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1  INTRODUCTION 
This thesis addresses several approaches for the abstraction of Register Transfer 
Level (RTL) IPs. The ultimate goal is comprehensive abstraction of SystemC 
(SystemC, 2011) models, such that various interfaces as well as functionality of 
a design are abstracted. 

This introductory chapter first presents the motivation leading to this research, 
followed by a more detailed problem formulation. This is followed by a 
summary of the main contributions and an overview of the thesis structure. 

 

1.1 Motivation 

The International Technology Roadmap for Semiconductors (ITRS, Online) has 
identified a dual trend in the consumer electronic products: miniaturization of 
the digital functions (“More Moore”) and functional diversification (“More-
than-Moore”). This is shown in the Figure 1.1 published by ITRS (Arden, 
2011), where the terms are defined as follows: 

 

Figure 1.1 Miniaturization and diversification in SoC's, ITRS (Arden, 2011) 
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 “More Moore” (Scaling): Continued shrinking of physical feature sizes 
of the digital functionalities (logic and memory storage) in order to 
improve density (cost per function) and performance (speed, power). 

  “More-than Moore” (Functional diversification): Incorporation into 
devices of functionalities that do not necessarily scale according to 
“Moore’s Law”, but provide additional value in different ways. The 
“More-than Moore” approach allows for the non-digital functionalities 
to migrate from the system board-level into the package (SiP) or onto 
the chip (SoC). 

 

In order to enable these new trends, traditional design approaches at RTL are no 
longer suitable. The rapid increase of System-on-Chip (SoC) design complexity 
has emphasized the importance of high-performance simulation models and 
solutions for design realization. This has resulted in emergence of design 
methodologies at higher level of abstraction that enable unified development of 
the SoC designs. This level has been called system level, behavioral level, C-
level, algorithmic level, Electronic System Level (ESL) (Bailey et al., 2012), or 
just a higher level (i.e. higher than RTL). 

Realization of the ESL design methodology has been made practical with the 
introduction of TLM (Frank, 2006), that has gained wide acceptance within 
industry and academia for modeling the modern complex SoCs. TLM abstracts 
the pin-level details and cycle-level communication-protocol for modeling the 
memory-mapped interfaces of the IPs. Communication between simulation 
models is achieved via pre-defined function calls, resulting in easy modeling of 
interfaces, high simulation speeds and early availability of simulation platform. 
This enables the usage of TLM models for a range of design tasks, e.g. early 
software development, performance analysis, architecture exploration, 
hardware/software partitioning, etc. TLM enables the system level performance 
evaluation to select proper architecture, as well as software development and 
debug much before the availability of the physical hardware. 

In order to enable the ESL and TLM methodologies, various languages and 
tools have been proposed and tried out to focus on different aspects of the 
system-level design. Few of these languages are behavioral Verilog (Verilog, 
2005) or VHDL (VHDL, 2008), C (C11, 2011), Java, C++ class libraries (C++, 
2014), C derivatives like SpecC and HandelC, SystemVerilog and special-
purpose languages like Bluespec and Esterel. As of 2009, the SystemVerilog 
and Verilog language standards were merged into SystemVerilog 2009 (SV, 
2009). Among these, SystemC has emerged as the dominant language that has 
been standardized as IEEE Standard 1666-2011 (SystemC, 2011). This standard 
also defines the TLM-2.0 interfaces for developing compliant models and tools. 

SystemC has gained wide acceptance in the design of new digital IPs. However, 
there are numerous IPs already designed in VHDL or Verilog. With the 
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advances in SystemC ecosystem, like IEEE standardization, TLM-2.0 standard, 
SystemC high-level synthesis, many IP design houses are interested in 
developing SystemC models of their portfolio RTL IPs. 

As a result of the above discussed advances in the SoC design practices, 
product-development companies are focusing their methodologies around ESL, 
TLM-2.0 and SystemC. SoC architects, hardware designers, software 
developers, verification teams, etc. have started using ESL for their project 
tasks.  Either complete or partial TLM-based systems are now being modeled in 
SystemC, proliferating its usage and acceptance. In practice, system architects 
and system integrators often have access to a library of legacy RTL IP cores or 
obtain new ones from IP design houses. To address architectural exploration, 
early prototyping and simulation performance, such RTL IP cores are manually 
recreated at more abstract levels, which implies significant effort and is an 
inherently error-prone process. 

Nowadays, product-development companies are increasingly demanding ESL-
models in SystemC, along with VHDL/Verilog RTL IPs. With the acceptance 
of TLM methodology for system level design, IP-customers need ever 
increasing support for the TLM-2.0 models. These factors have put tremendous 
pressure on IP design houses, in terms of cost and effort, to provide high-level 
models. IP providers are deeply pressed to make available the SystemC models 
of their legacy VHDL or Verilog IPs to remain competitive in today’s market. 

 

1.2 Problem Formulation 

As discussed in the previous section, IP design houses are facing a huge 
challenge of providing the abstract SystemC models of their RTL IPs. Manual 
abstraction of RTL has a potential of mismatch between different abstraction 
levels and is impractical in terms of time and effort. A preferred way is to 
automate the VHDL/Verilog translation and abstraction to SystemC, as this 
approach is faster and maintains consistency between source and SystemC 
implementations. 

Abstraction of RTL IP that is acceptable and beneficial to the SoC industry 
must focus on the following salient features: 

 SystemC is the target language of the high-level model. 

 Generated code is readable and comprehensible for easy maintenance. 

 Code-level optimizations are applied to improve the simulation speed. 

 Memory-mapped inputs (e.g. address, data) are abstracted to TLM-2.0. 

 Rest of the input signals (e.g. interrupts, reset, etc.) remain functional. 

 Dependence on clock signal is minimized for higher simulation speed. 
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 Functional behavior is appropriately abstracted from RTL coding style. 

 Complete methodology is available via an accessible EDA framework. 

Purpose of this research is to develop a methodology to automatically abstract 
RTL IPs into higher-level models, with zero or minimal manual-interaction. 
Methodology for translation of VHDL RTL to abstract SystemC, adhering to 
the above desired features, is the result of this research. The described 
methodology has been implemented in zamiaCAD (zamiacad, Online), an open-
source RTL entry and analysis framework. The target SystemC model can be 
generated for both cycle-accurate as well as untimed Programmer’s View (PV) 
abstractions. 

Results of this research are extremely relevant for the SystemC model 
providers, ESL/EDA tool-vendors and to the wider SystemC user community. 

 

1.3 Main Contributions 

This thesis explores various methodologies that can be used to abstract RTL 
IPs. Main contributions of this thesis are: 

1. A methodology for translation of VHDL RTL to SystemC: Various 
rules are proposed to automatically generate SystemC from input 
VHDL RTL. These rules are generic in nature and can be applied to any 
VHDL RTL design. 

2. An optimization approach for simulation speed-up of translated 
SystemC: Various optimizations techniques are introduced for the 
VHDL to SystemC translated code. These optimizations allow higher 
simulation speeds as compared to the directly translated SystemC-
models. 

3. Optimization techniques for co-simulation: While moving from 
complete system simulation in RTL towards SystemC implementation, 
co-simulation of VHDL-SystemC is often employed. Different 
strategies are discussed for selecting the modules to replace from 
VHDL to SystemC so that faster co-simulation speed is realized. 

4. An approach for abstraction of I/O interface: Interface abstraction 
deals with the conversion of signal-level and cycle-accurate protocol to 
the standard TLM-2.0 protocol in SystemC. The introduced 
methodology can be used to abstract any arbitrary signal-level protocol 
to TLM-2.0. Only side-band signals like clock and interrupt are not 
converted to TLM-2.0 protocol. 

5. An approach for clock signal abstraction: Clock abstraction aims at 
removing the clock signal, either partially or completely, preserving the 
behavior of the system design. Minimization of delta-cycles and events 
in a system level model is the core idea behind the clock signal 
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abstraction. Another proposal is to transform VHDL Finite State 
Machine with Datapath (FSMD) design to an equivalent Algorithmic 
State Machine (ASM) representation in SystemC that enables event-
based triggering of ASM states. 

6. A methodology for functional abstraction: Its focus is on abstracting 
the behavioral implementation of a module. Notion of SystemC-based 
Loose Modeling (SCLM) is introduced to functionally abstract a design 
implemented as VHDL FSMD. SCLM provides for an instrument to 
neglect design model parts irrelevant for particular manipulation step of 
the abstraction process, thus simplifying the abstraction flow. 

Abstraction of memory-mapped signal-level interface to TLM-2.0 standard 
is accomplished by a novel and highly innovative work as a part of this 
research. It is decided to explore filing a patent for this work and hence has 
been omitted in this thesis. 

 

1.4 Thesis Organization 

This thesis consists of 6 main chapters. The rest of it is organized as follows. 

Chapter 2 provides background information required for discussion of the 
various methodologies proposed in this thesis. First, new design methodology 
termed as Electronic System Level (ESL) design is discussed. It is followed by 
an introduction of abstraction levels, that form the basis of ESL. Then the 
SystemC language is introduced that is a set of C++ classes and macros 
approved by the IEEE Standards Association as IEEE Standard 1666-2011 in 
the SystemC Language Reference Manual (LRM). This is followed by a 
discussion of Transaction Level Modeling in which a transaction between two 
IP models is via a function call as opposed to multiple signal transitions that 
occur in RTL for the same transaction. Finally, zamiaCAD is introduced that is 
a modular and extensible open source framework supporting multiple use-cases, 
like advance hardware design and debug, analysis and research, along with 
translation and abstraction of VHDL to SystemC. 

Chapter 3 focusses on a methodology to translate RTL VHDL IP cores to cycle-
accurate SystemC designs. The SystemC output is emphasized to be human-
readable and providing for clear correspondence to the source VHDL code, thus 
allowing further manual code changes and debug. The described methodology 
has been implemented in zamiaCAD and has been successfully applied to 
translate various VHDL benchmark designs. Availability of cycle-accurate 
SystemC model, instead of VHDL, has advantages across the product 
development, like (1) Architects integrate and update their C/C++ algorithms 
directly in the hardware model (2) Hardware designers, transitioning from 
VHDL to SystemC, learn relationship between VHDL and SystemC (3) 
Verification engineers directly use SystemC testbenches and can avoid 
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expensive co-simulation tools (4) Firmware developers working with 
assembly/C/C++ find familiar development environment for their tasks. 

Chapter 4 explores various optimizations methodologies for the translated 
SystemC models as well as for models used in co-simulation. In addition to the 
plain VHDL-to-SystemC translation, there are possibilities of alternate 
implementations for a SystemC model. This chapter explores these alternate 
scenarios to get better simulating SystemC models. Another discussion in this 
chapter is about optimization scenarios that affect the co-simulation 
performance, as the VHDL and SystemC models are frequently co-simulated by 
architects as well as verification teams. The optimization methodologies 
discussed in this chapter are relevant to architects, designers, verification teams, 
and IP design houses that need to provide high-speed simulation models, and 
can be used for optimizing co-simulation tools as well system level models. 

Chapter 5 discusses about the abstraction of clock interface that is an integral 
part of synchronous designs. The chapter begins with an introduction of various 
modes of simulation as well the SystemC simulation mechanism. It is important 
to understand these concepts in order to abstract the clock interface in the 
SystemC models. The chapter proposes a manipulation approach that 
transforms an FSMD RTL design in VHDL to an equivalent ASM 
representation in SystemC with explicit separation of design functionality by 
states. Finally, the clock interface is abstracted up to optimize the simulation 
performance. 

Chapter 6 proposes an approach for automated abstraction of the computational 
part of cycle-accurate RTL IP cores to untimed TLM using a novel concept of 
SystemC-based Loose Models (SCLM). SCLMs provide for an instrument to 
neglect design model parts irrelevant for particular manipulation step of the 
abstraction process, thus simplifying the abstraction flow. As a result, the 
computational complexity of the abstraction process is reduced, thus increasing 
the overall scalability. 

Chapter 7 finally draws the conclusions for this thesis and discusses possible 
directions for future work. 
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2  BACKGROUND 
The purpose of this chapter is to introduce various concepts that form the basis 
of the current research documented in this thesis. Technology roadmaps predicts 
that the technology scaling for semiconductor chips continues at least until the 
year 2020 (ITRS, 2012). All major semiconductor roadmaps have emphasized 
the higher levels of abstraction in order to increase the design productivity. The 
most recent approach in this direction is the Electronic System Level (ESL) 
design methodology. ITRS lists the use of various abstraction levels for tasks 
ranging from system specification till implementation and verification. Various 
levels of abstractions and their use-cases are further discussed in this chapter 
that are conceptualized to handle various design tasks appropriately. Among the 
recently proposed high-level design languages, SystemC has emerged as an 
IEEE Standard 1666-2011 that is introduced in this chapter. Finally, the chapter 
discusses the zamiaCAD that is an open-source EDA tool for design entry, 
analysis, translation and simulation. 

 

2.1 Electronic System Level Design 

Modern SoCs are complex systems requiring advances in design methodologies 
as compared to the traditional approaches. Main challenges faced by SoC 
designers are: 

a) increased functionality, 

b) huge design space,  

c) reduced time to market, 

d) increased verification complexity,  

e) specifications at higher levels, 

f) highly complex software development, 

g) enabling concurrent design of hardware/software 

 

These challenges demand the entire SoC (hardware, software, interconnects, 
etc.) to be developed and verified as early and as parallel as possible. 

Electronic System Level design is an electronic design methodology focusing 
on the higher abstraction levels. The term 'Electronic System Level' design was 
first coined by Gartner Dataquest. The book on ESL Design and Verification 
(Bailey et al., 2007) defines it as: “the utilization of appropriate abstractions in 
order to increase comprehension about a system, and to enhance the probability 
of a successful implementation of functionality in a cost-effective manner.”  
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Most of the SoC design companies use the ESL methodology for system design, 
resulting in shorter development time with reduced effort and budget. ESL 
started as an algorithm modeling methodology, without any links to 
implementation. It has now evolved into a set of complementary methodologies 
that enable embedded system design, verification, and debugging. ESL has been 
successfully used for hardware and software implementation of custom SoC, 
system-on-FPGA (Field-Programmable Gate Array), system-on-board, and 
entire multi-board systems. 

Figure 2.1 shows the common ESL design steps ranging from algorithmic level 
down to the RTL implementation. ESL methodology starts with an algorithmic 
representation of the desired functionality. This is accomplished using C, 
MATLAB, Excel, etc. to explore and finalize the algorithmic details. Once the 
algorithmic details have been finalized, the next level is to model the SoC at a 
higher level of abstraction using C, SystemC, etc. Aim of this level is to explore 
the system level details like memory-map, embedded application, functional 
validation, etc. This is commonly referred to as TLM and results in a golden 
prototype of the complete system. At the TLM-level, IPs are modeled at a 
functional level and the system bus is modeled independent of any particular 

Algorithm 

High-level model 

Time-annotated model 

BCA model 

Pin-accurate model 

RTL 



 







 
Figure 2.1 ESL Design Methodology 
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bus protocol. Once the high-level platform is validated for functionality, it is 
refined for architecture exploration by annotating timing information in the 
functional model. Till now, the external interfaces of the models are the 
transaction interfaces that are further refined for pin-accuracy as per the 
specifications of the IPs. This pin-accurate view of the system enables the 
verification of the communication protocol and interrupts. Final refinement is 
towards the RTL of the design that is then synthesized and fabricated. 

As discussed earlier, ESL ranges the completed spectrum of hardware (HW) 
and software (SW) design cycles in an SoC ranging from requirements 
validation down till implementation. Table 2.1 depicts the suitability and usage 
of various languages used in the industry for the ESL tasks. 

Behavior of the entire system is modeled in ESL using high-level languages like 
C, C++ or MATLAB or using graphical “model-based” design tools like 
VisualSim or Simulink. Newer languages are emerging that enable the creation 
of higher level models, like SysML, SMDL and SSDL, as well as system design 
automation products, like Incisive Verification Platform (Incisive, Online) and 
Cocentric System Studio (Synopsys, Online). EDA tools can be employed to 
automate the rapid and correct-by-construction implementation of the system. 

 

Table 2.1 ESL tasks and suitable languages 

 Verilog / 
VHDL 

Bluespec System 
Verilog 

e SystemC MATLAB 

 Requirements       

 Architecture       

 HW / SW       

 Behavior       

 Verification       

 Testbench       

 RTL       

Gates       

The focus of this thesis is on VHDL and SystemC design languages, so that the 
VHDL RTL IP is comprehensively abstracted to high-level SystemC model. 
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2.2 Abstraction Levels 

Levels of abstraction are the basic premise in the ESL methodology. The most 
abstract level is defined by Communicating Processes (CP), as shown in Figure 
2.2, that can be progressively refined to the Cycle Accurate (CA) level. Each 
level is suited for a particular design task and there is a conscious trade-off 
between accuracy and speed at each level. These abstraction levels can be 
described as follows: 

1. Communicating Processes (CP): The CP-level is free of any 
architectural information. The entire system is described at the level of 
a set of processes communicating via (unbounded) FIFOs. The 
processes focus on the actual task (e.g. frame processing) without 
consideration for whether the task would be finally realized as a piece 
of silicon or as a software algorithm executing on a DSP. 

