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Introduction

In the past, heart rate was a measure of regularity and people often used their pulse
to time the duration of some events. Galileo Galilei did so in 1582 observing the
swinging lamps in the cathedral of Pisa. In those observations, Galileo found that
the periods of large and small swings were exactly the same. This discovery led
Galileo to the famous design of a clock regulated by a pendulum. Ironically, later,
the clock was used to detect intrinsic irregularities in the heart rate. Whereas the
normal activity of the heart is traditionally describedragular sinus rhythmthe

heart rate constantly fluctuates in a complex manner. These nonstationary and
nonlinear fluctuations on a beat-to-beat basis are associated mainly with the au-
tonomic neural regulation of the heart. It is known that parasympathetic input
decreases and sympathetic stimulation increases the heart rate. Moreover, the
parasympathetic activity, which is synchronous with the respiratory cycle, causes
the well-known effect ofrespiratory sinus arrhythmia The oscillations in the

blood pressure cause so callethyer wavesor baroreflexregulation [1]. Age,
medication, as well as physical and mental stress also affect the heart rate variabil-
ity (HRV) [2]. Meanwhile, cardiovascular and neurologic diseases may decrease
the responsiveness of the heart and lead to a failure to respond to the external
stimuli. Evidently, such pathologies lead to an overall reduction of HRV.

Apparently, the clinical importance of HRV was first noted in 1965 by Hon
and Lee [3]. Since then, the statistical properties of the interbeat interval se-
guences have attracted the attention of a wide scientific community. In 1978,
Wolf et al. [4] associated the increased risk of post-infarction mortality with re-
duced HRV. Wider attention to the problem has been attained in the early 1980s,
when Akselrockt al. introduced the spectral methods for HRV analysis [5]. In the
late 1980s, the clinical importance of HRV became generally recognized. Several
studies confirmed that HRV was a strong and independent predictor of mortality
following an acute myocardial infarction [6, 7, 8]. In particular, Goldbemeal.

[9] showed that a loss of complex physiological HRV can be seen in patients min-
utes to months prior to sudden cardiac death. Understanding the diagnostic and
prognostic significance of the various measures of HRV has a great importance
for cardiology as a whole, because unlike the invasive methods of diagnostics, the
required measurements are low-cost and harmless for the patients. A particularly
important application is the prognostics of the increased risk of sudden cardiac
death.

The autonomic regulation of the heart rate has been investigated widely during
the last decades, but no uniform concept exists regarding the function of neural
mechanisms. Moreover, there is still a lack of standardization of the parameters
and their meaning in HRV analysis. In 1996, thask Forceof the European
Society of Cardiologyet al. [10] touched on the need of developing appropri-
ate standards for clinical applications of HRV measures. Tdsk Forcegave a
comprehensive overview of HRV analysis methods widely used in clinical prac-



tice and identified areas for future research. It should be noted that this paper
mainly focused on “linear” measures of HRV (s&gpendix 1 for list of selected
standard measures in clinical use), mentioning nonlinear measures only as “poten-
tially promising tools for HRV assessment”, and clearly stating that “advances in
technology and the interpretation of the results of nonlinear methods are needed
before these methods are ready for physiological and clinical studies” [10]. In-
deed, while the “linear” measures of HRV are nowadays widely used in clinical
practice, the importance of more complicated measures have been hotly disputed
in scientific literature during the recent decades: there is no consensus on which
methods are the most efficient from the point of view of clinical applications.
On the one hand, this is caused by the high nonstationarity and irreproducibility
of heart rate time series: the complex measures of HRV depend not only on the
healthiness of the heart, but also on the daily habits of the subject [11], and on the
random events of the recording day. On the other hand, dialogue between physi-
cists and doctors seems to be inefficient: physicists publish research results based
on relatively small test groups; doctors expect follow-up studies using extended
and homogeneous test groups.

Recent attempts to bring together cardiologists and physicists in order to eval-
uate and compare the performance of different nonlinear analysis techniques re-
sulted in the creation oPhysioNet a cooperative project of Harvard Medical
School, Boston University, McGill University, and MIT [12, 13]. This project
provides a common database of biomedical signals (including ECG and heart in-
terbeat intervals time series) and methods of their treatment. Such a deep cooper-
ation allows us to believe that thstylisednonlinear measures of HRV, applicable
for clinical diagnostics, will be finally worked out.

The aim of this thesis is to give an overview of the main research results in the
field of heart rate analysis and present the original results of the author. Thus, the
publications are an inseparable part of this thesis. The thesis is divided into Sec-
tions as follows. The first Section discusses early studies of the nonlinear aspects
of HRV by methods based on the reconstructed phase space analysis. The author
provides the modern view on the applicability of these meth&adlication 111
discusses the applicability of the notion adrrelation dimensiorfor describing
the heart rate. In Section 2, the author gives an overview of the evolution of the
entropy-based approach to the analysis of HRV. Section 3 summarizes the au-
thor’s original results in the analysis of mode-locking between heart rhythm and
respiration. The author provides a comparison of the developed technique with
approaches used in other studies. Section 4 gives an overview of the methods of
analysis, closely related tanulti)fractal formalism. Also, the author proposes
a novel approach to the analysisinfermittencyin biological signals, which re-
veals a new aspect of nonlinear time series: the scale-invariance of low-variability
periods. The first results were reported at Ewgoattractor conference in War-
saw (Poland) in 2002Rublication 1). The author presented further research on
the low-variability periods of the heart rate at th@ntier Scienceconference in
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Pavia (Italy) in 2003, and published his result®mblication V.

Publication Il (in Estonian) andPublication IV both review the existing va-
riety of nonlinear methods in HRV analysiBublication IV discusses the intrin-
sic features of HRV signals, focusing on thmultifractal formalism in HRV de-
scription, whereaBublication Il focuses on the clinical perfomance of the novel
approach and its possible application in medical practieablication VI and
Publication VII study the applicability of the developed techniques for analysing
the influence of electromagnetic fields on the EEG signal. In these publications,
the author was mainly responsible for the multichannel EEG data analysis by a
method derived on the basis of the technique of low-variability periods.

Appendix 1 gives a list of the most important standard measures currently
used in medical practice for describing HRV. An analogous list of the (non-standard)
nonlinear parameters which have been considered in recent studies is summarized
in Appendix 2. Also, the author found it useful to provide a short reference to
the Bonferroni correctionAppendix 3), which was used in statistical tests of the
significance of results iRublication V, Publication VI, andPublication VII .

To summarize, there are three main topics in this thesis:

e The thesis provides a detailed overview of recent studies of HRV time se-
ries, and discusses issues related to the nonlinear dynamics approach based
on phase-space reconstruction. The discussion focuses on the intrinsic dif-
ficulties of estimating the correlation dimension and interpretation of ob-
tained values.

e The author proposes a simple method for the detection of synchronization
between the heart rhythm and respiration.

e The thesis presents a new aspect of the multifractality of intermittent non-
linear time series: the scale-invariance of low-variability periods. Published
papers provide the results of this novel approach for the multifractal analy-
sis of HRV and EEG signals.
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1 Phase-space analysis

1.1 Phase-space reconstruction

It has been found that heart rate generation can be reasonably well described by
nonlinear dynamical models [14, 15, 16, 17, 18, 19]. Such nonlinear models have
a strong physiological motivation: sinoatrial (SA) and atrioventricular (AV) nodes
form a nonlinear system of coupled oscillators: the electrical signal controlling
the heartbeat is generated by the SA node and conducted through the AV node.
The activity of the heart is also affected by interactions of haemodynamic and
humoral variables, as well as by the autonomic and central nervous systems. The
electrophysiological model proposed by Engelbresttdl. in 1995 (cf. [18]) has

been proven to be viable and it predicts several experimentally observed phenom-
ena, such aa) second-degree AV block (some dropped beats), including Mobitz
Type | (Wenckebach) and Mobitz Type Il arrhythmias, dmdbistable behaviour.

A semi-empirical nonlinear model for electrical heart activity proposed by Mc-
Sharryet al. in 2003 [20], and known asynthetic electrocardiograngenerates a
realistic ECG signal, reproducing QT dispersion and R-peak amplitude modula-
tion.

However, a fully adequate model of heart activity is still quite a difficult task;
one can study the nature of heart rate generation by reconstructing the trajectories
of the underlying signal (ECG or heart rate) in phase space. The question what
might be the canonical variables in the case of physiological data (when one has
few information about it), can be avoided by the methodlefays time series
x, = x(nAt) measured with fixed sampling periaklt can be reconstructed to
the vectors3,, in m-dimensional phase space:

/@n = (xn—(m—l)w LTp—(m—=2)vs s Tn—v; xn) (1)

The difference in the number of samplesin time units,vAt) between adjacent
components of the delay vectors is called thg or delaytime; the process of
reconstruction is referred to asnbeddingandm is called theembedding dimen-

sion A number of embedding theorems exists [26, 27], and it is expected that the
reconstructed phase trajectory can be transformed to the original trajectory by a
“uniquely invertible smooth map” [28].

The deterministic nonlinear model predicts that the trajectories of heart rhythm
in reconstructed phase space lie on an attractor of the system of coupled oscilla-
tors. Such a theoretical reasoning and belief that nonlinear phenomena are cer-
tainly involved in the generation of the heart rate have led to the idea that the
characteristics from the theory of nonlinear dynamics might reveal valuable infor-
mation for the physiological interpretation of HRV and could be used for diagnos-
tic purposes, especially for assessing the risk of sudden death.

The experimental observations of intrinsic nonlinearity in HRV seemingly
confirmed the theoretical expectations. Mangerl. [30] applied a nonlinear
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forecasting method of Sugihaed al. [31], and surrogate data sets to address the
guestion whether the HRV series is the output of a deterministic dynamical sys-
tem. They showed that prediction is better for the experimental series than for its
surrogate data and suggested that these differences are an evidence of a nonlinear
deterministic system generating HRV time series [30]. Céioal. [32] proposed
a method to test chaotic determinism based on fitting a nonlinear autoregressive
model to the time series, followed by the analysis of the characteristic exponents
of the model over the observed probability distribution of states for the system.
They showed that relatively short HRV time series (4096 data points) contain a
nonchaotic deterministic component [32].

Such a presumption of an underlying chaotic attractor gave rise to extensive
studies of the heart rate in the 1990s by applying analysis methods from the theory
of nonlinear systems (for example, cf. [21, 57, 23, 24, 25]).

1.2 Lyapunov exponents

The most useful characteristics that can be estimated from the time serias are
variantsin the sense that changes in the measurement procedures do not affect
calculated values. One such invariant is the rate of divergence (or convergence)
of nearby trajectories in phase space. In the case of a chaotic attractor, an in-
finitely small perturbationy, will grow exponentially in time § o dgexp At).

The growth rate) is called theLyapunov exponerfa measure was introduced by

A. Lyapunov at the end of th&dth century) and is defined as:

A(dp) = tlggo % In g—;, (2)
whered is the initial perturbation between two points, apds the distance be-
tween two trajectories emerging from these points after timeor the ergodic
system )\ does not depend on the choicesgfwhich means that Lyapunov expo-
nents are invariants. A positive biiite X is a clear criterion for the existence of
deterministic chaos in the underlying system. In practice, the exponent equality
to zero (usually, within the estimation error) shows that the system is determinis-
tic. Also, for nonstationary data, one can calculatal Lyapunov exponents (cf.
[33]), and thus describe the local behaviour of an attractor.

There are a number of robust algorithms to estimafier finite and noisy
experimental data that work well for very small noise levels. These algorithms
can be divided roughly into two groups: in tfiest approach (introduced by Wolf
et al. in 1985 (cf. [36]) and developed by Rosensteiral. in 1993 (cf. [34])),
only the largest\ is evaluated by following two nearby points in phase space;
in the secondapproach (proposed almost simultaneously by Ecknerai. (cf.

[38]) and by Saneet al. (cf. [37]) in 1986), the Jacobians of the return map are
estimated.
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Finite positive A were reported in several studies of the heart rate and ECG,
cf. [21, 41, 25]. However, Lyapunov exponents are extremely difficult to estimate
from experimental data with the presence of a stochastic component (cf. [35, 39,
40]). Therefore, finding a positive largekin a finite time series is not sufficient
for one to conclude that the dynamical process is chaotic (deterministic). As a
result, the popularity of Lyapunov exponents for characterizing the dynamics of
biological signals (especially those registenedivo) constantly decreased.

1.3 Scaling of correlation sum

The notion ofcorrelation dimensiomvas introduced by Grassberger and Procaccia
in 1983 [68]. The correlation dimension of an experimental data sequence is
typically calculated according to the following algorithm. First, the correlation
sum of second order for a set of points in somalimensional vector space is
defined as a fraction of all possible pairs of those points, which are closer than a
given (small) distance :

Calr. V) = =y 00— 1 B =By ) ®)

1<j

whered(r) is the Heaviside step function, a}lis a point in the reconstructed
phase space given by Eq. (1), ahg = 1,2,...,N; N is the length of the
dataset. In practice, the su@} is taken only for those pairs ¢¥ and 3; that

are separated by more thasampling times to avoid artificial correlation among
consecutively sampled points on the attractor [51]. For small eneugid in

the limit of an infinite amount of data, the correlation sum is expected to scale as
Co(r) o< P2, assuming thaD, < m:

L . dlnC(r,N)
Dy = lim Jim —7 =—.

(4)

The scaling exponenbs is called thecorrelation dimensiorof the system. A
nonlinear dynamical system may be chaotic and then the phase trajectory fills a
certain subset of the phase space. In that case, the correlation diméhsgon
expected to be equal to the number of degrees of freedom (the dimensionality
of the phase space minus the number of conservation laws). This ifwlsy

often considered as a measure of the complexity of the system. Babloyantz and
Destexhe [21] studied the correlation dimension of the sequence of NN-intervals
(intervals between normal heartbeats) of the human heart rhythm. For healthy
patients and data series consisting of 1000 intervals, they félrrd 5.9 + 0.4.

Itis widely recognized that life threatening heart pathologies lead to the reduction
of the complexity of the HRV signal, c.f. [22]. Correspondingly, the correlation
dimension of the heart rate has often been believed to measure the “healthiness”
of the heart.
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However, there are various arguments leading one to the conclusion that the
formally calculated correlation dimension of a heart rhythm does not correspond
to the dimensionality of an intrinsic attractor; similarly, the formally calculated
Lyapunov exponents, entropies etc. do not describe the respective aspects of un-
derlying nonlinear dynamics:

First, it has been pointed out that physiological time series are typically non-
stationary and noisy, and therefore, the correlation dimension cannot be calculated
reliably [42, 44, 45]; this fact is nowadays widely accepted, and it has been esti-
mated that the maximum noise level for the credible calculation of}hs 2-3%

[28]. In the case of the human heart, the “noise” comes from the autonomous ner-
vous system in the form of inputs regulating the heart rate (cf. [46, 47, 48]): from
the viewpoint of an underlying nonlinear deterministic system, these effectively
non-deterministic signals perform the role of high level noise [50]. It should also
be noted that some inputs of the autonomous nervous system may lead to quasi-
periodic signals, which are an easy source of false detection of low-dimensional
chaos and apparent patterns in simple time delay maps. Thus, respiration gives
rise to the signal of a typical period of 4 seconds; the effect is most pronounced
when the patient is at rest, and is stronger for young persons.

Secondit has been emphasized that a reasonable fitting of a correlation sum
to a power law does not necessarily mean that the obtained exponent is the corre-
lation dimension of the underlying dynamical system; instead, one has to perform
a thorough non-automatable verification procedure [28].

Third, the length of the data sequences is often inadequate for reliable calcu-
lation of high values of the correlation dimensith 2> 6 (cf. [25, 28]). Too short
a record length can cause a saturation effect and lead to a false detection of the
scaling exponent of the correlation sum. It has been suggested [42, 43] that the
calculation of the correlation dimensidn, is reliable, if the numberV of data
points in the time series satisfies the criterion:

N Z 10P2/21, (5)

Typically, values ofD; have been found to be at the limit (or even beyond) of a
credible analysis [42, 43]. The comparison of theoretically required and practi-
cally used lengths of time series for reliable estimatiofpin some publications
is summarized in Table 1.

The recent study of Carvajal al. [52] is a good example of finding the cor-
relation dimension for the heart rate beyond the practical libjtbetween 8.4
and 10.6 for data segments of a length16f beats! Moreover, obtaining high
values ofDs (=~ 10) for noisy experimental data is essentially the same as saying
that the underlying system is stochastic. In that case the notion of correlation di-
mension is meaningless, and one should find better methods for characterizing the
data. Note that there is no simple recipe for obtaining adequate long time series:
whereas a long observation period often implies non-stationarities, oversampling
emphasizes the noise.
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Ref. [21] | Ref. [44]] Ref. [25]] Ref. [53]] Ref. [52]
Dy | 55-6.3| 9.6-10.2| 2.858 | 4-7 | 8.4-10.6
Neap 10 2107 10* 2107 10*
Nyeq 10* 10° 10* 3-101 | 3-10°

Table 1: The table compares the criterion given by Eq. (5) with the data of some
papers devoted to the correlation dimension analysis. The table gives experimental
values of correlation dimensio), following by lengths of the underlying data

sets (Ve.p), and data-set lengths required for reliable estimatigp,j. Adopted

from Publication Il and extended with recent studies.

Finally, it has been found that the effect of nonlinear mapping from the time
domain to the phase space may result in an overestimation of the correlation di-
mension [49].

In Publication Il , the author of this thesis studied the effects of the finite
resolution of the apparatus and a wide dynamic range of the mean heart rate to
the scaling of correlation suth. The author constructed a simple model of heart
rate generation, which reproduces the scaling behaviour of the correlation sum
of real medical data.Publication Ill showed that calculated values of scaling
exponents fo’; are mostly defined by the dynamics of the short-time variability.
The conclusion was that whereas the scaling exponent can be used for quantitative
characterization of short-time variability of HRV, it is not an invariant and, in order
to obtain comparable values, time-resolution, record length, and the embedded
dimension of the phase space have to be kept constant. These research results can
be summarized as follows: Whereas the correlation sums of the human heart rate
typically follow a scaling law, in most cases, the scaling exponentsatr¢he
correlation dimensions.

2 Entropy-based measures

The measures of deterministic chaos based on reconstructed phase space usually
fail in describing a deterministic chaos inside the heart, because the dominantly
deterministic dynamics is suppressed by essentially intermittent signals arriving
from the autonomous nervous system and regulating the heart rhythm. However,
some fine-tuned measures, e.g. various entropies, cf. [57, 63, 65, 70], can be use-
ful in describing the level of short-time variability of the heart rhythm. Entropy-
based measures, being essentially an average of the logarithm of a conditional
probability, can be viewed assdatisticalcharacteristics, which can be applied to
both deterministic and stochastic processes. While not directly requiring the pres-
ence of a deterministic dynamics, they are ideologically related to the analysis
of nonlinear dynamics (they deal with the dynamics in time delay space). These
measures also reflect the rate of new pattern generation (irregularity of signal),
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and are therefore closely related to the concepts of Shannon and Kolmogorov-
Sinai entropies. They can be classified as extensions of those concepts, more
suitable for characterization of experimentally measured time series.

2.1 Kolmogorov-Sinai entropy and its estimators

Kolmogorov-Sinai entropyK) is defined as the mean rate of the change of en-
tropy of the trajectory of an attractor in phase space due to the finer phase space
partitioning within each iteration:

K = lim lSn = lim Sp,+1 — Sy, (6)
n—oo N n—oo

wheren is the index of partition and,, is the Shannon entropy of partition The
Kolmogorov-Sinai entropy measures the mean rate of the creation of information,
and therefore a positive value &f may be used to define the existence of chaos.
Unfortunately, there are a number of difficulties in directly calculatig@ntropy
for experimental time series [28, 70, 66], mainly because of the finite length of
data and the presence of noise on small scales. However, several techniques have
been suggested to estimate the Kolmogorov-Sinai entropy with reasonable preci-
sion, for example, Grassberger and Procaccia [55] suggested in 1983 a calculating
measure they namell, entropy, which estimates the lower boundary of fiie
entropy:

Ky =— lim lim lim In[C™T(r) — C™(r)], (7

N—o00 m—00 r—0
hereC™(r) stands for the probability that any two points in phase space of di-
mensionm are closer to each other than some smalV stands for the length of
data. In 1985, Eckmann and Ruelle [56] extended this technique and suggested
calculating the Kolmogorov-Sinai entropy when characterizing low-dimensional
chaotic systems as:

Kpp = lim_ lim lim[®™(r) - ML), (8)
where®™(r) oc >, In C;"(r) and®™(r) — @™ (r) depicts the probability that
sequences of length that are similar within a fixed small toleraneceremain
similar for increased lengtm+1.

2.2 Approximate and sample entropy

The notion ofapproximate entropyApEn) and the calculation algorithm (based
on previous work by Eckmann and Ruelle) was firstly proposed in 1991 by Pincus
[57]. The motivation was the need to estimate valueg<ofor experimentally
obtained data, usually noisier and shorter than would be suitable for accurate cal-
culation. Although.ApFEn is defined as:

ApEn(m,r) = lim [®@"(r) — @™ (1)), 9

N—oo
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for finite IV, the ApEn is estimated by the measure:
ApEn(m,r,N) = ®™(r) — <I>m+1(r), (20)

Lower values ofApEn indicate that the time series are more regular (determin-
istic); high values indicate randomnesépEn is mainly used in the analysis of
heart rate variability [58, 59, 60, 61, 62], but is also often calculated for other
biosignals, such as ECG, EEG, respiration, endocrine hormone release pulsatility.
Time series shuffling greatly impacts the valueAiEn, whereas the value of
standard deviation remains unaffected. Also note thaktn is not aninvariant,

and depends on the choice of threshold leyelnd embedded dimension, and

on the length of dat&v. Comparisons between different time series can only be
made with the same values of, r, andN. Typically, pattern lengthn is chosen

to be 2-4, while tolerance is chosen to be 10-20% of the standard deviation of
the time series.

In 2000, Richman and Moorman modified the algorithm for the calculation
of ApEn and suggested calculating a less biased measuresamaple entropy
(SampEn) [63]. The main advantage &fampFEn is that it is less dependent on
the time series length and has a stronger property of relative consistency regarding
the choice of parametersandm than ApEn has. Recently, it has been found that
the decreasedampFEn calculated for neonatal heart rate is a good indicator of
neonatal sepsis episodes [64]. The conclusion wasSttwatp £ may be used in
medical practice as a general estimate of the health of the infant.

However, the algorithms mentioned above do not take into account the multi-
ple time scales in variability of biological signals. Instead, they are effectively
single-scale measures, reflecting only short-time dynamics. Such a limitation
often leads to spurious results: higher values of entropy are estimated for time
series representing certain pathology, i.e., atrial fibrillation, which is structurally
less complex than the heart rate of healthy indivuduals (which is a signal of a
physiologically complex state, adaptive to many inputs). In order to address the
presence of multiple time scales in the temporal fluctuations of biological time
series, several approaches were proposed.

2.3 Multiscale entropy

In 1991, Zhang [67] suggested the quantiy which he namedomplexity This
complexity measurd<, being effectively the sum of scale-dependent Shannon
entropies over all possible scales

K = an, (11)

assigns higher values to colored noise compared to white noise. However, Zhang's
work was very theoretical; the quantify based on the Shannon entropy requires
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a huge number of almost noise-free data points limiting its practical applicability
in the case of noisy data of limited length.

In the approach of Costet al. [65] (2002), the notion ofmultiscale entropy
MSE was introduced. In théd/SFE method, one calculates the sample entropy
SampEn as a function of the scalé&lampEn(7). The coarse-grained time series
corresponding to scale are obtained by averaging the data points within non-
overlapping windows of length (so called “coarse-graining” process)M SFE
addresses the question of how wide the range of dynamics for the mean heart
rate is (averaged over a timg, depending on the time-scate which makes
this measure closely related to the multifractal aspect of time series. The clinical
usefulness of MSE is still unclear (apart from the fact that it has been claimed to
be able to distinguish between healthy subjects and patients with congestive heart
failure [65]).

