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tatud Tallinna Tehnika¨ulikooli doktorikraadi taotlemiseks ja selle alusel ei ole
varem taotletud akadeemilist kraadi.

Maksim Säkki
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Introduction

In the past, heart rate was a measure of regularity and people often used their pulse
to time the duration of some events. Galileo Galilei did so in 1582 observing the
swinging lamps in the cathedral of Pisa. In those observations, Galileo found that
the periods of large and small swings were exactly the same. This discovery led
Galileo to the famous design of a clock regulated by a pendulum. Ironically, later,
the clock was used to detect intrinsic irregularities in the heart rate. Whereas the
normal activity of the heart is traditionally described asregular sinus rhythm, the
heart rate constantly fluctuates in a complex manner. These nonstationary and
nonlinear fluctuations on a beat-to-beat basis are associated mainly with the au-
tonomic neural regulation of the heart. It is known that parasympathetic input
decreases and sympathetic stimulation increases the heart rate. Moreover, the
parasympathetic activity, which is synchronous with the respiratory cycle, causes
the well-known effect ofrespiratory sinus arrhythmia. The oscillations in the
blood pressure cause so calledMayer wavesor baroreflexregulation [1]. Age,
medication, as well as physical and mental stress also affect the heart rate variabil-
ity (HRV) [2]. Meanwhile, cardiovascular and neurologic diseases may decrease
the responsiveness of the heart and lead to a failure to respond to the external
stimuli. Evidently, such pathologies lead to an overall reduction of HRV.

Apparently, the clinical importance of HRV was first noted in 1965 by Hon
and Lee [3]. Since then, the statistical properties of the interbeat interval se-
quences have attracted the attention of a wide scientific community. In 1978,
Wolf et al. [4] associated the increased risk of post-infarction mortality with re-
duced HRV. Wider attention to the problem has been attained in the early 1980s,
when Akselrodet al. introduced the spectral methods for HRV analysis [5]. In the
late 1980s, the clinical importance of HRV became generally recognized. Several
studies confirmed that HRV was a strong and independent predictor of mortality
following an acute myocardial infarction [6, 7, 8]. In particular, Goldbergeret al.
[9] showed that a loss of complex physiological HRV can be seen in patients min-
utes to months prior to sudden cardiac death. Understanding the diagnostic and
prognostic significance of the various measures of HRV has a great importance
for cardiology as a whole, because unlike the invasive methods of diagnostics, the
required measurements are low-cost and harmless for the patients. A particularly
important application is the prognostics of the increased risk of sudden cardiac
death.

The autonomic regulation of the heart rate has been investigated widely during
the last decades, but no uniform concept exists regarding the function of neural
mechanisms. Moreover, there is still a lack of standardization of the parameters
and their meaning in HRV analysis. In 1996, theTask Forceof the European
Society of Cardiologyet al. [10] touched on the need of developing appropri-
ate standards for clinical applications of HRV measures. TheTask Forcegave a
comprehensive overview of HRV analysis methods widely used in clinical prac-
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tice and identified areas for future research. It should be noted that this paper
mainly focused on “linear” measures of HRV (seeAppendix 1 for list of selected
standard measures in clinical use), mentioning nonlinear measures only as “poten-
tially promising tools for HRV assessment”, and clearly stating that “advances in
technology and the interpretation of the results of nonlinear methods are needed
before these methods are ready for physiological and clinical studies” [10]. In-
deed, while the “linear” measures of HRV are nowadays widely used in clinical
practice, the importance of more complicated measures have been hotly disputed
in scientific literature during the recent decades: there is no consensus on which
methods are the most efficient from the point of view of clinical applications.
On the one hand, this is caused by the high nonstationarity and irreproducibility
of heart rate time series: the complex measures of HRV depend not only on the
healthiness of the heart, but also on the daily habits of the subject [11], and on the
random events of the recording day. On the other hand, dialogue between physi-
cists and doctors seems to be inefficient: physicists publish research results based
on relatively small test groups; doctors expect follow-up studies using extended
and homogeneous test groups.

Recent attempts to bring together cardiologists and physicists in order to eval-
uate and compare the performance of different nonlinear analysis techniques re-
sulted in the creation ofPhysioNet, a cooperative project of Harvard Medical
School, Boston University, McGill University, and MIT [12, 13]. This project
provides a common database of biomedical signals (including ECG and heart in-
terbeat intervals time series) and methods of their treatment. Such a deep cooper-
ation allows us to believe that thestylisednonlinear measures of HRV, applicable
for clinical diagnostics, will be finally worked out.

The aim of this thesis is to give an overview of the main research results in the
field of heart rate analysis and present the original results of the author. Thus, the
publications are an inseparable part of this thesis. The thesis is divided into Sec-
tions as follows. The first Section discusses early studies of the nonlinear aspects
of HRV by methods based on the reconstructed phase space analysis. The author
provides the modern view on the applicability of these methods.Publication III
discusses the applicability of the notion ofcorrelation dimensionfor describing
the heart rate. In Section 2, the author gives an overview of the evolution of the
entropy-based approach to the analysis of HRV. Section 3 summarizes the au-
thor’s original results in the analysis of mode-locking between heart rhythm and
respiration. The author provides a comparison of the developed technique with
approaches used in other studies. Section 4 gives an overview of the methods of
analysis, closely related to(multi)fractal formalism. Also, the author proposes
a novel approach to the analysis ofintermittencyin biological signals, which re-
veals a new aspect of nonlinear time series: the scale-invariance of low-variability
periods. The first results were reported at theEuroattractorconference in War-
saw (Poland) in 2002 (Publication I ). The author presented further research on
the low-variability periods of the heart rate at theFrontier Scienceconference in
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Pavia (Italy) in 2003, and published his results inPublication V.
Publication II (in Estonian) andPublication IV both review the existing va-

riety of nonlinear methods in HRV analysis.Publication IV discusses the intrin-
sic features of HRV signals, focusing on themultifractal formalism in HRV de-
scription, whereasPublication II focuses on the clinical perfomance of the novel
approach and its possible application in medical practice.Publication VI and
Publication VII study the applicability of the developed techniques for analysing
the influence of electromagnetic fields on the EEG signal. In these publications,
the author was mainly responsible for the multichannel EEG data analysis by a
method derived on the basis of the technique of low-variability periods.

Appendix 1 gives a list of the most important standard measures currently
used in medical practice for describing HRV. An analogous list of the (non-standard)
nonlinear parameters which have been considered in recent studies is summarized
in Appendix 2. Also, the author found it useful to provide a short reference to
the Bonferroni correction (Appendix 3), which was used in statistical tests of the
significance of results inPublication V, Publication VI , andPublication VII .

To summarize, there are three main topics in this thesis:

• The thesis provides a detailed overview of recent studies of HRV time se-
ries, and discusses issues related to the nonlinear dynamics approach based
on phase-space reconstruction. The discussion focuses on the intrinsic dif-
ficulties of estimating the correlation dimension and interpretation of ob-
tained values.

• The author proposes a simple method for the detection of synchronization
between the heart rhythm and respiration.

• The thesis presents a new aspect of the multifractality of intermittent non-
linear time series: the scale-invariance of low-variability periods. Published
papers provide the results of this novel approach for the multifractal analy-
sis of HRV and EEG signals.
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1 Phase-space analysis

1.1 Phase-space reconstruction

It has been found that heart rate generation can be reasonably well described by
nonlinear dynamical models [14, 15, 16, 17, 18, 19]. Such nonlinear models have
a strong physiological motivation: sinoatrial (SA) and atrioventricular (AV) nodes
form a nonlinear system of coupled oscillators: the electrical signal controlling
the heartbeat is generated by the SA node and conducted through the AV node.
The activity of the heart is also affected by interactions of haemodynamic and
humoral variables, as well as by the autonomic and central nervous systems. The
electrophysiological model proposed by Engelbrechtet al. in 1995 (cf. [18]) has
been proven to be viable and it predicts several experimentally observed phenom-
ena, such asa) second-degree AV block (some dropped beats), including Mobitz
Type I (Wenckebach) and Mobitz Type II arrhythmias, andb) bistable behaviour.
A semi-empirical nonlinear model for electrical heart activity proposed by Mc-
Sharryet al. in 2003 [20], and known assynthetic electrocardiogram, generates a
realistic ECG signal, reproducing QT dispersion and R-peak amplitude modula-
tion.

However, a fully adequate model of heart activity is still quite a difficult task;
one can study the nature of heart rate generation by reconstructing the trajectories
of the underlying signal (ECG or heart rate) in phase space. The question what
might be the canonical variables in the case of physiological data (when one has
few information about it), can be avoided by the method ofdelays: time series
xn = x(n∆t) measured with fixed sampling period∆t can be reconstructed to
the vectorsβn in m-dimensional phase space:

βn = (xn−(m−1)ν , xn−(m−2)ν , . . . , xn−ν , xn). (1)

The difference in the number of samplesν (in time units,ν∆t) between adjacent
components of the delay vectors is called thelag or delay time; the process of
reconstruction is referred to asembeddingandm is called theembedding dimen-
sion. A number of embedding theorems exists [26, 27], and it is expected that the
reconstructed phase trajectory can be transformed to the original trajectory by a
“uniquely invertible smooth map” [28].

The deterministic nonlinear model predicts that the trajectories of heart rhythm
in reconstructed phase space lie on an attractor of the system of coupled oscilla-
tors. Such a theoretical reasoning and belief that nonlinear phenomena are cer-
tainly involved in the generation of the heart rate have led to the idea that the
characteristics from the theory of nonlinear dynamics might reveal valuable infor-
mation for the physiological interpretation of HRV and could be used for diagnos-
tic purposes, especially for assessing the risk of sudden death.

The experimental observations of intrinsic nonlinearity in HRV seemingly
confirmed the theoretical expectations. Mansieret al. [30] applied a nonlinear
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forecasting method of Sugiharaet al. [31], and surrogate data sets to address the
question whether the HRV series is the output of a deterministic dynamical sys-
tem. They showed that prediction is better for the experimental series than for its
surrogate data and suggested that these differences are an evidence of a nonlinear
deterministic system generating HRV time series [30]. Chonet al. [32] proposed
a method to test chaotic determinism based on fitting a nonlinear autoregressive
model to the time series, followed by the analysis of the characteristic exponents
of the model over the observed probability distribution of states for the system.
They showed that relatively short HRV time series (4096 data points) contain a
nonchaotic deterministic component [32].

Such a presumption of an underlying chaotic attractor gave rise to extensive
studies of the heart rate in the 1990s by applying analysis methods from the theory
of nonlinear systems (for example, cf. [21, 57, 23, 24, 25]).

1.2 Lyapunov exponents

The most useful characteristics that can be estimated from the time series arein-
variants in the sense that changes in the measurement procedures do not affect
calculated values. One such invariant is the rate of divergence (or convergence)
of nearby trajectories in phase space. In the case of a chaotic attractor, an in-
finitely small perturbationδ0 will grow exponentially in time (δt ∝ δ0 expλt).
The growth rateλ is called theLyapunov exponent(a measure was introduced by
A. Lyapunov at the end of the19th century) and is defined as:

λ(δ0) ≡ lim
t→∞

1
t

ln
δt
δ0
, (2)

whereδ0 is the initial perturbation between two points, andδt is the distance be-
tween two trajectories emerging from these points after timet. For the ergodic
system,λ does not depend on the choice ofδ0, which means that Lyapunov expo-
nents are invariants. A positive butfiniteλ is a clear criterion for the existence of
deterministic chaos in the underlying system. In practice, the exponent equality
to zero (usually, within the estimation error) shows that the system is determinis-
tic. Also, for nonstationary data, one can calculatelocal Lyapunov exponents (cf.
[33]), and thus describe the local behaviour of an attractor.

There are a number of robust algorithms to estimateλ for finite and noisy
experimental data that work well for very small noise levels. These algorithms
can be divided roughly into two groups: in thefirst approach (introduced by Wolf
et al. in 1985 (cf. [36]) and developed by Rosensteinet al. in 1993 (cf. [34])),
only the largestλ is evaluated by following two nearby points in phase space;
in the secondapproach (proposed almost simultaneously by Eckmannet al. (cf.
[38]) and by Sanoet al. (cf. [37]) in 1986), the Jacobians of the return map are
estimated.

12



Finite positiveλ were reported in several studies of the heart rate and ECG,
cf. [21, 41, 25]. However, Lyapunov exponents are extremely difficult to estimate
from experimental data with the presence of a stochastic component (cf. [35, 39,
40]). Therefore, finding a positive largestλ in a finite time series is not sufficient
for one to conclude that the dynamical process is chaotic (deterministic). As a
result, the popularity of Lyapunov exponents for characterizing the dynamics of
biological signals (especially those registeredin vivo) constantly decreased.

1.3 Scaling of correlation sum

The notion ofcorrelation dimensionwas introduced by Grassberger and Procaccia
in 1983 [68]. The correlation dimension of an experimental data sequence is
typically calculated according to the following algorithm. First, the correlation
sum of second order for a set of points in somem-dimensional vector space is
defined as a fraction of all possible pairs of those points, which are closer than a
given (small) distancer :

C2(r,N) =
2

N(N − 1)

∑
i<j

θ(r− | βi − βj |), (3)

whereθ(r) is the Heaviside step function, andβi is a point in the reconstructed
phase space given by Eq. (1), andi, j = 1, 2, . . . , N ; N is the length of the
dataset. In practice, the sumC2 is taken only for those pairs ofβi andβj that
are separated by more thanz sampling times to avoid artificial correlation among
consecutively sampled points on the attractor [51]. For small enoughr and in
the limit of an infinite amount of data, the correlation sum is expected to scale as
C2(r) ∝ rD2, assuming thatD2 < m:

D2 = lim
r→0

lim
N→∞

d lnC(r,N)
d ln r

. (4)

The scaling exponentD2 is called thecorrelation dimensionof the system. A
nonlinear dynamical system may be chaotic and then the phase trajectory fills a
certain subset of the phase space. In that case, the correlation dimensionD2 is
expected to be equal to the number of degrees of freedom (the dimensionality
of the phase space minus the number of conservation laws). This is whyD2 is
often considered as a measure of the complexity of the system. Babloyantz and
Destexhe [21] studied the correlation dimension of the sequence of NN-intervals
(intervals between normal heartbeats) of the human heart rhythm. For healthy
patients and data series consisting of 1000 intervals, they foundD2 = 5.9 ± 0.4.
It is widely recognized that life threatening heart pathologies lead to the reduction
of the complexity of the HRV signal, c.f. [22]. Correspondingly, the correlation
dimension of the heart rate has often been believed to measure the “healthiness”
of the heart.
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However, there are various arguments leading one to the conclusion that the
formally calculated correlation dimension of a heart rhythm does not correspond
to the dimensionality of an intrinsic attractor; similarly, the formally calculated
Lyapunov exponents, entropies etc. do not describe the respective aspects of un-
derlying nonlinear dynamics:

First, it has been pointed out that physiological time series are typically non-
stationary and noisy, and therefore, the correlation dimension cannot be calculated
reliably [42, 44, 45]; this fact is nowadays widely accepted, and it has been esti-
mated that the maximum noise level for the credible calculation of theD2 is 2-3%
[28]. In the case of the human heart, the “noise” comes from the autonomous ner-
vous system in the form of inputs regulating the heart rate (cf. [46, 47, 48]): from
the viewpoint of an underlying nonlinear deterministic system, these effectively
non-deterministic signals perform the role of high level noise [50]. It should also
be noted that some inputs of the autonomous nervous system may lead to quasi-
periodic signals, which are an easy source of false detection of low-dimensional
chaos and apparent patterns in simple time delay maps. Thus, respiration gives
rise to the signal of a typical period of 4 seconds; the effect is most pronounced
when the patient is at rest, and is stronger for young persons.