 

Figure 2.2 Abstraction levels in ESL 

2. Programmers View (PV): The CP network is refined with 
architectural details to get the PV level. A PV-model has complete 
functionality of the hardware-IP but no sense of timing. This allows for 
an early distribution of compute tasks and a partial ordering of their 

PVT

CA

PV

CPTask Task
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response, allowing application developers a software view of the 
system. 

3. Programmers View with Timing (PVT): The PV-model is annotated 
with timing-details to arrive at the PVT-model. A PVT-model does not 
model all signal transitions. Instead a transaction interface will be used 
to complete an entire set of transitions. However, timing may be 
annotated into the model at known intervals in order to preserve and 
guarantee a certain ordering of events and to get an approximate view 
of cycle count for transactions. 

4. Cycle Accurate (CA): The lowest level of abstraction is represented by 
a CA model that describes timing sequence as in actual hardware. 
Accuracy at this level is at its highest but speed at its lowest, as the 
model represents all the signals of the hardware IP. 

 

These abstraction levels are used for different steps in the SoC design cycle, 
such as software development, architecture exploration, performance analysis 
and system verification. Usage of abstraction levels is as follows: 

A) Software Development: Typically, software development takes place, 
in the embedded context, when the hardware is available either as an 
emulator or a chip. This places immense pressure on HW-SW 
integration and final system validation. It is often the case that the 
integration and validation do not go as anticipated and either hardware 
or software has to re-spin. This can be avoided by beginning software 
development early in the design lifecycle and by carrying out HW-SW 
pre-integration tests on the functional models of the processor(s), 
memories and other peripherals. Hence, the PV level of abstraction is 
best suited for this task. These PV models can provide the same tool 
suite interface as with hardware reference designs but with better 
visibility, control and flexibility, and execute in the range of millions of 
instructions per second. Note that it is possible to use the PVT or CA 
level also for software development but is not practical due to drastic 
reduction in simulation speed. 

B) Architecture Exploration, Performance Analysis: Architecture 
exploration of an SoC requires the models to have complete 
functionality (as in PV) along with timing details. The timing 
information in a model can be dynamic/implicit or static/explicit. The 
dynamic/implicit timing depends on the actual events occurring in the 
system and is expressed as a function of system events. The 
static/implicit timing is embedded within the model itself and is made 
independent of the system. Timing details necessitate the use of PVT-
level of abstraction for architecture exploration and performance 
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analysis. Note that it is possible to use the CA level also for these tasks 
but is not practical due to reduction in simulation speed. 

C) Verification: Both hardware verification and HW/SW co-verification 
require a level of accuracy predictive of real chip timing behavior. Also, 
pin-accurate RTL testbenches/models may be used for verification 
tasks. Hence, CA level of abstraction is employed for verification 
purposes. The CA-models simulate 5-10 times faster than RTL models 
and hence can still execute the embedded software to detect design 
errors. This leads to a tremendous speedup of verification, one to two 
orders of magnitude larger than the Bus Functional Model and 
Instruction Set Simulator based verification approaches. 

Table 2.2 summarizes the characteristics and uses of each abstraction level, as 
discussed earlier in this section. 

 

Table 2.2 Characteristics and uses of abstraction levels 

Level Characteristics Use-cases 

CP, PV Very high simulation speed,  
no timing information 

 Functional correctness, 
Software development 

PVT Moderate simulation speed, timing 
details 

Architecture exploration, 
HW/SW partitioning 

CA High accuracy, low simulation speed Co-verification, 
Device-driver 

 

2.3 SystemC 

As the ESL methodology was adopted by the SoC companies, there was a rise 
in development of proprietary solutions. Although this worked well for each 
individual SoC company, it created a barrier for exchange of high-level models 
across the semiconductor industry. This demanded some standard high-level 
language(s) to be defined and used across the industry. Among these high-level 
languages, SystemC, System-Verilog, and SpecC represent the initial efforts 
that were most widely used across the industry. With the passage of time, 
SystemC gained more popularity and acceptance in the industry due to its 
applicability to system level modeling, architectural exploration, software 
development, functional verification, and high-level synthesis. 

SystemC is a set of C++ classes and macros that has been approved as IEEE 
1666 Standard SystemC Language Reference Manual (LRM) (SystemC, 2011). 
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The LRM provides the definitive statement of the semantics of the SystemC. 
SystemC traces its origins to work on Scenic programming language (Liao et 
al., 1997). SystemC provides an event-driven simulation kernel in C++, together 
with signals, events, and synchronization primitives. These facilities enable a 
designer to simulate concurrent processes, each described using plain C++ 
syntax. SystemC processes can communicate in a simulated real-time 
environment, using signals of all the datatypes offered by C++, some additional 
ones offered by the SystemC library, as well as those defined by the users. 
SystemC models can be developed at various abstraction levels like Un-timed 
(UT), Loosely Timed (LT), Cycle Accurate (CA) etc. to suite various SoC 
requirements like software development, architectural exploration, synthesis, 
etc.  

Features and advantages of SystemC over RTL languages are: 

 Design of an SoC at a higher level of abstraction.  

 Development of both hardware and software components. 

 Focus on the functionality of the system, rather than its implementation. 

 Effective evaluation of different architecture alternatives. 

 Hardware and software partitioning of the system functionality. 

Building-blocks of a SystemC model are: 

 Modules: Modules are the basic building blocks of a SystemC design 
hierarchy. A SystemC model usually consists of several modules which 
communicate via ports. The modules can be thought of as a building 
block of SystemC. 

 Ports: Ports allow communication from inside a module to the outside 
(usually to other modules) via channels. 

 Exports: Exports incorporate channels and allow communication from 
inside a module to the outside (usually to other modules). 

 Processes: Processes are the main computation elements. They are 
concurrent. 

 Channels: Channels are the communication elements of SystemC. 
They can be either simple wires or complex communication 
mechanisms like FIFOs or bus channels. Elementary channels can be of 
type signal (wire), buffer, fifo, mutex, semaphore. 

 Interfaces: Ports use interfaces to communicate with channels. 

 Events: Events allow synchronization between processes and must be 
defined during initialization. 
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 Data types: SystemC introduces several data types which support the 
modeling of hardware. 

◦ Extended standard types: 

▪ sc_int<n> n-bit signed integer 

▪ sc_uint<n> n-bit unsigned integer 

▪ sc_bigint<n> n-bit signed integer for n > 64 

▪ sc_biguint<n> n-bit unsigned integer for n > 64 

◦ Logic types: 

▪ sc_bit 2-valued single bit 

▪ sc_logic 4-valued single bit 

▪ sc_bv<n> vector of length n of sc_bit 

▪ sc_lv<n> vector of length n of sc_logic 

◦ Fixed point types: 

▪ sc_fixed<> templated signed fixed point 

▪ sc_ufixed<> templated unsigned fixed point 

▪ sc_fix untemplated signed fixed point 

▪ sc_ufix untemplated unsigned fixed point 

Ecosystem of SystemC consists of varying offerings and options, like: 

 Proof-of-concept simulator, freely available from http://accellera.org/ 

 Tool providers, e.g. Cadence 

 Model providers, e.g. Synopsis 

 Service providers, e.g. Circuitsutra 

 Academic institutes, e.g. OFFIS (Germany) 

 Professional consulting, e.g. Gary Smith EDA  

 Papers and journals, e.g. IEEE 

 Users Group meetings, like 

◦ ESCUG - European SystemC Users Group 

◦ NASCUG - North American SystemC User's Group 

◦ LASCUG - Latin American SystemC User's Group 

◦ ISCUG - Indian SystemC User's Group 

The author is an active member of the ISCUG as well as manages the LinkedIn 
group related to Open SystemC Initiative (OSCI). 
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History of SystemC dates back to the formation and announcement of OSCI 
alliance in 1999, launching the proof-of-concept SystemC kernel in 2000. 
SystemC 2.1 LRM and TLM 1.0 standard was released in 2005, the same year 
IEEE approved the IEEE 1666–2005 standard. Analog extension to SystemC, 
AMS, was introduced in 2010 and the IEEE approved the IEEE 1666–2011 
standard for SystemC in 2011. 

 

2.4 zamiaCAD 

Several research contributions presented in this thesis are implemented using 
the zamiaCAD's graphical user interface (GUI) for code entry and exploits the 
internal data-structures (abstract syntax tree and instantiation graph) for 
semantic analysis of VHDL for translation to SystemC.  

 

 
Figure 2.3 Structure of zamiaCAD (Jenihhin et al., 2014) 

zamiaCAD (Jenihhin et al., 2014) is a modular and extensible open source 
framework supporting multiple use-cases, like advance hardware design and 
debug, analysis and research, along with translation of VHDL to SystemC. 
Currently, zamiaCAD front-end supports IEEE VHDL 2008 and the IEEE 
1364-2005 Verilog support is a work in progress. 

Figure 2.3 shows the structure and applications of zamiaCAD. It can handle 
large industrial designs, such as an SoC of 3500 Leon3MP-s (Leon3, Online), 
and provides all facilities through Eclipse-based (Eclipse, Online) GUI front-
end. This framework is developed to provide the research community with a 
robust open-source platform equipped with powerful debugging functionality. 

zamiaCAD consists of three basic building blocks: 

Static analysis + 
Navigation

   ‐ Signal tracing
   ‐ Reference tracing
   ‐ Outlines, trees

Simulation + 
Waveform

   ‐ Annotations
   ‐ Code coverage
   ‐ VCD import

Indexer, Parser

AST

Elaboration Engine

IG

ZDB

Debug
SystemC

Code entryRTL Graphs

Eclipse GUI
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1. Frontend for Hardware Description Language (HDL) parsing: full 
VHDL 2008 parser, syntax tree, elaboration (Verilog 2005 parser and 
syntax tree, no elaboration yet), persistent and scalable syntax tree 
storage. 

2. Core for intermediate design representation and analysis: based on a 
powerful, persistent and scalable design database, fully elaborated 
design model, full source back-annotation, static analysis, interpreter 
for quick expression evaluation, built-in simulator for validation. 

 

Figure 2.4 zamiaCAD GUI 

3. GUI based on Eclipse IDE Plugin: graphical viewers and editors, 
automatic model builder, as shown in Figure 2.4. 

The frontend consists of an elaboration engine and a parser. Currently, Verilog 
has only a parser, whereas VHDL has a complete frontend. zamiaCAD has a 
complete VHDL compiler with project build facilities. Applications like a 
simulator and an Eclipse based GUI are built on top of the IG and potentially 
language dependent structures like the abstract syntax tree (AST). 

A simplified flow of the zamiaCAD framework is shown in Figure 2.5. An 
object database ZDB (zamiaCAD Data Base), which has been custom-designed 
and highly optimized for scalability and performance, is used for zamiaCAD 
applications. Full elaboration in zamiaCAD semantically resolves the Abstract 
Syntax Tree generated by the parser and results in a set of scalable Instantiation 
Graph data structures, stored in ZDB. IG allows clients to perform all kinds of 
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tasks. IG is a densely connected graph of semantically resolved objects 
representing elements of the hardware design. Design database is also 
automatically and efficiently persisted to disk to save time on later elaboration. 

 

 

Figure 2.5 Flow of the zamiaCAD framework (Tšepurov, 2012) 

Parsing all VHDL sources that are accessible through the directories configured 
in a project’s setting can be very time consuming. Since a significant portion of 
the design units defined in those files might never actually get instantiated or 
used in the project (this is especially true for technology/simulation libraries), it 
is often not necessary. Therefore, zamiaCAD comes with a very high-speed 
VHDL indexer, which will extract only the information about which design 
units are declared in which files. The actual VHDL parser is then used in an on-
demand manner only on local source files and files that define design units that 
are actually needed during elaboration. 

The zamiaCAD framework addresses mainly advanced HW RTL design, 
verification and analysis, and offers the following functionality: 

1. Code entry features comprise syntax highlight, code entry, content 
assist (identifier auto-completion), extensible set of HDL templates and 
an incremental IG model builder. zamiaCAD's HDL code editor is 
based on Eclipse's editor. 
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2. Static analysis (SA) tasks and navigation are feasible due to the fully 
elaborated IG design model, where all identifiers (including types) are 
resolved. SA tasks include tracing of parts of signals, precise global 
signal tracing, precise matching of overloaded subprograms, tracing 
through generate-statements, advanced signal value annotations (e.g. 
annotating only one bit of a vector), computing expressions on the fly, 
source-less and sink-less signal detection, Finite State Machine (FSM) 
recognition (WIP), code outline and code hierarchy view, declaration 
search. 

3. VHDL simulator, implemented in accordance with the IEEE Standard 
VHDL Language Reference Manual. Simulator also provides code 
coverage measurements, value/timing source back-annotations and 
importing of waveform files in VCD format. 

4. Debugging features include an experimental algorithm for automatic 
design error localization, which brings together SA and simulator to 
narrow down the search space where the design bugs are to be 
localized. 

5. SystemC generation from VHDL. As part of this research, zamiaCAD 
is able to generate a cycle-accurate, pin-accurate SystemC model out of 
RTL VHDL, thus preserving the level of abstraction. 

As a framework, zamiaCAD offers a scripting interface, implemented in 
JPython, for controlling external tools, such as ghdl, ModelSim etc. JPython 
scripts also make zamiaCAD itself easier to use from the command line. 

 

2.5 Chapter Summary 

This chapter has provided necessary information required for understanding the 
research documented in this thesis. The first part of this chapter discussed the 
need and practice of the ESL methodology. The second section introduced the 
abstraction levels that form the underlying concept in the ESL methodology. 
The third part discussed the SystemC modeling language that has emerged as an 
IEEE standard for implementing ESL and is the basis of the current research. 
Finally, zamiaCAD was introduced that is a modular and extensible open source 
framework supporting multiple use-cases, like advance hardware design and 
debug, analysis and research, along with translation of VHDL to SystemC and 
subsequent abstractions. 
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3  VHDL-TO-SYSTEMC TRANSLATION 
SystemC has gained wide acceptance in the design of VLSI SoCs. At the same 
time there exists a large number of legacy IP cores described in VHDL whose 
reuse and integration into SystemC ecosystem is highly demanded. However, 
there is a lack of any standard approach in this regard.  

This chapter describes a methodology to translate RTL VHDL IP cores to 
cycle-accurate SystemC designs. The described framework has been 
implemented in zamiaCAD platform and successfully applied to translate 
various VHDL benchmark designs. 

The translated SystemC output is emphasized to have: 

 Human readability: This is an important consideration about the usage of the 
generated SystemC code: whether the SystemC code is only to be fed to a 
compiler or is it going to be maintained by human developers. Many VHDL to 
SystemC translation-tools lack this feature and generate an obscure code which 
is not fit for human use. It goes a long way to decide the human relationship 
with the generated SystemC code.  

 Correspondence of the translated SystemC to VHDL: If a team of designers 
needs to maintain both the VHDL and SystemC code-bases, then it is 
appropriate to have a consistent view between the two. The translation 
mechanism must decide about this early on and take care of. Usage of the same 
module names, variables, constructs, etc. must be adhered too, unless SystemC 
does not support a feature inherently. 

The chapter is divided into following sections: Section 3.1 presents the related 
work in this domain. Methodology for VHDL-to-SystemC translation is 
discussed in Section 3.2. Results of applying the translation to various 
benchmarks are presented in Section 3.3 and finally Section 3.4 summarizes the 
chapter with pros and cons of the presented methodology and discussion on 
future scope of work.  

 

3.1 Related Work 

Code translation tools speed up the model development time as well as guaranty 
consistency between original and translated models. Both top-down approaches 
and VHDL IP-reuse approaches are used for deriving SystemC models. High-
level synthesis tools, like (Cynthesizer, Online), (Catapult, Online) and (C-to-Si, 
Online) are an example of top-down approach. Bottom-up approaches, like 
(Bombieri et al., 2010) and (SAVANT, Online) are examples of IP reuse. 
However, readability and efficiency of the translated code are two major 
problems of the current code translators. 
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Among the commercial solutions there is Carbon Model Studio (Carbon, Online) 
that allows creating configurable SystemC models from RTL VHDL or Verilog 
descriptions. It is targeted mainly at simulation speedup and does not intend to 
create human-readable output. HIFSuite (HIFSuite, Online), (Bombieri et al., 
2010) is a design and verification framework addressing manipulation and 
integration of heterogeneous design parts. Similarly, it allows dumping out RTL 
VHDL descriptions into SystemC. Before the dump out the design models can 
be manipulated on the internal HIF model. The output result also does not 
consider human-readability and correspondence to the source VHDL. The 
approach supports equivalence checking to prove the correctness of the result. 
However, the major advantage of this tool is ability to raise the level of 
abstraction of the design from RTL to TLM. Only a demo version of the tool 
was available for the experiments.  

