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Abstract

Modern hardware design process relies entirely on CAD (Computer-Aided
Design) tools. The main difficulties faced today by the EDA (Electronic Design
Automation) industry and academia are the enormous scale and complexity of
digital designs. This brings to the front the scalability property of design
representation models and their ability to represent designs in the most efficient
way for the given design task. Despite all the EDA efforts, the design productivity
gap persists and manifests designers’ inability to harness all that technology allows.
Furthermore, verification productivity gap does not allow verification engineers to
even ensure a 100% correctness of what yet can be designed.

This thesis contributes to closing these gaps using two powerful design
representation models. Designers’ productivity is improved through an automated
debug method based on a scalable Instantiation Graph (IG) model. Researchers’
capabilities are enriched through a scalable IG-based open source platform for
hardware design and verification. It offers a solid ground for building other EDA
tools and experimental environments. Verification accuracy is further improved
through stringent code coverage measurement and fast assertion checking methods
based on High-Level Decision Diagrams (HLDD) model and its modifications. If
HLDD model suits best for academic research, then IG model is required for
experimenting on large industrial designs and has also found industrial application.

First, we present several HLDD model modifications and extensions that target
verification accuracy and speed. The thesis includes a methodology for automated
generation of behavioral and structural HLDD models from VHDL descriptions.
Different HLDD compactness levels are investigated with respect to code coverage
measurement accuracy. Certain compactness levels are found to provide more
stringent coverage metrics than classical metrics based on hardware description
languages (HDLs). Different conditional statements representations by HLDDs are
considered: some are found beneficial for condition coverage measurement,
others — for automated bug location using statistical methods. The concept of
mutation testing on HLDDs is discussed and shown to provide a better estimation
of test quality than the code coverage approach. Temporally extended HLDD
(THLDD) model is introduced and shown to provide faster verification assertion



checking than wusing an HDL-based state-of-the-art assertion checker.
Corresponding methodology for THLDD generation from PSL assertions is also
provided. Finally, a unified HLDD-based verification framework APRICOT is
presented along with its implementation as ApricotCAD.

Second, to address the scalability problem unsolved in ApricotCAD, the thesis
introduces IG model for scalable design representation and a methodology for
comprehensive HDL descriptions elaboration into the IG model. The scalability
property of the model is investigated on a system on chip consisting of 3584
LEON3 processor cores, which is far ahead of even tomorrow’s scale. zamiaCAD
scalable open source platform for design and verification powered by IG model is
presented in detail. Tools for static code analysis and VHDL simulation based on
zamiaCAD platform are described. Finally, a scalable automated method for
precise bug localization in industrial-sized designs is also presented. It uses the
both above mentioned tools and is experimentally proven to be particularly useful
and accurate in debugging complex conditional statements in large industrial
designs of today’s scale.

The two proposed models and their derivatives offer wide possibilities for
research and industrial application. The models can also be merged together to
achieve promising synergic effect discussed shortly in the concluding chapter.



Kokkuvote

Kaasaegne riistvaraarendus pohineb tdielikult CAD (Computer-Aided Design)
vahenditel. Téanapéevaste digitaalsete skeemide iilikdrge suurus ja keerukusaste on
saanud pohilisteks raskusteks elektroonika arendus-automatiseerimistoostuse
(EAA) ja vastavate teaduslike uuringute jaoks. See tOstab esiplaanile riistvara
esitusmudelite skaleeritavusvdimet ja nende tdpset sobivust ja efektiivsust riistvara
esitusel antud arendusiilesande tditmise kontekstis. Vaatamata EAA saavutustele,
jatkuvalt sdilib arendusvahendite kesisus, mis ei luba arendajatel realiseerida kdike,
mida tehnoloogia parasjagu teha lubab. Ega ka verifitseerimisvahendite puudus
luba tdestada selle 100% korrektsust, mis ikkagi realiseerida annab.

Antud viitekirja panuseks ongi nende kahe puuduse kdrvaldamine ldbi kahe
vOimsa riistvara esitusmudeli kaasamise. Arendajate tootlikkus suurendatakse
automaatse silumismeetodiga, mis pohineb hésti skaleeritaval eksemplar graaf
(EG) mudelil. Uurijate voimalusi samuti rikastatakse ldbi avatud ldhtekoodiga
riistvara arendamiseks ja verifitseerimiseks moeldud laiendatava EG-pohise
platvormi. Selle pdhjal annab Iuua teisi EAA vahendeid ja skaleeritavaid
eksperimentaalseid keskkondasid. Suurem tipsus ja kindlus verifitseerimisel
saavutatakse range koodikatte mdotmise ja kiire véidete kontrolli meetoditega, mis
pohinevad korgtaseme otsustusdiagrammide (KTOD) mudelil ja selle laienditel.
Kui KTOD mudel on eriti sobilik akadeemiliste uuringute l&biviimiseks, siis EG
mudel on vajalik, et teha katseid suurte skeemidega, ja seega on leidnud rakendust
toostuses.

Esiteks me esitame mitmeid KTOD mudeli modifikatsioone ja laiendeid tépsuse
ja kiiruse tostmiseks verifitseerimisel. Viitekirjas tuuakse metodoloogia
kditumuslike ja struktuursete KTOD mudelite automaatseks genereerimiseks
VHDL kirjeldustest. Késitletakse erinevaid KTOD kompaktsustasemeid. On leitud,
et moned neist annavad rangema koodikatte modtmise tulemuse vorreldes
klassikaliste riistvara kirjelduskeeltel (RKK) pohinevate meetrikatega. Erinevad
tingimuslausete esitusviisid on vaadeldud: modned on osutunud kasulikeks
tingimuskatte mootmiseks, teised — automaatseks vigade avastamiseks statistiliste
meetoditega. On uuritud mutatsioontestimist KTOD mudeli peal ja see on osutunud
koodikatte moGtmisest veelgi paremaks testi kvaliteedi hindajaks. Ajalise laiendiga



KTOD (AKTOD) mudel on esitatud ja saavutavat kiirema viidete kontrolli kui
lubab kaasaegne RKK-pShine vididete kontrollija. Vastav metodoloogia AKTOD
genereerimiseks PSL véidetest on samuti lisatud. Ldpuks esitatakse ithtne KTOD-
pohine verifitseerimiskeskkond APRICOT koos seda realiseeriva ApricotCAD
rakendusega.

Teiseks, et pakkuda lahendust skaleerimise probleemile, mis jdi ApricotCADis
lahendamata, véitekiri esitab EG mudeli skaleeritavaks disaini esituseks ja vastava
metodoloogia selle mudeli saamiseks 14bi pohjaliku RKK kirjelduste teisendamise.
Mudeli skaleeritavusvéime hindamiseks kasutatakse 3584 LEON3 protsessor
tuumast koosnevat kiipsiisteemi, mis vastab isegi kaugema kui homse pideva
toostuslikule ulatusele. Jargmisena esitatakse avatud ldhtekoodiga skaleeritav
zamiaCAD platvorm, mis pohineb EG mudelil ja on mdeldud riistvara arendamise
ja verifitseerimise hdlbustamiseks. Kirjeldatud on kaks zamiaCAD pohjal loodud
rakendust, millisteks on staatiline koodi analiisaator ja RKK VHDL kirjelduste
simulaator. LoOpuks ka avaldatakse skaleeritav silumismeetod tidpseks ja
automaatseks disainivigade lokaliseerimiseks, milles kasutatakse mdlemat
iilalmainitud rakendust. Jargnevas eksperimentaalses osas néidatakse meetodi
erilist efektiivsust ja tdpsust vigade avastamisel keerulistes tingimuslausetes ja
selliste disainide suuruste puhul, mis vastavad tdnapéeva toostuslikule ulatusele.

Pakutud mudelid koos nende laienditega ja neist tuletatud teiste mudelitega on
heaks aluseks laiale hulgale teaduslikele uuringutele ja ka todstuses kasutamiseks.
Ka mudelite kokkuviimine annab saavutada paljulubavat siinergilist efekti, mida
arutatakse lithidalt véitekirja viimases peatiikis.
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Chapter 1
INTRODUCTION

Modeling is indispensable in science and engineering. The purpose of modeling
is to develop a concept and to analyze it through experimenting on it and
measuring its properties. Verification of a concept is also an important goal of
modeling as it allows correcting the inevitable mistakes on the conceptual level
before approaching the real world and (in case of hardware) producing actual
physical implementations of the concept.

In this thesis we will contemplate hardware modeling with a particular
emphasis on those modeling techniques that improve the quality of the hardware
produced and speed up the overall process of product development. In hardware
design, the quality is guaranteed by comprehensive verification and testing, while
the speed-up is achieved through automation and acceleration of design phases.

1.1 Motivation

The impact of embedded and consumer electronics on our life has been so
profound we often take it for granted. We proclaim mobile access to the Internet
one of our basic human rights. We get angry when our flight is delayed having no
idea of how complex the hardware is that ensures our safety when on board. And
we never expect the ABS system to fail in our car. Advances in feature scaling
have also led to the situation when a dozen of appliances from the 90’s are
squeezed into a single smartphone of the 00’s and it still fits into a pocket. When
many were placing their orders for a new 4G phone, only few were listening to the
complaints of Ericsson designers how it is next to impossible to debug a 4G
cellular router. While many think building such complex hardware is as simple as
putting together several Lego blocks, it is way far from that.
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To build today’s hardware systems we need the finest production technology
and computer-aided design (CAD) tools to harness it. While many design steps are
well automated already, we still face the design productivity gap, as well as
verification productivity gap (Figure 1.1). The latter is there for two reasons. First,
historically the main focus of CAD research was on automating the design step
only. Secondly, the complexity of the verification task itself is much higher than
design task complexity [1] with verification reported to occupy between 60% and
80% of design effort [2]. What adds to the importance of verification is the
constantly increasing requirements towards the quality of verification [3], [4]. The
quality requirements are stringent for the hardware systems have become
ubiquitous today and even have made it into the many life-critical systems such as
mentioned above. That is why, for every designer, the number of verification
engineers may vary today from 2 to 4 depending on the design complexity.

Technological capability

Design productivity gap
Design productivity

Lo Verification productivity

I Verification productivity gap

today Time

Transistors per chip

Figure 1.1 Productivity gaps

The reuse of pre-designed components is a widespread practice in engineering.
While CAD tools allow composing enormous circuits out of smaller ones, the
correctness of the resulting system still remains hard to guarantee. In 1996 a highly
expensive Ariane 5 payload delivery rocket self-destructed just 37 seconds after the
launch, because the control unit reused from Ariane 4 was not verified enough to
meet the Ariane 5 specification and proved unable to handle Ariane 5’s higher
acceleration [5]. Pentium FDIV bug is another example of insufficient verification,
which presumably cost Intel $475 million in total [6]. This motivates the creation
of more stringent verification metrics and new means of revealing potentially
erroneous places in the hardware — all attended closely in this thesis. Choosing the
right model for representing hardware during verification in this case is as
important as developing the proper algorithms that make use of the model.

Design productivity gap is caused by the weak handling of legacy designs,
which are the bottleneck in simulation and verification of the entire system, and by
the lack of certain automation. Despite the myth that design process is a single
linear pass, it is in fact iterative and suffers most from its least automated phases.
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Debug automation is one of such weakest phases. Also, because design is not just a
top-down process, but requires both horizontal and vertical feature exploration by
the team, re-design is very costly and particularly costly if done late in the process.
And absolutely costly if a bug is discovered after the manufacturing, because,
contrary to software bugs, hardware bugs cannot be patched. Given the ever more
frequent application of embedded systems in the medical domain, bugs can even
prove fatal [7].

It is therefore of the highest priority to further raise the quality of hardware
through improved verification accuracy and to find ways of reducing the cost of
development in terms of time and money by e.g. speeding up the debug step.

The main problem with today’s scientific debug methods is that they rarely take
the real life conditions and limitations into consideration. Not only do they scale
bad, but they often ask for the availability of a golden model normally used in
testing and obviously being a legacy thereof. This requirement does not have to be
explicitly stated, but more often than not it is deducible from phrases like "It is
required that the specification include the expected value of the condition
expression" [8], "These dependences are compared with pre-specified
dependences" [9] etc. Such phrases reveal that authors forget that during debug we
are just in the process of obtaining such a fine-grained specification which, once
achieved, will be called an implementation. By definition, the specification
conveys information in different notions from those of the implementation and
hence never mentions the internal signals and conditions. This can be translated
into a “No Golden Model” rule often ignored for simplicity when adopting good
old testing methods for the task of debug without thorough consideration.

Satisfying the scalability property is also not a trivial task. It leads to the
situation where, on one hand, scientific methods are expected to scale well, but, on
the other hand, development of a scalable and robust experimental platform is too
hard of an intermediate task. Efficiency of new approaches is often only verified on
small designs which have nothing to do with the huge industrial designs.

1.2 Objectives

In the previous section we have motivated the importance of raising the quality
of verification and further automating the design process, e.g. its debug phase. To
meet the demand, the related research should aim at the following objectives:

o Industry needs efficient and accurate verification techniques to catch all the
design bugs before costly or catastrophic effects occur. Such techniques
would help closing the verification productivity gap.

e Industry needs scalable debug automation to faster locate and correct bugs
in designs of current scale. Automation of this frequently repeated design
step would help closing the design productivity gap.
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e Academia needs an efficient scalable basis or environment for carrying out
research without ignoring the real life conditions and limitations.

1.3 Problem formulation

To reach the objectives formulated in the previous section, in this thesis we are
solving the following specific problems:

o Fast and more accurate verification.
o Fast and scalable automated debug.
e A scalable design environment.

We want to improve the verification accuracy by modeling hardware in a way
which is verification-friendly because it allows a fine-grained analysis of hardware
descriptions expressed in popular hardware description languages (HDLs). We
achieve this by extending the High-Level Decision Diagrams (HLDDs) hardware
representation model towards stringent HDL code coverage measurement. Another
extension introduces a temporal aspect to the HLDD model and allows us to verify
design functionality using verification assertions in a fast and accurate way.

To automate the debug process and support the scale of today’s designs we
introduce the Instantiation Graph (IG) design representation model. We also
provide a scalable debug method which employs the IG model and is particularly
efficient in detecting bugs in complex conditional statements of HDL code.

Our final goal is also to publish the theory and the important details of HDL
description elaboration into the scalable IG model and provide its working
implementation as a scalable zamiaCAD platform. We also provide examples of
how IG model can be efficiently used both in academic research and in industry.

1.4 Contributions

Below we list the main contributions of this thesis.

HLDD model modifications and extensions for improved verification and
debug

o A methodology for automated generation of behavioral HLDD model from a
wide subset of VHDL language and structural HLDD model synthesis from
behavioral HLDD. Implementation of the two methodologies is included.

o HLDD model extensions and modifications for accurate code coverage
measurement, fast PSL assertion checking (using THLDD model), mutation
testing and automated debug. Modifications include different compactness
levels of HLDD model, different representation of conditional statements
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and a temporal extension of HLDD model (THLDD). A methodology and
implementation of THLDD generation from PSL properties are included.

o A unified HLDD-based verification framework APRICOT and its
implementation as ApricotCAD tool where all HLDD engines are integrated
into a single flow.

1G model introduction for scalable debug and verification related research

e Introduction of a methodology for HDL descriptions elaboration into a
scalable IG model.

e Presentation of the 1G-based design and verification platform zamiaCAD
well suitable for academic research and industrial use.

o A scalable automated debug method based on IG model and its
implementation inside zamiaCAD platform.

1.5 Thesis structure

The rest of this thesis is organized as follows.

Chapter 2 contains background information about the contemporary hardware
modeling techniques. The typical design flow is described first and the
shortcomings of modeling hardware with HDLs are mentioned. Next, a number of
application-specific models is discussed, both from industry and from academia.
Finally, the background of HLDD model is described.

Chapter 3 is devoted to HLDD-based hardware modeling approaches. It starts
by listing the most interesting aspects of the methodology for behavioral HLDD
generation from HDL descriptions. The concept of structural HLDD synthesis is
mentioned in the section devoted to test generation using HLDDs. Then a list of
application-specific modifications and extensions of HLDD model follows.
Different compactness levels of the HLDD model and various condition
representations are discussed in frames of code coverage measurement. Temporally
extended HLDDs are discussed in detail in the context of fast assertion checking.
Finally, HLDD-based mutation testing and its application for high-level debug are
considered. A dedicated section about APRICOT framework and ApricotCAD tool
concludes this chapter.

Chapter 4 is completely devoted to the scalable IG hardware representation
model, its elaboration process and application of this model to the task of debug.
zamiaCAD platform which implements the IG model is described first. Then the
concept of comprehensive HDL elaboration into IG model is discussed and
experimental data provided so that the scalability level could be assessed. The
details of convenient use of IG for simulation and static analysis are delivered
along with a detailed explanation of the scalable and accurate debug approach.
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Chapter 5 draws conclusions from the thesis and outlines the directions for
future work.

Remark:

Throughout the thesis we use [ref]“™" and [ref]™™ superscript suffixes to
distinguish co-authored and authored work from the rest of the referenced work.
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Chapter 2
BACKGROUND

In this chapter, we describe the typical process of hardware development and
the approaches used for modeling hardware at different stages of this process. We
provide a short overview of hardware models employed in academia and stress the
problems of modeling hardware of industrial scale. This background information
helps for better understanding of the role of verification and debug phases of
hardware design we address in this thesis and the models used during these phases.

Since a half of this thesis is devoted to extending high-level decision diagrams
model of hardware representation to the area of verification and debug, we also
provide in this chapter a detailed description of this model.

2.1 Hardware design flow

Let us consider a typical yet simplified hardware design flow depicted in Figure
2.1. The engineering part of hardware product development starts with composing
the specification of product requirements in a natural language and setting up the
constraints for timing, energy consumption, available chip area etc. Initial high-
level design model is captured next as an executable behavioral description written
in a hardware description language (HDL) or as a software program. This
description gets then verified against the initial specification to make sure the latter
is met. From this moment on, the design model gets decomposed recursively into a
structure of lower-level models. This hierarchical refinement continues until the
lowest level of abstraction is achieved, where the obtained models correspond to
the components from the given library of available building blocks. If the product
is a soft intellectual property (IP) core, then refinement is stopped when the
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required technology independent level is achieved. During this refinement (either
manual or using synthesis tools), the obtained models are constantly verified
against the source model they were obtained from to make sure the initial
functionality is preserved. Importantly, while descending through the levels of
abstraction, new details become available and new properties become measurable
(e.g. precise timing delays). This way different design properties and design
compliance with the imposed constraints get verified.

Specification
@ o Functional

N verification
Test S Design

generation

W
S

B % @ N\% Refinement / Debug

Synthesis

%

Placement / Routing

¥

Manufacturing

U

Testing

Figure 2.1 Simplified hardware design flow

To verify a model, two types of functional verification can be considered:
formal verification (e.g. theorem proving, algebraic manipulation, symbolic
computation) [10] and simulation-based verification [11]. Although formal
verification allows proving the equality of two different models of the same design
for all possible sets of input values, in practice it can only be applied to small
designs because of the task complexity. The industry hence usually resorts to
simulation when verifying today’s large models due to its realistic runtime. The
obvious drawback of simulation is that it can exercise the model with only a
limited set of input stimuli. However, the same holds for the formal property
checking which is limited to the set of actual properties. Therefore, with simulation
just as with formal verification, it is of the utmost importance to develop a decent
verification plan which would guide the verification process by accurately
specifying what exactly, how and to what extent should be checked to ensure
model correctness. It is also the main goal of this thesis: to improve the quality of
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verification process and to help with the process of debug that follows right after a
trouble has been identified during verification.

The synthesis step is no more than an automated model refinement which
converts behavioral descriptions (of any abstraction level) into structural ones
containing components from a given library [12]. One or several physical
parameters can be optimized during synthesis, e.g. by minimizing the number of
components, chip size, execution time, propagation delay, power consumption etc.
While sometimes considered a part of the synthesis step, placement and routing are
left stand-alone in our case so as to stress how synthesis is more concerned about
the semantics of conversion. Placement and routing, on the contrary, are involved
in the minimization of wire lengths, signal delays and the total chip area. This step
produces a blueprint of the circuit used for circuit’s manufacturing at the factory.

Finally, every single chip produced at the factory must be fested against
manufacturing defects. To obtain good quality tests a test generation phase is
required where information from specification and design models is employed.
Thesis contributions to this phase will be discussed in sub-section 3.2.1.

2.1.1 Abstraction levels

When modeling hardware, several design representations or views, such as
behavioral, structural and physical, are used to emphasize different information
about a design. Different representations are used at different stages of the design
process. First, behavioral view is used to conveniently describe required
functionality of the design. Structural view is then used to describe the way to
build or implement this functionality with the given components (transistors). The
resulting layout of components and their physical properties are finally described
using physical view. Although to manufacture a chip only structural and physical
descriptions are needed, the required functionality is much easier and more
convenient to be specified using behavioral descriptions, which are also easier to
read and comprehend afterwards. Because of that, the process of converting
behavioral descriptions into structural was automated and called synthesis [12].

These three different design views may be used at any of the four levels of
abstraction or granularity: algorithmic level, register-transfer level (RTL), gate
level and transistor level. Abstraction levels are defined by the type of objects they
use as structural components. Transistor level uses transistors, resistors and
capacitors to represent structure, and differential equations or other types of
current-voltage relationships to represent functional behavior. Gate level uses logic
gates and flip-flops as structural components described behaviorally with Boolean
equations and finite state machines (FSMs). RTL operates with arithmetic and
memory units such as adders, comparators, multipliers, counters, registers and
multiplexers, and uses flowcharts, instruction sets, generalized FSMs and
algorithms to describe the functionality of components when combined together.
Finally, the algorithmic level uses processors, memories, controllers and
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application-specific integrated circuits (ASICs) which, when combined together as
a system, are described behaviorally in a natural language, in an HDL as an
executable specification or as a software program.

The design flow depicted in Figure 2.1 goes through all the levels of abstraction
from the algorithmic down to the transistor level when going from specification to
placement and routing. The design process typically consists of defining/building a
library for a certain abstraction level and using synthesis (manual or automated) to
convert a behavioral description into a structure that can be implemented with the
components from this library [12]. A list of high-level synthesis tools exist that
accept algorithmic level of abstraction as an input specification and produce RTL
descriptions [13], [14], [15] suitable for well-established RTL synthesis.

At highest levels of abstraction (e.g. algorithmic or system level) the interest
lies in modeling interaction between entire processors and ASICs. Transaction-
Level Modeling (TLM) [16] helps modeling communication among modules using
the concepts of channels (for media) and transactions (for data). TLM allows
abstracting away the implementation details of, both, the functional modules and
the actual communication architecture and allows designers to concentrate on what
to transmit instead of concentrating on how to transmit and how to process it.

All the different levels of abstraction are essentially different models of the
design, since they provide some but not all of the information about the design. In
this thesis we are only considering behavioral and structural descriptions at RTL,
which still remains the most widely used level of abstraction for it is equally well
understood by both human designers and logic synthesis tools. In this thesis,
different hardware modeling techniques at RTL are considered which help raising
the quality of verification and speed up the debug process.

2.2 Hardware modeling with HDLs

Originally, hardware description languages were introduced to document the
behavior of integrated circuits, thus replacing massive and complex manuals with
concise and, most importantly, standardized descriptions. It soon became obvious,
however, that these concise descriptions are still subject to implementation-specific
details and, hence, suffer from ambiguity issues. This understanding led to the idea
of making hardware descriptions interpretable in a standardized way so that finally
the first publicly available language-based hardware description method with fixed
interpretable semantics appeared in 1987 as the IEEE Standard 1076 [17]. The first
hardware model simulators implementing the standardized interpretable semantics
followed shortly thereafter, along with the automatic circuit synthesizers.

Nowadays integrated circuits are described using fext models written in HDLs
such as VHDL, Verilog, SystemC. We have chosen VHDL [17] as a reference
language. The text models are a very popular means of modeling because they
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allow a great level of flexibility, resemble natural languages and can be efficiently
processed by the machine. Object-oriented paradigm allows modeling both
behavior and structure by text. Structured programming paradigm allows capturing
hierarchy and supporting different levels of abstraction. To model the inherent
concurrency of hardware, HDLs use concurrent statements. Concurrent execution
is mimicked in simulators by representing every atomic time step as a sequence of
sub-atomic intervals (delta-cycles) simulated sequentially.

2.2.1 VHDL

VHDL (VHSIC Hardware Description Language) [17] is one of the most
widely used HDLs at RTL. It has been designed as a standard language from the
ground up by incorporating expertise from many industry players of the time. It
targets hardware description, synthesis and simulation on the gate, RT and
(partially) algorithmic levels. The language is very general due to a large variety of
description possibilities and independence from technologies, production processes
and methodologies. This makes VHDL designs highly configurable and reusable.

The disadvantages of VHDL stem from its power and generality. Design
descriptions are vague and idiomatic (agreed conventions are needed between
designers and synthesis tools). While providing additional safety, strong typing
also makes the language verbose which in turn makes designs prone to errors and
hard to manage and analyze. Smart and scalable tools are required to both harness
the potential of the language and avoid its pitfalls.

2.2.2 HDLs for verification and debug

The most important problem with HDLs is that, historically, they were designed
to only describe the behavior of circuits. Nobody could envision at the time that
aspects other than behavior will soon become of the utmost importance. Nowadays,
because of the on-going technology and design scaling, verification of even a mid-
sized contemporary design takes much more effort than the design process itself
(up to 80% of total effort [2]). What adds to this effect is the constantly increasing
requirements towards the quality of verification. The quality requirements are
stringent because the integrated circuits have become ubiquitous today and even
have made it into the many life-critical systems [7].

Although convenient for specifying behavior and structure, HDLs do not suit
well for verification and debug of concurrent hardware. The awkwardness and even
inability of HDLs to represent complex temporal assertions has caused introduction
of dedicated hardware verification languages such as e [18], OpenVera,
SystemVerilog, Property Specification Language (PSL) [19]. These languages in
turn are not always supported by simulation tools or this support may be expensive.
The attempts to unify design implementation and its properties’ representation
normally result in creation of large hardware checkers that assume significant
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restrictions on the initial assertion functionality. Assertion checkers also impose
considerable time and area overheads in case of simulation and emulation,
respectively. Moreover, the concurrent nature of HDLs does not allow
straightforward and comprehensive verification coverage measurement on HDL
descriptions and requires either complicated analysis of HDL code or its
transformation into other models [20].

Debugging HDL descriptions is also a tedious and difficult process, and is hard
to automate. Because of the concurrent nature of HDLs, multiple execution
contexts have to be handled by the designer at the same time, which is not easy for
a human. Moreover, in practice synchronous halting of the concurrently operating
modules during emulation is also not a trivial task, while the obtained system state
dumps may occupy tens of gigabytes of hard to analyze data. Industrially scalable
debuggers are only partially automated [21] and offer costly solutions for large
businesses, but not for smaller ones. This situation with debugging contrasts with
verification approaches where the understanding of the efficiency of verification-
enablers has led to the emergence of the Open Source VHDL Verification
Methodology (OS-VVM) [22]. OS-VVM helps a lot in creating high-quality
testbenches by providing VHDL verification libraries (stimuli randomization and
functional coverage evaluation packages) which also hide VHDL complexities.
However, as of today these two packages are not enough for creating tests which
would explicitly and unambiguously reveal the source of an error if one occurs.

In Chapter 4 of this thesis we will present a scalable method (and its
implementation) for automatically localizing bugs in industrial-sized designs.

2.3 State-of-the-art models in hardware design and EDA

Electronic design automation (EDA) industry emerged to meet the demand for
the tools that could harness the potential of HDLs and cope with complexity of
ever-growing integrated circuits (ICs). Among the tasks addressed by the EDA
industry are the efficient legacy HDL code exploration and code navigation, coping
with verbosity of certain languages (e.g. VHDL) for the sake of design speedup
and for fewer design errors, automation of verification, debug and automatic
synthesis of HDL descriptions, and also simulation of large-scale ICs.

Nowadays the range of the offered EDA solutions is vast. Yet what remains
common to all of them is having HDL descriptions as the primary input to these
tools — something dictated by many practical concerns and previous experience.
At the same time, having a common input format does not mean all these tools use
the same underlying models and data structures. Vice versa, each of them relies on
its own internal model that represents hardware designs in the most straightforward
and convenient way for the given task. To illustrate this, let us consider the typical
design flow in EDA tools presented in Figure 2.2.
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Figure 2.2 Typical RTL design flow in EDA tools

A typical RTL design flow involves a set of front-end and back-end tools. The
front-end consists mainly of design parsing and design elaboration and storing the
result in a database. Front-end steps are typically language dependent. The back-
end applications read the elaborated design from the database and process it
according to their needs. They might be targeted towards design analysis, design
synthesis and optimization or simulation. Generally, to do the job in the most
efficient fashion, each such EDA task requires a dedicated intermediate design
representation adjusted for the given task and typically generated out of the
elaborated design model taken from the database.

The rest of this section presents a brief overview of the different intermediate
design representation models used by the state-of-the-art EDA tools, both, in
industry and academia.

2.3.1 Exploitation of models in industry

The enormous size of today's RTL system on chip (SoC) designs together with
the predicted technology scaling brings to the front the scalability property of
design representation models. Since satisfying the scalability property is not a
trivial task, such models are usually kept in-house and are as proprietary as the
tools built upon them. This makes it difficult if not impossible to reason about the
industrial models beyond what can be deduced from using them as black boxes.
We list in this sub-section several common properties of industrial hardware
models grouped by the corresponding design tasks the models are applied in.

HDL code entry assistance (HDL front-end) could be regarded as the easiest
hardware design task. It only requires a parser and a parse tree as an underlying
model. Tools like Veditor [23], Sigasi [24], Simplifide [25] propose good Eclipse-
based solutions for this and provide code entry, syntax highlighting, code outline
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and content assist for VHDL and Verilog. In addition, Simplifide offers hardware
specific refactoring features and a coarse-grained design hierarchy view.

When it comes to design ravigation and legacy code exploration, tools can no
longer rely on a pure parse tree. It alone will allow neither precise navigation (e.g.
to find the correct declaration of an overloaded function), nor a decent design
comprehension (no elaborated chip hierarchy and other visual representations), nor
global signal tracing etc. For such tasks, an elaborated model is required. In certain
cases, though, one can still avoid building a proper elaborated model. For instance,
it is possible to perform signal tracing, data flow and schematics view to some
extent dynamically (e.g. [11]) relying on the testbench quality. However, proper
design analysis for these and a set of other analysis tasks (e.g. hierarchy
exploration, precise global signal tracing, type checks, sink-less or source-less
signals analysis) can be performed only statically [26] and requires generation of a
lossless elaborated design model. To grasp the design hierarchy at once and to
speed-up the code entry, HDL Designer [27] from Mentor Graphics offers a
sophisticated solution for both initial automatic code generation and further
visualization and analysis thereof. However, the code gets generated out of non-
standardized tables and graphics, which brings with it all the problems and
overheads of invasive approaches, e.g. forces the whole team to use the same tool
and only allows a minimal fine-tuning of the generated code afterwards.

The majority of EDA tasks require an elaborated model of the design. For
instance Design Compiler [28] by Synopsys, or Verdi Automated Debug System
[21] do create such models as an interim step for their further backend processing
that are synthesis and debug, respectively. Verific Parser Platform [29] by itself is a
naked elaboration engine for both VHDL and Verilog. Verific elaborates designs
into a common language-independent HDL database, which is further used as a
basis by several commercial hardware design tools.

Finally, when targeting the task of simulation, elaborated HDL models have
another trait easily observed in such tools as ModelSim [11] and ghdl [30]. Even
though the initial compilation/parse of the design is often fast, one has to start the
simulator to launch the elaboration and produce the elaborated model for
simulation. In practice, this simulation start not only takes a long time to complete,
but it often fails by running out of either memory or time in case of large state-of-
the-art designs. It confirms the importance of model scalability.

Even in case of industrial tools, the algorithms used in today’s front-ends and
back-ends are often based on methods developed years ago (Espresso-MV [31],
Booledozer [32]) when scalability issues were less of a concern than they are now.

Last, but not least, most of these closed-source EDA tools are of no use to the
open source community and of limited use to academia when it comes to building
research tools on top of industrially robust models. Scalable hardware models used
inside industrial EDA tools are typically kept in-house because of their high value.
They are inaccessible to academia which still needs to experiment with large
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designs. This leads to pretty severe consequences, namely, to the situation where,
on one hand, scientific methods and approaches are required to scale well, and, on
the other hand, development of a robust and scalable elaboration engine in the first
place (to stay on a par with the industrial scale) is too hard of an intermediate task.
No need to say it heavily impairs productivity of researchers and often hinders
them from switching to new areas of research where they have no infrastructure
yet, no adequate tools to support their work. Even in their area of expertise more
often than not their tools can only support small designs which have nothing in
common with those in the industry.

One of the contributions of this thesis (entire Chapter 4) lies exactly in filling up
this gap. Namely, among other things, the thesis provides a description of a
scalable hardware model and the open-source tool zamiaCAD which already
implements this model in order to provide a scalable and robust basis for other
scientists so that they can build their tools on top of it. The two hence represent
what is called a front-end in Figure 2.2.

2.3.2 Formal models in research

In this sub-section we provide short descriptions of models widely used across
academia to model hardware with the purpose of verification.

Decision Diagrams (DD) have been used in verification for about two decades.
Reduced Ordered Binary Decision Diagrams (RO-BDD) [33] as canonical forms of
Boolean functions have their application in equivalence checking and in symbolic
model checking. Recently, a higher abstraction level DD representation, called
Assignment Decision Diagrams (ADD) [34], have been successfully applied to,
both, RTL verification and test [35], [36].

The main issue with the BDDs and ADDs is the fact that they only allow either
logic or RTL modeling, respectively. In this thesis we consider a different decision
diagram representation, High-Level Decision Diagrams (HLDD) that unlike ADDs
can be viewed as a generalization of BDDs. HLDDs can be used for representing
different abstraction levels from RTL to Transaction Level Modeling (TLM), and
when combined with Structurally Synthesized BDDs (SSBDDs) [37], [38] can also
support the gate level. Also, although highly useful for synthesis optimization
because of their partial uniqueness property [39], ADDs do not suit for the tasks of
dynamic verification and debug considered in this thesis. This is because, without
labels on the edges, ADDs cannot represent activated paths through the diagram,
and they also merge all individual conditions inside conditional statements [40] so
that only the final output is known (i.e. atomic representation of conditions) and no
debug inside conditional statements becomes possible.