Second, it has been emphasized that a reasonable fitting of a correlation sum
to a power law does not necessarily mean that the obtained exponent is the corre-
lation dimension of the underlying dynamical system; instead, one has to perform
a thorough non-automatable verification procedure [28].

Third, the length of the data sequences is often inadequate for reliable calcu-
lation of high values of the correlation dimensionD2 � 6 (cf. [25, 28]). Too short
a record length can cause a saturation effect and lead to a false detection of the
scaling exponent of the correlation sum. It has been suggested [42, 43] that the
calculation of the correlation dimensionD2 is reliable, if the numberN of data
points in the time series satisfies the criterion:

N � 10D2/2+1. (5)

Typically, values ofD2 have been found to be at the limit (or even beyond) of a
credible analysis [42, 43]. The comparison of theoretically required and practi-
cally used lengths of time series for reliable estimation ofD2 in some publications
is summarized in Table 1.

The recent study of Carvajalet al. [52] is a good example of finding the cor-
relation dimension for the heart rate beyond the practical limit:D2 between 8.4
and 10.6 for data segments of a length of104 beats! Moreover, obtaining high
values ofD2 (≈ 10) for noisy experimental data is essentially the same as saying
that the underlying system is stochastic. In that case the notion of correlation di-
mension is meaningless, and one should find better methods for characterizing the
data. Note that there is no simple recipe for obtaining adequate long time series:
whereas a long observation period often implies non-stationarities, oversampling
emphasizes the noise.

14



Ref. [21] Ref. [44] Ref. [25] Ref. [53] Ref. [52]
D2 5.5–6.3 9.6–10.2 2.8-5.8 4–7 8.4–10.6
Nexp 103 2 · 104 104 2 · 104 104

Nreq 104 106 104 3 · 104 3 · 105

Table 1: The table compares the criterion given by Eq. (5) with the data of some
papers devoted to the correlation dimension analysis. The table gives experimental
values of correlation dimension (D2), following by lengths of the underlying data
sets (Nexp), and data-set lengths required for reliable estimation (Nreq). Adopted
from Publication III and extended with recent studies.

Finally, it has been found that the effect of nonlinear mapping from the time
domain to the phase space may result in an overestimation of the correlation di-
mension [49].

In Publication III , the author of this thesis studied the effects of the finite
resolution of the apparatus and a wide dynamic range of the mean heart rate to
the scaling of correlation sumC2. The author constructed a simple model of heart
rate generation, which reproduces the scaling behaviour of the correlation sum
of real medical data.Publication III showed that calculated values of scaling
exponents forC2 are mostly defined by the dynamics of the short-time variability.
The conclusion was that whereas the scaling exponent can be used for quantitative
characterization of short-time variability of HRV, it is not an invariant and, in order
to obtain comparable values, time-resolution, record length, and the embedded
dimension of the phase space have to be kept constant. These research results can
be summarized as follows: Whereas the correlation sums of the human heart rate
typically follow a scaling law, in most cases, the scaling exponents arenot the
correlation dimensions.

2 Entropy-based measures

The measures of deterministic chaos based on reconstructed phase space usually
fail in describing a deterministic chaos inside the heart, because the dominantly
deterministic dynamics is suppressed by essentially intermittent signals arriving
from the autonomous nervous system and regulating the heart rhythm. However,
some fine-tuned measures, e.g. various entropies, cf. [57, 63, 65, 70], can be use-
ful in describing the level of short-time variability of the heart rhythm. Entropy-
based measures, being essentially an average of the logarithm of a conditional
probability, can be viewed as astatisticalcharacteristics, which can be applied to
both deterministic and stochastic processes. While not directly requiring the pres-
ence of a deterministic dynamics, they are ideologically related to the analysis
of nonlinear dynamics (they deal with the dynamics in time delay space). These
measures also reflect the rate of new pattern generation (irregularity of signal),
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and are therefore closely related to the concepts of Shannon and Kolmogorov-
Sinai entropies. They can be classified as extensions of those concepts, more
suitable for characterization of experimentally measured time series.

2.1 Kolmogorov-Sinai entropy and its estimators

Kolmogorov-Sinai entropy (K) is defined as the mean rate of the change of en-
tropy of the trajectory of an attractor in phase space due to the finer phase space
partitioning within each iterationn:

K ≡ lim
n→∞

1
n
Sn = lim

n→∞Sn+1 − Sn, (6)

wheren is the index of partition andSn is the Shannon entropy of partitionn. The
Kolmogorov-Sinai entropy measures the mean rate of the creation of information,
and therefore a positive value ofK may be used to define the existence of chaos.
Unfortunately, there are a number of difficulties in directly calculatingK entropy
for experimental time series [28, 70, 66], mainly because of the finite length of
data and the presence of noise on small scales. However, several techniques have
been suggested to estimate the Kolmogorov-Sinai entropy with reasonable preci-
sion, for example, Grassberger and Procaccia [55] suggested in 1983 a calculating
measure they namedK2 entropy, which estimates the lower boundary of theK
entropy:

K2 = − lim
N→∞

lim
m→∞ lim

r→0
ln[Cm+1(r) − Cm(r)], (7)

hereCm(r) stands for the probability that any two points in phase space of di-
mensionm are closer to each other than some smallr; N stands for the length of
data. In 1985, Eckmann and Ruelle [56] extended this technique and suggested
calculating the Kolmogorov-Sinai entropy when characterizing low-dimensional
chaotic systems as:

KER = lim
N→∞

lim
m→∞ lim

r→0
[Φm(r) − Φm+1(r)], (8)

whereΦm(r) ∝ ∑
i lnCi

m(r) andΦm(r)−Φm+1(r) depicts the probability that
sequences of lengthm that are similar within a fixed small tolerancer remain
similar for increased lengthm+1.

2.2 Approximate and sample entropy

The notion ofapproximate entropy(ApEn) and the calculation algorithm (based
on previous work by Eckmann and Ruelle) was firstly proposed in 1991 by Pincus
[57]. The motivation was the need to estimate values ofK for experimentally
obtained data, usually noisier and shorter than would be suitable for accurate cal-
culation. Although,ApEn is defined as:

ApEn(m, r) = lim
N→∞

[Φm(r) − Φm+1(r)], (9)
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for finiteN , theApEn is estimated by the measure:

ApEn(m, r,N) = Φm(r) − Φm+1(r), (10)

Lower values ofApEn indicate that the time series are more regular (determin-
istic); high values indicate randomness.ApEn is mainly used in the analysis of
heart rate variability [58, 59, 60, 61, 62], but is also often calculated for other
biosignals, such as ECG, EEG, respiration, endocrine hormone release pulsatility.
Time series shuffling greatly impacts the value ofApEn, whereas the value of
standard deviation remains unaffected. Also note thatApEn is not aninvariant,
and depends on the choice of threshold levelr, and embedded dimensionm, and
on the length of dataN . Comparisons between different time series can only be
made with the same values ofm, r, andN . Typically, pattern lengthm is chosen
to be 2-4, while tolerancer is chosen to be 10-20% of the standard deviation of
the time series.

In 2000, Richman and Moorman modified the algorithm for the calculation
of ApEn and suggested calculating a less biased measure, i.e.,sample entropy
(SampEn) [63]. The main advantage ofSampEn is that it is less dependent on
the time series length and has a stronger property of relative consistency regarding
the choice of parametersr andm thanApEn has. Recently, it has been found that
the decreasedSampEn calculated for neonatal heart rate is a good indicator of
neonatal sepsis episodes [64]. The conclusion was thatSampEn may be used in
medical practice as a general estimate of the health of the infant.

However, the algorithms mentioned above do not take into account the multi-
ple time scales in variability of biological signals. Instead, they are effectively
single-scale measures, reflecting only short-time dynamics. Such a limitation
often leads to spurious results: higher values of entropy are estimated for time
series representing certain pathology, i.e., atrial fibrillation, which is structurally
less complex than the heart rate of healthy indivuduals (which is a signal of a
physiologically complex state, adaptive to many inputs). In order to address the
presence of multiple time scales in the temporal fluctuations of biological time
series, several approaches were proposed.

2.3 Multiscale entropy

In 1991, Zhang [67] suggested the quantityK, which he namedcomplexity. This
complexity measureK, being effectively the sum of scale-dependent Shannon
entropies over all possible scalesn,:

K =
∑
n

Sn, (11)

assigns higher values to colored noise compared to white noise. However, Zhang’s
work was very theoretical; the quantityK based on the Shannon entropy requires
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a huge number of almost noise-free data points limiting its practical applicability
in the case of noisy data of limited length.

In the approach of Costaet al. [65] (2002), the notion ofmultiscale entropy
MSE was introduced. In theMSE method, one calculates the sample entropy
SampEn as a function of the scale:SampEn(τ). The coarse-grained time series
corresponding to scaleτ are obtained by averaging the data points within non-
overlapping windows of lengthτ (so called “coarse-graining” process).MSE
addresses the question of how wide the range of dynamics for the mean heart
rate is (averaged over a timeτ ), depending on the time-scaleτ , which makes
this measure closely related to the multifractal aspect of time series. The clinical
usefulness of MSE is still unclear (apart from the fact that it has been claimed to
be able to distinguish between healthy subjects and patients with congestive heart
failure [65]).

The idea ofpattern entropy(Sp) for HRV analysis was proposed in 1994 by
Zebrowskiet al. [69]. They motivated this measure by the fact that the calculation
of ordinary (Shannon) entropy completely failed to distinguish healthy individu-
als from those with heart pathologies. Thus, pattern entropy was calculated as
modified Shannon entropy:

Sp = −
∑

k

pk log pk, (12)

wherepk = p(tRR)pτ (tRR) for 2-dimensional phase space. Hereτ is the inte-
ger time delay in beats used for phase space reconstruction, andp(tRR), pτ (tRR)
are the probabilities of findingRR-interval of lengthtRR for corresponding coor-
dinates in reconstructed phase space. Correspondingly, for 3-dimensional phase
spacepk = p(tRR)pτ (tRR)p2τ (tRR). By definition, pattern entropy is larger
for stationary and ordered time series, this property is exactly the opposite for
ordinary Shannon entropy. It has been found that the values of pattern entropy
distinguished reasonably well between some pathologies and health, and overper-
formed the standard frequency- and time-domain analysis [69]. In the later paper,
Zebrowskiet al. [70] also found that the statistical order of heart rate time se-
ries measured by pattern entropy (calculated for sliding window) depends on age,
especially for younger persons.

In order to get entropy estimates, which can be directly compared between
different time series, therenormalizationprocedure was suggested by Kurthset al
in 1995 [71]. In this approach, one renormalizes the entropy, estimated for certain
time series, in such a manner that the mean effective energy for this time series
remains the same as the energy obtained for some reference data.

To conclude, an analysis of HRV based on reconstructed phase space histori-
cally started from adapting of parameters from the theory of nonlinear determin-
istic systems, and resulted mainly in fine-tuned entropy-based measures. Such a
shift in focus was motivated by the presence of relatively strong stochastic compo-
nent in presumably deterministic heart rate generation. It is also important to note
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that entropy-based measures of the complexity of HRV focusing on short-term
variability do not reflect the aspect of long-range correlations in rhythm. Entropy-
based measures should therefore be used in combination with other quantities.

3 Heart rhythm and respiration mode-locking analysis

This section discusses the effect of coupling between two oscillatory processes in
cardiovascular dynamics, heart rate, and respiration activity. As it was mentioned
above, respiration modulates the heart rhythm. The heart is most responsive with
respect to the signals of the autonomous nervous system when the heart rate is
unaffected by physical activity, i.e., when the patient is at rest. In that case, HRV
is driven by weaker signals induced by respiration and baroreflex, which (due
to their quasi-periodic nature) may lead to mode-locking. Indeed, recent studies
[79, 80] confirmed the synchronization between three main rhythmic processes
governing the cardiovascular dynamics: sinus rhythm (fundamental frequency is
about1 Hz), respiration (0.12 Hz –0.25 Hz), and baroreflex (0.1 Hz). In the case
of respiratory mode-locking, the heart rate is automatically slightly adjusted so
that the respiration and heart beat periods relate to each other as (small) integers
n
m . In practice, synchronization between two oscillators can be defined as:

|nφ1 −mφ2| < ε, (13)

whereφ1, φ2 are phases of the oscillators, andε is a small positive constant. The
decorrelation time between the heart rhythm and respiration can be very long: it
was reported that the31 synchronisation regime can be as long as103 seconds
[72]. Other ratios like5

1 , 5
2 , 7

2 were observed for shorter periods (≈ 1 minute);
some episodes of41 -, 8

3 -, 11
4 -mode-locking were also documented [72, 75]. This

effect of mode-locking causes the patterns (isolated clouds of points) observable
in the reconstructed phase space (cf.Publication III , Fig. 6). These patterns
can be easily misinterpreted as traces of an attractor of a nonlinear deterministic
system.

The successful start to the modelling of cardiorespiratory synchronization can
be attributed to the simple beat-to-beat model proposed by DeBoeret al. in
1987 [1]. This nonlinear model described dynamical properties of humancardio-
baroreceptorcontrol loop, i.e., relationship between heart rhythm, respiration,
blood pressure, and peripheral vessels resistance. Further, this model has been
elaborated by Seidelet al. [76] by taking into account phase dependency of the
sinus node responsiveness to neural activity. Recently, a physiologically plau-
sible model of cardiorespiratory synchronization was suggested by Kotaniet al.
[77]. This model exhibits stable synchronization between the heart rhythm and
respiration even in the presence of noise.

The mode-locking effect has been studied numerically using bivariate data (si-
multaneous recordings of ECG and respiration activity) and the technique called
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cardiorespiratory synchrogram[72, 73, 74]. Also, a univariate data analysis
method using theangle-of-return-times maphas been elaborated by Jansonet
al. [78]. In that case, only recording of the heart rate is used to reconstruct
the phase of forcing (breathing) and the phase of the oscillator (heart). These
phases are plotted versus each other; in the case of mode-locking, disjoint clouds
of points will appear. InPublication III , an independent, intuitive and easy to use
method of mode-locking detection from univariate data (NN-interval sequence) is
developed. The method is based on calculating the amplitudes of the oscillatory
component of the fluctuation functionF (n) for one-hour segments of 24-hour
heart rate recording (cf.Publication III , Fig. 7). The fluctuation functionF (n)
(introduced in 1993 by Penget al. in [91]) is defined as:

F (n) ≡ 〈|tNN (k + n) − tNN (k)|〉k (14)

here 〈. . .〉k denotes an average over all intervalsk. For the patients with iso-
lated clouds of points in phase space, the functionF (n) had significant oscil-
lations at small values ofn (seePublication III , Fig. 7), revealing the causal
relationship between mode locking and the presence of “satellite clouds”. Indeed,
the oscillations of fluctuation functionF (n) were not observed for data forming
single-clouds in reconstructed phase space. Thus, the amplitudes of the short-
scale components of the discrete Fourier transform were chosen to characterize
the patterning in phase space. In order to minimize the influence of the long-scale
components, the transform was applied to the functionG(n) ≡ F (n) − 〈F (n)〉.
Here〈F (n)〉 denotes the smoothed (averaged and interpolated) fluctuation func-
tion F (n).

