
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Riivo Kiljak 178071IABM

POWERSHELL SCRIPTING LANGUAGE COURSE
PROPOSAL FOR TALLINN UNIVERSITY OF

TECHNOLOGY

Master’s thesis

Supervisor: Siim Vene

MSc

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Riivo Kiljak 178071IABM

POWERSHELLI SKRIPTIMISKEELE KURSUSE
ETTEPANEK TALLINNA TEHNIKAÜLIKOOLILE

Magistritöö

Juhendaja: Siim Vene

MSc

Tallinn 2019

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to the

literature and the work of others have been referred to. This thesis has not been presented for

examination anywhere else.

Author: Riivo Kiljak

07.05.2019

3

Abstract

In the thesis, a recommendation is made to establish a new course at TalTech. The course is

intended to teach the PowerShell scripting language to students, most importantly in the IT

Systems Administration programme.

Course material is proposed in the form of lecture slides, home assignments and knowledge

tests. All three of which are available in the appendices of the paper. Design science is used to

pass iterations of improving the content prior the the paper publishing. Academic literature is

analysed to determine the included and excluded topics and the teaching methodology. More-

over, input is acquired from scrutinising public information on Microsoft’s official PowerShell

courses and interviewing subject matter experts who use PowerShell at local companies.

The course material is provided written in LATEX which means that it can be conveniently

modified, version controlled and distributed in the PDF format. Although the proposed course

is seen as an online course hosted on Moodle, argumentation is made suggesting a combination

with classroom seminars is likely to result in better learning outcomes at the cost of scalability.

In the final chapter, an analysis regarding the validity of the produced materials is made.

Moreover, a list of suggestions on how the course could be developed further in the future is

put forward.

This thesis is written in English and on 282 pages, including 5 chapters, 4 figures and 3

tables.

4

Annotatsioon

Kuigi PowerShell on muutunud populaarseks skriptimiskeeleks, mida kasutatakse IT-taristu

haldamisel, puudub hetkel TalTechis kursus, kus seda keelt õpetatakse. Lõputöös pakutakse

välja kursuse loomine ning esialgsed materjalid, mille abil kursust läbi viia. Eeskätt sobiks

kursus IT süsteemiadministreerimise õppekavasse.

Välja pakutavateks materjalideks on loengute slaidid, ülesanded iseseisvaks lahendamiseks

ja teadmistekontrollid. Materjalide loomisel kasutatakse tsüklilist lähenemist, kus eesmärk on

sisu järkjärgult parendada.

Kursuse sisu loomisel lähtutakse uue e-kursuse lisamist TalTechi Moodle keskkonda. Siiski

ei ole lõputöö avaldamise ajaks videoloengud salvestatud. Töös märgitakse, et kuigi täielik e-

kursus võimaldab tõhusat koolitamist, on klassiruumides seminaride pidamisel tõenäoline eelis

paremate õpitulemuste näol.

Sisend materjalide koostamisse tuleb peamiselt kolmest allikast. Esiteks analüüsitakse Mi-

crosofti ametlikke PowerShelli kursuseid. Teiseks viiakse läbi intervjuud praktikutega koha-

likes ettevõtetes, kes kasutavad igapäevaselt PowerShelli. Viimaks on sisu mõjutatud ka autori

kogemustest ja hinnangutest.

Lõputöö väljundi elemendid on tekstifailid LATEX keeles, mida on mugav muuta, hallata

versioonihaldustarkvaraga ja jagada PDF-failide kuju. Siiski eeldab materjalide kasutamine

kursuse läbiviijalt eelnevat kogemust, sest LATEX ei ole intuitiivne, nagu näiteks PowerPoint.

Kursus jaguneb kaheksaks mooduliks. See on loodud katma õpetatava skriptimiskeele

põhifunktsionaalsuse ja Microsofti toodete nagu Windows, Active Directory ning Hyper-V hal-

damise peamised käsud.

Kokkuvõttele eelnevas peatükis arutletakse töö valiidsuse üle. Ühtlasi analüüsitakse er-

inevaid võimalusi kursuse arendamiseks tulevikus. Näiteks soovitatakse lisada kursusesse

grupitööd, mis hetkel puuduvad. Samuti antakse nõu, et kursusesse võiks hiljem kaasata

pilvetehnoloogiate haldamise.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 282 leheküljel, 5 peatükki, 4 joo-

nist, 3 tabelit.

5

List of Abbreviations and Terms

Active Directory Microsoft developed directory service for Windows domain networks

API Application programming interface

CIM Common Information Model

Cmdlet A lightweight command used in the Windows PowerShell environment

CPU Central processing unit

ECTS European credit transfer and accumulation system

GUI Graphical user interface

HDD Hard disk drive

HITSA Information Technology Foundation for Education

Hyper-V Microsoft developed hypervisor

Hypervisor Computer software that creates and runs virtual machines

ICT Information and communications technology

ISE Integrated scripting environment

ITIL A set of practices for IT service management

ITL Estonian Association of Information Technology and Communications

LATEX A document preparation system where the author uses plain text

MOC Microsoft official course

OS Operating system

RAM Random-access memory

REST Representational state transfer

TalTech Tallinn University of Technology (formerly abbreviated TUT)

UNIX a family of operating systems that derive from AT&T Unix

VM Virtual machine

WMI Windows Management Instrumentation

6

Table of Contents

1 Introduction 12
1.1 Problem Statement . 13

1.2 Scope . 14

1.3 Structure . 15

2 Methodology 16
2.1 Course Material Principles . 16

2.1.1 Design Science . 16

2.1.2 Course Tailored for Students . 18

2.1.3 Included Skills and Themes . 19

2.1.4 Excluded Advanced Use Cases . 22

2.2 Teaching Methodologies . 24

2.3 Validation . 26

3 Course Platform and Modules 27
3.1 Lab Environment . 27

3.1.1 Golden Image . 27

3.1.2 Packer Template . 28

3.2 Seminars . 29

3.3 Lab Assignments . 31

3.4 Knowledge Tests . 31

3.5 Introduction . 32

3.6 Basics 1 . 33

3.7 Basics 2 . 33

3.8 Basics 3 . 34

3.9 Windows OS Management . 35

3.10 Active Directory . 37

3.11 Hyper-V . 38

7

3.12 Custom Modules . 39

4 Analysis and Conclusion 40
4.1 Deficiencies of the Methodology . 40

4.1.1 Teaching Methodology . 40

4.1.2 Course Material Compilation Methodology 41

4.2 Scope Limitations . 42

4.2.1 Infrastructure Requirements . 42

4.2.2 Limitations of Course Materials . 43

4.3 Validation . 44

4.4 Potential Future Improvements . 46

5 Summary 48

References 49

Appendix 1 Preamble.tex 54

Appendix 2 Slides 55
2.1 Introduction . 55

2.2 Basics 1 . 81

2.3 Basics 2 . 103

2.4 Basics 3 . 128

2.5 Windows OS Management . 162

2.6 Active Directory . 189

2.7 Hyper-V . 215

2.8 Custom Modules . 238

Appendix 3 Lab Assignments 261
3.1 Introduction . 261

3.2 Basics 1 . 261

3.3 Basics 2 . 262

3.4 Basics 3 . 262

3.5 Windows OS Management . 263

3.6 Active Directory . 263

3.7 Hyper-V . 264

3.8 Custom Modules . 264

8

Appendix 4 Knowledge Tests 265
4.1 Introduction . 265

4.2 Basics 1 . 267

4.3 Basics 2 . 269

4.4 Basics 3 . 272

4.5 Windows OS Management . 274

4.6 Active Directory . 276

4.7 Hyper-V . 279

4.8 Custom Modules . 280

9

List of Figures

1 Occupied posts in the Estonian ICT sector (Statistics Estonia, 2019) 13

2 The generate/test cycle. Adapted from Hevner, March, Park, and Ram, 2004,

p. 89 . 17

3 Packer.json file which defines the golden image 30

4 Course content sources . 42

10

List of Tables

1 Course 10961C: Automating administration with Windows PowerShell 20

2 Course 10962C: Advanced automated administration with Windows PowerShell 21

3 Overview of the proposed course modules . 28

11

1 Introduction

PowerShell has gained significant prevalence as a tool for infrastructure administration (see,

for example, Buyya & Barreto, 2015; Jayaseelan & Charles, 2014; Palumbo, 2017). Yet there

is currently no course at TalTech (formerly abbreviated TUT for Tallinn University of Technol-

ogy) which focuses on teaching its students the syntax and the functionality of this scripting

language specifically. After the merger with the former IT College, there is a course “Scripting

Languages” in the university’s curriculum which however concentrates on Bash and Python

(TalTech, 2019).

The goal of the paper is to propose a new course with relevant teaching material to TalTech

for delivering the course foremost to students in the IT Systems Administration programme. The

course may be optional or an elective and is intended to be free for enrolling to all interested

students without prerequisite courses.

PowerShell offers an alternative to traditional infrastructure management via GUI tools and

allows for simple and automated management of large environments with many nodes such as

PCs and servers. Since August 2018, PowerShell is open-source and available on GitHub for

Windows, Linux and macOS operating systems (GitHub, 2019b).

Microsoft provides PowersShell cmdlets (pronounced “command-lets”), for example, to

the Windows operating system, Active Directory services, Exchange e-mail service, Hyper-V

virtual machine host and Azure cloud computing service. The language also provides generic

tools for object oriented data manipulation such as various calculations, filtering, string anal-

ysis, etc. (Microsoft, 2019d). Moreover, several third party providers have created custom

PowerShell modules for enabling automated management of their products (e.g. Amazon Web

Services, 2019; Veritas, 2019).

Important requirements for the thesis’ output are scalability and applicability. The first

means in the given context that the number of students in the course may vary while the learning

outcomes must stay consistent. In order to achieve the goal, the course content must rely on

automated exercise environments and quizzes. Although the course will be proposed with

some focus on the needs of TalTech and the Estonian employers, the outcome is assumed be

applicable in other cases as well, i.e. by other universities or teaching centres.

12

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
14,000

16,000

18,000

20,000

22,000

Figure 1. Occupied posts in the Estonian ICT sector (Statistics Estonia, 2019)

1.1 Problem Statement

The need for graduate students with scripting skills can be shown via various sources. Firstly,

there is academic literature where scripting and automation are commended and seen integral to

contemporary computing. Automation is seen as resulting in both improved cost effectiveness

and more flexible yet functional information systems (see, for example, Ashraf, 2015; Buyya

& Barreto, 2015; Jayaseelan & Charles, 2014; Palmer, 2015).

Secondly, although the OSKA report from 2018 does not mention neither scripting nor

PowerShell specifically, it highlights an acute need for additional IT specialists on the Estonian

labour market (Sihtasutus Kutsekoda, 2018). The report is published regularly and it gives

an overview of of the competences employers expect from employees in Estonia. The latest

report emphasised that ICT specialists are needed in all industries, not only in the ICT industry.

Additionally, Figure 1 shows a clear trend for a growing number of people working in the ICT

sector. Granted, it is an indirect measure of the need for employees with PowerShell scripting

skills.

The OSKA report is analysed among others by the Estonian Association of Information

Technology and Telecommunications (officially abbreviated as ITL) members who represent

employers in meetings with university decision makers. The report can therefore be considered

as indirect input to universities’ curricula. Moreover, there is a note made in a meeting protocol

where a representative of ITL specifically mentions the need for PowerShell educated students

(Vene, 2018).

The argumentation above outlines the demand for the thesis. A case could be made that

alternative courses with suitable content exist already and that the majority of them are available

13

online free of charge.

The need for new course material can further be justified by the form of the materials.

Namely, the goal of the thesis is to create a new Moodle course. Moodle is a community

driven open-source learning platform (Moodle, 2019). It is also the platform used at TalTech

and other Estonian universities. Although, Estonian schools are encouraged to use the Moo-

dle environment provided by the Information Technology Foundation for Education (HITSA)1

(Information Technology Foundation for Education, 2019), TalTech has launched its own Moo-

dle2.

All of the proposed course material is intended for hosting on Moodle. Furthermore, part

of the course material will be tests designed for the Moodle platform. This contributes to the

uniqueness of the output.

Additionally, and even more importantly, the material put forward in the thesis will focus

also on evaluating students. The aspect of assessing the learning outcome through theoreti-

cal and practical quizzes and lab assignments is missing in the publicly available PowerShell

courses.

Finally, the teaching material will be made unique by combining ideas from different exist-

ing courses with author’s own work experience. The proposed course will draw content official

Microsoft PowerShell courses, subject matter experts’ recommendations and author’s personal

experience.

TalTech observes its reference universities Aalto University in Helsinki, KTH Royal Insti-

tute of Technology in Stockholm and Chalmers University of Technology in Gothenburg. The

named institutions did not have a specifically PowerShell related course in their curricula, yet

the language is potentially taught in generic scripting courses.

1.2 Scope

The following section defines the scope of the paper and lists aspects on one hand included and

on the other hand deliberately excluded from the thesis.

The main focus of the paper is on creating teaching materials for the course which can be

divided into different categories. Firstly, this includes slides with notes for classroom presen-

tations or video lectures. Secondly, the materials contain lab assignments which are meant to

be performed individually but can be done under supervising or in student groups. Thirdly, the

output holds tools for student evaluation. These components of the materials will be compiled

into a Moodle course.
1Hosted at https://moodle.hitsa.ee/
2Hosted at https://moodle.taltech.ee/

14

https://moodle.hitsa.ee/
https://moodle.taltech.ee/

Moreover, the validation of the output material is within the scope of the thesis and con-

stitutes a significant part of it. How validation is done is discussed in-depth in section 2.3 and

validation is carried our in Chapter 4.

Nevertheless, it is important to note that the output of the thesis cannot be considered a final

product. The content is meant to be improved through iterations and feedback. The latter will

be given by employers and students. Only a limited number of iterations can be passed before

the paper in hand is published. Hence the tweaking and perfecting the materials is out of scope

of the thesis.

It is in fact optimal to keep a certain level of flexibility in the course as newer versions of

PowerShell might add new and relevant features. Also, IT market standards and demands are

likely to change which is likely to affect the optimal content.

The course materials will be in English. Should there be no non-Estonian speaking students

in seminars, the instructor can choose the spoken teaching language.

Although one of the principles for the course was scalability to a varying amount of stu-

dents, videos are required to fulfil the requirement. Notwithstanding, videos are out of scope

for the thesis. It is suggested that the first semester seminars, when the course is delivered, are

recorded and the recordings are published on Moodle either on the same or following semesters.

Finally, the lab exercises assume that a virtualised test environment exists at the university.

Requirements for the environment are described in section 4.2.1, but the detailed steps of setting

it up are knowingly excluded from the thesis.

1.3 Structure

The thesis will next introduce the methodology used in creating and evaluating the course

material. The methodology covers the principles of course material compilation, teaching ap-

proaches and validation of the output.

The majority of the paper will focus on creating and presenting course materials, such as

presentations, exercises and tests, but also on analysing the validity of the results. The latter

will be done through trialling the tests and lab assignments on students and requesting feedback

on the materials from subject matter experts.

15

2 Methodology

The methodology presents the contemporary situation of academic literature related to the topic

and also the approaches used to tackle the defined problem statement. In the case of the paper

in hand, the methodology is threefold. Firstly, the general topics of the course materials must

be determined by analysing the existing courses and the expectations of local IT infrastructure

teams for new team members.

Secondly, the course content and learning methods need to adhere to effective teaching

practices. Since the course will be a combination of classroom seminars and independent

homework, the relevant approaches need to be analysed and taken into account when creat-

ing the content.

Finally, it is imperative that the output of the thesis is validated. The course content will be

evaluated by IT infrastructure administrators. Moreover, the lab assignments and quizzes must

be trialled in order to confirm the appropriate level of difficulty for undergraduate students.

2.1 Course Material Principles

The following will explain and justify how the course material is compiled. Design science is

used to manage the iterations through which the material is created and improved. Additionally,

included and excluded themes and topics are discussed.

2.1.1 Design Science

The output of the thesis is created by using the design science approach. It may be opposed

to behavioural science. Design science is “fundamentally a problem solving paradigm[; it]

seeks to create innovations that define the ideas, practices, technical capabilities, and products

through which the analysis, design, implementation, management, and use of information sys-

tems can be effectively and efficiently accomplished” (Hevner, March, Park, & Ram, 2004, p.

76). “The goal of behavioural science research is truth [and the] goal of design science research

is utility” (Hevner et al., 2004, p. 80).

16

Test alternatives against

requirements and constraints

Generate design alternatives

Figure 2. The generate/test cycle. Adapted from Hevner, March, Park, and Ram, 2004, p. 89

The proposed teaching materials are seen as IT artefacts. Hevner et al., 2004, p. 77 states

that “IT artefacts are broadly defined as constructs (vocabulary and symbols), models (ab-

stractions and representations), methods (algorithms and practices), and instantiations (imple-

mented and prototype systems)” (emphases added). Artefacts address problems which need

solving (Marx, Mayer, & Winter, 2012, 26:2). The paper in hand focuses on methods and

instantiations.

The slides and the lab assignments can be seen as instantiations whereas the suggested

teaching approaches are in essence methods. Artefacts are built and then evaluated in terms of

the utility they provide in delivering the course.

Nunamaker and Briggs, 2012, p. 20:10 argue that the definition of an IT artefact is diluted,

i.e. its meaning has become so ambiguous that it does not add value. They emphasise the

proof-of-use over proof-of-concept and even proof-of-value. In other words, “[p]roof-of-use

prototypes [must be] sufficiently robust to be left with users in the field to support real tasks in

the workplace” (Nunamaker & Briggs, 2012, p. 20:6).

In the context of the proposed PowerShell course, the proof-of-use would be positive feed-

back from the students and employers that the knowledge gained from the course could be

successfully applied. The possibilities of gaining proof-of-use before the paper is published are

limited. The actual usefulness of the course can be evaluated only after it has been delivered

for at least one semester.

Figure 2 presents a simple process to illustrate how the generate/test cycle works. It empha-

sises the iteration between generating news designs and trialling them in practice. In the context

of the proposed PowerShell course, it means making small changes to the course content and

teaching methods over time. It is possible to pass through only a small number of iterations

before the thesis is disclosed.

Carlsson, Henningsson, Hrastinski, and Keller, 2009 wrote a paper on designing manage-

ment support systems. Although the process of designing structure and materials for a course at

a university has significant differences, fundamental principles are still applicable. The process

starts by defining the situation and finding support. The second part is data collection. Gath-

17

ered data is then fused into specifications which are analogous to the course module listing. The

third step is development, i.e. creating the course content. Two final steps are implementation

and evaluation.

In the thesis, support in the first step for creating the course needs to be obtained from

TalTech. Data collection means research into topics that could be included in the course. The

specifications are compiled into lessons — also called course modules — that constitute the

course (see Table 3 in Chapter 3). The content development is done and explained in Chapter

3. Finally, the evaluation and validation are done in Chapter 4.

Meyer, Rensing, and Steinmetz, 2011 wrote an article emphasising the value of reusing

learning resources. It is also important in the context of the thesis that the output may be used

outside the proposed course. The produced artefacts may be modified to fit other purposes and

parts of them used in other courses.

2.1.2 Course Tailored for Students

As stated in the Introduction, the course content will be unique as it will be created with the

specifics of a university course in mind. The differences from Microsoft Official Courses (of-

ficially abbreviated MOC) and PowerShell courses available online will be substantial and de-

serve to be clarified.

Firstly, the content is novel. There are two PowerShell MOCs: Course 10961C: Automating

Administration With Windows PowerShell and Course 10962C: Advanced Automated Admin-

istration With Windows PowerShell (Microsoft, 2019a, 2019b). The courses focus on the core

functionalities of the language. The latter course goes in-depth with some of the functionalities.

Nevertheless, almost no attention is paid to using the language’s modules to manage prod-

ucts such as Active Directory, Exchange, Hyper-V, Azure, etc. Author’s personal experience

shows and feedback from the local employers identified that students on the labour market

would benefit from knowing the basics of managing the listed products via PowerShell.

Secondly, the courses from Microsoft and various other online resources do not provide

methods for evaluating students learning outcomes. The output of the thesis will also be tests

that can be used to confirm that the students matriculated in the course mastered the content at

a sufficient level.

Next, there is a need to create new course material in order to avoid plagiarism and copyright

infringement. Using third party materials without their permission or without paying royalty

fees could result in penalties and reputation damage to TalTech.

Finally, although it is emphasised throughout the paper that the infrastructure structure

needed for the course is out of scope, the paper still explains the basics of creating virtual

18

machines that can be used in lab assignments. In case of MOCs, the environment preparation

is fully proprietary information.

2.1.3 Included Skills and Themes

The main motivation for the course is to familiarise students with the concept of automation

and provide them with skills to implement automated tasks. The concept of automation is

emphasised in many contemporary books and IT frameworks. For example, Limoncelli, Hogan,

and Chalup, 2016, pp. 37–39 use the terms pets and cattle to illustrate servers which on one

hand could be customised and need special attention (pets) or on the other hand they could be

similar to each other and easy to manage in bulk (cattle).

In February 2019, ITIL 4 was launched. ITIL is an approach to IT service management.

The latest version shifts emphasis to automation which is also a fundamental concept in Agile,

DevOps and Lean methodologies (AXELOS, 2019). This paradigm change corresponds well

with the purpose and capabilities of the PowerShell scripting language.

A balance must be found between teaching the students cmdlets that they are expected to

remember and giving the students the competence of using the help documentation. A combi-

nation of both is most likely needed to solve real life situation that the students will encounter

during their careers.

The overarching aim of the materials is to include both theoretical and practical aspects of

PowerShell, with a focus on practical knowledge and gaining hands-on experience. The integra-

tion of knowing and doing is also a cornerstone of the project-based learning (PBL) approach.

PBL allows “to solve authentic problems and produce results that matter (Markham, 2011, p.

38).” Granted, PBL works best in team work scenarios which were are not implemented in the

proposed course at the current status.

Theory is presented via classroom seminars, or later via video lectures, which will be fol-

lowed by practical lab assignments. Each student will need to carry out task pertaining to the

learned content within each course module.

The goal is to teach threshold concepts which are defined as “as core gateway concepts

that unlock new, previously inaccessible knowledge” (Yeomans, Zschaler, & Coate, 2019, p.

23:3). As a result, students should have enough knowledge to continue learning on their own

by referring to more advanced examples and PowerShell official documentation online.

To a certain extent, the creation of the course materials is seen as a (software) development

process. The output is code in the LATEX language uploaded to a Git repository with the purpose

of solving a real life problem. Hence, software engineering research methods can be seen

applicable as a method for developing the content.

19

Table 1. Course 10961C: Automating administration with Windows PowerShell

Module Name
Module 1 Getting started with Windows PowerShell

Module 2 Cmdlets for administration

Module 3 Working with the Windows PowerShell pipeline

Module 4 Understanding how the pipeline works

Module 5 Using PSProviders and PSDrives

Module 6 Querying system information by using WMI and CIM

Module 7 Working with variables, arrays, and hash tables

Module 8 Basic scripting

Module 9 Advanced scripting

Module 10 Administering Remote Computers

Module 11 Using background jobs and scheduled jobs

Module 12 Using advanced Windows PowerShell techniques

Basili et al., 2018, p. 44 foster context-driven research. They define the term as “research

focused on problems driven by concrete needs in specific domains and development projects”.

Therefore, the approach underscores the practical use of development output. Opposing argu-

mentation could be made that context-driven research produces too specific and non-generic

solutions (Basili et al., 2018, p. 45). This should not be the case with the proposed PowerShell

course because other universities or teaching centres can customise the materials according to

their needs.

Microsoft provides two official courses on PowerShell. Their modules are listed on Table 1

and on Table 2. The module listing and their limited explanations of the courses are scrutinised

and used as the basis for the proposed course. Elements from the majority of listed modules

are also included in the output of the thesis.

The first course is a five-day course and designed to provide “students with the fundamental

knowledge and skills to use Windows PowerShell for administering and automating adminis-

tration of Windows servers” (Microsoft, 2019a). This objective corresponds loosely to the first

lessons in the proposed TalTech course.

The second course focuses on “core scripting skills such as creating advanced functions,

writing controller scripts, and handling script errors” (Microsoft, 2019b). Most of these topics

will be covered in the final modules of the thesis output.

The precise materials and lab assignments that Microsoft certified training centres use are

proprietary and cannot be perused without enrolling to the course. Moreover, the content may

20

Table 2. Course 10962C: Advanced automated administration with Windows PowerShell

Module Name
Module 1 Creating advanced functions

Module 2 Using Microsoft .NET Framework and REST API in PowerShell

Module 3 Writing controller scripts

Module 4 Handling script errors

Module 5 Using XML, JSON, and custom-formatted data

Module 6 Enhancing server management with DSC and JEA

Module 7 Analysing and debugging scripts

Module 8 Understanding Windows PowerShell Workflow

not be copied or reproduced without Microsoft’s permission. It is nevertheless not forbidden to

create new content which may approximately follows the same topics.

Academic literature on the topic was found to be scarce. The existing papers were mostly

conference proceedings and discussed PowerShell in contexts too advanced for the current

introductory course planning. Nevertheless, Palumbo, 2017 listed four issues that he was able

to solve using PowerShell at the Lehigh University in the US which are suitable for gathering

inspiration. The first one regarded managing a Mozilla Firefox add-on, namely Adblock Plus.

He solved the problem by writing two PowerShell scripts. The first one analysed the files in

users’ profiles and their content and the second one installed the add-on if needed.

The next problem that the author solved pertained to Windows license activation. There

were computers in the environment which lost their connection to the Key Management Service

server and needed re-activation. A PowerShell script helped to automatically re-register and

validate the license decreasing the number of help desk calls (Palumbo, 2017, p. 8).

The third issue was with cabinet and log files that filled users’ hard disks. The remedying

script deleted the files matching a location and name expression. It also reported the available

storage size before and after running the script to a central server.

The final use case where he applied a PowerShell script solution was about Java installation

and update. The standard way of updating was not an option as the update required all browser

windows to be closed and forcefully closing them could result in data loss. The script installed

and configured Java according to the university’s standards without interrupting users’ work

(Palumbo, 2017, p. 9).

All these four examples are real life scenarios which can be solved by PowerShell scripts.