The idea ofpattern entropy(S,) for HRV analysis was proposed in 1994 by
Zebrowskiet al. [69]. They motivated this measure by the fact that the calculation
of ordinary (Shannon) entropy completely failed to distinguish healthy individu-
als from those with heart pathologies. Thus, pattern entropy was calculated as
modified Shannon entropy:

Sp ==Y prlogps, (12)
B

wherep, = p(trr)p-(trr) for 2-dimensional phase space. Herés the inte-

ger time delay in beats used for phase space reconstructiom(&rd, p-(trr)

are the probabilities of finding R-interval of lengthtzr for corresponding coor-
dinates in reconstructed phase space. Correspondingly, for 3-dimensional phase
spacepr, = p(trr)p-(trr)p2-(trr). By definition, pattern entropy is larger

for stationary and ordered time series, this property is exactly the opposite for
ordinary Shannon entropy. It has been found that the values of pattern entropy
distinguished reasonably well between some pathologies and health, and overper-
formed the standard frequency- and time-domain analysis [69]. In the later paper,
Zebrowskiet al. [70] also found that the statistical order of heart rate time se-
ries measured by pattern entropy (calculated for sliding window) depends on age,
especially for younger persons.

In order to get entropy estimates, which can be directly compared between
different time series, theenormalizationprocedure was suggested by Kuréisl
in 1995 [71]. In this approach, one renormalizes the entropy, estimated for certain
time series, in such a manner that the mean effective energy for this time series
remains the same as the energy obtained for some reference data.

To conclude, an analysis of HRV based on reconstructed phase space histori-
cally started from adapting of parameters from the theory of nonlinear determin-
istic systems, and resulted mainly in fine-tuned entropy-based measures. Such a
shift in focus was motivated by the presence of relatively strong stochastic compo-
nent in presumably deterministic heart rate generation. It is also important to note
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that entropy-based measures of the complexity of HRV focusing on short-term
variability do not reflect the aspect of long-range correlations in rhythm. Entropy-
based measures should therefore be used in combination with other quantities.

3 Heart rhythm and respiration mode-locking analysis

This section discusses the effect of coupling between two oscillatory processes in
cardiovascular dynamics, heart rate, and respiration activity. As it was mentioned
above, respiration modulates the heart rhythm. The heart is most responsive with
respect to the signals of the autonomous nervous system when the heart rate is
unaffected by physical activity, i.e., when the patient is at rest. In that case, HRV
is driven by weaker signals induced by respiration and baroreflex, which (due
to their quasi-periodic nature) may lead to mode-locking. Indeed, recent studies
[79, 80] confirmed the synchronization between three main rhythmic processes
governing the cardiovascular dynamics: sinus rhythm (fundamental frequency is
aboutl Hz), respiration .12 Hz —0.25 Hz), and baroreflexd(1 Hz). In the case

of respiratory mode-locking, the heart rate is automatically slightly adjusted so
that the respiration and heart beat periods relate to each other as (small) integers
—. In practice, synchronization between two oscillators can be defined as:

[ng1 — mez| <, (13)

whereg1, ¢, are phases of the oscillators, ani$ a small positive constant. The
decorrelation time between the heart rhythm and respiration can be very long: it
was reported that th% synchronisation regime can be as longl8% seconds

[72]. Other ratios like2, % % were observed for shorter periods ( minute);
some episodes df-, £-, L1-mode-locking were also documented [72, 75]. This
effect of mode-locking causes the patterns (isolated clouds of points) observable
in the reconstructed phase space (Plublication Ill , Fig. 6). These patterns
can be easily misinterpreted as traces of an attractor of a nonlinear deterministic
system.

The successful start to the modelling of cardiorespiratory synchronization can
be attributed to the simple beat-to-beat model proposed by De®oal. in
1987 [1]. This nonlinear model described dynamical properties of huastio-
baroreceptorcontrol loop, i.e., relationship between heart rhythm, respiration,
blood pressure, and peripheral vessels resistance. Further, this model has been
elaborated by Seiddt al. [76] by taking into account phase dependency of the
sinus node responsiveness to neural activity. Recently, a physiologically plau-
sible model of cardiorespiratory synchronization was suggested by Ketahi
[77]. This model exhibits stable synchronization between the heart rhythm and
respiration even in the presence of noise.

The mode-locking effect has been studied numerically using bivariate data (si-

multaneous recordings of ECG and respiration activity) and the technique called
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cardiorespiratory synchrogranf72, 73, 74]. Also, a univariate data analysis
method using theangle-of-return-times mapas been elaborated by Janssn

al. [78]. In that case, only recording of the heart rate is used to reconstruct
the phase of forcing (breathing) and the phase of the oscillator (heart). These
phases are plotted versus each other; in the case of mode-locking, disjoint clouds
of points will appear. IPublication 11l , an independent, intuitive and easy to use
method of mode-locking detection from univariate data (NN-interval sequence) is
developed. The method is based on calculating the amplitudes of the oscillatory
component of the fluctuation functiof(n) for one-hour segments of 24-hour
heart rate recording (cfPublication Il , Fig. 7). The fluctuation functiod(n)
(introduced in 1993 by Peng al. in [91]) is defined as:

F(n) = ([tnn(k +n) —tnn (k) (14)

here(...), denotes an average over all intervals For the patients with iso-

lated clouds of points in phase space, the functitim) had significant oscil-
lations at small values of (seePublication Ill , Fig. 7), revealing the causal
relationship between mode locking and the presence of “satellite clouds”. Indeed,
the oscillations of fluctuation functiof'(n) were not observed for data forming
single-clouds in reconstructed phase space. Thus, the amplitudes of the short-
scale components of the discrete Fourier transform were chosen to characterize
the patterning in phase space. In order to minimize the influence of the long-scale
components, the transform was applied to the funcign) = F(n) — (F(n)).

Here (F'(n)) denotes the smoothed (averaged and interpolated) fluctuation func-
tion F'(n).

It is also important to note that this approach of synchronization detection is
very simple and does not require synchronous respiration rhythm recording (as
compared with the bivariate techniques, cf. [72, 79, 80]), and can be conveniently
used to find relatively short{ 10 minutes) locking periods from a nonstation-
ary 24-hour recording. These periods were characterized by a low heart rate and
a high respiration-driven short-time variability. Besides, the devised technique
provides a natural measure to quantify the degre’e nfode-locking (unlike the
qualitative univariate approach of Jansetral. [78]), i.e., the amplitudeb(«) of
the oscillatory component df'(n) at a given wavelengthy = . The method
is very sensitive: the ratio of the Fourier transform amplitude of the locked mode
() to the root-mean-square of the amplitudes of the other modes is typically
betweenl10 and30. The heart and the respiratory complex act as a system of
coupled oscillators; however, by no means does this imply that there is a deter-
ministic chaos inside the heart: since the mode locking occurs during a relatively
small fraction of the whole recording time, it has almost no effect on the scaling
behavior of the correlation sum, which has been tested by calculating the correla-
tion sum for different time-windows: including and excluding the mode-locking
periods.
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To conclude, the coupling in cardiovascular system, being a “bridge” between
spontaneous sinus rhythm and respiration, allows to exchange information be-
tween these oscillatory processes by adapting them to a changing environment.
This important aspect of appropriate functioning of the cardiovascular system can
be certainly used in clinical practice as an independent approach in the diagnos-
tics of pathologies in the autonomic nervous system. Thus the complete lack of
synchronization in cardiorespiratory dynamics can be attributed to some failures
in the mechanism controlling heart activity, alerting possible pathologies.

4 Scale-independent measures

In this Section we will discuss the scale-invariant properties of HRV. Recent stud-
ies have shown that scale-invariant characteristics can be successfully applied to
the analysis of the heart rate variability [91, 82, 86, 92]. However, this conclu-
sion has been disputed, and certain scale-dependent measures (particularly, the
amplitude of the wavelet spectra at a specific time-scale) have been claimed to
provide better results [87]. The scale-independent methods have been believed
to be more universal, subject-independent, and to reflect directly the dynamics
of the underlying system, unlike the scale-dependent methods which may reflect
characteristics that are specific to the subject and/or to the method of analysis
[92]. The opposing argument has been that certain heart disorders affect the heart
rate variability at a specific scale or range of scales; owing to this circumstance,
at the properly chosen time-scale, scale-dependent measures may provide useful
information [87].

4.1 Hurst exponents

One of the possibilities to describe inhomogeneous and nonstationary time series
of the heart rate on a scale-independent level is to measuradtality. The sim-

plest relevant fractal measure is tHarst exponent#{, which is used to describe
statistically self-affine random functiongt) of one or more variables. Here, the
author presents a theoretical background for describing the stochastic processes
in terms of fractality and, more generallgultifractality. Stochastic processes

are usually described via the probability density functidm, t), wherep is the
probability that at time, the system will be in state. Stochastic process(t)

is calledself-similar, when its probability distribution functiop(z, ¢) is invariant

under suitable scaling in time and space [93]:

p(x7at) = p(bxvt)' (15)

The simplest example of self-similar stochastic processes is the one-dimensional
ordinary Brownian motion. The stricter form of self-similarity is calledlf-
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affinity and defined as follows:

p(z,ct) = p(cHx,t), (16)

where the exponent! is called the exponent of self-similarity, scaling exponent,
or self-affinity index. The self-affine processrisnstationaryby definition, be-
cause it is not invariant under time shift. However, if the increments of such a
process arstationary

ple(t +7) — a(t)] = plz(r) — 2(0)], (17)

the structure functiorof orderq (a concept borrowed from the theory of the fully-
developed turbulence) for nonstationary proce&g can be defined as theth
moment of the increments af(¢):

Sq(7) = (lz(t +7) — =), (18)

here(...), denotes an average over all values of (discrete) tinhe structure
function S,(7) for a scale-invariant and self-affine process is expected to scale
over somenertial range of time lags:

Sy (1) oc 7¢@), (19)

where((q) is the exponent of the structure function. Stochastic statistically self-
similar processes can be classified by means of scaling expofigntsr self-
similarity exponentsH (¢) (in fact, Hurst exponent), which are related to each
other as:

C(q) = qH(q). (20)
The classification is as follows:

e Atrivial case, when the proces$t) is stationary, there is no scaling(¢) =
H(q) = 0), because:(t) has scale-independent increments and, therefore,
is invariant under translation in time.

e A more interesting case, when the nonstationary progégswith a con-
stantH (q) (¢(q) linearly depends on), is monofractal The monofractal
process has the property of monoscaling, i.e., it is described by the single
Hurst exponenti (¢) = H.

e A general case, when the nonstationary proces$ with a ¢g-dependent
H(q) (nonlinear¢(q)) is multifractal. The multifractal process is described
by aspectraof Hurst exponent$7 (q).

Plotting the scaling;H (q) versusq provides a straightforward way to check for
multifractality: fitting the dependence qrby a straight line indicates monofractal
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data. Thus, the calculation &f(q) spectra for time series allows for the straight-
forward identification of the stationary/nonstationary and monofractal/multifractal
nature of the process. Moreover, values of the Hurst exponent quantitatively char-
acterize long-time correlations. Following the original work of Hurst [102], in
the case ofH < % there is a negative long-range correlation (antipersistence)
between the increments of the functieft), whereasH > % corresponds to a
positive correlation (persistence).

Historically, the scaling of th@nd-order structure functios;(7) was stud-
ied and the corresponding process was referred foaagonal Brownian motion
(fBm):

<\xf3m(t—|—7)—xf3m(t)\2>:T2H,0<H< 1. (22)

Such a generalisation (introducing a memory, also known adabeph effeftof
Brownian motion was firstly described by Kolmogorov in 1940 [94] and later pop-
ularised by Mandelbrot in 1968 [95], who introduced the téractional Brown-

ian motion(fBm). Note thatH = % is a special case of ordinary Brownian motion,
i.e., the increments of the function are delta-correlated (uncorrelated random pro-
cess), and:(t) can be viewed as the displacement of the Brownian particle as a
(self-affine) function of time:

<|me(t—|-7') —me(t)|2> =T (22)

with
(|ltpm(t+ 7) — zBm(t)]) = 0. (23)

Besides the scaling of structure functio$jgr), there are a number of differ-
ent methods to calculate the Hurst expon&nfor experimentally obtained time
series, including rescaled range analysis (also referred as R/S-statistic, technique
originally introduced by Hurst) [102, 103], scaled windowed variance [105], and
dispersional analysis [104].

Many phenomena in nature exhibit this kind of scale-invariance, revealing
nontrivial long-range correlation, and lead to fractional Brownian time series [95].
The same is true for the heart rate variability: after filtering out short-scale compo-
nents with a period of less than 30 seconds (corresponding to rhythm modulated
by respiration and baroreflex), the fluctuation functio(), defined in Eq. (14)
revealed a good scaling behavior in a broad physiologically relevant time scale
(200 — 4000 beats, cf. [91]):

F(n) < n® (24)

Note, thatF'(n) is a structure function of order I (= 1), and therefore the
obtained scaling exponentdirectly corresponds to the Husrt exponéht(a =

H). While for healthy patients, the increments of the heart rhythm were found to
be significantly anticorrelated resulting #h < % the heart rhythm of the patients
with dilated cardiomyopathy was essentially Brownian wifh~ % [91]. The
conclusion was that the lack nbntrivial long-range correlations in physiological
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systems reveals a failure in the ability to adapt to a changing environment, and
therefore may indicate a diseased state.

The early scale-invariant studies of HRV were based on power spectra [96,
97], an aspect also closely related to the scaling expoHenRecently, various
techniques, such as detrended fluctuation analysis (DFA) [82], detrended time se-
ries analysis (DTS) [89], and wavelet amplitude analysis [85] have been proposed
to fine-tune the Hurst-exponent-based approach.

4.1.1 Detrended fluctuation analysis

When studying the scale-invariance of some process, one generally is not inter-
ested in long-range correlations that are simply footprints of (nonstationary) drifts.
Therefore, it is important to test the stationarity of the data record, and to exclude
nonstationary segments, which tend to give biased estimatdsctidse to 1. An-
other way to address such drifts isdetrendtime series locally; this approach is
used in the DFA method. The DFA method was first proposed in 1994 by Peng
et al. [81] in the study of long-range correlations for noncoding regions in DNA
sequences. Later, this approach has been used in the analysis of the heart rate [82].
In this method, one first integrates (or accumulates) nonlinear time sgfies
obtaining integrated datgi). Further,y(i) divided into segments of equal length
n. The trend for every segment is defined by the linear fitting/@J on this
segement tay, (7). The root-mean-square fluctuation of integrated time series
y(7) around detrended data is calculated for the whole recording of le¥igt.
[82]:

Fin) = \/ + S 0) )2 @)

For a process with long-range correlatiofigy ) is expected to scale d&&(n) o f*.

The DFA method works well on signals with slowly varying trends, i.e., with cir-
cadian rhythms. However, one should be aware that certain types of nonstationar-
ity can affect the results [83]. Thus, when correlation properties change in time,
the resulting value of scaling exponemntis a superposition of the local scalings

of the different segments [83]. Recently, scaling exponentgere calculated for

a wide range of physiological time series, including DNA sequences [81], HRV
[82], human gait [84], etc.

A slightly different approach to detrend time series (DTS) was proposed by
Ashkenazyet al. in 1999 [89]. In that method, one produces a locally detrended
time series simply by finding the differences between the signal and the local aver-
age, calculated on a moving window of sizeThe standard deviation (calculated
for windows of various lengths) also reveals a good scaling witiNote that
scaling exponenta calculated by the DTS technique are highly correlated with
those obtained by DFA [90].
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4.1.2 Multiresolution wavelet analysis

The technique of multiresolution wavelet analysis for HRV time series was ap-
parently first applied by Ivanogt al. [85]. In this method, one finds the wavelet
(weight) coefficients for signat; via discrete wavelet transform:

W(m,n) = 27™m/? Z x (2™ —n), (26)
i<N
wherem is a scale parameter, is a position parameter ang(m,n) is a basis
function of the wavelet. The wavelet transform extracts the frequency components
of a signal as a function of time, and easily removes polynomial components.
These properties make this technique naturally suited to handle nonstationary sig-
nals. The choice of wavelet usually depends on properties of the time series;
Haahr or Daubechies wavelets are mostly used for HRV analysis. The obtained 2-
dimensional distribution of coefficientd’ (m,n) characterizes the signal in both
time and frequency space. Ivanetal. found that the distributiod? (m,n) is
stable over a wide range of time scales for healthy subjects and does not exist for
a group with cardiopulmonary instability [85].
Later, Thurneret al. [87] extended this approach by measuring the variance
(standard deviation) of calculaté®l (m, n)-sequence for fixed time-scate:

o(m) = 5 S (W(m,n)— | Wm,m) )% 27)
n<N

It has been found that values @ffor scales 4 and 5 (correspondingly, 16 and 32
heartbeat intervals), completely separated two groups of patients. The Thurner’s
group even claimed that they founddihically significant measure of the finding
of heart failure with 100% sensitivity at 100% specificity” [87]. However, the
performance of this method was later tested on a different set of data, and the
separation was found to be less than perfect [88].

Further, the method was slightly extended by Ashkereaf. [88] via the ad-
dition of a filtering procedure. Filtering was done by an inverse wavelet transform
for scalesl < m < 6, discarding wavelet coefficients related to higher scales.
The standard deviation was then calculated for the inversely transformed signal,
which resulted in remarkably better discrimination between healthy subjects and
patients with heart failure.

Note that the multiresolution wavelet analysis actually detrends the signal
(i.e., can be used instead of DFA) by removing the polynomially interpolated
components of higher order (the order being given by the order of the wavelet).
Also, calculating the structure functidy(7) is essentially the same as applying
the wavelet transform with the wavelet constructed from two delta functions with
opposite signs and being at distanckom each otheri) (¢, 7) = 6(t) — (7 + t).

On the other hand, this method is a natural choice when analysinmguthiéractal
structure of HRV [86], as it enables to obtain the spectra of local Hurst exponents
in a straightforward way.
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4.2 Multifractality of heart rate

Complex non-stationary time series cannot be described by a single global scaling
exponentH. Indeed, simple scaling behavior is expected if there is a Gaussian
distribution of increments. However, even in the case of Gaussian functions, the
scaling exponent is not necessarily constant over the whole range of scales. In-
stead, it can be a slow (eg. logarithmic) function of the scale, so that other descrip-
tions (such as stretched exponentials) may be required. Physiological time series
are typically non-Gaussian [91]. For such functions, scale-invariance can be very
complicated. Therefore, it is not surprising that the human heart rate signal was
found to obey a multi-affine structure [92, 86]. A non-exhaustive way to describe
such behavior is to calculate the multifractal spectrum of Hurst exponents [98].
Qualitatively, a multifractal time series behaves as follows. If the whole time
series is divided into short segments, each segment can be characterized by its
own local Hurst exponent, (referred to as theipschitz-Hlder exponent Then,
the distribution of segments of fixed values/ofs self-similar, and is described
by a fractal dimensiorf (k). Technically, the spectrurfii) can be calculated by
the means of wavelet transform, cf. [92]. This scheme includes the calculation
of the scaling exponents(q) (referred to as thenass exponentswhich describe
how theg-th moment of the wavelet transform amplitude scales with the wavelet
width. The multifractal spectrum(q) is related to the singularity spectrufiih),
through aLegendre transform

f(h) = qh —7(q), (28)

with h = d;_gq)_ The degree of the signal’s multifractality can be qualitatively
characterized by the width of the spectryith). It has been reported that the
spectrumf(h) for heart rate time series is broader for healthy individuals (re-
vealing multifractal properties of signal), and narrow for subjects with conges-
tive heart failure (displaying monofractality) [86]. Also, the scaling exponents
7(2) and 7(5) have been found to have a significant prognostic value (for the
post-infarction prognosis) [92]. The wavelet transform amplitudes, calculated
for a specific wavelet width~¢ 5 min), have been claimed to be of even higher
prognostic value [87]. However, independent studies have shown that the scale-
invariant measures seem to be superior tools [99]. It should also be noted that the
wavelet transform amplitude at a fixed time-scale is closely related to the linear
measure SDANN (se&ppendix 1). Substituting the robust standard deviation by

a wavelet transform amplitude is technical fine-tuning which cannot be expected
to result in qualitatively new information.

The multifractal structure of the heart rate signal has several consequences.
Thus, theg-th order structure functio;, (defined in Eq. 18) of the heart rate
interval has a scaling behavior, with the scaling expoiént being a function of
g [100]. Note that this spectrum of exponents;) is very closely related to the
above-mentioned(q) spectrum (both describing the same physical phenomenon,
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differences being of a technical kind). However, the technique based on wavelet
transform makes a more complete utilization of the underlying data, and therefore,
the 7(q) spectrum can be expected to yield somewhat superior prognostic and/or
diagnostic results.

Several recent studies addressed the important question of the origin of multi-
fractal properties for heart rate time series [109, 111]. In these studies, parasym-
pathetic blockade led to the loss of multifractal properties; thus the presence of
multifractality was attributed mainly to the intrinsic dynamics of therasym-
patheticbranch of the autonomic nervous system and not to changes in external
stimulation. Amarakt al. in [111] partly motivated this conclusion by the fact
that the width of the singularity spectruifi{k) was not dependent on the daily
habits of the observed individuals. Struakal. in [109] confirmed the strong
dependency of scaling properties on the functioning of the autonomic nervous
system, and proposed the idea dfbehavioral-independent’marker for HRV.

This idea is based on the observed effects of autonomic neuroregulation on the
heart rate (summarized in Table 2).

global scaling {7) | multifractality (width of f(h))
SNS suppression  increases” preserves—
PNS suppression  increases” decreases,,

Table 2: The effects of suppression of sympathetic (SNS) and parasympathetic
(PNS) autonomic nervous systems on scaling and multifractal properties of heart
rate, for details, cf. [109].

The robust scale invariance in the probability density function of increments in
healthy human heart rate was reported by Stretild. in [110]: scale invariance
of PDF in a wide range of time lags betwebhand10® seconds wapreservedn
both quiescent and dynamic conditions. This result might indicate that autonomic
neuroregulation constantly converges the heart to a critical state [110]. An analogy
with other critical phenomena supports the hypothesis that the regulatory system
of the heart rate maximizes the ability of the heart to function under continually
changing external conditions.

4.3 Intermittency of heart rate

Multifractal spectrum addresses only one aspect of the non-Gaussianity of the
time series increments by revealing the possible range of scaling laws for the
long-range [at time-scale of many( 1) heartbeat intervals] dynamics of the
mean heart rhythm. However, the short-time variability of the heart rhythm is also
fluctuating in a complex manner. It has been pointed out that the NN-sequences
of healthy subjects consist of intertwined high- and low-variability periods [23].
This conclusion can be easily verified by a simple visual observation of the NN-
sequences, see Fig. 8 Rublication IV. The multifractal spectra fail to reflect
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all the features of the intertwining phenomena: the long-term correlations in the
dynamics of short-time variability ([112Rublication V), and the clustering of
periods of a similar mean heart rate [101]. The latter aspect was recently studied
by Ivanovet al.. they showed that there is a power-law segment-length distri-
bution of the segments with different mean heart rates, into which the heart rate
signal can be divided [101]. Switching between low and high levels of short-
term variability is another physiologically important aspect, because, typically,
low levels are caused by the heart being in a stressed state. The scale-invariant
aspects of such a behavior can be addressed by studying the length-distribution of
the low-variability periods.

4.4 Low-variability periods analysis

Here, the author provides a brief overview of the method based on the analysis
of low-variability periods in intermittent time series. The author first developed
this method for the analysis of HRV in 2001 (cf. [113]), and presented it at the
Euroattractor conference in 2002 (cf.Publication I). The author presented a
further study of low-variability periods distribution using this technique at the
Frontier Scienceconference in 2003 and published his result®irblication V.
Devising this method is a major part of the author’s research on short-time HRV,
or, to put it more generally, on multifractal intermittent time series.

In this approach, one defines local heart rate variahiljfy for eachi-th in-
terbeat interval as a deviation of the heart rate from the local average:

Lt (@) = (v (@), |
o) = {tnn (), ’

wheretyy (i) is the interval between two adjacent (with indiceand i + 1)
non-arrhythmic beats. The angular bra¢es)_ denote the local average over a
window of width . In the study, the local average was calculated using a narrow
(5 beats wide) Gaussian weight function. Thth interval is said to have low
variability in respect to some threshadglif its local variability does not exceed

(50:

(29)

(i) < . (30)

The low-variability period is defined as a set of consecutive low-variability in-
terbeat intervals; its lengthis measured in the number of heartbeats (see Fig. 1
in Publication V). Finally, the cumulative distribution function(r) is defined
as the number of periods with length> 7. Typically, the distribution-(7) for
heart rate revealsultiscalingproperties, i.e., within a certain range of scales, the
power law

r(7) oc 777000, (31)

is observed, the scaling exponentoeing a function of the threshold level
For a very low threshold parametéy, all the low-variability periods are very
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short, because it is difficult to satisfy the stringent condition (30). Also, in that
case, the inertial range of scales is too short for meaningful scaling. Contrary,
for a very high value oby, there is a single low-variability period occupying the
entire heart rate recording. Between these two extreme cases, there is such a range
of the values ofyy, which typically leads to a non-trivial scaling (see Fig. 2b in
Publication V).