When compared to the RO-BDD models which have worst-case exponential
space requirements, HLDD size scales well with respect to the size of the RTL
code. The main difference is that traditionally a decision diagram is generated for a
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primary output of the system while nodes represent primary inputs. In HLDDs we
generate a separate diagram for each variable (signal) v of the VHDL description
and nodes represent variables (signals) assigned to v. Note, that the complexity of
HLDDs is just O(n) with respect to the number of processes # in the code. And if v
is the average number of variables/signals inside a process and c is the average
number of conditional branches in a process, then in the worst case the number of
nodes in the HLDD model will be equal to n-v-c. Thus, very large realistic
hardware systems can be represented in practice.

At RTL, hardware can also be modeled using algorithmic state machines
(ASMs) [41]. ASMs are typically used during the design phase, because they allow
specifying exact behavior and timing information for control part and operational
part (datapath) in the form of charts, which can be later converted to HDL code.
However, attempts exist to also use ASMs for synthesizing fast assertions checkers
from PSL properties [42].

Extended finite state machines (EFSMs) [43] are often used for representing
control dominated systems. EFSMs allow a more compact representation of design
states than traditional FSMs without requiring the explicit enumeration of all the
design states. Also, in EFSMs transitions may be associated with internal registers
(i.e. not only with primary inputs/outputs, as is the case with conventional FSMs),
while the registers themselves are not required to be explicitly represented using
states. EFSMs are hence more resistant to the state explosion problem than FSMs.
However, traversing an inconsistent EFSM may be more difficult than traversing
an FSM [44] and requires solving the inconsistencies.

Petri-net [45] based models are widely used for modeling hardware at levels
above RTL. In [46], Petri-net based Representation for Embedded Systems
(PRES+) is used to formally verify components and their interaction at TLM. Petri-
nets allow modeling concurrent interprocess communication while abstracting
away the exact implementation of, both, the interconnection and the processes.

Hardware models can also be combined together to achieve a valuable synergic
effect. In [47]°™®, EFSM and HLDD models were exploited inside a functional
test pattern generator. EFSM model was used for targeting control FSM transitions,
while variable-oriented HLDD model targeted bit-coverage faults in the data
variables. HLDD-based engine also provided information about untestable areas in
the design to the EFSM-based engine, which improved the efficiency and speed of
the overall test generation.

2.4 HLDD model preliminaries
A High-Level Decision Diagram (HLDD) [38] is a graph representation of a

discrete function. It was proposed by Raimund Ubar in 1983 [48] for test
generation and simulation due to its ability to efficiently and uniformly describe the
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structure, function and faults of digital circuits. HLDDs can be considered as a
generalization of Binary Decision Diagrams (BDDs), where as opposed to BDD
the variables at the nodes can be of any scalar type, i.e. not just Booleans. HLDD
model has proven to be an efficient model for simulation and fault modeling since
it provides for a fast evaluation by graph traversal and for easy identification of
cause-effect relationships [49], [50].

2.4.1 HLDD model definition

According to [51], a High-Level Decision Diagram (HLDD) is a graph
representation of a discrete function. A discrete function y = f{x), where y = (y,, ...,
vu,) and x = (x4, ..., X,,) are vectors is defined on X = X;x...xX,, with values y € Y =
Y;x...xY,, and both the domain X and the range Y are finite sets of values. The
values of variables may be Boolean, Boolean vectors, integers. Figure 2.3 presents
an example of a graphical interpretation of an HLDD.

Definition 1: A high-level decision diagram is a directed non-cyclic labeled
graph that can be defined as a quadruple G=(M,E,X,D), where M is a finite set of
vertices (referred to as nodes), E is a finite set of edges, X is a function which
defines the variables labeling the nodes, and D is a function on E.

The function X(m;) returns the variable x;, which is labeling node m;. Each node
of an HLDD is labeled by a variable. In special cases, nodes can be labeled by
constants or algebraic expressions. An edge ecE of an HLDD is an ordered pair
e=(m,m;)eM’, where M’ is the set of all the possible ordered pairs in set M.
Graphical interpretation of e is an edge leading from node m; to node m,.

It is said that m; is a predecessor node of m,, and m; is a successor node of the
node m;, respectively. D is a function on E representing the activating conditions of
the edges for the simulating procedures. The value of D(e) is a subset of the
domain X; of the variable x;, where e=(m;m;) and X(m;)=x;. It is required that Pm;
={ D(e) | e= (m;,m;)eE} is a partition of the set X;.

Figure 2.3 presents an HLDD for a discrete function y=f{x,,x,,x3,x,). HLDD has
only one starting node (root node) my, for which there are no preceding nodes. The
nodes that have no successor nodes are referred to as terminal nodes M“™ e M
(nodes m;, my and m; in Figure 2.3). In HLDD models representing digital systems
the non-terminal nodes correspond to conditions or to control signals, and the
terminal nodes represent operations (functional units), register transfers and
constant assignments. Design representation by high-level decision diagrams in
general case is a system of HLDDs rather than a single HLDD. During the
simulation in HLDD systems the values of some variables labeling the nodes of an
HLDD are calculated by other HLDDs of the system.
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Figure 2.3 An HLDD for a function y=f(x1,x2,x3,x4)

2.4.2 Simulation on HLDDs at RTL

According to [50], simulation on decision diagrams takes place as follows.
Consider a situation where all the node variables are fixed to some value. For each
non-terminal node m; & M according to the value v; of the variable x;,=X(m;) a
certain output edge e=(m;m;), v;€D(e) will be chosen which enters into its
corresponding successor node m;. Let us call such connections between nodes
activated edges under the given values. Succeeding each other, activated edges
form in turn activated paths. For each combination of values of all the node
variables there exists always a corresponding activated path from the root node to
some terminal node. This path is referred to as the main activated path. The
simulated value of the variable represented by the HLDD will be the value of the
variable labeling the terminal node of the main activated path.

In Figure 2.4 simulation on the HLDD presented in Figure 2.3 is shown.
Assuming that variable x; is equal to 2, a path (marked by bold arrows) is activated
from node m; (the root node) to a terminal node m, labeled by x;. The value of
variable x; is 4, thus, y=x,=4. Note that this type of simulation is event-driven since
we have to simulate those nodes only (marked by bold circles in Figure 2.4) that
are traversed by the activated path. This gives HLDDs advantages over netlists of
primitive functions in terms of efficiency in simulation and diagnostic modeling
because of the direct representation of cause-effect relationships. In fact, HLDD
based simulation algorithms have also been shown to outperform commercial
event-driven HDL simulators in 12 - 30 times and cycle-based simulators in 4 to 6
times [49]. This is achieved due to combining event-driven (path activation in the
HLDD graphs) and cycle-based (HLDDs are synthesized into cycle-accurate
models) paradigms. In other words, only a part of HLDDs should be traced during
simulation (the activated path) and the time specific information inherent in HDL
descriptions can be (and is) neglected during simulation [50]. Timing information
is only considered once during HLDD generation.

38



y X 0 X1—4
2 X2:2
X3 = -
X4 = -
1-3 —
4-7

Figure 2.4 Design simulation on HLDDs

As it was previously mentioned, when representing systems and functions by
decision diagram models, in general case, a network of HLDDs rather than a single
HLDD is required. During the simulation in HLDD systems, the values of some
variables labeling the nodes of an HLDD are calculated by other HLDDs of the
system. The detailed algorithm for HLDD based system simulation was proposed
in [49] and is presented in Figure 2.5. The algorithm supports both behavioral and
structural design representations at RTL.

In the structural RTL style, the algorithm takes the previous time step value of
variable x; labeling a node m; if x; represents a clocked variable in the
corresponding HDL. Otherwise, the present value of x; will be used. In the case of
behavioral HDL coding style, HLDDs are generated and ranked in a specific order
to ensure causality. For variables x; labeling HLDD nodes the previous time step
value is used if the HLDD diagram calculating x; is ranked after current decision
diagram. Otherwise, the present time step value will be used.
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For each diagram G in the model
Mcyrrent = My
Let Xcurens bE the variable labeling mic,yens
While mic,en; 18 N0t @ terminal node
If xcurens 18 clocked or its DD is ranked after G then
Value = previous time-step value of xcyen
Else
Value = present time-step value of xcyen
End if
For each edge e in mcyren
If %ﬂue € D(eactive)a Cactive :( MCurrents mNext) then
MCurrent = MNext
End if
End for
End while
ASSign XG = XCurrent
End for

Figure 2.5 Algorithm 1. Simulation on structural and behavioral HLDDs

2.5 Summary

In this chapter we have provided an overview of the typical hardware design
flow and the hardware description models employed in the individual steps of this
flow. We have shown how hardware is formally modeled in academic research and
what problems appear when modeling hardware of industrial scale.

In particular, the background information about the high-level decision
diagrams academic model was presented for better understanding of Chapter 3
where the HLDD model and its applications are extended beyond simulation and
test generation covered so far by the model.

The rest of this thesis is devoted to solving the design problems mentioned in
this chapter. Namely, in Chapter 3 and Chapter 4 we tackle the problems of
scalability, accurate verification and fast debug with the help of academic high-
level decision diagrams model and industrial scale instantiation graph model.
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Chapter 3
HARDWARE MODELING WITH
HIGH-LEVEL DECISION DIAGRAMS

This chapter discusses application of HLDD model to the tasks of hardware
verification and debug.

Design representation with HLDDs was shown efficient for functional
simulation and RTL test generation. One of the contributions of the author of this
thesis lies in extending the use of HLDDs by:

1) developing methods for automated synthesis of behavioral and structural
HLDDs from VHDL code, which allowed obtaining HLDD representations
for larger designs than could be manually constructed before;

2) extending the application of HLDD model to other design tasks such as
verification and debug by both participating in the development of the
appropriate theories for HLDD exploitation in new areas and by adapting
the model itself according to the given theory;

3) participating in the creation of a unified verification framework APRICOT
and its implementation as ApricotCAD tool where all HLDD engines are
integrated into a single solution.

All the three points are described in detail in sections 3.1, 3.2 and 3.3,
respectively.
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3.1 HLDD generation

auth

The process of HLDD generation was described in detail in [52]

To represent behavioral RTL descriptions, a separate HLDD diagram is
generated for each VHDL signal, variable or output port. For those variables that
change their value several times per clock a separate diagram is generated for each
such value change. HLDD graph generation from VHDL code happens as follows:

1. Conditions from if/case statements or conditional assignments are represented
by a non-terminal node with its edges marked by decisions of the condition.

2. Right-hand sides of assignments are represented by terminal nodes.

3. Those branches of conditional statements, where no assignment is made to the
signal of interest, are filled with a default sub-graph. The default sub-graph is
a graph constructed from preceding parallel assignment statements if such
exist. Otherwise it is a value retaining terminal node. A warning is issued to
inform about implicit latches when a value retaining terminal node is filled for
a non-clocked variable.

4. The resulting HLDD graphs are topologically sorted to ensure causality during
behavioral simulation (4lgorithm 1 in Figure 2.5).

Figure 3.1 presents an example of an HLDD generated for two variables, state
and RMAX in the ITC99 benchmark b04.

if RESET

= ‘1’ then state
state := sA;
RMAX := 0;

elsif CLOCK’event and
CLOCK="'1" then

case state is
when sA =>
state :=
when sB =>

state :=
when sC =>

/:_ e o —— — N
(DA BN - RN VA

—_—_—————eeee e — —

end case;
end if;

Figure 3.1 b04 example: behavioral HLDDs for variables state and RMAX
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Several compactness levels of HLDD representations provide different tradeoffs
between the HLDD-based analysis stringency and simulation speed with memory
requirements. The three options of model compactness (full tree, reduced and
minimized) will be discussed in sub-section 3.2.2.1 in frames of code coverage
measurement. Different options for representing conditional statements are
discussed in sub-section 3.2.2.2 in frames of condition coverage measurement. In
HLDDs, conditional statements can be represented as built-in functions, as
functions plus extra-graphs, as expansion graphs and as flattened graphs.

From modeling perspective, when generating HLDDs from VHDL descriptions,
the appropriate selection among compactness levels and conditional statements
representations depends on the target application.

In the following sub-sections we will add more details on HLDD generation not
mentioned in [52]™" because they had not been addressed at the time. The four
new aspects are the support of design hierarchy, generation of temporal verification
assertions and efficient handling of memories and assignments to signal slices/sub-
elements. The synthesis of temporal assertions into special Temporally Extended
HLDD graphs will be discussed in detail in section 3.2.3.

3.1.1 Handling of hierarchical designs

The newly added support for hierarchical designs (i.e. consisting of several
HDL files / modules) was achieved in a straightforward way via variable/graph
naming conventions. While traversing the design in a top-down manner, a
hierarchical suffix is being constructed which gets finally appended to all the
names of the functions, constants and HLDDs representing the final HDL
signals/variables. Such suffixes are needed to facilitate manual debug of HLDD
generation engines (suffixes are human-readable) and to avoid collisions when
merging graphs, functions and constants from different hierarchy levels into a
single system of HLDDs (which is ultimately a pure list of HLDDs, in some cases
ordered, in others — not). An example of a hierarchical VHDL design supported
by the automated VHDL-to-HLDD interface is UART16750 from OpenCores.org
with 12 VHDL design units and 1662 lines of code [53].

From the modeling perspective, an important conclusion we can draw from how
easy it was to add the hierarchy support is that the HLDD model inherently and
naturally supports hierarchy, just in the same way it supports different levels of
abstraction. If cleverly used, such a unified model of design representation would
ideally allow performing different inter-level tasks to further improve the quality of
designs. For example, it can allow analyzing of circuit aging on the gate level and
propagating the results of the analysis up to the highest level of abstraction. This
way a designer can see which places in his high-level description are expected to
lead to premature device aging and can take the appropriate actions on that issue.
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3.1.2 Handling of slices and sub-elements

The handling of slices/sub-elements of composite signals/variables was not
previously supported and hence had not been mentioned in [52]"". While we can
access slices/sub-elements from inside HLDDs by just equipping the nodes of
HLDDs with the required slices/indices, the assignments to slices/sub-elements
need to be handled separately. The general strategy of handling slices implies
traversing HDL code structure and identifying all the atomic slices (i.e. non-
intersecting regions) of signals/variables that are being written at least once, and
creating a dedicated HLDD for every such non-intersecting region. If for a given
signal the list of obtained regions contains intersecting slices, they will be split into
the largest possible non-intersecting atomic regions. These regions are treated as
independent signals with their own corresponding HLDDs. The HLDD of the
initial signal is then constructed to contain exactly one node which basically
concatenates all the slices into one. This HLDD is then accessed from other
HLDDs in the system that refer to the original signal/variable.

3.1.3 Handling of memories

If we apply the approach from section 3.1.2 to memories accessed with dynamic
indices, we will have to split the memory into individual elements. Such a non-
scalable approach is depicted in Figure 3.2, where we use 1026 graphs to represent
a memory of 1024 cells. 1024 graphs on the left are used for storing the actual
value of each memory element and for writing to memory using dynamic index
w_adr. Note how new value is only read from D when the value of dynamic index
corresponds to the cell’s index (the bold circles). 2 graphs on the right (¢(i) and c)
are used for reading from memory using dynamic index 7 or static index/slice.

1023

Figure 3.2 A “non-scalable” representation of memories by HLDDs
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To make HLDDs support today’s memories of millions of elements we delegate
the job of representing memories to the simulator, effectively moving the memory
structures out of HLDD model and into the simulator’s internal arrays. Such a
scalable approach is depicted in Figure 3.3, where a single graph is used for writing
into memory (graph c) and a single graph c¢(i) or c(i)(j) is used for reading from it
using dynamic indices i and j (i.e. possibly nested). Dashed arrows and nodes
denote a special type of memory variables, index nodes and array functions that
command the simulator to allocate internal arrays, index a memory cell for writing
and for accessing, respectively. Chaining array functions allows nested indexing.
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Figure 3.3 A scalable representation of memories by HLDDs

With the scalable approach we no longer have memories present in the model so
they cannot be covered by the HLDD-based verification techniques described in
section 3.2. In return, we retain the support of large designs and can apply
simulation-based tools to the rest of the design’s functional model. Fortunately,
most of the simulation-based technique described in 3.2 can live with the “non-
scalable” memory representation. Only the automatic RTL test pattern generator
DECIDER [54] requires the version of HLDDs which cannot be generated in a
scalable manner out of HLDDs with “non-scalable” memories inside. We describe
such version of HLDDs in sub-section 3.2.1.

3.2 Application specific HLDD models

Previous works have shown that HLDDs are an efficient model for simulation
[49], [50] and test pattern generation [55]. We have extended the use of HLDD
model to other design tasks such as verification ( [56], [57], [58], [59], [60], [61],
[62], [63], [64], [65], [66])°°™" and debug ( [67], [68])°™™. To make test pattern
generation applicable to larger designs, we have also developed an automated
HLDD synthesizer [52]*". It produces structural HLDDs, suitable for test
generation, out of behavioral HLDDs designed for simulation. In the following
sub-sections we describe our contributions starting with the HLDD synthesizer.

3.2.1 HLDD for test generation at RTL

At RTL, designs are partitioned into a control part and a datapath. The datapath
stores the data and performs operations on it. The control part guides this process
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by remembering the state of the execution and by issuing control signals to the
datapath. The behavior of the control part is usually specified by an FSM. To
completely specify the behavior of the datapath it is enough to assign values to all
its control signals at each state of the FSM. However, when there are too many
control signals it is difficult to realize how the datapath will operate. To improve
the comprehension of such specifications, the datapath is often described
behaviorally using dataflow assignments to datapath variables inside the FSM
states. A synthesis tool is then used to derive the actual control signals. Such
behavioral model is called an FSM with a datapath, or FSMD [12], [41].

In [52]"" an automated interface between FSMD VHDL and its HLDD
counterpart referred to as behavioral HLDD was described. This interface made
possible the simulation of such VHDL designs by HLDD engines and application
of simulation-based HLDD techniques to the FSMD VHDL designs. However, the
HLDD engine for test pattern generation (RTL ATPG DECIDER) requires a
different type of HLDD, called structural HLDD, which corresponds rather to the
FSM+D structural VHDL model [41]. In FSM+D model, the FSM and datapath
are explicitly separated from each other, and the datapath is synthesized from
behavioral description down to the structural use of standard RTL components
such as functional units, multiplexors, registers etc. — hence the naming structural
HLDD.

Thus, in order to generate RTL tests for the widely used FSMD VHDL
descriptions, these designs are first converted to behavioral HLDDs, which are then
synthesized into structural HLDDs. The synthesis process [52]™" involves FSM
recognition, optimal state encoding, memory elements inferring, mapping the
behavior to the datapath RTL components and computation of the datapath control
signals such as register enable, reset and multiplexor control signals. From
modeling perspective, keeping the FSM separate from the datapath and explicitly
driving the datapath using its control signals allows efficient test generation
without overtesting.

3.2.2 HLDD for code coverage analysis

In sections 1.1 and 2.1 we have stressed the importance and high cost of
verifying functional correctness of a hardware system being designed. Because of
the rapid system scaling, design simulation by a set of test cases is often chosen as
a means of (dynamic) verification, and HLDD simulation falls exactly into this
category of verification methods. However, to control the verification effort the
confidence level regarding the quality of the design must be quantified, so that we
know when it is safe to stop verifying or simulating. Verification coverage is a
measure of confidence and it is expressed as a percentage of items verified out of
all possible items. Different definitions of items give rise to different coverage
measures or coverage metrics, such as code coverage, parameter coverage and
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functional coverage. In this thesis we will only use code coverage, which provides
insight into how thoroughly the code of a design is exercised by a suite of stimuli.

The first attempt to use HLDD models in verification and code coverage
analysis was presented in [69], where fast HLDD based simulation (see Section
2.4.2) was extended and HLDD model introduced for efficient code coverage
analysis. It was shown how classical code coverage metrics can be mapped to
HLDD constructs.

In short, in order to analyze quality of verification of hardware designs
translated to HLDDs, three traditional coverage metrics were chosen and built in to
the HLDD based simulation tool. These include statement coverage, branch
coverage and toggle coverage. The statement coverage measures the number of
times every statement is exercised by the stimuli. Toggle coverage shows whether
and how many times signals and variables in the design toggle, i.e. how many bits
change their state from O to 1 or vice versa. In the case of branch coverage, we
measure the number of times each branch in the control flow graph of the code is
taken or not taken under the set of stimuli.

According to [58]°™", the statement coverage corresponds to the ratio of nodes
Mcurren: traversed during the HLDD simulation presented in Algorithm 1 in Figure
2.5. As an example, Figure 3.1 depicts HLDD representations of state and data
register variables of a VHDL design. Covering all nodes in the HLDD model
corresponds to covering all statements in the respective HDL.

Similar to the statement coverage, branch coverage has also very clear
representation in HLDD simulation. The ratio of edges e,ve activated in the
simulation process of Algorithm 1 constitutes HLDD branch coverage. For
example, the branch coverage item corresponding to DATA IN > RMAX = true in
the VHDL code of b04 design maps to the edge denoted by a bold arrow in the
HLDD in Figure 3.1. The statement RMAX := DATA_IN is represented by the
terminal node surrounded by bold circle in the corresponding HLDD.

3.2.2.1 Compactness levels of HLDD model

In [58]°™" we have researched on the accuracy of HLDD-based coverage
assessment. We have proposed a set of HLDD manipulations to achieve more
stringent code coverage metric than classical methods without sacrificing
performance. The manipulation techniques include synthesis of HLDD trees from
HDL descriptions and two types of HLDD collapsing methods, which are a
generalization of the BDD reduction rules.

The most stringent coverage metric is path coverage, which can be achieved by
synthesizing HLDD trees for each output signal and terminating the synthesis at the
primary inputs. However, with the scale of today’s designs such HLDDs will be of
exponential size. Therefore, we terminate HLDD tree synthesis at HDL variables.
The achieved code coverage metric is closer to the path coverage metric (i.e. more
stringent and accurate) than HDL based code coverage.
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The method proposed for generating HLDDs suitable for code coverage
analysis is similar to BDD reduction rules [33] and consists of the following steps:

1.  Generate an HLDD tree for each system variable.
2. Reduce nodes with identical succeeding sub-graphs.
3. Unite identical terminal nodes.

The above steps are explained by an example presented in Figure 3.4, which
depicts HLDD manipulations for the ‘state’ variable of the b04 design presented in
Figure 3.1. As the first step, an HLDD tree for variable v is generated by traversing
the full control flow graph of the design and collecting the values assigned to v at
each control step. If the value of v does not change at current control step then
terminal node with the present value of variable will be created. Figure 3.4a shows
the HLDD tree generated for the variable state in b04.

Then, reduction rules are applied to eliminate nodes for which all successor
nodes (in general case, succeeding sub-graphs) are identical. As a result a reduced
HLDD is obtained (Figure 3.4b). Finally, we create a minimized reduced HLDD by
uniting identical terminal nodes (Figure 3.4c). HLDD generation experiments
[58]°™™ on a set of ITC’99 benchmarks [70] show that around 45-80% of nodes
are removed by the reduction step from the initial HLDD tree. Further 40-60% of
nodes are eliminated by the minimization step.
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Figure 3.4 a) HLDD tree, b) reduced HLDD and
¢) minimized reduced HLDD
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To summarize, the three types of HLDD design representation we distinguish in

the proposed methodology are (in the increasing order of compactness):

1.

Full tree HLDD: contains all control flow branches of the design. This type of
representation includes a lot of redundancy. They introduce large space
requirements and relatively slow simulation times.

Reduced HLDD: obtained from full tree HLDD by eliminating all the
redundant nodes whose all edges point to the equivalent sub-graphs. This type
of design representation is still a tree-graph. It combines the advantages of,
both, full tree and minimized representations. The HLDDs of this type are
reasonably compact and they allow more stringent coverage measurement
than the minimized representation. Furthermore, the average HLDD path
length, and therefore the simulation speed, is exactly equal to the more
compact minimized type.

Minimized HLDD: obtained from reduced HLDD by making nodes share all
the equivalent sub-graphs, thus eliminating all the redundancy within every
single HLDD. The resulting HLDD is therefore no longer a tree structure, but
a true graph with possible interconnecting crossovers. This representation is
the most compact of the three. However, the minimization step may cause a
loss in coverage accuracy.

In [58]°™*™ we propose reduced HLDDs as a suitable model for code coverage

analysis because it provides for more stringent coverage metrics than minimized
HLDDs and is more compact than the full tree and faster to simulate. Table 3.1
(ITC99 benchmarks) compares code coverage analysis comparing statement
coverage and branch coverage assessment results on reduced HLDDs (red.), on
minimized HLDDs (min) and on a well-known commercial tool using the same set
of input stimuli for all three models. The reduced HLDD model always achieves
the best (i.e. most stringent results) of all three. The minimized HLDD has the
poorest outcome for statement coverage and traditional HDL simulator is the
weakest for measuring branch coverage in most cases.

Table 3.1 Comparison of code coverage analysis results

Statement Branch
. Test ° °
Design length coverage, % coverage, %
red. | min | HDL | red. | min | HDL
b0l 14 86.0 | 100 | 93.8 | 74.2 | 84.6 | 88.9
23 96.5 | 100 | 100 | 90.3 | 100 | 100
502 10 92.3 | 100 | 963 | 91.7 | 91.7 | 93.8
14 100 | 100 | 100 | 100 | 100 | 100
b06 11 80.2 | 100 | 855 | 793 | 89.2 | 87.5
52 98.3 | 100 | 100 | 98.2 | 100 | 100
509 23 87.0 | 100 | 100 | 859 | 87.1 | 100
33 100 | 100 | 100 | 100 | 100 | 100
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The stringency of reduced HLDD model comes from HLDD’s inherent support
of observation coverage. Contrary to procedural languages, executing a statement
in concurrent languages does not guarantee its effect to be propagated to the
primary outputs of a design. Fallah et al. [71] propose observation coverage in
their method called OCCOM, where simplified fault grading is carried out in order
to asses, which code items have been covered and propagated to an observable
output. They show that 100% code coverage corresponds to as low as 60-80%
observable coverage in the worst case, which is similar to our results (Table 3.1).
This indicates inability of conventional code coverage metrics designed for
procedural languages to handle paths of e.g. non-blocking assignments.

On the contrary, HLDDs are generated for each HDL variable separately and
are inherently dataflow-oriented. This adds the required observability context to the
statement coverage, making the resulting metric closer to the actual path coverage.

To show how HLDD model helps unveiling the “lost” 40-20% of the
observable coverage, let us consider VHDL as an example of a concurrent
language with non-blocking assignments. VHDL uses a discrete event system to
model time and deal with concurrency, and so is very flexible. The discrete event
model is very general, but as a result, somewhat difficult to analyze [72]. VHDL
uses, both, blocking and non-blocking assignments. All assignments to signals
(with '<=") are non-blocking (i.e. they happen some (delta) time in the future), and
all assignments to variables (with ":=' )are blocking (i.e. they happen immediately).

Consider the following VHDL example ex/ provided in Figure 3.5, which
includes only non-blocking assignments to signals. The signals have the following
naming notations: V - an output variable; ¢S - a conditional statement; D - a
decision; T - a terminal node; C - a condition; W - a value. The keywords
emphasized by bold determine if a line has a statement, a branch or conditions.

Stm | Dcn VHDL code
1 if (csl_Cl1 and csl _C2)
1 then
2 V1 <= V1 T1;
2 else
3 V1 <= V1 T2;
end if;
4 case cS2 C is
3 when cS2 C Wl =>
5 V2 <= V2 _T1;
4 when cS2 C W2 =>
6 V2 <= V2 _T2;
5 when cS2 C W3 =>
7 n V1l <= V1_T2;
8 if (cs3 Cl and ((not cS3 C2) or cS3 C3)
6 then
9 - V2 <= V2 _T2;
7 else
10 V2 <= V2 _T3;
end if;
end case;

Figure 3.5 A segment of the VHDL code of ex! design
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Figure 3.6 and Figure 3.7 present reduced and minimized HLDD model
representations for the ex/ example.

In Figure 3.5, the numbers from the first column (Stm) correspond to the lines
with 10 statements (both conditional and assignment ones). The 14 HLDD nodes of
the two graphs in Figure 3.6 correspond to these statements. Covering all nodes in
an HLDD model (i.e. full HLDD node coverage) corresponds to covering all
statements in the respective HDL. However, the opposite is not true. To understand
why HLDD node coverage is slightly more stringent than HDL statement coverage
let us consider VHDL statements /, 2 and 3 and the respective nodes in Figure 3.6
la, 1b, 2a, 2b, and 3a, 3b. While VHDL statements /, 2 and 3 may well be covered
by a test suite, their effect will be propagated down to the observable point only
when not clobbered by statement 7. In HLDD model this requirement is explicitly
taken into account by inclusion of the corresponding sub-graphs /a and /b into
HLDD of variable VI under the appropriate conditional node 4, (Figure 3.6). This
way, additional nodes are included into computation of code coverage which
allows achieving 100% observability coverage, otherwise unreachable if only
statement coverage were used. It is indeed the case that HLDD model contains
some functional duplication inside (sub-graphs /a and /b or identical nodes 4; and
4, denoted by subscript indices). Still, the model is guaranteed to resist exponential
node explosion because HLDD construction is terminated at HDL variables and
not at the primary inputs of a design. Also, 4; and 4, duplication is due to the fact
that in HLDDs diagrams are normally generated for each data variable separately.

Figure 3.6 Reduced HLDD for ex/
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Figure 3.7 Minimized HLDD for ex1

Similar to the statement coverage, covering all edges in an HLDD model (i.e.
full HLDD edge coverage) corresponds to covering all branches in the respective
HDL. And, similar to the previously discussed statement coverage mapping, here
the opposite is also not true and HLDD edge coverage is slightly more stringent
that HDL branch coverage.

Finally, in [58]°™*"" the time overhead of coverage checking using HLDDs was
reported to be much lower than using a popular commercial HDL simulator. For
HLDDs, the penalty for coverage calculation is in a 1-4% range, while for the
commercial simulator it is in a 28-78% range of extra time taken during simulation.

3.2.2.2 Condition coverage measurement

Branches typically consist of more than one atomic conditions combined with
logical operators. To correctly estimate the quality of functional verification, we
need a dedicated metric to distinguish among those atomic conditions.

Condition coverage metric ( [73], [74]) reports all cases each sub-expression
separated by logical operators in a conditional statement causes the complete
conditional statement to evaluate to one of the decisions (e.g. ‘true’ or ‘false’)
under the given set of stimuli. Branch coverage, on the contrary, only takes into
account the final decision determining the branch. The importance of condition
coverage metric is stressed by e.g. DO-254 [3] and DO-178B [4] standards for
hardware and software system quality used in airborne systems. These standards
state that condition coverage along with statement and branch coverages has to be
applied in the cases where system failures would cause catastrophic results.
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However, while condition coverage metric allows discovering many corner
cases of the design under verification (DUV), its calculation based on HDLs is a
sophisticated multi-step process. On the contrary, the flexible representation of
conditional statements by HLDDs makes HLDD model particularly suitable for
several important design tasks, including straightforward condition coverage
evaluation. When conditional statements are represented:

e as functions, the whole VHDL condition is represented as a single node in the
corresponding HLDD. This node either contains a single logical expression or
refers to the built-in conditional functions represented in HLDDs as special
function variables which may refer to other functions recursively. This is the
most compact representation of conditions in the HLDD model, as the
function variables can be reused by any HLDD in the system. Since built-in
functions are fast, this is also the fastest representation for simulation.

® as functions + extra-graphs, a set of graphs (extra-graphs) is added to the
resulting HLDD system making each atomic logical sub-expression from the
source VHDL file be represented by an HLDD on its own. This allows
automatic bug localization inside conditional statements by using statistical
methods. An approach similar to HLDD-based statistical bug localization, but
employing the IG model, will be described in sub-section 4.6.1.

e as expansion graphs, the whole VHDL condition is represented by a full-
blown HLDD on its own, containing all the possible evaluation paths through
the condition. This “conditional” HLDD is then referred to from all the
HLDDs that used the original VHDL condition — in the same way function
variables are shared in the first option described above. This representation of
conditions allows measuring condition coverage which is discussed below.

o as flattened graphs, the “conditional” HLDDs from the previous bullet are
injected into each main HLDD graph which refers to them. This representation
of conditions should provide even more stringent coverage metric.

In [63]°™™" we have used HLDDs with expansion graphs for conditional nodes
to measure condition coverage. Conditional statements with complex logical
expressions (normally represented by single nodes in HLDD graphs) are expanded
into separate HLDD graphs. Otherwise this is the same HLDD model we
previously exploited for increasing coverage accuracy and for supporting non-
blocking concurrent statements. This allows us to achieve a homogeneous
verification flow (i.e. one model and one tool).

Let us consider the example design ex/ provided in Figure 3.5 and Figure 3.6.
The HLDD expansion graphs for the 3 conditional statements from ex/ are
provided in Figure 3.8. For better readability, the terminal nodes are marked by
background colors according to different decisions. These 3 expansion graphs can
be considered as sub-graphs representing “virtual” variables (because they are not
real variables of the ex/ VHDL representation) ¢S/, ¢S2, ¢S3. Thus, together with
the two HLDD graphs for variables VI and V2 from Figure 3.6 these sub-graphs
compose design’s hierarchical HLDD representation.
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Figure 3.8 Expansion graphs for conditional statements of ex/

The full condition coverage metric maps to the full coverage of terminal nodes
of the conditional statements expansion graphs during simulation. The main
advantage of this approach is low computational overhead. Once the HLDD is
constructed, the quality of every given stimuli set is evaluated in a straightforward
manner during HLDD simulation (4/gorithm 1, Subsection 2.4.2).

In [63]°™" we have carried out an example study for the proposed HLDD-
based coverage analysis methodology based on the ex/ design. With its HDL
description, a set of 4 stimuli was enough to achieve 100% statement coverage and
100% branch coverage. However, the HLDD-based node coverage was only 86%,
edge coverage only 78% and, most importantly, condition coverage only 47%. The
HLDD items remained uncovered were edges 2a, 1b and nodes 3a, 2b (Figure 3.6).
In the minimized HLDD (Figure 3.7), where instead of sub-graphs /a and /b only
one sub-graph / exists, this benefit in stringency is lost with minimization.

This indicates that, even with full statement and branch coverages achieved, the
full condition coverage still requires additional test vectors. This adds orthogonal
dimension of confidence in terms of stringency and verification/test accuracy.

