

Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Taavet Tamm 185007IADB

GraphQL API Implementation in a Distributed
System

Bachelor's thesis

Supervisor: Aleksei Talisainen

 MSc

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Taavet Tamm 185007IADB

GraphQL API rakendamine hajussüsteemis

Bakalaureusetöö

Juhendaja: Aleksei Talisainen

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Taavet Tamm

17.05.2021

4

Abstract

The aim of thesis was to create an extendable and documented API layer for existing

collection of microservices, to serve a new mobile application. The goal was to reduce

response times for clients and avoid exposing every service to public web.

The analysis evaluates suitable technologies with future maintainability and performance

in mind. The implementation focuses on tools and approaches that are usable within

chosen technology: GraphQL.

The result was set of additional microservices and defined approaches for building future

services. The client integration became easier to use and change.

This thesis is written in English and is 33 pages long, including 7 chapters, 17 figures and

1 table.

5

Annotatsioon

GraphQL API implementatsioon hajussüsteemis

Käesoleva lõputöö eesmärk oli luua laiendatav ja selgelt dokumenteeritud API kiht

kasutades varem loodud mikroteenuseid. Töös käsitletud taustteenuse ehitamisega

samaaegselt loodi uus mobiili rakendus. Lõputöös käsitletud projektile esitatavad nõuded

keskenduvad eelkõige päringute kiirusele, turvalisuse ja halllatavuse aspektidele.

Lõputöö analüütiline osa hindab erinevate tehnoloogiate sobivust laiendatava API

loomiseks. Praktiline osa keskendub valitud tehnoloogia (GraphQL) implementatsioonile

mikroteenustest koosnevas süsteemis ja kirjeldades kasutatud lahendusi.

Töö tulemusena loodi mitmed uued mikroteenused ja defineeriti lähenemised, mida saab

kasutada edaspidi GraphQL teenuseid luues. Mobiilirakenduse suhtlus taustteenusega

kiirenes ning arenduskiirus kasvas.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 33 leheküljel, 7 peatükki, 17

joonist, 1 tabelit.

6

List of abbreviations and terms

ACID An acronym to remember the key principles of a transactional
database system, stands for Atomic, Consistent, Isolation, and
Durability

API Application Programming Interface

Golang Statically typed, compiled programming language designed at
Google

Horizontal scaling Scaling by adding more machines to your pool of resources

JWT An open standard (RFC 7519) that defines a compact and self-
contained way for securely transmitting information between
parties as a JSON object, stands for JSON Web Token

Middleware Software that acts as a bridge, functions that execute during the
lifecycle of a request

MongoDB Source-available cross-platform document-oriented database
program

Node.js JavaScript runtime environment

npm Node.js package manager

PostgreSQL Free and open-source relational database management system
emphasizing extensibility and SQL compliance

Projection Taking a vertical subset from the columns of a single table that
retains the unique rows

Push notification Style of Internet-based communication where the request for a
given transaction is initiated by the publisher or central server.

React Native Open-source mobile application framework

REST Representational State Transfer

RESTful An API that conforms to REST architectural style.

ServiceArea Polygon on map where customers can use a product.

SMS Short messaging service

UI User Interface

Yaml Human-readable data-serialization language, commonly used
for configuration files

7

Table of contents

1 Introduction ... 10

2 System requirements .. 12

2.1 Browsing list of venues .. 12

2.2 Composing shopping cart ... 12

2.3 Placing an order .. 13

2.4 Tracking progress of an order ... 13

2.5 Non-functional requirements .. 13

3 Analysis of relevant technologies .. 14

3.1 API Schema definitions .. 14

3.2 Data storage .. 15

3.4 Apollo platform .. 16

4 Implementation of distributed GraphQL schema .. 17

4.1 GraphQL overview ... 17

4.2 Implementation of GraphQL gateway .. 19

4.3 Implementation of microservice for item fetching ... 21

4.4 Implementation of order service ... 24

4.5 Extending federated graph types .. 26

4.6 Observability .. 27

4.7 Authentication .. 28

5 Result ... 29

5.1 Client GraphQL usage .. 29

5.2 Downsides and future considerations ... 30

6 Conclusion ... 31

7 References ... 32

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 33

8

List of figures

Figure 1. General overview of required data model. .. 12

Figure 2 Example GraphQL query for name of a user with id 4 17

Figure 3 Example GraphQL query response (in JSON) ... 17

Figure 4 Schema fragment with query definition for available venues 18

Figure 5 Example query that a client can execute against query definition of venues ... 18