It is also important to note that this approach of synchronization detection is
very simple and does not require synchronous respiration rhythm recording (as
compared with the bivariate techniques, cf. [72, 79, 80]), and can be conveniently
used to find relatively short (≈ 10 minutes) locking periods from a nonstation-
ary 24-hour recording. These periods were characterized by a low heart rate and
a high respiration-driven short-time variability. Besides, the devised technique
provides a natural measure to quantify the degree ofn

m mode-locking (unlike the
qualitative univariate approach of Jansonet al. [78]), i.e., the amplitudeΦ(α) of
the oscillatory component ofF (n) at a given wavelengthα = n

m . The method
is very sensitive: the ratio of the Fourier transform amplitude of the locked mode
Φ(α) to the root-mean-square of the amplitudes of the other modes is typically
between10 and30. The heart and the respiratory complex act as a system of
coupled oscillators; however, by no means does this imply that there is a deter-
ministic chaos inside the heart: since the mode locking occurs during a relatively
small fraction of the whole recording time, it has almost no effect on the scaling
behavior of the correlation sum, which has been tested by calculating the correla-
tion sum for different time-windows: including and excluding the mode-locking
periods.
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To conclude, the coupling in cardiovascular system, being a “bridge” between
spontaneous sinus rhythm and respiration, allows to exchange information be-
tween these oscillatory processes by adapting them to a changing environment.
This important aspect of appropriate functioning of the cardiovascular system can
be certainly used in clinical practice as an independent approach in the diagnos-
tics of pathologies in the autonomic nervous system. Thus the complete lack of
synchronization in cardiorespiratory dynamics can be attributed to some failures
in the mechanism controlling heart activity, alerting possible pathologies.

4 Scale-independent measures

In this Section we will discuss the scale-invariant properties of HRV. Recent stud-
ies have shown that scale-invariant characteristics can be successfully applied to
the analysis of the heart rate variability [91, 82, 86, 92]. However, this conclu-
sion has been disputed, and certain scale-dependent measures (particularly, the
amplitude of the wavelet spectra at a specific time-scale) have been claimed to
provide better results [87]. The scale-independent methods have been believed
to be more universal, subject-independent, and to reflect directly the dynamics
of the underlying system, unlike the scale-dependent methods which may reflect
characteristics that are specific to the subject and/or to the method of analysis
[92]. The opposing argument has been that certain heart disorders affect the heart
rate variability at a specific scale or range of scales; owing to this circumstance,
at the properly chosen time-scale, scale-dependent measures may provide useful
information [87].

4.1 Hurst exponents

One of the possibilities to describe inhomogeneous and nonstationary time series
of the heart rate on a scale-independent level is to measure itsfractality. The sim-
plest relevant fractal measure is theHurst exponentH, which is used to describe
statistically self-affine random functionsx(t) of one or more variables. Here, the
author presents a theoretical background for describing the stochastic processes
in terms of fractality and, more generally,multifractality. Stochastic processes
are usually described via the probability density functionp(x, t), wherep is the
probability that at timet, the system will be in statex. Stochastic processx(t)
is calledself-similar, when its probability distribution functionp(x, t) is invariant
under suitable scaling in time and space [93]:

p(x, at) = p(bx, t). (15)

The simplest example of self-similar stochastic processes is the one-dimensional
ordinary Brownian motion. The stricter form of self-similarity is calledself-
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affinity and defined as follows:

p(x, ct) = p(cHx, t), (16)

where the exponentH is called the exponent of self-similarity, scaling exponent,
or self-affinity index. The self-affine process isnonstationaryby definition, be-
cause it is not invariant under time shift. However, if the increments of such a
process arestationary:

p[x(t+ τ) − x(t)] = p[x(τ) − x(0)], (17)

thestructure functionof orderq (a concept borrowed from the theory of the fully-
developed turbulence) for nonstationary processx(t) can be defined as theq-th
moment of the increments ofx(t):

Sq(τ) ≡ 〈|x(t+ τ) − x(t)|q〉 , (18)

here〈. . .〉k denotes an average over all values of (discrete) timet. The structure
function Sp(τ) for a scale-invariant and self-affine process is expected to scale
over someinertial range of time lagsτ :

Sq(τ) ∝ τ ζ(q), (19)

whereζ(q) is the exponent of the structure function. Stochastic statistically self-
similar processes can be classified by means of scaling exponentsζ(q) or self-
similarity exponentsH(q) (in fact, Hurst exponent), which are related to each
other as:

ζ(q) = qH(q). (20)

The classification is as follows:

• A trivial case, when the processx(t) is stationary, there is no scaling (ζ(q) =
H(q) = 0), becausex(t) has scale-independent increments and, therefore,
is invariant under translation in time.

• A more interesting case, when the nonstationary processx(t) with a con-
stantH(q) (ζ(q) linearly depends onq), is monofractal. The monofractal
process has the property of monoscaling, i.e., it is described by the single
Hurst exponentH(q) = H.

• A general case, when the nonstationary processx(t) with a q-dependent
H(q) (nonlinearζ(q)) is multifractal. The multifractal process is described
by aspectraof Hurst exponentsH(q).

Plotting the scalingqH(q) versusq provides a straightforward way to check for
multifractality: fitting the dependence onq by a straight line indicates monofractal
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data. Thus, the calculation ofH(q) spectra for time series allows for the straight-
forward identification of the stationary/nonstationary and monofractal/multifractal
nature of the process. Moreover, values of the Hurst exponent quantitatively char-
acterize long-time correlations. Following the original work of Hurst [102], in
the case ofH < 1

2 , there is a negative long-range correlation (antipersistence)
between the increments of the functionx(t), whereasH > 1

2 corresponds to a
positive correlation (persistence).

Historically, the scaling of the2nd-order structure functionS2(τ) was stud-
ied and the corresponding process was referred to asfractional Brownian motion
(fBm): 〈|xfBm(t+ τ) − xfBm(t)|2〉 = τ2H , 0 < H < 1. (21)

Such a generalisation (introducing a memory, also known as theJoseph effect) of
Brownian motion was firstly described by Kolmogorov in 1940 [94] and later pop-
ularised by Mandelbrot in 1968 [95], who introduced the termfractional Brown-
ian motion(fBm). Note thatH = 1

2 is a special case of ordinary Brownian motion,
i.e., the increments of the function are delta-correlated (uncorrelated random pro-
cess), andx(t) can be viewed as the displacement of the Brownian particle as a
(self-affine) function of timet:〈|xBm(t+ τ) − xBm(t)|2〉 = τ. (22)

with
〈|xBm(t+ τ) − xBm(t)|〉 = 0. (23)

Besides the scaling of structure functionsSp(τ), there are a number of differ-
ent methods to calculate the Hurst exponentH for experimentally obtained time
series, including rescaled range analysis (also referred as R/S-statistic, technique
originally introduced by Hurst) [102, 103], scaled windowed variance [105], and
dispersional analysis [104].

Many phenomena in nature exhibit this kind of scale-invariance, revealing
nontrivial long-range correlation, and lead to fractional Brownian time series [95].
The same is true for the heart rate variability: after filtering out short-scale compo-
nents with a period of less than 30 seconds (corresponding to rhythm modulated
by respiration and baroreflex), the fluctuation functionF (n), defined in Eq. (14)
revealed a good scaling behavior in a broad physiologically relevant time scale
(200 – 4000 beats, cf. [91]):

F (n) ∝ nα (24)

Note, thatF (n) is a structure function of order 1 (q = 1), and therefore the
obtained scaling exponentα directly corresponds to the Husrt exponentH (α ≡
H). While for healthy patients, the increments of the heart rhythm were found to
be significantly anticorrelated resulting inH < 1

2 , the heart rhythm of the patients
with dilated cardiomyopathy was essentially Brownian withH ≈ 1

2 [91]. The
conclusion was that the lack ofnontrivial long-range correlations in physiological
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systems reveals a failure in the ability to adapt to a changing environment, and
therefore may indicate a diseased state.

The early scale-invariant studies of HRV were based on power spectra [96,
97], an aspect also closely related to the scaling exponentH. Recently, various
techniques, such as detrended fluctuation analysis (DFA) [82], detrended time se-
ries analysis (DTS) [89], and wavelet amplitude analysis [85] have been proposed
to fine-tune the Hurst-exponent-based approach.

4.1.1 Detrended fluctuation analysis

When studying the scale-invariance of some process, one generally is not inter-
ested in long-range correlations that are simply footprints of (nonstationary) drifts.
Therefore, it is important to test the stationarity of the data record, and to exclude
nonstationary segments, which tend to give biased estimates ofH close to 1. An-
other way to address such drifts is todetrendtime series locally; this approach is
used in the DFA method. The DFA method was first proposed in 1994 by Peng
et al. [81] in the study of long-range correlations for noncoding regions in DNA
sequences. Later, this approach has been used in the analysis of the heart rate [82].

In this method, one first integrates (or accumulates) nonlinear time seriesx(i),
obtaining integrated datay(i). Further,y(i) divided into segments of equal length
n. The trend for every segment is defined by the linear fitting ofy(i) on this
segement toyn(i). The root-mean-square fluctuation of integrated time series
y(i) around detrended data is calculated for the whole recording of lengthN , cf.
[82]:

F (n) =

√
1
N

∑
i

[y(i) − yn(i)]2. (25)

For a process with long-range correlations,F (n) is expected to scale asF (n) ∝ nα.
The DFA method works well on signals with slowly varying trends, i.e., with cir-
cadian rhythms. However, one should be aware that certain types of nonstationar-
ity can affect the results [83]. Thus, when correlation properties change in time,
the resulting value of scaling exponentα is a superposition of the local scalings
of the different segments [83]. Recently, scaling exponentsα were calculated for
a wide range of physiological time series, including DNA sequences [81], HRV
[82], human gait [84], etc.

A slightly different approach to detrend time series (DTS) was proposed by
Ashkenazyet al. in 1999 [89]. In that method, one produces a locally detrended
time series simply by finding the differences between the signal and the local aver-
age, calculated on a moving window of sizen. The standard deviation (calculated
for windows of various lengths) also reveals a good scaling withn. Note that
scaling exponentsα calculated by the DTS technique are highly correlated with
those obtained by DFA [90].
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4.1.2 Multiresolution wavelet analysis

The technique of multiresolution wavelet analysis for HRV time series was ap-
parently first applied by Ivanovet al. [85]. In this method, one finds the wavelet
(weight) coefficients for signalxi via discrete wavelet transform:

W (m,n) = 2−m/2
∑
i<N

xiψ(2mi− n), (26)

wherem is a scale parameter,n is a position parameter andψ(m,n) is a basis
function of the wavelet. The wavelet transform extracts the frequency components
of a signal as a function of time, and easily removes polynomial components.
These properties make this technique naturally suited to handle nonstationary sig-
nals. The choice of wavelet usually depends on properties of the time series;
Haahr or Daubechies wavelets are mostly used for HRV analysis. The obtained 2-
dimensional distribution of coefficientsW (m,n) characterizes the signal in both
time and frequency space. Ivanovet al. found that the distributionW (m,n) is
stable over a wide range of time scales for healthy subjects and does not exist for
a group with cardiopulmonary instability [85].

Later, Thurneret al. [87] extended this approach by measuring the variance
(standard deviation) of calculatedW (m,n)-sequence for fixed time-scalem:

σ2(m) =
1

N − 1

∑
n<N

(W (m,n)− |W (m,n) |)2, (27)

It has been found that values ofσ for scales 4 and 5 (correspondingly, 16 and 32
heartbeat intervals), completely separated two groups of patients. The Thurner’s
group even claimed that they found a “clinically significant measure of the finding
of heart failure with 100% sensitivity at 100% specificity” [87]. However, the
performance of this method was later tested on a different set of data, and the
separation was found to be less than perfect [88].

Further, the method was slightly extended by Ashkenazyet al. [88] via the ad-
dition of a filtering procedure. Filtering was done by an inverse wavelet transform
for scales1 < m < 6, discarding wavelet coefficients related to higher scales.
The standard deviation was then calculated for the inversely transformed signal,
which resulted in remarkably better discrimination between healthy subjects and
patients with heart failure.

Note that the multiresolution wavelet analysis actually detrends the signal
(i.e., can be used instead of DFA) by removing the polynomially interpolated
components of higher order (the order being given by the order of the wavelet).
Also, calculating the structure functionSq(τ) is essentially the same as applying
the wavelet transform with the wavelet constructed from two delta functions with
opposite signs and being at distanceτ from each other:ψ(t, τ) = δ(t)− δ(τ + t).
On the other hand, this method is a natural choice when analysing themultifractal
structure of HRV [86], as it enables to obtain the spectra of local Hurst exponents
in a straightforward way.
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4.2 Multifractality of heart rate

Complex non-stationary time series cannot be described by a single global scaling
exponentH. Indeed, simple scaling behavior is expected if there is a Gaussian
distribution of increments. However, even in the case of Gaussian functions, the
scaling exponent is not necessarily constant over the whole range of scales. In-
stead, it can be a slow (eg. logarithmic) function of the scale, so that other descrip-
tions (such as stretched exponentials) may be required. Physiological time series
are typically non-Gaussian [91]. For such functions, scale-invariance can be very
complicated. Therefore, it is not surprising that the human heart rate signal was
found to obey a multi-affine structure [92, 86]. A non-exhaustive way to describe
such behavior is to calculate the multifractal spectrum of Hurst exponents [98].

Qualitatively, a multifractal time series behaves as follows. If the whole time
series is divided into short segments, each segment can be characterized by its
own local Hurst exponenth (referred to as theLipschitz-Ḧolder exponent). Then,
the distribution of segments of fixed values ofh is self-similar, and is described
by a fractal dimensionf(h). Technically, the spectrumf(h) can be calculated by
the means of wavelet transform, cf. [92]. This scheme includes the calculation
of the scaling exponentsτ(q) (referred to as themass exponents), which describe
how theq-th moment of the wavelet transform amplitude scales with the wavelet
width. The multifractal spectrumτ(q) is related to the singularity spectrumf(h),
through aLegendre transform:

f(h) = qh− τ(q), (28)

with h = d τ(q)
d q . The degree of the signal’s multifractality can be qualitatively

characterized by the width of the spectrumf(h). It has been reported that the
spectrumf(h) for heart rate time series is broader for healthy individuals (re-
vealing multifractal properties of signal), and narrow for subjects with conges-
tive heart failure (displaying monofractality) [86]. Also, the scaling exponents
τ(2) and τ(5) have been found to have a significant prognostic value (for the
post-infarction prognosis) [92]. The wavelet transform amplitudes, calculated
for a specific wavelet width (≈ 5 min), have been claimed to be of even higher
prognostic value [87]. However, independent studies have shown that the scale-
invariant measures seem to be superior tools [99]. It should also be noted that the
wavelet transform amplitude at a fixed time-scale is closely related to the linear
measure SDANN (seeAppendix 1). Substituting the robust standard deviation by
a wavelet transform amplitude is technical fine-tuning which cannot be expected
to result in qualitatively new information.