From hardware modeling perspective, it is important to emphasize that all
coverage metrics (i.e. statement, branch, condition or a combination of them) are
analyzed by a single HLDD simulation tool which relies on HLDD design
representation model. Different levels of coverages are distinguished by simply
generating a different form of HLDD (i.e. minimized, reduced, or hierarchical with
expanded conditional nodes).
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3.2.3 Temporally extended HLDD model for assertion checking

In simulation-based verification assertions play the role of monitors for
particular system behavior during simulation. Because of the poor ability of HDLs
to express temporal relations in assertions, dedicated languages were developed,
such as the IEEE-1850 standard Property Specification Language (PSL) [19]. To
specify temporal logic properties in PSL, repetition operators are used with their
auxiliary suffixes (e.g. for next* family they are next a, next e!, next_event etc)
[75]. In order to introduce the equivalent semantics into the HLDD model and
make HLDD simulation engine support such PSL constructs we have proposed
[60]°*™ a temporal extension for HLDD (Table 3.2).

The extension to the traditional HLDD model defined in Section 2.4.1 is
referred to as Temporally extended High-Level Decision Diagrams (THLDDs). In
[60]°™™ we present the definition of THLDDs and propose an algorithm for their
hierarchical generation based on a concept of templates for PSL constructs referred
to as Primitive Property Graphs (PPGs). THLDD extends HLDD by using temporal
relationships functions to transfer additional information and directives to the
HLDD simulator that are used for assertions checking. In the proposed approach
design simulation, which calculates simulation trace, precedes assertion checking.

3.2.3.1Basic definitions

In order to represent a temporal logic assertion P, a temporally extended high-
level decision diagram Gp can be used, which is defined as follows.

Definition 2: A Temporally extended High-Level Decision Diagram (THLDD)
is a non-cyclic directed labeled graph that can be defined as a sixtuple
Gp=(M,E,T,Z,I',®), where M is a finite set of nodes, £ is a finite set of edges, 7T'is a
finite set of time-steps, Z is a function which defines the variables labeling the
nodes and their domains, /" is a function on E representing the activating conditions
for the edges, and @ is a function on M and T defining temporal relationships for
the labeling variables.

The graph Gp has exactly three terminal nodes M*™ € M labeled by constants,
whose semantics is explained below (see graphical representation in Figure 3.11):

e FAIL — the assertion P has been simulated and does not hold;

e PASS — the assertion P has been simulated and holds;

e CHK. (from CHECKING) — the assertion P has been activated and simulated,
but it does not fail, nor does it pass non-vacuously. (See section 3.2.3.2 for
explanation of vacuity).

The first two terminal nodes correspond semantically to the two of the possible
states of a PSL property being checked. As an example, consider PSL property
reqack shown in Figure 3.9. One its possible timing diagram is illustrated by
Figure 3.10a (corresponds to the PASS node in THLDD). It states that ack must
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become high next after req being high. A system behavior that activates reqack
property but violates it is demonstrated in Figure 3.10b (FAIL node in THLDD).
Figure 3.10c shows the case when the property was not activated at all.

Label When to
check

reqack: assert always (req -> next ack);

Verification Property to be
directive checked

Figure 3.9 PSL property reqack

a) b) c)

req JL___ req JTL__ req —

ack — L— ack ——— — ack — L—
PASS FAIL not activated

Figure 3.10 Timing diagrams for PSL property reqack

The function @(m, ) returns the range At of time-steps relative to current time
t..» Where the value of node variable x~=Z(m;) must be evaluated/read. The calculus
of variable x; using the relative time range @(m;f)= At is denoted by x/*. We
distinguish three general cases of relative time ranges A¢ (upper three in Table 3.2).
Table 3.2 shows examples on how temporal relationships in THLDDs map to PSL
expressions. The first two of the proposed in the table THLDD temporal
relationship constructs are basic, while the following four are their derivatives. For
non-temporal variables Az = 0.

Table 3.2 Temporal relationships in THLDDs

THLDD construct

Equivalent PSL

Class Formal semantics .
(0] expression
o XAE K X holds at all time-steps between tj and t; next_a[j to k] x
z
a XAk X holds at least once between t; and ty next_e[j to k] x
XAk X holds at k time-steps from tey, next[k] x
E XA ¥/0,...,event(x )} X holds at all time-steps between t.,, and the <until x
‘§ first time-step from t., where X holds -
.E (A event(x) x holds at least once between t.,, and the first < before x.
[=] time-step from t.,, where X holds i

At= t
X event(x,)

X holds at the first time-step from ty,, where
X, holds

next_event(x.) X
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3.2.3.2Recursive generation of THLDDs using Primitive Property Graphs

The method is based on partitioning PSL properties into elementary entities
containing one operator only. There are two main stages in the approach. The first
one is preparatory and consists of Primitive Property Graphs Library creation for
elementary operators. The second stage is recursive hierarchical construction of a
THLDD for a complex property using the PPG Library elements.

A Primitive Property Graph (PPQG) is created for every supported PSL operator.
All PPGs are combined into one PPG Library, which is extensible and should be
created only once. It implicitly defines the supported PSL subset. The method
currently supports only weak versions of PSL Linear-Time Logic (LTL) operators
[75]. Yet, they are enough to derive a large set of properties expressed in PSL.

PPG is a THLDD graph. That means it uses an HLDD model with a temporal
extension and has a standard THLDD interface. The standard interface was
introduced to support the hierarchy in the recursive construction of a complex
property. A PPG has one root node and exactly 3 terminal nodes (CHK., FAIL and
PASS), as opposed to an arbitrary number of terminal nodes in a usual HLDD
graph. It has also an optional relative time range Atz, which shows when the
assertion has to be checked. The standard THLDD interface is shown in Figure
3.11.

THLDD name
. (property label)

A network of the THLDD
nodes and / or sub-THLDDs

Figure 3.11 Standard THLDD interface

Sample PPGs created for 4 PSL operators are shown in Figure 3.12. The value
for a PPG is obtained by evaluating the THLDD sub-graphs (e.g. P,, Ps) and the
intraconnections. The THLDD sub-graphs may be PPGs as well as Boolean
expressions or variables. Note, that the logic implication operator ‘->’ in Figure
3.12b exits to the terminal node ‘CHK.” when the precondition P, fails (as opposed
to the logical and PPG in Figure 3.12d). This is because in assertion checking a
verification engineer is not usually interested in vacuous passes of the property.
Vacuous passes occur not because the property has met all the specified behaviour,
but because the activation conditions of logical implication were not fulfilled.

THLDDs (and PPGs) without temporal relationships are evaluated to one of the
terminal nodes at every time-step. THLDDs with temporal relationships may
evaluate at arbitrary time-steps according to their temporal relationship function.
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PPG1 = always(P.) " PPG2 'P,->P;"

[tmin = 0; tmax = tena |

a) invariance operator always b) logic implication ->

PPG3  'next_e[jto kJ(P.)" PPG4  "P,and Py"

FAIL PASS
N

c) temporal operator next_e d) logical and

Figure 3.12 PPGs for a set of PSL operators

Complex THLDDs are constructed from elementary PPGs in a top-down way.
Source PSL property is first partitioned into entities containing one operator only,
following the standard PSL operators precedence [19]. THLDD construction starts
from the lowest precedence operators which form the top level. Their operands
(PSL operators with higher precedence) recursively form lower levels of the
complex property. E.g. since always and never are operators with lowest
precedence, their corresponding PPGs are put to the highest level in the hierarchy.
The sub-properties (operands) are step-by-step substituted by lower level PPGs
until the lowest level, where sub-properties are pure signals or HDL operations.

Figure 3.13 depicts the resulting THLDD for PSL property gcd ready:

ged _ready: assert always((not ready) and (a=b) -> next_e[l to 3] (ready)),
gcd_ready

[tmln = 0; tmax = tend ]

ready*™={!

Figure 3.13 A THLDD representation of PSL property gcd ready
The construction of the property gcd ready implies usage of the four PPGs

shown in Figure 3.12 and a PPG for the logical not operator. The nodes in the final
THLDD contain pure variables and an HDL expression (a=b).
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3.2.3.3 Assertion checking using THLDDs

THLDD-based assertion checking utilizes the existing HLDD simulator and its
extension for assertion checking presented by Algorithm 2 in Figure 3.14. The
execution of Algorithm 2 is preceded by simulation of the design to calculate the
simulation trace. Assertion checking analyses the trace by taking into account
temporal relationships information at the THLDD nodes that represent an assertion.

Figure 3.15 shows an example of time windows for a THLDD converted from a
two-operator PSL assertion two_win, which states that x should hold between the j”
and k" time-step starting from every time-step in the simulation trace:

two_win: assert always(next_a(j to k)(x))

Here the light-grey time window limited by ¢,;, and #,,, belongs to always. The
dark-grey time window belongs to next a. It is dynamic (moving along the time
axis), denoted by Ar=V{j,....k}, with size #-#; and relative to ., (current position
in time). Normally, depending on its complexity, a THLDD has one static (caused
by invariance operators) and several dynamic time windows that can overlap.

For each diagram G in the model
FOI’ t=tmin...tmax
Mcumrent = Mo ; thow =t
Xcurrent = Z(mCUf’em)
Repeat until mcuyrent & M™
If thow > tmax then
Exit
End if
Value = Xcurrent at q-)(mCurrent,tnow)
Mcurrent = chremValue
thow = tnow+at
End repeat
Assign X = Xcurrent at time-step fnow
End for /* t= tmin...tmax */
End for

Figure 3.14 Algorithm 2. Assertion checking based on THLDDs

At
K_J%
t e
ot —
L e J
I"|||||||||||||||"T"l’"
~
time step

Figure 3.15 THLDD time windows in assertion checking
A general flow of the THLDD-based assertion checking process is given in

Figure 3.16. The input data for the first step (simulation) are an HLDD model
representation of the DUV and stimuli. This step results in a simulation trace stored
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in a text file. The second step (checking) uses this data and the set of THLDD
assertions as input. The output of the second step is the assertions checking results
that include information about both the assertions coverage and their validity.

e ﬁ

\/ . | Simulation trace
(ASCII file)

DUV Simulation e

JRN I S D B

Ve

Assertion Checking
Results:
i | e Coverage
HLDD simulator . | « Validity
(occurrences of
Fails and Passes)

(Algorithm 2)

—
Assertion Checking &
=

Figure 3.16 THLDD-based assertion checking process flow

To compare THLDD-based assertion checking execution times with those of a
commercial state-of-the-art simulator supporting assertion checking, we have used
a GCD implementation and 3 designs from the ITC’99 [70] benchmarks family.

For each benchmark, a set of 5 realistic assertions was created to contain:

o different types of operators (Boolean, temporal, implication, ‘until’);
o different resulting outcomes (fail, pass, both);
e various frequency of failures/passes (frequent, infrequent).

The assertions selected for GCD are the following:
pl: assert always( ((not ready) and (a = b)) -> next_e[l to 3] (ready) ),
p2: assert always (reset -> next next((not ready) until (a = b)));
p3: assert never ((a /= b) and ready);
p4.: assert never ((a /= b) and (not ready));
p3: assert always( reset -> next_af2 to 5] (not ready) ),

Assertions for b00, b04, b09 had the same temporal complexity as those for
GCD. Each assertion checked 2-5 signals; the invariance operator (always or
never) contained 1-3 LTL temporal operators from Table 3.2. Both simulators were
supplied with the same realistic stimuli providing a good coverage for assertions.
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Table 3.3 compares assertion checking execution times (in seconds per 10°
stimuli) of THLDD simulator and the commercial tool. THLDD time is comprised
of the simulation and assertion checking (A4/gorithm 2) execution times. The fourth
(highlighted) and the fifth columns are the total execution times taken by the
THLDD and the commercial simulator, respectively. Both tools have shown
identical responses about assertion satisfactions and violations occurrences.

Table 3.3 Execution time comparison

Checking time, s/10° stimuli
Design | THLDD-based assertion checking | Commercial tool
Simulation Checking | Total Total
gcd 2.07 4.87 6.94 13.52
b00 3.43 2.95 6.38 13.84
b04 5.47 3.61 9.08 19.23
b09 2.21 4.55 6.76 124

The experimental results show a significant speed-up (2 times) in assertion
checking by the THLDD tool compared to the state-of-the-art commercial tool.

The speed-up is achieved by introducing the temporal aspect to HLDD model
and by handling it inside the simulator instead of making HLDDs cyclic. Temporal
windows are added recursively during THLDD construction from PSL properties.

3.24 HLDD for debug

The HLDD applications mentioned so far already allow us to quickly simulate a
design, generate tests for it, measure the quality of existing tests in terms of code
coverage, and check the verification assertions expressed in PSL in an efficient
way during simulation — all with a single model. Once we have verified the design
implementation with a good test set and discovered a bug in it, we would like to
have a way to automatically locate the bug and correct it if possible. There is a
good rationale behind such a desire given that bug location and correction together
constitute around 1/3 of the total time spent on product design [76], [77].

In [67]°™" and [68]°™" we have shown how HLDDs can be used to
accurately and automatically locate design errors. The proposed method was based
on backtracing of the mismatched and matched outputs on HLDDs. In fact, all the
errors injected in the experiments were identified as top suspects by the proposed
diagnosis algorithm.

The motivation behind applying HLDDs for bug diagnosis was threefold. First,
serious scalability problems appear [78], [79] once you try to apply to sequential
circuits the diagnosis methods developed for combinational circuits (both, fault-
model-based [80], [81] and fault-model-free approaches [78]). Second, most of the
approaches do not scale well because of relying on formal SAT/SMT engines [82],
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[83], [84], which despite being constantly improved are still solving an NP-
complete problem. Our approach is different in that we rely on HLDD simulation
that executes in polynomial time. This means much larger designs could be
potentially handled by the proposed method. Third, SAT-based approaches reduce
the diagnosis problem to logic-level formal engines. On the contrary, in [67]°™®
and [68]°™" we operate directly on the RTL. This results in a readable diagnostic
feedback and is therefore better understandable to the engineer than logic-level
debug information provided by previous methods.

The method proposed in [67]°™" consists of generating diagnostic trees for
primary outputs using backtrace during HLDD simulation and statistically
analyzing the set of trees in two steps (basically, discovering unique nodes in
failing trees that are missing in the passing trees and ranking them). The result of
diagnosis is a statistically ranked list of HLDD nodes suspected of containing an
error inside. Each diagnostic “tree” is effectively a set of pairs (x;, #;) that show at
which time step ¢ the variable x; was backtraced. The pairs are arranged into a
directed graph, where the vertices represent a subset of the time-expansion model
of the design and directed edges show relations between the variables in the
simulation process.

Examples of such diagnostic trees can be found in [68]°™". The complete
algorithm for diagnostic tree generation and the two diagnostic analysis steps can
be found in [67]°™". We are not providing them in this thesis, because a similar
yet much more powerful approach based on IG model will be described in detail in
section 4.6 of the thesis. What we want to mention though is that HLDD hardware
description model inherently provides for a straightforward critical path tracing on
a design. This makes possible a bug locating approach which in our experiments in
[67]°™™ in its step 1 always gave the injected error the top score in the suspected
faults list. Therefore the method is accurate even though designs with sequential
loops were targeted. It is also not limited to the single fault assumption. Last but
not least, being based on polynomial-time HLDD simulation, the method is
applicable to larger designs than can be handled by existing formal approaches.

From modeling perspective, it is important to notice that HLDD-based
diagnosis is related to known debugging techniques such as program slicing [85]
and critical path tracing [86]. Modeling discrete systems by a system of HLDDs
may be regarded as a form of program slicing, because a separate diagram is
generated for each variable x in the program, reflecting the control flow branches
where assignments are made to x and including the data assigned to x. Activating
paths in HLDD diagrams using Algorithm I is equivalent to critical path tracing.
The technique of critical path tracing consists of simulating the fault-free system
(true-value simulation) and using the computed signal values for backtracking all
sensitized paths from primary outputs towards primary inputs in order to determine
the faults that would affect the primary output. In HLDDs the same task is solved
in a single run as a byproduct of simulation.

62



There are still several problems with the proposed approach. Despite the high
accuracy of locating injected bugs and the short run time of the proposed method,
all the injected bugs were of artificial nature. It is therefore unclear how probable
they are, i.e. how well they generally map to HDL source code. Also, while the
diagnostic method is potentially applicable to large designs, it has not been proven
so experimentally because of the limited power of VHDL-to-HLDD translator.
Finally, in our method we rely on the availability of a golden design, which is a
rare case in real life and may impede application of the approach to the real life
situations. These three problems of scalability, direct HDL mapping and
dependence on golden models were, however, successfully solved by the IG model
and the debug method based on it. Both are described in Chapter 4 of this thesis.

3.2.5 HLDD for mutation testing

So far we have been using HLDDs as they are without changing them after they
have been generated out of HDL descriptions. However, HLDD model also
provides for straightforward model mutation. This allows further test quality
improvement in terms of stringency of its results [66]<™**".

Mutation testing implies creation of several mutated versions of the source code
by introducing syntactically correct functional changes. Perturbation of the
behavior of the code allows us to measure the effectiveness of the test suite in
detecting the difference between the behaviors of the original and mutated codes.

In [66]°™" we have performed mutation testing on HLDDs and observed a
clear advantage of mutation testing over the HDL code coverage approach. Such
verification methods as HDL code coverage and functional coverage suffer from
the observability problem. This means, while activating a bug (exercising the
corresponding code), they guarantee neither propagation of the bug to an
observable point, nor detecting the bug (i.e. observing a value mismatch at the
given point). Mutation testing on HLDDs, on the contrary, guarantees observation
and is thus more powerful in bug detection capabilities.

In HLDD models, a perturbation means a simple replacement of an operator,
variable or constant labeling the HLDD node by another operator, variable or
constant. Although not studied yet, edge mutation is also possible, but would
require a special care inasmuch as arbitrary edge redirections may result in
unrealistic bugs when translated back to HDL. Figure 3.17 illustrates HLDD graph
perturbations for implementing the five key mutation operators [87] on a sample
diagram Gy . Table 3.4 shows the list of replacements for each mutation operator
implemented in [66]°™™. In the experiments, the original operator was substituted
in every test by another operator from the group until all operators were covered.
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inp1<inp2

LCR:
mp3 xor inp4,
mp3 | inp4, ...

ABS:

congst0,

random positive,
random negative

. ; AOR:
g ingl mp7-np8s,
mp7*nps, ...

Figure 3.17 Key mutation operators as HLDD perturbations

Table 3.4 Five key mutation operators

Mutation operator

List of replacements

LCR (logical connector replacement)

AND, NAND, OR, NOR, XOR

AOR (arithmetic operator replacement)

ADDER, SUBTR, MULT, DIV, MOD

UOI (unary operation insertion)

NEG, INV

SOR (shift operator replacement)

SHIFT LEFT, SHIFT RIGHT,
U _SHIFT RIGHT

ROR (relational operation replacement)

EQ, NEQ, GT, LT, GE, LE, U GT,

U LT,U GE,U LE

Experiments on several ITC99 benchmarks and an industrial example were
performed. It was shown [66]°™" that, given the shortest possible test with 100%
code coverage, mutation testing only achieves as low as 8% observation coverage
in the worst case and 8-47% in the general case. With increased test lengths (1.5 to
100 times), the numbers for mutation test coverage grow up to 12-53%, still
remaining very low (21% for the industrial example). This clearly states the need
for better test sets, and gives an idea of how small observation coverage is
guaranteed by 100% code coverage tests. This clear advantage of mutation testing
over the coverage approach is due to considering fault observation.

Not only can mutations of the HLDD model be used for mutation testing
directly, but these mutations can also be viewed as high-level faults and thus be
used for high-level fault injection, as was the case with HLDD-based diagnosis
described in the previous subsection. For a model, being able to provide for
different tasks at once with minor or almost no adjustments is a highly valuable
property a model can have.

HLDD-based mutations also have some disadvantages. First, there is only a
limited number of possible mutations (either edges or nodes mutations) one can
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have in the prepared set, and even out of those — not all are meaningful. These
mutations are also bad in a sense for they are not mapped to HDL directly and
hence may represent unrealistic bugs in the source code. Also, there is no guarantee
that a simple atomic bug in HDL code would manifest itself through an equally
simple atomic mutation in HLDD (i.e. it may be expressed as a relatively large
change in HLDDs, e.g. imagine how a mutation of target in an assignment
statement would be represented in HLDDs). Moreover, HLDD-based mutations are
not intuitive to designers who are used to think in terms of HDL notions. But they
are also faster than other alternative methods of error diagnosis, easy to implement,
with the obvious cause-effect relationship. In the next chapter in section 4.6 we
will propose an alternative way of error diagnosis which is based on HDL code
directly and hence is free of the shortcomings mentioned above.

3.3 APRICOT verification framework

The author of this thesis has been actively participating in the development of
HLDD-based debug and verification techniques since 2006, when the first attempts
to automatically synthesize HLDDs from VHDL descriptions were made [52]™™.
Since then an entire hardware functional verification framework has been
developed based on HLDDs which was named APRICOT (acronym for Assertions
checking, formal PRoperty checking, verification COverage measurement and Test
pattern generation) [57]°™™, [64]°™™" [66]°™™". The list of verification tasks
supported by the framework includes assertion checking, code coverage analysis,
simulation, test generation and automatic debug comprised of bug location and
correction. Apart from evolving the HLDD-based verification theories as such, the
author was also responsible for implementing several parts of the framework as
separate tools and integrating the different parts into a single tool.

Hence, one of the author’s main contributions is the development of
ApricotCAD verification environment (a screenshot in Figure 3.21). ApricotCAD is
based on the APRICOT framework and integrates different verification and debug
HLDD tools into a single flow. The motivation behind the ApricotCAD tool is to
ease the hardware debug and verification process through the unified environment
and by adding different visualizations to the main verification engines, to increase
the usability of the different tools and thus facilitate further research in the field, to
polish and to debug the tools themselves in the first place, and to popularize
HLDD-based tools and make them easier to use.

The APRICOT framework itself was developed during participation of TUT in
Framework Program 6 European project VERTIGO [88]. Apart from TUT, the
partners in the project were ST Microelectronics (coordinator), Aerielogic,
TransEDA and three other universities: UNIV (Verona, Italy), LIU (Linkoping,
Sweden) and SOTON (Southampton, UK).
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Within the APRICOT framework and its implementation as ApricotCAD tool
we have targeted the aspects of speed, accuracy, complexity and diagnosability of
hardware functional verification — all discussed previously in this chapter. The
novelty of the whole framework lay in taking advantages of hardware design
uniform representation by HLDD model.

Figure 3.18 shows verification flow within the APRICOT framework. The
format of the DUV natively supported by APRICOT is VHDL. The framework has
an automated interface from this design’s description to HLDD representation
model. There are also available additional interfaces to the APRICOT partners’
internal and intermediate formats and therefore indirect support for several
standard formats such as SystemC, EDIF and the intermediate format H/F' (HDL
Intermediate Format), produced by HIFSuite [89] and developed by UNIV.

Test vectors

TB generation
(DECIDER ATPG)

Stimuli
(Testbench)

HLDD-based Simulation

]
Variety of HLDD
representation types

RTL/

8| VHDL to HLDD 4 Coverage Mutation | Assertion
Interface Analysis Analysis | Checking
DeSign Converters via
(VHDL) Intermediate Formats
ﬂ of APRICOT Partners
4 * Coverage mapping Debugger
:....llllllllllllllllllllllllllll
A
= "
= Application-optimized THLDD =
EAsseriions PSLFL v
= Subset ATPG and Formal
E (PSL) PSL to THLDD aa P "
e » Interface Property Checking

(DECIDER engine)

Figure 3.18 Hardware verification framework APRICOT

Once the DUV is converted to HLDD it can be simulated with HLDD-based
simulator under the precomputed set of stimuli. The simulator also supports code
coverage analysis, mutation analysis and assertion checking. The latter requires
assertions to be represented by THLDD graphs. The framework has automatic
interface for THLDD graphs creation from PSL assertions. The framework also
considers hierarchical test pattern generation and formal property checking, as well
as an HLDD-based debugger that exploits the model’s easy cause-effect
relationship diagnosability.

Figure 3.19 depicts ApricotCAD converters and assertion checker.
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Figure 3.19 ApricotCAD converters (a) and assertion checker (b)

ApricotCAD features the following converters (Figure 3.19a):

e VHDL Beh => HLDD Beh: given the top-level VHDL file for a design,
synthesizes its HLDD representation suitable for simulation and
simulation-based verification engines (i.e. coverage analysis, assertion
checking, mutation analysis, diagnosis and debug).

o HIF => HLDD Beh: same as the first one, but uses ApricotCAD’s
partner’s intermediate format as the input format.

e HLDD Beh => HLDD RTL: synthesizes behavioral HLDDs into
structural HLDDs suitable for test generation with RTL ATPG
DECIDER [54] (see section 3.2.1 for more details).

e PSL => THLDD: synthesizes THLDD property representations from
PSL descriptions and PPG library. The corresponding theory behind the
synthesis process has been described in detail in section 3.2.3.

The main new extensions of the converters, as compared to [52]™", comprise
the support for hierarchical designs (multiple VHDL files), a PSL-to-THLDD
synthesizer with a PPG library included, efficient handling of hardware memories,
and extended support for widely used VHDL constructs. That means, in addition to
introducing target application specific changes to the HLDD model being
generated, a particular attention was devoted to supporting a possibly larger VHDL
subset. This was important for, first, making the HLDD-based theories applicable
to the real life designs and, second, to understand the limitations of the model itself
s0 as to come up with solutions to overcome those.

When synthesizing HLDDs from VHDL files, ApricotCAD can distinguish
between several compactness levels of HLDD representations that provide
different tradeoffs between the analysis stringency and simulation speed with
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memory requirements. The three options of model compactness (full tree, reduced
and minimized) were discussed in section 3.2.2.1 in detail. Different options for
representing conditional statements (see Figure 3.19a) were discussed in section
3.2.2.2. The appropriate options should be selected during HLDD generation to
explicitly target specific HLDD-based applications. Similar HLDD compactness
options (e.g. for collapsing/expanding conditional statements) are available in
ApricotCAD when generating HLDDs from HIF intermediate format [89].

The assertion checker is shown in Figure 3.19b and Figure 3.20 below. In
ApricotCAD, once a THLDD representation for a PSL assertion is created, it is co-
simulated with an HLDD representation of the DUV by the same single simulation
tool and the activation, violation or satisfaction times of the assertion are obtained.
This information is both stored into a text file for later analysis and visualized in
the ApricotCAD tool. Figure 3.20 shows simulation waveforms with assertion
activations (a green line), violations (a red triangle) and satisfactions (a green
triangle). If no assertions file is provided, the assertion checker works as a pure
simulator.

Coverage analyzer is depicted in Figure 3.21. The user can choose to measure
node, edge, toggle and condition coverages during simulation. Again, if no metrics
is selected, the engine performs as a pure simulator. And again, the result of the
measurement is both stored in a file and visualized in the framework. Visualization
is performed in the following two ways. First, tabular data in the top-right panel
conveys information about HLDD-based coverage and VHDL statement coverage
(note the difference between them, how HLDDs are more stringent, i.e. 80% vs.
87%). Second, once you open any VHDL file from the given design in any of the
two bottom panels, those lines (statements) of the file which were simulated by the
given stimuli will be highlighted with orange color.

Debugger is also depicted in Figure 3.21. If there is at least one failing test in
the test set, then, once the debugger is run from the Diagnosis tab, two lists of bug
candidates are generated and the corresponding places in the design files
containing the candidates are marked with either red or yellow colors (see Figure
3.21, bottom-left panel). The two lists of candidates correspond to the two
diagnosis steps mentioned in section 3.2.4. Each list is obtained by using a different
formula for ranking the candidates. With the red list, the debugger tries to reduce
the number of candidates to a much shorter list which would lead to a greater
speed-up in the overall debug process. In Figure 3.21, both red and yellow
candidates happen to contain the bug on line 105. In our experiments we were
injecting mutations ourselves using the mutation engine, so in that case
ApricotCAD could frame the place with the actual mutation in a green box. In real
life, though, we would not know where the bug actually is and only the candidates
would then be shown (i.e. red and yellow lines, without the green box). Those lines
will have to be analyzed manually by the designer, if the debugger fails to
automatically correct the bug using simple automated mutations described in 3.2.5.
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Figure 3.21 Coverage analyzer,
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3.4 Summary

This chapter discussed exploitation of HLDD model and its extensions in
performing various tasks of hardware verification and debug.

First, methodologies for generation of behavioral and structural HLDDs from a
wide subset of VHDL constructs were presented. This allowed obtaining HLDD
hardware descriptions for larger VHDL designs than could be previously achieved.

Second, different HLDD modifications were proposed to address a set of
verification tasks. Expansion graphs and reduced compactness level of HLDDs
were proposed to achieve a more accurate code coverage measurement than
commercial tools allow, while at the same time avoiding the large time overhead of
coverage checking in commercial tools. Temporal extension of HLDDs (THLDD)
was developed for fast assertion checking using a modified HLDD simulator.
HLDD model mutation showed more stringent results in estimating the quality of a
test set than code coverage measurement. HLDD mutations also proved a
convenient means of high-level bug injection employed in estimating the efficiency
of automated bug localization method. Backtracing was performed directly on the
HLDD model as a byproduct of simulation. All these applications provide higher
verification quality.

Third, the chapter introduced a hardware verification framework APRICOT and
its implementation as ApricotCAD tool. The framework combines all HLDD-based
tools into a single flow, which helps to ensure higher quality of produced hardware
and to speed up the debug process during hardware design.
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Chapter 4
HARDWARE MODELING WITH
INSTANTIATION GRAPHS

Contrary to academic research, many industrial tasks in hardware design and
verification require a scalable and fully elaborated model for representing large
industrial designs. The full support of HDL constructs is also a typical requirement.

In this chapter we introduce a scalable Instantiation Graphs (IG) hardware
representation model and a methodology for elaborating large HDL designs into IG
model. This model is implemented inside an open source zamiaCAD platform
which can be used as a scalable basis for building academic tools and complex
industrial tools. As an example, a scalable automated debug method and its
implementation inside zamiaCAD are introduced.

The contributions of this chapter are summarized as follows. First, it introduces
the concepts of a new scalable elaborated design model IG. Persistence and
scalability of the model are guaranteed by a custom designed object database
referred to as ZDB (zamiaCAD Database) that is highly optimized for
performance. The details of the comprehensive RTL design elaboration front-end
are also presented. Second, it evaluates the model for different back-end
applications. In particular, as a reference for the experimental part on IG scalability
we have taken widely used commercial state-of-the-art tools and have considered
for benchmarks very large RTL designs including a system-on-chip (SoC) with
multiple thousands of LEON3 CPU cores. The considered back-end applications of
IG are the static through-signal-assignment reference search, design simulation and
automated debug. As the third contribution, the new RTL debug methodology is
introduced and evaluated on a large industrial design.
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4.1 Overview of zamiaCAD framework

zamiaCAD ( [90], [91], [92])°>™™ is an open source platform based on scalable
models that includes, both, a comprehensive elaboration front-end for RTL designs
and design processing back-end flows. The ultimate goal of zamiaCAD project is
to allow its users to elaborate large RTL designs on relatively modest hardware,
such as a typical hardware engineer's laptop workstation. And also to provide a
solid ground for building other EDA tools on top of the scalable and fully
elaborated model, which represents RTL designs as is (i.e. precisely as described
by the designer). The framework puts particular emphasis on the following
properties of hardware design models:

lossless representation of hardware designs,
scalability,

accessibility to research and engineering communities,
non-intrusiveness (standing HDL-centric),

standing HDL-agnostic.

Non-intrusiveness is achieved by having an HDL as the only data format and
requiring almost no configuration for pre-existing design projects. Functionally, the
framework addresses advanced hardware RTL design, analysis, verification and
debug. Currently zamiaCAD supports IEEE 1076-2002 VHDL [17] plus many
extensions of the later standard VHDL 2008 in the front-end. Furthermore, the
front-end may be extended to other languages due to the use of generic internal
models described further on in this chapter. On the back-end side zamiaCAD
supports design entry and comprehensive analysis. It includes an Eclipse IDE
plugin based Graphical User Interface (GUI) and contains a built-in VHDL
simulator, RTL debugger and work-in-progress stubs for synthesis. It handles very
large open source (e.g. LEON3 [93] based) and industrial designs. Altogether
zamiaCAD contains currently more than 100,000 lines of Java code (excluding
generated parts).

zamiaCAD supports bidirectional interaction with external tools using Python
scripts. This allows it to serve as an integration platform for academic tools and
industrial zamiaCAD based EDA tools. From the outside, zamiaCAD’s internals
are fully accessible from within Python scripts, so that existing zamiaCAD
applications can be included into automated design flows. From the inside,
zamiaCAD’s interfacing with external tools (either via scripts or directly) also
allows gaining sizeable synergic effect, e.g. by importing VCD files and
visualizing them in zamiaCAD, or taking timing information from external timing
tools and annotating this information inside zamiaCAD’s HDL editor. This
bidirectional communication along with the scalable and comprehensive HDL
elaboration is expected to be of interest to, both, academia and industry.

For academia, zamiaCAD’s internal models serve as a scalable basis for further
processing, so that researchers would not have to elaborate HDL from scratch
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every time for every new task. For example, zamiaCAD allows one to create an
RTL simulator by only requiring a thin executable layer to be implemented on top
of the elaborated model. Moreover, zamiaCAD allows combining the tools together
in order to gain a valuable synergic effect. One such example is described in
section 4.6, where a decent real-life RTL debugger is produced by combining a
simulator with static slice computation — a tool otherwise impossible because of
the closed-source nature of EDA tools/models. Another example is the ongoing
research on using zamiaCAD’s internal model as a starting point for translation of
RTL VHDL into TLM (thus raising the level of abstraction). This is useful for
legacy code exploitation, because it allows avoiding execution bottlenecks during
high-level simulation of multi-IP SoCs with legacy RTL IP cores in them.

co-auth

zamiaCAD project was founded by Giinter Bartsch. In [91] we have first
presented the details of the framework’s main scalable internal model. In this thesis
we augment zamiaCAD description by covering other hardware models that power
EDA applications built on top of zamiaCAD main scalable model. We also
contribute by extending zamiaCAD from being a code editor/navigation tool to
becoming a debug environment with a built-in simulator.

4.1.1 Framework flow

Figure 4.1 shows a simplified overview of the zamiaCAD framework flow.
zamiaCAD follows the previously described partitioning into a front-end and a
back-end (Figure 2.2). First, in the front-end part, the HDL code is parsed which
results in a (language specific) Abstract Syntax Tree (AST). AST is a pure tree data
structure where the leaves of the tree are simple strings without semantic meaning.
This tree is then elaborated into the Instantiation Graph (IG) model (designed to be
HDL-agnostic). During the elaboration, the following three actions happen. First,
all semantic rules as defined by the source HDL are applied to the AST, so that the
tree of strings obtains semantic meaning. Now that we have this meaning, we can
perform different checks: due to having the concept of types instead of pure strings
we can check type matches, syntax rules, scoping rules, static array boundaries etc.
But most importantly during the elaboration process identifiers (names) in the tree
are resolved and replaced by references to the actual objects they denote.

