
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Uku Markus Tammet 176475 IAPM

SIMULUS: A CRISMA-INSPIRED
SIMULATION FRAMEWORK FOR WEB

BROWSERS

Master’s thesis

Supervisor: Tanel Tammet

PhD

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Uku Markus Tammet 176475 IAPM

SIMULUS: CRISMAST INSPIREERITUD
SIMULATSIOONIRAAMISTIK

VEEBIBRAUSERITELE

Magistritöö

Juhendaja: Tanel Tammet

PhD

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis and this thesis has not been presented

for examination or submitted for defence anywhere else. All used materials, references to

the literature and work of others have been cited.

Author: Uku Markus Tammet

07.05.2019

3

Abstract

The subject of this thesis is crisis simulation, based on agent-oriented modelling. We

design and implement a framework for building simple crisis simulations, inspired by

the CRISMA project. Instead of focusing on flexibility or completeness, we focus on

ease of use and low barriers of entry. The goal is to make the results of state-of-the-art

research usable by people interested in building simple practical crisis simulations without

requiring significant technical and organizational resources. The main result of the thesis -

the implementation of the SIMULUS framework - is novel in the sense that the simulation

developer has no need for any other IT resources except the browser: the whole system is

deployed as a static Javascript-based web application without any external databases or

services. To achieve this, we utilize a number of modern browser technologies. Finally,

we implement a simple reference simulation application of mass casualties on top of this

framework.

The thesis is written in English, contains 49 pages of text, 6 chapters and 11 figures.

4

Annotatsioon

SIMULUS: CRISMAst inspireeritud simulatsiooniraamistik

veebibrauseritele

Käesoleva magistritöö sisuks on agentorienteeritud modelleerimisel põhinevad kriisisim-

ulatsioonid. Oleme disaininud ja realiseerinud tarkvara-raamistiku lihtsate kriisisimulat-

sioonide ehitamiseks. Raamistiku ideoloogia ja arhitektuur on inspireeritud CRISMA

projektist ning tema fookuses ei ole mitte paindlik ja rikas funktsionaalsus, vaid kergus ja

kasutajasõbralikkus. Töö eesmärgiks on pakkuda kriisimulatsioonide ehitamisest huvitatud

inimeste jaoks tipptasemel uurimistulemustele baseeruvad ehitusblokid, mille kasutamine

ei nõua suuri tehnoloogilisi ja administratiivseid ressursse. Loodud raamistik SIMULUS

on ehitatud ainult veebitehnoloogiatega, ning selle abil ehitatud rakendused on staatilised

javascripti-põhised veebirakendused, mis ei vaja väliseid andmebaase, servereid ega muid

IT-teenuseid. Vajaliku funktsionaalsuse saavutamiseks brauseris kasutasime modernseid

veebitehnoloogiaid. Lisaks ehitasime oma raamistikku kasutades lihtsa kriisisimulatsiooni

näidisrakenduse.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 6 peatükki ja 11

joonist.

5

List of abbreviations and terms

API Application programming interface, a clearly defined perimeter of com-

munication in software in the form of protocols or definition.

CRISMA Modelling crisis management for improved action and preparedness, an

EU integration project.

ECMAscript The scripting-language specification that JavaScript implements.

ICMS Integrated crisis modelling system, a sub-project of CRISMA.

IndexedDB A client-side database integrated into most browsers.

MIT license A permissive open-source license.

NPM Node package manager, a package manager for the JavaScript program-

ming language.

OOI Object of interest, an entity in a simulated world that constitutes a part

of the world state.

OOP Object-oriented programming, a ubiquitous programming paradigm.

Rust A systems programming language focused on safety.

UUID Universally unique identifier, a type of identifier used in software.

Web Worker A browser standard, allowing developers to run code in new threads in

browsers.

6

Table of contents

Introduction . 10

1 Background . 12

1.1 Crisis simulation . 12

1.2 Agent-oriented modeling in crisis simulation 13

1.3 Recent changes in web-based simulation 14

2 CRISMA . 17

2.1 CRISMA project . 17

2.2 CRISMA framework . 18

2.3 CRISMA framework data model . 19

2.4 CRISMA pilot projects . 21

2.5 On complexity of crisis simulation . 23

3 Simulus architecture and technology . 25

3.1 Priorities . 25

3.2 Browser platform constraints . 26

3.3 Data model . 27

3.4 Implementation . 31

4 Using simulus . 35

4.1 Distribution . 35

4.2 Building on top of simulus . 36

4.2.1 Routing . 37

4.2.2 Modules . 38

4.2.3 Using an application . 44

5 Reference application . 46

7

6 Summary . 49

References . 50

8

List of figures

Figure 1 Insightmaker[1] analysis environment 16

Figure 2 Evacuation need visualisation (from [2]) 22

Figure 3 Spillage application training view (from [2]) 23

Figure 4 Overview of some of the data model 28

Figure 5 An example entity type . 39

Figure 6 An example bar indicator . 41

Figure 7 Simulus analysis including the previous example indicator 42

Figure 8 An example behaviour model 43

Figure 9 Main simulus scenario view with the entity tab selected 45

Figure 10 Start of a simulated mass-casualty incident 47

Figure 11 The same incident after 15 minutes passes in the simulation . . . 47

9

Introduction

The goal of this thesis is implementing modern approaches to agent-oriented crisis simu-

lation using browser-only technologies, in order to maximise ease of use and lower the

barrier of entry. In short, we want to make crisis-simulation-building approachable both by

university courses and small and medium public sector organisations.

The reader could ask, ”why crisis simulations”? While modern technology is breaking

down traditional barriers for movement and communication, resource coordination has

become more efficient than ever. This is obviously important for public institutions and

critical systems of infrastructure, especially in times of crisis. The relevant parties often

implement various contingency plans to increase their preparedness for different crisis

situations. Planning for these contingencies involves building a formal or informal model

of the crisis situation and the objects of interest and behaviours affecting it. If possible,

these are based on existing data and existing historical situations exemplifying an instance

of the contingency being planned for. Strategies for optimal resource coordination and

behaviour during such crises are then built using these models. However, depending on the

stuation being modelled, testing their efficacy, or even having the data to build a model

can be difficult. One practical method for validating these strategies is to formalise the

model – for example, as an agent-based model – and utilise simulation software to test said

strategies [3].

The “Modelling crisis management for improved action and preparedness” or CRISMA

project was was an integration project financed under the Security theme of the Cooperation

Programme of the 7th Framework Programme of the European Commission [4]. Among

other work, the project produced a conceptual and technological framework that can be

used for visualising, simulating and evaluating different mitigation strategies for crisis

situations [2]. The framework has been utilised in building various pilot projects with

10

successful results.

The architecture created by the CRISMA project is built utilising previous work and relies

on a complex distributed service-oriented architecture (SOA). For the specific goals of the

CRISMA project, this is a necessary approach, as some of the key system requirements are

interoperability with existing applications, models and data [5].

