
Tallinn 2019 

TALLINN UNIVERSITY OF TECHNOLOGY 

School of Information Technology 

 

 

Gregor Johannson 163304IAPM 

TECHNICAL PREREQUISITES FOR 

ENABLING THIRD-PARTY APPLICATIONS 

ON THE NEW ESTONIAN ID-CARD 

Master’s thesis 

Supervisor: Juhan-Peep Ernits 

 PhD 

  

Co-supervisor: Martin Paljak 

  

  

  

  

  

 

 

 

 

 

 



Tallinn 2019 

TALLINNA TEHNIKAÜLIKOOL 

Infotehnoloogia teaduskond 

 

 

Gregor Johannson 163304IAPM 

TEHNILISED EELTINGIMUSED 

KOLMANDA OSAPOOLE RAKENDUSTE 

LUBAMISEKS UUEL EESTI ID-KAARDIL 

Magistritöö 

Juhendaja: Juhan-Peep Ernits 

 PhD 

  

Kaasjuhendaja: Martin Paljak 

  

  

  

  

  

  



3 

Author’s declaration of originality 

I hereby certify that I am the sole author of this thesis. All the used materials, references 

to the literature and the work of others have been referred to. This thesis has not been 

presented for examination anywhere else. 

Author: Gregor Johannson 

13.05.2019 

 



4 

Abstract 

The Estonian authorities started issuing a new generation of ID-cards, the primary identity 

document of the citizens in the Republic of Estonia and one of the carriers of electronic 

identity, from the end of the year 2018. The ID-card is a Java Card smart card following 

the GlobalPlatform specification for content management. Among other features, this 

new generation of ID-cards includes multi-application support and a new NFC contactless 

interface. In order to take advantage of these new features, existing tools enabling content 

management on the smart cards need to be improved. As the new cards require Delegated 

Management for card content management, support for this needs to be implemented. In 

addition, the Estonian authorities currently have not made it their priority to publish 

information or guides for third parties on how development should be carried out, and 

what are the restrictions to acceptable applets and how applets will be installed on ID-

cards in the future. This means that the development of useful applets for the ID-cards is 

currently not possible. 

In order to fix these deficiencies in the current situation, the current thesis showcases 

adding support for Delegated Management to one of the most popular open-source tools 

to manage contents of GlobalPlatform smart cards, GlobalPlatformPro. After support for 

Delegated Management has been implemented, the added functionality is evaluated by 

attempting installation of an applet that implements a beneficial use-case to a test ID-

card, also presenting a proof-of-concept. All required steps to successfully install an 

applet are thoroughly documented.  

Next, in order to help accelerate publishing information and guides to help developers 

and allow the development of applets for the new ID-cards, enhancements to 

documentation are proposed, possible scenarios for enabling applet installation and the 

privileges of developers are discussed. Finally, potential threats to the ID-card are mapped 

from existing publications, and countermeasures are suggested to help reduce risks of 

opening the ID-card to third-party applets. 



5 

This thesis is written in English and is 50 pages long, including 7 chapters, 18 figures, 1 

table and 3 appendices. 



6 

Annotatsioon 

Tehnilised eeltingimused kolmanda osapoole rakenduste lubamiseks 

uuel Eesti ID-kaardil 

2018. aasta lõpust on Politsei- ja Piirivalveamet asunud väljastama uue generatsiooni ID-

kaarti, mis on peamine isikut identifitseeriv dokument Eesti Vabariigi kodanikel ja üks 

mitmest võimalikust elektroonilise identiteedi kandjast. ID-kaart on Java Card kiipkaart, 

mis järgib GlobalPlatform spetsifikatsiooni kaardi sisu haldamiseks. Lisaks kõigele 

muule sisaldab ID-kaardi uus generatsioon endas tuge mitme rakenduse hoidmiseks ning 

lähivälja kommunikatsiooni tehnoloogial (NFC) põhinevat kontaktivaba liidest. Nende 

funktsioonide parimaks kasutamiseks on tarvis täiendada olemasolevaid tööriistu, mida 

kasutatakse kiipkaartide sisu haldamiseks. Kuna uued ID-kaardid nõuvad Delegated 

Management tuge kaardi sisu haldamiseks, siis vastav funktsionaalsus tuleb tööriistades 

implementeerida. Lisaks, ID-kaarti elektroonilise identiteedi kandjana arendaval Riigi 

Infosüsteemi Ametil ei ole lähiajal kavas luua avalikuks kasutuseks arendust abistavat 

materjali või juhendeid kolmandatele osapooltele, ega kirjeldada millised on piirangud 

aktsepteeritavatele rakendustele ja kuidas neid rakendusi kavatsetakse tulevikus ID-

kaartidele paigaldada. See tingib olukorra, kus kasulike rakenduste arendus ID-kaardile 

ei ole hetkel võimalik. 

Nende puuduste parandamiseks käsitleb käesolev lõputöö Delegated Management toe 

lisamist ühele populaarseimale vabavaralisele GlobalPlatform kiipkaartide sisu 

haldamise tööriistale, GlobalPlatformPro. Peale Delegated Management toe 

implementeerimist hinnatakse lisandunud funktsionaalsust läbi kasuliku rakenduse 

paigaldamise test ID-kaardile. Lisaks esitleb edukas paigaldus ka proof-of-concept’i. 

Kõik vajalikud sammud rakenduse paigaldamiseks kirjeldatakse üksikasjalikult.  

Järgmisena soovitatakse täiendusi olemasolevale dokumentatsioonile ning arutletakse 

võimalike rakenduse paigaldamise ja arendaja õiguste stsenaariumite üle, et aidata Eesti 

ametivõimudel avalikustada informatsiooni ja juhiseid arenduse aitamiseks ja lubamiseks 



7 

uutel ID-kaartidel. Viimasena kaardistatakse võimalikke ohte ning pakutakse 

vastumeetmeid, et aidata vähendada riske kolmanda osapoole rakenduste lubamisega. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 50 leheküljel, 7 peatükki, 18 

joonist, 1 tabelit ja 3 lisa. 



8 

List of abbreviations and terms 

PPA Estonian Police and Border Guard Board 

RIA Estonian Information System Authority 

RQ Research Question 

GP GlobalPlatform 

SCP03 Secure Channel Protocol 3 

DAP Data Authentication Pattern 

VM Virtual Machine 

ISD Issuer Security Domain 

JCRE Java Card Runtime Environment 

AID Applet Identifier 

 



9 

Table of contents 

1 Introduction ................................................................................................................. 13 

1.1 Existing Body of Knowledge ............................................................................... 13 

1.1.1 Estonian ID-card ............................................................................................ 13 

1.1.2 Java Card ....................................................................................................... 14 

1.1.3 GlobalPlatform and GlobalPlatformPro ........................................................ 14 

1.1.4 Contribution ................................................................................................... 15 

1.2 Research Questions............................................................................................... 16 

1.2.1 Research Questions ....................................................................................... 17 

1.3 Thesis Structure .................................................................................................... 17 

2 Background .................................................................................................................. 19 

2.1 Java Card .............................................................................................................. 19 

2.1.1 Architecture ................................................................................................... 19 

2.1.2 Development .................................................................................................. 23 

2.2 GlobalPlatform ..................................................................................................... 25 

2.2.1 Architecture ................................................................................................... 25 

2.2.2 Delegated Management ................................................................................. 27 

2.3 Contactless Interface and Vulnerabilities ............................................................. 29 

3 Delegated Management Support in GlobalPlatformPro .............................................. 32 

3.1 Introduction .......................................................................................................... 32 

3.2 Configuration and Setup ....................................................................................... 32 

3.3 Token Generation Support .................................................................................... 34 

3.4 Discussion ............................................................................................................. 36 

3.5 Conclusion ............................................................................................................ 37 

4 Content Management on New Estonian ID-cards ....................................................... 38 

4.1 Introduction .......................................................................................................... 38 

4.2 Example Applet .................................................................................................... 38 

4.3 Loading, Installation, Uninstallation and Deletion ............................................... 39 

4.4 Example Applet Testing ....................................................................................... 41 

4.5 Discussion ............................................................................................................. 43 



10 

4.6 Conclusion ............................................................................................................ 44 

5 Applet Development and Management Suggestions ................................................... 45 

5.1 Introduction .......................................................................................................... 45 

5.2 Aiding Application Providers ............................................................................... 45 

5.3 Managing Access and Privileges .......................................................................... 47 

5.4 Potential Threats ................................................................................................... 50 

5.5 Discussion ............................................................................................................. 54 

5.6 Conclusion ............................................................................................................ 54 

6 Evaluation .................................................................................................................... 56 

6.1 Related Work ........................................................................................................ 57 

7 Conclusion and Future Work ....................................................................................... 60 

7.1 Conclusion ............................................................................................................ 60 

7.2 Future Work .......................................................................................................... 61 

7.3 Summary ............................................................................................................... 63 

References ...................................................................................................................... 64 

Appendix 1 – GlobalPlatformPro DAPProperties.java .................................................. 67 

Appendix 2 – GlobalPlatformPro DMTokenGenerator.java .......................................... 69 

Appendix 3 – Configuring NDEF Tags with NFC Tools ............................................... 71 

 

 



11 

List of figures 

Figure 1. Components of smart cards [5]. ...................................................................... 20 

Figure 2. Smart card communication model [5]. ............................................................ 21 

Figure 3. Command APDU structure [12]. .................................................................... 22 

Figure 4. Response APDU structure [12]. ...................................................................... 22 

Figure 5. Java Card applet development and deployment [5]. ....................................... 23 

Figure 6. Java Card applet example modified from [12]. ............................................... 24 

Figure 7. ant-javacard build.xml configuration example. ............................................... 25 

Figure 8. GlobalPlatform card architecture [8]. ............................................................. 26 

Figure 9. Load Token calculation [8]. ............................................................................ 28 

Figure 10. Test ID-Card and ACR1251U contactless USB reader. ............................... 33 

Figure 11. Segment of listed Security Domains from “java -jar gp.jar -list -key <ISD 

key> -kdf3” output on a test ID-card. ............................................................................. 34 

Figure 12. Delete Token distinction tag in class DMTokenGenerator. .......................... 35 

Figure 13. Last three lines from a successful execution example of “java -jar gp.jar -dv 

-sdaid <SSD AID> -key <SSD key> -kdf3 -install <CAP file> -token-key <DM key> -

sha256” on a test ID-card. .............................................................................................. 40 

Figure 14. List of installed keys from “java -jar gp.jar -info” output on a test ID-card. 41 

Figure 15. Reading an NDEF tag from the test ID-card. ................................................ 42 

Figure 16. Scenario of applet development and installation on citizen ID-cards. .......... 50 

Figure 17. Modified applet installation scenario section. ............................................... 57 

Figure 18. GlobalPlatform.NET fluent API Delete command [37]. .............................. 59 

 

 



12 

List of tables 

Table 1. INSTALL [for load] Command Data Field [8]. ............................................... 29 

 

 



13 

1.1 Existing Body of Knowledge 

The following sections provide a short and general overview of the new iteration of 

Estonian ID-cards, Java Card technology, the closely related GlobalPlatform 

specification and the open-source GlobalPlatformPro tool implementing it. 

1.1.1 Estonian ID-card 

The Estonian ID-card is the primary identity document in the Republic of Estonia. It is 

also a mandatory identity document for Estonian citizens and citizens of the European 

Union permanently residing in Estonia. In the European Union, the ID-card can be used 

as a travel document. The homepage of the ID-card (https://www.id.ee) also defines it as 

a “digital identity card or Digi-ID” [1]. This name is adopted since, unlike a traditional 

passport, the ID-card is a smart card – it can be used for authentication of the holder and 

to give digital signatures in an electronic environment. For example, the ID-card can be 

used for authentication when logging in to an e-governance portal, and to sign documents 

in the portal with a digital signature. 

Until the end of 2018, the Estonian ID-cards were manufactured by Gemalto. Now, the 

Estonian Police and Border Guard Board (PPA) has partnered with a new ID-card 

manufacturer, Idemia. The first new ID-cards have, as of January 2019, just started 

arriving to the Estonian citizens. In addition to many other changes, one of the most 

important updates is that the new card has a contactless NFC interface [2]. Previously, 

the Estonian ID-card was a contact-only smart card, meaning that communication with 

any reader could only be carried out through a physical contact interface. This new 

iteration of ID-cards also enables third-party applications to be deployed and used by the 

cardholder. Combining the new contactless interface with multi-app support allows the 

card to have far more functionality than originally envisioned and intended.  

1 Introduction 

https://www.id.ee/


14 

This thesis tackles third-party smart card applet deployment onto the new iteration of 

Estonian ID-cards. 

1.1.2 Java Card 

“Java Card technology combines a portion of the Java programming language with a 

runtime environment optimized for smart cards and related, small-memory embedded 

devices” [3]. The previous and new Estonian ID-cards are Java Card smart cards, meaning 

they run Java code, albeit with some language limitations, for example missing support 

for all primitives that regular Java supports. 

Similar to regular Java, Java Card source files are written in Java, and then compiled to 

class files. These are then converted to CAP (for Converted APplet) files, which reduce 

the image size for required download and reduce memory requirements at run-time. 

Finally, the loaded applet is executed using the Java Card Virtual Machine [4]. 