Elaboration produces IG which is a very fundamental data structure in
zamiaCAD as it is used as a basis for all the back-end applications offered by the
framework such as analysis, RTL synthesis, simulation and automated debug. As
of this writing, the front-end fully supports VHDL (2002 standard [17] in particular
and many parts of 2008 standard excluding PSL), while Verilog only has a parser.

Both AST and IG models are stored in the zamiaCAD Database (ZDB) which is
there for two reasons. ZDB guarantees the persistence of the models and ensures
zamiaCAD’s scalability. 1t is a custom-designed object database, highly optimized
for EDA purposes. Next sections discuss each model and the database in detail.
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Figure 4.1 Simplified zamiaCAD flow

Back-end tools either utilize the IG capabilities directly or translate the IG
model into a dedicated task-oriented design representation more suitable for the
given task than IG itself. However, since IG model is at the core of the whole
framework, there is a steady tendency to express as much of EDA specific details
in IG as reasonably possible without slowing down IG computation. Thus, if there
is any information which can be statically computed once and for all and later on
reused by the back-end applications, then that information will be statically
incorporated into IG during elaboration. Another benefit of having IG as a shared
basis for all the back-end applications is the synergic effect we achieve when
combining together several of these applications. We will demonstrate this effect in
section 4.6 by an example of an automated RTL debugger.

4.1.2 Persistence and scalability

Since scalability is the primary issue when elaborating large designs, let us first
see how ZDB solves this issue, and only thereafter look closer into how AST and
IG models make use of it.
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Especially for today's industrial designs, the data structures tend to grow very
large, often larger than the available RAM on a typical hardware engineer's
personal workstation. While many will argue that the affordable amount of RAM
per workstation will increase exponentially with time, unfortunately the same holds
true for the increase in size of the designs being processed so in effect we will
always face the scalability issue.

Quite naturally, the solution is to hold only small parts of these data structures
in memory at any given point in time while keeping the whole data structure on
disk [94] — hence the requirement for a database. Of course, we have to make sure
this is done in a quick and transparent way such that users would not even notice
any effects apart from being able to handle large designs on modest hardware.
Using disk space to store these data structures also solves the problem of persisting
them since disk memory is persistent.

Also, persistence is very desirable as parsing and elaboration can take a lot of
time, especially for large projects. It would be reasonable to keep the results from
one zamiaCAD session to the next. Furthermore, zamiaCAD exploits principles of
incremental elaboration. If only a part of the design has been modified, then only
these updated design units will have to be re-elaborated to IG.

It is important to mention that experiments with Oracle database and several
XML databases revealed that these are all way too slow in the EDA context, in
fact, several orders of magnitude slower than the current working solution. The
obvious decision was thus to implement zamiaCAD’s own ad-hoc object database
[95] and tune it for performance. For this, the benefits of Java programming
language were exploited. Contrary to other mainstream languages, Java provides
off-the-shelf a built-in object serialization feature which allows storing plain java
objects on disk with almost no effort and ultra fast.

At its core, ZDB uses Java's built-in object serialization [96] to read and write
objects from/to disk. Each object stored in ZDB gets assigned a numeric identifier
called DBID which can later be used to retrieve the object. DBIDs are essentially
pure integers and thus are represented by just 32 or 64 bits each (depending on the
host CPU architecture). ZDB hence allows saving on the large objects which in the
EDA field can sometimes occupy several hundreds of megabytes of RAM.
Similarly, the lists of DBIDs which may also grow beyond the available memory
are handled in an equally scalable manner described below in detail. ZDB also
offers various indexing features that allow strings to be used to denote objects
making the underlying DBIDs transparent for any code that uses ZDB.

Figure 4.2 gives a slightly simplified overview of ZDB's internal structure. As
already mentioned, ZDB is highly tuned for performance. Generic performance
features include the use of aggressive caching of objects in memory, including a
least-recently used cache eviction strategy, as well as the use of standard extensible
hash maps (EHM) [97] for maintaining potentially large indices on disk. The
rationale behind EHMs is the weakness of the standard Java hash maps which do
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not suit for representing very large indices typically met in EDA environment.
Standard maps are very memory inefficient and once a hash map grows beyond the
available memory, it crashes the Java Virtual Machine. Instead, EHMs can be
partially stored on disk and partially kept in memory. Other optimizations are
specific to the EDA use case: typically, we want to build large data structures very
quickly and want to be able to traverse and index them as efficiently as possible.
Deleting and modifying data, on the other hand, happen much less frequently.
Therefore, ZDB does not really implement these last two operations, but only
mimics them: object deletion will only result in it being removed from indices so it
becomes inaccessible, but it will continue to be stored on disk (deleted obj in
Figure 4.2). Object modification is not supported at all, but will require the
application using ZDB to delete the old object from ZDB and store it again — a
technique widely used in enterprise databases (e.g. vacuumdb utility in Postgres

[98]).
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Figure 4.2 zamiaCAD database ZDB

Based on the same principles (creating/traversal should be fast, deletion and
modification are infrequent) throughout ZDB and in the rest of zamiaCAD we use
two custom data structures HashSetArray and HashMapArray which are essentially
crossovers between regular arrays and hash sets or hash maps. This combination
allows preserving the order of added elements (the ordered set/map semantics)
while providing a constant time access to elements by, both, their keys and indices.
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To wrap up, from the user’s perspective, ZDB is used by feeding a java object
to ZDB and getting in return a unique key (DBID) for this object — just like any
other database, but much faster. And then one can store in memory only this key
instead of the whole object. In addition to DBIDs one can also use strings for
referencing objects: an indirection layer translates strings to DBIDs transparently.

Now that we have this possibility of replacing large objects with small DBIDs
(pure integers), let us see how it can be used in the construction of AST and IG.

4.2 AST model and its limitations

The AST model in the zamiaCAD flow serves mainly as an intermediate step in
the IG elaboration process. Its only particularity with respect to traditional AST
approaches is its scalable handling by ZDB. This allows the model to
accommodate large net-lists, weakly supported by even proprietary tools that rely
on AST-like design models. This is particularly important, because today it is a
common practice in industry to use net-lists for certain IP cores in a design.

The AST generated by zamiaCAD's parsers is a language-specific, traditional
tree structure closely modeled after the grammar productions as specified by the
respective HDL language reference manual. It is closely correlated to the source
code processed by the parser as there have been very few semantic rules applied to
it yet. The AST is a true tree data structure which is due to the context-free nature
of the grammars used.

We will illustrate this by looking at the AST generated from a very simple
VHDL example given in Figure 4.3. Figure 4.4 shows a slightly filtered and
simplified AST for the architecture part.

entity foo is
port (A, B : in bit;
7 : out bit);
end;

architecture rtl of foo is
signal t : bit;

begin
T <= A xor B;
Z <= T;

end;

Figure 4.3 VHDL Source Code Example
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It is important to notice that there is no semantic information present in this data
structure. Instead, any VHDL object is still denoted by names (which are, in this
example, simple identifiers, but could be more complex). If we look at the way the
signal declaration is represented here, this is very obvious: the signal 7 is declared
as a subtype of BIT, but we have no information what the BIT type really is (while
the experienced VHDL designers, of course, know this is one of the types declared
in the STANDARD package). It is exactly what semantic information means.

The same problem can be observed when looking at the concurrent signal
assignments. The relevant signals are denoted by names which have not been
resolved yet, since that would require semantic knowledge which a parser does not
have. To be more specific, the two signal assignments in the figure refer to the
same object: the first assignment has its target denoted by identifier 7, while the
second one has T as its driver. These are two different identifiers in the tree,
denoting the same object, but this object only gets created during elaboration.

Operation | obj

Target j Name
Conditional Name| obj id | T
Signal LogicOp
Assignment OperationLogic J’ id |XOR
Target |obj ]

List CWs |obj A obj =" Name
size|2 B Ob] id | A
Conditional _\b Name
- Signal :
e I : Assignment j Target Jy Name | 19 E
ConcStmts | obj Target |obj Name|obj id | Zz
EntityName| obj CWs |obj
Decls | obj \ — \ OperationName _f Name
id RTL i id| T
id |FOO Name obj ‘
- SignalDecl TypeDefSubType Name
L I TypeDef | obj ] TypeMark | obj J id| BIT

size|1 4 T

Figure 4.4 Abstract Syntax Tree

To address the scalability issue, all AST nodes which mostly consist of strings
are persisted using ZDB. Due to the pure tree nature of the AST (that is having no
cycles in it), persistence can be done simply by storing individual library/design
units as ZDB objects while keeping track of them using indices, so they can be
found quickly during elaboration. This kind of simple ZDB persistence also gives
us basic scalability, for we can essentially process any number of library/design
units very efficiently as long as individual units fit in RAM.
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Unfortunately, with automatically generated flat HDL net-list dumps this
assumption does not hold. Such dumps can contain millions of concurrent
statements in one single unit causing the parse pass to run out of memory. To solve
this, an additional level of ZDB indirection has been introduced: for architectures,
we store each concurrent statement separately using ZDB and keep just a list of
DBIDs (simple long integers) in memory. That way, zamiaCAD can deal with
arbitrarily large net-list dumps very efficiently.

Besides these scalability precautions, in the rest of it the AST parser is a
standard top-down parser generated by JavaCC parser generator [99], but having
the standard JJTree tree builder [99] replaced with zamiaCAD’s own hand-coded
scalable tree constructing procedure injected directly into the generated parser.

4.2.1 Applications of AST model

Because of the lack of semantic information, AST applications cannot be very
complex. Generally AST applications in RTL design flow may include editor
support such as folding and outline view (e.g. zamiaCAD relies for these two
applications on the AST model), identifier completion proposals, simple identifier
occurrence tracing by scoping rules within the file (local tracing), local identifier
refactorings and simple signal value annotations. However, any task (e.g. static
analysis, simulation) that needs identifier resolution, including type information,
can be performed only on properly elaborated design models such as IG.

4.3 1G model

The process of design elaboration in zamiaCAD results in its representation by
an Instantiation Graph (IG).

Definition 3: The Instantiation Graph is a data structure represented by a
densely connected graph of semantically resolved objects representing elements of
the hardware design.

IG is generated by applying semantic rules to the AST to resolve all names
(identifiers) and replace them with references to the actual objects. While
consistency and rule checks (e.g. type checks) are also applied during this process,
the main purpose here is name resolution. The names can reference objects located
in outer scopes, packages or other units and therefore IG partitioning prior storing
to a database should be performed with care. This is done as described below.

Just like AST objects, IG objects are persisted in ZDB. However, due to 1G
being a true graph with many cross-references between items, storing IG structures
takes considerably more effort than AST sub-trees do. Fortunately, since name
resolution is the source of all these interconnections, it makes it a natural point to
start cutting the graph to pieces exactly there when partitioning 1G for storage. So,
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anything which can be denoted by names needs to be stored as a separate ZDB
object and (except for transient fields) is never allowed to be referenced directly,
but through the object's DBID only. This is mainly true for two kinds of objects:
1GObjects which denote VHDL objects (signals, variables, constants and files) and
IGTypes which denote types. Besides that, we also apply the same approach we
used in AST to handle large dumped net-lists: /GStructures do not reference
concurrent statements directly, but store them as individual ZDB objects and only
keep their DBIDs (which are simple long integers).

Currently, IG is modeled closely after the ideas outlined by the VHDL language
reference manual [17] when it comes to elaboration. However, 1G is designed to be
language-agnostic, so it should be possible to extend it to support e.g. Verilog
[100] or AHDL [101] by simply adding missing classes and attributes to cover
concepts specific to those languages. Thus, the main idea behind IG is to abstract
away the synfax and to map constructs with equivalent hardware semantics to the
same IG classes regardless of the language the source code was written in, while
maintaining proper back-annotations to the source code. Facilitating factors which
make it easier to introduce new HDLs into 1G are:

e already available persistence and scalability mechanisms of ZDB;

e knowing well the places of required ZDB indirection (same “cut-through”
points in the IG graph for all possible RTL languages);

o most of the RTL hardware related constructs are already expressed in IG due
to virtually full VHDL support;

e the source code of zamiaCAD contains a working example of how
elaboration is implemented for VHDL, e.g. how name resolution is done etc.

Instead, most of the conceptual difference (if any) is expected to appear in the
semantics of the notions defined by the new languages, and hence will rather be a
bother of the simulator, synthesizer, etc. and not of IG or elaboration engine.

4.3.1 Modules in IG

Elaborated units are called modules in 1G. Apart from library packages, they
form the topmost hierarchical level in IG. Figure 4.5 shows what the high-level IG
data structures look like for our example from Figure 4.3. Note that it is impossible
to show a complete IG even for a very basic design, because IGs have far too many
nodes and edges. We will therefore have to look at small, hand-selected and
simplified portions of IG. IG does not separate between entity (interface) and
architecture (body). Also, modules do not have generics — instead, for each
distinct set of generics, which is used anywhere in the design, a new /IGModule is
generated. The set of actual generics (a set of static values) is stored inside the
module and is also used to compute a signature (a simple string) for the IGModule.
Therefore it is possible to quickly locate it via a ZDB index during elaboration or
reference it by IGInstantiations.
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The actual body of the module is to be found in an /GStructure object. Since
modules can be hierarchical (e.g. when the original VHDL architecture uses blocks
or generate statements), IGStructures can contain IGStructures in a recursive way.
Hence, IGStructure is one of only three possible statements to be found in an
IGStructure:

e [GStructure
e IGProcess
e IGInstantiation

All other kinds of concurrent statements found in VHDL are mapped to
equivalent /GProcess statements in IG. In our example we have two concurrent
signal assignment statements which have been converted into two equivalent
IGProcess statements.

IGModule \GOperation
- IGSequential (e
Struct bj—m 1GStruct
sl obj . ] : Value |obj Subprogram| obj
Container 36 Stmts |obj - TypeDBID | 193
Signature| .. DBID Container Target | obj
DBID 89
|GSequential
IGProcess Assignment
Stmts |obj Value | obj IGObject
Container| 5 Target | obj Direction |obj
DBID TypeDBID[193
id T
IGContainer IGObject
Generics |obj Direction | obj
Interfaces|obj TypeDBID|193
Local - id z
ltems obj
IGObject IGObject
Direction | obj Direction | obj
TypeDBID[193 TypeDBID|193
id A id B
Figure 4.5 A Module in IG

Besides the concurrent statements, IGStructures also contain information about
all (VHDL) objects declared in their scope in an /GContainer object. IGContainers
can be regarded as namespaces — they contain references to all named objects in a
specific namespace. In our case, we find four different objects here: 4, B and Z
which are interfaces declared in the entity, and 7 which is a local signal. In a
similar manner, library packages, represented in IG by /GPackage objects, consist
of a single (possibly hierarchical) IGContainer which holds references to all the
named objects they provide. Packages are located via a global index (scope) called
GlobalPackageContext which is stored as a named object in ZDB.
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4.3.2 Objects, types and expressions in IG

Expressions illustrate best the difference between AST and IG. In IG, all names
have been resolved so they can be replaced by a reference to the specific object
which was denoted by them.

Figure 4.5 shows what the concurrent assignments found in our example from
Figure 4.3 look like in IG. The two IGProcess data structures correspond to the two
statements as discussed in the previous section. Also where in AST we have
previously used 7 in two different places, we now have only one /GObject T with
two links to it (plus one for the declaration). Let's concentrate now on the first
assignment with an operator in it:

T <= A xor B;

In IG, this is turned into an /GSequentialAssignment statement inside a process.
The target T of the expression is the only VHDL object directly referenced by this
sequential assignment. The other two objects are hidden behind a logical operation
expression. In IG such expressions are actually translated into subprogram calls,
which is due to the fact that operators in VHDL can be overloaded and therefore
need to be resolved just like any other name. So, in IG we have a direct reference
to the specific subprogram which is to be invoked to perform the correct operation.

Likewise, names denoting types are resolved and replaced by references to the
actual objects representing those types. Figure 4.6 shows the corresponding IG sub-
graph for our example. The BIT type from the package named STANDARD (which
is imported implicitly in any VHDL unit) has been resolved to an /GTypeStatic
object, which is a subclass of the more generic /GType class that can also represent
arrays not having static boundaries (can be used in subprograms). The BIT type is
comprised of the two enumeration literals 0 and / represented by [/GStaticValue
objects. Such objects are used in IG to represent any kind of static (constant) value.

IGObject IGTypeStatic IGStaticValue
TypeDBID (193 EnumLiterals | obj EnumOrdinal | 1
id A Unconstrained| false TypeDBID 193

id BIT id 1

IGObject

TypeDBID |193 IGStaticValue
EnumOrdinal | 0

id T
TypeDBID | 193

id 0

Figure 4.6 Types in IG
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4.4 Application of IG model to verification and debug

IG model applications are much more powerful than those of AST. Any static
analysis task that needs identifier resolution (including type information) becomes
possible with IG. Such tasks include tracing of parts of signals, precise cross-
module (global) tracing, tracing through generate-statements, correct resolution of
overloaded subprograms, global refactorings, advanced signal value annotations
(e.g. annotating only one bit of a vector), computing expressions on the fly,
filtering a design with static slices. Besides static tasks, IG allows different
visualizations. E.g. IG can be mapped to semantically equivalent RTL graphs using
RTL elements. In the resulting RTL graph, the dataflow is represented as an
interconnection of logic and arithmetic modules with automatically inferred (where
appropriate) memory elements. IG also allows dynamic tasks such as simulation.

In the following two sub-sections we will describe the tasks of signal tracing
and simulation. The task of debug will be discussed in a separate section 4.6.

4.4.1 Static analysis

Static analysis tasks are there to boost designer's productivity during design and
particularly during debug. For our experiments, we have considered two such static
tasks: signal reference search (drivers/readers) over the whole design, and
computation of a static slice for a given signal. Both tasks can be carried out on the
IG model directly in almost no time and thus do not require any other additional
data structures. The main prerequisite for fulfilling static tasks is the fully
elaborated design model, which IG inherently is.

To the best of our knowledge there are no other tools capable of neither
computing static slices nor helping a designer to grasp all the references of a signal
he is interested in (i.e. drivers and readers). That means, so far designers have had
no CAD tools to help them during debug when trying to trace down the source of
an error, and also during design exploration when trying to find where a certain
signal obtains its value from and which parts of the design it influences. ModelSim
does allow tracing signals dynamically, but the final result completely depends on
the stimuli quality, which makes such a dynamic analysis just not as
comprehensive as static analysis is. We therefore only show whether it is possible
to perform the two mentioned tasks with IG model on large designs or not — and
this way demonstrate the usability and effectiveness of IG model.

We have used the following designs as benchmarks:

e B19 - a design from ITC'99 benchmarks family [70] combining several
smaller circuits from it (a total of 200 000 gates).

e Plasma - an open-source MIPS processor benchmark [102] from the
OpenCores.org website.
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e L3-SoC - a SoC built by interconnecting a wide set of IP cores from Gaisler
Research Library (GRLIB). It is available from [92].

e L3-1 to L3-3584 - the original unchanged LEON3 CPU core design [93]
configured to contain # instantiations with m CPUs as AMBA masters. L3-
64 is 64 instantiations with a single CPU on AMBA bus (64 core design).
L3-896 is 64 instantiations with 14 CPUs on AMBA bus (896 core design).
L3-3584 is 256 instantiations with 14 CPUs on AMBA bus (3584 core
design). The tools capable of detecting identical modules inside the design
will avoid duplications and thus save memory resources.

Table 4.1 and Table 4.2 present results for the two static analysis tasks: global
signal reference search and static slice extraction. For the reference search, the
experiment consisted of picking some signal widely used across the design and
finding all the usages of this signal. For this task, in case of B/9 design, AST-based
tools would find only 39 occurrences of identifier CLOCK in the design file due to
ignoring multiple instances of components, as opposed to 121 actual references
found in the elaborated design by zamiaCAD. In case of the L3-/ and L3-3584
designs the precise global signal tracing (tracing through generate-statements) also
results in a larger and more correct amount of actual references. Note that it only
takes about 20 seconds to scan through the largest SoC from our set — that is, to
traverse the whole big IG graph without any indices and optimizations. The
reference search task is thus established doable.

Table 4.1 Reference search

Design || Signal | References (#) | Time (ms)
B19 CLOCK 121 22
L3-SoC || IRQO 71 31
L3-1 CLK 6 7

RST 5 8
L3-3584 || CLK 1281 20203
RST 1025 23241

Table 4.2 Static slices

Design || Signal | References (#/%) | Lines #%) | T (s)
B19 BS,ead 56/9 315/23 0.4
L3-SoC || ATA DMACK, 1984/51 5846/2 26.8
L3-1 ERX DV, 2746/53 4269/1 19.0

ERX DViin=3 58/1 288/0.1 2.2
L3-3584 || ERX DV, 3001/0.05 4269/1 103.4
ERX DVjy=;3 313/0.006 288/0.1 69.1
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A static slice represents a subset of those signals/variables and their
assignments/querying that affect the signal of interest. Slices can be optionally
filtered to only readers or only drivers of this signal, and can be limited by depth of
the dependency. In other words, the readers of the signal constitute its forward slice
(a.k.a. cone of influence), while its drivers constitute its backward slices (a.k.a.
cone of dependence). Table 4.2 shows the size of static slices for signals BS,
ATA DMACK and ERX DV. We define the size of a slice both in terms of
signal/variable references and code lines. Percentage shows what portion of the
design the slice constitutes. B/9 has 56 reference signals and variables (appearing
on 315 lines of code) that are dependent through signal assignments on signal BS.
The dependency cone for signal ATA DMACK contains 1984 or 51% of the signals
and variables in design L3-SoC. There were also extracted static slices for
benchmarks L3-/ and L3-3584 containing all readers and readers within
dependency depth limited to 3 for signal ERX DV. In case of the L3-3584 design
the static slice involves readers in all instances of the processor core. When the
depth of the slice is limited to a small number of levels, the obtained portion of the
design (the percentage in Table 4.2) is rather small. The slices virtually filter a
design with respect to some signal. In such a way, slices help designers to
concentrate on the important code areas during debug. And their computation with
IG model has been shown to be doable.

All experiments were performed on an Intel® Pentium® Dual CPU 2.2GHz
machine with 3.8GB of RAM running under Linux OS distribution CentOS 6.0.
This roughly corresponds to a typical hardware engineer’s workstation.

4.4.2 Simulation

In this section we describe the way IG model can be simulated and the models
required for that. To simulate IG model, we need to make each IG object know
how to interpret itself and have a simple simulator manage the overall process, in
particular, by introducing the concept of time into the simulation procedure.

One way to do that is to add the required execution semantics right into IG
structures (the widely used interpreter design pattern [103]). However, IG would
then be polluted with execution-related data such as execution context, signal
values, future waveform values. Instead, to keep IG model lightweight (as any
general-purpose model should ideally be) we have extracted all the execution
semantics out of IG into a separate, stand-alone interpreter. This way, a possibility
is also reserved to optimize the simulation process independently from IG.

Each key IG structure thus generates its own portion of executable code (a list
of executable objects) and simulator runs this generic code in the same way
compiled programs are run on general purpose processors. A sequence diagram and
a generalized IG simulation flow are depicted in Figure 4.7 and Figure 4.8. Inside
the simulator, most of the work is delegated to the very same interpreter previously
used to compute static values on the fly during elaboration. And the code generated
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by IG is in fact the interpreter code (typically generated for each IGProcess).
Simulation thus means executing interpreter code by the interpreter and producing
static values as a result of this code evaluation. Obtained values are then stored
hierarchically inside interpreter contexts. The only aspect left to be covered
explicitly by the simulator is the concurrent timing model for signals, which in case
of VHDL is the delta-delay timing model complemented by signal drivers.

Simulator IG
‘ 1- generateCode( ) ]
Z:create() | |nterpreter
Code

4. interpreterCode

3: interpreterCode |

52 new( ) Interpreter

6: resume{interpreterCode) LFl

-]

-|* [continue] execute( )
8: continue |

Figure 4.7 Simulator sequence diagram
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Figure 4.8 Generalized IG simulation flow

The interpreter (Figure 4.8) is implemented as a stack machine. It maintains
different interpreter contexts (variable contexts), a call stack (interpreter codes) and
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a program counter (PC). When traversing the interpreter code, interpreter uses PC
to keep track of the statement being currently executed. In case the statement calls
another interpreter code (e.g. of a function; the short codes in Figure 4.8), the
current code and its PC get stored into the call stack for further resuming, and the
new code is loaded and PC is reset. After the new code execution has completed,
the stacked code is resumed by popping it out of the call stack and restoring the PC
to the previously saved value.

The interpreter code, which is a list of executable statements, represents the
execution semantics of the given HDL. Its task is to compute new values for
signals and variables. It takes current values from signal and variable drivers
(organized hierarchically into interpreter contexts), processes them using a variety
of value-producing executable statements, and writes new values back to drivers by
scheduling values for assignment using the same drivers. Intermediate results of
value computation (drivers, types, static values, literals) are passed from one
executable statement to another through a value stack of the interpreter.

Drivers are also used to access individual elements/ranges of complex signals or
to write to parts of signals. In the following VHDL code fragment:

tar (7 downto 4) <= temp (15 downto 12);

the target will be represented by a range driver mapped to the leftmost 4 elements
of the original driver of tar if tar it is a (7 downto 0) array. The mapped driver and
the assigned value will be pushed to stack by corresponding interpreter statements
and will be reunited by a statement which pops the two objects off the stack and
schedules a value change of far signal using the mapped range driver.

Execution of any given interpreter code is finally terminated with a wait
executable statement, which passes control to other interpreters that evaluate the
rest of IGProcesses. Also, all executable statements that constitute an arbitrary
interpreter code are properly back-annotated to the original source code they were
generated from by the IG structures. This allows measuring HDL code coverage.

4.5 Scalability assessment

In this section we present the results for scalability experiments [91]°**" on IG
model implemented in zamiaCAD. We have taken for comparison the leading
commercial EDA tools which all target different tasks, but all have their own
elaboration engine inside. To compare these engines only, we have run each tool
up to the point where only the elaboration step had been performed. For example,
for simulators it is the point right after the simulation has started with 0-cycle
typically executed.

To estimate scalability of IG model, we have used as a reference widely known
commercial state-of-the-art tools for synthesis (T1), for design elaboration front-
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end (T2), a commercial and an open-source tool for simulation (T3 and T4) and an
advanced code entry tool T5. All of the tools create their own proprietary
elaborated design representation models dedicated for the targeted task. We show
that only proposed IG model can easily handle designs of the given complexity,
while the other models fail to do so.

We have used the same design benchmarks as with static analysis experiments
in 4.4.1. All the designs share the common property of being publicly available. It
is important to mention, though, that during its development zamiaCAD and its IG
model have been constantly tested for scalability issues against state-of-the-art
IBM SoCs which typically contained tens of millions of VHDL code lines. But
since those designs could not be made publicly available to other researchers, we
have come up with a set of open designs of similar size and complexity.

Table 4.3 Elaboration time (sec)

Design || Size | T1 | T | T | T4 | T5 | 2C
B19 834 7 1 5 1 4 3
Plasma 1068 3 1 9 2 7 9
L3-SoC || 38107 83 5 135 104 | 918 | 183
L3-1 27409 87 6 82 187 | 694 | 137
L3-64 27409 | OOM' 23 87 OOM’ | 693 | 162
L3-896 27409 | OOM’ 97 OOM’ | OOM® | 695 | 223
L3-3584 || 27409 | ooM® | oomM* | oOM® | OOM’ | 692 | 405

Table 4.3 presents the elaboration time for the previously described large
benchmarks. The second column presents the size of the designs in terms of VHDL
concurrent and sequential statements (a more accurate metric than lines of code).

Here OOM* means a reference tool has run out of memory or crashed for the
given design. OOM" - T1 has run out of memory in 448, 860 and 2340 seconds,
respectively. OOM’ - T2 has crashed on 208" instantiation with 14 CPU cores
(2912™ of the 3584 cores). OOM’ % - T3 has halted after 3170 and 949 seconds,
respectively, and kept waiting infinitely for additional memory resources. OOM’™ -
T4 has run out of memory in 16, 8 and 8 seconds, respectively.

In case of zamiaCAD, the elaboration time measured includes indexing,
parsing, 1G elaboration and ZDB commit (flushing ZDB contents to disk). For
instance, the total time spent for elaboration of L3-/ and L3-3584 designs can be
split, respectively, to (137.44s total = 1.44s parsing + 3.57s indexing + 95.19s IG
build + 37.24s ZDB commit) and (405.16s total = 1.16s parsing + 5.06s indexing +
363.73s IG build + 35.21s ZDB commiit).

Table 4.4 presents values for memory allocation both in RAM and on hard disk
drive for handling the internal models during the elaboration process (see Table
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4.3). With this experiment we show that, given a reasonable amount of RAM,
zamiaCAD models scale well with the design size.

Most of the compared tools were rather upset about the idea of dealing with
such large designs. These tools either crashed with the out of memory exception or
just kept sitting in the background waiting for additional memory resources. Apart
from zamiaCAD, only VHDL editor T5 survived the test. However, the VHDL
editor only builds an AST and does not elaborate the design (can be derived from
the memory requirements which do not change with the growing number of cores
in the design). VHDL editor also does not use hard disk (model size on disk is
constantly 0), which is exactly the reason why it does not accept net-lists — it
simply can’t. Hence we can draw our first conclusion here: without utilizing the
hard drive it is not possible to handle large designs (e.g. net-lists) already on the
stage of AST. Alternatively, even if you use hard drive as the rest of the tools are
trying to do, you still have to do it in a scalable manner, not hoping that a good-old
HashMap will be enough for EDA data structures, large as they typically are. That
is our second important conclusion drawn.

Table 4.4 Internal model size in RAM / on disk (MB)

Design [ T1 | T2 | 1™ | T4 | T5 | =2C
B19 120/0.48 | 17/0 5/0.32 12 254/0 | 248/0.9
Plasma 70/1.3 15/0 | 5.3/0.68 3/2 280/0 269/5
L3-SoC 310/32 117/0 39/22 45/47 | 693/0 | 1337/114
L3-1 268/35 107 72/14 45/66 | 613/0 | 1332/83
L3-64 ooM! 332 444/14 | OOM’ | 610/0 | 1360/134
1.3-896 OoOoM? 1205 OOM’> | OOM® | 619/0 | 1465/236
L3-3584 oOM® | oOM* | OOM® | OOM’ | 616/0 | 1488/584

Concerning the memory requirements, both TS5 and zamiaCAD were given
1424MB of RAM memory. As to the actual memory consumption shown in Table
4.4, the VHDL editor keeps it on the same level for designs with different number
of LEON3 cores, because it does not go beyond the parsing process and thus
knows nothing about multiple CPU instances. On the contrary, with large designs
zamiaCAD tends to use all the available memory and thus with the growing
number of cores the memory consumption grows too, although insignificantly.

Generally, in case of memory shortage zamiaCAD can scale down to the
available memory resources and is still able to do the job while sacrificing the
speed — and vice versa, it can often do the same job faster given a larger amount
of memory. The reason why the task gets completed a bit faster is because of the
less intense writing to disk, which is also why the difference is not that large for the
bigger designs where the elaboration time prevails over the commit time. For
example, the saving in design elaboration time for the case when memory

91



resources in zamiaCAD were extended 1.88 times (from 1.4GB to 2.7GB) is
between 1.1 and 1.4 times, with the smallest increase (1.1x) coming from the
largest design. As expected, this indicates that just adding memory does not help in
solving a time-consuming (performance intensive) elaboration task. What can help
in this case, however, is multithreading inside the elaboration engine which is
disabled in zamiaCAD at the moment of this writing, for it needs to be properly
finished. Still, this means that even those 6 minutes required for the elaboration of
a SoC with 3584 LEON3 CPU cores, already short as they are, can be considerably
reduced even in case of laptops, which nowadays often contain 8 processing cores
and are expected to contain even more of them in future.

Another important aspect is the way design units are managed inside the tool.
To remain responsive and usable, the VHDL editor has to be provided with the
exact list of VHDL files used in the given design. Otherwise the editor halts trying
to parse everything in the imported library, which takes it about 2 hours in case of
the full GRLIB (127K vs. 27K concurrent and sequential statements). To avoid this
pitfall, zamiaCAD features a very fast multithreaded indexer which allows large
legacy libraries to be scanned in almost no time (in order to learn in what file every
possible design unit can be found). zamiaCAD’s indexer thus saves the parser from
processing dead uninitialized code by only feeding it with the files actually used in
the design. Also providing the VHDL editor with the exact list of files in case of a
large project is highly prone to errors as is the case with any manual work.

As a result, zamiaCAD’s scaling efficiency becomes close to the AST-level-
only tools, while the ability to fully elaborate the given large designs is preserved.

All experiments were performed on an Intel® Pentium® Dual CPU 2.2GHz
machine with 3.8GB of RAM running under Linux OS distribution CentOS 6.0.
This roughly corresponds to a typical hardware engineer’s workstation.

4.6 Debug

The automated debugger described in this section serves as an example of how
different hardware models (IG and interpreter models) can be combined together to
gain powerful synergic effect.

Most of verification approaches only concentrate on detecting the presence of a
bug. Designers are thus provided with large counter-examples with lots of
information which still miss the right information to unambiguously locate the bug.
The subsequent manual debug is very time consuming and requires automation.

For automated bug localization, simulation-based [104], [105], [106], [107],
[108], [109], [67]°™", [110] and formal approaches [82], [111], [112], [8] are
known. The formal ones give a high grade of confidence in the results, but are
susceptible to design complexity. In this section we rely on a simulation-based
approach extended with static analysis.
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Most of automated error localization solutions target software development
domain [104], [105], [106], [107], [108], [109]. The error localization approaches
for hardware designs, e.g. [110], [8] and its extension [113], consider unrolling
sequential circuits at the gate-level. Thus they support and provide empirical results
for small designs only (medium and small size iscas85 and iscas89 benchmarks).
These approaches also assume existence of a reference golden model never
available in hardware design (versus testing). Similar to the approach presented in
this section, in 3.2.4 bugs at RTL are localized using a statistical approach
combined with dynamic slicing [114]. However, the method proposed here is HDL
centric, whereas in 3.2.4 localization is performed on HLDD model created from
VHDL, therefore losing direct correspondence to the HDL code. Furthermore, the
localization approach of current section takes advantage of different code coverage
items, which significantly refine the localization, in particular for bugs in
conditions. To the best of our knowledge this is the first approach that applies code
coverage metrics for refining the bug locations.