Figure 6 Example mutation definition for creating a new order 18

Figure 7 An example of GraphQL web UI ... 19

Figure 8 Simplified structure of distributed system ... 20

Figure 9 Node.js Snippet to create the initial GraphQL gateway server 20

Figure 10 Code example of item service schema definition .. 22

Figure 11 Code example of item service resolvers ... 23

Figure 12 Code example of pagination helper for GraphQL .. 23

Figure 13 Code example of database query in item service ... 24

Figure 14 Code example of order service schema definition ... 25

Figure 15 Example commands for creating GraphQL schema in Golang 26

Figure 16 Code example of extendable GraphQL schema type with @key annotation 26

Figure 17 Code example extendable schema object with annotations 27

9

List of tables

Table 1. Comparision of GraphQL and Openapi technologies 15

10

1 Introduction

When applications grow so grows the complexity and need to experiment and change the

features these provide to users. As team grows and the amount of code to maintain

increases then having a good set of documented, reusable end optimised backend API

(application programming interface) services, becomes increasingly important. The

following thesis analyses the approaches of building backend services as a distributed

system and looks at ways to provide consistent and extendable API layer to a mobile

application.

As an example, the author covers implementation of food delivery application. In the

scope of 6 months an existing application prototype was completely redesigned and

rewritten from scratch as a React Native (open-source mobile application framework)

application. As a part of this redesign effort existing API layer was to be redesigned to

build an extendable and reliable platform. In scope of this thesis the author covers

implementation and design of backend system, focusing on problems and solutions

around creating a well-documented and extendable API.

At the start of the project, it was decided to approach the solutions from new designs and

not consider the limitations of existing prototype implementation with existing data

models and API layer. The project was framed into 6-month long window a launch date

was set and feature list was composed based on the userbase of previous prototype

application. The development was conducted in two distinct teams, where backend

developers and application developers kept separate backlogs.

The author of this thesis participated in the project as a backend developer in a team of

five people, with the focus on designing and implementing the API structure that

application can use. Author of this thesis had previous experience with GraphQL API,

so in this project his role was to implement schema sharing solutions and choose overall

approaches for GraphQL based microservices microservices.

11

The engineering department accountable for this consumer facing application, and several

other services, had settled on set of technologies. Node.js and Golang are used as

programming languages, and shared set of internal libraries are maintained for these

languages. MongoDB and PostgreSQL are used as database solutions with toolset around

availability. It was agreed that when choosing technologies for project in question, the

cost of maintaining is considered and extending the existing set needs to have clear and

substantial benefits.

Existing prototype application had served the company well in gaining an initial userbase

and validating product market fit. But as the count of customers increased, the application

started to be perceived as slow and unreliable. It was identified that to continue growing

an increasing number of features need to be implemented and experimented with. The

main driver of project covered in this thesis is the decision to start using react-native as

mobile application platform and rewrite the existing prototype, to increase speed of

feature development. While implementing backend services the author had to keep in

mind the available tools that react-native has for data transfer.

12

2 System requirements

The following chapter covers the relevant descriptions of domain models and non-

functional requirements set for backend service. Only the requirements classified as

essential for first launch of the application are covered here. The feature list is derived

from existing prototype application and new designs approved by internal stakeholders.

2.1 Browsing list of venues

Each user of application should be able to view venues based on the geographical

coordinates of the delivery destination they choose. Each venue is displayed with status

based on the working hours. Venues include a list of items with stock levels. Each venue

and item in venue include at least a name and an image but can include various other

properties. Items can have several variations, for example pizza with extra cheese, and

belong to categories. To list relevant venues, each one should be grouped by locality

(ServiceArea) it exists in. Figure 1 illustrates the most important relationships in the data

model.

2.2 Composing shopping cart

Each user of application should be able to add items into shopping cart, unfinished

shopping cart contents are persisted in device local storage. Shopping cart includes item

references and quantities. Shopping cart contents are validated each time an item is placed

into it, taxes are recalculated, item stock level is rechecked.

Figure 1. General overview of required data model.