The difficulty level of the scripts is reasonably low and the use cases are suitable for presenting

in the course proposed in the thesis. The scenarios are used as inspiration for creating lab

21

assignments.

Another feature of PowerShell that was mentioned in academic literature was Hyper-V

management. More specifically, using PowerShell to set up a cost efficient Hyper-V disaster

recovery solution was described by Jayaseelan and Charles, 2014. The article narrated a real

life scenario where virtual machines are replicated to a physically different location and they

can be recovered from it in case of an emergency. This is an argument for including Hyper-V

into the proposed course.

The last input source for the course content is interviews with subject matter experts or prac-

titioners. An interview was conducted with a team lead at Swedbank Estonia and it pointed out

several aspects that the course should cover in its modules (Swedbank, 2019). For example, the

interviewee suggested to include slides about access control lists of objects and code signing

options. Moreover, the interviewee agreed on the importance of teaching Active Directory ad-

ministration in the course. Yet some of the suggestions, such as Active Directory organisational

unit delegation and group policy object management, were excluded from the course content,

since they were seen as too advanced for the intended course level.

The second consultancy was done with a PowerShell practitioner and trainer at Telia Esto-

nia. As apparent from the discussion, the company expects candidates to scripting jobs to be

capable of perusing cmdlets’ manuals and investigating cmdlets’ functionalities independently

(Telia, 2019). There is a myriad of different modules and cmdlets and it would be unrealistic to

remember even a fraction of them. Therefore, the company representative underscored that the

proposed course should prepare students in finding self-help with cmdlets such as Get-Help,

Get-Command, Get-Module and Get-Member.

Finally, an interview with the thesis’ supervisor showed that Hyper-V and potentially cloud

platform Azure should be included as a separate module (Vene, 2019). There is a trend from

on-premise platforms toward cloud-based platforms and the school intends to teach modern

technologies to its students. While Hyper-V was included, Azure was left out due to course

length limitations and challenges of providing a lab environment for Azure. It could be included

into the course in later iterations, as discussed in section 4.4.

In summary, the proposed course is made up of expanded MOC content, author’s personal

experience and input from employers on the local labour market. The limitations of these

sources are discussed in section 4.1.

2.1.4 Excluded Advanced Use Cases

As stated above, academic literature pertaining PowerShell usefulness to solve real life prob-

lems was sparse. Most of the found articles discussed PowerShell in aspects that are not suitable

22

with the level of an introductory course. Some found examples are presented below.

PowerShell is increasingly used by threat actors. Anti-virus software has developed and is

making it increasingly difficult for attackers to run their malicious code. Consequently, they

have started to exploit tools which already exist on the target machines, such as PowerShell

(Liu, Xia, Yu, & Liu, 2018, p. 825). PowerShell is an attractive vector for attackers since it

is pre-installed and enabled on the majority of Windows machines (Hendler, Kels, & Rubin,

2018, p. 188).

Surprisingly, Wueest, 2016 found that in fact 95.4% of the scripts that were using Power-

Shell were deemed as malicious. Yet it is difficult to separate malicious scripts from benign

ones (Tsuda et al., 2018). Identifying harmful code can be done only via advanced techniques.

Rusak, Al-Dujaili, and O’Reilly, 2018 and Hendler et al., 2018 show how deep learning can be

used to detect malicious PowerShell commands.

Barakat and Hadi, 2016 published an article showing how PowerShell can be used as a

forensics tool. As the dependence on digital devices is increasing, so is the exposure to cy-

ber threats and cyber exploitation (Choo, Fei, Xiang, & Yu, 2016). Barakat and Hadi, 2016

demonstrate how PowerShell can be used in forensics to detect and extract evidences.

PowerShell as a forensics tool is limited to the Windows operating system and relies on six

categories of Windows artefacts (Barakat & Hadi, 2016, pp. 41–42):

1. General machine information

2. User account activity

3. File/folder activity

4. Installed programs

5. Internet activity

6. External storage devices

A tool named PowerForensics simplifies using PowerShell for digital forensics (GitHub,

2019a) but the process requires “a deep knowledge of the investigator in the technology used

in order to be able to collect, acquire and [analyse] digital devices and systems in the right and

effective manner” (Barakat & Hadi, 2016, p. 41).

Another advanced use case in the academic context was narrated by Jordan, Patten, Pe-

terson, and Sellers, 2016 who used PowerShell functionality to create a load generator. More

precisely, the authors created a distributed load generator for dynamically generating network

traffic.

23

After analysing the available tools for load generating, the authors concluded that they

needed to develop a new set of scripts. PowerShell was the chosen language. The developed

script could be distributed on multiple clients and it would effectively test the capabilities of

the target Active Directory Domain Services servers.

The named articles show what can be done with PowerShell, if its features are fully utilised.

Yet the level of difficulty exceeds that of the one intended in the planned course. Consequently,

all these and other similar advanced used cases are excluded from the course slides and lab

assignments.

2.2 Teaching Methodologies

The approach taken to teaching will have a clear impact on the learning outcome for the stu-

dents. Bhagyavati, 2006, p. 2 points out that the different learning styles that students have

make it challenging to deliver an effective online course. The same author lists six principles

to keep in mind when delivering an online course:

1. The syllabus should be detailed and contain a roadmap with specific deadline dates and

expectations

2. Lectures should be provided in various formats to cater the needs of different students,

e.g. slides for visual learners and video lectures for auditory students

3. Encourage discussion, both instructor-to-student and student-to-student

4. Assignments should be given frequently to encourage incremental learning

5. The course should end with an overarching learning evaluation

6. Periodic and final feedback from students allow the instructor to develop the course

Bhagyavati, 2006, p. 5 also underscores that IT learning is most efficient with hands-on

activities. The above justifies focus on examples on the proposed PowerShell course slides

and encouraging the students to try the sample code and its variations on their own during the

seminars and self-studying.

Deadlines noted in the first point are also highlighted by Saltz and Heckman, 2018. The

authors recommend creating a visual guide for scheduling assignments. A Kanban board in

Moodle would give the students a clear overview of the upcoming assignment submission dates.

The third point of encouraging discussion is a non-trivial task. One way of initiating discus-

sion is to publish the different solutions that students proposed to home assignments. The lab

24

assignments have different answers each with pros and cons. An article by Silva and Moreira,

2003 points out how peer-review fosters constructive debate and improves learning outcomes.

Moodle offers a forum platform for this purpose that should be used in the proposed PowerShell

course.

The fourth point is controversial as frequent assignments decrease the flexibility that the

students have in planning their own time. The possibility to make a personal schedule is con-

sidered an advantage of online courses. However, research shows that giving students flexibility

in assignments leads to last minute mass submissions and decreased learning outcomes (sum-

marised in Isomöttönen & Tirronen, 2016, p. 1:30).

The peer review of code could be accompanied by automatic evaluation of submissions.

Douce, Livingstone, and Orwell, 2005 lists three generations of assessment systems. The ear-

liest examples of the first generation date back to 1960s and allowed the instructor to quickly

validate students’ answers. The system merely output if the input code was right or wrong. The

second generation added the ability to check if the programming style has been applied sensi-

bly. The third generation are web-based and more complex by providing a GUI for assessment

and feedback.

A first generation tool would suffice initially for the purposes of the planned course. Code

styling evaluation can be provided by peer-review and instructor feedback on Moodle.

Bhavnani, Peck, and Reif, 2008 wrote a paper on the effective and efficient use of learned

content. They describe cases where students are able to carry out average difficulty tasks yet

through intricate and inefficient methods. There is a risk of the same occurring in the context of

the PowerShell course as well. Therefore, it is important that a strategic approach is used which

means that the instructor explains when various methods are most efficient. Moreover, students

need to be encouraged to be critical towards their own code and find ways of optimising code

even when it already has the intended functionality.

Kunkle and Allen, 2016 categorise teaching programming into three categories: 1) objects-

first, 2) objects-early and 3) imperative first approach. The difference comes from how soon

in the course objects are introduced. Since PowerShell is not an object-oriented language, it is

seen as most optimal to adopt the imperative-first approach.

Moreover, the goal is to apply problem-based learning (like project-based learning, also

abbreviated PBL) in the course. It is defined as an approach that “makes the student the focus

of the learning process, seeking to empower them such that they take responsibility themselves

for their own learning” (O’Grady, 2012). It would be ideal to raise curiosity for the topic in

students and make them find creative solutions to scripting problems in PowerShell which go

beyond the content of the course.

25

Teo and Gay, 2006, p. 2 see probable problems with e-learning in scenarios where the

content is not intuitive enough to stand on its own. Therefore, it is advantageous to trial the

materials prior to delivering the course to get feedback on potentially unclear slides and assign-

ments.

2.3 Validation

Validation of the output is needed to evaluate the result and to identify its shortcomings. The

process is done through multiple tasks. The following paragraphs lay the foundation for vali-

dation which is done in Chapter 4.

Firstly, the output will be compared against other PowerShell courses. It is possible to

analyse only publicly available courses. Since these online courses are likely to have a differ-

ent format, e.g. long descriptive texts, tutorials and blog posts, comparisons should be made

focusing primarily on content. Microsoft’s official courses’ training materials are not made

public.

Secondly, the lab assignments and the tests should be trialled. If created properly, it should

not be possible to carry out the lab assignments without learning the content from the corre-

sponding slides, unless the student has prior experience with PowerShell.

The same applies to the tests. The scores must be below the passing threshold for students

who have not been able to study the modules’ slides. It would be a clear indication of a too low

difficulty level, if the testes were passable without attending the seminars and self-studying by

doing the lab assignments. On the other hand, the tests must be achievable to the maximum

score based strictly on content provided in the course.

Next, the materials proposed by the thesis need to be reviewed by subject matter experts,

i.e. PowerShell practitioners who manage infrastructures in corporate environments. Their

opinions are used both as input to the module listing and as verification for the slides and lab

assignments.

Besides feedback from experts, it is vital that feedback is also collected from students who

matriculate and pass the course. Although this form of validation is not possible before the

thesis is published, it is a key element in shaping the course in the long term.

Additionally to the above, Chapter 4 will include an analysis of deficiencies of the method-

ology, scope and course materials. The chapter will end with a discussion on potential future

improvements that could be done to develop the course.

26

3 Course Platform and Modules

The following chapter presents the course material in different forms, such as class presentation

slides with notes, practical lab assignments and tests.

The course will be based and tested on Windows Server 2019 using PowerShell 5.1, yet the

majority of the content should be both backwards and forwards compatible with other versions

of Windows and PowerShell. Certain version compatibility issues are also discussed.

Table 3 lists the course lessons which divide the course into modules focusing on different

sets of topics. The course content is presented in its current iteration stage at the time of

publishing the thesis and future adjustments are likely.

3.1 Lab Environment

Ashraf, 2015 wrote a paper on combining PowerShell with Microsoft Deployment Toolkit

(MDT) to install system images. MDT is a viable option for deploying lab machines also

for the proposed course. However, the tool is intended for installing physical machines and

virtual machines are more conveniently deployed using scripting against the virtual machine

host software. The scripting language is PowerShell, if Microsoft Hyper-V is used.

As emphasised in section 1.2, the infrastructure for delivering the course is not within the

scope of the thesis. Nevertheless, the paper will explain how to prepare a system image which

should be used as the reference image. This is also called the golden image. In the following,

it is assumed that the lab infrastructure will be based on virtual machines (often abbreviated

VM). The image files must therefore reside in a location where the virtual machine host has

access to it.

3.1.1 Golden Image

The virtual machine host will use the golden image to deploy any number of clones in which

students can carry out their lab assignments. This guarantees an approach which is scalable

and reliable. The deployed environments will be identical for all students and initially isolated

27

Table 3. Overview of the proposed course modules

Part Title Topics
1 Introduction Definition, history, syntax, the ISE

2 Basics 1 Variables, conditionals, operators, aliases

3 Basics 2 Loops, printing output, functions, splatting

4 Basics 3 Filtering and formatting, strings, arrays, objects

5 Windows OS Management Files, processes, CIM, remote sessions

6 Active Directory Managing AD objects

7 Hyper-V Hyper-V VMs, virtual hard disks and virtual switches

8 Custom Modules Creating custom functions and modules.

from each other. The golden image can be modified from a central location and will affect all

new deployments.

Windows Server 2019 — and many other Microsoft products — have free trial versions

which are available for limited time evaluation. The evaluation period for Windows Server

2019 is 180 days and the operating system installation files are available for download in the

ISO format (Microsoft, 2019c).

The image will be almost identical to the one available immediately after installing and

booting Windows Server 2019 with default settings. This means that services, such as Active

Directory, will also need to be installed by the student and will be a part of the lab assignments.

The process of creating the golden image can be automated with Packer. It is “an open

source tool for creating identical machine images for multiple platforms from a single source

configuration” (HashiCorp, 2019). The features of the tool make it suitable and integral to

managing the lab environment.

In the thesis, the lab environment is deployed in a local Hyper-V instance. Yet since Packer

supports multiple output formats, it will be convenient to modify the input JSON files and

deploy the lab VMs in Amazon Web Services, Azure, VirtualBox and on several other platforms

(HashiCorp, 2019).

3.1.2 Packer Template

The Packer input file that was used to create a VM for designing and testing the lab assignments

can be see on Figure 3. It is minimalist and may be expanded when the course content is

developed further. The file does not include a reference an autoattend.xml file which

means that the Windows installation wizard must be completed manually as part of the Packer

28

procedure.

Moreover, the local administrator password must be set to the value on line 13 in the Packer

recipe file and WinRM needs to be properly configured. Unencrypted connections must be

allowed and the default authentication method set to true by running

1 winrm set winrm/config/service @{AllowUnencrypted="true"}

2 winrm set winrm/config/service/auth @{Basic="true"}

after which the Packer process will continue. These steps can be automated by creating an

XML file with the Windows System Image Manager tool available in the Windows Assessment

and Deployment Kit.

Microsoft Visual Studio Code with PowerShell plug-in is included in the image. The pur-

pose of the editor is to provide a graphical interface for scripting in the lab environment since

the Integrated Scripting Environment (ISE) is not available in the Windows Server Core ver-

sion. The installer and PowerShell plug-in .vsix file must be provided together with the

ISO file. These files are freely available on the Internet. Microsoft Visual Studio Code can be

launched in the lab environment by running code, but preferably by creating a new script and

running, for example, code script.ps1.

Packer’s output is a folder which can be imported as virtual machines into Hyper-V. Minor

changes to the JSON file would allow to import the output to other virtualisation platforms.

3.2 Seminars

The lectures are designed to be 1.5 hours long. This time is a combination of presenting the

slides and live demonstrations of example code. Students are expected to run the code snippets

on their computers in parallel. The time spent on lab assignments which follow each lecture

will vary on the performance of each student but should also be approximately 1.5 hours.

The slides are written in LATEX using the Beamer class which means that the PDFs are built

from text-based files. This implies that the content can be version controlled, for example using

a Git repository, and modified to suit specific circumstances. Furthermore, the style of all slide

decks can be modified from one central file Preamble.tex (see Appendix 1). The PDFs for

seminar presentations are sub-appendices in Appendix 2.

The majority of the slides present example boxes with lines of code. The intention is that

students run the code during the seminars in the virtualised lab environment. In case the lectures

are recorded, the students are expected to pause the video and try the commands in parallel

with watching the recordings. For the first seminars, even personal computers with standard

29

1 {

2 "builders": [

3 {

4 "vm_name":"pscourse_vm",

5 "type": "hyperv-iso",

6 "iso_url":

"./17763.253.190108-0006.rs5_release_svc_refresh_SERVER_EVAL_x64FRE_en-us.iso",↪→

7 "iso_checksum_type": "md5",

8 "iso_checksum": "48CD91270581D1BE10C3FF3AD6C41CCE",

9 "shutdown_command": "shutdown /s /t 0",

10 "http_directory": "./",

11 "communicator":"winrm",

12 "winrm_username": "administrator",

13 "winrm_password": "TalTech123",

14 "winrm_timeout" : "10m"

15 }

16],

17 "provisioners": [

18 {

19 "type": "powershell",

20 "inline": [

21 "Get-Date | Out-File Installed.txt",

22 "Set-Location Downloads",

23 "Invoke-WebRequest http://$Env:PACKER_HTTP_ADDR/VSCodeSetup-x64-1.32.3.exe -OutFile

VSCodeSetup-x64-1.32.3.exe",↪→

24 "Invoke-WebRequest http://$Env:PACKER_HTTP_ADDR/ms-vscode-PowerShell-1.11.0.vsix

-OutFile ms-vscode-PowerShell-1.11.0.vsix",↪→

25 ".\\VSCodeSetup-x64-1.32.3.exe /verysilent"

26]

27 },

28 {

29 "type": "powershell",

30 "inline": [

31 "Set-Location Downloads",

32 "code --install-extension ms-vscode-PowerShell-1.11.0.vsix"

33],

34 "pause_before": "1m"

35 }

36]

37 }

Figure 3. Packer.json file which defines the golden image

30

Windows editions or Linux can be used to run the example code. The second half of the

modules depend on cmdlets available only in Windows or Windows Server operating systems.

Many slides have notes which are meant to assist the instructor and turn attention to nuances

on the slides. The notes should not be disclosed to the students with the slides but the slides’

content is not designed to be self-explanatory.

3.3 Lab Assignments

Lab assignments were created for each module and they are available in Appendix 3. The

assignments can be considered homework or the instructor may decide to host classroom sem-

inars where the assignments are completed under supervision.

Each assignment contains approximately 5 tasks and a common footer text. The footer

states that answers should be posted to Moodle in the form of screenshots and that the code

must be commented. Most of the assignments can be carried out on any Windows 10 com-

puter, but some tasks, such as Active Directory, require a server version of Windows. The lab

environment provides the needed features and capabilities equally for all students. Therefore,

the assignments are designed for and should be tested in the school provided lab environment.

Admittedly, checking the submissions on Moodle creates a workload for the instruction, but

it will also allow for peer review of different approaches to the exercises. The answers should

be made public after the submission deadline. Automated checking of students’ code could be

added in the future when the course is developed as discussed in section 4.4.

3.4 Knowledge Tests

Besides seminar slides and lab assignments, there are knowledge tests for each of the eight

modules. Every module test set consists of ten questions. The test questions are available in

Appendix 4.

The majority of the questions are multiple choice where at least one choice is correct. To

make answering more challenging for the students, multiple or even all choices may be correct.

Some questions are also in the drag-and-drop format which means that students are required to

assemble or order the choices into a meaningful chain, most often a command.

Correct answers are given in the LATEX files as comments. They are not visible in the printed

version of the thesis.

It is not within the scope of the thesis to set a fixed evaluation criteria or a link between the

tests and the final grade. It is however recommended that the tests are seen as a prerequisite for

31

passing the course while the tests’ results should not affect the final grade. It is also proposed

that the tests are scheduled as the final component of each module, i.e. after submitting the

home assignment.

If the students are able to take the tests in an uncontrolled environment, they have the

possibility to look for answers either from the lecture slides, search online resources or test the

question choices in a working shell. In any case, answering the questions correctly will confirm

that the student had the expected knowledge at the time of the answering.

3.5 Introduction

The first seminar focuses on providing an overview of the language’s capabilities and its history.

It is important to define the concept of PowerShell before teaching commands. The concept is

defined by stating that it is a scripting language and listing some of its capabilities. The first

slides also compare PowerShell with Python and UNIX shells.

Next, the language’s history is presented. It is possible, even likely, that students need to

work with different PowerShell versions during their daily tasks. Although the first versions

will be deprecated with the end-of-life of Windows 7 and Windows Server 2008R2, PowerShell

versions 3, 5.1 and 6 will probably be used in parallel in the coming years.

The first seminar ends with demonstrating the Integrated Scripting Environment (ISE). As

stated above, all seminars are intended to be 1.5 h long in the classroom. It is the task of the

instructor to plan the time so that all topics are covered within the time frame but not faster.

The slides show some examples, yet given the opportunity, the instructor can go more in-depth

with the topic and show additional examples. If the students follow the examples on their own

computers, they are likely to ask additional questions and seminars ending ahead of time are

unlikely to be a challenge.

All seminar slide decks conclude with a summary slide which gives the instructor an oppor-

tunity to recap the lecture. It is also an opportunity for the students to ask any questions about

topics that remained unclear and to give feedback in general.

Introduction module assignments are basic and less technical than those of the following

modules. The students are asked to highlight points from the presentation and create a basic

script in the ISE which they run from the console. Besides the assignments, it is recommended

that the instructor asks the students to confirm that they can log into the virtualised lab environ-

ment before the second seminar.

The first knowledge test focuses on theoretical and general questions about PowerShell

covered in the seminar. Most of the questions are about essential features of PowerShell while

32

others evaluate factual knowledge regarding PowerShell and Windows versions.

3.6 Basics 1

The majority of slides in this module focus on example code and the same approach is also ap-

plied throughout the following seminars. The example code should be tested by students during

the seminars either on their personal computers, classroom computers or in the virtualised lab

environment. It should be noted that the latter does not have PowerShell ISE application in-

stalled, but includes Microsoft Visual Studio Code.

The main focus of the seminar is on introducing different variable classes and some oper-

ators. The topic of variables is discussed relatively in-depth. Firstly, the purpose and naming

of variables in PowerShell are discussed. Subsequently, the most common variable classes are

illustrated through examples. With the purpose of making the seminars more diverting, the ex-

amples are selected to have real life applicability when possible. For instance, the time interval

calculation example is based on the Apollo 11 Moon landing mission.

Next, basic operators are covered. These operators are essential for understanding the ex-

ample code in the next seminars. There are several types of operators in PowerShell and three

of them are introduced in Basics 1. Firstly, the arithmetic operators show how PowerShell can

be used for simple mathematical calculations. Secondly, comparison operators return True

or False from comparing two values. Finally, assignment operators’ table shows how values

can be assigned to variables.

Basics 1 is concluded by section Aliases. PowerShell code writers rely on aliases for conve-

nience. The slides allow the instructor to both discuss some of the most often used commands

and their shorter aliases at the same time. Students can run the commands in parallel.

The lab assignment tasks for the module cover the basics of variable names and assigning

values to variables. Moreover, the students are asked to demonstrate that they are able to use

arithmetic and comparison operators. Similarly to the lecture and lab assignments, the test in

this module focuses on evaluating knowledge on object and variable classes.

3.7 Basics 2

Basics 2 will expand on the knowledge from previous lectures. The first part of the slide deck

illustrates conditional statements by using the conditional operators learned from the previ-

ous seminar. Students will gain a basic understanding of If, Else, Elseif and Switch

conditional operators through examples.

33

The second section demonstrates the use of different types of loops in PowerShell. Loops

might be challenging to comprehend for students with weaker mathematical backgrounds. It is

therefore important to allow the students to try different loops with varying input on their own

and in their own pace. Moreover, the instructor is expected to explain when the use of one or

the other loop is most appropriate.

Next, the slides demonstrate the different methods of printing output to the console and

to a text file. The differences between Write-Output and Write-Host are not intuitive

and deserve illustration through examples. Out-File has a similar purpose to > and >>

in Command Prompt. Tee-Object is a useful tool for monitoring time consuming scripts,

especially loops, and saving output simultaneously. The section ends with presenting piping to

clip which is not a PowerShell native cmdlet but a practical way of redirecting output to the

clipboard.

Although custom modules in PowerShell are covered in the last course module, the section

of slides in this seminar demonstrates how simple custom functions can be created. Functions

with arguments, even more so with named arguments, may be an intricate concept to understand

for some students. Therefore, the student should be encouraged to scrutinise the examples

and create their own example functions. This can be done with instructor’s direct help in the

classroom or with instructor’s or peers’ feedback on the Moodle platform.

The seminar ends with explaining the concept of splatting which is a method of passing

some or all parameter values to a cmdlet as a variable. It is an effective method of improving

code readability. Students can try splatting arguments to the functions that they created before.

Purposely, the assignments become gradually more technically complex. The tasks in this

module and the following modules focus on creating functions. Students need to show their

skills by creating functions that produce specific output based on given input parameters. In

this module, the students are asked to create a function for a simple calculator, birthday date

tester and Fibonacci number generator.

The knowledge test is designed to confirm that the students comprehend the concepts of

conditional statements, loops, writing output and custom functions. Questions are intention-

ally more complicated than in the previous modules and it is expected that students turn their

attention to nuances in different choices.

3.8 Basics 3

The final basics module concludes the generic approach on PowerShell capabilities. The re-

maining modules concentrate on more specific individual topics.

34

Since PowerShell relies on piping output from one cmdlet to input of the next cmdlet, fil-

tering, sorting and formatting are also done by piping. Skilful use of the Select-Object,

Where-Object, Sort-Object, Group-Object and Compare-Object lays a foun-

dation for managing objects in different more advanced use cases in PowerShell. Finally, in

this section, Format-Table and Format-List show the students how to customise the

way objects are printed in the console.

The next four sections show more advanced examples of strings, arrays, hashtables and

PSCustomObjects respectively. Again, these examples are included with the intention of

building a solid basis for PowerShell knowledge that could be used in later course modules

to discuss more advanced examples. Granted, the majority of examples in this seminar have

limited practical value in real life situations in the isolated way they are presented. The students

are expected to explore additional methods and operators on their own and also to find creative

uses for the learned content. Yet the slides aim to summarise the most basic, common and

advantageous variable classes and their related methods and operators.

CSV and JSON are not PowerShell specific formats, however they interface well with Pow-

erShell cmdlets. Presumably, the students would benefit from knowing how structured data can

be imported into PowerShell from files or using the Invoke-RestMethod against a REST

API of a web service. The same applies to exporting PowerShell objects into files and posting

to REST APIs in these formats.

The final section in this course module is dedicated to getting help with PowerShell cmdlets.

It is possible to either peruse offline documentation or conveniently open online manuals of

cmdlets directly from the console. The students are encouraged to read the documentation and

discover new parameters and ways of using the cmdlet by inspecting the Microsoft proposed

examples.

In the assignments for this module, the students need to demonstrate their knowledge on

filtering, formatting and writing output. Also, the tasks regard working with JSON objects

and strings. The students must show their ability to use the -f operator and the reverse order

of string characters in a loop. Most of the questions in this module’s knowledge test validate

knowledge on PowerShell syntax.