The main contribution of this section is thus a new approach for automated
localization of design errors (bugs) in processor designs at RTL. It is based on
statistical analysis of HDL code items (statements, branches and conditions) of the
design from a corresponding dynamic slice.

The core advantages of the approach are:

e  Support for very large industrial designs due to the scalability of zamiaCAD
elaboration.

e The approach is fault-model free. There is no need to explicitly enumerate
the bug types.

e Accurate localization due to slicing and use of different code coverage
metrics.

e Can be executed on the functional test. No need for separate diagnostic test
generation.

e Supports localization of multiple bugs.

We also provide a case study on a real industrial processor ROBSY [115], [116]
supplied with a list of documented bug cases and the original functional test. The
approach is implemented and evaluated as a part of the open source RTL design
framework zamiaCAD.

4.6.1 Bug localization with zamiaCAD

The proposed approach [117]°™™ for design error localization assumes that
design verification has been performed and an erroneous behavior has been
detected (e.g. at observable outputs, by assertion violations, etc.). The approach is
based on two main iterative phases: dynamic slicing and statistical suspiciousness
ranking of the HDL statements in the design. The dynamic slicing reduces the
debugging analysis to all the statements that actually affect the design's faulty
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behavior for a given stimuli. Then, the suspiciousness ranking assigns a
suspiciousness score to each statement present in the dynamic slice. Intuitively, if a
statement occurs very frequently in executions revealing the error, it is very likely
to contain a bug. To reveal artifacts more accurately, the suspiciousness ranking is
performed also hierarchically for the branches and conditions that the ranked
statements may have.

All individual steps of the proposed approach are easily doable on zamiaCAD
scalable internal models. Dynamic slicing employs both the IG model and its
executable layer (the interpreter model) right out of the box — that is without any
changes made to them. Statistical suspiciousness ranking is performed on
interpreter model and only requires some minor changes to specify which code
items are to be ranked during design simulation. The scalable nature of the models
employed allows the method to be applied to real life industrial designs, while the
scripting interface of zamiaCAD allows the whole approach to be fully automated.

Consider the following design example in Figure 4.9. It presents a VHDL
implementation of a signal chopper design chopper that is a modified motivational
example from [26]. The chopper design has 3 processes calculating 4 outputs
representing different chops for the input signal SRC based on the design
configuration by inputs INV and DUP. It is assumed that the design has 5
individual tests T1-T5 of varied length each keeping the values of INV and DUV
constant while flipping the value of the SRC input and having appropriate behavior
of the clock and reset signals (CLK, CLKN, RST). The design has a bug
introduced on line 28 where instead of correct assignment FO <= FF; the design has
a buggy assignment FO <= not FF;. Tests T1, T3 and T4 are able to detect the bug
and are referred to as failing tests, while tests T2 and T5 pass despite the presence
of the bug and are referred to as passing tests. The faulty behavior of the design
caused by the failing tests is observed at output TAR f (assigned at line 46).
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Executed Dynamic

Lo
statements slices T2 VHDL code for the chopper design
[T1RrAT3|T4RE] T1 hrd 13| T4 RERCE
1 entity CHOPPER is port (
2 RST, CLK, CLKN: in bit;
3 SOURCE, INV, DUP: in bit;
4 TAR_f, TAR_h, TAR_ff, TAR_fh: out bit
5 ); end entity;
6
7 architecture ARCH of CHOPPER is
8 signal F@, F1, FF, HO, H1l, SRC: bit;
9 begin
10
11 process (INV, SOURCE) begin
® ¢ ¢ 0 0|0 0 0 0 O|0 12 if INV = '1' then
e o e o e 13 SRC <= SOURCE;
14 else
e o o e o o|e® 15 SRC <= not SOURCE;
16 end if;
17 end process;
18
19 RISING:
20 process (RST, CLK)
21 begin
® © 0 0 0|0 0 0 0 0|0 22 if RST = '1' then
® © © © o|e o o o o|0 23 FO <= '0';
e o o o o 24 H1 <= '@';
® ¢ ¢ © 0|0 © 0 0 0|0 5 elsif CLK'event and CLK = '1' then
®© © 0 0 o(0 0 @0 0 o0 26 if DUP = '1' then
° o o ° o o e 27
° o o [ ] o o (] 28 --Bug! “F@ <= FF”
29 else
° ° ° e|le 30
31 end if;
e o 0 0 o 32 F1 <= FO;
e o 0 0 o 33 H1 <= He;
34 end if;
35 end process;
36
37 FALLING:
38 process (RST, CLKN) begin
e o o o o 39 if RST = '1' then
e © © o o 40 HO <= '0';
e o 0o o o 41 elsif CLKN'event and CLKN = '1' then
e o o o o 42 HO <= SRC;
43 end if;
a4 end process;
45
® © ¢ 0o 0|0 © 0 0 0|0 46 TAR_f <= (not SRC) nor F@; --Buggy out
e o o 0 o 47 TAR_ff <= (not F@) nor F1;
e o o o o 48 TAR_h <= (not SRC) nor He;
e © © o o 49 TAR_fh <= (not H@) nor H1;
50
51 end architecture;

Figure 4.9 Simplified bug localization in a toy design

4.6.1.1Static slicing

The basis of dynamic slicing is static slicing [85]. The presence of concurrent
constructs in HDLs versus sequential software domain languages makes static slice
computation considerably more complicated [26]. Various approaches dedicated
for this task rely on computed models such as control flow graphs and others.
zamiaCAD exploits for this purpose its I[G model. Given the IG model it is possible
to perform a signal references search through its assignments, both backward to
find the dependencies and forward to find other signals and variables influenced by
the signal. The resulting reference graph has signals and variables in its nodes and
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the dependencies are expressed by directed edges. It may contain cyclic
dependencies and may be very large, especially if the search was initiated from
primary inputs/outputs of the design. It is possible to limit such search by
constraining the depth of the graph. An example dependency graph computed for
the chopper design's output TAR_f'is shown in Figure 4.10.

Figure 4.10 Through-signal-assignment backward reference graph on signal
TAR_fin the chopper design

Given the through-signal-assignment reference graph, the HDL statements
representing the signals and variables in its nodes are collected into a set. The
resulting set represents a static slice on the given signal. However, our approach
for static slice computation does not consider the order of HDL statements and can
therefore be slightly too optimistic, i.e. it can potentially include into the static slice
some statements that do not represent dependencies influencing the signal of
interest. This can only be observed for certain combinations of variable (versus
signal) assignments which are a rare case in practical HDL descriptions.

The column “Static slice” in Figure 4.9 marks VHDL statements of a static slice
on the TAR f output by dots (blue in color prints). Static slicing allows having a
design filter that eliminates from the analysis space those design parts that do not
influence the signal of interest. As a result in the chopper design example the entire
process FALLING and a large part of other statements were excluded from the
future analysis.

4.6.1.2Suspiciousness ranking based on statement and branch coverage
metrics

The proposed statistical suspiciousness ranking procedure is based on design
simulation by a diagnostic test. A diagnostic test is required to contain a set of
independent sub-tests (e.g. separated by design reset) where both failing and
passing tests are present. The quality of statistical ranking depends on the quality of
diagnostic test [118]° ™™, Functional tests for processors are particularly suitable
as diagnostic tests because they are divided into separate sub-tests for processor
instructions, so that each such sub-test can be executed independently.
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The column “Executed statements” in Figure 4.9 marks the VHDL statements
executed during design simulation with each of the 5 tests by dots (green in color
print). A fraction of executed statements can be excluded from further analysis by
applying a static slice filter on the output signal where the faulty behavior was
observed. This approach allows obtaining a dynamic slice of the design on this
signal. The column “Dynamic slices” in Figure 4.9 marks the VHDL statements
taking part in the dynamic slices of the tests by dots (purple in color print). Thus
the analysis space for the current example was reduced 2.2 times (42 versus 92
statement executions by the sub-tests).

The statistical suspiciousness score for ranking of the HDL code item i is
calculated by the following Formula (1):
Failed(i)
N TotalFailed
S = ~Passed)) . _Failed(D (1
TotalPassed * TotalFailed

Where S(i) is the suspiciousness score value of the code item i, Passed(i) and
Failed(i) are the counts of passing and failing tests that covered the item i in a
dynamic slice, while TotalPassed and TotalFailed are the total numbers of the
passing and failing tests in the complete diagnostic test, respectively.

Further zamiaCAD environment visualizes the score S(i) by 4-bit colors that can
be interpreted as follows:

e 1 -is colored by extreme red and is interpreted as highly suspicious HDL
code item to contain or to lead to the bug;

e (0 - is colored by extreme green and is interpreted as an HDL code item
above suspicion;

®  Sureshoia - 18 colored by yellow and is interpreted as an item that was not
emphasized by the analysis;

Here 0 < Syyesnoa < 1 is the suspiciousness threshold specified by the designer
and is by default equal to 0.5. The items having score S values between 0, Sy esnoi
and 1 are colored by greenish and reddish yellow tones respectively and represent
different levels of suspiciousness. Items without scores (and therefore not colored)
were either eliminated from the analysis by the static slice filter or not covered by
the diagnostic test.

An example of applying the proposed suspiciousness ranking to the chopper
design is demonstrated in Figure 4.9. Here the assignment statements on lines 27
and 28 were calculated as the most suspicious (score S = 1) and were colored red,
the assignment on line 30 was calculated to be above suspicion (score S = 0) and
colored green, while statements on lines 13 and 15 have scores S 0.4 and 0.6
correspondingly and therefore are colored greenish yellow and orange.

97



4.6.1.3 Hierarchical analysis based on condition coverage

As it will be demonstrated in the next section, the ROBSY processor case study
has emphasized an important general category of design errors that are difficult to
localize. These are bugs in complex condition expressions of conditional
statements. E.g. Bug 1 in this case study is an erroneous comparison of one of the
35 conditions in a conditional assignment when of the ALU module. Localization
of such bugs is assisted by suspiciousness ranking of condition items.

We propose to hierarchically rank condition items of the selected (e.g. by a rank
threshold) suspicious branch items that belong to suspicious statements.
Formula (1) is applied for this purpose considering for i branch and condition items
instead of statements. In the proposed approach the branch items are separate
evaluations into 'true' or 'false' of conditional statements branches and the condition
items are separate evaluations into 'true' or 'false' of logical operators (i.e. OR,
AND, XOR, NOR, etc.) and relational operators (i.e. >, =, <, etc.). A detailed
example for hierarchical conditions ranking and its application for bug localization
is demonstrated in section 4.6.3.

4.6.2 Case study

As a case study, the proposed approach was evaluated [117]°*" by debugging
an industrial processor developed as a part of the ROBSY (Reconfigurable On
Board self test SYstem) project. This custom processor follows a new test approach
[115], [116] to improve the fault coverage and reduce the test time of Printed
Circuit Boards (PCBs) during the manufacturing process, and it is developed in
cooperation with a major vendor of PCB testing equipment. The ROBSY processor
is classified as a single instruction single data (SISD) processor with separated
program and data buses (Harvard architecture). The processor has many of the
properties of a reduced instruction set computer (RISC), and uses the Wishbone
protocol (WB) for the I/O transactions. The current implementation of the
processor core contains 17K lines of VHDL code. There are 481 direct signal
assignment statements, 413 branches and 1573 conditions.

4.6.2.1 ROBSY processor: functional test

To verify the correct functionality of the Instruction Set Architecture (ISA), a
functional test was developed during the implementation phase of ROBSY project.
The functional test consists of a test program written in assembler, executed in a
predefined order to test all the instructions supported by the processor. The test
program is divided into sub-tests, where each sub-test is in charge of testing a
specific instruction and setting register R1 to a specific value that acts as a sub-test
label (error code). During the sub-test execution, it is evaluated if the values
obtained in the primary registers, flags, etc. are as expected. In Figure 4.11 we have
an example of a sub-test corresponding to the compare (CMP) instruction.
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In case of unexpected value, the processor goes to the code section labeled with

"fail", the execution is aborted and the error code of the failed sub-test is written to
a dedicated register.

; check CMP with flags (register content unsigned)
MOV R1, @1; -- error code @1---

MOV  R2, A3;

CMP  R2, O5;

Jjz fail; if R2 equal ©5 (jump zero)

Jc fail; if R2 < @5 (jump carry)

CMP  R2, A3;

INZ fail; if R2 not equal @5 (jump not zero)
JC fail; if R2 < 05

MOV  R3, A4;

CMP  R2, R3;

JNC  fail; if R2 > R3 (jump not carry)

Figure 4.11 ROBSY processor test program sub-test for the CMP instruction

4.6.2.2S8et of documented design errors

The ROBSY design team has documented a set of their VHDL coding bugs that

have the following nature:

Bug 1 A wrong register is used as one of the operands in a very long
conditional expression (35 operators) inside a conditional signal assignment.
Possibly, due to a copy-paste error.

Bug 2 An entire conditional sub-expression (3 operators) resides in the wrong
branch of a conditional signal assignment, which contains 9 branches in total.
Bug 3 Both, a missing branch and a missing driver in a short conditional signal
assignment.

Bug 4 A wrong enumeration constant is used in a comparison operation inside
a conditional signal assignment.

Bug 5 A wrong driver is used in a conditional signal assignment. More
specifically, register R is not updated with its newly computed value typically
stored in R _next or R_new signal. Instead, the same register R is used as a
driver, which indicates an obvious copy-paste error.

Bug 6 A missing conditional sub-expression (3 operators out of 6 required
ones) in one of the 4 branches of a conditional signal assignment.

Bug 7 One bit of a register is always and unconditionally set to 0. The whole
code line to blame is unnecessary and hence incorrect.

4.6.3 Details of automated bug localization

This section presents experimental results for the proposed design errors

localization approach evaluation on the industrial processor ROBSY. For the
purpose of the proposed approach the original functional test (i.e. an Assembler
program) was split into 28 independent sub-tests, each targeting a separate
instruction. Each of the 7 buggy versions of the processor was simulated with the
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resulted diagnostic test. The ratio of failing vs passing sub-tests for the bugs in the
case-study was the following: Bug I: 4 vs 24; Bug 2: 2 vs 26; Bug 3: 2 vs 26;
Bug 4: 1 vs 27; Bug 5: 2 vs 26; Bug 6: 1 vs 27; Bug 7: 1 vs 27.

Stm. | Bran. [ Cond. |, . .
# score| score | score |-N® Source code lines
alu.vhd

6 |0.51 88

510.55 104

2 10.67 108

110.80 110

510.55 116

510.55 127

3 |0.64|0.64 260|svFlag_new(@) <= '1' when afClass=cfClass_1

0.64% (261 and ((svOp_mux(cnD_w)=REG_SOURCE_DEST_IN(cnD_w)--add case
262 and svOp_mux(cnD_w)/=svRes(cnD_w)

263 and ((aCmd=cvCmd_ADD_R_R and c_en_ADD_R R)

264 or (aCmd=cvCmd_ADD_R_IMM and c_en_ADD_R_IMM)))

0.51% [265 or (svOp_mux(cnD_w)/=REG_SOURCE_DEST_IN(cnD_w)--sub case
-- Bug: correct compar. between REG_SOURCE_DEST_IN and svRes
266 and svOp_mux(cnD_w)/=svRes(cnD_w)

0.69% [267 and ((aCmd=cvCmd_SUB_R_R and c_en_SUB_R_R)

0.55%
0.75% (268 or (aCmd=cvCmd_SUB_R_IMM and c_en_SUB_R_IMM)
0.57% [269 or (aCmd=cvCmd_CMP_R_R and c_en_CMP_R_R)
8.55%
0.51% (270 or (aCmd=cvCmd_CMP_R_IMM and c_en_CMP_R_IMM)))

271 or (REG_SOURCE_DEST_IN(cnD_w)/=svRes(cnD_w)--shift cases
0.55% (272 and ((aCmd=cvCmd_SHL_R and c_en_SHL_R)

0.55% (273 or (aCmd=cvCmd_SHR_R and c_en_SHR_R))))

510.55(0.55 274 else 'O’ when afClass=cfClass_1 --overflow reset
275 and ((aCmd=cvCmd_ADD_R_R and c_en_ADD_R R)

276 or (aCmd=cvCmd_ADD_R_IMM and c_en_ADD_R_IMM)

277 or (aCmd=cvCmd_SUB_R_R and c_en_SUB_R_R)

278 or (aCmd=cvCmd_SUB_R_IMM and c_en_SUB_R_IMM)

279 or (aCmd=cvCmd_CMP_R_R and c_en_CMP_R_R)

280 or (aCmd=cvCmd_CMP_R_IMM and c_en_CMP_R_IMM)

281 or (aCmd=cvCmd_SHL_R and c_en_SHL_R)

282 or (aCmd=cvCmd_SHR_R and c_en_SHR_R))

NA (0.50 283| else svFlag(0);

data_interface_mod.vhd

S

1

S

2 |0.67 155
2 |0.67 158
gprs_mod.vhd
4 |e.60] | [ 97]
state_machine.vhd
4 10.60 100
4 10.60 123
4 10.60 168

Figure 4.12 Details of automated localization of Bug I in the ROBSY processor

Figure 4.12 demonstrates the proposed hierarchical localization of Bug I. The
grey areas denote that some detailed information was omitted from the figure. First
the dynamic slices (intersection of executed statements with the static slice on an
observable faulty output) were generated for all of the test cases and the statistical
suspiciousness ranking was performed. This analysis resulted in 14 statement
candidates (out of the initial total 481 assignment statements) whose suspiciousness
score S was above the default suspiciousness threshold Sy, es0w= 0.5. The figure
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shows in the second column Stm. score the scores for these 14 suspicious
statements, and in the first column their rank # based on the score (6 ranks in total).
Most of the statements with high scores were found in the ALU processor module
(file alu.vhd). The figure demonstrates a part of the actual VHDL code for the
conditional assignment of the overflow flag signal svFlag new(0). Bug 1 is located
in the condition expression at line 266 (correct comparison had to be made between
signals svRes(cnD w) and REG SOURCE DEST IN  instead of
svOp_mux(cnD_w)). This complex conditional assignment (lines 260-283) contains
3 individual assignments at lines 260, 274 and 283. The first two assignments have
3rd and 5Sth ranks while the last one has the "yellow" score S=0.5 and is filtered
out together with other statements with scores 0.5 and less. The automated
localization iteratively advises the designer to consider as bug location candidates
the statements with the highest ranks starting with the one at line 110, followed by
statements at line 108 in alu.vhd and lines 155 and 158 in data_interface_mod.vhd
(complemented with hierarchical analysis of the corresponding branches and
conditions). Further it will advise the designer the statement at line 260 in alu.vhd
with the next rank 3 and score value 0.64. Then it will proceed with score
computation of its branch on the same line (Sp50 = 0.64 in column Bran.score).
The suspiciousness scores of separate condition evaluations to 'true' and 'false’
related to this branch artifact are also calculated. The ones that have score S > 0.5
are specified in column Cond.score. One of the highest scores here has the logical
and at line 267. One of its operands is actually the incorrect signal comparison
documented as Bug 1.

Table 4.5 Statistics of the proposed bug localization approach for the ROBSY
processor bugs

The proposed automated localization Manual
debug
Bug | Statements | Conditions | Localized | Localization | Time Time
name | cand./ % cand. stm. rank result (min)
Bugl1 | 14/2.9% 16 of 35 3 Automatic 2 4 hours
Bug 2 7/1.4% 13 0of 43 1 Automatic 2 2 hours
Bug 3 | 20/4.0% 2 of 7 3 Automatic 2 4 hours
(H+ Semi-
0
Bug4 | 6/12% N/A ext.sle. automatic 2 (+5) | 4 hours
Bug5 | 11/2.3% 4of1l 1 Automatic 2 2 hours
Bug6 | 8/1.7% N/A (1) + Semi- | 5 110) | 5 hours
ext.slc. automatic
(H+ Semi-
0
Bug7 | 21/4.3% N/A extsle. automatic 2 (+1) | 1hours
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Table 4.5 demonstrates the statistics of applying the proposed bug localization
approach to all of the 7 bugs. The second column in the table shows how many
statements were proposed as bug location candidates and also demonstrates these
numbers in percentage of the total number of statements which was 481. As
supplementary debug data, the hierarchical analysis has selected suspicious
conditions out of conditions of the candidate statements from the second column.
Their percentage varies for different bugs from 20.3% to 39.8% (e.g. 72 conditions
with suspiciousness score above the threshold out of all 354 conditions of the
statements selected as Bug 5 location candidates). The third column demonstrates
the number of selected conditions candidates of the total number of conditions of
the located statement. The fourth column shows the rank of the statement actually
containing the bug. The diagnostic test was sufficient to automatically localize 4 of
the 7 bugs (i.e. Bugs I, 2, 3 and J5). Localization of the remaining three bugs was
semi-automatic and required manual interaction. In these cases, the bug locations
were traced in zamiaCAD by the through-signal-assignment reference search (also
used for static slice computation) with limited depth initiated from the signals
involved in the highly ranked assignment statements. Bugs 4, 6 and 7 were present
within an extra static slice on the signal from the statement with the highest rank
(reference search depth was 1 assignment for the three bugs and has introduced 21,
13 and 10 additional bug candidates respectively). Automation of this process is
conceptually possible and is planned as a future work.

The last two columns in Table 4.5 compare the time required for bugs
localization by the proposed automated localization approach and conventional
manual debug process used by designers before. The time values for the manual
process are reported by designers based on their real experience with locating these
bugs using a fast commercial simulator. The reported time for the automated debug
approach (2 min) is mainly spent for separate simulation of the 28 sub-tests and is
still pessimistic due to the relatively slow current implementation of the VHDL
simulator in the zamiaCAD framework. The framework also supports interaction
with external simulators and importing waveform VCD dump files, whose
application would allow reducing the runtimes of the automatic approach by a
factor of ten. The additional time in brackets reported for Bugs 4, 6 and 7 reflects
the manual interaction part in the semi-automatic localization process.

To the best of our knowledge none of the state-of-the-art automated hardware
design error localization approaches are capable to handle industrial size RTL
designs such as ROBSY. Therefore direct comparison to other than manual
approaches was not possible for this empirical study.

Figure 4.13 presents a screenshot of the automated debugger implemented in
zamiaCAD [92]. All bug candidates are listed in the Markers tab and also
highlighted in the VHDL code with different colors according to their
suspiciousness score.
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Figure 4.13 Automated debugger in zamiaCAD
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4.7 Summary

This chapter has introduced a scalable IG model, designed to represent large
industrial circuits, and its application to the task of debug.

First, details of comprehensive HDL elaboration into IG model were described
with a strong accent on persistence and scalability. It was shown that IG model’s
implementation inside an open source framework zamiaCAD is capable of
handling very large circuits and is therefore suitable for building experimental
environments for scientific research on designs of tomorrow’s scale.

Second, an approach for automated localization of design errors was presented.
The novelty of the approach is that it successfully and in a scalable manner applies
static slicing for analysis space reduction to realistic-size industrial designs and
considers different coverage metrics for refining the bug localization. The approach
is fault-model free and supports localization of multiple bugs. The original
functional test can be used as a diagnostic test and is sufficient for the approach.
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Chapter 5
CONCLUSIONS

This thesis has presented two hardware design representation models for
verification and debug.

HLDD model is efficient for fast assertion checking, accurate code coverage
measurement, mutation testing and automated debug, and finds its application in
academic research. ApricotCAD combines all HLDD tools into a single flow.

IG model is instead very suitable for industrial use and is capable of
representing very large hardware designs in an HDL-agnostic way. It serves as a
scalable basis for simulation, static analysis, automated debug and other design
tasks, and has attracted interest of several industrial companies in the field of
hardware design and verification. zamiaCAD framework implements IG model and
combines all 1G-based tools into a single synergic flow that can also be used in
research. zamiaCAD project has received IBM Faculty Award 2011/2012.

5.1 Contributions

The following objectives were reached in this thesis:

e To improve verification quality, we have proposed using HLDD model of
HDL descriptions to accurately measure code coverage for the given test set.
We have shown that HLDD-based coverage metrics are closer to path
coverage and are more stringent than classical HDL-based metrics. E.g. for
100% HDL statement and branch coverages, the HLDD-based node coverage
was only 86% and edge coverage only 78%. Therefore HLDD-based metrics
provide a more stringent assessment of a test set with respect to its ability to
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catch bugs and suggest exact places for potential test improvement.
Consequently they give a better measure of confidence in the quality of
hardware designs. The time overhead of HLDD-based coverage measurement
is also much smaller: 1-4% versus 28-78% for a commercial state-of-the-art
simulator.

We have also proposed a way of modeling widely used PSL assertions with
THLDDs. This allows fast design property checking during simulation
(around 2 times faster than a state-of-the-art commercial simulation tool) and
gives possibility to measure assertion coverage similarly to how design code
coverage is measured.

We have also arranged all our verification techniques into a single flow
implemented as ApricotCAD tool to facilitate unified design verification and
scientific research. Given an HDL description to be verified, the tool allows
the designer to automatically generate behavioral HLDD model for the given
description, simulate it with a test set and measure the code coverage of this
test while being confident the coverage metrics is stringent enough to catch
operation-critical design bugs. In case of insufficient test set, structural
HLDDs can be synthesized by the tool, which allow the RTL ATPG
DECIDER to automatically generate a better test set. In addition, verification
assertions can always be co-simulated with this test set to make sure important
high-level properties of the design meet its specification. This is facilitated by
automatic generation of THLDD property descriptions from PSL verification
properties and by seamless and fast co-simulation of THLDDs and HLDDs. If
some tests lead to a property failure, the built-in automated debugger allows
tracing the source of the error. It provides a list of bug candidates to the
designer for deeper consideration and intuitively highlights the appropriate
code regions.

We have proposed a methodology for comprehensive HDL code elaboration
into a scalable 1G model and presented an open source platform zamiaCAD
that implements the IG model and targets design and verification. Performed
scalability experiments reveal that both the model and the platform can
support very large SoCs such as one with 3584 LEON3 CPU cores inside,
while many state-of-the-art commercial tools fail to do so. IG model is also
shown useful as an intermediate design representation.

We have proposed a scalable and efficient method for automated bug
localization in large concurrent designs of today's scale. The method filters a
design with dynamic slicing and uses statistical suspiciousness ranking of
fine-grained HDL code items to hint the designer for the most probable bug
locations. Fine-grained items allow the method to effectively locate bugs in
individual conditions of complex conditional statements. The method
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considerably reduces the search space for possible bug locations and in our
experiments only leaves for designer’s consideration from 1.2% to 4.3% of all
the design statements. The method also proved efficient in locating real
documented design bugs. The automated method is implemented in
zamiaCAD and was tested on different processor designs.

e Fast and seamless integration of the scalable debug approach into zamiaCAD
framework also indicates the successful achievement of our last goal. We have
contributed to the development of a highly scalable free platform for research
and industrial use in the field of hardware design and verification. It supports
huge industrial designs and provides for easy automation through scripting
and for convenient integration with other tools.

5.2 Future work

As mentioned above, assertion coverage measurement on THLDDs should be
investigated to further raise the quality of verification. Also, the VHDL subset
supported by HLDD generation method is not complete and should be extended to
support loops, generate-statements, aggregates etc.

In zamiaCAD, its ability to handle large designs should further be exploited.
Different analysis and automation tasks could be implemented to further improve
design and verification capabilities of designers without compromising the
scalability property. Efficient and scalable tracing of source-less/sink-less signals
would allow elimination of bugs caused by careless component reuse which is an
established practice today. Tracing individual bits and array elements requires a
synthesis step similar to HLDD generation and is useful for better design
understanding and could also be useful for automated verification tasks. Automated
synthesis from behavioral RTL VHDL descriptions to structural would allow
visualization of the latter and improve understanding of design’s underlying
structure. The analysis process (opposite to synthesis) implies extraction of higher-
level concepts. E.g. generation of SystemC algorithmic descriptions from RTL
VHDL code could solve the bottleneck of slow legacy components simulation.
Semantic information contained in IG would be a good starting point for such an
analysis, if at all possible. Also, advancing from incremental elaboration to
incremental simulation would further improve the speed of manual debug and
apparently allow automated HDL-based bug correction.

Integration of ApricotCAD functionality into zamiaCAD is also a promising
step. It would allow the inherently HDL-based zamiaCAD to stringently measure
code coverage and assertion coverage at RTL. At the same time, due to its
extensive support of the VHDL standard, zamiaCAD could allow more scalable
HLDD generation than is currently achieved with the ApricotCAD’s own
converter. Also, zamiaCAD could produce HLDDs for a large design, which could
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then be used to analyze e.g. hardware aging with the help of structurally
synthesized BDDs. This information about aging could then be passed back to IG
model and back-annotated to the HDL code so that the designer would know which
RTL code is expected to cause premature aging of the given hardware. Moreover,
since fine-grained handling of array and record elements by IG implies building
HLDD-like structures in zamiaCAD, the existing expertise of HLDD construction
could be reused for this purpose and is already being reused, in fact.

To conclude, this thesis revealed not only the advantages of applying HLDD
and IG models to verification and debug, but also their potential for future
research. The possibilities are abundant, and both the industry and academia can
benefit from advancing and utilizing these two models and their corresponding
implementations — ApricotCAD and zamiaCAD.
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Abstract—This paper proposes an approach to automatic
localization of design errors (bugs) in processor designs based
on combining statistical analysis of dynamically covered VHDL
code items and static slicing. The approach considers coverage
of different VHDL code items including statements, branches
and conditions during processor simulation which together
contribute to accurate localization of bugs. The accuracy of
analysis is further improved by applying a static slicing based
filter calculated by means of reference graph generation using
a through-signal-assignment search from the semantically re-
solved elaborated models of processor designs. The localization
approach has been integrated to highly scalable zamiaCAD
RTL design framework. The efficiency of the proposed ap-
proach is demonstrated by applying it to debugging of an
industrial processor ROBSY designed for FPGA-based test
systems. The experimental results evaluate the approach for
a set of real documented bug cases and the original functional
test.

Keywords-automated debug; design error localization; pro-
cessor design; VHDL; electronic design automation

I. INTRODUCTION

Growing complexity of VLSI System-on-a-Chip (SoC)
and processor designs leads to increasing design costs. The
ITRS Roadmap [1] lists design error verification as one of
the most expensive tasks in the design process. There exist
several verification approaches that are mostly concentrated
on identifying the occurrences of bugs. They provide feed-
back to the designers in form of counter-examples. On one
hand, as the design complexity grows, the designer is faced
with too much information contained in the large counter-
examples. On the other hand, there is not enough information
in order to unambiguously locate the bug. Therefore, the
manual bug localization activity is very time consuming and
there is a need for automated localization approaches.

For automated design error localization, simulation-based
[2-9] and formal approaches [10-13] are known. It is widely
acknowledged that simulation-based techniques scale well
with the design sizes, but are not exhaustive, while formal
techniques provide a high grade of confidence in the results,
but are susceptible to the design complexity. In this paper,
we rely on a simulation-based approach supported by static
analysis.

Most of the works on automated error localization propose
solutions for software development domain [2—7]. The error

localization approaches proposed for hardware designs, e.g.
[9], [13] and its extension [14], are mostly considering
unrolling sequential circuits at the gate-level. Thus they
support and provide empirical results for small designs only
(medium and small size iscas85 and iscas89 benchmarks).
These approaches also asume existence of a reference golden
model. Similar to the approach presented in this paper, in
[8] bugs at the Register-Transfer Level (RTL) are localized
based on a statistical approach combined with dynamic
slicing [15]. However, the method proposed in this paper
is Hardware Description Language (HDL) centric, whereas
[8] is performing localization on a High-Level Decision Di-
agram (HLDD) model created from VHDL, therefore losing
direct correspondence to the HDL code. Furthermore, we
have developed a localization approach that takes advantage
of different code coverage items, which significantly refine
the localization, in particular for bugs in the conditions. To
the best of our knowledge this is the first approach that
applies code coverage metrics for refining the bug locations.

Several approaches to statistical simulation based bug
localization in software and hardware are refined with dy-
namic slicing [15] allowing to increase the resolution of the
localization. The basis of dynamic slicing is static slicing
[16]. The presence of concurrent constructs such as the
ones found in HDLs makes static slice considerably more
complicated [17] and exploits computed design models such
as control flow graphs and others. In the proposed approach
we rely on static slice computation based on reference graph
generation using a through-signal-assignment search from
the zamiaCAD semantically elaborated models of processor
designs. This allows applying static slicing in a practical and
scalable manner for realistic-size industrial designs.

The main contribution of this paper is a new approach for
automated localization of design errors (bugs) in processor
designs at RTL. It is based on statistical analysis of HDL
code items (statements, branches and conditions) of the
design from a corresponding dynamic slice.

The core advantages of the approach are:

o Support for very large industrial designs due to the

scalability of zamiaCAD elaboration.

o The approach is fault-model free. There is no need to

explicitly enumerate the bug types.

» Accurate localization due to slicing and use of different



code coverage metrics.

« Can be executed on the functional test. No need for
separate diagnostic test generation.

o Supports localization of multiple bugs.

As a result the approach singles out a small set of
the bug location candidates, i.e. HDL statements. Where
applicable the analysis result is refined by artifact candidates
in branches and single conditions.

The power of localization of the statistical approach
proposed is dependent on the number of test sequences.
Therefore, the functional tests developed for processors
where test for each instruction can be singled out are highly
suitable as diagnostic tests providing necessary statistics for
localization. In this paper, we present a case study on a real
industrial processor ROBSY [18, 19] supplied with a list
of documented bug cases and the original functional test.
The approach is implemented and evaluated as a part of an
open-source RTL design framework zamiaCAD [20].

The rest of the paper is organized as follows. Section 2
gives a brief introduction to the zamiaCAD environment.
Section 3 presents details of the proposed approach for
automated design bug localization for processors. Section
4 introduces a case-study based on an industrial processor
design ROBSY. Experimental results are demonstrated in
Section 5 and Section 6 concludes the paper.

II. ZAMIACAD FRAMEWORK OVERVIEW

Front-end

Elaboration

l lBack—end

‘ Static Analysis ‘ Simulation ‘ ‘OtherApplications
‘ Automated Debug ‘

Figure 1. Simplified zamiaCAD Flow

The basis of the proposed approach is a scalable model
based open-source framework zamiaCAD [20]. The frame-
work addresses RTL design, verification and analysis. Cur-
rently the front-end fully supports VHDL. On the back-
end side zamiaCAD supports design entry, navigation and

analysis and has an Eclipse plug-in based user interface. It
also contains a built-in VHDL simulator supporting verifi-
cation and debug flows and it has stubs for synthesis and for
visualization of the design structure. Figure 1 demonstrates
a simplified flow of the framework.