13

2.3 Placing an order

Each user of application should be able to choose a payment method and place an order

with shopping cart contents. The application should support several different payment

methods. Before placing an order, a user must verify their phone number and provide an

email address. Email address is used to forward final receipt to the user and phone number

is used to notify the user about delivery.

2.4 Tracking progress of an order

Each user of application should be able to place one order at a time. When a user had an

order that has not been completed yet, they should be able to see the location and status

of the order. Notifications about order progress should be sent to the user in form of push

notifications and SMS. When an order reaches delivery point the user should be able to

pick up the order and mark it received on the application.

2.5 Non-functional requirements

Following chapter highlights relevant non-functional requirements that were defined for

the mobile application backend service.

Firstly the users should be identified by verified phone number, a reinstall with the same

phone number should be the same user. Each user can have multiple devices. Devices are

identified by reference given to each application installation and should not reference

physical devices. Users should not be prompted to login at the start of each session, but

the app should keep a password in device secure storage and use authentication tokens to

communicate with the API service.

The backend service should be deployed as a docker container and should be allow for

horizontal scaling. The API definitions that backend service should be documented and

provide a way to generate client definitions with react-native tools. Backend service

should follow internal company observability guidelines. The mean response time of

backend responses should be under one second with every type of query. The service

should be written in either Golang or Node.js and use PostgreSQL or MongoDB as

database.

14

3 Analysis of relevant technologies

The following chapters analyse the choices for technologies, considering functional and

no-functional requirements.

3.1 API Schema definitions

The project requirements state that all the API definitions should be well documented and

allow for generating client code in react-native. Two common ways to provide schema

definitions are Openapi and GraphQL. Following chapter analyses the suitability of these

technologies in the context of this project.

Openapi specification [1] defines language interfaces for RESTful APIs. The tools for

editing schema and generating server and client code are well established. Swagger open-

source tools make using Openapi schema definitions easier, providing human readable

web interface automatically from definition and allowing for code generation in several

languages. Swagger development started already in 2010 [2] and there are many examples

and guides for implementation. Using this approach implies that the API follows REST

conventions [3], changes should to versioned, endpoints should be defined based on data

model and queries should use relevant http methods: GET, POST, PUT, DELETE.

GraphQL is not as old and established as Openapi specification, but development is still

active, and specification is defined. There are examples other companies using this

technology and achieving reliable results, for example Netflix [4] and Airbnb [5].

GraphQL has been gaining popularity in recent years, and there are several frameworks

to choose from. This specification does not imply that API is built following RESTful

conventions, instead it defines a query language and requires that all communication uses

GraphQL query syntax. GraphQL frameworks also provide web UI, which in use while

estimating felt easier and more consistent to use for the author. All GraphQL queries use

single endpoint and POST method, and all monitoring must rely on request body.

GraphQL query language allows the client to fetch only the data it needs, changes to the

schema are not versioned.

Table 1 compares most relevant features of two schema definition approaches mentioned

above, considering the main differences in the context of example project.

15

Table 1. Comparision of GraphQL and Openapi technologies

 GraphQL Openapi

Data consumption Fetch what is needed for UI Prone to under-fetching or over-

fetching of data

Query count Batch fetch multiple objects

in single http request

Requires multiple roundtrips for

multiple entities

Maturity Not as well established Relies on proven RESTful

approaches

This project started because existing prototype application was slow to develop and did

not provide smooth experience to users. It is expected that there is high value in having

an API layer which allows to change the data queries while using exiting endpoints. Using

GraphQL allows for less data usage between client and server, leading to more speed in

some cases [6].

3.2 Data storage

The non-functional requirements of this project allow for using two data stores,

MongoDB, and PostgreSQL, in this chapter suitability for different GraphQL queries is

analysed in context of two different data stores.

Several data models already exist, and should be reused, as other services and applications

rely on these objects. MongoDB is extensively used to keep configurations for venues

and items, these are mostly models that change rarely and store loosely structured data.

PostgreSQL is used for entities that are more transactional to store payment records and

order receipts.

GraphQL is data store agnostic, but there are several ways of fetching data efficiently. In

general query resolvers should rely on projections and [7] to fetch data from database and

avoid creating n+1 queries for nested data structures.