Like CRISMA, most proposed architectures require substantial investment into the design,

architecture, infrastructure and maintenance of simulation tools. This restricts this valuable

research to businesses and agencies with enough resources to utilise it. In addition, the

resource requirements may sway parties otherwise interested in simulation systems from

using this type of modelling. If we are able to design a more convenient system by taking

coordinated tradeoffs, we may be able to have more parties benefiting from this research.

Thus the goal of this thesis: design and implement a simple software framework / platform

for would-be crisis simulation designers, based purely on browser technologies while

employing the conceptual results and ideas of the current state-of-the-art projects, in

particular, CRISMA.

The SIMULUS software is open source under the MIT licence. The source code, a demon-

stration application and documentation is available at https://github.com/tankenstein/simulus

11

1 Background

In this chapter, we will give a brief overview of crisis simulation, how agent-oriented

modelling applies to it and how recent changes in the browser platform can impact this.

1.1 Crisis simulation

In times of crisis, the better prepared we are, the better the outcome. However, preparing

for different crises, especially in today’s complicated world, can be difficult. On one hand,

you often don’t know how all the variables at play would affect each other. Although

you could rely on historical examples of the contingency you’re planning for, you might

be facing a situation that has not been encountered before. For example - what if there

was a modern chemical attack in a large sprawling metropolis. How would you know

how to prioritise resources, or even who and where to evacuate first? How will your

normal evacuation procedures be affected by a deadly chemical contaminant? To help in

resolving these questions, of which there are many, we can both run software simulations

and play out simulated crisis situations with actual people in a ”game” format. However -

planning isn’t the only thing crisis simulations can help with. As Kleiboer puts it [6], we

can divide crisis simulations goals into research or educational goals. The former would

be for activities such as planning contingency methods for crisis situations, testing those

methods or for designing a decision support system. The latter would be for training and

selecting personnel [6]. As the authors of the CRISMA crisis simulation project’s main

book put it [2]: ”It can be almost impossible to completely understand complex systems,

but it is possible to get used to them and learn how they behave in certain conditions. In

order to do so, it is important to train yourself by “playing” with the system”.

Crisis simulation has its roots in warfare [6]. In modern times, crisis simulation involves

either software running a simulation, people simulating a crisis situation, or having people

12

and software simulating and pracicing a scenario in tandem. Historically, crisis simulation

has only meant so-called ”games”, where different scenarios were practised by people

[6]. Nowadays, crisis simulation has evolved past warfare and made its way into many

different types of organisations, including in the private sector [6].

1.2 Agent-oriented modeling in crisis simulation

While the field of modeling and simulation is a large emerging field, producing many ways

to build and model simulations to accomplish some specific analysis, in this paper we focus

more specifically on agent-oriented modeling. Building simulations with agent-oriented

modeling differs from other modeling and simulation methods in that it is bottom-up

rather than top-down, meaning that behaviour is not enforced upon components, but

rather the behavour of the system is emergent, from the defined behaviour, relationship

and interactions of individual components [7]. When we look at crisis situations in the

world, we find that they mirror this approach of modeling quite well, although developing

computer simulations of real-world situations is still difficult [8]. Large crisis situations

often have a multitude of different actors, whose interactions and decisions affect the

outcome in significant ways.

To illustrate this, let’s bring an example of a crisis situation. There is a fire in a high-rise

building in a town. There is multitude of different actors of different roles involved in such

an event: general coordinators, dispatchers, emergency services personell, bystanders and

residents of the tower. To see how effective a particular strategy to lessen the effects of

such a crisis is, you would have to not only know particulars about the fire, but particulars

about the agents involved and their interactions. For example, the likelihood of being able

to stop the fire depends on the arrival time of the first responders. That depends on the

speed and location of the first responders, the effectiveness of communication between

dispatchers, bystanders and general coordinators. Here you can see how an ultimately

simple measurement results from a complex chain of relationships and dependencies.

When modeling crisis situations, it’s vital to discern to what goal and to which user your

model and simulation is catered to. Referring back to the five different main use cases

Kleiboer highlights in their work [6], these different use cases can have vastly different

technological requirements, but as the underlying domain we are modeling is the same,

13

agent-oriented approach can theoretically work for all of them.

1.3 Recent changes in web-based simulation

As we can often effectively model crisis situations using agent-oriented modeling, we can

theoretically select one of many available agent-oriented simulation tools to run our crisis

simulations. In ”Agent Based Modelling and Simulation tools: A review of the state-of-art

software”, the authors give a thorough overview of 83 such toolkits, categorising them

using a number of different criteria, including but not limited to their platform, license,

difficulty of model development, computational scalability, an a assessment of the domains

the tool is suitable for and implementation types of agents [9]. For crisis simulation, we

often require the ability to model systems with GIS data. Applying this criteria to the

reviewed tools, we are left with the following tools [9]:

• Cormas

• Envision

• GAMA (2D/3D)

• Insight Maker

• MATSim

• OBEUS

• Pandora

• Repast-J/Repast-3

• Repast HPC

• Repast Simphony (2D/3D)

• SOARS

• TerraME

In our thesis we are specifically interested in the viability of using the browser as a

14

platform for our crisis simulation tool. J. Byrne, C. Heavey and P.J. Byrne gave a com-

prehensive overview of the history, evolution and comparative advantages / disadvantages

of web-based simulation in 2010 [10]. However, since 2010 the browser environment

has markedly evolved, relying on native browser technology, mainly thanks to advances

in the ECMAscript toolset and specification. This, along with a track record of security

vulnerabilities, has rendered traditional java applets and alternative multimedia approaches

(e.g. flash) largely obsolete.

The main different approaches for web-based simulation listed in the Byrne, Heavy and

Byrne paper shift various responsibilities between the server and the browser, making

different tradeoffs along the way [10]. In this paper, we specifically focus on the ”Local

simulation and visualisation” approach outlined in the aformentioned paper, which is

described in the paper as follows: ”where both the simulation engine and visualisation

components are downloaded seamlessly by the client to the user’s local computer, so

that the graphical interface and the simulation engine coexist in the same environment

(i.e. within the browser) shifting the responsibility for execution completely from the

server to the client” [10]. The evolution of the toolset removes or minimizes a number

of disadvantages of this approach noted in their paper. The graphical user interface

limitation they outline has become largely obsolete. In fact, application builders now often

prefer the web’s toolkit to native toolkits or java-based GUI toolkits. In addition, the

performance of using a local simulation and visualisation system has improved, thanks in

part to advances in the performance of the available javascript JIT-compilers and also to

new technologies, such as Web Workers and SharedArrayBuffers, allowing developers to

parallelise computation in browsers, not to mention just the average device getting more

powerful.

One example of utilising modern browser technology to build a web-based simulation

platform can be found in our previous list of potential tools from [9]. InsightMaker, detailed

by Scott Fortmann-Roe in 2014 [1], provides sophisticated modelling and simulation

capability, running entirely in a web browser, with a focus on accessibility for users. It

also includes an analysis environment with different available graphs. This environment

might not however be ideal for simulating and analysing crisis situations specifically, as it

lacks some fundamental features such as visualising geographic locations and the ability

15

to navigate between world states effectively. These capabilities are not built in on purpose,

as the author intended to sacrifice some features for added accessibility to avoid software

bloat [1]. These are features that may not be necessary for a general-purpose simulation

tool.