Smart cards are not just simple storage or computing devices, but security is equally, if 

not more important. Bouffard et al. [4] state that “the Java Card platform is a multi-

application environment where the sensitive data of an applet must be protected against 

malicious access from another applet or from the external world”. Guyot [5] describes 

that smart cards do this successfully, since “both hardware and software measures [6] 

prevent from retrieving [card] content if appropriate credentials are not provided to the 

smart card”. 

As stated in Section 1.1.1, this thesis demonstrates the deployment of third-party smart 

card applets onto Estonian ID-cards. As the ID-card is a Java Card enabled smart card 

(following the specification Java Card 3.0.4 Classic Edition [7]), the deployed applets are 

Java Card applets.  

1.1.3 GlobalPlatform and GlobalPlatformPro 

“GlobalPlatform is an organization that has been established by leading companies from 

the payments and communications industries, the government sector and the vendor 

community, and is the first to promote a global infrastructure for smart card 

implementation across multiple industries” [8]. GlobalPlatform has developed a 

specification that “… provides common security and card management architecture that 

protects the most important aspect of a chip card system investment — the infrastructure” 



15 

[8]. As the new Estonian ID-card referenced in Section 1.1.1 is compliant with the 

GlobalPlatform specification v2.2.1 [8], then this version is also used as a reference. It 

should be noted though, that a newer v2.3.1 [9] is also available as of March 2018. 

Following the GlobalPlatform specification for loading and managing the contents, i.e. 

Java Card applications, of compatible Java Cards can be cumbersome and prone to errors. 

Many tools have been developed to simplify and standardise this process, the most 

popular of which, at the time of writing, seems to be the Java-based open-source 

GlobalPlatformPro1, maintained by Martin Paljak.  

In this thesis, GlobalPlatformPro is used to help manage contents of the GlobalPlatform 

compliant Java Card equivalent to the new Estonian ID-card. 

1.1.4 Contribution 

There currently are no third-party smart card applications specifically developed for the 

new ID-card, and specific documentation on the development and deployment of applets 

to the particular type of cards have not been made available to the public. Having 

contacted the Estonian Information System Authority (RIA), this is something they also 

feel is lacking in the current state of available resources. This thesis shows how third-

party Java Card applets can be successfully deployed and used with the new Estonian ID-

cards, and thus it presents a proof-of-concept for managing such applets.  

In addition, since RIA has not released any how-to instructions or documentation for 

third-party developers, this thesis attempts to aid RIA in putting together a set of basic 

requirements and guidelines for RIA to publish. This will aid existing knowledgeable 

Java Card applet developers and hopefully spark interest in innovative individuals who 

can come up with new beneficial use-cases for the ID-card in the Estonian tech-savvy 

society. 

To prototype possible use-cases on the ID-cards, GlobalPlatform specification requires 

card content changes with Delegated Management (DM). Loosely speaking, DM allows 

Card Issuers to grant content management rights to third parties on a separate logical 

                                                 

 

 

 

1 https://github.com/martinpaljak/GlobalPlatformPro 



16 

section of a card, i.e. “… the possibility of empowering partnered Application Providers 

the ability to initiate approved and pre-authorized Card Content changes (loading, 

installing or extraditing)” [8]. When DM is required for Card Content changes, a signed 

Token must be included in commands sent to a card. The open-source tool 

GlobalPlatformPro, which is used to load and manage applications on the new ID-card, 

originally lacked support for DM. This thesis makes a contribution to GlobalPlatformPro 

by implementing DM support through generating these required tokens dynamically. At 

the time of writing, the appropriate modifications were made available to the maintainer 

of GlobalPlatformPro in the form of a pull request1. 

Support for DM is a prerequisite for enabling the development of applications that cater 

to new use-cases, and it also enables the possibility of porting existing solutions to the 

ID-card that currently require a separate smart card or a custom device. These solutions 

include, for example, travelcards in public transport, access cards in company offices, 

authorisation cards at compatible electric car charging stations, NDEF tags for accessing 

any saved information with an NFC-enabled smartphone, One-Time Password 

generators, and so on. 

1.2 Research Questions 

As described in Section 1.1.4, the current thesis aims to fill a gap in the state of the art by 

adding Delegated Management Token generation functionality to the open-source tool 

GlobalPlatformPro. Through this functionality, the thesis aims to prove that third-party 

applets can be loaded onto the new Estonian ID-card. In addition, a set of basic 

development guidelines and requirements is specified, that can be used by RIA to develop 

appropriate developer documentation. Also, since there are many publications regarding 

smart card security, and opening up a smart card to applets introduces even more of them, 

potential threats and countermeasures to ID-cards have to be mapped. 

The problems addressed in the current thesis are relevant for several reasons. First, as one 

of the most popular GlobalPlatform Java Card content management tools, 

                                                 

 

 

 

1 https://github.com/martinpaljak/GlobalPlatformPro/pull/155 

https://github.com/martinpaljak/GlobalPlatformPro/pull/155


17 

GlobalPlatformPro, currently does not support DM functionality, developers are left 

without options to prototype and load their applications on the ID-card test cards. 

Furthermore, as the Estonian authorities (RIA/PPA) have not released any instructions 

for applet developers or requirements for acceptable applets, the development of applets 

that would implement new use-cases is not possible. The authorities first need to 

confidently open up the card to applets, and this thesis aims to help them towards this 

goal. 

1.2.1 Research Questions 

The main research question (RQ) is formulated as follows: How to develop third-party 

applets for the new Estonian ID-cards? 

In order to answer the question in a structured and comprehensive manner, the main 

research question is divided into three sub-questions: 

▪ RQ-1: How to add Delegated Management support to GlobalPlatformPro for 

managing content on the new ID-cards? 

▪ RQ-2: How can third parties manage the contents of the new ID-cards? 

▪ RQ-3: How should third parties be allowed to develop and prototype applets 

on the new ID-cards? 

1.3  Thesis Structure 

The rest of the thesis is structured as follows. Chapter 2 provides a close look at Java Card 

architecture and development, followed by an overview of the GlobalPlatform standard 

and specification. Chapter 3 researches the existing functionality of the open-source tool 

GlobalPlatformPro and describes changes made to the tool to provide support for 

generating Delegated Management Tokens from calculated command data. Afterwards, 

in Chapter 4, these enhancements to GlobalPlatformPro are used to describe the process 

required to successfully load Java Card applets to the test-version of new Estonian ID-

cards. In addition, an example applet for a noteworthy use-case is chosen, described, 

installed and tested, to best showcase the multi-application support and contactless 

interface of the new Estonian ID-cards. Chapter 5 suggest different methods of approach 

to how the Estonian authorities should allow third-party Application Providers to develop 



18 

and deploy their applets. Also, vulnerabilities and countermeasures regarding the smart 

card and installed applets are mapped, to give a better understanding of involved risks 

with allowing installation of third-party applets. Chapter 6 evaluates the work done in this 

thesis through the Estonian authorities and describes related work in the field. Chapter 7 

concludes the thesis and provides an outlook on future work. 



19 

The following chapter introduces fundamental concepts that expand on the existing body 

of knowledge and provides the reader with a more comprehensive overview of Java Card 

smart cards and the GlobalPlatform protocol that defines a common security and card 

management architecture for these cards. 

2.1 Java Card 

The following sub-sections introduce Java Card, its architecture and related standards 

(Section 2.1.1) and development of Java Card applets (Section 2.1.2). 

2.1.1 Architecture 

As stated in Section 1.1.2, a Java Card is a secure computational device that runs a subset 

of Java code, compiled into a CAP file. Latest Java Card smart cards implement the 

standard Java Card 3 [3], implementing a virtual machine (VM) that interprets code that 

is already packaged with the card at issuance, or downloaded after issuance. Security 

requirements prohibit downloading code from any source, and these requirements are 

defined in the protocol standardised by GlobalPlatform. Throughout the current thesis, 

when talking about Java Card, the “Classic Edition” of Java Card is referred to. 

The security of a smart card is provided mainly by its architecture. The components of a 

smart card are illustrated in Figure 1. Guyot [5] describes: “The core part, hidden behind 

the external contacts of a smart card, is a complete miniature computer, including a 

Central Processor Unit (CPU) to process data, an EEPROM module to provide offline 

storage capacity, a RAM module to handle data processing, a serial port I/O 

(Input/Output) to communicate with the smart card reader, and most of the time a crypto 

co-processor to accelerate the execution of cryptographic algorithms”. ROM is used to 

store the operating system and “romized” applications. Iguchi-Cartigny et al. [10] 

describe the difficulty of physical attacks, since a card is also embedded with sensors, 

such as light, heat, and voltage sensors, that disable the card in case of physical attacks. 

2 Background 



20 

 

A smart card has strong memory constraints, most cards only allowing a few hundred kB 

for storage (144 kB EEPROM and 512 kB ROM on the new ID-card [11]). Due to these 

resource constraints, the VM must be split into two parts: the bytecode verifier that is 

executed off-card, invoked by a converter, and the interpreter, API and Java Card 

Runtime Environment (JCRE) are executed on the card. The bytecode verifier is the main 

security measure of a card, performing static code verifications required by the VM. A 

bytecode converter then transforms the validated Java class files to the CAP file format. 

The interpreter, API and JCRE are in charge of handling applet behaviour on the card. 

[10] 

Since Java is strongly typed, variable and expression types are determined at compile-

time, allowing detection of type mismatches, even in bytecode. Local and stack variables 

of the VM, however, do not have fixed types even in the scope of one method execution. 

Since not all type mismatches are detected at runtime, malicious applets can be developed 

to exploit this issue. In addition, even though Java does not support pointers, the 

underlying VM uses them extensively, and thus attempts to break security through 

pointers cannot be outruled. The bytecode verifier is crucial to detect ill-typed applets, 

but since the process is time-consuming and involves elaborate program analyses, cards 

do not implement such a component, but rely on the fact that bytecode is verified before 

downloading on the card and this is assumed to be the responsibility of the organisation 

signing the code. [10] 

In addition, there exists a firewall in Java Card cards. The firewall enforces separation 

between applets, based on a packaged structure and the notion of contexts. The JCRE 

uses a unique applet identifier (AID), which enables retrieving the package name in which 

 

Figure 1. Components of smart cards [5]. 



21 

it is defined. Two applets are considered belonging to the same context if they are 

instances of classes coming from the same Java Card package. Every object is assigned 

an owner context, connected to the applet that created the object. Object methods are 

executed in the owner context of the object. The context decides whether access to other 

objects is allowed or not. Contexts are isolated by the firewall, denying access for a 

method being executed in one context, to methods or attributes of objects belonging to 

another context. [10] 

The standard ISO/IEC 7816-4 defines the communication principles between smart cards 

and their designated readers. These devices communicate through APDUs, or Application 

Protocol Data Units. Similar to how a web server would reply with a HTTP response to 

a HTTP request from a web browser, a smart card will wait until receiving a Command 

APDU and reply to it with a Response APDU, as depicted in Figure 2. These APDUs 

may carry up to 255 bytes of data, and if more data is required to be sent, several 

Command APDUs will be sent in half-duplex processes. [5] 

 

Command APDUs have the structure shown in Figure 3. The command header is required 

and consists of four 1-byte fields: CLA, INS, P1 and P2. Gomes et al. [12] describe: “The 

CLA field identifies a class of command and response APDU. The INS field corresponds 

to a[n] instruction inside a CLA. These instructions can be, for instance, method calls. P1 

and P2 are parameters that can be used to supply some additional information to the INS 

instruction. The command body is required only for extra data sending or receiving. The 

data is sent in the DATA field and has its length specified in Lc. If a response with data is 

expected, its length has to be informed in the Le field. The Lc and Le fields have 1 byte 

of length”. 

  

 

Figure 2. Smart card communication model [5]. 



22 

Command APDU 

Header (required) Body (optional) 

CLA INS P1 P2 Lc Data Le 

Figure 3. Command APDU structure [12]. 

 

Response APDUs have a simpler structure, shown in Figure 4. “The response is formed 

by the optional body, that contains the Data field, with the data returned to the host 

application and the trailer, which contains the fields SW1 and SW2 that together inform 

the command [sender of the] APDU processing status” [12]. 

Response APDU 

Body (optional) Trailer (required) 

Data SW1 SW2 

Figure 4. Response APDU structure [12]. 

 

APDU messages can be transmitted with two different transmission-level Transmission 

Protocol Data Units (TPDU), T=0 and T=1, which are used to support APDU protocol 

transmission between a chip reader and a chip itself. APDU protocol is used between the 

chip application and the chip reader. T=1 is a block-oriented protocol which enables 

blocks or grouped collections of data to be transferred. These data groups are transferred 

as a whole between a chip and a reader. The theoretical maximum length of T=1 protocol 

grouped collections for Command APDUs is 65535 and for Response APDUs is 65536 

bytes. The practical maximum length depends on the chip platform that is used for an 

application. T=0 is a byte-oriented protocol, meaning that the minimum data that can be 

transferred has a length of one byte. The maximum length of data structure that can be 

transferred with this protocol for Command APDUs is 255 and for Response APDUs is 

256 bytes. [13] 

The default transmission protocol used for the new ID-cards is T=1, and whenever Card 

Content management commands sent to the ID-card are described, the T=1 protocol is 

used. 