The multifractal structure of the heart rate signal has several consequences.
Thus, theq-th order structure functionSq (defined in Eq. 18) of the heart rate
interval has a scaling behavior, with the scaling exponentζ(q) being a function of
q [100]. Note that this spectrum of exponentsζ(q) is very closely related to the
above-mentionedτ(q) spectrum (both describing the same physical phenomenon,
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differences being of a technical kind). However, the technique based on wavelet
transform makes a more complete utilization of the underlying data, and therefore,
theτ(q) spectrum can be expected to yield somewhat superior prognostic and/or
diagnostic results.

Several recent studies addressed the important question of the origin of multi-
fractal properties for heart rate time series [109, 111]. In these studies, parasym-
pathetic blockade led to the loss of multifractal properties; thus the presence of
multifractality was attributed mainly to the intrinsic dynamics of theparasym-
patheticbranch of the autonomic nervous system and not to changes in external
stimulation. Amaralet al. in [111] partly motivated this conclusion by the fact
that the width of the singularity spectrumf(h) was not dependent on the daily
habits of the observed individuals. Struziket al. in [109] confirmed the strong
dependency of scaling properties on the functioning of the autonomic nervous
system, and proposed the idea of a“behavioral-independent”marker for HRV.
This idea is based on the observed effects of autonomic neuroregulation on the
heart rate (summarized in Table 2).

global scaling (H) multifractality (width off(h))
SNS suppression increases↗ preserves→
PNS suppression increases↗ decreases↘

Table 2: The effects of suppression of sympathetic (SNS) and parasympathetic
(PNS) autonomic nervous systems on scaling and multifractal properties of heart
rate, for details, cf. [109].

The robust scale invariance in the probability density function of increments in
healthy human heart rate was reported by Struziket al. in [110]: scale invariance
of PDF in a wide range of time lags between10 and103 seconds waspreservedin
both quiescent and dynamic conditions. This result might indicate that autonomic
neuroregulation constantly converges the heart to a critical state [110]. An analogy
with other critical phenomena supports the hypothesis that the regulatory system
of the heart rate maximizes the ability of the heart to function under continually
changing external conditions.

4.3 Intermittency of heart rate

Multifractal spectrum addresses only one aspect of the non-Gaussianity of the
time series increments by revealing the possible range of scaling laws for the
long-range [at time-scale of many (
 1) heartbeat intervals] dynamics of the
mean heart rhythm. However, the short-time variability of the heart rhythm is also
fluctuating in a complex manner. It has been pointed out that the NN-sequences
of healthy subjects consist of intertwined high- and low-variability periods [23].
This conclusion can be easily verified by a simple visual observation of the NN-
sequences, see Fig. 8 inPublication IV . The multifractal spectra fail to reflect
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all the features of the intertwining phenomena: the long-term correlations in the
dynamics of short-time variability ([112],Publication V), and the clustering of
periods of a similar mean heart rate [101]. The latter aspect was recently studied
by Ivanov et al.: they showed that there is a power-law segment-length distri-
bution of the segments with different mean heart rates, into which the heart rate
signal can be divided [101]. Switching between low and high levels of short-
term variability is another physiologically important aspect, because, typically,
low levels are caused by the heart being in a stressed state. The scale-invariant
aspects of such a behavior can be addressed by studying the length-distribution of
the low-variability periods.

4.4 Low-variability periods analysis

Here, the author provides a brief overview of the method based on the analysis
of low-variability periods in intermittent time series. The author first developed
this method for the analysis of HRV in 2001 (cf. [113]), and presented it at the
Euroattractor conference in 2002 (cf.Publication I ). The author presented a
further study of low-variability periods distribution using this technique at the
Frontier Scienceconference in 2003 and published his results inPublication V.
Devising this method is a major part of the author’s research on short-time HRV,
or, to put it more generally, on multifractal intermittent time series.

In this approach, one defines local heart rate variabilityδ(i) for eachi-th in-
terbeat interval as a deviation of the heart rate from the local average:

δ(i) =
|tNN (i) − 〈tNN (i)〉τ |

〈tNN (i)〉τ
, (29)

where tNN (i) is the interval between two adjacent (with indicesi and i + 1)
non-arrhythmic beats. The angular braces〈. . .〉τ denote the local average over a
window of widthτ . In the study, the local average was calculated using a narrow
(5 beats wide) Gaussian weight function. Thei-th interval is said to have low
variability in respect to some thresholdδ0 if its local variability does not exceed
δ0:

δ(i) ≤ δ0. (30)

The low-variability period is defined as a set of consecutive low-variability in-
terbeat intervals; its lengthl is measured in the number of heartbeats (see Fig. 1
in Publication V). Finally, the cumulative distribution functionr(τ) is defined
as the number of periods with lengthl > τ . Typically, the distributionr(τ) for
heart rate revealsmultiscalingproperties, i.e., within a certain range of scales, the
power law

r(τ) ∝ τ−γ(δ0). (31)

is observed, the scaling exponentγ being a function of the threshold levelδ0.
For a very low threshold parameterδ0, all the low-variability periods are very
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short, because it is difficult to satisfy the stringent condition (30). Also, in that
case, the inertial range of scales is too short for meaningful scaling. Contrary,
for a very high value ofδ0, there is a single low-variability period occupying the
entire heart rate recording. Between these two extreme cases, there is such a range
of the values ofδ0, which typically leads to a non-trivial scaling (see Fig. 2b in
Publication V).

In fact, the procedure of obtaining distributionr(τ) for low-variability periods
in the heart rate is equivalent to the procedure that was originally done by Harvard
linguist George K. Zipf in 1949 when studying the frequency-rank distribution of
the words in natural languages [114]. First, for a given language (e.g. English),
one can calculate the frequency of each word on the basis of a large set of texts.
Further, words are ranked according to their frequencyf : the most frequent word
obtains rankr = 1, the second frequent –r = 2, etc. It turns out that for a wide
range of ranks (starting withr = 1), there is a power lawf(r) ∝ r−α (Zipf’s
law), whereα ≈ 1. Zipf’s law is universal; it holds for all the natural languages
and for a wide variety of texts. Furthermore, similar scaling laws describe the
rank-distribution of many other classes of objects as well. Thus, when cities are
arranged according to their populations, the population of a citys ∝ r−α, with
α ≈ 1 [115]. Another example is the income-rank relationship for companies
(Pareto distribution); here we have againα ≈ 1. In the most general form (Zipf-
Mandelbrot law), the law can be formulated asf ∝ (r + r0)−α, andα is not
necessarily close to unity [98]. The Zipf-Mandelbrot law was found to apply to
the distribution of scientific articles according to their citation index [116], for the
distribution of internet sites according to the number of visitors [117], etc.

It is not surprising that the scaling behaviour (and Zipf’s law) is not per-
fect. Indeed, the heart rhythm is a non-stationary signal affected by the non-
reproducible daily activities of the subjects. The non-stationary pattern of these
activities, together with their time-scales, is directly reflected in the distribution
r(τ). This distribution can also have a fingerprint of the characteristic time-scale
(10–20 seconds) of the blood pressure oscillations, which modulate the level of
HRV [72]. It should be emphasized that the problem of non-reproducible daily
activities also affects the reliability of the other scale-invariant measures, and is
probably the main obstacle preventing the clinical application of the seemingly ex-
tremely efficient diagnostic and prognostic techniques. Finally, there is a generic
reason why scaling is nonperfect at big lengthsτ : while Zipf’s law is a statistical
law, each distribution curve is based only on a single measurement. In particular,
there is only one longest low-variability period (likewise, only one most-frequent
word), the lengthτ of which is just as long as it happens to be; there is no aver-
aging whatsoever. For small lengthsτ , the relative statistical uncertainty can be
estimated as1/

√
r.

In Publication V, the author found that the scaling exponentγ(δ0) (31), and
the width of the scaling range are mostly personal characteristics weakly corre-
lated with diagnosis (see Table 2 inPublication V). However, the distribution
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function of the low-variability periodsr(τ) still contains a significant amount of
diagnostically valuable information: the overall number of low-variability peri-
odsrmax (which is small, if there are a lot of long low-variability periods) and the
coordinates of specific points of ther(τ)-curve provided a remarkable resolution
between the groups of patients (see Table 2 inPublication V). Found quantities
characterize the complex structure of the human HRV signal, where the short-time
variability level fluctuates intermittently, an aspect which is not addressed by the
other methods of HRV analysis (such as multifractal analysis based on fractional
Brownian motion).

One can argue that the analysis ofr(τ) distribution in intermittent time series
is a simple alternative to conventional multifractal analysis providing higher time-
resolution. Indeed, in multifractal formalism, each point corresponding to timet+
τ of the multi-affine time seriesx(t) is characterized by itslocal Hurst exponent
h:

|x(t+ τ) − x(t)| ∝ τh, τ 
 τ0 (32)

Hereτ 
 τ0 states that increments of processx(t) are studied for time lags much
greater than some small cut-off scaleτ0. Thus, the effective time resolutionτmin

is limited by this requirement to as low asτmin 
 τ0. Contrary, the approach
of low-variability periods has the effective time resolution of as high as cut-off
scaleτ0 ([118]). Also, it is shown that for the multifractal time series, the scaling
exponentsγ(δ0) are in one-to-one correspondence with multifractal spectra of the
underlying time series ([118]).

The developed method is not limited to heart rate analysis only. It has been
proven to be useful for the analysis of various intermittent nonstationary time
series like financial data ([118, 119]), and EEG multichannel analysis (Publica-
tion VI andPublication VII ). The latter papers focus on the detection of subtle
changes in the intensity and time-variability of the human EEG at rest, produced
by low-level microwave exposure. These studies evaluate the hypothesis that mi-
crowave exposure affects the power spectrum and increases the variability of the
human EEG signal (null hypothesis is that EEG recordings of subjects under expo-
sure cannot be distinguished from sham signals). In convenient EEG multichannel
analysis, one estimates the power spectral densityW of the EEG signal for certain
frequency bands: theta (4-8 Hz), alpha (8-13 Hz), and beta (13-40 Hz) rhythms.
Possible influence of microwave exposure is expected to be reflected in the change
of correspondingW -values. This approach detects the difference between signals
in frequency domain with good accuracy; meanwhile, its resolution in time is
limited by the window size (usually≈ 103 data points), and therefore cannot ad-
equately describe changes in the intermittency of intensity. The method based
on the distribution of low-variability periods was selected for the time-variability
analysis of the EEG signals, and resulted in the detection of a statistically signif-
icant effect of microwave exposure to the EEG signal for about 11% of subjects
and for none of the subjects in the case of sham recordings (see Table 1 inPub-
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lication VII ). The formalism of low-variability periods was successfully applied
and elaborated further by Kitt and Kalda in their studies of financial time series:
currency rates and stock prices time series (c.f. [118]), as well as stock trading
volume time series (c.f. [119]).

Abstract

The thesisIntermittency and long-range structurization of heart ratefocuses on
the analysis of the human heart rate by methods of nonlinear dynamics. In this
thesis, the author gives an overview of the main research results in the study of
HRV during the last decades, and summarizes his own original results in this field.

Section 1 provides a summary of the approach of phase-space reconstruction
and addresses the skepticism in regard to estimating of the correlation dimension
of the heart rhythm.Publication III also discusses the interpretation of the scaling
exponent of the correlation sum in the case of the human heart rate. The paper
shows that in the case of the human heart rate (perhaps, excluding subjects with
severe heart pathologies), the scaling behavior of the correlation sum is a result of
the interplay of various factors: finite resolution of the apparatus, a wide dynamic
range of the mean heart rate, and the amplitude of short-time variability, which is
a decreasing function of the mean heart rate.

The author devises a simple but sensitive method for detecting the presence of
mode-locking between the heart rhythm and respiration. This quantitative method
is based on the univariate heart rate data analysis and thus does not require syn-
chronous recording of respiration rhythm. The approach is summarized in Section
3, and the detailed description with the obtained results are provided inPublica-
tion III andPublication IV .

Section 4 provides a comprehensive overview of the scale-independent ap-
proach to the study of the heart rate. The author elaborates a new aspect of the
multifractality of intermittentnonlinear time series: the scale-invariance of low-
variability periods. Publication I and Publication II showed that the length-
distribution of low variability periods in the activity of the human heart rate typ-
ically has multi-scaling properties. This scale-invariance describes the long-term
dynamics of the short-time variability level of the heart rate, which is not ad-
dressed by classical multifractal analysis of HRV (Publication V). The rank-
length distribution contains a significant amount of diagnostically valuable infor-
mation and efficiently discriminates between several heart pathologies (Publica-
tion IV ). The method is universal: it was succesfully applied in analysis of EEG
signals (Publication VI , Publication VII ) and financial data. Therefore, one can
argue that this novel approach is a simple alternative to conventional multifractal
analysis.
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Kokkuv õte

Käesolev v¨aitekiri S̈udamer̈utmi pikamastaabiline kord ja juhumuutlikkuson kok-
kuvõte autori tööst viimase nelja aasta jooksul Tallinna Tehnika¨ulikooli Küber-
neetika Instituudi mehaanika ja rakendusmatemaatika osakonnas. Suur osa uur-
ingutest on tehtud tihedas koost¨oös Tallinna Diagnostika Keskusega. Doktorit¨oö
käsitleb inimese s¨udamer¨utmi löögisageduse muutlikkust (SLM, inglise keeles
heart rate variability, HRV) mittelineaarse d¨unaamika meetodite abil. V¨aitekirjas
antakse ¨ulevaade SLM-i anal¨uüsi peamistest tulemustest, mis on saadud viimaste
aastak¨umnete jooksul, ning tehakse kokkuv˜otte autori originaaluuringutest selles
valdkonnas.

Esimeses osas antakse ¨ulevaade l¨uhiajalise muutlikkuse mittelineaarsetest m˜oõ-
tudest, mis p˜ohinevad rekonstrueeritud faasiruumil. Kriitilise pilguga on vaadel-
dud nende m˜oõtude rakendatavust s¨udamer¨utmi analüüsi jaoks.Publikatsioonis
III on uuritud korrelatsioonisumma skaleeruvuse n¨aitaja rakendatavust SLM-i kir-
jeldamisel ja on n¨aidatud, et inimese SLM-i puhul ei ole alust r¨aäkida madaladi-
mensionaalse deterministliku kaose avaldumisest. Seega formaalselt arvutatud
korrelatsioonidimensioon (mis on d¨unaamilise kaootilise s¨usteemi vabadusast-
mete arv) ei peegelda s¨udame sisemist deterministlikut d¨unaamikat ja korrelat-
sioonisumma skaleeruvus on erinevate faktorite (m˜oõtmistehnika l˜oplik resolut-
sioon, keskmise s¨udamer¨utmi lai dünaamiline diapasoon ja l¨uhiajalise muutlikkuse
amplituudi sõltuvus keskmisest s¨udamer¨utmist) koosm˜oju tulemus.

On arendatud lihtne kuid tundlik meetod hingamise ja s¨udamet¨oö vahelise
sünkronisatsiooni leidmiseks. Meetodi idee on tutvustatud kolmandas osas ning
detailne kirjeldus ja saadud tulemused on toodudPublikatsioonis III ja Publikat-
sioonis IV.