Figure 1: Insightmaker[1] analysis environment

16

2 CRISMA

2.1 CRISMA project

The “Modelling crisis management for improved action and preparedness” or CRISMA

project was was an integration project financed under the Security theme of the Cooperation

Programme of the 7th Framework Programme of the European Commission that ran from

March 2012 to August 2015, where TalTech was one of the collaborating universities

devoting personnel and capital to the project [4]. The goal of the project is ”improved

crisis management in large-scale and complex crisis scenarios” [2]. Among other work,

the project produced an architecture and technological framework implementing this

architecture that can be used for visualising, simulating and evaluating different mitigation

strategies for crisis situations [2], along with specifications and reference applications. The

resulting framework is meant to address a wide range of use cases, but they highlight six

specific ones for crisis simulation [11]:

• Long Term Planning

• Incident Evolvement

• Resource Planning

• Decision Training

• Exercise Support

• Strategic and Operational Planning

17

2.2 CRISMA framework

This section provides a brief overview of what the CRISMA framework provides, mainly

sourced from the CRISMA ICMS architecture document v2 [5].

The CRISMA framework provides technological underpinnings to build crisis simulation

applications based on the CRISMA architecture. More specifically, to quote the main

public CRISMA book [2], it provides:

• Rules and guidelines for the development of CRISMA applications

• A middleware for the integration of CRISMA building blocks and legacy components

• A generic core control and communication information model (Core CCIM) that is

usable by any CRISMA application

• Software realisations of all building blocks specified in the architecture (”software

components”), and

• A set of reference applications which may act as a blueprint for the development of

concrete CRISMA applications.

It is based on a distributed paradigm, where different software services provide services

to each other, in a service-oriented architecture [2]. To build a fully-realised CRISMA

application, it is meant that you integrate selected CRISMA-defined services and your own

legacy application services together, by combining them with provided CRISMA building

blocks [12]. You then also need a UI that calls these services to make use of them, and the

project provides common building blocks for certain UI elements as well.

A central part of the framework is the Integrated Crisis Management Middleware, or

ICMM for short. It integrates multiple pieces of the whole application together, like legacy

data api-s and simulation runners. It is also is responsible for providing a central repository

of core simulation data, like world states and indicators [5].

The building blocks CRISMA provides are categorized into three main groups. These

groups are the following [5]:

18

• Infrastructure - core CRISMA components that other BBs rely on, like Pub/Sub or

the ICMM.

• Integration - these allow you to integrate your own models and indicators on top of

CRISMA infrastructure.

• User interaction - various core UI components (implemented for browsers) that

enable common crisis imulation interactions, like browsing world states, that you

can slot into your custom UI if your data model conforms to CRISMA standards.

2.3 CRISMA framework data model

In this section we explain some of the critical types of data that the CRISMA framework

uses to model real-life scenarios [5].

Scenario

Usually, when using a CRISMA application, you run a simulation in the context of a

”scenario”. A ”scenario” contains a self-contained simulation, that is to say, all other

properties used in the simulation are specific to that instance of a scenario.

World state

In these scenarios, the world is modeled on a timeline of states, where a single state

contains the entire state of the simulated world at the time, or a pointer to another world

state [5]. These states can branch from each other, allowing a user to try different strategies

or different problems, while starting from a common state. States are immutable, when

you want to change something, you create a new state from your modifications or from

running a simulation [5].

Object of interest

Since we are simulating agents, some of the most important pieces of data contained in a

world state are representations of the entities in the world. An object of interest (OOI) is

some distinct entity or actor in the world we are modelling. For example, a single patient

or a specific rescuer. They consist of some meta-information (identifier, name and the

19

like), but more critically, they have a specific object of interest type (OOI type) that they

conform to, that defines their behaviour and possible properties. In addition, they have a

defined geometry that ties them into a location or area of the simulated world.

Object of interest type

An object of interest type (OOI Type) defines a type of entities, defining how instances of

this type behave and what properties (besides the common ones) they posess. For example,

this could be a ”patient” type, defining properties such as ”condition” and ”frailty”. Usually

behaviour is assigned to specific groups instances of these types. These types can also

extend each other, for example, a Doctor type might have a Person type as its parent, where

instances of doctors would inherit all the properties of a person.

Object of interest property

Object of interest properties (OOI properties) define what properties entities of that type

have. These properties define the state of the entity in the world. For example, a single

patient, of the ”Patient” type, can have a ”condition”, that can deteriorate over time. The

property can be of different actual data types.

Geometry

This is an object representing the location or space that something occupies, usually in 2D

space. This is flexible, it can be a single point, a line, or any polygon.

Indicator

In addition to entities, the world state also contains information about the current indicators,

which are functions that run on a given world state that provide some analysis on the state.

For example, in a mass-casualty incident, it is vital to see how the current casualties are

doing - in which states they are. For this, you can define an indicator function, that will

group your ”patient” entities into groups, and output the counts of those groups.

20

2.4 CRISMA pilot projects

As previously discussed, the CRISMA project provides reference applications for different

domains. These reference applications are collections of CRISMA building blocks, but

meant so you would add your own data into them. During the project, the framework

was utilised in building various pilot projects on top of these reference applications with

successful results. Five pilot projects were selected and developed. These reflected the

following types of crisis simulations [2]:

• Extreme winter weather crisis in the north of Europe

• Coastal submersion defence strategies for the Charente-Maritime county

• Earthquake and forest fire application

• Accidental spillage from a container at a large city port

• Mass-casualty incident

These applications provided solutions for different use-cases, with different technical

requirements and different problem domains, but utilising the same core CRISMA compo-

nents and building blocks.

21

Figure 2: Evacuation need visualisation (from [2])

The above figure shows a view of the “extreme winter weather crisis” CRISMA pilot

application. Here, a user can analyse how people in different affected areas are currently

doing and decide how to use the evacuation measures at their disposal [2].

22

Figure 3: Spillage application training view (from [2])

The above figure shows a view of the “Accidental spillage from a container at a large city

port” CRISMA pilot application which can be used to train crisis commanders by reacting

to a simulated spillage situation [2].

2.5 On complexity of crisis simulation

Obviously, the CRISMA framework is a very complex collection of services, standards and

building blocks. A reason it is so complex can be attributed to the fact that there is currently

no obvious way to abstract crisis simulation into something generic while retaining enough

customisability. When building simulations, we have to describe behaviour of a system in

concrete terms for a computer to execute. A really efficient tool for this is computer code.

This means that to utilise crisis simulation effectively, one usually has to either build an

entire application or to at least build their own model for their specific simulation, unless

their usecase is already covered well enough by existing applications. What is more, crisis

simulation can be computationally very complex, with different simulations having very

different technical requirements. The data model that might work for a mass-casualty event

ambulance response simulation might be really inefficient for a river flooding simulation.