In fact, the procedure of obtaining distributiofr) for low-variability periods
in the heart rate is equivalent to the procedure that was originally done by Harvard
linguist George K. Zipfin 1949 when studying the frequency-rank distribution of
the words in natural languages [114]. First, for a given language (e.g. English),
one can calculate the frequency of each word on the basis of a large set of texts.
Further, words are ranked according to their frequeficthe most frequent word
obtains rank- = 1, the second frequentr= 2, etc. It turns out that for a wide
range of ranks (starting with = 1), there is a power lawf (r) o« » (Zipf’'s
law), wherea ~ 1. Zipf’s law is universal; it holds for all the natural languages
and for a wide variety of texts. Furthermore, similar scaling laws describe the
rank-distribution of many other classes of objects as well. Thus, when cities are
arranged according to their populatienthe population of a city oc ¥, with
a =~ 1 [115]. Another example is the income-rank relationship for companies
(Pareto distribution; here we have again ~ 1. In the most general fornZ{pf-
Mandelbrot law, the law can be formulated &5 o< (r + 19)~%, and« is not
necessarily close to unity [98]. The Zipf-Mandelbrot law was found to apply to
the distribution of scientific articles according to their citation index [116], for the
distribution of internet sites according to the number of visitors [117], etc.

It is not surprising that the scaling behaviour (and Zipf's law) is not per-
fect. Indeed, the heart rhythm is a non-stationary signal affected by the non-
reproducible daily activities of the subjects. The non-stationary pattern of these
activities, together with their time-scales, is directly reflected in the distribution
r(7). This distribution can also have a fingerprint of the characteristic time-scale
(10-20 seconds) of the blood pressure oscillations, which modulate the level of
HRV [72]. It should be emphasized that the problem of non-reproducible daily
activities also affects the reliability of the other scale-invariant measures, and is
probably the main obstacle preventing the clinical application of the seemingly ex-
tremely efficient diagnostic and prognostic techniques. Finally, there is a generic
reason why scaling is nonperfect at big lengthsvhile Zipf's law is a statistical
law, each distribution curve is based only on a single measurement. In particular,
there is only one longest low-variability period (likewise, only one most-frequent
word), the lengthr of which is just as long as it happens to be; there is no aver-
aging whatsoever. For small lengthsthe relative statistical uncertainty can be
estimated as//7.

In Publication V, the author found that the scaling exponef,) (31), and
the width of the scaling range are mostly personal characteristics weakly corre-
lated with diagnosis (see Table 2 Rublication V). However, the distribution
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function of the low-variability periods(r) still contains a significant amount of
diagnostically valuable information: the overall number of low-variability peri-
odsrq: (Which is small, if there are a lot of long low-variability periods) and the
coordinates of specific points of th¢r)-curve provided a remarkable resolution
between the groups of patients (see Table Publication V). Found quantities
characterize the complex structure of the human HRV signal, where the short-time
variability level fluctuates intermittently, an aspect which is not addressed by the
other methods of HRV analysis (such as multifractal analysis based on fractional
Brownian motion).

One can argue that the analysisr6f) distribution in intermittent time series
is a simple alternative to conventional multifractal analysis providing higher time-
resolution. Indeed, in multifractal formalism, each point corresponding tottime
7 of the multi-affine time series(¢) is characterized by it®cal Hurst exponent
h:

lz(t +7) — z(t)] o 7", 7> 7 (32)

Herer > 7 states that increments of process) are studied for time lags much
greater than some small cut-off scale Thus, the effective time resolutian,;,,

is limited by this requirement to as low as;, > 7. Contrary, the approach

of low-variability periods has the effective time resolution of as high as cut-off
scalery ([118]). Also, it is shown that for the multifractal time series, the scaling
exponentsy(dy) are in one-to-one correspondence with multifractal spectra of the
underlying time series ([118]).

The developed method is not limited to heart rate analysis only. It has been
proven to be useful for the analysis of various intermittent nonstationary time
series like financial data ([118, 119]), and EEG multichannel analf&iblica-
tion VI andPublication VII ). The latter papers focus on the detection of subtle
changes in the intensity and time-variability of the human EEG at rest, produced
by low-level microwave exposure. These studies evaluate the hypothesis that mi-
crowave exposure affects the power spectrum and increases the variability of the
human EEG signahll hypothesis is that EEG recordings of subjects under expo-
sure cannot be distinguished from sham signals). In convenient EEG multichannel
analysis, one estimates the power spectral demBitf the EEG signal for certain
frequency bands: theta (4-8 Hz), alpha (8-13 Hz), and beta (13-40 Hz) rhythms.
Possible influence of microwave exposure is expected to be reflected in the change
of correspondingV -values. This approach detects the difference between signals
in frequency domain with good accuracy; meanwhile, its resolution in time is
limited by the window size (usually: 10° data points), and therefore cannot ad-
equately describe changes in the intermittency of intensity. The method based
on the distribution of low-variability periods was selected for the time-variability
analysis of the EEG signals, and resulted in the detection of a statistically signif-
icant effect of microwave exposure to the EEG signal for about 11% of subjects
and for none of the subjects in the case of sham recordings (see TabRub-in
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lication VII ). The formalism of low-variability periods was successfully applied
and elaborated further by Kitt and Kalda in their studies of financial time series:
currency rates and stock prices time series (c.f. [118]), as well as stock trading
volume time series (c.f. [119]).

Abstract

The thesidntermittency and long-range structurization of heart rébeuses on

the analysis of the human heart rate by methods of nonlinear dynamics. In this
thesis, the author gives an overview of the main research results in the study of
HRV during the last decades, and summarizes his own original results in this field.

Section 1 provides a summary of the approach of phase-space reconstruction
and addresses the skepticism in regard to estimating of the correlation dimension
of the heart rhythmPublication Il also discusses the interpretation of the scaling
exponent of the correlation sum in the case of the human heart rate. The paper
shows that in the case of the human heart rate (perhaps, excluding subjects with
severe heart pathologies), the scaling behavior of the correlation sum is a result of
the interplay of various factors: finite resolution of the apparatus, a wide dynamic
range of the mean heart rate, and the amplitude of short-time variability, which is
a decreasing function of the mean heart rate.

The author devises a simple but sensitive method for detecting the presence of
mode-locking between the heart rhythm and respiration. This quantitative method
is based on the univariate heart rate data analysis and thus does not require syn-
chronous recording of respiration rhythm. The approach is summarized in Section
3, and the detailed description with the obtained results are providedbhca-
tion Il andPublication IV .

Section 4 provides a comprehensive overview of the scale-independent ap-
proach to the study of the heart rate. The author elaborates a new aspect of the
multifractality of intermittentnonlinear time series: the scale-invariance of low-
variability periods. Publication | and Publication Il showed that the length-
distribution of low variability periods in the activity of the human heart rate typ-
ically has multi-scaling properties. This scale-invariance describes the long-term
dynamics of the short-time variability level of the heart rate, which is not ad-
dressed by classical multifractal analysis of HRRUblication V). The rank-
length distribution contains a significant amount of diagnostically valuable infor-
mation and efficiently discriminates between several heart patholdgidsi¢a-
tion IV). The method is universal: it was succesfully applied in analysis of EEG
signals Publication VI, Publication VII ) and financial data. Therefore, one can
argue that this novel approach is a simple alternative to conventional multifractal
analysis.
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Kokkuv Ote

Kaesolev witekiri Siddametitmi pikamastaabiline kord ja juhumuutlikkos kok-
kuvbte autori bost viimase nelja aasta jooksul Tallinna Tehnildedoli Kuber-
neetika Instituudi mehaanika ja rakendusmatemaatika osakonnas. Suur osa uur-
ingutest on tehtud tihedas koo8t Tallinna Diagnostika Keskusega. Doktodit”
kasitleb inimese wiameutmi l66gisageduse muutlikkust (SLM, inglise keeles
heart rate variability, HRY mittelineaarse driaamika meetodite abil. aitekirjas
antaksaulevaade SLM-i analisi peamistest tulemustest, mis on saadud viimaste
aastakimnete jooksul, ning tehakse koklatté autori originaaluuringutest selles
valdkonnas.

Esimeses osas antakdevaadeuhiajalise muutlikkuse mittelineaarsetestdn”™
tudest, mis phinevad rekonstrueeritud faasiruumil. Kriitilise pilguga on vaadel-
dud nende mdtude rakendatavustidamettmi analilisi jaoks. Publikatsioonis
Il on uuritud korrelatsioonisumma skaleeruvuaéaja rakendatavust SLM-i Kir-
jeldamisel ja on aidatud, et inimese SLM-i puhul ei ole aluséikKida madaladi-
mensionaalse deterministliku kaose avaldumisest. Seega formaalselt arvutatud
korrelatsioonidimensioon (mis onuddamilise kaootilise usteemi vabadusast-
mete arv) ei peegeldaudame sisemist deterministlikuuddamikat ja korrelat-
sioonisumma skaleeruvus on erinevate faktoritedmmistehnika ¢plik resolut-
sioon, keskmiseusdameutmi lai diinaamiline diapasoon jaliajalise muutlikkuse
amplituudi gltuvus keskmisestuslameutmist) koosnoju tulemus.

On arendatud lihtne kuid tundlik meetod hingamise yaahettd vahelise
stinkronisatsiooni leidmiseks. Meetodi idee on tutvustatud kolmandas osas ning
detailne kirjeldus ja saadud tulemused on tooBublikatsioonis Il ja Publikat-
sioonis IV.

Neljandas osas antakséevVaade mastaabi-invariantsetest meetoditest SLM-i
uurimistes. Tutvustatakse juhumuutlike mittelineaarsete aegridade multifraktaal-
suse uus aspekt: aikese muutlikkusega perioodide mastaabi-invariantsus. On
naidatud, et sdamettmi madala muutlikkusega perioodide jaotus nende kestvuse
jargi tliiipiliselt vastab multiskaleeruvale astmeseadugtlblikatsioon | ja Pub-
likatsioon 11). Selline mastaabi-invariantsus kirjeldatthidjalise SLM-i pikaa-
jalist diinaamikat, mida SLM-i klassikalised multifraktaalsed meetodidasitle
(Publikatsioon V). Vaikese muutlikkusega perioodide jaotusfunktsioon sisaldab
diagnoostiliselt kasulikut olulist lisainformatsioonipimialdades eristada patsiente
nende diagnoosieygi (Publikatsioon IV). Arendatud meetod on universaalne ja
seda on kasutatud inimese EEG signdililflikatsioon VI ja Publikatsioon VIl )
ning majanduslike aegridade anésis, mis #hendab, et see kujutab ennast klas-
sikalise multifraktaalse analisi lintsat alternatiivi.
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On the Zipf's Law in Human Heartbeat
Dynamics
M. Séikki, J. Kalda

Institute of Cybernetics, Tallinn Technical University, Estonia

It is shown that the distribution of low variability periods in the activity of human heart
rate typically follows a multi-scaling Zipf's law. The presence or failure of a power law,
as well as the values of the scaling exponents, are personal characteristics depending
on the daily habits of the subjects. Meanwhile, the distribution function of the low-
variability periods as a whole discriminates efficiently between various heart patholo-
gies. This new technique is also applicable to other non-linear time-series and reflects
these aspects of the underlying intermittent dynamics, which are not covered by other
methods of linear- and non-linear analysis.

Key words: medical physics, data analysis

1. Introduction

The non-linear and scale-invariant aspects of the heart rate variability (HRV) have been
studied intensively during the last decades. This continuous interest to the HRV can be
attributed to the controversial state of affairs: on the one hand, the non-linear and scale-
invariant analysis of HRV has resulted in many methods of very high prognostic per-
formance (at least on test groups) [1-4]; on the other hand, practical medicine is still
confident to the traditional “linear" methods. The situation is quite different from what
has been observed three decades ago, when the “linear" measures of HRV became
widely used as important non-invasive diagnostic and prognostic tools, soon after the
pioneering paper [5]. Apparently, there is a need for further evidences for the superiority
of new methods and for the resolution of the existing ambiguities.

During recent years the main attention of studies has been focused on the analysis of the
scale-invariant methods. It has been argued that measures related to a certain time-scale
(e.g. 5 min) are less reliable, because the characteristic time-scales of physiological pro-
cesses are patient-specific. The scale-invariant measures are often believed to be more
universal and sensitive to life-threatening pathologies [1, 2]. However, carefully de-
signed time-scale-related measures can be also highly successful, because certain
physiological processes are related to a specific time scale [3].
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The scale invariance has been exclusively seen in the heart rthythm following the
(multi)fractional Brownian motion (fBm) [6]. It has been understood that the heart
rhythm in a very complex manner and reflects the activities of the subject (sleeping,
watching TV, walking etc.) [7, 9] and cannot be adequately described by a single Hurst
exponent of a simple fBm. In order to reflect the complex behaviour of the heart
rhythm, the multi-affine generalization of the fBm has been invoked [1, 2]; it has been
claimed that the multifractal scaling exponents are of a significant prognostic value.

The approach based on fBm addresses long-time dynamics of the heart rhythm while
completely neglecting the short-scale dynamics on time scales less than one minute (the
respective frequencies are typically filtered out [6]). The short-time variability has been
described only by the so called linear measures, such as pyyso (the probability that two
adjacent normal heart beat intervals differ more than 50 milliseconds). Meanwhile, the
level of the short-time variability of the human heart rate varies in a very complex man-
ner, the high- and low-variability periods are deeply intertwined [7]. This is a very im-
portant aspect, because the low-variability periods are the periods when the heart is in a
stressed state, with high level of signals arriving from the autonomous nervous system.
The conventional linear measures are not appropriate for describing such a complex be-
haviour. Thus, there is a clear need for suitable non-linear methods.

2. Problem Formulation

Our analysis is based on ambulatory Holter-monitoring data (recorded at Tallinn Diag-
nostic Centre) of 218 patients with various diagnoses. The groups of patients are shown
in Table 1. The sampling rate of ECG was 180 Hz. The patients were monitored during
24 hour under normal daily activities. The preliminary analysis of the ECG recordings
was performed using the commercial software; this resulted in the sequence of the nor-
mal-to-normal (NN) intervals #yy (measured in milliseconds), which are defined as the
intervals between two subsequent normal heartbeats (i.e. normal QRS complexes).

Originally, the Zipf's law addressed the distribution of words in a language [11]: every
word has assigned a rank, according to its “size" f, defined as the relative number of oc-
currences in some long text (the most frequent word obtains rank » = 1, the second fre-
quent 7 = 2, etc). The empirical size-rank distribution law f{r) ~ % is surprisingly uni-

Tab. 1: Test groups of patients. Abbreviations are as follows: IHD - Ischemic Heart
Disease (Stenocardia); SND - Sinus Node Disease; VES - Ventricular Extrasystole; PCI
- Post Cardiac Infarction; RR - Blood Pressure Disease; FSK - Functional Disease of
Sinus Node.

Healthy | THD | SND | VES | PCI | RR FSK
No of patients 103 8 11 16 7 11 6
Mean age 45.5 654 | 50.0 | 559 | 473 | 555 11.7
Std. dev. of age 20.5 114 | 193 143 | 116 | 144 4.6

2
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versal: in addition to all the tested natural languages, it applies to many other phenom-
ena.

The scaling exponent is often close to one (e.g. for the distribution of words). Typically,
the Zipf's law is applicable to a dynamical system at statistical equilibrium, when the
following conditions are satisfied: (a) the system consists of elements of different size;
(b) the element size has upper and lower bounds; (c) there is no intermediate intrinsic
size for the elements. As already mentioned, the human heart rhythm has a complex
structure, where the duration 7 of the low-variability periods varies in a wide range of
scales, from few to several hundreds of heart beats. Thus, one can expect that the distri-
bution of the low-variability periods follows the Zipf's law

F~T". D

However, the scaling behaviour should not be expected to be perfect. Indeed, the heart
rate is a non-stationary signal affected by the non-reproducible daily activities of the
subjects. The non-stationary pattern of these activities, together with their time-scales, is
directly reflected in the above mentioned distribution law.

This distribution law can also have a fingerprint of the characteristic timescale (around
ten to twenty seconds) of the blood pressure oscillations. Finally, there is a generic rea-
son why the Zipf's law fails (or is non-perfect) at small rank numbers. The Zipf's law is
a statistical law; meanwhile, each rank-length curve is based on a single measurement.
Particularly, there is only one longest low-variability period (and likewise, only one
most-frequent word), the length of which is just as long as it happens to be, there is no
averaging whatsoever.

To begin with, we define the local variability for each (i-th) interbeat interval as the de-
viation of the heart rate from the local average,

(1) = [tan(@) — [tn(@D]1] / [tan(D]. @

The angular braces denote the local average, calculated using a narrow (5 beats wide)
Gaussian weight function. Further, we introduce a threshold value &; i-th interbeat in-
terval is said to have a low variability, if the condition

o) < & 3)

is satisfied. A low-variability period is defined as a set of consecutive low-variability
intervals; its length 7 is measured in the number of heartbeats. Finally, all the low-
variability periods are arranged according to their lengths and associated with ranks.
The rank of a period is plotted versus its length in a logarithmic graph, see Fig. 1; Zipf's
law would correspond to a straight descending line.
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Fig. 1: Multi-scaling distribution of the low-variability periods: the rank r of a period is
plotted versus its duration T (measured in heartbeats) for different values of the thresh-
old parameter §,,.

Fig. 2: Rank-length curves for a patient with a good power law (a) and for a patient
with no power law (b). In both cases, the threshold parameter §,= 0.05.
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3. Problem Solution

For a very low threshold parameter &, all the low-variability periods are very short, be-
cause it is difficult to satisfy the stringent condition (3). In that case, the inertial range of
scales is too short for a meaningful scaling law. On the other hand, for a very high value
of &, there is a single low-variability period occupying the entire HRV-recording. Be-
tween these two cases, there is such a range of the values of §;, which leads to a non-
trivial rank-length law. For a typical healthy patient, the r(7)-curve is reasonably close
to a straight line, and the scaling exponent is a function of the threshold parameter &.
Thus, unlike all the other well-known applications of the Zipf's law, we are dealing with
a multi-scaling law.

Recently, Ivanov et al. [2] have reported that anomalous multifractal spectra of the HRV
signal indicate an increased risk of sudden cardiac death. Therefore, it is natural to ask,
does the presence or failure of the multiscaling behaviour indicate the healthiness of the
patient? In what follows we discuss a somewhat more general question: what is the re-
lationship between the properties of the distribution function of the low variability peri-
ods and the diagnosis of the patient. Testing the prognostic significance for predicting
sudden cardiac death, which is also of a great importance, has been postponed due to the
nature of our test groups.

First, let us analyse the correlation between the diagnosis of a patient and the scaling
exponent To begin with, we have to determine the optimal value for the threshold pa-
rameter &. For a meaningful analysis, the scaling behaviour should be as good as possi-
ble. It turned out that for a typical patient, the best approximation of the function r(7)
with a power law is achieved for 8, = 0.05 (see Fig. 2a); in what follows, all the values
of the exponent are calculated for § = 0.05. It should be noted that for some patients,
the length-rank distribution is still far from a power law (see Fig. 2b).

The slope of a curve on the logarithmic plot is calculated using root-mean-square (rms)
fit for such a range of lengths [Ty, Tenal, for which the r(7)-curve is nearly a power law,
and the scaling range width A = In7,,4 - In 7y, is as large as possible. Bearing in mind
the statistical nature of the Zipf’s law and non-stationarity of the underlying signal, we
have chosen a not very stringent definition of what is “nearly a power law”, see Fig. 3.
Around the rms-fit-line, two limit lines are drawn; 7y, and 7., end correspond to the
points, where the r(7)-curve crosses the limit lines.

Note that the precise placement and shape of the limit lines is arbitrary, i.e. small varia-
tions do not lead to qualitative effects. Here, the distance of the limit lines from the cen-
tral line has been chosen to be In 2 at 7= 7,,,, and zero at 7= 1, where 7,,,, is the length
of the longest low-variability period. Admitting mismatch In 2 at 7 = 17, is motivated
by the observation that due to the lack of any statistics, the longest low-variability pe-
riod could have been easily twice as long as we measured it to be.

However, the above mentioned effect of the non-stationary pattern of the subjects daily
activities makes the situation more complicated. There is no easy way to quantify this
effect and therefore, we opted for the simplest possible solution, simple straight limit
lines.
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Fig. 3: Definition of the width of the scaling interval A. The rank-length curve is fitted
with a power law; the boundaries of the scaling interval are defined as the intersection
points of limit lines and 1(T)-curve.

Fig. 4: Definition of the parameters ts,, 199, and 1.

The scaling exponent has been calculated for all the patients and Student test was ap-
plied to every pair of groups. In most cases, the significance was quite low; two best
distinguishable groups were RR and FSK, the result of Student test being 5.7%. There-
fore, one can argue that the slopes of linear parts are highly personal characteristics de-
pending also on the daily habits of the subjects, which are weakly correlated with diag-
nosis. Further we tested, how is the failure of the power law correlated with the diagno-
sis. The width of the scaling range A was used as a measure of how well the curve is

6
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Tab. 2: p-values of the Student test. Data in the topmost triangular region (with label A)
are calculated using the parameter In T, Triangular region B corresponds to the pa-
rameter In 1, region C - to In ry, and region D - to In T4. Gray background high-
lights small p-values, p < 10%.

corresponding to a power law. The Student test results for the parameter A turned out to
be similar to what has been observed for the parameter the correlation between the fail-
ure of the power law and diagnosis was weak. Thus, a rank-length curve resembling the
one depicted by a dashed line in Fig. 2, does not hint to heart pathology. It should be
also noted that the dashed curve in Fig. 2 can be considered as a generalized form of
scale-invariance with scale-dependent differential scaling exponent.

Finally, we analysed the diagnostic significance of the parameters In 7.,q and In Ty,.
This analysis does make sense, because typically, the start- and end-points of the scaling
range correspond to certain physiological time-scales. The parameter In 7,4 provided,
indeed, a remarkable resolution between the groups of patients, see Table 2.

According to the Student test, the healthy patients, were distinct from five heart pathol-
ogy groups with probability p < 1.6%. The parameter In 7,, was diagnostically less sig-
nificant.

Unfortunately, the calculation of the parameter 7., is technically quite a complicated
task, not suited for clinical practice. Therefore, we aimed to find a simpler alternative to
it. Basically, the strategy was to find a simple parameter reflecting the behaviour of the
rightmost (large-7) part of the r(7)-curve. An easy option is In 7, which has been al-
ready analysed [10]. This parameter has indeed a considerable diagnostic value, but its
reliability is decreased by the above discussed statistical fluctuations. Better alternatives
are provided by (a) the overall number of low-variability periods r,, (wWhich is small, if
there are lot of long low-variability periods); (b) the coordinates of specific points of the
rank-length curve. Here we chose a set of critical ranks R = 10, 20 or 40, and determined

7
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the respective lengths 7z so that r(7z ) = R. We also fixed a set of critical length values, T
= 50, 100, or 200, and determined the respective rank numbers r; = r(T), see Fig. 4.
Both techniques turned out to be of high diagnostic performance; illustrative p-values
are given in Table 2. Parameters 1), and 7,, performed less well than 74, (for instance,
the p-values for the healthy and VES-subject groups were 0.60%, 0.58% and 0.34%, re-
spectively), and are not presented in tabular data. Similarly, r,o turned out to be more
efficient than rso and ryg (the respective healthy and VES-group p-values being 0.02%,
0.01%, and 0.09%). It also outperforms 7, but is sometimes less efficient than r,,,, or
T.na (see Table 2). Hence, various heart pathologies seem to affect the heart rate dynam-
ics at the time scale around 100 heart beats (one to two minutes).