Another option is to use non-commercial and free solutions to generate 
SystemC from VDHL. VHDLParser by University of Tuebingen (Tuebingen, 
Online) and VH2SC by HT-Lab (VH2SC, Online). Both approaches consider 
mapping of the source VHDL to a limited set of SystemC constructs. These 
tools have demonstrated significant limitations, do not guarantee equivalence 
and they are not maintained anymore. VHDLParser dates to 2001 and addresses 
SystemC 1.0. Closed sources of the tools do not allow engineers to extend them 
to their needs. 

The most relevant approach is published by OFFIS in (Görgen et al., 2012). It 
assumes creation of readable SystemC representations from VHDL that are 
targeted to be wrapped and simulated in the Simulink environment. The 
approach is claimed to support industrial designs, however only an illustrative 
example details are available (VHDL2SC, 2012). This practical work also does 
not provide for equivalence checking mechanisms or results. There are known 
approaches for creating SystemC models from Verilog (Verilator, Online) and 
tools targeting creation of other C++ subsets like FreeHDL (FreeHDL, Online) 
and VHDLC (Ostatic, Online). 

Different from the existing works, this chapter addresses an open-source 
extensible framework for fully automated generation of standard SystemC 
descriptions from legacy RTL VHDL IP cores targeting their reuse in industrial 
SystemC environments. The framework assumes future extension of the current 
implementation to support automated RTL to TLM abstraction. 
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3.2 Translation Methodology 

The translation methodology is highlighted by the rules described in this 
section. The proposed methodology has been implemented in zamiaCAD, using 
the abstract syntax tree (AST) generated by the platform’s front-end while 
assuming usage of the semantically resolved scalable instantiation graph (IG) 
data structures (Tšepurov, 2012) for complex design constructs. 

 

3.2.1 SystemC module constructor on-the-fly 

SystemC module needs a constructor, unlike a VHDL model. Some 
information, like sensitivity-list, is part of the SystemC constructor that is only 
available in VHDL process declaration, as shown in Table 3.1. Hence, SystemC 
constructor can only be written once complete VHDL code has been parsed. 
This demands that the information for the SystemC constructor be gathered 
while parsing the VHDL module, accumulated on-the-fly and finally written to 
the SystemC file. 

Table 3.1 SystemC module constructor on-the-fly 

VHDL Syntax SystemC Syntax 

P1 : process(A,B) 

begin 

... 
end process P1; 

class module : public sc_module 
{... void P1(void); …}; 

module::module() 
{... 
    SC_METHOD(P1); sensitive << A << B; 
...} 

 

Table 3.2 SystemC model naming 

VHDL Syntax SystemC Syntax 

entity E is . . . end E; 

architecture behav of E is 
begin . . . end behav; 

 
class E_behav : public sc_module 
{ . . . }; 

 
architecture RTL of E is 
begin . . . end RTL; 

 
class E_RTL : public sc_module 
{ . . . }; 
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3.2.2 Multiple architecture definitions 

VHDL enables definition of multiple architectures for a single entity. However, 
SystemC is limited in this regards that there is only a single SystemC class 
available for each representation. A practical approach in this regard is to derive 
the name of each SystemC module from a combination of the VHDL entity and 
architecture names, e.g. by concatenating VHDL entity and architecture names. 
Table 3.2 shows this approach. 

 

3.2.3 Using constructors rather than SC_CTOR  

VHDL allows model parameterization using generics. In order to achieve the 
same in SystemC, it is recommended to use the class constructors instead of 
SC_CTOR. This enables the VHDL generics to be used as constructor 
parameters, as shown in Table 3.3. 

 

 

 

 

 

 

 

 

3.2.4 Virtual destructor 

As it is also discussed in the guideline 7 in Effective C++ (Meyers, 2005), if the 
SystemC model has any virtual function then it should have a virtual destructor. 
Additionally, the classes not designed to be base classes or not designed to be 
used polymorphically should not declare virtual destructors. 

 

3.2.5 Native C++ data-types for faster simulation  

Using lesser state types might suffice instead of higher state types. Take an 
example of VHDL std_logic type. If only values '0'/'1' are relevant, and not the 
'X'/'Z' states, then C++ bool type is recommended instead of exact replacement 
by SystemC sc_logic type. However, this approach must be used with care. The 
entire code needs to be analyzed to make sure that the left-out values (e.g. 'X'/'Z' 
in this case) are not used anywhere in the code. Also, this restricts the SystemC 
model for later design updates when the dropped values might be used. 

Table 3.3 SystemC module constructor instead of SC_CTOR 

VHDL Syntax SystemC Syntax 

entity E is  
  generic (G: integer := 10);
  . . .  
end E; 

class E_behav : public sc_module 
{ . . .  
  E_behav(sc_module_name n, int G=10) 
  : sc_module(n), my_G(G) 
   . . . 
}; 
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3.2.6 Operator precedence differences between VHDL and SystemC 

This consideration is extremely important to keep up with. VHDL and SystemC 
have different precedence for certain operators. As is common, use parenthesis 
for clarity and overwriting precedence. 

 

3.2.7 Using port-methods for clarity 

SystemC uses the same operator '=' for reading the variables as well as the 
ports. To remove ambiguity, use methods for read/write on ports and to reserve 
'=' for variable assignments, as shown in Table 3.4. 

 

3.2.8 VHDL and SystemC port types 

Both VHDL and SystemC have similar types of ports and can be mapped 
uniquely from VHDL to SystemC. Table 3.5 shows the similar port mapping 
between VHDL and SystemC. Data-type of the VHDL ports can be mapped to 
similar port data-types in SystemC, e.g. std_logic port in VHDL is mapped 
to sc_logic port in SystemC. VHDL has a unique 'buffer' port type, that 
indicates that the port is out type, but its value can be read inside the entity. For 
all practical purposes this can be mapped to SystemC 'sc_inout' port. 

 

 

 

Table 3.4 SystemC port method 

VHDL Syntax SystemC Syntax 

entity E is  
  port (A: in std_logic); 
end E; 

architecture behav of E is 
  signal X, Y: std_logic; 
begin  
  X <= A; 
  Y <= X; 
end behav; 

class E_behav : public sc_module 
{  
  sc_in<sc_logic> A; 
  sc_logic X, Y; 
  . . . 
  X = A.read(); 
  Y = X; 
  . . . 
}; 
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3.2.9 Translating VHDL process 

VHDL process is used to implement sequential behavior. SystemC allows either 
SC_METHOD or SC_THREAD for such purpose. Sensitivity of the VHDL-
process becomes the sensitivity of SystemC translation. Whether to choose 
SC_METHOD or SC_THREAD depends on the usage of wait within VHDL 
process. Since an SC_METHOD cannot have wait statement, any VHDL 
process with a wait statement should be implemented as SC_THREAD, 
otherwise SC_METHOD might be preferred. Table 3.6 shows this approach. 

3.2.10 Concurrent statements in VHDL 

Sequential statements within a VHDL process goes inside a similar 
SC_METHOD or SC_THREAD in SystemC. But what about the concurrent 
statements outside of any VHDL process? There are 2 ways to handle such 
statements in SystemC. 

a) Use single SC_METHOD for all concurrent statements, and sensitive to all 
the source (right-hand-side) variables in these statements, as shown in Table 

Table 3.6 SystemC process declarations 

VHDL Syntax SystemC Syntax 

P1: process (A,B) 
begin  
  . . .  
end P1; 

P2: process  
begin  
  . . .  
  wait . . .; 
  . . . 
end P2; 

SC_METHOD(P1); 
sensitive << A << B; 
void P1(void){. . .} 

SC_THREAD(P2); 
void P2(void) 
{ 
  . . . 
  wait(. . .); 
  . . . 
} 

 

Table 3.5 VHDL and SystemC port types 

VHDL Syntax SystemC Syntax 

port (A: in std_logic); 
port (B: out std_logic); 

port (C: inout std_logic); 

port (D: buffer std_logic); 

sc_in<sc_logic>    A; 
sc_out<sc_logic>   B; 

sc_inout<sc_logic> C; 

sc_inout<sc_logic> D; 
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3.7. This approach is easy to implement but has a drawback that the 
SC_METHOD executes whenever any variable changes. This affects the 
performance. 

b) Separate SC_METHOD for each statement, being sensitive to only this 
statement’s source variable, as shown in Table 3.8. The approach adds to the 
translation effort as well as increases the code-size but only single statement is 
executed each time, reducing the simulation overhead. 

 

3.2.11 Chain of SystemC library calls 

Sometimes it is necessary in practice to employ a chain of SystemC library calls 
to achieve the desired behavior, e.g. comparing a single-bit value from a port. 

Table 3.7 Single SC_METHOD 

VHDL Syntax SystemC Syntax 

architecture behav of E is 
begin  
  X <= A and B; 
  Y <= not A; 
  Z <= X or Y; 
end behav; 

SC_METHOD(P1); 
sensitive << A << B << X << Y; 

void P1(void) 
{ 
  X = A && B; 
  Y = !A; 
  Z = X || Y; 
} 

Table 3.8 Separate SC_METHODs 

VHDL Syntax SystemC Syntax 

architecture behav of E is 
begin  
  X <= A and B; 
  Y <= not A; 
  Z <= X or Y; 
end behav; 

SC_METHOD(P_X); 
sensitive << A << B; 
void P_X(void) 
{  X = A && B; } 

SC_METHOD(P_Y); 
sensitive << A; 
void P_Y(void) 
{  Y = !A; } 

SC_METHOD(P_Z); 
sensitive << X << Y; 
void P_Z(void) 
{  Z = X || Y; } 
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3.2.12 Translating switch-cases 

VHDL allows variables, logic-types as well as ports in the switch-case 
construct, whereas SystemC allows only integers. Hence, VHDL switch literal 
must be converted to an integer, as shown in Table 3.9. Another approach is to 
use if-then-else constructs, as in Table 3.10, where the VHDL switch literal  

a) uses a range of values  

b) cannot be converted to an integer, e.g. string types. 

Table 3.9 SystemC switch-case 

VHDL Syntax SystemC Syntax 

entity E is  
 port( 
  SEL: in std_logic_vector(2 
downto 1) 
  ); 
end E; 

architecture behav of E is 
begin  
 case SEL is 
  when “00” => . . . ; 
  when “01” => . . . ; 
  . . . 
 end case; 
end behav; 

class E_behav : public sc_module 
{  
 sc_in<sc_lv<2> > SEL; 
}; 
 
void p(void) 
{ 
  int p_SEL = SEL.read().to_uint(); 
  switch(p_SEL) 
  { 
    case 0:. . . ; break; 
    case 1:. . . ; break; 
    . . .  
  } 
} 

 

Table 3.10 SystemC if-then-else 

VHDL Syntax SystemC Syntax 

entity E is  
 port( 
  VAL: in integer range 0 to 
100 
  ); 
end E; 

architecture behav of E is 
begin  
 case VAL is 
  when 0 to 10  => . . . ; 
  when 11 to 25 => . . . ; 
  . . . 
 end case; 
end behav; 

class E_behav : public sc_module 
{  
 sc_in<int> VAL; 
}; 
 
void p(void) 
{ 
  int p_VAL = VAL.read(); 
  if ( (0 <= p_VAL) && (p_VAL <= 10) ) 
    {. . .} 
  else if( (11 <= p_VAL) && (p_VAL <= 25) ) 
    {. . .} 
  . . . 
} 
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3.2.13 Handling clock-edge sensitivity 

VHDL and SystemC uses varying notations to describe clock-edge sensitivity. 
Table 3.11 shows the translation for positive-edge clock sensitivity. But the 
process P1 is invoked on both the edges of clock. Efficient and recommended, 
but elaborate, approach is to analyze the VHDL implementation of the process 
P1 to determine the clock-sensitivity of interest, and then use it in SystemC, as 
shown in Table 3.12. Such scheme is better for an event-based simulator. 

 

3.2.14 SystemC process at start-up 

SystemC scheduler has an interesting feature that each process (SC_METHOD 
or SC_THREAD) is always invoked once at the start-of-simulation. This 
happens even in absence of any event! Use dont_initialize() to stop this default 
invocation, as shown in Table 3.13. 

Table 3.11 Double clock-edge sensitivity 

VHDL Syntax SystemC Syntax 

P1: process (CLOCK) 
begin  
  . . . 
  if(CLOCK'event and CLOCK = '1') then 
    . . .  
  end if; 
  . . .  
end process; 

SC_METHOD(P1); 
sensitive << CLOCK; 

void P1(void) 
{ 
  . . .  

  if (CLOCK.posedge()){ . . . } 
  . . .  
} 

Table 3.12 Single clock-edge sensitivity 

VHDL Syntax SystemC Syntax 

P1: process (CLOCK) 
begin  
  . . . 
  if(CLOCK'event and CLOCK = '1') then 
    . . .  
  end if; 
  . . .  
end process; 

SC_METHOD(P1); 
sensitive << CLOCK.pos(); 

void P1(void) 
{ 
  . . .  

  //no need of this:  
  if (CLOCK.posedge()){ . . . } 
  . . .  
} 
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3.2.15 Executing the SystemC model constructor 

SystemC has a unique requirement to execute the constructor of each module 
instance. This is unlike VHDL as there is no constructor for a VHDL design. 
Table 3.14 shows the structure of a 4-bit adder from 4 instances of 1-bit adder. 

 

3.3 Results 

The above mentioned translation methodology natively parses the IG graph to 
generate a SystemC model with the following features: 

 Cycle-accurate, pin-accurate, bit-accurate generated code 

 Human-readable generated code 

 SystemC module-name made from entity and architecture names 

 Variable-names same as in VHDL 

 Sensitivity-list same as in VHDL 

 Process-names same as VHDL, else named as process_<line-number> 

 Separate header and source-code files 

 Proper indentation of the generated code 

 Successful compilation with C++ compiler 

The current implementation of the proposed framework based on zamiaCAD is 
able to successfully and automatically translate most of the exercised designs 
into a compilable SystemC output.  

Table 3.13 SystemC process at start-up 

VHDL Syntax SystemC Syntax 

P1: process (CLOCK) 
begin  
  . . . 

end process; 

SC_METHOD(P1); 
sensitive << CLOCK; 
dont_initialize(); 
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As a separate case-study, RTL VHDL ram core of the OpenCores.org plasma 
processor design (Plasma, Online) was also translated successfully. The resulted 
cycle-accurate SystemC module was successfully co-simulated in the Mentor 
Graphics ModelSim environment with the original testbench producing an 
equivalent system behavior. 

The discussed methodology is applied to a set of benchmarks and compared 
against the available tools described in Section 3.1. Table 3.15 demonstrates the 
results of translating a set of ITC99 benchmarks (ITC99, 1999) and a greatest 
common divisor implementation gcd.   

 

 

 

Table 3.14 Executing SystemC model constructor 

VHDL Syntax SystemC Syntax 

entity Bit1_Adder is  
 port( a,b,c_in: in bit; 
 sum, c_out: out bit  
 ); 
end Bit1_Adder; 

 

entity Bit4_Adder is  
 port(a,b: in 
std_logic_vector(3 downto 0);
  c_in:  in bit; 
  sum:   out 
std_logic_vector(3 downto 0);
  c_out: out bit 
  ); 
end Bit1_Adder; 

 
architecture struct_4 of 
Bit4_Adder is 
 component Bit1_Adder 
 . . . 
 end component; 

begin 
 Bit1_Adder_A: Bit1_Adder 
   port map . . . ; 
 Bit1_Adder_B: Bit1_Adder 
   port map. . . ; 
 Bit1_Adder_C: Bit1_Adder 
   port map. . . ; 
 Bit1_Adder_D: Bit1_Adder 
   port map. . . ; 

. . . 
end struct_4; 

class Bit1_Adder : public sc_module 
{  
  sc_in<bool>  a,b,c_in; 
  sc_out<bool> sum, c_out; 
}; 

 

class Bit4_Adder : public sc_module 
{  
 sc_in<sc_uint<4> >  a,b; 
 sc_in<bool>         c_in; 
 sc_out<sc_uint<4> > sum; 
 sc_out<bool>        c_out; 
  
 Bit1_Adder Bit1_Adder_A; //instantiate 
 Bit1_Adder Bit1_Adder_B; //instantiate 
 Bit1_Adder Bit1_Adder_C; //instantiate 
 Bit1_Adder Bit1_Adder_D; //instantiate 
}; 
 
Bit4_Adder::Bit4_Adder(sc_module_name n): 
 sc_module(n) 
 , Bit1_Adder_A(“Bit1_Adder_A”) //CTOR 
 , Bit1_Adder_B(“Bit1_Adder_B”) //CTOR 
 , Bit1_Adder_C(“Bit1_Adder_C”) //CTOR 
 , Bit1_Adder_D(“Bit1_Adder_D”) //CTOR 
{ 
  . . . 
} 
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Table 3.15 Comparison of translation tools on various benchmarks 

D
es

ig
n 

gc
d 

b0
1 

b0
2 

b0
3 

b0
4 

b0
5 

b0
6 

b0
7 

b0
8 

b0
9 

b1
0 

b1
1 

EKUT ● - - - - - - - - - - - 
HT-Lab ● ○ ○ ○ - - ○ - ○ ○ ○ - 

HIFSuite1 N/A m m m m m m m m m m m 
zamiaCAD ● ● ● ● ● - ● - - ● - ● 
  - – the design was not translated 
 ○ – the design was translated but not compiled 
 m – according to the tool manual data  
 ● – the design was translated and compiled 
 1 Access to demo version of the tool that implies very strict design size limits. 

