115.2
AdAM(2,7) 1.32 0.15 495 3.97 Yes 171.6
AdAM(2,4) 1.13 0.13 451 3.85 Yes 146.9
DRUM(5) 1.36 0.43 532 2.9 No 584.8

ScaleTrim(9,0) 2.71 0.43 541 2.2 No 1170.6
TOSAM(2,6) 1.21 0.38 564 2.1 No 459.8

value.
4.2.4.3 DNN Accuracy

Table 22 compares the accuracy of different CNN architectures using the
proposed approximate multiplier with the baseline accuracy using the exact
multiplier. The evaluation shows that the accuracy of DNN with the proposed
method is very close to the baseline. Hence, the proposed multiplier has a
negligible effect on the accuracy of DNNs.
4.2.4.4 Reliability Analysis

To showcase the impact of the AdAM multiplier on reliability and perfor-
mance trade-offs, the fault injection simulations are performed on a variety of
8-bit convolutional neural network architectures including AlexNet, DenseNet,
Inception, VGG-11, VGG-13, VGG-19, ResNet-18, ResNet-34, and ResNet-50
with four different configurations: unprotected exact multipliers (Unp-Exact),
unprotected approximate multipliers (Unp-AxM), protected exact multipliers with
TMR (Pro-TMR), and protected approximate multiplier with AdAM (Pro-AdAM).
The DNN reliability is evaluated by comparing the output probability vector of
the golden run (i.e. the DNN that behaves as expected, without faults) and the
faulty run (i.e. the DNN that includes the fault). The SDC rate is defined as the
proportion of faults that caused misclassification in comparison with the golden
model. Since in DNNs, there is often not a single correct output, but a list of
ranked outputs, each with a confidence score [84], we need to use new criteria
to determine what constitutes an SDC for a DNN application. Therefore, we
consider four types of SDCs as follows:

90

Table 20: Accuracy and efficiency of 32-bit approximate multipliers compared with the
proposed method

Multiplier
Architecture

Delay
(ns)

Power
(mW)

Area
(µm2)

MARE
(%) FT PDP

(pJ)
Exact (Wallace) 1.67 10.26 7618 0.00 No 17134.2

DRUM(3) 1.08 0.20 520 11.90 No 216.0
TOSAM(0,2) 0.99 0.27 844 10.90 No 267.3
TOSAM(0,3) 1.02 0.28 780 7.61 No 285.6

DRUM(4) 1.33 0.36 738 5.90 No 478.8
TOSAM(1,5) 1.18 0.40 999 3.95 No 472.0
AdAM(8,15) 1.67 0.31 1105 3.8488 Yes 517.7
AdAM(8,8) 1.30 0.29 1041 3.8488 Yes 377.0
AdAM(6,15) 1.72 0.48 1148 3.8487 Yes 825.6
AdAM(6,8) 1.46 0.33 1141 3.8487 Yes 471.9
AdAM(4,15) 2.43 0.57 1425 3.8487 Yes 1385.1
AdAM(4,8) 1.80 0.46 1403 3.8487 Yes 828.0
AdAM(2,15) 2.49 0.59 1579 3.8487 Yes 1469.1
AdAM(2,8) 2.02 0.49 1519 3.8487 Yes 989.8
DRUM(5) 1.55 0.56 944 2.89 No 868.0

TOSAM(2,6) 1.30 0.54 1146 2.06 No 702.0
DRUM(6) 1.69 0.75 1059 1.47 No 1267.5

TOSAM(3,7) 1.44 0.69 1294 1.05 No 993.6
DRUM(7) 1.85 0.96 1235 0.73 No 1776.0

TOSAM(4,8) 1.57 0.83 1411 0.53 No 1303.1
DRUM(8) 1.93 1.17 1402 0.37 No 3545.2

TOSAM(5,9) 1.60 1.08 1625 0.27 No 1728.0

• SDC-1: Misclassification in the top-ranked output class.

• SDC-5%: More than 5% of variation in the top-ranked output confidence
score compared to the golden model.

• SDC-10%: More than 10% of variation in the top-ranked output confi-
dence score compared to the golden model.

• SDC-20%: More than 20% of variation in the top-ranked output confi-
dence score compared to the golden model.

Fig. 39 demonstrates the fault tolerance comparison and reliability improve-
ment (for SDC-1 and SDC-10% as two examples) of different networks by using
the protected approximate multiplier proposed in this work compared to the
unprotected exact and approximated networks, and protected networks using
TMR. As illustrated, TMR has 100% of protection, but it also requires about
200% of area overhead. Different from TMR, in our technique we introduce a
high-reliability improvement without introducing hardware overhead. The results

91

200 400 600 800 1,000
0

1

2

3

4

5

Power-Delay Product (pJ)

Vu
ln

er
ab

ilit
y

(%
)

SDC-1

200 400 600 800 1,000
0

20

40

60

80

100

Power-Delay Product (pJ)

Vu
ln

er
ab

ilit
y

(%
)

SDC-5%

200 400 600 800 1,000
0

10

20

30

40

50

Power-Delay Product (pJ)

Vu
ln

er
ab

ilit
y

(%
)

SDC-10%

200 400 600 800 1,000
0

10

20

30

Unp-Exact
Unp-AxM
Pro-TMR
Pro-AdAM

Power-Delay Product (pJ)

Vu
ln

er
ab

ilit
y

(%
)

SDC-20% AlexNet DenseNet
Inception ResNet-18
ResNet-34 ResNet-50
VGG-11 VGG-13
VGG-19

Figure 40: PDP and vulnerability tradeoffs (considering different SDCs) in different
benchmarks: AlexNet, DenseNet, Inception, ResNet-18, ResNet-34, ResNet-50, VGG-
11, VGG-13, VGG-16. Unp-exact: unprotected exact multiplier, Unp-AxM: unprotected
approximated multiplier, Pro-TMR: exact multiplier protected with TMR, Pro-AdAM:
proposed multiplier

for reliability improvement considering SDC-5% and SDC-20% are reported in
Tables 23 and 24. Since the main objective of the proposed multiplier is to
have the best trade-off in PDP and vulnerability, Fig. 40 illustrate these com-
parisons based on different vulnerability metrics (SDC-10, SDC-5%, SDC-10%
and SDC-20%). In these charts, the closer to the origins (0,0), the higher the
cost-efficiency of the fault tolerance, i.e. less vulnerability and less PDP. As
shown, TMR is a less efficient solution for edge AI applications because of its
high PDP, while the proposed method (AdAM) is the closest to the origin.

4.2.5 Conclusion
In this subsection, we propose an architecture of a novel adaptive fault-tolerant
approximate multiplier tailored for ASIC-based DNN accelerators. AdAM employs
an adaptive adder that relies on an unconventional use of input Leading One
Detector (LOD) values for fault detection by optimizing unutilized adder resources.
A gate-level optimized LOD design is also proposed to improve the hardware
performance as part of the adaptive multiplier. The proposed architecture uses a
lightweight fault mitigation technique that sets the detected faulty bits to zero.

It is demonstrated that the proposed architecture enables a multiplication
with a reliability level close to the multipliers protected by TMR while at the
same time utilizing 2.74 × less area and with 39.06% less power-delay product
compared to the exact multiplier.

92

Table 21: Efficiency of 8-bit MAC unit of a systolic array with different multipliers

MAC
Architecture

Delay
(ns)

Power
(mW)

PDP
(ns×mW)

Area
(µm2)

Exact (Wallace) 1151 2.10 2417.10 975.95
ScaleTrim(4,8) 1106 2.00 2212.00 949.35

AdAM(2,3) 1098 1.47 1614.06 794.80

Table 22: Accuracy comparison of different CNNs with an exact (baseline) and the
proposed approximate multiplier

DNN Accuracy
with Wallace (%)

Accuracy
with AdAM(2,3) (%)

LeNet-5 (MNIST) 93.8 94.1
AlexNet (MNIST) 78.0 77.7

VGG-11 (CIFAR-10) 93.4 94.0
VGG-13 (CIFAR-10) 92.0 92.0
VGG-19 (CIFAR-10) 92.0 93.0

ResNet-18 (CIFAR-10) 93.8 93.2
ResNet-34 (CIFAR-10) 93.0 94.0
ResNet-50 (CIFAR-10) 95.0 94.0
DenseNet (CIFAR-10) 92.6 95.0
Inception (CIFAR-10) 92.6 95.0

4.3 FORTUNE: A Negative Memory Overhead Hardware-
Agnostic Fault TOleRance TechniqUe in DNNs

This subsection is based on the following paper: [VII]

4.3.1 Introduction
As real-time data processing and AI demand grow in embedded systems, Quan-
tized Deep Neural Networks (QNNs) have become vital for deploying models
efficiently in resource-constrained environments, spanning applications from
image classification to safety-critical applications like autonomous driving XV,
IX. QNNs perform complex computations with reduced precision, minimizing
computational and memory footprints, and achieving significant energy savings,
crucial for energy-constrained platforms VI.

However, quantization introduces challenges in neural network accuracy,
especially in critical applications like autonomous systems or medical diagnostics,
where precision is non-negotiable I, XI. Post-training quantization (PTQ) methods
address these challenges, preserving model integrity while reducing bit-widths to
enhance efficiency [165]. Yet, QNNs’ reliance on extensive memory resources
makes them vulnerable to faults, particularly as transistors miniaturize [166].
Ensuring fault tolerance is essential, as even minor errors can significantly reduce

93

Table 23: Fault coverage (SDC-5%) in different benchmarks

SDC-5% AlexNet DenseNet Inception VGG-11 VGG-13 VGG-19 ResNet-18 ResNet-34 ResNet-50
Unp-Exact 70.9 17.2 21.8 9.2 10.8 10.8 10.8 17.2 16.2
Unp-AxM 63.5 15.4 20.6 6 7.2 17.8 9.4 13.6 12.2
Pro-TMR 100 100 100 100 100 100 100 100 100
Pro-AdAM 99.6 42.2 41.8 36.6 32.6 57.2 37.6 44.8 38.2

Table 24: Fault coverage (SDC-20%) in different benchmarks

SDC-20% AlexNet DenseNet Inception VGG-11 VGG-13 VGG-19 ResNet-18 ResNet-34 ResNet-50
Unp-Exact 90.3 91.6 76.6 77.4 81 81 84 86.8 86
Unp-AxM 78.5 92.2 75.8 76 78.8 75 80 84.8 82.4
Pro-TMR 100 100 100 100 100 100 100 100 100
Pro-AdAM 99.8 96.6 89.2 94.8 88.8 86.4 90.6 91 92.6

accuracy X. Figure 41 highlights fault locations in critical GPU architecture
points. Faults can arise from temperature fluctuations, radiation, aging circuits,
and electromagnetic interference. Enhancing fault tolerance in QNNs is thus
crucial for safe deployment in safety-critical systems IX, XII.

Traditional fault-tolerant techniques like Triple Modular Redundancy (TMR)
introduce significant computational overhead [168]. Selective hardening ap-
proaches focus on protecting parameters or neurons with greater impact on
the network’s output [169]. These methods, however, are mainly applicable to
FPGA and ASIC platforms where hardware modifications are possible [57]. For
general-purpose CPUs, GPUs, or fixed accelerators, hardware modifications are
often infeasible.

Other methods, such as pruning corrupted parameters and retraining [11],
fault-aware training [126], and Error Correction Codes (ECC) [170], introduce
significant memory and computational overhead. Activation restriction techniques
mitigate error propagation but are ineffective at high error rates [171]. Model-
level hardening through selective duplication also incurs substantial memory
overhead and requires additional layers for error correction [172].

Figure 41: Fault locations in critical points of a parallel architecture such as the
GPUs [167]

94

To address the extensive memory overhead and performance degradation
challenges, we present FORTUNE, a model-level hardware agnostic methodology
that explores different quantization levels of a DNN model, focusing on reliability,
accuracy, memory overhead, and performance aspects. The proposed method-
ology introduces a novel fault tolerance technique that uses memory savings
from quantization to the Most Significant Bit (MSB) within the same memory
elements, maintaining QNN reliability even in the presence of memory faults. A
comprehensive GPU-based framework implements this methodology. Specifically,
the proposed fault tolerance methodology integrates into the framework’s itera-
tive optimization loop, allowing users to define thresholds that balance model
accuracy, reliability, and performance. The extensive experiments show that, with-
out this protection, QNNs suffer significant accuracy degradation in fault-prone
environments. The results underscore the importance of the proposed technique
to mnimizes memory utilization and optimizes protected QNN execution time
on DNN accelerators. In this work, without loss of generality, we reported the
results for GPU as an example.

The key contributions of this paper are:

• Negative Overhead Fault Tolerance Technique: Proposed a protection
technique leveraging quantization to triplicate MSB, ensuring robustness
against faults.

• Design Space Exploration Framework: Developed an open-source frame-
work to assess the impact of quantization on QNN reliability, accuracy,
memory utilization, and executing time for design space exploration based
on a binary search algorithm.

• Introduction of Pdrop and Reliability-Aware Performance (RAP)
metrics: Introduced Pdrop, the probability of accuracy drop over a device’s
lifetime with various BERs, and RAP, a metric for evaluating trade-offs in
fault-prone and resource-constrained environments.

• Validation: Evaluated the proposed technique and framework on state-of-
the-art DNN benchmarks.

Figure 42: Proposed FORTUNE methodology for quantizing a DNN model, evaluating
its reliability, and applying the protection.

The remainder of this section is structured as follows: subSection 4.2.2 presents
the proposed methodology. subSection 4.2.3 discusses experimental results
and the impact on resilience, memory utilization, and execution time. Finally,
subSection 4.2.4 concludes the section.

95

4.3.2 Proposed Methodology
Figure 42 illustrates the systematic methodology for quantizing a DNN model
and evaluating its reliability with different fault situations and the proposed
protection. The steps of this methodology are explained by the algorithm 1 and
also in details in this section. The goal is to achieve a quantized model that not
only meets predefined accuracy and reliability thresholds but also provides insights
into memory and performance overheads. The algorithm begins by getting a
trained FP32 DNN model as input, along with three key parameters: an accuracy
threshold a, a reliability threshold b, and a quantization range [m,n] (Algorithm 1
- line 4-6). The accuracy threshold represents the minimum acceptable accuracy
of the model after quantization, while the reliability threshold b specifies the
maximum permissible drop in accuracy due to potential faults. The quantization
range [m,n] defines the range of bit widths to be explored during the quantization
process.

Input: Trained FP32 DNN model, accuracy threshold a, reliability
threshold b, quantization range [m,n]

Output: High-performance Reliable QNN
Load the trained DNN;
SET accuracy_threshold TO a;
SET reliability_threshold TO b;
SET quantization range TO [m,n];
bit_width = n+m

2 ;
process = True;
while process do

quantized_weights ← QuantizeWeights(model.weights, bit_width);
golden_accuracy ← EvaluateAccuracy(model, quantized_weights);
if accuracy > a AND accuracy_drop < b then

Inject faults to weights of the model with different BERs;
accuracy ← EvaluateAccuracy(model, quantized_weights);
reliability_drop ← golden_accuracy − accuracy;
memory_overhead ← CalculateMemoryOverhead(bit_width,
protected_bits);

performance_overhead ←
CalculatePerformanceOverhead(bit_width, protected_bits);

bit_width = bit_width− n−bit_width
2 ;

else
bit_width = bit_width+ n−bit_width

2 ;
end
if bit_width > n then

process = False;
end

end
Algorithm 1: Fortune Algorithm

Step 1: Quantization. The algorithm iterates over each bit width within
the specified quantization range. To perform a binary search, the initial bit

96

Figure 43: Affine linear quantization

width considered is the midpoint of the quantization range. Based on the results
obtained at this midpoint, the next bit width for weights is selected from either
the upper or lower half of the range, depending on whether the desired accuracy
and reliability criteria are met (Algorithm 1 - lines 7, 18 and 20). This process is
repeated iteratively, narrowing the search range until the optimal bit width is
identified. For each selected bit width, the model weights are quantized through
linear quantization (Algorithm 1 - line 10). Linear quantization is a widely
used technique in model compression, particularly in the context of QNNs. It
reduces the precision of weights by mapping a large range of values (typically
32-bit floating-point) to a smaller, fixed range represented by fewer bits. This
process involves two main steps: scaling and rounding. The first step in linear
quantization is to define the range [xmin,xmax] within which all the values of
the tensor will be mapped.

xmin = min(x) (45)

xmax = max(x) (46)
Next, the scaling factor s is calculated. This factor determines how the

original floating-point values are scaled down to fit within the quantized range.
For a given bit width m, the quantized range is [0,2m−1]. The scaling factor s
is computed as:

s = xmax−xmin

2m−1 (47)

As Figure 43 indicates, the tensor values are then quantized by mapping each
value xi to an integer value qi within the range [0,2m− 1] using the scaling
factor s and a zero-point z:

z =−xmin

s
(48)

qi = round(xi

s
+z) (49)

Here, round(.) denotes rounding to the nearest integer. The result is an
integer value qi that lies within the quantized range. Therefore, weights of
the model are converted into unsigned m-bit integers through affine linear
quantization.

Then, the accuracy of the model with quantized weights, referred to as the
"golden accuracy," is evaluated. This accuracy serves as a baseline for further
reliability testing (Algorithm 1 - line 11). If the golden accuracy falls below the
predefined threshold a, the algorithm skips further evaluation for this bit width
and proceeds to the next (Algorithm 1 - lines 19, 20).

97

Figure 44: An example of protected 3-bit weights

Table 25: Benchmark NNs base accuracies (%)

Type VGG11 ResNet18 AlexNet Inception
8-bit 92.41 93.06 95.32 93.70
5-bit 92.19 92.81 95.46 93.24
4-bit 92.18 92.66 94.91 92.03
3-bit 89.83 90.84 93.26 80.71

Step 2: Reliability Evaluation and Enhancement. Then, the algorithm
proceeds to evaluate its reliability under fault conditions. Faults are incrementally
injected into the quantized model’s weights, simulating different Bit Error Rates
(BERs). After each fault injection, the model’s accuracy is re-evaluated, and the
accuracy drop is calculated as the difference between the golden accuracy and
the current accuracy (Algorithm 1 - lines 13-15).

In the proposed approach, only the MSB bit is protected by replicating it
in two redundant bits. During inference, these redundant bits, along with the
protected bit, undergo a majority voting process to determine the final value of
the protected bit. This method ensures that even with potential faults, the most
critical bit remains reliable.

Figure44 illustrates an example of 3-bit weights with a protected bit. In this
example, the FP32 weights are first converted into unsigned 3-bit integer values
(shown in orange), and the MSB is replicated into two redundant bits (shown
in green). Similarly, in 5-bit weights with one protected bit, two redundant bits
are added. More generally, in i-bit quantization with one protection bits, two
redundant bits are added, and one comparison is performed during inference.

Step 3: Memory Utilization and Execution Time. In this step, the
algorithm computes the memory utilization and execution time associated with
the given bit width (Algorithm 1 - lines 16, 17). These values provide insights
into the trade-offs between quantization, reliability, and resource utilization. The
algorithm repeats the above steps for all bit widths within the specified range,
ultimately outputting a set of reliable and quantized networks. For each network,
detailed reports on execution time and memory utilization are generated, allowing
for an informed selection of the optimal quantization configuration.

Pdrop and RAP
Accuracy drop is evaluated independently of any physical effects that faults might
have on memory. To account for these effects on accuracy drop, we define Pdrop

as the probability of experiencing the accuracy drop during the device’s lifetime:

Pdrop = N2×W 2×T/t×Psingle×BER×acc_drop (50)

98

Table 26: Memory Utilization, Execution Time, Vulnerability (accuracy drop due to
fault injection) and Pdrop in DNNs.

Model Type Memory
Utilization

Executuin
Time (%)

Vulnerability (%)
{BER}

Pdrop

{BER}
1.00E-5 3.00E-5 1.00E-4 3.00E-4 1.00E-5 3.00E-5 1.00E-4 3.00E-4

VGG11
8-bit 225,064,448 100 5.62 22.30 62.40 74.52 50.21E-3 150.63E-3 502.10E-3 1506.30E-3

P-5-bit 196,931,392 141.72 1.11 5.23 28.33 68.73 35.45E-3 106.35E-3 354.50E-3 1063.52E-3
P-4-bit 168,798,336 141.72 1.45 6.01 28.19 67.99 25.76E-3 77.30E-3 257.66E-3 773.00E-3
P-3-bit 140,665,280 141.72 1.49 5.35 34.20 67.13 17.66E-3 53.00E-3 176.68E-3 530.05E-3

ResNet18
8-bit 66,991,616 100 0.18 1.85 14.64 32.29 1.92E-3 5.78E-3 19.27E-3 57.82E-3

P-5-bit 58,617,664 119.54 0.16 0.81 3.54 18.77 0.85E-3 2.57E-3 8.58E-3 25.74E-3
P-4-bit 50,243,712 119.54 0.24 0.66 2.63 18.34 0.61E-3 1.84E-3 6.15E-3 18.47E-3
P-3-bit 41,869,760 119.54 0.25 0.79 3.74 21.89 0.51E-3 1.53E-3 5.10E-3 15.31E-3

AlexNet
8-bit 466,316,032 100 0.00 0.49 3.14 30.71 88.82E-3 266.47E-3 888.23E-3 2664.70E-3

P-5-bit 408,026,528 102.94 0.14 0.04 0.48 4.73 10.47E-3 31.43E-3 104.78E-3 314.46E-3
P-4-bit 349,737,024 102.94 0.19 0.10 0.52 5.30 8.62E-3 25.87E-3 86.24E-3 258.72E-3
P-3-bit 291,447,520 102.94 0.27 0.58 2.62 13.58 15.34E-3 46.03E-3 153.44E-3 460.33E-3

Inception
8-bit 173,011,456 100 0.09 0.16 0.45 1.43 0.57E-3 1.71E-3 5.71E-3 17.15E-3

P-5-bit 151,234,496 291.73 0.00 0.02 0.02 0.19 0.06E-3 0.18E-3 0.60E-3 1.80E-3
P-4-bit 129,758,592 291.73 0.01 0.05 0.08 0.14 0.03E-3 0.09E-3 0.33E-3 0.99E-3

Figure 45: Vulnerability (accuracy drop due to fault injection) and memory utilization
trade-offs in different benchmarks: VGG-11 (CIFAR), ResNet-18 (CIFAR), AlexNet
(FashionMNIST) and Inception(CIFAR).

where N is the number of parameters, W is their bit width, T is device life
time, t is test time interval, Psingle is the probability of one bit flip during t and
acc_drop is the reported accuracy drop in the BER. This metric is based on the
probability of a one-bit flip stated in [173]. As the definition suggests, the more
resilient the networks are, the smaller the value of Pdrop becomes.

To account for performance along with accuracy drop and memory footprint,
we define the Reliability-Aware Performance (RAP) metric as:

RAP = acc_drop×mem_ovh×perf_ovh (51)

where acc_drop represents the accuracy drop, perf_ovh refers to the exe-
cution time overhead, and mem_ovh denotes the memory utilization overhead.
Smaller RAP values indicate more reliable networks with lower memory and
performance overhead.

99

Figure 46: Pdrop in VGG-11 (CIFAR), ResNet-18 (CIFAR), AlexNet (FashionMNIST)
and Inception(CIFAR).

4.3.3 Experimental Results
Experimental results are reported in this subsection as follows: 4.3.3.1 Experi-
mental Setup:

To evaluate the reliability and performance of the proposed method, we study
four different neural networks. AlexNet is trained on the Fashion MNIST dataset,
while VGG11, ResNet-18, and Inception are trained on the CIFAR-10 dataset.
Quantization and reliability evaluations are conducted for all networks, resulting
in the introduction of different reliable versions for each model. Then, the
memory utilization and execution time associated with FORTUNE is assessed.
To further quantify the effectiveness of the results, Pdrop and RAP values are
reported for each network to highlight the trade-offs involved.
4.3.3.2 Quantization and reliability evaluation:

To facilitate comparison across different networks, the results for four different
bit widths are presented in this section. The unprotected 8-bit version is used as
the baseline network. As previously mentioned, the weights are quantized using
affine linear quantization, and no retraining is performed. The accuracy of the
different quantized networks is presented in Table 25. Notably, the accuracy of
Inception in its 3-bit version is 80.71%, representing an accuracy reduction of
over 10%.

To evaluate reliability, a random fault injection is conducted across all weights
in the DNNs under study. The number of injected faults is determined using a BER
ranging from 10−5 to 3×10−4, covering a comprehensive range of potential errors
X. Fault injection is repeated several times to reach an acceptable confidence
level, following the approach in [54]. This reference provides an equation to
reach a 95% confidence level and 1% error margin. For each bit width and
BER, the resulting drop in accuracy (with respect to the corresponding fault-free
model) is reported in Table 26 as Vulnerability of the networks. Although the
protected versions of AlexNet and ResNet-18 do not exhibit significant differences
in Vulnerability values at lower BERs, a considerable difference becomes apparent
at higher BERs. Conversely, VGG11 and Inception experience less vulnerability
across all protected versions and BER levels. Additionally, the unprotected

100

Figure 47: RAP in VGG-11 (CIFAR), ResNet-18 (CIFAR), AlexNet (FashionMNIST)
and Inception(CIFAR) .

versions of the quantized networks show worst vulnerabilities, as illustrated in
Figure 45.
4.3.3.3 Reliability, memory and performance trade-off:

Memory utilization is defined as the combination of the number of parameters
and their respective bit widths, while execution time refers to the execution time
of each network under study. Memory utilization and execution time are reported
in Table 26, where execution time is normalized with respect to the unprotected
8-bit model. Figure 45 illustrates the trade-off between vulnerability and memory
utilization for all protected and unprotected versions of the quantized networks.
As the BER increases, all protected models exhibit lower vulnerability compared to
the unprotected 8-bit model, while also utilizing less memory. For example, while
the unprotected 5-bit model has the same memory utilization as the protected
3-bit model, the protected model demonstrates significantly lower vulnerability.
To clarify, all quantized models (5-bit, 4-bit, and 3-bit) are significantly more
vulnerable than their protected counterparts. Moreover, the protected versions
still maintain lower memory utilization compared to the base 8-bit model.

Pdrop values for the DNNs under study are reported in Table 26 and Figure 46.
All final networks are considered more resilient when evaluated based on Pdrop.
This indicates that, when factoring in both memory footprint and vulnerability, all
protected quantized networks exhibit greater resilience throughout their lifetime.

RAP values are reported in Figure 47. Except for VGG11 at the highest
BER, all other networks demonstrate smaller RAP values in protected quantized
versions, indicating better trade-off between reliability, memory utilization, and
execution time. Smaller RAP values indicate that the networks introduced by
FORTUNE are more resilient, while also requiring less memory and execution
time compared to the base 8-bit models.

4.3.4 Conclusion
This section introduces FORTUNE, a novel framework designed to enhance fault
tolerance in DNNs through quantization, offering a balanced trade-off between
reliability, memory usage, and execution time. By leveraging memory savings

101

to protect the critical Most Significant Bit, FORTUNE improves fault tolerance
without the high computational costs of conventional methods like TMR. As
examples, we demonstrated memory reductions of 37.5% across networks, with
vulnerability in AlexNet reduced by 56% compared to the 8-bit model and
84% compared to the unprotected 3-bit model. These improvements were
achieved with less than a 3% increase in execution time. FORTUNE proposes a
flexible framework that allows for the identification of the most suitable network
configuration, optimizing the trade-off between reliability, memory efficiency, and
execution time based on specific application requirements.

4.4 Chapter Conclusions
This chapter introduces two techniques to enhance the fault tolerance of DNN
hardware accelerators: AdAM and FORTUNE. AdAM, through its adaptive
approximation strategy, reduces power and area overhead while maintaining high
levels of accuracy under fault conditions. Meanwhile, FORTUNE addresses the
memory overhead challenge in fault tolerance, using a unique method to protect
critical data bits, leading to reduced memory consumption and increased overall
resilience. These methods outperform traditional fault tolerance strategies such
as full Triple Modular Redundancy (TMR) by achieving comparable reliability
with much lower resource costs. The techniques presented in this chapter
provide a foundation for deploying reliable, low-power DNN accelerators in
critical applications such as autonomous vehicles and AI-driven medical devices.

102

5 Conclusions and Future Directions
This thesis delves into both reliability assessment and enhancement of DNNs,
with a particular focus on hardware accelerators. It presents a comprehensive
analysis of how faults affect DNNs in hardware implementations such as FPGAs
and ASICs and proposes innovative methods to mitigate these reliability issues.

Reliability Assessment: The thesis introduces various FI methods, analyti-
cal models, and hybrid techniques to evaluate the reliability of DNN hardware
accelerators. The proposed frameworks, assess reliability across different ab-
straction levels. These methods evaluate fault propagation in DNN components
and quantify their vulnerability using metrics like FIT rate and SDC rate. By
combining software-level and hardware-level evaluations, the thesis provides a
detailed picture of DNN behavior under fault conditions.

Comparison of Techniques: The thesis compares the proposed reliability
assessment techniques:

• FI Methods: While FI methods provide the highest accuracy, simulating
real-world fault scenarios, they are slower. For instance, in the RT-level
simulations using QuestaSim, the fault injection rate reached only 0.007
simulations per second, which is 2100× slower than the hybrid method.

• Analytical Methods: Analytical models offer a significant speedup—up
to 86% faster—by skipping redundant simulations, but their accuracy is
slightly compromised as they may not capture all fault interactions.

• Hybrid Methods: Combining analytical pruning with FI, hybrid methods
strike a balance, achieving up to 3× speed-up over traditional approaches
and 2000× faster than RT-level FI, with near-FI accuracy, making them
the most efficient for large-scale reliability assessments.

Reliability Enhancement: Building on the assessment phase, the thesis also
proposes methods to enhance DNN reliability. The AdAM (Adaptive Approximate
Multiplier) and FORTUNE techniques introduce fault tolerance mechanisms at
both architectural and hardware levels. These frameworks optimize resource
utilization while maintaining acceptable levels of accuracy, offering solutions
for improving fault resilience with minimal overhead. Techniques such as se-
lective redundancy, approximate computing, and fault-tolerant multipliers are
introduced to ensure that critical applications—such as autonomous driving and
edge AI—achieve higher reliability without compromising performance. Key
contributions to reliability enhancement include AdAM, a fault-tolerant ap-
proximate multiplier that balances computational complexity with reliability,
enabling DNN accelerators to maintain accuracy despite faults; And FORTUNE,
a hardware-agnostic fault tolerance technique that reduces memory overhead by
using quantization while improving resilience in critical bits of DNN hardware.

Integrating Reliability Assessment and Enhancement: The reliability as-
sessment and enhancement frameworks presented in this thesis are interconnected.
Assessment tools such as fault injection and analytical methods identify critical
components and failure points in DNN hardware. This information informs the
design of fault-tolerant architectures like AdAM and FORTUNE, targeting the

103

most vulnerable components for maximum resilience with minimal performance
degradation.

The contributions of this thesis can be summarized as follows:

• Development of novel reliability assessment frameworks for DNN hardware
accelerators, incorporating fault injection, analytical, and hybrid methods.

• Proposal of fault tolerance techniques that balance performance, power
consumption, and reliability, including fault-tolerant designs for DNN
accelerators.

• Exploration of approximation and reliability trade-offs in DNN hardware to
improve energy-efficient, reliable accelerator design.

• Introduction of adaptive methods like AdAM and FORTUNE that al-
low DNN accelerators to operate efficiently in fault-prone environments,
particularly in safety-critical applications.

• Experimental validation of the proposed frameworks, demonstrating their
effectiveness in real-world DNN accelerator implementations.

Ultimately, this thesis offers a holistic approach to DNN reliability by combining
in-depth assessments with innovative enhancement strategies, providing a robust
solution for improving the resilience of DNNs in critical applications.

Future Directions
Looking ahead, several avenues of research remain open to further enhance

the robustness of DNN accelerators. First, the current frameworks could be
extended to cover a broader range of DNN architectures beyond Convolutional
Neural Networks (CNNs), such as Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks. Moreover, the reliability of DNNs during
the training phase remains underexplored, and future studies should investigate
the impact of faults on both model parameters and computational units during
this phase.

Another promising direction lies in developing more sophisticated analytical
methods that can complement fault injection techniques, leading to faster and
more scalable reliability assessments. In particular, machine learning (ML)
algorithms integrated with these frameworks could further improve the accuracy
and efficiency of reliability predictions. Additionally, hybrid methods that combine
fault injection and analytical techniques could play a crucial role in developing
comprehensive and adaptable reliability assessment models for a wider range of
applications and platforms, including edge AI and autonomous systems.

Future research should also investigate the control components of hardware
accelerators, particularly in FPGAs and ASICs, as these components are crucial to
overall system reliability but remain largely unexplored. Lastly, the development
of hardware-aware fault injection simulators could significantly improve the real-
time assessment of DNN reliability, providing deeper insights into the interactions
between software and hardware in critical applications

104

List of Figures
1 Reliability threats in an example DHA and their possible impact

on the output [I]. 14
2 Abstract view of a simple neural network with the detail of a neuron 19
3 Typical structure of an FPGA-based DNN accelerator [36] 20
4 An example of spatial architecture for ASIC-based DNN accelera-

tors [40] . 21
5 General architecture of CUDA-based GPUs [42] 21
6 The adopted fault classification based on the output point of

view, as in [49]. 23
7 DeepAxe proposed methodology flow . 33
8 Proposed lightweight mitigation technique . 36
9 Lenet-5 layer-level reports of reliability drop (based on FI for

different quantized networks) . 39
10 AlexNet layer-level reports of reliability drop (%) based on different

quantization levels (unprotected design) . 40
11 Model-level reports of reliability drop (%) based on different

quantization degrees for AlexNet (left) and LeNet-5 (right) 41
12 SAFFIRA methodology . 44
13 LoLif example. Applied transformations are similar to im2col and

im2row. 46
14 When injecting element s, the fault is propagated in time (thus

affecting elements s+ δti and s+ 2δti) and in space (forwarding
the faulty value to neighboring elements s+ δxi + δti, s+ 2δxi +
δti and so on).. 47

15 Histogram plot of the Faulty distance values . 49
16 DeepAxe methodology flow . 53
17 DeepAxe flowchart . 54
18 (a) Resource utilization of the approximate implementation vs.

accuracy loss when the approximate implementation is fault-
simulated (b) Approximation configuration of each point on the
Pareto frontier . 58

19 Reports of accuracy drop (due to approximation for different
configurations), fault vulnerability, and resource utilization of (a)
3-layer MLP network, (b) LeNet-5 and (c) AlexNet 59

20 DNN fault resiliency assessment methods: (a) Fault injection by
emulation in FPGA;(b) APPRAISER approach using errors by
AxC units.. 62

21 Proposed APPRAISER method evaluation . 64
22 APPRAISER methodology flow . 65
23 Proposed systolic architecture for our Resiliency assessment DNN

accelerator framework . 67
24 Normalized output error of Pool2: Applying AxMult, AxMult+ ,

Bit Suppression and FI on the Conv1 . 68
25 Normalized output error of Conv2: Applying AxMult, AxMult+ ,

Bit Suppression and FI on the Conv1 . 68

105

26 Multiplication output error generated by AxMult, AxMult+ and
Bit Suppression . 69

27 Normalized Multiplication output error generated by AxMult,
AxMult+, and Bit Suppression . 69

28 The proposed methodology for hybrid analytical and hierarchical
reliability assessment for systolic array DNN-HAs 72

29 Vulnerability ranges for fault space pruning . 73
30 Fault injection across hierarchical and analytical abstractions. 74
31 Fault propagation in systolic array. When injecting element s, the

fault is propagated in time (thus affecting elements s+ δti and
s+2δti) and in space (forwarding the faulty value to neighboring
elements s+ δxi + δti, s+2δxi + δti and so on). 75

32 Speedup per injected bit position . 77
33 Possible locations of faults in AI chip I . 80
34 AdAM architecture (the contributions and extensions to the loga-

rithmic Mitchell multiplier are marked with red color) 82
35 Comparison of absolute error distribution between the original 8-

bit Mitchell’s multiplier and AdAM: top point shows the maximum
absolute error for Adam, lower point shows the maximum absolute
error for Mitchell’s multiplier . 83

36 Adaptive adder architecture: A and B are inputs, C is carry
values and PFA stands for partial full adder, m here denotes the
size of the truncated mantissa (n−1− t) . 85

37 Fault-tolerance and error introduced based on different input
values (n = 8, t = 2,h = 3) . 86

38 Gate-level structure of the proposed LOD .. 87
39 Hardware efficiency (area) and fault resilience (fault coverage

considering SDC-1 and SDC-10%) trade-offs in different bench-
marks: AlexNet (MNIST), DenseNet(CIFAR), Inception(CIFAR),
ResNet-18 (CIFAR), ResNet-34 (CIFAR), ResNet-50 (CIFAR),
VGG-11 (CIFAR), VGG-13 (CIFAR), VGG-16 (CIFAR). Unp-Exact:
unprotected exact multiplier, Unp-AxM: unprotected approximate
multiplier, Pro-TMR: exact multiplier protected with TMR, Pro-
AdAM: proposed multiplier . 89

40 PDP and vulnerability tradeoffs (considering different SDCs) in
different benchmarks: AlexNet, DenseNet, Inception, ResNet-18,
ResNet-34, ResNet-50, VGG-11, VGG-13, VGG-16. Unp-exact:
unprotected exact multiplier, Unp-AxM: unprotected approxi-
mated multiplier, Pro-TMR: exact multiplier protected with TMR,
Pro-AdAM: proposed multiplier . 92

41 Fault locations in critical points of a parallel architecture such as
the GPUs [167] . 94

42 Proposed FORTUNE methodology for quantizing a DNN model,
evaluating its reliability, and applying the protection. 95

43 Affine linear quantization . 97
44 An example of protected 3-bit weights . 98

106

45 Vulnerability (accuracy drop due to fault injection) and mem-
ory utilization trade-offs in different benchmarks: VGG-11 (CI-
FAR), ResNet-18 (CIFAR), AlexNet (FashionMNIST) and Incep-
tion(CIFAR). 99

46 Pdrop in VGG-11 (CIFAR), ResNet-18 (CIFAR), AlexNet (Fash-
ionMNIST) and Inception(CIFAR). 100

47 RAP in VGG-11 (CIFAR), ResNet-18 (CIFAR), AlexNet (Fashion-
MNIST) and Inception(CIFAR) . 101

107

List of Tables
1 Lenet-5 layer-level reports of fault criticality (%) based on FI for

different quantized networks . 36
2 AlexNet layer-level reports of fault criticality (%) based on FI for

different quantized networks . 37
3 SDC report for two unprotected Lenet-5 examples with different

quantization levels . 37
4 Model-level design space exploration results for Lenet-5 and AlexNet 38
5 Base accuracy of networks under test . 47
6 FI experiments results on two LeNet-5. 50
7 Reliability analysis of different state-of-the-art DNN benchmarks. 50
8 Exact and approximate multipliers used in this subsection and

their parameters . 57
9 Networks trained and quantized down to 8-bit INT for evaluation

of this work . 57
10 The impact of approximation configuration and fault injection for

MLP, LeNet-5, and AlexNet. 60
11 Case study: the impact of full approximation on three different

MLP architectures . 60
12 Bitflips and Accuracy drop induced by our proposed method vs.

the reference fault injection method by fault rate 10% in OFM
of the first convolution layer . 70

13 Hardware implementation of the proposed hardware accelerator . . 70
14 Timing overheads of the proposed method vs. the reference fault

injection method (Conv1 layer) . 70
15 Channel-wise analysis of the fault injection speedup. The last

column (su) indicates the percentage of vulnerable and non-
vulnerable simulations with respect to the total. 76

16 SDC1 computed over each channel. The second column (misclas-
sified) shows how many “semi-vulnerable" simulations ended up
misclassifying the output. The third column (SDC1) shows the
metric computed over the whole batch. 77

17 LOD hardware comparison between the proposed method and
the state-of-the-art . 88

18 Accuracy and efficiency of 8-bit approximate multipliers compared
with the proposed method. 89

19 Accuracy and efficiency of 16-bit approximate multipliers com-
pared with the proposed method . 90

20 Accuracy and efficiency of 32-bit approximate multipliers com-
pared with the proposed method . 91

21 Efficiency of 8-bit MAC unit of a systolic array with different
multipliers . 93

22 Accuracy comparison of different CNNs with an exact (baseline)
and the proposed approximate multiplier . 93

23 Fault coverage (SDC-5%) in different benchmarks 94
24 Fault coverage (SDC-20%) in different benchmarks 94

108

25 Benchmark NNs base accuracies (%) . 98
26 Memory Utilization, Execution Time, Vulnerability (accuracy drop

due to fault injection) and Pdrop in DNNs.. 99

109

References
[1] A. Bosio, I. O’Connor, M. Traiola, J. Echavarria, J. Teich, M. A. Hanif,

M. Shafique, S. Hamdioui, B. Deveautour, P. Girard, et al., “Emerging
computing devices: Challenges and opportunities for test and reliability,”
in 2021 IEEE European Test Symposium (ETS), pp. 1–10, IEEE, 2021.

[2] H. Forsberg, J. Lindén, J. Hjorth, T. Månefjord, and M. Daneshtalab,
“Challenges in using neural networks in safety-critical applications,” in 2020
AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), pp. 1–7,
IEEE, 2020.

[3] A. Nardi and A. Armato, “Functional safety methodologies for automotive
applications,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 970–975, IEEE, 2017.

[4] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
“Soft error resilience of deep residual networks for object recognition,” IEEE
Access, vol. 8, pp. 19490–19503, 2020.

[5] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu, L. Orosa,
and J. Choi, “Robust machine learning systems: Challenges, current trends,
perspectives, and the road ahead,” IEEE Design & Test, vol. 37, no. 2,
pp. 30–57, 2020.

[6] S. Mittal, “A survey on modeling and improving reliability of dnn algorithms
and accelerators,” Journal of Systems Architecture, vol. 104, p. 101689,
2020.

[7] A. Ruospo, E. Sanchez, L. M. Luza, L. Dilillo, M. Traiola, and A. Bosio, “A
survey on deep learning resilience assessment methodologies,” Computer,
vol. 56, no. 2, pp. 57–66, 2023.

[8] F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and dependability of
ai hardware: Survey, trends, challenges, and perspectives,” IEEE Design &
Test, 2023.

[9] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural networks:
A review,” IEEE Access, vol. 5, pp. 17322–17341, 2017.

[10] S. Burel, A. Evans, and L. Anghel, “Mozart: Masking outputs with zeros
for architectural robustness and testing of dnn accelerators,” in 2021 IEEE
27th International Symposium on On-Line Testing and Robust System
Design (IOLTS), pp. 1–6, IEEE, 2021.

[11] K. T. Chitty-Venkata and A. K. Somani, “Model compression on faulty
array-based neural network accelerator,” in 2020 IEEE 25th Pacific Rim
International Symposium on Dependable Computing (PRDC), pp. 90–99,
IEEE, 2020.

[12] N. Khoshavi, A. Roohi, C. Broyles, S. Sargolzaei, Y. Bi, and D. Z. Pan,
“Shieldenn: Online accelerated framework for fault-tolerant deep neural

110

network architectures,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), pp. 1–6, IEEE, 2020.

[13] E. Ozen and A. Orailoglu, “Low-cost error detection in deep neural network
accelerators with linear algorithmic checksums,” Journal of Electronic
Testing, vol. 36, no. 6, pp. 703–718, 2020.

[14] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro, D. Kaeli,
and P. Rech, “Analyzing and increasing the reliability of convolutional
neural networks on gpus,” IEEE Transactions on Reliability, vol. 68, no. 2,
pp. 663–677, 2018.

[15] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, vol. 25, pp. 1097–1105, 2012.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 779–788, 2016.

[22] C. J. B. Yann, Y. LeCun, and C. Cortes, “"The MNIST DATABASE of
Handwritten Digits".” http://yann.lecun.com/exdb/mnist/. Accessed
at June 2024.

[23] A. Krizhevsky, v. Nair, and G. Hinton, “"The CIFAR-10 Dataset".” https:
//www.cs.toronto.edu/~kriz/cifar.html. Accessed at June 2024.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 248–255, Ieee, 2009.

111

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

[25] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3061–3070, 2015.

[26] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International journal of
computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[27] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-
tized neural networks: Training neural networks with low precision weights
and activations,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6869–6898, 2017.

[28] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks: Training deep neural networks with weights and
activations constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI 16), pp. 265–283, 2016.

[30] “Keras: The python deep learning api.” https://keras.io/. Accessed
at 2024.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style,
high-performance deep learning library,” Advances in neural information
processing systems, vol. 32, pp. 8026–8037, 2019.

[32] J. Redmon, “"Darknet: Open Source Neural Networks in C".” http:
//pjreddie.com/darknet/. Accessed at 2024.

[33] “"Tiny-CNN Framework".” https://github.com/tiny-dnn/tiny-dnn.
Accessed at 2024.

[34] G. Abich, J. Gava, R. Reis, and L. Ost, “Soft error reliability assessment of
neural networks on resource-constrained iot devices,” in 2020 27th IEEE
International Conference on Electronics, Circuits and Systems (ICECS),
pp. 1–4, IEEE, 2020.

[35] M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal, “A systematic literature
review on hardware implementation of artificial intelligence algorithms,”
The Journal of Supercomputing, vol. 77, pp. 1897–1938, 2021.

[36] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[dl] a survey of fpga-based
neural network inference accelerators,” ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), vol. 12, no. 1, pp. 1–26, 2019.

[37] N. Hou, X. Yan, and F. He, “A survey on partitioning models, solution
algorithms and algorithm parallelization for hardware/software co-design,”
Design Automation for Embedded Systems, vol. 23, no. 1, pp. 57–77,
2019.

112

https://keras.io/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://github.com/tiny-dnn/tiny-dnn

[38] M. Dhouibi, A. K. Ben Salem, A. Saidi, and S. Ben Saoud, “Accelerating
deep neural networks implementation: A survey,” IET Computers & Digital
Techniques, vol. 15, no. 2, pp. 79–96, 2021.

[39] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proceedings of the 44th
annual international symposium on computer architecture, pp. 1–12, 2017.

[40] D. Moolchandani, A. Kumar, and S. R. Sarangi, “Accelerating cnn inference
on asics: A survey,” Journal of Systems Architecture, vol. 113, p. 101887,
2021.

[41] J. Perez-Cerrolaza, J. Abella, L. Kosmidis, A. J. Calderon, F. Cazorla, and
J. L. Flores, “Gpu devices for safety-critical systems: A survey,” ACM
Computing Surveys, vol. 55, no. 7, pp. 1–37, 2022.

[42] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
“Soft error resilience of deep residual networks for object recognition,” IEEE
Access, vol. 8, pp. 19490–19503, 2020.

[43] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[44] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for internet of things data analysis: A
survey,” Digital Communications and Networks, vol. 4, no. 3, pp. 161–175,
2018.

[45] R. Sanchez-Iborra and A. F. Skarmeta, “Tinyml-enabled frugal smart ob-
jects: Challenges and opportunities,” IEEE Circuits and Systems Magazine,
vol. 20, no. 3, pp. 4–18, 2020.

[46] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and materials reliability, vol. 5,
no. 3, pp. 305–316, 2005.

[47] G. Chen, K. Chuah, M. Li, D. S. Chan, C. Ang, J. Zheng, Y. Jin, and
D. Kwong, “Dynamic nbti of pmos transistors and its impact on device
lifetime,” in 2003 IEEE International Reliability Physics Symposium Pro-
ceedings, 2003. 41st Annual., pp. 196–202, IEEE, 2003.

[48] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” Ieee Micro, vol. 25,
no. 6, pp. 10–16, 2005.

[49] I. Koren and C. M. Krishna, “Fault-tolerant systems,” 2007.

[50] B. Johnson, “Fault-tolerant microprocessor-based systems,” IEEE Micro,
vol. 4, no. 06, pp. 6–21, 1984.

113

[51] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and
R. Rangan, “Computing architectural vulnerability factors for address-based
structures,” in 32nd International Symposium on Computer Architecture
(ISCA’05), pp. 532–543, IEEE, 2005.

[52] M. Eslami, B. Ghavami, M. Raji, and A. Mahani, “A survey on fault injec-
tion methods of digital integrated circuits,” Integration, vol. 71, pp. 154–
163, 2020.

[53] A. Ruospo, L. M. Luza, A. Bosio, M. Traiola, L. Dilillo, and E. Sanchez,
“Pros and cons of fault injection approaches for the reliability assessment of
deep neural networks,” in 2021 IEEE 22nd Latin American Test Symposium
(LATS), pp. 1–5, IEEE, 2021.

[54] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition, pp. 502–506, IEEE, 2009.

[55] R. T. Syed, M. Ulbricht, K. Piotrowski, and M. Krstic, “A survey on fault-
tolerant methodologies for deep neural networks,” Pomiary Automatyka
Robotyka, vol. 27, 2023.

[56] U. Zahid, G. Gambardella, N. J. Fraser, M. Blott, and K. Vissers, “Fat:
Training neural networks for reliable inference under hardware faults,” in
2020 IEEE International Test Conference (ITC), pp. 1–10, IEEE, 2020.

[57] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang, F. Cappello,
and Z. Chen, “Ft-cnn: Algorithm-based fault tolerance for convolutional
neural networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 7, pp. 1677–1689, 2020.

[58] F. Ponzina, M. Peon-Quiros, A. Burg, and D. Atienza, “E 2 cnns: En-
sembles of convolutional neural networks to improve robustness against
memory errors in edge-computing devices,” IEEE Transactions on Com-
puters, vol. 70, no. 8, pp. 1199–1212, 2021.

[59] Y. Li, M. Li, B. Luo, Y. Tian, and Q. Xu, “Deepdyve: Dynamic verification
for deep neural networks,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pp. 101–112,
2020.

[60] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE transactions on computers, vol. 100, no. 6,
pp. 518–528, 1984.

[61] Parhami and Avizienis, “Detection of storage errors in mass memories
using low-cost arithmetic error codes,” IEEE Transactions on Computers,
vol. 100, no. 4, pp. 302–308, 1978.

[62] L. K. Draghetti, F. F. dos Santos, L. Carro, and P. Rech, “Detecting
errors in convolutional neural networks using inter frame spatio-temporal

114

correlation,” in 2019 IEEE 25th International Symposium on On-Line
Testing and Robust System Design (IOLTS), pp. 310–315, IEEE, 2019.

[63] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classification,
and comparative evaluation of approximate arithmetic circuits,” ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol. 13,
no. 4, p. 60, 2017.

[64] M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, “Low-power ap-
proximate multipliers using encoded partial products and approximate
compressors,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 8, no. 3, pp. 404–416, 2018.

[65] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with
an underdesigned multiplier architecture,” in IEEE International Conference
on VLSI Design, pp. 346–351, IEEE, 2011.

[66] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of soft-
computing applications,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, no. 4, pp. 850–862, 2010.

[67] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-speed multiplier
for error-tolerant application,” in Electron Devices and Solid-State Circuits
(EDSSC), 2010 IEEE International Conference of, pp. 1–4, IEEE, 2010.

[68] C.-H. Lin and C. Lin, “High accuracy approximate multiplier with error
correction,” in Computer Design (ICCD), 2013 IEEE 31st International
Conference on, pp. 33–38, IEEE, 2013.

[69] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and analysis
of approximate compressors for multiplication,” IEEE Transactions on
Computers, vol. 64, no. 4, pp. 984–994, 2015.

[70] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance ap-
proximate multiplier with configurable partial error recovery,” Design,
Automation and Test in Europe Conference and Exhibition, pp. 1–4, 2014.

[71] H. Jiang, J. Han, F. Qiao, and F. Lombardi, “Approximate radix-8 Booth
multipliers for low-power and high-performance operation,” IEEE Transac-
tions on Computers, vol. 65, no. 8, pp. 2638–2644, 2016.

[72] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design
of power-efficient approximate multipliers for approximate artificial neural
networks,” IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–7, 2016.

[73] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate digital
circuits design,” IEEE Transactions on Evolutionary Computation, vol. 19,
no. 3, pp. 432–444, 2015.

115

[74] J. N. Mitchell, “Computer multiplication and division using binary loga-
rithms,” IRE Transactions on Electronic Computers, no. 4, pp. 512–517,
1962.

[75] H. Saadat, H. Bokhari, and S. Parameswaran, “Minimally biased multipliers
for approximate integer and floating-point multiplication,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 11, pp. 2623–2635, 2018.

[76] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi,
“Design and evaluation of approximate logarithmic multipliers for low
power error-tolerant applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, no. 9, pp. 2856–2868, 2018.

[77] M. S. Kim, A. A. Del Barrio, R. Hermida, and N. Bagherzadeh, “Low-
power implementation of Mitchell’s approximate logarithmic multiplication
for convolutional neural networks,” 23rd Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 617–622, 2018.

[78] M. S. Kim, A. A. D. B. Garcia, L. T. Oliveira, R. Hermida, and
N. Bagherzadeh, “Efficient Mitchell’s approximate log multipliers for con-
volutional neural networks,” IEEE Transactions on Computers, 2018.

[79] D. De Caro, N. Petra, and A. G. Strollo, “Efficient logarithmic converters
for digital signal processing applications,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 58, no. 10, pp. 667–671, 2011.

[80] J. Y. L. Low and C. C. Jong, “Unified Mitchell-based approximation for
efficient logarithmic conversion circuit,” IEEE Transactions on Computers,
vol. 64, no. 6, pp. 1783–1797, 2015.

[81] A. Benso and S. DiCarlo, “The art of fault injection,” Journal of Control
Engineering and Applied Informatics, vol. 13, no. 4, pp. 9–18, 2011.

[82] A. Ruospo, A. Balaara, A. Bosio, and E. Sanchez, “A pipelined multi-
level fault injector for deep neural networks,” in 2020 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pp. 1–6, IEEE, 2020.

[83] A. Siddique, K. Basu, and K. A. Hoque, “Exploring fault-energy trade-offs
in approximate dnn hardware accelerators,” in 2021 22nd International
Symposium on Quality Electronic Design (ISQED), pp. 343–348, IEEE,
2021.

[84] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–12, 2017.

116

[85] P. M. Basso, F. F. dos Santos, and P. Rech, “Impact of tensor cores and
mixed precision on the reliability of matrix multiplication in gpus,” IEEE
Transactions on Nuclear Science, vol. 67, no. 7, pp. 1560–1565, 2020.

[86] F. Libano, P. Rech, B. Neuman, J. Leavitt, M. Wirthlin, and J. Brunhaver,
“How reduced data precision and degree of parallelism impact the reliability
of convolutional neural networks on fpgas,” IEEE Transactions on Nuclear
Science, vol. 68, no. 5, pp. 865–872, 2021.

[87] F. Libano, B. Wilson, M. Wirthlin, P. Rech, and J. Brunhaver, “Understand-
ing the impact of quantization, accuracy, and radiation on the reliability
of convolutional neural networks on fpgas,” IEEE Transactions on Nuclear
Science, vol. 67, no. 7, pp. 1478–1484, 2020.

[88] R. T. Syed, M. Ulbricht, K. Piotrowski, and M. Krstic, “Fault resilience
analysis of quantized deep neural networks,” in 2021 IEEE 32nd Interna-
tional Conference on Microelectronics (MIEL), pp. 275–279, IEEE, 2021.

[89] A. P. Arechiga and A. J. Michaels, “The effect of weight errors on neural
networks,” in 2018 IEEE 8th Annual Computing and Communication
Workshop and Conference (CCWC), pp. 190–196, IEEE, 2018.

[90] I. Choi, J.-Y. Hong, J. Jeon, and J.-S. Yang, “Rq-dnn: Reliable quantization
for fault-tolerant deep neural networks,” in 2023 60th ACM/IEEE Design
Automation Conference (DAC), pp. 1–2, IEEE, 2023.

[91] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience analysis
of deep neural networks and improving their fault tolerance using clipped
activation,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1241–1246, IEEE, 2020.

[92] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
arXiv preprint arXiv:1803.05900, 2018.

[93] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating CNN
inference on FPGA: A survey,” arXiv preprint arXiv:1806.01683, 2018.

[94] R. S. Molina, V. Gil-Costa, M. L. Crespo, and G. Ramponi, “High-level
synthesis hardware design for FPGA-based accelerators: Models, method-
ologies, and frameworks,” IEEE Access, vol. 10, pp. 90429–90455, 2022.

[95] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA international
symposium on field-programmable gate arrays, pp. 65–74, 2017.

[96] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: Mapping regular and
irregular convolutional neural networks on fpgas,” IEEE transactions on
neural networks and learning systems, vol. 30, no. 2, pp. 326–342, 2018.

117

[97] A. Ghaffari and Y. Savaria, “Cnn2gate: Toward designing a general frame-
work for implementation of convolutional neural networks on fpga,” arXiv
preprint arXiv:2004.04641, 2020.

[98] P. G. Mousouliotis and L. P. Petrou, “Cnn-grinder: from algorithmic to
high-level synthesis descriptions of cnns for low-end-low-cost fpga socs,”
Microprocessors and Microsystems, vol. 73, p. 102990, 2020.

[99] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science &
engineering, vol. 12, no. 3, p. 66, 2010.

[100] E. Wang, J. J. Davis, and P. Y. Cheung, “A pynq-based framework for rapid
cnn prototyping,” in 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 223–223,
IEEE, 2018.

[101] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits, vol. 17. Springer Science &
Business Media, 2004.

[102] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime perturbation
tool for dnns,” in 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pp. 25–31,
IEEE, 2020.

[103] N. Narayanan, Z. Chen, B. Fang, G. Li, K. Pattabiraman, and N. De-
bardeleben, “Fault injection for tensorflow applications,” IEEE Transactions
on Dependable and Secure Computing, 2022.

[104] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “Binfi: an efficient
fault injector for safety-critical machine learning systems,” in Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–23, 2019.

[105] U. K. Agarwal, A. Chan, and K. Pattabiraman, “Lltfi: Framework ag-
nostic fault injection for machine learning applications (tools and artifact
track),” in 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE), pp. 286–296, IEEE, 2022.

[106] S. Pappalardo et al., “Resilience-performance tradeoff analysis of a deep
neural network accelerator,” in 2023 26th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems (DDECS),
pp. 181–186, IEEE, 2023.

[107] A. Azizimazreah, Y. Gu, X. Gu, and L. Chen, “Tolerating soft errors in
deep learning accelerators with reliable on-chip memory designs,” in 2018
IEEE International Conference on Networking, Architecture and Storage
(NAS), pp. 1–10, IEEE, 2018.

118

[108] W. Li, G. Ge, K. Guo, X. Chen, Q. Wei, Z. Gao, Y. Wang, and H. Yang,
“Soft error mitigation for deep convolution neural network on fpga acceler-
ators,” in 2020 2nd IEEE International Conference on Artificial Intelligence
Circuits and Systems (AICAS), pp. 1–5, IEEE, 2020.

[109] M. Jasemi, S. Hessabi, and N. Bagherzadeh, “Enhancing reliability of
emerging memory technology for machine learning accelerators,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 4, pp. 2234–
2240, 2020.

[110] E. Ozen and A. Orailoglu, “Boosting bit-error resilience of dnn accelerators
through median feature selection,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3250–3262,
2020.

[111] B. F. Goldstein, V. C. Ferreira, S. Srinivasan, D. Das, A. S. Nery, S. Kundu,
and F. M. França, “A lightweight error-resiliency mechanism for deep neural
networks,” in 2021 22nd International Symposium on Quality Electronic
Design (ISQED), pp. 311–316, IEEE, 2021.

[112] S. Burel, A. Evans, and L. Anghel, “Mozart+: Masking outputs with zeros
for improved architectural robustness and testing of dnn accelerators,”
IEEE Transactions on Device and Materials Reliability, vol. 22, no. 2,
pp. 120–128, 2022.

[113] “"N2D2 CAD framework for DNNs".” https://github.com/cea-list/
N2D2. Accessed at 2024.

[114] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Tre-map: Towards reducing
the overheads of fault-aware retraining of deep neural networks by merging
fault maps,” in 2021 24th Euromicro Conference on Digital System Design
(DSD), pp. 434–441, IEEE, 2021.

[115] Y.-Y. Tsai and J.-F. Li, “Evaluating the impact of fault-tolerance capability
of deep neural networks caused by faults,” in 2021 IEEE 34th International
System-on-Chip Conference (SOCC), pp. 272–277, IEEE, 2021.

[116] T.-H. Nguyen, M. Imran, J. Choi, and J.-S. Yang, “Low-cost and effective
fault-tolerance enhancement techniques for emerging memories-based deep
neural networks,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC), pp. 1075–1080, IEEE, 2021.

[117] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, “Scale-
sim: Systolic cnn accelerator simulator,” arXiv preprint arXiv:1811.02883,
2018.

[118] Y. Zhao, K. Wang, and A. Louri, “Fsa: An efficient fault-tolerant systolic
array-based dnn accelerator architecture,” in 2022 IEEE 40th International
Conference on Computer Design (ICCD), pp. 545–552, IEEE, 2022.

119

https://github.com/cea-list/N2D2
https://github.com/cea-list/N2D2

[119] P. Quinton, “Automatic synthesis of systolic arrays from uniform recurrent
equations,” ACM SIGARCH Computer architecture news, vol. 12, no. 3,
pp. 208–214, 1984.

[120] S. Hadjis et al., “Caffe con troll: Shallow ideas to speed up deep learning,”
in Proceedings of the Fourth Workshop on Data analytics in the Cloud,
pp. 1–4, 2015.

[121] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in SC17, 2017.

[122] S. Pappalardo et al., “A fault injection framework for ai hardware accelera-
tors,” in 2023 IEEE 24th Latin American Test Symposium (LATS), IEEE,
2023.

[123] P. Choudhary, L. Bhargava, V. Singh, and A. K. Suhag, “Approximate
computing: Evolutionary methods for functional approximation of digital
circuits,” Materials Today: Proceedings, 2022.

[124] J. D. Booth, “Algorithm-based fault tolerance at scale,” 2022.

[125] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis
of a deep neural network,” in 2019 IEEE Latin American Test Symposium
(LATS), pp. 1–6, IEEE, 2019.

[126] N. Cavagnero, F. D. Santos, M. Ciccone, G. Averta, T. Tommasi, and
P. Rech, “Fault-aware design and training to enhance dnns reliability with
zero-overhead,” arXiv preprint arXiv:2205.14420, 2022.

[127] A. Ghaffari and Y. Savaria, “Cnn2gate: Toward designing a general frame-
work for implementation of convolutional neural networks on fpga,” arXiv
preprint arXiv:2004.04641, 2020.

[128] M. Riazati, M. Daneshtalab, M. Sjödin, and B. Lisper, “Deephls: A
complete toolchain for automatic synthesis of deep neural networks to
fpga,” in 2020 27th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), pp. 1–4, 2020.

[129] M. Riazati, M. Daneshtalab, M. Sjödin, and B. Lisper, “Autodeephls: Deep
neural network high-level synthesis using fixed-point precision,” in 2022
IEEE 4th International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 122–125, IEEE, 2022.

[130] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: Mapping regular and
irregular convolutional neural networks on fpgas,” IEEE transactions on
neural networks and learning systems, vol. 30, no. 2, pp. 326–342, 2018.

[131] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: A framework for mapping
convolutional neural networks on fpgas,” in 2016 IEEE 24th Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 40–47, IEEE, 2016.

120

[132] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “Angel-
eye: A complete design flow for mapping cnn onto customized hardware,”
in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 24–29, IEEE, 2016.

[133] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh, “From high-level deep neural models to FPGAs,” in
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 1–12, IEEE, 2016.

[134] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K. Roy,
“Energy-efficient neural computing with approximate multipliers,” ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol. 14,
no. 2, p. 16, 2018.

[135] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, , “Terminal brain
damage: Exposing the graceless degradation in deep neural networks under
hardware fault attacks,” in 28th USENIX Security Symposium (USENIX
Security 19), pp. 497–514, 2019.

[136] S. Kundu, A. Soyyiğit, K. A. Hoque, and K. Basu, “High-level modeling
of manufacturing faults in deep neural network accelerators,” in IEEE 26th
International Symposium on On-Line Testing and Robust System Design
(IOLTS), pp. 1–4, IEEE, 2020.

[137] J. J. Zhang, T. Gu, K. Basu, and S. Garg, “Analyzing and mitigating
the impact of permanent faults on a systolic array based neural network
accelerator,” in 2018 IEEE 36th VLSI Test Symposium (VTS), pp. 1–6,
IEEE, 2018.

[138] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang, et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, pp. 800–811, 2021.

[139] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approximate adders and multipliers for circuit design and bench-
marking of approximation methods,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, pp. 258–261, March 2017.

[140] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[141] N. Khoshavi, C. Broyles, and Y. Bi, “Compression or corruption? a study
on the effects of transient faults on bnn inference accelerators,” in 2020
21st International Symposium on Quality Electronic Design (ISQED),
pp. 99–104, IEEE, 2020.

[142] N. Khoshavi, C. Broyles, Y. Bi, and A. Roohi, “Fiji-fin: A fault injection
framework on quantized neural network inference accelerator,” in 2020
19th IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 1139–1144, IEEE, 2020.

121

[143] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek, and
J. Han, “Improving the accuracy and hardware efficiency of neural networks
using approximate multipliers,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 2, pp. 317–328, 2019.

[144] B. Rokh, A. Azarpeyvand, and A. Khanteymoori, “A comprehensive survey
on model quantization for deep neural networks in image classification,”
ACM Transactions on Intelligent Systems and Technology, vol. 14, no. 6,
pp. 1–50, 2023.

[145] M. Nourazar, V. Rashtchi, A. Azarpeyvand, and F. Merrikh-Bayat, “Code
acceleration using memristor-based approximate matrix multiplier: Appli-
cation to convolutional neural networks,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2684–2695, 2018.

[146] P. Nayak, D. Zhang, and S. Chai, “Bit efficient quantization for deep neural
networks,” in 2019 Fifth Workshop on Energy Efficient Machine Learning
and Cognitive Computing-NeurIPS Edition (EMC2-NIPS), pp. 52–56, IEEE,
2019.

[147] M. Andjelkovic, O. Schrape, A. Breitenreiter, and M. Krstic, “Set and seu
hardened clock gating cell,” in 2023 38th Conference on Design of Circuits
and Integrated Systems (DCIS), pp. 1–6, 2023.

[148] P. Rech, “Artificial neural networks for space and safety-critical applications:
Reliability issues and potential solutions,” IEEE Transactions on Nuclear
Science, 2024.

[149] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim,
“Energy-efficient approximate multiplication for digital signal processing
and classification applications,” IEEE transactions on very large scale
integration (VLSI) systems, vol. 23, no. 6, pp. 1180–1184, 2014.

[150] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased
multiplier for approximate applications,” in 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 418–425, IEEE, 2015.

[151] M. Taheri, H. Zandevakili, and A. Mahani, “A high-performance memristor-
based smith-waterman dna sequence alignment using fpni structure,” Jour-
nal of Applied Research in Electrical Engineering, vol. 1, no. 1, pp. 59–68,
2022.

[152] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Tosam: An
energy-efficient truncation-and rounding-based scalable approximate multi-
plier,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 27, no. 5, pp. 1161–1173, 2019.

[153] L. Sayadi, S. Timarchi, and A. Sheikh-Akbari, “Two efficient approximate
unsigned multipliers by developing new configuration for approximate 4:
2 compressors,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 70, no. 4, pp. 1649–1659, 2023.

122

[154] M. H. Haider and S.-B. Ko, “Booth encoding based energy efficient
multipliers for deep learning systems,” IEEE Transactions on Circuits and
Systems II: Express Briefs, 2023.

[155] E. Farahmand, A. Mahani, B. Ghavami, M. A. Hanif, and M. Shafique,
“scaletrim: Scalable truncation-based integer approximate multiplier with
linearization and compensation,” arXiv preprint arXiv:2303.02495, 2023.

[156] J. N. Mitchell, “Computer multiplication and division using binary loga-
rithms,” IRE Transactions on Electronic Computers, no. 4, pp. 512–517,
1962.

[157] G. Alsuhli, V. Sakellariou, H. Saleh, M. Al-Qutayri, B. Mohammad, and
T. Stouraitis, Number Systems for Deep Neural Network Architectures.
Springer, 2023.

[158] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–12, 2017.

[159] A. Siddique, K. Basu, and K. A. Hoque, “Exploring fault-energy trade-offs
in approximate dnn hardware accelerators,” in 2021 22nd International
Symposium on Quality Electronic Design (ISQED), pp. 343–348, IEEE,
2021.

[160] G. Ammes, G. B. Manske, P. F. Butzen, A. I. Reis, and R. P. Ribas,
“Atmr design by construction based on two-level als,” in 2023 36th
SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems
Design (SBCCI), pp. 1–6, IEEE, 2023.

[161] H. R. Mahdiani, S. M. Fakhraie, and C. Lucas, “Relaxed fault-tolerant
hardware implementation of neural networks in the presence of multi-
ple transient errors,” IEEE transactions on neural networks and learning
systems, vol. 23, no. 8, pp. 1215–1228, 2012.

[162] T. Arifeen, A. S. Hassan, and J.-A. Lee, “Approximate triple modular
redundancy: A survey,” IEEE Access, vol. 8, pp. 139851–139867, 2020.

[163] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in International conference on machine
learning, pp. 1613–1622, PMLR, 2015.

[164] D. Danopoulos, G. Zervakis, K. Siozios, D. Soudris, and J. Henkel, “Adapt:
Fast emulation of approximate dnn accelerators in pytorch,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
2022.

[165] Z. Yuan, J. Liu, J. Wu, D. Yang, Q. Wu, G. Sun, W. Liu, X. Wang, and
B. Wu, “Benchmarking the reliability of post-training quantization: a par-
ticular focus on worst-case performance,” arXiv preprint arXiv:2303.13003,
2023.

123

[166] R. Canal et al., “Predictive reliability and fault management in exascale
systems: State of the art and perspectives,” ACM Computing Surveys,
vol. 53, no. 5, pp. 1–32, 2020.

[167] R. G. Alía, A. Coronetti, K. Bilko, M. Cecchetto, G. Datzmann, S. Fiore,
and S. Girard, “Heavy ion energy deposition and see intercomparison within
the radnext irradiation facility network,” IEEE Transactions on Nuclear
Science, vol. 70, no. 8, pp. 1596–1605, 2023.

[168] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience predic-
tion for a flexible reliability management in neural network accelerators,”
in 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 979–984, IEEE, 2018.

[169] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences, vol. 11,
no. 14, p. 6455, 2021.

[170] S.-S. Lee and J.-S. Yang, “Value-aware parity insertion ecc for fault-
tolerant deep neural network,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 724–729, IEEE, 2022.

[171] B. Ghavami, M. Sadati, Z. Fang, and L. Shannon, “Fitact: Error resilient
deep neural networks via fine-grained post-trainable activation functions,”
in 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1239–1244, IEEE, 2022.

[172] M. H. Ahmadilivani, S. Mousavi, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Cost-effective fault tolerance for cnns using parameter vulnerability based
hardening and pruning,” IOLTS‘24, In press.

[173] Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou, and C. Zhuo, “When
single event upset meets deep neural networks: Observations, explorations,
and remedies,” in 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 163–168, IEEE, 2020.

124

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors,
Prof. Maksim Jenihhin and Adjunct Prof. Masoud Daneshtalab, for their
unwavering support, guidance, and trust throughout my PhD journey. Their
insightful advice, patience, and encouragement allowed me to explore my ideas
freely, and their belief in my abilities helped me grow both personally and
academically. Thank you for giving me the space to let my imagination flow,
while always steering me in the right direction.

I owe immense thanks to my parents, who have been my constant pillars of
strength. Their endless love, support, and encouragement have been invaluable,
and without their unwavering belief in me, I would not have come this far. Your
unwavering support and commitment to hard work have not only shaped my
character but have also been a constant source of inspiration throughout my
academic journey

A special thanks to my colleagues, who became more than just co-workers;
they became friends for life. Your camaraderie, intellectual discussions, and un-
wavering support made this journey much more enjoyable and fulfilling. Whether
through academic challenges or personal moments, you were always there by my
side, and for that, I am truly grateful.

I would also like to extend my sincere appreciation to the opponents and the
thesis committee, who dedicated their valuable time and effort to fairly and
thoroughly assess my work. Your insightful feedback and constructive criticism
were integral to refining and improving my thesis.

Finally, I am thankful for everyone who, directly or indirectly, contributed to
my research and provided me with the motivation to complete this important
milestone in my life. Your contributions are deeply appreciated.

125

Abstract
Methods for Reliability Assessment and Enhance-
ment of Deep Neural Networks Hardware Accelera-
tors
This thesis addresses the reliability assessment and enhancement in DNNs
deployed on hardware accelerators such as FPGAs, ASICs, and GPUs, which
are critical in safety-critical applications like autonomous driving, healthcare,
and industrial automation. As DNNs become increasingly integrated into these
domains, their reliability under hardware faults caused by aging, process variations,
and environmental factors becomes a crucial concern.

The thesis introduces several novel methodologies aimed at improving the
fault resilience of DNN hardware accelerators. Among the key contributions are:

• AdAM – A technique that dynamically adjusts computation precision to
balance reliability, power efficiency, and hardware resource utilization.

• APPRAISER – A fault resilience analysis framework that accelerates
fault injection campaigns, enabling faster and more scalable reliability
assessments.

• FORTUNE – A hardware-agnostic fault tolerance technique that reduces
memory overhead while protecting critical data bits, thus enhancing fault
tolerance with minimal resource consumption.

• SAFFIRA – A Software Level Systolic-Array Simulator designed for as-
sessing the reliability of DNN accelerators.

• DeepAxe – A framework that explores approximation and reliability trade-
offs in dataflow-based DNN accelerators, offering a balance between per-
formance and fault resilience.

• Hybrid Analytical and Hierarchical Fault Injection-based Reliability
Assessment – A combined approach that integrates analytical models
with fault injection techniques for comprehensive reliability evaluation.

The effectiveness of these methods is demonstrated through extensive exper-
imental validation on various DNN architectures (e.g., LeNet, VGG, ResNet),
achieving significant improvements in fault tolerance, power consumption, and
hardware efficiency. These contributions offer scalable, efficient, and low-cost
solutions for deploying reliable DNNs in real-world safety-critical applications,
laying the groundwork for more resilient AI systems in domains like autonomous
vehicles and AI-driven medical devices.

126

Kokkuvõte
Süvanärvivõrkude riistvara kiirendite töökindluse hin-
damine ja täiustamine
See doktoritöö keskendub sügavate närvivõrkude (DNN) usaldusväärsuse hin-
damisele ja täiustamisele, kui neid rakendatakse riistvara kiirendajatel nagu
FPGA-d, ASIC-id ja GPU-d, mis on olulised turvalisuskriitilistes rakendustes,
nagu autonoomne juhtimine, tervishoid ja tööstusautomaatika. Kuna DNN-e
kasutatakse üha enam nendes valdkondades, muutub nende töökindlus riistvara-
vigade, nagu vananemine, protsessimuutused ja keskkonnategurid, tõttu oluliseks
probleemiks.

Töös tutvustatakse mitmeid uuenduslikke meetodeid, mille eesmärk on
parandada DNN riistvara kiirendajate rikete taluvust. Peamised panused on:

• AdAM – Tehnika, mis dünaamiliselt kohandab arvutustäpsust, et tasakaa-
lustada töökindlust, energiatarbimist ja riistvararessursside kasutamist.

• APPRAISER – Rikete taluvuse analüüsimise raamistik, mis kiirendab
rikete süstimisteste, võimaldades kiiremat ja paremini skaleeritavat usal-
dusväärsuse hindamist.

• FORTUNE – Riistvarast sõltumatu veataluvuse tehnika, mis vähendab
mäluülekannet, kaitstes samal ajal kriitilisi andmebittide, suurendades
sellega rikete taluvust vähese ressursikulu juures.

• SAFFIRA – Tarkvaratasemel süstoolne massiivide simulaator, mis on
loodud DNN kiirendajate töökindluse hindamiseks.

• DeepAxe – Raamistik, mis uurib andmevoo DNN kiirendajate täpsuse ja
töökindluse kompromisse, pakkudes tasakaalu jõudluse ja rikete taluvuse
vahel.

• Hübriidne analüütiline ja hierarhiline rikete süstimise-põhine töökind-
luse hindamine – Kombineeritud lähenemisviis, mis integreerib analüütili-
sed mudelid rikete süstimistehnikatega, et pakkuda põhjalikku töökindluse
hindamist.

Nende meetodite tõhusust on tõestatud ulatuslike eksperimentaalsete kat-
setega, kasutades erinevaid DNN arhitektuure (nt LeNet, VGG, ResNet), saa-
vutades märkimisväärseid täiustusi rikete taluvuses, energiatarbimises ja riistva-
ra tõhususes. Need panused pakuvad skaleeritavaid, tõhusaid ja madalate
kuludega lahendusi, mis võimaldavad DNN-e usaldusväärselt kasutada reaal-
setes turvalisuskriitilistes rakendustes, luues tugeva aluse vastupidavamate
tehisintellektisüsteemide kasutuselevõtuks, näiteks autonoomsetes sõidukites ja
tehisintellekti juhitavates meditsiiniseadmetes.

127

Appendix 1

I

129

M. Taheri et al., "Exploration of Activation Fault Reliability in Quantized Systolic
Array-Based DNN Accelerators," 2024 25th International Symposium on Quality
Electronic Design (ISQED), San Francisco, CA, USA, 2024, pp. 1-8, doi: 10.1109/
ISQED60706.2024.10528372.

Exploration of Activation Fault Reliability in
Quantized Systolic Array-Based DNN Accelerators

Mahdi Taheri1, Natalia Cherezova1, Mohammad Saeed Ansari2, Maksim Jenihhin1,
Ali Mahani3,4, Masoud Daneshtalab1,5, Jaan Raik1

1Tallinn University of Technology, Tallinn, Estonia
2University of Alberta, Edmonton, Canada,

3Shahid Bahonar University of Kerman, Kerman, Iran
4York University, Toronto, Canada

5Mälardalen University, Västerås, Sweden
1mahdi.taheri@taltech.ee

Abstract—The stringent requirements for the Deep Neural
Networks (DNNs) accelerator’s reliability stand along with the
need for reducing the computational burden on the hardware
platforms, i.e. reducing the energy consumption and execu-
tion time as well as increasing the efficiency of DNN accel-
erators. Moreover, the growing demand for specialized DNN
accelerators with tailored requirements, particularly for safety-
critical applications, necessitates a comprehensive design space
exploration to enable the development of efficient and robust
accelerators that meet those requirements. Therefore, the trade-
off between hardware performance, i.e. area and delay, and
the reliability of the DNN accelerator implementation becomes
critical and requires tools for analysis. This paper presents a
comprehensive methodology for exploring and enabling a holistic
assessment of the trilateral impact of quantization on model
accuracy, activation fault reliability, and hardware efficiency.
A fully automated framework is introduced that is capable of
applying various quantization-aware techniques, fault injection,
and hardware implementation, thus enabling the measurement
of hardware parameters. Moreover, this paper proposes a novel
lightweight protection technique integrated within the framework
to ensure the dependable deployment of the final systolic-array-
based FPGA implementation. The experiments on established
benchmarks demonstrate the analysis flow and the profound im-
plications of quantization on reliability, hardware performance,
and network accuracy, particularly concerning the transient
faults in the network’s activations.