4. Conclusion

In conclusion, new aspect of non-linear time-series has been discovered, the scale-
invariance of low-variability periods. We have shown that the distribution of low vari-
ability periods in the activity of human heart rate typically follows a multi-scaling Zipf's
law. The presence or failure of a power law, as well as the values of the scaling expo-
nents, are personal characteristics depending on the daily habits of the subjects. Mean-
while, the distribution function of the low-variability periods as a whole contains also a
significant amount of diagnostically valuable information, the most part of which is re-
flected by the parameters riqp, max» and Teng, Se€ Table 2. These quantities characterize
the complex structure of HRV signal, where the low- and high variability periods are
deeply intertwined, aspect which is not covered by the other methods of heart rate vari-
ability analysis (such as fractional Brownian motion based multifractal analysis). This
new technique is also applicable to other non-linear time-series, such as EEG signals
and financial data [8]. As a future development, it would be of great importance to ana-
lyse the prognostic value of the above mentioned parameters for patients with sudden
cardiac death.
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Mittelineaarsed meetodid sidame
lodgisageduse muutlikkuse hindamisel
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EKG monitooringu andmetel
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sudame l66gisugeduse muutlikkus, HRV, ambulatoorne EKG monitooring, mittelineaarne dinaamika

Stidame l68gisagedus ja siidame 166gisageduse muutlikkus on sidamehaiguste puhul olulised
parameetrid, mida kasutatakse nii diagnostilistel eesmarkidel kui prognoosi maéramisel. Seni on
nimetatud otstarbel kasutatud valdavalt lineaarseid meetodeid standarditud eeskirjade alusel.
Artiklis on antud teoreetiline Glevaade sidame 166gisageduse muutlikkuse mittelineaarsetest
karakteristikutest ning tehtud kokkuvéte autorite originaaluuringutest mittelineaarsete meetodite
rakendamisel sidame 168gisageduse muutlikkuse méaé&ramisel sidamehaigetel.

Tanapdeval kasutatakse hulgaliselt véiga erinevaid
meetodeid, et vélja selgitada krooniliste haiguste
seni veel tundmatuid riskitegureid. Paljud lihtsalt
mé&ératavad néitajad, mida on véimalik jélgida
pikema aja viltel, on arvatud oluliste riskifaktorite
hulka, kuigi nende usaldusvédrsus ja prognostiline
tdhendus igapdevases arstipraktikas on sageli
veenvalt tdestamata. Sidame 166gisagedus ja
sidame l66gisageduse muutlikkus (SLM, heart rate
variability - HRV] kui erinevate krooniliste haiguste
riskitegurid on viimastel aastakimnetel olnud
paljude uurimistédde huviobjektiks. SLMi
méddetakse ja analiisitakse standarditud
eeskirjade alusel, kasutades selleks ildjuhul vaid
lineaarseid meetodeid (1). SLM lineaarseid
meetodeid ning nende osa erinevate sidame- ja
veresoonkonnahaiguste puhul on ka Eesti Arstis
varem pdhjalikult kasitletud (2). Mittelineaarsete
meetodite osas on viimase kimne aasta jooksul
toimunud olulised nihked arusaamades ja kohati
on uurimistéd tulemused olnud véga paljulubavad.
Artikli eesmérgiks on anda ilevaade olulise-
matest saavutustest selles valdkonnas ning teha
kokkuvéte oma originaaluuringutest, mille sihiks oli
dppida méétma ja analiisida diagnostilise
tahenduse seisukohast selliseid SLM aspekte, mille

iseloomustamist pole seni tuntud meetodid véimal-
danud.
SLM mittelineaarsed karakteristikud véib
ligitada jargmiselt:
1. Rekonstrueeritud faasiruumil pshinevad méédud
(mitmesugused entroopiad, korrelatsioonidimen-
sioon, Ljapunovi astmenditajad jms): suurused, mis
kirieldavad lihiajalist muutlikkust.
2. Mastaabi-invariantsed méédud (Hursti astme-
naitaja, multifraktaalne spekter, multi-mastaabiline
entroopia jms): méddud, mis kirjeldavad sidame
|65gisageduse muutuste pikemaaijalisi seoseid.
3. Mastaabi-spetsiifilised méodud: teatud kindla
ajamastaabiga seotud lainekeste amplituud.
4. Juhumuutlikke aspekte kirjeldavad méadud, mis
tuginevad teatud ajaintervallide pikkusjaotusele
(Zipfi seadus); ajaintervallid véivad olla saadud
kas vahese muutlikkuse v&i keskmise sidamelédgi
intervalli alusel fragmenteerimise tulemusel.
Allpool on vastavalt toodud klassifikatsioonile
vaadeldud neid mééte lghemalt.

1. Rekonstrueeritud faasiruumil péhinevad
m&8dud. See et siinussdlme ja atrioventrikulaarse
sélme poolt moodustuv sidameritmi genereeriv
sisteem on vaadeldav seostatud mittelineaarsete
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ostsillaatoritena (piltlikult nagu kaks pendlit, mis
on omavahel kummipaelaga ihendatud), on ild-
tunnustatud asjaolu (3, 4). See mudel kirjeldab edu-
kalt mitmeid n&htusi (nt Wenckebachi ja Mobitzill tiiipi
sidame-ritmihdireid ja bistabiilset k&itumist (4)).

Niisiis voiks arvata, et mittelineaarse diinaamika
meetodid on sobilikud ka SLM kirjeldamiseks.
Selliseks meetodiks on naiteks korrelatsiooni-
dimensiooni arvutamine: see on suurus, mis kirjel-
dab diinaamilise kaootilise sisteemi vabadus-
astmete arvu ja mida véib vaadelda ka sisteemi
keerulisuse m&drana. Teisteks olulisteks m&studeks
on Ljapunovi eksponendid ja Kolmogorovi
entroopia (s.o suurima Ljapunovi eksponendi
keskvédrtus). Suurim Ljapunovi eksponent kirjeldab
seda, kui tundlik on siisteem algtingimuste suhtes
(s.t kui muuta vahesel madral algtingimusi, siis
millise aja pdrast on see muutus kasvanud oluliselt
tuntavaks); neid véib vaadelda kui kaootilisuse
madrasid. Ka Shannoni, ligikaudne (approximate),
kujundi- (pattern) jt entroopiad on siisteemi
kaootilisuse méstudeks.

Esimesed sidame 166gisageduse mittelineaar-
sust uurivad t66d olidki pihendatud mainitud suurus-
tele, sh teedrajav vurimus (5). Jouti jareldusele, et
terve sida on kaootilisem kui haige siida. Terve
sidame puhul leiti, et korrelatsioonidimensioon on
vahemikus 3,6 kuni 5,2.

Ténaseks pdevaks on aga aru saadud, et
tegelikult méngivad SLM korral madravat rolli
autonoomsest nérvisisteemist saabuvad impulsid,
mis oma loomult ei ole deterministlikud (s.t ei ole
pend|i v6i muu mehaanilise sisteemi sarnase kaitu-
misega) ja mida on ksige digem vaadelda juhu-
muutliku mirana. Niisiis, formaalselt véib kiill
arvutada mittelineaarse diinaamika méste
(korrelatsioonidimensiooni jt), kuid need ei
kirielda seda, mille kirjeldamiseks nad on vélja
mé&eldud.

On kiill t&si, et terve sida kaitub Gldjuhul haigest
sidamest néiliselt kaootilisemalt, kuid see pole
tingitud mitte sellest, et mittelineaarsel ostsillaatoril
sidame sees on vabadusastmeid rohkem véi
Liapunovi astmenditaja on suurem. P&hjuseks on
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see, et terve siida suudab kohaneda méarksa
ulatuslikuma autonoomsest nérvisiisteemist
saabuva sidame 68gisagedust reguleeriva
signaalidevooga, kui seda teeb haige sida. Seega
suudab terve siida muuta 166gisagedust kiiremini
ja suuremas vahemikus. Nimetatud asjaolu tttu
on ka terve sidame korrelatsioonidimensioon (jmt
parameetrid) suurem. Korrelatsioonidimensioon on
konstrueeritud, et kirjeldada teistsugust fiusilist
olukorda, seega pole ta kaugeltki optimaalseks
SLMi kirjeldavaks suuruseks ja allpool kirjeldatud
suurused on marksa adekvaatsemad.

Vaadeldud suuruste arvutamiseks kasutatakse
nn rekonstrueeritud faasiruumi, mille dimensioonide
arv N véib olla milline tahes (kuid mitte véiga suur,
N >6 puhul muutub arvutatavate suuruste statistiline
usaldatavus faktiliselt olematuks). Korrelatsiooni-
dimensiooni arvutamisel tuleb vaadelda mitmeid
N véartusi (N =2, 3, 4, 5, 6). Sageli piirdutakse
kolmem&sétmelise ruumiga (nt mitmesuguste
entroopiate arvutamisel]. Kolmemé&tmelise
rekonstrueeritud faasiruumi puhul mééravad kolm
jcrjestikust sidamel&dgi intervalli &ra ruumipunkti:
esimene neist on punkti x-koordinaadiks, teine y-
koordinaadiks ja kolmas z-koordinaadiks. Méni-
kord kasutatakse rekonstrueeritud faasiruumi
asendajana simbolarvutust: sidamelddgi
intervallile omistatakse teatav téht (a, b jne)
vastavalt intervalli pikkusele; jarjestikused tdhed
moodustavad séna.

Kokkuvétteks: kaik rekonstrueeritud faasiruumil
p&hinevad suurused méddavad sidameritmi
[Ghiajalist (méne sekundi jooksul toimuvat)
muutlikkust, pakkudes seega alternatiivi lineaarsele
méddule pNNS5O ning sellega seoses véivad
omada teatavat (kuid mitte revolutsiooniliselt uut)
diagnostilist vaartust (vt nt viide 6).

2. Mastaabi-invariantsed, Hursti astme-
néitajal péhinevad méédud annavad lineaar-
sefe suurustega vorreldes uudset informatsiooni,
kirjeldades seda, kuidas toimub ajamastaabi
kasvades l66gisageduse muutlikkuse kasv.
Uurimaks keskmise |8&giintervalli dinaamikat



vabanetakse esmalt muutlikkuse kdrgsageduslikust
(ménesekundilisest) komponendist. Edasi uuritakse,
kuidas séltub ajavahemiku T jooksul téheldatava
|66giintervalli muutuse ruutkeskmine védrtus At
ajavahemikust T. Kui At on vérdeline T teatava
astmega H, siis nimetatakse H-d Hursti astme-
nditajaks. Mitmed vurimused kinnitavad, et kas
vahetult véi teatud tdiustatud tehnikat kasutades
leitud H v&drtus véimaldab prognoosida sidame-
puudulikkusega patsientide suremust (7-9).
Téiustatud tehnikana mainigem trendi eemaldavat
fluktuatsioonianaliisi (detrended fluctuation
analysis, DFA) (8) ja lainekeste teisenduse
meetodit (9).

Veelgi tdiuslikumaks meetodiks on Hursti astme-
néitaja multifraktaalse spektri arvutamine (10, 11).
Kui iga ajahetke jaoks arvutada lokaalne (vaikest
aja-akent kirjeldav) Hursti astmendaitaja h, siis véib
arvutada teatava h védrtusega punktide hulga
fraktaalse dimensiooni f. Funkisiooni f(h) nimeta-
taksegi multifraktaalseks spekiriks (ka Lipschitzi-
Holderi astmenditajaks). Selle spekiri leidmiseks
kasutatakse harilikult nn massi-astmenaitajaid T(g),
mis kirjeldavad lainekeste teisenduse amplituudi g-
nda astme keskvddrtuse sdltuvust lainekeste
pikkusest (s.t ajamastaabist). On leitud, et massi-
astmenéitajad ise véivad olla heaks prognostiliseks
médduks (11). Massiastmenditajaga on vdga
tihedalt seotud g-ndat jarku struktuurifunktsiooni
astmenditaja {(q) (12), mille erinevus funktsioonist
T(q) on peamiselt tehnilist laadi. Struktuurifunktsiooni
mdiste on pdrit tugeva turbulentsi teooriast.

Mastaabi-invariantseks méduks on ka nn multi-
mastaabiline entroopia (13), mis on eespool
mainitud astmenditajatest suhteliselt sdltumatu,
sarnanedes nendega siiski selle poolest, et kirjeldab
samuti ile ajaperioodi T keskmistatud sidamel&dgi
intervalli muutlikkuse taset séltuvuses perioodist T.
On leitud, et see suurus véimaldab hdsti eristada
sidamepuudulikkusega patsiente.

3. Mastaabi-invariantsete muutlikkuse
mdodtude puhul arvatakse, et kuivérd nad ise-
loomustavad muutlikkuse trendi ja ei ole seotud

hegi konkreetse ajamastaabiga, siis ei séltu nad
patsiendispetsiifilistest detailidest, vaid négitavad
eeskatt patoloogilisi muutusi (11). Samas on juhitud
tdhelepanu, et méned patoloogiad véivad
méjutada sidamel6dgi intervalli muutlikkust teatud
kindla ajamastaabi juures ja sellisel korral tuleks
kasutada just mastaabispetsiifilisi md&te (14). Nii
on leitud, et lainekeste spekiri amplituud teatava
lainekese pikkuse (nt 5 min) juures annab haid
prognostilisi tulemusi (14). Vérreldes lineaarsete
médtudega ei anna see amplituud aga kardi-
naalselt vut informatsiooni; pigem on tegemist
suuruse SDANN peenviimistletud variandiga.
Séltumatud uurimused (15) on siiski ndgidanud, et
mastaabi-invariantsed suurused annavad prog-
nostiliselt paremaid tulemusi.

4. Juhumuutlikke aspekte kirjeldavad
méddud. SLM on tugevalt mittestatsionaarne ja
juhumuutlik. Veidi lihtsustatult téhendab see, et olles
vurinud tema dinaamikat teatava ajavahemiku
jooksul, on v&imatu usaldusvédrselt ennustada
jrgmise samasuguse perioodi jooksul toimuvat.
Teatud perioodi jooksul véib olla 166gisageduse
muutlikkus hésti vaike, seejdrel aga vaib 168gi-
sagedus hakata kiiresti muutuma. Keskmine 166gi-
sagedus voib olla pikka aega vaike, seejdrel
hipata sageli iles-alla. Sellise kaitumise
kirjeldamiseks on uuritud niisuguste perioodide
pikkusjaotust, mille kestel on keskmine [66gi-
sagedus enam-vihem konstantne (16). Nghtuse
teine aspekt on see, et ka vaikse muutlikkusega
perioodid jaotuvad pikkuse jargi suhteliselt
keerulisel moel ning vastavat jaotusseadust
kirijeldavaid parameetreid véib kasutada
diagnostilistel eesmarkidel (17). Informatsioon,
mida need parameetrid pakuvad, on vudne, sest
vaadeldav jaotusseadus kirjeldab SLM niisuguseid
aspekte, mida ei kirjelda ei lineaarsed ega ka teised
mittelineaarsed méddud - seda, kuidas kaitub
[ghiajaline muutlikkus pikema perioodi jooksul.
Oma uvurimistéds (vt allpool) oleme kasutanud
juhumuutlikke aspekte kirjeldavate mé&tude hulka
kuuluvaid SLM parameetreid.
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Fisioloogiliste signaalide keerukuse (complexity)
madramine tervetel isikutel ja teatud haiguste (sh ka
sidamehaiguste) korral on olnud viga paljude
kliiniliste uurimistédde huviobjektiks (13, 19).
Selleks on kasutatud lisaks traditsioonilistele SLM
parameetritele ka uuemaid meetodeid, mida on
rakendatud eelkdige mittelineaarse diinaamika
(kaoseteooria) ja fraktaalanaliisi valdkonnas
(19-21). Ka meditsiinis on kasutusele véetud
aproksimaalse entroopia (ApEn) méiste kui siisteemi
"keerukust” iseloomustav nditaja (22). Seda on
rakendatud inimloote sidametegevuse ning loote
ildseisundi hindamisel kliinilises praktikas enam kui
15 aasta valtel (23, 24). Peale traditsiooniliste
vurimismeetodite on nditeks uuritud patsientide
hingamissageduse karakteristikuid mittelineaarse
dinaamika meetoditega avastamaks erinevusi
normaalsete isikute ning paanikahdiretega
patsientide vahel (25). Lisaks tavapérastele meeto-
ditele rakendatakse mittelineaarseid SLM
parameetreid edukalt ka sidamelihase infarkti
pddenud haigete prognoosi madramiseks (26, 27).
Analiisiks kasutatakse nii EKG lihiajalise
registreerimise (5 min, 15 min, 1000 QRS-
kompleksi) kui ka 24tunnise ambulatoorse EKG
monitooringu tulemusi (21).

Uurimist66 eesmaérk on rakendada uusija seni
veel kasutamata mittelineaarseid SLM para-
meetreid erinevate sidamehaiguste puhul regis-
treeritud 24 tunni ambulatoorse EKG monitor-
jdlgimise andmete analijisil.

Uurimismaterjal ja-metoodika

Uuringusse kuulus 156 patsienti. Patsiendid jagati
vastavalt kliinilisele diagnoosile kuude rihma: | rihm
(n=103) - terved isikud; Il (n = 8) - sidame isheemio-
tévega haiged; Ill (n = 11) - siinussélme nérkuse
sindroomiga haiged; IV (n = 16) - ventrikulaarse
ekstrasiistooliaga haiged; V (n = 7) - miokardiinfarkti
pddenud haiged, VI (n = 11) - hipertooniatébe
p&devad haiged. Andmed uuritavate rihmade kohta
on esitatud tabelis 1. Patsiendid kasutasid uuringu véltel
ravimeid tavapdrases annuses ja reziimis.
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Tabel 1. Uuritud patsiendirihmad

Terved IHD SND VES PClI RR
Patsientide arv 103 8 11 16 7 11
Keskmine vanus 455 654 50,0 559 473 555

Vanuse standardhélve 205 11,4 193
24 t keskmine stidame

l60gisagcdus 72,7 684 64 745 657 632
Sageduse standardhéalve 10,7 7,4 11,3 9,8 85 98
IHD — stidame isheemiatdvega haiged, SND — siinuss6ime
norkuse stindroomiga haiged, VES — ventrikulaarse
ekstrasustooliaga haiged, PCI — muokardiinfarkti pédenud
haiged, RR — hiipertooniat6be p&devad haiged.

143 116 144

Ksigile vuritavatele tehti 24 tunni ambulatoorne
EKG monitorjélgimine (Holteri monitooring)
Tallinna Diagnostikakeskuses. Kasutati firma Rozinn
(USA) kolmekanalist jéalgimissisteemi modifit-
seeritud lilitustega 1, V1 ja V5. EKG signaali
m&dtmissagedus (sampling rate) oli 180 Hz ja
signaali ajaline lahutusvéime (resolving power]
6 ms. Kasutades kommertstarkvara, toimus riitmi-
hairete ning artefaktide elimineerimine kardioloogi
poolt enne RR-intervallide m&aramist (NN).
Andmete analiiisimisel rakendati 24 tunni véltel
registreeritud parameetreid. Andmeid t6&deldi
vastavalt joonisel 1 esitatud skeemile.

Uuriti véihese muutlikkusega perioodide pikkus-
jaotust (17). Esmalt tehti kindlaks vaikse muutlik-
kusega intervalli kui sellise intervalli, mille suhteline
erinevus libisevast keskmisest on suurem kui teatav
fikseeritud vaartus 9. Libisev keskmine leitakse
lGhiajalise, 5sekundilise aknaga; allpool toodud
tulemuste puhul on kasutatud vaartust &, = 5%.
Véikse muutlikkusega perioodiks nimetame jdrjes-
tikuste vaikse muutlikkusega intervallide hulka
(s.t suure muutlikkusega intervall |8petab véikse
muutlikkusega perioodi). Jarjestades vaikse
muutlikkusega perioodid pikkuse | jargi (kus | on
perioodis sisalduvate intervallide arv) ning
omistades igale perioodile jériekorranumbri r (nii
et pikim periood omab jériekorranumbrit r= 1),
saame séltuvuse r(l). Joonisel 2 on toodud see
séltuvus logaritmilises teljestikus, kus astme-
seadusele r = AlY vastaks sirgjoon (sirge téus on
médratud astmenditajaga ). Paljudel patsientidel
ongi vaikse muutlikkusega perioodide pikkus-
jaotuseks astmeseadus, kuid sageli on sellest ka



Tabel 2. p-viidrtused vastavalt Studenti testile

p(%) Terved IHD SND VES PClI RR
Terved B~_A 0,06 17,21 002 007 1,59
IHD 0,36 2,85 96,79 97,62 21,93
SND 2,99 59,10 210 3,04 2577
VES 0,08 91,60 63,79 94,18 17,59
PCI 2527 21,61 46,37 22,89 22,50
RR 0,14 7357 77,69 80,49 28,90

Terved D~C 7,01 10,01 001 098 4,34
IHD 3,89 2,70 4588 62,20 74,98
SND 0,64 0,10 144 340 323
VES 8,83 64,71 0,15 346 16,26
PCI 1493 099 331 198 12,63
RR 21,58 1,07 1,94 238 7025

Kolmnurgas A toodud arvud vastavad karakteristikule
In(l,,), kolmnurgas B In(r,_)-le, kolmnurgas C pnn50-le

ax:

ja kolmnurgas D SDNN-le. Arvu taust on hall siis, ku
modifitseeritud Bonferroni meetodi jargi korrigeeritud
p-véaartus jaab alla 10%.

mérgatavaid kérvalekaldeid (vt jn 2). Selgub, et
astmeseaduse olemasolu véi selle puudumine ei
ole diagnoosiga méarkimisvéarses korrelatsioonis,
vaid séltub eeskétt patsiendi igapdevastest
tegevustest ja harjumustest - sellest, millises
vahekorras on kehaliselt aktiivne tegevus, istumine,
sédmine, lamamine jm (vt ka 18); siiski peitub
vaadeldavas jaotusseaduses ka olulist diagnostilist
informatsiooni. Loomulikult méjutavad igapéeva-
sed harjumused ka kaiki teisi eelmainitud
mittelineaarseid médte, see asjaolu on aga sageli
jddnud piisava tihelepanuta. Vaib 6elda, et teatud
SLM mé&6t on seda parem, mida tundlikum on see
patoloogiate suhtes ning mida véhem tundlik
patsiendi igapéevaste harjumuste ja tegevuste
suhtes.

Uurimistulemused ja arutelu

Tabelis 2 on toodud Studenti testi tulemused vaikse
muutlikkusega perioodide jaotust kirjeldavate
parameetrite In(l,.q) ja In(r...) jdrgi (tegemist on
naturaallogaritmidega suurusest | g jO M
esimene neist on logaritmilises teljestikus lineaarse
osa |dpp-punkti l-koordinaat, teine aga suurim
j@riekorranumber, mis on seda vdiksem, mida
rohkem on véikse muutlikkusega pikki perioode).
Vérdluseks on toodud kaks lineaarset karakteristikut,
pnn50 ja SDNN. Vétmaks arvesse nn nullhipoteesi
v&imalikkust (reaalset korrelatsiooni pole, vaikesed

EKG salvestamine

Signaali digitaliseerimine 2
&
o ¢ &P
QRS-komplekside ja & 1@ €

; > K &8
RR-intervaliide & (" 50"

identifitseerimine

Standardsed

ASCII =
lineaarsed m66dud |andmefail Mastaabiinva-
riantsed méodud

Uurimistdo-spetsiifiline
arvutiprogramm: jérel-
filtreerimine, andmeanaluitis

Faasiruumil basee-
» ruvad méodud

Joonis 1. Mittelineaarsete karakteristikute vurimisel
kasutatav andmetootluse tiipskeem.

p-védrtused on juhuslik tulemus: kui on arvutatud
palju p-vadrtusi, siis need jaotuvad Ghtlaselt skaalal
nullist Gheni ning seega on méned neist isna
vdikesed) on rakendatud modifitseeritud Bonfer-
roni korrektsiooni, kus korrigeeritud p-védrtuse
leidmiseks korrutatakse algne p-vadrtus testide
arvuga (siin 60) ning jagatakse n-ga, kus n nditab
mitmes vdiksuselt on antud p-vddrtus. Tabelis
tahistab hall taust seda, et korrigeeritud p-vadrtus
on alla 10%. Et Studenti test eeldab normaaljaotust,
siis kontrolliti, kas see eeldus on pdhjendatud.
Selleks arvutati vaadeldud suuruste jaotuse
asimmeetria ja ekstsess. Tulemused naitasid, et
normaaljaotus on téepoolest piisavalt heaks

1000

100

1 3 10 30 / 100 300 1000

Joonis 2. Madala muutlikkusega perioodide jdrjekorra-
numbri r séltuvus pikkusest | on esitatud logaritmilises
teljestikus. Patsiendil (a) on tegemist astmeseadusega (graafik
on ldhedane sirgjoonele), patsiendil (b) on aga méirgata olulist
kérvalekallet astmeseadusest.
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aproksimatsiooniks (nditeks tervete rihma ja
suuruse In(l..4) korral oli asimmeetria 0,24 ja
asiimmeetria -0,58).

