
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Software Science

Olga Andrejeva, 176787 IAPM

TOOL FOR VISUALIZING GALOIS

SUB-HIERARCHIES FOR MULTI-LAYERED

SYSTEMS AT VARIOUS ABSTRACTION

LEVELS

Master’s thesis

Supervisor: Ants Torim, PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Olga Andrejeva, 176787 IAPM

VAHEND GALOIS’ ALAM-HIERARHIATE

VISUALISEERIMISEKS ERINEVATEL

ABSTRAKTSIOONIASTMETEL

MITMEKIHILISTE SÜSTEEMIDE JAOKS

Magistritöö

Juhendaja: Ants Torim, PhD

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials,

references to the literature and the work of others have been referred to. This thesis

has not been presented for examination anywhere else.

Author: Olga Andrejeva

07.05.2019

Tool for Visualizing Galois Sub-hierarchies for Multi-layered
Systems at Various Abstraction Levels

Abstract

The primary goal of this thesis is to develop a Formal Concept Analysis (FCA)

tool that would allow visualizing Galois sub-hierarchies (GSH) at different abstrac-

tion levels for multi-layered systems.

Formal concept analysis is widely used in different research fields, including IT.

Representing FCA concepts and their hierarchies (relations) graphically allows to

easily read and interpret the conceptual structure of the system under research. Ga-

lois sub-hierarchy graph does not contain empty concepts (the ones without objects

and attributes), making it more clear. Even users untrained in FCA are showing

high results in understanding visualized FCA graphs.

Today there is no proper GSH visualization tool for complex systems. Existing

solutions that have basic GSH visualization functionality are outdated and have

a number of known flaws. Support of relations between multiple layers and GSH

generation on different abstraction levels for each context is important, as it allows

to model and to analyze the conceptual structure of real systems.

The conducted study provides an overview of existing GSH visualization solu-

tions and available technologies. The objectives and requirements are stated during

the research and the solution design is developed based on the acquired knowledge.

Implementation of the solution is compared to the existing GSH visualization tools

and validated against real use case.

The main outcome of this work is designed and developed GSH visualization ap-

plication that is capable of handling complex conceptual structures of multi-layered

systems and generate visual output at different abstraction levels. The source code

is made public in order to provide access to the tool to the greater auditory, to

receive feedback from the greater number of people and to allow contributions.

This thesis is written in English and is 51 pages long, including 4 chapters, 24

figures and 3 tables.

Vahend Galois’ alam-hierarhiate visualiseerimiseks erinevatel
abstraktsiooniastmetel mitmekihiliste süsteemide jaoks

Annotatsioon

Käesoleva töö põhieemärk on arendata Formaalse Kontseptianalüüsi (FCA) va-

hend, mis võimaldaks visualiseerida Galois’ alam-hierarhiad (GSH) mitmekihiliste

süsteemidele erinevate abstraktsiooniastemetel.

Formaalne kontseptianalüüs on laialt kasutatav erinevates uurimisvaldkonnades,

kaasa arvatud IT. FCA kontseptide ja nende hierarhiate (ehk vaheliste seoste) graafi-

line esitamine võimaldab uuritava süsteemi kontseptuaalsed struktuurid kergesti

lugeda ja interpreteerida. Galois’ alam-hierarhia graaf ei sisalda tühjad kontseptid

(need mis ei sisalda objekte ega atribuute), seega graaf muutub kergemini arusaa-

davaks. Isegi kasutajad kellel puudub FCA kogemus näitavad kõrged tulemused

FCA graafide arusaamises.

Tänapäeval puudub korralik GSH visualiseerimise vahend keeruliste süsteemide

jaoks. Olemasolevad lahendused mis omavad GSH visualiseerimise põhifunktsionaal-

sust on vananenud ja omavad teatud puudused. Mitmekihiliste relatsioonide funk-

tsionaalsuse toetamine ja GSH genereerimine erinevatel abstraktsiooniastemetel on

oluline, kuna see võimaldab modelleerida ja analüüsida kontseptuaalse struktuuri

reaalsest süsteemist.

Läbi viidud uuring pakub ülevaade olemasolevatest GSH visualiseerimise lahen-

dustest ja saadavatest tehnoloogiatest. Eesmärgid ja nõuded olid määratud uuringu

käigus ning lahenduse disain on arendatud saadud teadmiste põhjal. Lahenduse im-

plementatsioon oli võrreldud olemasolevate GSH visualiseerimise vahenditega ning

valideeritud reaalsete kasutusjuhtude vastu.

Töö põhitulemuseks on disainitud ja arendatud GSH visualiseerimise vahend

mis võimaldab käsitleda mitmekihiliste süsteemide keerulised kontseptuaalsed struk-

tuurid ning genereerida visuaalne väljund erinevate abstraktsiooniastmete jaoks.

Lähtekood on avalikustatud, et vahend oleks kättesaadav suuremale kasutajate

arvule, et saada tagasiside suuremast inimeste hulgast ja et lubada neile teha enda

panuse koodi arendusele.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 51 leheküljel, 4 peatükki,

24 joonist, 3 tabelit.

2

List of abbreviations and terms

CSV (file)
Comma-Separated Values CSV file is a delimited text file that

uses a coma to separate values

DOT Graph description language

DS Design science

DSRM Design science research methodology

DTO Data Transfer Object

FCA Formal concept analysis

GSH Galois sub-hierarchy

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IT Information Technology

JAR (file)
Java ARchive JAR file is a package file (distribution) that aggregates