 

The EKUT’s tool (V2SC-EKUT, Online) was able to translate gcd and the 
translation results were successfully compiled by a Microsoft Visual C++ based 
setup of SystemC. However, translation of the ITC99 benchmarks contained 
errors. The HT-Lab's tool (VH2SC, Online) was able to translate most of the 
designs but the compilation of them did not succeed. In this research, access 
was only to the demo version of the HIFSuite v2012.10 tool (HIF, Online) that 
implies very strict design size limits. The largest design allowed by this version 
that successfully translated was a 3-bit adder implementation. However, the 
user manual of this tool reports successful translation of all the ITC99 
benchmarks listed in the table. 

 

3.4 Chapter Conclusions 

This chapter presented a framework and methodology to translate a VHDL 
model to cycle-accurate SystemC. The methodology has been verified by 
translating various benchmark VHDL cores, as well as partially translating and 
co-simulating with a processor implementation in VHDL. The SystemC output 
is emphasized to be human-readable and providing for clear correspondence to 
the source VHDL code, thus allowing further manual code changes and debug. 

Future scope of work might include supporting hierarchical RTL designs, port 
maps, native translation of RTL switch-case to C++ switch-case, more 
regressive testing in addition to currently tested benchmarks like gcd1, ITC99 
b01, b04, b06, and b09, and translation of Verilog designs to SystemC. 
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4  OPTIMIZATIONS FOR TRANSLATION AND  
CO-SIMULATION 

SystemC model available from the previous chapter is obtained by translating 
the VHDL RTL on a line-by-line basis. This plain translation approach does not 
take into account the simulation characteristics as well as implementation style 
of the SystemC model. These considerations enable optimizing the translated 
SystemC models for higher simulation speed. 

The current chapter explores various optimizations methodologies for the 
translated models as well as for models used in co-simulation. In addition to the 
plain VHDL-to-SystemC translation, there are possibilities of alternate 
implementations for a SystemC model. This chapter explores these alternate 
scenarios to get 25% better simulation speed. Additionally, VHDL and 
SystemC models are frequently co-simulated by architects as well as 
verification teams. This chapter explores optimization scenarios that affect the 
co-simulation performance, resulting in 20% faster co-simulation. The 
optimization methodologies in this chapter are relevant to IP design houses that 
need to provide high-speed simulation models and can be used for optimizing 
co-simulation tools as well system level models. 

Section 4.1 presents the related work and Section 4.2 discusses the 
optimizations for the SystemC model translated from VHDL. Section 4.3 
introduces the optimizations for the co-simulation of VHDL-SystemC model. 
Experiments and results are presented in 4.4 and section 4.5 summarizes this 
chapter. 

 

4.1 Related Work 

OSCI has provided a proof-of-concept simulator for SystemC LRM. Many 
attempts have been made to optimize the SystemC kernel, models, tools, etc. A 
number of techniques to enhance SystemC simulation time are suggested in 
(Alemzadeh et al., 2010). Optimizing memory partitioning, memory hierarchy, 
memory characteristics and allocation of data structures is proposed in 
(Brandenburg, Stabernack, 2013). Optimized simulation of SystemC RTL 
models on many-core architectures is discussed in (Roth et al., 2014), that is 
based on a configurable parallel SystemC kernel that preserves the partial order 
defined by the SystemC delta cycles while avoiding global synchronization as 
far as possible. Adaptive algorithms are able to intelligently adjust their 
behavior in light of the changing situation to achieve the best promising results. 
Optimized Network-on-Chip (NoC) architecture is presented in (Abba, Jeong-a, 
2013). Technique for optimizing the simulation speed of a QEMU and 
SystemC-based virtual platform is presented in (Tse-Chen et al., 2010). An 
approach targeted to aid design exploration, early decision making in model 
refinement, optimization and tradeoffs is proposed in (Zaidi et al., 2011). 
SystemC-based simulation approach for fast performance analysis of parallel 



43 

software components, using source code annotated with low-level timing 
properties is discussed in (Stattelmann et al., 2011). 

Co-simulation plays an important role in SoC system level design (SLD). 
Architects initialize system-design at a higher abstraction level, e.g. MATLAB, 
C, etc., then refine each component in a step-wise manner, while co-simulating 
with the rest of the system still at higher level. HW designers co-simulate their 
designs under development in a low level language e.g. VHDL/Verilog while 
the rest of the test environment, e.g. CPU, memory, bus, etc., is still in higher 
level language. SW developers typically co-simulate the instruction-set-
simulator (ISS) at a higher level while the HW for which driver is being 
developed is simulated at a lower level. Hence co-simulation is important all 
over the SoC design cycle.  

A co-simulation framework which enables rapid elaboration, architectural 
exploration and verification of virtual platforms made up of SystemC and 
Simulink components is presented in (Mendoza et al, 2011). A SystemC-based 
virtual prototype of a distributed controller implementation combined with 
high-level models of the plants specified in MATLAB/Simulink is proposed in 
(Glass et al., 2012). Approximate timed co-simulation has been proposed as a 
fast solution for system modeling at early design steps. This co-simulation 
technique allows simulating systems at speed close to functional execution, 
while considering timing effects. (Posadas et al., 2010) proposes a new 
embedded system modeling solution considering dual RTOS/GPOS systems. 

(Xuexiang et al, 2012) present a uniform SystemC co-simulation methodology 
to describe the whole chip entirely with the same language. The processor 
model divides every instruction into a number of atomic operations, which 
makes it possible to accomplish fully cycle-accurate simulation. Meanwhile, the 
transaction-level-modeling communication model enables each hardware block 
to be built at different abstraction levels. (Bouhadiba et al, 2013) present a 
methodology that allows a coupled simulation of a SystemC/TLM model with a 
power and temperature solver. (Ming et al., 2011) present a fast cycle-accurate 
instruction set simulator (CA-ISS) for system-on-chip development based on 
co-simulation of QEMU and SystemC. Results show that the combination of 
QEMU and SystemC can make the co-simulation at the CA level much faster 
than the conventional RTL simulation, even with a full-fledged operating 
system up and running. (Kirchner et al., 2010) shows co-simulation of SystemC 
and Saber platforms using a proxy module that interfaces to the SystemC 
simulation and relays signals to Saber. (Cucchetto et al., 2014) presents a 
common co-simulation approach that works for integrating SystemC 
components with both QEMU and Open Virtual Platform (OVP). 

4.2 Optimizations for Translation 

In addition to the plain VHDL-to-SystemC translation, there are possibilities of 
alternate implementations for a SystemC model. This section explores various 
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implementation aspects to improve the simulation speed and discover potential 
optimization possibilities.  

 

4.2.1 Combinational-statements 

Combinational statements in VHDL are implemented outside of any VHDL 
process and are executed concurrently, in parallel. SystemC does not have this 
feature of concurrent statements, as all statements are executed within a 
SystemC process, either SC_METHOD or SC_THREAD. Since a VHDL 
combinational method does not have a ‘wait’ feature, only SC_METHOD is to 
be considered for translating combinational statements to SystemC.  

Multiple combinational VHDL statements can be translated to SystemC 
SC_METHOD in the following 2 alternatives: 

 

a) Single SC_METHOD for all combinational statements 

This approach implements all VHDL combinational statements within a single 
SC_METHOD. The single SC_METHOD is made sensitive to all the source 
right-hand-side (RHS) elements in these statements. Table 4.1. (a) shows an 
example of this approach. Advantage of this implementation is its simplicity 
and ease of implementation. Drawback is that all the statements in the 
SC_METHOD are executed even if only 1 RHS element changes. 

b) Separate SC_METHOD for each combinational statement 

In this approach, each combinational statement is implemented in a separate 
SC_METHOD. This SC_METHOD is made sensitive only to the RHS elements 
appearing in source VHDL statement. As seen in an example in Table 4.1(b), 

Table 4.1 Translation of combinational-statements 

VHDL syntax (a) Single SC_METHOD (b) Multiple SC_METHOD 

architecture 
behav of E is 

begin  
  X <= A and B;
  Y <= not A; 
  Z <= X or Y; 
end behav; 

SC_METHOD(P1); 
 sensitive << A << B 
<< X << Y; 

void P1(void) 
{ 
  X = A && B; 
  Y = !A; 
  Z = X || Y; 
} 

SC_METHOD(P_X); 
 sensitive << A << B; 
void P_X(void) 
{  X = A && B; } 

SC_METHOD(P_Y); 
 sensitive << A; 
void P_Y(void) 
{  Y = !A; } 

SC_METHOD(P_Z); 
 sensitive << X << Y; 
void P_Z(void) 
{  Z = X || Y; } 
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advantage of this approach is that only the relevant SystemC statements are 
executed, within a particular SC_METHOD. Limitation is the increase in the 
source-code size due to an SC_METHOD for each combinational statement.  

 

4.2.2 Events 

Events are used in SystemC to synchronize actions among processes. A 
SystemC process can wait for multiple events, suspending its task while in wait-
state. Another process triggers the event at a later time during simulation. The 
waiting process wakes-up when it receives the notification of event-trigger and 
resumes its task. A process can be made to wait on a single-event or on 
multiple-events, as shown in Table 4.2. On the other hand, the event notification 
can be done immediately or in the next delta-cycle, as shown in Table 4.3.  

 

Figure 4.1 Simulation-time for single and multiple processes 

 

 

Table 4.2 Events-waiting in SystemC 

Single-event waiting Multiple-event waiting 

SC_THREAD(th_single_ev); 
 
void th_single_ev(void) 
{ 
  wait(ev_single); 
  
  statement-1; 
  statement-2; 
  ... 
} 

SC_THREAD(th_mult_ev); 
 
void th_mult_ev(void) 
{ 
  wait(ev_mult_1); 
  statement-1; 
 
  wait(ev_mult_2); 
  statement-2; 
  ... 
} 

 

Table 4.3 Events-notification in SystemC 

Immediate notification Delta-cycle notification 

sc_event ev_do;
 
void pr_imm() 
{ 
  statement-1; 
  . . .    
  ev_do.notify(); 
  . . . 
}

sc_event ev_do;
 
void pr_delta() 
{ 
  statement-1; 
  . . .    
  ev_do.notify(SC_ZERO_TIME); 
  . . . 
}
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4.2.3 Results 

To experiment the 2 alternative methods of translating the combinational-
statements, the ‘shifter’ module in the Plasma core is selected. The ‘shifter’ 
module has 12 combinational-statements, making it a good candidate to observe 
the differences in simulation-time. Figure 4.1 shows the simulated-time taken 
by a model against the time-taken by a wall clock. The multiple process 
approach takes about 25% lesser simulation-time, resulting in faster simulation 
speed. This can be attributed to the fact that in multiple-process implementation, 
only a single statement is executed, resulting in optimized simulation model. 

For analysis of events optimization, the modules ALU, DDR, DMA and MUX 
are implemented in alternate styles; e.g. ALU implementation is referred to as:  

 ALU SE: Single-event waiting, immediate notification 

 ALU ME: Multiple-event waiting, immediate notification 

 ALU ME-Z: Multiple-event waiting, delta-cycle notification 

 

Figure 4.2 Simulation-time for various events implementation 

 

Figure 4.2 shows the simulation-performance for ALU, DDR, DMA and MUX 
modules, for the 3 alternatives. As seen in Figure 4.2, there is no significant 
variation in the simulation-performance for a given module. 

The single-event implementation is simpler in terms of coding, understanding 
and debugging. Hence, this might be a preferred implementation alternative, 
though based on coding aspect rather than the simulation speed. 
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4.3 Optimizations for Co-simulation 

This section analyzes the performance of co-simulating VHDL and SystemC 
models. The aim of this analysis is to find possible optimizations in VHDL and 
SystemC models, as well as to recommend an effective co-simulation approach.  

In order to validate the translation methodology described in the previous 
section, (Plasma, Online) RISC-core has been manually translated from VHDL 
to SystemC. Plasma is a MIPS-ISA compatible, 32-bit synthesizable RISC core, 
implemented in VHDL and available as open-source. Using translation rules 
described earlier, Plasma core has been successfully translated manually to 
SystemC. The translated cycle-accurate SystemC module was successfully co-
simulated in the Mentor Graphics ModelSim environment with the original 
testbench accompanying Plasma source-code. The co-simulation produced an 
equivalent system behavior, proving that the VHDL-to-SystemC translation 
methodology is applicable even to complex design, like a processor-core. 

 

Table 4.4 Plasma VHDL simulation-profile 

Module Simulation time (%) Remarks 

ALU 31.4 Highest simulation time 

Register-bank 0.9 Lowest simulation time 

 

Simulation profiling: Co-simulation performance analysis begins with 
profiling the VHDL simulation using the original testbench accompanying the 
Plasma source-code, to get the simulation-time and its %-age taken by each 
VHDL module. Table 4.4 shows that the ALU takes the highest (31.4%) 
whereas register-bank takes the lowest (0.9%) simulation-time. 

 

Base performance analysis: VHDL-only simulation is taken as the base for 
performance analysis. The term VHDL-only implies the original Plasma core in 
VHDL, without any module in SystemC for co-simulation. The base 
performance will be used to compare against the co-simulation performance. As 
shown in Figure 4.3, the time-taken varies linearly with the simulation-time, 
ensuring reliable and consistent results for varying simulation times. 
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Figure 4.3 Plasma VHDL-only simulation 

 

 

Figure 4.4 Co-simulation analysis for ALU 

 

4.3.1 Co-simulating ALU in SystemC 

As the ALU module is profiled in Table 4.4 taking the highest %-age of 
simulation-time, it is a good candidate for co-simulation performance analysis. 
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The ALU module is translated to SystemC and co-simulated with the rest of the 
Plasma core still in VHDL. Figure 4.4 shows the actual time-taken against the 
simulation-time. As expected, the variation of time-taken is linear. The co-
simulation with ALU is taking more time than the VHDL-only simulation. The 
reason for lower performance of co-simulation is that both VHDL and SystemC 
simulation engines are now being invoked to perform the co-simulation, 
increasing the simulation time. 

 

4.3.2 Co-simulating register-bank in SystemC 

The least %-age of simulation-time is consumed by the register-bank. Hence, it 
is considered next for co-simulation performance-analysis. As earlier, the co-
simulation setup consisted of the register-bank translated to SystemC while the 
rest of the Plasma design is in VHDL. The ALU module is also reverted back to 
VHDL from SystemC. Figure 4.5 shows the actual time-taken against the 
simulation-time, for both register-bank in SystemC as well as in VHDL. 

 

 

Figure 4.5 Co-simulation analysis for register-bank 

 

4.3.3 Co-simulation Results 

Significant and interesting observation in this case is that the register-bank in 
SystemC has better performance than the VHDL-only base performance.  This 
is against the earlier ALU case which had lower performance than the base 
performance. The reason for better co-simulation performance of register-bank 
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in SystemC is due to the event-based design of the SystemC kernel. Event-
based design invokes the SystemC kernel only when there is an event to execute 
the register-bank functionality. As earlier shown in Table 4.4, the register-bank 
takes negligible simulation-time, implying that there are almost no events for 
the register-bank module. Hence the SystemC kernel is infrequently invoked in 
this case, leading to a better performance than the VHDL-only scenario. 