3.9 Windows OS Management

Windows OS Management is the first module which concentrates on managing one specific

product instead of discussing the capabilities and peculiarities of PowerShell in general. The

content in the module, nevertheless, builds upon the previously learned skill set.

35

This module is information intensive and has an above average count of sections. The first

section covers file management by showing how to navigate between working directories, list

files and folders, output to text files with different encodings and carry out file actions, such

as copy, move, rename and delete. These are again fundamental skills which are likely to be

needed in students’ daily tasks once employed as an infrastructure administrator.

The next section shows how processes and services can be managed through PowerShell.

This is demonstrated through the basic cmdlets of Get-Process, Stop-Process and five

different -Service cmdlets. Some of the actions will require local administrator permissions

which excludes the option of using school provided classroom computers for testing. In case the

students do not have personal computers or administrator permissions on them, the virtualised

lab environment meant for assignments can be used for testing code during the seminars. The

same applies to the subsequent sections.

Power management in the Windows OS seminar is represented by examples of using the

Stop-Computer and Restart-Computer cmdlets. More slides are dedicated to defining

and demonstrating WMI and CIM. The former stands for Windows Management Instrumenta-

tion and is widely used for interfacing with the operating system and even the hardware. It is

however becoming replaced in Windows by CIM which means Common Information Model.

The aim is to make students aware of both terms, yet the basic examples covered in the seminar

will not point out the specific differences between the similar technologies.

The Features and Roles section teaches the students the differences between features and

roles in Windows server environments and shows how to use PowerShell cmdlets to manage

them. This is a straightforward process and the cmdlets are for seeing the available options,

installing and uninstalling. The students can trial these cmdlets in the virtualised lab environ-

ment. Installing the Active Directory role service is an environment configuration prerequisite

in the next course module.

In the contemporary IT environment, many tasks are carried out remotely. The remote

desktop connection allows administrator to open a console window on the remote machine

and execute commands as if they were executed locally. PowerShell offers the possibility to

run commands from a local console that have an effect on remote machines. This feature is

especially practical in automated environments and is taught to the students in the second to

last section of the lecture.

The final section covers interfacing PowerShell with the Windows Event Log API. Only

the basic steps such as collecting events and creating events are demonstrated. It is hoped that

if the students are aware of this API capabilities, they will find creative manners to implement

Windows Event Log cmdlets in the scripts they need to create in their careers.

36

Windows OS Management assignments combine cmdlets learned in this module with the

skills learned from the modules which covered the basics. The firsts tasks regard compiling

reports from file management, processes, services and hardware. These are likely to correlate

with daily tasks of an infrastructure administrator outside the academic world too. The last

task pertains to practising the use of cmdlets related to Windows Event Log API. The ques-

tions in the module test pertain to cmdlets presented in the lecture and should be relatively

straightforward to answer for diligent students.

3.10 Active Directory

Active Directory is a multifaceted topic and may therefore be challenging to explain to students

with no prior experience with directory services. It is essential that the introduction to the

module covers the basic principles and purposes of Microsoft Active Directory as a directory

service in general.

The seminar continues with demonstrating how an Active Directory domain is created by

installing the role service on the first domain controller in a new forest. Once the domain is

created, the students are encouraged to browse and manage it by testing the presented cmdlets

freely and creatively.

The majority of the slides show examples of how to create, manage and remove user and

group objects. This includes adding and removing users to and from groups. These exem-

plified tasks constitute the basics of managing Active Directory domains for junior identity

management administrators.

The final section of the slides shows examples of cmdlets which regard object types other

than users and groups, namely computer accounts, contacts and organisational units. Active

Directory sites and their management are out of scope due to limited seminar duration time and

the introductory nature of the seminar.

Assignments in this module mostly pertain to creating Active Directory objects from JSON

and CSV source files. The first task is creating a function that for example the service desk

could use to reset users’ password quickly via a console. The next tasks are creating users and

contacts from CSV and JSON files respectively and placing the users into a group. The final

task is to create more users from a CSV file, but also to place them into groups and to create

the missing groups within one loop iteration. Completion of the task relies on knowledge

from the previous modules. In this module, the test also contains questions that confirm the

students have understood the basics of Active Directory, not only its elementary management

with PowerShell.

37

3.11 Hyper-V

Similarly to Active Directory, virtualisation might be a concept that the students are not fa-

miliar with and it needs to be explained before PowerShell cmdlets would seem meaningful.

Therefore, the seminar starts by presenting the principles and the purpose of virtualisation in

general and explains that Hyper-V is Microsoft’s implementation of the technology.

Virtual machines are, like Active Directory, a multifaceted topic and the seminar can only

cover the essentials. The first section exemplifies how to create new virtual machines with

basic parameters. Students are, as usual, expected to test the commands either on their personal

computers or in a school provided lab environment. It needs to be noted though that nesting

VMs is currently only supported on Intel CPUs. This may propose challenges in providing

students a suitable lab environment, if AMD hardware is used.

The following sections focus on VMs’ states and hardware with a separate section for man-

aging virtual switches. These are potentially the most complex topics of the whole course, as

they require background knowledge of modern computing. Virtual hardware covers the man-

agement of virtual DVD drives, CPU, RAM and VHDs (virtual hard disks), but does not discuss

multimedia devices which are rarely used in corporate environments.

The final two sections regard checkpoints and PowerShell Direct respectively. Checkpoints

are an integral function of VMs and allow administrators to conveniently save the machine

and return to the same state after, for example, testing alternative configurations. PowerShell

Direct is a technology that permits administrators to run PowerShell commands on the VMs

and copy files between the host and VMs without establishing a working network connection.

Admittedly, the learning of these cmdlets will remain theoretical since there will not be enough

time during the seminar to install an operating system on the created VMs.

For homework, the students are asked to demonstrate the knowledge of provisioning a Win-

dows server with the learned cmdlets. The tasks in the assignment cover the majority of the

learned skills such as defining virtual hardware details, mounting operation system installation

ISO, creating a checkpoint and using PowerShell Direct. It is assumed that the school provided

lab environment is capable of supporting nested VMs, but the students can also carry out the

assignment on their personal computers. Similarly to the questions in the Active Directory

module, the questions in this module too partially pertain to measuring generic Hyper-V and

virtualisation knowledge.

38

3.12 Custom Modules

The last course module returns to the core features of the language. Although, the main fo-

cus is on creating custom PowerShell modules, the seminar begins by introducing proper error

handling in scripts. In certain cases, it is not meaningful or even possible to check all prerequi-

sites for a successful execution of a cmdlet before it is executed. Exception handling gracefully

allows the script to continue and take further actions based on the outcome of one or some

cmdlets, even when they result in errors. This is made possible by defining try, catch and

finally code blocks.

Next sections in the module demonstrate to students how custom modules are created and

imported into PowerShell sessions. It is done via a simple example of a module where two

mathematical functions are defined. Granted, its applicability to real life is limited, yet the aim

is to present an elementary example and concentrate on the task of creating and importing a

module. It is hoped that the students are able to apply this practical knowledge of creating

custom modules in real life situations including practical functions.

The eighth course module ends by showing how manifest files could be added to custom

PowerShell modules and help sections to custom functions. These actions admittedly are likely

to exceed the job responsibilities of junior administrators, however, arguably, even junior ad-

ministrators would benefit from an early knowledge of this PowerShell capability. The module

ends, as always, with a summary slide allowing the instructor to recap the seminar.

Predictably, the assignment in the module is for the students to create a custom module on

their own. A number of requirements are set on the submitted code. The module that students

code needs to extend either the Active Directory or Hyper-V modules. Moreover, it needs to

include at least four functions, variable, exception handling, a manifest file and help section in

the functions.

The final knowledge test is potentially the most difficult of the eight. It includes questions

regarding topics from the lecture, e.g. exception handling, custom functions with multiple

parameters, custom modules and custom help pages for functions.

39

4 Analysis and Conclusion

Following the proposal for the course content in the previous chapter, it is important to crit-

ically analyse the materials and discuss its potential weaknesses. The value of criticising the

scientific work done and honestly presenting its shortcomings was emphasised, for example,

by Feynman, 1974. The failure to analyse the outcome in retrospect would result in work with

little academic value.

4.1 Deficiencies of the Methodology

The shortcomings of methodology are analysed in two subsections. Firstly, the deficiencies of

teaching methodologies are discussed and secondly the same is done for the approach which

was used to compile the course materials. Scope limitations are analysed in section 4.2.

4.1.1 Teaching Methodology

An exhaustive analysis and specific recommendations of teaching methodology are not within

the scope of the thesis. Nevertheless, a discussion of teaching approaches is relevant.

There are potential shortcomings that derive from teaching methodologies. The course is

intended as an online course, yet video recordings are not done at the time of writing the thesis.

An online course has the advantage of scalability, meaning that the number enrolled stu-

dents has less importance to administering the course. Students also have greater flexibility

in planning their time. Yet on the other hand, it is likely that classroom interaction with an

instructor would yield better learning outcomes in small or moderately sized groups.

An important term in modern pedagogy is collaborative learning. In essence, it connotes

any attempt for two or more persons to learn something together (Dillenbourg, 1999). Bruf-

fee, 1993 proposed a learning method and coined the term Classroom Consensus Group. The

approach describes how students should be allocated into groups of three and given a task to

solve. This method could also be used in the seminars, if the instructor sees it suitable. Addi-

tionally, collaborative learning is applied in the course through the suggested peer feedback on

40

submitted code via the Moodle platform.

From the large number of slides and their share in the course materials that the thesis gives

as output it may seem that the seminars are intended as traditional learning via slides and

instructor’s speech. It must be underscored that the slides are meant for outlining the cmdlets

that should be covered in each module. The instructor is expected to facilitate a process where

students run the example commands on their computers or in lab environments in parallel with

the seminar and understand their purpose.

It has been emphasised throughout the thesis that the students are expected to be active

meaning that they should try the example code from slides directly and also generate their

personal modifications. Furthermore, they will achieve maximum benefit from the course only

if they find creative ways to use the learned content under different scenarios. These principles

relate well to the concept of self-determination theory.

Self-determination theory explores the innate psychological needs to learn new skills (Ryan

& Deci, 2000, p. 68). Moreover, the theory is concerned with social environments that foster

the tendency of wishing to develop oneself (Ryan & Deci, 2000, p. 69).

Enabling self-determination in students is a key factor to the success of the course. Regard-

less, it is not within the scope of the thesis to present an elaborate discussion of the psycholog-

ical aspects that need to be considered when delivering the course.

4.1.2 Course Material Compilation Methodology

Iterations of design science approach were used in the paper. Although it allows for contin-

ual improvements to the course content, it also means that the materials will never be fully

finalised. In the current validation discussion, the final iteration before the thesis was published

is analysed.

Moreover, context-driven research was applied. Yet argumentation has been put forward

that context-driven research produces too specific and non-generic solutions (Basili et al., 2018,

p. 45). Efforts have been made in the thesis to make the output of the thesis generic and

applicable in various cases where PowerShell teaching is needed.

Potentially the most significant deficiency of the course materials is that the content selec-

tion was to a large extent subjective. Three major sources of input were used. The sources are

shown in Figure 4 Venn diagram.

Microsoft’s official course content could be used to a limited extent because the materials

are not public and they are protected by copyright laws. The interviewed PowerShell subject

matter experts at Swedbank and Telia are competent and their knowledge provided valuable

input. Nevertheless, their vision of the course is subjective and influenced by personal opinions

41

MOCs

Employers
Author’s

experience

Course

content

Figure 4. Course content sources

and the same applies to author’s experience.

The argumentation above contributes to poor falsification possibilities of the materials. Ar-

guably, the best measure of success of the course would be positive feedback from students and

employers who hire the graduating students as junior administrators.

4.2 Scope Limitations

Certain aspects pertaining to the course proposal were deliberately excluded from the paper.

The following section lists and discusses these exclusions.

4.2.1 Infrastructure Requirements

It was out of scope for this paper to describe the steps that the university needs to take in order

to prepare the virtualised environment for the course. Nevertheless it is important to list the

prerequisites for the infrastructure.

The VMs that are provided to the students are expected to run in Windows Server 2019 op-

erating systems, although Windows Server 2016 is also likely to suffice. Moreover, nested vir-

tualisation should be allowed as the feature is needed for running the Hyper-V module cmdlets.

Hardware requirements are not high because the recommended installation of Windows

Server is without graphical environment and thus not performance intensive. A single or dual

core CPU, 2 GB of dynamically allocated RAM and 8 GB HDD per VM are probably sufficient.

Automation is vital for an efficient management of the lab environment. Palmer, 2015 did

a case study in Southampton Solent University and recommended to use PowerShell for this

purpose too. Configuring the lab computers with PowerShell allowed to decrease deployment

42

time by 600%. Moreover, the author explained that automating the shutdown and updates made

the lab energy efficient and secure.

Therefore, it is recommended that the management of student dedicated VMs is also auto-

mated. It should be enough if the instructor inputs the list of enrolled students’ names into a

script to automatically provision the VMs.

A common network between the student VMs or access to the Internet from them is not

a requirement, but could be beneficial when developing the course. For example, this would

allow team work in the assignments where each student has a part of a project which involves

interfacing with other students’ servers.

The golden image proposed in chapter 3 includes Microsoft Visual Studio Code installa-

tion, yet the application and its PowerShell extension request regular updates from the Internet.

Although, these updates are unlikely to be critical, they could provide value to students. Addi-

tionally, instructor’s remote access to students VMs would allow for automated analysis of if

and how students use the lab environment.

4.2.2 Limitations of Course Materials

The following subsection aims to identify real and potential problems with the produced course

materials. Firstly, the course focuses on Microsoft’s products. In spite of the fact that Power-

Shell is developed by Microsoft, the scripting language is now open source and can be used to

manage UNIX platforms as well. Furthermore, PowerShell is capable of managing certain 3rd

party software products which were not covered in the course.

Secondly, the course assignments currently contain no team projects. In the real world

scripts are written collaboratively in team settings (Cai & Arney, 2018, p. 147). The usefulness

of collaboration exercises is also emphasised and seen as an educational tool by Marshall,

Pieterse, Thompson, and Venter, 2016, p. 5:2. It is recommended that incorporating group

assignments is considered in further iterations of the course. The topic is discussed in the next

section.

In order for the course to support a complete e-learning approach, the seminars need to be

recorded as videos. A feasible method for this would be to record the first set of classroom

seminars and upload the videos to Moodle either during the same or next semester.

Although scalability was set as a prerequisite for the validation of course material, a balance

between classroom and independent learning should to be found in the long term. On one

hand, classroom education is likely to be more effective because students have the option to get

immediate feedback on their questions. On the other hand, it is less efficient since the students

will loose the flexibility of planning their own time and the number of students concurrently in

43

a classroom is limited.

Furthermore, it may be assumed that students have different backgrounds and capabilities.

Classroom exercises would be preferred for helping the ones who are new to scripting. It is not

possible to answer all questions that they might have in pre-recorded video lectures. Classroom

seminars are also more effective on students who are are less motivated for self-studying.

The materials do not prescribe how many ECTS the course should award. Additionally, the

thesis does not state if the evaluation outcome must be a pass-fail result or a specific grade is

appointed to student. Nevertheless, a recommendation is made that the course should award 2

ECTS and, at least initially, assign no specific grade to students.

The course is divided into eight modules which should be distributed evenly, either weekly

or biweekly. 1 ECTS should correspond to 26 hours spent on earning the credit point. This

means that the time spent per module would be 6.5 and 9.75 h for 2 ECTS and 3 ECTS respec-

tively. The seminars and home assignments were designed to take 1.5 h each. Combined with

self-learning time and tests, it seems reasonable to define the course as rewarding 2 ECTS.

Reorganising the course to a 3 ECTS one is also plausible, if potential future improvements

discussed in section 4.4 are implemented.

There are certain requirements that the materials set on the instructor of the course. Firstly,

LATEX language knowledge is needed to modify the seminar slides and assignments in their

current form. LATEX is well documented online, yet it is not as intuitive as PowerPoint and may

present an additional challenge to the instructor.

Finally, the slides are not self-explanatory or intuitive. In other words, the slides are merely

content and example code guidelines. This means that extensive preparation and PowerShell

knowledge is needed prior to delivering the proposed course.

4.3 Validation

Validation methodology was described in section 2.3 and in this section, the outcome from the

previous chapter is validated. The goal of the validation is to give the produced output more

academic weight.

Firstly, the materials were compared against other PowerShell courses. Microsoft’s two

courses, although not publicly available, were used as inspiration. The first of the two focuses

on teaching the basics of PowerShell while the second intends to provide tools for develop-

ing custom functions and modules. The proposed course is a combination of both. It could

be argued that more emphasis should be on the basics and less on advanced topics such as

custom modules in such introductory course. This risk was also raised in the discussion with

44

a practitioner at Telia. Nevertheless, it is hoped that the students are able to comprehend the

development features of PowerShell as well and use the knowledge in their careers.

There are PowerShell courses on Wikiversity and Tutorialspoint which search engines sug-

gest. Although, the content of these tutorials was not analysed prior to creating the content, it

became apparent that the contents are relatively similar.

The proposed course and the online courses present the building blocks of the language

such as variables, operators, loops, conditions, custom functions, aliases, most used manage-

ment cmdlets, etc. (Tutorials Point, 2019; Wikiversity, 2019) There are however significant

differences in how the elements are divided into modules and the modules ordered. Further-

more, the examples used to illustrate the concepts differ. The course at Wikiversity includes

some test questions at the end of each module, but in general, the knowledge tests and lab

assignments after each module were found to be unique to the proposed course material.

Efforts were made to analyse how similar cases have been taught at other universities. Re-

sults were inconclusive as only limited info is published on universities’ web sites. Granted, the

few found courses included more elaborate lab work scenarios, probably because the courses

had been under development longer (see for example the Python course available at KTH Royal

Institute of Technology, 2017).

Secondly, the knowledge tests were trialled. Current students in the IT Systems Admin-

istration programme were asked to answer the test questions without having the possibility to

peruse lecture slides beforehand. 47 individual test results showed that approximately 23% of

questions were answered correctly. The measure is higher than answering the questions fully at

random, but below a reasonable passing threshold. Moreover, the majority of incorrect answers

were given to questions which had wrong answer choices inspired by other scripting languages

such as Python, Bash and JavaScript.

This further justifies the need for a course where PowerShell specifics and peculiarities are

taught. Nevertheless, the tests must be re-trialled on students who have attended the course.

Thirdly, assignments were tested in the lab environment. It was possible to carry them out

and it is estimated that the students would use approximately 1.5 to 2 hours on each.

Tests and lab assignments must be re-validated once students have attended the lectures

and submitted their answers in the real course context. The evaluation should be based on the

results that the students obtain and their feedback.

Finally, interviews were conducted with senior PowerShell practitioners at Swedbank and

Telia in Estonia. There were significant overlaps between what was initially compiled into the

modules and what the subject matter experts suggested the course should cover. Moreover,

adjustments to the course material were made based on their feedback and recommendations.

45

Student feedback was not collected during the creation of initial course materials but it

must be an integral part to success evaluation after the course has been delivered for at least

one semester. Students’ overall evaluation of the course will depend also on the instructor’s

character, but it is intended to be an important component in developing the course in the long

term.

4.4 Potential Future Improvements

The final section of the chapter suggests ideas how the course can be developed. The materials

and teaching approach proposed in the thesis are not claimed to be final or fixed.

Implementation of automatic lab assignments evaluation would contribute to the scalability

of the course. In the current proposal, the students are expected to upload their code to Moodle

for instructor and peer review.

It would be worth investigating whether an automatic analyser could be employed to check

the work of students on their VMs, i.e. if the assignments have been carried out correctly.

This would however not fully replace human review as pieces of code that result in the same

outcome can be written in various ways and style still needs assessment.

As suggested above, the students are likely to benefit from team projects. There is academic

literature suggesting that better learning outcomes are obtained via team assignment, especially

in international groups (see, for example, Bosnić, Čavrak, & Žagar, 2019). The students could,

for instance, work within the same Active Directory forest as administrators of the same or

partnering companies.

The technical requirement would be to bridge the VM network adapters to the same virtual

subnet on the host machine. This future improvement proposal relates back to the collaborative

learning concept and its benefits discussed in section 4.1.

The course could be developed further by including external partners, such as local compa-

nies that rely on PowerShell in their infrastructure management. They might have suggestions

to direct the course content. Moreover, the students might enjoy ad hoc seminars with prac-

titioners who are experts on certain PowerShell modules. The benefits of including external

parties to courses were listed for example by McGill, Armarego, and Koppi, 2012, p. 8:3 and

Steghöfer et al., 2018.

Additionally, the course could offer some content flexibility to the students. In other words,

the students could have the option to select their focus in the course. Granted, the PowerShell

basics would need to be mandatory for all students, but a partially personalised course is likely

to raise student motivation, as suggested by Teo and Gay, 2006, p. 3.

46

In the current proposal, the assignments and knowledge tests per module are common for

all students. Parametrised tests, as argued by Brusilovsky and Sosnovsky, 2005, lead to more

accurate knowledge evaluation. The idea can be expanded by parametrising assignments. This

would decrease the risk of illegal cooperation, i.e. copying each other’s work among students.

Cloud technologies are becoming rapidly more popular, but were not included in the course

material at this time. As potential improvement suggestions, Azure cloud VM management

could replace or augment the module for Hyper-V and Office 365 with Azure AD could do the

same for Active Directory.

The final idea pertains to integrating the proposed course with other courses. As it is cur-

rently put forward, the course is autonomous. There might be possibilities to align the course

with other technical courses, such as Windows Server management, in the IT Systems Admin-

istration programme.

47

5 Summary

In the thesis, a suggestion was made to establish a new course at TalTech which would teach

students the PowerShell scripting language. The course is intended foremost for students in the

IT Systems Administration programme.

The demand for the course was justified by Powershell’s prevalence in modern administra-

tion, Estonian Association of Information Technology and Telecommunications’ request and

the current absence of course materials that would be suitable for the university. The output of

the paper was limited to lecture slides, lab assignments and knowledge tests which are available

in Appendices 2, 3 and 4 respectively.

Design science was used as the methodological approach to develop the course materials

through iterations. The included and excluded topics were determined by Microsoft’s official

courses’ content, subject matter experts’ recommendations and author’s personal experience.

As a result, a course was composed of eight modules. The first half of the modules teach the

basic concepts of PowerShell while the last four modules focus on more specific or advanced

topics, such as Active Directory or Hyper-V.

Moodle learning management system hosted by TalTech was the proposed platform for the

course. It was left undetermined if the course should be fully online or combine classroom

seminars with e-learning. Classroom interactions with an instructor are likely to lead to bet-

ter learning outcomes, however at the cost of course scalability and students’ time planning

flexibility. Nevertheless, video lectures are not recorded at the time the thesis is published.

The materials were analysed in retrospect and validated by comparing the output against

other similar courses and consulting PowerShell practitioners. Moreover, the scope limitations

were discussed emphasising that the infrastructure for the lab environment was not within the

scope of the thesis, but it has an integral role delivering in the course.

Finally, suggestions were made regarding how the course could be developed further in the

future. For example, the course could benefit from parametrised lab assignments and knowl-

edge tests and also from automated evaluation of students’ submissions. Furthermore, team-

work projects could be incorporated into the course. Lastly, it was recommended that the course

content is regularly reviewed based on students’ and employers’ feedback.

48

References

Amazon Web Services. (2019). AWS tools for PowerShell. Retrieved January 11, 2019, from

https://aws.amazon.com/powershell/

Ashraf, M. N. (2015). Deploying and managing state-of-the-art workstation labs like a boss!

In Proceedings of the 2015 ACM annual conference on SIGUCCS (pp. 43–48). doi:10.

1145/2815546.2815570

AXELOS. (2019). From v3 to 4 — This is the new ITIL. Retrieved April 6, 2019, from https:

//www.axelos.com/news/blogs/february-2019/from-v3-to-4-this-is-the-new-itil

Barakat, A., & Hadi, A. (2016). Windows forensic investigations using PowerForensics tool.

In 2016 cybersecurity and cyberforensics conference (CCC) (pp. 41–47). doi:10.1109/

CCC.2016.18

Basili, V., Briand, L., Bianculli, D., Nejati, S., Pastore, F., & Sabetzadeh, M. (2018). Software

engineering research and industry: A symbiotic relationship to foster impact. IEEE Soft-

ware, 35(5), 44–49. doi:10.1109/MS.2018.290110216

Bhagyavati. (2006). Laboratory exercises in online information assurance courses. J. Educ.

Resour. Comput. 6(4). doi:10.1145/1248453.1248457

Bhavnani, S. K., Peck, F. A., & Reif, F. (2008). Strategy-based instruction: Lessons learned in

teaching the effective and efficient use of computer applications. ACM Trans. Comput.-

Hum. Interact. 15(1), 2:1–2:43. doi:10.1145/1352782.1352784

Bosnić, I., Čavrak, I., & Žagar, M. (2019). Assessing the impact of the distributed software

development course on the careers of young software engineers. ACM Trans. Comput.

Educ. 19(2), 8:1–8:27. doi:10.1145/3274529

Bruffee, K. (1993). Collaborative learning: Higher education, interdependence, and the au-

thority of knowledge. Johns Hopkins University Press.

Brusilovsky, P., & Sosnovsky, S. (2005). Individualized exercises for self-assessment of pro-

gramming knowledge: An evaluation of QuizPACK. J. Educ. Resour. Comput. 5(3).

doi:10.1145/1163405.1163411

Buyya, R., & Barreto, D. (2015). Multi-cloud resource provisioning with Aneka: A unified and

integrated utilisation of Microsoft Azure and Amazon EC2 instances. In 2015 interna-

49

https://aws.amazon.com/powershell/
https://dx.doi.org/10.1145/2815546.2815570
https://dx.doi.org/10.1145/2815546.2815570
https://www.axelos.com/news/blogs/february-2019/from-v3-to-4-this-is-the-new-itil
https://www.axelos.com/news/blogs/february-2019/from-v3-to-4-this-is-the-new-itil
https://dx.doi.org/10.1109/CCC.2016.18
https://dx.doi.org/10.1109/CCC.2016.18
https://dx.doi.org/10.1109/MS.2018.290110216
https://dx.doi.org/10.1145/1248453.1248457
https://dx.doi.org/10.1145/1352782.1352784
https://dx.doi.org/10.1145/3274529
https://dx.doi.org/10.1145/1163405.1163411

tional conference on computing and network communications (CoCoNet) (pp. 216–229).

doi:10.1109/CoCoNet.2015.7411190

Cai, Y., & Arney, T. O. (2018). Scripting for administration, automation and security. In Pro-

ceedings of the 19th annual SIG conference on IT education (pp. 147–147). SIGITE ’18.

doi:10.1145/3241815.3241829

Carlsson, S. A., Henningsson, S., Hrastinski, S., & Keller, C. (2009). An approach for designing

management support systems: The design science research process and its outcomes. In

Proceedings of the 4th international conference on design science research in informa-

tion systems and technology (21:1–21:10). DESRIST ’09. doi:10.1145/1555619.1555647

Choo, K.-K. R., Fei, Y., Xiang, Y., & Yu, Y. (2016). Embedded device forensics and security.