Java classes and resources in it

NGD Angular Dependencies Graph

npm Node Package Manager

OS Operating system

REST Representational State Transfer

UX User Experience

WAR (file) Web Archive or Web Application Resource

XML (file)
Extensible Markup Language XML file is a text file

which format is encoded by a set of rules defined by XML

Table of contents

List of Figures 3

List of Tables 5

1 Introduction 6

1.1 Related work . 8

1.1.1 Theoretical background . 8

1.1.2 Existing soulutions . 11

1.2 Research questions . 15

1.3 Methodology . 17

2 GSH visualization tool 19

2.1 Application design . 19

2.1.1 Requirements . 19

2.1.2 Technologies . 21

2.1.3 Architecture . 25

2.2 Implementation . 28

2.2.1 GSH transformation . 28

2.2.2 Context layers . 28

2.2.3 Hierarchical subsystems . 30

2.2.4 GSH visualization . 30

3 Validation 33

3.1 Validation . 33

3.1.1 Comparison with existing solutions 33

3.2 Case study . 36

1

TABLE OF CONTENTS TABLE OF CONTENTS

3.3 Evaluation and discussion . 40

3.3.1 Possible future works . 41

4 Summary 42

Bibliography 44

Appendix 1 - test formal context 49

Appendix 2 - hierarchy of sub-systems with multiple layers 50

Appendix 2 - hierarchy of sub-systems 51

2

List of Figures

1.1 Concept lattice of formal context provided in 1.1 10

1.2 Galois lattice of formal context provided in 1.1 11

1.3 GSH generated by Galicia . 12

1.4 GSH generated by Maarja’s visualization tool 13

1.5 GSH generated by Kristo’s visualization tool (position of the elements

is adjusted in order to save space) . 14

2.1 Summarized comparison of popular front-end frameworks provided in

[1] . 22

2.2 GSH visualization tool - architecture of artifact composition 25

2.3 GSH visualization tool - communication between front-end and back-

end . 25

2.4 Back-end components and their relations 26

2.5 Front-end components and their relations 27

2.6 Screenshot from the application - overview of system with two sepa-

rate contexts . 29

2.7 Screenshot from the application - system provides choice of sub-context 29

2.8 Screenshot from the application - overview of system with two related

contexts . 30

2.9 GSH visualization created by application - Hierarchical layout 31

2.10 GSH visualization created by application - Circle layout 32

3.1 Screenshot - Stakeholders / Use Case Actors context 36

3.2 Screenshot - Use Case Actors / Use Case context 37

3.3 Screenshot - Use Case / Data Entity context 37

3.4 Screenshot - overview of the relations between the contexts 37

3

LIST OF FIGURES LIST OF FIGURES

3.5 Use Case Diagram for Student Record System [2] 38

3.6 GSH generated based on Stakeholders / Use Case Actors context . . 38

3.7 GSH generated based on Use Case Actors / Use Case context 39

3.8 GSH generated based on Use Case / Data Entity context 39

3.9 GSH generated based on changed Use Case / Data Entity context

(which contains consciously made analytic error in it) 39

4

List of Tables

1.1 Example of formal context - cross table representation 9

1.2 Formal concepts derived from Table 1.1 9

3.1 Summary of comparison of implemented tool with existing solutions . 35

5

Chapter 1

Introduction

The problem of data representation and analysis is of current interest for a lot of

researches and specialists around the globe. Systems and models used in real life

tend to be of a high complexity, thus representation requires particular strategies

and methods. Among them is data analysis and knowledge representation method

called Formal concept analysis (FCA), which is widely used in different research

fields, such as linguistics [3], software engineering [4] [5] [6] [7] [8] [9], psychology,

artificial intelligence (AI) [10] [11], and information retrieval [12].

FCA operates with ideas of concept and concept hierarchy and has solid mathe-

matical foundations [13]. It makes it possible to handle conceptual structures math-

ematically, including constructing, representing and analyzing them [14]. One of

the benefits of this approach is that it provides a possibility to represent conducted

evaluations graphically, which gives us an overview of the objects and their relations

in an easily readable form of a diagram. According to the study conducted in 2004,

even users untrained in FCA are able to read and interpret that kind of diagrams

[15], which means that it could be extremely helpful for conducting the analysis of

systems, where conceptual structures are under research.

Graphical output of the FCA method may contain empty elements, which may

be a problem for systems of high complexity, due to a greater number of elements

presenting on the diagram, which decreases the readability and negatively influences

on the outcome of an analysis. This situation can be improved by removing empty

relations, which is possible if a Galois sub-hierarchy (GSH) of an original concept

lattice is used.

6

CHAPTER 1. INTRODUCTION

The bigger the number of objects and attributes along with the density of rela-

tions, the harder is to conduct such kind of analysis without visualizing the structure.

Unfortunately, today there is no proper visualization tool for creating diagrams for

Galois sub-hierarchies: there is a lack of options for defining different layers and

describing relations between them, as well as no proper solution for defining various

abstraction levels of the layers (eg., atomic elements, packages, etc.) and sub-systems

(which is usually the case in real life systems). The latter is very important due to

the fact that GSH diagrams are very useful for defining, representing and analyzing

sub-systems particularly.

The goal of this thesis is to create a solution for visualizing complex multi-layered

conceptual lattices using Galois sub-hierarchies. Motivating use case for creation

such tool is modelling and visualization of software systems [16]. The solution is

designed based on existing knowledge. Output data provided by the tool under

study will make further analyses with GSH involved more effective, save time and

reduce the number of human mistakes, caused by interpretation of the complex

data sets and hardened readability. The most complex the system under analysis

(in terms of objects, attributes, and density of the relations), the most helpful the

solution will be.

As a part of the validation process, the comparison of the implemented tool and

existing solutions is conducted and obtained results are evaluated. The utility of

the tool is demonstrated in a case study.

Thesis structure is as follows: Chapter 1 defines the motivation and states the

problem of the thesis as well as provides an overview of related existing knowledge.

It also covers research design & methodology aspects. Chapter 2 covers the de-

sign and the implementation of the solution, including technical details. Chapter

3 describes the validation process and provides evaluations of the obtained results.

Thesis outcome is summarized and presented in Chapter 4.

7

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

1.1 Related work

The initial base for the current research consists of two bachelors theses of the year

2012 created by Maarja Raud [17] and Kristo Aun [18], written under the super-

vision of Ants Torim, which results are implemented tools for visualizing Galois’

sub-hierarchies using different approaches. Both works are fields for future improve-

ments, but considering the technological changes during the years it was decided not

to use the visualization part itself as a base for the current solution. However, after

the conducted study, it was decided to partially use Maarja’s code for converting

concept lattice into GSH structure by adjusting it for the developed solution.

1.1.1 Theoretical background

FCA allows to hierarchically represent conceptual structures (found based on math-

ematical theory) by grouping them together in a concept lattice. Definitions of

notions related to FCA are provided below.

Formal context is a triplet

K = (G,M, I)

where G is finite set of objects, M is finite set of attributes and I is a relation

between them:

I ⊆ G×M

Thus, a formal context is formed by the sets of formal objects and formal attributes

together with their relation to each other and can be represented by a cross ta-

ble [12] where table rows correspond to objects, table columns - to attributes and

table entries represent relations between them (if particular object has particular

attribute). The example of a formal context is provided in Table 1.1.

Formal concept - is a pair (A, B), where A is a set of formal objects (extension)

and B is a set of formal attributes (intention), such that all formal objects in A share

the attributes in B and all formal attributes in B are shared by formal objects in A

[12]. Formal concepts derived based on the Table 1.1 are provided in Table 1.2.

8

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

Attribute 1 Attribute 2 Attribute 3

Object 1 1 0 1

Object 2 0 0 1

Object 3 1 1 0

Table 1.1: Example of formal context - cross table representation

Formal concept

0 M = {}

G = {Object 1, Object 2, Object3}

1 M = {Attribute 1, Attribute 2, Attribute 3}

G = {}

2 M = {Attribute 1, Attribute 3}

G = {Object 1}

3 M = {Attribute 3}

G = {Object 1, Object 2}

4 M = {Attribute 1}

G = {Object 1, Object 3}

5 M = {Attribute 1, Attribute 2}

G = {Object 3}

Table 1.2: Formal concepts derived from Table 1.1

Sub-concept - is a formal concept, which contains an intent (set of formal

attributes) of the super-concept. Dually, an extent (set of formal objects) of the

sub-concept is contained in the super-concept (eg., concepts 4 and 5 from Table

1.2).

Concept lattice - hierarchically organized lattice, which consists of formal con-

cepts and their sub-concepts [19], where concepts are represented as nodes and re-

lations between concepts as edges. Used for visual representation of formal context,

for example see Figure 1.1 which is a concept lattice of formal context presented in

Table 1.1 (lattice is generated using Galicia v2.0 [20]).

Galois lattice - concept lattice, where each node is a formal concept and has two

parts: the extension and the intention. The relations between them are described as

9

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

Figure 1.1: Concept lattice of formal context provided in 1.1

well. (Where an extension is a subset of the examples, the intention is the description

and relations are a generalization.)