23

All of these requirements for domain and technical flexibility mean that if we want to

build a toolkit to help organisations run, and to run better simulations we can’t just provide

a single configurable application. What we do instead is to provide them with a loose

collection of resources, tools and standards that they can then combine with their own

facilities in order to build a custom simulation application. As the authors put it in the main

CRISMA book [2], ”The CRISMA Framework architecture is kept as simple as possible,

and as complex as necessary, in order to address the wide range of use cases, integrate

legacy systems, adapt to various security constraints and integrate the diverse range of

hazard, impact and risk models.”

24

3 Simulus architecture and technology

In this chapter we describe the design priorities and architecture of our CRISMA-inspired

web crisis simulation toolkit, but first we will reiterate our hypothesis. In the effort to

cover all possible current and future use cases for crisis simulation and the different

technological requirements of different simulations, the CRISMA framework has opted for

a complex service-oriented architecture, that allows the created toolkit to adapt to most

needs. However, this architecture brings with it a number of downsides. It is a relatively

complex endeavour to build and set up a crisis simulation application using the framework.

To mitigate this, the CRISMA authors have also included a set of reference applications

that you can build your own application on top of, requiring less work to figure out the

wiring. In addition to the startup cost, such an architecture requires some infrastructure

and requires one to maintain said infrastructure, which can bring with it some personnel

and capital requirements.

What this means is that the CRISMA framework is geared towards larger organisations

with enough resources to spare to overcome the setup and maintenance. The highest need

for crisis simulation comes from these organisations, so it makes perfect sense to gear the

framework towards them. However, we believe there is value in making a simple crisis

simulation tool accessible for the layman. This would encourage and allow more people to

use this useful research methodology.

3.1 Priorities

The goal of our toolkit is to make it easy to run and maintain simple crisis simulations. This

means that in contrast to some other crisis simulation toolkits that focus on completeness

and flexibility, our focus should be accessibility. Thus, in our case we are trading off some

flexibility and use cases for ease of use. However, while simple, simulations created using

25

our toolkit should still be useful for specific use cases and contexts that we define. In order

to be useful, when building a simulation using our toolkit, one should be able to utilise the

resulting application in order to:

• Familiarise oneself with the behaviour of a complex system in certain conditions, by

”playing” with the system [2].

• Plan contingency methods for certain crisis scenarios

• Test the effectiveness of planned contingency methods

As discussed previously, it is ineffectual to try and abstract the behavioural and modelling

aspect of crisis simulation. Thus, we need to build a system where people can integrate

their own behavioural code and domain entities into our toolkit. The parts that our toolkit

should provide are things that are relatively common between crisis simulation. Looking at

CRISMA and the different CRISMA pilot projects, we’ve identified the following facilities

our framework should provide:

• Most of the common UI - managing world states, entities and the like

• Utilities for analysis

• Persistence of data

• Simple integration of custom data and behavioural model into our framework

A large deviation we decided to make from the CRISMA framework is that our framework

will be the top-level software actor in the entire system, responsible for coordinating all

the other components. In CRISMA, the framework is distributed as a set of tools you

integrate with your systems. In our system, it’s the opposite. You integrate your tools into

our framework. This is effectively a tradeoff between flexibility and accessibility. Our

choice requires less work on the user’s side, but is much less flexible.

3.2 Browser platform constraints

In order to minimize setup cost and maintenance cost we have decided to build our platform

entirely as a browser application, where running it is only a matter of hosting static files

26

somewhere, or accessing them on your own machine. In addition, the modern browser

is an excellent platform to build user interfaces on, in fact, CRISMA applications use

browsers for their user interface, and the interaction building blocks supplied by CRISMA

are built using browser technologies. While the usage of the JavaScript language for this

sort of application may seem unorthodox to some, the language is being used extensively in

the scientific world, for example, by the James Webb Space Telescope’s space operations

software [13]. However, this approach has a number of constraints we have to keep in

mind:

• Limited computational capacity - since all the code is running in the user’s browser,

we cannot scale across multiple machines. In addition, JavaScript, while relatively

fast, is still slower for raw computation than languages more suited for such tasks,

like C or Rust. However, modern browser technologies like Web Workers can help

us parallelise our JavaScript.

• Loss of integration flexibility - since we do not want to create dependencies on other

web services, integrating legacy data or systems cannot happen automatically, one

would have to port it into the toolkit.

• Potential collaboration difficulties - as we, again, do not want to create dependencies

on web services, collaboration would have to happen manually, with people sharing

project data using other methods.

• Limited storage size - IndexedDB has limits to storage that tend to be smaller than

RAM capacity.

3.3 Data model

In this section, we will explore the different types of data that simulus uses to model

simulation cases. The data model of simulus loosely follows the CRISMA framework data

model. There are many other types of data used than listed here, but we consider this the

core domain of simulus.

27

Figure 4: Overview of some of the data model

Scenario

The first concept to introduce is a scenario. A simulation always happens in the context of

a scenario. Like in the CRISMA framework, a scenario contains an isolated instance of a

simulation environment, independent from other scenarios. These scenarios contain all the

data necessary to run, analyse and explore simulation cases. Scenarios are implemented as

plain Javascript objects, and persisted in the client-side database, IndexedDB.

World state

A world state, responding to the same item in CRISMA literature, represents the entire

state of the world and simulation at a single point in time. It is tied to a specific scenario.

When looking at a scenario, it consists of a number of world states. A world state can be

attached to a previous world state, and they can branch from each other, forming a tree.

This is so that one can try going different paths during a scenario, to compare how they

turn out, helping a user ”play” with the system. World states are immutable, if you want

to change the state of the world by modifying it manually or running a simulation, you

must create a new world state, usually based off of a previous world state, by means of

28

a transition. World states are implemented as Javascript objects that store id-s of parent

world states, constituting a tree. World states are also persisted in IndexedDB.

Transition

A transition represents the movement from one world state to another. It is used as an

intermediary piece of data to construct a new world state from a previous one and a set

of modifications to the previous one. Transitions are created by a user through the UI,

by branching off of a previous world state and then editing it through manual editing

and simulation. Unlike in CRISMA, transitions aren’t persisted, they’re only used as a

temporary data structure to construct a new world state.

Entity type

An entity type corresponds to an ”OOI type” in CRISMA literature. An entity type

defines what properties entities of this type have, and how they behave. In object-oriented

programming, this responds to a ”class” of object. Much like OOI types, and classes in

OOP, these types can extend each other, inheriting the properties of the parent. Entity types

are not stateful, but they are used to construct entities, whose properties are stateful. Entity

types are not provided by the platform, but created by a user programmatically in a module.

Entity types are simple javascript objects, but since they can extend each other, there are

facilities to collapse an entity type hierarchy into a single usable entity type.