23 

2.1.2 Development 

The subset of Java that is used to program applets that run on Java Cards is also called 

“Java Card”. Oracle provides a Java Card Development Kit for applet developers. This 

kit includes an SDK that can be imported to any preferred IDE to ease writing code. The 

subset is designed for running in constrained environments like smart cards. Development 

is carried out similarly to regular Java in .java files and compiled to .class files. 

Afterwards, the compiled file is passed through byte-code conversion, creating a CAP 

file, and this can then be sent with Command APDUs to a receiving card (Figure 5). 

 

Once an SDK version is imported to a chosen IDE (an api.jar file, or api-classic.jar if 

using the Classic Edition, included in the Development Kit), applet development can 

commence. The version of the SDK should be considered before starting development 

because the cards that are planned to be used must support the same version of Java Card. 

An applet is a Java Card class that extends the javacard.framework.Applet abstract class. 

This class “must be extended by any applet that is intended to be loaded onto, installed 

into and executed on a Java Card technology-compliant smart card” [14]. The class makes 

the implementation of install and process methods mandatory. The install method will be 

called by the JCRE first to create an instance of the Applet subclass through its 

constructor, and subsequently calling the register method will register it in the JCRE. The 

process method will be called by the JCRE to process an incoming APDU command. A 

small example Applet modified from Gomes et al. [12] is given in Figure 6. 

  

 

Figure 5. Java Card applet development and deployment [5]. 



24 

1. import javacard.framework.*;   
2.    
3. public class Transport extends Applet {   
4.     //The current amount of credit   
5.     private short balance;   
6.     //The INS code of addCredit method   
7.     public static final byte ADD_CREDIT = 0x01;   
8.    
9.     private Transport(byte[] bArray, short bOffset, byte bLength) {   
10.         balance = 0;   
11.     }   
12.    
13.     /**  
14.      * Invoked by the JCRE, install is the applet entry point. It  
15.      * creates an applet instance and registers it in the  
16.      * JCRE through the invocation of the applet constructor method.  
17.      */   
18.     public static void install(byte[] bArray, short bOffset, byte bLength) {   
19.         Transport applet = new Transport(bArray, bOffset, bLength);   
20.         applet.register();   
21.     }   
22.    
23.     /**  
24.      * process receives an APDU object and selects the instruction specified  
25.      * in its INS field. Called by the JCRE to process incoming APDU commands. 
26.      * An applet is expected to perform the action requested   
27.      * and return response data if any to the terminal.  
28.      */   
29.     public void process(APDU apdu) {   
30.         byte[] buffer = apdu.getBuffer();   
31.         switch (buffer[ISO7816.OFFSET_INS]) {   
32.             case ADD_CREDIT:   
33.                 addCredit(apdu);   
34.         }   
35.         /**  
36.          * The method addCredit adds some data to the balance attribute.   
37.          */   
38.         public final void addCredit (APDU apdu){   
39.             byte[] buffer = apdu.getBuffer();   
40.             byte bytesRead = (byte) apdu.setIncomingAndReceive();   
41.             balance = (short) (balance + buffer[ISO7816.OFFSET_CDATA]);   
42.         }   
43.     }   

Figure 6. Java Card applet example modified from [12]. 

 

Different tools are available for use once an application is ready to be compiled and 

converted to a CAP file. For example, ant-javacard1 is a popular pre-packaged Ant2 task 

for building Java Card CAP files. After adding Ant to a project, and adding an Ant 

buildfile build.xml to the project, for example in the root directory, a configuration similar 

                                                 

 

 

 

1 https://github.com/martinpaljak/ant-javacard 

2 https://ant.apache.org/ 

https://github.com/martinpaljak/ant-javacard
https://ant.apache.org/


25 

to the one displayed in Figure 7 should be written to it. The most important tags here are 

the <taskdef /> and <javacard /> tags, one defining the custom javacard task, the other 

defining the properties of the task. 

1. <?xml version="1.0" encoding="UTF-8"?>   
2. <project basedir="." default="applet" name="MyApplet build">   
3.   <property name="JC304" value="ext/jc304_kit"/>   
4.    
5.   <path id="classpath">   
6.     <fileset dir="${JC304}" includes="**/*.jar"/>   
7.   </path>   
8.      
9.  <taskdef name="javacard" classname="pro.javacard.ant.JavaCard"                            

 classpath="ext/ant-javacard.jar"/>   
10.   <target name="applet">   
11.     <javacard jckit="${JC304}">   
12.       <cap output="MyApplet.cap" sources="src/ee/gj" version="1.0">   
13.         <applet class="ee.gj.javacard.MyApplet" aid="0102030405060708"/>   
14.       </cap>   
15.     </javacard>   
16.   </target>   
17. </project>   

Figure 7. ant-javacard build.xml configuration example. 

 

Once a valid configuration is written, running the command ant from the terminal on the 

project’s root folder should produce a valid CAP file from the project sources to the 

project root folder. 

2.2 GlobalPlatform 

The following sub-sections focus on the widely recognised smart card specification 

GlobalPlatform, its architecture (Section 2.2.1) and it's content management possibilities, 

including the underlying DM functionality (Section 2.2.2).  

2.2.1 Architecture 

As stated in Section 1.1.3, GlobalPlatform defines a global specification for smart cards, 

providing a common security and card management architecture. The GlobalPlatform 

card architecture is depicted in Figure 8.  



26 

 

For the sake of avoiding duplication, not every part of the architecture shall be explained 

in great detail. For a complete overview, the author refers the reader to the GlobalPlatform 

specification Chapter 3 [8]. Concepts most relevant to the work in this thesis are 

described, based on [8], as follows: 

• Security Domain. “On-card entity providing support for the control, security, and 

communication requirements of an off-card entity (e.g. the Card Issuer [or] an 

Application Provider […])” [8]. These domains allow their owners to control 

included applications without compromising security, i.e. keys or architecture. 

Technically speaking, security domains are actually on-card applications with a 

different set of privileges. 

• Card Issuer. The Issuer Security Domain (ISD) is the primary Security Domain, 

and in the case of the Estonian ID-card, belongs to the Estonian authorities, i.e. 

the Card Issuer. The ISD is also the first application installed on a card. 

• Application Provider. The Application Provider Security Domain (or 

Supplementary Security Domain) is a secured environment for third-party 

 

Figure 8. GlobalPlatform card architecture [8]. 



27 

developers and maintainers, i.e. Application Providers not strictly related to the 

Card Issuer, to download, install and maintain their applications. 

• OPEN. The GlobalPlatform Environment (OPEN) provides “an API to 

applications, command dispatch, Application selection […] and Card Content 

management” [8]. It performs application code loading, memory management, 

manages loaded application installation and is responsible for enforcing security 

principles.  

• Runtime environment. “The GlobalPlatform is intended to run on top of any 

secure, multi-application card runtime environment. This runtime environment is 

responsible for providing a hardware-neutral API for applications as well as a 

secure storage and execution space for applications to ensure that each 

application's code and data can remain separate and secure from other applications 

on the card. The card's runtime environment is also responsible for providing 

communication services between the card and off-card entities” [8]. In the case of 

the Estonian ID-card, the runtime environment is Java Card Runtime 

Environment. 

2.2.2 Delegated Management 

“Card Content management on a GlobalPlatform card is the capability for the loading, 

installation, extradition, registry update and removal of Card Content” [8]. As a Card 

Issuer may not have access to a card throughout its lifecycle or want to manage all Card 

Content changes, the design of GlobalPlatform takes into account the necessity of 

delegating Card Content management to an Application Provider with or without 

authorization. 

Before any changes to a cards’ content can be made, OPEN requires that the card life 

cycle states are not CARD_LOCKED or TERMINATED. In addition, the Security 

Domains (excluding the ISD) that are targeted for content management must have a Life 

Cycle State of PERSONALIZED. If the targeted Security Domain has the DM privilege, 

a specific Token is required in any content management request. 

In short, DM is defined as “Pre-authorized Card Content changes performed by an 

approved Application Provider” [8]. DM, in essence, is a Privilege assigned to Security 



28 

Domains, which allows for approved Application Providers to manage their content 

within these Supplementary Security Domains. Security Domains with DM Privilege 

require a Token to be sent with Card Content management commands. These Tokens are 

signatures of one or more DM functions (loading, installing, extraditing and deleting) 

generated by the Card Issuer, and are used to provide the Card Issuer control over these 

changes, and to prove that an Application Provider has been authorised to perform these 

changes. [8] 

For example, a Load Token for DM is a signature authorising the transmission of 

application code to the card and allows the verification of a load request. Figure 9 shows 

how a Load Token is generated.  

 

If a Security Domain performing the load has the DM privilege, the Security Domain 

shall require a Token to be present. The ISD shall then verify this Token in order to 

authorise the operation. For this verification to succeed, the Card Issuer has to have 

installed a specific set of keys onto the ISD, which are verified against a set of keys used 

to construct a Token. In order to satisfy this requirement, the generated Load Token must 

be appended to the end of the command data field, as shown in Table 1. [8] 

 

Figure 9. Load Token calculation [8]. 



29 

Table 1. INSTALL [for load] Command Data Field [8]. 

Name Length Value Presence 

Length of Load File AID 1 ‘05’ - ‘10’ Mandatory 

Load File AID 5-16 ‘xxxx...’ Mandatory 

Length of Security Domain 

AID 

1 ‘00’ or ‘05’ - ‘10’ Mandatory 

Security Domain AID 0 or 5-16 ‘xxxx...’ Conditional 

Length of Load File Data 

Block Hash 

1 ‘00’ - ‘7F’ Mandatory 

Load File Data Block Hash 0-n ‘xxxx...’ – see section C.2 Conditional 

Length of Load Parameters 

field 

1-3 ‘00’ - ‘80’, or ‘81 80’ - ‘81 FF’, 

or ‘82 01 00’ - ‘82 FF FF’ 

Mandatory 

Load Parameters field 0-n ‘xxxx...’ – see section 11.5.2.3.7 Conditional 

Length of Load Token 1-3 ‘00’ - ‘80’, or ‘81 80’ - ‘81 FF’, 

or ‘82 01 00’ - ‘82 FF FF’ 

Mandatory 

Load Token 0-n 'xxxx...' – see section C.4.1 Conditional 

 

When comparing Figure 9 and Table 1, it is clear that the set of data components going 

into the Token generation is identical to the data being sent in command data fields, 

excluding the reference control parameters P1 and P2, length of the following data fields 

(the exact length of data in the INSTALL command, prior to a Token being added) and 

the Token itself. The same applies to all other Card Content management operations, i.e. 

DM Tokens are signatures of Card Content management command data fields. 

2.3 Contactless Interface and Vulnerabilities 

This thesis is mostly interested in the contactless interface introduced with the new 

Estonian ID-cards. GlobalPlatform has provided an extension of the general specification, 

“Contactless Services” [15], that defines mechanisms, parameters and interfaces to set up 

and maintain the configuration of applications usable on a contactless interface. These 

applications are referred to as “Contactless Applications”. 

The new Estonian ID-card is a dual-interface card, meaning that it has both the contact 

and contactless interfaces. Part of the card’s storage is shared through both interfaces, but 

some, more privacy-sensitive parts are only accessible through the contact interface. 

When communicating through the contact interface, a card gets its power straight from a 



30 

reader. On the contactless interface, however, Messerges et al. [16] explain that electricity 

“is provided via a radio frequency (RF) signal emitted from the smart-card reader. An 

antenna on a contactless card inductively couples to this RF signal and a circuit converts 

the RF power to power that can be used by the smart card's microprocessor”. 

The contactless interface provides many advantages over the contact interface, for 

example, ease of use, convenience and compatibility with NFC-enabled smartphones. 

Avoine et al. [17] also describe the advantages of not requiring a line of sight for reading, 

no need for a battery, being capable of heavy cryptographic primitive execution and 

relative cheapness. But with this convenience comes an array of issues, mostly regarding 

the security of the smart card. As such, it is important to inform the reader of the existence 

of some of these issues. 

For example, Chothia et al. [18] demonstrate the possibility of tracing the movements of 

a particular RFID-enabled passport, and consequently the holder, without having to break 

the passport’s cryptographic key. An attacker can simply record one session between a 

passport’s RFID tag and a legitimate reader by eavesdropping in on the conversation. By 

replaying a particular message, a single passport can be distinguished based on the 

response. In [19], Chothia et al. present the “leakiEst” tool, allowing meaningful 

estimation of information leakage. This tool is used to test fixes for the traceability attack, 

and the authors found that “modifying the protocol to continue processing a message even 

when the MAC check fails, and only reject it at the end of the protocol, leakiEst indicates 

that it is free from leaks” [19]. 

Sportiello [20] uses Basic Access Control (BAC), which prevents unauthorized reads of 

the chip’s content and protects contactless communication with a legitimate reader, to 

carry out a side channel analysis for documents with a contactless chip. Specific timing 

analysis is done during BAC operations, revealing that the results can be exploited to 

retrieve the chip’s content. As newer smart cards, including the ID-card, use Password 

Authenticated Connection Establishment (PACE) instead of BAC, this attack cannot be 

attempted on the new Estonian ID-cards. 

Gkaniatsou et al. [21] present a proof-of-concept system, REPROVE, for analysing the 

APDU protocol of a smart card, regardless of the protocol’s implementation. REPROVE 

was used to extract models from smart cards and successfully reverse-engineer 



31 

proprietary implementations of the APDU protocol, finding many insecurities in tested 

cards, for example, violation of PKCS#11 specification requirements in regards to unique 

session handles, leaky tokens, treating sensitive data as public, and so on. Bozzato et al. 