Index Terms—deep neural networks, design space exploration,
quantization, fault simulation, reliability assessment

I. INTRODUCTION

In the past decades, Deep Neural Networks (DNNs) demon-
strated a significant improvement in accuracy by adopting
intense parameterized models [1]. As a consequence, the size
of these models has drastically increased, imposing challenges
in deploying them on resource-constrained platforms [2].
FPGAs are a widely used solution for flexible and efficient
DNN accelerator implementations and have shown superior
hardware performance in terms of latency and power [3]. In
practice, deployment of an FPGA-based DNN accelerator for
the safety- and mission-critical applications (e.g., autonomous
driving) requires addressing the trade-off between different

Fig. 1: Hardware-induced reliability threats in an example
DNN accelerator and their possible impact on the output

design parameters of hardware performance, e.g., area, power,
delay, and reliability. A compromise between conflicting re-
quirements can be achieved by simplifying the implementa-
tion to sacrifice the precision of results but benefiting from
lower resource utilization, energy consumption, and higher
system efficiency. Quantization is one such concept that is
being widely used in neural network deployments [4], [5].
Quantization is used to compress the model for storage and
computation reduction. However, recent research shows that
faults in memory can cause a significant drop in DNN accu-
racy, which raises concern about the impact of quantization
on the reliability of the network [6].

The reliability of DNN accelerators expresses their ability
to produce correct outputs in the presence of hardware faults
originating from various phenomena, e.g., radiation-induced
soft errors in memory or logic [7]. DNNs are known to be
inherently fault-resilient due to the high number of learning
process iterations and several parallel neurons with multiple

20
24

 2
5t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(I

SQ
ED

) |
 9

79
-8

-3
50

3-
09

27
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
60

70
6.

20
24

.1
05

28
37

2

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:52:29 UTC from IEEE Xplore. Restrictions apply.

computation units. Nevertheless, faults may impact the output
accuracy of DNNs drastically [8], and in the case of resource-
constrained critical applications, the reliability of DNNs is
required to be evaluated and guaranteed [9]. The complexity
of such evaluation motivates an automated toolchain with
quantization and reliability analysis to support Design Space
Exploration (DSE) for DNN accelerators already at the early
design stage, i.e. starting from a high-level description, fol-
lowed by providing an FPGA prototype for the selected design.

While the protection of weights stored in ROM can be
ensured through error correction codes (ECC) or similar
protection techniques, the dynamic nature of activations, which
are stored for a short period of time in usually unprotected
memories, poses a critical concern. Thus, it is crucial to thor-
oughly investigate the consequences of faults in the network’s
activations.

This paper presents a framework containing a fully au-
tomated toolchain to perform a study on the impact of
quantization on network accuracy, hardware performance, and
reliability drop in the presence of activation faults (Fig. 1)
in systolic-array-based FPGA accelerators. To the best of
our knowledge, this is the first framework that holistically
considers those parameters. A novel lightweight mitigation
technique is proposed and integrated into the framework to
study potential trade-offs of compensating the reliability drops.
The proposed methodology enables the analysis both at the
level of the network model and at the level of individual layers
of the network.

This framework is empowered by techniques for quantizing
the networks and restricting the activation ranges to be limited
to a certain level throughout the whole network execution by
applying an extra scaling function in the network inference.
This framework uses the high-level description of a DNN as
an input and is capable of providing a transient-fault-resilient
systolic-array-based FPGA implementation of the network
utilizing the design parameters selected by the DSE. The main
contributions in this work are as follows:

• A methodology for holistic exploration of quantization
and reliability trade-offs in systolic-array implementation
that enables assessing the trilateral impact of quantization
on accuracy, activation fault reliability, and hardware
performance.

• A fully-automated framework that is capable of applying
quantization-aware training, post-training quantization,
range-restriction, fault simulation, and implementing the
whole methodology down to hardware implementation to
measure actual hardware parameters like area, latency,
etc.

• A lightweight and effective protection technique is devel-
oped and adopted in the framework toolchain to provide
the final reliable systolic-array-based FPGA implementa-
tion of the network

• Demonstration and analysis of the results on the impact
of quantization on reliability, hardware performance, and
accuracy of the neural networks due to the transient faults
in the activations for two well-known benchmarks.

The rest of the paper is organized as follows. Related works
are discussed in Section II, the methodology and framework
are presented in Section III, the experimental setup and results
are provided in Section IV, and finally, the work is concluded
in Section V.

II. RELATED WORKS

A. DNN reliability and quantization studies

Several works examine the impact of different fault models
on the basis of a number of layers in DNNs and different data
types [10]. Investigation into the effects of data precision is
done in [11], where authors conducted a comparison of the
resilience of FP16, FP32, and FP64 in the context of Matrix
Multiplication. Their findings indicated that the reduction of
precision not only enhances GPU performance and efficiency
but also contributes to its overall resilience.

Another study [12] involved the deployment of MNIST
Convolutional Neural Networks (CNNs) on FPGAs utilizing
FP32, FP16. The results of the experiment demonstrated that
decreasing the data precision in CNNs can lead to a substantial
enhancement in overall resilience. This improvement was
attributed to the reduced memory usage. Furthermore, [13]
noted that the application of binary quantization to weights in
convolutional layers results in decreased vulnerability factors,
although it does increase the criticality of faults. [14] showed
that the impact of faults is higher in most significant bits
(MSBs) and with more aggressive compression the most
significant bits are more probable to be exposed to faults.
The aforementioned works show that quantization from higher
data representations like FP32 down to INT16 has a positive
impact on the performance and overall resilience, though on
the lower quantization ranks this matter should be studied and
is not always impacting positively on the resilience

In [15], it is shown that in some cases, the impact of the
faults in the weight memories of a DNN can be negligible.
Even though in the above-mentioned works, impact of faults
(soft errors modeled as bit flips) in the weights of a DNN
during inference is examined, to further enhance our com-
prehension of the impact of quantization on the reliability of
DNNs in systolic-array-based DNN accelerators, this work is
enriched with an FI engine capable of injecting faults into the
activations of the DNNs in the systolic architecture.

B. Fault mitigation techniques

The process of quantization and outlier regularization offers
the potential to restrict the numerical range within a DNN,
thereby eliminating the possibility of generating excessively
large values due to faults [6], [16].

Hoang et al. analyzed how various boundary values affect
the network’s accuracy. They have found that the best bound-
ary values for each layer are not necessarily the maximum
values of the layers’ activations [17]. Hence, they propose an
interval search algorithm to find appropriate boundary values
for the ReLU activation function at each layer, named FT-
ClipAct. The proposed clipped activation function maps their
outputs to 0 if activations exceed the boundaries. Although

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:52:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Proposed methodology flow

these methods can decrease the effect of faults in DNNs,
they remove a significant portion of non-zero activations by
replacing them with zero, leading to an accuracy drop in high
error rates. It is also noteworthy that the mentioned methods
do not consider low integer quantization and are mostly
working with FP32 and FP16. In this paper, we introduce
a novel lightweight range-checking circuit that, despite the
other works, can consider the maximum values of the layers’
activations and replace the out-ranged values with either lower-
or upper-bound to avoid fault propagation and also avoid
removing a significant portion of non-zero activations by
replacing them with only zero. This protection technique is
employed in the DNN accelerator hardware generation step
of the framework to provide the user with a prototype of the
reliable accelerator.

C. DNN hardware accelerator frameworks

The advantages of implementing and deploying DNNs
on FPGAs are advocated in several recent works. The ex-
isting FPGA-based toolchains to map CNNs are presented
in the surveys [18]–[21]. The FINN framework [22] is re-
leased by Xilinx for the exploration of quantized CNNs’
inference on FPGAs that also provide customized data-flow
architectures for each network. Heterogeneous systems are
another design strategy in the automated toolchains that pro-
pose hardware/software co-design [23]–[25]. In these designs,
computational units, e.g., adders and multipliers, are mainly
implemented on Programmable Logic (PL) that is controlled
by a control unit in a CPU using a dedicated framework,
e.g., OpenCL [26]. In this work, we introduce a hardware
generation step as part of the framework, to explore DNN
inference on an FPGA-based accelerator with a customiz-
able systolic array. It seamlessly integrates with the PYNQ
framework [27], leveraging the original PYNQ bootable im-
age. This integration enhances versatility and compatibility,
enabling users to implement their network on different FPGA

devices supporting PYNQ. Furthermore, the reconfigurable
systolic array implementation introduced in this step provides
flexibility and scalability. Users can customize this step to
meet their specific network requirements by providing trained
parameters and network architectures, resulting in efficient and
high-performance DNN inference.

To the best of our knowledge, none of the previous works
explored the impact of using different levels of full quantiza-
tion (weights, activations and biases) of a DNN in the presence
of transient faults in the activations on the reliability, accuracy,
and delay/resource utilization of the target DNN accelerator.

The approach proposed in this paper goes beyond the
state of the art by establishing a fully automated tool for
enabling efficient quantization in FPGA-based DNN accel-
erators aimed at safety-critical applications. The proposed
framework contains a high-level simulator to study the impact
of quantization on the reliability and accuracy of the network
by considering the hardware architecture, with and without
protection techniques, followed by an efficient and user-
friendly heterogeneous FPGA implementation of the selected
DNN configuration.

III. PROPOSED METHODOLOGY

Fig. 2 illustrates the methodology flow established in the
toolchain for reliability and hardware performance analysis
of quantized DNN hardware accelerators. This framework
takes the DNNs’ Pre-trained model description as the input.
The design, training, and testing of the DNNs are performed
in Python. Quantization-aware training and the Post-training
quantization, Range extraction and DSE steps are seamlessly
integrated into the same environment and are responsible for
extracting the required data for the hardware generation step.
This step is responsible for the hardware implementation of the
selected configuration to measure actual hardware parameters
like area, latency, etc.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:52:29 UTC from IEEE Xplore. Restrictions apply.

Step 1: Quantization-aware training. For this purpose,
a full quantization is implemented, targeting all activations,
weights, and biases. The framework first takes the description
of the network provided by the user and then uses the TFlite
library for quantization-aware training. The user can replace
their preferred quantization library with the toolchain for this
step. The main output of this step is the quantized network’s
parameters (weights and biases) and network architecture.

Step 2: Post-training quantization. In the post-training
quantization step, the user can define any further quantization
that can be applied to the network with a negligible accuracy
loss depending on the level of the quantization. This frame-
work supports quantizing the network down to 4-bit INT. The
output accuracy of the generated network is also provided at
this step and is kept as a baseline for the further steps of the
methodology. For this step, the following algorithm is applied
to the network parameters:

The mapping equation is defined as:

x̃ = clamp
(⌊x

S

⌋
+ Z; qmin, qmax

)

S =
xmax − xmin

2b − 1

Where Z is the offset defined as zero-point, xmax and xmin
represent the maximum and the minimum value in the vector.
The quantization range [qmin, qmax] is determined by the bit-
width. We focus solely on uniform unsigned symmetric quan-
tization, as it is the most commonly employed quantization
setup. Hence, qmin is equal to 0, and qmax is equal to 2b − 1,
where b denotes the bit-width, determining the number of
integer grids.

Step 3: Inference and range extraction. In this step,
after running the inference, the ranges of the activations are
extracted for evaluation and reliability study. The ranges are
extracted based on the set of validation data, and then the
framework extracts the next set of ranges for each layer based
on the test data and validates the extracted data correspond-
ingly.

Step 4: Design Space Exploration.
Step 4-A: Fault simulation. Reliability analysis relies on

a Fault Injection (FI) in a systolic-array-based simulation of
the network in Python, assuming the single bit-flip faults in
the activations. While the multiple-bit fault model is more
accurate, it requires a prohibitively large number of fault
combinations to be considered. Fortunately, it has been shown
that high fault coverage obtained using the single-bit model
results in a high fault coverage of multiple-bit faults [28].
Therefore, a vast majority of practical FI and test methods
are based on the single-bit fault assumption. However, this
framework is capable of applying multiple-bit-flips as a fault
model depending on the user demand.

The reliability analysis step applies the accuracy drop com-
parison of the network-under-test as one of the assessment
metrics. In addition, the framework assesses the reliability of
the DNN by comparing the output probability vector of the
golden run (i.e. the DNN that behaves as expected, without

faults) and the faulty run (i.e. the DNN that includes the fault).
These metrics involve the SDC (Silent Data Corruption) rate.
Specifically, one of the two metrics is “absolute”, and the other
one is “relative”. The SDC rate is defined as the proportion
of faults that caused misclassification in comparison with the
golden model.

• SDC-1: Fault caused a misclassification in the top-ranked
output class.

• SDC-5: Fault caused the top-ranked element not to exist
in the top-5 predicted output classes.

• SDC-10%: Fault caused a variation in the output con-
fidence score of the top-ranked output class more than
10% compared to the golden model.

After choosing the preferred quantization in Step 2, the
designer can go through the systolic-array-based fault injector
provided for the reliability evaluation of the Quantized DNN
(QDNN). The final design is fed to the next step hardware
generator for the DNN hardware accelerator generation and
hardware performance evaluation process.

Fig. 3: Proposed lightweight mitigation technique

Step 4-B: Fault mitigation. Analyzing the output values of
the network’s intermediary layers post-training reveals identi-
fiable upper and lower bounds for the neuron’s output values.
Leveraging this characteristic, we can ensure that any out-of-
range outputs are reassigned to the respective upper or lower-
bound values. This approach can be effectively implemented
using specialized hardware units, as outlined below.

Out-range Error Detection: If the neuron’s output value
exceeds the predetermined upper or lower bound, it indicates
a fault in the neuron’s input values. To address this, a compar-
ison is made between the neuron’s output value and the two
pre-established threshold values. For effective error detection,
this paper introduces the following strategy.

For each layer, we store two values of upper bound and
lower bound as the reference threshold for the out-ranged
values. The output of the MAC (Multiply-Accumulate) unit
is compared with the threshold values using two subtractors
(negative values indicate that the output is beyond the thresh-
old). The result of this comparison defines the final output (Fig.
3). The general overhead of this mitigation technique is two
stored values for each layer, and two subtractors to compare

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:52:29 UTC from IEEE Xplore. Restrictions apply.

8 7 6 5 4
92

94

96

98

100

Quantization level (bits)

R
el

ia
bi

lit
y

dr
op

(%
)

Conv1

8 7 6 5 4
92

94

96

98

100

Quantization level (bits)

R
el

ia
bi

lit
y

dr
op

(%
)

Conv2

8 7 6 5 4

85

90

95

100

Quantization level (bits)

R
el

ia
bi

lit
y

dr
op

(%
)

FC1

8 7 6 5 4

80

85

90

95

100

Quantization level (bits)
R

el
ia

bi
lit

y
dr

op
(%

)

FC2

Unprotected DNN Protected with Method 1
Protected with Method 2 Protected with Method 3

Fig. 4: Lenet-5 layer-level reports of reliability drop (based on FI for different quantized networks)

8 7 6 5 4
80

85

90

95

100

Quantization level (bits)

R
el

ia
bi

lit
y

dr
op

(%
)

Conv1 Conv2 Conv3
Conv4 Conv5 FC1

Fig. 5: AlexNet layer-level reports of reliability drop (%) based
on different quantization levels (unprotected design)

the MAC output value with the range threshold values and
provide the select signal for the MUX to make the decision.

Three variations of this protection technique were imple-
mented in the software to provide users with insights into the
reliability enhancements this framework offers:

1) Method 1: When out-of-range value is detected it is
replaced by the lower bound (min value).

2) Method 2: When out-of-range value is detected it is
replaced by the upper bound (max value).

3) Method 3: When out-of-range value is detected it is
replaced by either lower or upper bound depending on

the sign of the MAC output.

This protection technique is designed for easy replacement
with any other protection methods (i.e. FT-ClipAct [17])
within this framework toolchain without compromising the
overall versatility of the framework.

Step 5: Hardware generation.
At this step, a systolic-array-based QDNN accelerator for

FPGA SoC is generated based on the parameters of the
quantized network provided by Step 4 to assess hardware
utilization and requirements.

The following tasks are executed at this step:
1. Network parameters are analyzed to determine the size

of the systolic array, bit precision, and AXI bus bandwidth
for data transfer. This analysis takes into account the number
of kernels and feature map sizes. The goal is to optimize
hardware accelerator performance for the generated network
and improve overall efficiency.

2. The board is configured with the PYNQ bootable image.
PYNQ provides Python and Jupyter Notebook support to
AMD-Xilinx embedded devices. Included Python APIs allow
to control both processing system and programmable logic
(FPGA). PYNQ setup was selected to provide the users with
a familiar interactive Python environment.

3. Network weights and biases are loaded on the board as
NumPy array files. The network is described using a provided
Python package that interfaces with the accelerator.

4. FPGA is configured from the Jupyter Notebook with the
generated accelerator. Then, inference can be run using the
provided input data.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:52:29 UTC from IEEE Xplore. Restrictions apply.

8 7 6 5 4
90

92

94

96

98

100

Quantization level (bits)

R
el

ia
bi

lit
y

dr
op

(%
)

AlexNet

8 7 6 5 4
90

92

94

96

98

100

Quantization level (bits)

R
el

ia
bi

lit
y

dr
op

(%
)

Lenet-5

Unprotected DNN Protected with Method 1
Protected with Method 2 Protected with Method 3

Fig. 6: Model-level reports of reliability drop (%) based on different quantization degrees for AlexNet (left) and LeNet-5 (right)

TABLE I: Lenet-5 layer-level reports of fault criticality (%) based on FI for different quantized networks
% of critical

faults Unprotected Protected with Method 1 Protected with Method 2 Protected with Method 3

Lenet-5 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit
conv1 0.31 0.52 1.37 3.27 9.12 0.01 0 0.49 2.82 9.06 0.3 0.6 1.45 1.69 3.76 0 0 0.37 1.46 3.49
conv2 0.29 0.46 1.33 3.62 9.38 0.07 0.08 0.84 3.42 8.49 0.21 0.57 1.27 2.45 4.71 0.07 0.08 0.51 1.71 4.08

fc1 1.67 2.03 5.65 14.88 21.15 1.04 0.9 2.14 6.67 11.21 1.72 1.78 4.91 9.23 11.13 0.82 1.18 1.82 3.2 4.53
fc2 1.6 2.41 5.88 16.31 25.5 1.24 1.23 1.98 4.79 13.68 1.59 2.22 5.94 17.42 19.41 0.97 1.26 2.24 3.09 5.07

TABLE II: AlexNet layer-level reports of fault criticality (%) based on FI for different quantized networks

% of critical
faults Unprotected Protected with Method 3

AlexNet 8 bit 7 bit 6 bit 5 bit 4 bit 8 bit 7 bit 6 bit 5 bit 4 bit
conv1 0.5 0.79 1.76 4.03 8.81 0.05 0.06 0.52 1.87 3.56
conv2 0.58 1.05 1.35 1.66 4.11 0.03 0.03 1.035 1.39 3.31
conv3 1.46 1.47 5.11 11.48 23.91 0.07 0.08 1.14 1.29 4.38
conv4 0.99 1.63 2.46 7.13 14.26 0.03 0.04 1.30 4.13 5.17
conv5 0.90 2.10 3.69 7.82 14.31 0.04 0.09 1.61 3.44 5.17

fc1 3.02 4.95 8.15 16.38 31.19 0.14 0.20 1.90 5.11 8.66

TABLE III: SDC report for two unprotected Lenet-5 examples
with different quantization levels

Metric (%) 16-bit 8-bit
SDC-1 3.18 5.24
SDC-5 28.04 37.26
SDC-10% 14.30 17.65

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Two networks are studied in this work: Lenet-5 and
AlexNet. Lenet-5 is trained on the MNIST dataset, and
AlexNet is trained on the CIFAR-10 dataset. Both networks
are trained according to the Step 1 methodology using
quantization-aware training. Lenet-5 is trained using 16-bit
INT data type, AlexNet is trained using 8-bit INT. For the
study, different levels of quantization are applied in the Step 2
using post-training quantization.

Simulations are performed on 2 × Intel Xeon Gold 6148
2.40 GHz (40 cores, 80 threads per node) with 96 GB RAM.
To speed up the simulation process, the framework supports
multi-thread parallelism.

To show the hardware characteristics of the output QDNN,
studied networks are implemented on the Zynq UltraScale+

ZCU104 Evaluation Board (xczu7ev-ffvc1156-2-e).

B. Fault simulator

The fault simulator that is used in Step 4 calculates the
sufficient number of faults required for the reliability analysis.
QDNNs generated by Step 2 are validated by means of fault
injection over the test set.

Random fault injection. According to the adopted fault
model, a random single bit-flip is injected into a random
activation in a random layer of the network, and the whole
test set is fed to the network to obtain the accuracy of the
network. This process is repeated several times to reach an
acceptable confidence level, which depends on the number of
neurons and data representation bit length based on [29]. This
work provides an equation to reach 95% confidence level and
1% error margin. The framework adopts the formula presented
in this work and provides a sufficient number of repetitions
required for reliability analysis.

C. Validation results

The accuracy results for the quantized networks are reported
in Table IV. Further, fault injection is applied on each net-
work automatically as part of the defined configuration of
the framework, and reliability drop and fault criticality are

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:52:29 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Model-level design space exploration results for Lenet-5 and AlexNet

Network BP GIOPS Resource utilization Accu- Reliability HW utilization (LUT) Fault criticality improvement, %
LUT FF DSP racy, % improvement, % M1 M2 M3 M1 M2 M3

Lenet-5

16 0.058 5298 12,892 9 95.41 — 144 144 576 — — —
8 0.079 3475 7003 9 94.02 64.33 72 72 288 57.78 8.75 65.61
7 — — — — 93.93 67.95 68 68 135 71.24 14.95 67.74
6 — — — — 93.52 71.90 63 63 99 57.25 6.16 65.91
5 — — — — 92.49 81.17 68 68 81 36.30 31.34 66.86
4 0.087 2114 3865 9 89.65 81.17 36 36 63 25.85 44.92 69.20

AlexNet

16 0.338 16,654 35,503 64 — — 1024 1024 2048 — — —
8 0.465 12,138 20,539 64 73.03 92.96 512 512 1024 — — 94.27
7 — — — — 72.26 89.79 480 480 960 — — 95.19
6 — — — — 72.11 73.72 448 448 704 — — 58.59
5 — — — — 70.69 66.32 480 480 576 — — 54.13
4 0.562 6428 10,067 64 69.15 78.07 256 256 448 — — 60.08

reported in Fig. 4 and Table I for the Lenet-5 and in Fig. 5
and Table II for AlexNet. Reliability drop is defined as the
percentage of accuracy loss in the presence of the faults in
the activations in a systolic-array-based simulation model of
the network. Fault criticality is defined as percentages of the
faults that show a negative impact on the network accuracy
and lead to misclassification. In Fig. 4 and Table I, the
results for all versions of the proposed protection technique are
documented for Lenet-5. Table II, only the network protected
with Method 3 is compared with the unprotected network
for AlexNet, and in Fig. 5 the reports the reliability drop
without the protection techniques to show the impact of faults
in activations, on different quantization level and layers of an
AlexNet network. primarily due to space limitations within the
paper. Fig. 6 shows the reliability drop of different quantized
versions of AlexNet and LeNe-5 in the presence of different
protection techniques.

From the previous works [12], it is evident that the reduc-
tion in memory size and quantization can lead to enhanced
resilience and mitigate the impact of weight faults due to a
reduced memory footprint. However, according to the pre-
sented charts, quantization may simultaneously heighten the
network’s vulnerability to faults in activations and logic. This
is particularly crucial in lower precision networks, where even
minor bit alterations can have significant ramifications. That is
why reliability studies in the DNNs should be done for each
QDNN to ensure the impact of quantization on the network’s
reliability.

Fig. 4 shows that protection Method 3 is capable of improv-
ing the reliability of the network in the presence of a fault
for more than 34.23% in the worst case for Lenet-5. These
numbers are calculated based on the following equation:

% of Improvement =
(

New Value− Old Value
Old Value

)
× 100

The same results are reported for AlexNet in Table IV, which
shows an improvement of more than 51.79% in the worst
case. Improvements in fault criticality for both networks at the
model level are also reported in Table IV, which demonstrates
the positive impact of the protection technique on reducing
the criticality of faults in both networks. These data also
showcase the increasing fault criticality in different networks

by increasing the level of quantization. Based on the results
reported in Table IV, protection Method 3, which shows the
best results for improving reliability among all of the proposed
protection techniques, introduces less than 10% overhead
compared to the LUTs required for the unprotected network
implementation. Meanwhile, full protection of the network
with TMR (Triple Module Redundancy) introduces more than
200% hardware overhead.

The fault injection procedure is performed for different
quantizations and different versions of the proposed protection
technique, and the accuracy drop, due to quantization and
fault injection, is profiled. Further, in Table III, SDC metrics
of two examples of quantized Lenet-5 are reported. It can
be seen that these two networks are susceptible to injected
faults. Specifically, the SDC-10% and SDC-5 are very high:
on average, about 3.18% of the time the faulty inference
misclassified the input in the 16-bit network and 5.24% in
the 8-bit network; furthermore, in 28.04% cases for the 16-bit
network and 37.26% cases for the 8-bit network, the expected
class is not even in the TOP-5 predictions. In addition, it can
be observed that the 16-bit quantized network shows better
performance in the presence of faults compared to the 8-bit
network. In general, these results show that the DNNs used in
this experiment are not suitable for a safety-critical application.

Hardware resource utilization and inference latency in
GIOPS (Giga Integer Operations Per Second) for different
quantization levels are reported in Table IV alongside ac-
curacy, reliability improvement due to the quantization, and
hardware overhead and fault criticality improvement for fault
mitigation techniques. These results of model-level design
space exploration are provided for the user to understand the
trade-off between reliability, accuracy, and required computa-
tional resources.

V. CONCLUSION

This paper presents a comprehensive methodology for ex-
ploring and enabling a holistic assessment of the trilateral
impact of quantization on model accuracy, activation fault reli-
ability, and hardware efficiency. A fully automated framework
is introduced that is capable of applying various quantiza-
tion techniques, fault injection, and hardware implementation,
thus enabling the measurement of crucial hardware parame-

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:52:29 UTC from IEEE Xplore. Restrictions apply.

ters like area and latency. Moreover, this paper proposes a
novel lightweight protection technique integrated within the
framework to ensure the dependable deployment of the final
systolic-array-based FPGA implementation. The experiments
on established benchmarks demonstrate the analysis flow
and the profound implications of quantization on reliability,
hardware performance, and network accuracy, particularly
concerning the transient faults in the network’s activations.

VI. ACKNOWLEDGEMENT

This work was supported in part by the Estonian Re-
search Council grant PUT PRG1467 ”CRASHLESS“ and by
Estonian-French PARROT project ”EnTrustED”.

REFERENCES

[1] M. Taheri, “Dnn hardware reliability assessment and enhancement,” 27th
IEEE European Test Symposium (ETS)., May 2022.

[2] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” arXiv preprint arXiv:2103.13630, 2021.

[3] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jeni-
hhin, “A systematic literature review on hardware reliability assessment
methods for deep neural networks,” ACM Computing Surveys, vol. 56,
no. 6, pp. 1–39, 2024.

[4] M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Daneshta-
lab, J. Raik, M. Sjödin, and B. Lisper, “Deepaxe: A framework for explo-
ration of approximation and reliability trade-offs in dnn accelerators,”
in 2023 24th International Symposium on Quality Electronic Design
(ISQED). IEEE, 2023, pp. 1–8.

[5] M. Taheri, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, and
J. Raik, “Appraiser: Dnn fault resilience analysis employing approxi-
mation errors,” in 2023 26th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS). IEEE, 2023,
pp. 124–127.

[6] I. Choi, J.-Y. Hong, J. Jeon, and J.-S. Yang, “Rq-dnn: Reliable quanti-
zation for fault-tolerant deep neural networks,” in 2023 60th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2023, pp. 1–2.

[7] M. H. Ahmadilivani, M. Barbareschi, S. Barone, A. Bosio, M. Danesh-
talab, S. Della Torca, G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo
et al., “Special session: Approximation and fault resiliency of dnn
accelerators,” in 2023 IEEE 41st VLSI Test Symposium (VTS). IEEE,
2023, pp. 1–10.

[8] M. Taheri, M. Taheri, and A. Hadjahmadi, “Noise-tolerance gpu-based
age estimation using resnet-50,” arXiv preprint arXiv:2305.00848, 2023.

[9] A. Siddique, K. Basu, and K. A. Hoque, “Exploring fault-energy
trade-offs in approximate dnn hardware accelerators,” in 2021 22nd
International Symposium on Quality Electronic Design (ISQED). IEEE,
2021, pp. 343–348.

[10] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[11] P. M. Basso, F. F. dos Santos, and P. Rech, “Impact of tensor cores
and mixed precision on the reliability of matrix multiplication in gpus,”
IEEE Transactions on Nuclear Science, vol. 67, no. 7, pp. 1560–1565,
2020.

[12] F. Libano, P. Rech, B. Neuman, J. Leavitt, M. Wirthlin, and J. Brunhaver,
“How reduced data precision and degree of parallelism impact the reli-
ability of convolutional neural networks on fpgas,” IEEE Transactions
on Nuclear Science, vol. 68, no. 5, pp. 865–872, 2021.

[13] F. Libano, B. Wilson, M. Wirthlin, P. Rech, and J. Brunhaver, “Un-
derstanding the impact of quantization, accuracy, and radiation on the
reliability of convolutional neural networks on fpgas,” IEEE Transac-
tions on Nuclear Science, vol. 67, no. 7, pp. 1478–1484, 2020.

[14] R. T. Syed, M. Ulbricht, K. Piotrowski, and M. Krstic, “Fault resilience
analysis of quantized deep neural networks,” in 2021 IEEE 32nd
International Conference on Microelectronics (MIEL). IEEE, 2021,
pp. 275–279.

[15] A. P. Arechiga and A. J. Michaels, “The effect of weight errors on neural
networks,” in 2018 IEEE 8th Annual Computing and Communication
Workshop and Conference (CCWC). IEEE, 2018, pp. 190–196.

[16] M. Taheri, S. Sheikhpour, A. Mahani, and M. Jenihhin, “A novel fault-
tolerant logic style with self-checking capability,” in 2022 IEEE 28th
International Symposium on On-Line Testing and Robust System Design
(IOLTS). IEEE, 2022, pp. 1–6.

[17] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Ft-clipact: Resilience
analysis of deep neural networks and improving their fault tolerance
using clipped activation,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2020, pp. 1241–1246.

[18] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
arXiv preprint arXiv:1803.05900, 2018.

[19] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[dl] a survey of
fpga-based neural network inference accelerators,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 1, pp.
1–26, 2019.

[20] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating cnn
inference on fpgas: A survey,” arXiv preprint arXiv:1806.01683, 2018.

[21] R. S. Molina, V. Gil-Costa, M. L. Crespo, and G. Ramponi, “High-
level synthesis hardware design for fpga-based accelerators: Models,
methodologies, and frameworks,” IEEE Access, vol. 10, pp. 90 429–
90 455, 2022.

[22] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA interna-
tional symposium on field-programmable gate arrays, 2017, pp. 65–74.

[23] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: Mapping regular and
irregular convolutional neural networks on fpgas,” IEEE transactions
on neural networks and learning systems, vol. 30, no. 2, pp. 326–342,
2018.

[24] A. Ghaffari and Y. Savaria, “Cnn2gate: Toward designing a general
framework for implementation of convolutional neural networks on
fpga,” arXiv preprint arXiv:2004.04641, 2020.

[25] P. G. Mousouliotis and L. P. Petrou, “Cnn-grinder: from algorithmic
to high-level synthesis descriptions of cnns for low-end-low-cost fpga
socs,” Microprocessors and Microsystems, vol. 73, p. 102990, 2020.

[26] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, p. 66, 2010.

[27] E. Wang, J. J. Davis, and P. Y. Cheung, “A pynq-based framework for
rapid cnn prototyping,” in 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2018, pp. 223–223.

[28] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004, vol. 17.

[29] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2009, pp. 502–506.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:52:29 UTC from IEEE Xplore. Restrictions apply.

Appendix 2

II

139

M. Taheri, N. Cherezova, S. Nazari, A. Rafiq, A. Azarpeyvand, T. Ghasempouri, M.
Daneshtalab, J. Raik, and M. Jenihhin, “AdAM: Adaptive fault-tolerant
approximate multiplier for edge DNN accelerators,” in 2024 IEEE European Test
Symposium (ETS), 2024.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This paper is accepted at the 29th IEEE European Test Symposium 2024 (ETS) 2024.

AdAM: Adaptive Fault-Tolerant Approximate
Multiplier for Edge DNN Accelerators

Mahdi Taheri1, Natalia Cherezova1*, Samira Nazari3*, Ahsan Rafiq1, Ali Azarpeyvand1,3,
Tara Ghasempouri1, Masoud Daneshtalab1,2, Jaan Raik1 and Maksim Jenihhin1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

3University of Zanjan, Zanjan, Iran
1mahdi.taheri@taltech.ee

Abstract—Multiplication is the most resource-hungry oper-
ation in the neural network’s processing elements. In this
paper, we propose an architecture of a novel adaptive fault-
tolerant approximate multiplier tailored for ASIC-based DNN
accelerators. AdAM employs an adaptive adder relying on an
unconventional use of the leading one position value of the inputs
for fault detection through the optimization of unutilized adder
resources. The proposed architecture uses a lightweight fault
mitigation technique that sets the detected faulty bits to zero.
The hardware resource utilization and the DNN accelerator’s
reliability metrics are used to compare the proposed solution
against the triple modular redundancy (TMR) in multiplication,
unprotected exact multiplication, and unprotected approximate
multiplication. It is demonstrated that the proposed architecture
enables a multiplication with a reliability level close to the
multipliers protected by TMR utilizing 63.54% less area and
having 39.06% lower power-delay product compared to the exact
multiplier.

Index Terms—deep neural networks, approximate computing,
circuits design, reliability, resiliency assessment

I. INTRODUCTION

The role of Deep Neural Networks (DNNs) in a wide range
of safety- and mission-critical applications (e.g., autonomous
driving) is expanding. Therefore, deployment of a DNN ac-
celerator requires addressing the trade-off between different
design parameters and reliability [1] [2]. Even though DNNs
possess certain intrinsic fault-tolerant and error-resilient char-
acteristics, it is insufficient to conclude the reliability of DNNs
without considering the different characteristics of a hardware
accelerator for vital applications. With the continuous scaling-
down of the process, there is a discernible trend indicating
that the Soft Error Rate (SER) of combinational circuits may
surpass that of sequential circuits [3] [4]. Therefore, the main
focus of this study is introducing a novel reliability technique
to mitigate the soft errors in the combinational logic of an AI
computation core.

This work presents the architecture of a novel adaptive fault-
tolerant approximate multiplier (AdAM) tailored for ASIC-
based DNN accelerators. Yet, the proposed multiplier can be
implemented on FPGA as well. The contributions of the paper
are as follows:

* These authors contributed equally

• The architecture of a novel adaptive fault-tolerant approx-
imate multiplier tailored for DNN accelerators, including
an adaptive adder relying on an unconventional use of the
leading one position value of the inputs for fault detection
through the optimization of unutilized adder resources

• Implementation and validation of the multiplier in a
design synthesized for ASIC

• Reliability assessment and comparison of the proposed
multiplier with exact and approximate state-of-the-art
multipliers using several DNN benchmarks

The main objective of the proposed multiplier is to have the
best trade-off between power-delay product (PDP) and vulner-
ability (accuracy drop due to the fault) which is demonstrated
in the results section. Moreover, it is demonstrated that the
proposed architecture enables a multiplication with a reliability
level close to the multipliers protected by TMR utilizing
63.54% less area and having 39.06% lower PDP compared
to the exact multiplier.

The remainder of the paper is organized as follows. Section
II summarizes related works, the proposed method is presented
in Section III, Section IV provides the experimental setup and
discusses the results, and finally, the work is concluded in
Section V.

II. RELATED WORKS

Multipliers are one of the primary arithmetic building blocks
widely used in DNNs. Various approximate multipliers are
proposed in the literature. ScaleTRIM is a scalable approxi-
mate unsigned LOD multiplier for DNNs that exploits curve
fitting and linearization for fitting input products and a novel
error compensation method using lookup tables [5]. More
details about recent works on the approximation for DNNs
can be found in [6].

Error introduced by approximation is deterministic and its
impact can be studied on the accuracy drop of the net-
work comprehensively. However, soft errors are unpredictable
effects in contaminated and harsh environments that may
lead to DNNs malfunction and accuracy drop drastically [7].
Recent research investigates the reliability of DNNs alongside
approximation [8] [9] and quantization [10]. In [11], DNNs
and approximated DNNs are tested in the presence of faults,

1

ar
X

iv
:2

40
3.

02
93

6v
1

 [
cs

.A
I]

 5
 M

ar
 2

02
4

and the results demonstrated that approximated DNNs are
more resilient under special conditions.

To increase reliability and mitigate faults, Triple Modular
Redundancy (TMR) and Gate-Sizing (GS) are two well-
established hardening methods widely employed to mitigate
the soft error rate in combinational circuits. Despite achieving
100% fault coverage for a single fault in one module of a
combinational circuit, TMR incurs a substantial near 200%
area and power overhead [12]. Therefore, numerous algorithms
and frameworks are developed to enhance the efficiency of
applying these methods and balance their hardening effects
and design costs [13].

Approximate TMR (ATMR) is a technique that replaces
some modules of TMR with approximate ones while ensuring
the majority voter gives the correct output [14]. However,
ATMR still requires duplicating the whole combinational
circuit, even at the finest level of granularity.

To tackle this issue, this work presents an adaptive reliable
multiplier that provides a high level of reliability while using
less area than an exact multiplier.

III. ADAM ARCHITECTURE

The proposed architecture is an adaptive fault-tolerant ap-
proximate multiplier tailored for DNN accelerators. This ar-
chitecture includes an adaptive adder relying on an uncon-
ventional use of the leading one position value of the inputs
for fault detection and mitigation through the optimization
of unutilized adder resources. The proposed multiplier is an
adaptation of the classical Mitchell multiplier [15]. Mitchell
multiplier employs approximate logarithms of the input values.
By adding these logarithms, Mitchell’s algorithm estimates the
product. The final result is obtained by taking the antilogarithm
of this sum. Another level of approximation is introduced in
the adaptive adder considering the application of this multiplier
in DNNs with a proven negligible impact on the network
accuracy (see Subsection III-A and Table II).

Fig. 1: AdAM architecture

The proposed architecture of the multiplier is presented in
Fig. 1 (the contributions and extensions to the logarithmic
Mitchell multiplier are marked with red color). Assuming each
operand has n = 8 bits, a Leading One Detector (LOD) circuit
is used to find the index of the first ‘1’ bit in each operand.
This index denoted as k, is the characteristic or integer part of
the logarithm and has log2(n) = 3 bits. The multiplier shifts
the operands left by k bits, aligning the leading one with the
Most Significant Bit (MSB). (n–1) bits after the leading one
represent the mantissa part denoted as m. The mantissa is
truncated to t = 5 bits. The truncated operands are passed to
the adaptive (n–1)-bit adder that adds mantissa together and
duplicates the addition of 2 or 3 MSBs depending on the k
value of the biggest operand for fault detection and mitigation.
The architecture of the adaptive adder is shown in Fig. 2.
The adder is based on the carry lookahead adder. Duplicated
results are compared, and if there is a fault, the faulty bit is
set to zero using AND gates (marked on the figure with a
red rectangle). Due to the truncation of the mantissa, up to 2
Least Significant Bits (LSB) are excluded from the calculation,
which affects only the bigger numbers with the k equal to 7
or 6. This introduces a small error compared to the original
Mitchell algorithm that is discussed in the results section. The
k values of the operands are added separately. This adder is
replicated three times, as the order of the final output depends
on the result of this addition. A majority voter selects the
final result. Then, the antilogarithm algorithm is used to get
the product of multiplication. The sum of k values determines
the position of the leading one in the output product, which is
followed by the sum of the mantissa parts using the appropriate
shift operation.

Fig. 2: Adaptive adder architecture: a and b are inputs, c is
carry values and PFA stands for partial full adder

A. Adaptive adder

The adaptive adder is designed to perform fault detection
and mitigation based on the LOD values of the multiplier
inputs. Fig. 3 shows the scheme in which the proposed
multiplier introduces fault tolerance. As shown in this figure,
five cases are considered. If the maximum LOD of the inputs
is 7, two LSBs are discarded, and a two-bit adder of the

Fig. 3: Fault-tolerance and error introduced based on different
LOD cases

adaptive adder is dedicated to recomputing the addition of
two MSBs. These results are compared, and the mismatched
bits are replaced by zeros in case of a mismatch.

For LOD = 6, only the LSB is discarded, and two higher-
order bits are protected the same way as in the previous case.
When LOD = 5, no bits are discarded, and two higher-order
bits are protected. For LOD = 4, three higher-order bits are
protected, and only LSB is not monitored. In the case of
LOD ≤ 3, all bits are protected, enabling the proposed multi-
plier to provide comprehensive fault detection and mitigation
for all inputs.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this paper, the FreePDK 45 nm Nangate technology li-
brary is used in Cadence Genus 2023 to compare the hardware
characteristics of the proposed methods with the state-of-the-
art. The impact on the accuracy of the proposed adaptive
multiplier is studied on different networks (i.e., LeNet-5,
AlexNet, and VGG-16) trained on MNIST and CIFAR-10
using 8-bit INT with the help of the ADAPT framework [16].
Finally, the impact of the proposed multiplier on the reliability
of DNNs is studied using AlexNet and VGG-16. To perform
the reliability simulations for the case studies, a systolic-
array simulator is developed and integrated into the ADAPT
framework, and the impact of transient faults in the multiply-
accumulate (MAC) units of the systolic array is studied in the
network.

Random fault injection. Fault injection is performed, assum-
ing the single bit-flip faults in the network’s MAC operation
of a systolic array for reliability assessment. Considering a
prohibitively large number of fault combinations required for
the multiple-bit fault model, it has been shown that high fault
coverage obtained using the single-bit model results in a high
fault coverage of multiple-bit faults [17]. According to the
adopted single-bit fault model, a random bit-flip is injected
into a random MAC unit of the systolic array core at a random
execution time of the network, and the whole test set is fed to
the network to obtain the accuracy of the network. This process
is repeated several times to reach an acceptable confidence
level, based on [18]. This work provides an equation to reach
95% confidence level and 1% error margin.

B. Hardware utilization

In this section, the adaptive multiplier is compared in terms
of power and area with state-of-the-art designs.

In Table I, the accuracy, efficiency, and fault tolerance
(FT) of 8-bit approximate multipliers are compared with the
proposed method. Wallace, DRUM [19], TOSAM [20], and
ScaleTrim [5] are used for this comparison. The accuracy is
reported using Mean Absolute Relative Error (MARE). The
proposed multiplier has similar hardware parameters to the
state-of-the-art approximate multipliers with similar accuracy
while providing reliability improvement with fault detection
and mitigation capability.

TABLE I: Accuracy and efficiency of 8-bit approximate mul-
tipliers compared with the proposed method

Multiplier
Architecture

Delay
(ns)

Power
(µW)

Area
(µm2)

MARE
(%) FT PDP

(pJ)
Exact (Wallace) 0.85 360 417 0.00 No 306

DRUM(3) 0.70 104 143 12.6 No 72.8
TOSAM(0,3) 0.68 144 198 7.7 No 97.9

DRUM(4) 1.00 172 208 6.4 No 172
TOSAM(1,5) 0.88 231 291 4.1 No 203.2

ScaleTrim(4,8) 1.8 143 216 3.3 No 257.4
AdAM 1.13 165 152 4.7 Yes 186.45

C. DNN accuracy

Table II compares the accuracy of different CNN archi-
tectures using the proposed approximate multiplier with the
baseline accuracy using the exact multiplier. The evaluation
shows that the accuracy of DNN with the proposed method is
very close to the baseline. Hence, the proposed multiplier has
a negligible effect on the accuracy of DNNs.

TABLE II: Accuracy comparison of different CNNs with an
exact (baseline) and the proposed approximate multiplier

DNN Baseline
accuracy (%)

With proposed
multiplier (%)

LeNet-5 (MNIST) 93.8 94.1
AlexNet (CIFAR-10) 78.0 77.7
VGG-16 (CIFAR-10) 93.4 94.0

D. Reliability analysis

To showcase the impact of the AdAM multiplier on reliabil-
ity, the fault injection simulations are performed on AlexNet
and VGG-16 with four different configurations. The DNN reli-
ability is evaluated by comparing the output probability vector
of the golden run (i.e. the DNN that behaves as expected,
without faults) and the faulty run (i.e. the DNN that includes
the fault). The SDC rate is defined as the proportion of faults
that caused misclassification in comparison with the golden
model. Since in DNNs, there is often not a single correct
output, but a list of ranked outputs, each with a confidence
score, the new criteria to determine what constitutes an SDC
for a DNN application is defined in [21].

Fig. 4 demonstrates the fault tolerance comparison and
reliability improvement of different networks by using the
exact unprotected multipliers, using approximate unprotected
multipliers (ScaleTRIM), using exact multipliers protected
with TMR, and using AdAM. As illustrated, TMR has 100%
of protection but it also requires about 200% of area over-
head. Despite using TMR in our architecture for a small
adder, we introduce very high reliability improvement without
introducing hardware overhead. Since the main objective of
the proposed multiplier is to have the best trade-off between
PDP and vulnerability (accuracy drop due to the fault), Fig. 5
illustrates this comparison. In these charts, the closer to
the origins (0,0), the higher the cost-efficiency of the fault
tolerance, i.e. lower vulnerability and PDP. As shown, TMR
is an inefficient solution for edge AI applications because of its
high PDP, while the proposed method (AdAM) is the closest
to the origin.

Fig. 4: Hardware efficiency (area) and fault resilience (fault
coverage) trade-offs in AlexNet (up) and VGG-16 (down).
Unp-exact: unprotected exact multiplier, Unp-AxM: unpro-
tected approximate multiplier, Pro-TMR: exact multiplier pro-
tected by TMR, Pro-AdAM: proposed multiplier

200 400 600 800 1,000
0

20

40

60

Power-Delay Product (pJ)

V
ul

ne
ra

bi
lit

y
(%

)

AlexNet

200 400 600 800 1,000
0

20

40

60

Power-Delay Product (pJ)

VGG-16

Unp-Exact Unp-AxM
Pro-TMR Pro-AdAM

Fig. 5: PDP and vulnerability tradeoffs (considering SDC-5)
in different methods

V. CONCLUSION

In this paper, we propose an architecture of a novel adaptive
fault-tolerant approximate multiplier tailored for ASIC-based
DNN accelerators. AdAM employs an adaptive adder relying
on an unconventional use of the leading one position value

of the inputs for fault detection through the optimization of
unutilized adder resources. The proposed architecture uses a
lightweight fault mitigation technique that sets the detected
faulty bits to zero. It is demonstrated that the proposed
multiplier provides a reliability level close to the multipliers
protected by Triple Modular Redundancy (TMR) while utiliz-
ing 63.54% less area and having 39.06% lower power-delay
product compared to the exact multiplier.

VI. ACKNOWLEDGEMENT

This work was supported in part by the Estonian Re-
search Council grant PUT PRG1467 ”CRASHLESS“ and by
Estonian-French PARROT project ”EnTrustED”.

REFERENCES

[1] M. H. Ahmadilivani and et al, “A systematic literature review on
hardware reliability assessment methods for deep neural networks,”
arXiv preprint arXiv:2305.05750, 2023.

[2] M. Taheri, “Dnn hardware reliability assessment and enhancement,” 27th
IEEE European Test Symposium (ETS)., May 2022.

[3] N. Mahatme and et al, “Comparison of combinational and sequential
error rates for a deep submicron process,” TNS, pp. 2719–2725, 2011.

[4] M. Taheri and et al, “A novel fault-tolerant logic style with self-checking
capability,” in IOLTS. IEEE, 2022, pp. 1–6.

[5] E. Farahmand and et al, “ScaleTRIM: scalable truncation-based integer
approximate multiplier with linearization and compensation,” arXiv
preprint arXiv:2303.02495, 2023.

[6] G. Armeniakos and et al, “Hardware approximate techniques for deep
neural network accelerators: A survey,” ACM Comput. Surv., vol. 55,
no. 4, nov 2022.

[7] G. Li and et al, “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in SC’17, 2017.

[8] M. H. Ahmadilivani and et al, “Special session: Approximation and fault
resiliency of DNN accelerators,” in VTS, 2023, pp. 1–10.

[9] M. Taheri and et al, “Appraiser: Dnn fault resilience analysis employing
approximation errors,” in DDECS. IEEE, 2023, pp. 124–127.

[10] M. Taheri, N. Cherezova, and et al, “Exploration of activation fault
reliability in quantized systolic array-based dnn accelerators,” arXiv
preprint arXiv:2401.09509, 2024.

[11] M. Taheri, M. H. Ahmadilivani, and et al, “Deepaxe: A framework
for exploration of approximation and reliability trade-offs in DNN
accelerators,” in ISQED. IEEE, 2023, pp. 1–8.

[12] S. Mittal, “A survey on modeling and improving reliability of DNN
algorithms and accelerators,” J. Syst. Archit., vol. 104, p. 101689, 2020.

[13] G. Ammes and et al, “ATMR design by construction based on two-level
ALS,” in 36th SBCCI. IEEE, 2023, pp. 1–6.

[14] T. Arifeen and et al, “Approximate triple modular redundancy: A survey,”
IEEE Access, vol. 8, pp. 139 851–139 867, 2020.

[15] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Trans. on Electronic Computers, pp. 512–517, 1962.

[16] D. Danopoulos and et al, “Adapt: Fast emulation of approximate DNN
accelerators in Pytorch,” IEEE TCAD, 2022.

[17] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. SSBM, 2004, vol. 17.

[18] R. Leveugle and et al, “Statistical fault injection: Quantified error and
confidence,” in DATE, 2009, pp. 502–506.

[19] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased
multiplier for approximate applications,” in ICCAD, 2015, pp. 418–425.

[20] S. Vahdat and et al, “TOSAM: an energy-efficient truncation-and
rounding-based scalable approximate multiplier,” TVLSI, vol. 27, no. 5,
pp. 1161–1173, 2019.

[21] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in SC17, 2017.

Appendix 3

III

145

M. Taheri, N. Cherezova, S. Nazari, A. Azarpeyvand, T. Ghasempouri, M.
Daneshtalab, J. Raik, and M. Jenihhin, “AdAM: Adaptive Approximate Multiplier
for Fault Tolerance in DNN Accelerators,” in IEEE Transactions on Device and
Materials Reliability, doi: 10.1109/TDMR.2024.3523386.

P
os
te
d
on

6
M
ay

2
02
4
—

C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
2
27
/
te
ch
rx
iv
.1
7
15
0
25
8
7.
72
9
83
6
22
/v

1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Mahdi Taheri1, Natalia Cherezova1, Samira Nazari2, Ali Azarpeyvand1,2, Tara
Ghasempouri1, Masoud Daneshtalab1,3, Jaan Raik1, and Maksim Jenihhin1

1Tallinn University of Technology
2University of Zanjan
3Mälardalen University

May 06, 2024

1

AdAM: Adaptive Approximate Multiplier
for Fault Tolerance in DNN Accelerators

Mahdi Taheri1*, Natalia Cherezova1*, Samira Nazari3, Ali Azarpeyvand1,3,
Tara Ghasempouri1, Masoud Daneshtalab1,2, Jaan Raik1 and Maksim Jenihhin1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

3University of Zanjan, Zanjan, Iran
1mahdi.taheri@taltech.ee

Abstract—Deep Neural Network (DNN) hardware accelerators
are essential in a spectrum of safety-critical edge-AI applications
with stringent reliability, energy efficiency, and latency require-
ments. Multiplication is the most resource-hungry operation in
the neural network’s processing elements. This paper proposes a
scalable adaptive fault-tolerant approximate multiplier (AdAM)
tailored for ASIC-based DNN accelerators at the algorithm and
circuit levels. AdAM employs an adaptive adder that relies on an
unconventional use of input Leading One Detector (LOD) values
for fault detection by optimizing unutilized adder resources. A
gate-level optimized LOD design and a hybrid adder design are
also proposed as a part of the adaptive multiplier to improve
the hardware performance. The proposed architecture uses a
lightweight fault mitigation technique that sets the detected faulty
bits to zero. The hardware resource utilization and the DNN
accelerator’s reliability metrics are used to compare the proposed
solution against the Triple Modular Redundancy (TMR) in
multiplication, unprotected exact multiplication, and unprotected
approximate multiplication. It is demonstrated that the proposed
architecture enables a multiplication with a reliability level close
to the multipliers protected by TMR while at the same time
utilizing 2.74 × less area and with 39.06% less power-delay
product compared to the exact multiplier. Moreover, it has similar
area, delay, and power consumption parameters compared to the
state-of-the-art approximate multipliers with similar accuracy
while providing fault detection and mitigation capability.

Index Terms—deep neural networks, approximate computing,
circuit design, reliability, DNN accelerator

I. INTRODUCTION

In the past decades, Deep Neural Networks (DNNs) demon-
strated a significant improvement in accuracy by adopting
computationally intense models [1]. Consequently, the size of
these models has increased drastically, imposing challenges in
their deployment on resource-constrained platforms [2].

Different DNN compression techniques such as model quan-
tization and pruning [2] as well as approximate computing
(AxC) [3] [4] enable the use of DNNs in edge devices.
While these techniques decrease the accuracy of DNNs, they
bring the benefits of lower resource utilization and energy
consumption and higher system efficiency [5]. As an example,
quantizing DNNs down to 8-bit INT gained popularity in edge

* These authors contributed equally

AI applications, because of the minimal impact on accuracy
drop and a significant reduction in memory footprint [6].

Fig. 1: Possible locations of faults in AI chip [7]

On the other hand, the role of DNNs in a wide range
of safety- and mission-critical applications e.g., autonomous
driving, is expanding. Therefore, deploying a DNN accelerator
requires addressing the trade-off between different design
parameters and reliability [4]. Although DNNs possess cer-
tain intrinsic fault-tolerant and error-resilient characteristics,
it is insufficient to conclude the reliability of DNNs without
considering the characteristics of the corresponding hardware
accelerator.

Consider Fig. 1 that demonstrates different possible fault
locations in an AI accelerator and their negative effect on the
object detection task. In the example, a pedestrian has been
identified as a bird, and a red light is misclassified as a green
one leading to a potentially disastrous situation. In this work,
which is an extension of the previous paper by the authors
[8], the faults in the computational core of the AI chip are
considered.

Moreover, with the continuous scaling-down of the process,
there is a discernible trend indicating that the Soft Error Rate
(SER) of combinational circuits may surpass that of sequential

circuits [9], [10]. Therefore, the main focus of this study is
introducing a novel reliability technique to mitigate soft errors
in the combinational logic of DNN accelerators while keeping
resource utilization and energy consumption low.

This work presents an architecture of an adaptive fault-
tolerant approximate multiplier (AdAM) tailored for ASIC-
based DNN accelerators. The multiplier is based on the
logarithmic Mitchell’s multiplier that substitutes multiplication
with the addition of approximated logarithms of the operands.
The proposed multiplier protects higher-order bits of the
product based on the maximum position of the leading one
bit in the input strands of the multiplier. This multiplier is
a negative overhead fault tolerance approximate multiplier
compared to the exact multipliers. The contributions of the
paper are as follows:

• The architecture of a novel adaptive fault-tolerant approx-
imate multiplier tailored for DNN accelerators, including
an adaptive adder relying on an unconventional use of the
leading one position value of the inputs for fault detection
through optimizing unutilized adder resources.

• DNN accelerator fault detection and protection method-
ology with formal definitions for scalability and repro-
ducibility.

• Implementation and validation of the multiplier design.
Reliability and hardware performance trade-off assess-
ment and comparison of the proposed multiplier with
exact and approximate state-of-the-art multipliers using
several state-of-the-art DNN benchmarks.

The proposed multiplier provides a reliability level close
to the multipliers protected by Triple Modular Redundancy
(TMR) while utilizing 2.74 × less area and having 39%
less power-delay product compared to the unprotected exact
multiplier. In fact, it has similar area, delay, and power
consumption parameters compared to the state-of-the-art ap-
proximate multipliers with similar accuracy while providing
fault detection and mitigation capability.

The remainder of the paper is organized as follows: Section
II summarizes related works. Section III presents the proposed
method. Section IV presents the experimental setup and dis-
cusses the results. Finally, Section V concludes the work.

II. RELATED WORK

Multipliers are one of the primary arithmetic building blocks
widely used in DNNs. Approximate computing is a promising
technique for designing digital circuits with lower area and
power consumption while achieving a higher working fre-
quency, particularly when the target application has some error
resiliency, such as DNNs [3], [5]. Various approximate multi-
pliers are proposed in the literature. These options encompass
dynamic segment multiplier (DSM) structure [11], dynamic
range unbiased multiplier (DRUM) structure [12], memristor-
based multipliers [3], [13], simplified adder-based or truncated
multipliers [14], utilization of inexact compressors [15], and
approximate booth multipliers [16]. One of the other approx-
imation techniques to further speed up the multiplication is
to move to the logarithmic numbering system to compute

addition instead of multiplication. The general idea is to obtain
the logarithm of the inputs, calculate their sum, and convert
the output value to the final result through an antilogarithm
operation [17], [18]. The complexity and accuracy of this
method come from the logarithm and antilogarithm steps.
Truncating the input operand of multiplication and using loga-
rithmic approximation also has a dual effect on the area, speed,
and power consumption improvement. The first approximate
logarithmic multiplier was proposed by Mitchell, who used
binary logarithms to approximate multiplication [18]. There
are several studies conducted on improving the performance
and accuracy of this method by considering DNN application
[19]. Tosam is a scalable approximate multiplier that reduces
the number of partial products by truncating each of the input
operands based on their leading one-bit position and improves
delay, area, and energy consumption up to 41%, 90%, and
98%, respectively, [14]. ScaleTRIM is a scalable approximate
unsigned LOD multiplier for DNNs that exploits curve fitting
and linearization for fitting input products and a novel error
compensation method using lookup tables [17].

The error introduced by the approximation is deterministic,
and its impact can be studied comprehensively on the accuracy
drop of the network. However, soft errors are unpredictable
in contaminated and harsh environments that can lead to
DNNs malfunction and accuracy drop drastically [20]. In
contrast to the proposed approximate multipliers, AdAM
considers reallocating resources saved by approximation for
fault tolerance. Recent research investigates the reliability of
DNNs alongside approximation [5], [4]. In [21], DNNs and
approximated DNNs are tested in the presence of stuck-at
faults, and the results demonstrated that approximated DNNs
are more resilient under special conditions.

Triple Modular Redundancy (TMR) and Gate-Sizing (GS)
are two well-established hardening methods widely employed
to mitigate soft errors in combinational circuits. Despite
achieving 100% fault coverage for a single fault in one module
of a combinational circuit, TMR incurs a substantial near
200% area and power overhead [22]. Therefore, numerous
algorithms and frameworks are developed to enhance the effi-
ciency of applying these methods and balance their hardening
effects and design costs [23].

A relaxed fault-tolerant (RFT) hardening method that ex-
ploits the inherent fault tolerance of different applications
to reduce implementation costs was proposed in [24]. How-
ever, RFT lacks generality and flexibility. Approximate TMR
(ATMR) is a technique that replaces some modules of TMR
with approximate ones while ensuring that the majority voter
gives the correct output [25]. This technique is investigated
for various purposes and platforms, including some that are
exclusive to FPGAs and some that work with both FPGAs
and ASICs [23]. However, ATMR still requires duplicating
the whole combinational circuit, even at the finest level of
granularity.

To address the high overhead incurred by traditional fault
tolerance methods, this work presents an adaptive approximate
multiplier that provides a high level of reliability while using

Fig. 2: Comparison of absolute error distribution between the original 8-bit Mitchell’s multiplier and AdAM: top point shows
the maximum absolute error for Adam, lower point shows the maximum absolute error for Mitchell’s multiplier

less area and PDP than an exact multiplier.

III. ADAM ARCHITECTURE

We propose an architecture for adaptive fault-tolerant ap-
proximate multiplier tailored for DNN accelerators. This ar-
chitecture includes an adaptive adder relying on an uncon-
ventional use of input Leading One Detector (LOD) values
for fault detection and mitigation through the optimization
of unutilized adder resources. A gate-level optimized LOD
design and a lightweight triplicated hybrid adder design are
used to enhance further the proposed architecture’s reliability,
resource utilization, and efficiency. The base for the proposed
multiplier is the classical Mitchell multiplier [18]. However,
the methodology can be applied to all logarithmic approximate
multipliers. Another level of approximation is introduced in
the adaptive adder (Fig. 3) considering the application of this
multiplier in DNNs with a proven negligible impact on the
network accuracy (see Table VI in the results section). Mitchell
multiplier employs approximate logarithms of the input values.
By adding these logarithms, Mitchell’s algorithm estimates the
product. The final result is obtained by taking the antilogarithm
of this sum.

A. Definitions

Consider two n-bit positive integers A and B that can be
represented as

A =

kA∑

i=0

2iai, B =

kB∑

i=0

2ibi, ai = bi = {0, 1} (1)

where k is the position of the leading one bit, 0 ≤ k < n. By
factoring 2k we get

A = 2kA

(
1 +

kA−1∑

i=0

2i−kAai

)
= 2kA(1 +XA) (2)

B = 2kB

(
1 +

kB−1∑

i=0

2i−kBbi

)
= 2kB (1 +XB) (3)

Since k ≥ 0, X is in the range 0 ≤ X < 1 and is the fraction
term of the number. The logarithms of A and B then can be
expressed as

log(A) = kA + log(1 +XA) (4)
log(B) = kB + log(1 +XB) (5)

Mitchell’s method approximates log(1+X) with the value of
X . This way, logarithms are approximated as

log(A) ≈ kA +XA (6)
log(B) ≈ kB +XB (7)

The logarithm of A ∗B can be approximated as

log(A ∗B) ≈ kA +XA + kB +XB (8)

The antilogarithm of the above expression is the final product:

P̂ = 2kA+kB (1 +XA +XB) (9)

AdAM architecture introduces a truncation parameter t that
defines the level of fault tolerance, i.e. the number of pro-

tected higher-order bits of the fractional part. Considering the
truncation parameter, fractional part X is defined as

Xt
A =

kA−1∑

i=0

2i−kAai · [|i− kA|≥ n− t] (10)

Xt
B =

kB−1∑

i=0

2i−kBbi · [|i− kB |≥ n− t] (11)

where n is the number of bits, t is the truncation parameter, [·]
are the Iverson brackets. The final product then is expressed
as

P̂ = 2kA+kB (1 +Xt
A +Xt

B) (12)

Truncation of the fractional parts introduces additional er-
rors to the result. The absolute error (P − P̂) behavior of the
original 8-bit Mitchell’s multiplier and AdAM is compared
in Fig. 2 over the entire input domain. The maximum errors
introduced by each method are marked in the figure. There is
no additional error when the truncated bits in both operands
are ’0’, as the number of ’1’ in the truncated bits increases,
additional error increases as well.

However, it has been shown that the trained synaptic weights
in NN applications do not have a uniform distribution, and they
are mostly centered around zero [26]. Therefore, the impact of
the proposed multiplier on the accuracy of different networks
is reported in the result section.

The level of fault tolerance of the proposed multiplier is
defined by two parameters: the aforementioned truncation
parameter t and duplication level h. The truncation parameter t
defines the minimum number of protected bits, and duplication
level h defines the maximum possible number of protected
bits. Smaller operands have smaller mantissa values that do
not require the whole adder. Therefore, more adder resources
can be used for fault tolerance by duplicating the addition of
more higher-order bits. Duplication level h does not affect the
accuracy of the multiplier, it affects area, power, and delay.
A higher h value means a higher level of fault tolerance
and higher resource utilization. A smaller value means a
lower level of fault tolerance and lower resource utilization.
Different configurations of the proposed multiplier are denoted
as AdAM(t,h).

B. Hardware implementation

The proposed architecture of the multiplier is presented in
Fig. 3 (the contributions and extensions to the logarithmic
Mitchell multiplier are marked with red color). First, a novel
optimized Leading One Detector (LOD) circuit (subsection
III-D) is used to find the index of the first ‘1’ bit in each
operand. This index denoted as k, is the characteristic or
integer part of the logarithm and has log2(n) bits. Then, the
operands are shifted left by k bits, aligning the leading one
with the Most Significant Bit (MSB). (n–1) bits after the
leading one represent the mantissa part denoted as m. The
mantissa is truncated to (n−1−t) bits. The truncated operands
are passed to the adaptive (n–1)-bit adder that adds mantissa
together and duplicates the addition of several higher-order

Fig. 3: AdAM architecture (the contributions and extensions
to the logarithmic Mitchell multiplier are marked with red

color)

bits depending on the k value of the biggest operand for fault
detection and mitigation. As it was already mentioned, the
number of duplicated bits depends on truncation parameter t
and duplication level h.

The architecture of the adaptive adder is shown in Fig. 4
(subsection III-C). The adder is based on the carry-lookahead
adder, and the carry generation logic is excluded from the
figure to save space. Duplicated results are compared, and
if there is a fault, the faulty bit is set to zero using AND
gates (marked on the figure with a red rectangle). Due to
the truncation of the mantissa, up to t lower-order bits are
excluded from the calculation, which affects only the bigger
numbers with the k > (n − t). This introduces a small error
compared to the original Mitchell algorithm (discussed in the
following section).

The k values of the operands are added separately using
a small hybrid adder. A hybrid between a resource-intensive
but fast carry look-ahead adder and a lightweight but slow due
to the accumulated delay ripple carry (CR) adder is selected
for this task. This adder is replicated three times, for extra
fault tolerance, as the order of the final output depends on the
result of this addition. A majority voter selects the final result.
Then, the antilogarithm algorithm is used to get the product
of multiplication. The sum of k values determines the position
of the leading one in the output product, followed by the sum
of the mantissa parts using the appropriate shift operation.

Fig. 4: Adaptive adder architecture: A and B are inputs, C is carry values and PFA stands for partial full adder, m here
denotes the size of the truncated mantissa (n− 1− t)

Fig. 5: Fault-tolerance and error introduced based on
different input values (n = 8, t = 2, h = 3)

C. Adaptive adder

The adaptive adder is designed to detect and mitigate
faults based on the multiplier inputs’ k values. The adder
is divided into three parts: t PFAs (Partial Full Adders) for
duplicating the addition of t higher-order bits, (h − t) PFAS
with multiplexers on inputs that can duplicate the addition of
up to (h − t) higher-order bits or add lower-order bits, and
(n− 1− h) PFAs for the addition of the mantissa. This way,
for smaller operands that have smaller mantissa and do not
require the whole adder, more resources can be used for fault
tolerance. The size of the truncated mantissa can be expressed
as WXt = k ·[k < n−t]+(n−1−t)·[k ≥ n−t] using Iverson
brackets notation. The available adaptive adder resources can
be expressed as WAR = (n− 1)−WXt . Thus, the number of
protected bits is WPB = WAR · [WAR < h] + h · [WAR ≥ h].

As an example, Fig. 5 shows the scheme in which the
proposed multiplier introduces fault tolerance considering 8-
bit inputs with a truncation parameter t = 2 and duplication

level h = 3. As shown in this figure, five cases are considered.
If the maximum LOD of the inputs is 7, two lower-order bits
are discarded, and a two-bit adder of the adaptive adder is
dedicated to recomputing the addition of two higher-order bits.
These results are compared, and the mismatched bits are set
to zero.

For k = 6, only the Least Significant Bit (LSB) is discarded,
and two higher-order bits are protected the same way as in
the previous case. When k = 5, no bits are discarded, and
two higher-order bits are protected. For k = 4, three higher-
order bits are protected, and only LSB is not monitored.
In the case of k ≤ 3, all bits are protected, enabling the
proposed multiplier to provide comprehensive fault detection
and mitigation for all inputs.

D. LOD design

The gate-level structure of the proposed LOD circuit is
presented in Fig. 6. The circuit is divided into two functional
parts: zero flag calculation and leading-one position detection
(LOPD). LOPD consists of several stages. During the first
stage, input is divided into nibbles that are processed in
parallel. For each nibble, except for the first one, three signals
are calculated: a, b, and c. For the first nibble, only two signals
are calculated: b and c. Signal a defines whether there is a
’1’ bit in the nibble; signal b defines whether the output is
even or odd; and signal c defines whether there is ’1’ in the
two higher bits of the nibble. During the second stage, those
signals form the final result based on the highest nibble with a
’1’ bit. Since the zero flag is only required at the last stage of
the multiplier to determine whether the final product should
be zero, it is calculated using the LOPD output values. The
proposed design requires fewer logic gates (as demonstrated
in the results section) than designs found in the literature (e.g.,

ScaleTRIM [17]) by reusing the output values for calculating
the zero flag, knowing that it can have a longer delay.

Fig. 6: Gate-level structure of the proposed LOD

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
In this paper, the FreePDK 45 nm Nangate technology

library is used in Cadence Genus 2023 to compare the
hardware characteristics (area, latency, power consumption) of
the proposed methods with the state-of-the-art. The accuracy
is reported using Mean Absolute Relative Error (MARE)
calculated as

MARE =
1

N

N∑

i=0

∣∣∣∣
Pi − P̂i

Pi

∣∣∣∣,

where N is the number of tested input combinations, Pi and
P̂i are the exact and approximate results.

Additionally, a design of a MAC (multiply-accumulate)
unit in a systolic array is synthesized for ASIC to better
illustrate the results in an AI core. The impact on the
accuracy of the proposed adaptive multiplier is studied on
different networks (i.e., LeNet-5, AlexNet, ResNet-18, VGG-
16, DenseNet) trained on MNIST and CIFAR-10 using 8-bit
INT with the help of the AdaPT framework [27]. Finally, the
impact of the proposed multiplier on the reliability of DNNs
is studied using the mentioned benchmarks.

Random fault injection. Fault injection is performed, assum-
ing the single bit-flip faults in the network’s MAC operation
of a systolic array for reliability assessment. According to the
adopted single-bit fault model, a random bit-flip is injected
into a random MAC unit of the systolic array core at a random
execution time of the network, and the whole test set is fed to
the network to obtain the accuracy of the network. This process
is repeated several times to reach an acceptable confidence
level, following the approach in [28]. This reference provides
an equation to reach 95% confidence level and 1% error
margin.

B. Hardware utilization

In this section, the proposed LOD, and adaptive multiplier
are compared in terms of power and area with state-of-the-
art designs. Power–Delay Product (PDP) is used to show the
efficiency of the design.

Table I shows the area, power, and delay of the proposed 8-
bit LOD architecture compared to the state-of-the-art design.
The proposed design has fewer gates and a smaller critical
path compared to the other methods in the literature.

TABLE I: LOD hardware comparison between the proposed
method and the state-of-the-art

LOD
Architecture

Delay
(ps)

Power
(µW)

PDP
(ps×µW)

Area
(µm2)

ScaleTrim [17] 156 1.12 174.72 9.84
Proposed 136 1.09 148.24 9.57

TABLE II: Accuracy and efficiency of 8-bit approximate
multipliers compared with the proposed method

Multiplier
Architecture

Delay
(ns)

Power
(µW)

Area
(µm2)

MARE
(%) FT PDP

(pJ)
Exact (Wallace) 0.85 360 417 0.00 No 306

DRUM(3) 0.70 104 143 12.6 No 72.8
TOSAM(0,2) 0.58 120 186 10.1 No 69.6
TOSAM(0,3) 0.68 144 198 7.7 No 97.9

DRUM(4) 1.00 172 208 6.4 No 172
TOSAM(1,5) 0.88 231 291 4.1 No 203.2
AdAM(2,3) 1.13 165 152 4.7 Yes 186.4

ScaleTrim(4,8) 1.8 143 216 3.3 No 257.4

TABLE III: Accuracy and efficiency of 16-bit approximate
multipliers compared with the proposed method

Multiplier
Architecture

Delay
(ns)

Power
(mW)

Area
(µm2)

MARE
(%) FT PDP

(pJ)
Exact (Wallace) 1.22 2.08 1785 0.00 No 2537.6

DRUM(3) 0.88 0.13 257 11.9 No 114.4
TOSAM(0,2) 0.74 0.16 342 10.9 No 118.4

ScaleTrim(3,4) 1.35 0.20 281 9.23 No 279.0
TOSAM(0,3) 0.84 0.21 423 7.6 No 176.4

DRUM(4) 1.12 0.27 381 5.9 No 302.4
ScaleTrim(7,0) 2.38 0.36 492 4.06 No 871.3
TOSAM(1,5) 1.00 0.35 532 4.0 No 350.0
AdAM(6,7) 1.00 0.10 440 3.97 Yes 100.0
AdAM(4,7) 1.06 0.13 451 3.87 Yes 137.8
AdAM(4,4) 0.96 0.12 434 3.87 Yes 115.2
AdAM(2,7) 1.32 0.15 495 3.97 Yes 171.6
AdAM(2,4) 1.13 0.13 451 3.85 Yes 146.9
DRUM(5) 1.36 0.43 532 2.9 No 584.8

ScaleTrim(9,0) 2.71 0.43 541 2.2 No 1170.6
TOSAM(2,6) 1.21 0.38 564 2.1 No 459.8

Tables II, III and IV report the accuracy, efficiency, and
fault tolerance (FT) of 8-bit, 16-bit, and 32-bit approximate
multipliers compared with the proposed method. Wallace,
DRUM [12], TOSAM [14], and ScaleTrim [17] are used for
this comparison. The proposed multiplier has similar hardware
parameters to the state-of-the-art approximate multipliers with

TABLE IV: Accuracy and efficiency of 32-bit approximate
multipliers compared with the proposed method

Multiplier
Architecture

Delay
(ns)

Power
(mW)

Area
(µm2)

MARE
(%) FT PDP

(pJ)
Exact (Wallace) 1.67 10.26 7618 0.00 No 17134.2

DRUM(3) 1.08 0.20 520 11.90 No 216.0
TOSAM(0,2) 0.99 0.27 844 10.90 No 267.3
TOSAM(0,3) 1.02 0.28 780 7.61 No 285.6

DRUM(4) 1.33 0.36 738 5.90 No 478.8
TOSAM(1,5) 1.18 0.40 999 3.95 No 472.0
AdAM(8,15) 1.67 0.31 1105 3.8488 Yes 517.7
AdAM(8,8) 1.30 0.29 1041 3.8488 Yes 377.0

AdAM(6,15) 1.72 0.48 1148 3.8487 Yes 825.6
AdAM(6,8) 1.46 0.33 1141 3.8487 Yes 471.9

AdAM(4,15) 2.43 0.57 1425 3.8487 Yes 1385.1
AdAM(4,8) 1.80 0.46 1403 3.8487 Yes 828.0

AdAM(2,15) 2.49 0.59 1579 3.8487 Yes 1469.1
AdAM(2,8) 2.02 0.49 1519 3.8487 Yes 989.8
DRUM(5) 1.55 0.56 944 2.89 No 868.0

TOSAM(2,6) 1.30 0.54 1146 2.06 No 702.0
DRUM(6) 1.69 0.75 1059 1.47 No 1267.5

TOSAM(3,7) 1.44 0.69 1294 1.05 No 993.6
DRUM(7) 1.85 0.96 1235 0.73 No 1776.0

TOSAM(4,8) 1.57 0.83 1411 0.53 No 1303.1
DRUM(8) 1.93 1.17 1402 0.37 No 3545.2

TOSAM(5,9) 1.60 1.08 1625 0.27 No 1728.0

similar accuracy while providing reliability improvement with
fault detection and mitigation capability.

TABLE V: Efficiency of 8-bit MAC unit of a systolic array
with different multipliers

MAC
Architecture

Delay
(ns)

Power
(mW)

PDP
(ns×mW)

Area
(µm2)

Exact (Wallace) 1151 2.10 2417.10 975.95
ScaleTrim(4,8) 1106 2.00 2212.00 949.35

AdAM(2,3) 1098 1.47 1614.06 794.80

TABLE VI: Accuracy comparison of different CNNs with an
exact (baseline) and the proposed approximate multiplier

DNN Accuracy
with Wallace (%)

Accuracy
with AdAM(2,3) (%)

LeNet-5 (MNIST) 93.8 94.1
AlexNet (MNIST) 78.0 77.7

VGG-11 (CIFAR-10) 93.4 94.0
VGG-13 (CIFAR-10) 92.0 92.0
VGG-19 (CIFAR-10) 92.0 93.0

ResNet-18 (CIFAR-10) 93.8 93.2
ResNet-34 (CIFAR-10) 93.0 94.0
ResNet-50 (CIFAR-10) 95.0 94.0
DenseNet (CIFAR-10) 92.6 95.0
Inception (CIFAR-10) 92.6 95.0

Table V shows the results of MAC implementation with dif-
ferent multipliers. The MAC unit with the proposed multiplier
takes less area and has a lower PDP value.

C. DNN accuracy

Table VI compares the accuracy of different CNN archi-
tectures using the proposed approximate multiplier with the
baseline accuracy using the exact multiplier. The evaluation

shows that the accuracy of DNN with the proposed method is
very close to the baseline. Hence, the proposed multiplier has
a negligible effect on the accuracy of DNNs.

D. Reliability analysis

To showcase the impact of the AdAM multiplier on re-
liability and performance trade-offs, the fault injection sim-
ulations are performed on a variety of 8-bit convolutional
neural network architectures including AlexNet, DenseNet,
Inception, VGG-11, VGG-13, VGG-19, ResNet-18, ResNet-
34, and ResNet-50 with four different configurations: unpro-
tected exact multipliers (Unp-Exact), unprotected approximate
multipliers (Unp-AxM), protected exact multipliers with TMR
(Pro-TMR), and protected approximate multiplier with AdAM
(Pro-AdAM). The DNN reliability is evaluated by comparing
the output probability vector of the golden run (i.e. the DNN
that behaves as expected, without faults) and the faulty run (i.e.
the DNN that includes the fault). The SDC rate is defined
as the proportion of faults that caused misclassification in
comparison with the golden model. Since in DNNs, there is
often not a single correct output, but a list of ranked outputs,
each with a confidence score [29], we need to use new criteria
to determine what constitutes an SDC for a DNN application.
Therefore, we consider four types of SDCs as follows:

• SDC-1: Misclassification in the top-ranked output class.
• SDC-5%: More than 5% of variation in the top-ranked

output confidence score compared to the golden model.
• SDC-10%: More than 10% of variation in the top-ranked

output confidence score compared to the golden model.
• SDC-20%: More than 20% of variation in the top-ranked

output confidence score compared to the golden model.
Fig. 7 demonstrates the fault tolerance comparison and reli-

ability improvement (for SDC-1 and SDC-10% as two exam-
ples) of different networks by using the protected approximate
multiplier proposed in this work compared to the unprotected
exact and approximated networks, and protected networks
using TMR. As illustrated, TMR has 100% of protection,
but it also requires about 200% of area overhead. Different
from TMR, in our technique we introduce a high-reliability
improvement without introducing hardware overhead. The
results for reliability improvement considering SDC-5% and
SDC-20% are reported in Tables VII and VIII. Since the
main objective of the proposed multiplier is to have the best
trade-off in PDP and vulnerability, Fig. 8 illustrate these
comparisons based on different vulnerability metrics (SDC-10,
SDC-5%, SDC-10% and SDC-20%). In these charts, the closer
to the origins (0,0), the higher the cost-efficiency of the fault
tolerance, i.e. less vulnerability and less PDP. As shown, TMR
is a less efficient solution for edge AI applications because
of its high PDP, while the proposed method (AdAM) is the
closest to the origin.