 

4.4 Chapter Conclusions 

This chapter discussed about various optimization methodologies for the 
SystemC models translated from VHDL RTL. (1) Translation of VHDL 
combinational statements to multiple SystemC-processes takes about 25% less 
simulation-time than implementation with a single SystemC process. (2) 
SystemC synchronization strategies using single and multiple events take 
similar simulation time, although single-event based implementation is easier to 
develop and maintain. Hence, it is preferred to develop a model with single-
event based synchronization. (3) Performance analysis of co-simulating VHDL 
with SystemC module taking the highest simulation time lowers the simulation 
performance. On the other hand, co-simulation with the module taking least 
simulation time is 20% faster than VHDL-only simulation. The optimization 
results obtained in this chapter are relevant to a wide SystemC community, 
including architects, designers, as well as IP design houses and EDA-vendors.  
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5  ABSTRACTION OF CLOCK INTERFACE 
Clock interface is an essential part of a synchronous design. Various IP blocks 
in the design are fed by a single or multiple clock signals to make the design 
synchronous. Such clock signals are driven by a clock-generator at the system 
level. Maintaining the cycle-accuracy and updating each model based on its 
clock-sensitivity puts an enormous burden on the simulation kernel, resulting in 
slower simulation speed. 

The current chapter addresses this problem by proposing 2 approaches based on 
minimization of delta-cycles and Finite State Machine with Datapath (FSMD) 
RTL abstraction to Algorithmic State Machine (ASM). SystemC scheduler 
employs delta-cycles and events for proper scheduling of various ports, 
channels, signals, interfaces, etc. Minimization of these delta-cycles and events 
in a SystemC description is the former idea behind abstraction of clock 
interface. Another methodology transforms an FSMD RTL design in VHDL to 
an equivalent ASM representation in SystemC with explicit separation of design 
functionality by states. Finally, the clock interface is abstracted up to optimize 
the simulation performance. 

Section 5.1 discusses the related work and Section 5.2 introduces various modes 
of simulation. SystemC simulation mechanism is discussed in Section 5.3, as it 
is important to understand these concepts in order to abstract the clock interface. 
Section 5.4 introduces clock interface abstraction by minimization of delta-
cycles. Abstraction based on ASM is proposed in Section 5.5. The manipulation 
details are demonstrated on a case study design and the first experimental 
results show simulation speed-up and prove feasibility of the proposed 
approach. Finally, Section 5.6 concludes this chapter. 

 

5.1 Related Work 

Discrete Event Simulation (DES) models the behavior of a complex system as 
an ordered sequence of well-defined events. Due to its generality, DES has been 
used is various domains. (Sumaryo et al, 2013) presents an improved DES 
model of traffic light control on a single intersection, developed using Simulink 
/ SimEvent toolbox provided by MATLAB. (Smith et al, 1994) describes an 
application of DES for shop floor control for a flexible manufacturing system. 
(Chik et al., 2014) investigates simulation modeling methods for semiconductor 
fabrication factories from various publications since past 10 years. Primary 
simulation techniques reviewed in this analysis are discrete event, petri-net, 
gaming, virtual, intelligent, monte carlo and hybrid to understand individual 
strength and common usage in the market. The research concluded DES is the 
most suitable technique for simulating FAB operations. (Wong et al., 2012) 
explores various queuing methods in DES such as linked list, heap, splay tree 
and calendar based queue. Due to the design characteristic of discrete events 
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and single sequential queue in DES, these queuing methods are unable to fully 
utilize the computing power of multi-core processors. This paper proposes 
Multi-Dimensional Queue Mechanism (MDQM) to counter the stated problem 
and the experimental results show improvement of simulation run time by using 
the proposed mechanism when running DES on multi-core processors 
environments. 

FSMD (Gajski, et al., 1992) representation is employed in various design tasks. 
Transformation on FSMDs for formal verification of sequential circuits is 
proposed in (Acosta et al., 2015), in which every conditional statement produce 
multiple sequences of states, being based on variable dependency. An 
automated framework for verification of low power transformations in RTL 
designs is presented in (Karfa et al., 2011). Both the input RTL and the 
transformed RTL are analyzed by a rewriting based method to obtain the 
FSMDs, followed by FSMD based equivalence checking method to establish 
equivalence between the RTLs. (Ahuja et al., 2009) presents a methodology to 
create abstract statistical power models for hardware co-processors and its 
utilization at system level for power estimation. The co-processors are realized 
as FSMD and co-simulated with simulation model of ARM processor. 

There exists a number of flowchart-like models for functional design 
representation, e.g. flowchart (Samuel, 1976), FSM (Baranov, 2008), HGS 
(Sklyarov, 1999), BFSM (Takach, 1995). Hierarchical Finite State Machines 
(HFSM) find application in various domains, like implementation of network 
applications (Kramer et al., 2013), detection of human activities in retail 
surveillance (Trinh et al, 2011), control of Unnamed Aerial Vehicle (UAV) 
(Vitor et al, 2014), hardware implementation and optimization of recursive 
sequential and parallel algorithms (Mihhailov et al, 2010), etc. 

This chapter uses the formalism defined in (Pong, 2006) as Algorithmic State 
Machine (ASM) chart, and goes beyond the existing state-of-the-art in the 
following aspects: 

1. Develops a readable SystemC abstraction for FSMD designs. 

2. Develops fully automated clock interface abstraction for RTL FSMD. 

3. Transforms clock-edge triggering to static clock period usage, resulting 
in higher simulation speed. 

4. Separates the design functionality into ASM blocks that enables 
functional abstraction of the model to cycle-inaccurate levels. 
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5.2 Modes of Simulation 

This section introduces few models of digital simulation-kernel design and then 
elaborates on the DES that is the basis of SystemC kernel. 

Discrete Event Simulation (DES) models a system in terms of sequence of 
discrete events. These events describe a change in the state of the system and 
hence, marks a time instant with respect to progress of system state, as in Figure 
5.1. System is assumed to be in the same state between two consecutive events.  

 

Figure 5.1 Discrete-event simulation model 

 

Continuous Simulation models a system by continuously keeping track of the 
system activities and responses, as in Figure 5.2. Differential equations are 
typically used to model such responses in continuous domain. The time is 
broken in terms of time-slices so that system’s activity in each time-slice can be 
simulated correctly. Due to keeping track of the activities in each time-slice, a 
continuous simulation is much slower than the discrete-event simulation. 

 

Figure 5.2 Continuous-event simulation model 
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Process-based Simulation represents a system as a set of processes. A process 
represents an activity in the system and can be simulated by a thread in the 
simulation-kernel. A thread can be in states like sleep, wake, resume, update, 
and cause other threads to change the states accordingly. 

Monte-Carlo simulations are used to model the probability of different 
outcomes in a process that cannot easily be predicted due to the intervention of 
random variables. The technique was first developed by Stanislaw Ulam, a 
mathematician who worked on the Manhattan Project. He mentioned this to 
John von Neumann, and the two collaborated to develop the Monte Carlo 
simulation. In Monte Carlo simulation, the entire system is simulated a large 
number (e.g., 1000) of times. Each simulation is equally likely, referred to as a 
realization of the system. For each realization, all of the uncertain parameters 
are sampled. The system is then simulated through time (given the particular set 
of input parameters) such that the performance of the system can be computed. 
This results in a large number of separate and independent results, each 
representing a possible “future” for the system (i.e., one possible path the 
system may follow through time). The results of the independent system 
realizations are assembled into probability distributions of possible outcomes. 
As a result, the outputs are not single values, but probability distributions. 
Monte-Carlo simulation provides a number of advantages over deterministic, or 
“single-point estimate” analysis, such as probabilistic results, graphical results, 
sensitivity analysis, scenario analysis and correlation of inputs. 

SystemC simulation-kernel is based on the DES in which the state of a system 
is represented by a set of variables that represent the properties of the system 
that are of interest to the user. A change in the state is represented by a change 
in any of the variables in the state-set. Time is modeled in a ‘suitable’ time-unit 
to represent the passage of time and each event represents the progress of time. 
Queue is used to maintain the simulation events. This queue typically consists 
of the events that have been generated by the earlier simulated event, but are yet 
to be simulated themselves. The queue also maintains the time at which the 
event was generated and may also mention the future-time in which event has to 
be simulated. Some events can be marked as instantaneous, in which case they 
are scheduled in the next trigger of the queue. The queue implements the 
priority scheduling, sorted by event time. This means that the events are picked 
in a chronological order, irrespective of the order in which they were placed in 
the queue. Scheduling of the discrete-events can be implemented in single-
threaded or multi-threaded mode. Single-threaded simulation has just one 
‘current’ event to simulate at a given time. Multi-threaded simulation might 
have many events marked as ‘current’ to be simulated simultaneously. 
Synchronization between events is a major design challenge in multi-threaded 
simulations. DES does not guarantee any particular order of simulation but can 
be re-played back consistently due to usage of pseudo-random numbers. 
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5.3 SystemC Scheduler 

SystemC implements event-based scheduling for simulation. This allows 
SystemC to be used for varied scenarios, such as  

 Untimed Functional (UTF): No notion of time while modeling 
functionality and interfaces. Both execution and data transport occurs in 
0 time. 

 Timed Functional (TF): Some notion of time is used for functionality 
and interfaces by modeling the latencies. Data transport takes positive 
time in such scenario. 

 Bus Cycle Accurate (BCA): Interfaces are modeled cycle accurately, 
but not the functionality. Pin-level details are not yet modeled and 
transactions are used for data transport. 

 Pin Cycle Accurate (PCA): Interfaces are modeled cycle accurately and 
the pin-level details are also accurate, functionality is not cycle-
accurate. 

 Register Transfer Level (RTL) Accurate: Everything is fully timed and 
cycle-accurate, by completely modeling the details of each clock-cycle 
and pin. 

Due to event-based simulation, SystemC processes are executed based on their 
sensitivity to events and their outputs updated based on events. The SystemC 
kernel maintains an event-queue to describe the processes to execute at a given 
time. The evaluation order of runnable processes is implementation-defined in 
SystemC LRM (SystemC, 2011). A two-phase approach is used to evaluate and 
update the state of the simulation kernel, as described here. 

After initialization, SystemC scheduler advances time to the earliest time step 
where there is a scheduled event notification. It adds all processes that are 
sensitive to that event (or other events at the same time step) into a list of 
“runnable” processes. It then resumes execution of every process in the list of 
runnable processes (one at a time) in a non-deterministic order. This is known 
as the evaluation phase. An immediate event notification can add processes to 
the list of runnable processes within the current time step, provided such 
processes are currently waiting for that event.  Once the list of runnable 
processes is empty, the scheduler proceeds to the update phase where primitive 
channels (such as sc_signal) that have been written to, get updated. These 
primitive channels may be in the sensitivity list of other processes, in which 
case there is another iteration of the evaluate and update phases known as a 
delta cycle. This continues until there are no more events to process at the 
current time step, when the scheduler advances to the next time step. 
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SystemC simulator kernel employs Evaluate-Update mechanism, and functions 
as follows: 

1. Initialization: execute all processes in an unspecified order 

2. Evaluate: Select a ready to run process and resume its execution. This 
may result in more processes ready for execution due to Immediate 
Notification. 

3. Step-2 is repeated until no more processes to run. 

4. Update: Execute all pending calls to update() method. 

5. If 2 or 4 resulted in delta event notifications, go back to 2 

6. Simulation is finished for current time if there are no timed events. 

7. Advance to next simulation time that has pending events. 

8. If no pending events then exit the simulation else go back to step 2 

SystemC uses a 64-bit unsigned integer 'sc_time' to represent the simulation 
time values. The resolution of time is set to default value of nanoseconds 
(SC_NS) and can be set by user to other values such as SC_FS, SC_PS, SC_US, 
SC_MS and SC_SEC. 

The SystemC simulation kernel supports the concept of delta cycles. A delta 
cycle consists of an evaluation phase and an update phase. This is typically used 
for modeling constructs that cannot change instantaneously (e.g. primitive 
channels such as sc_signal). By separating the two phases of evaluation and 
update, it is possible to guarantee deterministic behavior. However, SystemC 
can model software, and in that case it is useful to be able to cause a process to 
run without a delta cycle (i.e. without executing the update phase). This requires 
events to be notified immediately. 

When an SC_THREAD is declared, the threading library (pthreads or 
quickthreads) keeps track of a local stack pointer and local stack variables for 
that thread. When the SC_THREAD is suspended by calling wait(), it pushes 
the state of the processor onto the stack at that point. The process of storing the 
state so that another process can run is called a context switch, which does 
indeed take time. So SC_THREADs are slower than SC_METHODs. 

Table 5.1 shows a sample RTL VHDL description and the equivalent SystemC 
description. As shown, SystemC description consists of a clock in-port 
(CLOCK), SC_THREAD named P1() that is sensitive to the clock in-port. The 
sc_main() routine, instantiates a clock-generator and connects it to the clock in-
port of the module. 
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Table 5.1 Clock-based designs in VHDL and SystemC 

 

VHDL SystemC 

entity b09 is port (
 clock: in bit; 
); 
end b09; 
 
architecture BEHAV of 
b09 is 
begin 
 P1: process(clock) 
  <snip> 
 end process; 
end BEHAV; 

class sc_WORK_B09_BEHAV : public
sc_module 
{  
 public: 
  sc_in < bool > CLOCK;  
 private:  
  void P1(void); 
}; 
sc_WORK_B09_BEHAV ::  
sc_WORK_B09_BEHAV(sc_module_name mn_) 
: sc_module(mn_) 
{ 
 SC_THREAD(P1); 
 sensitive  << CLOCK; 
}  
 
#define SC_CLK_PERIOD 10 
 
int sc_main(int argc, char **argv) { 
 sc_clock my_sc_clk("my_sc_clk", 
SC_CLK_PERIOD, SC_NS);   
 
 sc_WORK_B09_BEHAV my_mod("my_mod"); 
 my_mod.CLOCK(my_sc_clk);  
  
 sc_start(); 
 
 return 0; 
} //end sc‐main

 

5.4 Minimization of Delta-Cycles  

Abstraction of clock interface while generating SystemC from VHDL is based 
on the concept of minimization of delta-cycles and events, as these affect the 
performance of the SystemC scheduler profoundly. 

 

5.4.1 Recognizing clock interface 

It is necessary to recognize the clock interface in a design in order to eliminate 
it for abstraction. A simple heuristic for recognizing the clock interface in an 
RTL VHDL is based on the following general observations: 

1. Clock is 1-bit input port 

2. Appears in the sensitivity list of a process 

3. Appears with a 'event qualifier 

4. Does not appear in any other control/data statement 

5.4.2 Waiting on clock-period (OPT-A) 

A fundamental property of a clock signal is its clock-period, i.e. interval 
between clock-pulses. Simple designs have static clock-periods, whereas a 
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complex design might employ varying clock-periods to achieve power savings. 
As shown in Table 5.1, an SC_THREAD waits on the arrival of clock-edge 
(positive, negative or both). This waiting requires the SystemC-scheduler to 
keep track of the changes in the clock signal and trigger appropriate 
SC_THREAD based on the activity on these clock signals. Load on the 
SystemC-scheduler can be reduced by specifying static clock-period for a wait 
statement inside an SC_THREAD, as shown in Table 5.1. 

The SystemC-scheduler has to keep track of each signal specified in various 
sensitivity-lists and to trigger the appropriate SC_METHOD / SC_THREAD 
whenever there is an update on any such signal. Once an SC_THREAD has 
been made to wait on a static clock-period, the clock signal can be removed 
from its sensitivity-list, again to reduce burden on the SystemC-scheduler. 

 

5.4.3 Removal of clock-generator (OPT-B) 

Once all the SystemC modules are made independent of the clock signal by 
waiting on the static clock-period, the system level clock-generator is 
redundant. Even if there is no module working on the clock, the clock-generator 
keeps ticking and generating the clock-cycles. This is another source of burden 
on the SystemC-scheduler, consuming simulation-resources. Next optimization 
is to completely remove the system level clock-generator, as it is of no use now.  

Note that this step needs to be done carefully, after completely analyzing the 
side-effects of this removal of the clock-generator. Strategies like formal proof 
of transformation correctness, regression testing without any breaks, etc. must 
follow the removal of the clock-generator to ensure that the system level design 
is still correct and functional. 

 

5.4.4 Experiments 

This section discusses the experiments and results for the approach discussed in 
the previous sections. A graphics pipeline for edge-detection is used for the 
validation of the clock interface abstraction discussed in the earlier section.  

Figure 5.3 shows the graphics pipeline, which has Gaussian-blur and edge-
detect operations performed on an image-frame being read from a file and the 
final image-frame being saved to the result file. SC_THREADS gauss_blur() 
and edge_detect() are sensitive to the signal sc_clk driving both the models. 
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Following setups are simulated for the above mentioned graphics pipeline: 

1. BASE: Simulate the un-optimized SystemC description. 

2. OPT-A: Both IP-models wait on the clock-period and the clock signal is 
removed from the sensitivity-list. 

3. OPT-B: Remove the system level clock-generator. 

Figure 5.4 shows the simulation-time for processing number of frames varying 
from 1 through 10, for the 3 simulation scenarios. The simulation-time taken by 
models increases with the number of processed frames. Scenario OPT-A takes 
about 10% lesser simulation time than the BASE scenario, due to waiting on 
static clock-period and abstraction of the sensitivity-list. Removal of system 
level clock-generator provides an optimization close to 38% as compared to the 
BASE, due to no more redundant clock-ticks being generated. This reduces 
burden on the SystemC scheduler, resulting in faster simulation speed. 