[22] exploit proprietary implementation weaknesses to illustrate attacks on PKCS#11 

devices through the APDU protocol, present a threat model and security analysis, 

complementing the work of Gkaniatsou et al. 

As the security implementations on the ID-card are proprietary, depending on the card 

manufacturer and their agreements with the card issuer, the status quo cannot be deduced 

from previous publications. It would be a good idea to map available tools and methods 

to help discover threats that could affect the new ID-cards. Collecting these tools or 

proving the safety of the software or hardware implementations of security measures on 

the ID-card is beyond the scope of the current thesis.  



32 

The following chapter deals with the process of adding Delegated Management support 

to the open-source tool GlobalPlatformPro, to enable content management on cards that 

require Tokens to be present on targeted Security Domains. 

3.1 Introduction 

In order to satisfy the requirement of having Tokens sent with content management 

commands targeted at Security Domains with DM privilege, Tokens need to be generated 

dynamically from the rest of the command’s data fields. This functionality is currently 

missing from the open-source GlobalPlatformPro tool. The purpose of this chapter is to 

answer the research question RQ-1: How to add Delegated Management support to 

GlobalPlatformPro for managing content on the new ID-cards? 

3.2 Configuration and Setup 

In order to test and verify the functionality of any existing or added code in 

GlobalPlatformPro, Java 8, a USB smart card reader, supporting drivers and a Java Card 

smart cards similarly configured to the new Estonian ID-cards are required.  

The smart card reader used in development and testing is the PC/SC-compliant 

ACR12511 (S/N ACR1251U-A1), produced by Advanced Card Systems Ltd. This 

reader’s predecessors have been successfully used in the literature, for example, Chothia 

et al. [18] used it in devising a traceability attack method against RFID-enabled [(Radio-

Frequency Identifier)] passports, saying that “this is one of the cheapest (∼$50) RFID 

readers on the market and […] using such a reader underlines the fact that our attack does 

not need specialist hardware” [18]. The same can be said about the current reader – it 

                                                 

 

 

 

1 https://www.acs.com.hk/en/products/218/acr1251u-usb-nfc-reader-ii/; http://www.acr1251.com/ 

3 Delegated Management Support in GlobalPlatformPro  

https://www.acs.com.hk/en/products/218/acr1251u-usb-nfc-reader-ii/


33 

costs around $50 and works adequately well for managing a smart card’s contents, 

proving that specialist hardware is not required. Even though this work uses a contactless 

reader, the ID-card also has a more common contact interface, allowing cheaper contact 

readers to be used as well. 

Development and testing are conducted on a Linux distribution. As PC/SC1 is the standard 

for integrating personal computers with smart cards and their readers, and Windows 

operating systems contain the reference implementation out-of-the-box, Windows users 

should mostly be without any additional software. Installing the ID-software from RIA 

(https://www.id.ee) is strongly recommended, however. Linux distributions do not come 

with bundled PC/SC drivers, so an open-source solution such as PCSC-Lite2 is 

recommended - RIA’s provided Linux bundle includes it as well. 

The smart cards used in testing are configured and personalised similarly to the ID-cards 

issued to the Estonian citizens. These test cards were kindly provided by RIA, in the 

interest of having the goals of this thesis successfully delivered. The test card with the 

previously described USB contactless reader is shown in Figure 10. 

                                                 

 

 

 

1 https://www.pcscworkgroup.com/ 

2 https://pcsclite.apdu.fr/ 

 

 

Figure 10. Test ID-Card and ACR1251U contactless USB reader. 



34 

3.3 Token Generation Support 

Observing the second to last line of Table 1, it is clear that DM Token information has to 

be appended to the end of every sent command. The latest released version of 

GlobalPlatformPro at the time of writing this work, release 19.01.22, only appends the 

zero-length of a Token to all sent commands. This is not enough for the new Estonian ID-

cards, as the Supplementary Security Domain pre-installed on the cards has DM privilege. 

In order for GlobalPlatformPro to support content management functionalities on new 

ID-cards, DM Token generation support must be added to the tool. 

Privileges of existing Security Domains can be read through running the CLI with 

parameter l or list, which lists all applets installed on the card, as shown in Figure 11. 

This command should be used cautiously, however, since the default keys of “40…4F” 

pre-defined in GlobalPlatformPro are not suitable for either test or production ID-cards, 

and could lock the card completely if misused too many times. A custom master key 

should be specified with parameter key and key value, followed by parameter kdf3, which 

specifies that secret keys should be derived from the provided key, following the Secure 

Channel Protocol 3 (SCP03). Also, it should be noted, that Card Content management 

commands, including list, will target the ISD by default, if not stated otherwise with a 

sdaid parameter value. This means that the value assigned to parameter key must be 

assigned to the ISD, if no other Domain’s AID value is provided. 

 

Before attempting to implement Token generation, a better understanding was required 

of what was already implemented according to the GlobalPlatform specification [8], and 

how. As the code was hard to grasp to a newcomer (further explained in Section 7.1), 

attempts at changing existing code were made to improve readability and avoid possible 

faults due to misconception. For example, a 45-line section of code implementing the 

load command’s functionality in class GPTool was extracted to a separate method, and 

  

Figure 11. Segment of listed Security Domains from “java -jar gp.jar -list -key <ISD key> -kdf3” output 

on a test ID-card. 



35 

the install command’s partly duplicated code was removed to use this new method, which 

also added missing Data Authentication Pattern (DAP) verification functionality to the 

install command.  

In addition, a class for encapsulating all details related to DAP was created, named 

DAPProperties, displayed in Appendix 1 – GlobalPlatformPro DAPProperties.java. This 

code was previously spread around in the code implementing the install and load 

methods. An instance of this class is created at the beginning of the previously described 

method, named calculateDapPropertiesAndLoadCap, which as the name suggests, 

calculates properties related to DAP, and continues to attempt loading a CLI-targeted 

CAP file. 

The centrepiece of the DM functionality is the addition of the class DMTokenGenerator 

to GlobalPlatformPro, displayed in Appendix 2 – GlobalPlatformPro 

DMTokenGenerator.java. An instance of this class is created by class GlobalPlatform at 

the beginning of calling the CLI and used for any following content management 

command if the parameter token-key with a path to an RSA private key is used. If no 

token-key parameter is passed, the zero-length parameter of a token is appended, as it was 

before.  

The last two lines of Table 1 indicate that Token data is always required – if no Token is 

present, the zero-length of the Token must be written to the command data. This is 

particularly important to keep in mind in the case of the “Table 11-22: Delete [card 

content] Command Data Field” described in [8], where the required length of each data 

component is not separately pointed out. This inconsistency in the presentation of 

required data elements caused some confusion at the beginning of implementing the 

Token generation functionality, but was later corrected with the section of code in Figure 

12. 

1. if (apdu.getINS() == INS_DELETE || apdu.getINS() == (INS_DELETE & 255)) {   
2. // See GP 2.3.1 Table 11-23   
3. logger.debug("Adding tag 0x9E before Delete Token");   
4. newData.write(0x9E);   
5. }   

Figure 12. Delete Token distinction tag in class DMTokenGenerator. 

 

 



36 

Among other required changes, an additional option for the Load File Data Block Hash 

calculation had to be added. The Load File Data Block is a “part of the Load File that 

contains one or more application(s) or libraries and support information for the 

application(s)” [8] and its hash provides its integrity. Although [8] describes the hash as 

“a SHA-1 digest of the Load File Data Block”, the test card required the hash to be 

calculated with the more secure SHA-256, and the same can be assumed for the 

production card. Before the sha256 option was only respected in hash calculation if DAP 

was required. Changes were made to respect this option even if DAP is not required, and 

to include a hash in command data if a Token is being appended to the data, as per 

specification: “The Load File Data Block Hash is mandatory when a Token or DAP Block 

is present in a Load File, and is optional otherwise” [8]. 

At the end of constructing each Card Content management command’s data, the 

constructed CommandAPDU is passed through a transmitDM method, which modifies 

the data with the DMTokenGenerator.applyToken method. This extracts the existing 

APDU data, digests it with SHA-1, signs the digest with the RSA algorithm and appends 

the resulting Token to the APDU data similarly to the process depicted in Figure 9. 

Finally, the modified APDU data is transmitted to a connected card. 

The full list of changes introduced to GlobalPlatformPro with DM Token generation 

support is outlined in the GitHub pull request “Files changed” comparison at 

https://github.com/martinpaljak/GlobalPlatformPro/pull/155/files. 

3.4 Discussion 

The main objective of Chapter 3 is to add Token generation support for generating Load, 

Install, Make Selectable, Extradition and Delete Tokens. This is most suitable for the use-

case the author was handed, i.e. having to generate tokens by using an issuer-provided 

RSA private key for DM, where the related public key is previously installed on the ISD. 

However, this does not cover the use-case where the card issuer will not provide a DM 

RSA private key to third parties, but would rather validate CAP files of third parties, and 

send the calculated Token data back to the third party if the CAP was deemed safe and 

valid. For this, an additional CLI option should be added, which can be used to authorise 

a single specific content management command on a single specific CAP file. 

https://github.com/martinpaljak/GlobalPlatformPro/pull/155/files


37 

In addition, GlobalPlatform also specifies Tokens for Registry Update and a combined 

Load, Install and Make Selectable Token, which this thesis does not cover. The latter of 

these would make the most sense to apply in the use-case where third parties do not have 

possession of any keys, and RIA would otherwise have to generate a set of three Tokens 

for every new request – a Load Token, an Install Token and a Make Selectable Token.  

3.5 Conclusion 

Chapter 3 demonstrates the implementation of DM Token generation support in 

GlobalPlaftformPro. The currently supported functionality of the GlobalPlatform 

specification is determined in order to clarify needed improvements. Duplicated or overly 

complex sections of code are partly refactored and simplified to reduce the risk of 

introducing errors due to misconception. Afterwards, data constructed for content 

management is used to create DM Tokens, authorising content management for Load, 

Install, Make Selectable, Extradition and Delete commands on Security Domains with 

DM privilege. 



38 

The following chapter deals with the process of loading and installing an existing Java 

Card applet to test ID-cards, using the enhancements to GlobalPlatformPro that are 

described in the previous section. 

4.1 Introduction 

Successful Card Content management on GlobalPlatform smart cards requires a specific 

set of commands, parameters and data to be sent to the card. In the case of targeting 

Security Domains with DM privilege, the set of required parameters and data is 

lengthened even more. As these requirements are most probably unknown to third parties, 

as was the case with the author of the thesis initially, these must be outlined and explained 

for successfully loading, installing and deleting applets on the new Estonian ID-cards. 

The purpose of this chapter is to answer the research question RQ-2: How can third 

parties manage the contents of the new ID-cards? 

4.2 Example Applet 

As the successful installation of a simple “Hello World” application would provide a very 

basic proof-of-concept, it would not demonstrate the potential of this new opportunity to 

extend the primary functionality of the ID-cards very well. Creating a new applet with 

potential for wide use is beyond the scope of this thesis, thus an existing practical 

application with a sensible use-case should be chosen to showcase this new opportunity. 

The chosen applet is from a project called openjavacard-ndef1. This project implements 

NDEF tags for Java Card smart cards, and the applet only implements the exact minimum 

of APDU commands that the NDEF specification prescribes. It’s intended as a reusable 

                                                 

 

 

 

1 https://github.com/OpenJavaCard/openjavacard-ndef 

4 Content Management on New Estonian ID-cards 

https://github.com/OpenJavaCard/openjavacard-ndef


39 

library covering most use-cases for NDEF, with support for emulating simple NDEF 

memory tags, as well as dynamic tags. The project includes three different base variants 

of NDEF tag implementations [23]: 

1. TINY – a minimal read-only tag, initialised by providing data during installation. 

The load file size is less than 1 kB. Recommended for serving static content, such 

text or a URL. 

2. STUB – requires a secondary service (applet) to be used to generate contents. 

Used for creating dynamic NDEF tags while keeping applet under a proper unique 

AID. Writing is not supported. The load file size is slightly above 1 kB. 

3. FULL – a writable and configurable NDEF tag. Can be configured during 

installation and at build time with optional advanced features, such as media-

independent access control and write-once support. The Load file size varies from 

1 to 2 kB depending on selected features.  

The project recommends starting with the FULL variant since it contains every available 

feature except for the external service feature of the STUB variant. Thus, for testing on 

the test ID-cards, the FULL variant is chosen. 

Examining the code of the FULL variant applet, the standard pattern of Java Card applets 

can be recognised, as described in Section 2.1.2 and exemplified in Figure 6. The class 

NdefApplet extends the javacard.framework.Applet abstract class and implements the 

mandatory install and process methods. 

4.3 Loading, Installation, Uninstallation and Deletion 

As described in Section 343.3 and shown in Figure 11, the list of existing Security 

Domains on a test ID-card can be displayed with the command “java -jar gp.jar -list -key 

<ISD key> -kdf3”. This will output, among other information, the AID of the 

Supplementary Security Domain, D233000000444F4D. 