Galois sub-hierarchy (GSH) - the Galois sub-hierarchy (GSH) of a concept

lattice is the partially ordered set of labelled elements only [5]. The example of

GSH generated based on Table 1.1 is displayed in Figure 1.2 (lattice is generated

using Maarja’s application [17]). It is worth being noticed, that lattices displayed in

Figures 1.2 and 1.1 are generated based on the same context, but the Galois lattice

is easier to read and understand than the initial context lattice.

GSH was first introduced in 1993 by Godin et al. [5] and was a unit of study

of different researches since then. Its advantage is in a simplified representation of

original concept lattices, which leads to a better perception of the context due to a

10

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

Figure 1.2: Galois lattice of formal context provided in 1.1

restricted number of elements being visualized.

1.1.2 Existing soulutions

At the moment there is no solution that is capable of visualizing GSH for multi-

layered systems at various abstraction levels. But there are some tools, which were

examined and taken into account during the research, for GSH generation based on

binary formal context. In the scope of this work only tools starting from the year

2005 and later are taken into consideration, however, the author is aware of the fact

that there is also a research paper that provides an overview and a brief comparison

of older FCA related tools [21].

A brief overview of each of the considered tools is provided below. Test output

for each tool was generated using the same test context input, which can be found

in Appendix 1.

Galicia

The most known alternative tool for visualizing conceptual lattices and GSH graphs

is Galicia [20]. It focuses on FCA tools in general, not only on GSH. Thus it has a

11

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

lot of functionality that is out of the scope of the thesis.

Galicia provides an implementation of different algorithms for building GSH, but

the visual output is hardly readable (the readability decreases drastically with in-

creasing complexity of the context,i.e. a number of objects, attributes and relations)

and there is no support of CSV input files (which is a big inconvenience, as CSV

file format is widely used for describing formal context). Also, the last update of

the program was made in 2005, which means that it was not changed for about 14

years, which makes it outdated.

Figure 1.3: GSH generated by Galicia

GSH visualization tool - Maarja Raud

Visualization tool developed by the student of TUT - Maarja Raud [17] allows to

generate GSH graph based on a binary matrix which is provided in CSV format.

It allows to export generated diagram in JPG format, change the position of the

elements on the picture. It also shows connected elements of the concept by high-

lighting the edges and selected node itself. Unfortunately, the collisions are not

12

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

handled properly, alignment of elements makes it difficult to read and understand

a hierarchy where there is a lot of concepts. The export functionality is absent and

it is not possible to change the context data on the run: in order to do that, a new

CSV should be imported.

Figure 1.4: GSH generated by Maarja’s visualization tool

GSH visualization tool - Kristo Aun

Visualization tool developed by the student of TUT - Kristo Aun [17] allows gener-

ating GSH graph based on a binary matrix which is provided in XML format. It is

also possible to change elements of formal concept in the program as well as generate

random context based on given parameters. Image export is not supported, but it

is possible to export DOT file. The generated graph is also adjustable: it is possible

to change the size, name, and position of the elements. Unfortunately, CSV format

is not supported.

13

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

Figure 1.5: GSH generated by Kristo’s visualization tool (position of the elements

is adjusted in order to save space)

14

1.2. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

1.2 Research questions

The complexity of the stated goal is related to the nature of the tool, as it should

be dynamic and flexible with regard to system description. It should be possible

to describe and change system parts on the run and all layers and components

should be aware of conducted changes, meaning the information should be updated

automatically in real time. At the same time, the possible complexity of the system

under description should be taken into account: the system may have 1...n layers,

where each layer may have some number of elements (objects and attributes from

point of view of formal context) and each set of elements may be divided into

subsystems. Each subsystem in its turn may have a subsystem of itself and so on,

meaning the depth of such hierarchy is not restricted.

During the research, a method of handling multiple layers, their sub-components

and related abstractions was developed. It was important to create an appropriate

data structure along with finding the proper way of visualization of complex data,

in order to reduce or fully eliminate (where possible) the need of adjusting the data

manually (which is a problem in case of existing solutions) and provide sufficient

readability of the output to the end user.

Below is provided an overview of the main goals of the research and related

research questions, which were considered during the work. Found solutions are

described later in the document (corresponding section reference is provided for

each research question separately).

• Definition of multiple layers of the system along with different abstraction

levels [22]

– How to handle multiple layers and their abstractions, considering that

it should be possible to define sub-groups of elements - sub-systems -

for each layer and relations between sub-systems should be generated

automatically? See Sections 2.1, 2.2 for more details.

• Complex data handling

– How to process complex data sets effectively? See Sections 2.1, 2.2 for

more details.

15

1.2. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

• Lattice visualization

– How to make displayable graph readable, avoiding collisions of the nodes

as well as chaotic positioning of the elements? Existing solutions have

known readability flaws [17], which make the process of working with

visualization more complex. See Sections 2.2 and 3.1.1 for more details

on technical solution and comparison with existing tools correspondingly.

• The design and validation of the tool

– Design decisions in general (and technical decisions in particular), eg.,

selected technology or software design, are important and will have a

direct influence on the outcome. Different possible solutions were exam-

ined during this research and appropriate choices were made (see Section

2.1 for more details on application design and Section 3.1 for validation

details).

• Utility of the solution

– How to make sure that such a tool is useful for case studies? Case study

based validation and interpretation of the results is provided in Section

3.2.

16

1.3. METHODOLOGY CHAPTER 1. INTRODUCTION

1.3 Methodology

To solve the stated research goals and to answer stated research questions (provided

in Section 1.2), a careful study was conducted. The result of the research is the

solution, which is designed based on the acquired data, conclusions and findings ob-

tained during the work. Previous related experience (researches, existing solutions,

etc.) was taken into account and laid a foundation for the derived solution.

The design science (DS) research method was used by applying the design science

research methodology (DSRM) [23] with some insignificant adjustments (caused by

the nature of the work and topic). The DSRM was chosen primarily due to the

following aspects of the work that satisfy DS main principles:

• The produced outcome of the research is an artifact, which is created to address

the stated problem.

• The stated problem is unresolved at the moment.

• And, although there is no specific business which would make demands on

the solution, the outcome of the research will provide potential interest for

analysis phases in a lot of different fields [12] and thereby it is considered to

be an important business problem.

• The entry point for the research is also in conformity with DSRM.

Furthermore, the DSRM activities are in conformity with the type of the stated

problem and correspond to the planned process of validation and interpretation of

the results. List of activities (i.e., research steps) along with short definitions is

provided below.

1. Problem identification and motivation

At this step, the research problem was defined and relevant knowledge base

studied. As an outcome of this step required theoretical background was ob-

tained and the possible valuable solution was proposed (see Chapter 1).

2. Define the objectives of a solution

This stage includes the definition of general objectives. Requirements were

17

1.3. METHODOLOGY CHAPTER 1. INTRODUCTION

set and specific criteria determined. This step resulted also in knowledge of

existing technologies and their possible application in the scope of the solution

(see Section 1.1.2 for an overview of existing solutions and Section 2.1 for

requirements and overview of technologies).

3. Design and development

At this step, an artifact that solves the research problem was designed and

developed (see Section 2.1).

4. Demonstration

This step is needed to prove that created artifact really works and to show

how. The demonstration was conducted on a test case and results are provided

in Section 3.2.