16

3.4 Apollo platform

At the time of this project the most widely supported tools for creating and maintaining

GraphQL service is Apollo Data Graph Platform [7]. Although some alternatives exist

for example Nautilus library, Apollo tools are most relevant in this project as existing

system is already composed of few separate services. Apollo tools also have

comprehensive documentation and significant amount of starts in GitHub. Key feature

that Apollo platform provides is schema federation, which allows the project to use

several microservices but expose only a single gateway service to mobile application.

Apollo platform also provides libraries for http server and middlewares which are

important from observability standpoint. By using a consistent approach for serving API

definitions in form of Apollo server library it is simpler to develop and share separate

microservices as they are more similar. Apollo platform tools are well documented and

standardized, federation is also supported by Golang tools for GraphQL.

17

4 Implementation of distributed GraphQL schema

The following chapters illustrates challenges that using GraphQL creates, and describes

solutions used in the context of building food delivery application.

4.1 GraphQL overview

This chapter attempts to describe general concepts of GraphQL for reader who might not

be familiar with the query language and aims to highlight relevant parts from query

language specification [8].

GraphQL is a language used to make requests to application services that have capabilities

defined in this specification. It provides a product centric view for building applications

on top of data models, allowing to consider the data needed for a feature without the need

to create new data sources. GraphQL defines an application specific type system and

requires that all services that are exposed to end user facing application follow a strongly

typed schema definition. GraphQL allows for nested data structures and requires that

every client defines a query for every request, describing explicitly what the API service

should respond with. Figure 2 and figure 3 illustrate the format of simple GraphQL

request, where only the name attribute of user is fetched.

{
 user(id: 4) {
 name
 }
}

Figure 2 Example GraphQL query for name of a user with id 4

{
 "user": {
 "name": "Mark Zuckerberg"
 }
}

Figure 3 Example GraphQL query response (in JSON)

GraphQL supports two main operations Query and Mutation. Queries are intended to

fetch data from server, every query is explicitly defined in the schema and accepts a set

of inputs. Similarly, every query defines the type that client can expect in response.

Schema can define required and optional fields. Schema fragment defined in code

examples on figure 4 and figure 5 includes a query for fetching only available venues

18

Query for active venus returns an array of Venue objects where exclamation mark denotes

a non-null value, this query returns empty list or a list of venues.

{
 type Query {
 activeVanues(serviceAreaId: ID!): [Venue!]!
 }
}

Figure 4 Schema fragment with query definition for available venues

{
 query {
 activeVenues("5990a67459d177ad96dbe5ee”) {
 _id
 title
 items {
 _id
 name
 }
 }
 }
}

Figure 5 Example query that a client can execute against query definition of venues

Similarly, GraphQL supports definition of mutation that is intended to execute change

operation against API service. Mutation types are defined in GraphQL schema and client

can define the structure of expected data. Code example in figure 6 illustrates schema

fragment that defines mutation for creating a new order from shopping cart contents.

{
 type Mutation{
 createOrder(createOrderInput: CartData!): [Order!]!
 }
}

Figure 6 Example mutation definition for creating a new order

One of biggest benefits of GraphQL is a developer friendly web interface to interact with

backend API. This web UI is useful in development mode, where developers can enjoy a

query interface with autocompletes and try out data fetching approaches. Having strongly

typed schema and consistent documentation makes it easy to start new applications in the

future or share API definitions. Figure 7 includes a screenshot of GraphQL web UI to

illustrate what the documentation looks like.

19

4.2 Implementation of GraphQL gateway

This chapter describes the concept of federation in GraphQL and covers implementation

of API gateway using Apollo tools in Node.js.

Having different data models in different services creates a system where features that

the application provides to end-users needs to fetch data across multiple different

domains, databases, and services. To make application logic easy to change and facilitate

future features a separate service that composes a general schema across all relevant

services is used. This approach allows client to easily combine different data sources and

change requested data based on screens that end-user sees. As an alternative it was

considered to include different endpoints into application itself, but this approach would

make splitting services or moving them harder. Figure 8 includes a diagram of simplified

system architecture using a separate gateway service.

Figure 7 An example of GraphQL web UI

20

Apollo GraphQL Platform provides a concept of federation to solve this problem. An

Apollo Federation architecture consists of two parts. First component is a collection of

implementing services that each define a distinct GraphQL schema. Second part is a

gateway that composes the distinct schemas into a single data graph and executes queries

across the services in the graph. Apollo tooling includes a query planner which finds the

most optimal path to calling other services.