V. CONCLUSION

In this paper, we propose an architecture of a novel adaptive
fault-tolerant approximate multiplier tailored for ASIC-based
DNN accelerators. AdAM employs an adaptive adder that

TABLE VII: Fault coverage (SDC-5%) in different benchmarks

SDC-5% AlexNet DenseNet Inception VGG-11 VGG-13 VGG-19 ResNet-18 ResNet-34 ResNet-50
Unp-Exact 70.9 17.2 21.8 9.2 10.8 10.8 10.8 17.2 16.2
Unp-AxM 63.5 15.4 20.6 6 7.2 17.8 9.4 13.6 12.2
Pro-TMR 100 100 100 100 100 100 100 100 100
Pro-AdAM 99.6 42.2 41.8 36.6 32.6 57.2 37.6 44.8 38.2

TABLE VIII: Fault coverage (SDC-20%) in different benchmarks

SDC-20% AlexNet DenseNet Inception VGG-11 VGG-13 VGG-19 ResNet-18 ResNet-34 ResNet-50
Unp-Exact 90.3 91.6 76.6 77.4 81 81 84 86.8 86
Unp-AxM 78.5 92.2 75.8 76 78.8 75 80 84.8 82.4
Pro-TMR 100 100 100 100 100 100 100 100 100
Pro-AdAM 99.8 96.6 89.2 94.8 88.8 86.4 90.6 91 92.6

Fig. 7: Hardware efficiency (area) and fault resilience (fault coverage considering SDC-1 and SDC-10%) trade-offs in
different benchmarks: AlexNet (MNIST), DenseNet(CIFAR), Inception(CIFAR), ResNet-18 (CIFAR), ResNet-34 (CIFAR),

ResNet-50 (CIFAR), VGG-11 (CIFAR), VGG-13 (CIFAR), VGG-16 (CIFAR). Unp-Exact: unprotected exact multiplier,
Unp-AxM: unprotected approximate multiplier, Pro-TMR: exact multiplier protected with TMR, Pro-AdAM: proposed

multiplier

200 400 600 800 1,000
0

1

2

3

4

5

Power-Delay Product (pJ)

V
ul

ne
ra

bi
lit

y
(%

)

SDC-1

200 400 600 800 1,000
0

20

40

60

80

100

Power-Delay Product (pJ)

V
ul

ne
ra

bi
lit

y
(%

)

SDC-5%

200 400 600 800 1,000
0

10

20

30

40

50

Power-Delay Product (pJ)

V
ul

ne
ra

bi
lit

y
(%

)

SDC-10%

200 400 600 800 1,000
0

10

20

30

Unp-Exact
Unp-AxM
Pro-TMR
Pro-AdAM

Power-Delay Product (pJ)

V
ul

ne
ra

bi
lit

y
(%

)

SDC-20% AlexNet DenseNet
Inception ResNet-18

ResNet-34 ResNet-50
VGG-11 VGG-13
VGG-19

Fig. 8: PDP and vulnerability tradeoffs (considering different SDCs) in different benchmarks: AlexNet, DenseNet, Inception,
ResNet-18, ResNet-34, ResNet-50, VGG-11, VGG-13, VGG-16. Unp-exact: unprotected exact multiplier, Unp-AxM:

unprotected approximated multiplier, Pro-TMR: exact multiplier protected with TMR, Pro-AdAM: proposed multiplier

relies on an unconventional use of input Leading One Detector
(LOD) values for fault detection by optimizing unutilized
adder resources. A gate-level optimized LOD design is also
proposed to improve the hardware performance as part of
the adaptive multiplier. The proposed architecture uses a
lightweight fault mitigation technique that sets the detected
faulty bits to zero.

It is demonstrated that the proposed architecture enables a
multiplication with a reliability level close to the multipliers
protected by TMR while at the same time utilizing 2.74 × less
area and with 39.06% less power-delay product compared to
the exact multiplier.

VI. ACKNOWLEDGEMENT

This work was supported in part by the Estonian Re-
search Council grant PUT PRG1467 ”CRASHLESS“ and by
Estonian-French PARROT project ”EnTrustED”.

REFERENCES

[1] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jeni-
hhin, “A systematic literature review on hardware reliability assessment
methods for deep neural networks,” ACM Computing Surveys, vol. 56,
no. 6, pp. 1–39, 2024.

[2] B. Rokh, A. Azarpeyvand, and A. Khanteymoori, “A comprehensive
survey on model quantization for deep neural networks in image clas-
sification,” ACM Transactions on Intelligent Systems and Technology,
vol. 14, no. 6, pp. 1–50, 2023.

[3] M. Nourazar, V. Rashtchi, A. Azarpeyvand, and F. Merrikh-Bayat, “Code
acceleration using memristor-based approximate matrix multiplier: Ap-
plication to convolutional neural networks,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2684–2695,
2018.

[4] M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Daneshta-
lab, J. Raik, M. Sjödin, and B. Lisper, “Deepaxe: A framework for explo-
ration of approximation and reliability trade-offs in dnn accelerators,”
in 2023 24th International Symposium on Quality Electronic Design
(ISQED). IEEE, 2023, pp. 1–8.

[5] M. H. Ahmadilivani, M. Barbareschi, S. Barone, A. Bosio, M. Danesh-
talab, S. Della Torca, G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo
et al., “Special session: Approximation and fault resiliency of dnn
accelerators,” in 2023 IEEE 41st VLSI Test Symposium (VTS). IEEE,
2023, pp. 1–10.

[6] P. Nayak, D. Zhang, and S. Chai, “Bit efficient quantization for deep
neural networks,” in 2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edition (EMC2-NIPS).
IEEE, 2019, pp. 52–56.

[7] M. Taheri, N. Cherezova, M. S. Ansari, M. Jenihhin, A. Mahani,
M. Daneshtalab, and J. Raik, “Exploration of activation fault reliability
in quantized systolic array-based dnn accelerators,” arXiv preprint
arXiv:2401.09509, 2024.

[8] M. Taheri, N. Cherezova, S. Nazari, A. Rafiq, A. Azarpeyvand,
T. Ghasempouri, M. Daneshtalab, J. Raik, and M. Jenihhin, “Adam:
Adaptive fault-tolerant approximate multiplier for edge dnn accelera-
tors,” In press, ETS 2024, arXiv:2403.02936, 2024.

[9] M. Andjelkovic, O. Schrape, A. Breitenreiter, and M. Krstic, “Set and
seu hardened clock gating cell,” in 2023 38th Conference on Design of
Circuits and Integrated Systems (DCIS), 2023, pp. 1–6.

[10] P. Rech, “Artificial neural networks for space and safety-critical appli-
cations: Reliability issues and potential solutions,” IEEE Transactions
on Nuclear Science, 2024.

[11] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S.
Kim, “Energy-efficient approximate multiplication for digital signal
processing and classification applications,” IEEE transactions on very
large scale integration (VLSI) systems, vol. 23, no. 6, pp. 1180–1184,
2014.

[12] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range
unbiased multiplier for approximate applications,” in 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE,
2015, pp. 418–425.

[13] M. Taheri, H. Zandevakili, and A. Mahani, “A high-performance
memristor-based smith-waterman dna sequence alignment using fpni
structure,” Journal of Applied Research in Electrical Engineering, vol. 1,
no. 1, pp. 59–68, 2022.

[14] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Tosam:
An energy-efficient truncation-and rounding-based scalable approximate
multiplier,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 5, pp. 1161–1173, 2019.

[15] L. Sayadi, S. Timarchi, and A. Sheikh-Akbari, “Two efficient ap-
proximate unsigned multipliers by developing new configuration for

approximate 4: 2 compressors,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 70, no. 4, pp. 1649–1659, 2023.

[16] M. H. Haider and S.-B. Ko, “Booth encoding based energy efficient
multipliers for deep learning systems,” IEEE Transactions on Circuits
and Systems II: Express Briefs, 2023.

[17] E. Farahmand, A. Mahani, B. Ghavami, M. A. Hanif, and M. Shafique,
“scaletrim: Scalable truncation-based integer approximate multiplier
with linearization and compensation,” arXiv preprint arXiv:2303.02495,
2023.

[18] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Transactions on Electronic Computers, no. 4, pp. 512–
517, 1962.

[19] G. Alsuhli, V. Sakellariou, H. Saleh, M. Al-Qutayri, B. Mohammad, and
T. Stouraitis, Number Systems for Deep Neural Network Architectures.
Springer, 2023.

[20] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[21] A. Siddique, K. Basu, and K. A. Hoque, “Exploring fault-energy
trade-offs in approximate dnn hardware accelerators,” in 2021 22nd
International Symposium on Quality Electronic Design (ISQED). IEEE,
2021, pp. 343–348.

[22] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104,
p. 101689, 2020.

[23] G. Ammes, G. B. Manske, P. F. Butzen, A. I. Reis, and R. P. Ribas,
“Atmr design by construction based on two-level als,” in 2023 36th
SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Sys-
tems Design (SBCCI). IEEE, 2023, pp. 1–6.

[24] H. R. Mahdiani, S. M. Fakhraie, and C. Lucas, “Relaxed fault-tolerant
hardware implementation of neural networks in the presence of multiple
transient errors,” IEEE transactions on neural networks and learning
systems, vol. 23, no. 8, pp. 1215–1228, 2012.

[25] T. Arifeen, A. S. Hassan, and J.-A. Lee, “Approximate triple modular
redundancy: A survey,” IEEE Access, vol. 8, pp. 139 851–139 867, 2020.

[26] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in International conference on machine
learning. PMLR, 2015, pp. 1613–1622.

[27] D. Danopoulos, G. Zervakis, K. Siozios, D. Soudris, and J. Henkel,
“Adapt: Fast emulation of approximate dnn accelerators in pytorch,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2022.

[28] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2009, pp. 502–506.

[29] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

Appendix 4

IV

159

M. Taheri, M. Daneshtalab, J. Raik, M. Jenihhin, S. Pappalardo, P. Jimenez, B.
Deveautour, and A. Bosio, “Saffira: a framework for assessing the reliability of
systolic-array-based dnn accelerators,” in 2024 27th International Symposium on
Design & Diagnostics of Electronic Circuits & Systems (DDECS), pp. 19–24,
2024.

SAFFIRA: a Framework for Assessing the Reliability
of Systolic-Array-Based DNN Accelerators

Mahdi Taheri1*, Masoud Daneshtalab3,1, Jaan Raik1, Maksim Jenihhin1,
Salvatore Pappalardo2*, Paul Jimenez2, Bastien Deveautour2, and Alberto Bosio2

1Tallinn University of Technology, Tallinn, Estonia
2Ecole Centrale de Lyon, Lyon, France

3Mälardalen University, Västerås, Sweden

Abstract—Systolic array has emerged as a prominent archi-
tecture for Deep Neural Network (DNN) hardware accelerators,
providing high-throughput and low-latency performance essen-
tial for deploying DNNs across diverse applications. However,
when used in safety-critical applications, reliability assessment is
mandatory to guarantee the correct behavior of DNN accelerators.
While fault injection stands out as a well-established practical
and robust method for reliability assessment, it is still a very
time-consuming process. This paper addresses the time efficiency
issue by introducing a novel hierarchical software-based hardware-
aware fault injection strategy tailored for systolic array-based
DNN accelerators. The uniform Recurrent Equations system is
used for software modeling of the systolic-array core of the DNN
accelerators. The approach demonstrates a reduction of the fault
injection time up to 3× compared to the state-of-the-art hybrid
(software/hardware) hardware-aware fault injection frameworks
and more than 2000× compared to RT-level fault injection
frameworks — without compromising accuracy. Additionally, we
propose and evaluate a new reliability metric through experimental
assessment. The performance of the framework is studied on state-
of-the-art DNN benchmarks.

Index Terms—hardware accelerator, systolic array, deep neural
networks, fault simulation, reliability, resilience assessment

I. INTRODUCTION

Assessing the reliability of a Deep Neural Network (DNN)
is not a trivial task: it depends on several factors, such as
the training set, the data type, and the quality of the test set
[1]. On top of that, we need to consider the hardware that
performs the computations [2] since specific platforms have
specific faults [3].

Many studies showed that hardware faults can greatly reduce
the effectiveness of DNNs [4]. As a result, there is a surge in
research efforts to evaluate and enhance the reliability of DNNs.
An example of faulty hardware is given in Figure 1. This figure
presents the possible fault locations in a DNN inference engine.
This example shows the necessity of reliability assessment of
DNNs. However, assessing DNN reliability is a challenging task
[5].

There are three main methodologies on DNNs’ reliability
assessment as irradiation-based, platform-based and simulation-
based [7] in which simulation-based Fault Injection (FI) is less

* These authors contributed equally

Fig. 1: DNN accelerator hardware reliability threats [6]

expensive (in terms of equipment) and thus is also the most used
in the research community [2]. The other advantages of FI are
the possibility to model different fault scenarios precisely to
assess their impact on DNNs without the need for extensive
hardware resources and design time, and full control over
network parameters and architecture.

On the other hand, DNN hardware-accelerator simulation
for FI is computationally expensive and typically demands a
substantial amount of time to complete a single inference [8].
This paper introduces a novel simulation flow and FI tailored to
significantly accelerate the injection process on systolic-array-
based DNN hardware accelerators. The systolic-array core of
the DNN accelerators is modeled using the Uniform Recurrent
Equations (URE) system. The proposed injection flow has
been implemented as an open-source tool named SAFFIRA,
which stands for Systolic Array simulator Framework for
Fault Injection based Reliability Assessment. Simulation-
based FI is usually done either without considering the un-
derlying hardware or through RTL (Register-Transfer Level)
simulations known for their resource-intensive computations
and time-consuming nature. SAFFIRA is based on a Systolic
Array (SA) simulator, thus offering the advantage of being more
precise than a hardware-agnostic tool, but much faster than
traditional RTL-level simulations. Experimental results show
a reduction of the fault injection time up to 3× compared979-8-3503-5934-3/24/$31.00 ©2024 IEEE

2024 27th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)

19

19

20
24

 2
7t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

De
sig

n
&

am
p;

 D
ia

gn
os

tic
s o

f E
le

ct
ro

ni
c

Ci
rc

ui
ts

 &
am

p;
 S

ys
te

m
s (

DD
EC

S)
 |

 9
79

-8
-3

50
3-

59
34

-3
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
DD

EC
S6

09
19

.2
02

4.
10

50
89

25

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:54:24 UTC from IEEE Xplore. Restrictions apply.

to the state-of-the-art hybrid (software/hardware) hardware-
aware fault injection frameworks and up to 2000× compared to
RT-level fault injection frameworks — without compromising
accuracy.

The key contributions of this paper are the following:
• introducing a hierarchical methodology for the hardware-

accurate reliability assessment of SA using a novel
simulation-based fault injection approach by modeling the
systolic-arrays using Uniform Recurrent Equations (URE)
system;

• presenting an open-source tool implementing the afore-
mentioned methodology;

• introducing a new metric called faulty distance for reli-
ability assessments of DNNs;

• evaluating the performance of the framework on state-of-
the-art DNN benchmarks

The rest of this paper is organized as follows. Section II
presents the related works. Section III presents the proposed
fault injection flow for SA. Section IV shows the experimental
setup and results. Section V concludes the paper.

II. RELATED WORKS

This section discusses previous works targeting DNNs relia-
bility assessment by using simulation-based FI.

A. Hardware-Agnostic FI Tools

Tools in this category perform fault injection without taking
into account the underlying hardware. Some of these are capable
of performing FI directly in the DNNs models. In this category,
PyTorchFI [9] and TensorFI [10] can inject faults into DNN
models respectively implemented in PyTorch, Tensorflow, and
Keras. All of these open-source frameworks can inject both per-
manent and transient faults into weights as well as activations
given specific error rates such that it is possible to evaluate the
accuracy loss.

Moreover, to further enhance the efficiency, additional FI
tools have been introduced. For example, BinFI [11] is an
extension of TensorFI that aims at identifying critical bits in
DNNs. Another tool, namely LLTFI [12], is able to inject
transient faults into specific instructions of DNN models in
either PyTorch or TensorFlow.

B. Hardware-Aware FI Tools

These tools can perform FI in software, taking into account
the relying hardware using some abstract models of the ‘DNN
hardware accelerator.

In [13], the authors used an RTL model of a SA to perform
their experiments. Reference [14] maps a DNN into the RTL
implementation of the accelerator. They study the effect of
transient faults in memory and datapath accurately. In these
studies, FI is performed in software while all of its parameters
are integrated with the corresponding hardware components.
Authors in [15] implemented their DNN and the fault injector
in software, inspired by an FPGA-based DNN accelerator.
Moreover, in [16], DNN and FI are implemented in Keras,
and the architecture of a SA accelerator is considered for a
fault-tolerant design. Similarly, authors in [17] evaluate their

proposed reliability improvement technique on memories in
TensorFlow while injecting transient faults into the weights.
PyTorch is used in [18] to implement the DNN, and transient
faults are injected into activations (datapath or MAC units)
and weights (memory) regarding the SA accelerator model.
Reference [19] also uses PyTorch and injects faults by a custom
framework called TorchFI to inject faults into the outputs of
CONV and FC layers of the network.

The effect of permanent faults at PEs’ outputs is studied in
[20] where the model of the accelerator is adopted from imple-
menting the DNN in an N2D2 framework [21]. Furthermore,
authors in [22] use PyTorch and study permanent faults in MAC
units of an accelerator while training to improve the reliability at
inference. Authors in [23] developed a Keras-based accelerator
simulator to study the effect of permanent faults on the on-
chip memory of accelerators by injecting permanent faults into
activations and weights. Weight remapping strategy in memory
to decrease the effect of permanent faults is evaluated in
[24] using Ares. SCALE-Sim [25], a systolic CNN accelerator
simulator, is adopted in [26] to study permanent faults in PEs
and computing arrays in systolic array-based accelerators.

Similar to the Hardware-Independent platform, faults are
injected based on Bit Error Rate (BER), or fault rate, and
experiments are repeated to reach 95% confidence level and 1%
error margin [16]. In general, the main drawbacks in the existing
reliability assessment methods for DNNs can be summarized as
follows:

• There is no software FI framework in hardware-aware
platforms. Hence, there is a potential for DNN accelerator
simulators to be exploited or developed for the reliability
assessment of DNNs;

• Several FI research works carry out accuracy loss and fault
classification as an evaluation of reliability. Also, some
works considered FIT (Failure In Time) [27]. However,
there is still an urgent need to present DNN-specific
metrics for reliability evaluation. In this work, we are
introducing a new metric called faulty distance to provide
a better understanding of the network resilience.

III. PROPOSED METHODOLOGY

The proposed methodology for the SAFFIRA framework is
illustrated in Fig. 2. After providing the trained network param-
eters and architecture, in step one, the fault list is generated.
Possible fault locations can be defined by the user or can be a
random fault list generated based on the network parameters by
the framework. Faults can be selected as transient or permanent
faults targeting different activations of the DNN. Then, in step
two, the fault injection campaign is performed at the systolic-
array simulation environment in Python, and the rest of the
network is executed at the high-level API (e.g. Pytorch) to
speed up the process. In this step, switching between high-level
API and systolic-array simulator (2-A) is done by a method
called LoLif, which is described in subsection III-A2. Finally,
the reliability of the network and the impact of the faults are
reported at step three by different metrics.

SAFFIRA supports various data representations, including
fixed-point, integer, and floating-point formats. This framework

20

20

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:54:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: SAFFIRA methodology

also supports various relevant mapping to systolic-array archi-
tecture scenarios (e.g. output stationary, weight stationary, etc.).
These flexibilities allow researchers to adapt the framework to
different applications and tailor the reliability assessment to
specific hardware requirements.

A. Hardware simulations
SAFFIRA is a SA model based on the Uniform Recurrent

Equations (URE) system. As described by [28], it is possible
to generate a SA that solves the problem described by a URE
system. In the case of SAFFIRA, the URE system is the one
associated with matrix multiplication since it is the operation
deployed on the SA for DNN execution. The following subsec-
tion presents the formal details needed to perform a simulation
followed by performing fault injection in such a context, and
finally, the strategies strictly related to DNNs are covered.

1) Mathematical formalism: A URE system is defined on
top of an integer lattice Ln of points p in the n-dimensional
Euclidean space En. The goal is to solve a system of equations
associated with the variables x1(p), x2(p), · · · , xm(p) for all
points p ∈ R, where R ⊆ Ln [28]. This system can be
either uni-variate or multi-variate. Here, only uni-variate case
is considered, thus the system would have the following form.

x1(p) = f [x1(p− w1), · · · , xm(p− wp)],

x2(p) = x2(p− w2),

...
xm(p) = xm(p− wp).

The points p−wik belong to Ln. The vectors wk are constants
independent of p and this is why they are said to have uniform
dependence. Each equation xi(p) depends on the points p−wik .

The authors of [28] showed a strategy to model a SA starting
from the problem to solve. Specifically, the authors explain three
steps:

1) find a URE system for the problem to solve,
2) find a timing function compatible with the dependencies

of the URE system,

3) find an allocation function to map the URE onto a finite
architecture.

The main idea is to project the space En twice: the first
time, the resulting points will correspond to the spatial arrange-
ment of each Processing Element (PE). The second projection
determines iso-temporal planes, identifying operations that are
computed during the same clock cycle but on different PEs;
each plane corresponds to a different clock cycle. The space-
projection matrix P and the temporal dimension vector π are
used later.

2) Convolutions: The strategy explained above opens the
possibility to implement a variety of algorithms as a systolic
array. Based on the literature, it is possible to perform a
convolution as a matrix multiplication [29]. The experiments
shown below are performed using a systolic array to perform
the matrix multiplication C = A × B. The associated URE is
the following.

c(i, j, k) = c(i, j,k − 1) + a(i, j − 1, k)× b(i− 1, j, k)

a(i, j, k) = a(i, j − 1, k)

b(i, j, k) = b(i− 1, j, k)

initial conditions
a(i, 0, k) = aik, ∀i, k
b(0, j, k) = bkj , ∀k, j
c(i, j, 0) = 0, ∀i, j

where p = (i, j, k) ∈ R ⊆ Ln, in which i, j and k assume
values between 1 and N1, N2, N3 respectively. N1, N2
and N3 are problem parameters such that A ∈ RN1,N3 , B ∈
RN3,N2 , C ∈ RN1,N2 .

When it comes to performing a convolution, the input matri-
ces must be reshaped such that the result of the SA is a convo-
lution. In this paper, this concept is called LoLif, which stands
for Lowering and Lifting strategies. This idea is explained
in [29]. If computing a convolution C = A ∗ B is needed,
it can be implemented as a transformation lif of the matrix
multiplication of transformed matrices lowa(A)× lowb(B). In
formulas:

C = lif(lowa(A)× lowb(B)),

where Lif , Lowa and Lowb are corresponding transformations,
as shown in the example of Fig. 3

3) Simulation and Injections: In order to perform the sim-
ulation, it is sufficient to solve the system shown above.
Nevertheless, this method gives the possibility of injecting faults
in the values in a hardware-aware fashion. To achieve the
injection, it is sufficient to change the values a(p), b(p), c(p)
for specific points p. The faulty values must then be propagated
to the following PEs. Given that each point p is projected to the
physical space r = (x, y) using the physical space-projection
matrix, r = Pp, it can be inferred that how the injected values
are propagated through the different PEs. Specifically, for some
dependence vector d for the different labeled variables a, b, c.

21

21

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:54:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: LoLif example. Applied transformations are similar to im2col
and im2row.

Looking at the system above, the following can be observed:
da = (0, 1, 0), db = (1, 0, 0) and dc = (0, 0, 1). Afterwards, the
propagation direction can be found using the same relationship
shown before: δxi = Pdi, i = {a, b, c}. This means that the
value of a in some PE in position s will be propagated to the
PE in position s + δxa. The same reasoning can be done for
the time, supposing that a fault is propagated not only in space
but also in time. We can compute δti = πdi. For simplicity,
π = (1, 1, 1) is fixed to reduce the exploration space. In this
case, the time dependency δti will always be 1: δti = 1.

Figure 4 shows an example. In this case, an injection in the
element s = (x, y, t) on the generic line i is done between
times 0 and ∞. The injected elements are visible in the figure.
Specifically, the fault will propagate in time, thus injecting also
s+ δti and s+2δti. In the same way, this fault will propagate
in space, to the element cascading from s. Note that the value
propagation only happens after each clock cycle. This means
that the next injected element will be displaced also in time,
thus injecting element s+ δxi+ δti. In the same way, the latter
will propagate to the following element on the following clock
cycle, thus injecting element s+ 2δxi + 2δti and so on.

The set of points belonging to the injection can be transposed
back into the iteration space En using the pseudo-inverse P−1.
The set of points identified with this strategy will be subject
to injection. Formally, injection is as a function h applied to a
variable:

a(p) = h(a(p− wa))

IV. EXPERIMENTS AND RESULTS

Two different sets of experiments are performed using SAF-
FIRA. First, a fault injection based on the permanent-fault
model is performed on two different quantization versions of the
LeNet-5 network (8-bit and 16-bits integers). The second set of
experience is performing fault injection based on the transient
fault model in the three different benchmarks (AlexNet, VGG-
16 and ResNet-18). All networks are fully quantized to INT
data type, including all activations, weights, and biases. The
base accuracies are reported in the table I

The SA model for these experiments is output stationary. This
means that its physical-space projection matrix P is as follows:

s
s

+δti

s
+2δti

s
+δxi

+δti

s
+δxi

+2δti

s
+δxi

+3δti

s
+2δxi

+2δti

s
+2δxi

+3δti

s
+2δxi

+4δti

time

space

Fig. 4: When injecting element s, the fault is propagated in time (thus
affecting elements s+ δti and s+2δti) and in space (forwarding the
faulty value to neighboring elements s+ δxi+ δti, s+2δxi+ δti and
so on).

TABLE I: Base accuracy of networks under test

DNN accuracy (%)
8-bit LeNet-5 (MNIST) 93.8

16-bit LeNet-5 (MNIST) 95.4
AlexNet (CIFAR-10) 78.0
VGG-16 (CIFAR-10) 93.4

ResNet-18 (CIFAR-10) 93.8

P =

(
1 0 0
0 1 0

)

Such a matrix corresponds to a rectangular SA with N1×N2
PEs. Please note that with this projection, the variable c (i.e. the
partial sum) is a stationary variable since it is always available
on the same PE regardless of the iteration. Whether a variable
is stationary or not depends on the employed projection.

In all experiments, fault injection is repeated several times to
reach an acceptable confidence level, based on [30]. This work
provides an equation to reach 95% confidence level and 1%
error margin.

A. Fault Classification

The DNN resilience is evaluated by comparing the output
probability vector of the golden run (i.e. the DNN that behaves
as expected, without faults) and the faulty run (i.e. the DNN that
includes the fault). The Silent Data Corruption (SDC) rate is
defined as the proportion of faults that caused misclassification
in comparison with the golden model [31].

In addition, the targeted hardware reliability can be calculated
by differentiating SDC rates of injected transient faults into
defined classes and calculating Failures In Time (FIT) for the
accelerator (accel) by its components (comp) with (IV-A) in
which FITraw is provided by the manufacturer, Sizecomp is the
total number of the component bits, and SDCcomp is obtained
by FI.

FITaccel =
∑

comp

FITraw × Sizecomp × SDCcomp

Finally, faulty distance is proposed. This metric can be used
to evaluate the resilience of classifications DNNs. Supposing the
golden probability vector is G, the faulty probability vector is

22

22

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:54:24 UTC from IEEE Xplore. Restrictions apply.

F and the function ag(·) corresponds to the argmax function,
then the faulty distance function df is defined as follows.

df = (1− G · F
||G||·||F ||) · (ag(F)− ag(G))

In this metric, cosine similarity is being used cosθ =
G·F

||G||·||F || . Cosine similarity serves as a metric for assessing
the resemblance between two non-zero vectors within an inner
product space. Representing the cosine of the angle between
the vectors, this measure calculates similarity by normalizing
their dot product. In our study, we utilize cosine similarity to
evaluate the entirety of generated probabilities across various
classes in both faulty and golden modes. The cosine similarity
metric yields values within the range of -1 to 1. Proximity
to 1 signifies a high degree of similarity between vectors.
Therefore, the faulty distance metric gives 0 when the faulty
output corresponds to the correct classification. The bigger the
metric, the worse the misclassification is.

B. Results

Table II shows the results of the FI for permanent fault
injection experiments on LeNet-5 with the different metrics.
It can be seen that this network was highly susceptible to the
injected permanent faults. Specifically, the SDC-1 and SDC-5
are very high: on average, about 82% of the time, the faulty
inference misclassified the input; furthermore, about 93.5% of
the inputs were completely missed since the correct label was
below the fifth position. The SDC-10% and SDC-20% rates are
very high as well: more than 95% of the inputs had the correct
class with a probability much too low than expected. Average
Faulty Distance (AFD) is also reported that shows the 16-bit
network in this particular case, is more reliable compared to the
8-bit network in the presence of permanent faults in the systolic
architecture.

These results show that the DNN used was not usable in a
safety-critical environment. This result was expected since the
network was not trained to withstand stuck-at faults like the
ones injected.

TABLE II: FI experiments results on two LeNet-5

Metric 16bit 8bit
SDC-1 (%) 77.84 87.70
SDC-5 (%) 93.05 94.49
FIT (failures/109 hours) 4.9e-4 5.0e-4
SDC-10% (%) 98.16 98.53
SDC-20% (%) 96.21 96.97
AFD -0.04 -0.53

For the second experiment, only SDC and AFD are reported
in table III.

C. Faulty Distance

In the previous subsection, only the average faulty distance
was shown. Nevertheless, this metric can be looked through
with more details when plotted as a histogram. Figure 5 shows
the histograms (both with 50 and 100 bins) of the metrics
per each experiment. It is possible to see a peak at 0, which
corresponds to all the correctly classified inputs. The height

(a) Faulty Distance on the 8bit network

(b) Faulty Distance on the 16bit network

Fig. 5: Histogram plot of the Faulty distance values

of that column is precisely the same as the complement of the
SDC-1 metric. On top of that, it is possible to see two different,
yet similar, trends for the two networks. Figure 5a shows other
three peaks: around +1, −1 and −5. This means that, although
most of the inputs were mis-classified, the difference with the
golden vector was not extremely big, in general. On the other
hand, figure 5b shows many more peaks, this means that it is
more difficult to predict how a fault will propagate in this case.

D. Computation Time

The experiments were performed on a server using python3
with an Intel Xeon Silver 4210, with a total number of 40
cores. SAFFIRA completes 500 inferences of two convolutional
layers, with the same systolic array, in about 10 minutes
with minimal optimization. This means a total of about 16.3
simulations per second. For comparison, by utilizing the frame-
work presented in [32] to perform fault injection on the same
networks as this work, on average, 5.8 simulations per second
are executed. The mentioned framework is the state-of-the-
art hybrid (software/hardware codesign) hardware-aware fault
injection framework. Therefore, SAFFIRA provides about 2.8×
speed up by performing the same analysis. Also, the same
fault injection campaign is performed at the RT level using
QuestaSim. The results show 0.007 simulation per second,
which is 2100× slower than the proposed method in this work.

V. CONCLUSIONS

This paper presents a novel hierarchical fault injection strat-
egy for systolic arrays, addressing the time efficiency issue by
introducing a novel hierarchical software-based hardware-aware
fault injection strategy tailored for systolic array-based DNN

23

23

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:54:24 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Reliability analysis of different state-of-the-art DNN benchmarks

DNN SDC-1 SDC-5 SDC-10% SDC-20% AVF
AlexNet (CIFAR-10) 4.3 29.1 13.1 9.7 7.1× 10−2

VGG-16 (CIFAR-10) 3.0 40.0 46.5 84.5 1.9× 10−3

ResNet-18 (CIFAR-10) 1.5 23.0 16.5 82 1.6× 10−3

implementations. The approach demonstrates a reduction of the
fault injection time up to threefold compared to the state-of-
the-art hybrid (software/hardware) hardware-aware fault injec-
tion frameworks and more than 2000× compared to RT-level
fault injection frameworks — without compromising accuracy.
Additionally, we propose and evaluate a new reliability met-
ric through experimental assessment. The performance of the
framework is studied on state-of-the-art DNN benchmarks.

VI. ACKNOWLEDGEMENT

This work was supported in part by the Estonian Research
Council grant PUT PRG1467 ”CRASHLESS“ and by Estonian-
French PARROT project ”EnTrustED”.

REFERENCES

[1] M. Taheri, “Dnn hardware reliability assessment and enhancement,” in
27th IEEE European Test Symposium (ETS), 2022.

[2] M. H. Ahmadilivani et al., “A systematic literature review on hardware
reliability assessment methods for deep neural networks,” arXiv preprint
arXiv:2305.05750, 2023.

[3] A. Bosio, I. O’Connor, M. Traiola, J. Echavarria, J. Teich, M. A. Hanif,
M. Shafique, S. Hamdioui, B. Deveautour, P. Girard, et al., “Emerging
computing devices: Challenges and opportunities for test and reliability,”
in 2021 IEEE European Test Symposium (ETS), pp. 1–10, IEEE, 2021.

[4] M. Taheri et al., “Appraiser: Dnn fault resilience analysis employing
approximation errors,” in 2023 26th International Symposium on Design
and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 124–
127, IEEE, 2023.

[5] M. Taheri et al., “Deepaxe: A framework for exploration of approximation
and reliability trade-offs in dnn accelerators,” in 2023 24th International
Symposium on Quality Electronic Design (ISQED), pp. 1–8, IEEE, 2023.

[6] M. Taheri, N. Cherezova, M. S. Ansari, M. Jenihhin, A. Mahani,
M. Daneshtalab, and J. Raik, “Exploration of activation fault reliabil-
ity in quantized systolic array-based dnn accelerators,” arXiv preprint
arXiv:2401.09509, 2024.

[7] A. Ruospo et al., “A survey on deep learning resilience assessment
methodologies,” Computer, vol. 56, no. 2, pp. 57–66, 2023.

[8] M. H. Ahmadilivani et al., “Special session: Approximation and fault
resiliency of dnn accelerators,” in 2023 IEEE 41st VLSI Test Symposium
(VTS), pp. 1–10, IEEE, 2023.

[9] A. Mahmoud et al., “Pytorchfi: A runtime perturbation tool for dnns,”
in 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp. 25–31, IEEE, 2020.

[10] N. Narayanan et al., “Fault injection for tensorflow applications,” IEEE
Transactions on Dependable and Secure Computing, 2022.

[11] Z. Chen et al., “Binfi: an efficient fault injector for safety-critical machine
learning systems,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–
23, 2019.

[12] U. K. Agarwal, A. Chan, and K. Pattabiraman, “Lltfi: Framework agnostic
fault injection for machine learning applications (tools and artifact track),”
in 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE), pp. 286–296, IEEE, 2022.

[13] S. Pappalardo et al., “Resilience-performance tradeoff analysis of a deep
neural network accelerator,” in 2023 26th International Symposium on
Design and Diagnostics of Electronic Circuits and Systems (DDECS),
pp. 181–186, IEEE, 2023.

[14] A. Azizimazreah et al., “Tolerating soft errors in deep learning accelera-
tors with reliable on-chip memory designs,” in 2018 IEEE International
Conference on Networking, Architecture and Storage (NAS), pp. 1–10,
IEEE, 2018.

[15] W. Li et al., “Soft error mitigation for deep convolution neural network
on fpga accelerators,” in 2020 2nd IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS), pp. 1–5, IEEE, 2020.

[16] E. Ozen and A. Orailoglu, “Low-cost error detection in deep neural
network accelerators with linear algorithmic checksums,” Journal of
Electronic Testing, vol. 36, no. 6, pp. 703–718, 2020.

[17] M. Jasemi, S. Hessabi, and N. Bagherzadeh, “Enhancing reliability of
emerging memory technology for machine learning accelerators,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 4, pp. 2234–
2240, 2020.

[18] E. Ozen and A. Orailoglu, “Boosting bit-error resilience of dnn accelera-
tors through median feature selection,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 11,
pp. 3250–3262, 2020.

[19] B. F. Goldstein et al., “A lightweight error-resiliency mechanism for
deep neural networks,” in 2021 22nd International Symposium on Quality
Electronic Design (ISQED), pp. 311–316, IEEE, 2021.

[20] S. Burel, A. Evans, and L. Anghel, “Mozart+: Masking outputs with zeros
for improved architectural robustness and testing of dnn accelerators,”
IEEE Transactions on Device and Materials Reliability, vol. 22, no. 2,
pp. 120–128, 2022.

[21] “”N2D2 CAD framework for DNNs”.” https://github.com/cea-list/N2D2.
[Online].

[22] L.-H. Hoang, M. A. Hanif, and M. Shafique, “Tre-map: Towards reducing
the overheads of fault-aware retraining of deep neural networks by
merging fault maps,” in 2021 24th Euromicro Conference on Digital
System Design (DSD), pp. 434–441, IEEE, 2021.

[23] Y.-Y. Tsai and J.-F. Li, “Evaluating the impact of fault-tolerance capability
of deep neural networks caused by faults,” in 2021 IEEE 34th Interna-
tional System-on-Chip Conference (SOCC), pp. 272–277, IEEE, 2021.

[24] T.-H. Nguyen et al., “Low-cost and effective fault-tolerance enhancement
techniques for emerging memories-based deep neural networks,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), pp. 1075–1080,
IEEE, 2021.

[25] A. Samajdar et al., “Scale-sim: Systolic cnn accelerator simulator,” arXiv
preprint arXiv:1811.02883, 2018.

[26] Y. Zhao, K. Wang, and A. Louri, “Fsa: An efficient fault-tolerant systolic
array-based dnn accelerator architecture,” in 2022 IEEE 40th International
Conference on Computer Design (ICCD), pp. 545–552, IEEE, 2022.

[27] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–12, 2017.

[28] P. Quinton, “Automatic synthesis of systolic arrays from uniform recurrent
equations,” ACM SIGARCH Computer architecture news, vol. 12, no. 3,
pp. 208–214, 1984.

[29] S. Hadjis et al., “Caffe con troll: Shallow ideas to speed up deep learning,”
in Proceedings of the Fourth Workshop on Data analytics in the Cloud,
pp. 1–4, 2015.

[30] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition, pp. 502–506, IEEE, 2009.

[31] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in SC17, 2017.

[32] S. Pappalardo et al., “A fault injection framework for ai hardware
accelerators,” in 2023 IEEE 24th Latin American Test Symposium (LATS),
IEEE, 2023.

24

24

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:54:24 UTC from IEEE Xplore. Restrictions apply.

Appendix 5

V

167

M. Taheri, et al., “Appraiser: Dnn fault resilience analysis employing approximation
errors,” in DDECS, pp. 124–127, 2023.

APPRAISER: DNN Fault Resilience Analysis
Employing Approximation Errors

Mahdi Taheri1, Mohammad Hasan Ahmadilivani1, Maksim Jenihhin1, Masoud Daneshtalab1,2, and Jaan Raik1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1mahdi.taheri@taltech.ee

Abstract—Nowadays, the extensive exploitation of Deep Neural
Networks (DNNs) in safety-critical applications raises new reliabil-
ity concerns. In practice, methods for fault injection by emulation
in hardware are efficient and widely used to study the resilience
of DNN architectures for mitigating reliability issues already at
the early design stages. However, the state-of-the-art methods for
fault injection by emulation incur a spectrum of time-, design-
and control-complexity problems. To overcome these issues, a novel
resiliency assessment method called APPRAISER is proposed that
applies functional approximation for a non-conventional purpose
and employs approximate computing errors for its interest. By
adopting this concept in the resiliency assessment domain, AP-
PRAISER provides thousands of times speed-up in the assessment
process, while keeping high accuracy of the analysis. In this paper,
APPRAISER is validated by comparing it with state-of-the-art
approaches for fault injection by emulation in FPGA. By this, the
feasibility of the idea is demonstrated, and a new perspective in
resiliency evaluation for DNNs is opened.

Index Terms—Deep Neural Networks, approximate computing,
fault injection, reliability, resiliency assessment

I. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) surpassed
human-level precision [1] that made them attractive for several
safety-critical applications such as autonomous driving [2]–[4].
Faults that can be caused by soft errors, aging, etc., are the
source of threatening the reliability of DNN inference hardware
accelerators. Here, soft errors, are of particular concern for
researchers in the industry and academia. It is a class of faults
caused by ionized particles hitting transistors that can flip a
logic value in a memory cell or a logic gate.

In today’s applications, network parameters, e.g., weights,
occupy most of the inference accelerator’s areal footprint,
making them natural targets for soft-errors-caused disturbances.
Unlike other logic structures, DNNs are known to be relatively
resilient to transient faults. However, in practice, such faults
still may cause a significant accuracy drop in DNNs because of
the large area and memory requirements for the state-of-the-art
DNNs accelerators. Although numerous techniques have been
proposed recently to evaluate the architectural fault resilience
of DNNs, they are still rather costly. Throughout the literature,
Fault Injection (FI) is the most commonly used method for
resilience evaluation of DNNs.

Fault injection by emulation in hardware, usually in FPGAs,
is widely adopted by the industry [5] because of its ability to
evaluate real-scale DNN accelerator designs with significantly
shorter run times compared to software-based simulation.

Fig. 1: DNN fault resiliency assessment methods: (a) Fault
injection by emulation in FPGA; (b) APPRAISER approach
using errors by AxC units.

However, the state-of-the-art approaches for fault injection
by emulation in hardware imply iterative procedures for each
injected fault, including numerous extra memory accesses,
which make them time-consuming and imply complex imple-
mentation. Fig. 1(a) illustrates the execution overheads of the
general flow of FI by emulation in hardware. In particular, such
an iterative approach is breaking the pipeline and requires a
complex FI Controller and an extra FI control interconnect [6]–
[9]. Fig. 1 (b) illustrates the proposed approach APPRAISER,
which allows reducing the fault resiliency assessment over-
heads. The ability to tolerate the impact of faults on the output
accuracy is called fault resiliency and, in practice, it is one of
the contributors to the final DNN accelerators’ reliability [10].

In this paper, our contribution is a novel method of fault
resiliency analysis for DNN architectures that applies functional
approximation for a non-conventional purpose and harnesses
approximate computing errors for its interest. To the best of our
knowledge, for the first time, Approximate Computing (AxC)
units are adopted to improve the processing time-, design-, and
control-complexity for DNN fault resiliency analysis process.

APPRAISER provides a rapid exploration of different options
of the network architecture, training, dataset, etc., to study the
fault resilience of the DNNs. In particular, it enables efficient
analysis of subsequent layers’ resilience to faults in the weights
of a compromised layer.

The new method has the following advantages:979-8-3503-3277-3/23/$31.00 ©2023 IEEE

2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)

124

124

20
23

 2
6t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

D
es

ig
n

an
d

D
ia

gn
os

tic
s o

f E
le

ct
ro

ni
c

C
irc

ui
ts

 a
nd

 S
ys

te
m

s (
D

D
EC

S)
 |

97
9-

8-
35

03
-3

27
7-

3/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

D
EC

S5
78

82
.2

02
3.

10
13

94
68

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:41 UTC from IEEE Xplore. Restrictions apply.

• It eliminates the need for designing and deploying an extra
complex controller for the fault injection procedure. A sim-
ple approximate units enabling circuitry (AxC Activator)
is employed instead.

• The inference pipeline process executes a batch of inputs
with no need to break this process.

• The resilience assessment process is performed without an
extra interconnect for weight sampling.

• The proposed approach is not iterative for each potential
fault location, unlike the traditional fault injection. Thus,
the analysis complexity is vastly reduced.

The rest of the paper is organized as follows. An analysis of
Related Works in Section II is followed by the new method-
ology presented in Section III. The experimental results, along
with their discussion, are presented in section IV. Finally, this
work is concluded in Section V.

II. RELATED WORKS

The extensive growth of the memory footprint size in today’s
practical DNN inference HW accelerators increases the chances
of soft errors’ occurrences causing prediction failures. Even a
minor change in the DNN architecture may cause a notable
difference in the DNNs’ architectural fault resiliency [11].
Evaluating the resiliency of DNNs with FI by emulation in
hardware is a practical method used today by the industry.
There are several works emulating fault injection on FPGAs
as a hardware platform.

Fiji-FIN [9] is one of such DNNs’ resiliency evaluation
frameworks. It considers the model’s accuracy degradation as
a metric to study the impact of soft errors on the network’s
parameters, such as weights and activation. Unfortunately, it
implies severe effort for designing the fault injection campaigns.
For each single fault injection, the execution of the inference
should be halted for manipulating the DNN parameters, and it
has to be resumed thereafter. It means that the classification
time for a batch of inputs should be interrupted to apply fault
injection between the classification process of two consecutive
inputs.

A similar method is also used in [7], [8]. These works also
propose injecting transient faults into on-chip memories of the
design implemented on the FPGA. In these works, the bit stream
file of the FPGA is obtained by a High-Level Synthesis (HLS)
tool and imported to the FPGA. While the system is running,
the faults are generated and injected by the embedded processor
and the reliability is evaluated in comparison with the golden
model.

In contrast to the works mentioned above, this paper proposes
a novel non-iterative fault resilience analysis by exploiting
the approximation errors instead of fault injection It enables
keeping the inference pipeline process to be executed on a batch
of inputs unbroken.

III. PROPOSED METHOD APPRAISER

The proposed approach for applying errors of approximate
computing units for DNN fault resiliency assessment is out-
lined in Fig. 1(b). An AxC Activator unit on the Processing
System (PS) side enables the AxC units to induce errors. These
units are AxC multipliers in the multiply-and-accumulate units
(MACs), in the targeted (mimicked to be compromised) layer
of the DNN. This activator controls the multiplexers on the

Programmable Logic (PL) side to switch between the exact
implementation of the units (for the functional mode) and the
approximated one (for the resiliency assessment mode). Then,
the user runs the inference just once for the validation dataset
and stores the results of the layers’ outputs.

The flow of APPRAISER method is depicted in Fig. 2.
Step 1 is the initialization that includes the selection of the
compromised layer (e.g. one by one in the DNN structure),
the validation testset (i.e. DNN inputs), and the assumed
application-specific fault rate. In Step 2, suitable AxC units are
selected. For example, in this work, we used AxC multipliers
from the EvoApproxLib library [12]. Further, a set of ExC units
are substituted with the AxC units in the network architecture
(Step 3). The DNN inference is executed keeping the pipeline
of the network and the DNN output accuracy drop is reported.
It is used as the main DNN fault resilience analysis metric.
The more the accuracy drops with the induced errors, the less
fault-resilient the given DNN implementation is.

Fig. 2: APPRAISER Methodology

Fig. 3: APPRAISER assessment flow: Compromised layer in
the presence of faults in weights vs. layers under resiliency test

In a traditional application of AxC, the approximation of
hardware components is based on their inexact implementa-
tion that creates a functionally tolerable mismatch with the
specification while providing gains in compute-efficiency. In
practice, there is an error induced by approximation that can
also be employed to mimic the error caused by a fault in
the inputs of a logic circuit that is propagated to the output.
Such approximation-induced errors affect their corresponding
outputs, which are also connected to several other neurons in
subsequent layers (as their activation) (Fig. 3). The character-
istics of the approximation-induced errors can be assessed by
several metrics, normalized error, number of flipped bits, and
their impact on the neural network classification accuracy drop.
In this study, we rely on the following simple set of metrics:

1) normalized error: calculated as the average error on the
output of each layer by subtracting the neurons’ outputs
of that layer from the golden output and dividing all the
error values to the maximum value;

2) network accuracy and recall drop: calculated by execut-
ing the network under different circumstances (faulty vs
approximated) over the test set;

125

125

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: APPRAISER evaluation flow

3) bitflips in subsequent layers: calculated by comparing all
bits in the next layers’ outputs with the golden model and
counting the bits that do not match as flipped bits.

The main objective of APPRAISER is the study of the
resiliency of DNN architecture layers to faults that might occur
in the weights of a compromised layer. By using this method,
the user can rapidly explore the options of network architecture,
training, dataset, etc., in terms of fault resiliency analysis.
Unlike some other frameworks (e.g., FijiFin [9], APPRAISER
does not support assessing the reliability of the network to faults
in the activations and DNN neurons and currently is only aimed
at resiliency to faults in stored DNN weights. Other limitations
are a lower diagnostic capability and implicit correspondence
to traditional fault injection based metrics (e.g. in standards).

IV. EXPERIMENTAL RESULTS

A. Evaluation Methodology
The flow to evaluate the proposed method is illustrated in

Fig. 4. Here, Steps 1 and 2 repeat the APPRAISER method
execution (Fig. 2). The list of candidate approximate multipliers
from the EvoApproxLib library [12] was narrowed down with
several relevant metrics adopted from EvoApproxLib with the
main focus on two established features (Variance of Error Dis-
tance (Var-ED) and Root Mean Square (RMS-ED)) presented
in [13]. These two metrics are the most critical approximation-
induced errors’ features for the performance of an AxC unit in
DNNs. Based on these metrics, Mult8s 1KX2 (further referred
to as Mult1) and Mult8s 1KRC (Mult2) multipliers are selected
for the experiment. For the reference part, the fault resiliency
evaluation is repeated on the original network instrumented for
a state-of-the-art FI method [9] (Step 4). Two fault models are
considered in this study:

• Injection of a single bitflip at a random location in all
weight bits of the compromised layer for every input in
the DNN validation test set,

• Injection of double bitflips in weights of the compromised
layer for every input in the DNN validation test set.

For each fault model, the experiment is repeated for 1000
random faults per image are considered to reach the 95%
FI confidence level according to the statistical fault injection
approach [14] and in the end, the average accuracy of all
repetitions is reported. Finally, the DNN accuracy drops as a
result of applying approximation and fault injection along with
normalized error, and the number of flipped bits are compared
(Step 5).
B. Experimental Setup

To evaluate the feasibility of the proposed method, a simple
Convolutional Neural Network (CNN) with two convolutional

layers, two max-pooling, and one Fully-Connected (FC) layer
was implemented and trained. The simulations were performed
on an Intel® Core™ i7-6800K CPU @ 3.40GHz × 12, and
the proposed method was implemented with Python 3. The
hardware synthesis and implementation results are produced
by the Xilinx Vivado HLS tool on a Xilinx Spartan-7 FPGA
(xc7s100-fgga676-1) at 100 MHz operational frequency.

The CNN under study is trained on a dataset of 2000 images
of animals (cats and dogs) and humans for binary classification.
The accuracy of the network over the test set (including 450
images of animals and humans) is 93.34%. Bit truncation
quantization is applied in network parameters during training
and data precision is reduced to 8-bit.
C. Evaluation Results

The similarity of the fault resiliency analysis results by
fault injection emulation and using the APPRAISER method
is analyzed using the metrics identified in Section III.

Fig. 5 illustrates normalized error distribution in the output
of the second convolutional layer (Conv2), in the presence of
random double faults in the first convolution layer (dashed
grey) vs errors induced by approximate multipliers (Mult1
solid orange, Mult2 solid blue) enabled in the first convolution
layer respectively. Fig. 6 reports the result of applying FI and
APPRAISER on the same convolutional layer and its impact
on the second pooling layer of the network. These results
demonstrate the similarity of the trends in error propagation
by the proposed and the reference methods.

Table I reports fault resiliency assessment by the proposed
and the reference methods using the bitflips in subsequent layers
and the DNN accuracy and recall drop metrics. These results
also demonstrate the strong similarity of the trends in error
propagation by the proposed and the reference methods.

Table II demonstrates that although APPRAISER is more
resource hungry, it is vastly faster than the reference fault
injection by emulation method. It should be noted that the
extra resources required by APPRAISER or FI are used only
for the fault resiliency analysis phase and cleaned out from
the final inference accelerator. In this example, the original
CNN occupies 12% of the FPGA resources (LUTs). The CNN
instrumented with APPRAISER occupies 29% of the FPGA
resources and provides the accuracy/recall drop measurement
for fault resiliency assessment in 131 ms, i.e. the same time
as the original network execution time. On the other hand, the
CNN instrumented with FI utilizes 23% of the FPGA resources
and performs the measurement in 632,000 ms, i.e. thousands of
times (specifically, 4,824 times in this example) slower than the
proposed method. This gain is composed of three components:
a) processing of a single image in the CNN instrumented with
APPRAISER is 0.29 ms vs 1.40 ms in the CNN instrumented
with FI; b) APPRAISER pipelines the processing through the
layers while FI has to break the pipeline; c) FI needs numerous
iterations for each image to inject the faults (single, double or
multiple) at different locations, one combination at a time, while
APPRAISER uses only one iteration for each image. Therefore,
the time difference becomes even more drastic when comparing
these methods for deeper networks (determining the number
of layers in the inference execution pipeline) or DNNs with a
larger memory for storing weights (determining the number of
potential fault locations).

126

126

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Normalized output error of Conv2: Applying AxC
and fault injection on the Conv1

Fig. 6: Normalized output error of Pool2: Applying AxC
and fault injection on the Conv1

TABLE I: Bitflips and Accuracy/Recall drop induced by APPRAISER vs the reference fault injection method

Affected/Measured Layers
Bitflips in subsequent layers

Injection of a single fault Injection of a double fault
Fault Injection
(reference) [%]

Approximation with
MULT1 [%]

Approximation with
MULT2 [%]

Fault Injection
(reference)[%]

Approximation with
MULT1 [%]

Approximation with
MULT2 [%]

Conv1/Conv1 10.00 9.97 9.98 9.99 10.00 9.99
Conv1/Pool1 9.03 9.03 9.03 9.06 9.06 9.05
Conv1/Conv2 16.73 16.72 16.74 16.74 16.74 16.74
Conv1/Pool2 16.40 16.45 06.50 16.55 16.50 16.45

Conv1/FC 9.25 9.25 8.50 9.30 9.30 9.30
Conv2/Conv2 16.71 16.72 16.71 16.76 16.74 16.74
Conv2/Pool2 16.40 16.45 16.41 16.50 16.50 16.50

Conv2/FC 10.10 8.50 7.80 10.10 9.30 8.30
Affected Layer DNN Accuracy/Recall drop

Conv1 2.3/4.7 2.7/8.0 2.2/6.7 4.7/14.0 5.8/17.4 4.2/12.7
Conv2 1.8/6.0 1.6/5.0 2.7/8.0 9.1/26.4 9.1/26.4 8.9/26.7

TABLE II: Overheads of APPRAISER vs the reference fault
injection method (Conv1 layer)

Network Area LUT
utilization

Analysis Control
Circuitry Interconnects DNN execution

time in FPGA

Base CNN 12% N/A Data Exchange
Interconnect 131ms

Fault Resilience Assessment
CNN instrumented

with FI 23% Complex FI Controller (Data Exchange + FI)
Interconnect 632,000ms

CNN instrumented
with APPRAISER ∼29% Simple AxC

Activator
Data Exchange

Interconnect 131ms

V. CONCLUSION

The state-of-the-art methods for fault injection by emulation
incur a spectrum of time-, design- and control-complexity prob-
lems. To overcome these issues, a novel resiliency assessment
method called APPRAISER is proposed that applies functional
approximation for a non-conventional purpose and employs
approximate computing errors for its interest. By adopting
this concept in the resiliency assessment domain, APPRAISER
provides thousands of times speed-up in the assessment process,
while keeping high accuracy of the analysis. In this paper,
APPRAISER is validated by comparing it with state-of-the-art
approaches for fault injection by emulation in FPGA. By this,
the feasibility of the idea is demonstrated, and a new perspective
in resiliency evaluation for DNNs is opened.

REFERENCES

[1] D. Silver et al., “Mastering the game of go without human knowledge,”
nature, vol. 550, no. 7676, pp. 354–359, 2017.

[2] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha, “Deep learn-
ing algorithm for autonomous driving using googlenet,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 89–96.

[3] M. Taheri, “Dnn hardware reliability assessment and enhancement,” 27th
IEEE European Test Symposium (ETS)., May 2022.

[4] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouzakitis,
“Deep learning-based vehicle behavior prediction for autonomous driving
applications: A review,” IEEE T-ITS, 2020.

[5] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam,
and G. Guo, “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[6] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[7] N. Khoshavi, C. Broyles, and Y. Bi, “Compression or corruption? a study
on the effects of transient faults on bnn inference accelerators,” in 2020
21st International Symposium on Quality Electronic Design (ISQED).
IEEE, 2020, pp. 99–104.

[8] N. Khoshavi, A. Roohi, C. Broyles, S. Sargolzaei, Y. Bi, and D. Z. Pan,
“Shieldenn: Online accelerated framework for fault-tolerant deep neural
network architectures,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[9] N. Khoshavi, C. Broyles, Y. Bi, and A. Roohi, “Fiji-fin: A fault injection
framework on quantized neural network inference accelerator,” in 2020
19th IEEE International Conference on Machine Learning and Applica-
tions (ICMLA). IEEE, 2020, pp. 1139–1144.

[10] J. D. Booth, “Algorithm-based fault tolerance at scale,” 2022.
[11] M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Danesh-

talab, J. Raik, M. Sjõdin, and B. Lisper, “Deepaxe: A framework for
exploration of approximation and reliability trade-offs in dnn acceler-
ators,” in 24th International Symposium on Quality Electronic Design.
https://doi.org/10.48550/arXiv.2303.08226, 2023.

[12] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, March 2017, pp. 258–261.

[13] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 317–328, 2019.

[14] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2009, pp. 502–506.

127

127

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:41 UTC from IEEE Xplore. Restrictions apply.

Appendix 6

VI

173

M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, J. Raik,
M. Sjödin, and B. Lisper, “Deepaxe: A framework for exploration of
approximation and reliability trade-offs in dnn accelerators,” in 2023 24th
International Symposium on Quality Electronic Design (ISQED), pp. 1–8, 2023.

DeepAxe: A Framework for Exploration of
Approximation and Reliability Trade-offs in DNN

Accelerators
Mahdi Taheri1*, Mohammad Riazati2*, Mohammad Hasan Ahmadilivani1,

Maksim Jenihhin1, Masoud Daneshtalab1,2, Jaan Raik1, Mikael Sjödin2, and Björn Lisper2

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1mahdi.taheri@taltech.ee

Abstract—While the role of Deep Neural Networks (DNNs) in a
wide range of safety-critical applications is expanding, emerging
DNNs experience massive growth in terms of computation power.
It raises the necessity of improving the reliability of DNN accel-
erators yet reducing the computational burden on the hardware
platforms, i.e. reducing the energy consumption and execution
time as well as increasing the efficiency of DNN accelerators.
Therefore, the trade-off between hardware performance, i.e. area,
power and delay, and the reliability of the DNN accelerator
implementation becomes critical and requires tools for analysis.

In this paper, we propose a framework DeepAxe for design
space exploration for FPGA-based implementation of DNNs by
considering the trilateral impact of applying functional approxi-
mation on accuracy, reliability and hardware performance. The
framework enables selective approximation of reliability-critical
DNNs, providing a set of Pareto-optimal DNN implementation de-
sign space points for the target resource utilization requirements.
The design flow starts with a pre-trained network in Keras,
uses an innovative high-level synthesis environment DeepHLS
and results in a set of Pareto-optimal design space points as a
guide for the designer. The framework is demonstrated on a case
study of custom and state-of-the-art DNNs and datasets.

Index Terms—deep neural networks, approximate computing,
fault simulation, reliability, resiliency assessment

I. INTRODUCTION

In the past decades, Deep Neural Networks (DNNs) demon-
strated a significant improvement in accuracy by adopting
intense parameterized models [1]. As a consequence, the size
of these models has drastically increased imposing challenges
in deploying them on resource-constrained platforms [2].
FPGAs are a widely used solution for flexible and efficient
DNN accelerator implementations and have shown superior
hardware performance in terms of latency and power [3].

In practice, deployment of a DNN accelerator for the safety-
and mission-critical applications (e.g., autonomous driving)
requires addressing the trade-off between different design
parameters of hardware performance, e.g., area, power, delay,
and reliability. A compromise between conflicting require-
ments can be achieved by simplifying the implementation to
sacrifice the precision of results but benefiting from lower

* These authors contributed equally

resource utilization, energy consumption, and higher system
efficiency. Approximation Computing (AxC) is one of such
concepts in hardware design [4].

Moreover, the assessment of the reliability of DNN accel-
erators is a challenging issue by itself. Reliability of DNNs
concerns DNN accelerators’ ability to execute correctly in
the presence of faults [5] originating from either the envi-
ronment (e.g., soft errors, electromagnetic effects, temperature
variations) or from inside of the chip (e.g., manufacturing
defects, process variations, aging effects) [6]. The ability to
tolerate the impact of faults on the output accuracy is called
fault resiliency and, in practice, it is one of the contributors
to the DNN accelerators’ reliability [7]. DNNs are known
to be inherently fault-resilient due to the high number of
learning process iterations and also several parallel neurons
with multiple computation units. Nevertheless, faults may
impact the output accuracy of DNNs drastically [8], and in
case of resource-constrained critical applications, DNNs’ fault
resiliency is required to be evaluated and guaranteed [9] [10].
The complexity of such evaluation motivates an automated
tool-chain with AxC and resiliency analysis to support Design
Space Exploration (DSE) for DNN accelerators already at the
early design stage, i.e. starting from a high-level description.

High-Level Synthesis (HLS) tools bridge high-level pro-
gramming and hardware implementation and allow overcom-
ing the complexity of the process and reducing the design
time. Recently, DNN-tailored HLS tools were proposed, e.g.,
CNN2gate [11], fpgaConvNet [11] and DeepHLS [12]. Such
tools are capable of providing a synthesizable C implementa-
tion of DNNs for FPGAs from a high-level description in a
language such as e.g., Keras.

This paper presents a novel framework and a fully auto-
mated tool-chain DeepAxe to provide a design space explo-
ration for FPGA-based implementation of DNN accelerators
by analyzing approximation and soft-error reliability trade-
offs. To the best of our knowledge, this is the first framework
that holistically considers both the transient fault resiliency
and hardware performance of DNN accelerators as design
parameters. DeepAxe is empowered by techniques for quantiz-

20
23

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(I

SQ
ED

) |
 9

79
-8

-3
50

3-
34

75
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
57

92
7.

20
23

.1
01

29
35

3

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:49:51 UTC from IEEE Xplore. Restrictions apply.

ing the networks and providing the capability of substituting
the exact computing (ExC) units of the network with AxC
units and identifying the optimal design points for selective
approximation. DeepAxe uses the Keras description of a DNN
as the input and is capable of providing an FPGA-ready
approximated and transient-fault-resilient inference implemen-
tation of the network based on the design parameters selected
based on the DSE results. The main contributions in this work
are as follows:

• A methodology for selective approximation of reliability-
critical DNNs providing a set of Pareto-optimal DNN im-
plementation design space points for the target resource
utilization requirements.

• A framework DeepAxe for holistic exploration of ap-
proximation and reliability trade-offs in DNN accelerator
FPGA-based implementation that enables assessing the
trilateral impact of approximation on accuracy, reliability,
and hardware performance.

• Integration of the fully automated DeepAxe tool-chain
into the DeepHLS environment.

• Demonstration and validation of the framework on repre-
sentative custom and state-of-the-art DNNs and datasets.

The rest of the paper is organized as follows. Related works
are discussed in Section II, the DeepAxe methodology and
framework are presented in Section III, the experimental setup
and results are provided in Section IV, and finally, the work
is concluded in Section V.

II. RELATED WORKS

The advantages of implementing and deploying DNNs on
FPGAs are advocated in several recent works. The exist-
ing FPGA-based tool-chains to map Convolutional Neural
Networks (CNNs) are presented in the surveys [13]–[16].
The FINN framework [17] is released by Xilinx for the
exploration of quantized CNNs’ inference on FPGAs that also
provides customized data-flow architectures for each network.
Research works [3] and [18] provide Register-Transfer Level
(RTL) models using conventional synthesis tools, e.g., Vivado
HLS, where the outputs can be directly synthesized on an
FPGA. Heterogeneous systems are also another design strategy
in the automated tool-chains that propose hardware-software
co-design [18]–[20]. In these designs, computational units,
e.g., addition, or multiplication, are mainly implemented on
Processing Logic (PL) that is controlled by a control unit in
a CPU using a dedicated framework, e.g., OpenCL [21].

Using Fixed-point (FxP) data type instead of Floating Point
(FP) is becoming more popular due to the lesser resource
utilization while keeping the output accuracy degradation
at an acceptable level [22]–[24]. Throughout the literature,
comprehensive simulations exist that prove that merely an 8-bit
data type for MAC operations in DNN execution is sufficient
to provide a practical accuracy along with favorable resource
utilization [25], [26]. In this work, we considered 8-bit as the
base data type for the simulations and implementations.

A number of works in the literature explore the reliability
of the DNNs [27], [28]. Some works examine the impact of

different fault models on the basis of a number of layers in
DNNs and different data types [29]. Studying the significant
impact of transient faults vs permanent faults is also done
by [30]. The fault analysis of exact DNNs has drawn a lot of
attention in the state-of-the-art research [31], and only recently,
researchers have started to investigate also the reliability of
approximated DNN accelerators (AxDNNs) [10]. A somewhat
expected conclusion in [28] is that the error induced by
approximation, along with the faults in the DNN structure, are
not evenly propagated. The impact of a fault may differ based
on different parameters, like fault type, fault location, the
approximation error resiliency for each layer, etc. To the best
of our knowledge, none of these works explored the impact of
using different combinations of approximated layers of a DNN
in the presence of transient faults on the reliability, accuracy
and delay/resource utilization of the target DNN accelerator.

The approach proposed in this paper goes beyond the
state of the art by establishing a fully automated tool for
enabling efficient AxC in FPGA-based DNN accelerators
aimed at reliability-critical applications. The proposed Deep-
Axe framework is integrated into DeepHLS environment [12],
which is capable of providing completely synthesizable code
for efficient FPGA implementations. In particular, this work
extends DeepHLS with fault simulation, resiliency analysis
and also the use of AxC. The new features allow providing
the designers a guideline to choose optimal configurations
based on specific requirements for latency, accuracy, resource
utilization, and fault resiliency.

III. PROPOSED METHODOLOGY

Fig. 1 illustrates the methodology flow established in the
DeepAxe tool-chain for reliability and hardware performance
analysis of approximated DNN hardware accelerators. Deep-
Axe is a framework taking the DNNs’ Pre-trained Keras model
description as the input. Then, DeepAxe feeds the extracted
model parameters through the flow to apply the initialization
needed before creating the C code. The design, training and
test of the DNNs are performed in Python, the Preprocessing
step is seamlessly integrated into the same environment and is
responsible for extracting the required data for the next step.

DeepAxe also supports quantizing the network down to 8-
bit INT as a part of the preprocessing step. For this purpose,
a full quantization is implemented, targeting all activations,
weights and biases. The framework first takes the description
of the network in Keras, and then uses the TFlite library to
generate a training-aware quantized network. The user can
replace their preferred Keras-based quantization library to the
tool-chain for this step. The main output of this step is the
quantized network’s parameters (i.e., weight/bias) and also the
files containing the memory dump of the test data. Specifically,
the Keras to C step implies converting all the above-mentioned
parameters to multidimensional arrays in C format. The output
accuracy of the generated network is also provided at this
step and is kept as a baseline for the further steps of the
methodology.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:49:51 UTC from IEEE Xplore. Restrictions apply.

Create data

dump files

Pre-trained Keras
model

Model

parameters
Preprocessing Keras to

C

DSE

Fault simulator

Approximate
design

Exact
designHLS implementation

Selected

Configuration

Python level C level Output generation

Preprocessing

DNN quantization*
 Running Inference
Extracting Accuracy
Creating memory dump
files

Keras to C

Automatic creation of
inference
implementation
Type definitions and
knobs

Reliability analysis
DNN fault resiliency

DNN accuracy
drop

Explore various approximation modules and their
effect on resiliency, resource utilization, latency

Substitution multipliers
with approximated ones
Selection between
different approximate
multiplier type

Fault injection
Fault model: single-
bit flip
Location:
Parameters, Internal
data

Approximation
Accuracy

Accuracy of
approximate
implementation

Reliability analysis of
the approximate
implementation

Fault injection
Accuracy

The resilience of
the approximate
design

DSE - HLS

Evaluation metric

Model parameters

D
ee

pH
LS

D
eepA

xe

Pre-trained Keras model

* New feature added to
DeepHLS

Fig. 1: DeepAxe methodology flow

Reliability analysis relies on a fault injection (FI) in C,
assuming the single bit-flip faults in the network’s activa-
tion layers for resiliency assessment. While the multiple-
bit fault model is more accurate, it requires a prohibitively
large number of fault combinations to be considered (3n − 1
combinations, where n is the number of bits). Fortunately, it
has been shown that high fault coverage obtained using the
single-bit model results in a high fault coverage of multiple-
bit faults [32]. Therefore, a vast majority of practical FI and
test methods are based on the single-bit fault assumption.

The reliability analysis step applies the accuracy drop com-
parison of the network-under-test as the assessment metric.
Approximate design (see the yellow region in Fig. 1) refers
to the selective approximation of DNNs by layers provided
by DeepAxe. It instruments the user with the flexibility
of choosing between a) different AxC models provided by
any library of approximate computing units, such as AxC
multipliers in EvoApproxLib, and b) the subset of layers,
for setting up different configurations of the network. As an
example, in a network with n computing layers (containing
both convolutional and fully connected layers), the user has
2n combinations for exploring the exact and approximate
implementations for each layer individually.

After choosing the preferred approximation configuration,

Pre-trained Keras
model

Quantization

Yes
Quantization
using TFlite

No

Preprocessing

Required data
extraction

Approximation
Yes

No

Generating
AxDNN based on
the selected config

Fault simulation
Yes Fault resilience

analysis

No

DNN accelerator
generation using

Vivado HLS

12

3

4

5

Accuracy
check

Satisfied

Resiliency
check

Satisfied

unsatisfied

unsatisfied

Sufficient #of
fault for analysis

Fig. 2: DeepAxe flowchart

the designer can go through the fault injector provided for
the resiliency evaluation of the AxDNN. Eventually, the final
design can be fed to the HLS implementation step for DNN
hardware accelerator generation process by the HLS tool.

To illustrate the DeepAxe methodology, the flowchart pro-
vided in Fig. 2 shows the step-by-step process from the
beginning to the end of DeepAxe tool-chain. After providing
the Keras description of the network in Step 1, the user
can decide if they need to quantize the network. Then, the
preprocessing step can be performed, enabling the user to
apply a pre-analysis on the network to extract a sufficient
number of faults for the reliability assessment, considering
the number of its neurons.

Steps 3 and 4 in Fig. 2 show an iterative process to examine
different approximated DNN combinations and, accordingly,
their fault resiliency analysis to build the DSE. By enabling
the fault simulation process in Step 4, the user can follow the
impact of their chosen AxC model and also the approximation
configuration on the resiliency of the network compared to the

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:49:51 UTC from IEEE Xplore. Restrictions apply.

other AxC model/configurations and also to the exact model.
Finally, the selected design and its configuration are fed into
the HLS tool for implementation.

It is noteworthy that all steps in the yellow box of Fig. 1
can be iterative, and the user can repeat these steps to find
the optimal point based on their requirements. For instance,
the user might decide to analyze an assumed approximation
configuration, i.e. AxC model for the multiplier and also
the layers to approximate. If, after applying approximation,
the accuracy check does not satisfy the user, they can try
another approximation configuration. Once the requirements
are satisfied, it is possible to proceed to the fault vulnerability
analysis. If, after applying the fault injection, the resiliency of
the network is also satisfying, the next step is generating the
DNN accelerator based on the selected configuration.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

First, all DNNs are implemented, trained and tested in
Keras. The required data for further steps of DeepAxe are also
generated in the same environment. In the DeepAxe flowchart
(Fig. 2), the green parts, including steps 1 and 2, refer to
the steps of the framework implemented in this high-level
environment. Both a three-layer MLP and LeNet-5, trained on
the MNIST dataset, and AlexNet, trained on the CIFAR-10
dataset, are representative DNNs and efficient to perform the
validation of the proposed methodology and framework. All
networks use ReLu as an activation function. All networks
are quantized down to 8-bit INT data type, including all
activations, weights, and biases, by using the TFlite [33]
library in Python. The yellow parts in Fig. 2 are implemented
in C. Simulations are performed on 2 x Intel Xeon Gold 6148
2.40 GHz (40 cores, 80 threads per node) with 96GB RAM.
To speed up the simulation process, DeepAxe supports multi-
thread parallelism, and users can benefit from this feature
based on the number of cores their CPU provides.

All implementations in C are synthesizable by DeepHLS.
The approximate multipliers in the C implementation of the
network (referring to step 3 in Fig. 2) are adopted from
the C codes provided by EvoApproxLib library [34]. In this
paper, three 8-bit INT approximate multipliers are picked from
EvoApproxLib with different error, area, and power character-
istics reported in Table I. The error parameters reported in this
table are as follows:

• MAE - Mean Absolute Error (Mean Error Magnitude)
• WCE - Worst-Case Absolute Error (Error Magnitude /

Error Significance)
• MRE - Mean Relative Error (Mean Relative Error Dis-

tance)
• EP - Error Probability (Error Rate)

Power (power consumption in mW) and area (area on the chip
in µm2) are also reported as the design parameters in the last
two columns of the table. To show the hardware characteristics
of the output AxDNN, the Lookup Table (LUT) and Flip Flop
(FF) utilization, as well as the number of required clock cycles

TABLE I: Exact and approximate multipliers used in this paper
and their parameters

Circuit name MAE WCE MRE EP Power Area
Exact multiplier 0.00 0.00 0.00 0.00 0.425 729.8

mul8s 1KVP 0.051 0.21 2.73 74.80 0.363 635.0
mul8s 1KV9 0.0064 0.026 0.90 68.75 0.410 685.2
mul8s 1KV8 0.0018 0.0076 0.28 50.00 0.422 711.0

TABLE II: Networks trained and quantized down to 8-bit INT
for evaluation of this work

Network Dataset Accuracy
8-bit quantized network

3-layer MLP MNIST 80.40%
LeNet-5 MNIST 85.80%
AlexNet CIFAR-10 78.50%

for a one-time execution of the output AxDNN accelerator,
are reported as the results based on the reports produced by
Xilinx Vivado HLS tool on a Xilinx Spartan-7 FPGA with
part number xc7s100-fgga676-1 and 100 MHz frequency.

B. Fault simulator

The fault simulator that is used in step 4 in Fig. 2 is
implemented in the automated tool-flow of DeepAxe in a way
that users can select the sufficient number of faults they need
for their resiliency analysis. AxDNNs generated by step 3 in
Fig. 2 are validated by means of fault injection over the test
set.

Random Fault Injection. According to the adopted fault
model, a random single bit-flip is injected into a random
neuron in a random layer of the network, and the whole test
set is fed to the network to obtain the accuracy of the network.
This process is repeated several times to reach an acceptable
confidence level which depends on the number of neurons and
data representation bit length based on [35].

To find the required number of repetitions for the fault
simulation experiments, [35] provides an equation to reach
95% confidence level and 1% error margin. However, it can
pessimistically obtain a larger number, and the execution time
of the iterative fault simulation experiments would be very
long. Therefore, we have performed a fault simulation for each
neural network to find a smaller number of experiments in a
way that the difference of the average accuracy is less than
0.1% in comparison with the average accuracy of the network
achieved using the statistical fault injection approach [35]. As
a result, we have selected for injection 600, 800, and 1000
random single bit-flip faults for 3-layer MLP, LeNet-5, and
AlexNet fault simulation, respectively.

C. Validation Results

The proposed methodology is validated on three networks,
i.e. a 3-layer MLP, LeNet-5 and AlexNet, trained on two repre-
sentative datasets MNIST and Cifar-10. Each network is fully
quantized down to 8-bit INT as a part of the preprocessing step
of the methodology. The accuracy results for the quantized
networks are reported in Table II. Further, all possible com-
binations of approximate layers in the network are tested for

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:49:51 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 3: (a) Resource utilization of the approximate implementation vs. accuracy drop when the approximate implementation is
fault-simulated (b) Approximation configuration of each point on the Pareto frontier

TABLE III: The impact of approximation configuration and fault injection for MLP, LeNet-5, and AlexNet.

DNN
dataset Multiplier Layer configuration Base

accuracy (%)

Accuracy drop (%)
[Exact network -

AxDNN]

AxDNN accuracy drop (%)
[AxDNN -

FI on AxDNN]

Latency
(#of clk cycles)

Resource utilization (%)
#of[FF + LUT] /

Total #of[FF + LUT]

MLP
MNIST

mul8s 1KVP 111 5.8 7.62 206644 0.72
mul8s 1KVP 101 2.5 11.62 272180 0.81
mul8s 1KV9 101 80.40 1.5 12.78 274740 0.87
mul8s 1KV9 100 0.4 14.03 274740 0.90
mul8s 1KV8 001 0.3 14.72 285010 0.95

LeNet-5
MNIST

mul8s 1KVP 1-1–111 10.6 2.82 164864 6.27
mul8s 1KVP 1-1–011 8.8 4.67 195584 6.51
mul8s 1KV9 0-1–111 85.80 1.7 12.70 206408 7.93
mul8s 1KV9 0-1–101 1.0 13.66 206504 8.19
mul8s 1KV8 0-1–111 0.7 13.23 175784 9.12

AlexNet
CIFAR-10

mul8s 1KVP 0-0-11-0–011 16.0 9.12 19933514 11.75
mul8s 1KVP 0-0-11-0–100 17.0 10.41 20324170 11.84
mul8s 1KVP 0-0-00-0–001 2.0 11.10 20467530 12.35
mul8s 1KV9 0-1-11-1–111 18.5 9.58 19799882 11.04
mul8s 1KV9 0-1-11-1–110 17.5 11.80 19945802 11.93
mul8s 1KV9 0-0-00-0–001 3.0 12.60 20470090 12.45
mul8s 1KV8 1-1-11-1–110 78.50 6.5 10.90 20470090 12.18
mul8s 1KV8 0-1-11-1–111 6.0 11.70 20470090 12.19
mul8s 1KV8 0-1-11-1–110 4.5 12.00 20470090 12.21
mul8s 1KV8 0-0-11-0–011 3.5 12.00 20470090 12.35
mul8s 1KV8 0-0-11-0–100 2.5 12.15 20470090 12.33
mul8s 1KV8 0-0-00-0–001 0.0 12.64 20470090 12.43

selective approximation. For each experiment, three different
multipliers reported in Table I are examined separately for
efficiency to substitute the original exact multipliers.