5. Evaluation

Here evaluation of the demonstration results was conducted by comparing the

objectives with results acquired in the previous step. Acquired results were

also compared to the existing solutions (comparison is described in Section

3.1.1 in details). The evaluation is covered in details in Section 3.3.

6. Communication

This thesis itself is a way of communicating the problem, solution, and utility

to relevant audiences. To ensure that interested parties can take maximal

benefit of the proposed solution, it was also made open source (see Section 2.2

for repository link), thus anyone can participate in the future improvements

(list of future improvements is provided in Section 3.3.1) and/or download and

use the solution without restrictions.

18

Chapter 2

GSH visualization tool

2.1 Application design

The designed tool is a web application as today web technologies are capable enough

to perform tasks that are required to achieve goals stated in the thesis (which was

also confirmed during conducted research of available technologies). Furthermore,

in this particular case web application is considered to be more convenient than

standalone application, as it does not require installation from the end user and

is platform independent, while standalone application may require installation and

may not work on all systems (for example, desktop application will not work on

mobile phone, or some incompatibilities may occur between different OS versions).

2.1.1 Requirements

The requirements designed based on the objectives of the work are provided below.

Each objective (upper item in the list) has its own set of requirements (sub-items of

the list). Requirements documented as user stories, due to the nature of the system

under development. If there are any additional (specifying) requirements, then they

are provided below a user story that they belong.

In the given context, "user" means a person, who performs FCA on a specific

system. The initial motivation of the user (that may stand behind the need to

conduct the FCA) and/or his/her field of interest (i.e., research field, job position,

company, etc.) are out of the scope of this thesis and are not taken into account.

19

2.1. APPLICATION DESIGN CHAPTER 2. GSH VISUALIZATION TOOL

1. Definition of multiple layers of the system along with different ab-

straction levels

1.1. As a user, I want to be able to load CSV definition of a context, so that

I do not have to manually describe the context contained in the existing

files.

1.2. As a user, I want to be able to export CSV definitions of defined contexts,

so that I can process them outside of the application.

1.3. As a user, I want to be able to define relations between different system

layers, so that I can perform an FCA on a multi-layered system.

– Relation between layers must be specified by defining relations be-

tween the contexts.

– Contexts can be related only if attributes (columns) of upper context

are the objects (rows) of the lower context at the same time.

– The fulfillment of condition defined above must be automatically

controlled by the system.

1.4. As a user, I want to be able to modify defined context, so that I can

adjust it as needed during the analysis.

– Must be possible to apply modifications on the graph directly.

– All elements of the system that are related to modifications must be

aware of applied changes.

1.5. As a user, I want to be able to define subsystems for each layer, so that

I can describe a hierarchy of the system under analysis.

– Number of the subsystems for each layer must not be restricted.

– It must be possible to define sub-subsystems for other subsystems.

– Number of the subsystems for each upper subsystem must not be

restricted.

– Depth of the subsystems’ hierarchy must not be restricted.

2. GSH lattice visualization

2.1. As a user, I want to be able to see the graphical representations between

the relations of the concepts, so that I can analyze them efficiently.

20

2.1. APPLICATION DESIGN CHAPTER 2. GSH VISUALIZATION TOOL

– Collisions between elements and frames should be decreased or fully

eliminated (where possible).

– Concepts must be represented as nodes.

– Relations must be represented as edges.

– Attributes must be positioned at the top of the node label.

– Objects must be positioned at the bottom of the node label.

– Relations maximum of two layers can be defined at a time (i.e., one

context).

2.2. As a user, I want to be able to change the position of the elements on the

graph, so that I can adjust the visual output as needed.

2.3. As a user, I want to be able to export a picture of the graph, so that I

can process it outside of the application.

2.4. As a user, I want to be able to see relations between different abstraction

levels of the context, so that I can have a better picture of the system

architecture.

– Abstraction level change should be available only if at least one lower

level (subsystem) of the context is defined.

2.1.2 Technologies

This section contains an overview of the main technologies that were studied and

used during the research in order to achieve the objectives of the thesis. Some of

the technologies are based on scientific papers, thus providing a solid foundation for

the proposed solution.

Back-end - Spring Boot + Java

Spring Boot is an extension of Spring framework [24], which makes a configuration

of the application as simple as possible. It allows to build a deployable artifact or to

make an executable application, which embeds the server and can be started with

two clicks from the local machine. It is very convenient as it allows to use the web

application locally even if it is not available on some public server. Due to the fact

21

2.1. APPLICATION DESIGN CHAPTER 2. GSH VISUALIZATION TOOL

that the developed tool uses at some extent existing Java project (for constructing

GSH), Java is selected to be a back-end programming language of the solution.

Front-end - Vue.js

The study was conducted to understand which platform to choose for front-end

development. There is an article [1] providing overview of most popular front-end

frameworks, which is summarized in table as follows:

Figure 2.1: Summarized comparison of popular front-end frameworks provided in

[1]

Taking into accordance advantages of the Vue.js [25], it was decided to use it as

the main framework for front-end development.

GSH visualization - Cytoscape.js

The visualization of a GSH (graph, in fact) was one of the main problems of the

work. In the course of the research different possible solutions were considered.

There are multiple different studies conducted on visualization of hierarchical data,

which are of interest from a number of perspectives [26] [27] [28], as well as graph

visualization in particular [29] [30] [31].

22

2.1. APPLICATION DESIGN CHAPTER 2. GSH VISUALIZATION TOOL

Today there is an amount of open source web libraries, which provide graph

generation functionality. For example, NGD: Angular Dependencies Graph [32].

However, after the closer examination, it became clear, that the library does not

satisfy stated requirements and may need further changes of the source code in

order to be capable to fulfill the objectives. Also, the selection of this library means

the selection of the Angular platform [33] (which was not acceptable, see Subsection

2.1.2 for more details).

As an alternative to NGD, the Cytoscape.js [34] was considered. Cytoscape.js

is presented as graph theory (network) library for visualization and analysis, it is

based on scientific research, very dynamic and flexible, has solid documentation and

big community. Due to the provided points, Cytoscape.js was selected as a graph

visualization library in the scope of this work.

Other front-end technologies

The tool is built with a lot of different packages of different purposes. All of these

packages can be downloaded from npm - JavaScript package manager [35]. Thus

other technologies referred in this section are not referenced separately but provided

in the list below by package name, which is an npm reference, meaning that each

package can be found in an npm registry (online database of packages) by name if

needed.

• tabulator-tables

A Tabulator is a lightweight JavaScript table generation library. Used for

handling context tables in the application.

• papaparse

Papa Parse is a powerful in-browser CSV parser, which is used for parsing

contexts uploaded as CSV files and vice versa: to create CSV data from context

tables, defined directly in the application.

• cytoscape-node-html-label

An extension for Cytoscape.js, which allows to generate custom node labels

using HTML.

23

2.1. APPLICATION DESIGN CHAPTER 2. GSH VISUALIZATION TOOL

• cytoscape-dagre

This JavaScript library allows to create a layout for directed graphs and used

for hierarchical positioning of the elements on the canvas.

• webpack

A module bundler for JavaScript. Used to handle JavaScript dependencies in

the project: it creates dependency graph for modules and maps them accord-

ingly.

– vue-style-loader - a webpack module, that handles style loading for

Vue.js application.

– vue-template-loader - a webpack module, that handles template load-

ing for Vue.js application.