To use gateway library from apollo platform a separate service was created and deployed

by the author of this thesis. This server is implemented in Node.js to take advantage of

npm libraries that apollo platform maintains. To create a webserver latest version of

apollo-server library was used. For composing federated graphql @apollo/gateway was

included. The code example on figure 9 illustrates the usage of these libraries, and

creation of gateway consisting of three other services, finally setting up the server to listen

for traffic with listen function.

import { ApolloServer } from 'apollo-server';
import { ApolloGateway } from '@apollo/gateway';
const gateway = new ApolloGateway({
 serviceList: [
 { name: 'venues', url: 'http://venue-service' },
 { name: 'venues', url: 'http://item-service' },
 { name: 'venues', url: 'http://order-service' },
],
});
const server = new ApolloServer({
 gateway,
 subscriptions: false,
});
server.listen();

Figure 9 Node.js Snippet to create the initial GraphQL gateway server

Figure 8 Simplified structure of distributed system

21

4.3 Implementation of microservice for item fetching

This chapter covers the implementation of one mongo backed service which is part of

general federated schema. Implementation of other services is similar, here specific

implementation of item service is considered as an example.

Item microservice must provide schema to search and fetch products for venue views.

Schema parts can be split among several files inside item service, a tag gql is used to

define GraphQL schema definitions. The following code example on figure 10 illustrates

the definition of two queries itemsByCategory and itemsBySearchTerm, latter query

requires slightly more complicated parameters therefore the input grouped into separate

input type definition. GraphQL specification defines a common PageInfo type, which is

intended for paginating results with a pointer, providing last pointer as after parameter

along with limit to indicate how many additional items should be returned to the client.

22

import { gql } from 'apollo-server-core';
const typeDefs = gql`
 type Item {
 _id: ID!
 name: String
 status: ItemStatus
 }
 type Items {
 data: [Item!]!
 pageInfo: PageInfo!
 }
 input ItemSearchInput {
 serviceAssignmentId: ID!
 searchTerm: String!
 after: String
 limit: Int = 10
 }
 type MatchingItems {
 _id: Int!
 timestamp: Int!
 searchTerm: String!
 data: [Item!]!
 pageInfo: PageInfo!
 totalItems: Int!
 }
 extend type Query {
 itemsByCategory(categoryId: ID!, after: String,
limit: Int = 10): Items!
 itemsBySearchTerm(itemsBySearchTermInput:
ItemSearchInput!): MatchingItems!
 }
`;

Figure 10 Code example of item service schema definition

With GraphQL schema defined in code it is possible to define relevant query resolvers.

The resolvers are kept as minimal as possible and considered as controllers, choosing

which service layer element to reference. The following code example on figure 11

illustrates fetching of items from different service layer entities using byCategory and

byAssignment functions of itemService.

23

const queryResolvers = {
 itemsByCategory: async (parent, { categoryId, after, limit },
context) => {
 const itemService = new ItemService();
 return paginatedResults(itemService.byCategory(context.span,
categoryId, after, limit));
 },
 itemsBySearchTerm: async (
 parent,
 { itemsBySearchTermInput: { serviceAssignmentId, searchTerm,
after, limit } },
 ctx
) => {
 const itemService = new ItemService();
 const result = await
paginatedResults(itemService.byAssignment(ctx.span,
serviceAssignmentId, searchTerm, after, limit));
 return {
 searchTerm,
 serviceAssignmentId,
 ...result,
 };
 },
};

Figure 11 Code example of item service resolvers

Both query resolvers rely on a helper function to provide pagination definitions along

with requested data. Following code example on figure 12 illustrates this helper function,

defining cursor values and pageInfo parameters based on GraphQL specification. The

client application can then rely on these values to fetch more items, as necessary.

async function paginatedResults(dataQuery) {
 const { results, previous, hasPrevious, next, hasNext } =

await dataQuery;
 return {
 data: results,
 pageInfo: {
 startCursor: previous || '',
 endCursor: next || '',
 hasNextPage: hasNext,
 hasPreviousPage: hasPrevious,
 },
 };
}

Figure 12 Code example of pagination helper for GraphQL

Item objects can have many optional and nested attributes, for example modifiers,

therefore MongoDB is used to store these entities. To access MongoDB item service uses