ACM Trans. Embed. Comput. Syst. 16(2), 50:1–50:5. doi:10.1145/3015662

Dillenbourg, P. (1999). Collaborative learning: Cognitive and computational approaches. Ad-

vances in learning and instruction series. Elsevier Science & Technology Books.

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of program-

ming: A review. J. Educ. Resour. Comput. 5(3). doi:10.1145/1163405.1163409

Feynman, R. P. (1974). Cargo cult science. Retrieved January 4, 2019, from http://calteches.

library.caltech.edu/51/2/CargoCult.pdf

GitHub. (2019a). PowerForensics - PowerShell digital forensics. Retrieved February 19, 2019,

from https://github.com/Invoke-IR/PowerForensics

GitHub. (2019b). PowerShell for every system! Retrieved January 11, 2019, from https : / /

github.com/powershell/powershell

HashiCorp. (2019). Introduction to Packer. Retrieved February 6, 2019, from https://packer.io/

intro/

Hendler, D., Kels, S., & Rubin, A. (2018). Detecting malicious PowerShell commands using

deep neural networks. In Proceedings of the 2018 on Asia conference on computer and

communications security (pp. 187–197). ASIACCS ’18. doi:10.1145/3196494.3196511

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems

research. Management Information Systems Quarterly, 28(1), 75–105. Retrieved from

http:%20//dl.acm.org/citation.cfm?id%20=%202017212.2017217

Information Technology Foundation for Education. (2019). Moodle. Retrieved January 18,

2019, from https://www.hitsa.ee/teenused/moodle

Isomöttönen, V., & Tirronen, V. (2016). Flipping and blending — an action research project

on improving a functional programming course. Trans. Comput. Educ. 17(1), 1:1–1:35.

doi:10.1145/2934697

50

https://dx.doi.org/10.1109/CoCoNet.2015.7411190
https://dx.doi.org/10.1145/3241815.3241829
https://dx.doi.org/10.1145/1555619.1555647
https://dx.doi.org/10.1145/3015662
https://dx.doi.org/10.1145/1163405.1163409
http://calteches.library.caltech.edu/51/2/CargoCult.pdf
http://calteches.library.caltech.edu/51/2/CargoCult.pdf
https://github.com/Invoke-IR/PowerForensics
https://github.com/powershell/powershell
https://github.com/powershell/powershell
https://packer.io/intro/
https://packer.io/intro/
https://dx.doi.org/10.1145/3196494.3196511
http:%20//dl.acm.org/citation.cfm?id%20=%202017212.2017217
https://www.hitsa.ee/teenused/moodle
https://dx.doi.org/10.1145/2934697

Jayaseelan, G., & Charles, P. J. (2014). Automated secured disaster recovery with Hyper-V

replica and PowerShell. In 2014 world congress on computing and communication tech-

nologies (pp. 150–153). doi:10.1109/WCCCT.2014.60

Jordan, P., Patten, C. V., Peterson, G., & Sellers, A. (2016). Distributed PowerShell load gen-

erator (D-PLG): A new tool for dynamically generating network traffic. In 2016 6th

international conference on simulation and modeling methodologies, technologies and

applications (SIMULTECH) (pp. 1–8).

KTH Royal Institute of Technology. (2017). Laborationer. Retrieved April 30, 2019, from https:

//www.kth.se/social/course/DD1320/subgroup/vt-2017-298/page/laborationer-188/

Kunkle, W. M., & Allen, R. B. (2016). The impact of different teaching approaches and lan-

guages on student learning of introductory programming concepts. ACM Trans. Comput.

Educ. 16(1), 3:1–3:26. doi:10.1145/2785807

Limoncelli, T., Hogan, C., & Chalup, S. (2016). The practice of system and network adminis-

tration: Volume 1: DevOps and other best practices for enterprise IT. Pearson Education.

Liu, C., Xia, B., Yu, M., & Liu, Y. (2018). PSDEM: A feasible de-obfuscation method for mali-

cious PowerShell detection. In 2018 IEEE symposium on computers and communications

(ISCC) (pp. 825–831). doi:10.1109/ISCC.2018.8538691

Markham, T. (2011). Project based learning: A bridge just far enough. Teacher Librarian, 39(2).

Marshall, L., Pieterse, V., Thompson, L., & Venter, D. M. (2016). Exploration of participation in

student software engineering teams. ACM Trans. Comput. Educ. 16(2), 5:1–5:38. doi:10.

1145/2791396

Marx, F., Mayer, J. H., & Winter, R. (2012). Six principles for redesigning executive informa-

tion systems—findings of a survey and evaluation of a prototype. ACM Trans. Manage.

Inf. Syst. 2(4), 26:1–26:19. doi:10.1145/2070710.2070717

McGill, T., Armarego, J., & Koppi, T. (2012). The teaching–research–industry–learning nexus

in information and communications technology. Trans. Comput. Educ. 12(1), 1:1–1:20.

doi:10.1145/2133797.2133798

Meyer, M., Rensing, C., & Steinmetz, R. (2011). Multigranularity reuse of learning resources.

ACM Trans. Multimedia Comput. Commun. Appl. 7(1), 1:1–1:23. doi:10.1145/1870121.

1870122

Microsoft. (2019a). Course 10961c: Automating administration with Windows PowerShell.

Retrieved February 16, 2019, from https://www.microsoft.com/en-us/learning/course.

aspx?cid=10961

51

https://dx.doi.org/10.1109/WCCCT.2014.60
https://www.kth.se/social/course/DD1320/subgroup/vt-2017-298/page/laborationer-188/
https://www.kth.se/social/course/DD1320/subgroup/vt-2017-298/page/laborationer-188/
https://dx.doi.org/10.1145/2785807
https://dx.doi.org/10.1109/ISCC.2018.8538691
https://dx.doi.org/10.1145/2791396
https://dx.doi.org/10.1145/2791396
https://dx.doi.org/10.1145/2070710.2070717
https://dx.doi.org/10.1145/2133797.2133798
https://dx.doi.org/10.1145/1870121.1870122
https://dx.doi.org/10.1145/1870121.1870122
https://www.microsoft.com/en-us/learning/course.aspx?cid=10961
https://www.microsoft.com/en-us/learning/course.aspx?cid=10961

Microsoft. (2019b). Course 10962c: Advanced automated administration with Windows Pow-

erShell. Retrieved February 16, 2019, from https://www.microsoft.com/en-us/learning/

course.aspx?cid=10962

Microsoft. (2019c). Microsoft evaluation center. Retrieved February 6, 2019, from https : / /

www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019

Microsoft. (2019d). PowerShell. Retrieved January 11, 2019, from https://docs.microsoft.com/

en-us/powershell/scripting/overview?view=powershell-6

Moodle. (2019). Moodle - Open-source learning platform — Moodle.org. Retrieved January

18, 2019, from https://moodle.org/

Nunamaker, J. F., Jr., & Briggs, R. O. (2012). Toward a broader vision for information systems.

ACM Trans. Manage. Inf. Syst. 2(4), 20:1–20:12. doi:10.1145/2070710.2070711

O’Grady, M. J. (2012). Practical problem-based learning in computing education. Trans. Com-

put. Educ. 12(3), 10:1–10:16. doi:10.1145/2275597.2275599

Palmer, N. (2015). Work in progress - Automation of a computer networking laboratory. In

2015 IEEE global engineering education conference (EDUCON) (pp. 348–353). doi:10.

1109/EDUCON.2015.7095995

Palumbo, T. (2017). The power of PowerShell: Examples of how PowerShell scripts can sup-

plement a patch management system to solve unusual problems. In Proceedings of the

2017 ACM annual conference on SIGUCCS (pp. 7–14). doi:10.1145/3123458.3123479

Rusak, G., Al-Dujaili, A., & O’Reilly, U.-M. (2018). AST-based deep learning for detecting

malicious PowerShell. In Proceedings of the 2018 ACM SIGSAC conference on computer

and communications security (pp. 2276–2278). CCS ’18. doi:10.1145/3243734.3278496

Ryan, R., & Deci, E. (2000). Self-determination theory and the facilitation of intrinsic mo-

tivation, social development, and well-being. The American psychologist, 55, 68–78.

doi:10.1037/0003-066X.55.1.68

Saltz, J. S., & Heckman, R. R. (2018). A scalable methodology to guide student teams executing

computing projects. ACM Trans. Comput. Educ. 18(2), 9:1–9:19. doi:10.1145/3145477

Sihtasutus Kutsekoda. (2018). Tulevikuvaade tööjõu- ja oskuste vajadusele: Info- ja kommuni-

katsiooni-tehnoloogia. Retrieved January 16, 2019, from http://oska.kutsekoda.ee/wp-

content/uploads/2018/11/IKT-terviktekst.pdf

Silva, E., & Moreira, D. (2003). Webcom: A tool to use peer review to improve student inter-

action. J. Educ. Resour. Comput. 3(1). doi:10.1145/958795.958798

Statistics Estonia. (2019). Statistical database. PAV011: Job vacancies and occupied posts by

economic activity. Retrieved January 28, 2019, from http://andmebaas.stat.ee/

52

https://www.microsoft.com/en-us/learning/course.aspx?cid=10962
https://www.microsoft.com/en-us/learning/course.aspx?cid=10962
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-6
https://moodle.org/
https://dx.doi.org/10.1145/2070710.2070711
https://dx.doi.org/10.1145/2275597.2275599
https://dx.doi.org/10.1109/EDUCON.2015.7095995
https://dx.doi.org/10.1109/EDUCON.2015.7095995
https://dx.doi.org/10.1145/3123458.3123479
https://dx.doi.org/10.1145/3243734.3278496
https://dx.doi.org/10.1037/0003-066X.55.1.68
https://dx.doi.org/10.1145/3145477
http://oska.kutsekoda.ee/wp-content/uploads/2018/11/IKT-terviktekst.pdf
http://oska.kutsekoda.ee/wp-content/uploads/2018/11/IKT-terviktekst.pdf
https://dx.doi.org/10.1145/958795.958798
http://andmebaas.stat.ee/

Steghöfer, J.-P., Burden, H., Hebig, R., Calikli, G., Feldt, R., Hammouda, I., . . . Liebel, G.

(2018). Involving external stakeholders in project courses. ACM Trans. Comput. Educ.

18(2), 8:1–8:32. doi:10.1145/3152098

Swedbank. (2019). Private interview.

TalTech. (2019). Skriptimiskeeled. Retrieved January 11, 2019, from http://ois.ttu.ee/pls/portal/

ois2.ois public.main

Telia. (2019). Private e-mail thread.

Teo, C. B., & Gay, R. K. L. (2006). A knowledge-driven model to personalize e-learning. J.

Educ. Resour. Comput. 6(1). doi:10.1145/1217862.1217865

Tsuda, Y., Nakazato, J., Takagi, Y., Inoue, D., Nakao, K., & Terada, K. (2018). A lightweight

host-based intrusion detection based on process generation patterns. In 2018 13th Asia

joint conference on information security (pp. 102–108). doi:10 .1109/AsiaJCIS.2018.

00025

Tutorials Point. (2019). Powershell Tutorial. Retrieved April 8, 2019, from https : / / www.

tutorialspoint.com/powershell/index.htm

Vene, S. (2018). ITL meeting protocol, 10 October 2018.

Vene, S. (2019). Private interview.

Veritas. (2019). Veritas Enterprise Vault PowerShell cmdlets. Retrieved January 11, 2019, from

https://www.veritas.com/support/en US/doc/96069939-120347322-0/index

Wikiversity. (2019). PowerShell. Retrieved April 7, 2019, from https://en.wikiversity.org/wiki/

PowerShell

Wueest, C. (2016). The increased use of PowerShell in attacks. Symantec. Retrieved from https:

/ / www. symantec . com / content / dam / symantec / docs / security - center / white - papers /

increased-use-of-powershell-in-attacks-16-en.pdf

Yeomans, L., Zschaler, S., & Coate, K. (2019). Transformative and troublesome? Students’

and professional programmers’ perspectives on difficult concepts in programming. ACM

Trans. Comput. Educ. 19(3), 23:1–23:27. doi:10.1145/3283071

53

https://dx.doi.org/10.1145/3152098
http://ois.ttu.ee/pls/portal/ois2.ois_public.main
http://ois.ttu.ee/pls/portal/ois2.ois_public.main
https://dx.doi.org/10.1145/1217862.1217865
https://dx.doi.org/10.1109/AsiaJCIS.2018.00025
https://dx.doi.org/10.1109/AsiaJCIS.2018.00025
https://www.tutorialspoint.com/powershell/index.htm
https://www.tutorialspoint.com/powershell/index.htm
https://www.veritas.com/support/en_US/doc/96069939-120347322-0/index
https://en.wikiversity.org/wiki/PowerShell
https://en.wikiversity.org/wiki/PowerShell
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://dx.doi.org/10.1145/3283071

Appendix 1 Preamble.tex

1 \usepackage[T1]{fontenc}

2 \usepackage{minted}

3 \usepackage{pgfpages}

4 \usepackage{xstring}

5

6 \usetheme{Berlin}

7

8 \institute{TalTech}

9 \date{}

10 \subtitle{PowerShell Course}

11

12 \setbeamertemplate{note page}{\vspace{1em}Notes for the previous slide\insertnote}

13 \setbeameroption{show notes}

14

15 \setminted{autogobble,breaklines}

16

17 \AtBeginSection[]

18 {

19 \begin{frame}

20 \frametitle{Table of Contents}

21 \tableofcontents[currentsection]

22 \end{frame}

23 }

24

25 \title{\StrSubstitute{\jobname}{\string_}{ }}

54

Appendix 2 Slides

2.1 Introduction

Introduction History Basics ISE Summary

Introduction
PowerShell Course

TalTech

TalTech

Introduction

55

Introduction History Basics ISE Summary

Table of Contents

1 Introduction

2 History

3 Basics

4 ISE

5 Summary

TalTech

Introduction

Introduction History Basics ISE Summary

Table of Contents

1 Introduction

2 History

3 Basics

4 ISE

5 Summary

TalTech

Introduction

56

Introduction History Basics ISE Summary

What Is It?

PowerShell is a general purpose scripting language by Microsoft

Remark

Scripting languages are different from programming languages

TalTech

Introduction

Notes for the previous slide

1. Microsoft has launced it initially and is still developing it.
2. More about "general purpose" on the next slide.
3. Scripting languages are interpreter based whereas programming

languages are compiler-based. Scripts are intpreted during run time
and programmes are compiled into binary files that contain direct
instructions for the computer.

4. PowerShell is actually also the name of the command-line shell
which is the intepreter for the PowerShell language

57

Introduction History Basics ISE Summary

What Can We Do with It?

Almost anything to manage the computer, or thousands of them,
even remotely. For example,

Create, copy, move, delete files
Use loops, calculate, manipulate strings etc.
Manage processes and services
Read and edit the registry
Manage products, such as Active Directory, Exchange,
Hyper-V etc.

Remark

There are several custom modules available from third party vendors

TalTech

Introduction

Notes for the previous slide

1. The list of features is far from conclusive. It barely scratches the
surface

2. Third party vendors like Veritas with Enterprise Vault or Amazon
Web Services

3. You can even create your own modules taylored to what you or
administrators in your company need to do daily

58

Introduction History Basics ISE Summary

Why Not Python?

PowerShell
becomes pre-installed with the OS since Windows 7 and
Windows Server 2008 R2
has a strong focus on supporting Microsoft’s products

Note

Granted, PowerShell is slower and less capable than Python in
many use cases

TalTech

Introduction

Notes for the previous slide

1. It is very convenient to use as it almost never needs installing on
Windows machines

2. PowerShell is the language to use to manage an infrastructure based
on Microsoft products. This applies even if some endpoint
management tool (Miradore, SCCM, Kaseya, Workspace ONE, etc.)
is used for managing or monitoring

3. PowerShell does not handle large amount of data as well as Python
when it comes to data analysis. Python is much richer in features
and libraries

59

Introduction History Basics ISE Summary

Differences with UNIX

UNIX
relies heavily on text-based data that is processed with AWK,
grep or sed.

PowerShell
uses objects

TalTech

Introduction

Notes for the previous slide

1. The names of the UNIX tools are just informative, they are not
relevant in the context if this course

2. More about objects in the variable types section
3. UNIX systems management with PowerShell is possible but rarely

applied

60

Introduction History Basics ISE Summary

Table of Contents

1 Introduction

2 History

3 Basics

4 ISE

5 Summary

TalTech

Introduction

Introduction History Basics ISE Summary

PowerShell 1.0 and Before

Initially the project was developed under the name Monad
Version 1.0 was released in November 2006 for Windows XP,
Windows Server 2003 and Windows Vista

TalTech

Introduction

61

Notes for the previous slide

1. The first version did not gain significant popularity, probably
because it needed manual installtion

Introduction History Basics ISE Summary

PowerShell 2.0

Many important improvements over version 1.0
It was integrated with Windows 7 and Windows Server 2008
R2

TalTech

Introduction

62

Notes for the previous slide

1. It was widely used and supported
2. This version will lose its importance when Windows 7 and Server

2008 R2 reach end of life

Introduction History Basics ISE Summary

PowerShell 3.0

Various improvements, especially IntelliSense
Shipped with Windows 8 and Windows Server 2012
Since these products are replaced by Windows 8.1 and Server
2012 R2, so is the version of PowerShell

TalTech

Introduction

63

Notes for the previous slide

1. IntelliSense is a general term for a variety of code editing features
that include code completion, parameter info, quick info, and
member lists

2. Windows 8, not 8.1, is unsupported already as of January 2016

Introduction History Basics ISE Summary

PowerShell 4.0

PowerShell 4.0 is integrated with Windows 8.1 and with
Windows Server 2012 R2
Added Desired State Configuration

TalTech

Introduction

64

Notes for the previous slide

1. Quite popular since Windows Server 2012 R2 is or at least was
widely used

2. DSC is a management platform in PowerShell that enables you to
manage your IT and development infrastructure with configuration
as code

Introduction History Basics ISE Summary

PowerShell 5.0 and 5.1

PowerShell 5.0 included some new features, but oriented for
more advanced use cases
PowerShell 5.1 comes pre-installed with Windows 10, Windows
Server 2016 and Windows Server 2019 operating systems

TalTech

Introduction

65

Notes for the previous slide

1. At the time of the presentation, this is the version to learn and will
be used also in the course in a Windows Server 2019 lab
environment

2. The version differences are not huge and the majority of syntax is
backwards and forwards compatible

3. Newever versions of PowerShell can be installed on older operating
systems as a rule of thumb

Introduction History Basics ISE Summary

PowerShell Core 6.0 and Beyond

PowerShell Core 6.0 became available in January 2018
It has no significant new functionality
But it is open-source and also available for Linux and macOS
Microsoft expects to release a new minor version for
PowerShell Core 6.0 twice a year

TalTech

Introduction

66

Notes for the previous slide

1. Notice the Core in the name
2. PowerShell on Linux and macOS is not in the scope for the course,

but you are encouraged to test it on your own

Introduction History Basics ISE Summary

Table of Contents

1 Introduction

2 History

3 Basics

4 ISE

5 Summary

TalTech

Introduction

67

Introduction History Basics ISE Summary

Verbs and Nouns

Cmdlets have a Verb-Noun name syntax

Example

Get-Content
Set-Location
Copy-Item
Stop-Process

TalTech

Introduction

Notes for the previous slide

1. Comandlets have a verb-dash-noun syntax. It is therefore somewhat
similar to everyday language, for example Do-This

68

Introduction History Basics ISE Summary

Parameters and Arguments

Parameters come after the cmdlets and dictate how they behave
and what they actually do. All parameters have an explicit name

Example

Remove-Item -Path File1

-Path is the parameter name and File1 is the argument.

TalTech

Introduction

Notes for the previous slide

1. The example removes File1 from the current working directory

69

Introduction History Basics ISE Summary

Positional Parameters

In some cases, it is not needed to specify the parameter name

Example

Remove-Item File1

The cmdlet will assume that the first unnamed (also called
positional) parameter is the file path

TalTech

Introduction

Notes for the previous slide

1. This example has the same effect as the previous one
2. Be mindful of which method you use. Leaving out parameters is a

quicker way of writing code but will make it more difficult for others
to read, especially when multiple positional parameters are used
together

70

Introduction History Basics ISE Summary

Piping

Piping is passing output from one command as input to the next
command. PowerShell uses it heavily

Example

Get-Process |
Where-Object { $_.WorkingSet -gt 20MB } |
Sort-Object Name -Descending |
Select-Object -First 10

TalTech

Introduction

Notes for the previous slide

1. The example chains cmdlets together and outputs 10 processes that
use more than 20 MB of memory sorted by name alphabetically
starting from Z

2. It is a good idea to try typing in the command, so you would know
where to find all the special characters on your keyboards

71

Introduction History Basics ISE Summary

Comments

Comments are preceded by the # sign

Example

Get-Service # shows services and their statuses

<# this is a multi line comment
Remove-Item File1
and commands here are not actually executed #>

TalTech

Introduction

Notes for the previous slide

1. Comments are useful for annotating the code making it easier for
others to understand, also for yourself later when you read it later

2. File1 is of course not removed

72

Introduction History Basics ISE Summary

Basic Variable types

Variables are preceded by the $ sign

Example

$x = 1
$y = "some string"
$z = 3, 5.6, "a" # an array with three elements
$y # prints the value of variable $y

Note

There are many more different classes of variables

TalTech

Introduction

Notes for the previous slide

1. Spaces around the equal sign are optional
2. Variable z is an array which is a basically list of values. They are

very useful in loops
3. Note how commas separate elements and decimals are separated by

a full stop

73

Introduction History Basics ISE Summary

Table of Contents

1 Introduction

2 History

3 Basics

4 ISE

5 Summary

TalTech

Introduction

Introduction History Basics ISE Summary

Integrated Scripting Environment (ISE)

The ISE provides a more convenient interface to PowerShell than
the regular console window

Lab Assignments

The ISE will not be available in the lab assignments

TalTech

Introduction

74

Notes for the previous slide

1. You can open the ISE on your Windows client PCs and try the
examples during the seminars

2. Do not get drawn into it though and remember to listen
3. It is very similar to integrated development environments or IDEs

Introduction History Basics ISE Summary

Shortcuts

By default, the programme opens with one untitled file and one
PowerShell tab (console). You can create new files by pressing
Ctrl+n and additional tabs by pressing Ctrl+t

TalTech

Introduction

75

Notes for the previous slide

1. Running something in one tab will block it from running new
commands until the previous finishes or is cancelled

2. Tabs are useful for running several commands or scripts in parallel

Introduction History Basics ISE Summary

Running Lines and Files

You can run a line or the selected part of it by pressing F8

To run the whole file, press F5
See what running "test" and 2+3*5 outputs in the console

TalTech

Introduction

76

Notes for the previous slide

1. There are of course many other shortcuts, but we will not discuss
more now

Introduction History Basics ISE Summary

IntelliSense

An important feature of the ISE is IntelliSense. It is a general
term for a code-completion aid. IntelliSense can help complete
commands, parameters, values and show helpful tooltips.
ISE usually displays potential endings automatically, but you
can also manually see what is available by pressing
Ctrl+Space. To accept the highlighted item, press Enter or
Tab

TalTech

Introduction

77

Notes for the previous slide

1. Try not to rely on IntelliSense too much. It will not always be
available, e.g. in the lab assignments

Introduction History Basics ISE Summary

Deprecation

That said, the ISE is deprecated in PowerShell Core. Since
Windows Server 2019 ships with PowerShell 5.1, the ISE is still
available. Microsoft recommends that cross-platform coding of
PowerShell in the future is done in Visual Studio Code

TalTech

Introduction

78

Introduction History Basics ISE Summary

PowerShell Version

The current version of the shell can be seen by running
Get-Host or
$PSVersionTable

TalTech

Introduction

Introduction History Basics ISE Summary

.ps1 File Extension

The ISE saves files with the .ps1 file extension. It can be used to
conveniently run all commands in the file and call it from within
other scripts as well. In order to run a script from the console, use
the .\Script.ps1 syntax

TalTech

Introduction

79

Introduction History Basics ISE Summary

Table of Contents

1 Introduction

2 History

3 Basics

4 ISE

5 Summary

TalTech

Introduction

Introduction History Basics ISE Summary

What Did We Learn?