• axios

Axios is a promise based HTTP client. Used for sending HTTP requests to

the REST application.

• jquery

A JavaScript library that handles JavaScript and HTML interaction.

• bootstrap-vue

For integrating Bootstrap 4 [36] components with Vue.js.

• html2canvas

A library that allows saving pictures (screenshots) of HTML parts. It is used

to save graph pictures instead of built-in Cytoscape.js functionality because

Cytoscape.js native solution cannot handle custom labels, which are created

using a cytoscape-node-html-label extension.

Other back-end technologies

• Maven

Maven [37] is used as a build tool for the entire project. Among others, it

handles proper npm execution during the build and also is responsible for

including Maarja’s JAR file into the project. Besides, it handles other back-

end dependencies as well.

24

2.1. APPLICATION DESIGN CHAPTER 2. GSH VISUALIZATION TOOL

• Project Lombok

Lombok [38] Java annotation-based library helps to avoid code repetitions and

keep it clean and simple.

2.1.3 Architecture

The project consists of two main layers: back-end and front-end. Communication

between layers takes place using HTTP requests: front-end sends structured formal

context to the back-end REST service. After that context is being converted and

processed in Java: GSH data structure is being generated and returned to the front-

end, which handles a visualization of received results. The general architecture

of artifact composition can be seen in Figure 2.2 and the communication between

system layers is depicted in Figure 2.3.

Figure 2.2: GSH visualization tool - architecture of artifact composition

Figure 2.3: GSH visualization tool - communication between front-end and back-end

Back-end GSH generation logic is built on top of Maarja’s visualization tool:

existing solution is adjusted in accordance with new REST DTO’s. The process of

generating GSH consist of four steps:

25

2.1. APPLICATION DESIGN CHAPTER 2. GSH VISUALIZATION TOOL

1. Data parsing: objects and attributes of the CSV table are converted into the

Relation object.

2. Concept lattice is constructed from parsed relations.

3. GSH lattice is built from the generated concept lattice.

4. GSH graph structure is simplified: object references are replaced with ID-s,

custom hash function applied.

Then the graph structure is being returned via HTTP response to the caller.

Back-end components and relations between them are depicted in Figure 2.4.

Figure 2.4: Back-end components and their relations

Front-end part is built using Vue.js. It is divided into components and ser-

vices, where components are main "building blocks" of the application and services

provide general functionality (like HTTP communication, GSH visualization using

Cytoscape.js, CSV parsing, etc.). See Figure 2.5 for more details. Vue components

follow a single file pattern: that means that template, script and style parts are

defined together in one file. It helps to organize the code and keep the structure

clean. That does not mean that all code should be mixed together: each part of

a single file can include a reference to the external file if needed. This approach is

26

2.1. APPLICATION DESIGN CHAPTER 2. GSH VISUALIZATION TOOL

convenient when working with large and complex components. In the tool, such a

component is "Data settings", which is responsible for handling and displaying all

contexts of the system, defined by the user.

Figure 2.5: Front-end components and their relations

27

2.2. IMPLEMENTATION CHAPTER 2. GSH VISUALIZATION TOOL

2.2 Implementation

The tool was implemented in correspondence with provided requirements and fol-

lowing developed design. The outcome of the development process is a standalone

application, which can be built as an executable JAR file as well as a deployable

WAR file, thus making it very flexible in terms of environmental requirements.

The source code is made public and is located at Github:

https://github.com/androlga/gsh-visualization-tool

The purpose of this decision is to allow anyone to use it and/or contribute to

future development. Also, it provides an opportunity to receive more feedback on

the tool from the users and therefore be aware of possibly missed flaws (if any) and

unexpected users’ needs, which may lay a base for future works.

This section contains the main highlights of the implemented solution along with

a description of occurred problems and how they were handled.

2.2.1 GSH transformation

GSH structure is a base for the graph visualization. Unfortunately, the existing

implementation of GSH generation resulted in a quite complex structure, which

contained a lot of nested objects for each node. Thus, the result was heavy and

identification of elements was not trivial, as they contained no explicit identifier. It

was not possible to use it on the front-end side, as its processing took a lot of time

and failed completely for complex contexts with a lot of nested objects.

To solve that problem, the initial GSH structure is simplified using a custom

transformer. During the transformation process, redundant nested objects are being

eliminated and appropriate hash is being given to each object (edge and concept),

so it could be easily identified.

2.2.2 Context layers

Each binary context initially has two layers, where objects (rows) are the elements

of the upper row and attributes (columns) are elements of the lower row. To define

a new system layer, new context with appropriate relation should be defined. In

28

https://github.com/androlga/gsh-visualization-tool

2.2. IMPLEMENTATION CHAPTER 2. GSH VISUALIZATION TOOL

this case, objects of the lower context should be the same as the attributes of the

upper context (as it is the same layer). Therefore, for two layers - 1 context, for

three layers - 2 contexts and so on.

All information about existing contexts and related layers are stored in a JavaScript

object, which provides access to values by keys. So each defined context has its own

unique key in the system. Each context has in its turn a reference to sub-context

(if any), so the application could find related objects.

A list of sub-context candidates, as well as information about context relations,

is constantly updated if related data change is detected by Vue. An example of the

system state with two separate contexts is provided in Figure 2.6. In this case, it is

possible to create a relation between the contexts, which can be seen from Figure

2.7.

Figure 2.6: Screenshot from the application - overview of system with two separate

contexts

Figure 2.7: Screenshot from the application - system provides choice of sub-context

If the context is assigned, then the system data changes immediately. Updated

system overview is depicted on Figure 2.8.

29

2.2. IMPLEMENTATION CHAPTER 2. GSH VISUALIZATION TOOL

Figure 2.8: Screenshot from the application - overview of system with two related

contexts

2.2.3 Hierarchical subsystems

Each context contains two layers, each layer may contain from 0 to n sub-hierarchies.

Each sub-hierarchy, in turn, may contain lower sub-hierarchies with no restrictions

on hierarchy depth. Thus, the relations between sub-systems can be represented as

a tree. Defining data structure, in this case, was a little challenge, as storing the

nested data decreases performance and sometimes even may cause call stack excess

related problems. Thus it was decided to store all subsystems of the specific context

as divided to upper and lower (with regard to upper and lower layers of the context,

i.e. objects and attributes). Each layer has its own set of subsystems, where each

subsystem only contains a value of hierarchy level. Also, there is a data set for each

layer (i.e., max 2 data sets per context), that holds all relations of hierarchies as

key-value pair, where the key is an id of lower sub-system and value - id of parent

sub-system. This approach allows to save performance on data updates and has

been proven to be suitable for defining sub-systems as well as finding requested

abstraction levels for selected context. An example of how multiple layers of sub-

systems may look like is provided in Appendix 2. Appendix 3 contains an illustration

of sub-systems hierarchy with no lower levels.

2.2.4 GSH visualization

For GSH visualization Cytoscape.js is used along with additional extensions. Hi-

erarchical layout is provided using a cytoscape-dagre library and node labels are

described (customized) and created using a cytoscape-node-html-label extension.

There is a separate container for graph layout on the page, to which Cytoscape

instance is assigned. Each time when GSH structure is received from the REST

30

2.2. IMPLEMENTATION CHAPTER 2. GSH VISUALIZATION TOOL

service, the data is being sent to GSH service and graph is being drawn.