An object database ZDB (zamiaCAD Data Base), which
has been custom-designed and highly optimized for scal-
ability and performance is used for zamiaCAD applica-
tions. The database is HDL independent and is able to
accommodate extremely large designs. Full elaboration in
zamiaCAD semantically resolves the Abstract Syntax Tree
(AST) generated by the parser and results in a set of scalable
Instantiation Graph (IG) data structures, stored in ZDB.

Definition. The Instantiation Graph is a data structure
represented by a densely connected graph of semantically
resolved objects representing elements of the hardware de-
sign.

IG is the base for the zamiaCAD applications. To handle
designs which do not fit in memory, ZDB with an elaborated
design in it is automatically and efficiently persisted to
disk, thus saving processing time during later sessions. As
demonstrated in [21] the framework is capable of handling
very large industrial multi-core designs (tens of millions of
VHDL code lines, e.g a SoC made of more than 3500 Leon3
[22] processor cores).

III. BUG LOCALIZATION WITH ZAMIACAD

The proposed approach for design error localization as-
sumes that design verification has been performed and an
erroneous behavior has been detected (e.g. at observable
outputs, by assertion violations, etc.). The approach is based
on two main iterative phases: dynamic slicing and statistical
suspiciousness ranking of the HDL statements in the design.
The dynamic slicing reduces the debugging analysis to all
the statements that actually affect the design’s faulty be-
havior for a given stimuli. Then, the suspiciousness ranking
assigns a suspiciousness score to each statement present in
the dynamic slice. Intuitively, if a statement occurs very
frequently in executions revealing the error, it is very likely
to contain a bug. To reveal artifacts more accurately, the
suspiciousness ranking is performed also hierarchically for
the branches and conditions that the ranked statements may
have.

Consider the following design example in Figure 2. It
presents a VHDL implementation of a signal chopper design
chopper that is a modified motivational example from [17].
The chopper design has 3 processes calculating 4 outputs
representing different chops for the input signal SRC based
on the design configuration by inputs INV and DUP. It is
assumed that the design has 5 individual tests T1-TS of
varied length each keeping the values of INV and DUV
constant while flipping the value of the SRC input and
having appropriate behavior of the clock and reset signals
(CLK, CLKN, RST). The design has a bug introduced on



line 28 where instead of correct assignment FO <= FF;
the design has a buggy assignment FO <= not FF;.
Tests T1, T3 and T4 are able to detect the bug and are
referred to as failing tests, while tests T2 and T5 pass despite
the presence of the bug and are referred to as passing tests,
respectively. The faulty behavior of the design caused by the
failing tests is observed at output TAR_f (assigned at line
46).

Executed Dynamic °
statements  slices %O
n

1)l vs|rajg i e vs[rajg

VHDL code for the chopper design

1 entity CHOPPER is port (

2 RST, CLK, CLKN: in bit;

3 SOURCE, INV, DUP: in bit;

4 TAR_f, TAR_h, TAR_ff, TAR_fh: out bit
5 ); end entity;
6
7
8

architecture ARCH of CHOPPER is
signal F@, F1, FF, H@, H1, SRC: bit;
9 begin
10
11 process (INV, SOURCE) begin
0000000000 12 if INV = '1' then

o0 o0 ® 13 SRC <= SOURCE;
14 else
[N ) oo oo 15 SRC <= not SOURCE;

16 end if;

17 end process;

18

19 RISING:

20 process (RST, CLK)

21 begin
©00o0c0c000e 2 if RST = '1' then
00000000000 23 Fo <= '0';

[ X N X 24 H1 <= '@';
000000000025 elsif CLK'event and CLK = '1' then

if DUP = '1' then

L]
0000000000 26

® 27

[ )

e o0 (¢ oo 28 --Bug! “FO <= FF”
29 else
° e o e|e 30
31 end if;
LN ) 32 F1 <= FO;
LN N N 33 H1 <= HO;
34 end if;
35 end process;
36
37 FALLING:
38 process (RST, CLKN) begin
[N N W) 39 if RST = '1' then
eoocoo 40 He <= '0';
LN 41 elsif CLKN'event and CLKN = '1' then
(XX NN 42 He <= SRC;
43 end if;
a4 end process;
45
o000 000e0 0 ole i TAR_f <= (not SRC) nor F@; --Buggy out
(NN N N ) 47 TAR_ff <= (not F@) nor F1;
(N NN W) 48 TAR_h <= (not SRC) nor H@;
eeooe 49 TAR_fh <= (not H@) nor H1;

50
51 end architecture;

Figure 2. Simplified bug localization in a toy design

A. Static slicing

The presence of concurrent constructs such as the ones
found in HDLs versus sequential software domain languages
makes static slice computation considerably more compli-
cated [17]. Various approaches dedicated for this task rely
on computed models such as control flow graphs and others.
zamiaCAD exploits for this purpose its elaborated model
refered to as instantiation graphs [21]. Given the IG model

it is possible to perform a signal references search through
its assignments, both backward to find the dependencies and
forward to find other signals and variables influenced by the
signal. The resulting reference graphs has the signals and
variables in its nodes and the dependencies are expressed
by directed edges. It may contain cyclic dependencies and
may be very large, especially if the search was initiated
from primary inputs/outputs of the design. It is possible to
limit such search by constraining the depth of the graph.
An example dependency graph computed for the chopper
design’s output TAR_f is shown in Figure 3.

Figure 3. Through-signal-assignment backward reference graph on signal
TAR_f in the chopper design

Given the through-signal-assignment reference graph, the
HDL statements representing the signal and variable depen-
dencies in its edges are collected into a set. The resulting set
represents a static slice on the signal of interest. However
our approach for static slice computation does not consider
the order of HDL statements and can therefore be slightly
too optimistic i.e. it can potentially include into the static
slice some statements that do not represent dependencies
influencing the signal of interest. It can be observed only for
certain combinations of variable (versus signal) assignments
which are a rare case in practical HDL descriptions.

The column Static Slice in Figure 2 marks VHDL state-
ments of a static slice on the TAR_f output by dots (blue in
color prints). Static slicing allows having a design filter”
eliminating from the analysis space the design parts that do
not influence the signal of interest. As a result in the chopper
design example the entire process FALLING and a large part
of other statements were excluded from the future analysis.

B. Suspiciousness Ranking Based on Statement/Branch Cov-
erage Metrics

The statistical suspiciousness ranking procedure proposed
in this paper is based on design simulation by a diagnostic
test. A requirement for the diagnostic test is that it has
to contain a set of independent sub-tests (e.g separated
by design reset) where both failing and passing tests are
represented. The quality of the statistical ranking is highly
dependent on the quality of the diagnostic test. Functional
tests for processors are suitable as diagnostic tests be-
cause they are divided into separate sub-tests for processor
instructions, so that each such sub-test can be executed
independently.



The column Executed Statements in Figure 2 marks the
VHDL statements executed during design simulation with
each of the 5 tests by dots (green in color prints). A fraction
of the set of executed statements can be excluded from
the further analysis by applying a static slice filter on an
output signal where the faulty behavior was observed. This
approach allows obtaining a dynamic slice of the design on
this signal. The column Dynamic Slices in Figure 2 marks
the VHDL statements taking part in the dynamic slices of
the tests by dots (purple in color prints). Thus the analysis
space for the current example was reduced by 2.2 times (42
versus 92 statement executions by the sub-tests).

The statistical suspiciousness score for ranking of the
HDL code item i is calculated by the following Formula
(1):

Failet‘l
TotalFailed (1)

Passed + Failed
TotalPassed TotalFailed

S(i) =

Where S(i) is the suspiciousness score value of the
code item i, Passed and Failed are counts of passing and
failing tests covered the item 7 in the dynamic slice, while
TotalPassed and TotalFailed are total numbers of the passing
and failing tests in the complete diagnostic test, respectively.

Further zamiaCAD environment visualizes the score S(i)
by 4-bit colors that can be interpreted as follows:

o 1-is colored by extreme red and is interpreted as highly
suspicious HDL code item to contain or to lead to the
bug

o 0 - is colored by extreme green and is interpreted as
an HDL code item above suspicion

o Sihreshold - is colored by yellow and is interpreted as
an item that was not emphasized by the analysis

Here 0<Sinreshota<l is the suspiciousness threshold
specified by the designer and is by default equal to 0.5.
The items having score S values in-between 0, Sinreshold
and 1 are colored by greenish and reddish yellow tones
respectively and represent different levels of suspiciousness.
Items without scores (and therefore not colored) were either
eliminated from the analysis by the static slice filter or not
covered by the diagnostic test.

An example of applying the proposed suspiciousness
ranking to the chopper design is demonstrated in Figure
2. Here the assignment statements on lines 27 and 28 were
calculated as the most suspicious (score S = 1) and were
colored red, the assignment on line 30 was calculated to
be above suspicion (score S = 0) and colored green, while
statements on lines 13 and 15 have scores S 0.4 and 0.6
correspondingly and therefore are colored greenish yellow
and orange.

C. Hierarchical Analysis Based on Condition Coverage

As it will be demonstrated in the next section, the ROBSY
processor case study has emphasized an important general

category of design errors that are difficult to localize. They
are bugs in complex condition expressions of conditional
statements. E.g. Bug 1 in this case study is an erroneous
comparison of one of the 35 conditions in a conditional
assignment when of the ALU module. Localization of such
bugs is assisted by suspiciousness ranking of condition
items.

We propose to hierarchically rank condition items of the
selected (e.g. by a rank threshold) suspicious branch items
that belong to suspicious statements. Formula (1) is applied
for this purpose considering for ¢ branch and condition
items instead of statements. In the proposed approach the
branch items are separate evaluations into ’true’ or ’false’ of
conditional statements branches and the condition items are
separate evaluations into "true’ or ’false’ of logical operators
(i.e. OR, AND, XOR, NOR, etc.) and relational operators
(ie. >, =, <, etc.). A detailed example for hierarchical
conditions ranking and its application for bug localization
is demonstrated in Section 5.

IV. CASE STUDY: ROBSY PROCESSOR DESIGN

As a case study, the proposed approach was evaluated by
debugging an industrial processor developed as a part of the
ROBSY (Reconfigurable On Board self test SYstem) project.
This custom processor follows a new test approach [18, 19]
to improve the fault coverage and reduce the test time of
Printed Circuit Boards (PCBs) during the manufacturing
process, and it is developed in cooperation with a major
vendor of PCB testing equipment. The ROBSY processor
is classified as a single instruction single data (SISD)
processor with separated program and data buses (Harvard
architecture). The processor has many of the properties
of a reduced instruction set computer (RISC), and uses
the Wishbone protocol (WB) for the I/O transactions. The
current implementation of the processor core contains 17K
lines of VHDL code. There are 481 direct signal assignment
statements, 413 branches and 1573 conditions.

A. ROBSY Processor: Functional Test

To verify the correct functionality of the Instruction Set
Architecture (ISA), a functional test was developed. The
functional test consists of a test program written in assem-
bler, executed in a predefined order to test all the instructions
supported by the processor. The test program is divided
into sub-tests, where each sub-test is in charge of testing
a specific instruction and setting register R1 to a specific
value that acts as a sub-test label (error code). During the
sub-test execution, it is evaluated if the values obtained in
the registers, flags, etc., are as expected. In Figure 4 we
have an example of a sub-test corresponding to the compare
(CMP) instruction.

In the case of an unexpected value, the processor goes to
the code section labeled with “fail”, the execution is aborted



and the error code of the failed sub-test is written to a
dedicated register.
; check CMP with flags (register content unsigned)

MOV R1, @1; -- error code 91---
MOV R2, A3;
CMP R2, 05;

Jjz fail; if R2 equal 05 (jump zero)

h[e fail; if R2 < @5 (jump carry)

CMP  R2, A3;

INZ  fail; if R2 not equal @5 (jump not zero)
c fail; if R2 < 05

MOV  R3, A4;
CMP  R2, R3;
JNC  fail; if R2 > R3 (jump not carry)

Figure 4. ROBSY processor test program sub-test for the CMP instruction

B. Set of Documented Design Errors

The ROBSY design team has documented a set of their
VHDL coding bugs that have the following nature:

o Bug 1 A wrong register is used as one of the operands
in a very long conditional expression (35 operators)
inside a conditional signal assignment. Possibly, due to
a copy-paste error.

o Bug 2 An entire conditional sub-expression (3 opera-
tors) resides in the wrong branch of a conditional signal
assignment, which contains 9 branches in total.

o Bug 3 Both, a missing branch and a missing driver in
a short conditional signal assignment.

o Bug 4 A wrong enumeration constant is used in a
comparison operation inside a conditional signal assign-
ment.

o Bug 5 A wrong driver is used in a conditional signal
assignment. More specifically, register R is not updated
with its newly computed value typically stored in
R_next or R_new signal. Instead, the same register R
is used as a driver, which indicates an obvious copy-
paste error.

o Bug 6 A missing conditional sub-expression (3 opera-
tors out of 6 required ones) in one of the 4 branches
of a conditional signal assignment.

o Bug 7 One bit of a register is always and uncondi-
tionally set to 0. The whole code line to blame is
unnecessary and hence incorrect.

V. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed
design errors localization approach evaluation on the indus-
trial processor ROBSY. For the purpose of the proposed
approach the original functional test (i.e. an Assembler pro-
gram) was split into 28 independent sub-tests, each targeting
a separate instruction. Each of the 7 buggy versions of the
processor was simulated with the resulted diagnostic test.
The ratio of failing vs passing sub-tests for the bugs in the
case-study was the following: Bug I: 4 vs 24; Bug 2: 2 vs
26; Bug 3: 2 vs 26; Bug 4: 1 vs 27; Bug 5: 2 vs 26; Bug 6:
1 vs 27; Bug 7: 1 vs 27.

Figure 5 demonstrates the proposed hierarchical localiza-
tion of Bug I. The grey areas denote that some detailed

stm. | Bran. | Cond. |, .
# |score| score | score |HMe Source code lines
alu.vhd
6 (0.51 88
5 |0.55 104
2 |0.67 108
1 (e.80 110
5 |0.55 116
5 |0.55 127
3 |0.64]0.64 260|svFlag_new(@) <= '1' when afClass=cfClass_1
0.64%, |261| and ((svOp_mux(cnD_w)=REG_SOURCE_DEST_IN(cnD_w)--add case
262 and svOp_mux(cnD_w)/=svRes(cnD_w)
263| and ((aCmd=cvCmd_ADD R_R and c_en ADD R_R)
264 or (aCmd=cvCmd_ADD_R_IMM and c_en_ADD_R_IMM)))
0.51% |265 or (svOp_mux(cnD_w)/=REG_SOURCE_DEST_IN(cnD_w)--sub case
-- Bug: correct compar. between REG_SOURCE_DEST_IN and svRes
266 and svOp_mux(cnD_w) /=svRes (cnD_w)
©.69% |267| Bnd ((aCmd=cvCmd_SUB_R_R and c_en_SUB_R_R)
0.55%
0.75% |268 or (aCmd=cvCmd_SUB_R_IMM and c_en_SUB_R_IMM)
0.57% |269 or (aCmd=cvCmd_CMP_R_R and c_en_CMP_R_R)
0.55%
0.51% |270 or (aCmd=cvCmd_CMP_R_IMM and c_en_CMP_R_IMM)))
271 or (REG_SOURCE_DEST_IN(cnD_w)/=svRes(cnD_w)--shift cases
0.55% |272| and ((aCmd=cvCmd_SHL_R and c_en_SHL_R)
0.55% |273 or (aCmd=cvCmd_SHR_R and c_en_SHR_R))))
5 |.55/@.55 274| else '@ when afClass=cfClass_1 --overflow reset
275 and ((aCmd=cvCmd_ADD_R_R and c_en_ADD_R R)
276 or (aCmd=cvCmd_ADD_R_IMM and c_en_ADD_R_IMM)
277 or (aCmd=cvCmd_SUB_R_R and c_en_SUB_R_R)
278 or (aCmd=cvCmd_SUB_R_IMM and c_en_SUB_R_IMM)
279 or (aCmd=cvCmd_CMP_R_R and c_en_CMP_R_R)
280 or (aCmd=cvCmd_CMP_R_IMM and c_en_CMP_R_IMM)
281 or (aCmd=cvCmd_SHL_R and c_en_SHL_R)
282 or (aCmd=cvCmd_SHR_R and c_en_SHR_R))
NA|e.50 283| else svFlag(e);
data_interface_mod.vhd
2 [e.67 155
2 |0.67 158
gprs_mod.vhd
4 [e.60] [ [ o7]
state_machine.vhd
4]0.60 100
4 |0.60 123
4 |0.60 168
Figure 5. Details of automated localization of Bug I in the ROBSY
processor

information was omitted from the figure. First the dynamic
slices (intersection of executed statements with the static
slice on an observable faulty output) were generated for
all of the test cases and the statistical suspiciousness rank-
ing was performed. This analysis resulted in 14 statement
candidates (out of the initial total 481 assignment state-
ments) whose suspiciousness score S was above the default
suspiciousness threshold Sipresnoia=0.5. The figure shows
in the second column Stm. score the scores for these 14
suspicious statements, and in the first column their rank #
based on the score (6 ranks in total). Most of the statements
with high scores were found in the ALU processor module
(file alu.vhd). The figure demonstrates a part of the
actual VHDL code for the conditional assignment of the
overflow flag signal svFlag_new(0). Bug 1 is located
in the condition expression at line 266 (correct compari-
son had to be made between signals svRes(cnD_w) and
REG_SOURCE_DEST_IN instead of svOp_mux(cnD_w)).
This complex conditional assignment (lines 260-283) con-
tains 3 individual assignments at lines 260, 274 and 283.
The first two assignments have 3rd and Sth ranks while
the last one has the “yellow” score S=0.5 and is filtered
out together with other statements with scores 0.5 and less.
The automated localization iteratively advises the designer
to consider as bug location candidates the statements with
the highest ranks starting with the one at line 110, followed



by statements at line 108 in alu.vhd and lines 155
and 158 in data_interface_mod.vhd (complemented
with hierarchical analysis of the corresponding branches and
conditions). Further it will advise the designer the statement
at line 260 in alu. vhd with the next rank 3 and score value
0.64. Then it will proceed with score computation of its
branch on the same line (Sp260=0.64 in column Bran.score).
The suspiciousness scores of separate condition evaluations
to ’true’ and ’false’ related to this branch artifact are also
calculated. The ones that have score $>0.5 are specieved in
column Cond.score. One of the highest scores here has the
logical and at line 267. One of its operands is actually the
incorrect signal comparison documented as Bug /.

Table I
STATISTICS OF THE PROPOSED BUG LOCALIZATION APPROACH FOR THE
ROBSY PROCESSOR BUGS

Manual
The proposed aut ted localization debug
Bug [StatementsiConditions|Localized|Localization Time Time
name |cand. / %| cand. |stm. rank| result (min)
Bug 1{14 /2.9%| 16 of 35 3 Automatic | 2 4 hours
Bug 2| 7/1.4% | 13 of 43 1 Automatic | 2 2 hours
Bug 3[20 / 4.0%| 2 of 7 3 Automatic | 2 4 hours
(1) + Semi-
Bug 4 6 /1.2% N/A ext.slc. | automatic |2 (+5)|| 4 hours
Bug 511 /2.3%| 4 of 11 1 Automatic 2 2 hours
)+ Semi-
Bug 6/8/1.7% | N/A ext.slc. | automatic 2 (+10)[| 5 hours
1)+ Semi-
Bug 7|21 /43%| N/A ext.slc. | automatic |2 (+1) 1 hour

Table I demonstrates the statistics of applying the pro-
posed bug localization approach to all of the 7 bugs. The
second column in the table shows how many statements were
proposed as bug location candidates and also demonstrates
these numbers in percentage of the total number of the
corresponding items which was 481. As supplementary
debug data, the hierarchical analysis has selected suspicious
conditions out of conditions of the candidate statements from
the second column. Their percentage varies for different
bugs from 20.3% to 39.8% (e.g. 72 conditions with suspi-
ciousness score above the threshold out of all 354 conditions
of the statement selected for Bug 5 location candidates).
The third column demonstrates the number of selected
conditions candidates of the total number of conditions of
the located statement. The fourth column shows the rank
of the statement actually containing the bug. The diagnostic
test was sufficient to automatically localize 4 of the 7 bugs
(i.e. Bugs 1, 2, 3 and 5). Localization of the remaining three
bugs was semi-automatic and required manual interaction.
In these cases, the bug locations were traced in zamiaCAD
by the through-signal-assignment reference search (also used
for static slice computation) with limited depth initiated from
the signals involved in the highly ranked assignment state-
ments. Bugs 4, 6 and 7 were present within extra static slices
on the signal from the corresponding statements with the
highest rank (reference search depth was 1 assignment for

the three bugs and has introduced 21, 13 and 10 additional
bug candidates respectively). Automation of this process is
conceptually possible and is planned as a future work.

The last two columns in Table I compare the time required
for bugs localization by the proposed automated localization
approach and conventional manual debug process used by
designers before. The time values for the manual process
are reported by designers based on their real experience
with locating these bugs using a fast commercial simulator.
The reported time for automated debug approach (2 min)
is mainly spent for separate simulation of the 28 sub-tests
and is still pessimistic due to the relatively slow current
implementation of the VHDL simulator in the zamiaCAD
framework. The framework also supports interaction with
external simulators and waveform VCD dump files imporing
whose application would allow reducing the runtimes of the
automatic approach by a factor of ten. The additional time
in brackets reported for Bugs 4, 6 and 7 reflects the manual
interaction part in the semi-automatic localization process.

To the best of our knowledge none of the state-of-the-
art automated hardware design error localization approaches
are capable to handle industrial size RTL designs such as
ROBSY. Therefore direct comparison to other than manual
approaches was not possible for this empirical study.

VI. CONCLUSIONS

The paper presents an approach to automatic localization
of design errors (bugs) in processor designs. The approach
is based on two main iterative phases: dynamic slicing and
statistical suspiciousness ranking of the HDL statements
in the design. The dynamic slicing reduces the debugging
analysis to all the statements that actually affect the design’s
faulty behavior for a given stimuli. Then, the suspiciousness
ranking assigns a suspiciousness score to each statement
present in the dynamic slice.

The novelty of the approach is that it successfully in
a scalable manner applies static slicing for analysis space
reduction to realistic-size industrial designs and considers
different coverage metrics for refining the bug localization.
The approach is fault-model free and supports localization
of multiple bugs. The original functional tests of processor
designs can be used as a diagnostic test and is sufficient for
the approach. However, quality diagnostic test can further
increase the localization accuracy.
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Abstract—As of today, RTL still remains the primary abstrac-
tion level for VLSI SoC design entry and state-of-the-art design
flows need to cope with designs of enormous size, and thus,
to scale well. This paper presents an open-source framework
zamiaCAD based on a scalable model that includes both, a
comprehensive elaboration front-end for RTL design and design
processing back-end flows. The persistence and scalability are
guaranteed by a custom-designed and highly optimized object
database. As an HDL-centric framework it follows the concept of
non-intrusiveness. In this paper, we discuss in detail the concepts
of design elaboration into the scalable design model and present
an evaluation of the model for static analysis as one of the back-
end applications. Experimental results on very large designs show
that zamiaCAD compares favorable to other frameworks with
respect to the scalability aspects.

Index Terms—RTL, static analysis, scalability, VHDL

I. INTRODUCTION

The ITRS roadmap predicts that the technology scaling for
semiconductor chips continues at least until the year 2020 [10].
Furthermore, it is expected that Register Transfer Level (RTL)
remains the dominant level of abstraction for design entry in
the next years. There are numerous RTL chip design flows
implemented in commercial frameworks in use today involving
front-end and back-end tools. The front-end consists mainly
of design parsing and design elaboration and storing the result
in a database. These steps are typically language dependent.
The back-end applications read the elaborated design from
the database. They might be targeted towards design analysis,
design synthesis, and optimization or simulation. The algo-
rithms used in the front-ends and back-ends are often based on
methods developed years ago (e.g. [13], [19]) when scalability
issues were less of a concern than they are now.

The enormous size of today’s RTL designs for VLSI SoCs
together with the predicted technology scaling brings to the
front the scalability property of the model. Since satisfying
the scalability property is a non-trivial task, such models are
usually kept in-house and are as proprietary as the tools built
upon them.

Design analysis as a typical back-end application for design
exploration, verification and debug allows the designer to
effectively manage design functionality and structure. It is
possible to perform several tasks such as signal tracing, data
flow, and schematics view to some extent dynamically (e.g
[12]) relying on the testbench quality. However, proper design
analysis for these and a set of other analysis tasks (e.g hierar-

chy exploration, precise global signal tracing, type check, sink-
less or source-less signals analysis) can be performed only
statically [6] and requires generation of a proper computed
design model.

The proposed framework puts emphasis on scalability,
accessibility to the research and engineering communities,
and non-intrusiveness (HDL-centric). The latter is achieved
by having a Hardware Description Language (HDL) as the
only data format and requiring almost no configuration for
pre-existing design projects. Functionally, the framework ad-
dresses advanced hardware RTL design, verification and anal-
ysis. Currently, zamiaCAD supports IEEE 1076-1993 VHDL
plus many extensions of the later standard VHDL 2008 in the
front-end. The front-end may be extended to other languages.
On the back-end side zamiaCAD supports design entry and
comprehensive analysis. It includes an Eclipse IDE plugin
based Graphical User Interface (GUI) and contains a built-
in VHDL simulator and work-in-progress stubs for synthesis.
It handles very large open source (e.g. Leon3 [4] based) and
industrial designs. Altogether zamiaCAD contains currently
more than 100,000 lines of Java code (excluding generated
parts).

This is the first paper describing zamiaCAD. We present the
core components of zamiaCAD with a strong focus on scala-
bility aspects and omit the description of the end user features.
The contributions of the paper may be summarized as follows.
First, it introduces the concepts of a new scalable computed
design model named IG (Instantiation Graph model). The
persistence and scalability of the model are guaranteed by
a custom designed object database referred to as ZDB that
is highly optimized for performance. Second, it presents the
details of the comprehensive RTL design elaboration front-
end. Third, it evaluates the model for static analysis as one
of the back-end applications. The experimental results use as
a reference widely used commercial state-of-the-art tools and
consider for benchmarks very large RTL designs including a
SoC with multiple thousands of Leon3 CPU cores [4].

The rest of the paper is organized as follows. Section 2
discusses related works and the capabilities of existing RTL
design flow frameworks relying on their design models. Sec-
tion 3 briefly introduces the general zamiaCAD flow. Section 4
describes the front-end steps preceding the elaboration process
and discusses its limitations. Section 5 presents the concepts
of the scalable model and reveals the details of the elaboration



process. Section 6 discusses the persistence and scalability
instruments. Section 7 presents the experimental results and
Section 8 concludes the paper.

II. RELATED WORK

HDL code entry assistance (HDL front-end) could be re-
garded as the easiest hardware design task. It only requires
a parser and a parse tree as an underlying model. Tools
like Veditor [23], Sigasi [15], Simplifide [17] propose good
Eclipse-based solutions for this and provide code entry, syntax
highlighting, code outline and content assist for VHDL and
Verilog. In addition, Simplifide offers hardware specific refac-
toring features and a coarse-grained design hierarchy view.

When it comes to navigation and legacy code exploration,
tools can no longer rely on a pure parse tree. It alone
will allow neither precise navigation (e.g. to find the correct
declaration of an overloaded function), nor a decent design
comprehension (no elaborated chip hierarchy and other visual
representations), nor global signal tracing etc. For such tasks,
an elaborated model is required. To grasp the design hierarchy
at once and to speed-up the code entry, HDL Designer [11]
from Mentor Graphics offers a sophisticated solution for both
initial automatic code generation and further visualization and
analysis thereof. However, the code gets generated out of non-
standardized tables and graphics, which brings with it all the
problems and overheads of invasive approaches, e.g. forces the
whole team to use the same tool and only allows a minimal
fine-tuning of the generated code thereafter.

The majority of EDA tasks require an elaborated model of
the design. For instance Design Compiler [22] by Synopsys,
or Verdi Automated Debug System [18] do create such models
as an interim step for their further backend processing that are
synthesis and verification, respectively. Verific Parser Platform
[24] by itself is a naked elaboration engine for both VHDL and
Verilog. Verific elaborates designs into a common language-
independent HDL database, which is further used as a basis
by several commercial hardware design tools.

Finally, when targeting the task of simulation, elaborated
HDL models have another trait easily observed in such tools
as ModelSim [12] and ghdl [9]. Even though the initial
compilation/parse of the design is often fast, one has to
start the simulator to launch the elaboration and produce the
elaborated model for simulation. In practice, this simulation
start takes not only a long time to complete, but it often fails
by running out of either memory or time in case of large
state-of-the-art designs. It confirms the importance of model
scalability. The experimental results in Section VII show that
zamiaCAD compares favorable to the other design frameworks
in the elaboration process. It even comes close to tools which
generate parse trees only.

III. ZAMIACAD FRAMEWORK OVERVIEW

Figure 1 shows a simplified overview of the zamiaCAD
framework flow. First, as the front-end part, the HDL code is
parsed which results in a (language specific) Abstract Syntax
Tree (AST). It is then elaborated into the Instantiation Graph

Front-end

i Back-end

’ Analysis ‘ ’ Synthesis ‘ ’ Simulation ‘

Fig. 1. Simplified zamiaCAD Flow

(IG) model. During the elaboration, all semantic rules as
defined by the source HDL are applied and, most importantly,
identifiers (names) are being resolved and replaced by ref-
erences to the objects they denote. Also, semantic rules are
applied and checked, such as syntax checks, scoping rules,
static array boundaries etc.

The final IG is a very fundamental data structure in zamia-
CAD as it is used as the basis for all back-end applications
offered by the framework such as analysis (including static
analysis focused in this paper), RTL synthesis and simulation.

The persistence and scalability of both AST and IG models
are guaranteed by a custom-designed and highly optimized
object database zamiaCAD Database (ZDB). In the next three
sections we will discuss the models and the database in detail.

IV. ABSTRACT SYNTAX TREE MODEL AND ITS
LIMITATIONS

The AST model in the zamiaCAD flow serves mainly as
an intermediate step in the IG elaboration process. Its only
particularity with respect to traditional AST approaches is its
scalable handling by ZDB (see Section 6). This allows the
model to accommodate large netlists, weakly supported by
proprietary tools that rely on AST-like design models. This is
particularly important, because today it is a common practice
in industry to use netlists for certain cores in a design.

The AST generated by zamiaCAD’s parsers is a language-
specific, traditional tree structure closely modeled after the
grammar productions as specified by the respective HDL
language reference manual. It is closely correlated to the
source code processed by the parser as there have been very
few semantic rules applied to it yet. The AST is a true tree
data structure which is due to the context-free nature of the
grammars used.

We will illustrate this by looking at the AST generated from
a very simple VHDL example given in Figure 2. Figure 3



entity foo is

port (A, B : in Dbit;
Z : out bit);
end;
architecture rtl of foo is
signal t bit;
begin
T <= A xor B;
Z <=T,
end ;
Fig. 2. VHDL Source Code Example
Name
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Fig. 3.

Abstract Syntax Tree

shows a slightly filtered and simplified AST for the architec-
ture part.

It is important to notice that there is no contextual informa-
tion present in this data structure. Instead, any VHDL object
is still denoted by names (which are, in this example, simple
identifiers but could be more complex). If we look at the way
the signal declaration is represented here, this is very obvious:
the signal T is declared as a subtype of BIT, but we have no
information what the BIT type really is.

The same problem can be observed when looking at the
concurrent signal assignments — the relevant signals are
denoted by names which have not been resolved yet since
that would require semantic knowledge which a parser doesn’t
have.

Generally AST application in RTL design flow may include
editor support such as folding and outline view (e.g. zamia-
CAD relies for these two applications on the AST model),
identifier completion proposals, simple identifier occurrence
tracing by scoping rules within the file (local tracing) and local
identifier refactorings, and simple signal value annotations.

However, any static analysis tasks that need identifier res-
olution (including type information) can be performed only
on properly elaborated design model such as IG. These tasks
include tracing of parts of signals, precise global tracing,
overloaded subprograms, tracing through generate-statements,
global refactorings/traces, advanced signal value annotations

(e.g. annotating only one bit of vector, computing expressions
on the fly). The concepts of this model are described in the
next section.

V. INSTANTIATION GRAPH MODEL

The process of design elaboration in the zamiaCAD results
in its representation by Instantiation Graph (IG).

Definition. The Instantiation Graph is a data structure
represented by a densely connected graph of semantically
resolved objects representing elements of the hardware design.

IG is generated by applying semantic rules to the AST to
resolve all names (identifiers) and replace them with references
to the actual objects. While consistency and rule checks (e.g.
type checks) are also applied during this process, the main
purpose here is name resolution. The names can reference
objects located in outer scopes, packages or other units and
therefore its partitioning prior storing to a database (see
Section 6) should be performed with care.

Currently, IG is modeled closely after the ideas outlined
by the VHDL language reference manual [3] when it comes
to elaboration. However, IG is designed to become language-
agnostic, so it should be possible to extend it to support e.g.
Verilog [2] or AHDL [14] by adding classes and attributes to
cover concepts specific to those languages.

A. Modules in IG

1GModule GOperation
i nvoke
Structure |objr—| IGStructure Igssseig:;r;tﬁl Subprogram
Actual | Stmts |obj IGProcess ] n Subprogram | obj
Generics |°” Container| Stmts |obj Value_|obj — :
_ " Il ——— TypeDBID | 193
Signature] ... DBID Container] arget | obj
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Container] Target ‘Db] Direction | obj
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TypeDBID[193
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IGContainer IGObject
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Fig. 4. A Module in IG

Elaborated units are called modules in IG. Apart from
packages, they form the topmost hierarchical level in IG.
Figure 4 shows what the highlevel IG data structures look like
for our example from Figure 2. Note that it is impossible to
show a complete IG even for a very basic design, because IGs
have far too many nodes and edges. We will therefore have to
look at small, hand-selected, and simplified portions of IGs. IG
does not separate between entity (interface) and architecture
(body). Also, modules don’t have generics — instead, for each
distinct set of generics, which is used anywhere in the design, a
new IGModule is generated. The set of actual generics (a set
of static values) is stored inside the module and is also used
to compute a signature (a simple string) for the IGModule.



Therefore it is possible to quickly locate it via a ZDB index
during elaboration or reference it by IGInstantiations.