24

library called mongoose which makes it easier to define the schema for stored documents

and query these. Following code example on figure 13 illustrates fetching of items based

on categoryId. While using mongoose a separate library is included in every schema

definition mongo-cursor-pagination this library allows using same style of cursors as

GraphQL pageInfo and simplifies fetching of items.

class ItemService {
 async byCategory(span, categoryId, after, limit) {
 Item.model.paginate({
 query: {
 status: ItemStatus.ACTIVE,
 category: categoryId
 },
 next: after,
 paginatedField: 'name',
 limit: limit,
 })
 }
}

Figure 13 Code example of database query in item service

Item service serves the schema for products on endpoint /graphql, this endpoint is in turn

called by API gateway with introspection queries and gets included in API gateway to be

served as part of schema available to mobile application. Item service itself is not exposed

to public web traffic and is only available to other services. In development mode it is

possible to execute item specific queries directly against item service without having an

API gateway. In service implementation the usage of API gateway is not required –

schema can be used by several different application or included into different gateways.

4.4 Implementation of order service

Some already existing services are implemented using Golang. This chapter covers

implementation of one PostgreSQL backed service which is part of federated schema.

User of mobile application can compose a shopping cart and pass the contents along to

order service. This service stores the records of user purchase including item price at the

time and the quantity of each item. By creating an order, the user takes the responsibility

of paying for the chosen goods. Due to nature of these entities, it was established that this

25

service should provide strong ACID guarantees. Order service was implemented using

strongly typed programming language and uses a relational database to store the records.

To provide GraphQL definitions to mobile application order service uses a library gqlgen

[10]. This library allows the service to keep GraphQL definitions in a separate file with

.graphqls extension. Figure 14 illustrates the schema that order service defines. Here a

separate Stub type is defined to have a single @key annotation, to ensure that generated

schema includes type definitions that federation requires.

input CartItemInput {
 itemID: ID!
 qty: Int!
}
input CoordinatesInput {
 lat: Float
 lng: Float
}
input CreateOrderInput {
 venueID: ID!
 cartItems: [CartItemInput!]!
 pupCoordinates: CoordinatesInput!
}
type Order {
 _id: ID!
}
type Mutation {
 createOrder(createOrderInput: CreateOrderInput!): [Order!]!
}
type Stub @key(fields: "stub") {
 stub: String
}

Figure 14 Code example of order service schema definition

After defining order service schema gqlgen is used to generate type definitions in code

based on the schema. Code generation commands need to be run every time schema

changes are made. Example commands on figure 15 illustrate how to install the library

and generate source code, after running these commands a folder called “graph” is created

along with empty resolver functions. The library provides a configuration file in yaml

format, which allows to configure the schema as federated.

26

> go get github.com/99designs/gqlgen
> go run github.com/99designs/gqlgen init
> gqlgen

Figure 15 Example commands for creating GraphQL schema in Golang

Resolver functions in order service are lightweight routes and reference domain

repositories and internal code structures. Order service code logic is split into several

folders including: entity, service, repository to organise and implement domain-based

business logic. Order service is also in charge for communicating with message queue

and changing the status of order, refunding orders, and removing out of stock items

resulting in partially fulfilled orders. The service is available only for internal use and is

not exposed to public web traffic. Order service publishes only the operations that mobile

application should be able to perform on the order as GraphQL definitions and does not

for example include refund queries which should be approved by customer support.

4.5 Extending federated graph types

In some instances, domain models are not shared as a whole, instead some fields are

resolved by separate services. This chapter describes how to use Apollo federation tools

to maintain a valid schema with shared fields between microservices.

As an example, recommendations service should define a relationship between the item

and recommended items, without defining the fields already in item service schema.

Apollo GraphQL gateway sets a limit to how schemas can be defined: each type should

be defined once. Therefore, it is not possible to copy the same definition from one service

to another. Federation defines several annotations that can be used to extend and reuse

schema definitions. Figure 16 illustrates definition of item schema with federation @key

directive, to tell other services what field is used as unique identifier in this case _id.

type Item @key(fields: "_id"){
 ...
}

Figure 16 Code example of extendable GraphQL schema type with @key annotation

Having federation directive in item service allows recommendation service to extend item

type with an additional field. Figure 17 illustrates how recommendations service defines

27

schema to provide recommendedItems when mobile application requests this field. Here

RecommendedItems are resolved based on item tags and name.

 extend type Item @key(fields: "_id") {
 _id: ID! @external
 name: String! @external
 tags: [String!]! @external
 recommendedItems:

[ServiceAssignmentRecommendation!]!
@requires(fields: "name tags")

 }

Figure 17 Code example extendable schema object with annotations

This approach allows recommendations service to still have a valid schema and accept

queries directly against service endpoints, while not having complete schema definitions

in the source code. Recommendation service relies on function buildFederatedSchema

from Apollo federation library [10] to compose a fully qualified schema.