Neljandas osas antakse ¨ulevaade mastaabi-invariantsetest meetoditest SLM-i
uurimistes. Tutvustatakse juhumuutlike mittelineaarsete aegridade multifraktaal-
suse uus aspekt: v¨aikese muutlikkusega perioodide mastaabi-invariantsus. On
näidatud, et s¨udamer¨utmi madala muutlikkusega perioodide jaotus nende kestvuse
järgi tüüpiliselt vastab multiskaleeruvale astmeseadusele (Publikatsioon I jaPub-
likatsioon II ). Selline mastaabi-invariantsus kirjeldab l¨uhiajalise SLM-i pikaa-
jalist dünaamikat, mida SLM-i klassikalised multifraktaalsed meetodid ei k¨asitle
(Publikatsioon V). Väikese muutlikkusega perioodide jaotusfunktsioon sisaldab
diagnoostiliselt kasulikut olulist lisainformatsiooni, v˜oimaldades eristada patsiente
nende diagnoosi j¨argi (Publikatsioon IV ). Arendatud meetod on universaalne ja
seda on kasutatud inimese EEG signaali (Publikatsioon VI ja Publikatsioon VII )
ning majanduslike aegridade anal¨uüsis, mis tähendab, et see kujutab ennast klas-
sikalise multifraktaalse anal¨uüsi lihtsat alternatiivi.
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M. SÄKKI , J. KALDA , M. VAINU , M. LAAN .

Simplicity behind Complexity. Proceedings of the
3rd European Interdisciplinary School on

Nonlinear Dynamics for System and Signal
Analysis Euroattractor 2002.

W. Klonowski (Ed.), 211–219 (2004)

43



 



On the Zipf’s Law in Human Heartbeat Dynamics

1

On the Zipf's Law in Human Heartbeat
Dynamics
M. Säkki, J. Kalda
Institute of Cybernetics, Tallinn Technical University, Estonia

It is shown that the distribution of low variability periods in the activity of human heart
rate typically follows a multi-scaling Zipf's law. The presence or failure of a power law,
as well as the values of the scaling exponents, are personal characteristics depending
on the daily habits of the subjects. Meanwhile, the distribution function of the low-
variability periods as a whole discriminates efficiently between various heart patholo-
gies. This new technique is also applicable to other non-linear time-series and reflects
these aspects of the underlying intermittent dynamics, which are not covered by other
methods of linear- and non-linear analysis.

Key words: medical physics, data analysis

1. Introduction

The non-linear and scale-invariant aspects of the heart rate variability (HRV) have been
studied intensively during the last decades. This continuous interest to the HRV can be
attributed to the controversial state of affairs: on the one hand, the non-linear and scale-
invariant analysis of HRV has resulted in many methods of very high prognostic per-
formance (at least on test groups) [1-4]; on the other hand, practical medicine is still
confident to the traditional “linear" methods. The situation is quite different from what
has been observed three decades ago, when the “linear" measures of HRV became
widely used as important non-invasive diagnostic and prognostic tools, soon after the
pioneering paper [5]. Apparently, there is a need for further evidences for the superiority
of new methods and for the resolution of the existing ambiguities.
During recent years the main attention of studies has been focused on the analysis of the
scale-invariant methods. It has been argued that measures related to a certain time-scale
(e.g. 5 min) are less reliable, because the characteristic time-scales of physiological pro-
cesses are patient-specific. The scale-invariant measures are often believed to be more
universal and sensitive to life-threatening pathologies [1, 2]. However, carefully de-
signed time-scale-related measures can be also highly successful, because certain
physiological processes are related to a specific time scale [3].
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The scale invariance has been exclusively seen in the heart rhythm following the
(multi)fractional Brownian motion (fBm) [6]. It has been understood that the heart
rhythm in a very complex manner and reflects the activities of the subject (sleeping,
watching TV, walking etc.) [7, 9] and cannot be adequately described by a single Hurst
exponent of a simple fBm. In order to reflect the complex behaviour of the heart
rhythm, the multi-affine generalization of the fBm has been invoked [1, 2]; it has been
claimed that the multifractal scaling exponents are of a significant prognostic value.
The approach based on fBm addresses long-time dynamics of the heart rhythm while
completely neglecting the short-scale dynamics on time scales less than one minute (the
respective frequencies are typically filtered out [6]). The short-time variability has been
described only by the so called linear measures, such as pNN50 (the probability that two
adjacent normal heart beat intervals differ more than 50 milliseconds). Meanwhile, the
level of the short-time variability of the human heart rate varies in a very complex man-
ner, the high- and low-variability periods are deeply intertwined [7]. This is a very im-
portant aspect, because the low-variability periods are the periods when the heart is in a
stressed state, with high level of signals arriving from the autonomous nervous system.
The conventional linear measures are not appropriate for describing such a complex be-
haviour. Thus, there is a clear need for suitable non-linear methods.

2. Problem Formulation

Our analysis is based on ambulatory Holter-monitoring data (recorded at Tallinn Diag-
nostic Centre) of 218 patients with various diagnoses. The groups of patients are shown
in Table 1. The sampling rate of ECG was 180 Hz. The patients were monitored during
24 hour under normal daily activities. The preliminary analysis of the ECG recordings
was performed using the commercial software; this resulted in the sequence of the nor-
mal-to-normal (NN) intervals tNN (measured in milliseconds), which are defined as the
intervals between two subsequent normal heartbeats (i.e. normal QRS complexes).
Originally, the Zipf's law addressed the distribution of words in a language [11]: every
word has assigned a rank, according to its “size" f , defined as the relative number of oc-
currences in some long text (the most frequent word obtains rank r = 1, the second fre-
quent r = 2, etc). The empirical size-rank distribution law f(r) ~ r−α is surprisingly uni-

Tab. 1: Test groups of patients. Abbreviations are as follows: IHD - Ischemic Heart
Disease (Stenocardia); SND - Sinus Node Disease; VES - Ventricular Extrasystole; PCI
- Post Cardiac Infarction; RR - Blood Pressure Disease; FSK - Functional Disease of
Sinus Node.

Healthy IHD SND VES PCI RR FSK
No of patients 103 8 11 16 7 11 6
Mean age 45.5 65.4 50.0 55.9 47.3 55.5 11.7
Std. dev. of age 20.5 11.4 19.3 14.3 11.6 14.4 4.6
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versal: in addition to all the tested natural languages, it applies to many other phenom-
ena.
The scaling exponent is often close to one (e.g. for the distribution of words). Typically,
the Zipf's law is applicable to a dynamical system at statistical equilibrium, when the
following conditions are satisfied: (a) the system consists of elements of different size;
(b) the element size has upper and lower bounds; (c) there is no intermediate intrinsic
size for the elements. As already mentioned, the human heart rhythm has a complex
structure, where the duration τ of the low-variability periods varies in a wide range of
scales, from few to several hundreds of heart beats. Thus, one can expect that the distri-
bution of the low-variability periods follows the Zipf's law

r ~ τ−γ .    (1)

However, the scaling behaviour should not be expected to be perfect. Indeed, the heart
rate is a non-stationary signal affected by the non-reproducible daily activities of the
subjects. The non-stationary pattern of these activities, together with their time-scales, is
directly reflected in the above mentioned distribution law.
This distribution law can also have a fingerprint of the characteristic timescale (around
ten to twenty seconds) of the blood pressure oscillations. Finally, there is a generic rea-
son why the Zipf's law fails (or is non-perfect) at small rank numbers. The Zipf's law is
a statistical law; meanwhile, each rank-length curve is based on a single measurement.
Particularly, there is only one longest low-variability period (and likewise, only one
most-frequent word), the length of which is just as long as it happens to be, there is no
averaging whatsoever.
To begin with, we define the local variability for each (i-th) interbeat interval as the de-
viation of the heart rate from the local average,

δ(i) = |tNN(i) – [tNN(i)]| / [tNN(i)].    (2)

The angular braces denote the local average, calculated using a narrow (5 beats wide)
Gaussian weight function. Further, we introduce a threshold value δ0; i-th interbeat in-
terval is said to have a low variability, if the condition

δ(i) < δ0    (3)

is satisfied. A low-variability period is defined as a set of consecutive low-variability
intervals; its length τ is measured in the number of heartbeats. Finally, all the low-
variability periods are arranged according to their lengths and associated with ranks.
The rank of a period is plotted versus its length in a logarithmic graph, see Fig. 1; Zipf's
law would correspond to a straight descending line.
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Fig. 1: Multi-scaling distribution of the low-variability periods: the rank r of a period is
plotted versus its duration τ (measured in heartbeats) for different values of the thresh-
old parameter δ0.

Fig. 2: Rank-length curves for a patient with a good power law (a) and for a patient
with no power law (b). In both cases, the threshold parameter δ0 = 0.05.
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3. Problem Solution

For a very low threshold parameter δ0, all the low-variability periods are very short, be-
cause it is difficult to satisfy the stringent condition (3). In that case, the inertial range of
scales is too short for a meaningful scaling law. On the other hand, for a very high value
of δ0, there is a single low-variability period occupying the entire HRV-recording. Be-
tween these two cases, there is such a range of the values of δ0, which leads to a non-
trivial rank-length law. For a typical healthy patient, the r(τ)-curve is reasonably close
to a straight line, and the scaling exponent  is a function of the threshold parameter δ0.
Thus, unlike all the other well-known applications of the Zipf's law, we are dealing with
a multi-scaling law.
Recently, Ivanov et al. [2] have reported that anomalous multifractal spectra of the HRV
signal indicate an increased risk of sudden cardiac death. Therefore, it is natural to ask,
does the presence or failure of the multiscaling behaviour indicate the healthiness of the
patient? In what follows we discuss a somewhat more general question: what is the re-
lationship between the properties of the distribution function of the low variability peri-
ods and the diagnosis of the patient. Testing the prognostic significance for predicting
sudden cardiac death, which is also of a great importance, has been postponed due to the
nature of our test groups.
First, let us analyse the correlation between the diagnosis of a patient and the scaling
exponent To begin with, we have to determine the optimal value for the threshold pa-
rameter δ0. For a meaningful analysis, the scaling behaviour should be as good as possi-
ble. It turned out that for a typical patient, the best approximation of the function r(τ)
with a power law is achieved for δ0 = 0.05 (see Fig. 2a); in what follows, all the values
of the exponent  are calculated for δ0 = 0.05. It should be noted that for some patients,
the length-rank distribution is still far from a power law (see Fig. 2b).
The slope of a curve on the logarithmic plot is calculated using root-mean-square (rms)
fit for such a range of lengths [τstart;τend], for which the r(τ)-curve is nearly a power law,
and the scaling range width ∆ = lnτend - ln τstart is as large as possible. Bearing in mind
the statistical nature of the Zipf’s law and non-stationarity of the underlying signal, we
have chosen a not very stringent definition of what is “nearly a power law”, see Fig. 3.
Around the rms-fit-line, two limit lines are drawn; τstart and τend end correspond to the
points, where the r(τ)-curve crosses the limit lines.
Note that the precise placement and shape of the limit lines is arbitrary, i.e. small varia-
tions do not lead to qualitative effects. Here, the distance of the limit lines from the cen-
tral line has been chosen to be ln 2 at τ = τmax, and zero at τ = 1, where τmax is the length
of the longest low-variability period. Admitting mismatch ln 2 at τ = τmax is motivated
by the observation that due to the lack of any statistics, the longest low-variability pe-
riod could have been easily twice as long as we measured it to be.
However, the above mentioned effect of the non-stationary pattern of the subjects daily
activities makes the situation more complicated. There is no easy way to quantify this
effect and therefore, we opted for the simplest possible solution, simple straight limit
lines.
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Fig. 3: Definition of the width of the scaling interval ∆. The rank-length curve is fitted
with a power law; the boundaries of the scaling interval are defined as the intersection
points of limit lines and r(τ)-curve.

Fig. 4: Definition of the parameters r50, r100, and r200.

The scaling exponent  has been calculated for all the patients and Student test was ap-
plied to every pair of groups. In most cases, the significance was quite low; two best
distinguishable groups were RR and FSK, the result of Student test being 5.7%. There-
fore, one can argue that the slopes of linear parts are highly personal characteristics de-
pending also on the daily habits of the subjects, which are weakly correlated with diag-
nosis. Further we tested, how is the failure of the power law correlated with the diagno-
sis. The width of the scaling range ∆ was used as a measure of how well the curve is



On the Zipf’s Law in Human Heartbeat Dynamics

7

Tab. 2: p-values of the Student test. Data in the topmost triangular region (with label A)
are calculated using the parameter ln τend. Triangular region B corresponds to the pa-
rameter ln rmax, region C - to ln r100, and region D - to ln τ40. Gray background high-
lights small p-values, p < 10%.

corresponding to a power law. The Student test results for the parameter ∆ turned out to
be similar to what has been observed for the parameter the correlation between the fail-
ure of the power law and diagnosis was weak. Thus, a rank-length curve resembling the
one depicted by a dashed line in Fig. 2, does not hint to heart pathology. It should be
also noted that the dashed curve in Fig. 2 can be considered as a generalized form of
scale-invariance with scale-dependent differential scaling exponent.
Finally, we analysed the diagnostic significance of the parameters ln τend and ln τstart.
This analysis does make sense, because typically, the start- and end-points of the scaling
range correspond to certain physiological time-scales. The parameter ln τend provided,
indeed, a remarkable resolution between the groups of patients, see Table 2.
According to the Student test, the healthy patients, were distinct from five heart pathol-
ogy groups with probability p < 1.6%. The parameter ln τstart was diagnostically less sig-
nificant.
Unfortunately, the calculation of the parameter τend is technically quite a complicated
task, not suited for clinical practice. Therefore, we aimed to find a simpler alternative to
it. Basically, the strategy was to find a simple parameter reflecting the behaviour of the
rightmost (large-τ) part of the r(τ)-curve. An easy option is ln τmax, which has been al-
ready analysed [10]. This parameter has indeed a considerable diagnostic value, but its
reliability is decreased by the above discussed statistical fluctuations. Better alternatives
are provided by (a) the overall number of low-variability periods rmax (which is small, if
there are lot of long low-variability periods); (b) the coordinates of specific points of the
rank-length curve. Here we chose a set of critical ranks R = 10, 20 or 40, and determined
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the respective lengths τR so that r(τR ) = R. We also fixed a set of critical length values, T
= 50, 100, or 200, and determined the respective rank numbers rT = r(T), see Fig. 4.
Both techniques turned out to be of high diagnostic performance; illustrative p-values
are given in Table 2. Parameters τ10 and τ20 performed less well than τ40 (for instance,
the p-values for the healthy and VES-subject groups were 0.60%, 0.58% and 0.34%, re-
spectively), and are not presented in tabular data. Similarly, r100 turned out to be more
efficient than r50 and r200 (the respective healthy and VES-group p-values being 0.02%,
0.01%, and 0.09%). It also outperforms τ40, but is sometimes less efficient than rmax or
τend (see Table 2). Hence, various heart pathologies seem to affect the heart rate dynam-
ics at the time scale around 100 heart beats (one to two minutes).