PowerShell
is a scripting language by Microsoft
is pre-installed in Windows operating systems
is open-source since version 6.0
can be used for a wide range of management tasks
can be written in ISE when GUI is available

TalTech

Introduction

80

2.2 Basics 1

Variables Operators Aliases Summary

Basics 1
PowerShell Course

TalTech

TalTech

Basics 1

Variables Operators Aliases Summary

Table of Contents

1 Variables

2 Operators

3 Aliases

4 Summary

TalTech

Basics 1

81

Variables Operators Aliases Summary

Table of Contents

1 Variables

2 Operators

3 Aliases

4 Summary

TalTech

Basics 1

Variables Operators Aliases Summary

Purpose

The purpose of variables is storing data so you could use it later in
code

Example

$a = 5
$b = 10
$a + $b * $a # 55
$c = "test"
$c.ToUpper() # TEST
$d = $b - $a
$c+$d # test5
"dc" # 5test

TalTech

Basics 1

82

Notes for the previous slide

1. These are very simple examples. Let’s talk through them. Once
variables are defined, we can call them again and again in different
scenarios

2. Comment behind the line shows output. This syntax will be used
throughout the course

3. $d+$c will not print 5test

Variables Operators Aliases Summary

Naming Variables

Variables are prefixed with a $. Spaces and dashes are not
recommended, but are allowed when surrounded by curly brackets

Example

$myVariable
$another_Variable1
${a-very-odd variable name}

TalTech

Basics 1

83

Variables Operators Aliases Summary

Naming Variables

Invalid Variables

without_dollar_sign
$some-variable
$my variable

Remark

Variable names are case insensitive. $variable is the same as
$VARIABLE or $VaRiAbLe

TalTech

Basics 1

Notes for the previous slide

1. Without $ the PowerShell interpreter will see the input as a
function. More on them later

84

Variables Operators Aliases Summary

Types of Variables

Variables can hold data in a variety of forms. Some of the most
common types are

Type Description
[Int] Integer
[String] Text
[Bool] True or false value
[Float] or [Single] Floating point number
[Array] Collection of elements
[DateTime] Time stamp
[TimeSpan] Time interval or period
[Hashtable] Collection of key-value pairs
[PSCustomObject] PowerShell object

TalTech

Basics 1

Notes for the previous slide

1. We will discuss them one by one
2. The type needs to be defined in front of the variable or a function

that outputs value
3. The list of far from conclusive

85

Variables Operators Aliases Summary

Integers

An integer is a number that can be written without a fractional
component. PowerShell does usually a good job guessing what you
mean, but sometimes you need to be specific

Example

$input = Read-Host "Enter a number" # let's enter 3
$input * $input # 333
[Int]$input2 = Read-Host "Enter a number" # 3 again
$input2 * $input2 # 9

TalTech

Basics 1

Notes for the previous slide

1. The asterisk can have different meanings. For integers, it calculates
the mathematical product. Yet the first factor may be a string. The
second factor will always be intpreted into an integer. If the first
factor is a string, the string is as many times as the integer value of
the second factor

86

Variables Operators Aliases Summary

Strings

A string is traditionally a sequence of characters. PowerShell allows
to do a actions on them which we’ll cover in the next seminars

Example

"test" # test
"test's" # test's
"`"test`"" # "test"
'test`'s' would result in an error
$a = "PowerShell"
"Variable `$a is $a" # Variable $a is PowerShell
'I like $a' # I like $a
"I like $a" # I like PowerShell

TalTech

Basics 1

Notes for the previous slide

1. Strings are surrounded by single or double quoatation marks
2. In order to get an actual double quoatation mark in output, escape

it with a backtick. The same applies for the dollar sign in double
quoatation marks, but not for the single quoatation mark

3. Variables between double quoatation marks are replaced with their
values

87

Variables Operators Aliases Summary

Boolean

Bool comes from the Boolean data type that has one of two
possible values (usually denoted true and false)

Example

[bool]1 # True
[bool]0 # False
[bool]"some text" # True
[bool]"0" # True
[bool]"" # False
[bool]-100 # True

TalTech

Basics 1

Notes for the previous slide

1. Note how it behaves. String, even just the character 0 is still true.
Negative numbers also yield true

88

Variables Operators Aliases Summary

Floats

Simply put, floats are numbers with fractions, for example 1.5 and
3.4e-2 (which is the same as writing 0.034)

Note

PowerShell always uses "." as the decimal separator for input. It
may be a comma or a point in output

Example

[float]1.2 # 1.2
[single]"3,4" # 34
[single]"-5.6e-3" # -0.0056

TalTech

Basics 1

Notes for the previous slide

1. If the locale is set to Estonian, the output will separate decimals
with a comma

2. But comma in input would not work as expected
3. [float] is the same as [single]

89

Variables Operators Aliases Summary

Floats

[double] allows to store very large values

Example

[double]2e100 # 2E+100
[float]123123123123 # 1,231231E+11

Note

The values are stored for calculations. Not all digits are necessarily
stored

TalTech

Basics 1

Variables Operators Aliases Summary

Arrays

Arrays are list of elements. To create an array, separate elements by
a comma

Example

"a", "b", "c"
3, "string", 4.5
1..20
@() # an empty array
@("element1", "element2")

TalTech

Basics 1

90

Notes for the previous slide

1. Elements in one array may be of different types
2. Arrays with numbers can be created quicly by using first..last

syntax. It works decendingly too
3. PowerShell usually understands when you want to create an array,

but you can be explicit with the @() syntax. @() creates an empty
array

4. Arrays are especially useful in loops

Variables Operators Aliases Summary

Time Stamps and Intervals

PowerShell has separate variable types for times which are useful in
time calculations

Example

$start = [DateTime]"16 July 1969 13:32:00 GMT"
$moonLanding = [DateTime]"07/20/1969 8:17:40PM GMT"
$end = [DateTime]"July 24, 1969, 16:50:35Z"
$duration = $end - $start
$duration # [TimeSpan] object showing 8d 3h 18m 35s
(Get-Date) - $moonLanding # time since the landing

TalTech

Basics 1

91

Notes for the previous slide

1. As with floats, the output depends on system locale settings
2. Note how the string formats are deliberately different. PowerShell

will accept all these and some more it can understand
3. The example is based on the Apollo 11 mission
4. [DateTime] differences are [TimeSpan] objects
5. (Get-Date) returns an object with the current system time

Variables Operators Aliases Summary

Intervals

Example

$menRecord = [timespan]"2:01:39"
$womenRecord = New-TimeSpan -Hours 2 -Minutes 17

-Seconds 1↪→

($womenRecord - $menRecord).TotalSeconds # 922

TalTech

Basics 1

92

Notes for the previous slide

1. Time spans can also be created with the New-TimeSpan cmdlet
2. In the last example, we don’t print the whole object but only the

TotalSeconds attribute from it. More on that in the next slides
and seminars

Variables Operators Aliases Summary

Hashtables

Hashtables are data structures that store one or more key/value
pairs

Example

$cool_car = @{
model = "Shelby"
make = "GT500"
year = 1967

}
$cool_car.make # GT500
$cool_car # a table with keys and value

TalTech

Basics 1

93

Notes for the previous slide

1. Values can be of any data type, even other hashtables
2. You can then call a single attribute from the hashtable

Variables Operators Aliases Summary

PSCustomObjects

PowerShell objects are perhaps the most powerful variables. Most
cmdlets output PSCustomObjects and it’s possible to use them as
inputs to other cmdlets

Example

[PSCustomObject]@{
model = "Shelby"
make = "GT500"
year = 1967

}
$cool_car.year # 1967
$cool_car # a table where columns are keys

TalTech

Basics 1

94

Notes for the previous slide

1. PSCustomObjects are similar to hashtables and they are defined
almost the same way

2. PSCustomObjects however work much better as array elements.
More on that next seminar

Variables Operators Aliases Summary

Table of Contents

1 Variables

2 Operators

3 Aliases

4 Summary

TalTech

Basics 1

95

Variables Operators Aliases Summary

Arithmetic Operators

Operator Description Example Output
+ Addition 10+25 35
- Subtraction 23-8 15
* Multiplication 4.5*3.4 15.3
/ Division 2/5 0.4
% Modulus 7%3 1

TalTech

Basics 1

Notes for the previous slide

1. These are quite self explanatory
2. Modulus, also called modulo operation, finds the remainder after

division of one number by another

96

Variables Operators Aliases Summary

Comparison Operators

Comparison Operators return True or False and are used for
comparing values

Operator Description Example Output
eq Equals "a" -eq "b" False
ne Not equals 1 -ne 2 True
gt Greater than 1+2 -gt 4.5 False
ge Greater than or equals 2 -ge 2 True
lt Less than 6 -lt 4 False
le Less than or equals 2 -le 5 True
not Negates the following -not (2 -le 5) False

TalTech

Basics 1

Notes for the previous slide

1. You are encouraged to test on your own different operators and
different objects or their attributes

2. You will need to use parenthesis around cmdlets with parameters

97

Variables Operators Aliases Summary

Assignment Operators

Operator Description Example
= Simple assignment

operator
$a = 100
$a # 100

+= Add AND assign-
ment operator

$b = 5
$b += 4
$b # 9
$c = "x","y"
$c += "z"
$c # "x", "y", "z"

-= Subtract AND as-
signment operator

$d = 5
$d -= 2
$d # 3

TalTech

Basics 1

Notes for the previous slide

1. You can increase and decrease the value of a number this way
2. You can also add elements to an array, but not remove
3. Adding also works with strings and appends them
4. In some rare cases, you might need to use *= and /=. They work too

98

Variables Operators Aliases Summary

Table of Contents

1 Variables

2 Operators

3 Aliases

4 Summary

TalTech

Basics 1

Variables Operators Aliases Summary

Aliases

The Verb-Noun syntax is recommended. For convenience, many
cmdlets have pre-defined shorter aliases

Cmdlet Alias(es) Description
Get-ChildItem ls, dir, gci Lists all files and folders in

the current or given folder
Get-Content cat, gc, type Prints the content of the tar-

get file
Move-Item mi, move, mv Moves files and folders
Copy-Item cpi, copy, cp Copies files and folders

TalTech

Basics 1

99

Notes for the previous slide

1. You can also define your own aliases
2. It may be challenging to find a balance between the convenience of

aliases and the readability of cmdlets’ full names

Variables Operators Aliases Summary

Aliases

Cmdlet Alias(es) Description
Remove-Item del, rm, ri Deletes files or folders
Rename-Item rni, ren Renames a single file, folder

or link
Get-Command gcm Lists available commands
Select-String sls Prints lines matching a pat-

tern
Set-Location cd, sl, chdir Changes the working path
Get-Process gps, ps Lists running processes
Stop-Process spps, kill Stops a process

TalTech

Basics 1

100

Variables Operators Aliases Summary

Aliases

Cmdlet Alias(es) Description
Select-Object select Selects object properties
Sort-Object sort Sorts objects by values
ForEach-Object foreach, % Performs operations against

each item in a collection of
input objects

Where-Object where, ? Selects objects based on their
property values

Remark

Get- may be omitted. See all aliases with Get-Alias

TalTech

Basics 1

Notes for the previous slide

1. Some cmdlets even have one letter aliases
2. Since Get- may be omitted, even just alias will show the same

listing of all aliases

101

Variables Operators Aliases Summary

Table of Contents

1 Variables

2 Operators

3 Aliases

4 Summary

TalTech

Basics 1

Variables Operators Aliases Summary

What Did We Learn?

Different variable classes
Arithmetic, comparison and assignment operators
Aliases

TalTech

Basics 1

102

2.3 Basics 2

Conditionals Loops Printing Output Custom Functions Splatting Summary

Basics 2
PowerShell Course

TalTech

TalTech

Basics 2

Conditionals Loops Printing Output Custom Functions Splatting Summary

Table of Contents

1 Conditionals

2 Loops

3 Printing Output

4 Custom Functions

5 Splatting

6 Summary

TalTech

Basics 2

103

Conditionals Loops Printing Output Custom Functions Splatting Summary

Table of Contents

1 Conditionals

2 Loops

3 Printing Output

4 Custom Functions

5 Splatting

6 Summary

TalTech

Basics 2

Conditionals Loops Printing Output Custom Functions Splatting Summary

Conditionals

Conditional statements (also expressions or constructs) are features
which perform different actions depending on whether a boolean
condition evaluates to True or False

TalTech

Basics 2

104

Conditionals Loops Printing Output Custom Functions Splatting Summary

If

Example

if ($True) {
this will always be run

}
if ($False) {

this will never be run
}
if ($var -gt 5) {

this will be run, if $var greater than 5
}

TalTech

Basics 2

Notes for the previous slide

1. $True and $False return True and False. We could have also
written some comparisons

105

Conditionals Loops Printing Output Custom Functions Splatting Summary

Else

Example

if ($var -lt 10) {
'$var is less than 10'

}
else {

'$var is at least 10'
}

TalTech

Basics 2

Notes for the previous slide

1. As soon as If is true, the intepreter does not look at Else
2. Notice the use of single quotation marks. Why?
3. Indention and new lines are recommended for readability but not

needed for the interpreter
4. If and Else are again not case sensitive

106

Conditionals Loops Printing Output Custom Functions Splatting Summary

Elseif

Example

if ((Get-Date).DayOfWeek -eq "Monday") {
"Oh no! It's Monday. I hate Mondays..."

}
elseif ((Get-Date).DayOfWeek -eq "Friday") {

"TGIF"
}
else {

"It's neither Monday nor Friday"
}

TalTech

Basics 2

Notes for the previous slide

1. As soon as If is true, the intepreter does not look at Elseif
2. As soon as Elseif is true, the intepreter does not look at Else

107

Conditionals Loops Printing Output Custom Functions Splatting Summary

Switch

Example

switch ((Get-Date).DayOfWeek) {
"Monday" { "Oh no! It's Monday. I hate Mondays..." }
"Friday" { "TGIF" }
default { "It's neither Monday nor Friday" }

}

TalTech

Basics 2

Notes for the previous slide

1. The example above behaves the same as the previous one
2. Switch statement is useful, if we need to compare the same variable

against different values. Note how in case of Elseif, the variable
does not need to be the same

108

Conditionals Loops Printing Output Custom Functions Splatting Summary

Table of Contents

1 Conditionals

2 Loops

3 Printing Output

4 Custom Functions

5 Splatting

6 Summary

TalTech

Basics 2

Conditionals Loops Printing Output Custom Functions Splatting Summary

While

Loops are useful for repetitive actions. The While loop is probably
the simplest

Example

$i = 1
while ($i -lt 5) {

"At iteration $i"
$i++ # it's the same as $i += 1

} # outputs 4 lines

TalTech

Basics 2

109

Notes for the previous slide

1. The same two lines of code are passed 4 times, i.e. until the
condition is False for the first time

2. While loop is useful for looping until the boolean value of a
condition changes

Conditionals Loops Printing Output Custom Functions Splatting Summary

For

For loop is slightly more compact and thus more difficult to read.
Yet is essentially does the same as While loop did

Example

for ($i=1
$i -lt 5
$i++) {

"At iteration $i"
}

TalTech

Basics 2

110

Notes for the previous slide

1. Let’s use the exact same example, just with a different loop

Conditionals Loops Printing Output Custom Functions Splatting Summary

For

Example

for ($i = 1; $i -lt 5; $i++) {
"At iteration $i"

}

TalTech

Basics 2

111

Notes for the previous slide

1. Often the readability is better when the initial value, condition and
repeat action are separated by a semicolon

2. A semicolon actually allows to have multiple commands on one line
in general

3. For is best suited for scenarios where the iteration count is known
before the loop starts

Conditionals Loops Printing Output Custom Functions Splatting Summary

ForEach

ForEach in PowerShell is a bit tricky because it’s a statement and
an alias for a cmdlet ForEach-Object. Let’s first consider the
statement

Example

$fruits = "apples", "bananas", "pears"
foreach ($fruit in $fruits) {

"I like $fruit"
} # outputs a line for liking each fruit

TalTech

Basics 2

112

Notes for the previous slide

1. Defining variable $fruits is optional. It’s also possible to place the
array directly after in

2. ForEach allows the script writer to loop through arrays

Conditionals Loops Printing Output Custom Functions Splatting Summary

ForEach-Object

ForEach-Object cmdlet is useful for piping output to it. Let’s
refactor the previous example

Example

$fruits = "apples", "bananas", "pears"
$fruits | ForEach-Object { "I like $_" }

TalTech

Basics 2

113

Notes for the previous slide

1. Refactoring is changing code without chaning behaviour
2. We are using $_ which is the variable that will hold the individual

array element value at each iteration
3. You could use carriage returns around curly brackets
4. ForEach-Object is usually slower than ForEach but uses less

memory in case of extremely large input objects

Conditionals Loops Printing Output Custom Functions Splatting Summary

Table of Contents

1 Conditionals

2 Loops

3 Printing Output

4 Custom Functions

5 Splatting

6 Summary

TalTech

Basics 2

114

Conditionals Loops Printing Output Custom Functions Splatting Summary

Write-Output

Write-Output is the most common way of outputting text. It can
be piped forward to the next cmdlet, but it will be printed, if the
line ends

Example

"Hello World"
echo "Hello World"
Write-Output "Hello World"
Write-Output "Hello World" | Out-Default

TalTech

Basics 2

Notes for the previous slide

1. All lines do the same but they are gradually more explicit
2. echo is an alias and Out-Default is always implied, even if not

written

115

Conditionals Loops Printing Output Custom Functions Splatting Summary

Write-Host

Write-Host should be used to log info immediately to the console

Example

if ($var -gt 100) {
Write-Host "Value too high" -ForegroundColor Red

}
else {

Write-Host "Task finished" -ForegroundColor Green
}

TalTech

Basics 2

Notes for the previous slide

1. Write-Host will not provide input to following cmdlets
2. The difference is a nuance but important to note
3. You can also format the color of output

116

Conditionals Loops Printing Output Custom Functions Splatting Summary

Out-File

It’s often useful to send output into a file, e.g. log events for
scheduled tasks

Example

"First line" | Out-File -FilePath "File 1.txt"
"Second line" | Out-File -Append -FilePath "File

1.txt"↪→

Get-Process | Out-File -FilePath
"C:\temp\Processes.txt"↪→

"First line" > "File 2.txt" # not recommended
"Second line" >> "File 2.txt" # not recommended
compare (gc "File 1.txt") (gc "File 2.txt") # $null

TalTech

Basics 2

Notes for the previous slide

1. Relative FilePath value (not starting with C:\ or \\ or similar)
will be the file or path starting from the current working directory

2. Out-File overwrites the previous content by default. Append is
needed for adding content

3. The last command will write all running processes to a file in the
temp folder. Note that the folder must exist

4. File 1.txt and File 2.txt will be identical, but redirection with
> is not the PowerShell native way

5. Compare-Object shows the line-by-line differences of objects. No
output means that the objects are identical. More on this in the
next seminar

117

Conditionals Loops Printing Output Custom Functions Splatting Summary

Tee-Object

Example

"Test" | Tee-Object -Variable var # "test" is printed
and saved to variable $var↪→

"Test" | tee -FilePath file.txt # "test" is printed
and saved to file file.txt↪→

"Test" | tee -FilePath file.txt -Append # the same but
appended↪→

TalTech

Basics 2

Notes for the previous slide

1. Tee comes from the capital letter T which splits the vertical line at
the top

2. It’s useful for monitoring output and saving it at the same time
3. Values are stored only after the whole command has finished. This

is important when running time consuming commands
4. Both -FilePath and -Variable cannot be used at the same time

118

Conditionals Loops Printing Output Custom Functions Splatting Summary

clip

clip is not a PowerShell cmdlet, it’s from cmd

Example

Get-ChildItem | clip # places current working
directory listing to clipboard↪→

TalTech

Basics 2

Notes for the previous slide

1. Actually all cmd commands work in PowerShell too. Try for example
ipconfig

119

Conditionals Loops Printing Output Custom Functions Splatting Summary

Table of Contents

1 Conditionals

2 Loops

3 Printing Output

4 Custom Functions

5 Splatting

6 Summary

TalTech

Basics 2

Conditionals Loops Printing Output Custom Functions Splatting Summary

Functions

Functions or subroutines are a series of instructions to perform a
specific task

Example

function Write-ProcessFile {
$time = Get-Date -Format yyyyMMdd-hhmmss
$path = "C:\logs\$time processes.txt"
$ps = Get-Process
"Created at $time" | Out-File -FilePath $path
Out-File -InputObject $ps -FilePath $path -Append

}
Write-ProcessFile

TalTech

Basics 2

120

Notes for the previous slide

1. Once you define the function, you can just call its name and all the
defined content will be done

Conditionals Loops Printing Output Custom Functions Splatting Summary

Remark

Verb-Noun syntax is recommended but not mandatory
You can see all recommended verbs with Get-Verb

TalTech

Basics 2

121

Conditionals Loops Printing Output Custom Functions Splatting Summary

Functions with Arguments

User-defined functions get more powerful with arguments

Example

function Get-Factorial {
$counter = $args[0]
$factorial = 1
while ($counter) {

$factorial *= $counter--
}
$factorial

}
Get-Factorial 6 # 720 because 1*2*3*4*5*6=720

TalTech

Basics 2

Notes for the previous slide

1. $args[0] stands for the first positional argument
2. *= and $counter– should be familiar

122

Conditionals Loops Printing Output Custom Functions Splatting Summary

Functions with Multiple Arguments

Example

function Get-Rectangle {
$circumference = 2 * ($args[0] + $args[1])
$area = $args[0] * $args[1]
[PSCustomObject]@{ Circumference = $circumference

Area = $area }
}
Get-Rectangle 4 8
Circumference Area
------------- ----
24 32

TalTech

Basics 2

Conditionals Loops Printing Output Custom Functions Splatting Summary

Functions with Named Arguments

Example

function Get-Current {
Param([float]$Voltage, [float]$Resistance)
$current = $Voltage / $Resistance
"$current A"

}
Get-Current -Voltage 4.5 -Resistance 2 # 2.25 A

TalTech

Basics 2

123

Notes for the previous slide

1. Parameters are defined within Param()

Conditionals Loops Printing Output Custom Functions Splatting Summary

User Input

Read-Host allows to ask for user input

Example

$name = Read-Host "What's your favourite scripting
language?"↪→

if ($name -eq "PowerShell") {
"As expected: PowerShell!"

}
else {

"We'll see if we can do something about you still
liking $name"↪→

}

TalTech

Basics 2

124

Conditionals Loops Printing Output Custom Functions Splatting Summary

Table of Contents

1 Conditionals

2 Loops

3 Printing Output

4 Custom Functions

5 Splatting

6 Summary

TalTech

Basics 2

Conditionals Loops Printing Output Custom Functions Splatting Summary

Splatting

Splatting is passing parameters to a cmdlet as a hashtable

Example

$parameters = @{
Voltage = 12
Resistance = 5

}
Get-Current @parameters # 2.4 A

TalTech

Basics 2

125

Notes for the previous slide

1. Notice the @ instead of $

Conditionals Loops Printing Output Custom Functions Splatting Summary

Splatting

Example

$text = "Success!"
$other_parameters = @{

Object = $text
ForegroundColor = "Green"

}
Write-Host @other_parameters -BackgroundColor

DarkYellow↪→

TalTech

Basics 2

126

Notes for the previous slide

1. Hashtable items can contain other variables or even cmdlets and
functions

2. You can splat some and manually specify other parameters

Conditionals Loops Printing Output Custom Functions Splatting Summary

Table of Contents

1 Conditionals

2 Loops

3 Printing Output

4 Custom Functions

5 Splatting

6 Summary

TalTech

Basics 2

127

Conditionals Loops Printing Output Custom Functions Splatting Summary

What Did We Learn?

If, Elseif, Else

While, For, ForEach

Write-Output, Write-Host

Functions
Splatting

TalTech

Basics 2

2.4 Basics 3

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Basics 3
PowerShell Course

TalTech

TalTech

Basics 3

128

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Table of Contents

1 Filtering and Formatting

2 Strings

3 Arrays

4 Hashtables

5 PSCustomObjects

6 CSV and JSON

7 Getting Help

8 Summary

TalTech

Basics 3

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Table of Contents

1 Filtering and Formatting

2 Strings

3 Arrays

4 Hashtables

5 PSCustomObjects

6 CSV and JSON

7 Getting Help

8 Summary

TalTech

Basics 3

129

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Select-Object

Select-Object selects objects or object properties

Example

[TimeSpan]"1:2:3" # TimeSpan object with many
attributes↪→

[TimeSpan]"1:2:3" | Select-Object Hours, Minutes
Hours Minutes
----- -------
1 2
Get-Process | select * # elaborate data

TalTech

Basics 3

Notes for the previous slide

1. Select-Object * force selects all attributes from the input object
2. select is an alias for Select-Object

130

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Where-Object

Where-Object filters objects from a collection based on their
property values

Example

Get-Service | Where-Object { $_.Status -eq "Stopped" }
ls | where { $_.Name -match "a" -and $_.Length -ge

100kB }↪→

ls | ? { $_.CreationTime -ge (Get-Date).AddDays(-1) }

TalTech

Basics 3

Notes for the previous slide

1. The first example lists all stopped services
2. The second example lists all files with "a" in the name and size at

least 100 kB
3. Note the use of aliases
4. The third example shows object created within the last 24 h

131

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Sort-Object

Sort-Object sorts objects by property values

Example

"b", "c", 1, "a" | Sort-Object # 1, "a", "b", "c"
ls | sort -Property Length -Descending
1..5 + 3..7 | sort -Unique # 1..7

TalTech

Basics 3

Notes for the previous slide

1. The second example sorts files by size decreasingly

132

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Group-Object

Group-Object groups objects that contain the same value for
specified properties

Example

Get-Process | Group-Object -Property Responding
ls | group Attributes
ls -File | group Extension | % {

"There are $($_.Count) $($_.Name)'s"
}

TalTech

Basics 3

Notes for the previous slide

1. Group-Object returns an object where similar elements are bundled
2. It allows to quickly see the count and loop through the elements of

a kind
3. We need to use the $($_.Attribute) syntax in strings
4. For all of these cmdlets, -Object is optional

133

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Compare-Object

Compare-Object compares two sets of objects

Example

$array1 = "a", "c", 1
$array2 = "a", "b", 2
Compare-Object $array1 $array2
InputObject SideIndicator
----------- -------------
b =>
2 =>
c <=
1 <=

TalTech

Basics 3

Notes for the previous slide

1. The positional parameters are for -ReferenceObject and
-DifferenceObject respectively

2. Matching elements can be included with -IncludeEqual

134

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Tables and Lists

Whenever PowerShell outputs data, it tries to decide the best
format for the console. In some cases, it might be useful to format
it manually. Let’s focus on three options

Format-Table

Format-List

Out-GridView

TalTech

Basics 3

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Format-Table

Format-Table is used by default if the output can be fitted into
columns within the console width

Example

Get-Process # prints processes
Get-Process | Format-Table # same output
Get-Process | Format-Table -Property ProcessName, Id,

Responding, MainModule -Wrap↪→

TalTech

Basics 3

135

Notes for the previous slide

1. The last one prints specific columns and wraps long lines

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Format-List

Format-List is used by default if the output cannot be fitted into
columns within the console width

Example

Get-Process # prints processes in columns
Get-Process | Format-List # same data as a list
Get-Process | Format-List -Property * # elaborate

Note

Output is not suitable for piping

TalTech

Basics 3

136

Notes for the previous slide

1. The last one prints everything Get-Process gets about processes
2. Format- cmdlets should be used as the last commands. Their

output is not suitable for piping

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Out-GridView

Out-GridView creates a graphical window with a minimalistic
interface to sort and filter the data

Example

Get-Service | Out-GridView
Get-Service | Select-Object * | Out-GridView

Note

The cmdlet is only available in the GUI versions of Windows

TalTech

Basics 3

137

Notes for the previous slide

1. Out-GridView does not have -Property parameter

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Table of Contents

1 Filtering and Formatting

2 Strings

3 Arrays

4 Hashtables

5 PSCustomObjects

6 CSV and JSON

7 Getting Help

8 Summary

TalTech

Basics 3

138

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

String Methods

A method is a procedure associated with a class. Strings are a class

Example

"Test" | Get-Member
"Test".ToUpper() # TEST
"Car".Replace("C", "B") # Bar
"a.b,c.d".Split(",.") # @("a", "b", "c", "d")
" padded ".Trim() # padded (without spaces)
"slaughter".Substring(1, 5) # laugh
"ABC".Remove(1, 1) # AC
"PowerShell".IndexOf("e") # 3
"PowerShell"[-1] # l

TalTech

Basics 3

Notes for the previous slide

1. Get-Member can be used with any object to see its type and
available methods

2. The characters are case sensitive
3. @() is not printed
4. Method .Split() takes one argument or considers each character

as a separator
5. First character is at position 0
6. Omitting the second paramter for .Substring() will return the

string until the end
7. Trimming is useful for handling any input — user input, poor CSV

files, etc.
8. Number in square brackets outputs the character at that position.