The graph provided in Figure 2.9 demonstrates the visual output produced by

the application. The graph based on the same context (see Appendix 1) that was

used for demonstration purposes in section 1.1.2. Each node of the graph is labeled,

relations between nodes are represented by edges and hierarchy is defined by arrows.

All elements of the same hierarchy level are positioned in one line and there are no

collisions of elements. It is possible to zoom in/zoom out the layout, to move the

graph or it’s elements, to change the layout (from Hierarchical to Circle, Cose, Grid

or Random) and to save the picture of the graph that is currently positioned on the

layout. The circle layout is provided as an example in Figure 2.10.

Figure 2.9: GSH visualization created by application - Hierarchical layout

31

2.2. IMPLEMENTATION CHAPTER 2. GSH VISUALIZATION TOOL

Figure 2.10: GSH visualization created by application - Circle layout

32

Chapter 3

Validation

3.1 Validation

The validation section describes actions that were applied to check the utility of the

solution, to check if the solution works as expected and does it correspond to stated

objectives or not. The results of the validation are evaluated and discussed at the

end of this section.

3.1.1 Comparison with existing solutions

This section provides a comparison of the created tool with existing solutions (overview

of which can be found in Section 1.1.2). As none of the solutions has the function-

ality of sub-systems and data visualization on different abstraction levels, related

comparison points are not provided in the list. The functionality of defining contexts

and visualizing GSH is the main subject of comparison.

As an entry point for the comparison, GSH generated by existing tools is used.

GSH visualization performed by Galicia, Maarja’s and Kristo’s tools can be found

in the Figures 1.3, 1.4 and 1.5 respectively. The visualization output provided by

the tool developed in this thesis is depicted in Figure 2.9. All outputs are generated

using the same context (see Appendix 1) and thus are based on the same data.

• Galicia tool

The elements on the generated diagram are positioned correctly, collisions are

eliminated and structure is easily readable, which is also true for the developed

33

3.1. VALIDATION CHAPTER 3. VALIDATION

tool. Unfortunately, Galicia has an outdated interface: it requires multiple ac-

tions from the user in order to perform one step, which may be inconvenient.

It also does not display node labels (objects and attributes) by default, which

makes it harder to analyze and requires additional actions to fix that. For

comparison, the developed tool displays labels in an easily-readable form and

has an intuitively understandable responsive interface. Both solutions high-

light the selected node and allow to adjust positions of the elements directly

on the graph.

Galicia also has some features that are outside of the scope of this thesis and

were not stated as requirements (for example, 3D representation of the graph

or magnetism option applied to nodes), thus not considered during comparison

as well.

• Maarja’s GSH visualization tool

This solution accepts CSV files as context definition, but unfortunately does

not generate a context table or provide CSV export feature. The positioning

of the elements is also a problem, as collisions are present and it is hard to read

some of the labels. From the other hand, it has a nice feature of highlighting

the selected concept and related edge, which is absent in the proposed solution

(implemented tool highlights selected element only, not the references).

• Kristo’s GSH visualization tool

This tool allows editing a context table and import/export the data. Unfortu-

nately, there is no CSV support, but the XML file format is supported. The

elements positioned hierarchically, but some collisions still take place. There

is also no zooming functionality provided for the diagram.

Summary table of different features comparison is provided below in Table 3.1.

The features that absent in all tools (or vice versa) are not included. The table shows

that the implemented solution contains the greatest number of features regarding

GSH visualization and context definition. The comparison points were set based on

the stated objectives of the research.

34

3.1. VALIDATION CHAPTER 3. VALIDATION

Galicia
Maarja’s

tool

Kristo’s

tool

Developed

tool

Handles collisions properly yes - - yes

Displays names of objects

and attributes

on generated graph

(by default)

- yes yes yes

Editable context table yes - yes yes

CSV import - yes - yes

CSV export - - - yes

Data export/import in other

formats (except images)
yes - yes -

Highlights selected element

and it’s edges at the same time
- yes - -

Total 3 3 3 5

Table 3.1: Summary of comparison of implemented tool with existing solutions

35

3.2. CASE STUDY CHAPTER 3. VALIDATION

3.2 Case study

In order to validate the utility of the developed tool, the case study was considered.

The article that handles the creation of the security model for student record system

[2] is used as an entry point for this validation.

The student record system that is used in the article to illustrate the development

of a security model contains four layers that are as follows (ordered from upper to

lower):

1. Stakeholders

2. Use Case Actors

3. Use Case

4. Data Entity (Class)

The binary matrices (contexts) that represent relation of the layers are defined

as depicted in Figures 3.1, 3.2 and 3.3 below. The overview of the relations between

contexts is depicted in Figure 3.4. The overview helps to understand if the system

design is correct at the step of defining layers. Also if there is intended to be a

relation between two layers, but the tool does not allow that, that means that there

are some mistakes in the definition of the elements (some elements are missing or

names of the elements do not match). (Which is not the case of the considered

system.)

Figure 3.1: Screenshot - Stakeholders / Use Case Actors context

36

3.2. CASE STUDY CHAPTER 3. VALIDATION

Figure 3.2: Screenshot - Use Case Actors / Use Case context

Figure 3.3: Screenshot - Use Case / Data Entity context

The Use Case diagram for the student record system is provided in Figure 3.5.

The original diagram is used in order to illustrate how it differs from the generated

GSH output. The Use Case illustrates relations of Use Case / Actor Role layers

and at the same time shows the relations between Use Case Actors, based on the

Stakeholders / Use Case Actors context (see Figure 3.1). The visual output gener-

ated by the GSH tool, from the other hand, allows to see these relations separately

(Figures 3.6 and 3.7). It also provides a better overview of the relations, because of

the clear hierarchical structure. Using generated GSH it is easy to see if any of the

components were defined wrongly.

For example, lets change a Use Case / Data Entity context a little bit and lets

say that Student Transcript Class is related to Create Grade Use Case. Correspond-

Figure 3.4: Screenshot - overview of the relations between the contexts

37

3.2. CASE STUDY CHAPTER 3. VALIDATION

ing GSH structure was generated and is depicted in Figure 3.9. This data change

illustrates how easy it is to understand that something in the model is wrong just

by looking at the corresponding GSH diagram.

Figure 3.5: Use Case Diagram for Student Record System [2]

Figure 3.6: GSH generated based on Stakeholders / Use Case Actors context

38

3.2. CASE STUDY CHAPTER 3. VALIDATION

Figure 3.7: GSH generated based on Use Case Actors / Use Case context

Figure 3.8: GSH generated based on Use Case / Data Entity context

Figure 3.9: GSH generated based on changed Use Case / Data Entity context (which

contains consciously made analytic error in it)

39

3.3. EVALUATION AND DISCUSSION CHAPTER 3. VALIDATION

3.3 Evaluation and discussion

During the validation process, the comparison of the implemented GSH visualiza-

tion tool with existing solutions was conducted. Also, the utility of the tool was

demonstrated on the case study, which shows the implementation of the tool on

the real use case. This section contains a description of the interpretation of the

validation results and conclusions based on the obtained outcome.