The fault injection procedure is performed for all different
configurations, and the accuracy drop, due to approximation
and fault injection, is profiled. Further, the HLS synthesis
results of all configurations are generated, and the resource
utilization in the number of FF, LUTs as well as the num-
ber of clock cycles required for processing one image for
each network, are collected. A Pareto frontier for resource
utilization and accuracy drop due to applying FI on different
approximation configurations is plotted, and the results for
LeNet-5 are reported in Fig. 3(a).

Fig. 3(b) shows the points on the Pareto frontier. The first
column is the accuracy drop due to performing fault injection

on that particular AxDNN configuration, the second column is
resource utilization of the AxDNN in percentage, and finally,
the last column is the selected approximate multiplier (AxM)
and order of layers in ad-hoc (ones means that particular layer
is approximated and dashes represent the non-computational
layers like maxpooling). The coloured rows are some extreme
and mid-range points of the Pareto chart. The same experiment
is repeated for MLP and AlexNet networks, and the results for
some extreme and mid-range points of their pareto charts are
presented in Table III.

It can be observed from this table that, generally, by
approximating more layers, the latency and resource utilization
are less. It is also noteworthy that the fault vulnerability of
the network, which can be defined as the accuracy drop of
the AxDNN due to applying FI, also becomes less. Fault

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:49:51 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

(c)

Fig. 4: Reports of accuracy drop (due to approximation for different configurations), fault vulnerability, and resource utilization
of (a) 3-layer MLP network, (b) LeNet-5 and (c) AlexNet

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:49:51 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Case study: the impact of full approximation on three different MLP architectures

Network
MNIST dataset

Exact network
accuracy (%)

Normalized
resource

utilization (%)
[exact network]

AxM Accuracy drop
(%)

Fault
vulnerability

Normalized
latency

Normalized
resource

utilization (%)

7-layer
MLP 98.80 100

mul8s 1KV8 0.2 2.45 1.00 96
mul8s 1KV9 1.4 1.03 1.00 90
mul8s 1KVP 0.9 1.33 0.75 76

5-layer
MLP 86.30 69

mul8s 1KV8 0.0 3.33 1.00 96
mul8s 1KV9 1.9 2.12 1.00 89
mul8s 1KVP 3.1 3.84 0.78 76

3-layer
MLP 80.40 36

mul8s 1KV8 0.4 14.14 1.00 95
mul8s 1KV9 4.6 7.62 1.00 88
mul8s 1KVP 5.8 9.54 0.76 74

vulnerability is opposite to fault resiliency and means the
more the accuracy of an AxDNN drops due to applying FI,
the more vulnerable the network is against faults. Generally,
by increasing the level of approximation, the network shows
better resiliency to faults. Still, there are several configurations
that do not follow this trend and a tailored analysis using a
framework such as DeepAxe is necessary for higher confi-
dence.

Fig. 4 depicts the impact of different approximation units on
the case-study DNNs’ accuracy, resource utilization and fault
vulnerability. For each network, three approximation units are
chosen. For approximating the networks, the same configura-
tions are picked to observe the impact of different AxM on
the networks. Then all approximation units are applied, and
the accuracy drop, fault vulnerability and resource utilization
are reported. The correlation between the AxM error metrics
reported in Table I, their area overhead, and the accuracy drop
of the AxDNN impacted by AxMs lead us toward a conclusion
that the network accuracy is generally impacted by a) the level
of approximation and the configuration of the layers that are
substituted by AxM; b) the error metrics of the AxM that is
used as a substitution of ExC unit.

D. Approximate multipliers case-study

As a case study, three MLP networks with different archi-
tectures on the basis of a number of layers are selected. The
base accuracy for each quantized network is 98.80% for the
network with 7 layers, 86.30% for a network containing 5
layers and 80.40% for 3-layer MLP network. The results for
full approximation of the MLP networks with each case-study
approximate multiplier (AxM) are reported in Table IV. All
the values in the table are normalized to the corresponding
values of the ExC networks.

For the 7-layer MLP, it is shown that the multiplier
mult8s KVP is the best option for full approximation, in the
sense that the accuracy of the network drops only 0.9%, and
yet, latency and resource utilization of the network are better
than for the other two multipliers. Therefore, based on the
application of the network, if the designer can sacrifice the
accuracy for 0.9%, they can gain 25% improvement in network
latency and 24% improvement in resource utilization of the
implemented network on FPGA.

The situation is different for the 5-layer MLP network.
Based on the results of Table IV, the best multiplier can be
mult8s KV9 since the accuracy does not drop dramatically
and yet, it gains a better resiliency than the other two mul-
tipliers. Similarly, in the 3-layer MLP, the best candidate for
full approximation of the network is mult8s KV9 multiplier
since it shows the best resiliency with a little accuracy drop
and still, provides 12% improvement in resource utilization
compared to the exact design.

In summary, this case study shows the importance of ex-
ploring different AxMs for optimal implementation, i.e. not to
compromise the accuracy of the network and, at the same time,
to improve the network resiliency and hardware performance
of the target design.

V. CONCLUSION

In this paper, we proposed a framework DeepAxe for design
space exploration for FPGA-based implementation of DNNs
by considering the trilateral impact of applying functional
approximation on accuracy, reliability and hardware perfor-
mance. The framework enables selective approximation of
reliability-critical DNNs, providing a set of Pareto-optimal
DNN implementation design space points for the target re-
source utilization requirements The design flow starts with a
pre-trained network in Keras, uses an innovative high-level
synthesis environment DeepHLS and results in a set of Pareto-
optimal design space points as a guide for the designer. The
framework is demonstrated on a case study of custom and
state-of-the-art DNNs and datasets.

VI. ACKNOWLEDGEMENT

This work was supported in part by the European Union
through European Social Fund in the frames of the ”Infor-
mation and Communication Technologies (ICT) programme”
(“ITA-IoIT” topic), by the Estonian Research Council grant
PUT PRG1467 CRASHLESS“, by Estonian-French PARROT
project ”EnTrustED”, by the Swedish Innovation Agency VIN-
NOVA project “SafeDeep”, and Swedish Knowledge Founda-
tion project “HERO”.

REFERENCES

[1] M. Taheri, “Dnn hardware reliability assessment and enhancement,” 27th
IEEE European Test Symposium (ETS)., May 2022.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:49:51 UTC from IEEE Xplore. Restrictions apply.

[2] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” arXiv preprint arXiv:2103.13630, 2021.

[3] M. Riazati, M. Daneshtalab, M. Sjödin, and B. Lisper, “Autodeephls:
Deep neural network high-level synthesis using fixed-point precision,”
in 2022 IEEE 4th International Conference on Artificial Intelligence
Circuits and Systems (AICAS). IEEE, 2022, pp. 122–125.

[4] P. Choudhary, L. Bhargava, V. Singh, and A. K. Suhag, “Approximate
computing: Evolutionary methods for functional approximation of digital
circuits,” Materials Today: Proceedings, 2022.

[5] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam, and
G. Guo, “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[6] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu,
L. Orosa, and J. Choi, “Robust machine learning systems: Challenges,
current trends, perspectives, and the road ahead,” IEEE Design & Test,
vol. 37, no. 2, pp. 30–57, 2020.

[7] J. D. Booth, “Algorithm-based fault tolerance at scale,” 2022.
[8] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis

of a deep neural network,” in 2019 IEEE Latin American Test Symposium
(LATS). IEEE, 2019, pp. 1–6.

[9] N. Cavagnero, F. D. Santos, M. Ciccone, G. Averta, T. Tommasi, and
P. Rech, “Fault-aware design and training to enhance dnns reliability
with zero-overhead,” arXiv preprint arXiv:2205.14420, 2022.

[10] A. Siddique, K. Basu, and K. A. Hoque, “Exploring fault-energy
trade-offs in approximate dnn hardware accelerators,” in 2021 22nd
International Symposium on Quality Electronic Design (ISQED). IEEE,
2021, pp. 343–348.

[11] A. Ghaffari and Y. Savaria, “Cnn2gate: Toward designing a general
framework for implementation of convolutional neural networks on
fpga,” arXiv preprint arXiv:2004.04641, 2020.

[12] M. Riazati, M. Daneshtalab, M. Sjödin, and B. Lisper, “Deephls: A
complete toolchain for automatic synthesis of deep neural networks
to fpga,” in 2020 27th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2020, pp. 1–4.

[13] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
arXiv preprint arXiv:1803.05900, 2018.

[14] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[dl] a survey of
fpga-based neural network inference accelerators,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 1, pp.
1–26, 2019.

[15] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating cnn
inference on fpgas: A survey,” arXiv preprint arXiv:1806.01683, 2018.

[16] R. S. Molina, V. Gil-Costa, M. L. Crespo, and G. Ramponi, “High-
level synthesis hardware design for fpga-based accelerators: Models,
methodologies, and frameworks,” IEEE Access, vol. 10, pp. 90 429–
90 455, 2022.

[17] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA interna-
tional symposium on field-programmable gate arrays, 2017, pp. 65–74.

[18] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: Mapping regular and
irregular convolutional neural networks on fpgas,” IEEE transactions
on neural networks and learning systems, vol. 30, no. 2, pp. 326–342,
2018.

[19] A. Ghaffari and Y. Savaria, “Cnn2gate: Toward designing a general
framework for implementation of convolutional neural networks on
fpga,” arXiv preprint arXiv:2004.04641, 2020.

[20] P. G. Mousouliotis and L. P. Petrou, “Cnn-grinder: from algorithmic
to high-level synthesis descriptions of cnns for low-end-low-cost fpga
socs,” Microprocessors and Microsystems, vol. 73, p. 102990, 2020.

[21] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, p. 66, 2010.

[22] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: A framework for map-
ping convolutional neural networks on fpgas,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2016, pp. 40–47.

[23] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang,
“Angel-eye: A complete design flow for mapping cnn onto customized
hardware,” in 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 2016, pp. 24–29.

[24] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to fpgas,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[25] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1–12.

[26] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K. Roy,
“Energy-efficient neural computing with approximate multipliers,” ACM
Journal on Emerging Technologies in Computing Systems (JETC),
vol. 14, no. 2, pp. 1–23, 2018.

[27] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, , “Termi-
nal brain damage: Exposing the graceless degradation in deep neural
networks under hardware fault attacks,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 497–514.

[28] S. Kundu, A. Soyyiğit, K. A. Hoque, and K. Basu, “High-level modeling
of manufacturing faults in deep neural network accelerators,” in 2020
IEEE 26th International Symposium on On-Line Testing and Robust
System Design (IOLTS). IEEE, 2020, pp. 1–4.

[29] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[30] J. J. Zhang, T. Gu, K. Basu, and S. Garg, “Analyzing and mitigating
the impact of permanent faults on a systolic array based neural network
accelerator,” in 2018 IEEE 36th VLSI Test Symposium (VTS). IEEE,
2018, pp. 1–6.

[31] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jeni-
hhin, “Deepvigor: Vulnerability value ranges and factors for dnns
reliability assessment,” in 28th IEEE European Test Symposium. In
press, 2023.

[32] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004, vol. 17.

[33] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, pp. 800–811, 2021.

[34] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation Test
in Europe Conference Exhibition (DATE), 2017, March 2017, pp. 258–
261.

[35] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2009, pp. 502–506.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:49:51 UTC from IEEE Xplore. Restrictions apply.

Appendix 7

VII

183

S. Nazari, M. Taheri, A. Azarpeyvand, M. Jenihhin, M. Daneshtalab, et. al.
“FORTUNE: A Negative Memory Overhead Hardware-Agnostic Fault TOleRance
TechniqUe in DN Ns,” In 2024 33rd IEEE Asian Test Symposium (ATS 2024).

The 33rd Asian Test Symposium (ATS 2024)

FORTUNE: A Negative Memory Overhead
Hardware-Agnostic Fault TOleRance TechniqUe in

DNNs
Samira Nazari1*, Mahdi Taheri2,3*, Ali Azarpeyvand1,2, Mohsen Afsharchi1,

Tara Ghasempouri2, Christian Herglotz3, Masoud Daneshtalab2,4, and Maksim Jenihhin2

1University of Zanjan, Zanjan, Iran
2Tallinn University of Technology, Tallinn, Estonia

3Brandenburgische Technische Universität Cottbus, Cottbus, Germany
4Mälardalen University, Västerås, Sweden

Abstract—This paper presents FORTUNE, a hardware-
agnostic fault tolerance technique for DNNs that leverages quan-
tization to enhance reliability without significant performance
overhead. Unlike conventional methods like Triple Modular
Redundancy (TMR), which are computationally expensive, the
proposed approach uses memory savings from quantization to
protect the critical Most Significant Bit, improving fault tolerance
in Deep Neural Networks (DNNs). Memory utilization has been
reduced by 37.5% across all networks, with vulnerability in
AlexNet reduced by 56% compared to the 8-bit version and 84%
compared to the unprotected 3-bit version. These improvements
come with only a minor increase in execution time of less
than 3%. Using AlexNet as an example demonstrates how our
approach effectively enhances memory utilization and resilience
while causing only a minimal increase in execution time.

Index Terms—deep neural networks, parallel processing,
memory overhead, reliability, DNN accelerator

I. INTRODUCTION

As real-time data processing and AI demand grow in
embedded systems, Quantized Deep Neural Networks (QNNs)
have become vital for deploying models efficiently in resource-
constrained environments [1], spanning applications from
image classification to safety-critical applications like au-
tonomous driving [2], [3]. QNNs perform complex compu-
tations with reduced precision, minimizing computational and
memory footprints, and achieving significant energy savings,
crucial for energy-constrained platforms [4].

However, quantization introduces challenges in neural net-
work accuracy, especially in critical applications like au-
tonomous systems or medical diagnostics, where precision
is non-negotiable [5], [6]. Post-training quantization (PTQ)
methods address these challenges, preserving model integrity
while reducing bit-widths to enhance efficiency [7]. Yet,
QNNs’ reliance on extensive memory resources makes them
vulnerable to faults, particularly as transistors miniaturize.

979-8-3315-2916-1/24/$31.00 ©2024 IEEE
*Authors contributed equally

Fig. 1: Fault locations in critical points of a parallel
architecture, e.g. the GPU-based [18]

Ensuring fault tolerance is essential, as even minor errors can
significantly reduce accuracy [8].

Figure 1 highlights fault locations in critical GPU archi-
tecture points. Faults can arise from temperature fluctuations,
radiation, aging circuits, and electromagnetic interference [9].
Enhancing fault tolerance in QNNs is thus crucial for safe
deployment in safety-critical systems [3], [10], [11].

Traditional fault-tolerant techniques like Triple Modular
Redundancy (TMR) introduce significant computational over-
head [3]. Selective hardening approaches focus on protecting
parameters or neurons with greater impact on the network’s
output [12]. These methods, however, are mainly applicable
to FPGA and ASIC platforms where hardware modifications
are possible [13], [14]. For general-purpose CPUs, GPUs, or
fixed accelerators, hardware modifications are often infeasible
[15].

Other methods, such as Error Correction Codes (ECC) [16],
introduce significant memory and computational overhead.
Activation restriction techniques mitigate error propagation but
are ineffective at high error rates [17].

To address the extensive memory overhead and performance
degradation challenges, we present FORTUNE, a model-
level hardware agnostic methodology that explores different
quantization levels of a DNN model, focusing on reliability,
accuracy, memory overhead, and performance aspects. The

proposed methodology introduces a novel fault tolerance tech-
nique that uses memory savings from quantization to the Most
Significant Bit (MSB) within the same memory elements,
maintaining QNN reliability even in the presence of memory
faults. A comprehensive GPU-based framework implements
this methodology. Specifically, the proposed fault tolerance
methodology integrates into the framework’s iterative opti-
mization loop, allowing users to define thresholds that balance
model accuracy, reliability, and performance. The extensive
experiments show that, without this protection, QNNs suffer
significant accuracy degradation in fault-prone environments.
The results underscore the importance of the proposed tech-
nique to minimize memory utilization and optimize protected
QNN execution time on DNN accelerators. In this work,
without loss of generality, we reported the results for GPU
as an example.

The key contributions of this paper are:
• Negative Overhead Fault Tolerance Technique: Pro-

posed a protection technique leveraging quantization to
triplicate MSB, ensuring robustness against faults.

• Design Space Exploration Framework: Developed an
open-source framework to assess the impact of quanti-
zation on QNN reliability, accuracy, memory utilization,
and executing time for design space exploration. https:
//github.com/nilay1400/DNN-Quantization

• Introduction of Pdrop and Reliability-Aware Perfor-
mance (RAP) metrics: Introduced Pdrop, the probability
of accuracy drop over a device’s lifetime with various
BERs, and RAP, a metric for evaluating trade-offs in
fault-prone and resource-constrained environments.

• Validation: Evaluated the proposed technique and frame-
work on state-of-the-art DNN benchmarks.

The remainder of this paper is structured as follows: Section
II presents the proposed methodology. Section III discusses
experimental results and the impact on resilience, memory
utilization and execution time. Finally, Section IV concludes
the paper.

II. PROPOSED METHODOLOGY

Figure 2 illustrates the methodology for quantizing a DNN
model, evaluating its reliability in fault-prone environments,
and applying the proposed protection. The steps of this
methodology are explained by the algorithm 1 and also in
detail in this section. The goal is to achieve a quantized
model that not only meets predefined accuracy and reliability
thresholds but also provides insights into memory utilization
and execution time. The algorithm uses a trained FP32 DNN
model as input, along with three key parameters: an accuracy
threshold a, a reliability threshold b, and a quantization range
[m,n] (Algorithm 1 - line 4-6). The accuracy threshold a
represents the minimum acceptable accuracy of the model
after quantization in the fault-free model, while the reliability
threshold b specifies the maximum permissible drop in ac-
curacy due to potential faults. The quantization range [m,n]
defines the range of bit widths to be explored during the
quantization process.

Algorithm 1 FORTUNE Algorithm

1: Input: Trained FP32 DNN model, accuracy threshold a,
reliability threshold b, quantization range [m,n]

2: Output: High-performance Reliable QNN
3: Load the trained DNN
4: SET accuracy threshold TO a
5: SET reliability threshold TO b
6: SET quantization range TO [m,n]
7: bit width = n+m

2
8: process = True
9: while process do

10: quantized weights← QuantizeWeights(model.weights,
bit width)

11: golden accuracy←EvaluateAccuracy(model,
quantized weights)

12: if accuracy > a AND accuracy drop < b then
13: Inject faults to weights of the model with different

BERs
14: accuracy ← EvaluateAccuracy(model,

quantized weights)
15: accuracy drop ← golden accuracy − accuracy
16: Report Memory Utilization
17: Report Execution Time
18: bit width← bit width− n−bit width

2
19: else
20: bit width← bit width+ n−bit width

2
21: end if
22: if bit width > n then
23: process = False
24: end if
25: end while

Step 1: Quantization. The algorithm iterates over each bit
width within the specified quantization range. To perform a
binary search, the initial bit width considered is the midpoint
of the quantization range. Based on the results obtained at
this midpoint, the next bit width for weights is selected from
either the upper or lower half of the range, depending on
whether the desired accuracy and reliability criteria are met
(Algorithm 1 - lines 7, 18 and 20). This process is repeated
iteratively, narrowing the search range until the optimal bit
width is identified. For each selected bit width, the model
weights are quantized through linear quantization (Algorithm
1 - line 10). Linear quantization is a widely used technique
in model compression, particularly in the context of QNNs.
It reduces the precision of weights by mapping a large range
of values (typically 32-bit floating-point) to a smaller, fixed
range represented by fewer bits. This process involves two
main steps: scaling and rounding. The first step in linear
quantization is to define the range [xmin, xmax] within which
all the values of the tensor will be mapped.

xmin = min(x) (1)

xmax = max(x) (2)

Fig. 2: Proposed methodology for quantizing a DNN model, evaluating its reliability and applying the protection.

Fig. 3: Affine linear quantization

Next, the scaling factor s is calculated. This factor deter-
mines how the original floating-point values are scaled down
to fit within the quantized range. For a given bit width m, the
quantized range is [0, 2m−1]. The scaling factor s is computed
as:

s =
xmax − xmin

2m − 1
(3)

As Figure 3 indicates, the tensor values are then quantized by
mapping each value xi to an integer value qi within the range
[0, 2m − 1] using the scaling factor s and a zero-point z:

z = −xmin

s
(4)

qi = round(
xi

s
+ z) (5)

Here, round(.) denotes rounding to the nearest integer. The
result is an integer value qi that lies within the quantized range.
Therefore, weights of the model are converted into unsigned
m-bit integers through affine linear quantization.

Then, the accuracy of the model with quantized weights, re-
ferred to as the ”golden accuracy,” is evaluated. This accuracy
serves as a baseline for further reliability testing (Algorithm
1 - line 11). If the golden accuracy falls below the predefined
threshold a, the algorithm skips further evaluation for this bit
width and proceeds to the next (Algorithm 1 - lines 19, 20).

Step 2: Reliability Evaluation and Enhancement. Then,
the algorithm proceeds to evaluate its reliability under fault
conditions. Faults are incrementally injected into the quantized
model’s weights, simulating different Bit Error Rates (BERs).
After each fault injection, the model’s accuracy is re-evaluated,
and the accuracy drop is calculated as the difference between
the golden accuracy and the current accuracy (Algorithm 1 -
lines 13-15).

In the proposed approach, only the MSB bit is protected by
replicating it in two redundant bits. During inference, these
redundant bits, along with the protected bit, undergo a majority
voting process to determine the final value of the protected bit.

Fig. 4: An example of protected 3-bit weights

TABLE I: Benchmark NNs base accuracies (%)

Type VGG11 ResNet18 AlexNet Inception
8-bit 92.41 93.06 95.32 93.70
5-bit 92.19 92.81 95.46 93.24
4-bit 92.18 92.66 94.91 92.03
3-bit 89.83 90.84 93.26 80.71

This method ensures that even with potential faults, the most
critical bit remains reliable.

Figure4 illustrates an example of 3-bit weights with a
protected bit. In this example, the FP32 weights are first
converted into unsigned 3-bit integer values (shown in orange),
and the MSB is replicated into two redundant bits (shown in
green). Similarly, in 5-bit weights with one protected bit, two
redundant bits are added. More generally, in i-bit quantization
with one protection bits, two redundant bits are added, and
one comparison is performed during inference.

Step 3: Memory Utilization and Execution Time. In
this step, the algorithm computes the memory utilization and
execution time associated with the given bit width (Algorithm
1 - lines 16, 17). These values provide insights into the trade-
offs between quantization, reliability, and resource utilization.
The algorithm repeats the above steps for all bit widths within
the specified range, ultimately outputting a set of reliable
and quantized networks. For each network, detailed reports
on execution time and memory utilization are generated,
allowing for an informed selection of the optimal quantization
configuration.
Pdrop and RAP

Accuracy drop is evaluated independently of any physical
effects that faults might have on memory. To account for these
effects on accuracy drop, we define Pdrop as the probability of
experiencing the accuracy drop during the device’s lifetime:

Pdrop = N2 ×W 2 × T/t×Psingle ×BER× acc drop (6)

where N is the number of parameters, W is their bit width,
T is device life time, t is test time interval, Psingle is the

TABLE II: Memory Utilization, Execution Time, Vulnerability (accuracy drop due to fault injection) and Pdrop in DNNs.

Model Type Memory
Utilization

Executuin
Time (%)

Vulnerability (%)
{BER}

Pdrop

{BER}
1.00E-5 3.00E-5 1.00E-4 3.00E-4 1.00E-5 3.00E-5 1.00E-4 3.00E-4

VGG11

8-bit 225,064,448 100 5.62 22.30 62.40 74.52 50.21E-3 150.63E-3 502.10E-3 1506.30E-3
P-5-bit 196,931,392 141.72 1.11 5.23 28.33 68.73 35.45E-3 106.35E-3 354.50E-3 1063.52E-3
P-4-bit 168,798,336 141.72 1.45 6.01 28.19 67.99 25.76E-3 77.30E-3 257.66E-3 773.00E-3
P-3-bit 140,665,280 141.72 1.49 5.35 34.20 67.13 17.66E-3 53.00E-3 176.68E-3 530.05E-3

ResNet18

8-bit 66,991,616 100 0.18 1.85 14.64 32.29 1.92E-3 5.78E-3 19.27E-3 57.82E-3
P-5-bit 58,617,664 119.54 0.16 0.81 3.54 18.77 0.85E-3 2.57E-3 8.58E-3 25.74E-3
P-4-bit 50,243,712 119.54 0.24 0.66 2.63 18.34 0.61E-3 1.84E-3 6.15E-3 18.47E-3
P-3-bit 41,869,760 119.54 0.25 0.79 3.74 21.89 0.51E-3 1.53E-3 5.10E-3 15.31E-3

AlexNet

8-bit 466,316,032 100 0.00 0.49 3.14 30.71 88.82E-3 266.47E-3 888.23E-3 2664.70E-3
P-5-bit 408,026,528 102.94 0.14 0.04 0.48 4.73 10.47E-3 31.43E-3 104.78E-3 314.46E-3
P-4-bit 349,737,024 102.94 0.19 0.10 0.52 5.30 8.62E-3 25.87E-3 86.24E-3 258.72E-3
P-3-bit 291,447,520 102.94 0.27 0.58 2.62 13.58 15.34E-3 46.03E-3 153.44E-3 460.33E-3

Inception
8-bit 173,011,456 100 0.09 0.16 0.45 1.43 0.57E-3 1.71E-3 5.71E-3 17.15E-3

P-5-bit 151,234,496 291.73 0.00 0.02 0.02 0.19 0.06E-3 0.18E-3 0.60E-3 1.80E-3
P-4-bit 129,758,592 291.73 0.01 0.05 0.08 0.14 0.03E-3 0.09E-3 0.33E-3 0.99E-3

Fig. 5: Vulnerability (accuracy drop due to fault injection) and memory utilization trade-offs in different benchmarks:
VGG-11 (CIFAR), ResNet-18 (CIFAR), AlexNet (FashionMNIST) and Inception(CIFAR).

probability of one bit flip during t and acc drop is the
reported accuracy drop in the BER. This metric is based on
the probability of a one-bit flip stated in [19]. As the definition
suggests, the more resilient the networks are, the smaller the
value of Pdrop becomes.

To account for performance along with accuracy drop and
memory footprint, we define the Reliability-Aware Perfor-
mance (RAP) metric as:

RAP = acc drop×mem ovh× perf ovh (7)

where acc drop represents the accuracy drop, perf ovh
refers to the execution time overhead, and mem ovh denotes
the memory utilization overhead. Smaller RAP values indicate
more reliable networks with lower memory and performance
overhead.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the reliability and performance of the proposed
method, we study four different neural networks. AlexNet
is trained on the Fashion MNIST dataset, while VGG11,
ResNet-18, and Inception are trained on the CIFAR-10 dataset.
Quantization and reliability evaluations are conducted for all
networks, resulting in the introduction of different reliable
versions for each model. Then, the memory utilization and
execution time associated with FORTUNE is assessed. To
further quantify the effectiveness of the results, Pdrop and
RAP values are reported for each network to highlight the
trade-offs involved.

B. Quantization and reliability evaluation

To facilitate comparison across different networks, the re-
sults for four different bit widths are presented in this section.

Fig. 6: Pdrop in VGG-11 (CIFAR), ResNet-18 (CIFAR), AlexNet (FashionMNIST) and Inception(CIFAR).

The unprotected 8-bit version is used as the baseline network.
As previously mentioned, the weights are quantized using
affine linear quantization, and no retraining is performed. The
accuracy of the different quantized networks is presented in
Table I. Notably, the accuracy of Inception in its 3-bit version
is 80.71%, representing an accuracy reduction of over 10%.

To evaluate reliability, a random fault injection is conducted
across all weights in the DNNs under study. The number of
injected faults is determined using a BER ranging from 10−5

to 3 × 10−4, covering a comprehensive range of potential
errors [8]. Fault injection is repeated several times to reach
an acceptable confidence level, following the approach in [20].
This reference provides an equation to reach a 95% confidence
level and 1% error margin. For each bit width and BER, the
resulting drop in accuracy (with respect to the corresponding
fault-free model) is reported in Table II as Vulnerability of
the networks. Although the protected versions of AlexNet and
ResNet-18 do not exhibit significant differences in Vulnerabil-
ity values at lower BERs, a considerable difference becomes
apparent at higher BERs. Conversely, VGG11 and Inception
experience less vulnerability across all protected versions and
BER levels. Additionally, the unprotected versions of the
quantized networks show worst vulnerabilities, as illustrated
in Figure 5.

C. Reliability, memory and performance trade-off

Memory utilization is defined as the combination of the
number of parameters and their respective bit widths, while
execution time refers to the execution time of each network
under study. Memory utilizationn and execution time are
reported in Table II, where execution time is normalized with
respect to the unprotected 8-bit model. Figure 5 illustrates the
trade-off between vulnerability and memory utilization for all
protected and unprotected versions of the quantized networks.
As the BER increases, all protected models exhibit lower
vulnerability compared to the unprotected 8-bit model, while
also utilizing less memory. For example, while the unprotected

5-bit model has the same memory utilization as the protected
3-bit model, the protected model demonstrates significantly
lower vulnerability. To clarify, all quantized models (5-bit,
4-bit, and 3-bit) are significantly more vulnerable than their
protected counterparts. Moreover, the protected versions still
maintain lower memory utilization compared to the base 8-bit
model.
Pdrop values for the DNNs under study are reported in

Table II and Figure 6. All final networks are considered more
resilient when evaluated based on Pdrop. This indicates that,
when factoring in both memory footprint and vulnerability,
all protected quantized networks exhibit greater resilience
throughout their lifetime.

RAP values are reported in Figure 7. Except for VGG11 at
the highest BER, all other networks demonstrate smaller RAP
values in protected quantized versions, indicating better trade-
off between reliability, memory utilization, and execution time.
Smaller RAP values indicate that the networks introduced by
FORTUNE are more resilient, while also requiring less mem-
ory and execution time compared to the base 8-bit models.

IV. CONCLUSION

This paper introduces FORTUNE, a novel framework de-
signed to enhance fault tolerance in DNNs through quantiza-
tion, offering a balanced trade-off between reliability, memory
usage, and execution time. By leveraging memory savings to
protect the critical Most Significant Bit, FORTUNE improves
fault tolerance without the high computational costs of con-
ventional methods like TMR. As examples, we demonstrated
memory reductions of 37.5% across networks, with vulner-
ability in AlexNet reduced by 56% compared to the 8-bit
model and 84% compared to the unprotected 3-bit model.
These improvements were achieved with less than a 3%
increase in execution time. FORTUNE proposes a flexible
framework that allows for the identification of the most suit-
able network configuration, optimizing the trade-off between
reliability, memory efficiency, and execution time based on
specific application requirements.

Fig. 7: RAP in VGG-11 (CIFAR), ResNet-18 (CIFAR), AlexNet (FashionMNIST) and Inception(CIFAR) .

V. ACKNOWLEDGEMENT

This work was supported in part by the Estonian Re-
search Council grant PUT PRG1467 ”CRASHLESS“, EU
Grant Project 101160182 “TAICHIP“ and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
– Project-ID ”458578717”.

REFERENCES

[1] B. Rokh, A. Azarpeyvand, and A. Khanteymoori, “A comprehensive
survey on model quantization for deep neural networks in image clas-
sification,” ACM Transactions on Intelligent Systems and Technology,
vol. 14, no. 6, pp. 1–50, 2023.

[2] M. Taheri, “Dnn hardware reliability assessment and enhancement,” 27th
IEEE European Test Symposium (ETS)., May 2022.

[3] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jeni-
hhin, “A systematic literature review on hardware reliability assessment
methods for deep neural networks,” ACM Computing Surveys, vol. 56,
no. 6, pp. 1–39, 2024.

[4] M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Daneshta-
lab, J. Raik, M. Sjödin, and B. Lisper, “Deepaxe: A framework for explo-
ration of approximation and reliability trade-offs in dnn accelerators,”
in 2023 24th International Symposium on Quality Electronic Design
(ISQED). IEEE, 2023, pp. 1–8.

[5] M. Taheri, N. Cherezova, M. S. Ansari, M. Jenihhin, A. Mahani,
M. Daneshtalab, and J. Raik, “Exploration of activation fault reliability
in quantized systolic array-based dnn accelerators,” in 2024 25th Inter-
national Symposium on Quality Electronic Design (ISQED). IEEE,
2024, pp. 1–8.

[6] M. H. Ahmadilivani, M. Barbareschi, S. Barone, A. Bosio, M. Danesh-
talab, S. D. Torca, G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo,
E. Sanchez, and M. Taheri, “Special session: Approximation and fault
resiliency of dnn accelerators,” in 2023 IEEE 41st VLSI Test Symposium
(VTS), 2023, pp. 1–10.

[7] Z. Yuan, J. Liu, J. Wu, D. Yang, Q. Wu, G. Sun, W. Liu, X. Wang,
and B. Wu, “Benchmarking the reliability of post-training quantiza-
tion: a particular focus on worst-case performance,” arXiv preprint
arXiv:2303.13003, 2023.

[8] M. H. Ahmadilivani et al., “Enhancing fault resilience of qnns by
selective neuron splitting,” in 2023 IEEE 5th AICAS, 2023, pp. 1–5.

[9] M. Taheri, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, and
J. Raik, “Appraiser: Dnn fault resilience analysis employing approxi-
mation errors,” in 2023 26th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), 2023, pp.
124–127.

[10] M. H. Ahmadilivani et al., “Special session: Reliability assessment
recipes for dnn accelerators,” in 2024 VTS. IEEE, 2024, pp. 1–6.

[11] M. Taheri, M. Daneshtalab, J. Raik, M. Jenihhin, S. Pappalardo,
P. Jimenez, B. Deveautour, and A. Bosio, “Saffira: a framework for as-
sessing the reliability of systolic-array-based dnn accelerators,” in 2024
27th International Symposium on Design & Diagnostics of Electronic
Circuits & Systems (DDECS). IEEE, 2024, pp. 19–24.

[12] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences,
vol. 11, no. 14, p. 6455, 2021.

[13] M. Taheri, N. Cherezova, S. Nazari, A. Rafiq, A. Azarpeyvand,
T. Ghasempouri, M. Daneshtalab, J. Raik, and M. Jenihhin, “Adam:
Adaptive fault-tolerant approximate multiplier for edge dnn accelera-
tors,” in 2024 IEEE European Test Symposium (ETS), 2024, pp. 1–4.

[14] M. Taheri, N. Cherezova, S. Nazari, A. Azarpeyvand, T. Ghasempouri,
M. Daneshtalab, J. Raik, and M. Jenihhin, “Adam: Adaptive approximate
multiplier for fault tolerance in dnn accelerators,” Authorea Preprints,
2024.

[15] M. Nourazar, V. Rashtchi, A. Azarpeyvand, and F. Merrikh-Bayat, “Code
acceleration using memristor-based approximate matrix multiplier: Ap-
plication to convolutional neural networks,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2684–2695,
2018.

[16] S. Lee and J. Yang, “Value-aware parity insertion ecc for fault-tolerant
deep neural network,” in 2022 DATE, 2022, pp. 724–729.

[17] B. Ghavami et al., “Fitact: Error resilient deep neural networks via fine-
grained post-trainable activation functions,” in 2022 DATE, 2022, pp.
1239–1244.

[18] R. G. Alı́a, A. Coronetti, K. Bilko, M. Cecchetto, G. Datzmann, S. Fiore,
and S. Girard, “Heavy ion energy deposition and see intercomparison
within the radnext irradiation facility network,” IEEE Transactions on
Nuclear Science, vol. 70, no. 8, pp. 1596–1605, 2023.

[19] Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou, and C. Zhuo,
“When single event upset meets deep neural networks: Observations,
explorations, and remedies,” in 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2020, pp. 163–168.

[20] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2009, pp. 502–506.

Appendix 8

VIII

191

M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Deep-Vigor: Vulnerability value ranges and factors for DNNs’ reliability
assessment,” in 2023 IEEE European Test Symposium (ETS), pp. 1–6, 2023.

DeepVigor: VulnerabIlity Value RanGes and FactORs
for DNNs’ Reliability Assessment

Mohammad Hasan Ahmadilivani1, Mahdi Taheri1, Jaan Raik1, Masoud Daneshtalab1,2, and Maksim Jenihhin1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1{mohammad.ahmadilivani, mahdi.taheri, jaan.raik, maksim.jenihhin}@taltech.ee
2masoud.daneshtalab@mdu.se

Abstract—Deep Neural Networks (DNNs) and their accelerators
are being deployed ever more frequently in safety-critical applica-
tions leading to increasing reliability concerns. A traditional and
accurate method for assessing DNNs’ reliability has been resorting
to fault injection, which, however, suffers from prohibitive time
complexity. While analytical and hybrid fault injection-/analytical-
based methods have been proposed, they are either inaccurate or
specific to particular accelerator architectures.

In this work, we propose a novel accurate, fine-grain, metric-
oriented, and accelerator-agnostic method called DeepVigor that
provides vulnerability value ranges for DNN neurons’ outputs.
An outcome of DeepVigor is an analytical model representing
vulnerable and non-vulnerable ranges for each neuron that can
be exploited to develop different techniques for improving DNNs’
reliability. Moreover, DeepVigor provides reliability assessment
metrics based on vulnerability factors for bits, neurons, and layers
using the vulnerability ranges.

The proposed method is not only faster than fault injection
but also provides extensive and accurate information about
the reliability of DNNs, independent from the accelerator. The
experimental evaluations in the paper indicate that the proposed
vulnerability ranges are 99.9% to 100% accurate even when
evaluated on previously unseen test data. Also, it is shown that
the obtained vulnerability factors represent the criticality of bits,
neurons, and layers proficiently. DeepVigor is implemented in the
PyTorch framework and validated on complex DNN benchmarks.

I. INTRODUCTION

Deep Neural Networks (DNNs) have recently emerged to be
exploited in a wide range of applications. DNN accelerators have
also penetrated into safety-critical applications e.g., autonomous
vehicles [1], [2]. Therefore, several concerns are raised regarding
developing and utilizing DNN accelerators in the realm of safety-
critical applications, one of them being the reliability.

Reliability of DNNs concerns their accelerators’ ability to
perform correctly in the presence of faults [3] originating from
either the environment (e.g., soft errors, electromagnetic effects,
temperature variations) or inside of the chip (e.g., manufacturing
defects, process variations, aging effects) [1], [4]. As shown in
Fig. 1, faults may occur in different locations of accelerators
either in memory or logic components and they influence the

The work is supported in part by the European Union through European
Social Fund in the frames of the “Information and Communication Technologies
(ICT) programme” (“ITA-IoIT” topic), by the Estonian Research Council
grant PUT PRG1467 “CRASHLES” and by Estonian-French PARROT project
“EnTrustED”.

Fig. 1: Hardware reliability threats in DNN accelerators and their
impact on the output [1].

parameters (e.g., weights and bias) and intermediate results
(layers’ activations) of neural networks that can decrease their
accuracy drastically [5], [6]. By technology miniaturization, the
effect of Single Event Transient (SET) and Single Event Upset
(SEU) faults in devices is increasing thereby jeopardizing the
reliability of modern digital systems [7].

Recently, several works have been published on the assessment
and improvement of the reliability of a variety of DNNs as well
as on different levels of system hierarchy [3], [4], [8]. Reliability
assessment is the process of modeling the target DNN accelerator
and measuring its reliability with respect to the corresponding
quantitative evaluation metrics. Reliability assessment is the
underlying procedure for improving reliability since it presents
how the system could be influenced by threats as well as which
locations of the system are more vulnerable to them. Therefore,
it is the very first and principal phase of a reliable design process.

Throughout the literature, reliability assessment methods for
DNNs are mainly categorized into two major classes: fault
injection (FI) and resilience analysis. The majority of the
works assess the reliability of DNNs relying on FI, which
provides realistic results on the impact of different fault models
on the system’s execution and is performed directly on the
target platform (accelerator’s software [9] or RTL model [10],
FPGA [11], GPU [12]). FI outputs different evaluations for
DNNs’ reliability by accuracy loss, vulnerability factors, or fault
classification [11], [13], [14]. Moreover, fine-grain evaluations
for finding critical bits can be performed by exhaustive FI or
an optimized method in [15].

Nevertheless, FI methods are prohibitively time-consuming
and carry a high complexity due to the need to inject an enormous
amount of faults into a huge number of DNN parameters as

2023 28th IEEE European Test Symposium (ETS)

979-8-3503-3634-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 E
ur

op
ea

n
Te

st
 S

ym
po

si
um

 (E
TS

) |
 9

79
-8

-3
50

3-
36

34
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

ET
S5

67
58

.2
02

3.
10

17
41

33

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:15 UTC from IEEE Xplore. Restrictions apply.

well as time instances to reach an acceptable confidence level
[16], [17]. The more fine-grain evaluation is required the more
sophisticated experiments should be performed. In addition, most
faults in a FI experiment on DNNs are masked [18] and are
thus unnecessarily examined. Furthermore, the outcome of such
assessment is application/platform specific which can not be
generalized for other platforms [19].

Resilience analysis methods cope with the drawbacks of FI.
They analyze the function of DNNs mathematically and have
the potential to evaluate their reliability with arbitrary metrics.
Therefore, resilience analysis methods can provide a deeper
insight into the reliability evaluations of DNNs with lower
complexity. Moreover, they can be conducted in different fault-
tolerant designs on various platforms [20].

Layer-wise Relevance Propagation (LRP) algorithm is lever-
aged in [21]–[24] to obtain the contribution of neurons to
the output to express their criticality and apply protections to
improve the reliability of DNN accelerators. The sensitivity of
DNN’s filters is obtained by Taylor expansion with given error
rates in [25] for designing an error-resilient and energy-efficient
accelerator.

The conducted resilience analyses in these works are not
able to provide reliability measurement metrics and detailed
vulnerability evaluations. Moreover, they combine the criticality
scores of neurons over individual outputs of the DNNs, thus
resulting in missing important information about the resilience
of DNNs as a whole. Mahmoud et al. [20] proposed different
heuristics for vulnerability estimation of feature maps without
FI. These estimations which are more coarse grain than the LRP-
based methods, lead to hardening the accelerators, however, the
accuracy of the vulnerability estimation methods is remarkably
lower than that of fault-injection methods.

The aforementioned papers on resilience analysis methods
have focused mainly on finding the most critical neurons/weights
in a DNN to protect them against faults in a fault-tolerant
design. In addition, they do not explain sufficiently how a
fault propagates through the network and influence its outputs.
Fidelity framework [26] is proposed to take advantage of both FI
and analyzing DNN accelerators to provide reliability metrics.
However, it requires detailed information of the accelerator
architecture/implementation. To the best of our knowledge, there
is no accelerator-agnostic resilience analysis method for DNNs
that can compete with FI in terms of reliability evaluation to
be less time-consuming, and accurate with fine-grain metrics
enabling different reliability improvement techniques.

In this research work, we introduce the concept of neurons’
vulnerability ranges expressing whether or not a fault at the
output of neurons would misclassify the network. Thus, it
enables a comprehensive reliability study with a novel resilience
analysis method called DeepVigor where the vulnerability factors
of layers, neurons, and bits in a DNN are obtained. The
contributions in this work are:

• Proposing DeepVigor, a novel accurate, metric-oriented, and
accelerator-agnostic resilience analysis method for DNNs
reliability assessment faster than fault injection;

• Introducing and acquiring vulnerability ranges for all

neurons in DNNs, assisted by a fault propagation analysis,
providing accurate categorization of critical/non-critical
faults;

• Providing fine-grain vulnerability factors as reliability
evaluation metrics for layers, neurons, and bits in DNNs,
compared with and validated by fault injection.

The remainder of the paper is organized as follows: the
resilience analysis method is presented in Section II, and the
experimental setup and results are provided in Section III. The
applicability of the method is discussed in Section IV, and the
work is concluded in Section V.

II. DNN RELIABILITY ASSESSMENT WITH DEEPVIGOR

A. Fault Model

In this work, the fault propagation analysis is performed at
the outputs of DNN neurons. However, they will cover a vast
majority of internal faults of the neurons occurring inside the
MAC units and also a large portion of faults in the weights and
neurons’ input activations. It is assumed that only one neuron
has an erroneous output per execution due to faults which is a
common assumption in the literature [15].

For validation by FI, the single-bit fault model has been
applied. While the multiple-bit fault model is more accurate, it
requires a prohibitively large number of fault combinations to be
considered (3n−1 combinations, where n is the number of bits).
Fortunately, it has been shown that high fault coverage obtained
using the single-bit model results in a high fault coverage of
multiple-bit faults [27]. Therefore, a vast majority of practical
FI and test methods are based on the single-bit fault assumption.
Single bitflip faults are injected randomly at neurons’ outputs
and once per execution.

B. Fault Propagation Analysis

Fig. 2 depicts an overview of the rationale behind the
DeepVigor method. A tiny neural network with few layers
and neurons with given inputs, golden (fault-free) activation
values (inside of neurons), and weights (on the arrows) is shown.
The golden classification output is class1. A fault changes the
neuron’s output by δ which is the difference between the golden
and faulty activation values. This δ that can have either a negative
or a positive value will be propagated to the output layer and may
change the classification result. The fault propagation will make
a difference on each output class as ∆1 and ∆2. Misclassification
happens when the value of the output neuron class2 gets higher
than that of neuron class1.

Thus, the propagation of the fault can be traced from the
neuron to the output and a problem for misclassification can
be expressed as shown in Fig. 2. By solving the problem
of misclassification condition in the output, the value for δ
is obtained as a vulnerability threshold that expresses how
much a fault should influence the neuron to misclassify the
network. Therefore, a vulnerability value range for the neuron is
acquired. In this example, the range (−∞,−5.39) is a vulnerable
range and [−5.39,+∞) is non-vulnerable range. This idea is
generalized for a DNN including multiple output classes and
other corresponding functions in this paper.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: An example of fault propagation analysis model and finding
the vulnerability value ranges for a neuron with a given input.

C. The DeepVigor Method

The steps of the proposed DNNs’ resilience analysis method
(DeepVigor) and its validation are illustrated in Fig. 3. As shown,
an analysis is performed on a set of data (i.e., set1, training
set) and outputs the vulnerability value ranges as well as the
vulnerability factors. Furthermore, FI is performed on the same
and different data (i.e., set2, test set) to validate the outcomes
of the analysis. The steps of DeepVigor are as follows:

Input Data
Set1

Pretrained
DNN

Step1:
Gradient-based

Initialization

Step3: Bitflip
Mapping

Vulnerability
Value Ranges

Step1: Random
Fault Injection

DeepVigor Analysis

Step3: Validating
DeepVigor

Inputs

DeepVigor
Outputs

Validation Steps

Vulnerability
Factors

Step2: Faults
Categorization

Input Data
Set2

Step2: Neurons'
Vulnerability

Analysis

Fig. 3: Steps of the DeepVigor method for DNNs’ reliability
assessment and its validation.

Step1 - Gradient-based Initialization: In the first step, a
neuron is examined whether or not to be processed for the
vulnerability analysis. For this purpose, assuming a neural
network consisting of L layers with N output classes in
C = {c1, c2, ..., cN}. Neuron k at layer l is selected to be
examined. The neuron’s output is corrupted by adding a sample
positive or negative value as ϵlk to its output and the feed-forward
of the network is executed over a batch of input data. A loss
function L is defined in Equation (1) as:

L = sigmoid(
N∑
j=0

(Ect − Eci)) (1)

where ct is the golden top class and Ect and Eci are the erroneous
output values corresponding to the respective classes. The loss
function computes the summation of differences between the
value of the golden top class and the other outputs in the

corrupted network and applies a sigmoid function. The golden
top class is what the fault-free DNN outputs as its classification
whether or not it is correctly classified.

L represents the impact of the neuron’s erroneous output on
the golden top class of the network. When the gradient of L
w.r.t. the corrupted neuron’s output for one input is zero, it
means that any error at this neuron’s output does not change
the output classification. Considering a batch of inputs, if the
gradients are zero for a portion of inputs larger than a threshold,
the neuron is disregarded for the vulnerability analysis. In case
most of the gradients are not zero, a range for searching the
vulnerability value is initialized.

Considering ϵlk is a positive value for one input, in case the
gradient is positive, there is a minimum value 0 < δlk < ϵlk for
the neuron that if error δlk is added to its output (by a fault
at its inputs or the output value itself) the network’s golden
classification would change. But if the gradient is negative, then
δlk should be searched through the values larger than ϵlk. A
similar scenario is valid for negative values of ϵlk.

Step2 - Neurons’ Vulnerability Analysis: In this step, the
vulnerability ranges of neurons under analysis are obtained. Let
RNV (l, k, x) = [rlower, rupper] be a Range of Non-vulnerable
Values for a k-th neuron at layer l with input data x. The bounds
of range R for x are calculated as follows:

{
rupper = min(δlk), δ

l
k > 0, Ect < Eci , i ̸= t

rlower = max(δlk), δ
l
k < 0, Ect < Eci , i ̸= t

(2)

where ct and ci are the golden top class and any other output
class, respectively, and Ect and Eci are the erroneous output
values corresponding to the respective classes.

Equation (2) finds the maximum negative and minimum
positive values induced at the corresponding neuron that do
not lead to misclassifying the input data from the golden
classification. Further, a Range of Vulnerable Values RV V (l, k, x)
for a k-th neuron at layer l with input data x is equal to
RV V = (−∞, rlower) ∪ (rupper,∞).

Note, the equation is applied for a single input data. In the
case of a data set X containing T input data xj the RNV and
RV V will get refined and will be equal to intersections of their
respective ranges over all inputs xj as follows:

RNV (l, k) =
T⋂

j=1

RNV (l, k, xj)

RV V (l, k) =
T⋂

j=1

RV V (l, k, xj)

(3)

The outcome of solving the equations for each neuron and
merging the results over all inputs will be the vulnerability value
ranges for each class separately, each range specifies the impact
of a fault on changing the neuron value whether it influences the
network classification result or not. Fig. 4 depicts different cases
for vulnerability ranges over all numbers. Three vulnerability
ranges are identified as follows:

• Non-vulnerable range: If a fault lay an effect on the
neuron output in this range, no misclassification happens
(hachured-green sections in Fig. 4);

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:15 UTC from IEEE Xplore. Restrictions apply.

• Vulnerable range: If a fault makes a difference at the
output of the neuron in this range, the output will be
misclassified (cross hachured-red sections in Fig. 4);

• Semi-vulnerable range: If a fault causes the neuron value
to move as an amount in this range, this fault may cause a
misclassification (dashed-grey sections in Fig. 4). Cases d-f
in Fig. 4 happen when the portion of zero gradients in step1
is less than the threshold and more than 1 − threshold.

0
-∞ +∞

min_neg max_neg min_pos max_pos
non-vulnerablesemi-vulnerablevulnerable

0
-∞ +∞

0
-∞ +∞

0
-∞ +∞

a)

b)

d)

g)
0

-∞ +∞f)

0
-∞ +∞c)

-∞ +∞e)
0

Fig. 4: Different possible cases of vulnerability ranges for each class
in a neuron.

Step3 - Bitflip Mapping: In this step, DeepVigor maps the
neurons’ bitflipped values over input data on the vulnerability
value ranges to indicate fine-grain vulnerability factors as metrics
for the DNNs’ reliability. For this purpose, the inputs used in
step2 and obtained vulnerability value ranges are fed to the
network and in each bit of each neuron, bitflips are performed. In
each bitflip, the difference in the new value of the target neuron
is calculated and compared with the corresponding vulnerability
range.

Based on the range of what the bitflip maps, the bit is
considered vulnerable or non-vulnerable, respectively. By this
analysis, the number of vulnerable bits of the neurons is obtained
over the inputs. Hence, vulnerability factors of each layer (LVF),
neuron (NVF), or bit (BVF) of the DNN can be defined as
equations (4), (5), and (6), respectively. Vulnerability factors
express the probability of misclassifying the network in case of
the occurrence of a bitflip at the target element.

LV F =

#vulnerable bits in layer

#inputs ×#layer′s neurons× word length
× 100

(4)

NV F =
#vulnerable bits in neuron

#inputs × word length
× 100 (5)

BV F =
#vulnerable times for bit

#inputs
× 100 (6)

D. Validating DeepVigor By Fault Injection

As illustrated in Fig. 3, DeepVigor results are validated by
means of FI over the input data and categorizing faults based
on the vulnerability value ranges. The steps of the validation
process of DeepVigor are as follows:

Step1 - Random Fault Injection: According to the adopted
fault model, when one input is fed to the network, a random
single bitflip is injected into a random neuron in a layer. This
process is repeated several times for one input depending on
the number of neurons and word length of data to reach a
95% confidence level and 1% error margin based on [28]. The
required number of faults is obtained by Equation (7) where
N = word length × #layer′s neurons that represents the
total number of bits in the output of a layer.

#layer′s random faults =
N

1 + (0.012 × N−1
1.962×0.52)

(7)

Step2 - Fault Categorization: Once a fault is injected, a
difference is produced in the output of the neuron in comparison
with the golden model. In this step, the produced difference by
a fault at the neuron’s output is compared with the obtained
vulnerability ranges, and faults are categorized as:

• Non-critical fault: The produced difference is in the non-
vulnerable range.

• Critical fault: The produced difference is in the vulnerable
range.

Step3 - Validating DeepVigor: To validate DeepVigor by
FI, injected faults are propagated to the output and the network
classification output is examined. The accuracy of the method
is defined based on the two metrics as follows:

• True non-critical faults: Percentage of faults that are cate-
gorized as non-critical and do not change the classification
at the output;

• True critical faults: Percentage of faults that are catego-
rized as critical and change the classification at the output.

Another metric for validating the outputs of DeepVigor is
the correlation between LVF and DNN’s accuracy loss. This
correlation shows that the obtained vulnerability factors from
DeepVigor represent the criticality of the components properly.
Since other vulnerability factors (NVF and BVF) are calculated
using the same vulnerability ranges, by validating LVF, they will
be also liable metrics for the resilience analysis, consequently.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

All DNNs, steps of DeepVigor, and its validation are imple-
mented in PyTorch and run on NVIDIA 3090 GPU. To explore
different DNN structures, six representative DNNs trained on
three datasets are examined for the experimental results. We
have experimented with two 5-layer MLPs (one with Sigmoid
and one with ReLU) trained on MNIST, two LeNet-5 with 3
convolutional (CONV) layers, 2 max-pooling (POOL) layers,
and 2 fully-connected (FC) layers trained on MNIST and CIFAR-
10, AlexNet with 5 CONV, 3 POOLs, 2 batch normalization
(BN) and 3 FCs trained on CIFAR-10, and VGG-16 with 13
CONV, 13 BNs, 5 POOLs and 2 FCs trained on CIFAR-100.
The respective networks’ accuracy on the corresponding test
sets are 94.64%, 90.55%, 90.4%, 66.15%, 72.73%, and 69.41%.

Data representation in this work is 32-bit floating point IEEE-
754 and the word length in equations (4)-(7) is 32 bits. For

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Accuracy of DeepVigor by fault injection on the same input
data as the analysis.

DNN True non-critical faults True critical faults
MLP-sigmoid-mnist 99.985%∼100% 100%

MLP-relu-mnist 99.991%∼100% 100%
LeNet-mnist 99.992%∼100% 100%

LeNet-cifar10 99.956%∼100% 100%
AlexNet-cifar10 99.973%∼100% 99.955%∼100%
VGG16-cifar100 99.950%∼100% 99.972%∼100%

validation, a layer-wise statistical random FI is performed that
satisfies a 95% confidence level and 1% error margin.

In the first step of DeepVigor ϵlk is considered −/+10000
for range initialization and the whole search range is [−5 ×
105, 5 × 105]. Finding δlk in all networks by a logarithmic
search is performed for negative and positive numbers separately,
considering a 0.05 difference from the main value. Also, based on
empirical explorations the threshold of neurons’ zero-gradients
for inputs is considered 98% for all experiments. Corresponding
experiments are performed on the whole sets of training (as the
input data set1) and test (as the input data set2) data.

B. Results and Validation

We analyze all neurons of the representative DNNs with
training sets as the input data set1 by DeepVigor and obtain the
vulnerability ranges. In the fault categorization step, faults are
categorized into critical and non-critical classes with an accuracy
close to 100%. Throughout the results from FI experiments,
DeepVigor identified 66.63% to 99.42% of faults as non-critical
over different layers of analyzed networks.

For validation, Table I presents the range of obtained accuracy
values of the method through all layers of DNNs in terms of true
non-critical and critical faults. It is observed that the accuracy
of the method for categorizing non-critical faults is 99.950% to
100% and for critical faults ranging from 99.955% to 100% for
the same data set.

The minor error seen in the results is due to: 1) Considered
error in finding vulnerability values, 2) FI results in ”NaN”
values in 32-bit floating point IEEE-754 while the computations
are being done on a GPU. We have categorized them as critical
faults, 3) the effect of few inputs with non-zero gradients in
step1 as described in II-C.

We have also experimented with FI on the test sets (input
data set2) to see the validity of the analysis on different sets
reported in Table II. As it can be seen, similar high accuracy
values to input data set1 are obtained.

TABLE II: Accuracy of DeepVigor by fault injection on a different
input data from the analysis.

DNN True non-critical faults True critical faults
MLP-sig-mnist 99.985%∼99.996% 99.911%∼100%
MLP-relu-mnist 99.976%∼100% 100%

LeNet-mnist 99.992%∼100% 100%
LeNet-cifar10 99.952%∼100% 99.970%∼100%

AlexNet-cifar10 99.951%∼99.997% 99.948%∼99.998%
VGG16-cifar100 99.950%∼99.983% 99.972%∼99.998%

To validate the vulnerability factors, Fig. 5 illustrates the
correlation between LVF and accuracy loss for a layer-wise FI on
AlexNet. As demonstrated, there is a close relationship between
the LVF obtained from DeepVigor and accuracy loss in FI, either

the input sets are similar or different. This correlation is observed
similarly in the results for all experimented DNNs. Therefore,
LVF represents the vulnerability of layers competently.

DeepVigor also provides NVF and BVF metrics as vulnerabil-
ity factors for neurons and bits, respectively. As a representative
example, Fig. 6 depicts NVF for layer conv3 of LeNet5-mnist
and LeNet5-cifar10 that the more vulnerable neurons can be
identified. In this figure, the number of neurons is sorted in each
DNN separately, in the ascending order of NVF. Also, BVF for
all neurons in DNNs is obtained and the results show that the
most significant bit of exponents is the most vulnerable bit in
most cases.

conv1 conv2 conv3 conv4 conv5 fc1 fc2
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Layers of AlexNet
LV

F
(%

)

LVF Accuracy Loss (same sets) Accuracy Loss (different sets)

Fig. 5: Correlation between LVF and accuracy loss.

0 20 40 60 80 100 120
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Neurons in Layer CONV3 of LeNet-5

N
V

F
(%

)

LeNet5-mnist LeNet5-cifar10

Fig. 6: NVF of neurons in CONV3 for LeNet5-mnist and
LeNet-cifar10.

C. Run-Time Analysis

DeepVigor enables a fine-grain reliability evaluation for DNNs
faster than exhaustive FI. In our experiments, step1 of DeepVigor
have removed up to 48% of neurons’ vulnerability analysis to
be processed in step2. Moreover, the range initialization in step1
has accelerated the search for finding the vulnerability values for
50% to 99% of neurons in step2 among the DNNs. Based on our
experiments, a complete vulnerability range (as in Fig. 4) for one
neuron can be obtained by 9.1 times feed-forward execution per
neuron on average. While an exhaustive FI experiment runs the
feed-forward by the number of bits (32 in our case) per neuron.
Therefore, DeepVigor requires 3.5 times fewer feed-forwards
translating into a similar amount of speed-up in run-time.

The run-time of DeepVigor depends on:
• Backpropagation execution by the number of neurons step1

(one for positive and one negative numbers per neuron);
• Feed-forward execution by the number of searches for

finding a positive or negative δlk per neuron, in which the

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:15 UTC from IEEE Xplore. Restrictions apply.

best case is 0 searches (in case of zero gradients), the
moderate case is 14 searches (in case of limited range
initialization), and the worst case is 22 searches;

• Vulnerability analysis of the neurons in the last layer is
performed by simplified mathematics similar to Fig. 2
and requires no iterative feed-forward or searching process
through a wide range of numbers;

• Bitflip mapping is merely performing a bitflip at each
neuron and a comparison with the obtained vulnerability
ranges.

IV. DISCUSSION

DeepVigor method is validated in the previous section, and it
is shown how it can evaluate the reliability of DNNs proficiently
with shorter run-times than FI. Vulnerability ranges enable a
fine-grain and accurate resilience evaluation for neural networks.
They are not limited to representing the single bitflip fault model
and the outcome of the analysis is valid for an erroneous output
for the neurons covering several fault models. This method
enables an accelerator-agnostic analysis for DNNs and results
can be applied to different accelerators.

The outputs of DeepVigor provide different possibilities for
exploiting techniques of reliability improvement, including:

• Selective bits/neurons/layers hardening in accelerators based
on the obtained BVF/NVF/LVF metrics;

• Fault-aware mapping for neurons on the processing ele-
ments of accelerators as in [21], [23];

• Applying range restriction for neurons’ or layers’ outputs
for preventing faults propagation as in [9], [29], [30].

V. CONCLUSIONS

In this work, a novel resilience analysis method for DNNs
reliability assessment named DeepVigor is proposed. The output
of this method is the vulnerability value ranges for all neurons
through the DNNs which result in vulnerability factors for all
layers, neurons, and bits of the DNN, separately. The method
is validated extensively by fault injection and its feasibility to
categorize non-critical and critical faults on complex DNNs
with 99.9% to 100% accuracy is demonstrated. Moreover,
vulnerability factors obtained by the proposed analysis provide
fine-grain criticality metrics for DNNs’ components leading
to different reliability improvement techniques. The DeepVigor
method is very proficient in the evaluation and explanation of the
reliability of DNNs with shorter run-times than fault injection.

REFERENCES

[1] A. Bosio et al., “Emerging computing devices: Challenges and oppor-
tunities for test and reliability,” in 2021 IEEE ETS. IEEE, 2021, pp.
1–10.

[2] H. Forsberg et al., “Challenges in using neural networks in safety-critical
applications,” in 2020 AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC). IEEE, 2020, pp. 1–7.

[3] Y. Ibrahim et al., “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[4] M. Shafique et al., “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[5] W. Li et al., “Soft error mitigation for deep convolution neural network
on fpga accelerators,” in 2020 2nd IEEE AICAS. IEEE, 2020, pp. 1–5.

[6] M. A. Neggaz et al., “Are cnns reliable enough for critical applications?
an exploratory study,” IEEE Design & Test, vol. 37, no. 2, pp. 76–83,
2019.

[7] A. Azizimazreah et al., “Tolerating soft errors in deep learning accelerators
with reliable on-chip memory designs,” in 2018 IEEE International
Conference on Networking, Architecture and Storage (NAS). IEEE, 2018,
pp. 1–10.

[8] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104, p.
101689, 2020.

[9] Z. Chen et al., “A low-cost fault corrector for deep neural networks through
range restriction,” in 2021 51st IEEE/IFIP DSN. IEEE, 2021, pp. 1–13.

[10] D. Xu et al., “A hybrid computing architecture for fault-tolerant deep
learning accelerators,” in 2020 IEEE 38th International Conference on
Computer Design (ICCD). IEEE, 2020, pp. 478–485.

[11] D. Xu et al., “Reliability evaluation and analysis of fpga-based neural
network acceleration system,” IEEE TVLSI, vol. 29, no. 3, pp. 472–484,
2021.

[12] P. M. Basso et al., “Impact of tensor cores and mixed precision on the
reliability of matrix multiplication in gpus,” IEEE Transactions on Nuclear
Science, vol. 67, no. 7, pp. 1560–1565, 2020.

[13] F. F. dos Santos et al., “Analyzing and increasing the reliability of
convolutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2018.

[14] N. Khoshavi et al., “Shieldenn: Online accelerated framework for fault-
tolerant deep neural network architectures,” in 2020 57th ACM/IEEE DAC.
IEEE, 2020, pp. 1–6.

[15] Z. Chen et al., “Binfi: An efficient fault injector for safety-critical machine
learning systems,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–23.

[16] M. Taheri, M. H. Ahmadilivani et al., “Deepaxe: A framework for
exploration of approximation and reliability trade-offs in dnn accelerators,”
in 2023 ISQED. In press, 2023.

[17] M. Taheri, M. H. Ahmadilivani et al., “Appraiser: Dnn fault resilience
analysis employing approximation errors,” in 2023 DDECS. In press,
2023.

[18] A. Bosio et al., “A reliability analysis of a deep neural network,” in 2019
IEEE LATS. IEEE, 2019, pp. 1–6.

[19] A. Ruospo et al., “Pros and cons of fault injection approaches for the
reliability assessment of deep neural networks,” in 2021 IEEE LATS. IEEE,
2021, pp. 1–5.

[20] A. Mahmoud et al., “Hardnn: Feature map vulnerability evaluation in
cnns,” arXiv preprint arXiv:2002.09786, 2020.

[21] C. Schorn et al., “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 DATE.
IEEE, 2018, pp. 979–984.

[22] C. Schorn et al., “An efficient bit-flip resilience optimization method for
deep neural networks,” in 2019 DATE. IEEE, 2019, pp. 1507–1512.

[23] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences, vol. 11,
no. 14, p. 6455, 2021.

[24] M. Abdullah Hanif and M. Shafique, “Salvagednn: salvaging deep neural
network accelerators with permanent faults through saliency-driven fault-
aware mapping,” Philosophical Transactions of the Royal Society A, vol.
378, no. 2164, 2020.

[25] W. Choi et al., “Sensitivity based error resilient techniques for energy
efficient deep neural network accelerators,” in 2019 DAC, 2019, pp. 1–6.

[26] Y. He et al., “Fidelity: Efficient resilience analysis framework for deep
learning accelerators,” in 2020 53rd IEEE/ACM MICRO. IEEE, 2020,
pp. 270–281.

[27] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer Science & Business
Media, 2004, vol. 17.

[28] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 DATE. IEEE, 2009, pp. 502–506.

[29] L.-H. Hoang et al., “Ft-clipact: Resilience analysis of deep neural networks
and improving their fault tolerance using clipped activation,” in 2020 DATE.
IEEE, 2020, pp. 1241–1246.

[30] B. Ghavami et al., “Fitact: Error resilient deep neural networks via fine-
grained post-trainable activation functions,” in 2022 DATE. IEEE, 2022,
pp. 1239–1244.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:51:15 UTC from IEEE Xplore. Restrictions apply.

Appendix 9

IX

199

M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“A systematic literature review on hardware reliability assessment methods for
deep neural networks,” ACM Computing Surveys, vol. 56, no. 6, pp. 1–39, 2024.

141

A Systematic Literature Review on Hardware Reliability
Assessment Methods for Deep Neural Networks

MOHAMMAD HASAN AHMADILIVANI, MAHDI TAHERI, and JAAN RAIK, Tallinn Univer-
sity of Technology, Estonia
MASOUD DANESHTALAB, Mälardalen University, Sweden and Tallinn University of Technology,
Estonia
MAKSIM JENIHHIN, Tallinn University of Technology, Estonia

Artificial Intelligence (AI) and, in particular, Machine Learning (ML), have emerged to be utilized in various
applications due to their capability to learn how to solve complex problems. Over the past decade, rapid
advances in ML have presented Deep Neural Networks (DNNs) consisting of a large number of neurons and
layers. DNN Hardware Accelerators (DHAs) are leveraged to deploy DNNs in the target applications. Safety-
critical applications, where hardware faults/errors would result in catastrophic consequences, also benefit
from DHAs. Therefore, the reliability of DNNs is an essential subject of research.

In recent years, several studies have been published accordingly to assess the reliability of DNNs. In this
regard, various reliability assessment methods have been proposed on a variety of platforms and applications.
Hence, there is a need to summarize the state-of-the-art to identify the gaps in the study of the reliability of
DNNs. In this work, we conduct a Systematic Literature Review (SLR) on the reliability assessment methods
of DNNs to collect relevant research works as much as possible, present a categorization of them, and address
the open challenges.

Through this SLR, three kinds of methods for reliability assessment of DNNs are identified, including Fault
Injection (FI), Analytical, and Hybrid methods. Since the majority of works assess the DNN reliability by FI,
we characterize different approaches and platforms of the FI method comprehensively. Moreover, Analytical
and Hybrid methods are propounded. Thus, different reliability assessment methods for DNNs have been
elaborated on their conducted DNN platforms and reliability evaluation metrics. Finally, we highlight the
advantages and disadvantages of the identified methods and address the open challenges in the research
area. We have concluded that Analytical and Hybrid methods are light-weight yet sufficiently accurate and
have the potential to be extended in future research and to be utilized in establishing novel DNN reliability
assessment frameworks.

CCS Concepts: • General and reference→ Surveys and overviews; • Hardware→Hardware reliability;
• Computer systems organization→ Neural networks; Reliability;

This work was supported in part by the European Union through the European Social Fund in the frames of the “Information
and Communication Technologies (ICT) programme” (“ITA-IoIT” topic), the Estonian Research Council grant PRG1467
“CRASHLESS,” the Estonian-French science and technology cooperation programme PARROT project “EnTrustED,” and by
the Swedish Innovation Agency VINNOVA project SafeDeep.
Authors’ addresses: M. H. Ahmadilivani, M. Taheri, J. Raik, and M. Jenihhin, Tallinn University of Technology, Tallinn, Esto-
nia; e-mails: {mohammad.ahmadilivani, mahdi.taheri, jaan.raik, maksim.jenihhin}@taltech.ee; M. Daneshtalab, Mälardalen
University, Västerås, Sweden and Tallinn University of Technology, Tallinn, Estonia; e-mail: masoud.daneshtalab@
taltech.ee.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
0360-0300/2024/01-ART141
https://doi.org/10.1145/3638242

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:2 M. H. Ahmadilivani et al.

Additional Key Words and Phrases: Reliability assessment, deep neural networks, DNN hardware accelerator,
fault injection

ACM Reference format:
Mohammad Hasan Ahmadilivani, Mahdi Taheri, Jaan Raik, Masoud Daneshtalab, and Maksim Jenihhin. 2024.
A Systematic Literature Review on Hardware Reliability Assessment Methods for Deep Neural Networks.
ACM Comput. Surv. 56, 6, Article 141 (January 2024), 39 pages.
https://doi.org/10.1145/3638242

1 INTRODUCTION
Deep Neural Networks (DNNs) are nowadays extensively applied to a wide variety of applica-
tions due to their impressive ability to approximate complex functions (e.g., classification and
regression tasks) via learning. Since powerful processing systems have evolved in the recent
decade, DNNs have emerged to be deeper and more efficient as well as employed in an ever broader
extent of domains. Meanwhile, using DNN Hardware Accelerators (DHAs) in safety-critical ap-
plications, including autonomous driving, raises reliability concerns [1, 2]. In compliance with ISO
26262 functional safety standard for road vehicles, the evaluated FIT (Failures In Time) rates of
hardware components must be less than 10 (meaning 10 failures in 1 billion hours) to pass the
highest reliability level [3], which requires diligent design.

DNNs are deployed in their target application by different DHA platforms, including Field-
Programmable Gate Arrays (FPGAs), Application-Specific Integrated Circuits (ASICs),
and Graphics Processing Units (GPUs) [4]. Depending on the DHA and the application’s envi-
ronment, different fault types may present a threat to the reliability of the component [5]. Figure 1
illustrates the reliability threats (described in Section 2.3) in an example DHA. In this figure, differ-
ent fault types originating from several reasons could occur in any of the DHA’s components that
may lead to a disastrous misclassification, e.g., once a red light is detected as a green light. Faults
are originated from hardware, however, they can also be modeled at software platforms for the
ease of study. Accordingly, the reliability of DNNs is tightly coupled with the reliability of DHAs
as faults are coming from hardware. It is worth highlighting that the reliability in this article does
not relate to the reliability in software engineering or security issues, e.g., adversarial attacks.

It has been shown in several studies that the functionality of DNNs in terms of accuracy is
remarkably degraded in the presence of faults [6–10]. Recently, numerous research works have
been published on the assessment and enhancement of DNNs’ reliability. However, due to the
extent of the DNNs domain, these works approach the problem of the reliability of DNNs from
various perspectives. We are faced with several applications of DNNs as well as a variety of DNN
algorithms for different tasks. Therefore, it will lead to distinct platforms and reliability threats,
which hinders unifying and generalizing the methods of reliability assessment and enhancement
of DNNs.

Throughout the literature, various methods of DNN reliability assessment and enhancement are
presented. Some review papers have been published on the topic of DNNs reliability enhancement
methods [4, 5, 11–14]. These works aim to formulate the reliability problem in DNNs, categorize
available reliability improvement methods in this domain, and overview the fault injection meth-
ods for reliability assessment. The analysis in Reference [14] is the first review on the subject of
fault tolerance in DNNs and describes different fault models and reliability improvement methods
in DNNs. However, the topic was still not as mature as it is today, and numerous works have been
published afterwards. Subsequent works such as References [4, 5, 11] provide extensive reviews on
the reliability improvement methods for DNNs and characterize taxonomies of different methods.
Nevertheless, they do not consider the assessment and evaluation methods of the reliability for

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:3

Fig. 1. Hardware-induced reliability threats in an example DHA and their possible impact on the output [1].

DNNs. Other surveys [12, 13] have reviewed fault injection methods for DNNs reliability assess-
ment, with the former work focused merely on fault criticality assessment and the latter including
only a few papers in the survey. In this article, we present the first Systematic Literature Review
(SLR) dedicated to all methods of reliability assessment of DNNs.

Reliability assessment of DNNs is a process for evaluating the reliability of a DNN that is being
executed either as a software model or by a hardware platform. However, the assessment method
for reliability may vary, depending on the platform. In this regard, it is necessary to comprehend
and distinguish the different methods used to assess the reliability of DNNs across platforms. This
article establishes a thorough picture of the reliability assessment methods for DNNs and system-
atically reviews the relevant literature. To achieve this, we carry out the SLR methodology [15, 16]
to present this survey. The primary focus of this review is to investigate the methods of reliability
assessment for DNNs, generalize and characterize the methods, and identify the open challenges
in the domain.

To the best of our knowledge, this survey represents the first comprehensive literature review
on reliability assessment methods for DNNs. We cover all published papers from 2017 to 2022 that
could be found through a systematic search. The main contributions of this article are:

— Reviewing the literature of the reliability assessment methods of DNNs, systematically;
— Analyzing the trends of published papers over different years and methods;
— Characterizing and categorizing the reliability assessment methods for DNNs;
— Identifying fault injection methods based on the DNN platforms;
— Introducing analytical and hybrid reliability assessment methods along with fault injection;
— Addressing the open challenges in the research area and recommendations for future re-

search directions.
The structure of the article is as follows: Section 2 presents the background on DNNs and re-

liability concepts; Section 3 explains the methodology of this survey and addresses the research
questions; Section 4 reviews the study briefly, presents the statistics of the publications, and de-
picts the top-level taxonomy of reliability assessment methods for DNNs. In Section 5, the details
of the reliability assessment methods are explained. Section 6 includes pros and cons of methods
and open challenges of the study domain. Section 7 provides the conclusions of this survey.

2 PRELIMINARIES
2.1 Deep Neural Networks
Deep Learning (DL) is a sub-domain of Machine Learning (ML), which is the study of mak-
ing computers learn to solve problems without being directly programmed [17]. Regarding the

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:4 M. H. Ahmadilivani et al.

Fig. 2. Abstract view of a simple neural network with the detail of a neuron.

impressive ability of DNNs in learning, they are applicable in a vast variety of domains, such as
image and video processing, data mining, robotics, autonomous cars, gaming, and so on.

DNNs are inspired by the human brain, and they have two major phases: training and inference.
In the training phase, which is an iterative process and performed once, the hyper-parameters
(e.g., weights and biases) of the neural network are updated on a determined dataset. A loss func-
tion is adopted in the training phase that measures the difference between the expected and the
estimated output of DNN to achieve higher accuracy. Accuracy expresses the proportion of the
DNN outputs coinciding with the expected output. However, in the inference phase, representing
the DNN deployment, the network is run several times with the parameters obtained during the
training phase [17].

DNNs are constructed of the units of neurons. Each neuron receives some activation inputs and
multiplies them by the corresponding weights. Then, it conveys the summation of the weighted
activations to its output. A set of neurons builds up a layer that may have other additional functions,
e.g., activation function (ReLu, sigmoid, etc.), batch normalization, (max or average) pooling, and
so on [17]. Equation (1) represents the function of the ith neuron in layer l (denoted as N l

i) with
input activations from the previous layer l-1 with n outputs (denoted as X l−1), where W and b
represent weights and bias, respectively.

N l
i = ϕ ���

n∑

j=0
X l−1

j ×W l
i j + b

l��� (1)

An abstract view of a neuron and a neural network is depicted in Figure 2. As shown, inputs
are fed into the network through the input layer. The middle layers, called hidden layers, determine
the depth of the network and conduct the function of the DNN. The output layer is where the
network decides. It produces some probabilities of the possible outputs, i.e., output confidence
score, and the class with the highest value is the top-ranked output.

DNNs have various architectures each suitable for specific applications. Nevertheless, it is worth
mentioning some terms that are used in this article. Convolutional Neural Networks (CNNs)
are extensively used in classification, object detection, and semantic segmentation tasks and
consist of multiple convolutional (CONV) and fully connected (FC) layers. CONV layers have
ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:5

a set of two-dimensional (2D) weights, called filters, that extract a specific feature from the in-
put of the layer. A channel is a set of input feature maps (ifmap) that is convolved with filters
resulting in the output feature maps (ofmap) [17].

In the research area of CNNs, there are some models of networks that are most frequently
used. For instance, LeNet-5 [18], AlexNet [19], GoogLeNet [20], VGG [21], and ResNet [22] are
introduced for image classification, and YOLO [23] is designed for object detection. In addition,
prominent datasets that are mostly used for training networks on image classification tasks are
MNIST [24], CIFAR [25], and ImageNet [26]; and on object detection are KITTI [27] and PASCAL
VOC [28].

In addition, due to the large number of parameters and calculations in DNNs, Quantized Neural
Networks (QNNs) [29] and Binarized Neural Networks (BNNs) [30] are introduced to reduce
the complexity, memory usage, and energy consumption of DNNs. These DNNs are the quantized
versions of existing DNNs that reduce the bit-width of their parameters and calculations with an
acceptable accuracy loss.

2.2 DNN Platforms
2.2.1 Software Frameworks. DNN software frameworks and libraries in high-level program-

ming languages have been developed to ease the process of designing, training, and testing DNNs.
These frameworks are widely used due to their high abstraction level of modeling and short design
time. Some of well-known software frameworks that are being used for training the DNNs are: Ten-
sorFlow [31], Keras [32], PyTorch [33], DarkNet [34], and Tiny-DNN [35]. All these frameworks
are capable of using both CPU and GPU to accelerate the training process.