4. Conclusion

In conclusion, new aspect of non-linear time-series has been discovered, the scale-
invariance of low-variability periods. We have shown that the distribution of low vari-
ability periods in the activity of human heart rate typically follows a multi-scaling Zipf's
law. The presence or failure of a power law, as well as the values of the scaling expo-
nents, are personal characteristics depending on the daily habits of the subjects. Mean-
while, the distribution function of the low-variability periods as a whole contains also a
significant amount of diagnostically valuable information, the most part of which is re-
flected by the parameters r100, rmax, and τend, see Table 2. These quantities characterize
the complex structure of HRV signal, where the low- and high variability periods are
deeply intertwined, aspect which is not covered by the other methods of heart rate vari-
ability analysis (such as fractional Brownian motion based multifractal analysis). This
new technique is also applicable to other non-linear time-series, such as EEG signals
and financial data [8]. As a future development, it would be of great importance to ana-
lyse the prognostic value of the above mentioned parameters for patients with sudden
cardiac death.
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Tänapäeval kasutatakse hulgaliselt väga erinevaid

meetodeid, et välja selgitada krooniliste haiguste

seni veel tundmatuid riskitegureid. Paljud lihtsalt

määratavad näitajad, mida on võimalik jälgida

pikema aja vältel, on arvatud oluliste riskifaktorite

hulka, kuigi nende usaldusväärsus ja prognostiline

tähendus igapäevases arstipraktikas on sageli

veenvalt tõestamata. Südame löögisagedus ja

südame löögisageduse muutlikkus (SLM, heart rate

variability – HRV) kui erinevate krooniliste haiguste

riskitegurid on viimastel aastakümnetel olnud

paljude uurimistööde huviobjektiks. SLMi

mõõdetakse ja analüüsitakse standarditud

eeskirjade alusel, kasutades selleks üldjuhul vaid

lineaarseid meetodeid (1). SLM lineaarseid

meetodeid ning nende osa erinevate südame- ja

veresoonkonnahaiguste puhul on ka Eesti Arstis

varem põhjalikult käsitletud (2). Mittelineaarsete

meetodite osas on viimase kümne aasta jooksul

toimunud olulised nihked arusaamades ja kohati

on uurimistöö tulemused olnud väga paljulubavad.

Artikli eesmärgiks on anda ülevaade olulise-

matest saavutustest selles valdkonnas ning teha

kokkuvõte oma originaaluuringutest, mille sihiks oli

õppida mõõtma ja analüüsida diagnostilise

tähenduse seisukohast selliseid SLM aspekte, mille

iseloomustamist pole seni tuntud meetodid võimal-

danud.

SLM mittelineaarsed karakteristikud võib

liigitada järgmiselt:

1. Rekonstrueeritud faasiruumil põhinevad mõõdud

(mitmesugused entroopiad, korrelatsioonidimen-

sioon, Ljapunovi astmenäitajad jms): suurused, mis

kirjeldavad lühiajalist muutlikkust.

2. Mastaabi-invariantsed mõõdud (Hursti astme-

näitaja, multifraktaalne spekter, multi-mastaabiline

entroopia jms): mõõdud, mis kirjeldavad südame

löögisageduse muutuste pikemaajalisi seoseid.

3. Mastaabi-spetsiifilised mõõdud: teatud kindla

ajamastaabiga seotud lainekeste amplituud.

4. Juhumuutlikke aspekte kirjeldavad mõõdud, mis

tuginevad teatud ajaintervallide pikkusjaotusele

(Zipfi seadus); ajaintervallid võivad olla saadud

kas vähese muutlikkuse või keskmise südamelöögi

intervalli alusel fragmenteerimise tulemusel.

Allpool on vastavalt toodud klassifikatsioonile

vaadeldud neid mõõte lähemalt.

1. Rekonstrueeritud faasiruumil põhinevad
mõõdud. See et siinussõlme ja atrioventrikulaarse

sõlme poolt moodustuv südamerütmi genereeriv

süsteem on vaadeldav seostatud mittelineaarsete

südame löögisageduse muutlikkus, HRV, ambulatoorne EKG monitooring, mittelineaarne dünaamika

Mittelineaarsed meetodid südame
löögisageduse muutlikkuse hindamisel
kardioloogilistel patsientidel ambulatoorse
EKG monitooringu andmetel

Meelis Vainu1, Jaan Kalda2, Mari Laan3, Maksim Säkki2 – 1Tallinna Diagnostikakeskus,
2TTÜ küberneetika instituut, 3Tallinna Lastehaigla

Südame löögisagedus ja südame löögisageduse muutlikkus on südamehaiguste puhul olulised
parameetrid, mida kasutatakse nii diagnostilistel eesmärkidel kui prognoosi määramisel. Seni on
nimetatud otstarbel kasutatud valdavalt lineaarseid meetodeid standarditud eeskirjade alusel.
Artiklis on antud teoreetiline ülevaade südame löögisageduse muutlikkuse mittelineaarsetest
karakteristikutest ning tehtud kokkuvõte autorite originaaluuringutest mittelineaarsete meetodite
rakendamisel südame löögisageduse muutlikkuse määramisel südamehaigetel.
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ostsillaatoritena (piltlikult nagu kaks pendlit, mis

on omavahel kummipaelaga ühendatud), on üld-

tunnustatud asjaolu (3, 4). See mudel kirjeldab edu-

kalt mitmeid nähtusi (nt Wenckebachi ja Mobitzi II tüüpi

südame-rütmihäireid ja bistabiilset käitumist (4)).

Niisiis võiks arvata, et mittelineaarse dünaamika

meetodid on sobilikud ka SLM kirjeldamiseks.

Selliseks meetodiks on näiteks korrelatsiooni-

dimensiooni arvutamine: see on suurus, mis kirjel-

dab dünaamilise kaootilise süsteemi vabadus-

astmete arvu ja mida võib vaadelda ka süsteemi

keerulisuse määrana. Teisteks olulisteks mõõtudeks

on Ljapunovi eksponendid ja Kolmogorovi

entroopia (s.o suurima Ljapunovi eksponendi

keskväärtus). Suurim Ljapunovi eksponent kirjeldab

seda, kui tundlik on süsteem algtingimuste suhtes

(s.t kui muuta vähesel määral algtingimusi, siis

millise aja pärast on see muutus kasvanud oluliselt

tuntavaks); neid võib vaadelda kui kaootilisuse

määrasid. Ka Shannoni, ligikaudne (approximate),

kujundi- (pattern) jt entroopiad on süsteemi

kaootilisuse mõõtudeks.

Esimesed südame löögisageduse mittelineaar-

sust uurivad tööd olidki pühendatud mainitud suurus-

tele, sh teedrajav uurimus (5). Jõuti järeldusele, et

terve süda on kaootilisem kui haige süda. Terve

südame puhul leiti, et korrelatsioonidimensioon on

vahemikus 3,6 kuni 5,2.

Tänaseks päevaks on aga aru saadud, et

tegelikult mängivad SLM korral määravat rolli

autonoomsest närvisüsteemist saabuvad impulsid,

mis oma loomult ei ole deterministlikud (s.t ei ole

pendli või muu mehaanilise süsteemi sarnase käitu-

misega) ja mida on kõige õigem vaadelda juhu-

muutliku mürana. Niisiis, formaalselt võib küll

arvutada mittelineaarse dünaamika mõõte

(korrelatsioonidimensiooni jt), kuid need ei

kirjelda seda, mille kirjeldamiseks nad on välja

mõeldud.

On küll tõsi, et terve süda käitub üldjuhul haigest

südamest näiliselt kaootilisemalt, kuid see pole

tingitud mitte sellest, et mittelineaarsel ostsillaatoril

südame sees on vabadusastmeid rohkem või

Ljapunovi astmenäitaja on suurem. Põhjuseks on

see, et terve süda suudab kohaneda märksa

ulatuslikuma autonoomsest närvisüsteemist

saabuva südame löögisagedust reguleeriva

signaalidevooga, kui seda teeb haige süda. Seega

suudab terve süda muuta löögisagedust kiiremini

ja suuremas vahemikus. Nimetatud asjaolu tõttu

on ka terve südame korrelatsioonidimensioon (jmt

parameetrid) suurem. Korrelatsioonidimensioon on

konstrueeritud, et kirjeldada teistsugust füüsilist

olukorda, seega pole ta kaugeltki optimaalseks

SLMi kirjeldavaks suuruseks ja allpool kirjeldatud

suurused on märksa adekvaatsemad.

Vaadeldud suuruste arvutamiseks kasutatakse

nn rekonstrueeritud faasiruumi, mille dimensioonide

arv N võib olla milline tahes (kuid mitte väga suur,

N >6 puhul muutub arvutatavate suuruste statistiline

usaldatavus faktiliselt olematuks). Korrelatsiooni-

dimensiooni arvutamisel tuleb vaadelda mitmeid

N väärtusi (N = 2, 3, 4, 5, 6). Sageli piirdutakse

kolmemõõtmelise ruumiga (nt mitmesuguste

entroopiate arvutamisel). Kolmemõõtmelise

rekonstrueeritud faasiruumi puhul määravad kolm

järjestikust südamelöögi intervalli ära ruumipunkti:

esimene neist on punkti x-koordinaadiks, teine y-

koordinaadiks ja kolmas z-koordinaadiks. Mõni-

kord kasutatakse rekonstrueeritud faasiruumi

asendajana sümbolarvutust: südamelöögi

intervallile omistatakse teatav täht (a, b jne)

vastavalt intervalli pikkusele; järjestikused tähed

moodustavad sõna.

Kokkuvõtteks: kõik rekonstrueeritud faasiruumil

põhinevad suurused mõõdavad südamerütmi

lühiajalist (mõne sekundi jooksul toimuvat)

muutlikkust, pakkudes seega alternatiivi lineaarsele

mõõdule pNN50 ning sellega seoses võivad

omada teatavat (kuid mitte revolutsiooniliselt uut)

diagnostilist väärtust (vt nt viide 6).

2. Mastaabi-invariantsed, Hursti astme-
näitajal põhinevad mõõdud annavad lineaar-

sete suurustega võrreldes uudset informatsiooni,

kirjeldades seda, kuidas toimub ajamastaabi

kasvades löögisageduse muutlikkuse kasv.

Uurimaks keskmise löögiintervalli dünaamikat
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vabanetakse esmalt muutlikkuse kõrgsageduslikust

(mõnesekundilisest) komponendist. Edasi uuritakse,

kuidas sõltub ajavahemiku T jooksul täheldatava

löögiintervalli muutuse ruutkeskmine väärtus ∆t

ajavahemikust T. Kui ∆t on võrdeline T teatava

astmega H, siis nimetatakse H-d Hursti astme-

näitajaks. Mitmed uurimused kinnitavad, et kas

vahetult või teatud täiustatud tehnikat kasutades

leitud H väärtus võimaldab prognoosida südame-

puudulikkusega patsientide suremust (7–9).

Täiustatud tehnikana mainigem trendi eemaldavat

fluktuatsioonianalüüsi (detrended fluctuation

analysis, DFA) (8) ja lainekeste teisenduse

meetodit (9).

Veelgi täiuslikumaks meetodiks on Hursti astme-

näitaja multifraktaalse spektri arvutamine (10, 11).

Kui iga ajahetke jaoks arvutada lokaalne (väikest

aja-akent kirjeldav) Hursti astmenäitaja h, siis võib

arvutada teatava h väärtusega punktide hulga

fraktaalse dimensiooni f. Funktsiooni f(h) nimeta-

taksegi multifraktaalseks spektriks (ka Lipschitzi-

Hölderi astmenäitajaks). Selle spektri leidmiseks

kasutatakse harilikult nn massi-astmenäitajaid τ(q),

mis kirjeldavad lainekeste teisenduse amplituudi q-

nda astme keskväärtuse sõltuvust lainekeste

pikkusest (s.t ajamastaabist). On leitud, et massi-

astmenäitajad ise võivad olla heaks prognostiliseks

mõõduks (11). Massiastmenäitajaga on väga

tihedalt seotud q-ndat järku struktuurifunktsiooni

astmenäitaja ζ(q) (12), mille erinevus funktsioonist

τ(q) on peamiselt tehnilist laadi. Struktuurifunktsiooni

mõiste on pärit tugeva turbulentsi teooriast.

Mastaabi-invariantseks mõõduks on ka nn multi-

mastaabiline entroopia (13), mis on eespool

mainitud astmenäitajatest suhteliselt sõltumatu,

sarnanedes nendega siiski selle poolest, et kirjeldab

samuti üle ajaperioodi T keskmistatud südamelöögi

intervalli muutlikkuse taset sõltuvuses perioodist T.

On leitud, et see suurus võimaldab hästi eristada

südamepuudulikkusega patsiente.

3. Mastaabi-invariantsete muutlikkuse
mõõtude puhul arvatakse, et kuivõrd nad ise-

loomustavad muutlikkuse trendi ja ei ole seotud

ühegi konkreetse ajamastaabiga, siis ei sõltu nad

patsiendispetsiifilistest detailidest, vaid näitavad

eeskätt patoloogilisi muutusi (11). Samas on juhitud

tähelepanu, et mõned patoloogiad võivad

mõjutada südamelöögi intervalli muutlikkust teatud

kindla ajamastaabi juures ja sellisel korral tuleks

kasutada just mastaabispetsiifilisi mõõte (14). Nii

on leitud, et lainekeste spektri amplituud teatava

lainekese pikkuse (nt 5 min) juures annab häid

prognostilisi tulemusi (14). Võrreldes lineaarsete

mõõtudega ei anna see amplituud aga kardi-

naalselt uut informatsiooni; pigem on tegemist

suuruse SDANN peenviimistletud variandiga.

Sõltumatud uurimused (15) on siiski näidanud, et

mastaabi-invariantsed suurused annavad prog-

nostiliselt paremaid tulemusi.

4. Juhumuutlikke aspekte kirjeldavad
mõõdud. SLM on tugevalt mittestatsionaarne ja

juhumuutlik. Veidi lihtsustatult tähendab see, et olles

uurinud tema dünaamikat teatava ajavahemiku

jooksul, on võimatu usaldusväärselt ennustada

järgmise samasuguse perioodi jooksul toimuvat.

Teatud perioodi jooksul võib olla löögisageduse

muutlikkus hästi väike, seejärel aga võib löögi-

sagedus hakata kiiresti muutuma. Keskmine löögi-

sagedus võib olla pikka aega väike, seejärel

hüpata sageli üles-al la. Sell ise käitumise

kirjeldamiseks on uuritud niisuguste perioodide

pikkusjaotust, mille kestel on keskmine löögi-

sagedus enam-vähem konstantne (16). Nähtuse

teine aspekt on see, et ka väikse muutlikkusega

perioodid jaotuvad pikkuse järgi suhteliselt

keerulisel moel ning vastavat jaotusseadust

kirjeldavaid parameetreid võib kasutada

diagnostilistel eesmärkidel (17). Informatsioon,

mida need parameetrid pakuvad, on uudne, sest

vaadeldav jaotusseadus kirjeldab SLM niisuguseid

aspekte, mida ei kirjelda ei lineaarsed ega ka teised

mittelineaarsed mõõdud – seda, kuidas käitub

lühiajaline muutlikkus pikema perioodi jooksul.