Next, after obtaining an AID for the Supplementary Security Domain, either from the CLI 

or from RIA, an RSA private key must be acquired to include with commands targeted at 

the DM privileged Domain. As described in Section 3.3, the private key included with 

parameter token-key is used to sign the data being sent for content management, creating 



40 

a DM Token. The public key corresponding to this private key is pre-installed in the ISD, 

and the private key should be provided by RIA for authorising all DM on a specific 

Domain. During testing, this scenario seems acceptable, but for production cards, other 

more suitable and secure scenarios are discussed in Chapter 5. 

The required command to load an application to the test ID-card is “java -jar gp.jar -

sdaid <SSD AID> -key <SSD key> -kdf3 -install <CAP file> -token-key <DM key> -

sha256”. In the background, this will send both “INSTALL [for load]” and “INSTALL 

[for install]” instructions, transmitting application code to the card and making it 

selectable and executable. As described in Section 3.3, the sha256 option is required for 

switching the Load File Data Block Hash calculation algorithm to SHA-256. The last 

three lines that were logged with debug and verbose modes enabled after successful applet 

installation are shown in Figure 13. 

 

 

If at first the command will not return a successful response message of “9000”, and 

validating all inputs does not reveal any errors, other so-called preventative measures may 

be required. The readers’ mileage may or may not vary, but during our testing, we 

discovered that the DM RSA public key that was installed on the ISD was different from 

the one that was said to be installed. Since we were also provided with the key to access 

the ISD, we were able to replace the DM public key with the one that was said to be 

installed on the card, and thus we could configure the card to accept the DM Token that 

was generated in GlobalPlatformPro with the provided DM RSA private key. Since on 

production cards this cannot be done, it is up to the Estonian authorities to ensure that the 

keys are valid before issuing cards to citizens, and to update any invalid keys that may 

have been issued to citizens. 

Different keys installed on the card have specific unique versions. To get the version of 

the 1024-bit RSA key for DM, running the info command on GlobalPlatformPro was 

Figure 13. Last three lines from a successful execution example of “java -jar gp.jar -dv -sdaid <SSD AID> 

-key <SSD key> -kdf3 -install <CAP file> -token-key <DM key> -sha256” on a test ID-card. 



41 

required. This will list, among other information, the details of keys installed on the 

connected card, as shown in Figure 14.  

 

Figure 14. List of installed keys from “java -jar gp.jar -info” output on a test ID-card. 

 

The key version 0x70 can be deduced from the output in the info command. Rewriting 

the DM key is possible with the command “java -jar gp.jar -key <ISD key> -kdf3 -put-

key <DM key> -new-keyver 0x70”.  

If after successful installation the applet needs to be removed or replaced at some point, 

this can fairly easily be done in two ways. For complete removal, using the uninstall 

command with the installed CAP file will send a “DELETE” instruction to the card, 

deleting the AID extracted from the CAP file. Applet deletion is possible with the 

command “java -jar gp.jar -sdaid <SSD AID> -key <SSD key> -kdf3 -uninstall <CAP 

file> -token-key <DM key> -sha256”. For replacing, using the force parameter with the 

install command will send the same “DELETE” instruction if the supplied CAP file (more 

specifically the same AID defined in the CAP file) exists on the domain already, followed 

by the regular logic of the install command. 

4.4 Example Applet Testing 

After successful installation of the FULL version applet from openjavacard-ndef, and 

without appending any parameters through the params CLI option at installation, the 

applet should be initialised with an empty tag. To test this, switching on the NFC reader 

on a smartphone and placing the smart card on the reader, usually centred on the back of 

the phone, the phone should display a popup, indicating a successful read and showing 

the contents of the NDEF tag that was read, as shown in Figure 15.  



42 

 

If, however, no popup is shown, some changes might be required for the buildfile of the 

applets. As of the 24th of November, 2018, the AIDs for the applets (TINY, STUB and 

FULL) were changed1 from the official AID registered to NFC Forum (package 

D276000085, applet D2760000850101) to unique values. This seems to have hindered 

the applet’s functionality, as phones do not seem to be able to recognise it anymore. After 

changing the AIDs back to the static value that is registered to NFC Forum, phones should 

be able to recognise the card as an NDEF tag. As of writing this thesis, the values for the 

AIDs are unique, but this could be changed in the project in the future. 

To rewrite contents on the applet (or any other NDEF tag), several possibilities are 

available. To test the application in this thesis, a Samsung Galaxy S6 (SM-G920F) 

running on Android 7.0 is used. Thus, the easiest way to configure the applet would be to 

download an application from the Google Play Store that’s specifically meant for writing 

data to NDEF tags. One of the many available options is NFC Tools2.  

The process of writing a static text value to the applet (or any other NDEF tag) with NFC 

Tools is depicted in Appendix 3 – Configuring NDEF Tags. Navigating to the “WRITE” 

tab of the application will reveal two buttons. Tapping “Add a record” will list all 

available types of records that can be written to a tag. For example, “Text” is for static 

text and “URL / URI” is for an address that will be automatically opened in the default 

                                                 

 

 

 

1 https://github.com/OpenJavaCard/openjavacard-ndef/commit/ef212b7 

2 https://play.google.com/store/apps/details?id=com.wakdev.wdnfc 

 

Figure 15. Reading an NDEF tag from the test ID-card. 



43 

browser of a phone once the tag is read. After choosing “Text”, assigning a value and 

tapping “OK”, the value will be appended to the list of values to be written to the tag. 

Tapping the “Write” button above the list will activate the NFC module for writing, and 

it will wait for a tag to enter it’s reading range. After placing the card on the back of the 

phone and writing succeeds, a success message is shown. Finally, after removing the card 

from the back of the phone, exiting out of the application, and placing the card to the back 

of the phone again, a popup with the written static text should be shown. If multiple values 

are appended to the list, all of them will be written to the tag and displayed on the 

previously described popup as a list as well. 

4.5 Discussion 

The main objective of Chapter 4 is to showcase the added DM functionality of 

GlobalPlatformPro to successfully install an example applet to the Supplementary 

Security Domain on the test Estonian ID-card. A fairly simplistic application that 

emulates an NDEF tag was chosen and successfully installed and demoed. However, this 

was not the first choice of application to demonstrate for the thesis. Other more complex 

applets, like CCU2F1 or hotp_via_ndef2 were also tried. Both of these applets were 

installed on the test ID-card without errors, but making them run as intended proved to 

be difficult. 

The first of these is a universal FIDO U2F authenticator applet, providing a strong two-

factor authentication solution similar to security key products sold by Yubico3. The 

CCU2F applet required some changes to the code since the project relied on a proprietary 

API for cards produced by NXP. Specifically, the proprietary 

KeyAgreementX.ALG_EC_SVDP_DH_PLAIN_XY should be swapped to a generic Java 

Card 3.0.5 API KeyAgreement.ALG_EC_SVDP_DH_PLAIN_XY. However, since the ID-

card is version 3.0.4, and access to the proprietary API was not available, swapping to 

KeyAgreement.ALG_EC_SVDP_DH_PLAIN was attempted. This allowed installing the 

                                                 

 

 

 

1 https://github.com/tsenger/CCU2F 

2 https://github.com/petrs/hotp_via_ndef 

3 https://www.yubico.com/ 

https://github.com/tsenger/CCU2F
https://github.com/petrs/hotp_via_ndef
https://www.yubico.com/


44 

application, but for it to completely work, a conceptually different algorithm cannot be 

used, as described by [24]. 

The second uses the demonstrated NDEF tag project as a base, and builds an HMAC-

based One Time Password generator into it, delivering a unique one-time password to the 

end of a URL saved on the applet. Though this application does not use any proprietary 

API and should work on cards as old as version 2.2.2, testing the application did not yield 

expected results. Saving and retrieving a URL from the tag was successful, but the 

HMAC-based password was never generated to the end of the URL, but the internal 

counter for calculation of the expected password was. 

Thus, the showcased NDEF applet is simple enough and perfectly showcases the 

contactless abilities of the new ID-card, but other more interesting applets are also 

available, that better leverage the cryptographic abilities of Java Cards. Installing these 

on the ID-card would potentially spark even more interest in the card’s capabilities of 

including third-party applets. 

4.6 Conclusion 

Chapter 4 illustrates installing an application to the Supplementary Security Domain of 

the test ID-card. An existing applet that implements a generic NDEF tag was chosen and 

described. Next, the steps required for successfully installing an applet to the card were 

listed. Using the added DM functionality to GlobalPlatformPro, the chosen applet was 

installed on the test ID-card’s Supplementary Security Domain. Finally, configuring the 

static value on the tag applet and returning it to an NFC-enabled smartphone on request 

was demoed. 



45 

The following chapter contains some suggestions to the Estonian authorities in regards to 

guiding third parties in develop applets for the new ID-cards. Managing access and 

privileges of third parties in the deployment of applets is also discussed, after 

hypothesising possible scenarios for applet installation on live ID-cards. In addition, 

possible vulnerabilities and countermeasures that could be used in the appropriate applet 

infrastructure are listed. 

5.1 Introduction 

At the time of writing the current thesis, the Estonian authorities have not released any 

documentation on how third parties should develop their applets, what are the steps in the 

full lifecycle of third-party applets on ID-cards, what are the rights of third parties in 

managing card contents, etc. Knowing the answers to these questions would minimise the 

need for asking them from RIA and accelerate the growth of useful smart card applets for 

the new Estonian ID-card. In addition, the amount and potential severity of threats that 

allowing third-party applets on the Estonian ID-card would introduce is currently not 

completely clear. The purpose of this chapter is to make suggestions on what and how the 

Estonian authorities should disclose to third parties, and what potential threats should be 

eliminated before allowing the deployment of applets on the ID-cards, thus answering the 

research question RQ-3: How should third parties be allowed to develop and 

prototype applets on the new ID-cards? 

5.2 Aiding Application Providers 

In order to aid the development of third-party applets for the new Estonian ID-card, it 

would be useful to have related information publicly available. This information could 

be, for example, card capabilities, supported cryptographic algorithms and Java Card API 

compliance. Information on and availability to the proprietary API is also crucial. 

5 Applet Development and Management Suggestions  



46 

As a card’s functionality is limited by the manufacturer in terms of Java Card API 

compliance and supported algorithms, it is their task to provide functionality through the 

proprietary API, if demanded by the card issuer, in our case the Estonian authorities. 

Having this information publicly available, and sharing access to proprietary APIs is a 

prerequisite for allowing third parties to engage with the ID-card meaningfully. If access 

is not granted, the full potential of the ID-card is just not used. 

The technical description of the new ID-card [7] encloses top-level details of the card, the 

PKI application, and describes entities interacting with the card. The document currently 

describes three entities: 

1. Cardholder – the natural person to whom the authentication key belongs and to 

whom the usage is reserved. Authentication to the document is only possible with 

knowing the PIN1 code. In Estonian use-cases, the Cardholder, Signatory and 

Administrator Cardholder are the same natural person, to whom PIN1, PIN2 and 

PUK are given. 

2. Signatory – the natural person to whom the signature key belongs, and to whom 

the usage is reserved. Authentication to the document is only possible with 

knowing the PIN2 code. 

3. Administrator – an entity managing contents of the card, without the right to use 

credentials. Supervision of an administrator allows performing key generation, 

key import, key export, PIN personalisation and resetting PIN retry counter. In 

Estonian documents, the Cardholder and Police are administrative entities with 

different privileges granted. 

The three (or four, including the Police) described entities do not include Application 

Providers, as defined by GlobalPlatform and described in Section 2.1.1. From the PKI 

application point of view an Application Provider is not connected as such, but since the 

document should describe entities that “will interact with Estonia eID Documents, with 

different privileges and security requirements” [7], the author of this thesis strongly 

believes that a section dedicated to Application Providers, with possible use-cases 

including them, should be described. 



47 

This thesis attempts installing applets on the Estonian ID-cards through 

GlobalPlatformPro. End-users, i.e. regular citizens seeking to install something useful on 

their ID-cards most probably will not be directed to use GlobalPlatformPro or other 

developer-oriented tools. If installing applets was made a free choice for citizens 

themselves, it most probably will be through the ID-card software developed by the 

Estonian authorities. This software currently only deals primarily with the PKI 

application of the ID-card. Thus, the software should be upgraded to include a subset of 

the functionality in GlobalPlatformPro. 

For applets to be made accessible to citizens, regardless of if the previously described 

case was to become a reality or if they will be installed without consent some other way, 

they first need to be approved. Approval of an applet should only be followed by rigorous 

validation and verification of the applet’s code. A subset of possible aspects of the 

application or the card itself that should be verified is described in Section 5.4. But, 

knowing exactly what will be validated by the authorities could either be beneficial or 

harmful. If Application Providers knew exactly what is validated and what an applet can 

and is allowed do, it is much easier to develop applets that comply to all requirements and 

restrictions from the start, without wasting precious time on fixing issues and revalidating 

the new fixed versions later on. Knowing every requirement an applet should comply to, 

however, also opens the possibility of trying to exploit aspects that are not being 

validated, at least according to the knowledge disclosed to Application Providers. A 

malicious applet could get lucky and slip past validation, allowing the deployment of the 

applet on unsuspecting citizens’ ID-cards. 

5.3 Managing Access and Privileges 

The subject of this section, i.e. possible scenarios for managing access and privileges of 

Application Providers, has been slightly discussed in this thesis, for example in Section 

3.4. In order to have a better understanding of the choices available, other scenarios 

should be discussed as well, each with their advantages and disadvantages. 