 

Figure 5.4 Simulation-time for frame processing 
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Figure 5.3 Graphics pipeline 
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5.5 FSMD to ASM Transformation 

This section discusses a manipulation approach that transforms an FSMD RTL 
design (Gajski et al., 1992) in VHDL to an equivalent ASM representation in 
SystemC with explicit separation of design functionality by states. Finally, the 
clock interface is abstracted to optimize the simulation performance. The 
manipulation details are demonstrated on a case study design and the 
experimental results show 16% to 21% simulation speed-up and prove 
feasibility of the proposed approach. Other advantages of this approach are: 

 automated integration of FSMD RTL designs with system level models, 

 ease of debugging with respect to other formal abstraction methods, and 

 enables functional abstraction to higher, cycle-inaccurate levels. 

 

5.5.1 Extended Finite State Machine (EFSM) 

FSMD RTL descriptions can be represented by EFSM (Cheng et al., 1996). 
EFSM model allows a more compact representation of the state space than 
traditional FSM, thus, the risk of state explosion that incurs in modeling a large 
design by using FSMs is sensibly reduced. 

Definition 5.1 An EFSM is defined as a 5-tuple M = <S, I, O, D, T >, where:  

 S : set of states,  

 I : set of input symbols,  

 O : set of output symbols,  

 D : Cartesian product of sets D1 × … × Dn ,  

 T : transition relation such that T : S × D × I → S × D × O.  

A generic point in D is described by an n-tuple x = (x1,...,xn); it models the 
values of the registers of the DUV. A pair <s, x> ∈ S × D is called 
configuration of M. An operation on M is defined in this way: if M is in a con-
figuration <s, x> and it receives an input i ∈ I, it moves to the configuration <t, 
y> iff ((s, x, i), (t, y, o)) ∈ ∈ T for o  O. 

The EFSM differs from the classical FSM, since each transition does not 
present only a label in the classical form (i)/(o), but it takes care of the register 
values too. Transitions are labeled with an enabling function e and an update 
function u. An update function u(x, i) can be applied to a configuration <s1, x> 
if there is a transaction t : s1 → s2, labeled e/u, such that e(x, i) = 1. In this case 
it is said that t can be fired by applying the input i. 
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5.5.2 Algorithmic State Machine Chart 

This section introduces the Algorithmic State Machine (ASM) chart (Pong, 
2006) that is used for functional design representation. Other models are 
flowchart, HGS, BFSM, etc. An advantage of ASM is a clear representation of 
FSM states by blocks. ASMs have three basic elements: state box (denoted by 
rectangles), decision box (denoted by diamonds) and conditional box (denoted 
by rounded rectangles) as illustrated in Figure 5.5. 

In order to support EFSM's, ASM defined in (Pong, 2006) is improved by 
allowing register operations in both state and conditional boxes. State boxes are 
used to indicate states in EFSM, register operations and Moore-type output 
signals generated in the state. Decision box reflects the condition to be tested 
where exit paths represent true and false evaluations. In conditional boxes 
inputs come from one of exit paths of decision boxes and they contain register 
operation or Mealy-type output signals dependent on the inputs generated 
during the state. ASM block is a structure consisting of one state box, all 
decision and conditional boxes associated with its exit paths. Such block has 
one entrance and any number of exits paths. Each ASM block is dedicated to a 
state of EFSM and is traversed within one clock cycle. ASMs provide for 
explicit separation of the RTL FSMD functionality performed by one state of 
EFSM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 State block in the ASM chart 
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5.5.3 Transformation Methodology 

This section describes the methodology performed in the following 2 steps: 

Step A: Transformation of an EFSM representation of VHDL FSMD RTL 
                design to an equivalent ASM. 

Step B: High-performance SystemC implementation of the ASM from Step-A. 

The above 2 steps are described in details in the next paragraphs. 

 

Step A. Transforming EFSM to ASM 

The following rules procedure of transformation of an EFSM to an equivalent 
ASM relies on the rules defined below:  

1. Each EFSM state si ∈ S is represented by an ASM block bi ∈ B, 
where S is a set of all states si in the EFSM and B is a set of all 
blocks bi in the ASM. 

2. Transitions entering an ASM block bi correspond to the ones 
entering the corresponding EFSM state si. 

3. Similarly, transitions exiting an ASM block bi correspond to the 
ones exiting the corresponding EFSM state si., 

4. Comparison operations at the Decision boxes within an ASM block 
bi are derived from the enabling functions e at the transition arcs 
exiting from an EFSM state si. 

5. In the case of a Mealy machine, behavior specified by the condition 
box of an ASM block bi is equivalent to that of the update function u 
of the corresponding transition exiting EFSM state si. 

6. In the case of a Moore machine, behavior specified by the state box 
of an ASM block bi is equivalent to that of the update function u of 
the corresponding EFSM state si. 

 

Figure 5.6 shows a sample EFSM, as a hybrid of Mealy and Moore machines, 
and its conversion to an ASM chart. FSM states s0 and s1 are transformed to 
ASM blocks s0 and s1. Input i1 is used to transition from s0 to s1. The decision 
box checks the value of i1 in order to either remain in s0 or to move to state s1. 
While going to s1, output o2 is also asserted, both in EFSM and in ASM.  
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Figure 5.6 Sample conversion from FSM to ASM 

 

Step B. SystemC models of ASMs 

This section defines the methodology for an efficient SystemC model of the 
ASM chart. The methodology is generic and can to be applied to any FSMD 
design represented by an equivalent ASM chart. The discussed methodology 
starts with an ASM chart and finally produces a simulation speed optimized 
SystemC model of it. 

Steps in the proposed methodology are the following: 

1. For each ASM-block b, define a method m. Each method m is 
implemented as a C/C++ function. 

2. Define an sc_event v for each method m. 

3. Declare each C method m as a SC_METHOD, and make it sensitive to 
corresponding SystemC-event v 

4. All SC_METHODs are declared as dont_initialize(), except the 
SC_METHOD that corresponds to the FSM's initial-state. This ensures 
that the simulation starts with the SC_METHOD that models the EFSM 
initial-state. 

5. Whenever there is a transition from one ASM block to another ASM 
block, trigger the SystemC-event v after the system-wide clock period.  

6. Due to the above Rule-5, no SC_METHOD is made sensitive to the 
clock input signal. 

The above methodology results in an efficient SystemC implementation of an 
ASM chart due to the following optimizations: 
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 Usage of SC_METHOD that is faster in simulation than SC_THREAD, 
due to lower overhead of context switching. 

 Triggering of SC_METHOD using static global clock period, rather 
than dynamically waiting on clock edge. This lowers burden on the 
simulation kernel. 

 

5.5.4 Case Study 

This section applies the above discussed methodology to transform a VHDL 
FSMD RTL implementation of a Greatest Common Divisor (GCD) design to 
the corresponding ASM chart and further to its SystemC implementation 
optimized for high performance. 

EFSM for the GCD design is shown in Figure 5.7. As a result of application of 
Step-A, the EFSM is transformed to ASM-chart as shown in Figure 5.8. 

 

Next, Step-B of the methodology is applied to the GCD ASM as follows: 

1. Set B = {ST0, ST1, ST2} 

2. Methods for each ASM block: M = {mST0, mST1, mST2} 

e.g.    void m_ST0(); void m_ST1(); void m_ST2(); 

3. SystemC event for each method m: V = {vm_ST0, vm_ST1, vm_ST2} 

e.g.  sc_event ev_m_ST0, ev_m_ST1, ev_m_ST2; 

 

Figure 5.7 EFSM for GCD 
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Figure 5.8 ASM chart for GCD 

 

4. Declare each method {mST0, mST1, mST2} as an SC_METHOD, and make 
it sensitive to corresponding sc_event {vm_ST0, vm_ST1, vm_ST2} 
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5. All SC_METHODs are declared as dont_initialize(), except 
the SC_METHOD that corresponds to the EFSM's initial state. 

e.g. 

SC_METHOD(m_ST0); sensitive << ev_m_ST0; 

SC_METHOD(m_ST1); sensitive << ev_m_ST1; 

    dont_initialize(); 

SC_METHOD(m_ST2); sensitive << ev_m_ST2; 

    dont_initialize(); 

 

6. Trigger the SystemC-events {vm_ST0, vm_ST1, vm_ST2} after the system-wide 
clock-period. 

e.g.         ev_m_ST0.notify(SC_CLK_PERIOD, SC_NS); 

 

These steps transform GCD FSMD into corresponding ASM chart and further 
into high performance SystemC implementation. 

 

 

Figure 5.9 Simulation-time for FSMD and ASM models 

 

5.5.5 Experimental results 

This section presents the simulation performance comparison for the GCD 
design’s initial RTL FSMD implementation compared against the abstracted 
ASM-based functional model. Both models were described in SystemC and 
tested by the same testbench using the OSCI SystemC kernel simulated in the 
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Microsoft VC 2010 Express environment. ModelSim was not used as there is no 
RTL design involved in this simulation. 

Figure 5.9 demonstrates the CPU time required for the simulation of both the 
models for 1 to 10 million SystemC clock-cycles on an Intel i5 @2.6GHz, 8GB-
RAM PC. The simulation speed-up achieved is in the range of 16.4 to 21.7%.  

 

5.6 Chapter Conclusions 

Clock interface is an essential part of a synchronous design, that puts an 
enormous burden on the simulation kernel. Abstraction of clock interface is a 
positive step in the improvement of the simulation-performance. The chapter 
introduces various modes of digital simulation, followed by a discussion on the 
design of the SystemC simulation-kernel. As the discrete-event simulation is 
implemented by the SystemC kernel, the chapter proposes an approach for 
clock interface abstraction based on the minimization of delta-cycles. This is 
achieved by replacing the clock interface based triggering of SystemC-threads 
by clock-period based triggering. Then the chapter presented a novel approach 
to automated FSMD RTL design manipulation for clock interface abstraction. 
The manipulation approach takes FSMD RTL design in VHDL as an input and 
transforms it to an equivalent ASM representation in SystemC with explicit 
separation of design functionality by states. Finally, the clock interface is 
abstracted to optimize the simulation performance.  

Clock interface abstraction by minimization of delta-cycles resulted in 38% 
simulation speed improvement on the tests conducted in this research. 
Experiments for abstraction based on FSMD-to-ASM transformation resulted in 
20% optimization in the simulation speed. 

An additional advantage of separating design functionality by states is that it 
enables functional abstraction of the model to higher, cycle-inaccurate levels, 
which will be the basis for next chapter. 

 



68 

6  FUNCTIONALITY ABSTRACTION BY  
LOOSE MODELS 

The current chapter proposes an approach for automated abstraction of the 
functionality of a cycle-accurate SystemC model to untimed, using a novel 
concept of SystemC-based Loose Models (SCLM). SCLMs provide for an 
instrument to neglect design model parts irrelevant for particular manipulation 
step of the abstraction process, thus simplifying the abstraction flow. As a 
result, the computational complexity of the abstraction process is reduced, thus 
increasing the overall scalability. The proposed abstraction flow is 
demonstrated on a set of benchmark designs and the experimental results prove 
feasibility of the proposed approach and also show considerable simulation 
speed-up.  

Section 6.1 discusses the related work and Section 6.2 introduces the concept of 
the SCLM. Section 6.3 defines the rules for abstraction using SCLM, applied to 
testbench abstraction in Section 6.4 and on a cycle-accurate design in Section 
6.5. Results are discussed in Section 6.6 and Section 6.7 concludes this chapter. 

 

6.1 Related Work 

(Gajski, 2003) is amongst the initial works on increasing levels of abstraction, 
or in other words, increasing the size of the basic building blocks. It argues for 
the modeling language to be C since standard processors come only with C 
compilers. But the C language was not developed for describing the hardware 
and lacks basic constructs for expressing hardware concurrency and 
communication among components. It lays the importance of a well-defined 
design flow, with well-defined models and a modeling language that can be 
compiled with standard compilers and that is capable of modeling hardware and 
software on different levels of abstraction including cycle-level accuracy. 
(Zhao, 2002) mentions that a new methodology of modeling, simulation and 
synthesis is needed based on standard RTL semantics in order to improve the 
productivity of current RTL design practice. It presents the implementation of a 
C++ class library for RTL modeling and simulation, that provides a foundation 
for experimentation in the new RTL semantics.  

(Calazans et al., 2003) presents a comparison of traditional RTL modeling and 
TLM through the implementation of a simple processor case study. The R8 
processor was described in SystemC TLM and RTL versions and these were 
compared to an equivalent hand-coded VHDL RTL description in some key 
points, such as simulation efficiency and implementation results. (Patel et al., 
2007) introduces an extension of SystemC, called Bluespec-SystemC (BS-
ESL), to manage shared state concurrency using multi-threading in large 
SystemC models. However, for simulating a model that is partly designed in 
SystemC and partly using BS-ESL, an interoperability semantics and 
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implementation of such a semantic is required. The paper formalizes the 
simulation semantics of BS-ESL and discrete-event simulation of RTL SystemC 
and provide a solution based on this formalization. A semi-hardware description 
language called VeriC (Verilog and C) to bridge ESL and RTL is proposed in 
(Shu-Hsuan et al., 2009). Like SystemC, VeriC is based on C++ and not only 
describes the design by a syntax very close to Verilog, but also it can model the 
target design at both pin and cycle accuracy with an implicit clock mechanism. 
Those VeriC modules can be directly translated to RTL and also can be 
interoperable with other modules in C/SystemC/Verilog languages by hybrid 
simulation.  

(Bombieri et al., 2006) discusses a methodology for abstracting RTL 
descriptions to different TLM levels. (Bombieri-a et al., 2010) proposes a 
methodology to automatically generate SW code by abstracting RTL IP models 
implemented in hardware description language (HDL). The methodology 
exploits an abstraction algorithm to eliminate many implementation details 
typical of the HW descriptions, in order to improve the performance of the 
generated code. (Tasker et al., 2006) focuses on advanced techniques to cope 
with the complexity of designing modern digital chips which are complete 
systems often containing multiple processors, complex IP blocks and high-
speed buses and interconnection networks. It focuses on language facilities and 
synthesis techniques that dramatically simplify and shorten the process of 
correct chip design by raising the level of abstraction on multiple dimensions 
without sacrificing final hardware quality.  

(IP-XACT, 2014) formulates the conformance checks for eXtensible Markup 
Language (XML) data designed to describe electronic systems and their 
abstraction levels of bus interfaces and connections. A set of XML schemas of 
the form described by the World Wide Web Consortium (W3C) and a set of 
semantic consistency rules (SCRs) are included. 

As discussed above, there have been several works on translating as well as on 
abstracting RTL models to SystemC. However, this chapter goes beyond the 
existing state-of-the-art in the following aspects: 1) It eliminates the need for 
semantic analysis and elaboration of the source RTL IP. 2) It reduces the model 
size for manipulations, thus contributing to higher scalability. 3) It provides a 
readable SystemC abstraction for RTL designs.   

Different from related abstraction approaches e.g. (Bombieri et al, 2011), the 
proposed methodology provides for an instrument to neglect design model parts 
irrelevant for particular manipulation step of the abstraction process, thus 
simplifying the abstraction flow. As a result, the computational complexity of 
the abstraction process is reduced, thus increasing the overall scalability. 

6.2 Loose Model Definition 

In order to facilitate understanding the concept of a Loose Model, let a strong 
model be a formal model representing the complete functionality of a design. 
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For instance, Extended Finite Sate Machine model (EFSM) is a strong model of 
a code entity because it explicitly represents the complete functionality of the 
latter. A loose model of a code entity is a formal model that is restricted to key 
elements only, i.e. the constructs sufficient for a specific manipulation task. For 
each key element, there can be linked a part of the code entity named a load 
element that is not directly relevant to the manipulation. 

With this understanding, a loose model in the current context is explained by 
the following basic definitions. 

Definition 6.1. A code entity C is a formal textual description of a system in a 
programming language or a hardware description language (e.g. SystemC, 
VHDL). 

Definition 6.2. A parse tree (i.e. concrete syntax tree) P(N,B) of a code entity C 
is a tree consisting of a set of nodes niN, with a single root node n0N, and a 
set of branches bkB connecting the nodes. The set of nodes N, in turn, is 
partitioned into the set of internal nodes NI and a set of terminal nodes NT. The 
terminal nodes NT of the parse tree P are strings forming the atomic constructs 
of the language of the code entity.  