2.2.2 DNN Hardware Accelerators (DHAs). DHAs are used for the training as well as the infer-
ence phase of DNNs. They are called accelerators due to their dedicated design employing paral-
lelism for reducing the execution time of the DNN, either in training or inference. DHAs can be
generally categorized into four classes: FPGAs, ASICs, GPUs, and multi-core processors [36, 37].

According to the literature review of DHAs in Reference [37], FPGAs are used more frequently
than other DHA platforms in terms of implementing DNNs, due to their availability and design
flexibility for different applications [38]. FPGAs are programmed via their configuration bits that
determine the functionality of the FPGA. The system of FPGA-based DNN accelerators usually
consists of a host CPU and an FPGA part with corresponding interconnections between them. In
this design model, the DNN is implemented on the FPGA part and the CPU controls the accelerator
with software, while each part is integrated with memories [38]. A typical structure of FPGA-based
DNN accelerator is depicted in Figure 3, which is based on HW/SW co-design, which means sepa-
rating the implementation of DNNs on the integrated CPU (the software) and FPGA (the hardware)
that are communicating with one another [39]. High-Level Synthesis (HLS) tools, which can syn-
thesize high-level programming languages to RTL, are also used for developing FPGA-based DNN
accelerators [38].

ASIC-based DNN accelerators are more efficient than FPGAs in terms of performance and power
consumption but less flexible in terms of applications and require a long design time [40]. There
are two general types of architectures for ASIC-based DHA platforms: spatial and temporal [17].
Figure 4 depicts an example of a spatial architecture model that is constructed of 2D arrays of
Processing Elements (PEs) flowing data horizontally and vertically from input/weight buffers
to output buffers. PEs perform Multiply-Accumulate (MAC) operations on inputs and weights
representing a neuron operation in the DNN. Off-chip memories are required to store the pa-
rameters of DNNs and save the intermediate results from PEs. Tensor Processing Unit (TPU),
produced by Google, one of the most applicable ASIC-based DNN accelerators, is based on this
type of architecture [41].

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:6 M. H. Ahmadilivani et al.

Fig. 3. Typical structure of an FPGA-based DNN accelerator [38].

Fig. 4. An example of spatial architecture for ASIC-based DNN accelerators [42].

Fig. 5. General architecture of CUDA-based GPUs [44].

GPUs are a powerful platform for training and inferring deep networks and are vastly used
in safety-critical applications [43]. GPUs include up to thousands of parallel cores, which make
them efficient for DNN algorithms, especially in the training phase [40]. GPUs are designed to
run several threads of a program and are also exploited to accelerate running DNNs [37]. The
general architecture of GPUs is depicted in Figure 5. There are numerous Streaming Multipro-
cessors (SMs) in the GPU, each having several cores with a shared register file and caches, while
a scheduler and dispatchers control the tasks among and within SMs and cores [44].

Multi-core processors, e.g., ARM processors, deploy DNNs mostly for edge processing and In-
ternet of Things (IoT) applications [45–47]. They facilitate DNNs with parallel computing and
low power consumption and provide a wider range of applications for DNNs.
ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:7

2.3 Reliability, Threats, Fault Models, and Evaluation
Terms of robustness, reliability, and resilience are mostly used in the research pertaining to the
reliability of DNNs. These terms are often used interchangeably and ambiguously. In the following,
we present the definitions of these three terms as applied in the current literature review:

— Reliability concerns DNN accelerators’ ability to perform correctly in the presence of faults,
which may occur during the deployment caused by physical effects either from the environ-
ment (e.g., soft errors, electromagnetic effects) or from within the device (e.g., manufacturing
defects, aging effects, process variations).

— Robustness refers to the property of DNNs expressing that the network is able to continue
functioning with high integrity despite the alteration of inputs or parameters due to noise
or malicious intent.

— Resilience is the feature of DNN to tolerate faults in terms of output accuracy.
In this work, we are concerned about the reliability of DNNs, which refers to the ability of

accelerators to continue functioning correctly in a specified period of time with the presence
of faults. Reliability in this article does not relate to the reliability and test in software engi-
neering or security issues, e.g., adversarial attacks in which an attacker perturbs the inputs or
parameters.

Faults are the sources of threatening the reliability of DNN accelerators (see Figure 1) that can
be caused by several reasons, e.g., soft errors, aging, process variation, and so on [1]. Soft errors
are transient faults induced by radiation that are caused by striking charged particles to transis-
tors [48]. Aging is the time-dependent effect of the increasing threshold voltage of transistors due
to physical phenomena that will lead to timing errors and permanent faults [49]. Process varia-
tions are alterations of transistor’s attributes in the process of chip fabrication. As a consequence,
voltage scaling may result in faults at the outputs of transistors during their operation [50].

Faults as reliability threats are generally modeled as permanent and transient faults [5, 11, 14].
Permanent faults result from process variations, manufacturing defects, aging, and so on, and
they stay constant and stable during the runtime. However, transient faults are caused by soft
errors, electromagnetic effects, voltage and temperature variations, and so on, and they show up
for a short period of time. Nevertheless, once a faulty value from a component is read by another
component and the propagated value does not coincide with the expected one, an error happens.
Therefore, a fault is an erroneous state of hardware or software, and an error is a manifestation
of it at the output. Failure or system malfunction is the corruption or abnormal operation of the
system, which is caused by errors [14, 51, 52].

Faults may have different impacts on the output of DNNs and can be classified based on their
effects. A fault may be masked or corrected if detected or result in different outputs compared to
the fault-free execution (golden model), in which case, the fault is propagated and observed at the
output. Faults observed at the output of the system can be classified in two categories: Silent Data
Corruption (SDC) and Detected Unrecoverable Errors (DUE), depending on whether a fault
is undetected (SDC) or detected (DUE) [11, 53]. Figure 6 illustrates this general fault classification
scheme regarding the output of systems adopted from Reference [51].

Reliability assessment is the process in which the target system or platform is modeled or pre-
sented, and by means of simulations, experiments, or analysis, the reliability is measured and
evaluated. Reliability assessment is a challenging process, and several methods can be adopted
for modeling and evaluating reliability. In general, evaluating the reliability of a system can be
performed by three approaches: Fault Injection (FI) methods, analytical methods, and hybrid
methods [54]. FI methods are exploited to inject a model of faults into the system implemented
either in software or hardware, while the system is in simulation or being executed. Analytical

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:8 M. H. Ahmadilivani et al.

Fig. 6. The adopted fault classification based on the output point of view, as in Reference [51].

methods attempt to model the function of the system and its reliability with mathematical equa-
tions, depending on the target architecture. In hybrid methods, an analytical model is adopted
alongside an FI to evaluate the reliability. Generally, FI methods are more realistic than analyt-
ical and hybrid methods; however, FI is a time-consuming process with a high computational
complexity [55].

In the reliability assessment using FI, it is necessary to determine the target platform, potential
fault locations (logic or memory), and the fault type (transient or permanent). Transient faults
in logic show up in one clock cycle, while in the memory, they flip a bit that will remain until
the end of the execution. Permanent faults are modeled as stuck-at-0 (sa-0), or stuck-at-1 (sa-1),
and they exist during the whole execution. According to the selected fault model, perturbation
of the model is performed, the system is run, and the outputs are gathered. The output of faulty
execution should be compared with the one of the golden-model to measure the impact of faults
on the system.

FI allows calculating reliability metrics, e.g., Failures-In-Time (FIT), Architectural Vulnera-
bility Factor (AVF), SDC rate, Soft Error Rate (SER), cross-section, and so on. FIT is the number
of failures in 109 hours, AVF is the probability of fault propagation from a component to other com-
ponents in a design, SDC rate refers to the ratio of the outputs affected by faults, SER refers to the
ratio of soft error occurrence, and cross-section is the proportion of observed errors over all col-
lided particles. These quantitative evaluation metrics are usually tightly coupled to each other, yet
follow a different purpose to express the reliability of a system.

Exhaustive fault injection into all bits of a platform at every clock cycle requires an extensive
simulation. Therefore, to determine how many faults could be injected into the system to be repre-
sentative statistically, a confidence level with an error margin is presented [56]. It provides a fault
rate or Bit Error Rate (BER) for an FI experiment. The number of FI experiments’ repetitions re-
garding the number of possible bit and clock cycle combinations to support the number of injected
faults determines the execution space for the FI task.

3 REVIEW METHODOLOGY
Systematic Literature Review (SLR) is a standard methodology for reviewing the literature in
a recursive process and minimizing bias in the study [15, 16, 37]. Hence, the SLR methodology is
adopted in this survey. The methodology determines:

— Specifying the Research Questions (RQs),
— Specifying the search method for finding and filtering the related papers,

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:9

— Extracting corresponding data from the found papers based on the RQs,
— Synthesizing and analyzing the extracted data.

Therefore, based on the aforementioned steps of SLR, the RQs that we attempt to answer are:
— RQ1: What is the distribution of the research works in the domain of reliability assessment?

(To obtain the trend of publications in this domain).
— RQ2: What are the existing methods of reliability assessment for DNNs? (To comprehend

the entire variety of methods in this domain).
— RQ3: How could the existing methods be characterized and categorized in terms of reliability

assessment methods? (To categorize existing works and provide the taxonomy, a systematic
instruction for finding the suitable method for potential applications in this domain).

— RQ4: What are the open challenges in the domain of reliability assessment methods for
DNNs? (To specify the remaining areas for future research).

The motivation for this survey is the numerous recent papers published on the reliability of
DNNs emphasizing the need for such a literature review. We have searched for the papers system-
atically through scientific search servers. The main databases and publishers we have used are:
Google Scholar, IEEE Explore, ACM Digital Library, Science Direct, and Elsevier. The initial set of
papers is provided by searching some keywords in the mentioned servers, including “reliability
of DNNs”, “hardware reliability of DNN accelerators”, “resilient DNNs”, “robust DNNs”, “the vul-
nerability of DNNs”, “soft errors in DNNs”, “fault injection in DNNs” (“DNN” also replaced with
“CNN”).

Subsequently, based on the title and abstract of each paper, we select them. This selection is
based on the criterion of whether the paper may be concerned with the reliability of DNNs or not.
In addition, the references and citations of the papers have been checked for the chosen papers to
find more related papers. In this process, we selected 242 papers based on their titles and abstracts.

In the next step, we study the introduction, conclusion, and methodology sections of each paper
to decide whether we include the paper in the review or not. The inclusion criteria of the papers
are:

— The paper is published by one of the scientific publishers and has passed through a peer-
review process,

— The focus of the work is DNN, neither generic reliability assessment methods using DNNs
as one of the examples nor employing DNNs for assessing the reliability of a platform.

— The work includes a reliability assessment method for DNNs,
— The method of reliability assessment is clear and well-defined,
— Terms including reliability, robustness, resilience, or vulnerability must refer clearly to reli-

ability issues, as defined in Section 2.3.
Papers that have included similar keywords but have not matched the above conditions are

excluded. As a result, we have included 139 papers published from 2017 to the end of 2022 in this
literature review to build up the taxonomy of the literature review and methods’ categorization.

In the following, we have designed a Data Extraction Form (DEF) based on the RQs. In this
form, we have taken note of reviewing the papers to find some specific data such as:

— General method of reliability modeling (FI, analytical, or hybrid),
— The platform where DNNs are implemented,
— The fault model and fault locations in case of FI,
— Details of reliability assessment method,
— Reliability evaluation metrics.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:10 M. H. Ahmadilivani et al.

Fig. 7. Top-level overview of the reliability assessment methods in this work.

In the final step, after reviewing all the selected papers and filling in the DEF, we synthesized
and analyzed the obtained data from the papers. Thereafter, we have provided the categorization
taxonomy of the reliability assessment methods for DNNs, have characterized them in this article,
and analyzed them to find the open challenges.

4 STUDY OVERVIEW
This section presents an overview of the study and the analyzed statistics of the included works in
different categories. As mentioned, we have included 139 papers from 2017 to 2022 for categorizing
the reliability assessment methods for DNNs.

4.1 Taxonomy
Figure 7 represents the top-level categorization overview of the study to address RQ2 and RQ3.
Reliability assessment of DNNs is categorized into three main methods: Fault Injection, Analytical,
and Hybrid.

4.1.1 Fault Injection (FI) Methods. The works based on this method evaluate the reliabil-
ity of DNNs by fault injection campaign. There exist several taxonomies for the fault injection
approaches in the hardware reliability domain [12, 54, 55, 57, 58]. Therefore, we adapt them for
categorizing the related works on DNNs into three approaches addressed in Figure 7 and Table 1.
FI methods are categorized into three approaches of fault injection as follows:

— Fault Simulation: DNNs are implemented either in software by high-level programming
languages or Hardware Description Languages (HDL) and faults are injected into the
model of the DNN. In the former case, some works consider a DHA model in their software
implementations while others do not. We divide works on this approach into hardware-
independent, hardware-aware, and RTL model platforms. RTL models represent ASIC-based
DHAs.

— Emulation in Hardware: Research works on this approach implement and run DNNs on
a DHA (i.e., FPGA, GPU, or processor) and inject the faults into the components of the ac-
celerator by a software function, FI framework, and so on.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:11

Ta
bl

e
1.

Fa
ul

t
In

je
ct

io
n

C
at

eg
or

iz
at

io
n

w
it

h
th

e
C

or
re

sp
on

di
ng

R
ef

er
en

ce
s

FI
M

et
ho

d
Fa

ul
tS

im
ul

at
io

n
Fa

ul
tE

m
ul

at
io

n
Ir

ra
di

at
io

n
D

N
N

Pl
at

fo
rm

H
W

-i
nd

ep
en

de
nt

H
W

-a
w

ar
e

R
TL

M
od

el
FP

G
A

G
PU

Pr
oc

es
so

rs
FP

G
A

G
PU

TP
U

Fa
ul

tT
yp

e

Tr
an

sie
nt

[5
9–

61
]

[6
2–

67
]

[6
8–

73
]

[7
4–

78
]

[7
9–

82
]

Tr
an

sie
nt

[9
,8

3]
[8

4–
87

]
[8

8–
91

]

Tr
an

sie
nt

[3
6,

92
–9

4]

Tr
an

sie
nt

[8
]

[9
5–

99
]

[1
00

–1
02

]
[1

03
–1

05
]

[1
06

–1
08

]

Tr
an

sie
nt

[1
0]

[4
4,

10
9–

11
1]

[1
12

–1
15

]
[1

16
?

–1
19

]
[1

20
–1

22
]

Tr
an

sie
nt

[3
6]

[9
2,

12
3,

12
4]

[1
25

–1
27

]
[1

28
–1

30
]

Tr
an

sie
nt

[9
5,

96
,1

03
,1

06
]

[1
08

,1
31

,1
32

]
[1

33
–1

35
]

Tr
an

sie
nt

[1
0,

11
5,

11
7]

[1
21

,1
22

]
[1

36
,1

37
]

Tr
an

sie
nt

[1
38

,1
39

]

Pe
rm

an
en

t[
72

]
[1

40
–1

43
]

Pe
rm

an
en

t[
14

4]
[6

,1
45

–1
47

]
[1

48
–1

50
]

Pe
rm

an
en

t
[7

,5
8,

15
1]

[1
52

–1
54

]

Pe
rm

an
en

t
[1

05
,1

06
]

[1
55

,1
56

]

Pe
rm

an
en

t
[1

37
,1

57
,1

58
]

[1
59

,1
60

]

Fa
ul

tL
oc

at
io

n

W
ei

gh
ts

[6
1,

62
]

[6
3–

65
,6

7,
69

]
[6

8,
70

,7
1,

73
,7

4]
[7

5–
79

]
[8

0–
82

,1
40

]
[1

41
–1

43
,1

61
?

]

W
ei

gh
ts

[9
,8

5,
86

]
[8

8–
90

]
[9

1,
14

6,
14

8]

PE
s,

M
AC

s
[7

,1
51

,1
52

]
[1

53
,1

54
]

Co
nfi

gu
ra

tio
n

Bi
ts

[8
,9

5]
[9

6–
99

]
[1

00
–1

02
]

[1
03

,1
04

,1
07

]
[1

08
,1

62
,1

63
]

Re
gi

st
er

s,
In

st
ru

ct
io

ns
[1

0,
44

,1
09

,1
10

]
[1

11
–1

14
]

[1
15

,1
16

,1
18

]
[1

19
–1

22
]

[1
57

–1
60

]

Re
gi

st
er

Fi
le

[3
6,

92
,1

23
,1

24
]

[1
25

–1
27

]
[1

28
–1

30
]

En
tir

e
FP

GA
Pa

ck
ag

e
[9

5]
[9

6,
10

3,
13

2]
[1

08
,1

31
,1

33
]

[1
35

]

En
tir

e
GP

U
[1

0,
11

5,
11

7]
[1

21
,1

22
]

[1
36

?
,1

37
]

En
tir

e
Ch

ip
re

fs
[1

38
,1

39
]

Ac
tiv

at
io

ns
[5

9]
[6

0,
64

,6
6,

72
]

[7
6,

78
]

Ac
tiv

at
io

ns
[6

]
[9

,8
3?

,8
4]

[8
7–

90
]

[9
1,

14
4,

14
5]

[1
47

–1
49

]

Re
gi

st
er

s,
Bu

ffe
rs

,L
U

Ts
[3

6,
92

–9
4]

O
n-

Ch
ip

M
em

or
ie

s[
8]

[9
8,

10
0,

10
1]

[1
02

,1
05

,1
06

]
[1

55
,1

62
,1

63
]

W
ei

gh
ts

,
Ac

tiv
at

io
ns

[1
17

,1
37

]

In
st

ru
ct

io
ns

[1
30

]
H

yp
er

RA
M

[1
06

,1
34

]

Ev
al

ua
ti

on

Ac
cu

ra
cy

Lo
ss

[5
9]

[6
0–

63
,6

8]
[6

9,
71

–7
4]

[7
5–

79
]

[8
0–

82
,1

41
,1

43
]

Ac
cu

ra
cy

Lo
ss

[6
,9

,8
4,

87
,8

8]
[8

9–
91

,1
44

]
[1

45
–1

47
]

[1
48

–1
50

]

Ac
cu

ra
cy

Lo
ss

[7
,9

3,
15

1]
[1

52
–1

54
]

Ac
cu

ra
cy

Lo
ss

[8
,9

7,
99

?
,1

00
]

[1
01

,1
02

,1
05

]
[1

06
,1

07
,1

56
]

[1
08

,1
55

,1
62

,1
63

]

Ac
cu

ra
cy

Lo
ss

[1
13

,1
20

,1
58

]
[1

59
,1

60
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[3

6,
92

,1
23

,1
24

]
[1

25
–1

27
]

[1
28

–1
30

]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[1

03
,1

33
,1

35
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[1

0,
11

5,
12

1]
[1

22
,1

37
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[1

38
,1

39
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[6

4,
65

,6
7]

[1
40

,1
42

,1
43

]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[8

7]
Fa

ul
t

Cl
as

sifi
ca

tio
n

[3
6,

58
,9

2]
[9

3,
94

]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[8

,9
7–

99
]

[1
01

–1
03

]
[1

04
,1

07
,1

63
]

Fa
ul

t
Cl

as
sifi

ca
tio

n
[1

0,
44

,1
09

–1
11

]
[1

14
–1

16
,1

18
]

[1
19

,1
21

,1
22

,1
37

]
[1

57
–1

60
]

Re
lia

bi
lit

y
Eq

ua
tio

ns
[3

6,
12

4,
12

6]
[1

29
,1

30
]

Re
lia

bi
lit

y
Eq

ua
tio

ns
[9

5,
96

,1
03

]
[1

06
,1

08
]

[1
31

,1
33

,1
34

]

FI
T

Ra
te

[1
0,

11
5]

[1
21

,1
22

]

FI
T

Ra
te

[1
38

,1
39

]

SD
C

Ra
te

[6
6,

70
]

SD
C

Ra
te

[8
3,

85
]

Re
lia

bi
lit

y
Eq

ua
tio

ns
[9

5,
96

,1
03

]
[1

04
,1

05
]

Vu
ln

er
ab

ili
ty

Fa
ct

or
s[

10
,4

4]
[1

09
,1

10
,1

12
,1

13
]

[1
14

,1
16

,1
18

]
[1

19
,1

21
,1

22
]

Vu
ln

er
ab

ili
ty

Fa
ct

or
s

[1
29

,1
30

]

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:12 M. H. Ahmadilivani et al.

— Irradiation: DNN is implemented on a DHA (i.e., FPGA, GPU, or TPU) placed under an
irradiating facility to inject beams onto it.

Most of the works on DNNs’ reliability assessment use FI methods. Therefore, we characterize
three approaches of FI methods in Table 1. In each approach of FI methods, the works are distin-
guished based on DNN platforms. Furthermore, in each category, we elaborate on how the works
determine the fault types and locations and evaluate the reliability by metrics. The details will be
discussed in Section 5.1.

4.1.2 Analytical Methods. Works relying on an analytical method for estimating DNNs’ relia-
bility attempt to determine how parameters and neurons of a DNN affect the output based on the
connections of neurons and layers. Therefore, they analyze the structure of DNNs and provide
a model for the impact of faults on the outputs to find more critical and sensitive components
in the DNN. Hence, they can evaluate the reliability of DNNs by means of vulnerability analysis
derived by analyses and eliminate the complexity of simulating/emulating the faults in reliability
assessment.

4.1.3 Hybrid Methods. Both fault injection and analytical methods are used in this category of
works to take advantage of both. In this regard, analytical methods can provide some mathematical
models in addition to a straightforward fault injection into the system for reliability evaluation, so
metrics of reliability evaluation can be obtained with less complexity than extensive FI experiments
and more realistic than analytical methods.

4.2 Research Trends
To address RQ1, we present the main statistics on the papers included in this study. Figure 8 shows
the distribution of the 139 included papers published over the years 2017–2022. Regarding the chart
of Figure 8, it can be seen that research on the topic of DNNs’ reliability started in 2017 and in the
following years it drew increasingly more attention and turned into an active topic of study.

Figure 9 illustrates the number of papers based on different reliability assessment methods
among all identified works in this literature review. It can be observed that the majority of works
use fault injection to assess the reliability of DNNs while only 10% of the works consider analytical
(11 works) and hybrid analytical/FI (3 works) methods. In this regard, we present Figure 10 to il-
lustrate the distribution of works using FI over different approaches and DNN platforms. It shows
that most of the works belong to the hardware-independent platform of simulation in the software
approach. Moreover, in the emulation in hardware approach, most of the works are done on the
GPU platform. Hence, the figures present the trend of the research domain and the distribution of
works over different methods and approaches, leading to areas where there is still room for future
research.

5 CHARACTERIZATION
In this section, details of reliability assessment methods for DNNs are presented based on the
categorizations in Figure 7 and Table 1. We start from FI methods, which include the majority of
works. Then, analytical and hybrid methods will be discussed.

5.1 Fault Injection Methods
In FI methods of reliability assessment, once the DNN platform and fault model are determined,
perturbation and system execution are performed, and the reliability is evaluated. Regarding the
categorization in Table 1, the identified approaches of FI methods on DNN reliability assessment
are presented in this subsection, separately. Since FI is the most frequently used method in the

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:13

Fig. 8. Number of included papers over years.

Fig. 9. Proportion of each method in the reliability assessment of DNNs among included works.

Fig. 10. Distribution of included papers over different FI approaches and platforms.

reliability assessment of DNNs, there are various presented evaluation metrics. To elaborate and
distinguish different evaluation metrics, we have presented them for different approaches and
platforms, separately.

5.1.1 Fault Simulation. In this subsection, the works assessing the reliability of DNNs by FI
with a fault simulation approach are described. There are three platforms in this approach, i.e.,
hardware-independent, hardware-aware, and RTL models that are explained in the corresponding
subsections.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:14 M. H. Ahmadilivani et al.

5.1.1.1 Hardware-independent Platform. In this platform, DNNs are implemented in soft-
ware DNN frameworks. Therefore, fault injection is performed on top of the frameworks, i.e., Py-
Torch (used in References [59, 68, 70–72, 76, 78]), Keras (used in References [61, 62, 80, 81]), Ten-
sorFlow (used in References [66, 79]), Caffe (used in Reference [77]), DarkNet (used in References
[73, 140, 142]). Implementing the DNN in software provides a flexible environment for studying
the effect of various fault models. As shown in the corresponding branch of Table 1, both transient
and permanent faults are studied in this platform. However, most of the works studied transient
faults (soft errors, SEU, MBU, etc.).

To model faults at the software level, the fault model is determined differently regarding the
fault type and general aspect of DHAs. In this regard, modeling and injecting permanent faults
are straightforward. They are active throughout the entire execution and set the value of a bit or
variable (in weights or activations) to 0 or 1, as experimented in References [72, 140, 142]. To model
transient faults, the following assumptions are considered for injecting faults into parameters,
i.e.:

— DNN’s parameters (e.g., weights) are stored in the memory of the accelerator. Hence, random
transient faults are injected into random bits of weights as a bitflip in different executions,
as experimented in References [61–65, 67–71, 73–82, 141, 143, 161].

— Faults in inputs/outputs of DNN’s layers (i.e., activations) lead to the study of their impacts
on both memory and logic. Activation memory faults are studied in References [72, 76], and
faults in logic or datapath are investigated in References [59, 60, 64, 66, 78].

Therefore, to experiment the impact of faults on memory elements of DHAs at the software
level, faults are injected into random weights and activations, and to model fault effects on logic,
faults are injected into random activations. Most of the relevant works on Hardware-independent
platform inject transient faults into the bits of randomly selected weights. Nearly all works in
this class inject faults based on BER, determining the ratio of faulty bits throughout the values.
In addition, to reach the 95% confidence level with 1% error margin, they repeat the tests several
times with different random faults as in References [77, 80, 140, 142].

Evaluation: For evaluating the reliability, different metrics are considered. References [59–63,
68, 69, 71–82, 141, 143] report accuracy loss under fault campaign experiments. They compare the
accuracy of the faulty network with the accuracy of the fault-free network on the same test set.
Some works classify the injected faults regarding the outputs of the faulty network compared with
the golden model output. References [140, 142, 143] inject one permanent fault per experiment and
classify them into three classes:

— Masked: No difference between the outputs of the faulty network and the golden model.
— Observed-safe: Different output of the faulty network with the golden model, while the

confidence score of the top-ranked element is reduced by less than 5% with respect to the
one of the golden one.

— Observed-unsafe: Different output of faulty network with the golden model, while the
confidence score of the top-ranked element is reduced by more than 5% with respect to the
one of the golden one.

Moreover, in References [65, 67] transient faults are injected into the encrypted weights of a
network, and they are classified based on the effect of faults on execution of the program and
results, as:

— Silent or safe: Similar to “masked,” mentioned above in References [140, 142].
— SDC: Only affects the output results of the network.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:15

— Detected as a software exception: Affects the execution of the program and stops it.
— Detected by padding check action: Corrupts the ciphertext.

Burel et al. [64] have adopted the fault classification scheme for semantic segmentation applica-
tions in which DNNs label each pixel of an input image according to a set of known classes. The
corresponding classes are:

— Masked: Similar to “masked,” mentioned above.
— No Impact SDC: No labels of pixels are modified.
— Tolerable SDC: Labels of less than 1% of pixels are modified, and no class is removed/added

due to the fault.
— Critical SDC: Labels of more than 1% of pixels are modified or any class is removed/added

due to the fault.
A specific way of fault evaluation based on fault classification is only considering the faults that

affect the output as SDC, since they are critical. References [66, 70] evaluate the network based
on the proportion of faults that affect the output classification results as SDC rate. Therefore, the
reliability of a network can be evaluated by fault classification based on their effect on the outputs,
whether by changing the output results, or by a threshold of accuracy loss, or system exceptions.
This way of evaluation assists in understanding how faults would be propagated and affect the
network.

Software FI Tools: Some fault injectors are presented as tools that are able to support the relia-
bility study of DNNs with different fault models in software frameworks of DNNs. PyTorchFI [164],
TensorFI [165–167] and its extension TensorFI+ [168, 169], and Ares [170] inject faults into DNNs,
which are implemented in PyTorch, Tensorflow, and Keras, respectively. All of these open-source
frameworks can inject both permanent and transient faults into weights as well as activations with
specified error rates, hence, the accuracy loss can be evaluated. TensorFI also benefits from pro-
viding the SDC rate. These frameworks are used in the reliability studies of DNNs, e.g., PyTorchFI
in References [60, 70], TensorFI in Reference [66], and Ares in Reference [80].

Moreover, to enhance the efficiency of the aforementioned tools, additional fault injectors have
been introduced. One such injector, known as BinFI [171], is an extension of TensorFI that aims
to identify critical bits in DNNs. Another fault injector, namely, LLTFI [172], is proposed to inject
transient faults into specific instructions of DNN models in either PyTorch or TensorFlow and has
been found to be faster than TensorFI. Additionally, a checkpoint-based fault injector is proposed
in Reference [173] that enables studying the impact of SDCs independently of the DNN implemen-
tation framework.

5.1.1.2 Hardware-aware Platform. This platform includes works that consider an abstract
model of the accelerator in their implementation of DNNs in software. They implement the net-
work in DNN software frameworks as well as high-level programming languages. Therefore, they
take advantages of simulation in software fault injection while they also apply the reliability as-
sessment to the abstract model of the accelerator.

References [83, 87] implement a DNN in Tiny-DNN and map it to the RTL implementation of the
accelerator. They study the effect of transient faults in memory and datapath accurately. In these
studies, FI is performed in software while all of its parameters are integrated with the correspond-
ing hardware components. Authors in Reference [88] implement the DNN and the fault injector
in software inspired by an FPGA-based DNN accelerator. Moreover, in References [9, 91], DNN
and FI are implemented in Keras, and the architecture of a systolic array accelerator is considered
for a fault-tolerant design. Similarly, authors in Reference [85] and [86] evaluate their proposed
reliability improvement technique on memories in TensorFlow while injecting transient faults into

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:16 M. H. Ahmadilivani et al.

the weights. PyTorch is used in References [89, 90] to implement the DNN, and transient faults are
injected into activations (datapath or MAC units) and weights (memory) regarding the systolic ar-
ray accelerator model. Reference [84] also uses PyTorch and injects faults by a custom framework
called TorchFI to inject faults into the outputs of CONV and FC layers of the network.

The effect of permanent faults at PEs’ outputs is studied in References [6, 144] where the model
of the accelerator is adopted from implementing the DNN in an N2D2 framework [174]. Further-
more, authors in References [145, 149] use PyTorch and study permanent faults in MAC units of
an accelerator while training to improve the reliability at inference. Authors in Reference [148]
have developed a Keras-based accelerator simulator to study the effect of permanent faults on
the on-chip memory of accelerators by injecting permanent faults into fmaps and weights. Weight
remapping strategy in memory to decrease the effect of permanent faults is evaluated in Reference
[146] using Ares. SCALE-Sim [175], a systolic CNN accelerator simulator, is adopted in Reference
[150] to study permanent faults in PEs and computing arrays in systolic array-based accelerators.

Similar to the Hardware-independent platform, faults are injected based on BER, or fault rate,
and experiments are repeated to reach 95% confidence level and 1% error margin [9, 87, 91].

Evaluation: Nearly all works in this class evaluate the DNN by accuracy loss after fault injec-
tion [6, 9, 84, 86, 88–91, 144, 146–150]. References [83] and [85] evaluate the reliability by SDC
rate as the proportion of faults that caused misclassification in comparison with the golden model.
In addition, authors in Reference [87] differentiate SDCs of injected transient faults into defined
classes and calculate FIT for the accelerator (accel) by its components (comp) with Equation (2) in
which FITr aw is provided by the manufacturer, Sizecomp is the total number of the component bits,
and SDCcomp is obtained by FI.

FITaccel =
∑

comp

FITr aw × Sizecomp × SDCcomp (2)

In addition, in this work, SDCs are classified by comparing the faulty and golden model
outputs as:

— SDC-1: Fault caused a misclassification in the top-ranked output class.
— SDC-5: Fault caused the top-ranked element not to exist in the top-5 predicted output

classes.
— SDC-10%: Fault caused a variation in the output confidence score of the top-ranked output

class more than 10% compared to the golden model.
— SDC-20%: Fault caused a variation in the output confidence score of the top-ranked output

class more than 20% compared to the golden model.

5.1.1.3 RTL Model Platform. Research works that leverage the RTL model of ASIC-based
DHAs and simulate fault injections are described in the following. We identify three groups of FI
experiments in this platform, divided based on the architecture of DHAs:

— 2D systolic array accelerators [7, 93, 151–154],
— RTL implementation of DNNs [94]
— Multi-Processor System-on-Chips (MPSoCs) for DNNs, [58].

In the first group, a configuration of TPU is utilized in References [7, 93, 153, 154], and a model of
a 2D systolic array is implemented in References [151, 152]. Reference [7] also uses Eyeriss [176]
architecture for the accelerator. In this group, FI is performed at RTL, and all works inject ran-
dom permanent faults into PEs/MACs of the arrays, except Reference [93], which injects random
transient faults into buffers, control and data registers.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:17

The second group, which includes Reference [94], implements DNNs in RTL to enable a fault
simulation study in approximated DNNs. In this work, SEU injected into Look-Up Tables are sim-
ulated and studied.

In the third group, which exploits MPSoCs, faults are emulated in the components of the target
multicore processor. Authors in Reference [58] propose a three-level pipeline FI framework that
simulates permanent faults in the hardware model of an MPSoC and evaluate the reliability at the
software level. In their framework, the RTL model of the platform is provided as well as the fault
injector unit at the lowest level. The software implementation of the DNN exists in the middle
level of the framework that performs a pipelined inference and runs each layer of the network
on a separate core. In the top-level of the framework, synchronization of layers and reliability
evaluation is fulfilled.

Evaluation: Most works in this class evaluate the reliability by accuracy loss. Nonetheless,
fault classification is performed in References [58, 93, 94]. Authors in Reference [58] adopted the
classification of Reference [87], which was discussed in Hardware-aware platform (Section 5.1.1)
previously. Furthermore, they added two more classes for the faults that cause Hang (the HDL sim-
ulation never finishes) and Crash (the HDL simulation immediately stops). Authors in Reference
[94] classify the faults similar to the general fault classification scheme (Masked, SDC, crash) with
different terminology.

In addition, Reference [93] classifies SDCs on how they impact classification outputs compared
with the golden model:

— Tolerable Misclassification: The input is misclassified the same as the golden model with
different output confidence scores,

— No Impact Misclassification: The input is misclassified in both golden and faulty models
but into different classes,

— Critical Misclassification: The input is correctly classified in the golden model but mis-
classified in the faulty model,

— Tolerable Correct Classification: The input is correctly classified in both golden and
faulty models with different output confidence scores,

— Beneficial Correct Classification: The input is misclassified in the golden model but cor-
rectly classified in the faulty model.

5.1.2 Fault Emulation. In this subsection, research works that assess the reliability of DNNs
by emulating FI in hardware accelerators are explored. FPGA and GPU platforms are described,
respectively.

5.1.2.1 FPGA Platform. DNNs are implemented fully or partially (e.g., one layer) on FPGAs to
perform the inference phase as described in Section 2.2, and faults are being emulated on different
locations of the accelerator. In most of the works on the FPGA platform, the fault injector unit is
implemented in software that is run on a processor, and faults are injected into the FPGA running
the DNN under analysis. This HW/SW co-design process benefits from the high-performance ex-
ecution of DNNs and fast fault injection. It is worth mentioning that some works implement only
a part of the DNN (e.g., one specific layer) on the FPGA [97, 98, 108].

In this group of works, Zynq-based architecture System-on-Chips (SoCs) [177], which take
advantage of an ARM processor co-existing with the FPGA, are deployed. We categorize this group
of studies into three classes:

— A host computer (e.g., a PC) initializes the faults [97–99, 107, 108],
— The on-board embedded processor initializes the faults [8, 95, 100–106, 162, 163],
— Fault injection module resides inside the hardware design implementation [96, 155, 156].

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:18 M. H. Ahmadilivani et al.

Fig. 11. An overview of the architecture of the FireNN platform [97, 98].

In the first class, faults are generated by a host computer of the accelerator design. Then, the
faults, network parameters, and FPGA configuration bits will be sent to the board. The FPGA starts
running, and the on-board processor collects the results. The on-board processor plays the role of
a controller between FPGA and the host computer. In the end, the results would be passed back to
the host computer for further processing and reliability evaluation. All works of this class emulate
transient faults (SEU) in configuration bits of the FPGA and exploit the accuracy loss of the DNN
for reliability evaluation. Nevertheless, authors in Reference [107] explore transient faults in Flip
Flops (FFs) exhaustively beside random transient faults in configuration memory and classify
them as tolerable, critical, and crashes.

FireNN is proposed in References [97, 98] as a platform for deploying DNNs on Zynq-based
architecture SoCs along with a host computer in a way that DNN is run partially on the FPGA to
perform a reliability evaluation. As shown in Figure 11, FireNN machine runs the neural network
and communicates with the FireNN engine for reliability evaluation of the layer under analysis
running on the FPGA. Faults are generated by the host computer and are injected to the FPGA
through the engine. This platform injects SEUs in weights, layer inputs, and configuration bits.

In the second class, faults are generated and injected into the FPGA’s configuration bits or on-
chip memories by the embedded processor. The embedded processor or a host computer is re-
sponsible for the reliability evaluation. The proposed method in References [162, 163] provides an
injection of permanent faults into the configuration bits of the FPGA as well as into the on-chip
memory blocks through the interfaces between the embedded processor and FPGA on Zynq SoC.
References [95, 103, 104] provide a similar design to inject transient faults into configuration bits
of the FPGA. The effects of transient faults into both on-chip memories and configuration bits of
an FPGA running pruned DNNs are studied in Reference [100]. Authors in Reference [95] provide
random-accumulated FI and exhaustive FI approach on the configuration bits to emulate neutron
and ionizing radiation. Moreover, permanent and transient faults in on-chip memory (HyperRAM)
are studied in References [105, 106] with a software emulator and are validated by radiation results.

It is worth mentioning that injecting faults into the configuration memory is a repetitive pro-
cess, where in each experiment of FI, the faulty configuration bits are loaded to the configuration
memory. Then, the system is run and the results are collected. Thereafter, the next fault(s) are
injected into the fault-free configuration bits loaded to the corresponding memory to analyze the
newly injected fault(s).

A framework named Fiji-FIN is proposed in Reference [102], and the underlying method is
also used in References [8, 101]. This framework is capable of injecting transient faults into both

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:19

Fig. 12. Fiji-FIN framework for fault injection into FPGAs [102].

configuration bits of FPGA and on-chip memories. In this method, FINN framework [178] is used to
develop and train the BNN, and the proposed framework manipulates the FINN’s output to prepare
it for the fault injection. The bit stream file of the FPGA is obtained by an HLS tool and imported
to the FPGA. While the system is running, the faults are generated and injected by the embedded
processor and the reliability is evaluated in comparison with the golden model. Figure 12 depicts
in detail the steps of this FI framework.

In the third class, References [155] and [156] inject permanent faults, and the work in Reference
[96] injects transient faults into the hardware implementation of the network. Authors in Refer-
ence [155] use the FINN framework to implement the QNN with 2-bit weights and activations, and
a block has been added into the hardware design that is deployed for injecting stuck-at faults into
the output of PEs. Reference [156] injects permanent faults into the registers of the RTL model of
the network. Authors in Reference [96] explore the effect of transient faults to the configuration
bits of FPGAs in which different accelerator architectures (Softcore FGPU and ZynqNet HLS) are
implemented.

Evaluation: For evaluating the reliability of DNNs on the FPGA platform, accuracy loss is ex-
ploited in References [8, 100–102, 106, 108, 155, 156, 162, 163]. Moreover, fault classification is also
performed in References [8, 97–99, 101, 103, 104, 163]. References [103, 104] classify SEUs in con-
figuration bits of the FPGA as critical if a fault caused misclassification with respect to the golden
model; otherwise, the fault is tolerable. In addition, Benign Errors are considered in Reference
[104], which are the faults that caused true classification of the inputs that were misclassified in
the golden model. Another fault classification is presented in References [97, 98] that does not
only consider critical and tolerable faults but also categorizes the faults that prevent the acceler-
ator from generating the classification output. In this regard, the effect of faults on the system
performance degradation is the criterion for classifying faults in Reference [99].

Reliability is evaluated by different metrics considering accuracy loss regarding the application
of the target networks in References [162, 163]. These works consider top-5 and top-1 accuracy
loss for image and audio classification tasks, respectively. For object detection, mean Average
Precision (mAP), and for image generation, Structural Similarity Index (SSIM) is adopted.
Regarding the adopted metrics for accuracy loss in each network, the faults are classified into three
classes with different ranges of accuracy loss (≤1%, 1%∼5%, ≥5%) caused by FI. In addition, they
categorize the faults that are caused by a system exception that may delay or terminate processes.

To characterize the status of DNN layers’ vulnerability, authors in Reference [8] classify the
parameters of layers (i.e., weights and activations) separately by performing FI. In this work, pa-
rameters of layers are labeled as Low-risk, Medium-risk, and High-risk if FI process into the target
layers’ parameters results in less than 1%, 1%∼5%, and more than 5% accuracy loss, respectively.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:20 M. H. Ahmadilivani et al.

The metric AVF (defined in Section 2.3) is adopted in References [103, 104] and expresses the
probability of fault propagating to the output. These works obtain the AVF through the FI by
dividing the number of faults propagated to the output by the total number of injected faults.
Furthermore, authors in Reference [104] provide a formula to estimate the cross-section (defined
in Section 2.3) of the configuration memory in Equation (3), where the obtained AVF by FI is
multiplied by the number of bits utilized by the design times the cross-section of bits of the con-
figuration memory. This calculation can lead to further reliability metrics that authors present in
Reference [104].

σ = AVF × (#UtilizedBits) ×
(σstatic

#MemBits

)
(3)

In this regard, Reference [105] estimates the SER of HyperRam saving the weights similar to
Equation (3) based on the extracted information from radiation experiment reports. By providing
the rate of faults likely to occur in the memory, they inject faults into the weights of CNN on an
FPGA accelerator.

Moreover, Reference [95] expressed the reliability of the neural network with n layers (L1, L2, . . . ,
Ln) that are implemented serially as different modules on the FPGA, as an exponential distribution
in Equation (4).

RN N (t) = e−(λL1+λL2+· · ·+λLn)t , (4)
where λ = 1

MTT F (MTTF (Mean Time to Failure)).

5.1.2.2 GPU Platform. In this subsection, we explore FI in DNNs in which faults are em-
ulated and injected into the GPU. Nearly all works on this platform have studied the effect of
transient faults on GPUs. Permanent faults are studied in References [137, 157–160, 179]. To per-
form FI on GPUs, researchers adopt an FI framework on GPUs; except in References [117, 137],
which implemented their own FI process on CUDA and TensorRT [180], respectively. FI frame-
works in GPUs including FlexGripPlus [181], NVBitFI [182], and CAROL-FI [183] are used in
References [113–116, 120, 157], and [122], respectively. Nonetheless, an FI framework is proposed
in Reference [179] adapting and customizing NVBitFI for studying permanent faults in GPUs and
is leveraged in References [158–160]. Moreover, a cross-layer fault injector framework CLASSES
is presented in Reference [184] to inject SEUs at the architecture level, enabling study of the corre-
sponding fault effects in Reference [112]. In all works, the rate of injected faults and the number of
experiments in the target locations varies and depends on the confidence level and error margin,
as mentioned in References [10, 44, 109, 121, 122].

SASSIFI [185] is the most frequently used framework for FI into GPUs running DNNs, which
is used in References [10, 44, 109–111, 118, 119, 121]. This framework is developed by NVIDIA to
conduct fault injections and is a powerful framework with different fault models covering vari-
ous locations of GPUs and provides extensive reliability evaluation metrics. The studies that use
SASSIFI for fault injection investigate the effect of transient faults with SASSIFI’s bit-flip model
into the ISA (Instruction Set Architecture) visible states, including general-purpose registers,
memory values’ predicate registers, and condition registers in a single or multiple thread.

Evaluation: Reliability evaluation of DNNs in GPUs is carried out more extensively than in
other platforms. Nearly all works have classified injected faults [10, 44, 109–111, 114–116, 118, 119,
121, 122, 137, 157, 159, 160]. The general model for classifying faults in the mentioned works is as
follows:

— Masked: Fault does not affect the output,
— SDC: Output confidence score differs from that of the golden model,
— DUE: The program hangs or the system reboots (also called Crash in References [10, 121]).

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:21

Fig. 13. Fault classification in the object detection task based on bounding boxes [137].

Furthermore, SDC is also categorized regarding the effect of faults on the accuracy of the DNN
for the object recognition task in References [44, 109]. They define three categories of SDCs based
on the effect of faults on the output confidence score and ranking of objects:

— Non-critical: Output confidence score changed, and no misclassification occurred and no
objects ranking modified,

— Light-critical: Objects ranking modified, and no misclassification occurred,
— Critical: Impacted the output confidence score and caused misclassification.

However, the fault classification of SDCs proposed in Reference [122] is beyond the classic SDCs
and is based on the impact of faults on the precision and recall for object detection tasks in a self-
driving car, as follows:

— Non-critical: Precision maintains larger than 90% (a new object is detected that is not in
the original classification) and recall remains 100% (all previous objects are detected).

— Critical: Precision is lower than 90% (many wrong objects detected) and recall is not 100%
(real objects are not detected).

Furthermore, new classes of faults are presented in Reference [137], which considers the margins
of the bounding box in the DNN for object detection. The authors compare the overlaps of the
bounding box of the detected objects in each image for golden and faulty models and categorize
the SDCs based on a threshold. Their fault classification method is depicted in Figure 13.

Vulnerability factors are also adopted to analyze the reliability of DNNs on GPU platform [10, 44,
109, 110, 114, 118, 119, 121, 122]. Vulnerability factors express the probability of propagating faults
from a particular component to the output. Since faults may be injected into different locations, the
vulnerability factor of the location (in different abstraction levels from architecture to program) can
be measured. In this regard, Kernel Vulnerability Factor (KVF) [109, 118], Layer Vulnerability
Factor (LVF) [109, 112, 118], Instruction Vulnerability Factor (IVF) [109, 110, 119], Program
Vulnerability Factor (PVF) [10, 44, 109, 121], Operation Vulnerability Factor [116], and Archi-
tecture Vulnerability Factor (AVF) [10, 44, 109, 113, 114, 121, 122] have been presented. These
metrics provide a thorough understanding of the vulnerability of each location either in DNN or
in GPU.

5.1.2.3 Processors Platform. DNNs exploit processors mostly for IoT and edge applications.
The research works in which faults are emulated on multi-core processors running DNNs are
reviewed in this subsection. Soft errors in the register file of ARM processors running DNNs
have been studied extensively in References [36, 92, 123–130]. The vulnerability of instruc-
tions is studied in Reference [130]. To emulate faults modeling soft errors in target proces-
sors, ARM-FI is developed and adopted in References [128–130] and SOFIA [92] is exploited in

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:22 M. H. Ahmadilivani et al.

Fig. 14. Block diagram of the setup of beam experiment in Reference [108].

References [36, 92, 123–127] as fault injection frameworks. Each of the aforementioned fault injec-
tors enables fault emulation in different components of processors.

Evaluation: All works in this class have evaluated the reliability by fault classification. The
classification is performed similarly to the general scheme of classifying faults in the previous
platforms (Masked, tolerable SDC, critical SDC, and DUE).

Furthermore, References [36, 92] classify the faults in an object detection task for autonomous
vehicles as:

— Incorrect probability: All objects detected correctly with different output confidence
scores,

— Wrong detection: Misclassification or missing an object,
— No prediction: No object detection.

Mean Work To Failure (MWTF) is also exploited as a reliability metric to show the amount
of work a neural network can perform until meeting a failure, as:

MWTF =
1

executiontime ×AVFcr it ical−f aults
, (5)

where AVFcr it ical−f aults is the probability of an erroneous classification due to faults. MWTF is
adopted as a relationship between performance and reliability in References [129, 130]. AVF is
obtained as the reliability metric for the register file in References [124, 129, 130]. PVF is leveraged
to express the vulnerability of operations and instructions in Reference [130].

5.1.3 Irradiation. The most realistic way of fault injection is to irradiate the devices under the
beam of particles, e.g., neutron or ion. In this subsection, the research works that study the relia-
bility of DNN accelerators, i.e., FPGA and GPU under radiation, are described.

5.1.3.1 FPGA Platform. Zynq SoCs have been examined under radiation tests to assess the reli-
ability of DNNs in References [95, 96, 103, 106, 108, 133, 134]. FPGAs are irradiated with neutrons
in References [95, 96, 103, 108, 131–133] and with protons in Reference [135]. References [132]
and [135] have applied fault-aware training to DNNs and studied its impact under radiation. Hy-
perRAM, which includes constant and dynamic variables (e.g., weights and biases) is bombarded
with ionizing particles in References [106, 134]. The research works set up the configuration of the
system before the experiment mostly based on HW/SW co-design and save the results for further
analysis. Figure 14 shows an example of the setup of the FPGA irradiation.

Evaluation: Radiation experiments enable reliability evaluation by SER or FIT metrics [103,
106, 108, 134]. To formulate the SER, cross-section is defined as the proportion of observed faults
(errors) over all particles collided to the surface (Flux), as expressed in Equation (6) [108]. Cross-
section σ is expressed as a unit of cm2 and is the probability that a particle may cause an observable

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:23

Fig. 15. Setup of neutron irradiation to GPU [10, 121, 136].

error [103]. The cross-section is exclusively adopted in References [131, 132].

σ = errors/Flux (6)

The cross-section can lead to SER or FIT calculation by getting multiplied by the particle flux
that the device will experience in the environment (ϕ). SER represents the number of failures of
the device in 109 hours as shown in Equation (7).

SER = σ × ϕ (7)

Most research works that study irradiation on FPGAs evaluate the reliability of devices under
test by the above metrics. In addition, some works classify the faults radiated into FPGA by ob-
serving the outputs [103, 133, 135]. Here, both works provide fault classification based on output
confidence scores of the neural network. Reference [103] sets up an HW/SW co-design imple-
mentation on a target board and identifies the faults causing no misclassification (tolerable) and
misclassification (critical). Thereafter, the FIT of different classes of faults is obtained. References
[133, 135] also present the cross-sections of the device for different classes of faults (including
tolerable errors, critical errors, and crashes). Moreover, the reliability is estimated by the afore-
mentioned metrics in Reference [95] as expressed in Equation (4).

5.1.3.2 GPU Platform. Reliability of DNNs on GPUs is assessed under neutron beam radi-
ation in References [10, 115, 117, 121, 122, 136, 137]. All GPUs under test are manufactured by
NVIDIA and have different architectures. They also provide tests by enabling and disabling ECC
configurations, and different data representations. Each work has specified flux of neutrons and
radiation time, e.g., Reference [137] tests the GPU equivalent to 2,000 years of exposure to terres-
trial neutron, or Reference [10] reports data that cover more than 110,000 years of GPU operation.
Figure 15 illustrates the radiation test setup in References [10, 121, 136].

Evaluation: Research works of this group present reliability evaluation of DNNs on GPUs
by FIT as well as fault classification similar to the works on FPGAs radiation. Authors in
References [10, 121] identify faults that caused SDC and Crash and report their FIT, separately.
References [115] and [122] report FIT of faults caused SDC and DUE separately in different
data representations of the DNN, and in Reference [137] irradiated faults are classified based on
Figure 13. SDC rate is also the adopted evaluation metric in Reference [117].

5.1.3.3 TPU Platform. The reliability of Google’s Tensor Processing Unit (TPU) is studied
under neutron beam radiation in References [139] and [138]. These works experimented Coral TPU
chip, a low-power accelerator for DNNs, with several neural networks for image classification and
object detection tasks.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:24 M. H. Ahmadilivani et al.

Evaluation: The research works performing radiation experiments on Coral TPU have evalu-
ated the reliability by FIT and cross-section as well as by fault classification. In this regard, SDC
and DUE fault effects are reported based on FIT and cross-section.

5.2 Analytical Methods
Analytical methods in reliability assessment model the reliability mathematically and do not in-
ject faults into the platform to be simulated to evaluate the reliability. These methods rely on
the function and algorithm of DNNs, and if needed, also consider the structure of the accelerator.
Nevertheless, they carry out fault injection to assess the efficacy of the methods. For the sake of
generalization, all works in this group analyze the relations of neurons and layers to find their
effect and contribution to the output. In this regard, they estimate the vulnerability of neurons
and analyze how a faulty neuron may impact the output to find critical neurons. Therefore, they
link the reliability of the network with the vulnerability of its neurons and provide an analytical
model of calculating the reliability for DNNs.

We have identified four approaches in analytical methods:
— Layerwise Relevance Propagation (LRP)-based analysis [186–190],
— Gradient-based analysis [191–194],
— Estimation-based analysis [192, 193, 195],
— ML-based analysis [196].

In the first approach, DNNs are analyzed based on an algorithm called Layerwise Relevance
Propagation (LRP) that leads to obtaining critical scores for neurons/fmaps. The second approach
is based on the gradients of weights/fmaps with respect to the output leading to their sensitivity.
Research works in the third approach estimate the vulnerability of DNNs by finding correlations
between some information from DNNs and the vulnerability of layers/fmaps. In the last approach,
ML-based techniques are adopted in the context of fault analysis in DNNs.

In the LRP-based analysis, a hypothesis is raised in Reference [189] proposing that the higher
the contribution of neurons to the DNN’s output, the more impact they have on the classification
accuracy. Accuracy loss is one of the most important metrics in the reliability evaluation. Therefore,
the more impact a neuron has on the accuracy, the more vulnerable it is, which means it has more
influence on the reliability of the network, consequently. Hence, the authors adopted the LRP
algorithm to obtain the value of the contribution of each neuron to the output. LRP indicates the
proportion of each connected neuron in constructing the value of the target neuron and calculates
this ratio for all neurons from the last layers to the first. LRP specifies Ri, j (y0, t) for each neuron
j in layer i, which is its output contribution score between 0 and 1 with the input y0 and output
class t. Then, the average score of each neuron over the entire training set of M inputs is obtained
representing the resilience of the corresponding neuron as Equation (8).

ri, j =
M

∑M−1
m=0 Ri, j (y0,m , tm)

(8)

Thereafter, the sorted list of neurons regarding their ri, j represents the most to least vulnerable
neurons that can lead to protecting the most vulnerable neurons to improve reliability. Further-
more, by this analytical method, another reliability improvement method is presented in Reference
[190] based on balancing the resilience distribution inside the DNN. Similarly, Reference [186] pro-
poses an approach to extract the saliency or importance of each neuron and proposes a mapping
scheme for neurons on PEs of a systolic array to minimize the score of corrupted weights.

Authors in Reference [187] extend the LRP algorithm based on different output classes of in-
put images and provide the list of neurons’ resilience scores (score maps) for individual classes

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:25

separately, as well as the score map of the whole network regardless of the output classes. Then,
all sorted score maps are combined in descending order to set the maximum score for each cor-
responding neuron. Subsequently, a scheduling algorithm is applied to map neurons to PEs of an
MPSoC based on the score maps.

In gradient-based analysis, three papers are identified. Explainable AI, which explains how the
network computes the output by the input, is exploited in Reference [194] to obtain the sensitivity
of layers and the importance of weights. This work defines the sensitivity of layers in compliance
to the difference of the two highest output confidence scores of the last layer. Therefore, they
obtain the average sensitivity of all layers and relate it to the importance of weights. They provide
the most important weights and their critical bits consequently to be protected.

The sensitivity of filters and weights are analyzed in Reference [191], which refers to the amount
of accuracy drop with bit-flip occurrence in weights. In the proposed method in this paper, the gra-
dient of weights with respect to the output is calculated over a dataset considering a cost function.
Also, the expectation for the probability of weights to be faulty is obtained as a noise measurement
(εw). The sensitivity of a weight w is measured as Equation (9).

Sensitivityw = дradientw × εw (9)

Sensitivity analysis in this work leads to allocation of robust hardware to the more sensitive
weights.

References [192, 193] have presented three gradient-based approaches for vulnerability estima-
tion of fmaps in a DNN. Gradient approach considers the absolute values of fmaps’ gradients with
respect to the cross-entropy loss at the output in a backpropagation as the vulnerability of fmaps.
Gain approach measures the noise gain by obtaining the expectation for a set of corrupted neurons
affecting the DNN’s accuracy based on the derivatives of outputs with respect to the neurons over
a set of data and the variance of noise source. Modified Gain is also proposed based on the Gain ap-
proach to violate the independence between neurons and noise. The three mentioned approaches
evaluate the vulnerability of fmaps in a DNN.

Authors in References [192, 193] also presented three estimation-based approaches for the vul-
nerability of fmaps. They estimate the relative fmaps’ vulnerability by calculating the max neuron
value, fmap range, and average L2 over the input samples. They have provided approximate yet
scalable and fast approaches to estimate the vulnerability of fmaps.

Reference [195] presents an equation to estimate the misclassification rate of CNNs in case of
soft error occurrence in a specific layer. The authors consider any operation resulting in a non-
zero value as a critical computation, since soft errors may corrupt their results. The estimation is
based on the proportion of critical operations (Crit_OPs) in the target layer i and subsequent layers
relative to all operations in those layers, to model the misclassification rate (SERN) in a CNN with
n layers. Equation (10) provides a representation of this estimation.

SERN =
Crit_OPsi +

∑n
i+1 OPs∑n

i OPs
(10)

An ML-based approach for analytical reliability analysis is presented in Reference [196] where
Open-Set Recognition (OSR) methods are explored to analyze the criticality of faults in DNNs’
parameters. The concept of OSR is to identify whether the output classification corresponds to
the trained classes of the DNN. This concept is adapted to analyze the output logits (output of
softmax in the last layer) of DNNs to identify the critical fault in the parameters. Four different
OSR-based methods have been leveraged for this task and their efficacies are reported. In each
method, a threshold for the output logits is obtained for identifying critical fault occurrence.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:26 M. H. Ahmadilivani et al.

All the works in this group evaluate their analytical methods on the reliability by FI. The FI
methods that are used in these works are similar to the FI methods presented and characterized in
Section 5.1. It is shown that analytical methods can evaluate/estimate the vulnerability/sensitivity
of different components of DNNs, including neurons, fmaps, and weights. Analytical methods are
more lightweight than FI by far and are accelerator-agnostic. However, their analysis results can be
utilized for designing robust DNN accelerators. Among the existing approaches, estimation-based
analyses are faster than others while less accurate when the results are compared with FI experi-
ments. LRP-based and gradient analyses provide more accurate results close to FI experiments, yet
they are faster and incur less complexity.

5.3 Hybrid Methods
In hybrid methods, both FI and analytical methods are carried out to assess the reliability of DNNs.
To that end, Reference [197] proposes a reliability assessment framework called Fidelity based
on a hybrid method. This framework studies the transient faults in both data and control path
of accelerators. Fidelity contains fault injection in the software framework TensorFlow to obtain
the probability of masking faults in the DNN. In addition, the framework is capable of analyzing
the architectural model of the accelerator and mapping Flip Flops (FFs) of datapath and control
logic to the parameters of a high-level implementation of the DNN. By the fault injection and
elaborate analysis, it models the probability of activeness/inactiveness of FFs during the execution
time as well as the probability of masking faults. Subsequently, the framework provides the FIT
rate of the accelerator. Furthermore, the framework is validated by analyzing the NVDLA [198],
i.e., an open-source NVIDIA’s DNN accelerator. To further improve this method, a software model
for NVDLA is proposed in Reference [199] to enable reliability study of accelerators at the software
level and provide a more accurate, more hardware-aware, and faster method to obtain FIT rate of
the accelerator.

Zhang et al. [200] propose a hybrid of ML-based analysis and FI to estimate the vulnerability
of all parameters in DNNs by a low number of fault injections. The proposed method involves
selecting a set of random parameters of the DNN and evaluating their vulnerabilities by injecting
bitflip faults and measuring the accuracy loss. Thereafter, some features for the selected parameters
(absolute value, gradient, calculation times, and layer location) are extracted. A random forest
as a machine learning approach is trained and tested using the features and vulnerability of the
corresponding parameters so when it reaches a high accuracy, it can be used for vulnerability
estimation of the entire set of parameters.

6 DISCUSSION
In this section, we will first discuss the reliability assessment methods for DNNs based on the
works reviewed and presented in Section 5. Then, we will summarize the current status in the
three main categories of reliability assessment: FI, analytical, and hybrid methods, respectively,
and address their pros and cons in the research domain of this literature review. Thereafter, we
will present a qualitative comparison of different reliability assessment methods for DNNs. Last,
we will list the open challenges as well as major potential research directions for the future.

Table 2 lists the pros and cons of all the methods categorized in this work and described in
Section 5.

Of the reviewed papers, FI, as a conventional method for reliability assessment, is frequently
used for evaluating the DNNs’ reliability. FI provides realistic results about how faults impact the
system’s execution. FI methods can be conducted for modeling various faults that can be injected
at the different locations in the platform for reliability evaluation. Moreover, they are applicable
to any platform at any system abstraction level and provide various reliability evaluations based

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:27

Table 2. Pros and Cons of Reliability Assessment Methods for DNNs

Method Pros Cons

Fault Sim-
ulation

– Low design time and fast execution in
high-level software implementations
– Adoptable for various DNNs, DHA models,
and fault models
– Enabling reliability study of variations of DNNs
under approximation, quantization, encryption,
etc.
– The availability of open-source frameworks
for high-level software simulation
– No need for special facilities and capable of
being run on regular PCs
– Enabling a fast evaluation of reliability
enhancement methods at high-level software
implementations
– Providing various reliability evaluation metrics

– High time complexity to achieve a sufficient
confidence level
– Not realistic model of fault effects in
high-level software implementations
– Inaccurate results at high-level software
implementations
– Time-consuming design and development for
HDL implementations

Fault Emu-
lation

– Providing realistic reliability analysis of DHA
– Enabling experiments for real conditions of
DHA operation
– Providing full access to possible locations of
the DHA for FI
– Enabling realistic studying of faults in datapath
– Providing fault-tolerant designs and evaluating
them directly
– Providing several evaluation metrics and fault
classifications

– Time-consuming design and development
– Need for the physical DHA
– Different platforms need their own specific
design and development to perform FI
– Need for platform-specific frameworks for FI

Irradiation

– Performing realistic experiments as real
physical faults are injected into the chip
– Suitable for developing fault models
– Enabling the study for validating simulation
and emulation approaches
– Providing the real behavior of the DHA when
faced with a physical effect

– Need for specific facilities for performing
radiation
– Low control over accuracy of fault injection
in terms of number and locations of occurred
faults
– Lack of the visibility of fault propagation

Analytical

– Implementable at software-level
– Scalable and less complex than FI
– Leading to fault-tolerant hardware designs
– Providing information for algorithm-level
resiliency for DNNs
– DHA-agnostic

– Not providing quantitative evaluation metrics
– Not considering DHA models
– Inaccurate in estimating the vulnerabilities of
DNN components (neurons, fmaps, etc.)

Hybrid

– Combining fast FI with an analytical approach
– Capability of reliability study for DHAs
– Possibility of evaluation by either vulnerability
estimation or quantitative metrics

– Need for detailed information of the DHA
(depending on the method)
– Accuracy of the results could be low
(depending on the method)

on metrics and fault classifications. Therefore, many research works choose FI as their primary
method of DNNs’ reliability assessment. Nevertheless, FI methods are accompanied by a prohibi-
tively high complexity due to the need to consider several cases for fault occurrence and to itera-
tively repeat the executions.

Analytical methods have been proposed as a way to cope with the high complexity of FI methods.
These methods study the function of DNNs and assess the model’s reliability using mathematical
equations, leading to less complex approaches. Since analytical methods are developed mathemat-
ically, they have the potential to be generalized and adapted to various DNNs. Notably, analyti-
cal methods have the potential to be exploited in the reliability assessment of the training phase.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:28 M. H. Ahmadilivani et al.

Table 3. Qualitative Analysis Comparing Different Reliability Assessment Methods for DNNs

Fault injection Analytical Hybrid
Time Complexity High Low to Moderate Moderate
HDA-aware Yes No Yes
Leading to fault-tolerant design Yes Yes Yes
Fault models variety All fault models Few fault models Few fault models
Implementation system level Software and hardware Software Software
Evaluation accuracy Moderate to high Low to moderate Moderate
Development time Low to Moderate Moderate High

Evaluation metrics

Accuracy loss
Fault classification
Vulnerability factors
SDC rate
Reliability equations

Criticality scores
Sensitivity
Vulnerability estimation

FIT Rate
Vulnerability estimation

However, current analytical methods do not consider the accelerator models, and there is a gap
in the use of reliability evaluation metrics. While this survey identifies a relatively small number
of works relying on analytical methods for DNNs’ reliability assessment, the future of research in
this area should pay greater attention to the potential of analytical methods.

Finally, hybrid methods combine the strength of both FI and analytical methods. By applying
analysis of the network or the accelerator in addition to conducting fault injection, hybrid methods
are capable of obtaining a comprehensive and realistic evaluation of reliability. Although a limited
number of research works are identified in this category in the present survey, yet there is a huge
space to explore for proposing new hybrid methods in the future. Table 3 presents a qualitative
comparison between the categorized methods of reliability assessment for DNNs regarding the
papers included in this survey.

The analysis of statistics presented in Figure 9 highlights that the majority of the identified
research works employ FI to assess the DNNs’ reliability. This can be attributed to the fact that,
while DNNs are an emerging topic in computer science, the problem of reliability has been a classic
issue for a long time. In addition, the investigation of reliability over DNNs has started gaining
traction since 2017, as indicated in Figure 8. As a result, it is not surprising that the early research
in this area has primarily focused on conventional methods such as FI. This could be the main
reason for the significant imbalance in the number of published papers across different method
categories. However, in the future, the emergence of analytical and hybrid methods is expected to
bridge this gap and increase their application in the field of DNN reliability assessment.

To address open challenges in reliability assessment methods for DNNs, this survey has identi-
fied the following main observations:

— Although some research works, such as Reference [201], have studied the impact of faulty
data during training, no work on the reliability assessment of the training phase has been
identified that considers faulty parameters or computational units. This issue should be stud-
ied in future research;

— Nearly all included works focus on CNNs, with image classification and object detection
tasks excluding other types of DNNs, such as RNNs and LSTMs as well as different applica-
tions that should also be evaluated in terms of reliability;

— The survey has identified no software FI framework in hardware-aware platforms. Hence,
DNN accelerator simulators could be exploited or developed for reliability assessment of
DNNs in this platform;

— Fault emulation on FPGAs can take advantage of HLS designs. Therefore, a general FI frame-
work for these platforms could be presented using HLS to minimize design time;

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:29

— Based on this survey, very few works study the reliability of the control part of DHAs, espe-
cially in FPGAs and ASICs. The control part may play a significant role in the reliability of
DNN accelerators, and this should be explored in future studies;

— There is a limited number of analytical methods for DNNs reliability assessment in this
survey, all of which rely on finding critical neurons for fault-tolerant designs. Also, only
one work tries to predict the accuracy loss caused by soft errors, and ML-based approaches
are proposed in one work. Nevertheless, none of them can estimate the reliability of DNNs
on their own or evaluate the reliability using specific metrics. ML-based algorithms can
significantly assist in efficient reliability assessment, and therefore, there is a huge potential
for developing new analytical methods of reliability assessment for DNNs;

— Analytical methods could be generalized for other DNNs and applications rather than con-
sidering only CNNs and image processing;

— Hybrid methods appear to be powerful and capable of being exploited for developing reliabil-
ity assessment frameworks. They can be one of the major methods for reliability assessment
of DNNs in future works;

— Several FI research works carry out accuracy loss and fault classification as an evaluation of
reliability. Also, some works considered FIT. However, there is still an urgent need to present
DNN-specific metrics for reliability evaluation.

As an outcome of this survey, in addition to the listed open challenges, the major possible re-
search directions for future studies in this domain are addressed below:

— Although analytical and hybrid methods have potential in the literature, they are not evolved
to the extent that their effectiveness can be fully realized. Existing methods have shown that
analytical and hybrid methods are capable of assessing the DNNs’ reliability as realistically
as FI and lead to effective fault-tolerant designs. Moreover, ML-based approaches in conjunc-
tion with analytical and hybrid methods are emerging. Therefore, researchers can be directed
to develop novel analytical and hybrid methods, especially those that adopt ML-based algo-
rithms, for reliability assessment of DNNs that are faster, less complex, more scalable, and
more specific to DNNs than the conventional FI approaches.

— Bringing reliability as a classical issue into an emerging topic such as DNNs requires new
tools to respond to the requirements of the new domain. Therefore, the new research not
only needs to adopt commonly used metrics in the reliability domain, but also requires the
introduction and proposal of novel DNNs-specific reliability evaluation metrics.

— There are several IoT and edge applications for DNNs emerging day by day, and reliability is
not only a concern for safety-critical applications. New research can focus on the unstudied
applications of DNNs while taking reliability into consideration.

7 CONCLUSION
DNNs are being utilized in an increasingly diverse range of applications in our daily lives. Con-
sequently, their deployment in safety-critical applications has emerged to be expanding day by
day. However, threats to reliability are one of the major issues that they experience in the real
world. To address this, several studies have been published in recent years to assess the reliability
of DNNs, with or without the use of accelerators, resulting in the development of various assess-
ment methods. In this work, we conduct a systematic literature review to present a categorization
of the reliability assessment methods for DNNs.

Out of the 139 papers related to the subject of the review, three major approaches to reliability
assessment of DNNs were identified, i.e., Fault Injection, Analytical, and Hybrid methods. Since
the majority of works assess the reliability using conventional fault injection methods, the related

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:30 M. H. Ahmadilivani et al.

works relying on FI methods are characterized based on different approaches and platforms. In
addition, we have addressed the advantages and disadvantages of the different methods and high-
lighted the open challenges that may become the focus of future studies in this domain. Based on
the analysis of this survey, future research could focus on developing lightweight, DNN-specific
analytical and hybrid methods for assessing reliability, as well as providing new quantitative eval-
uation metrics that take into account emerging applications for DNNs.

REFERENCES
[1] Alberto Bosio, Ian O’Connor, Marcello Traiola, Jorge Echavarria, Jürgen Teich, Muhammad Abdullah Hanif, Muham-

mad Shafique, Said Hamdioui, Bastien Deveautour, Patrick Girard, Arnaud Virazel, and Koen Bertels. 2021. Emerging
computing devices: Challenges and opportunities for test and reliability. In IEEE European Test Symposium (ETS’21).
IEEE, 1–10.

[2] Håkan Forsberg, Joakim Lindén, Johan Hjorth, Torbjörn Månefjord, and Masoud Daneshtalab. 2020. Challenges in us-
ing neural networks in safety-critical applications. In AIAA/IEEE 39th Digital Avionics Systems Conference (DASC’20).
IEEE, 1–7.

[3] Alessandra Nardi and Antonino Armato. 2017. Functional safety methodologies for automotive applications. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’17). IEEE, 970–975.

[4] Younis Ibrahim, Haibin Wang, Junyang Liu, Jinghe Wei, Li Chen, Paolo Rech, Khalid Adam, and Gang Guo. 2020.
Soft errors in DNN accelerators: A comprehensive review. Microelectron. Reliab. 115 (2020), 113969.

[5] Muhammad Shafique, Mahum Naseer, Theocharis Theocharides, Christos Kyrkou, Onur Mutlu, Lois Orosa, and
Jungwook Choi. 2020. Robust machine learning systems: Challenges, current trends, perspectives, and the road ahead.
IEEE Des. Test 37, 2 (2020), 30–57.

[6] Stéphane Burel, Adrian Evans, and Lorena Anghel. 2021. MOZART: Masking outputs with zeros for architectural
robustness and testing of DNN accelerators. In IEEE 27th International Symposium on On-Line Testing and Robust
System Design (IOLTS’21). IEEE, 1–6.

[7] Krishna Teja Chitty-Venkata and Arun K. Somani. 2020. Model compression on faulty array-based neural network
accelerator. In IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC’20). IEEE, 90–99.

[8] Navid Khoshavi, Arman Roohi, Connor Broyles, Saman Sargolzaei, Yu Bi, and David Z. Pan. 2020. SHIELDeNN:
Online accelerated framework for fault-tolerant deep neural network architectures. In 57th ACM/IEEE Design Au-
tomation Conference (DAC’20). IEEE, 1–6.

[9] Elbruz Ozen and Alex Orailoglu. 2020. Low-cost error detection in deep neural network accelerators with linear
algorithmic checksums. J. Electron. Test. 36, 6 (2020), 703–718.

[10] Fernando Fernandes dos Santos, Pedro Foletto Pimenta, Caio Lunardi, Lucas Draghetti, Luigi Carro, David Kaeli, and
Paolo Rech. 2018. Analyzing and increasing the reliability of convolutional neural networks on GPUs. IEEE Trans.
Reliab. 68, 2 (2018), 663–677.

[11] Sparsh Mittal. 2020. A survey on modeling and improving reliability of DNN algorithms and accelerators. J. Syst.
Archit. 104 (2020), 101689.

[12] Annachiara Ruospo, Ernesto Sanchez, Lucas Matana Luza, Luigi Dilillo, Marcello Traiola, and Alberto Bosio. 2023.
A survey on deep learning resilience assessment methodologies. Computer 56, 2 (2023), 57–66.

[13] Fei Su, Chunsheng Liu, and Haralampos-G. Stratigopoulos. 2023. Testability and dependability of AI hardware: Sur-
vey, trends, challenges, and perspectives. IEEE Des. Test 40, 2 (2023).

[14] Cesar Torres-Huitzil and Bernard Girau. 2017. Fault and error tolerance in neural networks: A review. IEEE Access 5
(2017), 17322–17341.

[15] Antonio Cicchetti, Federico Ciccozzi, and Alfonso Pierantonio. 2019. Multi-view approaches for software and system
modelling: A systematic literature review. Softw. Syst. Model. 18, 6 (2019), 3207–3233.

[16] Mathieu Lavallée, Pierre-N. Robillard, and Reza Mirsalari. 2013. Performing systematic literature reviews with
novices: An iterative approach. IEEE Trans. Educ. 57, 3 (2013), 175–181.

[17] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proc. IEEE 105, 12 (2017), 2295–2329.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neu-
ral networks. Adv. Neural Inf. Process. Syst. 25 (2012), 1097–1105.

[20] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In IEEE Conference on Computer Vision
and Pattern Recognition. 1–9.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:31

[21] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014).

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

[23] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Unified, real-time object
detection. In IEEE Conference on Computer Vision and Pattern Recognition. 779–788.

[24] C. J. B. Yann, Y. LeCun, and C. Cortes. The MNIST DATABASE of Handwritten Digits. Retrieved from: http://yann.
lecun.com/exdb/mnist/

[25] A. Krizhevsky, v. Nair, and G. Hinton. 2009. The CIFAR-10 Dataset. Retrieved from: https://www.cs.toronto.edu/
~kriz/cifar.html

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 248–255.

[27] Moritz Menze and Andreas Geiger. 2015. Object scene flow for autonomous vehicles. In IEEE Conference on Computer
Vision and Pattern Recognition. 3061–3070.

[28] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. 2010. The Pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 2 (2010), 303–338.

[29] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized neural net-
works: Training neural networks with low precision weights and activations. J. Mach. Learn. Res. 18, 1 (2017),
6869–6898.

[30] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized neural
networks: Training deep neural networks with weights and activations constrained to +1 or –1. arXiv preprint
arXiv:1602.02830 (2016).

[31] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283.

[32] Keras: The Python deep learning API. 2015. Retrieved from: https://keras.io/
[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019), 8026–8037.

[34] Joseph Redmon. Darknet: Open Source Neural Networks in C. Retrieved from: http://pjreddie.com/darknet/
[35] Tiny-CNN Framework. 2012. Retrieved from: https://github.com/tiny-dnn/tiny-dnn
[36] Geancarlo Abich, Jonas Gava, Ricardo Reis, and Luciano Ost. 2020. Soft error reliability assessment of neural net-

works on resource-constrained IoT devices. In 27th IEEE International Conference on Electronics, Circuits and Systems
(ICECS’20). IEEE, 1–4.

[37] Manar Abu Talib, Sohaib Majzoub, Qassim Nasir, and Dina Jamal. 2021. A systematic literature review on hardware
implementation of artificial intelligence algorithms. J. Supercomput. 77 (2021), 1897–1938.

[38] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. 2019. A survey of FPGA-based neural net-
work inference accelerators. ACM Trans. Reconfig. Technol. Syst. 12, 1 (2019), 1–26.

[39] Neng Hou, Xiaohu Yan, and Fazhi He. 2019. A survey on partitioning models, solution algorithms and algorithm
parallelization for hardware/software co-design. Des. Automat. Embed. Syst. 23, 1 (2019), 57–77.

[40] Meriam Dhouibi, Ahmed Karim Ben Salem, Afef Saidi, and Slim Ben Saoud. 2021. Accelerating deep neural networks
implementation: A survey. IET Comput. Digit. Techniq. 15, 2 (2021), 79–96.

[41] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James
Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire
Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia
Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-
datacenter performance analysis of a Tensor Processing Unit. In 44th Annual International Symposium on Computer
Architecture. 1–12.

[42] Diksha Moolchandani, Anshul Kumar, and Smruti R. Sarangi. 2021. Accelerating CNN inference on ASICs: A survey.
J. Syst. Archit. 113 (2021), 101887.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:32 M. H. Ahmadilivani et al.

[43] Jon Perez-Cerrolaza, Jaume Abella, Leonidas Kosmidis, Alejandro J. Calderon, Francisco Cazorla, and Jose Luis Flores.
2022. GPU devices for safety-critical systems: A survey. Comput. Surv. 55, 7 (2022), 1–37.

[44] Younis Ibrahim, Haibin Wang, Man Bai, Zhi Liu, Jianan Wang, Zhiming Yang, and Zhengming Chen. 2020. Soft error
resilience of deep residual networks for object recognition. IEEE Access 8 (2020), 19490–19503.

[45] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. CMSIS-NN: Efficient neural network kernels for arm cortex-M
CPUs. arXiv preprint arXiv:1801.06601 (2018).

[46] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin Barekatain, Peyman Adibi, Payam Bar-
naghi, and Amit P. Sheth. 2018. Machine learning for Internet of Things data analysis: A survey. Digit. Commun.
Netw. 4, 3 (2018), 161–175.

[47] Ramon Sanchez-Iborra and Antonio F. Skarmeta. 2020. TinyML-enabled frugal smart objects: Challenges and oppor-
tunities. IEEE Circ. Syst. Mag. 20, 3 (2020), 4–18.

[48] Robert C. Baumann. 2005. Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans. Device
Mater. Reliab. 5, 3 (2005), 305–316.

[49] G. C. K. Y. Chen, K. Y. Chuah, M. F. Li, Daniel S. H. Chan, C. H. Ang, J. Z. Zheng, Y. Jin, and D. L. Kwong. 2003.
Dynamic NBTI of PMOS transistors and its impact on device lifetime. In 41st IEEE International Reliability Physics
Symposium. IEEE, 196–202.

[50] Shekhar Borkar. 2005. Designing reliable systems from unreliable components: The challenges of transistor variabil-
ity and degradation. IEEE Micro 25, 6 (2005), 10–16.