4.6 Observability

With distributed system consisting of several microservices it is important to follow

uniform guidelines for observability. The following chapter illustrates main approaches

used in GraphQL context to conform to established policies in the company.

With RESTful API servers request level middlewares are used to log query path, response

time and http method. To have similar level of monitoring in GraphQL service the names

of queries must be accounted for. Apollo server [8] provides similar features in form of

plugins. Plugin allows services to get information from parsed query and use query name

from request context. Logging full request body is avoided as some queries can include

sensitive data in query variables. Several plugins were created to create uniform logs,

gather business metrics based on GraphQL query names and to measure performance

with existing toolsets used in the company.

The company is using distributed tracing [12] conventions to maintain overview of

requests and services that are involved in producing responses to client requests. To

maintain visibility into request lifecycle GraphQL gateway starts a new trace and defines

an extended data source injecting a trace into http headers assigning consistent tags to

every request. Every microservice including gateway itself has a middleware that can

28

continue trace from incoming request headers and add new steps to it. A consistent header

naming is ensured by using internal libraries which serve as a wrapper functions for

opensource tools.

4.7 Authentication

The requirements of application state that users should not sign up and should be able to

use the application without an account. Certain operations still require customers to

provide identifiable information and service security should still a non-functional

requirement. Following chapter gives a broad overview of approaches used in securing

mobile application in the context of example application.

Initial requirements state that customers should receive receipts to their email address and

should be notified using SMS. In the context of this project email and phone number are

personal information and are stored separately in auditable form with restricted access.

This information is asked only when user places an order. Phone numbers are verified

through third part verification library. Customer can choose to restore previous purchases

based on the phone number and receive personalised recommendations.

Every time a customer installs the application a unique identifier is generated and stored

in device secure storage. This identifier is used to register a device through a mutation in

GraphQL schema. After registration process the application can request a JWT in boot up

processes, this token is then validated every time the application client makes a request

to the GraphQL gateway. Device context is propagated across services through HTTP

headers, to provide consistent responses and serves as cache key where possible.

Validating JWT in every request gives the system confidence that requests are indeed

coming from the mobile application. Having device reference accommodates several

features such as the consistent colour or sorting of design elements. Every customer can

have several devices, but only a single device is connected to an order that the customer

places.

29

5 Result

The project covered in this thesis was the first iteration of new mobile application release.

The following chapters give an overview of performance and maintenance aspects after

evaluating API usage in production environment.

5.1 Client GraphQL usage

After releasing the new mobile application to app stores a retrospective meeting was held

to gather feedback and analyse the outcomes of the project. It was identified that mobile

application development became much easier as developers can interact with GraphQL

web UI to read API documentation and create test queries. Having a single gateway for

requests also allowed mobile developers to use code generation and type definitions from

GraphQL schema directly in the code base. Generating type definitions in prototype

application was not possible as it communicated with several different services with

inconsistent documentation and in some cases conflicting definitions. After two months

it was noted that no new bug reports where the root cause is improper API query or a typo

in field names have been created for new application.

It was possible to demonstrate that using GraphQL the mobile appication achieves an

overall smaller mobile data usage for customer devices, adding additional fields to

GraphQL schema does not impact previous query sizes. Having a consistency in

microservices that serve mobile application enabled the analysis of overall application

performance. New dashboards that visualize query level statistics were used to find

specific queries that are slow and need optimization. From load balancer statistics it was

possible to see that average response times reduced after the release of new mobile

application.

Many individual microservices became accessible through internal network only.

GraphQL gateway became a clear authentication layer between mobile application and

backend services reducing the amount of known attack vectors that the system is

vulnerable to. Having a single gateway simplifies throttling rules that load balancer can

apply to API clients.