A demonstration conducted on a case study illustrates the utility of the developed

solution applicable to a real use case. First of all, the novel (comparatively to existing

solutions) functionality (as support of relations between multiple layers, different

abstraction levels and hierarchical definition of sub-systems) provides a possibility

to define complex systems and conduct FCA on them, using structured and easily

readable visual output. The provided use case also shows, how errors in the system

design can be easily spotted thanks to the implemented tool. Secondly, all relations

are easily modifiable and can be exported in order to be processed outside of the

system. Thirdly, the solution of GSH visualization itself, although, is not unique,

but is competitive, as it is capable of solving main related problems which may

remain unresolved in other existing solutions (e.g., positioning of the elements and

collisions handling).

Comparison of the GSH visualization functionality with existing tools also showed

that the tool solves the greatest number of the stated problems. In particular, objects

and attributes are easily distinguished, elements (nodes) are positioned hierarchi-

cally and the positioning is correct (no collisions, elements of same hierarchy level

are positioned on the same line horizontally, etc.). GSH visualization tool has fewer

functions in comparison with Galicia (e.g., 3D layout), but simpler interface. Also,

these additional functions do not influence on the solution of the stated problem

directly, thus are not taken into accordance.

Thereby, based on the provided evaluation may state, that results obtained as

an outcome of the validation process are positive. The results show, that the imple-

mented tool is working as expected and satisfies stated requirements.

40

3.3. EVALUATION AND DISCUSSION CHAPTER 3. VALIDATION

3.3.1 Possible future works

There is a number of improvements and future developments that are out of the

scope of the thesis but could be implemented in the future. The source code structure

allows to easily make modifications or extensions of existing objects. Also, the code

is located in the public repository so anyone can contribute. Thus, the conditions

for the implementation of the improvements and/or additional functionality are

favorable. The list of the proposed future works is as follows:

• Support of different import/export standards. Appropriate research

should be conducted in advance in order to get a knowledge of which standards

(besides CSV) could be useful for users.

• Support of other GSH generation algorithms. At the moment the native

algorithm from the Maarja’s tool is used (developed by Ants Torim). There is

a study that provides a comparison of different algorithms for building Galois

sub-hierarchies [39] as well as later studies on algorithmic solutions of the

problem [40], which also may be taken into account.

• UI design. At the moment the design is responsive and simple. But the

UX (User Experience) part may not be optimal. Additional research required

in order to state the objectives on the improvement of the UX. For example,

maybe more complex design (e.g., theme) could help to organize the space

better.

• New graph features. Which includes (but not limited to), for example,

adding editable labels and highlighting the hierarchy of the selected node.

• Possibility to always displaying one graph per context (at the same

time). The current solution provides a general layout for a graph generation,

but maybe users could benefit from seeing graph per context simultaneously,

on the same page.

41

Chapter 4

Summary

The primary goal of the present thesis was to create a GSH visualization tool capable

of handling multi-layered systems and provide context visualization at different levels

of abstraction. The objectives stated on the research required produced graphs to be

readable, have a hierarchical layout and properly handle collisions between elements.

It was also required to have a context definition option.

The research is based on the existing knowledge and related works, practical and

theoretical. The previous outcome of TUT bachelor thesis written by Maarja Raud

under the supervision of Ants Torim is used as a foundation for GSH transformation

functionality. The scientific paper-based Cytoscape.js library along with extensions

supports graph generation. Existing GSH generation solutions and existing tech-

nologies were studied.

The main outcome of this work is designed and developed GSH visualization

application which can be used in FCA field. The source code is made public in

order to provide access to the tool to the greater auditory, to receive feedback from

the greater number of people and to allow contributions.

The tool was validated by conducting a comparison with existing GSH visual-

ization tools. The utility of the solution was tested and demonstrated on real use

case. The validation results then were evaluated and discussed.

Based on the results of the research may conclude that stated problems were

solved and requirements were satisfied.

The tool is publicly available and is expected to be applied in FCA analysis.

42

CHAPTER 4. SUMMARY

Public source code is also a possibility for new collaborators to easily get access to

the project and participate in further development. The list of possible future works

along with possible research directions was also provided in this work.

43

Bibliography

[1] Luis Elizondo. Why we moved from angular 2 to vue.js (and why we

didn’t choose react). https://medium.com/reverdev/why-we-moved-from-

angular-2-to-vue-js-and-why-we-didnt-choose-react-ef807d9f4163,

2017. [Online; accessed 18-March-2019].

[2] Mark Monteleone. Building the security model with use case and class mod-

els. https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/

2181/Building-the-Security-Model-with-Use-Case-and-Class-Models.

aspx, 20012. [Online; accessed 05-May-2019].

[3] Uta Priss. Linguistic applications of formal concept analysis. In Formal Concept

Analysis, pages 149–160. Springer, 2005.

[4] Robert Godin and Petko Valtchev. Formal concept analysis-based class hi-

erarchy design in object-oriented software development. In Formal Concept

Analysis, pages 304–323. Springer, 2005.

[5] Robert Godin, Hafedh Mili, et al. Building and maintaining analysis-level class

hierarchies using galois lattices. In OOPSLA, volume 93, pages 394–410, 1993.

[6] Robert Godin, Hafedh Mili, Guy W Mineau, Rokia Missaoui, Amina Arfi, and

Thuy-Tien Chau. Design of class hierarchies based on concept,(galois) lattices.

Theory and Practice of Object Systems, 4(2):117–134, 1998.

[7] Marianne Huchard and Hervé Leblanc. Computing interfaces in java. In Pro-

ceedings ASE 2000. Fifteenth IEEE International Conference on Automated

Software Engineering, pages 317–320. IEEE, 2000.

44

https://medium.com/reverdev/why-we-moved-from-angular-2-to-vue-js-and-why-we-didnt-choose-react-ef807d9f4163
https://medium.com/reverdev/why-we-moved-from-angular-2-to-vue-js-and-why-we-didnt-choose-react-ef807d9f4163
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/2181/Building-the-Security-Model-with-Use-Case-and-Class-Models.aspx
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/2181/Building-the-Security-Model-with-Use-Case-and-Class-Models.aspx
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/2181/Building-the-Security-Model-with-Use-Case-and-Class-Models.aspx

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Marianne Huchard, A-D Seriai, Christelle Urtado, Sylvain Vauttier, A Al-

Khlifat, et al. Concept lattices: a representation space to structure software

variability. In 2014 5th International Conference on Information and Commu-

nication Systems (ICICS), pages 1–6. IEEE, 2014.

[9] U Priss. A graphical interface for document retrieval based on formal concept

analysis. e. santos (ed.): Proc. of the 8th midwest artificial intelligence and

cognitive science conf. Technical report, AAAI Technical Report CF-97-01,

66-70, 1997.

[10] Michel Liquiere and Jean Sallantin. Structural machine learning with galois

lattice and graphs. In ICML, volume 98, pages 305–313, 1998.

[11] Sergei O Kuznetsov. Machine learning and formal concept analysis. In In-

ternational Conference on Formal Concept Analysis, pages 287–312. Springer,

2004.

[12] Uta Priss. Formal concept analysis in information science. Annual review of

information science and technology, 40(1):521–543, 2006.

[13] Bernhard Ganter, Gerd Stumme, and Rudolf Wille. Formal concept analysis:

foundations and applications, volume 3626. springer, 2005.

[14] Bernhard Ganter and Rudolf Wille. Formal concept analysis: mathematical

foundations. Springer Science & Business Media, 2012.

[15] Peter Eklund, Jon Ducrou, and Peter Brawn. Concept lattices for information

visualization: Can novices read line-diagrams? In International Conference on

Formal Concept Analysis, pages 57–73. Springer, 2004.