[51] Israel Koren and C. Mani Krishna. 2007. Fault-tolerant Systems. (2007).
[52] Barry Johnson. 1984. Fault-tolerant microprocessor-based systems. IEEE Micro 4, 06 (1984), 6–21.
[53] Arijit Biswas, Paul Racunas, Razvan Cheveresan, Joel Emer, Shubhendu S. Mukherjee, and Ram Rangan. 2005. Com-

puting architectural vulnerability factors for address-based structures. In 32nd International Symposium on Computer
Architecture (ISCA’05). IEEE, 532–543.

[54] Mohammad Eslami, Behnam Ghavami, Mohsen Raji, and Ali Mahani. 2020. A survey on fault injection methods of
digital integrated circuits. Integration 71 (2020), 154–163.

[55] Annachiara Ruospo, Lucas Matana Luza, Alberto Bosio, Marcello Traiola, Luigi Dilillo, and Ernesto Sanchez. 2021.
Pros and cons of fault injection approaches for the reliability assessment of deep neural networks. In IEEE 22nd Latin
American Test Symposium (LATS’21). IEEE, 1–5.

[56] Régis Leveugle, A. Calvez, Paolo Maistri, and Pierre Vanhauwaert. 2009. Statistical fault injection: Quantified error
and confidence. In Design, Automation & Test in Europe Conference & Exhibition. IEEE, 502–506.

[57] Alfredo Benso and Stefano DiCarlo. 2011. The art of fault injection. J. Contr. Eng. Appl. Inform. 13, 4 (2011), 9–18.
[58] Annachiara Ruospo, Angelo Balaara, Alberto Bosio, and Ernesto Sanchez. 2020. A pipelined multi-level fault injector

for deep neural networks. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT’20). IEEE, 1–6.

[59] Muhammad Salman Ali, Tauhid Bin Iqbal, Kang-Ho Lee, Abdul Muqeet, Seunghyun Lee, Lokwon Kim, and Sung-Ho
Bae. 2020. ERDNN: Error-resilient deep neural networks with a new error correction layer and piece-wise rectified
linear unit. IEEE Access 8 (2020), 158702–158711.

[60] Chandramouli Amarnath, Mohamed Mejri, Kwondo Ma, and Abhijit Chatterjee. 2022. Soft error resilient deep learn-
ing systems using neuron gradient statistics. In IEEE 28th International Symposium on On-Line Testing and Robust
System Design (IOLTS’22). IEEE, 1–7.

[61] Austin P. Arechiga and Alan J. Michaels. 2018. The effect of weight errors on neural networks. In IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC’18). IEEE, 190–196.

[62] Austin P. Arechiga and Alan J. Michaels. 2018. The robustness of modern deep learning architectures against single
event upset errors. In IEEE High Performance Extreme Computing Conference (HPEC’18). IEEE, 1–6.

[63] Stéphane Burel, Adrian Evans, and Lorena Anghel. 2021. Zero-overhead protection for CNN weights. In IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’21). IEEE, 1–6.

[64] Stéphane BurelT, Adrian EvansT, and Lorena Anghel. 2022. Improving DNN fault tolerance in semantic segmentation
applications. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT’22). IEEE, 1–6.

[65] Riccardo Cantoro, Nikolaos I. Deligiannis, Matteo Sonza Reorda, Marcello Traiola, and Emanuele Valea. 2020. Eval-
uating data encryption effects on the resilience of an artificial neural network. In IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’20). IEEE, 1–4.

[66] Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. 2021. A low-cost fault corrector for deep neural networks
through range restriction. In 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’21). IEEE, 1–13.

[67] Nikolaos Ioannis Deligiannis, Riccardo Cantoro, Matteo Sonza Reorda, Marcello Traiola, and Emanuele Valea. 2021.
Towards the integration of reliability and security mechanisms to enhance the fault resilience of neural networks.
IEEE Access 9 (2021), 155998–156012.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:33

[68] Zhen Gao, Xiaohui Wei, Han Zhang, Wenshuo Li, Guangjun Ge, Yu Wang, and Pedro Reviriego. 2020. Reliability
evaluation of pruned neural networks against errors on parameters. In IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT’20). IEEE, 1–6.

[69] Behnam Ghavami, Mani Sadati, Zhenman Fang, and Lesley Shannon. 2022. FitAct: Error resilient deep neural net-
works via fine-grained post-trainable activation functions. In Design, Automation & Test in Europe Conference &
Exhibition (DATE’22). IEEE, 1239–1244.

[70] Brunno F. Goldstein, Sudarshan Srinivasan, Dipankar Das, Kunal Banerjee, Leandro Santiago, Victor C. Ferreira,
Alexandre S. Nery, Sandip Kundu, and Felipe M. G. França. 2020. Reliability evaluation of compressed deep learning
models. In IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS’20). IEEE, 1–5.

[71] Hui Guan, Lin Ning, Zhen Lin, Xipeng Shen, Huiyang Zhou, and Seung-Hwan Lim. 2019. In-place zero-space memory
protection for CNN. In 33rd International Conference on Neural Information Processing Systems. 5734–5743.

[72] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. 2020. FT-ClipAct: Resilience analysis of deep
neural networks and improving their fault tolerance using clipped activation. In Design, Automation & Test in Europe
Conference & Exhibition (DATE’20). IEEE, 1241–1246.

[73] Myeungjae Jang and Jeongkyu Hong. 2021. MATE: Memory-and retraining-free error correction for convolutional
neural network weights. J. Inf. Commun. Converg. Eng. 19, 1 (2021), 22–28.

[74] Suyong Lee, Insu Choi, and Joon-Sung Yang. 2022. Bipolar vector classifier for fault-tolerant deep neural networks.
In 59th ACM/IEEE Design Automation Conference. 673–678.

[75] Elaheh Malekzadeh, Nezam Rohbani, Zhonghai Lu, and Masoumeh Ebrahimi. 2021. The impact of faults on DNNs:
A case study. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT’21). IEEE, 1–6.

[76] Mohamed A. Neggaz, Ihsen Alouani, Pablo R. Lorenzo, and Smail Niar. 2018. A reliability study on CNNs for critical
embedded systems. In IEEE 36th International Conference on Computer Design (ICCD’18). IEEE, 476–479.

[77] Mohamed A. Neggaz, Ihsen Alouani, Smail Niar, and Fadi Kurdahi. 2019. Are CNNs reliable enough for critical
applications? An exploratory study. IEEE Des. Test 37, 2 (2019), 76–83.

[78] Elbruz Ozen and Alex Orailoglu. 2021. SNR: Squeezing numerical range defuses bit error vulnerability surface in
deep neural networks. ACM Trans. Embed. Comput. Syst. 20, 5s (2021), 1–25.

[79] Jonathan Ponader, Kyle Thomas, Sandip Kundu, and Yan Solihin. 2021. MILR: Mathematically induced layer recovery
for plaintext space error correction of CNNs. In 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’21). IEEE, 75–87.

[80] Majid Sabbagh, Cheng Gongye, Yunsi Fei, and Yanzhi Wang. 2019. Evaluating fault resiliency of compressed deep
neural networks. In IEEE International Conference on Embedded Software and Systems (ICESS’19). IEEE, 1–7.

[81] Rizwan Tariq Syed, Markus Ulbricht, Krzysztof Piotrowski, and Milos Krstic. 2021. Fault resilience analysis of quan-
tized deep neural networks. In IEEE 32nd International Conference on Microelectronics (MIEL’21). IEEE, 275–279.

[82] Jinyu Zhan, Ruoxu Sun, Wei Jiang, Yucheng Jiang, Xunzhao Yin, and Cheng Zhuo. 2021. Improving fault tolerance
for reliable DNN using boundary-aware activation. IEEE Trans. Comput.-Aid. Des. Integ. Circ. Syst. 41, 10 (2021),
3414–3425.

[83] Arash Azizimazreah, Yongbin Gu, Xiang Gu, and Lizhong Chen. 2018. Tolerating soft errors in deep learning acceler-
ators with reliable on-chip memory designs. In IEEE International Conference on Networking, Architecture and Storage
(NAS’18). IEEE, 1–10.

[84] Brunno F. Goldstein, Victor C. Ferreira, Sudarshan Srinivasan, Dipankar Das, Alexandre S. Nery, Sandip Kundu, and
Felipe M. G. França. 2021. A lightweight error-resiliency mechanism for deep neural networks. In 22nd International
Symposium on Quality Electronic Design (ISQED’21). IEEE, 311–316.

[85] Masoomeh Jasemi, Shaahin Hessabi, and Nader Bagherzadeh. 2020. Enhancing reliability of emerging memory tech-
nology for machine learning accelerators. IEEE Trans. Emerg. Topics Comput. 9, 4 (2020), 2234–2240.

[86] Jae-San Kim and Joon-Sung Yang. 2019. DRIS-3: Deep neural network reliability improvement scheme in 3D die-
stacked memory based on fault analysis. In 56th ACM/IEEE Design Automation Conference (DAC’19). IEEE, 1–6.

[87] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik Pattabiraman, Joel Emer, and
Stephen W. Keckler. 2017. Understanding error propagation in deep learning neural network (DNN) accelerators
and applications. In International Conference for High Performance Computing, Networking, Storage and Analysis.
1–12.

[88] Wenshuo Li, Guangjun Ge, Kaiyuan Guo, Xiaoming Chen, Qi Wei, Zhen Gao, Yu Wang, and Huazhong Yang. 2020.
Soft Error Mitigation for Deep Convolution Neural Network on FPGA Accelerators. In 2nd IEEE International Con-
ference on Artificial Intelligence Circuits and Systems (AICAS’20). IEEE, 1–5.

[89] Elbruz Ozen and Alex Orailoglu. 2020. Boosting bit-error resilience of DNN accelerators through median feature
selection. IEEE Trans. Comput.-Aid. Des. Integ. Circ. Syst. 39, 11 (2020), 3250–3262.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:34 M. H. Ahmadilivani et al.

[90] Elbruz Ozen and Alex Orailoglu. 2020. Just say zero: Containing critical bit-error propagation in deep neural networks
with anomalous feature suppression. In IEEE/ACM International Conference on Computer Aided Design (ICCAD’20).
IEEE, 1–9.

[91] Elbruz Ozen and Alex Orailoglu. 2019. Sanity-check: Boosting the reliability of safety-critical deep neural network
applications. In IEEE 28th Asian Test Symposium (ATS’19). IEEE, 7–75.

[92] Vitor Bandeira, Felipe Rosa, Ricardo Reis, and Luciano Ost. 2019. Non-intrusive fault injection techniques for efficient
soft error vulnerability analysis. In IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-
SoC’19). IEEE, 123–128.

[93] Panayiotis Corneliou, Panagiota Nikolaou, Maria K. Michael, and Theocharis Theocharides. 2021. Fine-grained vul-
nerability analysis of resource constrained neural inference accelerators. In IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’21). IEEE, 1–6.

[94] Anahita Hosseinkhani and Behnam Ghavami. 2021. Improving soft error reliability of FPGA-based deep neural net-
works with reduced approximate TMR. In 11th International Conference on Computer Engineering and Knowledge
(ICCKE’21). IEEE, 459–464.

[95] Fabio Benevenuti, Fabiano Libano, Vincent Pouget, Fernanda Lima Kastensmidt, and Paolo Rech. 2018. Comparative
analysis of inference errors in a neural network implemented in SRAM-based FPGA induced by neutron irradiation
and fault injection methods. In 31st Symposium on Integrated Circuits and Systems Design (SBCCI’18). IEEE, 1–6.

[96] Fabio Benevenuti, Márcio Gonçalves, Evaldo Carlos Fonseca Pereira Junior, Rafael Galhardo Vaz, Odair Lelis
Gonçalez, José Rodrigo Azambuja, and Fernanda Lima Kastensmidt. 2021. Neutron-induced faults on CNN for aerial
image classification on SRAM-based FPGA using softcore GPU and HLS. In 21th European Conference on Radiation
and Its Effects on Components and Systems (RADECS’21). IEEE, 1–4.

[97] Corrado De Sio, Sarah Azimi, and Luca Sterpone. 2020. An emulation platform for evaluating the reliability of deep
neural networks. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT’20). IEEE, 1–4.

[98] Corrado De Sio, Sarah Azimi, and Luca Sterpone. 2022. FireNN: Neural networks reliability evaluation on hybrid
platforms. IEEE Trans. Emerg. Topics Comput. 10, 2 (2022), 549–563.

[99] Boyang Du, Sarah Azimi, Corrado De Sio, Ludovica Bozzoli, and Luca Sterpone. 2019. On the reliability of convolu-
tional neural network implementation on SRAM-based FPGA. In IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT’19). IEEE, 1–6.

[100] Zhen Gao, Yi Yao, Xiaohui Wei, Tong Yan, Shulin Zeng, Guangjun Ge, Yu Wang, Anees Ullah, and Pedro Reviriego.
2022. Reliability evaluation of FPGA based pruned neural networks. Microelectron. Reliab. 130 (2022), 114498.

[101] Navid Khoshavi, Connor Broyles, and Yu Bi. 2020. Compression or corruption? A study on the effects of transient
faults on BNN inference accelerators. In 21st International Symposium on Quality Electronic Design (ISQED’20). IEEE,
99–104.

[102] Navid Khoshavi, Connor Broyles, Yu Bi, and Arman Roohi. 2020. Fiji-FIN: A fault injection framework on quantized
neural network inference accelerator. In 19th IEEE International Conference on Machine Learning and Applications
(ICMLA’20). IEEE, 1139–1144.

[103] Fabiano Libano, Brittany Wilson, J. Anderson, Michael J. Wirthlin, Carlo Cazzaniga, Christopher Frost, and Paolo
Rech. 2018. Selective hardening for neural networks in FPGAs. IEEE Trans. Nuclear Sci. 66, 1 (2018), 216–222.

[104] Fabiano Libano, Brittany Wilson, Michael Wirthlin, Paolo Rech, and John Brunhaver. 2020. Understanding the impact
of quantization, accuracy, and radiation on the reliability of convolutional neural networks on FPGAs. IEEE Trans.
Nuclear Sci. 67, 7 (2020), 1478–1484.

[105] Lucas Matana Luza, Annachiara Ruospo, Alberto Bosio, Ernesto Sanchez, and Luigi Dilillo. 2021. A model-based
framework to assess the reliability of safety-critical applications. In 24th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS’21). IEEE, 41–44.

[106] Lucas Matanaluza, Annachiara Ruospo, Daniel Soderstrom, Carlo Cazzaniga, Maria Kastriotou, Ernesto Sanchez,
Alberto Bosio, and Luigi Dilillo. 2021. Emulating the effects of radiation-induced soft-errors for the reliability assess-
ment of neural networks. IEEE Trans. Emerg. Topics Comput. 10, 4 (2021).

[107] Ioanna Souvatzoglou, Athanasios Papadimitriou, Aitzan Sari, Vasileios Vlagkoulis, and Mihalis Psarakis. 2021. An-
alyzing the single event upset vulnerability of binarized neural networks on SRAM FPGAs. In IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’21). IEEE, 1–6.

[108] H.-B. Wang, Y.-S. Wang, J.-H. Xiao, S.-L. Wang, and T.-J. Liang. 2021. Impact of single-event upsets on convolutional
neural networks in Xilinx Zynq FPGAs. IEEE Trans. Nuclear Sci. 68, 4 (2021), 394–401.

[109] Khalid Adam, Izzeldin Ibrahim Mohamed, and Younis Ibrahim. 2021. A selective mitigation technique of soft errors
for DNN models used in healthcare applications: DenseNet201 case study. IEEE Access 9 (2021), 65803–65823.

[110] Khalid Adam, Izzeldin I. Mohd, and Younis Ibrahim. 2021. Analyzing the instructions vulnerability of dense convo-
lutional network on GPUS. Int. J. Electric. Comput. Eng. 11, 5 (2021), 4481–4488.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:35

[111] Khalid Adam, Izzeldin I. Mohd, and Younis M. Younis. 2021. The impact of the soft errors in convolutional neural
network on GPUs: Alexnet as case study. Procedia Comput. Sci. 182 (2021), 89–94.

[112] Cristiana Bolchini, Luca Cassano, Antonio Miele, and Alessandro Nazzari. 2022. Selective hardening of CNNs based
on layer vulnerability estimation. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems (DFT’22). IEEE, 1–6.

[113] Niccolò Cavagnero, Fernando Dos Santos, Marco Ciccone, Giuseppe Averta, Tatiana Tommasi, and Paolo Rech. 2022.
Transient-fault-aware design and training to enhance DNNs reliability with zero-overhead. In IEEE 28th International
Symposium on On-Line Testing and Robust System Design (IOLTS’22). IEEE, 1–7.

[114] Josie E. Rodriguez Condia, Fernando Fernandes dos Santos, Matteo Sonza Reorda, and Paolo Rech. 2021. Combining
architectural simulation and software fault injection for a fast and accurate CNNs reliability evaluation on GPUs. In
IEEE 39th VLSI Test Symposium (VTS’21). IEEE, 1–7.

[115] Fernando Fernandes Dos Santos, Angeliki Kritikakou, Josie E. Rodriguez Condia, Juan-David Guerrero-Balaguera,
Matteo Sonza Reorda, Olivier Sentieys, and Paolo Rech. 2022. Characterizing a neutron-induced fault model for deep
neural networks. IEEE Trans. Nuclear Sci. 70, 4 (2022).

[116] Tyler Garrett and Alan D. George. 2021. Improving dependability of onboard deep learning with resilient TensorFlow.
In IEEE Space Computing Conference (SCC’21). IEEE, 134–142.

[117] Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, and Stephen W. Keckler. 2021. Making convolutions resilient
via algorithm-based error detection techniques. IEEE Trans. Depend. Sec. Comput. 19, 4 (2021).

[118] Younis Ibrahim, Haibin Wang, and Khalid Adam. 2020. Analyzing the reliability of convolutional neural networks on
GPUs: GoogLeNet as a case study. In International Conference on Computing and Information Technology (ICCIT’20).
IEEE, 1–6.

[119] Younis Ibrahin, Junyang Liu, Xuanxuan Yang, Hongwei Sha, and Haibin Wang. 2020. Analyzing the impact of soft
errors in deep neural networks on GPUs from instruction level. WSEAS Trans. Syst. Contr. 15 (2020), 699–708.

[120] Rubens Luiz Rech and Paolo Rech. 2020. Impact of layers selective approximation on CNNs reliability and perfor-
mance. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’20).
IEEE, 1–4.

[121] Fernando Fernandes dos Santos, Lucas Draghetti, Lucas Weigel, Luigi Carro, Philippe Navaux, and Paolo Rech. 2017.
Evaluation and mitigation of soft-errors in neural network-based object detection in three GPU architectures. In
47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W’17). IEEE,
169–176.

[122] Fernando Fernandes dos Santos, Philippe Navaux, Luigi Carro, and Paolo Rech. 2019. Impact of reduced precision in
the reliability of deep neural networks for object detection. In IEEE European Test Symposium (ETS’19). IEEE, 1–6.

[123] Geancarlo Abich, Ricardo Reis, and Luciano Ost. 2021. The impact of precision bitwidth on the soft error reliability
of the MobileNet network. In IEEE 12th Latin America Symposium on Circuits and System (LASCAS’21). IEEE, 1–4.

[124] Geancarlo Abich, Jonas Gava, Rafael Garibotti, Ricardo Reis, and Luciano Ost. 2021. Applying lightweight soft error
mitigation techniques to embedded mixed precision deep neural networks. IEEE Trans. Circ. Syst. I: Reg. Pap. 68, 11
(2021), 4772–4782.

[125] Geancarlo Abich, Rafael Garibotti, Jonas Gava, Ricardo Reis, and Luciano Ost. 2022. Impact of thread parallelism
on the soft error reliability of convolution neural networks. In IEEE 13th Latin America Symposium on Circuits and
System (LASCAS’22). IEEE, 1–4.

[126] Geancarlo Abich, Rafael Garibotti, Ricardo Reis, and Luciano Ost. 2022. The impact of soft errors in memory units of
edge devices executing convolutional neural networks. IEEE Trans. Circ. Syst. II: Express Briefs 69, 3 (2022), 679–683.

[127] Jonas Gava, Guilherme Dorneles, Ricardo Reis, Rafael Garibotti, and Luciano Ost. 2022. Soft error assessment of CNN
inference models running on a RISC-V processor. In 29th IEEE International Conference on Electronics, Circuits and
Systems (ICECS’22). IEEE, 1–4.

[128] Zhi Liu, Zhen Deng, and Xinni Yang. 2022. Using checksum to improve the reliability of embedded convolutional
neural networks. Microelectron. Reliab. 136 (2022), 114666.

[129] Zhi Liu and Xinni Yang. 2022. An efficient structure to improve the reliability of deep neural networks on ARMs.
Microelectron. Reliab. 136 (2022), 114729.

[130] Zhi Liu, Yuhong Liu, Zhengming Chen, Gang Guo, and Haibin Wang. 2021. Analyzing and increasing soft error
resilience of Deep Neural Networks on ARM processors. Microelectron. Reliab. 124 (2021), 114331.

[131] Dimitris Agiakatsikas, Nikos Foutris, Aitzan Sari, Vasileios Vlagkoulis, Ioanna Souvatzoglou, Mihalis Psarakis, Mikel
Luján, Maria Kastriotou, and Carlo Cazzaniga. 2021. Evaluation of the Xilinx deep learning processing unit under
neutron irradiation. In 21st European Conference on Radiation and Its Effects on Components and Systems (RADECS’21).
IEEE, 1–4.

[132] Giulio Gambardella, Nicholas J. Fraser, Ussama Zahid, Gianluca Furano, and Michaela Blott. 2022. Accelerated radi-
ation test on quantized neural networks trained with fault aware training. In IEEE Aerospace Conference (AERO’22).
IEEE, 1–7.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:36 M. H. Ahmadilivani et al.

[133] F. Libano, P. Rech, B. Neuman, J. Leavitt, M. Wirthlin, and J. Brunhaver. 2021. How reduced data precision and degree
of parallelism impact the reliability of convolutional neural networks on FPGAs. IEEE Trans. Nuclear Sci. 68, 5 (2021),
865–872.

[134] Lucas Matana Luza, Daniel Söderström, Georgios Tsiligiannis, Helmut Puchner, Carlo Cazzaniga, Ernesto Sanchez,
Alberto Bosio, and Luigi Dilillo. 2020. Investigating the impact of radiation-induced soft errors on the reliability of
approximate computing systems. In IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems (DFT’20). IEEE, 1–6.

[135] Pierre Maillard, Yanran P. Chen, Jason Vidmar, Nicholas Fraser, Giulio Gambardella, Minal Sawant, and Martin L.
Voogel. 2022. Radiation tolerant deep learning processor unit (DPU) based platform using Xilinx 20nm Kintex Ultra-
Scale™ FPGA. IEEE Trans. Nuclear Sci. 70, 4 (2022).

[136] Pedro Martins Basso, Fernando Fernandes dos Santos, and Paolo Rech. 2020. Impact of tensor cores and mixed pre-
cision on the reliability of matrix multiplication in GPUs. IEEE Trans. Nuclear Sci. 67, 7 (2020), 1560–1565.

[137] Atieh Lotfi, Saurabh Hukerikar, Keshav Balasubramanian, Paul Racunas, Nirmal Saxena, Richard Bramley, and Yanx-
iang Huang. 2019. Resiliency of automotive object detection networks on GPU architectures. In IEEE International
Test Conference (ITC’19). IEEE, 1–9.

[138] Rubens Luiz Rech Junior, Sujit Malde, Carlo Cazzaniga, Maria Kastriotou, Manon Letiche, Christopher Frost, and
Paolo Rech. 2022. High energy and thermal neutron sensitivity of Google Tensor Processing Units. IEEE Trans. Nu-
clear Sci. 69, 3 (2022), 567–575.

[139] Rubens Luiz Rech and Paolo Rech. 2022. Reliability of Google’s tTensor Processing Units for embedded applications.
In Design, Automation & Test in Europe Conference & Exhibition (DATE’22). IEEE, 376–381.

[140] Alberto Bosio, Paolo Bernardi, Annachiara Ruospo, and Ernesto Sanchez. 2019. A reliability analysis of a deep neural
network. In IEEE Latin American Test Symposium (LATS’19). IEEE, 1–6.

[141] Seo-Seok Lee and Joon-Sung Yang. 2022. Value-aware parity insertion ECC for fault-tolerant deep neural network.
In Design, Automation & Test in Europe Conference & Exhibition (DATE’22). IEEE, 724–729.

[142] Annachiara Ruospo, Alberto Bosio, Alessandro Ianne, and Ernesto Sanchez. 2020. Evaluating convolutional neural
networks reliability depending on their data representation. In 23rd Euromicro Conference on Digital System Design
(DSD’20). IEEE, 672–679.

[143] Annachiara Ruospo, Ernesto Sanchez, Marcello Traiola, Ian O’connor, and Alberto Bosio. 2021. Investigating data
representation for efficient and reliable convolutional neural networks. Microprocess. Microsyst. 86 (2021), 104318.

[144] Stephane Burel, Adrian Evans, and Lorena Anghel. 2022. Mozart+: Masking outputs with zeros for improved archi-
tectural robustness and testing of DNN accelerators. IEEE Trans. Device Mater. Reliab. 22, 2 (2022), 120–128.

[145] Le-Ha Hoang, Muhammad Abdullah Hanif, and Muhammad Shafique. 2021. TRe-Map: Towards reducing the over-
heads of fault-aware retraining of deep neural networks by merging fault maps. In 24th Euromicro Conference on
Digital System Design (DSD’21). IEEE, 434–441.

[146] Thai-Hoang Nguyen, Muhammad Imran, Jaehyuk Choi, and Joon-Sung Yang. 2021. Low-cost and effective fault-
tolerance enhancement techniques for emerging memories-based deep neural networks. In 58th ACM/IEEE Design
Automation Conference (DAC’21). IEEE, 1075–1080.

[147] Ayesha Siddique, Kanad Basu, and Khaza Anuarul Hoque. 2021. Exploring fault-energy trade-offs in approxi-
mate DNN hardware accelerators. In 22nd International Symposium on Quality Electronic Design (ISQED’21). IEEE,
343–348.

[148] Yung-Yu Tsai and Jin-Fu Li. 2021. Evaluating the impact of fault-tolerance capability of deep neural networks caused
by faults. In IEEE 34th International System-on-Chip Conference (SOCC’21). IEEE, 272–277.

[149] Ussama Zahid, Giulio Gambardella, Nicholas J. Fraser, Michaela Blott, and Kees Vissers. 2020. FAT: Training neural
networks for reliable inference under hardware faults. In IEEE International Test Conference (ITC’20). IEEE, 1–10.

[150] Yingnan Zhao, Ke Wang, and Ahmed Louri. 2022. FSA: An efficient fault-tolerant systolic array-based DNN acceler-
ator architecture. In IEEE 40th International Conference on Computer Design (ICCD’22). IEEE, 545–552.

[151] Cheng Liu, Cheng Chu, Dawen Xu, Ying Wang, Qianlong Wang, Huawei Li, Xiaowei Li, and Kwang-Ting Cheng.
2021. HyCA: A hybrid computing architecture for fault-tolerant deep learning. IEEE Trans. Comput.-aid. Des. Integ.
Circ. Syst. 41, 10 (2021), 3400–3413.

[152] Dawen Xu, Cheng Chu, Qianlong Wang, Cheng Liu, Ying Wang, Lei Zhang, Huaguo Liang, and Kwang-Ting Cheng.
2020. A hybrid computing architecture for fault-tolerant deep learning accelerators. In IEEE 38th International Con-
ference on Computer Design (ICCD’20). IEEE, 478–485.

[153] Jeff Jun Zhang, Kanad Basu, and Siddharth Garg. 2019. Fault-tolerant systolic array based accelerators for deep neural
network execution. IEEE Des. Test 36, 5 (2019), 44–53.

[154] Jeff Jun Zhang, Tianyu Gu, Kanad Basu, and Siddharth Garg. 2018. Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator. In IEEE 36th VLSI Test Symposium (VTS’18). IEEE, 1–6.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:37

[155] Giulio Gambardella, Johannes Kappauf, Michaela Blott, Christoph Doehring, Martin Kumm, Peter Zipf, and Kees
Vissers. 2019. Efficient error-tolerant quantized neural network accelerators. In IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’19). IEEE, 1–6.

[156] Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman. 2018. On the resilience of RTL NN accelerators: Fault
characterization and mitigation. In 30th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD’18). IEEE, 322–329.

[157] Josie E. Rodriguez Condia, Juan-David Guerrero-Balaguera, Fernando F. Dos Santos, Matteo Sonza Reorda, and Paolo
Rech. 2022. A multi-level approach to evaluate the impact of GPU permanent faults on CNN’s reliability. In IEEE
International Test Conference (ITC’22). IEEE, 278–287.

[158] Juan-David Guerrero-Balaguera, Josie E. Rodriguez Condia, and Matteo Sonza Reorda. 2022. Neural network’s relia-
bility to permanent faults: Analyzing the impact of performance optimizations in GPUs. In 29th IEEE International
Conference on Electronics, Circuits and Systems (ICECS’22). IEEE, 1–4.

[159] Juan-David Guerrero-Balaguera, Robert Limas Sierra, and Matteo Sonza Reorda. 2022. Effective fault simulation of
GPU’s permanent faults for reliability estimation of CNNs. In IEEE 28th International Symposium on On-Line Testing
and Robust System Design (IOLTS’22). IEEE, 1–6.

[160] Juan-David Guerrero-Balaguera, Luigi Galasso, Robert Limas Sierra, Ernesto Sanchez, and Matteo Sonza Reorda.
2022. Evaluating the impact of permanent faults in a GPU running a deep neural network. In IEEE International Test
Conference in Asia (ITC-Asia’22). IEEE, 96–101.

[161] Zheyu Yan, Yiyu Shi, Wang Liao, Masanori Hashimoto, Xichuan Zhou, and Cheng Zhuo. 2020. When single event
upset meets deep neural networks: Observations, explorations, and remedies. In 25th Asia and South Pacific Design
Automation Conference (ASP-DAC’20). IEEE, 163–168.

[162] Dawen Xu, Ziyang Zhu, Cheng Liu, Ying Wang, Huawei Li, Lei Zhang, and Kwang-Ting Cheng. 2020. Persistent fault
analysis of neural networks on FPGA-based acceleration system. In IEEE 31st International Conference on Application-
specific Systems, Architectures and Processors (ASAP’20). IEEE, 85–92.

[163] Dawen Xu, Ziyang Zhu, Cheng Liu, Ying Wang, Shuang Zhao, Lei Zhang, Huaguo Liang, Huawei Li, and Kwang-
Ting Cheng. 2021. Reliability evaluation and analysis of FPGA-based neural network acceleration system. IEEE Trans.
Very Large Scale Integ. Syst. 29, 3 (2021), 472–484.

[164] Abdulrahman Mahmoud, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez Vicarte, Sarita V. Adve, Christopher W.
Fletcher, Iuri Frosio, and Siva Kumar Sastry Hari. 2020. PyTorchFi: A runtime perturbation tool for DNNs. In 50th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W’20). IEEE, 25–31.

[165] Zitao Chen, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2020.
TensorFI: A flexible fault injection framework for TensorFlow applications. In IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE’20). IEEE, 426–435.

[166] Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2018. TensorFI: A configurable fault injector for
TensorFlow applications. In IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW’18).
IEEE, 313–320.

[167] Niranjhana Narayanan, Zitao Chen, Bo Fang, Guanpeng Li, Karthik Pattabiraman, and Nathan Debardeleben. 2022.
Fault injection for TensorFlow applications. IEEE Trans. Depend. Sec. Comput. 20, 4 (2022).

[168] Sabuj Laskar, Md Hasanur Rahman, and Guanpeng Li. 2022. TensorFI+: A scalable fault injection framework for mod-
ern deep learning neural networks. In IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW’22). IEEE, 246–251.

[169] Sabuj Laskar, Md Hasanur Rahman, Bohan Zhang, and Guanpeng Li. 2022. Characterizing deep learning neural
network failures between algorithmic inaccuracy and transient hardware faults. In IEEE 27th Pacific Rim International
Symposium on Dependable Computing (PRDC’22). IEEE, 54–67.

[170] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu Lee, Niamh Mulholland, David Brooks,
and Gu-Yeon Wei. 2018. Ares: A framework for quantifying the resilience of deep neural networks. In 55th
ACM/ESDA/IEEE Design Automation Conference (DAC’18). IEEE, 1–6.

[171] Zitao Chen, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2019. BinFI: An efficient fault injector for
safety-critical machine learning systems. In International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–23.

[172] Udit Kumar Agarwal, Abraham Chan, and Karthik Pattabiraman. 2022. LLTFI: Framework agnostic fault injection for
machine learning applications (tools and artifact track). In IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE’22). IEEE, 286–296.

[173] Elvis Rojas, Diego Pérez, Jon C. Calhoun, Leonardo Bautista Gomez, Terry Jones, and Esteban Meneses. 2021. Un-
derstanding soft error sensitivity of deep learning models and frameworks through checkpoint alteration. In IEEE
International Conference on Cluster Computing (CLUSTER’21). IEEE, 492–503.

[174] N2D2 CAD framework for DNNs. 2016. Retrieved from: https://github.com/cea-list/N2D2

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

141:38 M. H. Ahmadilivani et al.

[175] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna. 2018. SCALE-Sim: Systolic
CNN accelerator simulator. arXiv preprint arXiv:1811.02883 (2018).

[176] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. ACM SIGARCH Comput. Archit. News 44, 3 (2016), 367–379.

[177] XILINX. 2021. SoCs with Hardware and Software Programmability. Retrieved from: https://www.xilinx.com/
products/silicon-devices/soc/zynq-7000.html

[178] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees
Vissers. 2017. FINN: A framework for fast, scalable binarized neural network inference. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 65–74.

[179] Juan-David Guerrero-Balaguera, Luigi Galasso, Robert Limas Sierra, and Matteo Sonza Reorda. 2022. Reliability as-
sessment of neural networks in GPUs: A framework for permanent faults injections. In IEEE 31st International Sym-
posium on Industrial Electronics (ISIE’22). IEEE, 959–962.

[180] NVIDIA Corporation. 2021. NVIDIA TensorRT. Retrieved from: https://developer.nvidia.com/tensorrt
[181] Josie E. Rodriguez Condia, Boyang Du, Matteo Sonza Reorda, and Luca Sterpone. 2020. FlexGripPlus: An improved

GPGPU model to support reliability analysis. Microelectron. Reliab. 109 (2020), 113660.
[182] Timothy Tsai, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa, and Stephen W. Keckler. 2021. NVBitFI: Dy-

namic fault injection for GPUs. In 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’21). IEEE, 284–291.

[183] Daniel Oliveira, Laércio Pilla, Nathan DeBardeleben, Sean Blanchard, Heather Quinn, Israel Koren, Philippe Navaux,
and Paolo Rech. 2017. Experimental and analytical study of Xeon Phi reliability. In International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–12.

[184] Cristiana Bolchini, Luca Cassano, Antonio Miele, and Alessandro Toschi. 2022. Fast and accurate error simulation
for CNNs against soft errors. IEEE Trans. Comput. 72, 4 (2022).

[185] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W. Keckler, and Joel Emer. 2017. SASSIFI: An
architecture-level fault injection tool for GPU application resilience evaluation. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’17). IEEE, 249–258.

[186] Muhammad Abdullah Hanif and Muhammad Shafique. 2020. SalvageDNN: Salvaging deep neural network accelera-
tors with permanent faults through saliency-driven fault-aware mapping. Philosoph. Trans. Roy. Societ. A 378, 2164
(2020), 20190164.

[187] Annachiara Ruospo and Ernesto Sanchez. 2021. On the reliability assessment of artificial neural networks running
on AI-oriented MPSoCs. Appl. Sci. 11, 14 (2021), 6455.

[188] Annachiara Ruospo, Gabriele Gavarini, Ilaria Bragaglia, Marcello Traiola, Alberto Bosio, and Ernesto Sanchez. 2022.
Selective hardening of critical neurons in deep neural networks. In 25th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS’22). IEEE, 136–141.

[189] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2018. Accurate neuron resilience prediction for a flexible reli-
ability management in neural network accelerators. In Design, Automation & Test in Europe Conference & Exhibition
(DATE’18). IEEE, 979–984.

[190] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2019. An efficient bit-flip resilience optimization method for
deep neural networks. In Design, Automation & Test in Europe Conference & Exhibition (DATE’19). IEEE, 1507–1512.

[191] Wonseok Choi, Dongyeob Shin, Jongsun Park, and Swaroop Ghosh. 2019. Sensitivity based error resilient techniques
for energy efficient deep neural network accelerators. In 56th Annual Design Automation Conference. 1–6.

[192] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W. Fletcher, Sarita V. Adve, Charbel Sakr, Naresh
Shanbhag, Pavlo Molchanov, Michael B. Sullivan, Timothy Tsai, and Stephen W. Keckler. 2020. HarDNN: Feature
map vulnerability evaluation in CNNs. arXiv preprint arXiv:2002.09786 (2020).

[193] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Christopher W. Fletcher, Sarita V. Adve, Charbel Sakr, Naresh R.
Shanbhag, Pavlo Molchanov, Michael B. Sullivan, Timothy Tsai, and Stephen W. Keckler. 2021. Optimizing selective
protection for CNN resilience. In International Symposium on Software Reliability Engineering (ISSRE’21). 127–138.

[194] Muhammad Sabih, Frank Hannig, and Jürgen Teich. 2021. Fault-tolerant low-precision DNNs using explainable AI.
In 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W’21). IEEE,
166–174.

[195] Liqi Ping, Jingweijia Tan, and Kaige Yan. 2020. SERN: Modeling and analyzing the soft error reliability of convolu-
tional neural networks. In Great Lakes Symposium on VLSI. 445–450.

[196] G. Gavarini, D. Stucchi, A. Ruospo, G. Boracchi, and E. Sanchez. 2022. Open-set recognition: An inexpensive strat-
egy to increase DNN reliability. In IEEE 28th International Symposium on On-Line Testing and Robust System Design
(IOLTS’22). IEEE, 1–7.

[197] Yi He, Prasanna Balaprakash, and Yanjing Li. 2020. Fidelity: Efficient resilience analysis framework for deep learning
accelerators. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’20). IEEE, 270–281.

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

A SLR on Hardware Reliability Assessment Methods for Deep Neural Networks 141:39

[198] NVIDIA Corporation. 2021. NVDLA Open Source Project. Retrieved from: http://nvdla.org
[199] Alessandro Veronesi, Francesco Dall’Occo, Davide Bertozzi, Michele Favalli, and Milos Krstic. 2022. Exploring soft-

ware models for the resilience analysis of deep learning accelerators: The NVDLA case study. In 25th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS’22). IEEE, 142–147.

[200] Yangchao Zhang, Hiroaki Itsuji, Takumi Uezono, Tadanobu Toba, and Masanori Hashimoto. 2022. Estimating vul-
nerability of all model parameters in DNN with a small number of fault injections. In Design, Automation & Test in
Europe Conference & Exhibition (DATE’22). IEEE, 60–63.

[201] Abraham Chan, Arpan Gujarati, Karthik Pattabiraman, and Sathish Gopalakrishnan. 2022. The fault in our data
stars: studying mitigation techniques against faulty training data in machine learning applications. In 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’22). IEEE, 163–171.

Received 8 May 2023; accepted 15 December 2023

ACM Computing Surveys, Vol. 56, No. 6, Article 141. Publication date: January 2024.

Appendix 10

X

241

M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Enhancing Fault Resilience of QNNs by Selective Neuron Splitting,” in 2023
IEEE 5th International Conference on Artificial Intelligence Circuits and Systems
(AICAS), pp. 1–5, 2023.

Enhancing Fault Resilience of QNNs by Selective Neuron Splitting
Mohammad Hasan Ahmadilivani1, Mahdi Taheri1, Jaan Raik1, Masoud Daneshtalab1,2, and Maksim Jenihhin 1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1{mohammad.ahmadilivani, mahdi.taheri, jaan.raik, maksim.jenihhin}@taltech.ee
2masoud.daneshtalab@mdu.se

Abstract—The superior performance of Deep Neural Networks
(DNNs) has led to their application in various aspects of human life.
Safety-critical applications are no exception and impose rigorous
reliability requirements on DNNs. Quantized Neural Networks
(QNNs) have emerged to tackle the complexity of DNN accelerators,
however, they are more prone to reliability issues.

In this paper, a recent analytical resilience assessment method is
adapted for QNNs to identify critical neurons based on a Neuron
Vulnerability Factor (NVF). Thereafter, a novel method for splitting
the critical neurons is proposed that enables the design of a
Lightweight Correction Unit (LCU) in the accelerator without
redesigning its computational part.

The method is validated by experiments on different QNNs and
datasets. The results demonstrate that the proposed method for
correcting the faults has a twice smaller overhead than a selective
Triple Modular Redundancy (TMR) while achieving a similar level
of fault resiliency.

I. INTRODUCTION

Artificial Intelligence (AI) has shifted the paradigm of com-
puter science in the latest decade with Deep Neural Networks
(DNNs), one of AI’s illustrious instruments, demonstrating
remarkable precision levels [1]. This has led to their adoption
in several safety-critical applications like autonomous driving
[2]. As DNN accelerators become more prevalent in safety-
critical applications, hardware reliability of digital circuits has
become increasingly more noticeable. The reliability of DNNs is
determined by the ability of their accelerators to function correctly
[3] in the presence of environment-related faults (soft errors,
electromagnetic effects, temperature variations) or faults in the
underlying hardware (manufacturing defects, process variations,
aging effects) [4].

Various emerging techniques are explored to improve the
computational efficiency of DNNs’ complex architectures, such
as reducing the bit precision of parameters, which has led to
the emergence of Quantized Neural Networks (QNNs). However,
the effectiveness of such techniques raises concerns about the
reliability of QNNs, particularly in safety-critical applications.
Soft errors, a type of fault caused by charged particles colliding
with transistors, can cause a logic value to flip, dramatically
influencing the functionality of QNNs [5], [6].

Throughout the literature, protecting DNNs against soft errors
is primarily achieved through architecture-level methods such
as hardened PEs or Triple Modular Redundancy (TMR) [7].
However, to alleviate overheads, there is a need, first, to identify
the critical neurons within a neural network before applying
the mentioned mitigation techniques to harden them against the
faults.

Reliability assessment serves as the initial step towards
exploiting an effective protection mechanism. Fault Injection

The work is supported in part by the EU through European Social Fund in the
frames of the “ICT programme” (“ITA-IoIT” topic), by the Estonian Research
Council grant PUT PRG1467 “CRASHLESS”, Estonian Centre for Research
Excellence EXCITE and by Estonian-French PARROT project “EnTrustED”.

(FI) is a conventional method for reliability assessment that
is vastly adopted for DNNs. However, identifying the critical
points in a QNN requires an exhaustive FI that is prohibitively
complex due to their large number of parameters. To address this
issue, analytical resilience assessment approaches are proposed
to evaluate the reliability of DNNs by analyzing them at the
algorithm level [8].

In previous works, the criticality of neurons has been identified
based on their contribution scores to outputs [9]–[12]. Hence,
there is no clear resilience evaluation metric for selecting the
critical neurons in the literature, and recent works extract the
criticality based on the ranked scores. To tackle the drawbacks
of the state-of-the-art in DNNs’ resilience analysis methods, a
prior study has proposed a method called DeepVigor [13], which
provides vulnerability factors for all bits, neurons, and layers
of DNNs accurately. However, it does not consider QNNs. In
this work, we adapt and optimize DeepVigor for identifying
critical neurons in QNNs. The resilience analysis enables us to
design a method for correcting soft errors in the datapath of
DNN accelerators.

In this paper, we identify critical neurons in QNNs based on a
Neuron Vulnerability Factor (NVF) obtained by fault propagation
analysis through the QNNs. The NVF represents the probability of
misclassification due to a fault in a neuron which determines the
level of criticality for neurons. To the best of our knowledge, for
the first time, a protection technique based on splitting neurons’
operations is proposed that modifies the network in a way that a
Lightweight Correction Unit (LCU) corrects the faults in critical
neurons. The proposed method does not require redesigning the
computational part of the accelerator. The accelerator executes
the modified network, and only its controller needs to be aware
of the critical neurons to be operated on the LCU. Our method
imposes half the overhead of TMR since it corrects faults with
only one additional neuron instead of two.

The contributions of this work are as follows:

• Developing an analytical fault resilience assessment method
for QNNs to identify the most critical neurons based on the
conducted Neuron Vulnerability Factor (NVF);

• Proposing a novel high-level modification method for QNNs
to improve fault resiliency by splitting the operations
of critical neurons, without requiring a redesign of the
computational part of the accelerator;

• Designing an effective Lightweight Correction Unit (LCU)
for selected critical neurons in accelerators, with low
overhead (twice less than that of TMR) and high fault
resiliency (similar to that of TMR).

The paper is organized as follows. The proposed method for
enhancing fault resilience of QNNs is presented in Section II,
experiments are performed and discussed in Section III, and the
paper is concluded in Section IV.

20
23

 IE
EE

 5
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

rti
fic

ia
l I

nt
el

lig
en

ce
 C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

A
IC

A
S)

 |
97

9-
8-

35
03

-3
26

7-
4/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

A
IC

A
S5

79
66

.2
02

3.
10

16
86

33

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:53:40 UTC from IEEE Xplore. Restrictions apply.

II. METHOD FOR RESILIENCE ENHANCEMENT OF QNNS

A. Accelerator Model

Fig. 1 illustrates the accelerator model considered in this work
which is inspired by [14]. It consists of a computational part (an
array of Processing Elements (PEs), activation functions, pooling,
and normalization), buffers for parameters (weight and bias),
inputs, and outputs, and the controller. It is assumed that faults
may happen in the computational part of the accelerator, thus, the
Outputs Buffer may contain faulty values of output activations.
The controller is responsible for feeding the inputs, transferring
the outputs, and controlling the function of the accelerator.

To apply the resilience enhancement method to accelerator, a
Lightweight Correction Unit (LCU) is added to the design in
which the controller only needs to be aware of the critical neurons.
Once the outputs of a layer are calculated, the controller transfers
the critical neurons to LCU, replaces its corrected outputs back to
the Outputs Buffer, and continues the operations of the accelerator.
The design of the LCU is proposed in Subsection II-C.

Inputs Buffer

PE PE

PE PE

PE

Activation Function
Pooling/Normalization

Outputs Buffer

PE

PE

PE

C
on

tro
lle

r

LCU

Weights/Bias Buffer

PE

C
om

pu
ta

tio
na

l P
ar

t

critical
neurons

Fig. 1: An abstract view of the accelerator and where the faults may
happen.

B. Identifying Critical Neurons by Resilience Analysis

Algorithm 1 presents the resilience analysis of QNNs to obtain
Neuron Vulnerability Factors (NVF) for all neurons throughout
the QNN in convolution and fully-connected layers. It is assumed
that the neural network is quantized into an 8-bit signed integer
data type, and the output activation of the neuron is analyzed.
The algorithm, first, checks whether or not to analyze an input
for the neuron (lines 3-5) by the gradients of a loss function (L)
that represents the impact of the neuron’s erroneous output on
the golden top class of the network.

Then, it finds minimum positive and maximum negative values
for the neuron (δ), that cause a misclassification in the QNN from
its golden output (lines 6, 7). Thereafter, it maps the obtained δ
to a corresponding possible bitflip location in the data type (lines
8, 9) and counts it as a vulnerable location (lines 10, 11). In
the end, regarding the counted of vulnerable times for each bit,
it calculates the probability of misclassification of the network
by each bitflip in the output of the neuron as the NVF over the
whole inputs (line 15).

A key observation in the analysis is that the 0 to 1 bitflip
is much more critical than 1 to 0 bitflip. Because the former
enlarges the values in the activation and propagates to the output,
while the latter is masked. This observation leads us to the
protection mechanism proposed in the next Subsection. It is worth
mentioning that the resilience analysis method is not limited to
a single-bit flip fault model, and it implicitly considers multi-bit
faults.

By obtaining the NVF of all neurons through the QNN, the
critical neurons can be found based on the values for NVF.
Different thresholds can be set to select the critical neurons and
protect them, considering how many of them are affected by the
protection techniques leading to execution overheads.

Algorithm 1 Resilience Analysis of QNNs

Input: Trained QNN with a set of neurons Q and N outputs,
set of input images X;

Output: NVF of all neurons;
Assume: δ ∈ [-128,127]; Ect is the output score for
the golden top class; Cg is golden classification; Cδ is
classification result after injecting δ; vul map arr pos and
vul map arr neg include counters for each bit corresponds
to each vulnerability range for positive and negative numbers;

1: for neuron ∈ Q do:
2: for input ∈ X do:
3: L = sigmoid(

∑N
j=0(Ect − Ecj))

4: grad = ∇L/outneuron
5: if grad != 0 then
6: rupper = min(δ), δ > 0, s.t. Cg ̸= Cf

7: rlower = max(δ), δ < 0, s.t. Clg ̸= Clf
8: bitupper = int(√rupper) + 1;
9: bitlower = int(

√
|rlower|);

10: vul map arr pos[bitupper]++;
11: vul map arr neg[bitlower]++;
12: end if;
13: end for;
14: vul map arr =

(vul map arr pos+ vul map arr neg) / 2

15: NV Fneuron =
∑8

i=1(
1
8×

∑i
j=1(vul map arr[j]))

size(X)
16: end for;

C. Resilience Enhancement by Splitting Critical Neurons and
LCU

The proposed fault resilience enhancement targets the critical
neurons identified based on a threshold on NVF. The idea is to
split the selected neurons’ operation into two neurons in the QNN
at a high level and correct the critical outputs in the accelerator.
Fig. 2 depicts how a critical neuron is split into two halves. As it
is shown, the input parameters (weights and bias) of the neuron
are halved, keeping the output parameters non-modified, and the
new neurons are replaced with the critical neuron in the QNN.
In this way, the neuron can be split into two neurons without
changing the intermediate values of the further layers and the
neural network’s outputs. Noteworthy, the method is applied to
all identified critical neurons in convolution and fully-connected
layers.

Splitting the critical neurons provides an opportunity for
fault correction using the split neurons without redesigning the

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:53:40 UTC from IEEE Xplore. Restrictions apply.

Input Layer
Hidden Layers

Output Layer

∑ φX1
l-1

X2
l-1

Wi2
l/2

Wi1
l/2

N'i
l

bl/2
Wi1

l+1

Wi2
l+1

∑ φX1
l-1

X2
l-1

Wi2
l

Wi1
l

Activation

function
Summation

Ni
l

bl

Wi1
l+1

Wi2
l+1

∑ φX1
l-1

X2
l-1

Wi2
l/2

Wi1
l/2

N"i
l

bl/2
Wi1

l+1

Wi2
l+1

Split

critical neuron

Split

Fig. 2: Operation splitting for a neuron in a QNN involves halving the
input parameters while keeping the output parameters non-modified. A
critical neuron is replaced with its corresponding split neurons in the

QNN.

computational part of the accelerator. The network is modified
in a way that the selected critical neurons from the analysis
are split. The modified network can then be mapped to the
accelerator using the existing controller and mapping algorithm
of the accelerator. However, the controller needs to be aware
of the critical neurons so that it can transfer them to LCU to
perform the correction and write them back to the Output Buffers
(Fig. 1).

LCU is designed to leverage the neuron-splitting method for
correction. The inputs of LCU are two split neurons representing
one critical neuron, and the output is one corrected 8-bit data
that will be written back to the corresponding neurons.

The data type (signed integer 8-bit) contains one sign bit and
7 bits for the integer. As the neuron’s operation is split, the range
of output values for each replaced neuron would be divided by
2. Therefore, the Most Significant Bit (MSB) in the integer part
of the output should always be 0. Regarding the observation in
the analysis about bitflips (Subsection II-B), any faulty bit can
be set to zero to be less critical.

Therefore, to output the corrected value, LCU performs two
operations: 1) a bit-wise AND over the two inputs, 2) resets the
MSB of the integer part to 0. In this way, many single and also
multiple faults that occur to the bits will be masked by these two
operations. Since the correction operations are merely an AND
and a bit reset, the correction unit is lightweight. The operation
of the LCU correction is depicted in Fig. 3 performing on the
faulty outputs of PEs running two splits of a critical neuron. The
corrected output is written back to Outputs Buffer as the outputs
of the corresponding PEs.

III. EXPERIMENTS

A. Experimental Setup

The experimented QNNs in this work are fully quantized (all
parameters and activation) to 8-bit signed integer using TFLite
[15]. The experiments in this work have been performed on a 7-
layer MLP and LeNet-5 trained on MNIST as well as an AlexNet

Critical
neuron
1st split

PE

PE

inp1

11010101

11010001 out

LCU operations:
1) out = inp1 AND inp2

2) out(6) = 0inp2

10010001

Critical
neuron

2nd split

Map to PEs Faulty outputs
of PEs (3 red bits)

Corrected output
of LCU (2 green bits)

Fig. 3: An example of how LCU corrects faulty critical neurons.

trained on CIFAR-10. The baseline accuracy of each network on
the test data is 70.1%, 89.1%, and 62.9%, respectively.

The resilience analysis and enhancement (Sections II-B and
II-C) are implemented in PyTorch considering the accelerator
model. The resilience analysis is conducted over the training
set. The critical neurons regarding different thresholds for NVF
are obtained to explore the number of neurons to be protected,
which imposes an overhead as well.

To show the efficacy of the resilience enhancement method, a
statistical FI is performed. In the FI process, one single bitflip
in the output of a random neuron in the network is injected, and
whole inference over the test set is performed, and the overall
accuracy is obtained. To meet the 95% confidence level with a
1% error margin in the statistical FI based on [16], we repeated
the FI process for each MLP-7, LeNet-5, and AlexNet for 6,750,
7,650, and 9,500 random faults, respectively.

As a baseline comparison of the proposed design for LCU,
we also apply a TMR to the critical neurons for the detection
and correction of faults. We adopt two metrics for comparing
the results of methods and expressing the resiliency: 1) accuracy
loss of QNNs over the fault injection, 2) the portion of critical
faults in a fault injection campaign. Critical faults are the ones
that misclassify the network from its golden classification.

B. Experimental Results

1) An Exploration on NVF of QNNs
As mentioned, NVF explores the probability of a faulty

neuron’s output that misclassifies the QNN from its golden output.
Table I presents the number of critical neurons in different NVFs
ranging from 0% (all neurons are critical) to 50% (no neuron
is critical). According to the table, different thresholds of NVF
count a different portion of neurons as critical among QNNs.
However, it is observed that all neurons among QNNs have NVF
of less than 50%. It is noteworthy that a higher threshold for
NVF means a less number of critical neurons to be protected.
This table represents the overhead of any protection mechanism
over the critical neurons.

Table I: Exploration of number and portion of critical neurons over
different thresholds for NVF.

QNN MLP-7 LeNet-5 AlexNet
NVF threshold #neurons portion #neurons portion #neurons portion
NVF >= 0% 2816 100% 4684 100% 103168 100%
NVF >= 5% 2513 89.24% 4380 93.5% 46322 44.9%
NVF >= 10% 1382 49.07% 1659 35.41% 15818 15.33%
NVF >= 15% 903 32.06% 222 4.74% 5171 5.01%
NVF >= 20% 503 17.86% 187 3.99% 622 0.6%
NVF >= 25% 272 9.6% 70 1.49% 398 0.38%
NVF >= 30% 184 6.5% 3 0.06% 232 0.2%
NVF >= 35% 85 3.01% 0 0% 147 0.14%
NVF >= 40% 26 0.92% 0 0% 56 0.05%
NVF >= 45% 7 0.2% 0 0% 6 0.005%
NVF >= 50% 0 0% 0 0% 0 0%

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:53:40 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

A
cc

ur
ac

y
L

os
s

(%
)

MLP-7 (MNIST)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

A
cc

ur
ac

y
L

os
s

(%
)

LeNet-5 (MNIST)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

A
cc

ur
ac

y
L

os
s

(%
)

AlexNet (CIFAR-10)

Unprotected Proposed TMR

(a) (b) (c)

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

NVF (%)

C
ri

tic
al

Fa
ul

ts
(%

)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

NVF (%)

C
ri

tic
al

Fa
ul

ts
(%

)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

NVF (%)

C
ri

tic
al

Fa
ul

ts
(%

)

Unprotected Proposed TMR

(d) (e) (f)

0 5 10 15 20 25 30 35 40 45 50
0

2.0E3

4.0E3

6.0E3

8.0E3

1.0E4

1.2E4

NVF (%)

#
N

eu
ro

ns

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

3.0E3

6.0E3

9.0E3

1.2E4

1.5E4

1.8E4

NVF (%)

#
N

eu
ro

ns

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
5.0E4

1.0E5

1.5E5

2.0E5

2.5E5

3.0E5

3.5E5

NVF (%)
#

N
eu

ro
ns

Unprotected Proposed TMR

(g) (h) (i)

Fig. 4: QNNs comparison in terms of accuracy loss (a-c), critical faults (d-f), and network size (g-i) under different levels of protection:
unprotected, proposed protection, and TMR, considering different thresholds for NVF from 0% to 50%.

2) Resilience Enhancement of QNNs
Fig. 4 illustrates the experimental results of accuracy loss (a-c)

and critical faults (d-f) of the proposed resilience enhancement
and TMR over different NVF thresholds for the QNNs. The
results show how critical neurons are effectively selected and
protected by the proposed method. As shown, all results of
protecting QNNs by the proposed method are very close to those
of selective TMR-based protection. Furthermore, Fig. 4-(g-i)
shows that the QNNs’ size (as measured by the number of neurons
in each network) using the proposed protection is remarkably
smaller than that of the TMR-based protected networks, resulting
in half the overhead due to employing one additional neuron for
correction instead of two.

Assuming a constraint on the accuracy loss to be less than 5%
in Fig. 4, a common NVF for all three QNNs can be considered
as 20% in which the accuracy loss is 4.86%, 3.88%, and 1.56%
in the QNNs protected by the proposed method that is 2.14x,
3.38x, and 3.36x less than the unprotected QNNs, respectively.
Regarding Table I, the resilience analysis suggests protecting
17.86% of neurons in MLP-7, 3.99% of neurons in LeNet-5,
and 0.6% of neurons in AlexNet, respectively. The proposed
protection mechanism results in 1.85x, 2.78x, and 1.97x fewer
critical faults than unprotected QNNs in the MLP-7, LeNet-5,
and AlexNet, respectively.

The proposed neuron splitting and correction method leverages
only two neurons (one additional) for correcting faults, whereas

TMR requires three neurons (two additional) to perform fault
detection and correction. As a result, the overhead of the proposed
method is significantly lower than that of TMR, while providing
similar resilience. According to Table I, to protect QNNs with
an NVF of 20% using TMR, quantized MLP-7, LeNet-5, and
AlexNet require 3,822, 5,058, and 104,412 neurons, respectively,
whereas the proposed method requires only 3,319, 4,871, and
103,790 neurons, respectively. Therefore, the proposed method
reduces the overall size of QNNs by 15.15%, 3.84%, and 0.6%
compared to TMR-based protection, which impacts the memory
footprint and execution time of the accelerator accordingly.

IV. CONCLUSION

This paper proposes a QNN fault resilience enhancement
method. It is achieved by a fault resilience analysis method for
QNNs based on the computation of the vulnerability factor for
all neurons of a QNN. A neuron splitting method is introduced
to modify the network in a way that the critical neurons selected
by the resilience analysis are split into two halves. This method
enables us to design a Lightweight Correction Unit (LCU) within
the accelerator without redesigning its computational parts. The
results indicate that the proposed method significantly enhances
the fault resiliency of QNNs, matching that of selective TMR
methods, but with half the overhead. It means that the proposed
method can improve fault resilience in QNNs, making them more
reliable for safety-critical applications.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:53:40 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Silver et al., “Mastering the game of go without human knowledge,”
nature, vol. 550, no. 7676, pp. 354–359, 2017.

[2] S. Mozaffari et al., “Deep learning-based vehicle behavior prediction for
autonomous driving applications: A review,” IEEE T-ITS, 2020.

[3] Y. Ibrahim et al., “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[4] M. Shafique et al., “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[5] U. Zahid et al., “Fat: Training neural networks for reliable inference under
hardware faults,” in 2020 IEEE International Test Conference (ITC). IEEE,
2020, pp. 1–10.

[6] N. Khoshavi et al., “Fiji-fin: A fault injection framework on quantized
neural network inference accelerator,” in 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE, 2020,
pp. 1139–1144.

[7] S. Mittal, “A survey on modeling and improving reliability of dnn algorithms
and accelerators,” Journal of Systems Architecture, vol. 104, p. 101689,
2020.

[8] A. Mahmoud et al., “Hardnn: Feature map vulnerability evaluation in cnns,”
arXiv preprint arXiv:2002.09786, 2020.

[9] C. Schorn and other, “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 DATE.
IEEE, 2018, pp. 979–984.

[10] C. Schorn et al., “An efficient bit-flip resilience optimization method for
deep neural networks,” in 2019 DATE. IEEE, 2019, pp. 1507–1512.

[11] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences, vol. 11,
no. 14, p. 6455, 2021.

[12] M. Abdullah Hanif and M. Shafique, “Salvagednn: salvaging deep neural
network accelerators with permanent faults through saliency-driven fault-
aware mapping,” Philosophical Transactions of the Royal Society A, vol.
378, no. 2164, p. 20190164, 2020.

[13] M. H. Ahmadilivani et al., “Deepvigor: Vulnerability value ranges and
factors for dnns reliability assessment,” in 28th IEEE European Test
Symposium. In press, 2023.

[14] E. Ozen and A. Orailoglu, “Just say zero: Containing critical bit-error
propagation in deep neural networks with anomalous feature suppression,”
in 39th ICCAD, 2020, pp. 1–9.

[15] R. David et al., “Tensorflow lite micro: Embedded machine learning for
tinyml systems,” Machine Learning and Systems, vol. 3, pp. 800–811, 2021.

[16] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 DATE. IEEE, 2009, pp. 502–506.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:53:40 UTC from IEEE Xplore. Restrictions apply.

Appendix 11

XI

249

M. H. Ahmadilivani, M. Barbareschi, S. Barone, A. Bosio, M. Daneshtalab,
S. Della Torca, G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo, et al., “Special
Session: Approximation and Fault Resiliency of DNN Accelerators,” in 2023
IEEE 41st VLSI Test Symposium (VTS), pp. 1–10, 2023.

Special Session: Approximation and Fault Resiliency
of DNN Accelerators

Mohammad Hasan Ahmadilivani1, Mario Barbareschi2, Salvatore Barone2, Alberto Bosio3,
Masoud Daneshtalab4,1, Salvatore Della Torca2, Gabriele Gavarini5, Maksim Jenihhin1,

Jaan Raik1, Annachiara Ruospo5, Ernesto Sanchez5, and Mahdi Taheri1*

1Tallinn University of Technology, Tallinn, Estonia
2University of Naples Federico II, Naples, Italy

3Ecole Centrale de Lyon, Lyon, France
4Mälardalen University, Västerås, Sweden

5Politecnico di Torino, Torino, Italy

Abstract—Deep Learning, and in particular, Deep Neural Net-
work (DNN) is nowadays widely used in many scenarios, including
safety-critical applications such as autonomous driving. In this con-
text, besides energy efficiency and performance, reliability plays
a crucial role since a system failure can jeopardize human life.
As with any other device, the reliability of hardware architectures
running DNNs has to be evaluated, usually through costly fault
injection campaigns. This paper explores approximation and fault
resiliency of DNN accelerators. We propose to use approximate
(AxC) arithmetic circuits to agilely emulate errors in hardware
without performing fault injection on the DNN. To allow fast
evaluation of AxC DNN, we developed an efficient GPU-based
simulation framework. Further, we propose a fine-grain analysis
of fault resiliency by examining fault propagation and masking in
networks.

Index Terms—deep neural networks, approximate computing,
fault emulation, reliability, resiliency assessment

I. INTRODUCTION

Deep Neural Networks (DNNs) have evolved to be increas-
ingly applied to assist different aspects of human life, e.g.,
healthcare, transportation, security, IoT and edge applications
[1]. In this context, energy efficiency and performance are the
key constraints to be taken into account in designing DNN
accelerators. Approximate Computing (AxC) is an emerging
paradigm applied for improving their efficiency that produces
acceptable results despite inaccuracies in the computations [2],
[3].

Employing DNN accelerators in safety-critical applications
has raised hardware reliability concerns. In compliance with
ISO 26262 functional safety standard for road vehicles, the
FIT (Failures In Time) rate of particular hardware compo-
nents has to be 10 failures in 1 billion hours of operation
at maximum to meet the target safety integrity level, which
necessitates very circumspect design [4], [5]. The reliability
of DNN accelerators is boosted by their ability to function
correctly even in the presence of environment-related faults (soft
errors, electromagnetic effects, temperature variations) or faults
in the underlying hardware (manufacturing defects, process
variations, nanoelectronics aging effects) [6]. DNNs are known

*The authors are sorted in alphabetic order.

to be resilient to faults due to their numerous interconnected
layers and the ability to mask faults [7]. However, several
studies in recent years have shown that the accuracy of DNNs
may still drop significantly in the presence of faults [6], [8]–
[11]. These observations demonstrate that the reliability of DNN
accelerators must be considered alongside efficiency. Some
research works studied the reliability of approximated DNNs
to show the trade-off between reliability and efficiency [12],
[13].

The key challenge for DNN efficiency and reliability is the
exploration of the huge design space. As mentioned, employ-
ing AxC units in DNN accelerators is one of the eminent
approaches to gaining efficiency. However, the design space for
approximated DNNs is too large [14], and implementing differ-
ent AxC units to find an optimum efficiency is impracticable for
FPGA accelerators. Notably, Graphic Processing Units (GPUs)
that are widely applied for accelerating the DNN training can
be utilized to assist this process as well. To tackle the task
of exploiting AxC in DNNs, we present a GPU-accelerated
framework for DNN approximation exploration.

Addressing accelerators’ reliability issues starts with
architecture-level fault-resiliency evaluation. Fault Injection (FI)
is a conventional method for this purpose that has been vastly
applied for DNNs as well [15], [16]. The main approaches
for FI experiments are fault simulation in software and fault
emulation in hardware, both implying a huge fault space. Fast
fault emulation in accelerators (especially in FPGAs, which are
widely used for DNNs [17]) is still a challenge because of its
iterative procedure, including numerous extra memory accesses
as well as huge fault injection campaigns. To tackle this issue,
we leverage AxC units in DNNs as a non-conventional use
of both FI and AxC, to emulate errors in the accelerator
hardware. In this method, AxC units and their variants are a
substitution for FI targeting the fault resilience analysis of DNN
architectures.

Moreover, reducing fault space can also be done at the
software level. We have carried out an empirical study on the
inherent resilience to faults and errors of DNNs, with the aim
of investigating how they can mask a large portion of faults.
In line with this, we propose the adoption of three different
metrics to compute in advance (right after the injection of the979-8-3503-4630-5/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 4
1s

t V
LS

I T
es

t S
ym

po
si

um
 (V

TS
) |

 9
79

-8
-3

50
3-

46
30

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
V

TS
56

34
6.

20
23

.1
01

40
04

3

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

fault) the effect the fault will have on the output vector score.
In this way, it might be possible to both reduce the fault space
and lower the FI time.

The paper is organized as follows: Section II introduces the
GPU-accelerated framework for DNNs approximation explo-
ration, Section III presents a method for harnessing approxima-
tion for agile analysis of fault resiliency in DNN accelerators,
Section IV provides a fine-grain DNNs fault resiliency study
by examining fault propagation and masking in networks, and
Section V concludes the paper.

II. GPU ACCELERATED FRAMEWORK FOR CNN
APPROXIMATION

A. Motivations and Related Works

As stated in the introduction, the Approximate Computing
paradigm is widely used to improve the energy efficiency of
hardware accelerators for DNNs. In particular, one promising
solution is to use approximate arithmetic circuits [18]–[20].
However, quantifying the error introduced by these circuits
requires expensive hardware prototyping, and, as a result, a
software emulator of the DNN accelerator is often executed
on a CPU or General Purpose - Graphic Processing Unit (GP-
GPU) instead. Nevertheless, this emulation is typically much
slower than a software DNN implementation running on a
CPU or GP-GPU that uses the standard floating-point arithmetic
instructions and common DNN libraries because CPUs and
GP-GPUs lack hardware support for approximate arithmetic
operations; therefore, the latter operations must be emulated,
that is costly.

To address this issue, we propose Inspect-NN (I-NN), that
provides efficient emulation for approximate circuits to be
deployed in DNNs accelerator: approximate circuits are im-
plemented as look-up tables and accessed through the memory
mechanism of CUDA-capable GP-GPUs, reducing the inference
time of the emulated DNN accelerator by approximately 200
times compared to an optimized CPU version on complex
DNNs.

In the following, we present the I-NN framework in Sec-
tion II-B, while Section II-C discusses case studies concerning
the use of the mentioned framework to assess the accuracy loss
due to approximate multipliers in Artificial Neural Networks
(ANNs).

B. Proposed method

The main purpose of the I-NN framework is to investigate
the impact of erroneous components on Artificial Intelligence
(AI) applications. In particular, it allows investigating how the
accuracy of DNNs-based applications is affected by imprecise
components, i.e., those that do not meet their nominal behav-
ioral specifications either because of faults, or because they
have been specifically designed to differ in a controlled way
from that behavior, while pursuing performance advantages.
Examples are arithmetic components designed while exploiting
the Approximate Computing (AxC) design paradigm [21]. The
behavior of imprecise components are modeled at the behavioral
level by exploiting lookup tables, in which input operands
select the corresponding output of the component. I-NN exploits
parallelism allowed by GP-GPUs: the inference phase is split
in blocks, each assigned to a thread block on the GP-GPU and

TABLE I: Error characterization and hardware requirements for
approximate circuits taken from the EvoApproxLib-Lite library,
as reported in [22]

Circuit name MAE
(%)

AWCE
(%)

MRE
(%)

Power
(nW)

MAE
(µm2)

mul8s 1KV6 0.00 0.00 0.00 0.425 729.8
mul8s 1KV8 0.0018 0.0076 0.28 0.422 711.0
mul8s 1KV9 0.0064 0.026 0.90 0.410 685.2
mul8s 1KVA 0.019 0.075 2.53 0.391 641.1
mul8s 1KVM 0.049 0.20 2.40 0.369 652.8
mul8s 1KVP 0.051 0.21 2.73 0.363 635.0
mul8s 1KVQ 0.056 0.25 3.64 0.351 599.8
mul8s 1KX5 0.15 0.69 8.93 0.289 543.0
mul8s 1KXF 0.34 1.37 15.72 0.237 482.4
mul8s 1L2J 0.081 0.39 4.41 0.301 558.9
mul8s 1L2L 0.23 1.16 12.26 0.200 411.6
mul8s 1L2N 0.52 2.66 27.44 0.126 284.9
mul8s 1L12 3.08 12.30 135.77 0.052 172.2

executed independently and parallelly from the others. I-NN
does the latter computation through a kernel, i.e., a CUDA
function called by the CPU and executed on the GP-GPU:
operations within each layer are parallelized so that each thread
block execute a part of the overall operation; then, if needed, the
output is normalized to be represented using n bits, with n being
configurable. Data exchange between the CPU and the GP-GPU
are minimized: data is copied from the GP-GPU memory to
the CPU ones when strictly required; hence, if two consecutive
layers are working on the GP-GPU, the first one feeds the GP-
GPU memory address of the computed data to the next layer,
rather than coping them back and forth from/to the CPU.

C. Experimental Results

Case studies discussed in this Section concern the evaluation
of the accuracy loss due to the use of multipliers taken from
the EvoApproxLib-Lite [22] library of approximate circuits
while targeting several pre-trained DNNs. In particular, through
I-NN (i) we import the DNN to be analyzed directly from
the most common machine learning frameworks, such as Ten-
sorFlow, TensorFlow LITE, and (ii) we define which specific
approximate components have to be used, and (iii) we specify
whether the analysis has to be performed at either coarse or fine
grain. In coarse grain analysis, a single approximate component
is deployed in the whole network. Conversely, in fine-grain
analysis, each layer of the target DNN can use a different
imprecise component.

We deploy multipliers from [22] – whose error characteri-
zation and hardware overhead are reported in Table I, for the
reader convenience – to LeNet5 Convolutional Neural Network
(CNN) [23], to MinNet, and to ResNet-8 [24], that, although
trained using floating-point arithmetic, are all quantized to use
8-bit integer. The first CNN, i.e., LeNet5, has been trained to
classify images from the Modified National Institute of Stan-
dards and Technology (MNIST) benchmark [25], on which it
exhibits 99.07% accuracy. The MinNet CNN is a custom-made
CNN inspired by the LeNet5 architecture: as for the latter, it
consists of two Convolutional Layers (CLs), a Fully-Connected
Layers (FCLs) and one Pooling Layers (PLs) between each
CL, and it consists of approximately 160 thousand parame-
ters. Despite its small size w.r.t. state-of-the-art networks, it
exhibits 80.07% accuracy on the CIFAR-10 dataset [26]. Last,

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Accuracy loss and computational time for approxi-
mate circuits taken from the EvoApproxLib-Lite library [22].

LeNet5 MinNet ResNet8

Circuit Name
Acc.
Loss
(%)

GPU
Time

CPU
Time

Acc.
Loss
(%)

GPU
Time

Acc.
Loss
(%)

GPU
Time

mul8s 1KV6 0 13.23s ≈10h 0 13.0s 0 31.07s
mul8s 1KV8 0.07 13.19s ≈10h -0.3 13.6s -0.19 31.1s
mul8s 1KV9 0.15 13.27s ≈10h 0.3 13.6s -0.42 31.3s
mul8s 1KVA 0.51 13.22s ≈10h 2.5 13.5s -0.08 31.3s
mul8s 1KVM 0.16 13.23s ≈10h -0.4 13.5s 0.12 31.5s
mul8s 1KVP 0.27 13.17s ≈10h -0.8 13.7s -0.18 31.4s
mul8s 1KVQ 0.61 13.18s ≈10h 0.5 13.5s 0.09 31.4s
mul8s 1KX5 1.77 13.18s ≈10h 5.5 13.5s 5.48 31.3s
mul8s 1KXF 1.57 13.18s ≈10h -1.2 13.6s 8.45 31.2s
mul8s 1L2J 0.79 13.2s ≈10h 46.6 13.6s 74.61 31.5s
mul8s 1L2L 3.81 13.14s ≈10h 61.5 14.2s 73.73 31.8s
mul8s 1L2N 15.92 13.11s ≈10h 65.9 14.0 s 74.52 32.06s
mul8s 1L12 75.66 13.15s ≈10h 66.4 14.4s 74.49 33.6s

the ResNet-8 CNN, instead, has been trained while targeting
images taken from the CIFAR-10 dataset [26], which consists
of 60 thousand RGB images, each belonging to one among ten
classes. The network, that consists of more than 300 thousand
learned parameters, and it exhibits 84.31% accuracy on the
mentioned dataset. During the inference phase, these three
architectures require performing 400 thousand, 4 million and 40
million multiplications each, respectively; hence, they represent
a good test case for the evaluation of execution time.

To estimate the error introduced by the approximation, we
execute the approximate CNN to obtain its classification accu-
racy on the whole test data set, reporting the accuracy-loss and
computational time required for the inference phase in Table II.
The latter table also reports the error and hardware parameters
for each of the considered approximate multipliers. We per-
formed the inference phase on an NVIDIA RTX A5000 GP-
GPU, that is built on the NVIDIA Ampere architecture and
combines 256 Tensor Cores and 8192 CUDA cores with 24
GB of graphics memory. Furthermore, for comparison purpose,
the computational time of the inference phase while resorting
to a CPU-only implementation is reported in Table II. In this
case, we leverage two 3.20 GHz Intel Xeon Silver 4210 CPUs,
providing 20 cores / 40 threads computing power. We reported
CPU time only for the LeNet5 case. For the MinNet and
ResNet8, the CPU execution time was higher than 10 hours
and we were not able to complete the experiments.

As it is easy to foresee, the speed-up provided by the
GP-GPU is crucial: we can state that by exploiting the GP-
GPU through our look-up table implementation of approximate
multiplier allows for tremendous performance improvements,
even though we compared the execution time. Furthermore,
it can be noticed that the execution time increases as the
number of multiplications performed during the inference phase
increases, and it is independent of the particular approximate
multiplier being deployed, as it can be observed in Table II.

III. HARNESSING APPROXIMATION FOR FAULT INJECTION
IN DNN ACCELERATORS

A. Motivations and Related Works

A major consequence of single or multiple accumulated soft-
error-caused bitflips affecting the weights of a given layer is
their propagation as errors at the layer outputs (also known
as layer Output Feature Map) and further throughout the
subsequent layers, leading to incorrect DNN predictions. Fault

resilience is the ability to tolerate the impact of faults on the
output accuracy, and, in practice, it is one of the contributors to
the final DNN accelerators’ reliability. A relevant mitigation
strategy at the architecture level can be a hardening of the
DNN, e.g., by layer redesign or selective hardening of neurons,
such as hardened Processing Elements (PEs) or Triple Modular
Redundancy (TMR) variants [8]. These imply the assessment
of layers’ fault resiliency or identification of critical neurons in
a neural network that are the most vulnerable to faults [27]–
[29]. Fig. 1 presents a taxonomy for DNN reliability assessment
methods. Along with analytical and hybrid methods [29], Fault
Injection (FI) is a commonly used method for evaluating the
fault resilience of DNNs [11], [30], [31]. The industry often
employs fault injection by emulation in hardware, particularly
in FPGAs, as it allows for evaluating real-scale DNN accelerator
designs in significantly shorter run times than software-based
simulations [9].

Fiji-FIN [32] is a representative framework implemented on
the embedded Processing System for evaluating the resiliency
of DNNs by emulating FI on FPGA. It measures accuracy
degradation as a metric to study the impact of soft errors on
network parameters. Designing fault injection campaigns for
such frameworks requires significant effort, as each injection
halts inference execution to manipulate DNN parameters. This
interrupts classification time for a batch of inputs.

The state-of-the-art approaches for FI by emulation in FPGA
using the embedded Processing System often require itera-
tive procedures for each injected fault. In particular, such
an iterative approach breaks the pipeline execution of the
accelerator, requires a complex FI controller, and needs an
extra FI control interconnection to handle the injection [32]–
[34]. These procedures also involve multiple additional memory
accesses, resulting in time-consuming processes and complex
implementation.

Unlike the works mentioned above, our proposed method can
be classified as fault injection by emulation in Programmable
Logic. It leverages the functional approximation as a substitute
for the errors generated by FI to improve processing and
design time as well as the control complexity in the DNN fault
resiliency analysis process. This approach allows the inference
pipeline to be executed on a batch of inputs without interruption.
This agile method enables a fast and efficient exploration
of different options for network architecture, training, dataset
selection, and more, to study the fault resilience of DNNs.
Specifically, the introduced errors mimic single or multiple
accumulated faults in weights. The method allows for efficient
analysis of how subsequent layers in the network tolerate errors
in the Output Feature Map of an assumed compromised layer
are affected by faults in the weights of a compromised layer.