30

5.2 Downsides and future considerations

As every request in GraphQL uses the same http method and endpoint then tools used

before to rate limit API requests from single client became harder to configure. Previously

it was possible to maintain statistics based on RESTful API paths, but this can no longer

be done as each query can include diverse set of fields, so the whole request body must

be considered for every measurement. The tools for analysing POST body are not as well

adopted and documented as endpoint-based alternatives.

Using Apollo Gateway as a central piece for external web traffic also made this into a

single point of failure. A risk was identified that if API gateway would have any problems,

then the mobile application would be completely unusable even if some set of other

services remain functional. In the future this can be mitigated by using canary

deployments and playing through failure scenarios in test environment and adding

relevant alerts and recovery mechanisms.

As all the schema is served through API gateway then it must be considered in every

schema change in downstream services that provide fragments in this schema. With

performance in mind the gateway is configured in a way that schema is loaded only in

boot time. Every time a downstream application release includes schema change it must

trigger reloading of schema which makes release process longer and slower. To simplify

this process Apollo platform provides registry component, which remains to be evaluated

for this system.

31

6 Conclusion

The aim of this thesis was to create a maintainable and more secure API service for mobile

application. Existing application and services were built with prototyping in mind and

were intended to be an experiment instead of a scalable and reliable product that can

compete on the market.

This thesis illustrated approaches that can be reused in context of building reliable

services with emerging technology GraphQL. This technology allowed the existing

service architecture to become consistently documented and reusable in different UI

components without performance impact. Using GraphQL allowed mobile application to

reduce data usage by fetching only specific fields that are needed for a UI element.

A new mobile application that was written as a client of GraphQL gateway is available

on Apple and Google app stores and is gaining popularity. Additional features have been

added and demonstrated that reuse is possible. The backend system implemented in this

thesis has remained responsive and simplified scaling and maintenance. Additional

microservices have been written using same libraries that were integrated as a part of this

thesis.

32

7 References

[1] The Linux Foundation, "OpenAPI Specification Version 3.1.0," 15 February 2021.

[Online]. Available: https://spec.openapis.org/oas/v3.1.0.
[2] IBM, “IBM Cloud Enterprise Sandbox,” IBM, May 2020. [Online]. Available:

https://ibm-gsi-ecosystem.github.io/ibm-gsi-cloudnative-journey/developer-
advanced-1/swagger-and-openapi/. [Accessed 3 May 2021].

[3] S. R. Leonard Richardson, RESTful Web Services, United States of America:
O'reilly media, 2007.

[4] Netflix Technology, “Netflix Tech Blog,” Netflix Technology Blog, 11 December
2020. [Online]. Available: https://netflixtechblog.com/how-netflix-scales-its-api-
with-graphql-federation-part-2-bbe71aaec44a. [Accessed 03 May 2021].

[5] A. Neary, “Airbnb Engineering,” medium, 5 December 2018. [Online]. Available:
https://medium.com/airbnb-engineering/how-airbnb-is-moving-10x-faster-at-
scale-with-graphql-and-apollo-aa4ec92d69e2. [Accessed 03 May 2021].

[6] T. M. M. T. V. Gleison Brito, “Migrating to GraphQL: A Practical Assessment,”
in 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Hangzhou, China, 2019.

[7] R. Fadhil, “How to Use GraphQL DataLoader,” 29 05 2020. [Online]. Available:
https://rahmanfadhil.com/graphql-dataloader/. [Accessed 11 05 2021].

[8] Apollo Graph Inc., “Apollo docs,” Apollo Graph Inc., [Online]. Available:
https://www.apollographql.com/docs/. [Accessed 3 May 2021].

[9] Facebook Inc., “Graphql specification,” Graphql foundation, June 2018. [Online].
Available: https://spec.graphql.org/June2018/. [Accessed 3 May 2021].

[10] 99designg, “gqlgen documentation,” 21 09 2020. [Online]. Available:
https://pkg.go.dev/github.com/99designs/gqlgen. [Accessed 11 05 2021].

[11] Apollo Federation, “Apollo Docs,” 09 10 2020. [Online]. Available:
https://www.apollographql.com/docs/federation/api/apollo-federation/. [Accessed
11 05 2020].

[12] M. Subramanian, Jaeger - Distributed Tracing for Cloud Native Applications,
Packt Publishing, 2020.

33

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Taavet Tamm

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “GraphQL API implementation in a Distributed System,” supervised by

Aleksei Talisainen

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

15.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