Definition 6.3. A loose model M is a formal model generated from the parse 
tree P of an initial code entity C. The formal model M consists of elements 
kjK generated by a key pattern matching function Φ(P). Elements kjK are 
referred to as the key elements of M.  

In the general case, for each key element, a part of entity C referred to as a load 
element may be linked. Load elements ljL are strings generated from the 
terminal nodes of the parse tree P identified by a load pattern matching function 
Ψ(P) that is executed locally starting from the sub-trees of P identified by Φ(P).  

Definition 6.4. The key elements K are the basis for the manipulation steps on 
the loose model M resulting in a new loose model M’. After one or multiple 
manipulation steps the loose model M’ is restored into a new code entity C’. 
During the restoration, the key elements K are transformed to respective 
language contracts that are combined with the load elements L. 

Definition 6.5. A SystemC based Loose Model (SCLM) is a loose model 
generated from a system design model (i.e. a code entity) expressed in the 
SystemC language. An SCLM represents particular aspects of the 
implementation relevant to the given manipulation task on a system design 
model. 

Loose models are exploited to reduce computational complexity and size of the 
model, where manipulation is performed on and may be subject to incomplete 
formal analysis (e.g. verification). As a wide scope of practical tasks in the 
domain, functional correctness of manipulations performed based on loose 
models can be verified using simulation based approaches or to a limited extent 
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using partial formal verification. In the current chapter, manipulations on the 
loose model are applied to perform abstraction from RTL to a higher level.  

For instance, different SCLMs can describe the same system design 
implementation (code entity) at different levels of abstraction, with different 
coding styles/flavors or may rely on different key elements. The same system 
design implementation may be represented by SCLM such as clocked RTL 
FSM and by SCLM as untimed algorithm-level flow-chart. SCLM and its key 
elements sets of states and transitions may be appropriate for particular 
manipulations (e.g. optimizations) while SCLM may be appropriate for a 
different set of tasks. An illustration of a SystemC-based Loose Model is 
provided in Figure 6.1. 

 

Figure 6.1 Example of SystemC-based Loose Model 
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6.3 Abstraction Using SCLM 

In this methodology, cycle-accurate SystemC is assumed as the starting point of 
the abstraction process. While many RTL IP cores are implemented in VHDL 
or Verilog, the flow can be complemented by their automated translation to 
SystemC (as in Chapter 3).  

The loose modeling based abstraction flow is shown in Figure 6.2 and it starts 
with the following steps: 

1. Generate a parse tree P of the cycle-accurate SystemC IP core 
(SystemC FSMD RTL clocked). 

2. Identify the key elements from the parse tree, by traversing the tree, and 
applying a key pattern matching function Φ in order to obtain key 
elements and load elements.  

3. Identify the load elements (LE) for all the key elements applying the 
load pattern matching function Ψ.  

 

 

Figure 6.2 Automated RTL to TLM abstraction flow based on SCLMs 
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Based on the key elements, a loose model M is created, which maintains the 
links to the load elements. The above steps abstract an FSMD representation 
(i.e. FSM with Datapath embedded) to generate a loose model, SCLM1, 
generated from the key elements of the cycle-accurate code entity.  

Following definitions are the basis for further manipulations: 

Definition 6.6. A GOTO (GT) model uses the goto construct of the C language 
to transfer control to the various key elements in the model. 

Definition 6.7. An Optimized GOTO (GT_O) model refers to a model in which 
the compute-only key elements are optimized to not relieve the control back to 
the simulation kernel. Communication with the other models in the system is 
not affected due to this optimization as the key elements with input/output 
statements remain as in the original GOTO model.  

Definition 6.8. An Untimed Optimized GOTO (GT_O_U) model is a model 
where functionality is completely untimed and only final results are available 
for consumption by other models in the system. 

Further manipulations and optimizations are performed as follows: 

a) SCLM1 is manipulated to obtain a SystemC goto (GT) model SCLM2. 
Assuming that the SCLM1 is implemented as an SC_THREAD using 
the switch-case construct for the FSMD representation, SCLM2 is 
obtained by annotating each state by a label: and replacing the state 
assignment statement by a corresponding goto label statement. The 
SystemC wait() statement, used in the SC_THREAD, is replicated after 
each label: annotation to preserve the timing accuracy of the SCLM2. 

b) Optimized goto (GT_O) model SCLM3 is derived from SCLM2 by 
replacing the goto label statement to a compute-only state by the 
functionality of that state. This optimizes the SystemC wait() statement 
for a compute-only state, resulting in a cycle approximate optimized 
goto model. Communication with the other designs in the system is not 
affected due to this optimization as the states with input/output 
statements remain as they were in the original SCLM1 GT model.  

c) Finally, timing within SCLM3 is abstracted to obtain an untimed goto 
(GT_O_U) model SCLM4. All the SystemC wait() statements are 
removed and special synchronization signals are used to trigger the 
model and read the final result(s) back from the model. 

Any of these loose models may be recovered to a SystemC code by replacing 
the loose model by SystemC constructs and substituting the loose model’s links 
by SystemC code corresponding to load elements. 

All of the abstraction levels obtained by the proposed abstraction approach are 
based on goto models, which can be easily transformed to a readable structured 
form for design understand by applying automated recognition of control loops 
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(e.g. WHILE, FOR, …). The resulting SystemC code, SCLM5, would represent 
the algorithmic level description of the IP core. Here, the approaches proposed 
since publication of the Structured Program Theorem (Corrado, 1966) are relied 
upon. 

Note, that the extent up to which the abstraction can be performed is dependent 
on the environment interacting with the IP core. For a cycle accurate 
environment, goto model or optimized goto model can be utilized, whereas for 
untimed environments the abstraction may proceed until the untimed optimized 
goto model. 

 

6.4 Case Study 

The proposed abstraction approach is demonstrated on the b07 benchmark, with 
parts of the design code omitted for simplicity and better understanding. Table 
6.1 illustrates model implementations in SystemC, and visualizations of their 
SCLMs is shown in Figure 6.3. For this case study, the source code relevant to 
the three states of the b07 FSM (START, LOAD_X and INCREMENTA) is 
considered. The first column in Table 6.1 shows RTL FSMD implementation of 
the b07. It is based on design states as the key elements, the switch statement is 
executed on positive edge event of the clock signal. SCLMFSMD is further 
transformed to SCLMGT, where the key elements are goto-labels. A recovered 
SystemC code (also utilizing necessary load elements) is provided in the second 
column. As the next step, a manipulation on SCLMGT is performed to optimize 
out labels related to computation only and not involved in communication (i.e. 
input/output read/writes in the given design). Thus, column 3 optimizes out 
LOAD_X label as compared to the column 2. An optimized SCLMGT_O and its 
recovered SystemC code are demonstrated in the third column. The load 
elements linked to the optimized out LOAD_X label part are recovered as a part 
of the START label code. 

These three SCLMs for b07 benchmark IP core are using clock-based 
synchronization also in the computation part. However, the first two SCLMs are 
cycle-accurate, whereas the third one is cycle-approximate and here the 
semantics of the clock signal clk is different. 
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Table 6.1 Code snapshots for abstraction of b07 benchmark IP design 

IPFSMD: SystemC RTL 
FSMD  

(cycle-accurate) 

IPGT: SystemC goto 
code 

(unoptimized, cycle-
accurate)

IPGT_O: SystemC goto 
code  

(optimized, cycle-
approximate)

IPGT_O_U: SystemC goto 
code  

(optimized, untimed) 

SC_MODULE(sc_b07) {
 sc_out<int>punti_retta;
 sc_in<bool>start,reset,
clk; 
<snip1> 
  SC_THREAD(proc_fsmd); 
  sensitive << reset << 
clk; 
void sc_b07::proc_fsmd()
<init> 
<snip2> 
wait(clk.posedge_event()
);  
switch(stato) { 
  case S_START: 
    if(start.read()==1) 
      {<snip3> 
      stato =S_LOAD_X; }
    else 
      {stato =S_START; 
<snip4>} 
    break; 
  case S_LOAD_X: 
    x = mem[mar]; 
    <snip5> 
    Stato =S_INCREMENTA; 
break; 
  case S_INCREMENTA: 
    if (mar != lung_mem)
      {<snip6> 
      mar = (mar+1) % 
16; 
      stato = S_LOAD_X;}
    else 
      {if(x==2) 
        {<snip7> 
        punti_retta = 
cont + 1; 
        stato=S_START;} 
      else 
      { 
stato=S_INCREMENTA;}}} 
<snip8> 

SC_MODULE(sc_b07) {
sc_out<int>punti_retta; 
sc_in<bool>start, reset, 
clk; 
<snip1> 
  
SC_THREAD(proc_GT_unopt)
; 
  sensitive << reset << 
clk; 
void sc_b07:: 
proc_GT_unopt () 
<init> 
<snip2> 
label_START: 
  
wait(clk.posedge_event()
); 
  if(start.read()==1) 
    {<snip3> goto 
label_LOAD_X;} 
  else 
    {<snip4> goto 
label_START; } 
label_LOAD_X: 
  
wait(clk.posedge_event()
); 
  x = mem[mar]; 
  <snip5> 
  goto label_INCREMENTA; 
label_INCREMENTA: 
  
wait(clk.posedge_event()
); 
  if (mar != lung_mem) 
    {<snip6> 
    mar = (mar+1) % 16; 
    goto label_LOAD_X;} 
  else 
    {if(x==2) 
      { <snip7> 
      punti_retta = cont 
+ 1; 
      goto label_START;} 
    else 
    { goto 
label_INCREMENTA;}} 
<snip8>

SC_MODULE(sc_b07) {
sc_out<int>punti_retta; 
sc_in<bool>start, reset, 
clk; 
<snip1> 
  
SC_THREAD(proc_GT_opt); 
  sensitive << reset << 
clk; 
void sc_b07:: 
proc_GT_opt () 
<init> 
<snip2> 
label_START: 
  
wait(clk.posedge_event()
); 
  if(start.read()==1) 
    {<snip3> 
    } 
  else 
    { <snip4> goto 
label_START;} 
  x = mem[mar]; //from 
LOAD_X 
  <snip5> 
label_INCREMENTA: 
  
wait(clk.posedge_event()
); 
  if (mar != lung_mem) 
    {<snip6> 
    mar = (mar+1) % 16; 
  } 
  else 
    {if(x==2) 
      { <snip7> 
      punti_retta = cont 
+ 1; 
      goto label_START;}
    else 
    { goto 
label_INCREMENTA;}} 
<snip8> 

SC_MODULE(sc_b07) { 
sc_out<int>punti_retta; 
sc_in<bool>start; 
<snip1> 
  
SC_THREAD(proc_GT_opt_ut)
; 
  sensitive << sync; 
void sc_b07:: 
proc_GT_opt_ut () 
<init> 
<snip2> 
label_START: 
  
wait(sync.posedge_event()
); 
  if(start.read()==1) 
    {<snip3> 
    } 
  else 
    { <snip4> goto 
label_START;} 
    x = mem[mar]; //from 
LOAD_X 
    <snip5> 
label_INCREMENTA: 
  if (mar != lung_mem) 
    {<snip6> 
    mar = (mar+1) % 16; 
  } 
  else 
    {if(x==2) 
      { <snip7> 
      punti_retta = cont 
+ 1; 
      goto label_START;} 
    else 
    { goto 
label_INCREMENTA;}} 
<snip8> 

 

The last column of Figure 6.3 demonstrates SCLMGT_O_U where the 
computational part of the IP core is made untimed. The labels relevant to 
communication with the simulation environment (i.e. label START) use a 
synchronization signal sync. The final recovered abstract SystemC code is 
shown in the last column of Table 6.1. 
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PFSMD: SystemC RTL 
FSMD  

(cycle-accurate) 

IPGT: SystemC goto code 
(unoptimized, cycle-

accurate) 

IPGT_O: SystemC goto 
code  

(optimized, cycle-
approximate)

IPGT_O_U: SystemC goto 
code  

(optimized, untimed) 

SCLMFSMD SCLMGT SCLMGT_O SCLMGT_O_U 

  

  

Figure 6.3 Abstraction-flow from FSMD to SCLM 

 

6.5 Results 

The methodology proposed in this chapter is implemented as a part of 
zamiaCAD and exercised on a set of RTL benchmark designs. IP design gcd is 
an implementation of the greatest common divisor algorithm, b02 and b07 are 
designs from the ICT’99 benchmarks family. The codec benchmark is a data 
dominated design which is a product of high level synthesis tool Synthagate 
(Synthezza, Online). It has 89 states and 900 lines of RTL FSMD VHDL code. 

Each FSMD benchmark design (gcd, b02, b07 and codec) is implemented in 
SystemC and verified by its testbench. Different abstraction stages of these 
benchmarks are verified by simulating against the original testbench of the RTL 
FSMD. It is made sure that the abstractions do not break the testbench while 
optimizing the simulation speed. 

Table 6.2 presents the experimental results for simulation speed-up provided by 
different stages of abstraction. Each of the four RTL benchmarks was abstracted 
to untimed SystemC implementation using SCLMs. As shown in the Table 6.2, 
the number of states as the key element remain the same when deriving the GT 
implementation from the FSMD. The GT_O implementation usually has lesser 
states due to the optimization of the key elements. The number of wait() 
statements are also optimized along with the number of key elements. A data 
dominated design has considerable optimizations of the key elements while 
abstracting from FSMD to GT_O. This is a result of lesser number of control 
states that are optimized by various SCLMs. 
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Table 6.2 Simulation Speed-Up by Different Stages of Abstraction  

Design Parameter 
RTL 

FSMD 
GT GT_O GT_O_U 

Gcd 
speed-up (times) 1 1.25 1.71 2.65 
# of key elements 3 states 3 labels 2 labels 2 labels 

# of wait statements 3 3 2 1 

b02 
speed-up (times) 1 1.03 1.03 1.94 
# of key elements 7 states 7 labels 5 labels 5 labels 

# of wait statements 7 7 5 1 

b07 
speed-up (times) 1 1.09 1.10 12.08 
# of key elements 8 states 8 labels 4 labels 4 labels 

# of wait statements 8 8 4 1 

codec 
speed-up (times) 1 1.35 1.42 27.24 
# of key elements 89 states 89 labels 59 labels 59 labels 

# of wait statements 89 89 59 1 

 

Simulation time of SystemC RTL FSMD implementation is taken as the base 
for comparison, with the following observations: 

 Unoptimized goto-code GT provides for a small speed-up in the range 
of 1.03 to 1.35 times, it still has the same number labels (key elements 
in goto-code) as number of states in the corresponding FSMDs.  

 In the optimized goto-implementation GT_O the number of key 
elements (i.e. labels) was reduced in 1.4 to 2 times causing reduction of 
state transitions during computation in 2 to 3 times for the gcd, b02 and 
b07 designs and 10 times for the codec design. The number of wait 
statements was also decreased together with the optimized out 
states/labels making the simulation faster, but losing the time-accuracy 
of the model.  

 Optimized untimed goto-implementation GT_O_U in the last column 
demonstrates speed-up achieved with regards to the initial SystemC 
cycle-accurate implementation. Here the data dominated designs with 
less interruption of the computational phase by communication such as 
b07 and codec demonstrate a significant speedup up to 27.24 times. 

 

 

6.6 Application to Testbench 

Table 6.1 demonstrates exploitation of the b07 IP core abstractions for three 
abstractions of a testbench. The initial RTL FSMD model IPFSMD as well as its 
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goto-version IPGT can be exploited directly with RTL TB (column 1) or with a 
TLM TB (column 2) using a Transactor (column 3). The abstracted cycle-
approximate optimized IPGT_O would need a different transactor considering the 
less number of wait statements required for computation. The untimed SystemC 
goto code IPGT_O_U is used directly with a TLM TB (column 4). Note the 
synchronization signal sync for the computation results synchronization 
between IP and its simulation environment. 