Use [-1] to get the last position

139

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Concatenation

To concatenate means to link (things) together in a chain or series

Example

$first_name = "Elvis"
$last_name = "Presley"

$first_name + " " + $last_name # Elvis Presley
"$first_name $last_name" # Elvis Presley

$array = @($first_name, $last_name)
"$array" # Elvis Presley

TalTech

Basics 3

Notes for the previous slide

1. Concatenation is just a fancy word for linking things together in a
chain

2. Three examples of achieving the same result
3. @() is optional, here we’re just explicit about creating an array

140

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

String Operators

Operators are somewhat similar to methods

Example

"abcd" -split "bc" # @("a", "d")
"Visit them" -replace "them", "us" # Visit us
"book" -ireplace "B", "C" # Cook
"book" -creplace "B", "C" # book
"cool" -match "oo" # True
"abc123" -match "a.1" # False
"abc123" -match "a..1" # True
"PowerShell" -like "*Shell" # True

TalTech

Basics 3

Notes for the previous slide

1. Operator -split takes the whole string as one parameter
2. i means case insensitive which is also the default
3. c means case sensitive
4. Operator -match supports regular expression which is complicated

but powerful
5. . means any single character
6. Operator -like supports the wild card character *

141

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

-f Format Operator

Example

$number = 123
"The most important number is {0}" -f $number
The most important number is 123

"Your username is {0}" -f $env:USERNAME

$array = "cats", "dogs", "mice"
"My favourite pets are {0}, {1} and {2}" -f $array
My favourite pets are cats, dogs and mice

TalTech

Basics 3

Notes for the previous slide

1. $env: provides access to environment variables

142

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

-f Format Operator

Example

"{0} double is {1}" -f $number,($number*2)
123 double is 246
"{0} in hex is {0:x} and percentage {0:p}" -f $number
123 in hex is 7b and percentage 12 300,00%
"'{0}' padded to 5 characters is '{0,5}'" -f $number
'123' padded to 5 characters is ' 123'
"The same can be done for hex: {0,5:x}" -f $number
The same can be done for hex: 7b
"Custom time: {0:HH}.{0:mm}/{0,4:ss}" -f (Get-Date)
Custom time: 15.42/ 04

TalTech

Basics 3

Notes for the previous slide

1. :x is for the hexadecimal value of the integer
2. Number after the comma pads but does not limit the length
3. There are many more format strings

143

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Table of Contents

1 Filtering and Formatting

2 Strings

3 Arrays

4 Hashtables

5 PSCustomObjects

6 CSV and JSON

7 Getting Help

8 Summary

TalTech

Basics 3

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Array Operators

Example

1..4 -join "" # 1234
-join @(1..4) # 1234
1..4 -join "-" # 1-2-3-4
10, 15, 20 -gt 14 # 15, 20
"ab", "bc", "cd" -match "b" # "ab", "bc"
"ab", "bc", "cd" -notmatch "c" # "ab"
4 -in 1..6 # True
"Shell" -in "Windows", "PowerShell" # False
"Windows", "PowerShell" -contains "Windows" # True

TalTech

Basics 3

144

Notes for the previous slide

1. -match, -like and others also have corresponding -not operators
2. -in and -contains search for an exact match only

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Looping through Elements

Example

$cars = "Ford", "Audi", "BMW"
$cars | % { $_.ToUpper() } # "FORD", "AUDI", "BMW"

foreach ($car in $cars) {
if ($car -notmatch "o") {

"I like $car"
}

} # will not print "I like Ford"

$cars[1] # Audi

TalTech

Basics 3

145

Notes for the previous slide

1. % is an alias for ForEach-Object
2. $array[$number] allows to access a certain element in the array

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Nested Loops

Example

$cars = "Ford", "Audi", "BMW"
$pronouns = "I", "You"
$cars | % {

$car = $_
$pronouns | % { "$_ like $car" }

}

Note

Be careful when nesting ForEach-Object loops. Old $_ gets
overwritten in new loops

TalTech

Basics 3

146

Notes for the previous slide

1. A combination of ForEach-Object and foreach is also of course
possible

2. Yet as soon as you create another ForEach-Object or even
Where-Object you overwrite the value of $_

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Table of Contents

1 Filtering and Formatting

2 Strings

3 Arrays

4 Hashtables

5 PSCustomObjects

6 CSV and JSON

7 Getting Help

8 Summary

TalTech

Basics 3

147

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Hashtables

Example

$planets = @{
Earth = @{

Mass = 5.9722E24
Radius = 6378.1

}
Mars = @{

Mass = 6.39E23
Radius = 3396.2

}
}

TalTech

Basics 3

Notes for the previous slide

1. Let’s define a hashtable to use as an example
2. Note that we have two hashtables in one
3. Mass is in kg and equatorial radius in km

148

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Hashtables

Example

$planets.Mars.Mass # 6,39E+23
$planets["earth"]["Mass"] # 5,9722E+24
$planets.Keys # "Earth", "Mars"
$planets.Mars.Keys # "Radius", "Mass"
$planets["Earth"].Values # 6378,1, 5,9722E+24
$planets.Count # 2

TalTech

Basics 3

Notes for the previous slide

1. Values can be access via either putting a dot in between keys or the
keys in square brackets

149

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Adding and Using Values

Example

$planets = $planets + @{
Venus = @{

Mass = 4.8675E24
Radius = 6051.8
Volume = 9.2843E11

}
}
$planets.Earth.Add("Volume", 1.08321E12)
$planets.Keys | foreach { $planets.$_.Mass } | measure

-Average -Sum↪→

TalTech

Basics 3

Notes for the previous slide

1. There are different ways to add values
2. Volume is in cubic km
3. measure is an alias for Measure-Object

150

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Create a Hashtable Dynamically

Example

$snapshot = @{}
foreach ($service in Get-Service) {

$snapshot.Add($service.Name, $service.Status)
}

TalTech

Basics 3

Notes for the previous slide

1. @{} creates an empty hashtable

151

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Table of Contents

1 Filtering and Formatting

2 Strings

3 Arrays

4 Hashtables

5 PSCustomObjects

6 CSV and JSON

7 Getting Help

8 Summary

TalTech

Basics 3

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Creating PSCustomObjects

PSCustomObjects are similar to hashtables and can be created
from them

Example

In PowerShell v2
New-Object -TypeName PSObject -Property @{

Name = "John"
Age = 23

}
An alternative since PowerShell v3
[PSCustomObject]@{ Name = "John"; Age = 23 }

TalTech

Basics 3

152

Notes for the previous slide

1. The commands yield in essence identical objects
2. Don’t mind the new lines. Either a semicolon or a new line start a

new attribute in both cases

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Hashtables and PSCustomObjects in Arrays

Example

$hash_array = @()
$hash_array += @{ Friend = "John"

Age = 23 }
$hash_array += @{ Friend = "Mary"

Age = 21 }
$hash_array # Two columns --- Name (Key) and Value

TalTech

Basics 3

153

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Hashtables and PSCustomObjects in Arrays

PSCustomObjects behave better in arrays

Example

$psobject_array = @()
$psobject_array += [PSCustomObject]@{ Friend = "John"

Age = 23 }
$psobject_array += [PSCustomObject]@{ Friend = "Mary"

Age = 21 }
$psobject_array # Two columns --- Friend and Age

TalTech

Basics 3

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Table of Contents

1 Filtering and Formatting

2 Strings

3 Arrays

4 Hashtables

5 PSCustomObjects

6 CSV and JSON

7 Getting Help

8 Summary

TalTech

Basics 3

154

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

CSV and JSON

CSV stands for comma separated values, although they may
be semicolon or some other character separated as well
JSON is JavaScript object notation, often used in web
development

TalTech

Basics 3

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Output to CSV Files

Example

Get-Process | Export-Csv -Path Processes.csv
Get-Process | Export-Csv -Path Processes.csv

-Delimiter ";" -NoTypeInformation↪→

Get-Process | select Name, Path, Responding, Id |
Export-Csv -Path Processes.csv -Delimiter ";"
-NoTypeInformation

↪→

↪→

Note

The output of Format-Table is not suitable for Export-Csv input

TalTech

Basics 3

155

Notes for the previous slide

1. The first example is very simple, but has problems
2. The second example does not have an extra line in the beginning

and opens better in Excel where the regional delimited is a
semicolon instead of a comma

3. The third example limits the columns to what we might actually
need

4. The third example limits the columns to what we might actually
need

5. Format-Table output should not be used for piping forward

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Input from CSV files

Example

"Name;Symbol;Atomic number
Helium;He;2
Carbon;C;6
Iron;Fe;26" | Out-File -Path Elements.csv
$elements = Import-Csv Elements.csv -Delimiter ";"
$elements # Prints the created PSCustomObject

TalTech

Basics 3

156

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

ConvertTo-Csv and ConvertFrom-Csv

Example

"Name;Symbol;Atomic number
Helium;He;2
Carbon;C;6
Iron;Fe;26" | ConvertFrom-Csv -Delimiter ";"

Get-Process powershell | select Name, Id |
ConvertTo-Csv -NoTypeInformation -Delimiter ";"↪→

TalTech

Basics 3

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Input from JSON

Example

$todo = Invoke-RestMethod -Uri
"https://jsonplaceholder.typicode.com/todos"↪→

$users = Invoke-RestMethod -Uri
"https://jsonplaceholder.typicode.com/users"↪→

$todo | where { -not $_.completed }

Note

There are no Import-Json and Export-Json

TalTech

Basics 3

157

Notes for the previous slide

1. https://jsonplaceholder.typicode.com provides free service with
dummy data

2. There are also free services for e.g. weather and financial markets’
data

3. The URL provides just text but PowerShell will recognise the JSON
format automatically and convert it to a PSCustomObject

4. The cmdlet again outputs a PSCustomObject

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

ConvertTo-Json and ConvertFrom-Json

Example

ps powershell | select Name, Id | ConvertTo-Json
#[
{
"Name": "powershell",
"Id": 19788
}, {
"Name": "powershell",
"Id": 29156
}
#]

TalTech

Basics 3

158

Notes for the previous slide

1. These work just like their CSV alternatives
2. In more advanced examples, PowerShell objects can be converted to

JSON text and submitted to REST APIs with the POST method
3. JSON is similar to but less verbose to XML

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Table of Contents

1 Filtering and Formatting

2 Strings

3 Arrays

4 Hashtables

5 PSCustomObjects

6 CSV and JSON

7 Getting Help

8 Summary

TalTech

Basics 3

159

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Getting Help

There is a help page for each command

Example

Get-Help -Name Get-ChildItem
help ls
help Where-Object -Examples
help sort -Full
help ps -Online
Update-Help

TalTech

Basics 3

Notes for the previous slide

1. -Name can be a positional parameter
2. help is an alias. Remember that Get- is always optional
3. -Online opens the documentation in the default browser
4. Update-Help downloads the latest documentation to local cache

160

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

Table of Contents

1 Filtering and Formatting

2 Strings

3 Arrays

4 Hashtables

5 PSCustomObjects

6 CSV and JSON

7 Getting Help

8 Summary

TalTech

Basics 3

Filtering and Formatting Strings Arrays Hashtables PSCustomObjects CSV and JSON Getting Help Summary

What Did We Learn?

Filtering and formatting
String and array methods and operators
Hashtables and PSCustomObjects
CSV and JSON objects in PowerShell
Accessing cmdlets’ manuals

TalTech

Basics 3

161

2.5 Windows OS Management

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Windows OS Management
PowerShell Course

TalTech

TalTech

Windows OS Management

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Table of Contents

1 Files

2 Processes and Services

3 Power

4 WMI and CIM

5 Features and Roles

6 Remoting

7 Events

8 Summary

TalTech

Windows OS Management

162

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Table of Contents

1 Files

2 Processes and Services

3 Power

4 WMI and CIM

5 Features and Roles

6 Remoting

7 Events

8 Summary

TalTech

Windows OS Management

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Navigating

Example

Get-Location # prints the working directory
pwd # alias to the above (present working directory)
Set-Location -Path "D:\"
cd \
sl "HKLM:"
sl ~ # ~ is the same as $env:USERPROFILE or $HOME

TalTech

Windows OS Management

163

Notes for the previous slide

1. cd and sl are aliases for Set-Location
2. HKLM: allows to navigate into the Windows Registry

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Listing Files and Folders

Example

Get-ChildItem # lists files and folders in pwd
Get-ChildItem -Path "C:\" -Name # lists only names
dir -Attributes ReadOnly # lists only read-only files
dir "HKLM:\SOFTWARE\" # lists the "software" hive
ls *.txt -Recurse # .txt files in all subfolders too
ls -File "*a*" # lists files with "a" in the names
ls -Directory -Recurse # lists folder structure
ls -Recurse | % { $_.FullName } # shows full paths
ls | select * # shows all available attributes
(ls).Count # returns the count of files and folders

TalTech

Windows OS Management

164

Notes for the previous slide

1. Items have many attributes. See them all by selecting all
2. It’s often useful to combine the output with Where-Object, but the

preferred (faster) way is to filter output already with
Get-ChildItem parameters

3. $_.FullName is the full path
4. Almost all objects have the .Count attribute

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Saving Text to Files

Example

$txt = "abc"
$path = "C:\temp\test.txt"
$txt | Out-File -FilePath $path # UTF-16 encoding
$txt | Out-File -Encoding utf8 $path # UTF-8 BOM
[IO.File]::WriteAllLines($path, $txt) # UTF-8

TalTech

Windows OS Management

165

Notes for the previous slide

1. We will not discuss encodings in depth, but be aware that
PowerShell outputs UTF-16 by default

2. UTF-8 can be used easily by setting the -Encoding parameter
3. Disabling the byte-order-mark is more complicated
4. The last example uses .NET methods which PowerShell supports

but are not covered in this course
5. Some other programmes might be picky about the encoding of

input files

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Copy, Move, Rename and Delete

Example

Copy-Item -Path File1 -Destination File2
cp Some_folder Folder_copy -Recurse
Move-Item -Path File1 -Destination File2
mv File1 File2 -WhatIf
Rename-Item -Path File1 -NewName New_and_better_name
ren File1 New_and_better_name
Remove-Item -Path Useless_file
del *.txt -Confirm

TalTech

Windows OS Management

166

Notes for the previous slide

1. Simple examples
2. All these cmdlets have -Confirm and -WhatIf parameters to make

their uses more involved

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Access-Control Lists

Example

Get-Acl File.txt
(Get-Acl File.txt).Access

Get-Acl -Path File1.txt | Set-Acl -Path File2.txt

TalTech

Windows OS Management

167

Notes for the previous slide

1. An ACL is a list of permisisons attached to an object, i.e. who can
do what with the object

2. The last example copies the ACL of File1.txt to File2.txt
3. ACLs are not limited to file ACLs. Many objects in Windows and

Microsoft products have an ACL

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Table of Contents

1 Files

2 Processes and Services

3 Power

4 WMI and CIM

5 Features and Roles

6 Remoting

7 Events

8 Summary

TalTech

Windows OS Management

168

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Get-Process

Example

Get-Process
Get-Process -Name powershell, explorer
Get-Process -IncludeUserName # requires administrator

permissions↪→

Get-Process -IncludeUserName | Group-Object UserName

TalTech

Windows OS Management

Notes for the previous slide

1. We have used this cmdlet as an example many times before
2. Some cmdlets or their parameters require the shell to be started in

elevated user rights

169

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Stop-Process

Example

Stop-Process -Name "notepad"
Stop-Process -Id 4214 -Confirm
kill -Name chrome -Force

TalTech

Windows OS Management

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Get-Service

Example

Get-Service
Get-Service -Name "net*"
Get-Service -DisplayName "Windows *"
"net*" | service
service | where { $_.Status -eq "Stopped" }
service | group Status
service | measure

TalTech

Windows OS Management

170

Notes for the previous slide

1. Windows service is a computer program that operates in the
background

2. Positional parameter is -Name not -DisplayName

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Set-Service

Note

This cmdlet requires elevated permissions

Example

Set-Service -Name "lanmanworkstation" -DisplayName
"LanMan Workstation"↪→

Set-Service -Name W32Time -StartupType Disabled
Set-Service -Name "WinDefend" -Status Running
Set-Service -Name "Dhcp" -Status Stopped

TalTech

Windows OS Management

171

Notes for the previous slide

1. Due to the permissions requirement, this cannot be tested on
classroom PCs

2. The default name is Workstation
3. The second one disables time synchronisation
4. The third starts Windows Defender Antivirus
5. The fourth stops DHCP

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Start-Service, Stop-Service and Restart-Service

These are alternatives to using Set-Service -Status

Example

Start-Service -Name Appinfo
Get-Service -DisplayName "Windows *" | Restart-Service
$service = Get-Service -Name W32Time
Stop-Service -InputObject $service

TalTech

Windows OS Management

172

Notes for the previous slide

1. Again, administrator permissions are needed
2. You can call the cmdlets in a loop, if the input is an array of

services or services’ names

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Table of Contents

1 Files

2 Processes and Services

3 Power

4 WMI and CIM

5 Features and Roles

6 Remoting

7 Events

8 Summary

TalTech

Windows OS Management

173

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Stop-Computer and Restart-Computer

Example

Stop-Computer
Stop-Computer -Force
Stop-Computer -ComputerName "server1", "client2"
Restart-Computer
Restart-Computer -Force
Restart-Computer -ComputerName "server1", "localhost"

Note

Be careful not to interrupt important processes or other users

TalTech

Windows OS Management

Notes for the previous slide

1. -Force shuts down even when other users are still logged on
2. -Computer may include other computers on the network where the

logged on account is a local administrator

174

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Table of Contents

1 Files

2 Processes and Services

3 Power

4 WMI and CIM

5 Features and Roles

6 Remoting

7 Events

8 Summary

TalTech

Windows OS Management

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

WMI and CIM

Windows Management Instrumentation (WMI) provides an
operating system interface through which instrumented
components provide information and notification. WMI is
Microsoft’s implementation of the Common Information Model
(CIM) standards
The Common Information Model (CIM) is an open standard
that defines how managed elements in an IT environment are
represented as a common set of objects and relationships
between them

TalTech

Windows OS Management

175

Notes for the previous slide

1. In essence, these are tools to interact with the operating system and
the hardware on a low level

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Get-WmiObject

Example

Get-WmiObject -Class Win32_Bios
Get-WmiObject -Class Win32_Bios | select *
Get-WmiObject Win32_Service
gwmi Win32_processor
gwmi Win32_Share -Computer "server1"
gwmi -List

TalTech

Windows OS Management

176

Notes for the previous slide

1. The first example gets BIOS info
2. The third line is similar to Get-Service
3. Win32_processor is for processor info
4. Next shows shares on server1
5. -List shows all available classes

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

CIM

Example

Get-CimInstance -Class Win32_Bios
Get-CimClass # lists all classes
Get-CimClass Win32_Service
(Get-CimClass Win32_Service).CimClassMethods

Note

CIM is preferred over WMI

TalTech

Windows OS Management

177

Notes for the previous slide

1. CIM provides similar functionality but it is a more modern approach
2. Get-WmiObject should be replaced by Get-CimInstance
3. WMI is still widely used

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Table of Contents

1 Files

2 Processes and Services

3 Power

4 WMI and CIM

5 Features and Roles

6 Remoting

7 Events

8 Summary

TalTech

Windows OS Management

178

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Get-WindowsFeature

Example

Get-WindowsFeature
Get-WindowsFeature -Name "*AD*"
Get-WindowsFeature | where { $_.InstallState -eq

"Installed" }↪→

TalTech

Windows OS Management

Notes for the previous slide

1. The cmdlet shows what is currently installed and generally available
2. A role is a set of software programs that let a computer perform a

specific function for multiple users or other computers within a
network, e.g. DHCP or Active Directory

3. Features are software programs that support the functionality of one
or more roles, e.g. tools like the Telnet client

179

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Install-WindowsFeature

Example

Install-WindowsFeature -Name AD-Domain-Services
Install-WindowsFeature BitLocker, Web-Ftp-Server
Install-WindowsFeature -Name Hyper-V -Restart
Install-WindowsFeature Hyper-V -Computer "server1"
Install-WindowsFeature -Name Web-Server

-IncludeAllSubFeature -IncludeManagementTools↪→

TalTech

Windows OS Management

Notes for the previous slide

1. Name can be named or positional
2. Arrays are accepted
3. -Restart restarts automatically, if it is needed
4. The last example installs IIS with all subfeatures and tools
5. Add-WindowsFeature is an alias

180

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Uninstall-WindowsFeature

Example

Uninstall-WindowsFeature -Name AD-Domain-Services
Uninstall-WindowsFeature BitLocker, Web-Ftp-Server
Uninstall-WindowsFeature -Name Hyper-V -Restart
Uninstall-WindowsFeature Hyper-V -Computer "server1"

TalTech

Windows OS Management

Notes for the previous slide

1. This cmdlet works the same way as Install-WindowsFeature
2. Remove-WindowsFeature is an alias
3. These are server-only cmdlets

181

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Table of Contents

1 Files

2 Processes and Services

3 Power

4 WMI and CIM

5 Features and Roles

6 Remoting

7 Events

8 Summary

TalTech

Windows OS Management

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

-ComputerName

Many commands have the -Computer parameter which runs the
command on the target computer over the network

Example

Stop-Computer -ComputerName "server1"
gwmi Win32_Share -ComputerName "server1"
Install-WindowsFeature Hyper-V -ComputerName "server1"

TalTech

Windows OS Management

182

Notes for the previous slide

1. We have already used the -Computer and -ComputerName
parameters in previous examples

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Invoke-Command

Example

Invoke-Command -ScriptBlock { ls }
Invoke-Command -ComputerName "server1" -ScriptBlock {

ls "C:\"
}
Invoke-Command -FilePath "c:\scripts\test.ps1"

-ComputerName "client1"↪→

$targets = Get-Content Machines.txt
$command = [ScriptBlock]{ (Get-Host).Version }
icm -ComputerName $targets -ScriptBlock $command

TalTech

Windows OS Management

183

Notes for the previous slide

1. Invoke-Command provides much more flexibility
2. The first command is the same as running just ls
3. ComputerName may be an array
4. [ScriptBlock] is a type we did not cover before, but it can

contains commands that Invoke-Command takes as input

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Sessions

Example

$session = New-PSSession "server1"
Invoke-Command -Session $session -ScriptBlock {

hostname
} # server1

Enter-PSSession $session
hostname # server1

TalTech

Windows OS Management

184

Notes for the previous slide

1. After running Enter-PSSession all commands are run as if they
are run locally on server1

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Table of Contents

1 Files

2 Processes and Services

3 Power

4 WMI and CIM

5 Features and Roles

6 Remoting

7 Events

8 Summary

TalTech

Windows OS Management

185

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Get-EventLog

Example

Get-EventLog -LogName System

$parameters = @{
LogName = "Application"
EntryType = "Error"
After = (Get-Date).AddDays(-30)

}

Get-EventLog @parameters

TalTech

Windows OS Management

Notes for the previous slide

1. LogName is mandatory
2. The interfaces with the Windows Event Log technology
3. On GUI, you could use the Event Viewer
4. This cmdlet can be used without GUI and for automating
5. Let’s remind ourselves how splatting works

186

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Custom Event logs

Example

New-EventLog -LogName 'My Custom Log' -Source
'Important Script'↪→

$event = @{
LogName = "My Custom Log"
Source = "Important Script"
EventId = 3
Message = "Test message"

}
Write-EventLog @event

TalTech

Windows OS Management

Notes for the previous slide

1. While Get-EventLog is useful for reading events, we might want to
create our own events

2. This requires elevated permissions
3. First, we need to create a log. Both -LogName and -Source are

needed
4. Then we can start logging message with Write-EventLog

187

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

Table of Contents

1 Files

2 Processes and Services

3 Power

4 WMI and CIM

5 Features and Roles

6 Remoting

7 Events

8 Summary

TalTech

Windows OS Management

Files Processes and Services Power WMI and CIM Features and Roles Remoting Events Summary

What Did We Learn?

File management
Processes and services management
Power management
WMI and CIM
Installing and removing features and roles
Remote commands and sessions
Reading and writing events

TalTech

Windows OS Management

188

2.6 Active Directory

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Active Directory
PowerShell Course

TalTech

TalTech

Active Directory

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Table of Contents

1 Introduction

2 Provisioning

3 Managing Users

4 Managing Groups

5 Other Objects

6 Summary

TalTech

Active Directory

189

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Table of Contents

1 Introduction

2 Provisioning

3 Managing Users

4 Managing Groups

5 Other Objects

6 Summary

TalTech

Active Directory

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

What is Active Directory?