Entity

An entity corresponds to an instance of an entity type, to an OOI in CRISMA literature,

and to an instance of a class in OOP. Entities have properties of various types, that define

their state. While entities are attached to and remain in a scenario forever, meaning that

they themselves do not constitute state, their properties change throughout a scenario,

constituting state. An entity models a single agent or actor, for example a single patient

in a mass-casualty incident simulation. Entities can be created and archived via the UI or

programmatically. Entities are javascript objects that are persisted on IndexedDB, and their

metadata (not properties) can be edited at any point during a scenario’s lifecycle. Contrary

to the CRISMA model, entities do have a special geometry attribute, instead geometries

are implemented as properties.

29

Property

A property is a piece of stateful data attached to an entity. Entities have a number of

properties, which constitute the state of the entity. Properties are meant to change in a

scenario, and their values are attached to world state, thus enabling one to see the change in

properties. The types of an entity’s properties are defined by that entity’s type and its parent

types. Properties can be of various types, for example, strings, numbers or geometries.

Properties are javascript objects, they are created and changed when one is building a

transition from one world state to another. As they constitute a critical part of the world

state, they are immutable once stored in IndexedDB.

Indicator

An indicator is something that is able to translate a raw world state into a useful piece

of visualised data. It is essentially function f with some added metadata, such that when

fed a world state w, produces an indicator vector iv f (w)→ iv, where the indicator vector

is a piece of ”visualisable” data, such as a single value, a grouping of labels and values

we can show in different charts, or a ”custom” value, where the indicator will provide a

UI component that can render this value. Much like entity types and behaviour models,

indicators are not provided by simulus, but created by the user in a module.

Module

As previously discussed, we need some way for users to add their own behavioral code

and models into simulus. This is where a module comes in. A module is a grouping

of indicators, entity types and behaviour models that a user of simulus provides to their

simulus instance. When creating a scenario, a user can select one or many modules from

modules the user has loaded into their instance of simulus. These modules provide the

custom functionality that a simulation needs. When running a simulation on one of the

world states in said scenario, the user can select a behavioural model to run. The module

abstraction is made so that simulation can be shared and integrated between each other by

defining a common interface. When a scenario is created with modules attached, if that

scenario is used in a context where those modules are not available, it will detect this and

prompt the user to add these modules. A module is a simple javascript object that a user of

simulus defines with all the indicators, entity types, behaviour models and metadata they

30

want to include. It’s passed into the simulus framework to be used. The CRISMA data

model doesn’t include modules, as its approach for custom behaviour is instead built on

service composition.

Behaviour model

A behaviour model is another function with metadata, that, when selected by the user,

can compute a new world state out of a previous one. Behaviour models are provided by

the user in a module, and they constitute the actual algorithms that simulations use. To

implement a behaviour model, one has to first decide what parameters (besides world state)

their behaviour model needs. To allow users to enter these parameters when using the

model, the model can provide a ”parameter schema” built out of JSONSchema, which is a

standard format for defining data types [14]. Out of this schema, simulus will generate and

render a form that will provide the user’s simulation model with the needed parameters.

Finally, to make the model work, the user has to implement a function in the behaviour

model that takes the world state (and associated metadata), and provided parameters (from

the form we created from the scema), and returns a result asynchronously. The user can

choose whether this function will be run synchronously or in a web worker, as there are

some caveats in our implementation of web worker usage,for example, they can’t use

variables out of the immediate scope of the function, as we have to serialize the function

when moving it to the worker.

3.4 Implementation

Simulus applications are browser-only, and require no integration with web services or

their API-s. A simulus application, when built, will be a set of static files that one can

serve with any webserver. Simulus itself is built on a variety of client-side technologies

and open-source libraries that affect its usage and development. We will list the more

significant ones and their usage in this section.

Core technologies

Simulus is built using Typescript, which is a superset language of Javascript, meaning it

supports the entire syntax set of the ECMAScript standard, but adds its own functionality

on top [15]. Typescript provides static typing to an otherwise dynamic language. The

31

reason for using it is twofold: first, it aids development, as it lets one use their code editor’s

autocomplete features in a more thorough way. Secondly, it aids in integrating simulus into

your application, as someone consuming the simulus library can use a better-documented

interface out of the box. To use typescript in the browser, it is transpiled into regular

Javascript, using the typescript transpiler.

Simulus relies on a variety of modern browser features, which renders it unsuitable

for older browsers, without including polyfills [16]. Importantly, simulus is meant to

persist relatively large amounts of data in the browser. For this, simulus uses IndexedDB,

which allows us to store and retrieve large amounts of data quickly, while allowing for

different indices for our data models [17]. In addition, it provides transaction functionality.

IndexedDB storage limits depend on the browser and their version and IndexedDB might

not even be persistent in some specific cases. In case of firefox for example, the storage

limit is based on the size of your hard drive, along with different ratios and constraints

applied to it. However, a persistent thread between all the browsers is that the storage limit

is not in hard-drive levels of capacity, but instead fits into RAM. This sets us an automatic

upper limit on the amount of data we can work with, at least until newer solutions get

standardised with larger capacity, like the File and Directories API proposal [18].

In order to run computation asynchronously and in parallel, simulus supports the usage of

web workers for behavioural models [19]. As javascript is single-threaded, running heavy

computation on the main thread would block the entire ui from interaction, which is a bad

experience for users. Web workers help us avoid this issue, by moving computational work

to a separate thread. Normally, web workers require separate files and special setup, but

that is not in line with simulus’ plug-and-play nature. Our implementation for this instead

relies on serializing javascript, which means that when one is using the web worker mode

of behavioural models, they have to pay special care that they don’t violate its constraints.

As this is a caveat, we also provide the possibility of running models synchronously.

Simulus has a need to store globally-unique identifiers, to not have conflicts when exporting

or importing data. For this, we use Universally Unique Identifiers, otherwise know as

UUID-s, which are in wide use in distributed and multiagent systems [20]. We use the ver-

sion 4 (random) variant. For this, we’re using an MIT-licensed javascript implementation,

compliant to RFC 4122 [21].

32

User interface

A substantial part of the simulus system is the user interface (UI) that it provides to

simulation managers. This includes utilities for managing scenarios, entities, world state,

modules, running simulations and visual analysis. For building the interaction of the UI

and our data model, we have used React, which is a UI library built by Facebook, that

follows the functional programming paradigm [22]. It is licensed using the MIT license,

which is a very permissive license [23].

For the actual visuals of the UI, in order to not spend much time on this, we have opted

to use a component library called semantic ui, and more specifically, the official React

adapter for it, which is also MIT-licensed. In simulus, we use charts to allow the user to

visually analyse indicator vectors that their indicators provide. For these charts, we have

integrated react-vis, which is an MIT-licensed charting library built by Uber, specifically

with a focus on composable charts in React [24]. In addition, we have used d3, which is a

ubiquitous tool for building visualisations on the web [25]. It is licensed using the BSD

3-clause license.

For convenient browser navigation, simulus uses an MIT-licensed abstraction on the

browser history api, called react-router. This helps users navigate around the application.

Its usage is also configurable by the user, as its default settings might not work in all

environments.