But before discussing scenarios of what the privileges of Application Providers could be, 

the ecosystem should also be envisioned from the citizen’s viewpoint. After all, if an 

Application Provider develops great applets, and citizens cannot access them, discussing 

the rights of developers would not make sense. 



48 

As proposed in the previous section, access to applets could be made available through 

the ID-card software developed by the Estonian authorities. Developed applets could be 

sent to RIA, be verified, and uploaded to a database where the ID-card software would 

have access to. This eliminates the need for updating the software every time a new applet 

is uploaded or an old one is updated. Verified applets could then be installed on a citizen’s 

connected ID-card.  

But questions arise regarding applets already installed on a card. What if an applet 

receives an update – are citizens asked to update immediately after inserting an affected 

ID-card, or will it be done for security reasons without any input? What if an applet is 

deemed malicious after being verified and uploaded to the ecosystem – will it be 

uninstalled immediately after connecting to the ID-software? What if one has not had 

access to the software in a long time, and his/her ID-card is filled with outdated and/or 

malicious applets? Who will be blamed and responsible for covering losses if any 

protected data gets exported from the card, or the card is bricked by malicious software? 

What if a card is injected with a malicious piece of code, and using the card breaks a 

reader and/or infiltrates a whole information system behind the reader, rendering the 

unsuspecting citizen an accomplice in a crime? 

The installation of verified applets could be made a choice for citizens through the ID-

card software. It could also be, that free choice is not given to the citizens at all, but rather, 

applets deemed “useful enough” would just be installed, updated or uninstalled from the 

ID-card at whatever time the Estonian authorities wish. As most probably the market will 

not become filled with tens of applets, and all useful applets would fit on a card, this 

scenario would make the most sense either way. Fitment regarding memory is important, 

because as stated in 2.1.1, a smart card has very limited resources, severely restricting the 

number of applets that can be installed. 

Having proposed two plausible solutions for applet installation from citizen’s viewpoint, 

the Application Providers’ options can be discussed. For live ID-cards, keeping in mind 

that installation will be carried out through the ID-card software, no access or privileges 

should really be provided to Application Providers for any kind of content management. 

The only case in which privileges should be assigned is during prototyping with test ID-

cards, as is the case with this thesis. 



49 

The first, most loose option, would be to provide all keys required to make content 

changes, including adding new Security Domains, changing keys, installing and deleting 

applets without restrictions, etc. The same scenario was handed to the author of this thesis. 

This would be the most hassle-free for developers and officials alike, adding no extra 

complexity before submitting an applet up for verification. Before handing keys to an 

Application Provider, they must be validated, reducing the risk of the developers going 

rogue. This can be done, for example, by signing a non-disclosure agreement digitally 

with ones existing ID-card. This scenario would help accelerate prototyping on test ID-

cards, as Application Providers would not need to get authorisation for every little change 

made to a card. It would also be best suited for security testing if researchers show interest 

in finding possible vulnerabilities that would otherwise be harder to access. It could, 

however, allow developers with wrong intentions to snoop around a card that is 

configured similarly to real ID-cards, and test potential vulnerabilities before attempting 

them on real cards. 

The second option would be to provide a sandbox for each Application Provider on a test-

card, meaning that RIA would have to install a unique Supplementary Security Domain 

on a test-card before handing it over to the Application Provider. Next, there are two 

choices available for RIA – either they supply the Application Provider with a DM private 

key to freely manage contents in the aforementioned Domain, or not. If a DM private key 

is not provided, the Application Provider would have to send the applet for review and 

receive a unique Token authorising each of the content management commands 

separately. This scenario would require adding the functionality to GlobalPlatformPro 

(including Token data as-is, not generate it through a DM private key, as this thesis has 

implemented it). It would also require much more time for prototyping, as it very much 

depends on the speed of the verification process. 

The scenario where a citizen can freely select applets from the ID-software and 

Application Providers are given a Delegated Management key to develop applets without 

restrictions during prototyping is depicted in Figure 16. 



50 

5.4 Potential Threats 

It is unclear whether the new Estonian ID-cards include countermeasures for all possible 

published attack vectors. And to the knowledge of the author, no publications have been 

made available that prove this card’s security or lack thereof. Proving the security of the 

ID-card is beyond the scope of this thesis, but instead, the section will attempt to list some 

of the vulnerabilities of smart cards that could pose a threat to the ID-cards, hopefully 

motivating the Estonian authorities to include checks for these threats in validation of all 

Application Provider applets and the card itself. As the main interest of this thesis is the 

contactless interface on the new Estonian ID-card, and third-party applets that could be 

deployed on the card, threats related to these two aspects are focused on.  

Lackner et al. [25] nicely categorise attacks on Java Card into three large groups: physical 

attacks, observation attacks and fault attacks. Physical attacks feature removing different 

physical layers of a Java Card chip by etching and gaining access to different digital or 

 

Figure 16. Scenario of applet development and installation on citizen ID-cards. 



51 

analogue hardware blocks. Observation attacks are non-invasive attacks exploiting the 

notion that computation is executed on the card itself – these computations consume a 

varying amount of power, during a varying amount of time, and targeting various 

segments of the architecture. This enables drawing conclusions about the card’s internals 

by observing these processes. Fault attacks are provoked by running a chip beyond its 

technical specifications, disturbing cryptographic operations and behaviour of the Java 

Card VM.  

Section 2.3 describes three publications of threats that could be exploited over the 

contactless interface. Additionally, Kfir et al. [26] present a relay attack on RFID-enabled 

smart cards, using a system that first fakes a card to a genuine reader, relays the 

information to the second part of the system, which then fakes a reader to a genuine card, 

creating a bidirectional communication channel between a genuine reader and a victim 

card. The channel provides transparent communication at a range much greater than the 

nominal system range. This breaks the inherent assumption that contactless 

communication is as secure as contact communication (the card physically present in a 

reader’s slot is the card that is communicating with the reader and it was presented by the 

person in front of the reader), since systems based on the ISO-14443 standard are 

designed to operate over a distance of up to 10 cm – the designed system allows the 

distance between a reader and a card to be practically unlimited. The authors propose a 

Faraday-cage product to shield contactless smart cards against attackers or having an on-

card input mechanism to physically activate a card. The first one would be advisory to all 

ID-cards, the second one cannot be done on already issued cards. 

Oren et al. [27] deploy a similar solution for relay attacks on RFID-enabled smart cards, 

using two different antennas and RF front ends, but the authors also see that this range 

extension scenario can be used with good intentions, for example for handicapped persons 

sitting in a wheelchair with limited access to readers, or at car parking lots which enable 

access through reading RFID tags, where the reader is often difficult to reach from the 

driver’s seat. 

As described in Section 2.3, Sportiello [20] carries out side-channel analysis through 

timing analysis during BAC operations, revealing that the results can be exploited to 

retrieve the chip’s content. Markantonakis et al. [28] describe side channel analysis by 

observing the power consumption of a card over time. As consumption depends on the 



52 

type of instruction being executed and the data being manipulated, an attacker could 

derive key values by simply inspecting the power consumption. What is more, 

Markantonakis et al. also describe fault analysis from fault injection, for example with 

abnormal signals, to allow deriving information of keys being used. These two attacks, 

however, require direct access to the card, and cannot be carried out only through the 

contactless interface. The authors propose several countermeasures to prevent side 

channel analysis: constant execution (conduct operations in a constant order irrespective 

of data), random delays (requiring an attacker to synchronise acquisitions a posteriori), 

randomisation or data whitening (values presented in memory are always masked with a 

random value) and randomised execution (randomise order of function execution where 

possible, removing correlation between data being manipulated and an observed side 

channel). 

Iguchi-Cartigny et al. [10] prove the proposal of Hyppönen [29] to exploit static 

instructions and the CAP-file reference location component, leading to reference 

spoofing. The authors present a Trojan-like applet to for Java Cards, allowing self-

mutable code, and modifying other applications. The attack is based on two hypotheses, 

which the Estonian ID-card could support, given the right scenario of applet installation: 

firstly, post-issuance is allowed and necessary credentials are provided, and secondly, 

there is no bytecode verifier on the card. This applet enables searching and replacing any 

code fragment in the memory, even if the memory segment is protected by Java Card 

security mechanisms. This also breaks the segregation properties provided by the firewall. 

The authors illustrate that the Trojan applet could search any code pattern in system 

memory and change it, for example replacing a call to OwnerPIN.check method by nop 

instructions, rendering PIN codes useless. The authors describe loading time 

countermeasures (detecting modifications of a CAP file and using on-card type 

verification to detect ill-formed bytecodes) and runtime countermeasures (detecting 

illegal memory access). 

There could also be more far-fetched approaches. On October 24, 2018, PPA filed a 

lawsuit against Gemalto AG, since the latter had violated important requirements in the 

production of the Estonian ID-card. Gemalto AG was the company that for more than 15 

years had been producing the ID-card. One of the most important aspects and 

requirements for security is that the private keys are generated on the chip itself, not 

outside of the chip. But Gemalto AG had not been meeting this requirement from January 



53 

2011 to October 16, 2014. Scientists from the University of Tartu and experts from AS 

Cybernetica contributed to the discovery of this, explaining that some of the private keys 

were generated outside of the chip [30]. The possibility of a similar issue seems unlikely, 

but since other quoted attacks have also used proprietary implementation weaknesses, the 

ID-card could again be targeted due to not following agreements. 

More recently, Lancia et al. [31] present a new flaw in the Java Card bytecode verifier 

from versions 2.2.2 to 3.0.5, where an external dependency check is missing between the 

Class component and the Descriptor component, two of twelve components that compose 

a CAP file. These external checks validate that redundant information specified in 

different components are compliant with one another. This allows controlling method 

offset to the header in bytecode, causing an overflow that brings the VM outside of the 

Class component and to trigger unverified bytecode execution in an applet that is already 

verified by the bytecode verifier. Finally, the authors gained full read/write OS privileges 

on the entire card’s memory. As the ID-card is compliant with version 3.0.4, this attack 

could be possible, if proprietary countermeasures are not installed. Searching for 

proposed countermeasures, however, revealed an inconsistency in the work. The authors 

state at the beginning of their work that they propose a countermeasure to prevent their 

attack, but in the end, they state that after disclosure of the issue to Oracle, a new version 

of the bytecode verifier was released that fixes their presented attack (version 3.0.5u1), 

checking Class component inconsistency.   

Many of the software-level vulnerabilities are traced back to a faulty verification of 

bytecode, as was the previous one, or the lack of an on-card verifier. Different solutions 

are suggested, for example, Lackner et al. [25] propose a defensive VM for Java Cards 

by adding additional hardware, namely bound, type, control flow and data integrity 

protection units, into a card. This hardware implementation has an execution time 

overhead of 4% compared to having none. A comparable software implementation would 

have an overhead of 159%. This, unfortunately, is not possible on the current new ID-

cards, since their hardware implementation is set. However, on a new generation of cards, 

this solution should be considered. 

We feel there is one more possibility for reducing the risk of allowing malicious code 

installed on the ID-card – code whitelisting. Though we could not find any publications 

on whitelisting (or blacklisting) Java Card code, a blacklist could be made by collecting 



54 

bytecode patterns that are connected to published exploits. An applet’s code can be 

validated against it during verification, throwing a flag if a pattern is matched, indicating 

that a closer look is required. The Estonian authorities could also use tools to be shared 

with Application Developers to prevent false positives. For example, CheckStyle1 is a 

popular tool to enforce code conventions in Java, and has been used in several 

publications [32]–[35]. With a custom configuration of CheckStyle that is freely shared, 

fishy code can be automatically detected and fixed by Application Providers before 

submitting it for verification, reducing even more time required for fixes and 

resubmission. 

5.5 Discussion 

The main objective of Chapter 5 is to discuss the scenario of the Estonian authorities 

opening up the new ID-cards to third-party applets, and what should be done to reach that 

goal. We discussed enhancements to documentation and what should be disclosed to third 

parties in order to help them in their applet development, but these suggestions are rather 

subjective, and other developers will most probably have views that differ from ours. We 

also discussed use-cases for citizens and developers if the cards were to be opened to 

applets – we did not go very deep in terms of technical details regarding how and what 

should be done, but rather, envisioned how the relationships work between different 

parties in the whole cycle. Lastly, we made the reader aware of different types of 

vulnerabilities to Java Card smart cards, in particular regarding the contactless interface 

and software. The literature on the topic is vast, and we most definitely did not cover 

every possible threat, but rather, we tried to cover different categories of attacks. 

5.6 Conclusion 

Chapter 5 covers the occasion of when third-party applet development on the ID-cards 

will be opened to Application Providers. First, enhancements to existing documentation 

are suggested. In addition, resources required for meaningfully developing applets for the 

ID-cards are discussed. Next, possible scenarios of enabling applet installation on 

                                                 

 

 

 

1 http://checkstyle.sourceforge.net/ 

http://checkstyle.sourceforge.net/


55 

citizens’ ID-cards are presented, followed by privileges that should be assigned to 

Application Providers during prototyping. Finally, publications on Java Card threats and 

vulnerability countermeasures are discussed, denoting the importance of security when it 

comes to allowing third parties’ code on the new ID-cards. 