Active Directory (AD) is a directory service
It stores data about items (most importantly users, computers,
groups, printers) like a database and replies to queries about
this data
For example, it is used to authenticate users when they log on
A server hosting Active Directory Domain Services (AD DS) is
a domain controller
All Active Directory PowerShell cmdlets have the *-AD* syntax

TalTech

Active Directory

190

Notes for the previous slide

1. Implementing direcotry services is virtually inevitable in a corporate
environment

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

AD Cmdlets

Example

Get-Command -Module ActiveDirectory
Get-Command -Module ActiveDirectory -Verb Get

TalTech

Active Directory

191

Notes for the previous slide

1. There are many commands. We will cover only the very basics

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Table of Contents

1 Introduction

2 Provisioning

3 Managing Users

4 Managing Groups

5 Other Objects

6 Summary

TalTech

Active Directory

192

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Install AD DS and Create a New Forest

Example

Install-WindowsFeature AD-Domain-Services

$password = ConvertTo-SecureString -String
"TalTech123" -AsPlainText -Force↪→

Install-ADDSForest -DomainName pscourse.local
-SafeModeAdministratorPassword $password↪→

TalTech

Active Directory

Notes for the previous slide

1. $password is a secure string object
2. The commands make the machine a domain controller
3. It is unlikely that you will need to go through this initial process in

the real life yourself
4. After a restart, you need to log in with your domain administrator

account

193

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Browsing the New Domain

Example

Get-ADForest
Get-ADDomain
Get-ADDomain -Server pscourse

Get-ADUser -Filter *
Get-ADGroup -Filter *
Get-ADComputer -Filter *
Get-ADObject -Filter *

TalTech

Active Directory

Notes for the previous slide

1. Get-ADForest will show info about the forest
2. Get-ADDomain will show info about the domain
3. All AD cmdlets have -Server parameter which can be used in a

multi-domain environment
4. The other cmdlets list objects
5. Some of the output might be too confusing, but some can be

discussed in the seminar

194

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Table of Contents

1 Introduction

2 Provisioning

3 Managing Users

4 Managing Groups

5 Other Objects

6 Summary

TalTech

Active Directory

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Basic User Account Management

Example

New-ADUser -Name John

Get-ADUser John

Remove-ADUser John

TalTech

Active Directory

195

Notes for the previous slide

1. These are the basic cmdlets to create, browse and remove a user
2. Note the long code in the SID attribute. This is the unique ID that

the service uses to identify objects (not the name or anything else)
3. By default, users are created in the disabled status
4. Removal needs confirmation

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

User Account Creation

Example

$password = ConvertTo-SecureString -String
"ChangeMeN0w" -Force -AsPlainText↪→

New-ADUser -Name "Mary Poppins" -GivenName "Mary"
-Surname "Poppins" -SamAccountName "mary.poppins"
-AccountPassword $password -Country "UK" -City
"London" -StreetAddress "17 Cherry Tree Lane"
-EmployeeNumber 123456 -Title "Nanny" -Enabled
$true

↪→

↪→

↪→

↪→

↪→

Get-ADUser mary.poppins | select *
Get-ADUser mary.poppins -Property *

TalTech

Active Directory

196

Notes for the previous slide

1. There are many parameters to this command
2. Just select * will reveal more but not all attributes
3. We need to query all properties to see them

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

User Account Creation by Splatting

Example

$user = @{ Name = "Mary Poppins"
GivenName = "Mary"

Surname = "Poppins"
SamAccountName = "mary.poppins"

AccountPassword = $password
Country = "UK"

City = "London"
StreetAddress = "17 Cherry Tree Lane"

EmployeeNumber = 123456
Title = "Nanny"

Enabled = $true }

TalTech

Active Directory

197

Notes for the previous slide

1. Splatted arguments are easier to read
2. Now you can run New-ADUser @user

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

User Account Management

Example

New-ADUser sherlock.holmes
Set-ADUser -Identity sherlock.holmes -DisplayName

"Sherlock Holmes"↪→

Set-ADUser sherlock.holmes -StreetAddress "221b Baker
St" -City "London" -Country "UK"↪→

Enable-ADAccount sherlock.holmes

TalTech

Active Directory

198

Notes for the previous slide

1. After the account is created, its attributes can be modified with
Set-ADUser

2. Enable-ADAccount enables the account so it can be used to log on
to systems

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Querying Data

Example

$data = Get-ADUser sherlock.holmes -Property
DisplayName, StreetAddress, City, Country↪→

"User {0} is located at {1}, {2} in {3}" -f
$data.DisplayName, $data.StreetAddress,
$data.City, $data.Country

↪→

↪→

User Sherlock Holmes is located at 221b Baker St,
London in UK↪→

"$data" # displays the distinguished name

TalTech

Active Directory

199

Notes for the previous slide

1. After the account is created, its attributes can be modified with
Set-ADUser

2. Enable-ADAccount enables the account so it can be used to log on
to systems

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Querying Data

Example

Get-ADUser -Filter "name -like '*a*'" # mary.poppins
and Administrator, but not Sherlock↪→

Get-ADUser -Filter "country -eq 'UK'"
Get-ADUser -Filter "country -eq 'UK'" |

Disable-ADAccount↪→

Get-ADUser -Filter "country -eq 'UK'" | Set-ADUser
-StreetAddress "Westminister"↪→

TalTech

Active Directory

200

Notes for the previous slide

1. Running Get-ADUser again would show that the accounts are now
disabled

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Reset Passwords

Example

$user = "sherlock.holmes"
$password = "TemporaryPassword123!"
$secureString = ConvertTo-SecureString -AsPlainText

"$password" -Force↪→

Set-ADAccountPassword -Identity $user -Reset
-NewPassword $secureString↪→

TalTech

Active Directory

201

Notes for the previous slide

1. The use of variable is optional. It could also be a oneliner
2. Secure strings are objects that contain passwords. They cannot be

converted back to plain text
3. It might also be a useful idea to use Read-Host to get the

username and new password

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Unlock User Account

Example

Unlock-ADAccount -Identity sherlock.holmes
Unlock-ADAccount mary.poppins

TalTech

Active Directory

202

Notes for the previous slide

1. If the user tries a wrong password too many times, the account gets
locked

2. -Identity is a positional parameter

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Table of Contents

1 Introduction

2 Provisioning

3 Managing Users

4 Managing Groups

5 Other Objects

6 Summary

TalTech

Active Directory

203

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Creating Groups

Example

New-ADGroup -Name "London Accounting" -GroupScope
Global↪→

Set-ADGroup -Identity "London Accounting" -DisplayName
"London Accounting"↪→

Get-ADGroup "london accounting"

Remark

Names are case insensitive

TalTech

Active Directory

Notes for the previous slide

1. GroupScope matters in a multi domain environment. In a single
domain environment, Global is always fine

204

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Creating Groups in a Loop

Example

$locations = "London", "New York", "Tallinn"
$departments = "Accounting", "Sales", "Warehouse"

foreach ($l in $locations) {
foreach ($d in $departments) {

New-ADGroup -Name "$l $d" -GroupScope Global
}

}

TalTech

Active Directory

Notes for the previous slide

1. The script quickly creates 9 groups
2. Already existing groups will give errors

205

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Adding Members

Example

Add-ADGroupMember -Identity "london accounting"
-Members "administrator"↪→

Add-ADGroupMember -Identity "london accounting"
-Members "sherlock.holmes", "mary.poppins"↪→

Get-ADGroupMember "london accounting"

TalTech

Active Directory

Notes for the previous slide

1. -Identity and -Members are positional parameters

206

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Remove Members

Example

Remove-ADGroupMember "london accounting"
"administrator"↪→

Add-ADGroupMember -Identity "london accounting"
-Members "administrator"↪→

Remove-ADGroupMember "london accounting"
"administrator" -Confirm:$false↪→

TalTech

Active Directory

Notes for the previous slide

1. -Confirm:$false suppresses the confirmation dialogue. This
applies to many commands

207

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Principal Membership

Example

Get-ADPrincipalGroupMembership -Identity
sherlock.holmes↪→

Get-ADPrincipalGroupMembership sherlock.holmes
Get-ADPrincipalGroupMembership | select

-ExpandProperty name↪→

TalTech

Active Directory

Notes for the previous slide

1. All users are members of Domain Users
2. select -ExpandProperty outputs an array with the names

208

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Nested Groups and -Recurse

Example

New-ADGroup Accounting -GroupScope Global
Add-ADGroupMember Accounting (Get-ADGroup -Filter

"name -like '* Accounting'")↪→

New-ADUser teele.raja
Add-ADGroupMember "tallinn accounting" teele.raja

Get-ADGroupMember accounting # displays nested groups
Get-ADGroupMember accounting -Recursive # displays

nested members↪→

TalTech

Active Directory

Notes for the previous slide

1. First, we create a new group Accounting
2. Then, we add all regional accounting groups into it
3. Remember positional parameters -Identity and -Members

209

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Table of Contents

1 Introduction

2 Provisioning

3 Managing Users

4 Managing Groups

5 Other Objects

6 Summary

TalTech

Active Directory

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Computer Accounts

Example

Get-ADComputer -Filter *

Get-ADComputer -Filter * -Property *

TalTech

Active Directory

210

Notes for the previous slide

1. All servers and computers create their own object
2. Listing all properties reveals details, e.g. even when the computer

last logged on
3. Computer accounts are created usually on the client side, i.e. when

the devices are added to the domain

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Contacts

Example

New-ADObject -Type Contact john.h.watson -DisplayName
"John H. Watson"↪→

Get-ADObject -Filter "name -eq 'john.h.watson'"
-Properties *↪→

Remove-ADObject (Get-ADObject -Filter "name -eq
'john.h.watson'")↪→

TalTech

Active Directory

211

Notes for the previous slide

1. Contacts are most useful for adding extranal partnets by creating
objects with e-mail addresses, but that needs Exchange installed in
the environment

2. Unlike user accounts, these cannot be used for logging in
3. Contacts cannot be removed by just name

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Organisational Units

An organizational unit (OU) is a container within a Microsoft Active
Directory domain which can hold users, groups and computers

Example

Get-ADOrganizationalUnit -Filter *
New-ADOrganizationalUnit -Name "Europe"
Get-ADOrganizationalUnit

"OU=Europe,DC=pscourse,DC=local"↪→

Note

Get-ADOrganizationalUnit
"OU=Users,DC=pscourse,DC=local" will not work

TalTech

Active Directory

212

Notes for the previous slide

1. OUs should not be confused with groups

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Organisational Units

Example

New-ADAccount -Path "OU=Europe,DC=pscourse,DC=local"
oliver.twist↪→

New-ADObject -Path "OU=Europe,DC=pscourse,DC=local"
-Type Contact hercule.poirot↪→

TalTech

Active Directory

213

Notes for the previous slide

1. Use -Path to set the OU when creating objects

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

Table of Contents

1 Introduction

2 Provisioning

3 Managing Users

4 Managing Groups

5 Other Objects

6 Summary

TalTech

Active Directory

214

Introduction Provisioning Managing Users Managing Groups Other Objects Summary

What Did We Learn?

What is Active Directory?
Installing first domain controller in a domain
Creating, managing and removing

users
groups

Computer accounts
Contacts
Organisational units

TalTech

Active Directory

2.7 Hyper-V

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Hyper-V
PowerShell Course

TalTech

TalTech

Hyper-V

215

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Table of Contents

1 Introduction

2 Creating VMs

3 VM States

4 Virtual Hardware

5 Switches

6 Checkpoints

7 PS Direct

8 Summary

TalTech

Hyper-V

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Table of Contents

1 Introduction

2 Creating VMs

3 VM States

4 Virtual Hardware

5 Switches

6 Checkpoints

7 PS Direct

8 Summary

TalTech

Hyper-V

216

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Virtualisation

Virtualisation refers to the act of creating a virtual (rather
than actual) version of something
Hardware virtualisation hides the physical characteristics of a
computing platform from the users. The software that controls
virtualisation is called a “hypervisor”

TalTech

Hyper-V

Notes for the previous slide

1. It’s possible to virtualise, for example, applications, computer
hardware platforms, storage devices, and network resources

217

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Hyper-V

Microsoft Hyper-V is a hypervisor. It can create virtual machines
(VMs) on x86-64 systems running Windows

Example

Get-WindowsFeature | ? { $_.name -match "hyper-v" }
Install-WindowsFeature Hyper-V, Hyper-V-PowerShell

Get-Command -Module hyper-v
Get-VM

TalTech

Hyper-V

Notes for the previous slide

1. Hyper-V comes free with Windows
2. Nesting VMs might be a bit tricky and is only supported on Intel

processors
3. Get-Command will show all Hyper-V related PowerShell cmdlets
4. Get-VM will show nothing, if there are no VMs

218

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Table of Contents

1 Introduction

2 Creating VMs

3 VM States

4 Virtual Hardware

5 Switches

6 Checkpoints

7 PS Direct

8 Summary

TalTech

Hyper-V

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

New-VM

Example

New-VM
Get-VM
Remove-VM "New Virtual Machine"

New-VM -Name "TestVm1"
vm TestVm1 | select *

TalTech

Hyper-V

219

Notes for the previous slide

1. Creating a VM with default settings is as easy as running New-VM
2. Let’s create a test VM TestVm1
3. A blank VM has no operating system
4. Default VM is without a virtual hard disk either. You could be

explicit with -NoVHD
5. Remember that Get- is optional

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

New-VM

Example

(Get-VM TestVm1).MemoryStartup/1M # 1024
New-VM "TestVm2" -MemoryStartupBytes 512MB -NewVHDPath

"C:\VHD\testvm2.vhdx" -NewVHDSizeBytes 5GB↪→

(Get-VM TestVm2).MemoryStartup/1MB
(ls "C:\VHD\testvm2.vhdx").Length/1MB # 4
Get-VM TestVm2 | Select-Object VMId | Get-VHD

TalTech

Hyper-V

220

Notes for the previous slide

1. Default RAM is 1 GB
2. VHD means virtual hard disk
3. You can create a VHD on the fly with -NewVHDPath
4. -NewVHDSizeBytes takes byte count as input but 5GB will expand

to 5368709120
5. The VHDX file will be dynamically expanding and is only 4 MB

initially
6. VMId is its unique identifier
7. Get-VM TestVm1 | Select-Object VMId | Get-VHD gives no

output

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

New-VM

Example

New-VHD -Path "C:\vhd\testvm3.vhdx" -SizeBytes 3GB
New-VM "TestVm3" -VHDPath "C:\VHD\testvm3.vhdx"

Remark

.vhdx files can be be mounted and browsed with Mount-DiskImage

TalTech

Hyper-V

221

Notes for the previous slide

1. You can also create a VHD separately or use an existing VHD, such
as from a previous VM

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Table of Contents

1 Introduction

2 Creating VMs

3 VM States

4 Virtual Hardware

5 Switches

6 Checkpoints

7 PS Direct

8 Summary

TalTech

Hyper-V

222

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Start-VM, Suspend-VM and Stop-VM

Example

Start-VM -Name TestVm1
Get-VM | where { $_.State -eq 'Off' } | Start-VM
Get-VM | where { $_.State -eq 'Running' } | Stop-VM
vm TestVm1 | Suspend-VM
(vm TestVm1).State # Paused
vm TestVm2 | Stop-VM -Save # frees memory
(vm TestVm1).State # Saved

TalTech

Hyper-V

Notes for the previous slide

1. Both piping from Get-VM and running cmdlets directly are options
2. Suspending saves the state but does not free RAM
3. Stopping frees RAM

223

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Table of Contents

1 Introduction

2 Creating VMs

3 VM States

4 Virtual Hardware

5 Switches

6 Checkpoints

7 PS Direct

8 Summary

TalTech

Hyper-V

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

DVD Drive

Example

Set-VMDvdDrive -VMName TestVm1 -Path
"C:\ISOs\ubuntu-18.10-desktop-amd64.iso"↪→

Set-VMDvdDrive -VMName TestVm1 -ControllerNumber 0
-ControllerLocation 1 -Path
"C:\ISOs\ubuntu-18.10-desktop-amd64.iso"

↪→

↪→

Get-VMDvdDrive "TestVm1"

Set-VMDvdDrive -VMName TestVm1 -Path $null

TalTech

Hyper-V

224

Notes for the previous slide

1. This is usually vital for installing a new OS
2. If you need mutiple ISOs attached at the same time, be mindful of

ControllerLocation and ControllerNumber
3. $null without ControllerLocation and ControllerNumber will

eject all

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

CPU

Example

Get-VM TestVm1 | Set-VM -ProcessorCount 2

Get-VMProcessor TestVm1

Set-VMProcessor TestVm1 -Count 4 -Reserve 10 -Maximum
75↪→

Get-VMProcessor TestVm1 | select *

TalTech

Hyper-V

225

Notes for the previous slide

1. There does not need to be a direct correlation between virtual
processors and logical processors

2. Finding the best count is challenging and takes testing
3. -Reserve reserves 10% of the logical processor resources and

-Maximum limits the usage to 75%
4. Set-VMProcessor provides more parameters for granual

configuration

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

RAM

Example

Get-VMMemory -VMName TestVm1

Set-VMMemory TestVm1 -DynamicMemoryEnabled $true
-MinimumBytes 64MB -StartupBytes 256MB
-MaximumBytes 2GB

↪→

↪→

Get-VMMemory -VMName TestVm1 | select *

TalTech

Hyper-V

226

Notes for the previous slide

1. Dynamic memory means using as much of the host RAM as is
needed

2. Minimum amount will still reseve host’s memory
3. Maximum amount will not be exceeded

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

VHDs

Example

New-VHD -Path "C:\vhd\testvm1_2.vhdx" -SizeBytes 3GB

Add-VMHardDiskDrive -VMName TestVm1 -Path
"C:\vhd\testvm1_2.vhdx"↪→

Get-VMHardDiskDrive -VMName TestVm1 # note the number
and location↪→

Remove-VMHardDiskDrive -VMName TestVm1 -ControllerType
SCSI -ControllerNumber 0 -ControllerLocation 5↪→

TalTech

Hyper-V

227

Notes for the previous slide

1. A VM may have several controllers which have several locations

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Table of Contents

1 Introduction

2 Creating VMs

3 VM States

4 Virtual Hardware

5 Switches

6 Checkpoints

7 PS Direct

8 Summary

TalTech

Hyper-V

228

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Switch Types

External
Internal
Private

TalTech

Hyper-V

Notes for the previous slide

1. External allows connection with external network, including the
Internet

2. Internal allows connection with the host PC and other VMs on the
same host

3. Private switch allows connection to other VMs on the same host
only

229

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

New-VMSwitch

Example

Get-NetAdapter # shows existing (physical) adapters
New-VMSwitch -Name "External Switch 1" -NetAdapterName

Ethernet↪→

New-VMSwitch -Name "Internal Switch 1" -SwitchType
Internal↪→

New-VMSwitch -Name "Private Switch 1" -SwitchType
Private↪→

Get-VMSwitch # lists 3 virtual switches

TalTech

Hyper-V

Notes for the previous slide

1. Adapters can be
2. The created virtual adapter will be external, if -NetAdapterName

or -NetAdapterInterfaceDescription is specified

230

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Connecting and Disconnecting Adapters

Example

Connect-VMNetworkAdapter -VMName "TestVm1" -SwitchName
"Private Switch 1"↪→

Add-VMNetworkAdapter -VMName TestVm1 -Name "Another
Adapter"↪→

Connect-VMNetworkAdapter -VMName "TestVm1" -SwitchName
"External Switch 1" -Name "Another Adapter"↪→

Get-VMNetworkAdapter TestVm1

Disconnect-VMNetworkAdapter -VMName "TestVm1"

TalTech

Hyper-V

Notes for the previous slide

1. VMs have adapters, which can be connected to switches
2. Each VM by default has a network adapter Network Adapter
3. Conntect-VMNetworkAdapter without the -Name parameter

connects all adapters to the named switch
4. Disconnect-VMNetworkAdapter does not take the switch name as

input
5. It disconnects all switches, if you don’t specify -Name

231

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Table of Contents

1 Introduction

2 Creating VMs

3 VM States

4 Virtual Hardware

5 Switches

6 Checkpoints

7 PS Direct

8 Summary

TalTech

Hyper-V

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Creating Checkpoints

Example

Checkpoint-VM -Name TestVm1 -SnapshotName Checkpoint1

Get-VMCheckpoint -VMName TestVm1

TalTech

Hyper-V

232

Notes for the previous slide

1. Checkpoints are also called snapshots by other vendors
2. checkpoints help administrators roll back changes in the case of

problems by taking point-in-time images of VMs

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Returning to a Checkpoint

Example

Get-VMCheckpoint -VMName TestVm1

Restore-VMCheckpoint -Name Checkpoint1 -VMName TestVm1
-Confirm:$false↪→

Remove-VMCheckpoint -VMName TestVm1 -Name Checkpoint1

Get-VMCheckpoint * | Remove-VMCheckpoint

TalTech

Hyper-V

233

Notes for the previous slide

1. By default, it will restore the memory state to what it was when the
checkpoint was taken

2. Taking a checkpoint after a previous checkpoint will create a chain
3. Checkpoints make the VMs slower over time and should not be used

long term

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Table of Contents

1 Introduction

2 Creating VMs

3 VM States

4 Virtual Hardware

5 Switches

6 Checkpoints

7 PS Direct

8 Summary

TalTech

Hyper-V

234

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

PowerShell Direct Sessions

Example

Invoke-Command -VMName TestVm1 -ScriptBlock { hostname
}↪→

Enter-PSSession -VMName TestVm1 -Credential
"pscourse\administrator"↪→

Exit-PSSession

Remark

If the VM is on the network and the name matches its hostname,
both -ComputerName and -VMName will work, but through a
different channel

TalTech

Hyper-V

Notes for the previous slide

1. It is also possible to connect via a network connection

235

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Copying Files

Example

$s = New-PSSession -VMName TestVm1

Copy-Item -ToSession $s -Path "C:\host\data.txt"
-Destination "C:\guest\"↪→

Copy-Item -FromSession $s -Path "C:\guest\data.txt"
-Destination "C:\host\"↪→

Remove-PSSession $s

TalTech

Hyper-V

Notes for the previous slide

1. Again, this would also work without a network, but it only works
with Windows VMs

2. Session should be removed once done

236

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

Table of Contents

1 Introduction

2 Creating VMs

3 VM States

4 Virtual Hardware

5 Switches

6 Checkpoints

7 PS Direct

8 Summary

TalTech

Hyper-V

Introduction Creating VMs VM States Virtual Hardware Switches Checkpoints PS Direct Summary

What Did We Learn?

What is Hyper-V?
Creating VMs
Changing states
Managing virtual hardware
Managing virtual adapters and switches
Using checkpoints
PowerShell Direct sessions

TalTech

Hyper-V

237

2.8 Custom Modules

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Custom Modules
PowerShell Course

TalTech

TalTech

Custom Modules

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Table of Contents

1 Introduction

2 Exception Handling

3 Creating

4 Importing

5 Manifest Files

6 Writing Help

7 Summary

TalTech

Custom Modules

238

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Table of Contents

1 Introduction

2 Exception Handling

3 Creating

4 Importing

5 Manifest Files

6 Writing Help

7 Summary

TalTech

Custom Modules

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

What Are Custom Modules and Why Create Them?

Modules are PowerShell scripts that define functions or
variables and are saved with the .psm1 extension
They are useful for enabling the same set of variables and
custom commands quickly across different computers

TalTech

Custom Modules

239

Notes for the previous slide

1. Creating your first PowerShell module is as easy as creating an
empty .psm1 file

2. Using the .psm1 extension means that it’s possible to use the
Module cmdlets such as Import-Module on it

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Placing Modules

The created .psm1 files must be placed into a path that is in
the $env:PSModulePath variable
By default, the variable includes (run $env:PSModulePath
-split ";" to see)
"C:\Users\%username%\Documents\WindowsPowerShell\ c

Modules"↪→

"C:\Program Files\WindowsPowerShell\Modules"
"C:\Windows\system32\WindowsPowerShell\v1.0\ c

Modules"↪→

TalTech

Custom Modules

240

Notes for the previous slide

1. The files could be placed to these locations via various methods,
such as PowerShell, GPO or being prepopulated in the OS image

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Table of Contents

1 Introduction

2 Exception Handling

3 Creating

4 Importing

5 Manifest Files

6 Writing Help

7 Summary

TalTech

Custom Modules

241

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Why Do We Need Exception Handling?