Nagu tabelist néha, véimaldavad vaadeldud
mittelineaarsed suurused eristada tervete rihma
kaigist teistest rihmadest peale SND-grupi. Samal
ajal véimaldasid klassikalised meetodid eristada
just nimelt SND-rihma tervetest (ja ménest
patoloogiast - IHD ja VES rihmast). Niisiis v&ib
vaadeldud lghtematerjali p&hjal véita, et véikse
muutlikkusega pericodide jaotusseadus pakub
vorreldes klassikaliste SLM karakteristikutega
olulist lisainformatsiooni, véimaldades eristada
eeskatt just terveid patsiente.

Kokkuvéte

Mittelineaarsete SLM karakteristikute hulgas on
kahtlemata véga perspektiivikaid suurusi (nii
prognostilisi kui ka diagnostilisi eesmérke silmas
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Nonlinear methods of heart rate variability in patients with heart disease using ambulatory ECG

monitoring

Heart rate and heart rate variability are important tools
used in patients with heart disease for obtaining
diagnostic and prognostic information. So far mainly
standardized linear methods of heart rate variability
have been employed in clinical practice. The present

article reviews the nonlinear aspects of heart rate
variability and presents the results of the authors’ studies
based on nonlinear methods of heart rate variability in
patients with heart disease.
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It is shown that in the case of human heart rate, the scaling behavior of the correlation sum
(calculated by the Grassberger—Procaccia algoyiflsma result of the interplay of various factors:

finite resolution of the apparatygnite-size effects a wide dynamic range of mean heart rate, the
amplitude of short-time variability being a decreasing function of the mean heart rate. This is done
via constructing a simple model of heart rhythm: a signal with functionally modulated Gaussian
noise. This model reproduces the scaling behavior of the correlation sum of real medical data. The
value of the scaling exponent depends on all the above-mentioned factors, and is a certain measure
of short-time variability of the signal. @004 American Institute of Physics.

[DOI: 10.1063/1.1636151

Correlation dimension has been one of the most popular time variability of the heart rate and can lead to the mode-
nonlinear measures of heart rate variability. However, locking between the heart rate and respirafion.

due to various factors (noise, nonstationarity, limited Despite the above-mentioned advances in understanding
time-resolution of apparatus), the finiteness of the corre-  of the nature of HRV, the measures of deterministic chaos
lation dimension fails to be a proof of the presence of an (correlation dimension, Lyapunov exponents, and Kolmog-
underlying deterministic dynamics. Here we suggest a Orov entropy, etg.are still being calculated in a considerable
simple heart rhythm model (a signal with functionally =~ humber of papers devoted to HRV. Besides, various entropies
modulated Gaussian noispwhich reproduces the scaling ~(Shannon, renormalized, Renyi, pattern, approximate, etc.,
behavior of the correlation sum of real medical data. This ~ cf- Refs. 10 and Ijare persistently popular research topics;

gives us a key on how to interpret the clinical values of while not directly requiring the presence of a deterministic
this scaling exponent. dynamics, they are ideologically related to the analysis of

nonlinear dynamicgboth deal with the dynamics in time

delay space In order to be able to interpret correctly the

I. INTRODUCTION results of these numerous studies, it is important to know

which physical aspects of HRV signal are actually being

Heart rate variabilitfHRV) has been often thought to be measured by the measures of nonlinear dynamiicsthis

driven by deterministic chaos inside the heart. Such a belighaper, we study the case of the correlation dimengioa

lies upon the mathematical models of the complex of sinoshall use the term “scaling exponent of the correlation sum,”

atrial and atrio-ventricular nodes, which is responsible forin order to emphasize that we are not assuming the presence

the heart rhythm generation and has been treated as a syst@man underlying deterministic dynamics

of nonlinear coupled oscillatofs® As a consequence, the It has been pointed out that even in the case of a really

measures of deterministic chaos, such as correlation dimegxistent and nonsuppressed deterministic dynamics, nonsta-

sion, Lyapunov exponents, Kolmogorov entropy, etc., havdionarity and noisinesgwhich are typical to physiological

been thought to be important tools of HRV analysis, cf. Refstime series make a reliable calculation of the correlation

3 and 4. Meanwhile, the heart rate is known to be regulategimension impossible’~* Furthermore, it has been empha-

by the signals arriving from the autonomous nervous systensiZed that a reasonable fitting of a correlation sum to a power

which fluctuate intermittently, cf. Refs. 5-7. The level of law does not necessarily mean that the obtained exponent is

these signals is high enough to suppress the possible unddfe correlation dimension of the underlying dynamical sys-
lying nonlinear deterministic dynamics: in particular, the sig-1€M: instead, thorough nonautomatable verification proce-
nals due to respiratiofand mediated by the phenomenon dure has to be don@ All this leads us to the conclusion that

known as barorefléx have a strong fingerprint on the short- the formally calculated correlation _dimen_sion _of a hegrt

rhythm does not correspond to the dimensionality of an in-
trinsic attractor. Meanwhile, the correlation sums of human
dElectronic mail: max@cens.ioc.ee heart rate follow typically a scaling law, cf. Ref. 4, and, as
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http://dx.doi.org/10.1063/1.1636151

Chaos, Vol. 14, No. 1, 2004 What does measure the scaling exponent? 139

e WJWWWW

W“\/W
™

FIG. 1. Heart beat intervalgn arbitrary unitg are plotted vs the beat num- FIG. 2. The same as in Fig. 1, except that the time window is 37 700 heart
ber: (a) a real patient(b) model time serie¢functionally modulated Gauss- beats and curvéc) corresponds to the model-time-series withi power

ian noise; (c) plain Gaussian noise added to a constant “heart” rate. Thespectrumgiven by Egs.(4)—(6)].

time window is 1250 heart beats.

discuss the phenomenon of mode locking between heart

pointed out in the pioneering paper of Bab|oyantz andrhythm and reSpiration. Fina”y, we discuss the Universality
Destexhé the high values of the scaling expondttorre- ~ and implications of our model.
lation dimension’) indicate the healthiness of the heart.
Hence, it is natural to z_isk, what does measure the scallnﬁ;_ EXPERIMENTAL DATA
exponent of the correlation sum, and how is it related to the
healthiness of the heart. The experimental data analyzed in this paper have been
Our answer to the posed question is based on veryecorded at Tallinn Diagnostic Center. The recordings of am-
simple observations, which are valid for healthy patieds: bulatory Holter-monitoring(24 h, approximately 100 000
the long-time variability of the interbeat interval@hich is  data pointy were obtained during regular diagnostical ex-
typically around 500 msis typically much higher than the aminations and covered over 200 patients with various clini-
variability on the time scale of few heart beats 0 ms), cally documented diagnoséscluding also many healthy
see Figs. (@) and Za); (b) for those periods, when the mean subject$. The main groups of patients are shown in Table I.
heart rate is high(i.e., when the subject is performing a The resolving power of original ECG recordings was 6 ms
physical exercisethe heart rate variability is low(c) the  (sampling rate of 180 Hz The diagnostics and data verifi-
heart rate is controlled by nondeterministic and effectivelycation has been made by a qualified cardiologist; the data
random signals arriving from the autonomous nervous syspreprocessing included also filtering of artifacts and arrhyth-
tem. As a consequence, in time delay coordinates, an HRYhias.
time series generates an elongated conical cloud of points Our study would have been certainly benefitted from us-
(the narrow tip of which is directed toward the origiml- ing higher resolution data. In the case of short-teril(h)
though the theoreticaland corredt value of the correlation recordings, a free access to the high resolutiabove
dimension of such a cloud is infinite, the finite resolution of250 Hz data is provided by public databas¢s.g., at
the recording apparatus, finite length of the time series, andww.physionet.orly However, the length of these recordings
the linear structure of the cloud result in a smaller value. Thidgs not suitable for the correlation sum scaling analysis when
is evident for a very narrow “cone,” which is efficiently one the scaling exponent is larger than fdsee below, cf. Table
dimensional. In what follows we show that the “correlation II). In the case of Holter-monitorin@24 h), the recordings at
dimension” reflects the geometrical size of such a cloud ofwww.physionet.org are recorded at 128 Hz; this resolution is
points. often adopted for the studies of long-term dynamics of RR
The layout of the paper is as follows. First, we give theintervals, cf. Ref. 16. The most modern and advanced Holter-
details of the HRV database used for this study. Second, wmonitoring recorders do provide sampling rates up to 500
provide a short overview of the research results related to thelz. Unfortunately, our research group did not have access to
correlation dimension of human heart rhythm. Third, we con-such recordings. For our purposes, 180 Hz seems to be still
struct simple model time series, the correlation sum of whiclacceptable, because the resolution 6 ms is smaller than the
scales almost identically to that of real HRV data. Fourth, wevariability on the time scale of few heart beat$0 ms. This

TABLE |. Test groups of patients. Abbreviations are as follows: IHD—ischemic heart digs@s®cardip
SND—sinus node disease; VES—ventricular extrasystole; PCl—post cardiac infarction; RR—blood pressure
disease; FSK—functional disease of sinus node.

Healthy IHD SND VES PCI RR FSK
No. of patients 103 8 11 16 7 11 6
Mean age 45.5 65.4 50.0 55.9 47.3 55.5 11.7

Std. dev. of age 20.5 11.4 19.3 14.3 11.6 14.4 4.6
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TABLE Il. Data from papers devoted to the correlation dimension analysisithe correlation dimension of the heart rate has been often
experimental values of correlati(_)n dimension, lengths of the underlying dat%e”eved to measure the healthiness of the heart.
sets, and data-set lengths required by &, However, the heart is not an isolated system. Although
Ref. 3 Ref. 13 Ref. 19 Ref.20 the heart rhythm is generated by the complex of oscillatory
Correlation dimension 55 63 96.102 2858 17 ele'm'ents, its rate is controlled hyondeterministic mppts
Length of the data set 30 2% 10¢ 10¢ 2% 10¢ arriving from the autonomous nervous system. In particular,
Required length 1 108 10¢ 3x 10 these inputs lead to the increase of the heart rate when the
subject is under a physical stress, and to slowing down when
the subject is at rest, cf. Ref. 6. Healthy heart responds easily
to these signals, and is able to adapt to a wide range of
conclusion is supported by the fact that the effect of dataeating rates. This responsiveness gives rise to the high vari-
downsampling to the correlation sum scaling behavior isability of the heart rate. Severe heart diseases decrease the
small (see Sec. V. responsiveness of the heart with respect to the whole spec-
trum of signals arriving from the autonomous nervous sys-
tem; this leads to the loss of the apparent complexity of the
HRV signal.
The heart is more responsive with respect to the signals
The concept of correlation dimension, introduced byof the autonomous nervous system when the heart rate is
Grassberger and Procacdias designed to reflect the num- slow, i.e., when the patient is at rest. In that case, the heart
ber of degrees of freedom of a deterministic systenore  rate variability is driven by weaker signals, like the ones
precisely, the dimensionality of an attractor, which, in prin-generated by respiration and blood-pressure oscillations.
ciple, can be fractal For empirical time series, the phase These two stimuli are quasiperiodic, the periods being, re-
variables are typically not known. It is expected that thespectively, a few and 10-20 s. While the 10-20 s period is
attractors in the phase space are topologically equivalent t@wo long to affect essentially the dynamics in time delay
the attractors in a reconstructed phase space with time-lagpacegunless the dimensionality is very large, 10 or mpre
coordinatex(T),x(T+7),... X[T+(m—1)7]}, as long as the few-secondquasijperiodicity has a strong fingerprint in
the embedding dimensionality (the dimensionality of the the distribution of points in the reconstructed phase space.
reconstructed phase spaexceeds the dimensionality of the
attractorD; hereT is the timex(T) is the signal, and-is a
reasonably chosen time lag. _This circumstance is ex_ploiteﬂ/_ FUNCTIONALLY MODULATED GAUSSIAN NOISE
by the Grassberger—Procaccia metHdr the calculation
of the correlation dimension. To begin with, the second-order  Our model of the heart rhythm generation is as follows.

IIl. BACKGROUND INFORMATION AND BASIC
ASSUMPTIONS

correlation sum is defined as The possibly nonlinear deterministic dynamics inside the
2 heart is almost completely suppressed by the signals arriving
Cy(r)= mz o(r—ri—r;]), (1)  from the autonomous nervous system. These signals control
- i<j

the mean heart rate, but obey also a noise-like component,
where (r) is the Heaviside functionr;={x(T;),x(T; the amplitude of which decreases with increasing mean heart
+7),...x[Ti+(m—1)7]} is a point in the reconstructed rate. This noise-like component is a mixture of the
phase space, aridj=1,2,..,N count the moments of dis- respiration-induced signalwhich, if not mode-locked,
cretized time. In the case of HRV analysis, the time is typi-decorrelates quickly, and from the standpoint of the distribu-
cally measured in the number of heart be@ts thatT;=j), tion of points in time-delay space, is effectively random; the
and unit time lag is used;=1. In what follows we use the Mmode-locking phenomenon will be discussed latém the

notationx(j)=t; for the duration ofjth normal heart beat. case of correlation sum analysis, this noise-like component is
For smallr, the correlation sum is expected to scale aghdistinguishable from a Gaussian noise. Therefore, theoreti-

C,(r)ecrP2, assuming thab,<m. The exponenD=D, is  cally, the correlation dimension is infinite. The reported rela-
called thecorrelation dimensiorof the system. tively small values of the correlation dimension are to be
A nonlinear dynamical system may be chaotic and therfittributed to the finite length of the time series and, most
the phase trajectory fills certain subset of the phase space. iportant, to the finite resolution of the recording apparatus.
that case, the correlation dimensibris expected to be equal T00 short record length can be the cause of a false detection
to the number of degrees of freeddthe dimensionality of Of the correlation sum scaling exponent saturation effect. In-
the phase space minus the number of conservation)lawsdeed, typically, the correlation dimension has been found to
This is whyD is often considered as a measure of the combe at the limit(or beyond of a credible analysi&>*® It has
plexity of the system. Babloyantz and Destekkeidied the been suggestéti'®that the calculation of the correlation di-
correlation dimension of the sequenceMN intervals(in- ~ MensionD is reliable, if the numbeN of data points in the
tervals between normal heartbgaté human heart rhythm. time series
For healthy patients and data series consisting of 1000 inter- N=10P/2+1 %)
vals, they foundD=5.9+0.4. It is widely recognized that
life-threatening heart pathologies lead to the reduction of thén Table II, this criterion is compared with the data of some
complexity of the HRV signal, cf. Ref. 4. Correspondingly, papers.
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In order to test our hypothesis we aimed to construct
such model time serigsising an algorithm as simple as pos-
sible), the correlation sum of which is similar to the correla-
tion sums of the time series of real patients. An alternative
approach could have been to create surrogate data by shuf-
fling the real clinical data. The advantages of using model
time series are as followsa) There is no risk of creating
artifacts by data shuffling(b) interpretation of the results is
more straightforward and reliable, because there are no un-
known statistical featureghigher order correlations, inter-
mittency) of the time series{c) the relationship between the
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a real patient

surrogate data, Eqns. (3,4)

—.—.— surrogate data, Equs. (4-6)

observed scaling exponent values and the statistical proper-
ties of the underlying data set can be easily studied by ad-
justing the control parametefs.g., the noise amplituglef

the model.

To begin with, we analyzed the sequences of NN interFiG. 3. Correlation sums of a typical healthy patient, a plain Gaussian
vals extracted from the ECG recordings_ The scaling exp()signal, and functionally modulated Gaussian signals in logarithmic plot.
nent was found as the slope of a root-mean-square fit of thgmPedding dimensionalityn=6.
correlation sunjEg. (1)] in log—log plot using the best scal-

ing range, i.e., such a range which is as wide as possible, affe empirical observation that the short-time variability of
for which the mismatch between the curve and fitting lin€ iSy,o heart rhythm increases together with the mean heart beat

smaller than the statistical uncertainties. The statistical UNgierval. A good similarity between the correlation sums of
certainties have been estimated by Monte Carlo method: 3Qjinical and model data is achieved for the following set of
different time serie$Egs. (3) and (4)] were generated, and parameters

the corresponding variance €%,(r) was calculated.

First we discuss the case of embedding dimensionality @=700 ms, b=110 ms, f=0.005 c¢=3.5 ms;
m= 6, because on the one hand, this is the dimensionality at 4
which the exponent saturation has been obsefved;the  the values of, have to be rounded to the nearest multiple of
other hand, higher values of would not be applicable to the the “resolving power,” 6 ms.
majority of the studies presented in Table Il, due to the short- |t should be emphasized that both the square-root and
ness of the respective underlying data series. sinusoidal dependencies have been completely arbitrary

Reliable correlation sum analysis is possible only forchoices; here, the selection criterion has been the simplicity
more or less stationary time series, cf. Ref. 12. Meanwhileof the model. The sinusoidal trend of the model data is not
HRV signal is highly nonstationary, as evidenced by the mulintended to(and does ngtmatch the intermittent pattern of
tifractal structure of its long-time dynamié5The most sta-  real HRV (cf. Refs. 21 and 22 because the correlation sum
tionary period in the heart rate dynamics is the sleeping timeis not sensitive with respect to this pattereither with re-
This is why we studied only the nocturnal part of the HRV spect to the modulation frequenéy. Indeed, as long as the
records. The scaling exponent was determined as the slope gliaracteristic time scale of the fluctuations is longer than
the correlation sunC,(r) in log—log plot by performing ~10's, the intermittency has no effect on the distribution of
root-mean-square fit for the almost linear pat small val-  points in time delay space. So, due to the robustness of the
ues ofr) of the curve, see Fig. 3. Note that the leftmostmodel, the sinusoid can be substituted by any other function
horizontal part of the curve is due to the limited resolvingwhich varies between 1 and1, and has no high-frequency
power (6 mg of the medical equipment: if two NN intervals (<1 Hz) components. In order to demonstrate the expected
differ less than 6 ms, they are recorded to be of the samgbustness, we generated a slightly different model time se-
length. Form=6, the scaling exponents ranged frd  ries[see Fig. 2c)],
=4.2 toD=5.1 and were almost uncorrelated with the diag-

— — — gaussian noise

3.64 5.46

Inr 7.28

noses(see Table Il). tpy=a+bsin ¢(n)]+cg(n)y1.1+sin ¢(n)], 5)
Further we generated two model time series with Gaussyhere

ian noise:(i) plain Gaussian noise added to a constant signal

[see Fig. 1c)]; (ii) time series with variable mean “heart _

rate” and modulated noise generated according to TABLE Ill. p-values of the student test for the seven groups of patients.

’ Abbreviations are explained in Table .

t,=a+bsin(fn)+cg(n)y1.1+sin(fn), (3) 0. % IHD SND VES PCl RR FSK

see Figs. (b) and 2b). Here,t, denotes the duration afth Healthy 89.4 21.9 35 18.4 2.4 715

interval; g(n) is a random uncorrelated time series with unit IHD 34.1 12.0 17.6 7.1 69.4

variance, zero mean, and Gaussian distribution of values$ND 66.8 52.9 45.7 54.4

The termb sin(fn) models the variability of the mean heart \P/EIS 3.0 557'76 226572

rate due to physiological processgaysical activity, blood gg ’ 159

pressure oscillations, ejc.The term+/1.1+sin(fn) reflects
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scaling exponent

sampling rate 180 Hz

.......... downsampled data
(effective rate 90 Hz)
3 I4 1 5 1 6 1 7 I8 I9 ]
embedding dimension

FIG. 4. Correlation sum scaling exponents for five typical patients and forFIG. 5. The effect of the ECG resolving power on the correlation sum

the model time series are plotted vs the embedding dimensionality. scaling exponent is demonstrated by downsampling the raw data of three
randomly selected subjects. The effect is weak; however, lower sampling
rate decreases systematically the scaling exponent values.

#(n)=fn/(1+0.000T), (6)

and the definitions of, b, c, f, andg(n) are the same as in
the case of Eq(3). This time series has flpower spectrum,

data is quantitative, and in the case of some patients, nearly
perfect, see Fig. 4. Note that for large embedding dimension-
S . - alities and(too) short data series, this increase is not smooth,
similar to what is observed for real clinical d&ta. . . .
due to high statistical uncertainties. Strong enough fluctua-

As mentioned earlier, the square root function in Egs. . . " S
and (5) mimics the dependence of the short-time variabilitytlons [which a“re expecsed when condﬂw@ IS violated
form random “plateaus” of theD(m) curve; which can be

level on the mean heart rate. While the correlation sum scalf— Iselv interoreted as the sians of saturation of the scalin
ing properties can be expected to be sensitive with respect {§'sey b 9 . 'ng
xponent. The effect of the resolving power of the recording

the dynamic range of this dependence, the specific functiond] . T :
form is of lesser importance. Sqx can be substituted by apparatus is demonstrated in Fig. 5, where the correlation

: ; . . sums of raw clinical data are compared with that of the
some other monotonically increasing functiofx), assum- downsampled datéwith the effective resolving power of 11
ing that the dynamic range remains unchanged, i(@,1) P gp

ms).
=.(0.1), andf(2.1)=(2.1). )
For a Gaussian signal, the correlation dimension is infi-
nite, and the scaling exponent should be equal to the embed- MODE LOCKING

ding dimensionrm=6. This is exactly what is observed for Finally, we discuss the phenomenon of mode locking

plain unmodulated Gaussian time series, see Fig. 3. HOW;eqyeen the respiration and heart rate, which has been dem-
ever, for the noise of modulated amplitude, the finite Siz€,grated by simultaneous recording of ECG and respiration
effects are significant: the scaling exponéniof such time 5 vty together with the technique called cardiorespiratory
series depends on the model parameterb, ¢, f, and on  gynchrogra (and which has been also detected using
the resolving power. By adjusting the parameteys, and hiyariate HRV time seri€s In the case of simple

the resolving power, we were able to obtain the values rangzeqpiration-induced HRV, the decorrelation time between res-
ing romD =4 toD=6. At the resolving power of 6 ms, and i ation and heart rhythm is of the order of 10 s; mode lock-

with the pa.rameter set being given by !5(4)’ there was ing increases this time by an order of magnitude. The ratio of
almost no difference between the correlation sums of the tw@, . \ode-locked periods is typically small, 2:1, 3:1, 5:2, etc.

model signal§Egs. (3) and(5)], and the correlation sums of 54 the phenomenon gives rise to specific patterns in the

real patients, see Fig. 3. This is in a complete agreement with ., nstrycted phase spasatellite clouds around the central

the theoretical expectations. _ _ elongated conical cloud of pointsee Fig. 6. These patterns
The similarity between the correlation sums of ourS|gnaICan be easily misinterpreted as traces of an attractor of a

with functionally modulated Gaussian noise and real phys"nonlinear deterministic system.

ological data extends beyond the six-dimensional embedding |, order to show the causal relationship between the
space. We have studied the time delay spaces with dimen e |5cking and the presence of “satellite clouds,” we de-

sionalities ranging from 3 to 10. The scaling exponents havg;qeq 4 quantitative method for the detection of mode lock-

been calculated for the real data, and for model time serieﬁlg. as compared with the alternative univariate technfque
(3), (5). The results presented in Fig. 4 show that the scaling, ;- method is simpler, more intuitive, and equally sensitive.

exponent of the correlation sum increases persistently towarﬁzl0 begin with, let us introduce the fluctuation function
large embedding dimensionalities. The similarity between ’

the D(m) curves of the generated time series and the real F(¥)=(|t,—t..]) (7
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rate and respiration is locked during tens of seconds, con-
firming the observations of Kurthst al® Thus, in a certain
sense, the heart and respiratory complex act as a system of
coupled oscillators, cf. Ref. 9; however, by no means does
this imply that there is a deterministic chaos inside the heart.
Since the mode locking occurs during a relatively small frac-
tion of the whole recording time, it has almost no effect on
the scaling behavior of the correlation su@s has been
tested by calculating the correlation sum for different time-
windows: including and excluding the mode locking peri-
ods.