 



56 

An evaluation of the Delegated Management enhancements made to GlobalPlatformPro 

was made in two steps. First, the enhancements were not simply merged into the project, 

but a fork was made of the project in GitHub, development was carried out on the fork, a 

draft pull request was made on the GlobalPlatformPro project and progress was constantly 

reviewed and verified by the maintainer of the project, Martin Paljak, before finally 

approving the pull request and merging the fork. Secondly, the enhancements were 

validated and demonstrated in Chapter 4 by attempting installation of an applet on the test 

ID-card, which required an appended Delegated Management Token with the content 

management commands. 

To evaluate the results of this thesis with the Estonian authorities, a set of questions was 

constructed and sent to Andrei Kargin, the eID product manager at RIA, who has been 

the main contact from RIA during writing this thesis. The questions and answers are listed 

as follows: 

1. Would you use the descriptions on applet development and installation in this 

thesis to put together instructions for Application Providers if the cards are opened 

to applets in the future? What would you change in the descriptions? 

Answer: I would use this thesis as input in a public procurement for a “central service for 

adding applications to ID-cards”. The official instructions will be uploaded by RIA with 

a working development environment (which was initially our plan). 

2. Are the scenario suggestions (in Section 5.3) for applet installation regarding 

citizens, and applet development regarding Application Providers viable in your 

view? Why? 

Answer: I would supplement the depicted process in Figure 16 with an RCM (Remote 

Card Manager) service [(extra step between “ID-software” and “Applet database”, 

depicted in Figure 17)]. The “ID-software” in this figure would be the DigiDoc4 software 

that is currently used, with built-in functionality for managing applications on ID-cards. 

6 Evaluation 



57 

A good idea (which already is a project outsourced by RIA) is creating a test environment 

for developers, where a test configuration of DigiDoc4 can use a test RCM chain with 

simplified (developer portal) uploading of applets to a Test Applet database. 

3. Were you aware of all the vulnerabilities to smart cards outlined in Section 5.4? 

If not, are they now on your checklist for verification before allowing third-party 

applets on the ID-cards? 

Answer: RIA will most certainly engage in a thorough security analysis regarding RFID 

(NFC) usage. Every possible risk connected to protocols and the cards will be evaluated. 

In parallel, the information that can be read over the contactless interface must be 

researched. If the question is “does RIA know of every possible vulnerability” then the 

answer is NO. This thesis helps us to better and more thoroughly evaluate possible threats. 

4. Are the suggested blacklist (or whitelist) for bytecode instructions and CheckStyle 

configurations during development viable options to use during and before applet 

verification? Why? 

Answer: I would leave this question unanswered. This highly depends on the development 

process, code auditing and CAP file compilation process (who and how). 

6.1 Related Work 

Covering related works to this thesis could include other tools for GlobalPlatform card 

content management and security analyses of identity documents and smart cards. As 

Sections 2.3 and 5.4 already cover security analyses by mapping threats and 

  

Figure 17. Modified applet installation scenario section. 

 



58 

countermeasures, this section will focus on introducing other open-source tools meant for 

content management on GlobalPlatform smart cards. 

The GlobalPlatformPro project already lists a few similar projects that are available in its 

README.md file, for example, GPJ1, which Paljak [36] states is the ancestor of the code 

in GlobalPlatformPro. The project was forked since “messing with cryptic script files was 

not nice and I wanted to have a simple, open source, usable and native-to-the-rest-of-

development-environment (Java) toolchain” [36]. The GPJ project, however, is fairly 

outdated, with the latest update being in 2015. The project itself also refers to Paljak’s 

GlobalPlatformPro as the continuation of their project. 

There are also several other projects independent of GPJ, for example, GPShell2. This 

project is written in C, and as [36] states, it is often referred to as the de facto open-source 

implementation for GlobalPlatform. A quick search on Google with the phrase 

‘"globalplatformpro" site:stackoverflow.com’ also shows roughly 100 fewer results than 

the phrase ‘"gpshell" site:stackoverflow.com’. Usage is a bit more complicated than 

GlobalPlatformPro, however, since it requires compilation of several components before 

usage and it does not provide a direct command-line utility. This could also explain the 

larger amount of search results on Stack Overflow3 when comparing to 

GlobalPlatformPro – the ease of use of the latter could also mean requiring less 

discussions on the popular developer portal. The project is updated regularly. 

GlobalPlatform.NET4 is a project written in C#. The project has a very nice fluent 

interface, for example, a Delete command can be constructed with the code segment 

depicted in Figure 18. The main downside to the project currently is that it only supports 

SCP02, deeming it unsuitable for many cards. The last update was on the 21st of May, 

2018. 

                                                 

 

 

 

1 http://gpj.sf.net 

2 https://sourceforge.net/projects/globalplatform/ 

3 https://stackoverflow.com/ 

4 https://github.com/jamesharling/GlobalPlatform.NET 

http://gpj.sf.net/
https://sourceforge.net/projects/globalplatform/
https://stackoverflow.com/
https://github.com/jamesharling/GlobalPlatform.NET


59 

 

1. DeleteCommand.Build   
2.   .DeleteCardContent()   
3.   .WithAID(aid)   
4.   .AndRelatedObjects()   
5.   .UsingToken(token)   

Figure 18. GlobalPlatform.NET fluent API Delete command [37]. 

 

As the author of the current thesis is most comfortable with Java, and we had the 

invaluable support of Martin Paljak during writing, it made the most sense to use the 

open-source GlobalPlatformPro project and add Delegated Management support to it for 

managing contents on the new ID-cards. 



60 

7.1 Conclusion 

The main research question we wanted to answer was: How to develop third-party 

applets for the new Estonian ID-cards? We set out working on this thesis with the main 

goal of showing that third-party applets can indeed be developed and installed on the new 

Estonian ID-cards (or the test versions that are identically configured). The Estonian 

authorities had not yet been able to test this assumption when we first approached them, 

and it was agreed that a proof-of-concept would be very helpful to them. This thesis 

managed to take one of the most popular tools for content management on GlobalPlatform 

cards, GlobalPlatformPro, and add the Delegated Management functionality that was 

missing. This implementation allows authorising content management with the Load, 

Install, Make Selectable, Extradition and Delete Tokens appropriately. Support for these 

commands was required for successfully managing content on the test ID-card’s 

Supplementary Security Domains, as they have DM privilege enabled. During adding 

DM support, we also took the opportunity to partly reformat the code of 

GlobalPlatformPro, in order to make it easier to grasp for newcomers, improve 

readability, remove duplication and avoid possible faults due to misconception. This 

reformatting allowed adding the DAP verification functionality to the install command. 

As a result, the enhancements to the tool allowed installation and demonstration of an 

applet emulating an NDEF tag on the test ID-card’s Supplementary Security Domain. We 

described all the required commands to successfully install an applet on the test ID-cards. 

During attempting installation, we discovered that the DM RSA public key that was 

installed on the ISD of the test ID-cards was different from the one that was said to be 

installed. Fortunately, we were able to replace the keys by ourselves, the process of which 

was also described. On production cards this fix will not be possible for developers, 

meaning that the Estonian authorities must ensure that the keys are valid before issuing 

cards to citizens, and to update any invalid keys that may have already been issued to 

citizens.  

7 Conclusion and Future Work 



61 

Next, as the Estonian authorities had not yet decided on if and how they will open the ID-

cards to third-party applets, this thesis made suggestions on what information to disclose 

to developers, envisioned scenarios of safe applet development and installation for the 

ID-cards, and mapped vulnerabilities to smart cards that should be considered and to 

which resistance should be verified before opening the cards to third-party applets. 

In conclusion, all of the research questions we set out with in Section 1.2.1 were 

answered. We hope the contributions of the current thesis are adequate for accelerating 

the work of the Estonian authorities and providing tool support for evaluating third-party 

applets on the new ID-cards. Hopefully, this thesis will help to one day open the ID-cards 

to useful third-party applets that will implement innovative use-cases, involving more 

people to use their ID-cards daily and replace the dozens of separate smart cards that each 

currently only serve one very specific task.  

7.2 Future Work 

The current addition of DM support in GlobalPlatformPro works as expected for the 

functionality initially required, but several use-cases remain to be covered. For example, 

adding a token as-is to the commands, and not calculating it dynamically, is an option 

that would be used if a third-party is not provided full access to a Security Domain, but 

rather RIA would authorise single content management actions for a specific applet to an 

Application Provider. 

Also, as stated in Section 3.4, GlobalPlatform specifies Tokens for Registry Update and 

a combined Load, Install and Make Selectable Token, which this thesis does not 

implement. The latter of these would make most sense to apply in the previously 

described use-case where third parties do not have possession of any keys for unlimited 

access on a Security Domain, and RIA would otherwise have to generate a set of three 

tokens for every new request – a Load Token, an Install Token and a Make Selectable 

Token. 

In addition, it is clear from working with the code of GlobalPlatformPro that it is not very 

easily readable, and thus not friendly to newcomers. For example, the project’s classes 

currently are listed under a single package, rendering most of the different access 

modifiers on variables and methods misleading. Also, some methods are described with 



62 

comments, some with Javadoc. Additionally, method and variable naming is inconsistent 

(some as camelCase, some as lowercase with underscore separators) and, occasionally, 

too laconic or abstract (using abbreviations for GlobalPlatform concepts that are not 

abbreviated in the specification). What is more, some static parameters are not defined 

separately as literals, obfuscating their meaning and requiring paying close attention to 

the GlobalPlatform specification, reading and comparing every code line to the 

specification (for example, using “0x01” as-is for the LOAD instruction P1 parameter 

instead of referencing something like “static final byte P1_MORE_BLOCKS = 0x01”). 

This increases the learning curve drastically and lengthens the time that developers new 

to the project can start working on fixes or improvements. 

Furthermore, using a code analysis tool, preferably as an IDE extension, such as 

SonarLint1, could drastically improve code quality, consistency, readability and style, in 

addition to fixing critical code smells without too much work. For example, analysing the 

project with a default configuration of the SonarLint plugin v4.0.2.3009 in IntelliJ IDEA 

reveals 571 issues in 19 out of 23 project files (in GlobalPlatformPro release 19.01.22). 

Additionally, requiring all contributors to follow a “best-practices” approach to coding, 

such as those proposed by Robert C. Martin [38], would additionally improve readability 

and maintainability. To more easily help enforce these style conventions, a CheckStyle 

configuration can be adopted, as suggested at the end of Section 5.4. 

Section 5.4 discusses existing publications regarding attacks against and vulnerabilities 

in Java Card smart cards. The existence of the discussed vulnerabilities, or any other 

publications in the Java Card security community, is unknown for the new Estonian ID-

cards. It is important to verify the resistance against known attacks for the security of the 

ID-card and the Estonian citizens holding the card, before allowing installation of third-

party applets on them. And since demanding resistance to every known attack is quite 

simply unnecessary, providing means to reduce risks during development and verification 

should mainly be focused on. 

                                                 

 

 

 

1 https://www.sonarlint.org/ 

https://www.sonarlint.org/


63 

7.3 Summary 

This thesis took on the task of proving the possibility of application deployment and 

development on the new generation of Estonian ID-cards, enclosing multi-application 

support and an NFC contactless interface. Reaching this goal first required choosing a 

tool enabling content management on GlobalPlatform compliant Java Card smart cards. 

The tool we chose was GlobalPlatformPro, which seems to be one of the most popular 

open-source tools available. This tool, however, lacked support for Delegated 

Management, an authorisation concept introduced in the GlobalPlatform specification. 

This was required since the Supplementary Security Domains installed on the cards have 

to have Delegated Management privilege enabled, meaning that a special authorisation 

Token must be appended to all content management commands sent to the Domain. 

Support for Delegated Management was implemented, and this allowed us to take an 

existing Java Card applet using the NFC functionality and deploy it on a test version of 

the ID-card, configured similarly to how the real cards are issued. After implementing the 

functionality, we described the required commands to successfully deploy an applet on a 

test ID-card. Next, after successfully deploying and demoing an applet on a test ID-card, 

we took on the task of assisting the Estonian authorities in actually opening this newfound 

functionality up to third parties interested in developing new useful applications for the 

ID-cards. For this, we suggested enhancements to documentation, resources for 

disclosure, scenarios for safe application management for citizens and safe applet 

development for developers, and finally, we mapped threats to smart cards and suggested 

countermeasures to help the Estonian authorities reduce the risk of opening the ID-cards 

to third-party applets. 

 

 



64 

 

[1]  “What is Digi-ID,” [Online]. Available: https://www.id.ee/index.php?id=34410. 

[Accessed 15 April 2019]. 

[2]  A. Pau, “Eesti saab uue ID-kaardi,” Postimees, 24 September 2018. [Online]. 

Available: https://tehnika.postimees.ee/6412572/eesti-saab-uue-id-kaardi. 

[Accessed 1 Decemeber 2018]. 

[3]  Oracle, “Java Card 3 Platform Runtime Environment Specification, Classic 

Edition Version 3.0.5,” May 2015. [Online]. Available: 

https://docs.oracle.com/javacard/3.0.5/JCCRE/JCCRE.pdf. [Accessed 25 February 

2019]. 

[4]  G. Bouffard and J.-L. Lanet, “Reversing the operating system of a Java based 

smart card,” Journal of Computer Virology and Hacking Techniques, vol. 10, no. 

4, pp. 239-253, 2014.  

[5]  V. Guyot, “Smart card, the stealth leaker,” Journal in Computer Virology, vol. 8, 

no. 1-2, pp. 29-36, 2012.  