In more complex scripts, errors are to be expected. Exception
handling allows us to gracefully continue running the script and log
meaningful error message

TalTech

Custom Modules

Notes for the previous slide

1. Before we talk about custom modules, let’s learn the concept of
exception handling

2. Exceptions are errors

242

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Try/Catch

Example

try { Get-Content Non-existentFile.txt }
catch { "There was an error" }
the exception is not caught

try {
Get-Content -ErrorAction Stop Non-existentFile.txt

}
catch { "There was an error" }
reports the error gracefully

TalTech

Custom Modules

Notes for the previous slide

1. It’s important to distinguish between non-terminating and
terminating errors

2. By default, syntax errors and running out of memory are terminating
3. -ErrorAction Stop would make running the cmdlet terminating
4. Then catch will catch it

243

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Try/Catch

Example

$ErrorActionPreference = "Stop"

try {
Get-Content Non-existentFile.txt

}
catch {

"There was an error `"{0}`" It occurred with item
`"{1}`"" -f $_.Exception.Message,
$_.Exception.ItemName

↪→

↪→

}

TalTech

Custom Modules

Notes for the previous slide

1. For convenience, you could set the variable
ErrorActionPreference and it would apply to all cmdlets

2. $_ holds detailed info about the error in the catch block

244

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Finally

Example

$ErrorActionPreference = "Stop"
try {

Get-Content Non-existentFile.txt
}
catch { "Error" }
finally {

"An attempt was made at {0}" -f (Get-Date) |
Out-File Log.txt↪→

}

TalTech

Custom Modules

Notes for the previous slide

1. The finally block is run in any case
2. You could check in finally if the attempt was successful

245

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Table of Contents

1 Introduction

2 Exception Handling

3 Creating

4 Importing

5 Manifest Files

6 Writing Help

7 Summary

TalTech

Custom Modules

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Creating a Module

Create a MathModule.psm1 file with the content of

Example

function Get-Factorial {
$counter = $args[0]
$factorial = 1
while ($counter) {

$factorial *= $counter--
}
$factorial

}

(continues on the next slide)

TalTech

Custom Modules

246

Notes for the previous slide

1. This is an example we used in an earlier seminar

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

(continues from the previous slide)

Example

function Get-Fibonacci ($n) {
$x, $y, $z = 0, 1, 1
while ($z -le $n) {

$z
$z = $x + $y
$x = $y
$y = $z

}
}

(continues on the next slide)

TalTech

Custom Modules

247

Notes for the previous slide

1. This function returns Fibonacci numbers up to the number given as
parameter

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

(continues from the previous slide)

Example

Export-ModuleMember -Function "*-Factorial"

Place the file to "%userprofile%\Documents\ c

WindowsPowerShell\Modules\MathModule"

TalTech

Custom Modules

248

Notes for the previous slide

1. Create missing paths as needed

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Table of Contents

1 Introduction

2 Exception Handling

3 Creating

4 Importing

5 Manifest Files

6 Writing Help

7 Summary

TalTech

Custom Modules

249

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Import-Module

Example

Get-Module -ListAvailable MathModule
Import-Module -Name MathModule

TalTech

Custom Modules

Notes for the previous slide

1. Without -ListAvailable you only see already loaded modules
2. Note how the ModuleType is Script
3. You could also not move the file to a path in $env:PSModulePath

and specify the full path to the .psm1 file as the -Name
4. ipmo is an alias to Import-Module

250

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Example

Get-Factorial 6 # 720
Get-Fibonacci 150 # command not found

TalTech

Custom Modules

Notes for the previous slide

1. We only exported *-Factorial
2. Remove the one exporting line or add an additional line about

Get-Fibonacci to the file in order to have the other function too
3. It’s best to be explicit about the functions you make available,

because sometimes you might want to have functions that you use
in the module but should not be made available to module users

4. Modules are an easy way to get commonly used custom functions to
other computers

251

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Table of Contents

1 Introduction

2 Exception Handling

3 Creating

4 Importing

5 Manifest Files

6 Writing Help

7 Summary

TalTech

Custom Modules

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Why Create One?

A manifest file can contain various data about the module. It is a
.psd1 file that contains a hash table with keys and values. There
are about 30 valid manifest elements. See info about all by running
help New-ModuleManifest -Full. Some examples are

Author
Company
Version
Description
Help file location
Functions, variables, aliases to export

TalTech

Custom Modules

252

Notes for the previous slide

1. Manifests are important for bigger modules

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

New-ModuleManifest

Example

New-ModuleManifest -Author "Instructor"`
-Path "$env:USERPROFILE\Documents\WindowsPowerShell\ c

Modules\MathModule\MathModule.psd1"`↪→

-CompanyName "TalTech"`
-ModuleVersion "1.0.0"`
-Description "Some math tools"

TalTech

Custom Modules

253

Notes for the previous slide

1. It is possible to create and modify the file manually, but it is more
convenient with the New-ModuleManifest cmdlet

2. Note how a backtick allows us to break lines. Splatting would be an
alternative

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Accessing the Attributes

Example

Get-Module -ListAvailable MathModule

Get-Module -ListAvailable MathModule | select *

TalTech

Custom Modules

254

Notes for the previous slide

1. Open a new PowerShell session to clear previous data
2. Note how the ModuleType is now Manifest

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Table of Contents

1 Introduction

2 Exception Handling

3 Creating

4 Importing

5 Manifest Files

6 Writing Help

7 Summary

TalTech

Custom Modules

255

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Example

Get-Help Get-Factorial # a very blank help

TalTech

Custom Modules

Notes for the previous slide

1. By default, the help page is very minimalistic
2. PowerShell cannot assume what the function is intended for

256

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Example

function Get-Fibonacci {
<#

.SYNOPSIS
Returns numbers in the Fibonacci sequence

.EXAMPLE
Get-Fibonacci 400

.DESCRIPTION
The function takes an integer as input and

returns an array with Fibonacci numbers as output.
The last number in the output, will be less or
equal to the input value.

↪→

↪→

↪→

#>
Param([parameter(Mandatory=$true)][int]$Max)

TalTech

Custom Modules

Notes for the previous slide

1. The code continues on the next slide
2. Script help can be created with a special multiline comment within

the function definition
3. Synopsis should be very short
4. There are many more attributes that can be definied

257

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Example

$x, $y, $z = 0, 1, 1
while ($z -le $Max) {

$z; $z = $x + $y
$x = $y; $y = $z

}
}

TalTech

Custom Modules

Notes for the previous slide

1. This ends the function definition with help

258

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Example

help Get-Fibonacci -Full

TalTech

Custom Modules

Notes for the previous slide

1. Now this command displays a help page with what we defined before
2. This becomes very powerful when you one day find yourself

developing functions for others

259

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

Table of Contents

1 Introduction

2 Exception Handling

3 Creating

4 Importing

5 Manifest Files

6 Writing Help

7 Summary

TalTech

Custom Modules

Introduction Exception Handling Creating Importing Manifest Files Writing Help Summary

What Did We Learn?

What modules are
Exception handling
Creating modules
Using modules
Manifest files
Creating custom function help pages

TalTech

Custom Modules

260

Appendix 3 Lab Assignments

3.1 Introduction

1. Name 5 facts that are unique or almost unique to PowerShell

2. Name 5 use cases where PowerShell would be the right tool to use

3. Name 3 differences between PowerShell versions

4. Which PowerShell version is pre-installed with the client and server Windows operating

system that is currently most popular?

5. Open the Integrated Scripting Environment, create a new script that prints the PowerShell

version and the string ”Hello World!”

6. Save the script as a file and run the file from the console

Post answers to Moodle. The script and its output should be captured as screenshots and

attached to the submission. Code should be commented, i.e. comments explain what the indi-

vidual commands on each line do

3.2 Basics 1

1. Explain how variables are defined and which variable names are illegal. Bring examples.

Show happens when an illegal name syntax is used in a script

2. Define and print 3 variables of each class that the seminar covered. The hashtables and

PSCustomObjects must contain values of different different classes. Try to create the

examples base on real life objects or events

3. Demonstrate the use of each learned arithmetic operators with 3 examples

4. Do the same for comparison operators

261

5. Do the same for assignment operators

Post answers to Moodle. The script and its output should be captured as screenshots and

attached to the submission. Code should be commented, i.e. comments explain what the indi-

vidual commands on each line do

3.3 Basics 2

1. Create and demonstrate a function that does basic arithmetic calculations. The input

parameters are two floats and the arithmetic operator as a string. The output should be

the calculation with the answer, such as 3 * 4 = 12

2. Create and demonstrate a function that takes a date object as input. The output should

wish a happy birthday with the age, e.g. Happy 21st Birthday! in case the birth-

day is the current day and print the remaining number of days until the birthday otherwise

3. Create and demonstrate a function that generates Fibonacci numbers to the count speci-

fied as an input parameter loaded with Read-Host

4. Make sure at least one of the functions created above uses named parameters and demon-

strate splatting with it

Post answers to Moodle. The script and its output should be captured as screenshots and

attached to the submission. Code should be commented, i.e. comments explain what the indi-

vidual commands on each line do

3.4 Basics 3

1. Demonstrate the use of filtering and formatting on the output of Get-ChildItem with

7 different commands

2. Explain the differences between Write-Output and Write-Host

3. Create a function which downloads the JSON object from the URL

https://jsonplaceholder.typicode.com/todos and swaps all completed

items to not completed and vice-versa

4. Demonstrate the use of the -f operator for strings including padding, number formatting

and time formatting in 10 different examples

262

https://jsonplaceholder.typicode.com/todos

5. Create and demonstrate a function that takes any string as input and then prints its char-

acters in reverse order using a loop

Post answers to Moodle. The script and its output should be captured as screenshots and

attached to the submission. Code should be commented, i.e. comments explain what the indi-

vidual commands on each line do

3.5 Windows OS Management

1. Create a function that lists the .doc or .docx files that are bigger than 300 kB in the input

folder and its subfolders. The output should be a JSON object that also contains the files’

full path in capital letters

2. Create a command that outputs current running processes or services into a CSV file with

at least 6 columns. Choose the columns yourself but justify the decisions

3. Create a script that extracts basic hardware info (e.g. CPU, RAM, HDD, motherboard,

multimedia devices) with CIM and is able to output the data in both CSV and JSON

formats

4. Create a function that adds a new log to Windows Event Log Management. Create a

function which writes events to the log compiled from at least two input parameters of

the function

Post answers to Moodle. The script and its output should be captured as screenshots and

attached to the submission. Code should be commented, i.e. comments explain what the indi-

vidual commands on each line do

3.6 Active Directory

1. Create a function that takes a username and new password as input and resets user’s

password

2. Create contacts from a JSON file

3. Create users from a CSV file

4. Create a new group Regional Admins and place the created users into it

5. Place the new group into Domain Admins

263

6. Create users in a loop from a CSV file that also includes group memberships. Create

groups, if they do not already exist

Post answers to Moodle. The script and its output should be captured as screenshots and

attached to the submission. Code should be commented, i.e. comments explain what the indi-

vidual commands on each line do

3.7 Hyper-V

1. Create a virtual machine with 2 CPUs, 2 GB of RAM and two virtual hard disks (3 GB

and 1GB).

2. Download any Windows operating system trial version ISO, mount it to the virtual DVD

drive and install the operating system

3. Demonstrate the use of checkpoints

4. Demonstrate the use of PowerShell Direct (both Invoke-Command and Copy-Item

with either -ToSession or -FromSession)

Post answers to Moodle. The script and its output should be captured as screenshots and

attached to the submission. Code should be commented, i.e. comments explain what the indi-

vidual commands on each line do

3.8 Custom Modules

1. Create a custom module about Active Directory or Hyper-V commands where you link

together or hard code some tasks and variables. It must include:

• At least 4 functions out of which not all are exported

• Variables

• A demonstration of meaningful exception handling

• A manifest file

• Help section

Post answers to Moodle. The script and its output should be captured as screenshots and

attached to the submission. Code should be commented, i.e. comments explain what the indi-

vidual commands on each line do

264

Appendix 4 Knowledge Tests

4.1 Introduction

1. Which of the following are Microsoft recommended editors for writing PowerShell?

(a) Notepad

(b) Notepad++

(c) Microsoft Visual Studio Code

(d) Integrated Scripting Environment (ISE)

2. PowerShell is pre-installed on

(a) Only Windows 7 and beyond

(b) Only Windows Vista and beyond

(c) Only Windows 2000 and beyond

(d) Only Windows Server 2003 and beyond

(e) Only Windows Server 2008R2 and beyond

(f) Only Windows Server 2016 and beyond

3. PowerShell is open source and can be used on Linux since

(a) Version 1.0

(b) Version 2.0

(c) Version 3.0

(d) Version 4.0

(e) Version 5.1

(f) Version 6.0

265

4. What is the syntax for PowerShell native cmdlets? Drag and drop the following in the

correct order:

(a) Dash (-)

(b) Verb

(c) Adjective

(d) Plus (+)

(e) Adverb

(f) Noun

(g) Slash (/)

(h) Double quotation marks (")

5. How are decimals and array elements separated in PowerShell input?

(a) . separates decimals and , separates array elements

(b) , separates decimals and . separates array elements

(c) Depends on system language settings

6. Parameters can be

(a) Nicknamed/so-called

(b) Named

(c) Positional

(d) Reverse

(e) Unnamed

7. Piping means

(a) Writing code that follows convention

(b) Using only PowerShell native cmdlets

(c) Defining custom functions

(d) Passing the output of one command to the next

(e) Modifying code without changing functionality

8. Comments are made by using

266

(a) Starting with # for single line comments

(b) Starting with // for single line comments

(c) Starting with % for single line comments

(d) Starting with <# and ending with #> for multi line comments

(e) Starting with /* and ending with */ for multi line comments

(f) Starting with */ and ending with /* for multi line comments

9. Variables are identified by the preceding

(a) $

(b)

(c) !

(d) ?

(e) =

10. PowerShell scripts have file extension

(a) .power

(b) .ps1

(c) .pss

(d) .ps

(e) .script

4.2 Basics 1

1. Running $x would

(a) Set $x to value zero / unset the variable

(b) Print the value of $x

(c) Do nothing

(d) Return an error

2. Which are not correctly formed variables

(a) $important variable

267

(b) $important variable

(c) importantVariable

(d) ${important variable}

3. Setting $var to value "TalTech" and running ’$var’ will

(a) Return an error

(b) Print TalTech

(c) Print $var

4. Which of the following will have [bool] value True

(a) [bool]"False"

(b) [bool]-100

(c) [bool]"0"

(d) [bool]3

5. Which are valid arrays

(a) @(1,2,3)

(b) 40..10

(c) @()

(d) 1, 4, "TalTech"

(e) 1.2.4

6. Hashtables store

(a) Lists of numbers only

(b) Lists of any kind of elements

(c) CSV files

(d) Key/value pairs

(e) Hash function outputs

7. Attributes in PSCustomObjects may be

(a) Integers

268

(b) Other PSCustomObjects

(c) Hashtables

(d) Strings

(e) Time spans

8. What is the output of 5%2?

(a) 1

(b) 2

(c) 3

(d) 4

(e) 5

9. Which of the following will return True?

(a) ’a’ -eq "a"

(b) 6 -lt 6

(c) 5 -lt 8

(d) 4 -ge 5

(e) 3 -le 3

10. Running $array="a","b","c" and $array-="c" results in

(a) $array contains two elements — "a" and "b"

(b) $array is empty

(c) An error is displayed

4.3 Basics 2

1. Which are conditional statements in PowerShell?

(a) If

(b) Switch

(c) When

(d) Then

269

(e) Else

(f) Ifelse

(g) Elseif

2. Loop for ($i=2; $i -lt 1; $i++) { "" } will

(a) Not run at all

(b) Return an error

(c) Run once

(d) Run twice

(e) Run indefinitely

3. Loop ForEach-Object ($x in @(1..2)) { "" } will

(a) Not run at all

(b) Return an error

(c) Run once

(d) Run twice

(e) Run indefinitely

4. The result of running Write-Host "test" | Out-File "test" is

(a) An error

(b) An string "test" in file test

(c) An empty file test

5. The result of running Get-Date | tee -FilePath time -Variable time

is

(a) Current date is printed in the console

(b) Current date is saved to file time

(c) Current date is saved to variable time

(d) An error is returned

6. Which cmdlets or operators can write output to a file

(a) Out-File

270

(b) Write-Output

(c) Write-Host

(d) clip

(e) Tee-Object

(f) > and >>

7. Which are correct function definitions

(a) function myFunction {}

(b) def function myFunction {}

(c) def myFunction() {}

(d) myFunction {}

(e) new myFunction {}

8. Which may be correct calls of a function

(a) myFunction -Parameter1 value1

(b) myFunction value1

(c) myFunction -Parameter1 value1 -Parameter2 value2

(d) myFunction -Parameter1 value1 value2

(e) myFunction value1 value2

9. You run $input = Read-Host "Enter a value". The type of $input is

(a) Always a string

(b) Dependant on what the given input is

(c) Always boolean

(d) Always an integer

10. Which is the correct way to do parameter splatting?

(a) Write-Host $parameters

(b) Write-Host !parameters

(c) Write-Host @parameters

(d) Write-Host ?parameters

(e) Write-Host parameters

271

4.4 Basics 3

1. Which are correct syntaxes to extract attributes?

(a) [TimeSpan]"1:2:3" | Select-Object Minutes

(b) [TimeSpan]"1:2:3" | Minutes

(c) [TimeSpan]"1:2:3" | show Minutes

(d) [TimeSpan]"1:2:3" | select minutes

(e) ([TimeSpan]"1:2:3").Minutes

2. Which command will show stopped services?

(a) Get-Service | Where-Object { $Status -eq "Stopped" }

(b) Get-Service | Where-Object { $!.Status = "Stopped" }

(c) Get-Service | Where-Object { $this.Status=="Stopped" }

(d) Get-Service | Where-Object { $.Status -eq "Stopped" }

3. How many lines will running (Compare-Object 1,2 2,3).Count output?

(a) 0

(b) 1

(c) 2

(d) 3

(e) 4

4. Which of the following return True?

(a) "TalTech" -match "t"

(b) "TalTech" -match "b"

(c) "TalTech" -match "l.e"

(d) "TalTech" -match "l e"

5. Which commands create loops in PowerShell?

(a) %

(b) Until

272

(c) foreach

(d) ForEach-Object

(e) circulate

(f) while

6. Which are correct for accessing attributes in a hashtable?

(a) $hashtable.attribute

(b) $hashtable["attribute"]

(c) $hashtable/attribute

(d) $hashtable!attribute

(e) $hashtable | select attribute

7. Which are correct for accessing attributes in a PSCustomObject?

(a) $object.attribute

(b) $object[attribute]

(c) $object/attribute

(d) $object!attribute

(e) $object | select attribute

8. Which cmdlet will let you read a CSV file into a PowerShell object?

(a) Get-Csv

(b) Get-Content together with ConvertFrom-Csv

(c) Import-Csv

(d) Read-File together with Parse-Csv

9. JSON is

(a) Supported by PowerShell

(b) Human-readable

(c) Machine-readable

(d) Less verbose than XML

10. Which are useful parameters for the Get-Help cmdlet?

273

(a) -Examples

(b) -Full

(c) -AutoUse

(d) -Online

4.5 Windows OS Management

1. After running "some text" | Out-File file.txt, the encoding of the file

will be

(a) ASCII

(b) UTF-8

(c) UTF-8 BOM

(d) UTF-16

2. Which are valid cmdlets to manage services?

(a) Kill-Service

(b) Run-Service

(c) Reboot-Service

(d) Restart-Service

(e) Set-Service

3. Which Stop-Computer parameter stops the computer even when users are logged in?

(a) -Ignore

(b) -Force

(c) -Override

(d) -Super

(e) -Logout

4. Which cmdlets can show detailed CPU and BIOS info?

(a) Get-WmiObject

(b) Get-CimInstance

274

(c) Get-ChildItem

(d) Get-Host

(e) Get-ComputerInfo

5. Drag and drop the parts to make a command that shows all installed features

(a) Get-WindowsFeature

(b) $.InstallState

(c) "Installed"

(d) -eq

(e) }

(f) |

(g) ?

(h) {

6. The relation between Invoke-Command and Enter-PSSession is that

(a) Invoke-Command always needs to precede Enter-PSSession

(b) Invoke-Command works only locally, Enter-PSSession also remotely

(c) Invoke-Command works for single commands, Enter-PSSession is more

convenient for multiple commands

(d) Enter-PSSession always needs to precede Invoke-Command

7. Which is correct for retrieving application error events?

(a) Get-EventLog -LogName "Application" -EntryType "Error"

(b) Get-EventLog -EntryType "Application" -LogName "Error"

(c) Get-EventViewer -LogName Application -EntryType Error

(d) Get-EventViewer -EntryType Application -LogName Error

(e) Get-Event -LogName "Application" -EntryType "Error"

(f) Get-Event -EntryType "Application" -LogName "Error"

8. Running Get-ChildItem with -Recurse will

(a) also show parent directories

275

(b) also show child items

(c) show more detailed info about the items in the directory

(d) monitor the directory for changes

9. Which commands stop the DHCP service

(a) Halt-Service DHCP

(b) ShutDown-Service DHCP

(c) Set-Service -Name DHCP -Running $False

(d) Stop-Service DHCP

(e) Set-Service -Name DHCP -Status Stopped

10. Invoke-Command takes the input commands as which object class?

(a) [String]

(b) [PowerShell]

(c) [ToRun]

(d) [ScriptBlock]

(e) [Commands]

4.6 Active Directory

1. Which of the following is true about Active Directory?

(a) It’s a directory service

(b) It’s developed by Microsoft

(c) It helps to authenticate users

(d) It helps to authorise users

(e) There’s a PowerShell module for it

2. Drag and drop items to organise Active Directory containers/objects starting from the

largest

(a) Domain

(b) Users, groups and contacts

276

(c) Organisational Unit

(d) Forest

(e) Subdomain

3. Which command properly creates a SecureString object?

(a) ConvertTo-SecureString -String "secret" -Force

(b) ConvertTo-SecureString -String "secret"

-AsPlainText -Confirm:$false

(c) ConvertTo-SecureString -String "secret"

-AsPlainText -Secure

(d) ConvertTo-SecureString -String "secret"

-AsPlainText -Force

(e) ConvertTo-SecureString -String "secret"

-AsPlainText -Unsecure

4. How do services identify Active Directory user accounts?

(a) By display name

(b) By username

(c) By e-mail

(d) By SID

5. Which is correct for searching Estonian users in Active Directory?

(a) Get-ADUser -Filter "country == ’Estonia’"

(b) Get-ADUser -Filter "country -eq ’Estonia’"

(c) Get-ADUser -Filter "$country = ’Estonia’"

(d) Get-ADUser -Filter "$country -eq ’Estonia’"

(e) Get-ADUser -Filter "$.country = ’Estonia’"

6. Drag and drop to create a command which removes User1 from Group1

(a) User 1

(b) Group 1

(c) Remove-ADGroupMember

277

(d) Set-ADGroupMember

(e) -Remove

7. In a single domain environment, it is recommended to use group scope

(a) Universal

(b) Domain local

(c) Global

8. Which of these may be Active Directory objects?

(a) Licences

(b) Users

(c) Computers

(d) Applications

(e) Printers

(f) Contacts

(g) Groups

9. Running "$(Get-ADUser user1)" will display

(a) Username

(b) Display name

(c) SID

(d) Distinguished name

10. By default, newly created Active Directory user accounts are

(a) Disabled

(b) Enabled

(c) Locked

(d) Hidden

(e) Protected

278

4.7 Hyper-V

1. Running New-VM without any parameters will

(a) Return an error

(b) Create a VM named New Virtual Machine

(c) Prompt for the name

2. Which statements are true?

(a) Hypervisor controls virtualisation

(b) Microsoft Hyper-V is a hypervisor

(c) It is possible to virtualise applications, hardware, storage and network

3. Which parameters for New-VM will create a VHD of 5 gigabytes?

(a) -NewVHDSizeBytes 5GB

(b) -NewVHDSize 5GB

(c) -NewVHDSizeBytes 5368709120

(d) -NewVHDSizeBytes 5 GB

4. Which commands will free host’s memory?

(a) Stop-VM

(b) Stop-VM -Save

(c) Suspend-VM

5. Which hardware attributes can Hyper-V manage for a VM?

(a) CPU

(b) RAM

(c) VHDs

(d) Screen count

(e) Network adapters

(f) Power Supply Unit (PSU) capacity

6. Adapters linked to internal switches can

279

(a) Communicate with the Internet

(b) Communicate with the host

(c) Communicate with other VMs on the host

7. Adapters linked to private switches can

(a) Communicate with the Internet

(b) Communicate with the host

(c) Communicate with other VMs on the host

8. Which is syntax is correct?

(a) Snapshot-VM -Name Vm1 -CheckpointName beforeUpgrade

(b) Checkpoint-VM -Name Vm1 -SnapshotName beforeUpgrade

(c) Snapshot-VM -Name Vm1 -SnapshotName beforeUpgrade

(d) Checkpoint-VM -Name Vm1 -CheckpointName beforeUpgrade

9. Vm1 is a virtual machine that does not have a network connection with the host. Which

command or commands would establish a session?

(a) Enter-PSSession -VMName TestVm1

(b) Enter-VMSession -Name TestVm1

(c) Enter-PSSession -Name TestVm1

(d) Enter-VMSession -VMName TestVm1

10. By default, new VMs are created

(a) without a VHD

(b) with a VHD of 5 GB

(c) with a VHD of 16 GB

(d) with a VHD of 20 GB

4.8 Custom Modules

1. In order to make cmdlets work properly in try{} block, the cmdlets should have

(a) -Try $True

280

(b) -Catch $True

(c) -ErrorAction Stop

(d) -Error Stop

2. Code in the finally{} block will be run

(a) never

(b) always

(c) only if there was an error

(d) only if called from the catch{} block

3. The first positional argument in a custom function can be accessed with

(a) $args[0]

(b) $arguments[0]

(c) $positional[0]

(d) $args[1]

(e) $arguments[1]

(f) $positional[1]

4. What is the extension for PowerShell module files?

(a) .psModule

(b) .module

(c) .module1

(d) .psm1

5. Functions, variables and aliases in the module can be made available with

(a) Show-ModuleAsset

(b) Export-ModuleAsset

(c) Export-ModuleMember

(d) Show-ModuleMember

(e) Reveal-ModuleAsset

6. Valid New-ModuleManifest parameters are

281

(a) CompanyName

(b) Author

(c) ModuleVersion

(d) Todo

(e) Description

7. Without defining help section in a custom function, calling its help page will

(a) result in an error

(b) return nothing

(c) show minimal info

(d) show fully detailed info

8. Which command will initialise custom module files?

(a) Load-Module

(b) Use-Module

(c) Import-Module

(d) Start-Module

9. Which variable contains folder locations from where custom modules are automatically

searched for?

(a) $env:PSModulePath

(b) $env:Modules

(c) $env:ModulePath

(d) $env:PSModules

10. Which help section is meant to give a short, one sentence, summary of what the command

is for?

(a) .OVERVIEW

(b) .SYNOPSIS

(c) .USEFULNESS

(d) .PURPOSE

282

	Introduction
	Problem Statement
	Scope
	Structure

	Methodology
	Course Material Principles
	Design Science
	Course Tailored for Students
	Included Skills and Themes
	Excluded Advanced Use Cases

	Teaching Methodologies
	Validation

	Course Platform and Modules
	Lab Environment
	Golden Image
	Packer Template

	Seminars
	Lab Assignments
	Knowledge Tests
	Introduction
	Basics 1
	Basics 2
	Basics 3
	Windows OS Management
	Active Directory
	Hyper-V
	Custom Modules

	Analysis and Conclusion
	Deficiencies of the Methodology
	Teaching Methodology
	Course Material Compilation Methodology

	Scope Limitations
	Infrastructure Requirements
	Limitations of Course Materials

	Validation
	Potential Future Improvements

	Summary
	References
	Appendix Preamble.tex
	Appendix Slides
	
	
	
	
	
	
	
	

	Appendix Lab Assignments
	
	
	
	
	
	
	
	

	Appendix Knowledge Tests
	
	
	
	
	
	
	
	