Code structure

Simulus makes extensive use of the ECMAScript module specification, allowing us to split

functionality into relevant files and directories and then having our build system add them

together, while maintaining local scopes, without sacrificing loading speed. The code is

split by domain, where things related to a single domain like world states or entities live

together. A small simulus application (without much module code) takes about 600kb of

space after bundling, minification and gzipping, which are best practices for web assets

[26].

Simulus is open source, licensed under MIT, and available at the source code repository at

https://github.com/tankenstein/simulus.

33

Items left out of scope

Some simple but useful facilities were out of scope for this thesis, but would be useful to

include in the future. Things that have a good chance of being added to simulus include:

• More indicator types - currently, the variety of indicators is quite limited. Custom

indicators help with this, but more indicators types would make better analysis more

accessible.

• Scenario import and export - the simulus data model is meant to be easily serializable

for this purpose. It would be very useful if a user could send their scenario in some

serialized format to another user, who could import it into their instance.

• Parallelised indicators - we could leverage the same web worker system for indicators

that we used for behaviour models.

34

4 Using simulus

In this chapter we will give an overview of how a simulation manager should actually use

simulus to build their crisis simulation application.

4.1 Distribution

Simulus is distributed as a Javascript library. This means that in order to build an application

using simulus, one has to acquire the built artifacts of simulus and use them in their code.

There are two artifacts one needs to use simulus, the built javascript file and built css file.

Both are minified to lower loading times. All dependencies of simulus are included in the

built arifacts. There are more methods to acquire the built artifacts than listed here, but

two main ones are highlighted.

Via node package manager

The node package manager or NPM is a ubiquitous package manager used in Javascript

development [27]. It started as an unofficial package manager for the node.js Javascript

runtime ecosystem, but eventually people started using it for browser applications as well.

Simulus is distributed on the NPM registry as the ”simulus” package. In order to install

the latest version via npm, one has to first install a stable version of node.js and npm, and

confirm that their environment is working as intended. Then the user has to navigate to

their local npm project they are developing, and should run the following in a bash shell:

1 npm install simulus

In order to use simulus in this format, one usually has to include a build system in their

project capable of bundling npm dependencies into their javascript. We suggest webpack,

which is a common MIT-licensed built system. Once a build system is installed and

35

working, one can get a hold of simulus using the ECMAScript module syntax, like so:

1 import simulus from ’simulus’;

In addition, simulus has some styling attached to it that a user should include. When using

a build system such as webpack, they can simply add the following to their scripts:

1 import ’simulus/dist/main.css’;

Via a content delivery network

Unpkg is a content delivery network for files hosted on the npm registry. We can leverage

it to include simulus in our website without having to familiarise ourselves with the

complexities of the modern javascript toolchain. First, just include a html script tag with

the following src property: https://unpkg.com/simulus/dist/main.js, like so:

1 <script

2 type="text/javascript"

3 src="https://unpkg.com/simulus/dist/main.js">

4 </script>

Then, also include the styling of simulus by adding a link element in the head section of

your html document, with the following href property, like so:

1 <link

2 rel="stylesheet"

3 href="https://unpkg.com/simulus/dist/main.css">

Either way that one includes simulus, they will then want to proceed to using the main

simulus exports as detailed in the next section.

4.2 Building on top of simulus

Once simulus has been included in a project, work has to be done to build a simulation

application on top of it. To just have simulus up and running, one just has to run the

simulus function with a html element they intend to render the application into and an

object defining options. For example, if one wanted to render into the document body, they

could do the following:

36

1 const options = {};

2

3 simulus(document.body, options);

Configuration of simulus happens through the options object. It defines only two keys,

those being routerType and modules. In this section we will give an overview, but

not completely detailed information about how to build on simulus, instead, interested

parties should go to the documentation for this.

Up to date documentation is available at the source code repository, located at

https://github.com/tankenstein/simulus

4.2.1 Routing

Simulus is built as a single-page application, and it uses browser history to move to different

pages within it. This makes for convenient usage, as you can still use back and forward

controls in your browser. However, there are some caveats with different routing styles.

So, we provide three different router types you can use, depending on your infrastructure.

To use this setting, include it in the options object, like so:

1 const options = {

2 routerType: ’hash’,

3 };

4

5 simulus(document.body, options);

The first one is ’none’. This will always work, does not matter what your infrastructure

is. This is also the default value. This will keep the routing state in memory only, meaning

you cannot use url navigation at all.

The second one is ’hash’, using a concept colloquially called ”hash” routing. This uses

full URL-s, but adds them behind a # symbol, which means that our routing should not

require changes from your webserver, as only the browser sees the hash. With this setting,

you can have URLs like: https://example.com/#/scenarios/

The final one is ’full’, which uses the full HTML5 History API. This requires some ex-

tra server configuration, as the client-side application would be responsible for controlling

37

url paths. For this, the content root of your application should always serve the simulus

application, regardless of what route you go to the server with. With this setting, you will

have URLs like: https://example.com/scenarios/

4.2.2 Modules

Like discussed in the data model section of simulus architecture and technology, the core

abstraction used to build custom functionality into your simulus instance is called a module.

A module is a javascript object, being a collection of metadata, indicators, entity types and

behaviour models, built by a user, that simulus can use to provide simulation functionality.

In order to do anything useful with simulus, one has to either acquire and include a module,

or built their own. The idea of modules is that by defining a common interface with

metadata that simulation developers can use to integrate their models, developers can share

and extend these pieces of functionality. Thus, a full simulus application consists of the

simulus framework and included modules. We encourage potential developers of simulus

to share their modules, for example on NPM, so that others can use and build on top of

their work. Modules can even use functionality from other modules.

This is an example module:

1 const ExampleModule = {

2 id: ’ee.ttu.simulus.example.v1’,

3 name: ’Example module’,

4 description: ’Not useful module used to show how to build a module’,

5 };

To use it, simply include it in your simulus options like so:

1 const options = {

2 modules: [ExampleModule],

3 };

4

5 simulus(document.body, options);

Then, you can include this module in a scenario when you create one via the UI. However,

this module isn’t useful, it only defines the metadata of the module. Name and description

are purely used for descriptive purposes, but the id is important, as it is used to see which

38

modules scenarios are dependant on. It should be globally unique, so one can use uuid-s

for this, or follow the java package convention. We also recommend appending the version

to the id, if some versions of your module are not backwards compatible. Most objects

with metadata in simulus require globally unique id-s.

Entity types

The ”meat” of a module are the entity types, the behaviour models and the indicators it

exposes. All of these are defined as objects. This is an example entity type of a simple fire

truck model, with properties denoting its location and remaining water amount:

1 const FireTruck = {

2 id: ’ee.ttu.simulus.example.v1.truck’,

3 name: ’Fire truck’,

4 properties: [

5 {

6 id: ’location’,

7 name: ’Location’,

8 dataType: ’geometry’,

9 },

10 {

11 id: ’waterRemaining’,

12 name: ’Water remaining’,

13 dataType: ’number’,

14 },

15],

16 };

Figure 5: An example entity type

There are more ways to configure entity types, like using the built-in inheritance support

via the base type id parameter, but these are available in the documentation.