[16] Ants Torim. Galois sub-hierarchies used for use case modeling. In CLA, pages

21–32, 2013.

[17] Maarja Raud. Galois’ sub-hierarchy graph generation tool. Bachelor thesis,

Tallinn University of Technology, 2012.

[18] Kristo Aun. Tool for visualizing galois’ sub-hierarchies. Bachelor thesis, Tallinn

University of Technology, 2012.

45

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Rudolf Wille. Concept lattices and conceptual knowledge systems. Computers

& mathematics with applications, 23(6-9):493–515, 1992.

[20] Petko Valtchev, David Grosser, Cyril Roume, and M Rouane Hacene. Galicia:

an open platform for lattices. In Using Conceptual Structures: Contributions to

the 11th Intl. Conference on Conceptual Structures (ICCS’03), pages 241–254,

2003.

[21] Thomas Tilley. Tool support for fca. In International Conference on Formal

Concept Analysis, pages 104–111. Springer, 2004.

[22] Anna Formica. Concept similarity in formal concept analysis: An information

content approach. Knowledge-Based Systems, 21(1):80–87, 2008.

[23] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chat-

terjee. A design science research methodology for information systems re-

search. Journal of Management Information Systems, 24(3):45–77, 2007. doi:

10.2753/MIS0742-1222240302. URL https://doi.org/10.2753/MIS0742-

1222240302.

[24] Pivotal Software. Spring boot - java framework. https://spring.io/

projects/spring-boot#overview, 2019. [Online; accessed 18-March-2019].

[25] Evan You. Vue.js - javascript framework. https://vuejs.org/, 2014-2019.

[Online; accessed 18-March-2019].

[26] Quang Vinh Nguyen and Mao Lin Huang. Enccon: an approach to constructing

interactive visualization of large hierarchical data. Information Visualization,

4(1):1–21, 2005.

[27] Stefan Berner, Stefan Joos, Martin Glinz, and Martin Arnold. A visualization

concept for hierarchical object models. In Proceedings 13th IEEE International

Conference on Automated Software Engineering (Cat. No. 98EX239), pages

225–228. IEEE, 1998.

[28] Frank Van Ham and Jarke J van Wijk. Beamtrees: Compact visualization of

large hierarchies. Information Visualization, 2(1):31–39, 2003.

46

https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://spring.io/projects/spring-boot#overview
https://spring.io/projects/spring-boot#overview
https://vuejs.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[29] ВН Касьянов and ЕВ Касьянова. Визуализация информации на основе

графовых моделей. Научная визуализация, 6(1):31–50, 2014.

[30] Emden R Gansner and Stephen C North. An open graph visualization system

and its applications to software engineering. Software: practice and experience,

30(11):1203–1233, 2000.

[31] Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li.

Geometry-based edge clustering for graph visualization. IEEE Transactions on

Visualization and Computer Graphics, 14(6):1277–1284, 2008.

[32] Wassim CHEGHAM. Ngd: Angular dependencies graph. https://github.

com/compodoc/ngd/, 2016. [Online; accessed 18-March-2019].

[33] Angular platform. https://angular.io/, 2010-2019. [Online; accessed 01-

May-2019].

[34] Max Franz, Christian T Lopes, Gerardo Huck, Yue Dong, Onur Sumer, and

Gary D Bader. Cytoscape. js: a graph theory library for visualisation and

analysis. Bioinformatics, 32(2):309–311, 2015.

[35] Inc. npm. npm - javascript package manager. https://www.npmjs.com/, 2019.

[Online; accessed 01-May-2019].

[36] Bootstrap team. Bootstrap 4 - front-end component library. https://

getbootstrap.com/, 2019. [Online; accessed 01-May-2019].

[37] The Apache Software Foundation. Apache maven - software project manage-

ment and compression tool. https://maven.apache.org/, 2002-2019. [Online;

accessed 01-May-2019].

[38] Project lombok java library. https://projectlombok.org/, 2009-2019. [On-

line; accessed 01-May-2019].

[39] Gabriela Arévalo, Anne Berry, Marianne Huchard, Guillaume Perrot, and Alain

Sigayret. Performances of galois sub-hierarchy-building algorithms. In Interna-

tional Conference on Formal Concept Analysis, pages 166–180. Springer, 2007.

47

https://github.com/compodoc/ngd/
https://github.com/compodoc/ngd/
https://angular.io/
https://www.npmjs.com/
https://getbootstrap.com/
https://getbootstrap.com/
https://maven.apache.org/
https://projectlombok.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Anne Berry, Marianne Huchard, Amedeo Napoli, and Alain Sigayret. Hermes:

an efficient algorithm for building galois sub-hierarchies. In CLA: Concept

Lattices and their Applications, pages 21–32. Universidad de Malaga, 2012.

48

Appendix 1 - test formal context

Formal context used to generate GSH to demonstrate output of existing related

systems (Section 1.1.2). Contains 6 objects and 25 attributes. Presented in three

parts, as it is too long for single table.

attr_0 attr_1 attr_2 attr_3 attr_4 attr_5 attr_6 attr_7 attr_8

obj_0 1 1 1 1 1 1 0 0 0

obj_1 0 0 0 0 0 0 0 0 0

obj_2 0 0 0 0 0 1 1 0 0

obj_3 0 0 0 0 0 0 0 0 0

obj_4 0 0 0 0 0 0 1 1 1

obj_5 0 1 0 0 0 1 0 0 0

attr_9 attr_10 attr_11 attr_12 attr_13 attr_14 attr_15 attr_16

obj_0 0 0 1 1 1 1 0 0

obj_1 0 0 1 1 1 1 1 1

obj_2 0 0 1 1 0 0 1 0

obj_3 0 0 0 1 0 0 1 0

obj_4 1 1 0 1 0 0 1 0

obj_5 0 0 1 1 1 1 1 1

attr_17 attr_18 attr_19 attr_20 attr_21 attr_22 attr_23 attr_24

obj_0 0 1 0 0 0 0 0 0

obj_1 0 0 0 0 0 0 0 0

obj_2 1 1 1 1 0 1 0 1

obj_3 0 1 0 0 1 1 1 1

obj_4 0 1 0 0 1 1 1 1

obj_5 0 1 0 0 0 0 0 0

Appendix 2 - hierarchy of sub-systems

Screenshot from the application, that demonstrates how hierarchical sub-systems

may look like.

Screenshot from the application - hierarchy of sub-systems (three levels)

Appendix 3 - hierarchy of sub-systems with no lower

levels

Screenshot from the application, that demonstrates how the hierarchy of sub-systems

with no lower levels may look like.

Screenshot from the application - hierarchy of sub-systems (upper level only)

	List of Figures
	List of Tables
	Introduction
	Related work
	Theoretical background
	Existing soulutions

	Research questions
	Methodology

	GSH visualization tool
	Application design
	Requirements
	Technologies
	Architecture

	Implementation
	GSH transformation
	Context layers
	Hierarchical subsystems
	GSH visualization

	Validation
	Validation
	Comparison with existing solutions

	Case study
	Evaluation and discussion
	Possible future works

	Summary
	Bibliography
	Appendix 1 - test formal context
	Appendix 2 - hierarchy of sub-systems with multiple layers
	Appendix 2 - hierarchy of sub-systems