[6]  W. Rankl and W. Effing, Smart card handbook, John Wiley & Sons, 2004.  

[7]  Republic of Estonia Information System Authority, “Estonia ID1 Chip/App 2018 

Technical Description,” 2018. [Online]. Available: 

https://installer.id.ee/media/id2019/TD-ID1-Chip-App.pdf. [Accessed 1 December 

2018]. 

[8]  GlobalPlatform, “GlobalPlatform Card Specification 2.2.1,” June 2011. [Online]. 

Available: https://members.globalplatform.org/kws/specifications/ 

store_items_from_woocommerce/ GPC_Specification-2.2.1.pdf. [Accessed 13 

January 2019]. 

[9]  GlobalPlatform, “GlobalPlatform Card Specification 2.3.1,” March 2018. 

[Online]. Available: https://members.globalplatform.org/kws/specifications/ 

store_items_from_woocommerce/ 

GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf. [Accessed 13 January 

2019]. 

[10]  J. Iguchi-Cartigny and J.-L. Lanet, “Developing a Trojan applet in a Smart Card,” 

Journal in computer virology, vol. 6, no. 4, pp. 343-351, 2010.  

[11]  Riigi Infosüsteemi Amet, “RIA-lt saab süsteemide testimiseks tellida uue ID-

kaardi testkaardi,” [Online]. Available: https://www.ria.ee/et/uudised/ria-lt-saab-

susteemide-testimiseks-tellida-uue-id-kaardi-testkaardi.html. [Accessed 7 May 

2019]. 

[12]  B. E. G. Gomes, A. M. Moreira and D. Déharbe, “Developing Java card 

applications with B,” Electronic Notes in Theoretical Computer Science, vol. 184, 

pp. 81-96, 2007.  

[13]  Republic of Estonia Information System Authority, “EstEID v 3.5 Estonian 

Electronic ID card application specification,” 14 March 2017. [Online]. Available: 

References 



65 

https://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf. 

[Accessed 7 May 2019]. 

[14]  Oracle, “Java Card API, Classic Edition, Version 3.0.5,” [Online]. Available: 

https://docs.oracle.com/javacard/3.0.5/api/. [Accessed 10 April 2019]. 

[15]  GlobalPlatform, Contactless Services; Card Specification v2.3 - Amendment C; 

Version 1.2.1.5 (target 1.3), 2019.  

[16]  T. S. Messerges, E. A. Dabbish and R. H. Sloan, “Examining smart-card security 

under the threat of power analysis attacks,” IEEE transactions on computers, vol. 

51, no. 5, pp. 541-552, 2002.  

[17]  G. Avoine, A. Beaujeant, J. Hernandez-Castro, L. Demay and P. Teuwen, “A 

survey of security and privacy issues in ePassport protocols,” ACM Computing 

Surveys (CSUR), vol. 48, no. 3, p. 47, 2016.  

[18]  T. Chothia and V. Smirnov, “A traceability attack against e-passports,” in 

International Conference on Financial Cryptography and Data Security, 2010.  

[19]  T. Chothia, Y. Kawamoto and C. Novakovic, “A tool for estimating information 

leakage,” in International Conference on Computer Aided Verification, 2013.  

[20]  L. Sportiello, “ePassport: Side Channel in the Basic Access Control,” in 

International Workshop on Radio Frequency Identification: Security and Privacy 

Issues, Springer, 2015, pp. 173-184. 

[21]  A. Gkaniatsou, F. McNeill, A. Bundy, G. Steel, R. Focardi and C. Bozzato, 

“Getting to know your card: reverse-engineering the smart-card application 

protocol data unit,” Proceedings of the 31st Annual Computer Security 

Applications Conference, pp. 441-450, 2015.  

[22]  C. Bozzato, R. Focardi and F. S. G. Palmarini, “APDU-level attacks in PKCS#11 

devices,” in International Symposium on Research in Attacks, Intrusions, and 

Defenses, 2016.  

[23]  I. Albrecht, “OpenJavaCard/openjavacard-ndef: NDEF tag implementation for 

JavaCard,” [Online]. Available: https://github.com/OpenJavaCard/openjavacard-

ndef. [Accessed 17 April 2019]. 

[24]  Code Blog Bt, “The principle of elliptic curve ECC ECDH & JavaCard 

implementation,” [Online]. Available: 

https://www.codeblogbt.com/archives/459881. [Accessed 18 April 2019]. 

[25]  M. Lackner, R. Berlach, M. Hraschan, R. Weiss and C. Steger, “A defensive java 

card virtual machine to thwart fault attacks by microarchitectural support,” in 

2013 International Conference on Risks and Security of Internet and Systems 

(CRiSIS), 2013.  

[26]  Z. Kfir and A. Wool, “Picking virtual pockets using relay attacks on contactless 

smartcard,” in First International Conference on Security and Privacy for 

Emerging Areas in Communications Networks (SECURECOMM'05), 2005.  

[27]  Y. a. S. D. a. W. A. Oren, “Range extension attacks on contactless smart cards,” in 

European Symposium on Research in Computer Security, 2013.  

[28]  K. Markantonakis, M. Tunstall, G. Hancke, I. Askoxylakis and K. Mayes, 

“Attacking smart card systems: Theory and practice,” Information Security 

Technical Report, vol. 14, no. 2, pp. 46-56, 2009.  

[29]  K. Hyppönen, “Use of cryptographic codes for bytecode verification in smartcard 

environment,” Mémoire de master, Université de Kuopio, 2003.  



66 

[30]  Delfi, “ID-kaartide tootja Gemalto: PPA 152 miljoni nõue on 

ebaproportsionaalselt suur,” 27 September 2018. [Online]. Available: 

http://www.delfi.ee/news/paevauudised/eesti/id-kaartide-tootja-gemalto-ppa-152-

miljoni-noue-on-ebaproportsionaalselt-suur?id=83833885. [Accessed 1 December 

2018]. 

[31]  J. Lancia and G. Bouffard, “Java card virtual machine compromising from a 

bytecode verified applet,” in International Conference on Smart Card Research 

and Advanced Applications, 2015.  

[32]  M. Smit, B. Gergel, H. J. Hoover and E. Stroulia, “Code convention adherence in 

evolving software,” in 2011 27th IEEE International Conference on Software 

Maintenance (ICSM), 2011.  

[33]  S. V. Yulianto and I. Liem, “Automatic grader for programming assignment using 

source code analyzer,” in 2014 International Conference on Data and Software 

Engineering (ICODSE), 2014.  

[34]  Z. Lubsen, A. Zaidman and M. Pinzger, “Using association rules to study the co-

evolution of production & test code,” in 2009 6th IEEE International Working 

Conference on Mining Software Repositories, 2009.  

[35]  P. Louridas, “Static code analysis,” IEEE Software, vol. 23, no. 4, pp. 58-61, 

2006.  

[36]  M. Paljak, “GlobalPlatformPro,” [Online]. Available: 

https://github.com/martinpaljak/GlobalPlatformPro. [Accessed 3 May 2019]. 

[37]  “GlobalPlatform.NET,” [Online]. Available: 

https://github.com/jamesharling/GlobalPlatform.NET. [Accessed 4 May 2019]. 

[38]  R. C. Martin, Clean code: a handbook of agile software craftsmanship, Pearson 

Education, 2009.  

 

 



67 

1. package pro.javacard.gp;   
2.    
3. import joptsimple.OptionSet;   
4. import pro.javacard.AID;   
5.    
6. import javax.smartcardio.CardException;   
7.    
8. import static pro.javacard.gp.GPCommandLineInterface.OPT_DAP_DOMAIN;   
9. import static pro.javacard.gp.GPCommandLineInterface.OPT_TO;   
10.    
11. public class DAPProperties {   
12.     private AID targetDomain = null;   
13.     private AID dapDomain = null;   
14.     private boolean required = false;   
15.    
16.     public DAPProperties(OptionSet args, GlobalPlatform gp) throws CardException, 

GPException {   
17.         // Override target and check for DAP   
18.         if (args.has(OPT_TO)) {   
19.             targetDomain = AID.fromString(args.valueOf(OPT_TO));   
20.             if (gp.getRegistry().getDomain(targetDomain) == null) {   
21.                 throw new GPException("Specified target domain is invalid: " +    

targetDomain);   
22.             }   
23.             if (gp.getRegistry().getDomain(targetDomain).getPrivileges()  

.has(GPRegistryEntry.Privilege.DAPVerification))   
24.                 required = true;   
25.         }   
26.    
27.         // Check if DAP block is required   
28.         for (GPRegistryEntryApp e : gp.getRegistry().allDomains()) {   
29.             if (e.getPrivileges() 

.has(GPRegistryEntry.Privilege.MandatedDAPVerification))   
30.                 required = true;   
31.         }   
32.    
33.         // Check if DAP is overriden   
34.         if (args.has(OPT_DAP_DOMAIN)) {   
35.             dapDomain = AID.fromString(args.valueOf(OPT_DAP_DOMAIN));   
36.             GPRegistryEntry.Privileges p = gp.getRegistry().getDomain(dapDomain) 

.getPrivileges();   
37.             if (!(p.has(GPRegistryEntry.Privilege.DAPVerification) ||             

p.has(GPRegistryEntry.Privilege.MandatedDAPVerification))) {   
38.                 throw new GPException("Specified DAP domain does not have         

(Mandated)DAPVerification privilege: " + p.toString());   
39.             }   
40.         }   
41.     }   
42.    
43.     public AID getTargetDomain() {   
44.         return targetDomain;   
45.     }   
46.  

 
   

Appendix 1 – GlobalPlatformPro DAPProperties.java 



68 

47.     public AID getDapDomain() {   
48.         return dapDomain;   
49.     }   
50.    
51.     public boolean isRequired() {   
52.         return required;   
53.     }   
54. }  

 



69 

1. package pro.javacard.gp;   
2.    
3. import org.slf4j.Logger;   
4. import org.slf4j.LoggerFactory;   
5.    
6. import javax.smartcardio.CommandAPDU;   
7. import java.io.ByteArrayOutputStream;   
8. import java.security.PrivateKey;   
9. import java.security.Signature;   
10.    
11. import static pro.javacard.gp.GlobalPlatform.INS_DELETE;   
12.    
13. public class DMTokenGenerator {   
14.     private static final Logger logger = LoggerFactory.getLogger(DMTokenGenerator.

class);   
15.     private static final String acceptedSignatureAlgorithm = "SHA1withRSA";   
16.    
17.     private PrivateKey key;   
18.    
19.     public DMTokenGenerator(PrivateKey key) {   
20.         this.key = key;   
21.     }   
22.    
23.     public CommandAPDU applyToken(CommandAPDU apdu) {   
24.         ByteArrayOutputStream newData = new ByteArrayOutputStream();   
25.    
26.         try {   
27.             newData.write(apdu.getData());   
28.             if (apdu.getINS() == INS_DELETE || apdu.getINS() == (INS_DELETE & 255)

) {   
29.                 // See GP 2.3.1 Table 11-23   
30.                 logger.debug("Adding tag 0x9E before Delete Token");   
31.                 newData.write(0x9E);   
32.             }   
33.             if (key == null) {   
34.                 logger.debug("No private key for token generation provided");   
35.                 newData.write(0); //Token length   
36.             } else {   
37.                 logger.debug("Using private key for token generation (" +          

acceptedSignatureAlgorithm + ")");   
38.                 byte[] token = calculateToken(apdu, key);   
39.                 newData.write(token.length);   
40.                 newData.write(token);   
41.             }   
42.             return new CommandAPDU(apdu.getCLA(), apdu.getINS(), apdu.getP1(),    

apdu.getP2(), newData.toByteArray());   
43.         } catch (Exception e) {   
44.             throw new RuntimeException("Could not add DM token to constructed     

APDU", e);   
45.         }   
46.     }   
47.    

 

Appendix 2 – GlobalPlatformPro DMTokenGenerator.java  



70 

48.     private static byte[] calculateToken(CommandAPDU apdu, PrivateKey key) {   
49.         return signData(key, getTokenData(apdu));   
50.     }   
51.    
52.     private static byte[] getTokenData(CommandAPDU apdu) {   
53.         try {   
54.             ByteArrayOutputStream bo = new ByteArrayOutputStream();   
55.             bo.write(apdu.getP1());   
56.             bo.write(apdu.getP2());   
57.             bo.write(apdu.getData().length);   
58.             bo.write(apdu.getData());   
59.             return bo.toByteArray();   
60.         } catch (Exception e) {   
61.             throw new RuntimeException("Could not get P1/P2 or data for token     

calculation", e);   
62.         }   
63.     }   
64.    
65.     private static byte[] signData(PrivateKey privateKey, byte[] apduData) {   
66.         try {   
67.             Signature signature = Signature.getInstance(acceptedSignatureAlgorithm

);   
68.             signature.initSign(privateKey);   
69.             signature.update(apduData);   
70.             return signature.sign();   
71.         } catch (Exception e) {   
72.             throw new RuntimeException("Could not create signature with instance "

 + acceptedSignatureAlgorithm, e);   
73.         }   
74.     }   
75.    
76.     public boolean hasKey() {   
77.         return key != null;   
78.     }   
79.    
80. }   



71 

 

Appendix 3 – Configuring NDEF Tags with NFC Tools 