The actual body of the module is to be found in an
IGStructure object. Since modules can be hierarchical
(e.g. when the original VHDL architecture uses blocks or
generate statements), IGStructures can contain IGStructures
in a recursive way. Hence, IGStructure is one of only three
possible statements to be found in an IGStructure:

o IGStructure

o IGProcess

« IGInstantiation

All other kinds of concurrent statements found in VHDL are
mapped to equivalent IGProcess statements in IG. In our
example we have two concurrent signal assignment statements,
which have been converted into two equivalent IGProcess
statements.

Besides the concurrent statements, IGStructures also contain
information about all (VHDL) objects declared in their scope
in an IGContainer object. IGContainers can be re-
garded as namespaces — they contain references to all named
objects in a specific namespace. In our case, we find four
different objects here: A, B and Z which are interfaces declared
in the entity, and 7" which is a local signal. In a similar manner,
packages, represented in IG by IGPackage objects, consist
of a single (possibly hierarchical) IGContainer which holds
references to all the named objects they provide.

B. Objects, Types and Expressions in IG

Expressions illustrate best the big difference between AST
and IG: in IG, all names have been resolved so they can
be replaced by a reference to the specific object which was
denoted by them.

Figure 4 shows what the concurrent assignments found
in our example from Figure 2 look like in IG. The two
IGProcess data structures correspond to the two statements
as discussed in the previous section. Let’s concentrate on the
first assignment with an operator in it:

T <= A xor B;

In IG, this is turned into an IGSequentialAssignment
statement inside a process. The target T of the expression is
the only VHDL object directly referenced by this sequential
assignment. The other 2 objects are hidden behind a logical
operation expression. In IG, such expressions are actually
translated into subprogram calls — which is due to the fact
that operators in VHDL can be overloaded and therefore need
to be resolved just like any other name. So, in IG, we have
a direct reference to the specific subprogram which is to be
invoked here to perform the correct operation.

Likewise, names denoting types are resolved and replaced
by references to the objects representing those types. Figure
5 shows the corresponding IG subgraph for our example.
The BIT type from the package named STANDARD (which
is imported implicitly in any VHDL unit) has been resolved
to a IGTypeStatic object, which is a subclass of the more
generic IGType class that can also represent arrays not having

IGObject IGTypeStatic IGStaticValue
TypeDBID (193 EnumlLiterals | obj EnumOrdinal 1
id A Unconstrained| false TypeDBID 193

id BIT id 1

IGObject

TypeDBID 193 |GStaticValue
EnumOrdinal | 0

id T
TypeDBID 193

id 0

Fig. 5. Types in IG

static boundaries, which can be used in subprograms. We can
also see the two enum literals 0 and / which are represented
by IGStaticValue objects — these objects are used in IG

to represent any kind of static (constant) value.

VI. PERSISTENCE AND SCALABILITY

Especially for today’s industrial designs, the data structures
tend to get very large, often larger than the available RAM on a
typical hardware engineer’s personal workstation. While many
will argue, that the affordable amount of RAM per workstation
will increase exponentially with time, unfortunately the same
holds true for the increase in size of the designs being
processed so in effect we will always face the scalability issue.

Quite naturally, the solution is to hold only small parts of
these data structures in memory at any given point in time
while keeping the whole data structure on disk [5]. Of course,
we have to make sure this is done in a quick and transparent
way such that users won’t even notice any effects apart from
being able to handle large designs on modest hardware. Using
disk space to store these data structures also solves the problem
of persisting them since disk memory is persistent.

Persistence is very desirable as parsing and elaboration
can take a lot of time, especially for large projects so users
will want to keep the results from one zamiaCAD session
to the next. zamiaCAD exploits principals of incremental
elaboration. If only a part of the design has been modified,
then only these updated design units will have to be elaborated
to IG.

In zamiaCAD a custom designed, highly optimized (for
EDA purposes) object database [16] called ZDB is used as
the underlying mechanism for persisting data on disk. Figure
6 gives a slightly simplified overview of ZDB’s internal struc-
ture. At its core, ZDB uses Java’s built-in object serialization
features [21] to read and write objects from/to disk. Each
object stored in ZDB gets assigned a numeric identifier, called
DBID, to it which can later be used to retrieve the object. ZDB
offers various indexing features that allow strings to be used
to denote objects making the underlying DBIDs transparent
for any code that uses ZDB.

As already mentioned, ZDB is highly tuned for perfor-
mance. Generic performance features include the use of ag-
gressive caching of objects in memory including a last-recently
used cache eviction strategy as well as the use of standard
extensible hash maps [8] for maintaining potentially large
indices on disk. Other optimizations are specific to the EDA
use case: typically, we want to build large data structures



very quickly and want to be able to traverse and index them
as efficiently as possible. Deleting and modifying data on
the other hand happen much less frequently. Therefore, ZDB
doesn’t really implement these last two operations, but only
mimics them: object deletion will only result in it being
removed from indices so it becomes inaccessible, but it will
continue to be stored on disk. Object modification is not
supported at all but will require the application using ZDB
to delete the old object from ZDB and store it again — a
technique widely used in enterprise databases (e.g. vacuumdb
utility in Posteres [201).

l Application l
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Fig. 6. ZDB

A. Persistence and Scalability in AST

All AST nodes are persisted using ZDB. Due to the pure tree
nature of the AST, persistence can be done simply by storing
individual library/design units as ZDB objects while keeping
track of them using indices so they can be found quickly
during elaboration. This kind of simple ZDB persistence also
gives us basic scalability, we can basically process any number
of units very efficiently as long as individual units fit in RAM.

Unfortunately, with automatically generated flat HDL net-
list dumps, this assumption doesn’t hold. Such dumps can
contain millions of concurrent statements in one single unit
causing the parse pass to run out of memory. To solve this, an
additional level of ZDB indirection has been introduced: for
architectures, we store each concurrent statement separately
using ZDB and keep just a list of DBIDs (simple long integers)
in memory. That way, zamiaCAD can deal with arbitrarily
large netlist dumps very efficiently.

B. Persistence and Scalability in IG

Just like AST objects, IG objects are persisted in ZDB.
However, due to IG being a true graph with many cross-
references between items, storing IG structures takes consider-
ably more effort than AST sub-trees do. Since name resolution
is the source of all these interconnections, it is a natural point
for partitioning IG for storage. So, anything which can be
denoted by names needs to be stored as a separate ZDB
object and (except for transient fields) is never allowed to be
referenced directly, but through the object’s DBID.

VII. EXPERIMENTAL RESULTS

In this section we present the experimental results for
the proposed scalable IG model implemented in zamiaCAD.
To estimate scalability of the model, we use as a reference
widely known commercial state-of-the-art tools for synthesis
(T1), for design elaboration front-end (T2), a commercial
and an open-source tool for simulation (T3 and T4) and an
advanced code entry tool T5. All of the tools create their own
proprietary computed design representation models dedicated
for the targeted task. We show that only proposed IG model
can easily handle designs of the given complexity, while the
other models fail to do so.

We have used the following designs as benchmarks:

e B19 - a design from ITC’99 benchmarks family [7]
combining several smaller circuits from it.

« Plasma - an open-source processor benchmark from the
OpenCores.org website.

e L3-SoC - a SoC built by interconnecting a wide set of
IP cores from GRLIB. It is available from [1].

e L3-1 to L3-3584 - the original unchanged Leon3 CPU
core design [4] configured to contain n instantiations with
m CPUs as AMBA masters. L3-64 is 64 instantiations
with a single CPU on AMBA bus (64 core design). L3-
896 is 64 instantiations with 14 CPUs on AMBA bus (896
core design). L3-3584 is 256 instantiations with 14 CPUs
on AMBA bus (3584 core design). The tools capable of
detecting identical modules inside the design will avoid
duplications and thus save memory resources.

TABLE 1
ELABORATION TIME (SEC)
Design || Size | TI | T2 | T3 | T4 | T5 | «C
B19 834 7 1 5 1 4 3
Plasma 1068 3 1 9 2 7 9
L3-SOC 38107 83 5 135 104 918 | 183
L3-1 27409 87 6 82 187 694 | 137
L3-64 27409 | OOMT 23 87 OOM7” | 693 | 162
1.3-896 27409 | OOM 97 OOM® | OOM: 695 | 223
L3-3584 || 27409 | OOM® | OOM? | OOM® | OOM” | 692 | 405

Table I presents the elaboration time for the described above
large benchmarks. The second column presents the size of
the designs in terms of VHDL concurrent and sequential
statements (a more accurate metric than lines of code).

Here OOM* means a reference tool has run out of memory
or crashed for the given design. OOM*~3 - T1 has run out
of memory in 448, 860 and 2340 seconds correspondingly.
OOM* - T2 has crashed on 208th instantiation with 14 CPU
cores (2912th of the 3584 cores). OOM®~° - T3 has halted
after 3170 and 949 seconds correspondingly and kept infinitely
waiting for additional memory resources. OOM"~° - T4 has
run out of memory in 16, 8 and 8 seconds correspondingly.

In case of zamiaCAD, the elaboration time measured in-
cludes indexing, parsing, IG elaboration, and ZDB commit.
For instance, the total time spent for elaboration of L3-/ and
L3-3584 designs can be split correspondingly (137.44s total =
1.44s parsing + 3.57s indexing + 95.19 1G build + 37.24s ZDB
commit) and (405.16s total = 1.16s parsing + 5.06s indexing
+ 363.73 IG build + 35.21 ZDB commit).



Table II presents values for memory allocation both in RAM
and on hard disk drive for handling the internal models during
the elaboration process (see Table I). Given a reasonable
amount of RAM, zamiaCAD scales well with the design size.

TABLE II
INTERNAL MODEL SIZE IN RAM / ON DISK (MB)

Design || T1 | T2 | T3 | T4 | T5 | 2C
B19 120/0.48 17/0 5/0.32 12 254/0 248/0.9
Plasma 70/1.3 15/0 5.3/0.68 3/2 280/0 269/5
L3-SOC 310/32 117/0 39/22 45/47 693/0 | 1337/114
L3-1 268/35 107 72/14 45/66 613/0 1332/83
L3-64 ooM! 332 444/14 OOM 610/0 | 1360/134
L3-896 O0OM? 1205 OOM® | OOM 619/0 | 1465/236
L3-3584 OOM> | OOM? | OOM® | OOM? | 616/0 | 1488/584

Table III presents results for two static analysis tasks: global
signal reference search and static slice extraction. For the
first task in case of BI9 design, AST-based tools (e.g. TS)
would find only 39 occurrences of identifier CLOCK in the
design file due to ignoring multiple instances of components,
as opposed to 121 actual references found in the elaborated
design by zamiaCAD. In case of the L3-/ and L3-3584 designs
the precise global signal tracing (tracing through generate-
statements) also results in a larger and more correct amount
of actual references.

A static slice represents a subset of those signals/variables
and their assignments/querying that affect the signal of inter-
est. Slices can be optionally filtered to readers or drivers of this
signal only, and can be limited by depth of the dependency.
Table III shows static slices for signals BS, ATA_DMACK
and ERX_DV. BI9 has 56 reference signals and variables
(appearing on 315 lines of code) that are dependant through
signal assignments on signal BS. The dependency cone for
signal ATA_DMACK contains 1984 or 51% of the signals
and variables in design L3-SOC. There were also extracted
static slices for benchmarks L3-1 and L3-3584 containing all
readers and readers within dependency depth limited to 3 for
signal ERX_DV. In case of the L3-3584 design the static slice
involves readers in all instances of the processor core. Slices
help designers to concentrate on the important code areas
during debug. TABLE III

STATIC ANALYSIS
Reference Search Static Slices

Design || Signal |Refs.#|T(ms)|| Signal | Refs.#/%|Lines #/%| T(s)
B19 CLOCK| 121 22|| BS,cad 56/9| 315/23 0.4
L3-SOC [[IRQO 71 31|| ATA_DMACK ., 1984/51| 5846/2 | 26,8
L3-1 CLK 6 7| ERX_DV,.cqa 2746/53| 4269/1 19,0
RST 5 8|| ERX_DVyjm—3 58/1| 288/0.1 2,2
L3-3584||CLK 128120203|| ERX_DV,.¢qq 3001/0.05] 4269/1 |103.4
RST 1025(23241|| ERX_DVy;m=3 313/0.006| 288/0.1 | 69,1
All experiments were performed on an

Intel® Pentium®Dual CPU 2.2GHz machine with 3.8GB of
RAM running under Linux OS distribution CentOS 6.0.

VIII. CONCLUSIONS

The paper presented an open-source framework zamiaCAD
that includes both comprehensive elaboration front-end and
design processing back-end flows for RTL design of VLSI
SoCs. The concept of design elaboration into the scalable
design model called IG was discussed in detail. The aspects

of persistence and scalability of the model guaranteed by a
custom-designed and highly optimized object database were
discussed. In addition, evaluation of the framework for static
analysis as one of the back-end applications was carried out.

The experimental results on very large designs show that
the zamiaCAD framework compares favorable to other frame-
works with respect to the scalability aspects. First, the existing
proprietary tools handled very large designs and multiple
instantiations of identical cores poorly compared to zamia-
CAD. Second, only a few tools generate properly elaborated
design models suitable for comprehensive static analysis tasks.
Third, the tested proprietary tools seem to rely more heavily
on swapping pages of the operating system and, compared
to zamiaCAD, less on use of disk storage when the data
is persisted with the help of domain knowledge. Fourth,
zamiaCAD’s scaling efficiency is close to the AST level only

tools.
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Abstract This paper proposes a novel method for the
simulation-based checking of assertions written in the PSL
language. The method uses a system representation model
called High-Level Decision Diagrams (HLDDs). Previous
works have shown that HLDDs are an efficient model for
simulation and convenient for diagnosis and debug. The
presented approach proposes a temporal extension for the
existing HLDD model aimed at supporting temporal
properties expressed in Property Specification Language
(PSL). Other contributions of the paper are a methodology
for direct conversion of PSL properties to HLDD and
modification of the HLDD-based simulator for assertion
checking support. Experimental results show the feasibility
and efficiency of the proposed approach.

Keywords Verification - PSL - Decision diagrams -
Assertions

1 Introduction

Assertions have been found to be beneficial for solving a
wide range of tasks in systems design from modeling,
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verification to manufacturing test [16]. In this paper we
consider assertion checking which has been recognized as
an efficient technique in many steps of the state-of-the-art
digital systems design [13]. Assertions may be imple-
mented both in simulation-based and formal methods. Here,
we consider the first case, where assertions play the role of
monitors for a particular system behavior during simulation
signaling about satisfaction or violation of the property of
interest [23]. PSL can also be used for defining environ-
mental constraints or generators [23] and can serve for
stimuli filtering or generation. Assertions have their appli-
cation not only in verification but also in testing [16, 19]. As
an example of the latter, in [19] the authors show that formal
PSL assertion checking can be efficiently applied to identify
untestable faults in sequential circuits.

IEEE Std 1850 Property Specification Language (PSL)
[11] is a language that is commonly used for expressing
assertions. PSL has been specifically designed to fulfill
several general functional specification requirements for
hardware, such as ease of use, concise syntax, well-defined
formal semantics, expressive power and known efficient
underlying algorithms in simulation-based verification.
Research on the topic of converting PSL assertions to
various design representations such as finite state machines
and hardware description languages is gaining in popularity
[2, 4, 9, 15]. Probably the most well-known commercial
tool for this task is FoCs [10] by IBM. The above-
mentioned solutions and the approach proposed in [14]
mainly address synthesis of checkers from PSL properties
that are to be used in hardware emulation. The application
of the same checker constructs for simulation in software
may lack efficiency due to target language concurrency and
poor means for temporal expressions. The approach
presented in this paper allows avoiding the above limi-
tations. The structure of an HLDD design representation
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with the temporal extension proposed in this paper allows
straightforward and lossless translation of PSL properties.

In this paper, we present an approach to checking PSL
assertions using High-Level Decision Diagrams (HLDDs).
Here, the assertions are translated into HLDD graphs and
integrated into fast HLDD-based simulation. HLDDs are a
convenient model for diagnosis and debug since they
provide for easy identification of cause-effect relationships.
The feasibility and efficiency of the proposed approach are
demonstrated by the experimental results, where the
proposed method is compared against a state-of-the-art
commercial simulator with PSL assertions support from a
major CAD vendor. High-Level Decision Diagrams have
been proposed and further developed by the authors in [22].
For more than a decade this model of digital design
representation has been successfully applied in design
simulation [21] and test generation [17, 18, 20] research
areas.

The paper is organized as follows. PSL and its supported
subset are discussed in Section 2. Section 3 defines the
existing HLDD graph model and describes the HLDD-
based simulation process. In Section 4, HLDD monitor
generation from VHDL checkers generated by FoCs is
explained. Section 5 presents the temporal extension for
HLDD model, discusses the hierarchical creation of
THLDD representation of PSL properties and the THLDD
assertion checking process. Section 6 provides the experi-
mental results, and finally conclusions are drawn.

2 PSL for Assertion Checking

The popularity of assertion-based verification has encour-
aged a co-operative development of the Property Specifi-
cation Language by the Functional Verification Technical
Committee of Accellera. After a process in which donations
from a number of sources were evaluated, the Sugar
language from IBM was chosen as the basis for PSL. The
Language Reference Manual for PSL version 1.1 was
released in 2004 [1]. The language became an IEEE 1850
Standard in 2005 [11].

Let us consider an example of a PSL property reqack
shown in Fig. 1. Its possible timing diagrams are illustrated
in Fig. 2. Figure 2a shows that ack becomes high after req
being high resulting in a pass of the property regack on the

When to
Label
L\J check

reqack: assert always (req -> next ack);

Verification Property to be
directive checked

Fig. 1 PSL property reqack
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req L req I req

ack —IL—  ack ack — 'L
PASS FAIL not activated

Fig. 2 Timing diagrams for the property reqack

given simulation trace. A system behavior that activates the
property, however, obviously violating it is demonstrated in
Fig. 2b. Figure 2¢ shows the case when the precondition
never occurs. In other words, the property passes vacuous-
ly. A designer is normally not interested in vacuous passes
and therefore we say that property regack was not activated
in the simulation trace presented in Fig. 2c.

For the sake of wider adoption among the design
community, PSL is a multi-flavored language, which means
that it supports common constructs of VHDL, Verilog,
IBM’s GDL, SystemVerilog and SystemC [8]. PSL is also a
multi-layered language [1]. The layers include:

*  Boolean layer — the lowest one, consists of Boolean
expressions in HDL (e.g. a &&(b || ¢))

»  Temporal layer — sequences of Boolean expressions
over multiple clock cycles, also supports Sequential
Extended Regular Expressions (SERE) (e.g. {A/*3];B}
|->{CH

* Verification layer — it provides directives that tell a
verification tool what to do with the specified sequences
and properties.

*  Modeling layer — additional helper code to model
auxiliary combinational signals, state machines etc. that
are not part of the actual design but are required to
express the property.

The temporal layer of PSL language has two constituents:

e Foundation Language (FL) that is Linear time Temporal
Logic (LTL) with embedded SERE

e Optional Branching Extension (OBE) that is Computa-
tional Tree Logic (CTL)

The latter considers multiple execution paths and models
design behavior as execution trees. CTL can only be used
in formal verification. Therefore, in this paper we will
consider only the FL part of PSL. In fact, only FL, or more
precisely its subset known as PSL Simple Subset, is
suitable for dynamic assertion checking. This subset is
explicitly defined in [1] and loosely speaking it has two
requirements for time: to advance monotonically and to be
finite, which leads to restrictions on types of operands for
several operators. In this paper only several LTL operators
without SERE support were implemented. However, as it
will be shown later, the support for SERE as well as for
any other language constructs can be easily added by an
appropriate library extension.
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3 High-Level Decision Diagrams

Decision Diagrams (DD) have been used in verification for
about two decades. Reduced Ordered Binary Decision
Diagrams (BDD) [3] as canonical forms of Boolean
functions have their application in equivalence checking
and in symbolic model checking. Additionally, a higher
abstraction level DD representation, called Assignment
Decision Diagrams (ADD) [5], have been successfully
applied to both register-transfer level (RTL) verification and
test. In this paper we consider a different decision diagram
representation, High-Level Decision Diagrams (HLDDs)
that unlike ADDs can be viewed as a generalization of
BDD. HLDDs can be used for representing different
abstraction levels from RTL to TLM (Transaction Level
Modeling) and behavioral. HLDDs have proven to be an
efficient model for simulation and diagnosis since they
provide for a fast evaluation by graph traversal and for easy
identification of cause-effect relationships [21].

3.1 HLDD Model Definition

High-Level Decision Diagrams (HLDD) are graph repre-
sentations of discrete functions. A discrete function y=f{x),
where y=(y;, .., y,) and x=(x;, .., x,) are vectors, is
defined on X=X;x...x X, with values y € Y=Y;x..xY,,
and both, the domain X and the range Y are finite sets of
values. The values of variables may be Boolean, Boolean
vectors, integers.

Definition 1 A HLDD representing a discrete function y=f
() is a directed non-cyclic labeled graph that can be defined
as a quadruple G,=(M,E,ZI), where M is a finite set of
vertices (referred to as nodes), E is a finite set of edges, Z is a
function, which defines the variables labeling the nodes, and
I'is a function on E. The function Z(m;) returns the variable
Xy, which is labeling node m;. Each node of a HLDD is
labeled by a variable. In special cases, nodes can be labeled
by constants or algebraic expressions. An edge ecE of a
HLDD is an ordered pair e=(m,m,)eE?, where E is the set
of all the possible ordered pairs in set £. I'is a function on £

representing the activating conditions of the edges for the
simulating procedures. The value of I{e) is a subset of the
domain X of the variable x;, where e= (m;,m;) and Z(m;)=x;.
It is required that Pm; = {I'(e)le = (m;,m;) €E} is a
partition of the set X;. Figure 3 presents a HLDD for a
discrete function y=f{x;x,x3x,). HLDD has only one
starting node (root node) mg,, for which there are no
preceding nodes. The nodes that have no successor nodes
are referred to as terminal nodes M € M.

HLDD models can be used for representing digital
systems. In such models, the non-terminal nodes correspond
to conditions or to control signals, and the terminal nodes
represent data operations (functional units). Register trans-
fers and constant assignments are treated as special cases of
operations. When representing systems by decision diagram
models, in general case, a network of HLDDs rather than a
single HLDD is required. During the simulation in HLDD
systems, the values of some variables labeling the nodes of a
HLDD are calculated by other HLDDs of the system.

Figure 4b presents the HLDD system for the RTL
pseudocode shown in Fig. 4a implementing the Greatest
Common Divisor (GCD) algorithm. In the Fig. 4a, T and F
stand for true and false, respectively. The ¢ character
denotes default edges.

Different from the well-known Reduce Ordered BDD
models which have worst-case exponential space require-
ments, HLDD size scales well with respect to the size of the
RTL code. Let n be the number of processes in the RTL
code, v be the average number of variables/signals inside a
process and ¢ be the average number of conditional
branches in a process. In the worst case the number of
nodes in the HLDD model will be equal to n-v-c. Note, that
the complexity of HLDDs is just O(n) with respect to the
number of processes in the code.

3.2 Simulation Using HLDDs

Simulation on decision diagrams takes place as follows.
Consider a situation, where all the node variables are fixed
to some value. For each non-terminal node m; ¢ M*“™

Fig. 3 A high-level decision
diagram representing a function
Y=f1x2,%35,X4)

G=(M,E.ZT),

M={mo, m1, mz, ms, m4};

E={e1, €2, €3, €4, €5}, €1=(M0, M),
e2=(mo, M3), €3=(Mo, M4), €4=(My, My),
es5=(my, ms);
Z(mo)=Z(m4)=xz, Z(m1)=X3, Z(MQ)=X4,
Z(ms)=x1;
I(e1)={0}, M'(e2)={1,2,3}, I'(e3)={4,5,6,7}, my
I(eq)={2}, I'(e5)={0,1,3}. 4-7
es
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Fig. 4 a An RTL pseudocode
and b) its HLDD a) b)
IF res = 1 THEN state:=s0;
ELSE
CASE state
WHEN s0:
a:=inl; b:=in2;
ready:=0; a
state:=s1;
WHEN s1:
IF a#b THEN state:=s2;
ELSE state:=s5; ENDIF;
WHEN s2:
IF a>b THEN state:=s3;
ELSE state:=s4; ENDIF;
WHEN s3:
a:=a-b; state:=s1; b
WHEN s4:
b:=b-a; state:=sl;
WHEN s5:
ready:=1;
state:=s5;
END CASE
END IF

according to the value v, of the variable x;=Z(m;) certain
output edge e=(m;,m;), viel(e) will be chosen, which enters
into its corresponding successor node m;. Let us call such
connections activated edges under the given values and
denote them by m}*. Succeeding each other, activated edges
form in turn activated paths. For each combination of
values of all the node variables there always exists a
corresponding activated path from the root node to some
terminal node. We refer to this path as the main activated
path. The simulated value of variable represented by the
HLDD will be the value of the variable labeling the
terminal node of the main activated path.

Let us explain the HLDD simulation process on the
decision diagram example presented in Fig. 3. Assuming
that variable x, is equal to 2, a path (marked by bold
arrows) is activated from node m, (the root node) to a
terminal node mj labeled by x;. Let the value of variable x;
be 4, thus, y=x;=4. Note, that this type of simulation is
event-driven since we have to simulate only those nodes
that are traversed by the main activated path (marked by
grey color in Fig. 3).

When representing systems by decision diagram models,
in general case, a network of HLDDs rather than a single
DD is required. During the simulation in HLDD systems,
the values of some variables labeling the nodes of an
HLDD are calculated by other HLDDs of the system.

In this work, we apply HLDDs as a graph representation
of RTL. There exist other word-level decision diagrams
such as multi-terminal DDs (MTDDs) [6], K¥BMDs [7]
and ADDs [5]. However, in MTDDs the non-terminal nodes
hold Boolean variables only. K¥BMDs, where additive and
multiplicative weights label the edges are useful for compact
canonical representation of functions on integers (especially
wide integers). However, the main goal of HLDD represen-
tations described in this paper is not canonicity but ease of

@ Springer

simulation. The principal difference between HLDDs and
ADDs lies in the fact that ADDs edges are not labeled by
activating values. Whereas in HLDDs, the selection of a node
activates a path through the diagram, which derives the
needed value assignments for variables.

3.3 Advantages of HLDD-Based Modeling

As an example, consider a datapath of a Design Under
Verification (DUV) depicted in Fig. 5a and its corre-
sponding HLDD representation shown in Fig. 5b. Here,
R; and R, are registers (R, is also output), MUX,;, MUX,
and MUX; are multiplexers, + and * denote adder and
multiplier, /N is an input bus, SEL;, SEL, SEL; and EN,
serve as input control variables, and a, b, ¢, d and e denote
internal buses, respectively. In the HLDD, the control
variables SEL;, SEL, SEL; and EN, are labeling internal
decision nodes of the HLDD with their values shown at
edges. The terminal nodes are labeled by a constant #0
(reset of R,), by word variables R; and R, (data transfers to
R>), and by expressions related to the data manipulation
operations of the network. By bold lines and grey nodes, a
full activated path in the HLDD is shown from Z(mgy)=EN,
to Z(m"eM”)=R,;*R,, which corresponds to the pattern
EN,=2, SEL;=3, and SEL,=0. The activated part of the
network at this pattern is denoted by grey boxes.

The main advantage and motivation of using HLDDs
compared to the netlists of primitive functions is the
increased efficiency of simulation and diagnostic modeling
because of direct and compact representation of cause-
effect relationships. For example, instead of simulating the
control word SEL;=0, SEL,=0, SEL;=3, EN,=2 by
computing the functions a=R;, b=R;, c=a+R,, d=b * R,,
e=d, and R,=e, we only need to trace the nodes y4, SEL;
and SEL, on the HLDD and compute a single operation
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Fig. 5 A datapath of a DUV a
schematic and b HLDD-based
representations

a)

SEL; SEL;

R

b)

SEL3 EN;

Vv

\ 1 ?
- o
MUX;

R>=R; * R,. In case of detecting an error in R, the possible
causes can be defined immediately along the simulated path
through EN,, SEL; and y SEL, without any diagnostic
analysis inside the corresponding RTL netlist. The activated
path provides fault candidates. The further reasoning should
be based on analyzing sources of these signals. In such a
way, a very efficient hierarchical debugging procedure can
be carried out with HLDDs: first, by a quick trace of faulty
nodes in HLDDs, and then after locating the erroneous RT-
level region, by exactly locating the cause of the error in
this region.

4 HLDD Generation from HDL Checkers

In [14] PSL properties were translated into HLDDs through
the VHDL language implying the generation of checkers by
IBM’s FoCs [10] as an intermediate step. However this
experience has revealed particular limitations and ineffi-
ciency for HLDD-based assertions creation, which will be
discussed below. Moreover, checkers synthesis from PSL
properties is mainly efficient for the case where checkers
are to be used in hardware emulation. The application of the
same checker constructs for simulation in software may
lack efficiency due to the target language concurrency and
poor means for temporal expressions.

The details of the FoCs-based approach for PSL
assertions conversion to HLDD model can be demonstrated
by the following example. The object for this example is a
SERE style PSL assertion fe_seq:

feseq : assert always ({a; [*2];b}] => {c});

The precondition of fe seq assertion is the sequence of
system behavior when signal a is set to ‘1°, followed by a
don’t-care sequence two clock cycles long and then signal b
set to ‘1°. This precondition activates the main part of the
assertion  and requires ¢ to be set to ‘1’ just after it (non-
overlapping implication). Figure 6a shows a shortened form
of the resulting VHDL code generated by FoCs from the

fe seq expressed in PSL. The VHDL checker can be

converted to HLDD graphs.

A possible system of HLDD graphs representing the
checker is provided in Fig. 7. In the figure we used a
notation where trailing quote character after diagram
variable denotes one clock cycle delay.

As it can be seen from the Fig. 7, the FoCs-based
approach results in very ineffective system of HLDD
graphs, which can be unreasonably large in case of simple
but long-time temporal properties. Here a separate graph is
required for every variable’s evaluation cycle delay. Signals
a and c¢ are located in four cycles time distance and
therefore caused four intermediate variables a;—a, The
following Section introduces a new kind of HLDD model
permitting direct representation of PSL constructs for
simulation-based assertion checking.

5 Temporally Extended HLDDs

The topic of this section is an extension to the traditional
HLDD model defined in Section 3 with the aim to support
temporal logic properties. The extension is referred to as
Temporally extended High-Level Decision Diagrams
(THLDDs). We present the definition of THLDDs and
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Fig. 6 VHDL checker generated
for assertion fe_seq by FoCs.
a code and b schematics

SIGNAL focs_v :
std_logic_vector (4 DOWNTO 0) ; a)

focs_ok <=
( focs_v(4) OR NOT( c ));

b)

PROCESS
VARIABLE focs_vout : b
std_logic_vector (4 DOWNTO 0) ;
BEGIN
WAIT UNTIL (clk'EVENT AND clk = '1');
focs_vout (4 DOWNTO 0) := reverse( c
(((((( focs_v(0) AND a )) &
(( focs v(1) AND '1' )) ) & (focs_ok)
(( focs_v(2) AND '1' )) ) &
(( focs_v(3) AND b )) ) &
(( focs_v(4) AND NOT( c )))
Y&

focs_v <= focs_vout (3 DOWNTO 0O

END PROCESS;

propose an algorithm for the hierarchical generation of the
model based on a concept of templates for PSL constructs
referred to as Primitive Property Graphs (PPGs).

5.1 Basic Definitions

Unlike the traditional HLDD, the temporally extended high-
level decision diagrams are aimed at representing temporal
logic properties. A temporal logic property P at the time-
step #, € T denoted by P,, = f(x, T), where x=(x,, ..., X,,)) is
a vector defined on a finite domain X=X, X ...x X,, and 7=
{t;, ..., t;} is a finite set of time-steps. In order to represent
the temporal logic assertion P, =f(x,T), a temporally
extended high-level decision diagram Gp can be used.

Definition 2 A Temporally extended High-Level Decision
Diagram (THLDD) is a non-cyclic directed labeled graph
that can be defined as a sixtuple Gp=(M,E,T,Z,I,®), where
M is a finite set of nodes, £ is a finite set of edges, T is a
finite set of time-steps, Z is a function which defines the
variables labeling the nodes and their domains, I" is a
function on E representing the activating conditions for the

Fig. 7 HLDD representation of
the VHDL checker from Fig. 6

@ Springer

edges, and @ is a function on M and T defining temporal
relationships for the labeling variables.

The graph Gp has exactly three terminal nodes M™"”" e M
labeled by constants, whose semantics is explained below:

e FAIL — the assertion P has been simulated and does not
hold;

e PASS — the assertion P has been simulated and holds;

* CHK. (from CHECKING) — the assertion P has been
simulated and it does not fail, nor does it pass non-
vacuously. (See Section 5.2 for explanation of vacuity).

The function @(m, ) represents the relationship indicating
at which time-steps t€7 the node labeling variable x,=Z(m;)
should be evaluated. More exactly, the function returns the
range of time-steps relative to current time f.,,, where the
value of variable x; must be read. We denote the relative
time range by At and calculus of variable x; using the time-
range d(m;, f)=At by x'. We distinguish three cases:

e At=V{j,... k}, meaning that x,At’ Ao /\x,A"' is true, i.e.
variable x; is true at every time-step between 7., ; and

Teurr k-
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+  Ar=3{...k}, meaning that xlm’ V. v s true, ie.

variable x; is true at least at one of the time-steps
between fey; and Loyt i

e A=k, where k is a constant. In other words, the variable
x; has to be true & time-steps from current time-step 7,
In fact, At=k is equivalent to and may be represented by
At=V{k,...,k}, or alternatively by Ar=3{k,....k}.

Notation event(x,) is a special case of the upper bound
of the time range denoted above by k and means the
first time-step when x. becomes true. This notation can
be used in the three THLDD temporal relationship
functions listed above ®(m; 1), which create the variations
listed below. For x,A’, where x; and x. are node labeling
variables:

o At=VY{0,...,event(x.)}, which means that variable x; is
true at every time-step between 7, and the first time-
step when variable x. becomes true, inclusive. This is
equivalent to the PSL expression x; until _x.. The PSL
expression x; until x. can be represented by At=V{0,...,
event(x.)-1}.

o Ar=3{0,...,event(x.)}, which means that variable x; is
true at least at one of the time-steps between f,,, and
the first time-step when variable x. becomes true,
inclusive. This is equivalent to the PSL expression x;
before_ x.. The PSL expression x; before x. can be
represented by Ar=3{0,...,event(x.)-1}.

* At=event(x.), which means that variable x; has to be
true at the first time-step when x,. becomes true. This is
equivalent to the PSL expression next _event(x.)x; .