To the best of our knowledge, this is the first time that
AxC units are utilized to enhance the efficiency and reduce
the complexity of resilience analysis for DNNs.

B. Proposed method

AxC is commonly used to approximate hardware components
to improve compute efficiency while maintaining functional
accuracy. However, in practice, the errors induced by approxi-
mation can be used to mimic the errors caused by faults in logic
circuits. These errors affect the outputs of the corresponding

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A taxonomy of DNN reliability assessment methods

Fig. 2: Proposed method evaluation

units and propagate to subsequent layers, impacting their acti-
vations (Fig. 2). The proposed approach for evaluating DNN’s
fault resiliency using approximate computing (AxC) units is
presented in Fig. 2. To implement our proposed method, an
AxMult, or an AxMult + a bit suppression unit (AxMult+)
is implemented along with the exact implementation of the
multipliers (ExMult) in the network, depending on whether the
network is being run in functional or fault resilience assessment
mode. The golden inference for the validation dataset is run
only once, and the layer outputs are stored and compared with
a Comparator unit. The Bit Suppressor unit is meant to increase
the probability of more significant bits of the neuron being
impacted by faults. The less significant bits of the layer Output
Feature Map are already affected by the AxMult with proper
randomness depending on the data distribution in the network
and layers.

The overall flow of the proposed method is illustrated in
Fig. 3. In Step 1, the user initializes the method by selecting
the compromised layer in the DNN structure, the validation
dataset (i.e., DNN inputs), and the application-specific target
fault rate assumed for the analysis. In Step 2, suitable AxC units
are selected for Approximate Processing Elements (AxPEs),
such as the AxC multipliers from a relevant library, e.g., the
EvoApproxLib [35], or their variants with bit suppression. In
Step 3, the selected AxMults started executing the compromised
layer by enabling corresponding AxPEs along with the Exact
Processing Elements (ExPE) in the DNN architecture. The DNN
inference is run while keeping the network pipeline intact, and
the resulting DNN output accuracy drop is recorded as the

primary metric for analyzing DNN fault resilience. A more
significant drop in accuracy with induced errors implies a
less fault-resilient DNN implementation. At the same time, the
outputs of the AxMults are compared with the ExMults outputs
to calculate the actual error at each neuron. The rest of the
inference is executed by ExMults for both erroneous and exact
outputs, and the comparison is performed for all the subsequent
neurons of the network.

Fig. 3: Methodology flow

The characteristics of the approximation-induced errors can
be evaluated using different metrics such as normalized error,
number of flipped bits, and impact on the neural network
classification accuracy drop. In this study, we rely on a simple
set of metrics that includes:

• Normalized error: the average error on the output of each
layer is calculated by subtracting the neurons’ outputs of
that layer from the golden output and dividing all the error
values by the maximum value.

• Network accuracy: calculated by executing the network
under different circumstances (faulty, AxMult, AxMult +
bit suppressor and bit suppressor) over the test set.

• Bitflips in subsequent layers: calculated by comparing all
bits in the next layers’ outputs with the golden model and
counting the bits that do not match as flipped bits.

1) Accelerator Model: Fig. 4 illustrates the accelerator
model to perform resilience analysis on FPGA. It consists of
two different systolic architecture designs based on the network
under test. The N×N systolic architecture is used based on the
convolution layers’ kernel size to perform the most optimum dot
matrix. At the same time, all designs have ExPE and AxPE to
perform the resilience analysis and benefits of a dual register to
store the results of both approximate systolic and exact systolic
for further comparisons. An Error Detector (ED) module is also
provided to compute the error generated at each neuron’s output
compared to the exact output and can be used for the neuron’s
vulnerability evaluation.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

This implementation provides us following features:

(a) Understanding the vulnerability of neurons by computing
the error generated through the hardware and further layers
by comparing the exact and approximate systolic design
outputs;

(b) Increasing the controllability for enabling errors in each
layer individually and keeping the other layers correct;

(c) Eliminating the need for designing and deploying an extra
complex controller for the fault injection procedure. A
simple approximate unit enabling circuitry is employed
instead;

(d) The inference pipeline process executes a batch of inputs
with no need to break this process;

(e) The resilience assessment process is performed without an
extra interconnect for weight sampling;

(f) The proposed approach is not iterative for each potential
fault location (unlike the traditional fault injection). Thus,
the analysis complexity is vastly reduced.

Note that the features (c)-(f) are specific for FI emulation in
Programmable Logic and generally not available in Processing
Logic based methods such as Fiji-FIN.

Fig. 4: Proposed systolic architecture for our Resiliency assess-
ment DNN accelerator framework

C. Experimental Results

1) Evaluation methodology: To assess the feasibility of the
proposed method, we implemented the same flow as shown in
Fig. 2 with fault injection (FI). Using Table I, we narrowed
down the list of candidate approximate multipliers from the
EvoApproxLib library [35] based on several relevant metrics,
with a primary focus on two established features, namely, the
Variance of Error Distance (Var-ED) and Root Mean Square
(RMS-ED) presented in [36]. These metrics are crucial in de-
termining the approximation-induced errors that affect the per-
formance of an AxC unit in DNNs. We selected mul8s 1L2N
for the experiment based on these metrics and results achieved
from the high-level experiments on the network through the
proposed GPU accelerated framework for CNN approximation
in Section II.

For the reference part, we repeated the fault resiliency eval-
uation on the original network, which was instrumented with
a state-of-the-art FI method [32]. In this study, we considered
the injection of multiple bitflips at a random location in all
OFM’ bits of the compromised layer for every input in the
DNN validation test set. In this case, we assumed that 10% of
the weights’ bits were faulty.

To achieve a high FI confidence level using the statistical fault
injection approach [37], we repeated the experiment for each
fault model with 1000 random faults per image. The average
accuracy of all repetitions was then reported.

We evaluated the impact of AxMult, AxMult + Bit Sup-
pression (AXMult+), Bit Suppression alone, and fault injection,
along with normalized error and the number of flipped bits, on
the DNN accuracy. The results show a drop in DNN accuracy
due to these factors. We compared the normalized error and the
number of flipped bits for each scenario.

2) Experimental Setup: To evaluate the feasibility of the
proposed method, a case-study Convolutional Neural Network
(CNN) with two convolutional layers, two max-pooling, and
one Fully-Connected (FC) layer was implemented and trained.
The simulations were performed on an Intel® Core™ i7-
6800K CPU @ 3.40GHz × 12, and the proposed method
was implemented with Python 3. The hardware synthesis and
implementation results are produced by the Xilinx Vivado HLS
tool on a Xilinx Versal VCK190 FPGA (xcvc1902-vsva2197-
2MP-e-S) at 166 MHz operational frequency.

The CNN under study is trained on a dataset of 2000 images
of animals (cats and dogs) and humans for binary classification.
The accuracy of the network over the test set (including 450
images of animals and humans) is 93.34%. Bit truncation
quantization is applied in network parameters during training,
and data precision is reduced to 8-bit.

3) Evaluation Results: We analyzed the similarity of the
fault resiliency analysis results obtained by fault emulation and
our proposed method using the metrics identified in Section
III-B.

Fig. 6 shows the distribution of normalized error in the output
of the second convolutional layer (Conv2) in the presence of
10% random faults in the first convolution layer (grey), errors
induced by AxMult (blue), and errors induced by AxMult +
bit suppressor (orange) enabled in the first convolution layer,
respectively. Fig. 5 reports the impact of applying FI and our
proposed method on the same convolutional layer and its effect
on the second pooling layer of the network. These results
demonstrate the similarity in error propagation trends between
the proposed and reference methods.

In practice, by analyzing these charts, users can set a crit-
icality threshold on the output error of the neurons based on
their application and determine the number and indices of
neurons to be used for any protection techniques. Generally,
if we set the threshold at some error value, all methods suggest
some neuron indices for mitigation techniques. As it can be
concluded, both AxMult + bit suppression and FI show very
similar behaviors. However, relying solely on the AxMult or bit
suppression techniques is quite inaccurate for high fault ratios
like this case study here.

For example, by setting the error threshold to 0.7, FI will
recommend the user to protect 50 out of 1024 neurons of the

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Normalized output error of Pool2: Applying Ax-
Mult, AxMult+ , Bit Suppression and FI on the Conv1

Fig. 6: Normalized output error of Conv2: Applying AxMult,
AxMult+ , Bit Suppression and FI on the Conv1

Fig. 7: Multiplication output error generated by AxMult,
AxMult+ and Bit Suppression

Fig. 8: Normalized Multiplication output error generated
by AxMult, AxMult+, and Bit Suppression

Conv2 network’s second CONV’s neurons, while AxMult + bit
suppression will recommend 53 out of 1024 neurons, including
all the critical neurons recognized by FI. Fig. 7 and Fig. 8
show the error distribution of the three different methods, i.e.,
AxMult, AxMult + bit suppressor, and bit suppressor on the
output of a multiplication operation with all the combinations
of two 8-bit inputs. From Fig. 7, it is evident that the error
values generated by AxMult + bit suppressor can almost cover
a vast range of different values, and Fig. 8 shows that the error
is evenly distributed on all different input combinations.

Table. III is reporting the number of bitflips and accuracy
drop in subsequent layers caused by the compromised first
convolution layer. These results also demonstrate the strong
similarity of the trends in error propagation by the AxMult and
its variants with the reference method. In case of accuracy drop,
AxMult + bit suppression shows a strong correlation with the
FI method and surpasses the other two methods.

Table IV reports details of the hardware accelerator imple-
mentation. Based on the results, the proposed implementation
can be executed on the FPGA at 166 MHz clock frequency,
and only by using ∼16% of the available LUTs on the board
all three mentioned systolic-array size architectures can be
implemented to improve the efficiency of the accelerator. The
timing comparison of the proposed method and the state-of-
the-art fault injection method are presented in Table. V. As
it can be concluded, by keeping an acceptable accuracy of
FI in identifying the critical neurons, we get thousands of
times speed-up in the resilience assessment of the DNNs.
(Specifically, it is 5417 times in this example). At the same
time, the proposed method does not need extra interconnects to

TABLE III: Bitflips and Accuracy drop induced by our proposed
method vs. the reference fault injection method by fault rate
10% in OFM of the first convolution layer

Measured Layer
Bitflips in subsequent layers

FI (reference)
[%]

AxMult
[%]

AxMult+
[%]

Bit suppressor
[%]

Conv1 10 10.30 10 10.20
Pool1 9.07 9.20 9.06 9.15
Conv2 16.76 16.80 16.77 16.83
Pool2 16.51 16.66 16.53 16.62

Accuracy drop [%]
16.73 9.33 18.33 24.73

TABLE IV: Hardware implementation of the proposed hardware
accelerator

Resource Utilization (%)
Conv2D

systolic size LUT FF BRAM Data Path
Delay

CLK
Frequency

3*3 0.03 0.00 0.83 Logic: ∼20%
Route: ∼80% 166 MHz5*5 0.09 0.00 0.83

32*32 15.30 0.91 0.85

manage the assessment process, and the original controller of
the accelerator can take care of the fault resiliency assessment
process.

TABLE V: Timing overheads of the proposed method vs. the
reference fault injection method (Conv1 layer)

Network Analysis Control
Circuitry Interconnects DNN execution

time in FPGA

Base CNN N/A
Data Exchange

Interconnect ∼120ms

Fault Resilience Assessment
CNN instrumented

with FI Complex FI Controller
(Data Exchange + FI)

Interconnect ∼650,000ms

CNN instrumented
with AxMult+

Accelerator
Controller

Data Exchange
Interconnect ∼120ms

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

IV. FAULT RESILIENCY IN DNNS

A. Motivations and Related Works

In the last few years, researchers have investigated the theory
behind brain-inspired computational models to build artificial
structures capable of addressing highly complex computational
problems. Today, DNNs are considered attractive solutions in
several fields due to their outstanding computational capabilities
as well as their human-level performance. The human brain is a
complex and fascinating system able to bear synapses or neuron
faults and still keep working properly, thanks to its plastic
ability to remodel, repair, and reorganize its neural functions.
Similarly, artificial neural networks possess in their structure a
certain degree of redundancy that leads to intrinsic robustness
and resilience against the occurrence of faults. This is caused by
two aspects: the first is related to their distributed and parallel
structure; the second to the redundancy resulting from the over-
provisioning [38]. Indeed, neural networks are furnished with a
quantity of artificial neurons higher than the minimal number
required to perform a computation. It means that they can bear
a bounded number of errors thanks to the excessive neuron
budget: once this number is exceeded, the precision degrades
gracefully as the number of errors increases [39].

This structural feature allows them to have an attractive
property known as masking ability, which corresponds to the
ability of DNNs to stop the propagation of some faults by
masking their effects. As an example, it has been shown that
the presence in DNNs of the Rectified Linear Unit (ReLU)
activation function halves the percentage of critical faults by
stopping the propagation of faults on negative weights [40].
Understanding how faults propagate through the neural network
is very important, as it may influence: the reliability assessment
procedure; efficient fault detection and mitigation strategies.

The analysis of fault propagation in DNNs has been con-
ducted in the literature by different perspectives. A prelim-
inary theory-driven analysis is proposed in [41], where the
authors explore inherent characteristics of fault propagations
in DNNs from the theoretical aspect. They propose a formula
to compute the perturbation caused by the i-th bit flip on a
weight represented in a 32-bit floating-point format. The authors
in [42] characterize the propagation of soft errors from the
hardware to the application software of DNN systems. Based on
this, they devise cost-effective solutions to mitigate Silent Data
Corruption (SDC) in software and hardware. Further studies on
faults propagations in DNNs are described in [43] and [44].

Nevertheless, it is important to underline that the major
effort in the above-mentioned research works consists in under-
standing how critical faults (i.e., those that lead to application
failures) propagate through the hardware-software system.

The intent of this section is twofold. On the one hand, it aims
to show how a critical fault spreads through a network. On the
other hand, this section tackles the problem from a different
angle, showing how a masked fault is propagated within the
system, analysing the role DNNs have in this process. The
investigation of this latter category of faults is important for
the following reasons:

• In a fault injection process, the identification of sets of
faults that are masked may reduce the fault space and, as a
consequence, lower the costs of the reliability assessment;

• In the design of DNN models, the knowledge of archi-
tectural elements that favour the masking ability of DNNs
can lead to the design of more robust models.

This section presents an analysis on masked faults with the goal
of identifying at what point in the computation their propagation
is stopped and if it is possible to know in advance their effects
on the output of the DNN.

B. Proposed Method

CNNs are a subset of DNNs composed of a set of convo-
lutional layers. The output of each layer is a multidimensional
tensor, often referred to as the Output Feature Map (OFM). In
the field of Image Classification, the output of the network is
represented by a vector called logit. A fault affecting a CNN
can be classified as:

• Critical, if it causes a change in the network prediction;
• Non-Critical, if it impacts the logit without changing the

prediction;
• Masked, if it does not modify the logit.

When a fault affects the parameters of a layer (i.e., weights), it
may change its OFM, as well as the one of all the following
layers. If the fault is masked, the difference between the golden
Output Feature Map (gOFM) and the faulty Output Feature
Map (fOFM) of the impacted layer should be small or zero.
Contrarily, it is logical to assume that a critical fault also
produces a fOFM that is radically different from the gOFM.

As a consequence of these two observations, it is possible
to predict the impact of a fault without needing to carry out a
complete inference. In fact, this section aims at showing that:

1) Masked faults, once triggered, rarely propagate for more
than one layer. Thus, the only different OFM is the one of
the layer directly affected by the fault;

2) Critical faults, can be immediately identified by performing
some early measures, using some metrics that can be
computed by comparing the fOFM and the gOFM of the
affected layer.

The OFM of a layer l can be interpreted as a collection of n
filtered images, where n is the number of filters applied in layer
l. Furthermore, the fOFM resulting from a fault in the network
parameters can be interpreted as the gOFM plus a Gaussian
noise. Therefore, it is possible to apply well-known objective
image quality metrics, such as the Peak signal-to-noise Ratio
(PSNR) and the Structural Similarity Index Metric (SSIM) [45].

This section proposes to use three different metrics to predict
the criticality of a fault, starting from the OFM of the affected
layer.

1) Max Difference: This first metric computes the maximum
distance between the gOFM and the fOFM. This metric is
presented as a baseline since, to the best of the authors’
knowledge, there are no metrics that correlate the criticality
of a fault with the changes in the OFM.

2) PSNR: This metric is directly proportional to the ratio
between the peak signal (i.e., the maximum element of the
gOFM) and the power of the corrupting noise, represented by
the mean square error between the gOFM and the fOFM. The
value can be computed as follows:

PSNR = 10 · log10
max(gOFM)2

MSE(gOFM, fOFM)
(1)

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

(a) LeNet5: Max. Difference (b) LeNet5: PSNR (c) LeNet5: SSIM

(d) ResNet20: Max. Difference (e) ResNet20: PSNR (f) ResNet20: SSIM

(g) DenseNet121: Max. Difference (h) DenseNet121: PSNR (i) DenseNet121: SSIM

Fig. 9: Metric probability distributions for the CNN under exam, observed in the layer where the fault is injected. Figures (a)-(c)
refer to LeNet-5, Figures (d)-(f) refer to ResNet20 and Figures (g)-(i) refer to DenseNet121.

Where max(gOFM) is the maximum value of the gOFM
and MSE is the Mean Square Error between the gOFM and
the fOFM.

3) SSIM: this metric improves the PSRN, by including the
concept of structural information, represented by the relation-
ship of a neuron with its neighbours. The formula is composed
by the product of three terms, the luminance, the contrast and
the structural term. In the context of the study of the OFM, the
simplified formula can be expressed as:

SSIM =
(2µfµg + C1)(2σfg + C2)

(µ2
f + µ2

g + C1)(σ2
f + σ2

g + C2)
(2)

Where µg, µf are the mean of the gOFM and of the fOFM,
σg, σf their standard deviation, σfg their cross-covariance. C1

and C2 are two regularization parameters.

C. Experimental Results

This section analyses three different CNNs used for Image
Classification to study how a fault can propagate. The networks
under analysis are: LeNet-5 with the MNIST dataset, ResNet20
with CIFAR-10 and Densenet-121 with ImageNet. For each
network, we performed a statistical FI as described in [46].
The tool used to carry out the FI campaign is SCI-FI [47], that
allows to speed up the FI process using the Fault Dropping and
the Delayed Start techniques. The faults injected are single bit-
flips in the network parameters, represented as 32-bit floating
points. Further details on the networks under exam and on the
FI campaigns are reported in Table VI.

Firstly, to demonstrate that Masked faults only modify the
OFM of the layer affected by the fault, we report the percentage
of Masked faults that affect more than one layer. In particular,
for LeNet5, all the Masked faults do not modify any OFM

TABLE VI: The networks under analysis

Network Dataset Dataset
Size

Acc.
[%] Weights Injected

Faults
LeNet5 MNIST 10,000 98.85 61,706 2,212
ResNet20 CIFAR-10 10,000 91.72 269,722 15,675
DenseNet121 ImageNet 50,000 74.43 7,978,856 16,685

besides the one of the impacted layer. For ResNet20, 87.99%
of Masked faults show no effect in the OFM of the layer
immediately after the impacted one, while for DenseNet this
number rises to 99.17%.

To show that Critical faults have a strong impact early on,
we compute the metrics introduced in Section IV-B on the
OFM of the layer affected by the fault. Figure 9 reports the
metrics distributions for the Max Difference, the PSNR and the
SSIM. Each image shows, for each network, the distribution
of a metric computed for all the FI campaigns. In particular,
the distribution is further subdivided according to the impact of
the fault affecting the network when they were measured. This
means that the distribution labelled ’Critical’ reports only the
value measured when a Critical fault is affecting the network.
For a metric, the more separable the three distributions are, the
better the metric is at predicting the effect of a fault.

In particular, we can observe a stark contrast between the
metrics computed for LeNet5 and the other networks. This
can be imputed to the lack of batch-normalization layers, that
normalize the value of the weights (and of the OFM) between
[−1, 1]. Consequently, even a bit-flip in the mantissa bits of the
weight can have a large impact. Nonetheless, SSIM performs
sufficiently well, as it correctly separates Critical and Non-
Critical faults.

For the other two CNNs, we can notice that both the Max.
Difference and the PSNR separate Masked faults from Critical

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

and Non-Critical faults. However, for ResNet20, SSIM outper-
forms the other metrics, as it completely splits ups Critical
and Non-Critical faults while providing a good degree of
separation between Masked and Non-Critical faults. Contrarily,
for DenseNet-121, SSIM does not completely separate Masked
from Critical. For this latter network, the best solution is offered
by the PSNR.

Therefore, we observe how different metrics can correctly
predict Masked and Critical faults without the need for a
complete inference, by simply analysing the fOFM of the layer
affected by the fault.

As a final note, we want to highlight that the cost of the com-
putation of the metric is quite small, requiring only a portion
of the time required for the computation of a whole layer. On
average, the per-layer overhead added by the computation of
one of the metrics is 76.51% for LeNet5 74.28% for ResNet20
and 73.54% for DenseNet121.

V. CONCLUSIONS

This paper explored approximation and fault resiliency of
DNN accelerators. To allow fast evaluation of AxC DNN, an
efficient GPU-based simulation framework was developed. The
paper proposed a method for employing approximate (AxC)
arithmetic circuits to agilely emulate errors in hardware without
performing fault injection on the DNN. Finally, it presented
a fine-grain analysis of fault resiliency by examining fault
propagation and masking in networks.

ACKNOWLEDGMENTS

This work was supported in part by the European Union
through European Social Fund in the frames of the “Information
and Communication Technologies (ICT) programme” (“ITA-
IoIT” topic), by the Estonian Research Council grant PUT
PRG1467 “CRASHLES” and by Estonian-French PARROT
project “EnTrustED”.

REFERENCES

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[2] G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel, “Hardware
approximate techniques for deep neural network accelerators: A survey,”
ACM Computing Surveys, vol. 55, no. 4, pp. 1–36, 2022.

[3] A. Bosio, D. Ménard, and O. Sentieys, Eds., Approximate Computing
Techniques. Springer International Publishing, 2022. [Online]. Available:
https://doi.org/10.1007/978-3-030-94705-7

[4] A. Nardi and A. Armato, “Functional safety methodologies for automotive
applications,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2017, pp. 970–975.

[5] M. Jenihhin, M. S. Reorda, A. Balakrishnan, and D. Alexandrescu,
“Challenges of reliability assessment and enhancement in autonomous
systems,” in 2019 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2019, pp. 1–6.

[6] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou, O. Mutlu, L. Orosa,
and J. Choi, “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[7] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis
of a deep neural network,” in 2019 IEEE Latin American Test Symposium
(LATS). IEEE, 2019, pp. 1–6.

[8] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” Journal of Systems Architecture, vol. 104,
p. 101689, 2020.

[9] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam,
and G. Guo, “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[10] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017.

[11] F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and dependability of
ai hardware: Survey, trends, challenges, and perspectives,” IEEE Design
& Test, 2023.

[12] L. M. Luza, D. Söderström, G. Tsiligiannis, H. Puchner, C. Cazzaniga,
E. Sanchez, A. Bosio, and L. Dilillo, “Investigating the impact of
radiation-induced soft errors on the reliability of approximate computing
systems,” in 2020 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2020, pp.
1–6.

[13] M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Danesh-
talab, J. Raik, M. Sjõdin, and B. Lisper, “Deepaxe: A framework for
exploration of approximation and reliability trade-offs in dnn acceler-
ators,” in 24th International Symposium on Quality Electronic Design.
https://doi.org/10.48550/arXiv.2303.08226, 2023.

[14] M. Pinos, V. Mrazek, F. Vaverka, Z. Vasicek, and L. Sekanina, “Accelera-
tion techniques for automated design of approximate convolutional neural
networks,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, pp. 1–1, 2023.

[15] A. Ruospo, L. M. Luza, A. Bosio, M. Traiola, L. Dilillo, and E. Sanchez,
“Pros and cons of fault injection approaches for the reliability assessment
of deep neural networks,” in 2021 IEEE 22nd Latin American Test
Symposium (LATS). IEEE, 2021, pp. 1–5.

[16] A. Bosio, I. O’Connor, M. Traiola, J. Echavarria, J. Teich, M. A. Hanif,
M. Shafique, S. Hamdioui, B. Deveautour, P. Girard et al., “Emerging
computing devices: Challenges and opportunities for test and reliability,”
in 2021 IEEE European Test Symposium (ETS). IEEE, 2021, pp. 1–10.

[17] M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal, “A systematic literature
review on hardware implementation of artificial intelligence algorithms,”
The Journal of Supercomputing, vol. 77, pp. 1897–1938, 2021.

[18] M. Barbareschi, S. Barone, and N. Mazzocca, “Advancing synthesis
of decision tree-based multiple classifier systems: an approximate
computing case study,” Knowledge and Information Systems, pp.
1–20, Apr. 2021, company: Springer Distributor: Springer Institution:
Springer Label: Springer Publisher: Springer London. [Online]. Available:
https://link.springer.com/article/10.1007/s10115-021-01565-5

[19] M. Barbareschi, S. Barone, A. Bosio, J. Han, and M. Traiola, “A
Genetic-algorithm-based Approach to the Design of DCT Hardware
Accelerators,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 18, no. 3, pp. 1–25, Jul. 2022. [Online]. Available:
https://dl.acm.org/doi/10.1145/3501772

[20] M. Barbareschi, S. Barone, N. Mazzocca, and A. Moriconi, “A Catalog-
based AIG-Rewriting Approach to the Design of Approximate Compo-
nents,” IEEE Transactions on Emerging Topics in Computing, 2022.

[21] A. Bosio, D. Ménard, and O. Sentieys, Eds., Approximate
Computing Techniques: From Component- to Application-Level.
Cham: Springer International Publishing, 2022. [Online]. Available:
https://link.springer.com/10.1007/978-3-030-94705-7

[22] V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang, and J. Han, “Scalable Con-
struction of Approximate Multipliers With Formally Guaranteed Worst
Case Error,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 11, pp. 2572–2576, Nov. 2018, conference Name:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998, conference Name: Proceedings of
the IEEE.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 770–
778. [Online]. Available: http://ieeexplore.ieee.org/document/7780459/

[25] Y. LeCun, C. Cortes, and C. Burges, “MNIST Handwritten digit
database,” 1998. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[26] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (canadian
institute for advanced research),” 2010. [Online]. Available:
https://www.cs.toronto.edu/ kriz/cifar.html

[27] C. Schorn et al., “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 DATE.
IEEE, 2018, pp. 979–984.

[28] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences, vol. 11,
no. 14, p. 6455, 2021.

[29] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“Deepvigor: Vulnerability value ranges and factors for dnns’ reliability
assessment,” arXiv preprint arXiv:2303.06931, 2023.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

[30] A. Ruospo, E. Sanchez, L. M. Luza, L. Dilillo, M. Traiola, and A. Bo-
sio, “A survey on deep learning resilience assessment methodologies,”
Computer, vol. 56, no. 2, pp. 57–66, 2023.

[31] M. Taheri, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, and J. Raik,
“Appraiser: Dnn fault resilience analysis employing approximation errors,”
in 26th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems. In press, 2023.

[32] N. Khoshavi, C. Broyles, Y. Bi, and A. Roohi, “Fiji-fin: A fault injection
framework on quantized neural network inference accelerator,” in 2020
19th IEEE International Conference on Machine Learning and Applica-
tions (ICMLA). IEEE, 2020, pp. 1139–1144.

[33] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[34] N. Khoshavi, A. Roohi, C. Broyles, S. Sargolzaei, Y. Bi, and D. Z. Pan,
“Shieldenn: Online accelerated framework for fault-tolerant deep neural
network architectures,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[35] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, March 2017, pp. 258–261.

[36] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 317–328, 2019.

[37] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
& Test in Europe Conference & Exhibition. IEEE, 2009, pp. 502–506.

[38] V. Piuri, “Analysis of fault tolerance in artificial neural networks,” Journal
of Parallel and Distributed Computing, vol. 61, no. 1, pp. 18 – 48, 2001.

[39] E. M. El Mhamdi and R. Guerraoui, “When neurons fail,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2017, pp. 1028–1037.

[40] F. Angione et al., “Test, reliability and functional safety trends for
automotive system-on-chip,” in 2022 IEEE European Test Symposium
(ETS), 2022, pp. 1–10.

[41] R. Sun, J. Zhan, and W. Jiang, “An insight into fault propagation in deep
neural networks: Work-in-progress,” in 2020 International Conference on
Embedded Software (EMSOFT), 2020, pp. 20–21.

[42] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in SC17: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2017, pp. 1–12.

[43] J. E. R. Condia, J.-D. Guerrero-Balaguera, F. F. Dos Santos, M. S. Reorda,
and P. Rech, “A multi-level approach to evaluate the impact of gpu
permanent faults on cnn’s reliability,” in 2022 IEEE International Test
Conference (ITC), 2022, pp. 278–287.

[44] F. F. Dos Santos, P. Rech, A. Kritikakou, and O. Sentieys, “Evaluating the
impact of mixed-precision on fault propagation for deep neural networks
on gpus,” in 2022 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2022, pp. 327–327.

[45] A. Horé and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th
International Conference on Pattern Recognition, 2010, pp. 2366–2369.

[46] A. Ruospo, G. Gavarini, C. D. Sio, J. Guerrero, L. Sterpone, M. S. Reorda,
E. Sanchez, R. Mariani, J. Aribido, and J. Athavale, “Assessing convolu-
tional neural networks reliability through statistical fault injections,” in
2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2023, [In press].

[47] G. Gavarini, A. Ruospo, and E. Sanchez, “Sci-fi: a smart, accurate and
unintrusive fault-injector for deep neural networks,” in 2023 European
Test Symposium, 2023, In press.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:50:28 UTC from IEEE Xplore. Restrictions apply.

Appendix 12

XII

261

M. H. Ahmadilivani, A. Bosio, B. Deveautour, F. F. Dos Santos, J. D. Guerrero-
Balaguera, M. Jenihhin, A. Kritikakou, R. L. Sierra, S. Pappalardo, J. Raik, et
al., “Special session: Reliability assessment recipes for dnn accelerators,” in 2024
IEEE 42nd VLSI Test Symposium (VTS), pp. 1–11, 2024.

20
24

 IE
EE

 4
2n

d
V

LS
I T

es
t S

ym
po

si
um

 (V
TS

) |
 9

79
-8

-3
50

3-
63

78
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
TS

60
65

6.
20

24
.1

05
38

70
7

(Special Session)

Special Session: Reliability Assessment Recipes
for DNN Accelerators

Mohammad Hasan Ahmadilivani1, Alberto Bosio2, Bastien Deveautour2, Fernando Fernandes dos Santos3,
Juan-David Guerrero-Balaguera4, Maksim Jenihhin1, Angeliki Kritikakou3, Robert Limas Sierra4,

Salvatore Pappalardo2, Jaan Raik1, Josie E. Rodriguez Condia4, Matteo Sonza Reorda4,
Mahdi Taheri1, and Marcello Traiola3

Tallinn University o f Technology, Tallinn, Estonia
2Ecole Centrale de Lyon, CPE Lyon, INL, Ecully, France

3Univ Rennes, CNRS, Irma, IRISA - UMR 6074, F-35000 Rennes, France
4Politecnico di Torino, Turin, Italy

Abstract—Reliability assessment is mandatory to guarantee
the correct behavior of Deep Neural Network (DNN) hardware
accelerators in safety-critical applications. W hile fault injection
stands out as a well-established, practical and robust method for
reliability assessment, it is still a very time-consuming process. This
paper contributes with three recipes for optimizing the efficiency
of the reliability assessment: a) hybrid analytical and hierarchi
cal FI-based reliability assessment for systolic-array-based DNN
accelerators; b) mixing techniques for the reliability assessment
of in-chip AI accelerators in GPUs; c) reliability assessment of
DNN hardware accelerators through physical fault injection. The
experimental results demonstrate the efficiency of the proposed
methods applied to their target DNN HW accelerator platforms.

Index Terms—deep neural networks, approximate computing,
fault simulation, error emulation, reliability, resiliency assessment

I. In t r o d u c t io n

Deep Neural Networks (DNNs) are a powerful tool assisting
different aspects of human life, e.g., healthcare, transportation,
security, IoT and edge applications [1] [2]. They are charac
terised by the extremely complex computational kernels (i.e.,
several giga operations per second) and the high amount of
parameters to be transferred from and to the memory (i.e., in
the order of gigabytes). To achieve target energy efficiency and
high performance, several types of DNN Hardware Accelerators
(DNN-HAs) for the execution of DNN kernels were proposed.
[3].

Fig. 1 sketches a system-level view of a DNN-HA. The latter
is controlled by a microprocessor host and has to access the
main memory to retrieve data. The most widely used DNN-HAs
can be classified as Systolic Array (i.e., TPU), GPU and FPGA.
Independently from the type, employing DNN accelerators in
safety-critical applications raises hardware reliability concerns.
For example, in compliance with the ISO 26262 functional
safety standard for road vehicles, the FIT (Failures In Time) rate
of particular hardware components has to be 10 failures in 1
billion hours of operation at maximum to meet the target safety
integrity level, which necessitates very circumspect design [4],
[5].

*The authors are sorted in alphabetic order.

— Systolic Array

GPUs

— FPGA

Fig. 1: DNN HW accelerator system

The reliability of DNN accelerators is boosted by their
intrinsic ability to function correctly even in the presence of
environment-related faults (soft errors, electromagnetic effects,
temperature variations) or faults in the underlying hardware
(manufacturing defects, process variations, nanoelectronics ag
ing effects) [6]. DNNs are known to be resilient to faults
due to their numerous interconnected layers and the ability to
mask faults [7] [8]. Unfortunately, assessing the reliability of
a DNN accelerator is not a trivial task [9], [10]: it depends
on several factors, such as the training set, the data type, and
the quality of the test set [11]. On top of that, we need to
consider the hardware that performs the computations since
specific platforms have specific faults [12],

There are three main methodologies for DNNs’ reliability
assessment radiation-based, platform-based, and simulation-
based [13]:

• Simulation-based: The injection process is carried out
without relying on the physical device finally running the
NN. Moreover, depending on the abstraction level, they
can be further ranked.
- Software Level: The injections are performed on a high-

level model of the NN, not considering any details of
the actual hardware architecture.

- Hardware Level: The injections are performed on a
more accurate model of the NN that simulates the target
hardware architecture. E.g., this can be described at the
register transfer level (RTL) or gate level.

• Platform-based: The measurements and the analyses are
performed directly on a physical device that emulates
the final implementation of a design using FPGAs or on979-8-3503-6378-4/24/$31.00 © 2024 IEEE

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

�����������	
����������	������������������������������ !"#�$%�&'�������(���	���������	�����
������	����	������	
���������	�����������������	(������
�)	���������	������	����	��
�����������������*������	�������������	��������������	�������	���	��	���������'�������
	����������	�������	��+������	����	���,����	�������(���	��
	��	����	�����
-��,./�������0��	����/�����������1��/�	��������

����	�	�����������'���������������*����
����2�30��	���44������������(�����������
��0��	����/����-����������	���0��	���444,5������	���	���
���+����	���	������	��

���	������(�������������	���2,��+������,�����	��	����������	�������	�
���	����������	����0��	���46 ��+���������	���(�� �)������	�	��)	���	����	����7������,�(+����7��
���	����(��	�������1��/-����������	����1�������0��	���6���������	��������44�.8594-/�/:8'4�/:/�-.4;9/9�.4�/:14,5/0;-9;:4/54:4'8/00;00<;�'1=9080'=:4�,/99/8,5/0;--��/��;:;9/'=90>?@ABCDEBCAFEFGHIJEBIGKALM0����	���,(����14�������)�����+���	����
�N�����	�(�	�		�����	����	������	����	��������,��	����+�����	�	���������+���	��,���������=�	���	�������������	���������(������������������������	�������	�������)�	��
�)����	���14
��	�������(���	���������	�
-���OPQR�/����	���������������		��		����+����	�,��	��������������	���	��	������(���	������	�������	�����+����	������������������������	�����������	��������	������2���,�����	���S��������(���14,�����	������,�����������	�T���+��	����
(�	�14��������	������,����������	����
�����(���	�����������������2���,(������������OPQR�'����T��2������	��������2��T���������	�������(���	��
0��	����/�����U0/�V�������-����������(����	����	���������	�	������������������'������	�����	����������+����(��������	���������,���������������	���,(���������(���	���������	
�����	����,�����,(����-����������	���(������14�'����	����������	�������	������W���	����������	�	��
���	��X��	���������������	����,�����,(����-������2�����������	����'�����	����,����������
	��-����������	��������������������
��9�������	;N��	���U�9;V���	�OPYR�'������������X��	���Z�2���(���������	��(��������0/�����	��OP[R�	����

�����	����+��	����
(��������������	��������2���,�����	��	������	���
��	��	���	����	�����9':,��+�������	�����/������	�����	���OP\R������	������	��
���	�����	�
��	�����	��*�	��	�������������	�������(���	���������	��������]?̂ LA_ÀIGaIBbAG'���	��������
��	����������
���2��T�������	��	����1���Q�/
	�����+�����	��	��������	2��T�����	�����������	��	������0	��P�	��
���	���	��������	��������(��
���	����	�������(���W���(�	�����������(�������
���	���	������	��(������	����	2��T�����	���(�	��
���2��T�4�	���2��T�2��������������	�������	
���	���	�������	����
	�����	���������c����������������	��

1���Q3'�����������	��������
����(��������	����������������,��������(���	���������	
�����	���������-��,./�4�0	��Q�	������	��
���	������2�����	����)	���	��-���6�����	��������������	����OP\R	��	���+����+������(���	���������
��-������d����������	�+����'�	�������2�W�������+�����
��������	��	1���	���<��U1<��V	��	��������W��	����	2��T��	��	�:�	efghijk(������������	�+�������	�+������+����	�����	��	1<��(��
���	��	��l,	��������	�����m2�	�����	��	�ij�1�������������2�W��	����������	�+�����)������	�+�efghijk	��	��������W��	����	��	
��	��������������W��	����'���+�������(�����
���������	��	�i ����������	���+��	���'���������	��������	��+������(���	�+���������
������������������2���1���n�4	����(������
����2�3�opq!%r�#q%U�������V3�
�
���	��+��	��	����	��	�
�����������	����������	2������	���������	���������,W��	���
���������	��s !"opq!%r�#q%U���������V3�
�
���	��+��	��	����	��	�
�����������	����������	2�����	������	����	��	������W��	���
���������	��t%u�"vpq!%r�#q%U��������V3�
�
���	��+��	��	����	��	�
�����������	����������	���	�����	��	����	���������W��	���
���������	�wx yxz{|}|~� z��}|~� z{|}��� z��}���|�|w���|~����~�~z{w���|~����~���|~����~1���n36������(���	�������
��
���	������������'��������������(����������	��
���	��������2��	��	2���	����+��	�����		�������������	��	��
��������������(�
���		�	���(�����+������(���	�������
������������BbIILLAL�ALLÌ_AFG̀ BABbILIGAL�LIIFELIÈ��ICaaIGC�EBIJ��JÈ C̀��BbIaLÌ_I�BCDIJ�È�LCBC�EJALFAF��LCBC�EJ�EFGGAFAB�AFBCF�IBbI�E�JB̀Ca�JEBCAF?=	���2�����
	������������������	�����,+������(��������	��
���	�����	�������N�����	�(����
�����
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

���������	
����
�������������������	������	�
���	���
���
�������
�����
�����	�
����������������
�����������
��
�
����	
!�	���
���
���
���
����������
��
��
�������������������"������������
�
�#�	�����	�
�#�	����
������������������$���%��������&���
����	
�������$������������
������������&�
����	
�����
���
�����$�
��&�'
��%���
�����	�
������
����$�
���(&
���
���
����	
�����
$�
��&����
����������(��%�
������
%������	#	�)�������
�	������������	�
�����������	#���
�*+,���
���
��������-
����
����������	�
���
�����
���������������
���
��	����	�
���
��
%��.���
������
��
����	
�������
���������
�
�������
�#�	��
���
������
�������	
�
��/
���	
���	�
����#�	��
����"�����%������	�
������
������������������	��0�
�����
�����	�
���	#
�������*+,���
����������
����������
�����	�
����	#���
������
�
��
��������
����������	�
��������������1�����%����
��
�����	#���
�����	�����
��/��	
��	���
����2�������

���		�%������
�
������
��.�34567689:3456768;<9=>4567;<689?@45;<67689>4567689:>4567;<689@4567689:@45;<67689"�����	�0�
�����
��������������������AB�C�"���D��
������
������������
�%�
���
��	����%������������������
���
��
��
�������
�
��������	�����"��
��
����������
�����		
�����
�4567689��
�D��
������
��"��������	�����������%��$����%�������������	��
&���%��$�����
%��
�	��.����	&��������
�
�����������
���	%��	��"�����#
��
�
��
��
��������������
�
%���
�1��

���
����	
�������
�%�		���������
�
����
��	��������
��
����������	��
�-
�����������
����
���������
�����	�	�������
����������
����
��
�������
��������
�����	��.���	��
��������
���������	��
�-

E E=FGH E=IFGHE=FJH=FGH E=FJH=IFGH E=FJH=KFGHE=IFJH=IFGH E=IFJH=KFGH E=IFJH=LFGH
����������M����	
�������
��������
�	��������2������
���	��
N�
����	
���������
���
��$
�������
���	��
�NOPQR���NOSPQR&���������$���%������
����	
�#�	�
�����������	��
�NOPTROPQR�NOSPTROPQR�������&�����	������������
��������
�	��.���	�"�����������
�����
��/U���
�
�����	��������#�
��V�����	�
��������
�������
�����	�
�����
�����1���

���	#
����
����%����#� #�
�	���
����
�����#�
��������	�
�������
������	
���
�#�	���������%����%����������"�����#
�����
�����
�����1���

������
�#�	��>�@���3�
����1��
��
����4567689�"����	
�#�	�����

����������
�
�
���		�%���)��������,	��
�$),�&�W�#�
����
���D��
�����
��������
������������
����	��
�.�����
�������

�
���������
�����
��/������M���%�
������
���
�������������
�����
�	��
E:4J6X6G9��
������	��5������
%�
���Y���Z�"�����
�	��
���#����	��
�1��������1��		��
����	
%�		�������
��
���
�������
����	��E=FGH���E=IFGH���
����%���
������	
%�		�������
��
�����
�
�	��
�������������E�"�#�	��������
�����	���������
�����	��.���	�%��������
��

��/
����
�	��
%�		��	������	�����
���
�������
���	��
E=FJH=FGH���
����%���
�	�

�%�		�������

�
���		�%���	��
��
���		�%����	��.���	�
�������
���	��
E=IFJH=IFGH��������"�����
�����
�����
����	�
���
��
��
���#�
���56768�����
���#��
���������
���������		���
�����1���

��������
�����
����������
���[���	��
�����
�
��#�	������>4567689:[4>4567;<689\]̂ _̀abcdaefghiajkhfj"�#�	��

��
����	����/�����
�%��������������Bl���
D���
�0�m
�M
�������
�n ��"��
��
�"��
%��.%������
�%�
�������
������
���	
�$���������
��

���������������	�,#�
*��
�&�n������1��		������	
����
����������
��
�%���
����
�������������������	��
�"����	
������������%����������
��
�	���1/���
�#�	������

��
��o��B�"�
���
�����
�
������'�
��
��
�
���������
�	����������
���/�����
����	
�������
���	���
�1��
	�����
��
%��.��
������	�
������
�*+,���
�
���
����
���
��
#�	���"���
��
���������������

�#�	�����	�
��������
������
����	�
���	���������%�����
�����%�
��
�����
����	
��#�	����	�����#�	����	������#�	����	$������&���
����	
������
������#�	����	�
�����	�
������
���������
��
�	
���
�
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

����������	��	���	�
���������������������������������	���	������������	����������������������������	���������������������	���������������	�������������	�����������	���	�����������������������������������	���������������������� ! "#$�%	�����	����������������������	���������

�����&�����������������%	���������
�������������!'(������
��������	�����������) ������������������%�*+,�-.	�����������������
�	�
�����&��������������%	���������/012����������	������������
������������������������������������	����������	�������	���� ������������ ������������� �������� ��������/32)�'4� �)54 6)��6))5' ' �7!(44�6)5)� ((5!7' 6)�75�) �!5 77 6 '7��7())6)) �76! 4'�'!7)�)4� 5!54 6)�65%�����	����	��������
���������������	���������%	������������������������	����
�����������������������%	�8������������������	��	�������	��	�	�
���������&������%	�9������������:�9�������������:����9��������:���������������	��������
�������������	�	��������������������������%	�9��������:���������������	������������
�����������	���������������
�����
�������������
�	���������������������	�������	��������������;��������8���������������	������������
�����������������������������%�������
����������������������������	����������������	�%	������������	����������������	�����������������������
���	�8��������
+�����7�����������������

������������������	��	����6)�753�

��������������%�����	����	��������������
�����	�����������'73�
�	���������������������������������	����������������	��������������<��������������
��������������
���������	��=���	����������������
���������	����������������/����������������������������<��������
���������2��������������������>
����������
��������
����->?=@A BCDEDF GHIJKJLMNOOPQOO�	���B��������R����)�������������������������������HIJKJLM���	������HSTUVCWXYZJSTUV[YZJ����M���	������������<OO�OOP�����������������
�	�������������

��������	�
���S�\���]������� ���+�����7��	� ���OO 	��'�������
���	�8�������-ĤĴĴMJĤJ_ĴMJ̀`̀ĤJaĴM�%	� ������ ����	��a@ â �������-����� \;���
�	��������
�	�8�������	���� ��������������	�����<�����
�	������������������	���ĤĴJ_MJĤJ_J_MJbbbĤĴaJ_MJbbbH_ĴJ_MJbbbHaĴaJ_M������	���	�8����������	����������\;��-�	���������������
��	�������	���'��������������	�������%	�������OOP���������������	���������������	���������\;������

������	���	����������	������������������������<���������������	��������������������	�
�����������������	�	������

����	�����������

\���'-c�����������&����������������	�����������

�������������������	�8����	�����c��	����������������������	�
��������������	���	����������<���,��������	����������������������
�������������
����������������������������������	�������������������	������������
�	�
���������������OOP����	���������
̂d_�������������	���$�����	����������������	�������������������������	����������&����
����	�8�����������	����������
�����&��������������������4'3 �
�	��	����������������������4'3 �
�	�������
��������%	���������������������������������>e?=@Hd̀_f@ d̂_gd̀haMid̀_f@>��������6'3�

�����&��������������\�����'�	����	��������������������������������	���&���������������������������������	���	����������8���������/ ��42����	������	��������������������������������;����
�	���
����
����	�:�������������9����������	���������������������������	����������
���	�
��������������%	����������8��������/)(���)2����	���	��	������������������������������	����������������	
���	�������������������8����:������������:�\������	����	��������������
��c�.�)/�����c��������.�������������������������8������2��������%�*+,��-c�.)���������������	�	�����%	������������/��������8��2�	���	������9�������������:��������������������������
�����	��������%	��	��������/c�.)2�	����	��������������������	��	������	��	���� ��������8�� c�.)/32 (6 �5!) 7 ��)5 () �5'� !� �76('! �(77 ' ��4$�����	��	��������
9������������:�����������c�����	������������������9��������:�����������	�����������

���������������������	�����������
�	����������\���	��������	�c�.�)�����������
���	�9�������������:
�����%������	����	���������������
���	�������<�������������%	�������������	����	��������
�����������	�������������������8�������%	��	���������	����	�����������
�%	�������<�	��������������������	�������

������������	�c�.)�� ��43��������������	�����������������	���������
������8��������������	�
�����&��������������������%	��
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

��������		
�����������	���������������������������	�����	�����
��������	�
�	�����	�����������������
�����������������������	���������������������������������� �! " �#$%&'� ()%*+,-$'%-%. /0 . $1/**%**!%�$,+ �2&' 3/ /&&%.%-/$,-* �#3)*456789:;897<;<=>?@;8?=A7BC!�����#3)�������	���D���D	����������D	��/ DD	���������������������������E�����	���D	������D��2�������F���
�	�������������	D�		�	������D����D��������������������2������������G	�����H�� �D�����	��������/ 	������������������I��
���D��������D��2�����J����������	������K�������D	�������
�����������������	������DD���	��������J�����#%!!�L���������������K�MN�O�MM��+������D��D����������������������#3)����	����D���		��D����I�����	��������		��P?<Q7BR7B?S<98Q��$&)����������������D����M�TU�������V78WXB7=YZ8S<98QJ�3)�K�MU��$&)����D��������	�����	��3)�������������������D�������������������		�������#3)����D	����������D	������	��2��������D�		�	����M[��)���������	��������������������������������������	������J������NN
�		���K�������������I�����������2����������D���������/ DD	�������J�������������		����K��D���������������������	�����������������	���������I��������������������		������	�
�	��������������������������DD	��������M\��&	����	������������#3)�����������	����2�����	����2
�����	��	�����D������E��2������������2I�������		�����������E���������	���
	�������������������������	�������M]���M���'���������	�����������D	������������	���DD	����������������	��������2
	���	�����������,�����������������	������������2
��������D��D�������#3)����D�����������������	�������������������������D	�E����	�����������������	�2����M���$������������������������	���������I���	�����������	�D������������D�
	�����2���
������D����������������������		��������� �D�����	�������������	��D��������	���������I��������������������E�������������
	����	������������	������������#3)�������2���D���	������J$&)�K�*���D��	���������G���	������	�������$&)̂������2������������������D��D������������������D������̂����D������������������
���������D����MH�����������������D������I���UN��'���������������G��������������������	�������	������G	���������&����*���	�	����������G��U����	���������D����$&)��������2D���������D��������������������$&)�������
�������	�2�����������������	���DD	��������������$&)��)���������	��������	�������	�������E����	�2�������������������������$&)��,�������G����������������2
��������D��D���������������������������#3)�DD	������̂���������D2����������������D��������������������	������������������	�����������)���������	����������������������������	���D���������������������J����	���D�������K�������	
	����������	�����D��������	��� �	����������������G��UM�������������������2
�����������I������	������G	���J&���K��#3)������������������

��������	��������������������������	�	�������������
��2F�D��/���������UU��	�I�������D������������&���������	�D�����������	�����D�����������D�������DD	��������
�����	���������E��2���������2���������������������	����������� ��U[�������������D	������
��������������D�������������������������	����#3)������		����)���������	��������	��������	���������������������������������
	���	�����������$������GD��D�����	���������������������������	�����������	�
�	�����$&)���#3)����D���������	�����������������	��2	���	�����2�����������������D�������������������	�D����������������������D�����������������������������	�������	���&�����G	����,�����������
��������������������D������������
	�����2���
��������������D�����������	������_54QQ?QQ9<̀ 8a?B?@9;b9@98c7d9<WZa9efXS;ZZ?@?B;87BQ$��D��D������	�
�	������������������������$&)���#3)����
��������������������D���������������	�		���������
	���	��������������#3)��������	���DD	�������������&�������D�������+�������$��E����������Jd7ZYQ?=@7gW@?:?@h9ZB7W;BZa98?Z8YB?d;Y@8?:;@Y;897<K���������E��2������	��������������������������$&)�J�3)�K���������������	���������I������	�D��D�������������������	��D���������$&)��$����dY<Z897<;@?:;@Y;897<��������I����	�����������������D���������$&)�������������������������������������#3)����������� �����
���������$&)�̂ �����������D������#3)̂�������	��������D������������#3)̂��������������2������!��������$&)���������������		����������D���������̂����������$���������������	��������I����		������������E��������������D��	��	�D��D�����D������������������D	�����������������$&)��+��		���������	���D�������������	�D��D�����D�����������
��������D����������������������������DD	�������� �������������D	����;ee@9Z;897<W@?:?@�����D��D������������
�������������2
����������i����������������������������DD	������̂�����J����&���K�������������E���������������$�����
��������
������������J�����D������j�������2
�����i������K		��������	�
�	��������������	���DD	��������������������������
	�������$��������
��������������
�����������������$&)̂�����������klm7ZYQ?=h9ZB7W;BZa98?Z8YB??:;@Y;897<n���������	��2	���	�����2�����������J#��2	���	K��	��������3)��	����������������	��D��������������	�D��D���������������������	���L������������	2����	�������2�	������	J67=?@o9h
�o9?h?<QpV4K����������I������	�2�����D������������3)������D��	���G	���J������������	��K�$�����D���	���������������D����������������E���������	���������$������������	���������	���Jqrst
�oc<7eQ9QK���D��������������	���	������D��D��������������D�������J����G2�K��	��������3)� ������������I����������������	���D	���������3)������		�D�������������D������	���	�������		��������������E���������	��D�����������D���������	�3)�D��������L���������		�������
����������������	�������	��������������uvwx��uvxxwx����D������&���D��������U\��$�����D������	����������	����������������	������D����D�������$����	����	��		���
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

���������	
���	������
��� �� ��� ��������� ��� �� ����� �

�������
� !�"
#$�#%"���& &�"����$
 !�"& &�"�
'''()**+',
-.�/
-.�/
�0���10����1/
-2/
3�/
43�5()**+
-��6/
3�/
-��6/
�0���10��671/
-25�8����&�"8�� �9:5;<<)'�=7�='��=
-�=/
->='$&!�&/
-�7/
-�=/
�3�5�8��?&�"8&$$�$9:5()**+
-���/
3�/
-���/
�0���10��671/
-25()**+',
-��>/
-��>/
�0���10��6�1/
-2/
3�/
43�5�8����&�"8�� �9:5;<<)'�=7�='��=
-�7/
->=/
-66/
-�7/
�3�5�8��?&�"8&$$�$9:5''''
��@&���"$!A&�""��� �33	�������B	���	�--�-
3-�3�C�����

-��	
C3��33	��������
���-�B�-�D������-����	������

�3�
�#"��
$$� !�"
& &�"�
�� �����

�� @� �$$�$#""&$��
����"3�-��

EFGHIJKGLMLNOPQRSLTLUVWSLTLWSUXUPUGYVUNVOZPWRSONORWLNF[OWFUMUV\]̂ QFM_̀ Q̂HZQWUFXLMWFVYaZPMLNObPLQWNZRWZNLQWUVOZPWQVUNWSLVZNWSLNXLaLPUcTLMWUVRUZMWLNTLOQZNLQOMXTFWFGOWFUMTLRSOMFQTQH\SLVOZPWLVVLRWQONLROWLGUNF[LXbOQLXUMWSLFNFTcORWUMQROPONNLQZPWQOQVUPPUdQJefgFPLMWhOWO]UNNZcWFUMQigh]QjURRZNQdSLMVOZPWQFMWSLh̀ ^OPWLNWSLNLQZPWQHeefhLWLRWLXM̂NLRUaLNObPLkNNUNQiĥ kQjNLVLNWUVOZPWQWSOWSOPWlRUPPOcQLlUNSOMGWSLh̀ m̂QUcLNOWFUMlFMRPZXFMGVOZPWQGLMLNOWFMGnUWoOonZTbLNinOnjOMXFMpMFWLiqMVjaOPZLQlOMXeeefrOQsLXLVVLRWQLMRUTcOQQbLMFGMLVVLRWQWSOWPLOaLWSLh̀ m̂QNLQZPWQZMRSOMGLXXLQcFWLWSLcNLQLMRLUVVOZPWQHtfuvwxyezw{|}~{|v{yezw�RUMQFQWUMWSLRSONORWLNF[OWFUMUVWSLQcOWFOPRUNNZcWFUMLVVLRWQUMWSLUZWcZWONNOYQiTOWNF�WFPLQjbYVOZPWQFMWSL\]̂ QH\SFQLaOPZOWFUMOFTQWUOMOPY[LWSLUcLNOWFUMOPVLOWZNLQFM\]̂ QWUcNURLQQPONGLTOWNF�WFPLQlQFMRL\]̂ mQONLNLZQLXOMXTOMOGLXbYTORSFMLFMQWNZRWFUMQHrUNLUaLNlWSFQOQQLQQTLMWRUMQFXLNQWSLFMWLNORWFUMdFWSUWSLN_̀ ^QWNZRWZNLQiFHLHlQRSLXZPLNQOMXNLGFQWLNpPLQjH�LNLQUNWWUOMFMQWNZRWFUMoORRZNOWLONRSFWLRWZNOPQFTZPOWUNUVWSL\]̂ QFM_̀ Q̂i����}w���j����WSOWFMWLGNOWLQWSLQRSLXZPFMGOMXWSLTLTUNFLQOQFMNLOP\]̂ QHKcFMoPLaLPVOZPWFM�LRWUNWUUPFM����}w���QZccUNWQWSLLaOPZOWFUMUVSONXdONLVOZPWQUMWSL\]̂ mQONRSFWLRWZNLH\SLFM�LRWUNWUUPcPORLQUMLUNTUNLVOZPWQFMWSLFMcZWQlUZWcZWQlUNFMWLNMOPQWNZRWZNLQUVWSL\]̂ QH\SLMlORUTcPLWLQLWUVFMcZWQWFTZPFiTOWNF�WFPLQjFQLaOPZOWLXZQFMGWSLQLWUVQL�ZLMWFOPTORSFMLFMQWNZRWFUMQVUN\]̂ QOMXWSLXFQWNFbZWFUMUVFMcZWUcLNOMXQOTUMGWSLWSNLOXQOMXdONcQFMWSL_̀ ĤKVWLNWSLVOZPWLaOPZOWFUMUVWSL\]̂ QlWSLUZWcZWNLQZPWQONLRUTcONLXdFWSOVOZPWoVNLLUcLNOWFUMZQFMGWSLQOTLFMcZWQWFTZPFHqMUZNLaOPZOWFUMldLLTcPUYWSLQOTLQWFTZPFZQLXFMWSLTFRNUoONRSFWLRWZNLLaOPZOWFUMVNUTNLcNLQLMWOWFaL]nnQH\SLRUNNZcWFUMLVVLRWQONLRPOQQFpLXOQgh]Qlĥ kQOMXTOQsLXLVVLRWQH�f���|ex{yezw�|}~}|}��z���z�{�{yezw�RUMQFQWUMWSLRSONoORWLNF[OWFUMUVVOZPWcNUcOGOWFUMLVVLRWQUMRUTcPLWLOccPFROoWFUMQbYNLQUNWFMGWUORUTbFMLXNLcNLQLMWOWFUMFMQUVWdONLUVWSLFXLMWFpLXLNNUNcOWWLNMQVNUTWSLTFRNUoONRSFWLRWZNLOMXVZMRWFUMOPLaOPZOWFUMQUVWSL\]̂ QiFHLHlQROPONOMXQcOWFOPLNNUNQcOWWLNMQOQ���z��{���jH\SZQl���z��{���NLcNLQLMWQUVWdONLLNNUNQbYRUNNZcWFMGUcLNOWFUMQlOMXaOPZLQONLZQLXWUbLWWLNXLQRNFbLWSLFTcORWQUVSONXdONLVOZPWQdSFPLOPPUdFMGORRLcWObPLLaOPZOWFUMWFTLQVUNPONGLOccPFROWFUMQH�LOXOcWO�ONXdONLoqM�LRWFUMWSNUZGS ǸUGNOT\NOMQVUNoTOWFUMi�q̀\jVNOTLdUNs��I�i�~�ey����jWUFMQWNZTLMWWSLRUXLUVcONOPPLPcNUGNOTQVUN_̀ Q̂OMXFM�LRWQUVWdONLLNNUNQOQcLNTOMLMWVOZPWQVNUTWSL\]̂ mQSONXdONLH�ZNWUUPlROPPLX

EFGH�JEOZPWQLMQFWFaFWYUMWSLUZWcZWQUVWSLh̀ ^UcLNOWFUMQH�~������u��� �lNLcNLQLMWQLNNUNQbYFMQWNZTLMWFMGWSLOccPFoROWFUMmQOQQLTbPYRUXLRUMWNUPPFMGWSL\]̂ RUNLQiLHGHl���jdFWSRZQWUTVZMRWFUMQWSOWOccPYWSLcNLaFUZQPYFXLMWFpLXQROPONOMXQcOWFOPLNNUNcOWWLNMQH\SLQROPONLNNUNcOWWLNMQONLFM�LRWLXWURUNNZcWUZWcZWaOPZLQWUTFTFRWSLL�ZFaOPLMWLVVLRWUVOVOZPWY\]̂ HqMOXXFWFUMlWSLQcOWFOPLNNUNcOWWLNMQONLZQLXWUFMXFROWLWSLMZTbLNUVRUNNZcWLXWSNLOXQOMXdONcQlOQdLPPOQWSLQcOWFOPXFQWNFbZWFUMUVWSLRUNNZcWFUMQH\SLLNNUNcNUcOGOWFUMLaOPZOWFUMQWONWQdFWSWSLL�LRZWFUMUVOMLNNUNoVNLLUcLNOWFUMVUNWSLRUTcPLWLOccPFROWFUMiLHGHl���jUMONLOP_̀ Ĥ\SLUaLNOPPNLQZPWQONLRUPPLRWLXOMXQWUNLXOQONLVLNLMRLVUNRUTcONFQUMH\SLMl�~������u�FMQWNZTLMWQWSLOccPFROWFUMmQRUXLdFWSUMLLNNUNcOWWLNMOMXQWONWQFWQL�LRZWFUMlRUPPLRWFMGWSLUZWcZWNLQZPWQVUNRUNNZcWFUMRPOQQFpROWFUMHqWFQdUNWSMUWFMGWSOWWSLFMQWNZTLMWLXVZMRWFUMQONLZQLXLORSWFTLWSL\]̂ QONLZQLXFMWSLOccPFROWFUMH\SLLaOPZOWFUMFQNLcLOWLXlFM�LRWFMGLORSUMLUVWSLFXLMWFpLXLNNUNcOWWLNMQlOMXWSLLNNUNRUNNZcWFUMQFMWSLOccPFROWFUMONLLaOPZOWLXbYRUTcONFMGWSLNLQZPWQVNUTWSLL�LRZWFUMdFWSLNNUNQOMXWSLNLVLNLMRLUMLH�¡�¢�}�e£}wy{|�}�v|y�EUNWSLL�cLNFTLMWQldLLaOPZOWLXWSLWYcFROPRUMpGZNOWFUMUVO_̀ ^dFWSWdU\]̂ QcLNgr OMX¤�h̀ Q̂cLN\]̂ HqMXLWOFPlWSLh̀ ^ UcLNOWLQVUZN¤�obFWdFXLFMcZWQH\SLQYMWSLQFQUVWSLTFRNUoONRSFWLRWZNLh̀ ^NLQUNWQWUO¤¥MTUcLMoQUZNRLWLRSMUPUGYPFbNONY��¦�HEZNWSLNTUNLl����}w���FQRUMpGZNLXWURUTcZWL¤��¤�FMcZWTOWNF�WFPLQcLNdONclQUORUTcPLWLTOWNF�WFPLNL�ZFNLQOQL�ZLMRLUV����FMQWNZRWFUMQHEUNWSLpMLoGNOFMOMXVZMRWFUMOPVOZPWRSONORWLNF[OWFUMQldLZQLXVUZNWYcFROPFMcZWTOWNF�WFPLQWSOWORRUZMWVUNOWUWOPUV l§¦�FMcZWQWFTZPFVUNWSLh̀ ^RUNLH�MLL�SOZQWFaLVOZPWFM�LRWFUMROTcOFGMLaOPZOWLQ�̈l¦¤̈ VOZPWQUMWSLh̀ ^VUNLORSFMXFaFXZOPFMcZWQWFTZPZQHgFTFPONPYlVUZNVOZPWFM�LRWFUMROTcOFGMQcLNVUNTWSLL�SOZQWFaLVZMRWFUMOPLaOPZOWFUMUVWSL\]̂ QbYFM�LRWFMGOMUaLNOPPUV©ª©«¬®̄ SONXdONLVOZPWQi¥Il� VOZPWQcLNROTcOFGMjH\SLMlVUNWSLLaOPZOWFUMUVWSLLNNUNcNUcOGOWFUMUMWSLOccPFROWFUMQldLNLQUNWWUWSNLLWYcFROP]nnQi�}��}y°±l�|}¢�}ylOMX�z�e|}�}y~�jUMWSL�£{�}�}yXOWOQLWbYFM�LRWFMG¤l§̈ LNNUNQUMWSL\]̂ RUNLcLN]nnH\SLQL]nn TUXLPQONLXLcPUYLXUM\LMQUN²\dFWS\]̂ORRLPLNOWFUMZQFMGÈ¤�XOWORUTcZWOWFUMQHKPPL�cLNFTLMWQdLNLcLNVUNTLXUMOdUNsQWOWFUM�̀ ³̈ _¥dFWSOMqMWLP]UNLF¦o¤§�§§]̀^dFWS̈ §RUNLQl�̈ _́UV²KrlOMXUMLnµqhqKKTcLNL�§I§WF_̀ ĤqMUZNL�cLNFTLMWQldLWONGLWLXWSL¶·̧ ¹FMQFXLWSLº»¹ VUNWSLVZMRWFUMOPLaOPZOWFUMOMXWSLLNNUNcNUcOGOWFUMUMONLOP_̀ ĤqMWSLLMXlWSLLaOPZOWFUMNL�ZFNLXONUZMX ¤¥H�SUZNQldSFRSORRUZMWQVUN̈ � SNQUVpMLoGNOFMLaOPZOWFUMUVWSLh̀ l̂¤̈�SNQUVVZMRWFUMOPLaOPZOWFUMUVWSL\]̂ QlOMẌ �H�SUZNQVUNWSLLNNUNcNUcOGOWFUMUMOccPFROWFUMQH
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

����������	�
�	
���
���������
�����������
������������������������ �!"������#��!"�����$#��%&'�����(��������)'������
�"��*������
�%��*��+,���)*��%"-%� %"-) %"-� %"&���.�
	�����.�%"%� %"%) %"�� %"!! %"'"/012345067809:70;<;=>88;86?@;<17A>678:B7:8>6;=7A>C550<60D>7A>5EF2/0867GH>?<?IJK>7A>L<>M18?0<=?:I70@N?B76;<7A>6B?I?8;N>8?70;<6;<7A>5EF2OA>8>6:I760<D0B?7>7A?7?B;<60D>8?9I>N>8B><7?1>;==?:I76P?8;:<DQRST?8>N8;<>7;N8;N?1?7>?<DB?:6>B;88:N70;<6;<7A>;:7N:78>6:I76?6U5V6GHA0I>;7A>8=?:I76?8>@?6W>DPXYST2Z:8>[?I:?70;<D0D<;70D><70=J6B?I?85F\>==>B76GHA0BAB?<>]NI?0<>DHA><B;<60D>80<17A?75EF:<076?8>:6>D0<7A>D?7?N?7A;=?̂ EF2_<?DD070;<G?B?:70;:6?<?IJ606;=7A>8>6:I768>[>?I67A?7@;675EF;:7N:7B;88:N70;<6@;67IJB?:6>D;<>907M̀0NP?8;:<DabSTG7H;907M̀0N6P?9;:7XQST?<D7A8>>907M̀0N6P0<?8;:<DQST2OA><GH>?<?IJK>D7A>6B?I?80@N?B76?6>88;86B;88:N70<1907ML>ID6;<7A>5EF;N>8?70;<62/01:8>Q0II:678?7>67A>D067809:70;<;=>88;86;<7A>;:7N:7907ML>ID6G0<D0B?70<17A?7@;67>==>B760<7A>5EF;N>8?70;<6?8>B;88:N70;<6;<7A>@?<7066?N?87P9076ccMXYT?<D7A>I;H>8N?87;=7A>>]N;<><76P9076YdGceMcYT2_<7>8>670<1IJGB;88:N70;<60<7A>>]N;<><7L>ID6P?8;:<DRS;=?II;96>8[>D>88;86T?8>8>6N;<609I>=;8I?81>M>88;8@?1<07:D>6?<DN8;<>7;N8;N?1?7>>==>B76;<7A>?NNI0B?70;<2_<B;<78?67GB;88:N70;<60<7A>@?<7066?;8=8?B70;<P?8;:<D3YS;=>88;86T;<IJB?:6>D>==>B76H07A@?1<07:D>6I;H>87A?<X2d?<D@01A79><>1I>B7>D?6B8070B?I>88;86;:8B>60<@;67Vff6B><?80;62C<?DD070;<?I>[?I:?70;<8>[>?I67A?70<=8?678:B7:8>6B?IB:I?70<17A>>]N;<><7;=?<;N>8?70;<=;87A>6:9M:<076;=?DD070;<Pghh;8?DD>878>>T?<D@:I70NI0B?70;<PijkT0<7A>5EFP?8;:<DXa2bS;=7A>5EFl6?8>?T?8>A01AIJ[:I<>8?9I>?<DN8;<>7;B?:6>I?81>M@?1<07:D>>88;86G?6D>N0B7>D0<7A>D067809:70;<;=>88;86PmnopqrsGmnotuvpwgxxG?<DyzkT=;87A>5EFl6C550</01:8>32{>;96>8[>D7A?7=;89;7A678:B7:8>6PC55?<D|F}TN8;D:B>D60@0I?8>88;8D067809:70;<6H07A?8;:<DaQS ;=7A>B;88:N70;<6B?:6>D9J7A>C55?<D?8;:<DXYSN8;D:B>D9J=?:I760<60D>?<J;=7A>a|F}B;8>60<7A>5EF2OA>=:<B70;<?I>[?I:?70;<?0@67;0<D0B?7>7A>D067809:70;<;=6N?70?IB;88:N70;<>==>B76?@;<17A>5EF60<7A>OVF2/01:8>Xd8>N;8767A>>88;8N?77>8<6?<D7A>086N?70?ID067809:70;<=;8?<;:7N:7@?780]70I>PXb]XbT2OA>8>6:I760<D0B?7>7A?7?=?:I7J5EF0<?OVFB?<B;88:N7=8;@X7;Q;:7N:7>I>@><762OA>6N?70?ID067809:70;<;=>88;860<7>8@6;=8>I?70[>D067?9>7H>><B;88:N7>D>I>@><76G?<D7A>I;B?I0K>D>==>B76P02>2GI>=7MN?87;=7A>;:7N:7T06>]NI?0<>D9J?D>7>8@0<0670BD067809:70;<;=@?780]=8?1@><767;;N>8?7>?@;<17A>OVF6?<D0766BA>D:I0<1N;I0BJG8>6N>B70[>IJ2C<?<?IJ606;=7A>0<7>8@>D0?7>8>6:I76PD:8M0<17A>iig0<678:B70;<l6>]>B:70;<T8>[>?I67A?77A>6>~:><70?I:6>;=OVF6B;<7809:7>67;?BB:@:I?7>>88;86?<D0<B8>?6>60<

/012Xd45067809:70;<;=;:7N:7l6B;88:N70;<69J?=?:I7JOVF2
������������������ ������� ����������� ������������������ ������������ ��������

/012XX4V;88:N70;<>==>B76;<7A>Vff69JOVFA?8DH?8>=?:I762;<>7A><:@9>8;=B;88:N7>D9076;<7A>;:7N:7[?I:>2/0<?IIJG9;7A6>76;=>88;8N?77>8<6P�v� �u?<D�o�¡¢� T?8>:6>D7;0<678:@><77A>?NNI0B?70;<62OA06>[?I:?70;<B;<60D>86;<>>88;80<£>B7>DN>8?NNI0B?70;<>]>B:70;<2OA:6G?<>88;8P02>2G>88;8@?6WT06;<IJ?NNI0>D;<7A;6>7A8>?D6:60<17A>0<678:BM70;<67;?BB>66?7?81>7>D:<07P¤¥¦§T2/01:8>XX0II:678?7>67A>=?:I78?7>;<7A>;:7N:76;=7A>>[?I:?7>DVff62OA>8>6:I760<D0B?7>7A?7?II7A>?NNI0B?70;<I>[>I>88;860<D:B>U0I><75?7?V;88:N70;<PU5VT>==>B76G9:7?B;<60D>8?9I>N>8B><7?1>;=>88;8>==>B76P=8;@XQS7;aeSTB8070B?IIJB?:6>DH8;<1;:7B;@>6?77A>Vffl6;:7N:762OA>6>8>6:I766:11>677A?7?BB:@:I?7>D>88;86=8;@7A>8>:6>;==?:I7JOVF6?8>A01AIJN8;<>7;B;88:N76>[>8?I;N>8?70;<60<Vff6?<DN8;N?1?7>7A>08>==>B76G6;0<B8>?60<17A>N8;9?90I07J;=D?7?B;88:N70;<;<7A>;:7N:762U0>88;86?==>B76>[>8?I>I>@><760<7A>I?J>8l6;:7N:76G7A>0@NI0B078>60I0>;=?Vff06?==>B7>D9J7A>6>B;88:N70;<>==>B762_<=?B7GH>0D><70L>D7A?7D:80<17A>0<=>8>;=;<>0@?1>G?8;:<DceS;=7A>W>8<>I6?8>8>:6>DG?<D=8;@7A;6>W>8<>I6G?8;:<DQdS 8>IJ;<7A>OVFB;@N:7?70;<62OA>6>=>?7:8>6;=7A>Vff0@NI>@><7?70;<B?:6>7A?7?=?:I7JOVFB;88:N7@:I70NI>I?J>869J7A>?BB:@:I?70;<;=>88;8D:80<17A>Vff;N>8?70;<2_<D>>DG7A>8>6:I766A;H7A?77A>?[>8?1>>88;8?B70[?70;<8?7>8>?BA>6̈ 3dGdddG̈ YddGdddG?<D̈ X@0II0;<=;8g ©nª©¡G«©�ª©¡¬G?<Di®s¢ ©ª©¡G8>6N>B70[>IJ2C<?<?IJ606;=7A>H;8WI;?Dl6D067809:70;<0<7A>̂ EF6A;H67A?7>?BAW>8<>I:6>6L]>DB;<L1:8?70;<67;D067809:7>7A>087?6W6?@;<17A>U|6?<D:6>7A>OVF62OA>H;8WI;?DD067809:70;<0<7A>̂ EF0<̀:>67A>>88;8N8;N?1?70;<HA><?=?:I7JOVF060<7A>6J67>@GHA0BA0<D0B?7>67A?7?BI>?8:<D>867?<D0<1;=@0B8;M?8BA07>B7:8>?<D7A>?I1;807A@6P02>2GB;<[;I:70;<6T:6>D7;@?NVff60<7A>̂ EFl6OVF6?8>8>~:08>D7;?<?IJK>?<DD>[>I;N>==>B70[>B;:<7>8@>?6:8>6?<D@0701?70;<@>BA?<06@6B;88>B7IJ2OA>;7A>8N?8?@>7>8B;<7809:70<17;7A>>88;8N8;N?M1?70;<0<Vff6067A>7;7?I?@;:<7;=U|6̄607A>Vff6?8>D067809:7>D?@;<1?IIOVF60<?6J67>@G7A>08>88;8[:I<>8?90I07J06N8;N;870;<?IIJ0<[>86>7;7A><:@9>8;=OVF6?<DU|60<?6J67>@2
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

���� �����	�	
��	�����	������ ���������	����	��	�������������	���	��	
��	������	���	����	������� �� �!	����"��	����
#���	���"��$%&'	()*+,%��- ./0%+1%/�)2%+	(23/,04&+52&+%	6%/*7	&/	80379+ 6):/2&+%	6%/*7;&31	(%+<%+ 80%,=	0&1>(&15	,+&(0%(�
?@ABCDEFGHIJKHLMNJOMPLHQILRSANTUVHIJWAPHIPQLSHKOXLYIZHKHLMNCT[CU\]T̂GT]T_̀ âa\aab\c_d@eccf̂ Ueg Û\R̂R\]\Û _dUa_fUdhifjf̀ aTR̂]@̂h]_Tck\R_Tdclmnopqrspqotstuvwxspwuyoz{\|IWMILAPBLSHKHPKALA|AL}OXeccI~~HWHZILOZKXOZLZIPKAHPLH|HPLKAK~ZM~AIWXOZAQHPLAX}APBHZZOZKLSIL~OJNZOJAKHeccI~~MZI~}C@IMWLKAJMWILAOPIWWOYKZHKHIZ~SHZKLONAPNOAPLKNH�~A�~XIMWLKALHKIPQLZI~�SOYXIMWLKNZONIBILHLSZOMBSVOLSLSHSIZQYIZHIPQLSHINNWA~ILAOP������������D�C_SAK~IPVHAJ�NWHJHPLHQIL|IZAOMKWH|HWKOXIVKLZI~LAOPC]OY�WH|HWSIZQYIZHXIMWLKAJMWILAOPK�HCBC�BILHWH|HW�OXXHZQHLIAWHQAPKABSLKVMLIZHLAJH�~OPKMJAPB�YSAWHSABSHZ�WH|HWSIZQYIZHOZKOXLYIZHKAJMWILAOPK�HCBC�JA~ZOIZ~SALH~LMZIWOZKOXLYIZH�NZO|AQHXIKLHZVMLWHKKI~~MZILHZHKMWLKĈ QQALAOPIWW}�KHWH~LAPBINNZONZAILHXIMWLJOQHWKXOZKAJMWILAOPAK~ZALA~IWLONZH|HPLAPI~~MZILH~OP~WMKAOPK��E�CTP~OPLZIKL�NS}KA~IWXIMWLAP�H~LAOPMKAPBZIQAILAOPH�NOKHKLSHK}KLHJLOIVHIJOXAOPA�APBNIZLA~WHK�OXXHZAPBIJHIPKLOHKLAJILHZHIWAKLA~HZZOZZILHKCfOYH|HZ�LSAKJHLSOQQOHKPOLKMNNOZLLZI~�APBXIMWLNZONIBILAOP�IKXIMWLKIZHAQHPLA�HQOPW}YSHPLSH}WHIQLOXIAWMZHK���������CG}NHZXOZJAPBZIQAILAOPH�NHZAJHPLK�ZH~HPLKLMQAHKSI|HQHJOPKLZILHQLSILeccKI~~HWHZILOZKIZHSABSW}KMK~HNLAVWHLOLZIPKAHPLXIMWLKAPQM~HQV}ZIQAILAOP��D�����������CUH~HPLZHKHIZ~SQILIKMBBHKLKLSILYSAWHijhKIZHJOKLW}IXXH~LHQVH~IMKHOXLSHSABSIJOMPLOXI|IAWIVWHZHKOMZ~HK���������IPQLSHNOKKAVAWAL}OXSI|APBJMWLANWHOMLNMLHWHJHPLK~OZZMNLHQ�YSA~SMPQHZJAPHKecc ZHWAIVAWAL}����������@jî K�IZHJOKLW}IXXH~LHQQMHLOLSHNZOBZIJIVWHSIZQYIZH~SIZI~LHZAKLA~K�YSHZHILZIPKAHPLXIMWL~IP~SIPBHLSH~OP�BMZILAOPJHJOZ}IPQ~SIPBHLSH~AZ~MAL��D������CTPLSAKKH~LAOP�YHKSOYSOYYH~IPH�LZI~LNZI~LA~IW�IPQPOP�OV|AOMK�APXOZJILAOPXZOJPHMLZOPVHIJH�NHZAJHPLKYALSijhKIPQ@jî KZMPPAPBeccKC�m�w�pzot�ws����wzq�wtp�dMZH�NHZAJHPLKYHZHNHZXOZJHQILLSHRSANTUXI~AWAL}YALSAPLSHUMLSHZXOZQ N̂NWHLOP]IVOZILOZ}APLSHh�C_SHKHLMNYALSAPLSHRSANTUXI~AWAL}AKQHNA~LHQAP@ABMZHDECRSANTUQHWA|HZKIPHMLZOPVHIJYALSIPHPHZB}KNH~LZMJKAJAWIZLOILJOKNSHZA~PHMLZOPK����C_SHPHMLZOP�M�I|IAWIVWHZHI~SHKINNZO�AJILHW}��� ¡¢£¤¥¦§̈ ©¥ª«�YSA~SAKPHIZW}HABSLOZQHZKOXJIBPALMQHBZHILHZLSIPLSHLHZZHKLZAIW�M�ILKHIWH|HW�D�¤¬®̄°¤ª¥¦§̈ ©±²������CROPKAQHZAPBLSHWOYLHZZHKLZAIWPHMLZOP�M��HP~OMPLHZAPBJOZHLSIPOPH~OZZMNLAOPQMZAPBNZOBZIJH�H~MLAOPAPIZHIW�

AKLA~INNWA~ILAOPAKMPWA�HW}CdMZH�NHZAJHPLKIZHJHLA~MWOMKW}QHKABPHQLOMNSOWQLSAK~SIZI~LHZAKLA~�HPKMZAPBOVKHZ|HQHZZOZZILHKZHJIAPVHWOYOPHXIAWMZHNHZE����H�H~MLAOPKC\I~Secc~OP�BMZILAOPMPQHZBOHKLHKLAPBXOZIJAPAJMJ OX�HXXH~LA|HSOMZK�H�~WMQAPBKHLMN�ZHKMWL~SH~�APB�APALAIWA�ILAOP�IPQZH~O|HZ}XZOJeh\LAJHC³́ µ¶�pw�·tuwz̧w�p¹gHKHWH~LHQLSH_h]j̀ cº�»EVOIZQVIKHQOPLSHE�PJ¼AWAP�»}P½�����aORIPQLSHc[TeT̂_HKWI[D��ijhVIKHQOPIDEPJ[OWLIJA~ZOIZ~SALH~LMZHIKSIZQYIZHNWILXOZJKC@OZLSHijhH�NHZAJHPLK�YHLIZBHLIPH|IWMILAOPLOJHIKMZHLSHZHWAIVAWAL}OXJMWLANWH�OILAPB�NOAPLNZH~AKAOPKOXIiHPHZIWbILZA�bMWLANWA~ILAOP�i\bb��KM~SIK@jD��@j�E�IPQ@j��XZOJLSH~MG]̂ aWAVZIZAHK����C_SH~SOA~HOXJMWLANWHi\bb~OP�BMZILAOPKAKBMAQHQIKLSH}IZHLSH~OZHOXLSHKLILH�OX�LSH�IZLeccKĈKIKLMQ}~IKH�YHIWKOH�NOKHQIPOV�H~LQHLH~LAOPecc�̀d]d|������YALSLYONZH~AKAOPK�@jD�IPQ@j�E�YALSLSHKIJHKHLMNIKMKHQAP����C@OZLSH@jî H�NHZAJHPLK�YH~ZHILHQ�|Ĥ ccI~~HWHZILOZKMKAPBLSHf]a�b]LOOW����Cf]a�b]AKIPONHP�KOMZ~HLOOWLSIL~IPLZIPKWILHJI~SAPHWHIZPAPBJOQHWKQHK~ZAVHQYALSWAVZIZAHKKM~SIKj}LOZ~SIPQ_HPKOZ@WOYAPLOf]a�~OJNILAVWHSABS�WH|HW�QHK~ZANLAOPNIZIJHLZA~JOQHWK�YSA~S~IPVH~OP��BMZHQ�K}PLSHKA�HQ�IPQAJNWHJHPLHQLOZMPOPIP@jî CgHMKHQIE�WI}HẐ ccLO~WIKKAX}SIPQYZALLHPQABALKOPLSHbcTa_QILIKHLIPQ|IZAHQLSHPMJVHZOXJMWLANWAHZKMKHQNHZWI}HZC_IVWHTTTKSOYKLSHPMJVHZOXJMWLANWAHZKMKHQXOZHI~SH|IWMILHQ@jî ~OP�BMZILAOPĈ KLSHPMJVHZOXJMWLANWAHZKAP~ZHIKHK�LSH~WO~�~}~WHKQH~ZHIKH�VMLLSHIZHIIWKOAP~ZHIKHKCK̂QAK~MKKHQAPLSHPH�LKH~LAOP�IWIZBHZIZHIJI}AP~ZHIKHLSHXIAWMZHZILHC¾́ ���wzq�wtpsxµwp��¹@ABMZHDENZHKHPLKIPO|HZ|AHYOXLSHH�NHZAJHPLIWKHLMNCgHQH|HWONHQIKOXLYIZHYIL~SQOB~OJNOKHQOXj}LSOPK~ZANLK�YSA~SONHZILHKOPLSHKHZ|HZ~OJ�NMLHZWO~ILHQH�LHZPIWW}LOLSHVHIJZOOJC_SAKYIL~SQOBO|HZ�KHHKLSHeh_V}JOPALOZAPBALKI~LA|AL}�H�H~MLAPBNZOBZIJK�_̂G]\TTTFROP�BMZILAOPKBHPHZILHQV}f]a�b]V}|IZ}APBLSHPMJVHZOXJMWLANWAHZKMKHQAPHI~SWI}HZC���E��JMWLANWA�~ILAOPKIZHNHZXOZJHQAPLSH�ZKLWI}HZIPQ���APLSHKH~OPQC¿ÀÁÂÃÄÁÃÅÆÇÈÇÅÉÊÁËÌÅÆÍÎÁËÌÅÆÏÐ ÑÁÒÓÔÑÌÓÁÅÇÕÖ×Ø D�D ������ÕÖ×Ù E�E D�����ÕÖ×Ú D��� ��D��ÕÖ×Û ���E� ���
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

������������	
������������������������� �������������������	���������������������	����	���	���
���	���������������	��������	�����������������������������������
�����������������������������	���������	��	��
���
�������������	�����������������	���������	������������������ �������!"#������������
$���	���������	�	�	��������	��	���	�����������������!�����������������$���� �����%&"	����
�����	�	�	����	���'()�����*+&"
$�����	�� &%,-�+������������	
���,./+&"�����&0�1-�+�	��������� ����$������������������������$��������������
�����	��������	���2������	�����������	��������������	����������������,����	�����������$���	�����	������������������������������2�����	��������	��������������
������������������	�������������		�)��	�������������3���	�4����������������������	�	�������	����	��	���������	��	����������2������������#������������	�����������+���).����$����	������������56789:;<=>7?;@5<>A����	
�����	�������������������������������������)#�����	��������������������������������B:CDDED;BF7C=GHI
��������������������������������	����������	���������������������J�����GKLMNOPKQRSTUI�#��	���		3	�������	�������������������VWMX�����$�������	�	����������	����������)#�������������)#�����	�����������	��������	�	������3�������	
���������2	�������������������������		���3��������������YZ-���%&"����$���������4�����	�#������		���	
$�����������[;6=\];B9F7C=D ;̂F_;;=56789:;D@[\̂5A���������$��������������������	������������������������������	
�	������������������`abcd `ebcaXLSMNfPKefTL G�I��������`ebc�	��������	��������		3	�����������3����������VWMX�����$�������������$����������G����
`ebcdcgehidjHkVWMXlhiI
������aXLSMNfPKefTL�	����������������������������mn\]o;:7?;=F68p;D98FD ������*	��$	�����������������	����)#�������/qr �r���)#���/qr ������	���$��	����������������������-����������
$����	�������������������������������� &(s%q// ��� &*t0uZu�*�����%&"���u��i����� &%,�#�������� ������*�	���	�����$����vwx���3�����������������&��		����	����������yA5<>z-�����������	�����	���	�����$���������)#���������������������	�����������%&"	G ������*�I�-����������
���)#����� &*t�	t��wx��$����������� &(s
$�������)#����� &�()#�	*'�s*x��$����������� &�(�-��������
��0uZu�*
���)#����� &�(�	s(�tvx��$����������� &*t�"	���	������J��������	���	������	����������������������������	���������G-!+��!"qI�	���	�	�$������$�����	�����	� ����������
������������� &*t���	���
��� &�(���	����0uZu�*��	���	���$����������-!+	G��	���������	I$���t��s*x���t{�t{x
��	����������#����$�������	����������������� &�(������	���������	������������������������	
$�������2��$�

�����������������������!��	|sw}
|(�}
���	����������������������	����0uZu�*�#�� &%,)#�����������	����������������������������%&"��	���	�#��u��U)#����������	�	����������u��i
$�������	������	�����������u��~���u����-����������
���)#������u��U�	't�'�x�u��i
$�������)#����	��u��~���u������v'�*wx �����{�{sx�u��i)#����
��	����������)��	��������������������������3����������������������������	
	����		���������������������������q++
$��������4���������������������	�,	���	���
	�����������������	�����������������������������������	����������	��������	������$���
���	��������������������		!"q	�������������������
����	��������������������	
�������������-!+	�,�����������
���!"q)#������	�	�������������������	�#��������������������������G����
��������������	��������I
��������������������������J���������	������������������	�����
������������������������	���������	��#��+�������-!+	����� &%,	����������	�����	�������'�t(x
t��vtx
t'�wtx
���t'�'�x����-!+)#��u��i
u��U
u��~
���u���
��	����������#�����������������������������-!+	�	�������������������������	����	���������	���������	��������$�����	�����	�#���������$��2����������	���	����
��������������������	�������������������������������
$��������	��A[\̂5z����������������,�������������	
������������)#����������	��	�������
�	�����	�������������������������������������	�������������|(�}�#�������
$���	�������������������	$�����������������2�����������	����������	���� ������*�	��$	���/qr ������������������������	$���������� �����%q//����	��%&"
$��	�����-!+	���!"q	��������������/qr
$������0uZu�*���/�)-#,��
$��	�����+�������-!+	G��	���		������������	���������I������!"q��������������/qr �r��	����������+�������-!+	G�!"q	I��������������/qr
$��������������������	����$��4�����G����
���	���$�������		��������I������������������	��������"�	�����	�����
���%&"/qr ��$��	������	�	$������3��������������������	���	%q// &(s���0uZu�* &*t�������$�������	���	���	���	� ����	�����
���%&"/qr ��%q// �	t�wt��������� &*t���{�**��������� &�(���� &(s�,�	�
���0uZu�* &�(�������	��'v����������������������	������� &*t���	����u�����4������$�����������������	���������������������	���	���	��������������������	����	��$������$����#����	���	���� &%,������������		��$�	����������������������������u��i��u���
��������	������)#������	���	�#��/qr �����	�����	������������������$���������	����������	
�������������u��i
��������	�	��t�{t���u��U
(�*w���u��~
���t(�tw���u����)��������
�������	����	�	�����	��������������������	��������������������������������	���$����$�������	����	��$���	�������	�Y�$����
$����������
�������������2������������������������-!+�
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

�����
���

���� ��	
 ���� ��	
 ���� ���������������� �����	 ���������� !"#$� ������"# �%"�&�'
�() (*�+,!#"���* �-./����
012 345354636473

74
89:; 8976 895: 8976 895: <=>?<=>@ <=>A<=>BCDEEF GHIHJ7 EKLMN�OKKPQRSTUJQ�EDV8�WSXYXZ

EDV8�[\UTU]SR�M̂[_̂ D̀abRTS�C9̀ 9cde89COfghhi jkgji
lgmi0n2opqrstuvwxyzp{y|}1~~�{y1��zy�zy~1}p�y���1|���vo1p~�zy�|�p{y0o��2z1}y��1��y~~1�}�yzy~1}p�y�y1|vwy��}p�|��y}�yy|o1p~�zy0�v�o2ro��1|��v�o�1~�y�1zyywxzy��y�zy~1}p�y}�}�y��|�q�z1}p�|yw�pnp}p|q}�y��z�}xyz��z{1|�yr���p~y��z}�y�v�����y��y��|�p�yz1~~}�y�����|}�y�v�o�1~��~1}p�|�p|}�y�����t1|�����������y��|�p�yz�|~�}�y�����~1��p�y�1�1{p��~1��p��1}p�|�z{p��y}y�}p�|r �r�������������yx1xyzxzy�y|}�1��1|�y�{y}����}�1��y��}�yzy~p1np~p}���}�y}�zyy}�xy�����������pryr����}�~p��zz1�����1|�o����}�z��q��p��yzy|}}1p~�zy�{y}����~�qpy�r��y�y1zy12��nzp�1|1~�}p�1~1|��pyz1z��p�1~o��n1�y�zy~p1np~p}�1���y��{y|}��z���}�~p��1zz1��n1�y����1��y~yz1}�z��n2{pwp|q}y��|p �y���z}�yzy~p1np~p}�1��y��{y|}��p|���px��1��y~�yz1}�z�p|������2zy~p1np~p}�1��y��{y|}������1z��1zy1��y~yz1}�z�}�z��q�x���p�1~�1�~}p|¡y�}p�|r��yywxyzp{y|}1~zy��~}��y{�|�}z1}y�}�yy���py|����}�yxz�x��y�{y}����1xx~py�}�}�ypz}1zqy}�����1��y~yz1}�zx~1}��z{�r��¢����v���v�����p���z£�1���xx�z}y�p|x1z}n�}�yv�}�|p1|¤y�y1z�����|�p~qz1|}����¤�s¥¦§ �̈¤����v�©�n�v�}�|p1|�ozy|����¤¤��xz�¡y�}̈v|�z��}v�©�n�}�y��¤�ªs��vª¥�««s¬̈¤v��¤������©xz�¡y�}�1|�n�}�y�1}p�|1~¤y�p~py|�y1|�¤y���yz��~1|0��¤¤2}�z��q�}�y�1}p�|1~�y|}yz��z�����pq�1}11|��1|}�{��{x�}p|qr¤vov¤v��v�®s̄ �r�°y��r��r��y|��r�±r�1|q�1|�±r�rv{yz�̈v���py|}xz��y��p|q���yyx|y�z1~|y}��z£�u�}�}�zp1~1|���z�y��©²³́µ¶¶·̧¹º»́ ¼½¾¶¿ÀÀÀ���~rs«¬�|�rsª�xxrªªÁ¬ÂªtªÁ�ª«s§r®ª̄ �r�1�yzp�̈�||�1z��1zyzy~p1np~p}�1��y��{y|}1|�y|�1|�y{y|}�©p|ÃÄ½¾¿ÀÀÀÀÅ³́Æ¶Ç¹È¶»½ÉÊËǼ»̧ÅËÌÀÈÉÍ�ª«ªªr®t̄ Î³½̧Ïµ̧ÇÐ¿¹½¶ÐÐ̧º¶¹µ¶Ç¹·ÑÇ³·ÒÇ³¶Îµµ¶Ð¶³Ç½́³»r�xzp|qyz�|}yz|1}p�|1~��n~p��p|q� ª«ªtr ®�|~p|ȳr ��1p~1n~yu �}}xuÓÓ�wr��pr�zqÓs«rs««§ÓÁ§Ô�t�«ts�ªªs§«�¬®¥̄ �r�1z�p1|��r�z{1}��̈o�|�}p�|1~�1�y}�{y}����~�qpy���z1�}�{�}p�y1xx~p�1}p�|��©p|ÃÕÖÄ¿ÀÀÀ×ÎØÙ¿¹½¶³¹Ç½̧́¹ÇÐǾ¹¼¶³¶¹µ¶́¹ǾËÆÅ½¶³ÚÎ̧·¶·Û¶»̧º¹Ì¿ØØÎÛÍr�vvv�ª«s§�xxrÁ§«ÂÁ§¬r®¬̄ �r±y|p��p|��r�r¤y�z�1��r�1~1£zp��|1|�1|��r�~yw1|�zy�����̈�1~~y|qy���zy~p1np~p}�1��y��{y|}1|�y|�1|�y{y|}p|1�}�|�{������}y{��©p|ÃÕÖÜ¿ÀÀÀ¿¹½¶³¹Ç½̧́¹ÇÐÉÊËǼ»̧ÅË ¹́Û¶¼¶µ½Ç¹·ÝÇÅÐ½È́Ð¶³Ç¹µ¶̧¹ÞßÉ¿Ç¹·àÇ¹́½¶µ¾¹́Ð́ºÊÉÊ»½¶Ë»ÌÛÝÈÍ�ª«sÁ�xxrsÂ¦r®¦̄ �r��1� �y��r�1�yyz��r��y���1zp�y���r¢�z£����r��}~���r�z��1�1|�±r���p�̈ ¤�n��}{1��p|y~y1z|p|q���}y{�u��1~~y|qy����zzy|}}zy|���xyz�xy�}p�y��1|�}�yz�1�1�y1��©¿ÀÀÀÛ¶»̧º¹áÈ¶»½���~rt§�|�rª�xxrt«Â¬§�ª«ª«r®§̄ �r���p���r�yz|1z�p��r¤���x��1|�vr�1|��y°�̈�zy~p1np~p}�1|1~��p���1�yyx|y�z1~|y}��z£�©p|ÃÕÖÜ¿ÀÀÀßÇ½̧¹ÎË¶³̧µÇ¹È¶»½ÉÊËǼ»̧ÅËÌßÎÈÉÍr�vvv�ª«sÁ�xxrsÂ¦r®Ô̄ �r�1�yzp��r��yzy°��1��r�r�|�1zp��r±y|p��p|��r�1�1|p��r�1|y��}1~1n�1|�±r¤1p£�̈vwx~�z1}p�|��1�}p�1}p�|�1�~}zy~p1np~�p}�p| �1|}p°y����}�~p�1zz1��n1�y��||1��y~yz1}�z��©Ç³â̧ãÆ³¶Æ³̧¹½Ç³â̧ãäÃåÕÖæÕÜçÕÜ�ª«ª¥r

®Á̄ �r�r��{1�p~p�1|p��r�1zn1zy���p��r�1z�|y��r���p���r�1|y��}1�~1n��r�r��z�1��r�1�1zp|p��r±y|p��p|�±r¤1p£��r¤���x��vr�1|��y°�1|��r�1�yzp�̈�xy�p1~�y��p�|u�xxz�wp{1}p�|1|��1�~}zy�p~py|�����||1��y~yz1}�z��©p|ÃÕÃè¿ÀÀÀåÖ»½ÞßÉ¿È¶»½ÉÊËǼ»̧ÅËÌÞÈÉÍ�ª«ªt�xxrsÂs«r®s«̄ �r�1�yzp��r¤p1°1}p��r�r��{1�p~p�1|p��r±y|p��p|��r�1|y���}1~1n�±r¤1p£��r�¡é��p|�1|��r�p�xyz�̈�yyx1wyu��z1{y��z£��zywx~�z1}p�|��1xxz�wp{1}p�|1|�zy~p1np~p}�}z1�y�����p|�||1��y~yz�1}�z��©p|Ãå½¾¿¹½¶³¹Ç½̧́¹ÇÐÉÊËǼ»̧ÅË ¹́êÅÇÐ̧½ÊÀÐ¶µ½³́¹̧µÛ¶»̧º¹r�}}x�uÓÓ��pr�zqÓs«r¥Ô¬¬«Ó1zëp�rªt«tr«Ôªª¦�ª«ªtr®ss̄ �r�1�yzp¶½ÇÐæ�̈�xxz1p�yzu�||�1�~}zy�p~py|�y1|1~��p�y{x~��p|q1xxz�wp{1}p�|yzz�z��©p|ÃÕÃèÃì½¾¿¹½¶³¹Ç½̧́¹ÇÐÉÊËǼ»̧ÅË ¹́Û¶»̧º¹Ç¹·Û̧Çº¹́»½̧µ»́¼ÀÐ¶µ½³́¹̧µØ̧³µÅ̧½»Ç¹·ÉÊ»½¶Ë»ÌÛÛÀØÉÍ�ª«ªt�xxrsª¥Âsª§r®sª̄ �r�r��{1�p~p�1|p¶½ÇÐæ�̈����}y{1}p�~p}yz1}�zyzy�py��|�1z��1zyzy�~p1np~p}�1��y��{y|}{y}������z�yyx|y�z1~|y}��z£��©ÎØÙǾËÆÅ½̧¹ºÉÅ³ã¶Ê»���~r¬¦�|�r¦�xxrsÂtÁ�ª«ª¥r®st̄ �r¤���x�¶½ÇÐæ�̈� ��z�y��|�yyx~y1z|p|qzy�p~py|�y1��y��{y|}{y}����~�qpy��©ǾËÆÅ½¶³���~r¬¦�|�rª�xxr¬§Â¦¦�ª«ªtr®s¥̄ �r�p|}�|�̈��}�{1}p���|}�y�p������}�~p�1zz1���z�{�|p��z{zy��zzy|}y �1}p�|��©ÎØÙÉ¿íÎîØÑǾËÆÅ½¶³Ç³µ¾̧½¶µ½Å³¶¹¶Ò»���~rsª�|�rt�xxrª«ÔÂªs¥�sÁÔ¥r®s¬̄ �r�1�yzp��r�1|y��}1~1n�±r¤1p£��r±y|p��p|��r�1xx1~1z����r±p{y|y°��r�y�y1�}��z�1|��r���p��̈�1��z1u1�z1{y��z£��z1��y��p|q}�yzy~p1np~p}������}�~p��1zz1��n1�y��||1��y~yz1}�z��©ª«ª¥r®s¦̄ �r�r��{1�p~p�1|p��r�1�yzp�±r¤1p£��r�1|y��}1~1n�1|��r±y|p��p|��̈yyx�pq�zu��~|yz1np~p}��1~�yz1|qy�1|��1�}�z���z�||�ïzy~p1np~p}�1��y��{y|}�©p|ÃÕÃè¿ÀÀÀÀÅ³́Æ¶Ç¹È¶»½ÉÊËǼ»̧ÅËÌÀÈÉÍr �vvv�ª«ªt�xxrsÂ¦r®s§̄ �r�1�yzp¶½ÇÐæ�̈��1{u��1x}p�y�1�~}�}�~yz1|}1xxz�wp{1}y{�~}px~pyz��zy�qy�||1��y~yz1}�z��©ª«ª¥r®sÔ̄ �r�r��{1�p~p�1|p��r�1�yzp�±r¤1p£��r�1|y��}1~1n�1|��r±y|p��p|�v̈|�1|�p|q�1�~}zy�p~py|�y�� ||�n��y~y�}p�y|y�z�|�x~p}}p|q�©p|ÃÕÃè¿ÀÀÀç½¾¿¹½¶³¹Ç½̧́¹ÇÐǾ¹¼¶³¶¹µ¶́ ¹Î³½̧Ïµ̧ÇÐ¿¹½¶ÐÐ̧º¶¹µ¶Ø̧³µÅ̧½»Ç¹·ÉÊ»½¶Ë»ÌÎ¿ØÎÉÍr�vvv�ª«ªt�xxrsÂ¬r®sÁ̄ �r�1~~��̈�1z��1zy��z�yyx~y1z|p|q�©p|¿ÀÀÀÑ́½Ø¾̧Æ»èçÉÊËǼ»̧ÅËÌÑØÉÍr�vvv��{x�}yz���py}��ª«ªt�xxrsÂ¬Ôr®ª«̄ ër�p��±r���~��r�1|�1|��r±r�1~~��̈v���py|}�x1z�y��p|�qz1���|��~�}p�|1~|y�z1~|y}��z£��©Ǿîî���~r1n�ÓsÔ«ªr«¦t¦§�ª«sÔr®ªs̄ �r�1���y�1|��r�|�yz��|�1|��r�zyqq�̈ �1z1~~y~{�~}p��1||y~��|��~�}p�|��p|qqy|yz1~{1}zpw{�~}px~p�1}p�|�©p|ÃÕÖÄ¿ÀÀÀÃð½¾¿¹½¶³¹Ç½̧́¹ÇÐǾ¹¼¶³¶¹µ¶ ¹́ÎÆÆÐ̧µÇ½̧́¹Ú»Æ¶µ̧ÏµÉÊ»½¶Ë»ñÎ³µ¾̧½¶µ½Å³¶»Ç¹·²³́µ¶»»́³»ÌÎÉÎ²Í�ª«s§�xxrsÁÂª¥r®ªª̄ �r�1�p|1|��r�z1��̈o1�}1~q�zp}�{���z��|��~�}p�|1~|y�z1~|y}��z£��©p|²³́µ¶¶·̧¹º»́¼½¾¶¿ÀÀÀǾ¹¼¶³¶¹µ¶́ ¹ǾËÆÅ½¶³Þ̧»̧́¹Ç¹·²Ç½½¶³¹î¶µ́º¹̧½̧́¹ÌØÞ²îÍ�±�|yª«s¦r®ªt̄ �r¤r����y~~¶½ÇÐæ�̈�y|yz1~p°y�1��y~yz1}p�|��{1}zpw{�~}px~�1����{�~1}y�xyz1}p�|��©±�~rªª«sÁ��r�r�1}y|}s«�ttÔ�ÁsÁr®ª¥̄ �r¤1p�1|¶½ÇÐæ�̈���y~p|q�yyx~y1z|p|q1��y~yz1}�zy|1n~y�qx���©p|¿ÀÀÀ¿¹½æÉÊËÆǽ¹²¶³¼́³ËÇ¹µ¶Î¹ÇÐÊ»̧» ¼́ÉÊ»½¶Ë»Ç¹·É́¼½ÒÇ³¶Ì¿É²ÎÉÉÍ�{1zª«sÁ�xxr§ÁÂÁªr®ª¬̄ ±rvr¤r��|�p1�±r��r��yzzyz���1~1q�yz1�oror����1|}����r�r¤y�z�1�1|��r¤y���̈�{�~}p�~y�y~1xxz�1��}�y�1~�1}y}�yp{x1�}��qx�
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

�����������	
����������
����
���������������������������� �!�"��#����$�%� "&�'(''���)'*+,'+*)-'./0)1)2)3��4���5)5)4��6������7)6)2���4����48)2�9�:3�������;��9����	��
���	
�������4����<�����	
���=���������������4�	���������
����
����>�
	�������;�	��������?����@A�BCDE� �!�EFGH�!�IG%C E&�'('J���)J,*)-'*/5)5)4)6������0)1)2)3��4���K)3�����7)6)2���4����48)2�9�:2�L>��
��;;�	�>	
������
��������������;��;�����L����������4����<���L
�>�
��	
���=������������?M?!�N��I������O�P�Q�������������"��#����$���R�H��S�T��EF!��G!��SU��V��W!%REU&�'('J���)'X',Y(Z)-'+/[)8���4�������	��4\)[�]���	
���:\����������;�9�������>	
����L��
������̂_̀����������	
�������������9�
������������?N"aO����bc�BN��I���������������EFGH�!�IG��"�GHI���N�$B���$�I��%�E"N&�'('J���)X(',XJd)-'X/2)K)6������0)L\)[������Le�
�;	����0)1)2�4��;	�]3��4�����47)6��]�2���4��:f��
�]��;�9��������4�����������
�	��������������9����	�	��
��
����
������	���;�	��������@�P�QO����@?!��������������"��#����$���C��FD��g�E$�������g������%CDE�hE�"&�'('Y���)J,.)-Y(/2)K����6������0)L\)[������Le�
�;	����0)1)2)3��4�����47)6��]�2���4��:1i�
����;9��4<�����	
���������4�����������
�	����������������������9����	�	��
����
�������	���;�	������$�����$!�>�
)JY���)Y�'('Z)-YJ/8)7)e�����5)5)4)6��������48)2�9�:j������������������4��i�4�����������9���
����
����������i�	
���
��������;�	������� ���!�$����!��UI$����E$���$��>�
).*���)*���)Jd.(,Jd.d�'('()-Y'/0)L\)[������Le�
�;	����2)K)6��������47)6)2���4��:1�����>���	
����	
�������;�	�������������	
�������
����
�������������������������������c�B�������������EFGH�!�IG��k�hD��� �!���g��Sl�TI!�EF!��GR�!�g�%�kD E&�'(''���)J,.)-YY/3)e�
9����K)3�������f)7��
����4f)̀��9��:5�����4�	������������	
������������;��������������������� ���!�$����!��"�GHI���!�>�
)*'���)Z���)X+Z,XX*�'('Y)-YZ/0)\)[������e�
�;	����0)1)2)3��4���5)5�����4��\��6������7)6��]�2���4����48)2�9�:m�4������4��;�9��������������������	
����;�	������

�
�������;�������4�����
	��������Q��$��Sh��g!�#�B��������������"��#����$�#��n�gBQ��#��G��$�"�GHI���goU��V��W��goE����g���SN���F!�!����)63�'Y�'('Y)-Yd/\)7�

��p���2)7	��

��f)f)\)e������[)e���

��K)8�q�	�
���47)8�����L7������:8���>�
_r���L��	����������L>���<��9s	��������
��������� ���!�$����!���G��g��g �H�$!��"�GHI���g�>�
)J(���)Y���)J'ZJ,J'd'�'('')-Y./2)K)6������0)L\)[������Le�
�;	����0)1)2)3��4�����47)6��]�2�L��4��:f��
�]��;�9��������4�����������
�	��������������9����	�	��
��
����
������	���;�	��������@�P�QO����@?!��������������"��#����$���C��FD��g�E$�������g������%CDE�hE�"&�'('Y���)J,.)-Y*/)̀̀����6)t)6)u����7)6	

�>���r)v�

����46)w)t�̂
���:x>���y_\�������	
���=��������;�	��������?M?!�N��I������O�P�Q�������������"��#����$���R�H��S�T��EF!��G!��SU��V��W!%REU&�'('J���)'+Z,'XJ)-Y+/r)v�

��7)6���9������\)x�

������46)w)t�̂
���:x>���_f4����������������	��������������<��̂ ����>�4��;�	�����Q��h$��S��g!�#�B�M��SN��I������ON"a �������������EFGH�!�IG��a�$����$B���$�I������)7j32r�d'�'(JX��)Y*',Y+Y)-YX/7)7�������0)7)7�����2)8)2�����f)2����[)69
��̂���K)2�9���40)7�9�
����:r����

��������Jd�������4̂ ��9��
�;�����Q��$��S��g!�#�B���?MEFGH�!�IG���������������EFGH�!�IG��QBF!�$��R�!�g��'(Jd��)J*J,J*+)-Z(/0)1)2)3��4���e)\	�7)6)2���4����4K)6��������:5
�i;����
	�_f������>�4;�;�	��4�
���	�������
����
������
������a�$�����$�����$!l����T����F�>�
)J(X��)JJY..(�'('()-ZJ/f)7�9��	4����z�:8����9y_f�	���������	����������
���4�����������M��BN��I������O�P�Q�������������"��#����$���R�H��S�T��EF!��G!��SU��V��W!{��W!B�H!%REUh{&)j111�'('(���)'d,YJ)-Z'/[)8���4�������	 ��4 \)[�]���	
���:\����������; �9�6�����v	
������
���6��̂_̀��������5�	
�1�����������9�K��������������E"N�'('J��)X(',XJd)-r�
���/)f>��
��
�_9����_||4��)��;|J()JJ(X|j63fd'(J')'('J)(((*d-ZY/u)}	����:39�

��;����������;���
�i������������� ���!�$����!��UI$����E$���$��>�
).J���)'���)*..,*+.�'(JZ)-ZZ/8)2)e�4�����[)8���4�������	�2)K)2)0	�����\)[�]���	
�����48)2�9�:6��������������������������������_1��
������������>���	�9������	������������� ���!�$����!��"�GHI���!�>�
)*J���)J(���)'Yd+,'Y.X�'('J)-Zd/[)K��6)t)6)u����7)6	

�>���̀)̀ ����t)8������������0)1������46)w)t�̂
���:m�4������4��;����������;�������4���
������;��	��
���<��̂~4�����
���������4���
�����������Q��$��S��g!�#�B�

�������������"��#����$�#��n�gBQ��#��G��$�"�GHI���goU��V��W��goE����g���SN���F!�!�'(J*���)J,J')-Z./�)j���9���u)w��;�0)K�	�0)w���K)39���8)2�9�t)f4�����4[)[��:6�����������4����
�������_f�����9����>���>��<��a�h$�����$�����$!l����T����F�>�
)JJd��)JJYX.X�'('()-r�
���/)f>��
��
�_9����_||<<<)�����4����)��|�����|����
�|���|6(('.'*JZ'(Y(+((Y-Z*/2)K)2�90	�����6)7�
4��3)3�]]���;��7)t��������	�7)K���9��3)5�������48)2�9�:u�;9����;���4�9����
��	�����������>�����;��;
���������������;	���������� ���!�$����!��UI$����E$���$��>�
).X���)Y���)d.*,d*d�'('')-Z+/\)̀ �<����6)[����0)2�;����\)7�i<�

�8)2�9�6)v�]9̂	4���\)r
�>�����\)K��4��x)\�e��4�
�����8)x�>�	i�K)3�������4f)e
��4�:m�4������4��;;�	��������
��;�L��
�9����������4�9����
����������������4���;���4���������������?M�����?!��������������EFGH�!�IG��n�gBQ��#��G��$�"�GHI���N�$B���$�I��%nQ"N&�'(Jd���)YYJ,YZ')-ZX/7)e)6	

�>���x)6�i����7)r�3������\)K���8)2�	����6)u	̂���̂���̀)̀ ����6)t)6)u������46)w)t�̂
���"B���$�������gN�Sa���g����gE�#������!���Q�RlNa�'('J��).ZJ,.dY)-r�
���/)f>��
��
�_9����_||4��)��;|J()JJZd|YZ..*d')YZ+(JJJ-d(/5)5)4��6������8)5)8�������3)K	���4��K)\��;9�����K)3�����\)t��
����48)2�9�:f��
�]��;��4��������;�9���
����
�������>�
	�����
��	��
���<��̂���;�	������� ���!�$����!��l����T����F�>�
).+���)'���)..Y,.**�'(J+)-dJ/5)K������e)w�
����0)f�4������7)0)w���9
���3)3�]]���;��3)5�������48)2�9�:6�
���>�9��4����;�����	��
���<��̂�����;�������� ���!�$����!��UI$����E$���$��>�
)..���)J���)'J.,'''�'(J+)-d'/8)7��

��4��)8)39���0)v�4����x)5������[)[�����4�

��7)6�<������47)K)v��;�
�:2�4������L̀�
�����\���K������;8�������m���~\8m�Le���48
������m���;��
��i'(L��t����im
���6�
�58[f������ ���!�$����!��UI$����E$���$��>�
)*(���)Z���)*JZ,*'J�r�����'('Y)-dY/7)̀ ����
��5)5)\��6������8)2�9�3)3�]]���;��r)6����������4f)t����̂�̂�	�:j������9�;9L
�>�
L����9��������
����
���������y��
��	��
���<��̂ 9��4<�����
������������� ���!�$����!��UI$����E$���$����)J,J�'('Z)-dZ/3)3�]]���;���43)\)5�����:8��;�������9�������y�����������;���������	��������
������9������4����������I�����#QBF!�$!�"��#����$�E����!�>�
)J('J��)(J'(Y*����'(J+)-r�
���/)f>��
��
�_9����_||4��)��;|J()J(++|J*Z'L.dX.|J('J|J|(J'(Y*-dd/01\13�:7���	��������42�������;��f
�9�8����
���4 �̀��������
3����2��Lj�4	�46���1�������6�����4	���\�>�����01\136���4��4�̀�9)2��)016\+Xf�'((.)-d./3)x>�4���:3	�
��
��������UC�R�N"��H�������oE����"����o"���#��h����>�
)Jd���)'*��)YJ�'((+)-d*/0)2�4�����4f)5��9�4��:��
�>Y_f����������
�����>�������"�ll�>�
)���|J+(Z)('*.*�'(J+)-r�
���/)f>��
��
�_9���_||��i�>)��;|���|J+(Z)('*.*-d+/5)5�����4��4��6������3)K	���4��\)r
�>�����5)K��������48)2�9�:2�
����
����>�
	���������i�4L����������9����	���������?A�����������������EFGH�!�IG��n�gBQ��#��G��$�"�GHI���N�$B���$�I��%nQ"N&�'(JX���)'Y+,'ZX)-dX/0)\	��������z�:5���j���������\���x�	��
x��<��̂����2��
L̀���8����
�89����f��
���������Q��$��S��g!�#�B���?AN"aOE��RN�������������EFGH�!�IG��P���ShQ��g��GG�T������N���F!���)Y(d,YYd�5���	���'(JX)-.(/K)2�s	���5)5�����4��4��6������8)2�9�7)̀ ����
��r)6����������4f)t����̂�̂�	�:3����LK����2�
����
���1>�
	�������41�y����u��4����;��K��;�v�����̀ �����������7�4�
�����R�!�g�NI��G�����"��#����$�%RN"&�6��5������m����46������0	�)'('Z)-r�
���/)f>��
��
�_9����_||9�
)�����|9�
L(ZZd.*('-.J/[)2����0)39��;�x)v�99���=����6)7	̂9��=���2)2��;�����4\)f	;	���:\���;���4�>�
	�������9����4��	
�L4������������������@��S�������������EFGH�!�IG��"�GHI���N�$B���$�I��%�E"N��M&�'((d���)JZ+,JdX)
Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:55:25 UTC from IEEE Xplore. Restrictions apply.

Appendix 13

XIII

275

M. Jenihhin, M. Taheri, N. Cherezova, M. H. Ahmadilivani, H. Selg, A. Jutman,
K. Shibin, A. Tsertov, S. Devadze, R. M. Kodamanchili, et al., “Keynote: Cost-
Efficient Reliability for Edge-AI Chips,” in 2024 IEEE 25th Latin American Test
Symposium (LATS), pp. 1–2, 2024.

Keynote: Cost-Efficient Reliability
for Edge-AI Chips

Maksim Jenihhin, Mahdi Taheri, Natalia Cherezova, Mohammad Hasan Ahmadilivani,
Hardi Selg, Artur Jutman, Konstantin Shibin, Anton Tsertov, Sergei Devadze,
Rama Mounika Kodamanchili, Ahsan Rafiq, Jaan Raik, Masoud Daneshtalab

Department of Computer Systems, Tallinn University of Technology, Estonia
maksim.jenihhin@taltech.ee

Abstract—Very recently, Artificial Intelligence started undergo-
ing a remarkable transformation by moving closer to the source
of data, thus establishing the Edge AI concept. This trend sets
new reliability requirements for the related hardware chips used
for safety- and mission-critical applications. The key research
and engineering challenges stem from the limited computing and
energy resources of the edge devices. Furthermore, the compute-
efficiency and the cost of the reliability of the Edge-AI chips
are becoming enabling factors for their way to the market. The
talk discusses techniques for soft-error and lifetime reliability
assessment and enhancement for Deep Learning accelerators.
It advocates the role of approximate computing and looks into
specifics of the systolic-array-, data-flow-based and industry-
grade accelerator architectures for ASICs and FPGAs.

Index Terms—DNNs, HW accelerators, edge computing, edge
AI, AxC, soft errors, reliability assessment and enhancement.

I. CHALLENGES AND TRENDS

Edge AI is gaining momentum across various industries
and services by public authorities. It is forecasted by Gartner
and other roadmaps that ”by 2025, more than 55% of all
data collected will be processed by Edge AI”, while this
figure was less than 10% just a couple of years ago. Yet,
the advancements in applications face critical research and
engineering challenges in the hardware domain. The real-
time inference using massive computations, performed by
the safety- and business-critical Edge AI applications on the
strongly resource-constrained delicate nanoscale-technology-
based hardware, still sets very high expectations for reliability
against in-field faults (soft errors, aging, etc.). The boundaries
should be pushed not only for compute-efficiency of Deep
Neural Network HW Accelerators (DNN-HA) but also for
their reliability-efficiency. As a response, promising research
endeavours include: analytical techniques, selective harden-
ing, cross-layer solutions, in-field system health management,
lightweight monitoring and mitigation, and approximation- or
dynamic-inference-based trade-offs.

II. SELECTED APPROACHES

Tailored cost-efficient reliability enhancement for DNN HW
accelerators starts with its assessment. A recent survey [1]
categorizes the state-of-the-art DNN reliability assessment

methods into fault injection, analytical and hybrid methods.
Fault Injection (FI) approaches strongly dominate yet vary
by different fault models, injection approaches and target
platforms. The survey concludes that analytical and hybrid
methods are lightweight, sufficiently accurate, yet their poten-
tial is under-explored by the community.

A semi-analytical technique and tool DeepVigor [2] for
DNN fault resiliency assessment provides vulnerability value
ranges for DNN neurons’ outputs. The vulnerable and non-
vulnerable ranges for each neuron are a base for novel tech-
niques for DNN-HAs’ reliability enhancement. E.g., it is a
base for QNNs’ model-level fault resiliency enhancement by
selected critical neuron splitting [3]. Furthermore, it is applied
for a hybrid analytical and hierarchical FI-based reliability
assessment for systolic-array-based DNN-HAs [4]. The core
idea is an analytical pruning of fault space that allows for even
further acceleration of a hierarchical tool SAFFIRA [5], which
employs a system of Uniform Recurrent Equations for systolic
array modelling and fault simulation.

The reliability assessment can also be accelerated by an
unconventional use of the errors produced by Approximate
Computing (AxC). The technique in [6], [7] uses approximate
arithmetic circuits to agilely emulate errors in the target
hardware without performing fault injection on the DNN.
Naturally, AxC has a strong potential to facilitate cost-efficient
reliability by releasing a share of DNN-HA resources for fault-
tolerance needs or by enhancing reliability themselves [8].

Techniques for in-field immediate error correction in DNN-
HAs imply signals monitoring, e.g. for MAC outputs’ out-of-
range values [9] or an instrumented multiplier outputs [10]
with corresponding on-the-fly adjustment of the values. The
latter technique uses adaptive fault-tolerant approximate mul-
tiplier architecture (AdAM) relying on an unconventional use
of input Leading one Detector (LOD) and enabling ”negative-
overhead” reliability.

Industry-scale solutions for today’s (FPGA-)SoCs demand
a comprehensive cross-layer analysis in the systems fault-
tolerance vendor- and user-spaces [11]. Here, the process for
fault detection, localization [12] and recovery may be sophis-
ticated and application-dependant, implying on-chip monitors’
data analysis and SoC health management protocols [13].979-8-3503-6555-9/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 2
5t

h
La

tin
 A

m
er

ic
an

 T
es

t S
ym

po
si

um
 (L

A
TS

) |
 9

79
-8

-3
50

3-
65

55
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

LA
TS

62
22

3.
20

24
.1

05
34

61
0

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:56:41 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

The work was supported in part by the Estonian grant
PUT PRG1467 “CRASHLESS” and by the Estonian-French
PARROT project “EnTrustED”.

REFERENCES

[1] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jeni-
hhin, “A systematic literature review on hardware reliability assessment
methods for deep neural networks,” ACM Comput. Surv., 2024.

[2] M. H. Ahmadilivani et al., “Deepvigor: Vulnerability value ranges and
factors for dnns’ reliability assessment,” in ETS’23.

[3] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jeni-
hhin, “Enhancing fault resilience of qnns by selective neuron splitting,”
in AICAS’23.

[4] M. H. Ahmadilivani, A. Bosio, B. Deveautour, F. F. dos Santos, J.-
D. Guerrero-Balaguera, M. Jenihhin, A. Kritikakou, R. Limas Sierra,
S. Pappalardo, J. Raik, J. E. Rodriguez Condia, M. Sonza Reorda,
M. Taheri, and M. Traiola, “Special session: Reliability assessment
recipes for dnn accelerators,” in VTS’24. (in press).

[5] M. Taheri, P. Salvatore, M. Jenihhin, A. Bosio, M. Daneshtalab, B. De-
veautour, and J. Raik, “Saffira: a framework for assessing the reliability
of systolic-array-based dnn accelerators,” in DDECS’24.

[6] M. Taheri, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, and
J. Raik, “Appraiser: Dnn fault resilience analysis employing approxi-
mation errors,” in DDECS’23.

[7] M. H. Ahmadilivani, M. Barbareschi, S. Barone, A. Bosio, M. Danesh-
talab, S. D. Torca, G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo,
E. Sanchez, and M. Taheri, “Special session: Approximation and fault
resiliency of dnn accelerators,” in VTS’23.

[8] M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Danesh-
talab, J. Raik, M. Sjõdin, and B. Lisper, “Deepaxe: A framework for
exploration of approximation and reliability trade-offs in dnn accelera-
tors,” in ISQED’23.

[9] M. Taheri, N. Cherezova, M. S. Ansari, M. Jenihhin, A. Mahani,
M. Daneshtalab, and J. Raik, “Exploration of activation fault reliability
in quantized systolic array-based dnn accelerators,” in ISQED’24.

[10] M. Taheri, N. Cherezova, S. Nazari, A. Rafiq, A. Azarpeyvand,
T. Ghasempouri, M. Daneshtalab, J. Raik, and M. Jenihhin, “Adam:
Adaptive fault-tolerant approximate multiplier for edge dnn accelera-
tors,” in ETS’24. (in press).

[11] N. Cherezova, K. Shibin, M. Jenihhin, and A. Jutman, “Understanding
fault-tolerance vulnerabilities in advanced soc fpgas for critical applica-
tions,” Microelectronics Reliability, vol. 146, 2023.

[12] H. Selg, M. Jenihhin, P. Ellervee, and J. Raik, “Ml-based online design
error localization for risc-v implementations,” in IOLTS’23.

[13] K. Shibin, M. Jenihhin, A. Jutman, S. Devadze, and A. Tsertov, “On-
chip sensors data collection and analysis for soc health management,”
in DFT’23.

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 18,2024 at 08:56:41 UTC from IEEE Xplore. Restrictions apply.

Appendix 14

XV

279

N. Cherezova, S. Pappalardo, M. Taheri, M. H. Ahmadilivani, B. Deveautour,
A. Bosio, J. Raik, and M. Jenihhin, “Heterogeneous Approximation of DNN HW
Accelerators based on Channels Vulnerability,” in IEEE International Conference
on Very Large Scale Integration (VLSI-SOC), 2024.

Heterogeneous Approximation of DNN HW
Accelerators based on Channels Vulnerability

Natalia Cherezova1, Salvatore Pappalardo2, Mahdi Taheri1, Mohammad Hasan Ahmadilivani1,
Bastien Deveautour2, Alberto Bosio2, Jaan Raik1, and Maksim Jenihhin1

1Tallinn University of Technology, Tallinn, Estonia
2Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, Ecully, France

Abstract—Deep Neural Networks (DNNs) are widely used in our
everyday life and there is a push towards embedded and edge de-
vices with a context where the power and computational resources
are heavily constrained. To that end, Approximate Computing
(AxC) can be applied to reduce power consumption and execution
time, since DNNs gracefully withstand approximation due to its
inherent redundancy. In the literature, several works adopted the
AxC paradigm to DNNs in the form of quantization, precision
reduction, pruning and functional approximation. Despite the
promising results demonstrated so far, most of the existing works
have applied homogeneous AxC techniques, meaning that the
same degree of approximation has been applied to the entire DNN.
However, different DNN components (i.e., channels, filters, layers,
neurons) have different resiliency levels. Therefore, instead of
using a uniform degree of approximation throughout the DNN, it
would be potentially beneficial to exploit the heterogeneous AxC
technique by adapting the approximation degree according to the
resiliency level of each DNN component. This paper presents a
framework for applying heterogeneous AxC to DNN hardware
accelerators. The framework is based on the identification of
channel resilience and applying a tailored degree of approximation
per channel. Preliminary results carried out on LeNet-5 model
show that by using the proposed framework it is possible to
decrease resource utilization by 65.2% and power consumption
by 53.4% at the cost of a marginal drop of accuracy from 98.87%
to 98.03%.

Index Terms—deep neural networks, data-flow architecture,
hardware accelerator, approximate computing, circuit design

I. INTRODUCTION

Being able to make complex predictions through learning
from a vast amount of data, DNNs are the new frontier of
machine learning and artificial intelligence. They are capable
of being more accurate than humans in certain applications
[1]. Furthermore, DNNs are employed in many different fields,
due to their outstanding computational capabilities. The current
trend is pushing research and industry to deploy DNNs in
embedded systems to be used at the edge in which power
and computational resources are limited. This constitutes a
challenge since DNNs are energy-hungry using large amounts
of energy to compute even a single inference. For this reason,
specialized hardware has been developed to achieve power
efficiency and performance. For example, in [2] the authors
designed an Application Specific Integrated Circuit (ASIC)
to reduce power consumption and area for a real-time image
classification application. In [3], the authors present a novel
DNN accelerator design for both ASIC and FPGA. To address

the power and latency issue, the Approximate Computing (AxC)
paradigm can be used as an effective paradigm to reduce the
power and the area required by the circuit since it proved to
be an effective technique [4].

In the literature, several works adopted the AxC paradigm to
DNNs in the form of quantization, precision reduction, pruning
and functional approximation [4]. Despite the encouraging
results, most of the existing works applied homogeneous AxC
techniques, meaning that the same degree of approximation
has been applied to the DNN. However, DNN components
(i.e., channels, filters, layers, neurons) show different resiliency
levels. Therefore, instead of using a uniform degree of
approximation to all components, it would be beneficial to
exploit the heterogeneous AxC technique by adapting the
approximation degree according to the resiliency level of each
DNN component.

This paper presents a framework for applying heterogeneous
AxC at the channel level to DNN hardware accelerators. The
framework is based on identifying channels’ resilience and
applies a specific degree of approximation per channel. In par-
ticular, we leverage precision reduction, which corresponds to
neglecting the Least Significant Bits (LSBs) of the multiplier’s
input and effectively using a smaller bit-width.

The rest of this paper is structured as follows. In Section
II, a brief overview of existing works is given. Section III
describes the proposed methodology. Section IV presents the
experimental setup and discusses the obtained results. Finally,
Section V concludes the paper and proposes future directions.

II. RELATED WORKS

The advantages of implementing and deploying DNNs on
FPGAs are advocated in several recent works [5]–[7]. The
existing FPGA-based toolchains to map Convolutional Neural
Networks (CNNs) are presented in the surveys [8]–[11]. Data-
flow is an important computation architecture for customized
hardware accelerators, which enables the parallel temporal
execution of multiple coarse-grained tasks [12]. The FINN
framework [13] is released by Xilinx to explore quantized
CNNs’ inference on FPGAs that also provide customized data-
flow architectures for each network.

Research work [14] provides Register-Transfer Level (RTL)
models using conventional synthesis tools, e.g., Vivado HLS,
where the outputs can be directly synthesized on an FPGA.

Heterogeneous systems are another design strategy in the
automated toolchains that propose hardware-software co-design
[14]–[16]. In these designs, computational units, e.g., addition
or multiplication, are mainly implemented on Processing Logic
(PL) controlled by a CPU control unit using a dedicated
framework, e.g., OpenCL [17].

To further enhance the performance of DNN accelerators,
several techniques are introduced in the literature (e.g., quanti-
zation and approximate computing). Using Fixed-point (FxP)
data type instead of Floating Point (FP) is becoming popular
due to the more optimized resource utilization while keeping
the output accuracy degradation at an acceptable level [14],
[18], [19]. In [20] a fully automated framework capable of
applying various quantization-aware techniques, and hardware
implementation is introduced to measure hardware parameters.

On the other hand, multiplication is one of the primary
arithmetic operations widely used in DNNs. Approximate
computing is a promising technique for designing digital
circuits with lower area and power consumption while achieving
a higher working frequency, particularly when the target
application has some error resiliency [21]. Various approximate
multipliers are proposed in the literature. DeepAxe is a
framework that enables the selective approximation for data-
flow DNN accelerators to provide a design space exploration
for the efficiency and accuracy of DNNs [22].

Vulnerability analysis is mainly performed by analytical
approaches [6], [23] due to their short execution time. Several
methods are proposed in the literature [24]–[26]. DeepVigor is
an accurate analytical method providing detailed and fine-grain
vulnerability value ranges for each neuron in a DNN which is
extended for QNNs in [27]. Vulnerability value ranges indicate
minimum error values induced at the neurons’ output that can
misclassify the DNN’s golden result. These results can be
exploited in the approximation computing scheme to obtain an
optimal approximation for computing units in DNNs’ channels.

To the best of our knowledge, there is no work presenting
customized heterogeneous channel-wise approximations for
hardware accelerators leading to high efficiency in terms of
resource utilization and power consumption. The approach
proposed in this paper goes beyond the state-of-the-art by
establishing a comprehensive methodology for enabling het-
erogeneous approximation of DNN HW accelerators based on
channels’ vulnerability analysis.

III. METHODOLOGY

In this section, the methodology to achieve heterogeneous
approximation for DNN hardware accelerators is presented.
Fig. 1 depicts the proposed method in this work which gets a
CNN model, test data and hardware architecture and outputs
an approximated version of the accelerator executing the CNN
with a high accuracy with remarkably higher efficiency in terms
of power and area.

The purpose of the method is to systematically provide a
hardware accelerator for CNNs in a way that its multipliers
are heterogeneously approximated through each layer, at the
channel level, to achieve an efficient accelerator with highly

accurate CNNs. In this regard, a vulnerability analysis for
CNNs’ channels is performed to enable error-aware approxi-
mation. Afterwards, an optimum point for the heterogeneous
approximation throughout the channels and layers is obtained.
Finally, the generated approximated multipliers are synthesized
on an FPGA and hardware results are reported.

A. Initialization

The method receives a trained CNN model, test data, and
the data-flow hardware accelerator as inputs. The method is
presented for quantized CNNs, where the data-flow accelerator
consists of a series of components connected according to the
architecture of the selected neural network. Each component
implements one layer of the network. Therefore, it can be
optimized based on the layer parameters, e.g., the number of
input and output channels, kernel size, etc. Outputs of the
layers are stored in the intermediate memory buffers as the
data is streaming through those components.

B. Channel Vulnerability Analysis

To obtain the maximum errors at the output of each
channel/neuron leading to the minimum possible accuracy
drop due to approximation, we adopt and extend the Deep-
Vigor methodology presented in [26] and [27] that provides
vulnerability analysis for DNNs and QNNs, respectively.

Let δlk be a deviation that is an added positive or negative
error value to an output Feature Map (FMap) by approximation
for a k-th neuron at layer l with input data x. Let ∆l

k be the
minimum absolute deviation added to the corresponding neuron
by approximation that misclassifies the input image x from
its golden classification in the exact DNN. This deviation is
defined as follows:

∆l
k = min(|δlk|), Et < Ei, i ̸= t; i, t ∈ C (1)

where C is the set of all the classes of the classifier, i and t
are elements belonging to C (more specifically t is the top
class of the exact DNN) and Et and Ei are the deviated output
logits corresponding to the respective output classes. Thus,
∆l

k represents the maximum absolute deviation of a neuron’s
output from its error-free value due to the approximation that
would not misclassify the DNN.

Approximation design exploits ∆l
k to identify the bits that

can be approximated in the calculations. ∆l
k can be interpreted

as the set of bits for each neuron to be approximated without
misclassification. In the integer data type, approximating the
LSB corresponds to ∆l

k = 1. As an example, if ∆l
k = 16,

all the 4 least significant bits can be approximated, since any
deviation less than this value would not affect the classification
output. Therefore, the set of bits to be approximated is obtained
by:

Bits to be approx. = [int(log2(∆
l
k))− 1 : 0] (2)

Since approximation design is performed at the channel level
of the DNN, the obtained ∆l

k for each FMap in convolutional
layers are aggregated channel-wise. To provide a preliminary

Pre-trained

CNN model

Input data

HW arch.

(dataflow)

Channel vulnerability

analysis
Critical neurons

ratio

Applying approx.

multipliers to

DNN accelerator

A. Initialization B. Channel Vulnerability Analysis

Hetero. approx. at

CNN architecture

level

Accuracy

>

Threshold

Reduce

approximation

YES

NO

D. Heterogeneous Approximation

Precision-reduction

for approximate

multipliers

Synthesized

approximated

multipliers

C. Applying Precision Reduction

Exact

Multiplier

Approximated

CNN

architecture

Approximated

CNN accelerator

HW

E. Generating Approximated HW

Fig. 1: Proposed flow to achieve heterogeneous approximation for data-flow CNN hardware accelerators

analysis of the effect of approximating channels on the accuracy,
we explore the level of approximation regarding each bit
corresponding to the obtained ∆l

k for the neurons inside that
channel. This analysis expresses what portion of neurons in a
channel has a higher ∆l

k than the approximation error, which
is called critical neurons ratio.

In this paper, we consider the critical neurons ratio to be
lower than 5% as a safe approximation level. In this regard,
the approximation in the multipliers of a channel is applied
to the least significant bits up to the bit corresponding to the
safe approximation level. It is noteworthy that each channel
in a layer has its own safe approximation level, leading to
a heterogeneous approximation within layers throughout the
CNNs.

C. Applying Precision Reduction to Multipliers

As mentioned earlier, the multipliers approximation is based
on precision scaling [28]. Specifically, the lower-order bits of
the input operands of the multiplier are neglected (Fig. 2. The
number of neglected bits is denoted with n. As an example let
us consider an exact 16-bit multiplier. It has two 16-bit inputs
and a 32-bit output. In the n-approximated 16-bit multiplier,
the resulting multiplier will only consider the 16− n higher-
order bits of both operands and will produce a 32− 2n output,
while the remaining 2n lower-order bits will be set to 0.

This technique has three major advantages:
• an entire library of approximate multipliers can be

generated at practically zero cost;
• the level of approximation has a clear meaning, depending

on the parameter n, and consequently a different approxi-
mation level can easily be associated with a channel.

As mentioned, the generation of a multiplier with a given
approximation level is straightforward since there is a direct
correspondence between the approximation level and the
introduced error. However, any other customized library of

Fig. 2: Precision scaled approximate multiplier

approximate multipliers can be used. The approximation level is
defined as the number n of lower-order bits that are disregarded
(as in Fig. 2) and, consequently, the introduced Worst-Case
Error (WCE) corresponds to 2n − 1 for the inputs and 22n − 1
for the outputs.

D. Heterogeneous Approximation

This step attempts to identify an optimal configuration for a
channel-wise heterogeneous approximated hardware accelerator.
Algorithm 1 presents how we obtain the corresponding config-
uration. First, a separate approximation to each channel in a
layer is applied to find a configuration in which the accuracy of
the CNN does not drop more than 1% compared to the baseline
exact CNN accuracy (lines 1-13). To this end, the aggressive
channel-wise approximation configuration is applied initially

to a layer. Then, the approximation continues to increase by 1
bit for all channels until the accuracy drop is less than 1%.

After finding the best channel-wise approximation for each
layer separately, all channels are approximated throughout the
CNN based on the obtained configurations (line 14). Then,
we reduce the level of channel-wise approximation from the
first to the last layer, one by one, until the accuracy of the
approximated CNN is not 1% less than the accuracy of the
exact CNN (lines 15-24). The output of this algorithm is an
optimal point for approximation where the accuracy of the
approximated CNN is negligible.

Algorithm 1 Identifying an optimal heterogeneous approxima-
tion for HW CNN accelerator
Input: Exact CNN model, test dataset, configuration for bit

approximation in each channel for all layers.
Output: Optimal configuration for heterogeneous configura-

tion.
Assume: l ∈ 1, 2, · · · , L is the set of layers in the CNN,
Accuracyex is the accuracy of the exact CNN before
approximation, model.forward(test data) performs a
forward pass of the CNN to get its accuracy.

1: for l ∈ 1, 2, · · · , L do:
2: Apply safe approximation to channels in this layer;
3: while True do:
4: Accuracylap = model.forward(test data);
5: if Accuracyex −Accuracylap < 1 then:
6: Store current approximation in Approxl;
7: Increase approximation for 1 bit;
8: else:
9: Save Approxl in Approxlayers;

10: Break;
11: end if
12: end while;
13: end for
14: Apply approximation Approxlayers to all layers;
15: variable i = 1;
16: while True do:
17: Accuracyax = model.forward(test data);
18: if Accuracyex −Accuracyax > 1 then
19: Reduce approximation for 1 bit in layer i;
20: i = i+ 1;
21: else:
22: Return the approximated CNN;
23: Break;
24: end if
25: end while

E. Generating Approximated Hardware

As mentioned earlier, each component in the data-flow DNN
accelerator is dedicated to a specific layer of the network and,
therefore, can be optimized according to the layer parameters.
The configuration obtained using Algorithm 1 defines what
approximate multipliers should be used for each channel.
The obtained channel-wise heterogeneous approximated DNN

accelerator is depicted in Fig. 3. Different colors denote
different approximate multipliers in the Processing Elements
(PE). The generated DNN accelerator is compared with the
baseline accelerator, which utilizes exact multipliers, in terms
of resource utilization, number of Look-Up Tables (LUT) and
flip-flops (FF), and power consumption.

Fig. 3: Heterogeneous data-flow DNN accelerator: different
colors denote different approximate multipliers in the Process-
ing Elements (PE)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

A common CNN benchmark LeNet-5 is used as a case
study. The structure of the network is presented in Table I
and consists of two convolutional layers, followed by max-
pooling layers, and three fully-connected (dense) layers. ReLU
(Rectified Linear Unit) is used as an activation function. The
network was trained on the MNIST dataset of handwritten digits
[29] with PyTorch using full precision, i.e., 32-bit floating point.
After the training, the network was quantized to a 16-bit integer
data type. The accuracy of the quantized network was 98.87%.

TABLE I: Case-study DNN architecture

Layer Input size Kernel size Output size
Conv1 32× 32× 1 5× 5× 6 28× 28× 6

Max pool 28× 28× 6 2× 2 14× 14× 6
Conv2 14× 14× 6 5× 5× 16 10× 10× 16

Max pool 10× 10× 16 2× 2 5× 5× 16
FC3 5× 5× 16 — 120
FC4 120 — 84
FC5 84 — 10

A data-flow accelerator for the LeNet-5 is developed
considering the AMD-Xilinx FPGA platform as a target.
As mentioned, in the data-flow architecture, each layer is
implemented as a separate component. This way, each layer is
mapped to the component optimized for that layer’s parameters.
Each convolutional layer consists of computational modules for
each output channel. Thus, all output channels are processed in
parallel. Each output channel, in turn, consists of computational
modules for each input channel.

The input channel computational module includes a mul-
tiplier and an adder. Each fully-connected layer consists of
computational modules for each output neuron. The output
neuron computational module includes a multiplier and an
adder as well. This way, Conv1 layer utilizes 6 ∗ 1 = 6
multipliers, Conv2 layer 16 ∗ 6 ∗ 1 = 96, FC3 layer 120,
FC4 layer 84, and FC5 layer 10 multipliers. Zynq UltraScale+

MPSoC ZCU104 Evaluation Board and Vivado 2021.2 are
used for the experiments.

B. Results of Channel Vulnerability Analysis

As mentioned in subsection III-B, an exploration is per-
formed to obtain the portion of neurons in each channel of a
layer such that their ∆l

k is smaller than the error induced by
approximation. The vulnerability of convolutional and fully-
connected layers is analyzed since only those layers involve
multiplication. The last fully-connected layer is excluded from
the analysis because it is the output layer and any changes
there will directly affect the output of the CNN.

Table II presents the results of channel vulnerability analysis
for the first convolutional layer of LeNet-5. The table reports
the percentage of approximated neurons in each channel that
result in misclassification. The data is organized such that rows
show analyzed channels and columns show the number of
bits to approximate. The table is color-coded based on the set
thresholds: green shows all the channel-approximation pairs
that have less than 5% critical neurons, orange those that have
less than 10%, and red all the rest.

TABLE II: Percentage of neurons in each channel of the first
layer of the case-study DNN with respect to error induced by
approximation

Error induced
by approximation 1 2 4 8 16 32 64 128

Channel 1 1.14 1.21 1.46 1.59 2.80 8.10 15.75 32.14
Channel 2 1.21 1.46 1.53 1.59 2.42 4.72 12.05 22.38
Channel 3 1.02 1.02 1.02 1.59 2.29 5.10 11.73 23.72
Channel 4 0.95 1.08 1.14 1.40 2.42 4.71 13.39 28.31
Channel 5 0.89 0.95 1.40 3.12 6.05 10.39 19.77 31.05
Channel 6 0.12 0.12 0.12 0.51 1.21 5.42 14.03 29.27

C. Approximate multipliers

A library of approximate multipliers is generated by applying
the precision reduction technique to the exact 16-bit multiplier.
The comparison of the resource utilization and power consump-
tion is given in Table III.

TABLE III: Resource utilization of generated multipliers

Multiplier
bit-width LUT Power (mW)

16 416 67.803
15 377 62.500
14 301 58.108
13 264 53.649
12 223 49.290
11 171 43.513
10 146 40.567
9 117 36.551
8 81 32.457
7 64 28.361

D. Heterogeneous Approximation at the Architecture Level

Using the data obtained by channel vulnerability analysis
and the critical neurons ratio set to be lower than 5%, a safe
approximation level is derived for each channel in each layer.

Safe approximation level defines the number of lower-order
bits that can be approximated, in our case negated. First, the
effect of individual layer approximation on the accuracy of
LeNet-5 is studied using the network implementation in C
language. Each layer is successively approximated while the
rest of the network is calculated using precise multiplication.

For each layer, several tests are performed by adding an
offset to the safe approximation level, which increases the
number of negated bits. This way it is possible to observe
how the degree of approximation affects the performance of
the layer. The results of this study are given in Table IV. As
observed, a safe approximation level results in a high accuracy
for each single layer. Nonetheless, increasing the approximation
level incurs a high accuracy drop. The selected configurations
for each layer are bold in the table, as indicated in Algorithm 1.

TABLE IV: The effect of individual layer approximation on
the accuracy of the case-study DNN

Layer Offset CNN
accuracy (%)

Conv1

No offset 98.91
Offset by 1 98.23
Offset by 2 54.97
Offset by 3 17.25
Offset by 4 8.92
Offset by 5 8.92
Offset by 6 8.92

Conv2

No offset 98.88
Offset by 1 98.88
Offset by 2 98.80
Offset by 3 98.79
Offset by 4 98.50
Offset by 5 95.26
Offset by 6 84.57

FC3

No offset 98.88
Offset by 1 98.83
Offset by 2 98.75
Offset by 3 98.41
Offset by 4 97.27
Offset by 5 92.52
Offset by 6 69.18

FC4

No offset 98.85
Offset by 1 98.88
Offset by 2 98.89
Offset by 3 98.82
Offset by 4 98.79
Offset by 5 98.28
Offset by 6 96.82

E. Generated Approximate DNN HW Accelerator

An optimal configuration is generated based on Algorithm
1. After applying the selected approximation in Table IV, the
accuracy of the approximated CNN is 81.09%. By applying the
algorithm, the final approximation for each layer is {Conv1:
no offset, Conv2: offset by 3, FC3: offset by 2, FC4: offset by
4} resulting in 98.03% accuracy.

A comparison of the resource utilization and power consump-
tion between the baseline configuration using exact multipliers
and the selected configuration using heterogeneous approximate
multipliers is given in Table V. It can be seen that by using
the proposed methodology it was possible to decrease resource

utilization by 65.2% (i.e. by the factor of 3x) and power
consumption by 53.4% with the marginal drop of accuracy
from 98.87% to 98.03%.

TABLE V: Resource utilization of generated accelerator

Parameters Baseline Selected config
Network accuracy, % 98.87 98.03

LUT 157,155 54,640
LUTRAM 148 148

FF 29,864 19,667
BRAM 77.5 77.5

Power, W 2.176 1.012
Resource savings, % — 65.2

Power savings, % — 53.4

V. CONCLUSIONS

This paper presents a framework for applying heterogeneous
approximation to hardware DNN accelerators. The framework
identifies the resilience of channels in convolutional and fully-
connected layers and applies a specific degree of approximation
per channel. A semi-analytical approach DeepVigor is adopted
for vulnerability analysis of individual channels to identify a
safe approximation level for each channel. As the approach
for approximation, we leverage precision reduction that cor-
responds to neglecting the lower-order bits of the multiplier’s
inputs and effectively using a smaller bit-width multiplier.
Preliminary results demonstrate possibility to decrease resource
utilization by 65.2% and power consumption by 53.4% at the
cost of marginal accuracy drop from 98.87% to 98.03%.

VI. ACKNOWLEDGEMENT

This work was supported in part by the Estonian Research
Council grant PUT PRG1467 ”CRASHLESS“ and by the
Estonian-French PARROT project ”EnTrustED”.

REFERENCES

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“Imagenet large scale visual recognition challenge,” International Journal
of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[2] P.-Y. Chuang, P.-Y. Tan, C.-W. Wu, and J.-M. Lu, “A 90nm 103.14 tops/w
binary-weight spiking neural network cmos asic for real-time object
classification,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC), 2020, pp. 1–6.

[3] S. K. Venkataramanaiah, S. Yin, Y. Cao, and J.-S. Seo, “Deep neural net-
work training accelerator designs in asic and fpga,” in 2020 International
SoC Design Conference (ISOCC), 2020, pp. 21–22.

[4] A. Bosio, D. Ménard, and O. Sentieys, Eds., Approximate Computing
Techniques. Springer International Publishing, 2022.

[5] M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal, “A systematic literature
review on hardware implementation of artificial intelligence algorithms,”
The Journal of Supercomputing, vol. 77, pp. 1897–1938, 2021.

[6] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“A systematic literature review on hardware reliability assessment methods
for deep neural networks,” ACM Computing Surveys, vol. 56, no. 6, pp.
1–39, 2024.

[7] M. H. Ahmadilivani, M. Barbareschi, S. Barone, A. Bosio, M. Daneshta-
lab, S. Della Torca, G. Gavarini, M. Jenihhin, J. Raik, A. Ruospo et al.,
“Special session: Approximation and fault resiliency of dnn accelerators,”
in 2023 IEEE 41st VLSI Test Symposium (VTS). IEEE, 2023, pp. 1–10.

[8] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
ACM Computing Surveys, vol. 51, no. 3, jun 2018.

[9] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-based
neural network inference accelerators,” ACM Trans. on Reconfigurable
Technology and Systems (TRETS), vol. 12, no. 1, pp. 1–26, 2019.

[10] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating CNN
inference on FPGAs: a survey,” arXiv preprint arXiv:1806.01683, 2018.

[11] R. S. Molina, V. Gil-Costa, M. L. Crespo, and G. Ramponi, “High-
level synthesis hardware design for FPGA-based accelerators: Models,
methodologies, and frameworks,” IEEE Access, vol. 10, pp. 90 429–
90 455, 2022.

[12] H. Ye, H. Jun, and D. Chen, “HIDA: a hierarchical dataflow compiler
for high-level synthesis,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1, 2024, pp. 215–230.

[13] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in ACM/SIGDA international symposium on field-
programmable gate arrays, 2017, pp. 65–74.

[14] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: mapping regular and
irregular convolutional neural networks on FPGAs,” IEEE Trans. on
neural networks and learning systems, vol. 30, no. 2, pp. 326–342, 2018.

[15] A. Ghaffari and Y. Savaria, “CNN2Gate: an implementation of convolu-
tional neural networks inference on FPGAs with automated design space
exploration,” Electronics, vol. 9, no. 12, 2020.

[16] P. G. Mousouliotis and L. P. Petrou, “Cnn-grinder: from algorithmic to
high-level synthesis descriptions of CNNs for low-end-low-cost FPGA
SoCs,” Microprocessors and Microsystems, vol. 73, p. 102990, 2020.

[17] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: a parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, p. 66, 2010.

[18] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “Angel-
eye: A complete design flow for mapping cnn onto customized hardware,”
in IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE,
2016, pp. 24–29.

[19] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh, “From high-level deep neural models to FPGAs,”
in 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–12.

[20] M. Taheri, N. Cherezova, M. S. Ansari, M. Jenihhin, A. Mahani,
M. Daneshtalab, and J. Raik, “Exploration of activation fault reliability
in quantized systolic array-based DNN accelerators,” in 2024 25th
International Symposium on Quality Electronic Design (ISQED), 2024.

[21] M. Taheri, N. Cherezova, S. Nazari, A. Rafiq, A. Azarpeyvand,
T. Ghasempouri, M. Daneshtalab, J. Raik, and M. Jenihhin, “AdAM:
adaptive fault-tolerant approximate multiplier for edge DNN accelerators,”
in 2024 IEEE European Test Symposium (ETS), 2024.

[22] M. Taheri, M. Riazati, M. H. Ahmadilivani, M. Jenihhin, M. Daneshtalab,
J. Raik, M. Sjodin, and B. Lisper, “DeepAxe: a framework for exploration
of approximation and reliability trade-offs in DNN accelerators,” in 2023
24th International Symposium on Quality Electronic Design (ISQED),
2023, pp. 1–8.

[23] A. Bosio, M. H. Ahmadilivani, B. Deveautour, F. F. dos Santos, J. D. G.
Balaguera, M. Jenihhin, A. Kritikakou, R. L. Sierra, S. Pappalardo,
J. Raik et al., “Special session: Reliability assessment recipes for DNN
accelerators,” IEEE VLSI Test Symposium (VTS), 2024.

[24] A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“HarDNN: feature map vulnerability evaluation in CNNs,” arXiv preprint
arXiv:2002.09786, 2020.

[25] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience
prediction for a flexible reliability management in neural network
accelerators,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 979–984.

[26] M. H. Ahmadilivani, M. Taheri, J. Raik, M. Daneshtalab, and M. Jenihhin,
“DeepVigor: Vulnerability value ranges and factors for DNNs’ reliability
assessment,” in 2023 IEEE European Test Symposium (ETS). IEEE,
2023, pp. 1–6.

[27] ——, “Enhancing fault resilience of QNNs by selective neuron splitting,”
in 2023 IEEE 5th International Conference on Artificial Intelligence
Circuits and Systems (AICAS). IEEE, 2023, pp. 1–5.

[28] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, pp. 1–33, 2016.

[29] C. J. B. Yann, Y. LeCun, and C. Cortes, “The MNIST database of
handwritten digits,” http://yann.lecun.com/exdb/mnist/, [Online].

Curriculum Vitae
1. Personal data

Name Mahdi Taheri
Date and place of birth 12 January 1995 Kerman, Iran
Nationality Iranian

2. Contact information

Address

E-mail

Tallinn University of Technology (TalTech),
School of Information Technologies, Department of Computer Systems,
Ehitajate tee 5, 19086 Tallinn, Estonia
mahdi.taheri@taltech.ee

3. Education

2021–2024

2018–2021

2014–2018

Tallinn University of Technology, School of Information Technologies,
Information and Communication Technology, Ph.D. studies
Shahid Bahonar University of Kerman, Faculty of Electrical Engineering,
Electrical Engineering, MSc
K. N. Toosi University of Technology, Faculty of Electrical Engineering,
Electrical Engineering, BSc

4. Language competence

Persian native
English

5. Defended theses

 2018, Hardware Acceleration and Implementation of DNA sequencing
Alignment Algorithms, MSc, supervisor Prof. Dr. Ali Mahani, Shahid
Bahonar University of Kerman, Institute of Electrical Engineering

• Deep Neural Networks

• Reliability

• Approximate Computing

• Hardware Designs and Implementations

• FPGA and ASIC synthesis

287

fluent

6. Field of research

Elulookirjeldus
1. Isikuandmed

Nimi Mahdi Taheri
Sünnikuupäev ja -koht 12. jaanuar 1995, Kerman, Iraan
Rahvus Iraani

2. Kontaktandmed

Aadress Tallinna Tehnikaülikool (TalTech), Infotehnoloogia teaduskond,
Arvutisüsteemide instituut,
Ehitajate tee 5, 19086 Tallinn, Eesti

E-post mahdi.taheri@taltech.ee

3. Haridus

2021–2024

2018–2021

2014–2018

Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Infotehnoloogia ja kommunikatsioonitehnoloogia, doktorikraad
Shahid Bahonari Ülikool, Kermani Elektri- ja Tehnoloogia Teaduskond,
Elektritehnika, magistrikraad
K. N. Toosi Tehnikaülikool, Elektri- ja Tehnoloogia Teaduskond,
Elektritehnika, bakalaureusekraad

4. Keelteoskus

Pärsia
Inglise

5. Kaitstud väitekirjad

• 2018, Riistvarakiirus ja DNA järjestamise joondamise algoritmide rak-
endamine, magistrikraad, juhendaja Prof. Dr. Ali Mahani, Shahid Bahonari
Ülikool, Kermani Elektriinseneri Instituut

6. Uuringute valdkond

• Sügavad närvivõrgud

• Usaldusväärsus

• Ligikaudne arvutamine

• Riistvaradisain ja rakendused

• FPGA ja ASIC süntees

288

emakeel
sorav

keel
keel

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-251-9 (PDF)

	List of Publications
	Author's Contributions to the Publications
	Abbreviations
	Introduction
	Motivation
	Problem Formulation
	Research Objectives
	Contributions
	Thesis Organization

	Background
	Deep Neural Networks
	DNN Platforms
	Software Frameworks
	DNN Hardware Accelerators

	Reliability, Threats, Fault Models, and Evaluation
	Reliability Assessment
	Reliability Enhancement

	Approximate Computing
	Conventional Multipliers
	Logarithmic Multipliers

	Reliability Assessment of DNN Hardware Accelerators
	Introduction
	Fault Injection Methods
	Analytical Methods
	Hybrid Methods

	FS method 1: Fault Injection-based Reliability Assessment Framework in Quantized DNN Accelerators
	Introduction
	Related Works
	Proposed Methodology
	Experimental Results
	Conclusion

	FS method 2: SAFFIRA - Software Level Systolic-Array Simulator for Reliability Assessment of DNN Accelerators
	Introduction
	Related Works
	Proposed Methodology
	Experiments Results
	Conclusion

	FS method 3: DeepAxe - Approximation and Reliability Trade-offs in Dataflow DNN Accelerators
	Introduction
	Related Works
	Proposed Methodology
	Experimental Results
	Conclusion

	FE method: APPRAISER - DNN Fault Resilience Analysis Employing Approximation Errors
	Introduction
	Related Works
	Proposed Methodology
	Experimental Results
	Conclusion

	Hybrid Analytical and Hierarchical FI-based Reliability Assessment for Systolic-Array-Based DNN Accelerators
	Introduction
	Proposed Methodology
	Experimental Results
	Conclusion

	Chapter Conclusions

	Reliability Enhancement of DNN Hardware Accelerators
	Introduction
	AdAM: Adaptive Approximate Multiplier for Fault Tolerance in DNN Accelerators
	Introduction
	Related Works
	Proposed Methodology
	Experimental Results
	Conclusion

	FORTUNE: A Negative Memory Overhead Hardware-Agnostic Fault TOleRance TechniqUe in DNNs
	Introduction
	Proposed Methodology
	Experimental Results
	Conclusion

	Chapter Conclusions

	Conclusions and Future Directions
	List of Figures
	List of Tables
	References
	Acknowledgements
	Abstract
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	Appendix 8
	Appendix 9
	Appendix 10
	Appendix 11
	Appendix 12
	Appendix 13
	Appendix 14
	Curriculum Vitae
	Elulookirjeldus