 

Table 6.3 RTL and TLM Testbenches 

 

RTL TB  
for IPFSMD / GT 

TLM TB for IPFSMD / GT TLM TB for 
IPGT_O_U 

TB Transactor 
 

SC_MODULE(sc_b07_rtl_tb
) { 
 sc_in<int> 
t_punti_retta; 
 sc_out<bool> t_start, 
t_reset, t_clk; 
void 
sc_b07_tb_rtl::test() {
<snip> 
  t_reset.write(1); 
  
wait(clk.posedge_event(
));  
  
wait(clk.posedge_event(
));  
 
  t_reset.write(0); 
  
wait(clk.posedge_event(
));  
 
  t_start.write(1); 
  
wait(clk.posedge_event(
));  
 
  
while(t_punti_retta.rea
d() ==0) 
    
wait(clk.posedge_event(
)); 
 
  t_start.write(0); 
  
wait(clk.posedge_event(
));  
} 

#include "rtl2tlm_if.h" 
/* methods in this 
interface are implemented 
in the transactor */ 
 
SC_MODULE(sc_b07_rtl2tlm_
tb) { 
 void 
sc_b07_tb_rtl2tlm::test() 
{ 
 <snip> 
  do_reset(); 
 
  set_start(); 
 
  set_sync(); 
 
  
while(t_punti_retta.read(
) == 0) 
    
wait(clk.posedge_event())
; 
 
  clear_start(); 
} 
 

#include "rtl2tlm_if.h"
 
SC_MODULE(sc_b07_rtl2tlm_
TX) { 
 sc_in<int> 
t_punti_retta; 
 sc_out<bool> t_start, 
t_reset, t_clk; 
void 
sc_b07_TX::do_reset() { 
  
wait(clk.posedge_event())
;  
  t_reset.write(1); 
  
wait(clk.posedge_event())
;  
  t_reset.write(0); 
} 
void 
sc_b07_TX::set_start() { 
  t_start.write(1); 
} 
void 
sc_b07_TX::clear_start() 
{ 
  t_start.write(0); 
} 
void 
sc_b07_TX::set_sync() { 
  
wait(clk.posedge_event())
;  
  t_sync.write(0); 
  
wait(clk.posedge_event())
;  
  t_sync.write(1);} 

#include 
"b07_tlm_if.h" 
 
SC_MODULE(sc_b07_tlm_t
b) { 
 void 
sc_b07_tb_tlm::test() 
{ 
 <snip> 
  do_reset(); 
/* untimed 
implementation */ 
 
  set_start(); 
/* untimed 
implementation */ 
 
  set_sync(); 
/* untimed 
implementation */ 
 
  
while(get_punti_retta(
) == 0) 
    
wait(SC_ZERO_TIME); 
/* wait for a delta‐
cycle to get the 
updated result */ 
 
  clear_start(); 
} 
 

  

6.7 Chapter Conclusions 

This chapter introduces a novel approach (methodology and implementation) to 
automated abstraction of cycle-accurate FSMD cores into untimed SystemC 
models using SCLMs. SCLMs provide for an instrument to neglect design 
model parts irrelevant for particular manipulation step of the abstraction 
process, thus simplifying the abstraction flow, resulting in considerable 
simulation speed-up. The approach goes beyond the existing state-of-the-art in 
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eliminating the need for semantic analysis and elaboration of the cycle-accurate 
IP. This increases the overall scalability and provides a readable SystemC 
abstraction for RTL designs. 

Experimental results show up to 27 times simulation speed-up in the tests 
conducted for the automatically generated abstract untimed SystemC models in 
comparison to the cycle accurate cores. 
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7  CONCLUSIONS 
This thesis has proposed methodologies for comprehensive abstraction of RTL 
IP cores, focusing on interfaces as well as functionality of a design. 

A novel methodology for the translation of VHDL RTL IP core (Chapter 3) 
provides rules and recommendations such that the cycle-accurate SystemC 
output is functionally correct, human-readable as well as with a clear 
correspondence to the source VHDL code. This enables further manual code 
changes and debug of the translated SystemC model. 

Interesting insights were obtained by optimizing the SystemC models translated 
from VHDL RTL (Chapter 4). Co-simulating VHDL with SystemC model 
taking the highest simulation-time lowers the simulation-performance, whereas 
co-simulation with the SystemC model taking least simulation-time is 20% 
faster than VHDL-only simulation. Implementation of VHDL combinational-
statements using multiple SystemC processes simulated about 25% faster than 
the implementation with a single SystemC process. SystemC synchronization 
strategies using single and multiple events take similar simulation-time, 
although single-event implementation is easier to develop and maintain. 

A new methodology for abstracting the clock interface by minimization of 
delta-cycles and FSMD RTL transformation to an equivalent ASM 
representation was proposed (Chapter 5). Clock interface abstraction by 
minimization of delta-cycles resulted in 38% simulation speed improvement. 
Abstraction based on FSMD-to-ASM transformation resulted in 20% 
optimization in the simulation speed. Additional advantage of separating design 
functionality by ASM-states is that it enables functional abstraction of the 
model to higher, cycle-approximate levels. 

Concept of SystemC-based Loose Models (SCLMs) is introduced (Chapter 6) 
for the first time for automated abstraction of cycle-accurate FSMD cores into 
untimed SystemC models. SCLMs provide for an instrument to neglect design 
model parts irrelevant for particular manipulation step of the abstraction 
process. Since semantic analysis and elaboration of the cycle-accurate IP is not 
required, the SCLM methodology has high scalability and provides a readable 
SystemC abstraction for RTL designs. Upton 27 times simulation speed-up was 
achieved by the untimed SystemC models generated using the SCLM approach. 

Encouraging results, in terms of higher simulation speeds, are obtained for 
various methodologies proposed in this thesis. In author’s knowledge, this 
research is unique in its attempt to comprehensively abstract an RTL IP-core. 

Outcomes of this research, in terms of methodologies and results, are generic 
and applicable for abstraction of any VHDL RTL IP core translated to cycle-
accurate SystemC model. The resulting methodologies are beneficial for 
simulation speed optimization goals, as well as easy design understanding by 
abstraction. As a whole, this research is extremely relevant for the SystemC 



81 

TLM-2.0 model providers, ESL/EDA-vendors and general SystemC 
community. 

 

7.1 Future Work 

This research paves the way for future work in multiple directions, such as: 

 Synthesizable SystemC translated from VHDL 

 Translation of Verilog to SystemC 

 Native simulation of SystemC within zamiaCAD 

 Co-simulation of VHDL/Verilog and SystemC within zamiaCAD 

 Formal equivalence of VHDL translated to SystemC 

 Formal equivalence of cycle-accurate and abstract SystemC models 

 Abstraction of side-band signals like interrupts, reset, etc. 

 Functional abstraction for control-dominated designs 

 Optimization of SystemC kernel 

A unique future work of this thesis is to explore the requirements and process 
for filing a patent on the abstraction of memory-mapped signal-level interface 
to TLM-2.0 standard. 
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ABSTRACT 
 

We are witnessing an era in which consumer-electronic devices are supporting 
ever increasing set of features in shortening form factors. International 
Technology Roadmap for Semiconductors (ITRS) identifies this dual trend as: 
miniaturization of the digital functions (“More Moore”) and functional 
diversification (“More-than-Moore”). Traditional design approaches at Register 
Transfer Level (RTL) are no longer suitable, resulting in design methodologies 
at higher levels of abstraction. The most recent approach in this direction is the 
Electronic System Level (ESL) design methodology, made practical with the 
introduction of Transaction Level Modeling (TLM). In order to enable the ESL 
and TLM methodologies, amongst various languages and tools, SystemC has 
emerged as the dominant language standardized as IEEE Standard 1666-2011.  

Growing focus on ESL and TLM has put IP design houses under pressure to 
provide the SystemC models of their legacy VHDL or Verilog IP cores to 
remain competitive in today’s market. Manual abstraction of RTL is error-prone 
and requires enormous time and effort. The only preferred way is to automate 
the VHDL/Verilog translation and abstraction to SystemC. This guarantees 
consistent models at various abstraction levels, in minimal time and effort. 

Aim of this research is to develop a methodology to automatically abstract RTL 
IP cores into higher-level models, with zero or minimal manual-interaction. The 
resulting SystemC model can be generated for both cycle-accurate as well as 
untimed PV abstractions. Results of this research are relevant for the SystemC 
model providers, ESL/EDA tool-vendors and to the wider SystemC community. 

The thesis starts with the translation of VHDL RTL to SystemC. Various rules 
are proposed to automatically generate SystemC from input VHDL RTL. These 
rules are generic in nature and can be applied to any VHDL RTL design. 

Once VHDL RTL has been translated to SystemC, the focus of the thesis is on 
code-level optimization of translated SystemC. Various optimizations 
techniques are introduced for the VHDL to SystemC translated code. These 
optimizations allow higher simulation speeds as compared to the directly 
translated SystemC-models.  

In practice, co-simulation of VHDL-SystemC is often employed while moving 
from complete system simulation in RTL towards SystemC implementation. 
Different strategies are discussed for selecting the modules to replace from 
VHDL to SystemC so that faster co-simulation speed is realized. 

After the optimizations discussed in the previous paragraphs, the focus is on 
abstraction of input/output interfaces. It deals with the conversion of signal-
level and cycle-accurate protocol to the standard TLM-2.0 protocol in SystemC. 
The introduced methodology can be used to abstract any arbitrary signal-level 
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protocol to TLM-2.0. Only side-band signals like clock and interrupt are not 
converted to TLM-2.0 protocol. 

Clock signal abstraction is the next focus of the thesis. Clock abstraction aims at 
removing the clock signal, either partially or completely, preserving the 
behavior of the system design. Minimization of delta-cycles and events in a 
system level model is the core idea behind the clock signal abstraction. Another 
explored approach is to transform VHDL Finite State Machine with Datapath 
(FSMD) design to an equivalent Algorithmic State Machine (ASM) 
representation in SystemC that enables event-based triggering of ASM states. 

Finally, the thesis explores a new idea for functionality abstraction. Its focus is 
on abstracting the behavioral implementation of a module. Notion of SystemC-
based Loose Modeling (SCLM) is introduced to functionally abstract a design 
implemented as VHDL FSMD. SCLM provides for an instrument to neglect 
design model parts irrelevant for particular manipulation step of the abstraction 
process, thus simplifying the abstraction flow. 

Various approaches proposed in this thesis are experimented upon, with 
encouraging results in terms of faster simulation speed. In author’s knowledge, 
this research is unique in its attempt to comprehensively abstract various 
interfaces and functionality of RTL IP cores. 
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KOKKUVÕTE 
Elame ajastul, mil aina vähenevate mõõtmetega laiatarbe elektroonikaseadmed 
pakuvad üha laiemaid võimalusi. Rahvusvaheline Pooljuhttehnollogiate Teeviit 
ITRS kirjeldab seda trendi kui digitaalfunktsioonide miniaturiseerimist 
(“rohkem Moore’i seadust”) ja funktsionaalset mitmekesistumis (“rohkem kui 
Moore’i seadus”). Traditsioonilised register-siirde tasemel toimivad 
projekteerimislähenemised ei ole enam piisavad mistõttu on tekkinud uued 
projekteerimis-metodoloogiad kõrgematel abstraktsioonitasemetel. Uusim 
lähenemine selles suunas on elektroonilise süsteemitaseme (ingl. k. Electronic 
System Level ehk ESL) metodoloogia, mis tekkis koos transaktsioonitaseme 
modelleerimise kasutuselevõtmisega. ESL metodoloogia võimaldamisel on 
domineerivaks osutunud SystemC keel (IEEE Standard 1666-2011).  

ESL metodoloogia kasvav populaarsus on tekitanud tuumade projekteerijatele, 
selleks et konkurentsis püsida, vajaduse pakkuda oma olemasolevate VHDL või 
Verilog tuumade jaoks SystemC mudeleid. Tuumade register-siirde taseme 
abstraheerimine käsitsion vaeva nõudev ning võib põhjustada vigu. Seega oleks 
eelistatav VHDL/Verilog tuumade automaatne tõlkimine ja abstraheerimine 
SystemC keeled. Sellega garanteeritaks korrektsed mudelid erinevatel 
abstraktsioonitasemetel, minimaalse töökuluga. 

Käesoleva uurimistöö eesmärgiks on metodoloogia väljatöötamine 
automaatseks, minimaalset käsitööd nõudvaks register-siirde taseme tuumade 
automaatseks abstraheerimiseks süsteemitaseme mudeliteks. Seejuures 
vaadeldakse töös nii täpse ajastusega (cycle accurate) kui ka abstraktseid 
(programmers view) SystemC mudeleid. Uurimistöö tulemused on olulised nii 
SystemC mudelite projekteerijatele, raalprojekteerimistarkvara väljatöötajatele 
kui ka laiemalt SystemC keele arendamisega töötavale kogukonnale.  

Töös pakutakse välja reeglid SystemC mudelite genereerimiseks VHDL 
kirjeldusest. Reeglid on üldised ning neid saab rakendada mistahes VHDL 
disainile. Lisaks tegeleb töö erinevate genereeritud SystemC koodi 
optimeerimistehnikatega. Nimetatud tehnikad võimaldavad tõsta 
simuleerimiskiirust võrreldes vahetult tõlgitud SystemC mudelitega. 

Praktikas rakendatakse üleminekul register-siirde tasemelt süsteemitasemele 
VHDL-SystemC koossimuleerimist. Käesolevas töös vaadeldakse erinevaid 
strateegiaid VHDL-moodulite asendamiseks SystemC mudelitega, et 
maksimeerida koossimuleerimise kiirust.  

Lisaks transleerimisele, käsitleb töö sisend/väljund-liideste abstraheerimist. 
Vaadeldakse madala taseme protokollide teisendamist SystemC keeles esitatud 
TLM-2.0 standardi protokollideks . Välja pakutud metodoloogia on rakendatav 
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suvalise signaalitaseme protokolli abstraheerimiseks TLM-2.0 tasemele. 
Abstraheerimine ei käsitle vaid kõrvalsignaale nagu taktsignaal, katkestused 
jne. 

Seetõttu käsitleb töö eraldi taktsignaali abstraheerimist, mille eesmärgiks on 
taktsignaali osaline või täielik eemaldamine säilitades seejuures süsteemi 
funktsionaalsuse. Peamiseks ideeks on simuleerimise deltatsüklite ja sündmuste 
minimiseerimine süsteemitaseme mudelis. Lisaks vaadeldakse VHDL 
automaatide teisendamist ekvivalentseks algoritmilisteks automaatideks (AA), 
mis on esitatud SystemC keeles ning võimaldavad sündmustepõhist üleminekut 
automaadi olekute vahel.  

Töö esitab uudse idee mooduli funktsionaalsuse abstraheerimiseks, mis tugineb 
SystemC-põhisele “lõdvale” modelleerimisele (SCLM). SCLM on instrument, 
mis võimaldab ignoreerida mudeli osi, mis antud teisenduse kontekstis tähtsust 
ei oma ning seetõttu lihtsustada abstraheerimisprotsessi.  

Töös esitatud eksperimendid näitavad, kuidas välja töötatud lähenemised 
aitavad simuleerimise kiirust tõsta. Doktoritöö uudsus seisneb kompleksse 
lahenduse pakkumises erinevate liideste ja funktsionaalsuse abstraheerimiseks 
register-siirde taseme disainide jaoks. 
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Research paper [A] 

Syed, Saif Abrar; Jenihhin, Maksim; Raik, Jaan. “FSMD RTL Design 
Manipulation for Clock Interface Abstraction.” IEEE International Conference 
on Advances in Computing, Communications and Informatics (ICACCI), 
Kochi, India, 2015. pp 1-6. 
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Appendix B 
 

 

Research paper [B]  

Syed, Saif Abrar; Jenihhin, Maksim; Raik, Jaan. “SystemC-Based Loose 
Models for Simulation Speed-Up by Abstraction of RTL IP Cores.” IEEE 
International Symposium on Design and Diagnostics of Electronic Circuits and 
Systems, Belgrade, Serbia, 2015. pp 1-4. 
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Appendix C 
 

 

Research paper [C] 

Syed, Saif Abrar; Jenihhin, Maksim; Raik, Jaan. “Abstraction of clock interface 
for conversion of RTL VHDL to SystemC.” IEEE International Advance 
Computing Conference, Gurgaon, India, 2014. pp 50-55. 
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Appendix D 

Research paper [D] 

Syed, Saif Abrar; Shyam, K.; Jenihhin, Maksim; Raik, Jaan; Babu, C. 
“Performance Analysis of Cosimulating Processor Core in VHDL and 
SystemC.” IEEE International Conference on Advances in Computing, 
Communications & Informatics, Mysore, India, 2013.pp 1-6. 
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Appendix E 
 

 

Research paper [E]  

Syed, Saif Abrar; Jenihhin, Maksim; Raik, Jaan. “Optimization Methodologies 
for Cycle-Accurate SystemC Models Converted from RTL VHDL.” IP-SoC 
2013 (IP Based Electronic System Conference), Grenoble, France, 2013. pp 1-6. 
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Appendix F 
 

 

Research paper [F]  

Syed, Saif Abrar; Jenihhin, Maksim; Raik, Jaan. “Extensible Open-Source 
Framework for Translating RTL VHDL IP Cores to SystemC.” IEEE 
Symposium on Design and Diagnostics of Electronic Circuits and Systems, 
Karlovy Vary, Czech Republic, 2013. pp 1-4. 
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