Indicators

Indicators and behaviour models are special, in it that they expose actual javascript func-

tions in addition to metadata. For an indicator, you first select what type of indicator it

39

is. This denotes what kind of value will be rendered, whether this is just some value, or a

graph of some kind. Once you know the type, you also have to make your indicator vector

data conform to that type’s standard. This is an example of a simple indicator that, when

calculated, will show a bar chart with fire trucks aggregated by their water level:

40

1 const FireTruckChart = {

2 id: ’ee.ttu.simulus.example.v1.truckWaterLeft’,

3 name: ’Fire trucks by water left’,

4 type: ’bar’,

5 calculate: state => {

6 const counts = entities

7 .filter(({ type: { id } }) => id === ’ee.ttu.simulus.example.v1

.truck’)

8 .reduce((aggregate, truck) => {

9 const { waterRemaining } = truck.properties;

10 if (!waterRemaining) aggregate.empty++;

11 else if (waterRemaining <= 25) aggregate[’<=25’]++;

12 else if (waterRemaining <= 50) aggregate[’50’]++;

13 else if (waterRemaining <= 75) aggregate[’75’]++;

14 else aggregate.full++;

15 return aggregate;

16 },

17 {

18 empty: 0,

19 ’<= 25’: 0,

20 ’<= 50’: 0,

21 ’<= 75’: 0,

22 full: 0,

23 },

24);

25

26 return Object.keys(counts).map(key => ({

27 x: key,

28 y: counts[key],

29 }));

30 },

31 };

Figure 6: An example bar indicator

Indicators have different types of values they must return, depending on their type. In the

above example, a bar indicator (one which will render a bar chart) will have to return an

41

array of objects, where the objects have an x value and a y value. The system will use this

function to compute new indicator vectors and render them when necessary in the analysis

tab.

Figure 7: Simulus analysis including the previous example indicator

Behaviour models

Finally, to run simulation models, one has to implement them as behaviour models in their

module. First, it’s worth thinking about what data you’ll need for this simulation. If it’s

not all contained in world state, it’s worth defining some simulation parameters using the

parameter schema option. This will generate a form for the user to fill when they want

to run a simulation, and then pass the result to the model along with the state. Finally,

when you have all the data you need, you need to implement the actual simulation function.

This function takes in world state and simulation parameters and passes a new state to a

function, effectively performing a state transition.

42

1 const WaterDecreaseModel = {

2 id: ‘ee.ttu.simulus.example.v1.model.waterDecrease‘,

3 name: ’Simulate fire trucks randomly getting less full’,

4 parameterSchema: {

5 type: ’object’,

6 properties: {

7 steps: {

8 title: ’Steps to run simulation for’,

9 type: ’number’,

10 },

11 },

12 },

13 runInWorker: (state, params, callback) => {

14 for (let index = 0; index < params.steps; index++) {

15 state.entities

16 .filter(entity => entity.type.id === ’ee.ttu.simulus.example.

v1.truck’)

17 .forEach(entity => {

18 if (Math.random() <= 0.2) {

19 entity.properties.waterLeft--;

20 }

21 })

22 }

23 callback(state);

24 },

25 };

Figure 8: An example behaviour model

If you’d like to make your model run asynchronously, you should use the runInWorker

option instead of run when implementing the function. However, because of the way that

we construct a worker out of the model, you cannot use variables outside of that function’s

scope. This is unfortunate, but we let you also use the synchronous run if this is an issue.

43

4.2.3 Using an application

A simulus application has three top-level views, and then many more subviews. When

a user first enters a simulus application, they land on a ”landing” view. Although this

view is out of scope for this thesis, it will be used to show documentation and information

pertaining to the specific simulus instance. From here, a user can go to the modules or

scenarios views. The modules view shows the user the modules they have currently loaded,

and some of their properties. However, the most important view here is the scenario view.

Here, a user can create and select scenarios to work with. In the future, this is where

scenarios will also be imported and exported from.

Most of the time a user will be either creating or going to an existing scenario. This opens

the main view, which is called the scenario view. Here, a user is first shown a tree of the

current world states, which also acts as navigation between world states. Below this, the

user can access all functionality pertaining to the current world state through four tabs:

• Overview - this lets the user create and delete new world states and transitions.

• Entities - in this view, a user can see and manipulate all the entities who are involved

in the scenario, as well as their properties as they are in the current world state.

• Simulation - here, a user can select a behaviour model they want to run on the current

world state, and will also fill the simulation parameters for these models. When they

run an asynchronous simulation, they can monitor the progress here.

• Analysis - this tab is meant to analyse the current world state using indicators. A

user can create panels that show indicators defined in modules here, and manipulate

them with accessible facilities, like moving them around by dragging and dropping,

or resizing.

A more detailed example of building a simulus module is available in the simulus source

code repository, accessible at https://github.com/tankenstein/simulus.

44

Figure 9: Main simulus scenario view with the entity tab selected

45

5 Reference application

In order to validate the basic design of our framework, simulus, we have built a small

reference application using it. The scenario we are simulating is a mass-casualty event

simulation, with the goal of exploring how ambulances react to such an event.

There has been substantial research into ambulance simulation. In our case, we naively

want to run a crisis simulation with ambulances, that is to say we will ignore all other

happenings in the world, and assume that all ambulances are needed to handle the crisis

situation. In addition, simulating dispatch is outside of the scope of this example module,

so we assume all ambulances have perfect knowledge of the world.

All of the functionality described is built within one simulus module, called ambusim. In

this module, we provide entity types to model patients, ambulances and hospitals. All the

entity types described have a location property type. Patients have additional property

types pertaining to their current medical condition.

We provide two behavioural models. One will simply create a mass-casualty incident,

by providing the model with various properties used to describe the accident, such as

its location, the area over which the victims are scattered, the amount of victims, the

magnitude of the incident and so on. This model will create patients randomly with

appropriate medical conditions in the accident area. For the ambulance model, we utilise

an ambulance service process model inspired by the model used in ”BartSim: A tool

for Analysing and Improving Ambulance Performance in Auckland, New Zealand”, but

simplified [28]. When an accident occours, all ambulances start moving towards it. They

select the closest patient who is currently in critical condition. Once arrived, they will

stabilise the patient, and move on towards the next one. At the same time, patients who are

in critical condition are slowly deteriorating.

46

Figure 10: Start of a simulated mass-casualty incident

We provide some simple indicators to view the current situation in the world, along with a

map indicator built with the Mapbox webgl environment [29], using OpenStreetMap [30]

data.

Figure 11: The same incident after 15 minutes passes in the simulation

47

From the above example, you can see how as the simulation progresses by 15 minutes from

the previous situation, some patients have deteriorated, some have died and some have

been stabilised by the ambulances that have arrived. Overall, the conditions have gotten

worse. In this case, the amount of ambulances that have arrived during this timeframe are

not enough, and stabilising all the critical patients is overwhelming the three ambulances

currently on the scene.

A demo of this application, along with a small overview is available at

http://tankenstein.github.io/simulus. The source code is available as an example in the

main repository, https://github.com/tankenstein/simulus.