Oma uurimistöös (vt allpool) oleme kasutanud

juhumuutlikke aspekte kirjeldavate mõõtude hulka

kuuluvaid SLM parameetreid.
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Füsioloogiliste signaalide keerukuse (complexity)

määramine tervetel isikutel ja teatud haiguste (sh ka

südamehaiguste) korral on olnud väga paljude

kliiniliste uurimistööde huviobjektiks (13, 19).

Selleks on kasutatud lisaks traditsioonilistele SLM

parameetritele ka uuemaid meetodeid, mida on

rakendatud eelkõige mittelineaarse dünaamika

(kaoseteooria) ja fraktaalanalüüsi valdkonnas

(19–21). Ka meditsiinis on kasutusele võetud

aproksimaalse entroopia (ApEn) mõiste kui süsteemi

”keerukust” iseloomustav näitaja (22). Seda on

rakendatud inimloote südametegevuse ning loote

üldseisundi hindamisel kliinilises praktikas enam kui

15 aasta vältel (23, 24). Peale traditsiooniliste

uurimismeetodite on näiteks uuritud patsientide

hingamissageduse karakteristikuid mittelineaarse

dünaamika meetoditega avastamaks erinevusi

normaalsete isikute ning paanikahäiretega

patsientide vahel (25). Lisaks tavapärastele meeto-

ditele rakendatakse mittelineaarseid SLM

parameetreid edukalt ka südamelihase infarkti

põdenud haigete prognoosi määramiseks (26, 27).

Analüüsiks kasutatakse nii EKG lühiajalise

registreerimise (5 min, 15 min, 1000 QRS-

kompleksi) kui ka 24tunnise ambulatoorse EKG

monitooringu tulemusi (21).

Uurimistöö eesmärk on rakendada uusi ja seni

veel kasutamata mittelineaarseid SLM para-

meetreid erinevate südamehaiguste puhul regis-

treeritud 24 tunni ambulatoorse EKG monitor-

jälgimise andmete analüüsil.

Uurimismaterjal ja -metoodika
Uuringusse kuulus 156 patsienti. Patsiendid jagati

vastavalt kliinilisele diagnoosile kuude rühma: I rühm

(n = 103) – terved isikud; II (n = 8) – südame isheemia-

tõvega haiged; III (n = 11) – siinussõlme nõrkuse

sündroomiga haiged; IV (n = 16) – ventrikulaarse

ekstrasüstooliaga haiged; V (n = 7) – müokardiinfarkti

põdenud haiged, VI (n = 11) – hüpertooniatõbe

põdevad haiged. Andmed uuritavate rühmade kohta

on esitatud tabelis 1. Patsiendid kasutasid uuringu vältel

ravimeid tavapärases annuses ja reþiimis.

Kõigile uuritavatele tehti 24 tunni ambulatoorne

EKG monitorjälgimine (Holteri monitooring)

Tallinna Diagnostikakeskuses. Kasutati firma Rozinn

(USA) kolmekanalist jälgimissüsteemi modifit-

seeritud lülitustega II, V1 ja V5. EKG signaali

mõõtmissagedus (sampling rate) oli 180 Hz ja

signaali ajaline lahutusvõime (resolving power)

6 ms. Kasutades kommertstarkvara, toimus rütmi-

häirete ning artefaktide elimineerimine kardioloogi

poolt enne RR-intervallide määramist (NN).

Andmete analüüsimisel rakendati 24 tunni vältel

registreeritud parameetreid. Andmeid töödeldi

vastavalt joonisel 1 esitatud skeemile.

Uuriti vähese muutlikkusega perioodide pikkus-

jaotust (17). Esmalt tehti kindlaks väikse muutlik-

kusega intervalli kui sellise intervalli, mille suhteline

erinevus libisevast keskmisest on suurem kui teatav

fikseeritud väärtus δ
0
. Libisev keskmine leitakse

lühiajalise, 5sekundilise aknaga; allpool toodud

tulemuste puhul on kasutatud väärtust δ
0
 = 5%.

Väikse muutlikkusega perioodiks nimetame järjes-

tikuste väikse muutlikkusega intervallide hulka

(s.t suure muutlikkusega intervall lõpetab väikse

muutlikkusega perioodi). Järjestades väikse

muutlikkusega perioodid pikkuse l järgi (kus l on

perioodis sisalduvate intervallide arv) ning

omistades igale perioodile järjekorranumbri r (nii

et pikim periood omab järjekorranumbrit r = 1),

saame sõltuvuse r(l). Joonisel 2 on toodud see

sõltuvus logaritmilises teljestikus, kus astme-

seadusele r = Al-γ vastaks sirgjoon (sirge tõus on

määratud astmenäitajaga γ). Paljudel patsientidel

ongi väikse muutlikkusega perioodide pikkus-

jaotuseks astmeseadus, kuid sageli on sellest ka

Terved IHD SND VES PCI RR 

Patsientide arv 103 8 11 16 7 11 

Keskmine vanus 45,5 65,4 50,0 55,9 47,3 55,5 

Vanuse standardhälve 20,5 11,4 19,3 14,3 11,6 14,4 

24 t keskmine südame 
löögisagcdus 72,7 68,4 64 74,5 65,7 63,2 

Sageduse standardhälve 10,7 7,4 11,3 9,8 8,5 9,8 

IHD – südame isheemiatõvega haiged, SND – siinussõlme 
nõrkuse sündroomiga haiged, VES – ventrikulaarse 
ekstrasüstooliaga haiged, PCI – müokardiinfarkti põdenud 
haiged, RR – hüpertooniatõbe põdevad haiged.

Tabel 1. Uuritud patsiendirühmad
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märgatavaid kõrvalekaldeid (vt jn 2). Selgub, et

astmeseaduse olemasolu või selle puudumine ei

ole diagnoosiga märkimisväärses korrelatsioonis,

vaid sõltub eeskätt patsiendi igapäevastest

tegevustest ja harjumustest – sellest, millises

vahekorras on kehaliselt aktiivne tegevus, istumine,

söömine, lamamine jm (vt ka 18); siiski peitub

vaadeldavas jaotusseaduses ka olulist diagnostilist

informatsiooni. Loomulikult mõjutavad igapäeva-

sed harjumused ka kõiki teisi eelmainitud

mittelineaarseid mõõte, see asjaolu on aga sageli

jäänud piisava tähelepanuta. Võib öelda, et teatud

SLM mõõt on seda parem, mida tundlikum on see

patoloogiate suhtes ning mida vähem tundlik

patsiendi igapäevaste harjumuste ja tegevuste

suhtes.

Uurimistulemused ja arutelu
Tabelis 2 on toodud Studenti testi tulemused väikse

muutlikkusega perioodide jaotust kirjeldavate

parameetrite ln(lend) ja ln(rmax) järgi (tegemist on

naturaallogaritmidega suurusest lend ja rmax;

esimene neist on logaritmilises teljestikus lineaarse

osa lõpp-punkti l-koordinaat, teine aga suurim

järjekorranumber, mis on seda väiksem, mida

rohkem on väikse muutlikkusega pikki perioode).

Võrdluseks on toodud kaks lineaarset karakteristikut,

pnn50 ja SDNN. Võtmaks arvesse nn nullhüpoteesi

võimalikkust (reaalset korrelatsiooni pole, väikesed

p-väärtused on juhuslik tulemus: kui on arvutatud

palju p-väärtusi, siis need jaotuvad ühtlaselt skaalal

nullist üheni ning seega on mõned neist üsna

väikesed) on rakendatud modifitseeritud Bonfer-

roni korrektsiooni, kus korrigeeritud p-väärtuse

leidmiseks korrutatakse algne p-väärtus testide

arvuga (siin 60) ning jagatakse n-ga, kus n näitab

mitmes väiksuselt on antud p-väärtus. Tabelis

tähistab hall taust seda, et korrigeeritud p-väärtus

on alla 10%. Et Studenti test eeldab normaaljaotust,

siis kontrolliti, kas see eeldus on põhjendatud.

Selleks arvutati vaadeldud suuruste jaotuse

asümmeetria ja ekstsess. Tulemused näitasid, et

normaaljaotus on tõepoolest piisavalt heaks

p (%) Terved IHD SND VES PCI RR 

Terved B  A 0,06 17,21 0,02 0,07 1,59 

IHD 0,36 2,85 96,79 97,62 21,93

SND 2,99 59,10 2,10 3,04 25,77 

VES 0,08 91,60 63,79 94,18 17,59 

PCI 25,27 21,61 46,37 22,89 22,50 

RR 0,14 73,57 77,69 80,49 28,90 

Terved D C 7,01 10,01 0,01 0,98 4,34 

IHD 3,89 2,70 45,88 62,20 74,98 

SND 0,64 0,10 1,44 3,40 3,23 

VES 8,83 64,71 0,15 3,46 16,26 

PCI 14,93 0,99 3,31 1,98 12,63 

R R 21,58 1,07 1,94 2,38 70,25 

Kolmnurgas A toodud arvud vastavad karakteristikule
ln(l

end
), kolmnurgas B ln(r

max
)-le, kolmnurgas C pnn50-le

ja kolmnurgas D SDNN-le. Arvu taust on hall siis, kui
modifi tseeritud Bonferroni meetodi järgi korrigeeritud 
p-väärtus jääb alla 10%.

EKG salvestamine

Signaali digitaliseerimine

QRS-komplekside ja

RR-intervallide

identifitseerimine
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Standardsed

lineaarsed mõõdud

Uurimistöö-spetsiifiline

arvutiprogramm: järel-

filtreerimine, andmeanalüüs

Faasiruumil basee-
ruvad mõõdud

Mastaabiinva-

riantsed mõõdud

ASCII
andmefail

1000

100

10

1
1 3 10 30 100l 300 1000

(a)

(b)

Tabel 2. p-väärtused vastavalt Studenti testile

Joonis 1. Mittelineaarsete karakteristikute uurimisel
kasutatav andmetöötluse tüüpskeem.

Joonis 2. Madala muutlikkusega perioodide järjekorra-
numbri r sõltuvus pikkusest l on esitatud logaritmilises
teljestikus. Patsiendil (a) on tegemist astmeseadusega (graafik
on lähedane sirgjoonele), patsiendil (b) on aga märgata olulist
kõrvalekallet astmeseadusest.
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aproksimatsiooniks (näiteks tervete rühma ja

suuruse ln(lend) korral oli asümmeetria 0,24 ja

asümmeetria –0,58).

Nagu tabelist näha, võimaldavad vaadeldud

mittelineaarsed suurused eristada tervete rühma

kõigist teistest rühmadest peale SND-grupi. Samal

ajal võimaldasid klassikalised meetodid eristada

just nimelt SND-rühma tervetest (ja mõnest

patoloogiast – IHD ja VES rühmast). Niisiis võib

vaadeldud lähtematerjali põhjal väita, et väikse

muutlikkusega perioodide jaotusseadus pakub

võrreldes klassikaliste SLM karakteristikutega

olulist lisainformatsiooni, võimaldades eristada

eeskätt just terveid patsiente.

Kokkuvõte
Mittelineaarsete SLM karakteristikute hulgas on

kahtlemata väga perspektiivikaid suurusi (nii

prognostilisi kui ka diagnostilisi eesmärke silmas

pidades). Osa neist valgustavad täiesti uusi SLM

aspekte, osa aga dubleerivad suures osas lineaar-

sete mõõtude poolt pakutavat infot (võimalik, et

pakuvad siiski veidi paremat patoloogiatesse

puutuva ja patsiendispetsiifilise info suhet just tänu

peenviimistletud matemaatilisele käsitlusele).

Kliinilised rakendused on takerdunud selle taha, et

pole tehtud piisavalt laiaulatuslikke ja homo-

geenseid patsiendirühmi hõlmavaid uuringuid.

Väikse muutlikkusega perioodide jaotust kirjel-

davad suurused kuuluvad diagnostiliselt pers-

pektiivsete karakteristikute hulka, mille edasisel

uurimisel tuleks keskenduda 1) prognostilisusele

infarktijärgsete patsientide juures; 2) suuruse ln(lend)

jaoks lihtsamini arvutatava alternatiivi otsimisele;

3) laiemate patsiendigruppide vaatlemisele.

Tänuavaldus. Uurimistööd on toetanud Eesti Teadusfond

(tehnikateaduste grant nr 4151).
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It is shown that in the case of human heart rate, the scaling behavior of the correlation sum
~calculated by the Grassberger–Procaccia algorithm! is a result of the interplay of various factors:
finite resolution of the apparatus~finite-size effects!, a wide dynamic range of mean heart rate, the
amplitude of short-time variability being a decreasing function of the mean heart rate. This is done
via constructing a simple model of heart rhythm: a signal with functionally modulated Gaussian
noise. This model reproduces the scaling behavior of the correlation sum of real medical data. The
value of the scaling exponent depends on all the above-mentioned factors, and is a certain measure
of short-time variability of the signal. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1636151#

Correlation dimension has been one of the most popular
nonlinear measures of heart rate variability. However,
due to various factors „noise, nonstationarity, limited
time-resolution of apparatus…, the finiteness of the corre-
lation dimension fails to be a proof of the presence of an
underlying deterministic dynamics. Here we suggest a
simple heart rhythm model „a signal with functionally
modulated Gaussian noise… which reproduces the scaling
behavior of the correlation sum of real medical data. This
gives us a key on how to interpret the clinical values of
this scaling exponent.

I. INTRODUCTION

Heart rate variability~HRV! has been often thought to be
driven by deterministic chaos inside the heart. Such a belief
lies upon the mathematical models of the complex of sino-
atrial and atrio-ventricular nodes, which is responsible for
the heart rhythm generation and has been treated as a system
of nonlinear coupled oscillators.1,2 As a consequence, the
measures of deterministic chaos, such as correlation dimen-
sion, Lyapunov exponents, Kolmogorov entropy, etc., have
been thought to be important tools of HRV analysis, cf. Refs.
3 and 4. Meanwhile, the heart rate is known to be regulated
by the signals arriving from the autonomous nervous system,
which fluctuate intermittently, cf. Refs. 5–7. The level of
these signals is high enough to suppress the possible under-
lying nonlinear deterministic dynamics; in particular, the sig-
nals due to respiration~and mediated by the phenomenon
known as baroreflex6! have a strong fingerprint on the short-

time variability of the heart rate and can lead to the mode-
locking between the heart rate and respiration.8,9

Despite the above-mentioned advances in understanding
of the nature of HRV, the measures of deterministic chaos
~correlation dimension, Lyapunov exponents, and Kolmog-
orov entropy, etc.! are still being calculated in a considerable
number of papers devoted to HRV. Besides, various entropies
~Shannon, renormalized, Renyi, pattern, approximate, etc.,
cf. Refs. 10 and 11! are persistently popular research topics;
while not directly requiring the presence of a deterministic
dynamics, they are ideologically related to the analysis of
nonlinear dynamics~both deal with the dynamics in time
delay space!. In order to be able to interpret correctly the
results of these numerous studies, it is important to know
which physical aspects of HRV signal are actually being
measured by the measures of nonlinear dynamics. In this
paper, we study the case of the correlation dimension~we
shall use the term ‘‘scaling exponent of the correlation sum,’’
in order to emphasize that we are not assuming the presence
of an underlying deterministic dynamics!.