Note that our method of mode-locking detection is very
simple, and does not require synchronous respiration rhythm
recording(unlike the thorough meth8d Besides, it can be

FIG. 6. Two-dimensional intersection of three-dimensional reconstructe®@Nveniently used to find relatively shore(L0 min) locking
phase space for a patient with pronounced mode locking between heart raperiods from a 24 h recording, because, unlike in the case of
and' respiration. The number of points per unit cell is given in gray-scalethe glternative univariate data analysis technﬁ]thﬁre is a
coding. simple quantitative measure of the effect, the amplitude of
the oscillatory component of the fluctuation functibijv).
The sensitivity of the method is high: the ratio of the Fourier

. . y . ) transform amplitude of the locked mode, to the root-
case of “single-cloud-patients,” the fluctuation function of 0

the patients with satellite clouds revealed a presence of afyean-square of the amplitudes of the other modes is typi-

oscillatory component, see Fig(bJ. As a quantitative mea- cally between 10 and 30.
sure of the amplitude of such oscillations, the discrete Fou-
rier transform amplitude can be usedm mode locking is VI. CONCLUSION
related to the Fourier transform amplitudg, at the wave- Comparative analysis of real and model data showed that
length a=n/m. In order to reduce the influence of non- in the case of human heart rate, the correlation sum proper-
mode-locked respiratio(@nd thereby attain a better sensitiv- ties are defined by the interplay of the following factoi@:
ity with respect to the mode-lockingthe small values of the finite resolution of the recording equipmefvthich leads to
delay» have to be ignored. For instance, a good sensitivity iginite-size effecty (b) a significant level of long-time vari-
achieved when the Fourier transform is applied to the rangepbility (the dynamical range of the mean heart rate exceeds
5=<v=30 (the range length must be a multiple rof. the typical level of short-time variabilily (c) the fact that
By dividing the entire 24 h HRV record iatl h inter-  the amplitude of short-time variability is a decreasing func-
vals, and calculating the amplitude of the oscillatory compo+ion of the mean heart rate. As a result, the correlation sum
nent of the fluctuation function for each interval, we wereexhibits a scaling behavior, and the scaling exponent can be
able to locate the periods responsible for the satellite cloudgoticeably less than the dimensionality of the time-delay
in the reconstructed phase space, see Rig. These were space. The scaling exponent value is mostly defined by the
always the periods before falling asleep, around 10 or 11 pmdynamics of the short-time variability, but depends also on
characterized by a low heart rate and a high respirationthe resolving power of the recording apparatus and is an
driven short-time variability. The phase between the hearfncreasing function of the embedding dimensionality. There-
fore, the scaling exponent can be used as a certain measure
of short-time variability of the signalhowever, in order to
{a) 23:58:50 obtain comparable values, time-resolution, record length, and
the dimensionality of the time-delay space have to be kept
constant The diagnostic and/or prognostic value of this
measure is possible, but has been found to be nonsignificant
for our patient groupgsee Table ). We have also shown
that the above-drawn conclusion remains valid even in these
cases, when a mode locking between the respiration and
heart rhythm leads to “satellite clouds” in the time-delay
space(see Fig. 6. Finally, we have devised a simple method
) of detecting the presence of the mode locking, based on the
1 4 16 64 256 1024 4096 16384 v fluctuation function(7).

(angular brackets denote averaging owgr Unlike in the

FIG. 7. Patient with 3:1 mode locking between heart rate and respirédion:
heart beat interval@in milliseconds plotted vs the beat number. Heart rate ACKNOWLEDGMENTS

has a pronounced oscillatory component; vertical lines mark the period of The support of Estonian Science Foundation Grant No
three heart beats, horizontal lines indicate the sequences with cohereﬂt )

phase(b) Fluctuation function(arbitrary unit3 is plotted vs the time lag 151 is acknowledged. Th_e aUthQrS are grateful to Professor
(in heart beats the oscillating component is magnified. J. Engelbrecht for useful discussions.
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Abstract. Human heart rate fluctuates in a complex and nonstationannena Elaborating
efficient and adequate tools for the analysis of such sigreddeen a great challenge for the
researchers during last decades. Here, an overview of theresearch results in this field is
given. The following questions are addressed: What arentni@sic features of the heart rate
variability signal? What are the most promising nonline@asures, bearing in mind clinical
diagnostic and prognostic applications?

Key words: heart rate variability, nonlinear time-series, interpnitty.

1. INTRODUCTION

The heart rate of healthy subjects fluctuates in a complex manner. These no
stationary and nonlinear fluctuations are related mainly to a nonlinear interactio
between competing neuroautonomic inputs: parasympathetic input decezabe
sympathetic stimulation increases the heart rate. Meanwhile, heart patisotuaye
decrease the responsiveness of the heart and lead to a failure omdespthe
external stimuli. Evidently, such pathologies lead to an overall reductioeatt h
rate variability (HRV). Understanding the diagnostic and prognostic sigmifie of
the various measures of HRV has great importance for the cardiologyhsla,
because unlike the invasive methods of diagnostics, the required mmeasiise
are low-cost and harmless for patients. A particularly important applicatitreis
prognostics of the patients with increased risk of sudden cardiac dedtie W
the “linear measures” of HRV are nowadays widely used in clinical practite
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importance of more complicated measures has been hotly disputed in the scientific
literature during the recent decades.

The structure of this review is as follows. In Section 2, general aspéti o
heart rate generation, electrocardiogram (ECG) structure, and cgiesiion are
discussed. In Section 3, we give a brief overview of the “linear erahefHRV
analysis. Section 4 is devoted to the early studies of the nonlinearity of HRy i.e
the methods based on the reconstructed phase-space analysis. ldése previde
the modern view on the applicability of these methods. In Section 5, we discuss
the self-affine and multi-affine aspects of HRV (including the wavelet-toanms
based techniques). Section 6 deals with the phenomenon which can tredefe
to as “intertwining of low- and high-variability periods”. Section 7 examines the
effect of synchronization between the heart rate and respiratiotioS&grovides
a brief conclusion.

2. HEART RATE GENERATION, ECG, AND DATA ACQUISITION

The quasi-periodic contraction of the cardiac muscle is governed by the
electrical signal, which is generated by the sino-atrial (SA) node — afset o
electrically active cells in a small area of the right atrium. The signal spreads
through the atrial muscle leading to its contraction. It also spreads into & set o
specialized cells — the atrio-ventricular (AV) node. Further the signa&asls via
the His-Purkinje bundle (which is a fractal-like set of electrically condedibres)
to the myocardial cells causing their contraction. The ECG is measured as the
electrical potential between different points at the body surface. T€tigtg of
the SA node by itself is not reflected on the ECG. The electrical activatidimeof
atrial cells leads to the appearance of the P-wave of the ECG. The QaRdS,
waves (see Fig. 1) are caused by the electrical activity of the ventrioulacle.

The heatrt rate is generally measured as the RR-integyal- the time-lag between
two subsequent R-pikes (R-pike itself corresponds to the ventricutdragion).
For the HRV analysis, only the normal heart activity is taken into accounthall
QRS-complexes are labelled as normal or arrhythmic. Note that evendtihjne
patients, some heartbeats can be arrhythmic. Normal-to-normal (NN) ihtgrya

is defined as the value ofr for such heartbeats, which have both starting and
ending R-pikes labelled as normal (see Fig. 1).

Typically, HRV analysis is based on the 24-hour recordings of Hioter-
monitoring. Shorter ECG recordings can be used for this purpose as well; hgweve
in that case it is impossible to observe the long-scale variations and compare th
sleep-awake differences in the heart rhythm. Portable apparatus gter&CG
data as the time-dependent voltaldél) either on a tape or on a PC flash card,;
the sampling rate is 125 Hz or higher. The data are later analysed by computer
software. Typical commercial software allows visualization of the ECGroiag,
automated or semiautomated recognition of arrhythmias and artifacts, and the
calculation of the standard “linear” characteristics of HRV. Most ofteresearch
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Fig. 1. Leftimage: normal ECG recording. Image on the righti sequences of low and high
variability.

devoted to the methods of nonlinear dynamics is based on plain sequences of
NN-intervals and disregards the details of the continuous ECG recorddier
aspects of the ECG, e.g. the clustering of arrhythmic béhsd dynamics of QT
intervals F] (pp. 13-16) are also of high clinical importance, but remain beyond
the scope of this review.

The experimental data serving as the basis of the original researchrmed
by the authors of the review were recorded (a) at the Tallinn Nomme Hospital
(children) and (b) Tallinn Diagnostic Centre (adult subjects). The sclefrdata
acquisition is presented in Fig. 2. For group (a), the recordings of amobyla
Holter-monitoring covered 12 healthy subjects of mean Bgé + 3.3 years, 6

Fig. 2. The analysis of heart rate variability: the scheme of datmis&tion and analysis.
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Table 1. Test groups of patients. Abbreviations are as follows: IHD —ischemic heart disease
(stenocardia); SND —sinus node disease; VES — ventricular extrasystole; PCI — post cardiac
infarction; RR — blood pressure disease; FSK — functional disease of sinus node

|Healthy| IHD | SND | VES | PCI | RR | FSK

No. of patients 103 8 11 16 7 11 6
Mean age 45.5 65.4 50.0 55.9 473 55.5 11.7
Std. dev. of age 20.5 114 19.3 14.3 11.6 14.4 4.6

children with clinically documented sinus node disease (meamhhage-1.9 years),

and 12 subjects with miscellaneous diagnosis. The sampling rate of the ECG was
125 Hz. For group (b), specifics are given in Table 1. These data baen
obtained during regular diagnostical examinations of more than 200 pat&nis u
the Rozinn equipment; the ECG sampling rate has been 180 Hz. It is known that
there can be significant differences between the HRV dynamics of yanohgdult
subjects. The primary goal of including the children groups has beenttthtes
universality (age-independence) of the scaling behaviour of HRVitgtizely. The
diagnostics and data verification have been made by a qualified cardioldhest.
data preprocessing included filtering out falsely detected QRS-comikaxiéacts

and arrhythmias) using the commerdralzinn software.

3. LINEAR MEASURES OF HRV

The clinical importance of HRV was first noted in 1965 by Hon and e [
Since then, the statistical properties of the interbeat interval sequeases h
attracted the attention of a wide scientific community. An increased risk of post-
infarction mortality was associated with the reduced HRV by Wolf et 4lir{
1977.

The problem received wider attention in the early 1980s, when Akselrod
et al. P] introduced the spectral methods for the HRV analysis. The spectral
characteristics are generally referred to as “frequency-domaimactesistics” and
are opposed to the “time-domain methods”, which are derived directly frem th
tnN-sequence. In the late 1980s, the clinical importance of HRV becameatjgner
recognized. Several studies confirmed that HRV was a strong andeimdeipt
predictor of mortality following an acute myocardial infarctiéin§]. As aresult, a
breakthrough has been achieved: the “linear” measures of HRV baogoetant
tools of clinical practice.

A nonexhaustive list of the parameters currently used in medical practise is
follows: the mean NN-interval, the difference between night and dayt hat,
the longest and shortest NN-intervals, the standard deviation of the teéNh
(SDNN, typically calculated over a 24-hour period), the standard dewiaifo
locally (usually 5 min) averaged NN-intervals (SDANN), the mean of the 5-teinu
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standard deviation of the NN-interval (averaged over 24 h; SDNN indée
square root of the mean squared differences of successive NINalstéRMSSD),
the percentage of interval differences of successive NN-intervedggy than 50 ms
(PNN50), the spectral power of high- and low-frequency fluctuation$NN-
sequences.

4. RECONSTRUCTED PHASE-SPACE

It is widely accepted that the heart rhythm generation in the complex of
the sinus node and atrio-ventricular node can be well described by eanlin
dynamical models, where the SA node and AV node form a system of nanline
coupled oscillators’f 1°]. The model has been proven to be viable and predicts
several experimentally observed phenomena, such as Wenckelgbetobitz type
Il arrhythmias and bistable behaviout’]. This deterministic nonlinear model
predicts that the phase trajectories of an healthy heart lie on an attracdtoe of
coupled system of oscillators. Consequently, one should be able torebsell-
defined patterns on the Poincaré sections of the phase-space. Noie that
case of physiological data, there is no information, what might be the @aion
variables. Therefore, the phase trajectory is reconstructed in time-claginates
Ui),Ut+r),....,Ult+ (D —1)7] [or tnn(n), t(n + 1), ..., t(n + D — 1)].
Here D is the so-called embedding dimensionality, i.e. the dimensionality of the
reconstructed phase-space. It is expected that the real phasetsajeanapped
to the reconstructed trajectory by a smooth transform.

Exactly such a reasoning has led to the idea that the dynamical characteristic
from the theory of nonlinear dynamics could be used for the diagnostmopes.
The early studies by Babloyantz et all][gave rise to extensive studies in the
1990s [2~1%]. The experimental observations seemingly confirmed the theoretical
expectations. Particularly, the correlation dimension of the continuous ECG
recording (i.e. the recorded voltage as a function of time) has beentedpiar
be between 3.6 and 5.2. The conclusion has been that the dynamics ofithe he
of a healthy person is less regular than that of a person with severeacard
pathologies. Correspondingly, the correlation dimension has often beaghh
to be a measure for the healthiness of the heart. The other tools of theisuodlys
nonlinear dynamical systems (such as Lyapunov exponents; Kolmg@iramnon,
pattern, and approximate entropies; etc.) have been exploited to an el e

The correlation dimension of a data sequence is typically calculated acgordin
to the Grassberger—Procaccia algorithf¥.[ In a reconstructed phase-space of
dimensionality D, the correlation sunC = mzm O(r — |rs —rj]) is
calculated as a function of the radiusit is expected to behave as a power-law
C x rv@D), Herer; denotes thé)-dimensional radius-vector of thith data-point,
andd(r) stands for the Heaviside function. The correlation dimensdjois found
as the limit ofv at large values oD (in fact, it is expected that fob > d., the
exponent is independent oD, and in that case = d..).
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However, there are various arguments leading us to the conclusion that the
formally calculated correlation dimension of a heart rhythm does not sjuorel
to the dimensionality of an intrinsic attractor; similarly, the formally calculated
Lyapunov exponents, entropies, etc. do not describe the respesipects of
underlying nonlinear dynamics. First, it has been pointed out that phg#salo
time-series are typically nonstationary and noisy, and therefore, thelation
dimension cannot be calculated reliably{'°]; this fact is nowadays widely
accepted. In the case of the human heart, the “noise” comes from themdos
nervous system in the form of inputs regulating the heart rate {tf29]): from
the viewpoint of the underlying nonlinear deterministic system, these effgctiv
nondeterministic signals perform the role of high-level noise. It should s
noted that some inputs of the autonomous nervous system may lead to quasi-
periodic signals — an easy source of false detection of low-dimensioaak@nd
apparent patterns in simple time delay maps (see Figs. 3, 4). Thus, resyiiaés
rise to the signal of a typical period of 4 s; the effect is most pronoundexh the
patient is at rest, and is stronger for young persons. Second, ieBasimphasized
that a reasonable fitting of a correlation sum to a power law does notsaeites
mean that the obtained exponent is the correlation dimension of the underlying
dynamical system; instead, a thorough nonautomatable verification predeals!
to be done ?]. Third, the length of the data sequences is often inadequate for
reliable calculation of high values of the correlation dimensigr; 6, cf. [15:23].

tn+, MS .. an<4
e 8>n24
= =16>n= 8 tan,
tne2+ T = 552ms - 32>n2= 16 ms
tn+2 =512ms fz4>>6né/12 32
— 800 ey . |

250

‘ ‘ tn, MS

Fig. 3. A cross-section of the 3-dimensional reconstructed pkpsee for a patient with
pronounced 4:1 mode-locking (see also Section 7); arouadehtral cloud of points, three
major satellite-clouds can be seen; these satellite-sloadespond to the sequence of interbeat
intervals, shown on the right-hand plot. The observed lagichs with period 4 can be
attributed to the modulation of the heart rate by respiratio
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Fig. 4. The same as in Fig. 3. Mode-locking (4:1 and 5:1) is weaket,the heart rate
modulation by the respiration is significant. One can dggtiah two branches of the central
cloud, which are caused by the respiratory modulation.

The above discussed research results can be summarized as follpwéie (1
correlation sums of the human heart rate follow typically a scaling law. (2) In
most cases, the scaling exponents are not the correlation dimensiondeddss
us to a natural question: what is the physical meaning of these formallylaizidu
exponents? Our answer to this question is based on simple observatiwh&va
healthy patients: (a) the long-time variability of the interbeat intervals is typically
much higher than the variability on the time-scale of few heartbeats; (b) for
the periods when the mean heart rate is high (when the subject is performing
physical exercise) HRV is low; (c) the heart rate is controlled by effelyti
random nondeterministic inputs arriving from the autonomous nervotssy#\s
a consequence, in time delay coordinates, an HRV time-series generakebalb
bat-shaped cloud of points. Although the theoretical value of the cornelatio
dimension of such a cloud is infinite, the finite resolution of the recordingrapyms
finite length of the time-series, and the linear structure of the cloud result in a
smaller value. This is evident for a very narrow “bat”, which is efficientheo
dimensional.

Our conjecture passes also a quantitative test: the correlation sum adaterr
data-sets constructed using Gaussian random data-series and mimicking the
features (a)—(c) (see Fig. 5) scales almost identically to that of clinicd #a
(see Fig. 6 and?f]).
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Fig. 5. Time-series for real HRV data (a), surrogate data (b), angs&an noise (c); the beat
intervalt,, is plotted versus the beat number

Fig. 6. The correlation sunt; () (as a function of the radiug of surrogate data scales almost
identically to the real clinical data.

To conclude, the measures based on the reconstructed phase-aipdoe f
describe a deterministic chaos inside the heart, because the deterministiiayna
is suppressed by essentially intermittent signals arriving from the autorsomou
nervous system and regulating the heart rhythm. However, some fiad-tun
measures (e.g. various entropies; &P]) can be useful in describing the level
of short-time variability of the heart rhythm, and complement the linear quantity
PNN50 (which also measures the high-frequency component of HRV).
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5. SCALE-INDEPENDENT MEASURES

Recent studies have shown that scale-invariant characteristics cartdess-
fully applied to the HRV analysis?{—2°]. However, this conclusion has been
disputed, and certain scale-dependent measures (particularly, the ampitu
the wavelet spectra at a specific time-scale) have been claimed to provide
better results ¥]. The scale-independent methods have been believed to be
more universal, subject-independent, and to reflect directly the dynamfics
the underlying system, unlike the scale-dependent methods which mayt reflec
characteristics specific to the subject and/or to the method of anafykisThe
opposing argument has been that certain heart disorders affectatR\$pecific
scale or range of scales; owing to this circumstance, at the properlgrchiose-
scale, scale-dependent measures may provide a useful inform#fion [

The simplest relevant scale-independent measure is the Hurst expdnen
which has been introduced to describe statistically self-affine randoutidas
f(r) of one or more variables’{]. Such a function is referred to asfractional
Brownian function and satisfies the scaling law

([£r1) = Fr2)) o Iy = ralH.

Note thatH = % is a special case of ordinary Brownian function — the increments
of the function are delta-correlated, afi@) can be thought to be the displacement
of a Brownian particle as a function of time Therefore, in the case df < 1,
there is a negativiong-range correlation between the increments of the function.
Analogously,H > % corresponds to a positive correlation. Note that the early
scale-invariant studies of HRV were based on power speétr&][ an aspect
closely related to the scaling exponét

Many phenomena in nature exhibit this kind of scale-invariance and lead to
fractional Brownian time-series!]. The same is true for HRV: after filtering out
short-scale components with< 30 s (corresponding to the respiratory rhythm, to
the blood-pressure oscillations, and to the pathological Cheyne—Sesf@sation),
the fluctuation functior¥'(n), defined as

F(V) = <|tn - tn+u|> (1)

revealed a good scaling behavialifv) o v [?6]. While for healthy patients,
the increments of the heart rhythm were found to be significantly antictecela
resulting inH < % the heart rhythm of the patients with dilated cardiomyopathy
was essentially Brownian witlil = % [?6]. In the case of our patient groups,
there was no significant correlation between the diagnosis and the Hpostent,
and there were also ca 7% healthy subjects Wth- 0.5 + 0.05 (cf. Fig. 7 and
Table 2).

Finally, various techniques, such as detrended fluctuation analySis [
detrended time-series analysi$][ and wavelet amplitude analysi®] have been
proposed to fine-tune the Hurst-exponent-based approach.
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Fig. 7. The fluctuation functior¥'(v) is plotted versus the time lag The almost straight line
indicates a good scaling behavialitv) o v (here withH = 0.50).

Table 2. For the patient groups of Table 1, the diagnosis and the Hurst exponent H values were
effectively uncorrelated

|Healthy| IHD | SND | VES | PCI | RR | FSK

Mean value of H 0.30 0.28 0.32 0.35 0.29 0.29 0.28
Std. dev. of H 0.10 0.09 0.11 0.12 0.12 0.08 0.06

Complex nonstationary time-series cannot be described by a single scaling
exponentH. Indeed, simple scaling behaviour is expected if there is a Gaussian
distribution of increments. However, even in the case of Gaussian fusgction
the scaling exponent is not necessarily constant over the whole rdragales.
Instead, it can be a slow (e.g. logarithmic) function of the scale, so that othe
descriptions (such as stretched exponentials) may be required. Physablime-
series are typically non-Gaussian. For such functions, scale-ingar@an be very
complicated. A nonexhaustive way to describe such a behaviour is tdateltie
multifractal spectrum of Hurst exponent§]. Therefore, it is not surprising that
the human heart rate signal was found to obey a multi-affine structitgj|

Qualitatively, a multifractal time-series behaves as follows. Each point of
the time-series is characterized by its own Hurst exporierfteferred to as
the Lipschitz—Hdlder exponent); this exponent describes the local gcafin
fluctuations. Then, the distribution of points of fixed valueshas self-similar
and is described by a fractal dimensig(h). Technically, the spectrurfi(h) can
be calculated by the means of wavelet transform €)[ This scheme includes
the calculation of the scaling exponents)) (referred to as the mass exponents),
which describe, how thgth moment of the wavelet transform amplitude scales with
the wavelet width. The scaling exponent2) andr(5) have been found to have
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a significant prognostic value (for the post-infarction progno$f§) [The wavelet
transform amplitudes, calculated for a specific wavelet widils (min) have been
claimed to be of even higher prognostic valt®.[ However, independent studies
have shown that the scale-invariant measures seem to be superior’tgols [
should also be noted that the wavelet transform amplitude at a fixed time-scale
is closely related to the linear measure SDANN. Substituting the robust stndar
deviation by a wavelet transform amplitude is a technical fine-tuning whichata

be expected to result in a qualitatively new information.

The multifractal structure of the heart rate signal has several coesegs.
Thus, thegth-order structure function (a concept borrowed from the theoryef th
fully-developed turbulence) of the heart rate interval has a scalingviialr, with
the scaling exponenf(q) being a function ofg [**]. Note that this spectrum
of exponents is very closely related to the above-mentioneg spectrum
(both describing the same physical phenomenon, differences beintgolaical
kind). However, the wavelet-transform-based techniqgue makes a moglete
utilization of the underlying data and therefore, tt{g) spectrum can be expected
to yield somewhat superior prognostic and/or diagnostic results.

Another aspect related to the multifractal nature of the heart rhythm is the multi-
scale entropy (MSE)*f]. While the single-scale entropies (approximate entropy,
Shannon entropy) are related to the short-time dynamics of the heart rlayttim
to the probability distribution function of points in the reconstructed phaaeesp
the MSE extends these concepts to longer time-scales. The MSE is not directly
reducible to the multifractal spectré(h) [or 7(¢)]; however, both techniques
address the question of how wide is the range of dynamics for the medrrdiear
(averaged over a timE), depending on the time-scdié The clinical usefulness of
the MSE is still unclear (apart from the fact that it has been claimed to dissimgu
between healthy subjects and patients with congestive heart faifijye [

6. INTERMITTENCY OF HRV

A multifractal spectrum addresses only one aspect of the non-Gaitgsitthe
time-series increments by revealing the possible range of scaling laws 1ontie
range [at time-scale of many{ 1) heartbeat intervals] dynamics of the mean heart
rhythm. While the origin of the multifractal scaling is in the intertwining of periods
of different variability levels (cf. 2] and Fig. 8), the multifractal spectra fail to
reflect all the features of the intertwining phenomena. In particular, tipesp
to the long-term correlations in the dynamics of short-time variability (which, in
effect, does fluctuate in a complex manner). A quantitative scale-invaieahysis
of this aspect is based on the distribution law of the low-variability peri¢ts],
which will be discussed below. Another aspect of such an intertwining is the
clustering of the periods of a similar mean heart rate: the heart rate signal c
be divided into segments of a different mean heart rate, with distinct laoiesd
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Fig. 8. For healthy patients, the high- and low-variability pegoof the heart rhythm are
intertwined.

between these segments; there is a power-law segment-length distributian of th
segments®f].