48

6 Summary

The field of crisis simulation is an ever more critical aid to planning and training for

contingencies. We do have some very comprehensive toolkits at our disposal. However,

due to the complexity of the field, these toolkits are not easily accessible and have a high

barrier of entry: thus the same can be said about creating practical crisis simulation as a

whole. In addition, most of the current research is geared towards applications useful for

either serious research groups or large organisations. However, we believe there is value in

making this accessible both for students and small and medium organisations.

In order to alleviate the situation, we have designed and built a crisis simulation framework

SIMULUS with a focus on accessibility, not flexibility. We have based the design of

SIMULUS on the CRISMA framework, adapting it for accessibility while limiting the

scope. As a part of this focus on accessibility, we have built the framework entirely

on browser technologies, not relying on separate databases, servers or web services.

Technologically our system relies on several new browser API-s to mitigate some of the

shortcomings of the browser platform. We have built a simple integration system into

our framework to help users model their domain and to build simulations for it. In order

to validate our framework, we have built a simple crisis simulation application which

simulates ambulance response to a mass-casualty incident.

As future work it would be useful to validate SIMULUS with a real pilot application to see

its shortcomings in practice, and then adapt SIMULUS to overcome those shortcomings.

49

References

[1] S. Fortmann-Roe, “Insight maker: A general-purpose tool for web-based modeling &

simulation,” Simulation Modelling Practice and Theory, vol. 47, pp. 28 – 45, 2014.

[2] D. Havlik, P. Dihé, S. Schlobinski, A.-M. Heikkilä, M. Polese, K. Taveter, and

O. Venho-Ahonen, Modelling crisis management for improved action and prepared-

ness. 07 2015.

[3] C. M. Macal and M. J. North, “Tutorial on agent-based modeling and simulation,” in

Proceedings of the Winter Simulation Conference, 2005., pp. 14 pp.–, 2005.

[4] EU Publications Office, “Modelling crisis management for improved action and

preparedness.” Available https://cordis.europa.eu/project/rcn/102347/factsheet/en.

[Accessed: 2019-05-01].

[5] P. Dihé, M. Scholl, S. Schlobinski, T. Hell, S. Frysinger, P. Kutschera, M. Warum,

D. Havlik, A. DeGroof, Y. Vandeloise, O. Deri, K. Rannat, J. Yliaho, A. Kosonen,

M. Sommer, and W. Engelbach, “CRISMA ICMS Architecture Document V2,” 02

2014.

[6] M. Kleiboer, “Simulation methodology for crisis management support,” Journal of

Contingencies and Crisis Management, vol. 5, no. 4, pp. 198–206, 1997.

[7] L. Sterling and K. Taveter, The art of agent-oriented modeling. MIT Press, 2009.

[8] J. Dugdale, N. Bellamine-Ben Saoud, B. Pavard, and N. Pallamin, Simulation and

emergency management, vol. 10. Chapter, 2010.

[9] S. Abar, G. K. Theodoropoulos, P. Lemarinier, and G. M. O’Hare, “Agent based

modelling and simulation tools: A review of the state-of-art software,” Computer

Science Review, vol. 24, pp. 13 – 33, 2017.

50

[10] J. Byrne, C. Heavey, and P. Byrne, “A review of web-based simulation and supporting

tools,” Simulation Modelling Practice and Theory, vol. 18, no. 3, pp. 253 – 276,

2010.

[11] EU Publications Office, “CRISMA Use cases.” Available

http://www.crismaproject.eu/usecases.htm. [Accessed: 2019-05-02].

[12] P. Dihé, M. Scholl, P. Kutschera, A. DeGroof, O. Deri, A. Kosonen, and J. Sautter,

“ICMS Framework V2,” 02 2015. [Accessed: 2019-04-28].

[13] I. Dasheysky and V. Balzano, “JWST: Maximizing Efficiency and Minimizing Ground

Systems,” in Proceedings of the 7th International Symposium on Reducing the Costs

of Space Craft Ground Systems and Operations (RCSGSO), vol. 28, Citeseer, 2007.

[14] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Foundations of json

schema,” in Proceedings of the 25th International Conference on World Wide Web,

pp. 263–273, International World Wide Web Conferences Steering Committee, 2016.

[15] S. Fenton, “Typescript language features,” in Pro TypeScript, pp. 1–62, Springer,

2018.

[16] R. Sharp, “What is a polyfill.” Available https://remysharp.com/2010/10/08/what-is-

a-polyfill, 2010. [Accessed: 2019-05-03].

[17] S. Kimak and J. Ellman, “The role of html5 indexeddb, the past, present and future,” in

2015 10th International Conference for Internet Technology and Secured Transactions

(ICITST), pp. 379–383, IEEE, 2015.

[18] J. Bell, “File and directory entries api.” Available https://wicg.github.io/entries-api/,

11 2019. [Accessed: 2019-05-05].

[19] I. Green, Web workers: Multithreaded programs in javascript. ”O’Reilly Media,

Inc.”, 2012.

[20] Z. Balkić, D. Šoštarić, and G. Horvat, “Geohash and uuid identifier for multi-agent

systems,” in KES International Symposium on Agent and Multi-Agent Systems: Tech-

nologies and Applications, pp. 290–298, Springer, 2012.

51

[21] P. Leach, M. Mealling, and R. Salz, “Rfc 4122: A universally unique identifier (uuid)

urn namespace,” Proposed Standard, July, 2005.

[22] C. Staff, “React: Facebook’s functional turn on writing javascript,” Communications

of the ACM, vol. 59, no. 12, pp. 56–62, 2016.

[23] Y.-H. Lin, T.-M. Ko, T.-R. Chuang, and K.-J. Lin, “Open source licenses and the

creative commons framework: License selection and comparison,” Journal of Infor-

mation Science and Engineering, vol. 22, no. 1, pp. 1–17, 2006.

[24] Uber inc, “React-vis: a composable charting library.” Available

https://uber.github.io/react-vis/. [Accessed: 2019-05-04].

[25] J. Harper and M. Agrawala, “Deconstructing and restyling d3 visualizations,” in

Proceedings of the 27th annual ACM symposium on User interface software and

technology, pp. 253–262, ACM, 2014.

[26] S. Souders, “High performance web sites,” Queue, vol. 6, no. 6, pp. 30–37, 2008.

[27] P. Teixeira, Professional Node.js: Building Javascript based scalable software. John

Wiley & Sons, 2012.

[28] S. G. Henderson, A. J. Mason, et al., “Bartsim: A tool for analysing and improving

ambulance performance in auckland, new zealand,” in Proc. of the 35th Annual

Conference of the Operational Research Society of New Zealand, Wellington, New

Zealand, pp. 57–64, 2000.

[29] O. Eriksson and E. Rydkvist, “An in-depth analysis of dynamically rendered vector-

based maps with webgl using mapbox gl js,” 2015. Dissertation.

[30] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” IEEE Perva-

sive Computing, vol. 7, pp. 12–18, Oct 2008.

52