For Boolean, i.e. non-temporal variables Ar=0.

Table 1 shows examples on how temporal relationships
in THLDDs map to PSL expressions. The first two of the
proposed in the table THLDD temporal relationship
constructs are basic, while the following four are their
derivatives.

In addition, we introduce the notion of ¢, as a special
value for the upper bound of the time range denoted by
above by k. 1,,4 is the final time-step that occurs at the end

Table 1 Temporal relationships in THLDDs

of simulation and is determined by one of the following
cases:

*  Number of test vectors
*  The amount of time provided for simulation
* Simulation interruption

The special values for the time range bounds (i.e. event
(x.) and ft.,,) are supported by the HLDD-based assertion
checking approach (please see Section 5.3 for the details).
In the proposed approach design simulation, which calcu-
lates simulation trace, precedes assertion checking process.
In practice, ., is the final time-step of the pre-stored
simulation trace.

Note, that THLDD is an extension of HLDD defined in
Section 3 as it includes temporal relationships functions.
The main purpose of the proposed temporal extension is
transferring additional information and directives to the
HLDD simulator that will be used for assertions checking.

5.2 Generating THLDDs Using Primitive Property Graphs

The idea of the proposed method relies on the principle of
‘divide and conquer’. The method is based on partitioning
PSL properties into elementary entities containing one
operator only. There are two main stages in the approach.
The first one is preparatory and consists of Primitive
Property Graphs Library creation for elementary operators.
The second stage is recursive hierarchical construction of
the Temporally extended HLDD (THLDD) for a complex
property using the PPG Library elements.

Prior to the THLDD construction procedure a Primitive
Property Graph (PPG) should be created for every PSL
operator supported by the proposed approach. All the created
PPGs are combined into one PPG Library. The library is
extensible and should be created only once. It implicitly
determines the supported PSL subset. The method currently
supports only weak versions of PSL FL LTL-style
operators. However, by means of the supported operators
a large set of properties expressed in PSL can be derived.

Class THLDD construct & Formal semantics Equivalent PSL expression
Basic XAk x holds at all time-steps between £ and # next_afj to kJ x
xA=3kY x holds at least once between #; and # next_efj to kJ x
Derivative xA=k x holds at & time-steps from 7, next[k] x
A=A, event(xe)} x holds at all time-steps between £, and the first time-step x until _x,

from f¢,,, where x.. holds
x holds at least once between 7,,,, and the first time-step from

xAt:E{ 0.....event(x.)}

t. Where x. holds
xAI:ev@nl(xt,)

x holds at the first time-step from ¢,,,, where x,. holds

x before_ x,.

next_event(x.) x
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THLDD name
(property label)

A network of the THLDD
nodes and / or sub-THLDDs

Fig. 8 Standard THLDD interface

A Primitive Property Graph is always a THLDD graph.
That means it uses a HLDD model with the temporal
extension proposed above and has a standard interface.

The standard THLDD interface for all PPGs was
introduced in order to support the hierarchy in the recursive
construction of a complex property that is described in the
next subsection. A PPG has one root node and exactly 3
terminal nodes (CHK., FAIL and PASS), as opposed to an
arbitrary number of terminal nodes in a usual HLDD graph.
It has also an optional relative time range A¢, which shows
when the assertion has to be checked. The standard
THLDD interface is shown in Fig. 8.

Example PPGs created for 4 PSL operators are shown
in Fig. 9. Here the value for a PPG can be evaluated to
one of the 3 terminal nodes based on the evaluation of the
THLDD sub-graphs (e.g. P,, P;) and the intraconnections.
The THLDD sub-graphs may also be PPGs as well as
Boolean expressions or variables. Complex PSL proper-
ties consisting of several operators are represented by a
number of PPGs that compose a final complex THLDD
graph, as it is explained further in this section. Note, that
the logic implication operator ‘->’ in Fig. 9b exits to the
terminal node ‘CHK.” when the precondition P, fails (as

Fig. 9 PPGs for a set of PSL

PPG1  ‘always(P,) "

opposed to the logical and PPG in Fig. 9d). This is
due to the fact that in assertion checking a verification
engineer is not usually interested in vacuous passes of the
property.

A Vacuous pass occurs if a passing property contains a
Boolean expression that, in frames of the given simulation
trace, has no effect on the property evaluation. The property
has passed not because of meeting all the specified
behaviour but only because of the non-fulfilment of logical
implication activation conditions. The decision whether to
treat vacuous passes as actual satisfactions of properties or
not depends on the particular verification tool. The
approaches presented in this paper separate vacuous passes
from normal passes of a property.

The terminal node ‘CHK.’ is allowed to be eliminated
from some graphs where it practically cannot be reached.
This permission does not interfere with the proposed
general THLDD structure. The PPGs, as well as complex
THLDDs, without temporal relationships (e.g. logical and
and logical implication) are evaluated to one of the terminal
nodes at every time-step of the assertion checking. At the
same time, the PPGs, as well as complex THLDDs, with
temporal relationships (e.g. logical always and next e) may
evaluate to one of the terminal nodes at an arbitrary time-
steps of the assertion checking, according to their particular
temporal relationship function. An assertion checking
algorithm that is capable of handling such functions is
presented in the following subsection.

Complex THLDD properties are hierarchically con-
structed from elementary graphs of the PPG Library in the
following way. At first, the source PSL property is parsed.
During the parsing phase the PSL property is partitioned
into entities containing one operator only. The hierarchy of
operators is determined by the PSL operators precedence
specified by the IEEE1850 Standard.

PPG2 'P,>P, "

operators

[tin = 05 tmax = teng ]

)

a) invariance operator always

PPG3  ‘next_e[]to k J(P.)"

b) logic implication ->

PPG4 | "P,and P,"

[At= ...k} ]

c) temporal operator next_e

@ Springer

d) logical and
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gcd_ready

Fig. 10 A THLDD representation of PSL property gcd ready

The construction of complex properties is performed in
the top—down manner. The process starts from the operators

with the lowest precedence forming the top level. Then
their operands that are sub-operators with higher prece-
dence recursively form lower levels of the complex
property. For example, always and never operators have
the lowest level of precedence and consequently their
corresponding PPGs are put to the highest level in the
hierarchy. The sub-properties (operands) are step-by-step
substituted by lower level PPGs until the lowest level,
where sub-properties are pure signals or HDL operations.

Let us consider a sample PSL property gcd ready for the
GCD implementation given in Fig. 3.

ged_ready : assert always ((not ready) and (a = b)—> next_e[1 to 3|(ready));

The resulting THLDD graph describing this property is
shown in Fig. 10.

The construction of the property gcd ready implies
usage of the four PPGs shown in Fig. 9 and a PPG for
the logical not operator. The nodes in the final THLDD
contain pure variables and an HDL expression (a=b).

5.3 HLDD-Based Assertion Checking

The process of HLDD-based assertion checking implies the
existing HLDD simulator functionality and its extension for
assertion checking presented by Algorithm 1 in Fig. 11.
The execution of Algorithm 1 is preceded by simulation of
the design, which calculates the simulation trace. This trace
is a starting point for assertion checking. The latter one
takes into account temporal relationships information at the
THLD nodes that represent an assertion.

Figure 12 shows an example of time windows for a
THLDD graph converted from a two-operator PSL asser-
tion two_win:

two_win : assert always (next_a(j to k)(x))

Algorithm 1. HLDD-based assertion checking

AssertionCheck()
For each diagram G in the model
For t=tmin...tmax
Mcurrent = Mo ; thow = t
Xcurrent = Z(MGurrent)
Repeat
If thow > tmax then
Exit
End if
Value = Xcurrent 8t @(Mcurrent,thow)
Mcurrent = Mcurrent
tnow = thow+at
Until meuren & M™
Assign Xg = Xcurrent at time-step thow
End for /* t= tmin...tmax */
End for
End AssertionCheck

Fig. 11 Algorithm 1. HLDD-based assertion checking

The assertion two_win states that x should hold between
the j and & time-step starting from every time-step in the
simulation trace.

Here the light-gray time window limited by #,,;, and #,,,.
belongs to always. The dark-gray time window belongs to
next_a. It is dynamic (moving along the time axe), denoted
by Ar=V{j,....k}, with size #-; and relative to #.,,, which
is the current position in time. Normally, depending on its
complexity, a THLDD has one static (caused by invariance
operators) and several dynamic time windows that can
overlap.

A general flow of the HLDD-based assertion checking
process is given in Fig. 13. The input data for the first step
(simulation) are a HLDD model representation of the
design under verification and stimuli. This step results in
a simulation trace stored in a text file. The second step
(checking) uses this data as well as the set of THLDD
assertions as input. The output of the second step is the
assertions checking results that include information about
both the assertions coverage and their validity.

The stored assertion validity data allows further analysis
and reasoning of which combinations of stimuli and design
states have caused fails and passes of the assertions. This
data also implicitly contains information about the moni-
tored assertions coverage (i.e. assertion activity: “active” or
“inactive”) by the given stimuli.

The following section shows the feasibility and efficiency
of the proposed HLDD-based assertion checking flow.

At
t t
T .
T'I\|||||||\\\|||,'T"I'"
time step

Fig. 12 THLDD time windows in assertion checking
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Fig. 13 HLDD-based assertion
checking process flow

DUV (HLDD)

\/ .| Simulation trace
i (ASCII file)
DUV Simulation > m

[ s I oo | S Vo

6 Experimental Results

This section provides experimental results of assertion
checking execution times comparison between the THLDD
simulator and a commercial tool, which is a state-of-the-art
simulator with assertion checking support from a major
CAD vendor. The experimental benchmarks are the GCD
implementation given in Fig. 3 and three designs from the
ITC’99 [12] benchmarks family. The characteristics of the
benchmarks are provided in Table 2.

In order to evaluate the feasibility of the proposed
THLDD-based assertion-checking method a set of 5

Assertion Checking
(Algorithm 1)

Assertion Checking
:> Results:
e Coverage
 Validity
(occurrences of
Fails and Passes)

HLDD simulator

realistic assertions has been created for each benchmark.
The assertions were selected on the following basis:

— different types of operators should be included (e.g.
Boolean operators, implication, temporal operators,
“until’);

— Different outcomes should result (fail, pass, both);

— The failure/pass frequency should vary (frequent,
infrequent)

The assertions selected for GCD are the following:

pl @ assert always (((not ready) and (a = b))— > next_e[l to 3] (ready));

p2 . assert always (reset— > next next((not ready) until (a = b)));

(a/ = b) and ready);
(a/ = b) and (not ready));
p5 ¢ assert always (reset— > next_a [2 to 5] (not ready));

p3 : assert never

(
p4 : assert never (
s

The assertions used for the b00, b04, b09 benchmarks had
the same temporal complexity as the ones listed for the
GCD design. Each assertion has been checking 2-5

signals and besides an invariance operator (al/ways or
never) contained 1-3 LTL temporal operators from Table 1.

Table 3 Execution time comparison

Table 2 Benchmark characteristics Design Checking time, s/10° stimuli

Design Characteristic, number The proposed approach Commercial tool
Lines Inputs Outputs Signals HLDD nodes Simulation Checking Total Total

ged 75 4 1 8 25 ged 2.07 4.87 6.94 13.52

b00 76 4 2 7 37 b00 3.43 2.95 6.38 13.84

b04 84 6 1 14 58 b04 5.47 3.61 9.08 19.23

b09 102 4 1 9 44 b09 2.21 4.55 6.76 12.4
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SERE have not been used as they are not currently
supported. Both simulators were supplied with the same
sequences of realistic stimuli providing a good coverage for
the assertions.

Table 3 shows assertion checking execution times
comparison between our THLDD simulator and the
commercial tool. The execution time values in the table
are presented in seconds for 10° clock cycles of stimuli.
The second and third columns show the simulation and
assertion checking (Algorithm 1) execution times required
for the THLDD simulator. The fourth (highlighted) and the
fifth columns are the total execution time taken by the
proposed approach and the commercial tool correspond-
ingly. Both tools have shown the identical responses about
the assertion satisfactions and violations occurrences.

The conversion of the benchmarks representation from
VHDL to HLDD has taken from 219 ms to 260 ms and
conversion of the set of 5 assertions for each of the
benchmarks from 14 ms to 19 ms, respectively. Please note,
that these conversions should be performed only once for
each set of DUV and assertions and they are comparable to
the commercial CAD tools VHDL compilation times.

The experimental results show the feasibility of the
proposed approach and a significant speed-up (2 times) in
the execution time required for design simulation with
assertion checking by the proposed approach compared to
the state-of-the-art commercial tool.

7 Conclusion

This paper proposed a novel method for checking Property
Specification Language (PSL) assertions using a new model
representation called Temporally extended High-Level
Decision Diagrams (THLDDs). Previous works have
shown that HLDDs are an efficient model for simulation
and diagnosis since they provide for a fast evaluation by
graph traversal and for easy identification of cause-effect
relationships. In this paper, the model was extended to
support temporal operations inherent in PSL properties and
also to directly support assertion checking. We presented a
hierarchical approach to generate THLDDs based on a
library of Primitive Property Graphs (PPG). Basic algo-
rithms for THLDD based assertion checking were discussed.

As a future work we see the integration of THLDD-
based assertion checking methods to design error diagnosis
and debug solutions.
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Abstract

The paper proposes High-Level Decision Diagrams
(HLDDs) model based structural coverage metrics that
are applicable to, both, verification and high-level test.
Previous works have shown that HLDDs are an efficient
model for simulation and test generation. However, the
coverage properties of HLDDs against Hardware
Description Languages (HDL) have not been studied in
detail before. In this paper we show that the proposed
methodology allows more stringent structural coverage
analysis  than  traditional VHDL code coverage.
Furthermore, the main new contribution of the paper is a
hierarchical approach for condition coverage metric
analysis that is based on HLDDs with expansion graphs
Jfor conditional nodes. Experiments on ITC99 benchmarks
show that up to 14% increase in coverage accuracy can be
achieved by the proposed methodology.

1. Introduction

Structural coverage metric (also referred to as code
coverage) has its application, both, in functional
verification and high-level test. Due to the fact that it is
impractical to verify exhaustively all possible inputs and
states of a design, the confidence level regarding the
quality of the design must be quantified to control the
testing effort. The fundamental question is: when is the
design simulated enough? Structural coverage is a measure
of confidence and it is expressed as a percentage of items
covered out of all possible items. Different definitions of
items give rise to different coverage measures, or coverage
metrics.

Over the years, a large variety of code coverage
metrics have been proposed, including statement coverage,
block coverage, path coverage, branch coverage,
expression coverage, transition coverage, sequence
coverage, toggle coverage etc [1],[10]. The statement
coverage metric measures the ratio of code instructions
exercised from the entire set of instructions by the
program stimuli. Toggle coverage shows whether and how
much the signals of the design toggle, i.e. how many bits

978-1-4244-4206-5/09/$25.00 ©2009 |IEEE

change their state from 0 to 1 or vice versa. In the case of
branch coverage, we measure the ratio of branches in the
control flow graph of the code taken under the set of
program stimuli. Condition coverage metric ([1],[6])
reports the number of Boolean sub-expressions, separated
by logical operators, calculated in conditional statements
causing their evaluation to one of the decisions (e.g. ‘true’
or ‘false’ values). It differs from the branch coverage, by
the fact that in the latter only the final decision
determining the branch is taken into account.

Structural coverage has a long history in software
testing and only with the emergence of hardware
description languages it has been applied to hardware
verification and test. Several standards for system quality
test such as DO-178B [7] for software and its analog for
hardware DO-254 [8] used in airborne systems state that
condition coverage along with statement and branch
coverages has to be applied in the cases where system
failures would cause catastrophic results.

In this paper we introduce a methodology for structural
coverage analysis based on HLDD graph model proposed
and developed in Tallinn University of Technology.
Experiments on ITC99 benchmarks show that up to 14 %
increase in coverage accuracy can be achieved by the
proposed methodology compared to traditional HDL code
coverage. The main new contribution of the paper is a
hierarchical approach for condition coverage metric
analysis that is based on HLDDs with expansion graphs
for conditional nodes. The proposed methodology has
significantly lower computational overhead compared to
HDL-based approaches and relies on homogeneous
verification flow (i.e. one model and one tool).

The rest of the paper is organized as follows. Section 2
introduces HLDD graph model and its simulation
algorithm. Section 3 defines different representation types
for HLDDs based on respective rules. HLDD-based
structural coverage analysis implying a novel approach for
condition coverage metric analysis is proposed in Section
4. Section 5 demonstrates advantages behind the proposed
methodology by an example study and experimental
results on ITC99 benchmarks.



2. High-Level Decision Diagrams

2.1 HLDD model definition

A High-Level Decision Diagram (HLDD) is a graph
representation of a discrete function. A discrete function y
= fix), where y = (y,, ..., y,) and x = (x,, ..., x,,) are vectors
is defined on X = X;x...xX,, with values y € Y =
Y;x...xY,, and both, the domain X and the range Y are
finite sets of values. The values of variables may be
Boolean, Boolean vectors, integers. Fig. 1 presents an
example of a graphical interpretation of a HLDD.

mo mq my

my

G,=(M,E,Z,I),

M={mo, my, mz, ms, m4};

E={e1, €2, €3, €4, €5}, €=(My, My), €2=(My, M), €3=(My, My),
e4=(m1, my), es=(mi, ms),

Z(mo)=Z(m4)=X2, Z(mM1)=X3, Z(M3z)=X4, Z(M3)=X1;
F(en={0}, T(e2)={1,2,3}, [(es)={4,5,6,7},
I(es)={0,1,3}.

M(eq)={2},

Fig.1. A high-level decision diagram representing a
function y= f(x1,x2,x3,x4 )

Definition 1: A high-level decision diagram is a
directed non-cyclic labeled graph that can be defined as a
quadruple G=(M,E,Z,I"), where M is a finite set of vertices
(referred to as nodes), E is a finite set of edges, Z is a
function which defines the variables labeling the nodes,
and /" is a function on E.

The function Z(m;) returns the variable x;, which is
labeling node m;. Each node of a HLDD is labeled by a
variable. In special cases, nodes can be labeled by
constants or algebraic expressions. An edge ecE of a
HLDD is an ordered pair e:(mpc,m‘w)eEZ, where E? is the
set of all the possible ordered pairs in set £. Graphical
interpretation of e is an edge leading from node m,. to
node my,.

It is said that m,, is a predecessor node of my., and m,
is a successor node of the node m,,, respectively. I" is a
function on E representing the activating conditions of the
edges for the simulating procedures. The value of I{e) is a
subset of the domain X, of the variable x;, where e=(m;,m;)
and Z(m;)=x;. It is required that Pm; ={ I(e) | e =
(m;,m;)€E} is a partition of the set X;.

Fig. 1 presents a HLDD for a discrete function
y=Ax;,x5x3x,). HLDD has only one starting node (root
node) my, for which there are no preceding nodes.

The nodes that have no successor nodes are referred to as
terminal nodes M“™ e M (nodes m,, ms and m, in Fig. 1).
Design representation by high-level decision diagrams, in
general case, is a system of HLDDs rather than a single
HLDD. During the simulation in HLDD systems, the
values of some variables labeling the nodes of a HLDD are
calculated by other HLDDs of the system.

2.2 Systems simulation using HLDDs

In our earlier works [4], we have implemented an
algorithm supporting, both, Register-Transfer Level (RTL)
and behavioral design abstraction levels. Algorithm 1 (Fig.
2) presents the HLDD based simulation engine for RTL,
behavioral and mixed HDL description styles.

SimulateHLDD()
For each diagram G in the model
Mcurrent = Mo
Let Xcurent be the variable labeling mcyrrent
While mcyent is Not a terminal node
If Xcurent is clocked or its DD is ranked after G then
Value = previous time-step value of Xcyrent
Else
Value = present time-step value of Xcurrent
End if
For {I"| Value € I(€active), €active =( Mcurrent, Mnext)}
Mcurrent = Mpext
End if
End while
AsSign X = Xcurrent
End for
End SimulateHLDD

Fig. 2. Algorithm 1. RTL/behavioural simulation on HLDDs

In the RTL style, the algorithm takes the previous time
step value of variable x; labeling a node m; if x; represents
a clocked variable in the corresponding HDL. Otherwise,
the present value of x; will be used. In the case of
behavioral HDL coding style HLDDs are generated and
ranked in a specific order to ensure causality. For variables
x; labeling HLDD nodes the previous time step value is
used if the HLDD calculating x; is ranked after current
decision diagram. Otherwise, the present time step value
will be used.

3. Representation types of HLDD model

The methodology for HLDD-based coverage analysis
proposed in Section 5 implies manipulation techniques on
HLDD model aimed to different aspects of the proposed
analysis.

In the proposed methodology we distinguish three
types of HLDD representation according to their
compactness, and with consideration of the HLDD
reduction rules. These rules are similar to the reduction
rules for BDDs presented in [5] and can be generalized as
follows:

o HLDD reduction rulel: Eliminate all the redundant
nodes whose all edges point to an equivalent sub-graph.



8 HLDD reduction rule2: Share all the equivalent sub-
graphs.
The three representation types in the increasing order
of compactness are:

* Full tree HLDD contains all control flow branches of the
design. This type of representation includes a lot of
redundancy. They introduce large space requirements
and relatively slow simulation times.

Reduced HLDD is obtained by application of the HLDD
reduction rule 1 to the full tree representation. This
HLDD representation is still a tree-graph. This type of
representation combines the advantages of two full-tree
representation and minimized representation. The
HLDDs of this type are reasonably compact and they
allow more stringent coverage measurement than the
minimized representation. Furthermore, the average
HLDD path length, and therefore the simulation speed,
is exactly equal to the more compact minimized
representation!

Minimized HLDD is obtained by application of both
HLDD reduction rules 1 and 2 to the full tree
representation. This representation is the most compact
of the three. However, the minimization step may cause
loss of coverage measurement accuracy.

Let us consider an example typical design larw09 exI.
The functional segment of its RTL VHDL representation
is provided in Fig. 3. The parts of the variables’ names
have the following notations {/- an output variable; ¢S - a
conditional statement; D- a decision; 7- a terminal node;
C- a condition; W- a value}. The emphasized by bold
keywords determine if a line has a statement, a branch or
conditions. Figures 4, 5 and 6 present a reduced,
minimized, full-tree and HLDD model representations
correspondingly.

4. HLDD-based coverage analysis

4.1 Statement coverage mapping

The initial idea of statement coverage representation
on HLDDs was proposed in [2]. This paper demonstrates
the details. The statement coverage metric has a
straightforward mapping to HLDD-based coverage. It
maps directly to the ratio of nodes 7., traversed during
the HLDD simulation presented in Algorithm 1
(Subsection 2.2) to the total number of the HLDD nodes in
the DUV’s representation. The appropriate type of HLDD
representation for the analysis of, both, statement and
branch coverage metrics is the reduced one. The variations
in the analysis caused by different HLDD representation
types are discussed in Subsection 5.1.

Please consider the VHDL description of the
latw09_ex1 design provided in Fig. 3. The numbers from
the first column (Stm) correspond to the lines with 10
statements (both conditional and assignment ones). The 14
HLDD nodes of the two graphs in Fig. 4 correspond to

Stm (Dcn VHDL code
1 if (cSl_Cl and cS1_C2)
1 then
2| V1 <= V1 T1;
2 else
3| V1 <= V1 T2;
end if;
4 case cS2_C is
3 when csS2_C_Wl =>
5|7 V2 <= V2 _T1;
4 when cS2_C_W2 =>
61~ V2 <= V2 _T2;
5 when cS2 C W3 =>
7| V1 <= V1 _T2;
8 if (cs3_Cl and ((not cS3_C2) or cS3_C3))
6 then
9| V2 <= V2_T2;
7 else
10 | © V2 <= V2 T3;
end if; B
end case;

Fig. 3. A segment of the VHDL code of latw09_ex1 design

Fig. 4. Reduced HLDD for /latw09_ex1

these statements. Covering all nodes in a HLDD model
(i.e. full HLDD node coverage) corresponds to covering
all statements in the respective HDL. However, the
opposite is not true. HLDD node coverage is slightly more
stringent that HDL statement coverage. Please consider as
an example VHDL statements /, 2 and 3 and the
respective nodes in Fig. 4 Ia, 1b, 2a, 2b, and 3a, 3b. This
impact in terms of the stringency is also discussed in
Subsection 5.1. At the same time some of the HDL
statements have duplicated representation by the HLDD
nodes (with subscript indexes) due to the fact that in
HLDD-based design representation the diagrams are



normally generated for each data variable separately. As
an example please consider VHDL statement 4 and HLDD
nodes 4;, 4, in Fig.4.

4 S
2, s )2 V2. T1
3;

Fig. 6. Minimized HLDD for latw09_ex1

4.2 Branch coverage mapping

Similar to the statement coverage, branch coverage
also has very clear representation in HLDD model. (Also
initially proposed in [2], the details are demonstrated in
this paper). It is the ratio of every edge e,... activated in
the simulation process presented by Algorithm 1
(Subsection 2.2) to the total number of edges in the
corresponding HLDD representation of the DUV.

The numbers (underlined) from the second column
(Dcn) in Fig. 3 correspond to the lines with 7 branches
(i.e. decisions). The 12 HLDD nodes of the two graphs in
Fig. 4 correspond to these decisions. Covering all edges in

a HLDD model (i.e. full HLDD edge coverage)
corresponds to covering all branches in the respective
HDL. However, similar to the previously discussed
statement coverage mapping, here the opposite is also not
true and HLDD edge coverage is slightly more stringent
that HDL branch coverage.

The VHDL branches (Fig. 3) / and 2 are represented
in Fig. 4 by respective edges la, 1b and 2a, 2b. The
duplicated edges are also emphasized by subscript indexes,
(e.g 31,32, 414> 31,5,).

4.3 A hierarchical approach for condition coverage
analysis

Condition coverage metric reports all cases each
Boolean sub-expression, separated by logical operators or
and and, in a conditional statement causes the complete
conditional statement to evaluate to one of the decisions
(e.g. ‘true’ or ‘false’ values) under the given set of stimuli.
It differs from the branch coverage, by the fact that in the
branch coverage only the final decision determining the
branch is taken into account. In case, if we have n
conditions joined by logical and operators in a logical
expression of a conditional statement, it means that the
probability of evaluating the statement to the decision
‘true’ is 1/2" (considering pure random stimuli for the
condition values). Calculation of the condition coverage
based on HDL representation is a sophisticated multi-step
process. However, the condition coverage metric allows
discovering information about many corner cases of the
DUV.

In this section we present a methodology for condition
coverage metric HLDD-based. The approach is based on a
hierarchical DUV representation where the conditional
statements with complex logical expressions (normally
represented by single nodes in HLDD graphs) are
expanded into separate HLDD graphs.

Let us consider the example design larw09 exl
provided in Figures 3 and 4. It contains the following 3
conditional statements:

cS1: If (C1 and C2)

cS2: { case cS2 CI is

when cS2 Cl1_Wl1 => cS2 DI1;
when cS2 Cl W2 => cS2 D2;
when cS2 Cl W3 => cS2 D3;}

cS3: If (Cl1 and ((not C2) or C3))

The HLDD expansion graphs for these conditional
statements are provided in Fig. 7. Here the terminal nodes
are marked by background colors according to different
decisions for better readability.

These 3 expansion graphs can be considered as sub-
graphs representing “virtual” variables (because they are
not real variables of the /artw09 _ex] VHDL representation)
cS1, ¢S2, ¢S3. Thus, together with the two HLDD graphs
for variables VI and V2 from Fig. 4 these sub-graphs
compose design’s hierarchical HLDD representation.



Fig. 7. Expansion graphs for conditional statements of
latw09_ex1

The full condition coverage metric maps to the full
coverage of terminal nodes of the conditional statements
expansion graphs during the complete hierarchical DD
system simulation with the given stimuli. The size of the
items’ list /. for this coverage metric is:

Nesge n Nescase
— Ci
Ie=22"+ >n,
i=1 k=1
Here ng, is the number of if-type conditional

. .. . th
statements, 7., is the number of conditions in the
conditional statement and n.,, . is the number of case-

type conditional statements and n, is the number of
conditions in the k” conditional statement. (E.g. condition
coverage items’ list for latw09 _exI is Ic= (2> + 2°) + (3)
=15.

The main advantage of the proposed approach is low
computational overhead. Once the hierarchical HLDD is
constructed, the analysis for an every given stimuli set is
evaluated in a straightforward manner during HLDD
simulation (A/gorithm 1, Subsection 2.2).

The size of the hierarchical HLDDs with the expanded
conditional statements grows with respect to /- and
therefore there is a significant increase of the memory
consumption. However, the length of the average sub-path
from the root to terminal nodes grows linear to the number
of the conditions. Therefore, since the simulation time of a
HLDD has a linear dependency to the average sub-path
from the root to terminal nodes, it will grow only linearly
with respect to the number of conditions.

5. Experiments

5.1 Example study

This subsection provides an example study for the
proposed HLDD-based coverage analysis methodology
based on the larw09 exI design. This design has 2 outputs
and 6 control input signals (i.e. ¢SI_CI, ¢SI_C2, etc). The
first output (¥7) can be assigned to 2 possible values while
the second one (¥2) has 3 possibilities (i.e. {VI_TI,
V1 T2} and {V2_T1, V2 T2, V2 T3}). The values
labeling the terminal nodes in this example are symbolic
and their source is neglected.

Let us assume for a simulation experiment a set of
stimuli Stim_1 with the following test vectors presented in
the upper part of Table 1. The resulting values for the
outputs V1 and V2 are also shown in the table. The lower
part of the table demonstrates the items of the considered
coverage metrics that are covered by a particular vector.
For VHDL metrics the items are numbered statements and
branches from Fig. 3. The HLDD metrics’ items are
numbered nodes and edges of the reduced HLDD design
representation (Fig. 4). The last row of the table shows
covered items of the condition coverage metric that are
terminal nodes of the conditional nodes expansion graphs
shown in Fig. 7. A subscript suffix (e.g. ‘7,’) points to the
respective expansion graph’s terminal number counting
from top to bottom. The framed VHDL items for vectors 3
and 4 may be considered covered by some HDL
simulators, but their execution does not influence the final
output of the process.

Table 1. A set of stimuli Stim_1 for latw09_ex1

Vector
Input / Output
1 2 3 4
cS1_C1 1 0 () (0)
cS1_C2 1 0 (0 (0)
cS2_C w1 w2 w3 w3
cS3_C1 - - 1 1
¢S3_C2 - B 1 1
cS3_C3 - - 1 0
Z] Vi_T1 Vi_T2 Vi_T2 Vi_T2
V2 V2 11 V2 T2 V2 T2 V2 T3
Metric Items covered
VHDL stm. 1,2,4,5 1,346 |[1[34789(1[8478710
VHDL brnc. 13 24 356 357
HLDD nodes |44,1a,2a,4,5|41,1b,2b,4,6| 41,7,4,8,9 | 41,7,4,8,10
HLDD edges 31,1a,3, 4,,1b,4; 51,5,,6 51,5,,7
°°’t'gr',:;"fa'lg”" ©S271, 6S171|CS272 6S174|CS273 cS3r1|cS2r3, ¢S

Table 2 presents a resulting coverage values obtained
for Stim_1. Here we consider covered duplicated items as
one, i.e. if node 4; is covered then node 4, is also covered.
That is the reason why the values for full-tree and reduced
HLDDs are equal. Please consider the fact that HLDD-
based nodes and edges coverage values are lower and
therefore more stringent than the respective VHDL
metrics’ values. The remained uncovered HLDD items are



edges 2a,1b and nodes 3a,2b. In the minimized HLDD
(Fig. 5) this benefit is lost with minimization. However,
even with full statement and branch coverages achieved
the full condition coverage would require additional test
vectors. It adds orthogonal dimension of confidence in
terms of stringency and verification/test accuracy.

Table 2. Coverage metrics accuracy comparison for
latw09_ex1 example study

HLDD, %

C:r;r:g © VIl 9 minimized | reduced full-tree
Statement | 10/10=100| 8/8=100 |[11/13=285.6{11/13=285.6
Branch 7/7=100 | 7/7=100 | 7/9=778 | 7/9=77.8

Condition n/a 7115 =46.7

5.2 Experimental results

This subsection presents experimental results for four
ITC99 benchmarks [9] that evaluate the proposed HLDD-
based structural coverage analysis methodology. Table 3
presents the characteristics of the different HLDD
representations introduced in Section 3.

Table 3. Characteristics of different HLDD representations

Number of nodes Number of edges
Design
min red. f.tree min red. f.tree
bo1 30 57 267 52 54 264
b02 16 26 48 24 24 46
b06 47 116 440 83 111 435
b09 44 69 125 62 64 120

Table 4 shows comparison results of the proposed
methodology based on different HLDD representations
and coverage analysis achieved by a commercial state-of-
the-art HDL simulation tool from a major CAD vendor
using the same sets of stimuli.

As it can be seen, the reduced HLDDs with expanded
conditional nodes allow equal or more stringent coverage
evaluation in comparison to the commercial coverage
analysis software. For three designs (b0I, b06 and 509)
more stringent analysis is achieved using HLDDs. The
HLDD model allows increasing the coverage accuracy up
to 13% more exact statement measurement and 14%
branch measurement (b09 design). In our previous work
[2] it was shown that HLDD-based coverage analysis has
significantly lower (tens of times) computation (i.e.
measurement) time overhead compared to the same
commercial simulator.

6. Conclusions

It is important to emphasize that all coverage metrics
(i.e. statement, branch, condition or a combination of
them) in the proposed methodology are analyzed by a
single HLDD simulation tool which relies on HLDD
design representation model. Different levels of coverages

are distinguished by simply generating a different level of
HLDD (i.e. minimized, reduced, or hierarchical with
expanded conditional nodes). Experimental results
demonstrate feasibility and efficiency of the proposed
methodology.

Table 4. Comparison of code coverage analysis results

Stimuli, [Statement coverage,(%)| Branch coverage, (%)

Design
(vectors) | req, | min. | VHDL | red. | min. | VHDL
b01 14 | 860 | 100 | 93.8 | 742 | 846 | 889
23 | 965 | 100 | 100 | 90.3 | 100 | 100
502 10 | 923 | 100 | 963 | 91.7 | 91.7 | 93.8
14 100 | 100 | 100 | 100 | 100 | 100
506 11 802 | 100 | 855 | 793 | 89.2 | 875
52 | 98.3 | 100 | 100 | 98.2 | 100 | 100
509 23 | 87.0 | 100 | 100 | 85.9 | 87.1 | 100
33 100 | 100 | 100 | 100 | 100 | 100
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