In order to analyse quantitatively the intertwining of high- and low-variability
periods, we have studied the distribution of low-variability periods and sdow
that typically, it follows a multiscaling Zipf's law. Originally, Zipf's law has been
formulated by G. K. Zipf for the frequency of words in natural langwsadé]. For
a given language (e.g. English), the frequency (the number of aowes divided
by the total number of words) of each word is calculated on the basis ofa lar
set of texts. The ranks are determined by arranging the words acgdadtheir
frequencyf: the most frequent word obtains rank= 1, the second frequent —

r = 2, etc. It turns out that for a wide range of ranks (starting witk 1), there

is a power lawp(r) o< r~, wherea =~ 1. This law is universal; it holds for all the
natural languages and for a wide variety of texf§.[Furthermore, similar scaling
laws describe the rank-distribution of many other classes of objects ashueak,
when cities are arranged according to their populatiotihe population of a city

s o< 77, with o ~ 1 [*3]. Another example is the income-rank relationship for
companies; here we have again~ 1 [**]. In the most general form, the law
can be formulated gs oc (r + r9)~%, anda is not necessarily close to unity’].

This more general form of the law can be applied to the distribution of scientists
according to their citation index, to the distribution of internet sites according to
the number of visitors, etc.

Zipf's law is characteristic of such dynamical systems at statistical equilibrium,
which satisfy the following conditions: (a) the system consists of elements of
different size; (b) the element size has upper and lower bounds; €& th no
intermediate intrinsic size for the elements. The human heart rate, whendlivide
into the low-variability periods, satisfies all these requirements. The duration
of these periods varies in a wide range of scales, from few to sevenalrbds
of heartbeats. Thus, one can expect that the rank-length distribt(tigrfollows
Zipf's law,

rocT 7. (2)

First we have to define the local HRV as the deviation of the heart ratetfrem
local average,
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6(n) = [tan(n) — (v (n))]/ (tnn(n))

the local average is calculated using a narrewb{second-wide) Gaussian weight-
function. Then, the low-variability regions are defined as consecutiygences of
intervals with|d(n)| < do; the lengthr of such a region is measured as the number
of beats in the sequence. Further, all the low-variability regions are meahlj
identify them later), and arranged according to their length; regionsuai éength
are ordered randomly. In such a way, the longest observed regiaimshbank
r = 1, second longest # = 2, etc. Typically, the length-rank relationship reveals
multiscaling properties, i.e. within a certain range of scales, the scaling law (2)
observed, the scaling exponenbeing a (nonconstant) function of the threshold
level,v = ~v(dp) (see Fig. 9).

It is not surprising that the scaling behaviour is not perfect. Indeedhdart
rhythm is a nonstationary signal affected by the nonreproducible datilyitaes
of the subjects. The nonstationary pattern of these activities, together with th
time-scales, is directly reflected in the rank-length law. This distribution law can
also have a fingerprint of the characteristic time-scale (10 to 20 s) of tloel blo
pressure oscillations (which modulate the level of HRV, ét])[ It should be
emphasized that the problem of the nonreproducible daily activities a#flsttshe

Fig. 9. Multiscaling behaviour: the rank of low-variability intervals is plotted against the
length [ of the intervals (measured in the number of heartbeats). sthéng exponenty
depends on the threshold valéie
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reliability of the other scale-invariant measures and is probably the mainctbsta
preventing the clinical application of the seemingly extremely efficient dig@gnos
and prognostic techniques. Finally, there is a generic reason why Z#p{’'ss
nonperfect at small rank numbers: while Zipf's law is a statistical law, eack-
length curve is based only on a single measurement. In particular, thelg snen
longest low-variability period (likewise, only one most-frequent wordg, lgngth
of which is just as long as it happens to be; there is no averaging whatséer
large ranks, the relative statistical uncertainty can be estimateth4as

The distribution function of the low-variability periods as a whole contains a
significant amount of diagnostically valuable information, which is not ceddry
any other (linear or nonlinear) measure of HRV. The most part of thigrimdtion
seems to be reflected (according to the Student test analysis using theotgst g
of Table 1) by the parametergng (the scale at which the scaling law breaks; for
a precise definition, seé']), rm.x (the maximal observed rank), amgy, (the
rank of the interval withr = 100; the diagnostical performance of this parameter
is similar to that ofr,,,c). These measures allow a clear distinction between the
healthy subjects and the IHD, VES, and PCI groupk fhe p-values are presented
in Table 3 (for a reference, the data of the two best-performing linearuresaare
also provided).

Table 3. p-values of the Student test. Data in the topmost triangeigion (with labeld) are
calculated using the parametferreng (the logarithmic measure is used to achieve a nearly-
Gaussian data distribution). Triangular reg®rorresponds to the parametar .., region

C —to the linear measure pnn50, and regidr to the linear measure SDNN. Since multiple
tests were carried out, modified Bonferroni correctiti] has to be applied. Grey background
highlights the tests with the adjusted significapte< 10%. The control parameter value
09 = 0.05 has been used

39



7. MODE-LOCKING BETWEEN THE HEART RHYTHM AND
RESPIRATION

As mentioned above, respiration affects (modulates) the heart rhythm. This
effect is mediated by the blood pressure, and the effect known aseHaro(heart
rhythm depends on the blood pressure). The heart is most respaviftivrespect
to the signals of the autonomous nervous system when the heart rate is.elow,
when the patient is at rest. In that case, HRV is driven by weaker siglilas
the signals induced by respiration, which (due to their quasi-periodice)atuay
lead to a mode-locking. In the case of mode-locking, the heart rate is autatiyatic
slightly adjusted so that the respiration and heart beat periods relatétothac as
(small) integers. As a result, the decorrelation time between the heart rhyithm a
respiration can be very long. This is the effect which is in most cases tise cd
the patterns (isolated clouds of points) observable in the reconstrucdsd ppace
(see Fig. 3).

The mode-locking has been studied using bivariate data (simultaneous ECG
and respiration data) and the technique called cardiorespiratory sgmahr ['].
Also, a univariate data analysis method using the angle-of-returntime mbebas
elaborated?’]. In that case, the data-set is used to reconstruct the phase offorcin
(breathing) and the phase of oscillator (heart). These phases aré platseis each
other; in the case of mode-locking, disjoint clouds of points will appear.

Recently, we have developed an independent, intuitive and easy to usaimeth
of mode-locking detection from univariate data (RR-interval sequendayh is
based on analysis of the fluctuation functisifv), defined by Eq. (1)F]. The
fluctuation function of the patients with mode-locking revealed the presdrame o
oscillatory component, see Fig. 10b. By dividing the entire 24-hour HRdrk
into one-hour intervals, and calculating the amplitude of the oscillatory commpone
(via a wavelet transform) of the fluctuation function for each interval, vesew
able to locate the periods responsible for the satellite clouds in the recdadtruc
phase-space. These were always the periods before falling aateeipd 10 or
11 pm, characterized by a low heart rate and a high respiration-driemt-ttme
variability. The phase between the heart rate and respiration is lockeddens
of seconds, confirming the observations of Schéafer et'4l. [Thus, in a certain
sense, the heart and respiratory complex act as a system of couplidatas.
Finally we note that a specific feature of the patients with strong mode-locking
was the presence of well-defined “satellite clouds” in time-delay map (se8)-ig.
Therefore, the time-delay map can be also used to detect mode-lockingvémw
this method is nonquantitative, less sensitive than the fluctuation-functeedba
technique, and does not give a hint which mode-locking modes arevebisérhe
presence of a natural quantitative measure (the wavelet transform atepl)itis
also the main advantage of our approach over the alternative method.

As compared with the alternative techniques, our method of mode-locking
detection is very simple and does not require synchronous respiratydnrh
recording (unlike the thorough methott]), and can be conveniently used to find
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Fig. 10. Patient with 3:1 mode-locking between the heart rate anginasn: (a) heartbeat
intervals (in milliseconds) plotted versus the beat numf@dre heart rate has a pronounced
oscillatory component; vertical lines mark the period ofeth heartbeats, horizontal lines
indicate the sequences with coherent phase. (b) Fluctutaticction (arbitrary units) is plotted
versus the time lag (in heartbeats); the oscillating component is magnified.

relatively short £ 10 min) locking periods from a 24-hour recording. Besides,
it provides a natural measure to quantify the degree of mode-locking éuthli
method of using the angle-of-returntime magj).

8. CONCLUSIONS

Below is an attempt to classify the measures of heart rate variability.
1. “Classical” linear methods — based on standard statistical measures and o
the Fourier analysis. These are the only methods widely used in clinicaiqerac
2. “New” linear methods: wavelet spectra.
3. Nonlinear methods:
(a) scale-invariant methods:
i. single-scaling analysis (calculation of the Hurst exporféjit
ii. multi-scaling analysis — calculation of the exponent spectra [Lipschitz—
Haolder spectruny (h), mass exponentsq), or structure function exponent
spectrum((q)]; these seem to be the most promising measures, at least for
prognostic purposes;
iii. calculation of the multiscale entropy;
iv. analysis of the HRV-data segments with a similar mean heart rate;
v. analysis of the distribution law of low-variability periods (performs
well in diagnostic tests, there are no prognostic tests yet);
(b) scale-dependent methods:
i. performing a phase-space analysis (entropy-based measuresiacor
tion dimension, Lyapunov exponents, etc.);
ii. heart rhythm and respiration mode-locking analysis.
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The human heart rate fluctuates in a complex and nonstationary manner.
Elaborating efficient and adequate tools for the analysis of such sigaslbden
a great challenge for the researchers during last decades. The labg list of
nonlinear techniques proves that the research has been sucaassfubirious
important features of such time-series have been revealed. Nevesilirts is no
consensus of which methods are the most efficient ones from the poiirgvobf
clinical applications. On the one hand, this is caused by the high nonstétijcarat
irreproducibility of these time-series: the complex measures of HRV depaind n
only on the healthiness of the heart, but also on the daily habits of the s{ject
and on the random events of the recording day. On the other hand, wkalog
between physicists and doctors seems to be inefficient: physicists pulsiesdreh
results based on small test groups; doctors are waiting for follow-ujpestuding
extended and homogeneous test groups. However, the situation igezkpec
start improving, owing to the new projects bringing together medical doctats a
physicists (cf. http://mww.physionet.org).
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Mittelineaarne ja mastaabi-invariantne stidamerutmi
muutlikkuse anallus

Jaan Kalda, Maksim Sakki, Meelis Vainu ja Mari Laan

Inimese stidameritm fluktueerub keerulisel ja mittestatsionaarsel moel. Efek-
tiivsete ja seda tlUpi ajajadade jaoks adekvaatsete anallilisimeetodite igijatoo
mine on viimaste aastakiimnete jooksul olnud teadlastele tdsiseks valjakutseks.
Kaesolevas Ulevaates kasitletakse selles valdkonnas saavutatud pdhstulemu
Peardhk pannakse kisimustele, millised on sidameritmi ajajada olulisimad eri-
omased jooned ja millised on diagnostiliste ja prognostiliste rakenduste seistikoha
kdige perspektiivikamad mittelineaarsed ritmimuutlikkuse méddud.
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Abstract

We study the long-term dynamics of the short-time variability level of human heart rate, an
aspect which is not addressed by the traditional methods of non-linear time-series analysis. The
length-distribution of low-variability periods in human heartbeat dynamics typically follows a
multi-scaling power law. The values of the scaling exponents are personal characteristics and
depend on the daily habits of the subjects. Though, the distribution function of the low-variability
periods as a whole discriminates efficiently between several heart pathologies.

(© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Human heart rate fluctuates in a complex and non-stationary manner. This phe-
nomenon can be related to the intermittent nature of human life, the events of which are
reflected in the heart rate dynamics via competing (non-linearly interacting) neuroauto-
nomic signals (parasympathetic signals decrease and sympathetic stimulations increase
the heart rate). Heart pathologies may decrease the responsiveness of the heart and lead
to an overall reduction of the heart rate variability (HRV). Understanding the diagnos-
tic and prognostic significance of the various measures of HRV has a great importance
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E-mail address: max@cens.ioc.ee (M. Sakki).

0378-4371/$ - see front matter (© 2004 Elsevier B.V. All rights reserved.
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for the cardiological practice, because HRV measurements are low-cost and harmless
for the patients, unlike the invasive methods of diagnostics.

As a result of intensive studies following the pioneering paper [1], various linear
measures of HRV became widely used by practical medicine as important non-invasive
diagnostic and prognostic tools. Meanwhile, recent studies have revealed the importance
of non-linear and scale-invariant characteristics, and resulted in many methods of very
high prognostic performance on test groups [2—7]. The scale-independent methods have
been believed to be less subject-independent than the scale-specific measures [2]. It has
been recognized that the heart rhythm reflects the activities of the subject (sleeping,
watching TV, walking, etc.) [8,9]. The most adequate model of HRV dynamics has
been believed to be multi-affine fractional Brownian motion (fBm) [2,3].

While the approach based on fBm addresses long-time dynamics of the heart rhythm,
it neglects the short-scale dynamics on time scales less than one minute (these frequen-
cies are typically filtered out [6]). The short-time variability has been described only
by some linear measures, e.g. pyyso (the probability that two adjacent normal heart
beat intervals differ more than 50 ms). Meanwhile, the level of short-time variabil-
ity varies also in a complex manner (the high- and low-variability periods are deeply
intertwined [8]) and therefore, cannot be appropriately described by linear measures.
Switching between low and high levels of short-term variability is a physiologically im-
portant aspect, because typically, low levels are caused by the heart being in a stressed
state. The scale-invariant aspects of such switching can be addressed by studying the
length-distribution of the low-variability periods [10]. Here, we provide a brief descrip-
tion of this method and show that typically, the distribution of low-variability periods
in the activity of a normal heart follows a power law. We also discuss fitting the dis-
tribution function by stretched exponentials and derive some diagnostically significant
measures.

2. Experimental data

Our analysis is based on ambulatory Holter-monitoring data (recorded at Tallinn
Diagnostic Centre) of 218 patients with various diagnoses, the main groups are shown
in Table 1. The ECG-s were recorded at the sampling rate of 180 Hz during 24 h, under

Table 1
Test groups of patients

Healthy IHD SND VES PCI RR FSK
Number of patients 103 8 11 16 7 11 6
Mean age 455 65.4 50.0 55.9 473 55.5 11.7
Standard deviation of age 20.5 11.4 19.3 143 11.6 14.4 4.6

Abbreviations are as follows: IHD—Ischemic Heart Disease (Stenocardia); SND—Sinus Node Dis-
ease; VES—Ventricular Extrasystole; PCI—Post Cardiac Infarction; RR—Blood Pressure Disease; FSK—
Functional Disease of Sinus Node.
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normal daily activities of the patients. The commercial software (Rozinn) was used to
calculate the sequence of the normal-to-normal (NN) intervals zyy (in milliseconds),
which are defined as the intervals between two subsequent normal heartbeats (normal
QRS complexes).

3. Intermittency of HRV and distribution of low-variability periods

It has been pointed out that the NN-sequences of healthy subjects consist of inter-
twined high- and low-variability periods [8]. This conclusion can be easily verified by
a simple visual observation of the sequences of NN-intervals, see Fig. 1. The duration
T of the low-variability periods varies in a wide range of scales, from few to several
hundreds of heart beats. In order to analyse quantitatively this aspect of HRV, we have
studied the distribution of low-variability periods. To begin with, we define the local
variability for each (ith) interbeat interval as the deviation of the heart rate from the
local average,

|taw (i) — (taw ()|
(tnn (1)) ’

where fyy is the interval between two adjacent non-arrhythmic beats. The angular

braces denote the local average, which is calculated using a narrow (5 beats wide)

Gaussian weight function. Further, we introduce a threshold value dp; ith interbeat
interval is said to have a low variability, if the condition

d(i) < g (2)

o(i) = (1)

is satisfied. A low-variability period is defined as a set of consecutive low-variability
intervals; its length t is measured in the number of heartbeats. Finally, all the low-
variability periods are arranged according to their lengths and associated with ranks
(the longest period obtains rank » = 1). The rank of a period is plotted versus its
length in a logarithmic graph, see Fig. 2. For a very low threshold parameter J, all
the low-variability periods are very short, because it is difficult to satisfy the stringent
condition (2). Also, in that case, the inertial range of scales is too short for a meaningful

value of NN
interval, ms

1000 ms

index of NN interval

Fig. 1. Periods of low variability for 600 interbeat intervals (approx. 9 min of ECG recording) are shown
below as gray thick lines (d9 = 0.03). The longest period is measured to be 127 beats long, the shortest—1
beat.
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Fig. 2. Left: rank-length curves for a patient with a good power law (a) and for a patient with no power law
(b). In both cases, the threshold parameter dp = 0.05. Right: multi-scaling distribution of the low-variability
periods: the rank r of a period is plotted versus its duration T (measured in heartbeats) for different values
of the threshold parameter Jy.

rank-length law. On the other hand, for a very high value of dy, there is a single
low-variability period occupying the entire HRV-recording. Between these two extreme
cases, there is such a range of the values of dy, which leads to a non-trivial rank-length
law. Typically, the length-rank relationship reveals multiscaling properties, i.e. within
a certain range of scales, the scaling law

r(t) oc 7 (3)

is observed, the scaling exponent y being a (non-constant) function of the threshold
level, y = 7(Jy).

It is not surprising that the scaling behaviour is not perfect. Indeed, the heart rhythm
is a non-stationary signal affected by the non-reproducible daily activities of the sub-
jects. The non-stationary pattern of these activities, together with their time-scales, is
directly reflected in the rank-length law. This distribution law can also have a finger-
print of the characteristic time-scale (10-20 s) of the blood pressure oscillations, which
modulate the level of HRV, cf. [12]. It should be emphasized that the problem of the
non-reproducible daily activities affects also the reliability of the other scale-invariant
measures and is probably the main obstacle preventing the clinical application of the
seemingly extremely efficient diagnostic and prognostic techniques.

It turned out that for a typical patient, the best approximation of the function »(7)
with a power law is achieved for ¢ ~ 0.05 (see Fig. 2a); in what follows, all further
calculations were done for dp = 0.05. For some patients, the length-rank distribution
is still far from a power law (Fig. 2b), and is better fitted by a stretched exponen-
tial 4e~“"". However, power law turned out to be more typical. For our test groups,
there was no significant correlation between the type of the law (power law, stretched
exponential, or something intermediate), and the diagnosis. The parameters based on
the stretched exponential (a, o) had a significantly lower diagnostic value than those
discussed below.

First, we analysed the correlation between the diagnosis of a patient and the scaling
exponent ). This parameter has been calculated (see [10] for details) for the curves of



M. Sikki et al. | Physica A 338 (2004) 255—-260 259

Table 2
p-values of the Student test

p (%) Healthy] THD | SND | VES | PCI | RR | FSK |Healthy] THD | SND | VES | PCI | RR | FSK
Healthy[3~A[ 0.06 | 17.21] 0.02 | 0.07 | 1.59 | 1.55 [D~C| 1.27 [43.12 [ 0.01 [ 6.27 |87.40 | 73.99
THD | 0.36 2.85 | 96.79] 97.62] 21.93] 20.05| 4.82 487 |90.04 |27.13 | 6.11 | 5.83
SND | 2.99 | 59.10 210 | 3.04 [25.77]2557| 4791 | 6.37 381 | 12.31 | 55.50 | 63.46
VES | 0.08 | 91.60| 63.79 94.18]17.59] 16.20| 0.34 |81.67 | 6.02 11.04 | 3.69 | 443
PCI |25.27]| 21.61| 46.37| 22.89 2250 20.62] 38.38 | 18.24 | 27.25 | 12.40 2045 |17.37
RR | 0.14 | 73.57| 77.69 | 80.49| 28.90 98.20( 85.74 | 6.80 |59.23 | 4.01 | 4231 88.81
FSK | 46.48| 5.20 | 8.72 | 5.52 | 20.06| 6.45 6587 | 9.45 |81.38 | 9.53 | 38.30 | 77.74

Data in the triangular region A are calculated using the parameter In t,q. Triangular region B corresponds
to the parameter In 7max, region C—to Inrjgo, and region D—to In 749. Since multiple tests were carried out,
modified Bonferroni correction [11] has been applied. In total, there are 84 p-values; therefore, the adjusted
significance of the nth smallest p-value is obtained as p’ = 84 p/n. Gray background highlights the tests
with p < 10%.

all the patients using a fixed threshold do=0.05; Student test was applied to every pair
of groups. Typically, the significance was low; the best distinguishable groups were
RR and FSK (with p =~ 5.7%). One can argue that the slopes of linear parts are mostly
personal characteristics depending on the daily habits of the subjects, and are weakly
correlated with diagnosis.

Further we tested, how is the failure of the power law correlated with the diagnosis.
The width of the scaling range A was used as a measure of how well the curve is
corresponding to a power law. The Student test results for the parameter 4 turned out
to be similar to what has been observed for the parameter y: the correlation between the
failure of the power law and diagnosis was weak. Thus, a rank-length curve resembling
the one depicted by a dashed line in Fig. 2, does not hint to heart pathology. It should
be also noted that the dashed curve in Fig. 2 can be considered as a generalized form
of scale-invariance with scale-dependent differential scaling exponent.

Finally, we analysed the diagnostic significance of start- (In y.) and end-points
(InTeng) of the scaling range (see Ref. [10] for details). Note that the scaling range
edge-points can be expected to correspond to certain physiologically relevant time-
scales. The parameter Int.g provided, indeed, a remarkable resolution between the
groups of patients, see Table 2. According to the Student test, the healthy patients,
were distinct from five heart pathology groups with probability p < 1.6%. The diag-
nostical information contained in r(7)-law turned out to be not limited by In teq: the
overall number of low-variability periods 7n, (Which is small, if there are lot of long
low-variability periods) and the coordinates of specific points of the r(z)-curve (such
as the length 13 of the period with a fixed rank R, e.g. 749, and the rank ry of a period
with a fixed length 7') were also of high diagnostic performance, see Table 2.

4. Conclusion
In conclusion, new aspect of non-linear time-series has been discovered, the scale-

invariance of low-variability periods. We have shown that the distribution of low vari-
ability periods in the activity of human heart rate typically follows a multi-scaling
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power law. The presence or failure of a power law, as well as the values of the scal-
ing exponents, are personal characteristics depending on the daily habits of the subjects.
Meanwhile, the distribution function of the low-variability periods as a whole contains
a significant amount of diagnostically valuable information These quantities character-
ize the complex structure of human HRYV signal, where the short-time variability level
fluctuates intermittently, an aspect which is not addressed by the other methods of
heart rate variability analysis (such as fractional Brownian motion based multifractal
analysis). The support of Estonian SF Grant No. 5036 is acknowledged.
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Summary. This study focuses on discrimination of changes, produced by low-level microwave exposure in
intensity and time variability of the human EEG at rest. The power spectral density (PSD) method and nonlinear
scaling analysis of the length distribution of low variability periods (LDLVP) were selected for analysis of the
EEG signal. During the study, 19 healthy volunteers were exposed to a microwave (450 MHz) of 217 Hz
frequency on-off modulation. The field power density at the scalp was 0.16 mW/cm?. The experimental protocol
consisted of ten cycles of repetitive microwave exposure. Signals from frontal, temporal, parietal and occipital
EEG channels on EEG theta, alpha and beta rhythms were analysed. Exposure to microwave causes average
increase of EEG activity. LDLVP analysis discriminated significant effect in time variability for 2 subjects
(11%). PSD method detected significant changes in intensity for 4 subjects (21%). The effect of low-level

microwave exposure is stronger on EEG beta rhythm in temporal and parietal regions of the human brain.

Keywords: EMF effects, nonionising radiation, microwave radiation, time variability, scaling analysis, spectral

analysis, EEG rhythms.



1 Introduction

Starting with the new era of portable telecommunication solutions, artificial electromagnetic fields present
stronger radiation than the fields created by natural sources. For most of the time, people may not be aware of
such radiation, so they solely rely on safety standards.

Modulated microwave radiation at non-thermal level of field power density can affect human central nervous
system in a sensible way (D'ANDREA et al., 2003; SALFORD et al., 2003). Except in unhealthy artificial
conditions, the effect of electromagnetic field is weak and difficult-to-detect. With carefully planned
measurement technique and recording protocol, the measurement of the bioelectrical activity of the brain has
been proven to be one of the most successful ones and selected as our primary data source. The measurement
and data analysis must take into account the normal fluctuations of EEG signal and presence of other complicate
detectable factors. Thus, quantitative measures should be carried out to estimate the overall effect.

During recent years, non-thermal effect of low-level electromagnetic field on human nervous system has become
a subject of discussions. The reports of possible non-thermal effects are often contradictory. Several
investigators have reported that low-level exposure produces alterations in the EEG signal and brain behavior
(BAWIN et al., 1973; VORoOBYOV et al., 1997; MANN et al., 1996; WAGNER et al., 1998; HUBER et al., 2000;
LAss et al., 2002; HINRIKUS et al., 2004). The conclusion reported by the other researchers is that the exposure
to electromagnetic field does not alter the resting EEG (HIETANEN et al., 2000; KRAUSE et al., 2000; KRAUSE et
al., 2000). Mechanisms behind the effects are still unclear and the question about the existence of any feasible
effect of a low-level radiation on brain bioelectric activity has been left open.

In our previous studies the relative changes in the EEG rhythms energy, mainly in theta and alpha bands, were
investigated and effect, produced by microwave exposure, reported (HINRIKUS et al., 2004). Modulation of
microwave at 7 Hz frequency, which belongs to the band of physiological frequencies of the brain, was applied.
However, those results did not present statistically important changes. Likewise, the power spectrum analysis
could not differentiate sham recordings from recordings under the influence of microwave stimulation at 7 Hz
on-off modulation. However, nonlinear scaling analysis of the length distribution of low variability periods
(LDLVP) detected significant effect of exposure to the EEG signal for about 25% of subjects (BACHMANN et al.,
2005). Increase in EEG variability, caused by microwave exposure, was reported.

The analyzed frequencies are lower, than modulation and pulse frequencies in technical systems. Therefore, here

we study the physiological effect of the modulation frequency 217 Hz. To this end, we compare the EEG signals



recorded at the presence of a modulated low-level microwave field, with sham signals. 217 Hz is the GSM
signal’s pulse frequency and the population is most widely exposed to microwave modulated at that frequency.
The mechanisms of low-level microwave interaction with biological tissues are not clear. Therefore, it is not
possible to predict the character of changes in brain bioelectrical activity, caused by microwave exposure. The
effect could be related to stimulation or depression of the brain activity, which leads to changes in intensity of
the EEG signal. The effect could be related to changes on neurons spiking frequency or processes in synapses,
which leads to changes in time variability of the EEG signal. Experimental effects that depend on low frequency
modulation of microwave radiation can also be related to more complicated nonlinear responses in biological
tissue and living cells (BALzANO et al., 2003). Therefore, two different methods for analysis of the EEG signals
were used in this study: the first for discrimination of changes in intensity, and the second for discrimination of
changes in time variability of the EEG signals.

The intensity of the EEG signal is most completely described by power spectrum of the EEG signal. The power
spectral density method, a widely used method in quantitative EEG, was selected for intensity analysis of the
EEG signals. The powers of EEG theta, alpha and beta rhythms bands were analyzed.

The LDLVP analysis provides a simple route to detecting the multifractal characteristics of a time-series and
yields somewhat better temporal resolution than the traditional multifractal analysis. Thus, it can be expected
that this method is sensitive with respect to small “hidden” changes in such a complicated physiological signal as
EEG. The LDLVP method was selected for time variability analysis of the EEG signals.

The hypothesis, evaluated in this study, is that modulated at 217 Hz microwave exposure increases variability of

the EEG signal and causes changes in the power spectrum of the human EEG.

2 Method and equipment

2.1 Subjects

An experimental study was carried out on a group of volunteers. The group consisted of 19 healthy, young
people (aged 21-24): 8 male and 11 female. Their physical and mental condition (tiredness, sleepiness) before
the experiment was evaluated by a questionnaire and a clinical interview. After the recordings, they described
how they felt during the experiment. The subjects reported neither alertness nor any strain experienced during

the recordings.



The experiments were conducted with the understanding and written consent of each subject. The study was
conducted in accordance with the Declaration of Helsinki and has formally approved by the local Medical
Research Ethics Committee.

The measurements were performed in a dark laboratory, but no other special conditions were provided. The
subjects lay in a relaxed position, with eyes closed and ears blocked during the experiments.

All the subjects were exposed and sham exposed. Only one experimental EEG recording was performed for a
subject during a day. The measurements were double blinded. During each test session, the exposed and sham-
exposed subjects were randomly assigned. The subjects were not informed of their exposure; however, they were
aware of the possibility of being exposed. Subjective factors were also excluded from the computer-performed
data analysis: the same algorithms were applied for all the recordings (both for exposed and sham-exposed
subjects).

2.2 Microwave Exposure

The modulated microwave radiation at non-thermal level of field power density, identical to our previous
studies, except modulation frequency (LASS et al., 2002), was used. Microwave exposure conditions were the
same for all subjects. The 450 MHz microwave radiation was 100% amplitude modulated at 217Hz frequency
(duty cycle 50%). The 1W EMF output power was guided by a coaxial lead to the 13cm quarter-rhythm antenna,
located 10 cm from the subject's skin on the left side of the head.

Estimated field power density at the skin was 0.16 mW/cm2. The level of power density was so low that thermal
effects were extremely unlikely.

2.3 Recording protocols and equipment

The study consisted of two experimental protocols, identical for all subjects. The first protocol was recorded as
described below.

First, the reference EEG was recorded over 60 s. Secondly, modulated microwave radiation was applied. The
duration of the exposure was 60 s, and the compensatory pause after the exposure was 60 s. Continuous EEG
recordings were made during and 60 s after exposure. The procedure of the cycle was repeated ten times. The
microwave exposure was switched on every first 60 s of the cycle. During ten cycles of microwave exposure, the
modulation frequency always remained at 217 Hz.

The recording protocol for one subject lasted for 21 min, during which the EEG was continuously recorded.

The second protocol for the sham-exposure included the same steps, except that the microwave generator was

switched off.



The Cadwell Easy Il EEG measurement equipment was used for the EEG recordings. The EEG was recorded by
means of 19 electrodes, placed on the subject's head according to the international 10-20-electrode position
classification system, with Cz as reference. The recorded EEG signals were examined by an experienced
neurologist. Artifacts were detected by visual inspection. The recordings containing multiple artifacts were
removed, and the whole recording was repeated.

For the analysis, EEG spectrum 0.5 - 40 Hz was selected, as the results of the preceding validation of the set-up
confirmed the absence of modulation components, caused by parasitic interference between EEG and radio
frequency equipment.

2.4 Selection of signals

Recordings from the following channels were selected for further power analysis: frontal: FP1, FP2; temporal:
T3, T4; parietal: P3, P4; occipital: O1, O2. For scaling analysis, only channels FP1 and FP2 were used, as
formerly shown, the results from different EEG channels did not differ (BACHMANN et al. 2005).

Initially, all the EEG recordings were divided into two sub-signals. The recordings performed with the first
recording protocol were divided as follows: the first subsignal contained all 1 min periods without microwave
exposure (all the odd minutes from the initial EEG recording); the second subsignal contained all minutes with
microwave exposure (all even minutes of the initial EEG recording).

The recordings performed with the second recording protocol (sham) were divided similarly: the first sham
subsignal contained all the odd minutes; the second sham subsignal contained all the even minutes of the initial
recording.

2.5 Scaling analysis of the EEG signal based on the LDLVP method

The LDLVP method has been used and described in details in our previous studies (KALDA et al., 2001; SAKKI
et al., 2004; BACHMANN et al., 2005). The analysis consists of several steps.

First, we define the local variability as the deviation of the current value of the signal from the local average. The
time-window width T, for the local average, is a free (adjustable) parameter. For EEG signals, a reasonable value

is provided by T = 60 ms, cf (BACHMANN et al., 2005).

Secondly, low-variability periods are defined as continuous intervals where local variability is smaller than o, .

The value of &, was adjusted for each recording individually, reaching a minimum value so that, for both

subsignals, the length of the longest low-variability period was at least 3750 ms.
Finally, the number of low-variability periods N exceeding length Ty is plotted against length T,

The weighted area of the function T, = To(N) was selected as the non-linear quantitative measure.



2.6 Power spectral density analysis

The power spectral density (PSD) was estimated by means of Welch's averaged periodogram method. The
subsignals were divided into overlapping sections (50%), with a length of 2048 points, and windowed by a
Hanning window.

Afterwards, the power W, was computed for each subject (indexed by ne [1,19]), subsignal (indexed by
m=1,2) and frequency band (f = 6 for theta band [4-8Hz], f = a for alpha band [8-13 Hz] and f = 3 for beta band
[13-40 Hz] ), as the area under the spectrum for the corresponding frequency band (integral of the band).

To locate the possible influences of microwave exposure, difference of two sub-signals was selected as the PSD

measure for further analysis.
The same procedure was repeated with sham subsignals, resulting in spectral powers W .

2.7 Statistical analysis

For sham recordings, subsignals were completely equivalent. According to the “zero hypothesis”, the EEG
recordings of subjects under microwave exposure cannot be distinguished from sham signals. Consequently, if
the zero hypothesis is true, the ratio of the computed power difference to the standard deviation of the
differences is an f-distributed random quantity and it can be used as a quantitative measure, showing how well
the zero hypothesis is satisfied; respective p-values are obtained by means of the cumulative f-distribution.

The same technique has been applied to the non-linear quantitative measure (derived from LDLVP), resulting in

another series of p-values.

3 Results

The results of LDLVP analysis for a subject are presented in Fig. 1. The number of low-variability periods N
exceeding the length T, is plotted versus the length T, for the first and second sub-signal for exposed recording.
As can be seen, microwave exposure lowers the curve at the right-hand part of the graph (large values of To).
Such a change in curve indicates that microwave exposure increases variability of the EEG signal: owing to
higher variability there are fewer long low variability periods.

Fig. 2 presents the average values of calculated relative changes in PSD measures for different frequency bands,
for exposed and sham recordings. While in sham recordings the power in theta frequency band increases, the
power decreases for alpha and beta frequencies. Average values of the measure for microwave-exposed
recordings are always positive, therefore, the power of all frequency bands is increasing during microwave

stimulation.



Statistical analysis of the PSD and LDLVP quantitative measures for microwave-exposed and sham recordings,
were calculated for each subject. The ratio of the computed power difference to the standard deviation of
differences of more than three, and p values not larger than 0.001 were considered as significant deviations from
the zero hypothesis.

The analysis based on the PSD measures resulted in the ratio of the computed power difference to the standard
deviation of differences (calculated on the basis of sham signals) being higher than three for 12 cases in the case
of microwave exposure. For sham recordings, 2 cases were significant. The analysis based on the LDLVP
measures for exposed recordings resulted in the ratio of the computed power difference to the standard deviation
of differences exceeding the value of three for 2 subjects and for no subjects in case of the sham recordings.

All of the results, except for two cases in frontal region (PSD measures), remain significant even after
application of the modified Bonferroni correction. The number of subjects having significant results after
Bonferroni correction for microwave exposed and sham recordings are presented in Table 1. As for PSD

measures, there was no significant result for theta and alpha frequency band, only beta band is presented.

4. Discussion

LDLVP measures resulted in significant results for two subjects in the case of microwave exposure and for none
of the subjects in the case of sham recordings (Table 1). Accordingly, significant effect of exposure to the EEG
signal was detected for about 11 % of subjects. However, for one subject under the exposure, the computed
LDLVP weighted area decreased and for other, it increased. For both subjects, the departure from the sham
behavior is statistically reliable. This is somewhat different from what has been observed for the modulation
frequency 7 Hz, when the sign of the departure was always negative (corresponding to increased variability)
(BACHMANN et al., 2005). This observation gives us a hint that the physiological effect of the microwave
stimulation depends on the modulation frequency (at least there is a difference between the 7 Hz and 217 Hz
frequencies).

The PSD measures exceeded the limit of significant deviation from zero hypothesis only in beta frequency band
(Table 1). In temporal region, the PSD measures provided the most results: 3-4 cases out of 19, ~16 — 21 %. The
influence was somewhat smaller in parietal region: 1-2 cases out of 19, ~ 5 — 11 %. The frontal region did not
present significant changes after Bonferroni correction, while occipital region did not present any significant

change.



As for sham recordings, the PSD measure resulted in significant results for one subject in channel T3 and in T4.
However, those were very close to the limit of significance - 0.05 - and therefore, can be arguably explained with
the statistical variability.

Looking at the average values calculated for sham recordings (Fig 2), one can see that the results are in a good
agreement with the findings of MALTEZ et al., 2004. They showed that alpha and beta power decreased towards
the end of recording session during resting conditions, while delta and theta power showed a systematic increase.
Except for delta power, which was not under investigation, our results showed the same trend.

However, average values for microwave-exposed recordings reveal an increase of power for all frequency bands.
For theta frequency band the level is almost the same as for sham recordings, referring probably to the normal
time course and variability of power. At the same time, the average values for alpha and beta band are opposite
from sham, implying to the influence of microwave stimulation by increase of power.

The analysis by the LDLVP and PSD methods detected the effect of exposure for about 11% and 21 % of
subjects respectively. For instance, the rate of multiple chemical sensitivity (MCS) occurrence is estimated to be
between 2 and 10 % in the general population (CULLEN, 1987). MCS is characterized by recurrent symptoms
involving multiple organ systems and occurring in response to demonstrable exposures to multiple chemically
unrelated compounds at doses far below those established to cause harmful effects. Taking this into
consideration, low-level microwave exposure influences even higher part of population than multiple chemically

unrelated compounds.

Conclusion

1. Modulated at 217 Hz low-level 450 MHz microwave exposure produced statistically significant changes in
time variability and intensity of the EEG signal for 10 -20% of healthy subjects.

2. The effect of low-level 450 MHz microwave exposure is stronger on EEG beta rhythm in temporal and
parietal regions of the human brain.

3. Exposure to modulated at 217 Hz low-level 450 MHz microwave causes average increase in EEG activity.

The mechanism of these changes is not clear and the effect needs further investigation.

Acknowledgements

This study was supported by Estonian Science Foundation, Grants No 5143 and 6121.



10

References

M. Bachmann, J. Kalda, J. Lass, V. Tuulik, M. S&kki, H. Hinrikus, “Non-linear analysis of the
electroencephalogram for detecting effects of low-level electromagnetic fields,” Med Biol Eng Comput 2005;
43:142-149

Q. Balzano, A. Sheppard, “RF nonlinear interaction in living cells-1: nonequilibrium thermodynamic theory,”
Bioelectromagnetics 2003; 24:473-482

S.M. Bawin, R.J. Gavalas-Medici, WR. Adey, “Effects of modulated very high frequency fields on specific brain
rhythms in cats,” Brain Res 1973; 58: 365-84

M.R. Cullen, “Workers with multiple chemical sensitivities,” Occupational medicine: state of the art reviews.
Philadelphia: Hanley & Belfus, Inc. 1987; 2: 655-661

JA. D'Andrea, C.K. Chou, S.A. Johnston, E.R. Adair, “Microwave effects on nervous system,”
Bioelectromagnetics 2003; S6: 107-147.

M. Hietanen, T. Kovala, A.M. Hamalainen, “Human brain activity during exposure to radiofrequency fields
emitted by cellular phones,” Scand J Work Environ Health 2000; 26: 87-92

H. Hinrikus, M. Parts, L. Lass, and V. Tuulik, “Changes in human EEG caused by low-level modulated
microwave exposure,” Bioelectromagnetics 2004; 25(6): 431-440

R. Huber, T. Graf, K.A. Cote, L. Wittmann, E. Gallmann, D. Matter, J. Schuderer, N. Kuster, A.A. Borbely, P.
Achermann, “Exposure to pulsed high-frequency electromagnetic field during waking affects human sleep
EEG,” Neuroreport 2000; 11: 3321-3325

Kalda, J., Sékki, M., Vainu, M., and Laan, M. (2001): ‘Zipf's law in human heartbeat dynamics’, available:

http://arxiv.org/abs/physics/0110075

C.M. Krause, L. Sillanmaki, M. Koivisto, A. Haggqvist, C. Saarela, A. Revonsuo, M. Laine, H. Hdméldinen,
“Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task,” Neuroreport
2000; 11: 761-764.

C.M. Krause, L. Sillanméki, M. Koivisto, A. Haggqvist, C. Saarela, A. Revonsuo, M. Laine, H. Hdméldinen,
“Effects of electromagnetic fields emitted by cellular phones on the electroencephalogram during a visual
working memory task,” Int J Radiat Biol 2000; 76:1659-1667

J. Lass, V. Tuulik, R. Ferenets, R. Riisalo, and H. Hinrikus, “Effects of 7Hz-modulated 450 MHz

electromagnetic radiation on human performance in visual memory tasks,” Int. J. Radiat. Biol. 2002; 78:937-944



11

J. Maltez, L. Hyllienmark, V.V. Nikulin, T. Brismar, “Time course and variability of power in different
frequency bands of EEG during resting conditions”, J Clin Neurophysiol 2004; 34:195-202

K. Mann, J. Roschke, “Effects of pulsed high-frequency electromagnetic fields on human sleep,”
Neuropsychobiology 1996; 33:41-47

L.G. Salford, A.E. Brun, J.L. Eberhardt, L. Malmgren, B.R. Persson, “Nerve cell damage in mammalian brain
after exposure to microwaves from GSM mobile phones,” Environ Health Perspect 2003; 111(7):881-883.

M. Sakki, J. Kalda, M. Vainu, M. Laan, “The distribution of low-variability periods in human heartbeat
dynamics,” Physica A 2004; 338:255-260.

V.V. Vorobyov, A.A. Galchenko, N.I. Kukushkin, 1.G. Akoev, “Effects of weak microwave fields amplitude
modulated at ELF on EEG of symmetric brain areas in rats,” Bioelectromagnetics 1997; 18: 293-298

P. Wagner, J. Roschke, K. Mann, W. Hiller, C. Frank, “Human sleep under the influence of pulsed
radiofrequency electromagnetic fields: a polysomnographic study using standardized conditions,”

Bioelectromagnetics 1998; 19: 199-202.



12

Table 1. Number of subjects with significant results after Bonferroni correction in the case of microwave

exposed and sham recordings.

Method LDLVP PSD
T e pet
Channel FP1/FP2 FP1 | FP2 | T3 | T4 | P3| P4 | O1 | O2
Exposed 2 0 0 3 4 2 1 0 0
Sham 0 0 0 1 1 0 0 0 0
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Fig. 1. The number of low-variability periods N exceeding the length T, for a significant subject: line 1 - second
sub-signal of exposed recording (intervals with microwave); line 2 - first sub-signal of exposed recording

(intervals without microwave).
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Fig. 2. Calculated relative changes in intensity between exposed and non-exposed segments of the EEG signals

on main EEG rhythms. Vertical bars denote 0.95 confidence intervals.
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Appendix 1: Standard measures of HRV in clinical use

A non-exhaustive list of the standard (based on linear statistical measures and on
the Fourier analysis) parameters of heart rate variability, which are currently used
in medical practice (implemented in most commercial diagnostic equipment). NN
[normal-to-normal] interval — interval between 2 adjacent non-arrithmic heart-
beats.

Time-domain measures

e the mean NN interval

o the difference between night and day heart rate
e the longest and shortest NN intervals

e SDNN = the standard deviation of the NN interval (typically calculated
over 24-hour period)

e SDSD= the standard deviation of differences between adjacent NN inter-
vals

e SDANN = the standard deviation of locally (usually 5 min) averaged NN
intervals

e SDNN index= the mean of the 5-minute standard deviation of the NN
interval (averaged over 24h)

e RMSSD= the square root of the mean squared differences of successive
NN intervals

o pNN50= the percentage of interval differences of successive NN intervals
greater than 50 ms

Frequency-domain measures

e VLF = the spectral power of fluctuations in NN-sequences in very low
frequency range< 0.04 Hz)

e LF = the spectral power of fluctuations in NN-sequences in low frequency
range (0.04 - 0.15 Hz)

e HF = the spectral power of fluctuations in NN-sequences in high frequency
range (0.15 - 0.4 Hz)
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Appendix 2: Nonlinear measures of HRV

A list of selected “nonlinear” measures used for describing of HRV. The classify-
ing does not pretend to be explicit because some methods can be related to several
sections, i.e. calculating multiscale entropy (MSE) is entropy-based approach,
however it is closely related to multiscaling anaysis.

Reconstructed phase space analysis

e D, = scaling exponent of correlation sum (correlation dimension)
e )\ = Lyapunov exponent

¢ heart rhythm and respiration mode-locking analysis
Entropy-based measures

e K5 = lower bound of the Kolmogorov-Sinai entropy, Grassberger and Pro-
caccia, 1983, cf. [55]

e Kppr = estimator of the Kolmogorov-Sinai entropy, Eckmann and Ruelle,
1985, cf. [56]

e ApEn = approximate entropy, a “regularity statistic” that quantifies the
unpredictability of fluctuations in a time series, Pincus, 1991, cf. [57]

e Zhang's Complexity= the sum of scale-dependent Shannon entropies over
all possible scales, Zhang, 1991, cf. [67]

e S, = pattern entropy (modified Shannon entropy), Zebroveskil., 1994,
cf. [69]

e SampEn = sample entropy, Richman and Moorman, 2000, cf. [63]

e MSE = multiscale entropy, Costt al., 2002, cf. [65]
Single- and multi-scaling analysis
e [ = global Hurst exponent (single-scaling analysis), Hurst, cf. [102]

f(h) = Lipschitz-Holder spectray(q) = mass exponent spectra{q) =
structure function exponent spectra (multi-scaling analysis)

e DFA = detrended fluctuation analysis, quantifying long-range correlations
for non-stationary time series, Peegal, 1995, cf. [82].

e multiresolution wavelet analysis, Ilvanev al., cf. [85]

e analysis of the distribution law of low-variability periods (Pareto-Zipf's
law-like distribution)

e analysis of heart rate data segments with a similar mean values [101]
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Appendix 3: Bonferroni correction

The Bonferroni correction(multiple-comparison correction) addresses the prob-
lem with standard-values when several (dependent or independent) statistical
tests are being performed simultaneously.

Suppose that a single test was employed to test a null hypothesis, using signif-
icance level = 0.05 and if the null hypothesis was actually true. The prob-
ability p of reaching the right conclusion (i.e., not significant) in that case is
p = 1—a = 0.95. By running more tests on a given data set, there is an increasing
probability of getting a significant result simply by chancen ifiypotheses were
tested on the same dataset and if all of them were true, the probability of being
right on all occasions (simply the product of the individual probabilities if tests
are independent) would decrease substantially te 0.95™, i.e, the probability
of getting a significant resuéirroneouslywould increase td — g* = 1 — 0.95™.

In order to guarantee that thwverall significance test is still at the same level
(), one has to lower the significance level of thdividual test (/). These two
significance levels are related to each otheflas /)" = 1 — «, which implies

thate’ = 1 — (1 — a)'/". For small values of significance level< 1 this result
reduces ta’ = «/n. For example, to make sure that the probability of falsely
attaching significance to any test (from is 0.05, one can use aorrectedsig-
nificance value 0f).05/n. If the corrected value is still less th&rD5, only then

the null hypothesis is rejected. Such a reasoning to copreatues for multiple
significance testing on the same data set was first proposed by Italian statistician
C.E. Bonferroni in 1936 [120].

The idea ofp-values correction leads to several still disputable conclusions.
First, if one carries out multiple tests on a single data set, the interpretation of
a relationship between two variables actually depends on how many other tests
were performed. Second, if Bonferroni correction were to be made obligatory
and universal in statistical tests, some studies would make results more signifi-
cant simply bynot includingmany other tests they would have done with non-
significant results, and thus not applying correction to same extent as they should.
Finally, tests published in previous papers on the same dataset (in medicine the
same groups of patients) or tests done subsequently would need to be corrected
taking into account the number of previous tests. These problems possess dis-
agreements among statisticians over universal use of the Bonferroni correction
[121, 122, 123]. Also note that the Bonferroni correction is too conservative if
the hypothesis tests are mutually correlated, this leads to underestimation of the
resulting significance. Therefore, Bonferroni correction in its pure form should be
used only for fully independent tests. Otherwise, one should use modified Bon-
ferroni correction [124]. In medicine, the Bonferroni correction usually used in
two cases:a) a group of individuals subjected to a numberimfiependentests
of associations betweetiifferent biological parametersh) the same test being
repeated in many subgroups (grouped by age, sex, diagnosis, etc.)
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