It has been pointed out that even in the case of a really
existent and nonsuppressed deterministic dynamics, nonsta-
tionarity and noisiness~which are typical to physiological
time series! make a reliable calculation of the correlation
dimension impossible.12–14 Furthermore, it has been empha-
sized that a reasonable fitting of a correlation sum to a power
law does not necessarily mean that the obtained exponent is
the correlation dimension of the underlying dynamical sys-
tem; instead, thorough nonautomatable verification proce-
dure has to be done.15 All this leads us to the conclusion that
the formally calculated correlation dimension of a heart
rhythm does not correspond to the dimensionality of an in-
trinsic attractor. Meanwhile, the correlation sums of human
heart rate follow typically a scaling law, cf. Ref. 4, and, asa!Electronic mail: max@cens.ioc.ee
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pointed out in the pioneering paper of Babloyantz and
Destexhe,3 the high values of the scaling exponent~‘‘corre-
lation dimension’’! indicate the healthiness of the heart.
Hence, it is natural to ask, what does measure the scaling
exponent of the correlation sum, and how is it related to the
healthiness of the heart.

Our answer to the posed question is based on very
simple observations, which are valid for healthy patients:~a!
the long-time variability of the interbeat intervals~which is
typically around 500 ms! is typically much higher than the
variability on the time scale of few heart beats (;50 ms),
see Figs. 1~a! and 2~a!; ~b! for those periods, when the mean
heart rate is high~i.e., when the subject is performing a
physical exercise! the heart rate variability is low;~c! the
heart rate is controlled by nondeterministic and effectively
random signals arriving from the autonomous nervous sys-
tem. As a consequence, in time delay coordinates, an HRV
time series generates an elongated conical cloud of points
~the narrow tip of which is directed toward the origin!. Al-
though the theoretical~and correct! value of the correlation
dimension of such a cloud is infinite, the finite resolution of
the recording apparatus, finite length of the time series, and
the linear structure of the cloud result in a smaller value. This
is evident for a very narrow ‘‘cone,’’ which is efficiently one
dimensional. In what follows we show that the ‘‘correlation
dimension’’ reflects the geometrical size of such a cloud of
points.

The layout of the paper is as follows. First, we give the
details of the HRV database used for this study. Second, we
provide a short overview of the research results related to the
correlation dimension of human heart rhythm. Third, we con-
struct simple model time series, the correlation sum of which
scales almost identically to that of real HRV data. Fourth, we

discuss the phenomenon of mode locking between heart
rhythm and respiration. Finally, we discuss the universality
and implications of our model.

II. EXPERIMENTAL DATA

The experimental data analyzed in this paper have been
recorded at Tallinn Diagnostic Center. The recordings of am-
bulatory Holter-monitoring~24 h, approximately 100 000
data points! were obtained during regular diagnostical ex-
aminations and covered over 200 patients with various clini-
cally documented diagnoses~including also many healthy
subjects!. The main groups of patients are shown in Table I.
The resolving power of original ECG recordings was 6 ms
~sampling rate of 180 Hz!. The diagnostics and data verifi-
cation has been made by a qualified cardiologist; the data
preprocessing included also filtering of artifacts and arrhyth-
mias.

Our study would have been certainly benefitted from us-
ing higher resolution data. In the case of short-term (,1 h)
recordings, a free access to the high resolution~above
250 Hz! data is provided by public databases~e.g., at
www.physionet.org!. However, the length of these recordings
is not suitable for the correlation sum scaling analysis when
the scaling exponent is larger than four~see below, cf. Table
II !. In the case of Holter-monitoring~24 h!, the recordings at
www.physionet.org are recorded at 128 Hz; this resolution is
often adopted for the studies of long-term dynamics of RR
intervals, cf. Ref. 16. The most modern and advanced Holter-
monitoring recorders do provide sampling rates up to 500
Hz. Unfortunately, our research group did not have access to
such recordings. For our purposes, 180 Hz seems to be still
acceptable, because the resolution 6 ms is smaller than the
variability on the time scale of few heart beats;50 ms. This

FIG. 1. Heart beat intervals~in arbitrary units! are plotted vs the beat num-
ber: ~a! a real patient;~b! model time series~functionally modulated Gauss-
ian noise!; ~c! plain Gaussian noise added to a constant ‘‘heart’’ rate. The
time window is 1250 heart beats.

FIG. 2. The same as in Fig. 1, except that the time window is 37 700 heart
beats and curve~c! corresponds to the model-time-series with 1/f power
spectrum@given by Eqs.~4!–~6!#.

TABLE I. Test groups of patients. Abbreviations are as follows: IHD—ischemic heart disease~stenocardia!;
SND—sinus node disease; VES—ventricular extrasystole; PCI—post cardiac infarction; RR—blood pressure
disease; FSK—functional disease of sinus node.

Healthy IHD SND VES PCI RR FSK

No. of patients 103 8 11 16 7 11 6
Mean age 45.5 65.4 50.0 55.9 47.3 55.5 11.7
Std. dev. of age 20.5 11.4 19.3 14.3 11.6 14.4 4.6
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conclusion is supported by the fact that the effect of data
downsampling to the correlation sum scaling behavior is
small ~see Sec. IV!.

III. BACKGROUND INFORMATION AND BASIC
ASSUMPTIONS

The concept of correlation dimension, introduced by
Grassberger and Procaccia,17 is designed to reflect the num-
ber of degrees of freedom of a deterministic system~more
precisely, the dimensionality of an attractor, which, in prin-
ciple, can be fractal!. For empirical time series, the phase
variables are typically not known. It is expected that the
attractors in the phase space are topologically equivalent to
the attractors in a reconstructed phase space with time-lag
coordinates$x(T),x(T1t),...,x@T1(m21)t#%, as long as
the embedding dimensionalitym ~the dimensionality of the
reconstructed phase space! exceeds the dimensionality of the
attractorD; hereT is the time,x(T) is the signal, andt is a
reasonably chosen time lag. This circumstance is exploited
by the Grassberger–Procaccia method17 for the calculation
of the correlation dimension. To begin with, the second-order
correlation sum is defined as

C2~r !5
2

N~N21! (i , j
u~r 2ur i2r j u!, ~1!

where u(r ) is the Heaviside function,r i5$x(Ti),x(Ti

1t),...,x@Ti1(m21)t#% is a point in the reconstructed
phase space, andi , j 51,2,...,N count the moments of dis-
cretized time. In the case of HRV analysis, the time is typi-
cally measured in the number of heart beats~so thatTj[ j ),
and unit time lag is used,t51. In what follows we use the
notationx( j )[t j for the duration ofj th normal heart beat.
For small r , the correlation sum is expected to scale as
C2(r )}r D2, assuming thatD2,m. The exponentD[D2 is
called thecorrelation dimensionof the system.

A nonlinear dynamical system may be chaotic and then
the phase trajectory fills certain subset of the phase space. In
that case, the correlation dimensionD is expected to be equal
to the number of degrees of freedom~the dimensionality of
the phase space minus the number of conservation laws!.
This is whyD is often considered as a measure of the com-
plexity of the system. Babloyantz and Destexhe3 studied the
correlation dimension of the sequence ofNN intervals ~in-
tervals between normal heartbeats! of human heart rhythm.
For healthy patients and data series consisting of 1000 inter-
vals, they foundD55.960.4. It is widely recognized that
life-threatening heart pathologies lead to the reduction of the
complexity of the HRV signal, cf. Ref. 4. Correspondingly,

the correlation dimension of the heart rate has been often
believed to measure the healthiness of the heart.

However, the heart is not an isolated system. Although
the heart rhythm is generated by the complex of oscillatory
elements, its rate is controlled bynondeterministic inputs
arriving from the autonomous nervous system. In particular,
these inputs lead to the increase of the heart rate when the
subject is under a physical stress, and to slowing down when
the subject is at rest, cf. Ref. 6. Healthy heart responds easily
to these signals, and is able to adapt to a wide range of
beating rates. This responsiveness gives rise to the high vari-
ability of the heart rate. Severe heart diseases decrease the
responsiveness of the heart with respect to the whole spec-
trum of signals arriving from the autonomous nervous sys-
tem; this leads to the loss of the apparent complexity of the
HRV signal.

The heart is more responsive with respect to the signals
of the autonomous nervous system when the heart rate is
slow, i.e., when the patient is at rest. In that case, the heart
rate variability is driven by weaker signals, like the ones
generated by respiration and blood-pressure oscillations.
These two stimuli are quasiperiodic, the periods being, re-
spectively, a few and 10–20 s. While the 10–20 s period is
too long to affect essentially the dynamics in time delay
spaces~unless the dimensionality is very large, 10 or more!,
the few-second~quasi-!periodicity has a strong fingerprint in
the distribution of points in the reconstructed phase space.

IV. FUNCTIONALLY MODULATED GAUSSIAN NOISE

Our model of the heart rhythm generation is as follows.
The possibly nonlinear deterministic dynamics inside the
heart is almost completely suppressed by the signals arriving
from the autonomous nervous system. These signals control
the mean heart rate, but obey also a noise-like component,
the amplitude of which decreases with increasing mean heart
rate. This noise-like component is a mixture of the
respiration-induced signal~which, if not mode-locked,
decorrelates quickly, and from the standpoint of the distribu-
tion of points in time-delay space, is effectively random; the
mode-locking phenomenon will be discussed later!. In the
case of correlation sum analysis, this noise-like component is
indistinguishable from a Gaussian noise. Therefore, theoreti-
cally, the correlation dimension is infinite. The reported rela-
tively small values of the correlation dimension are to be
attributed to the finite length of the time series and, most
important, to the finite resolution of the recording apparatus.
Too short record length can be the cause of a false detection
of the correlation sum scaling exponent saturation effect. In-
deed, typically, the correlation dimension has been found to
be at the limit~or beyond! of a credible analysis.12,18 It has
been suggested12,18 that the calculation of the correlation di-
mensionD is reliable, if the numberN of data points in the
time series

N*10D/211. ~2!

In Table II, this criterion is compared with the data of some
papers.

TABLE II. Data from papers devoted to the correlation dimension analysis:
experimental values of correlation dimension, lengths of the underlying data
sets, and data-set lengths required by Eq.~3!.

Ref. 3 Ref. 13 Ref. 19 Ref. 20

Correlation dimension 5.5–6.3 9.6–10.2 2.8–5.8 4–7
Length of the data set 103 23104 104 23104

Required length 104 106 104 33104
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In order to test our hypothesis we aimed to construct
such model time series~using an algorithm as simple as pos-
sible!, the correlation sum of which is similar to the correla-
tion sums of the time series of real patients. An alternative
approach could have been to create surrogate data by shuf-
fling the real clinical data. The advantages of using model
time series are as follows.~a! There is no risk of creating
artifacts by data shuffling;~b! interpretation of the results is
more straightforward and reliable, because there are no un-
known statistical features~higher order correlations, inter-
mittency! of the time series;~c! the relationship between the
observed scaling exponent values and the statistical proper-
ties of the underlying data set can be easily studied by ad-
justing the control parameters~e.g., the noise amplitude! of
the model.

To begin with, we analyzed the sequences of NN inter-
vals extracted from the ECG recordings. The scaling expo-
nent was found as the slope of a root-mean-square fit of the
correlation sum@Eq. ~1!# in log–log plot using the best scal-
ing range, i.e., such a range which is as wide as possible, and
for which the mismatch between the curve and fitting line is
smaller than the statistical uncertainties. The statistical un-
certainties have been estimated by Monte Carlo method: 30
different time series@Eqs. ~3! and ~4!# were generated, and
the corresponding variance ofC2(r ) was calculated.

First we discuss the case of embedding dimensionality
m56, because on the one hand, this is the dimensionality at
which the exponent saturation has been observed;3 on the
other hand, higher values ofm would not be applicable to the
majority of the studies presented in Table II, due to the short-
ness of the respective underlying data series.

Reliable correlation sum analysis is possible only for
more or less stationary time series, cf. Ref. 12. Meanwhile,
HRV signal is highly nonstationary, as evidenced by the mul-
tifractal structure of its long-time dynamics.21 The most sta-
tionary period in the heart rate dynamics is the sleeping time.
This is why we studied only the nocturnal part of the HRV
records. The scaling exponent was determined as the slope of
the correlation sumC2(r ) in log–log plot by performing
root-mean-square fit for the almost linear part~at small val-
ues of r ) of the curve, see Fig. 3. Note that the leftmost
horizontal part of the curve is due to the limited resolving
power~6 ms! of the medical equipment: if two NN intervals
differ less than 6 ms, they are recorded to be of the same
length. For m56, the scaling exponents ranged fromD
54.2 toD55.1 and were almost uncorrelated with the diag-
noses~see Table III!.

Further we generated two model time series with Gauss-
ian noise:~i! plain Gaussian noise added to a constant signal
@see Fig. 1~c!#; ~ii ! time series with variable mean ‘‘heart
rate’’ and modulated noise, generated according to

tn5a1b sin~ f n!1cg~n!A1.11sin~ f n!, ~3!

see Figs. 1~b! and 2~b!. Here,tn denotes the duration ofnth
interval;g(n) is a random uncorrelated time series with unit
variance, zero mean, and Gaussian distribution of values.
The termb sin(fn) models the variability of the mean heart
rate due to physiological processes~physical activity, blood
pressure oscillations, etc.!. The termA1.11sin(fn) reflects

the empirical observation that the short-time variability of
the heart rhythm increases together with the mean heart beat
interval. A good similarity between the correlation sums of
clinical and model data is achieved for the following set of
parameters

a5700 ms, b5110 ms, f 50.005, c53.5 ms;
~4!

the values oftn have to be rounded to the nearest multiple of
the ‘‘resolving power,’’ 6 ms.

It should be emphasized that both the square-root and
sinusoidal dependencies have been completely arbitrary
choices; here, the selection criterion has been the simplicity
of the model. The sinusoidal trend of the model data is not
intended to~and does not! match the intermittent pattern of
real HRV ~cf. Refs. 21 and 22!, because the correlation sum
is not sensitive with respect to this pattern~neither with re-
spect to the modulation frequencyf !. Indeed, as long as the
characteristic time scale of the fluctuations is longer than
;10 s, the intermittency has no effect on the distribution of
points in time delay space. So, due to the robustness of the
model, the sinusoid can be substituted by any other function
which varies between 1 and21, and has no high-frequency
(&1 Hz) components. In order to demonstrate the expected
robustness, we generated a slightly different model time se-
ries @see Fig. 2~c!#,

tn5a1b sin@f~n!#1cg~n!A1.11sin@f~n!#, ~5!

where

FIG. 3. Correlation sums of a typical healthy patient, a plain Gaussian
signal, and functionally modulated Gaussian signals in logarithmic plot.
Embedding dimensionalitym56.

TABLE III. p-values of the student test for the seven groups of patients.
Abbreviations are explained in Table I.

p, % IHD SND VES PCI RR FSK

Healthy 89.4 21.9 3.5 18.4 2.4 71.5
IHD 34.1 12.0 17.6 7.1 69.4
SND 66.8 52.9 45.7 54.4
VES 73.0 67.6 25.2
PCI 95.7 26.7
RR 15.9
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f~n!5 f n/~110.0001n!, ~6!

and the definitions ofa, b, c, f , andg(n) are the same as in
the case of Eq.~3!. This time series has 1/f power spectrum,
similar to what is observed for real clinical data.23

As mentioned earlier, the square root function in Eqs.~3!
and ~5! mimics the dependence of the short-time variability
level on the mean heart rate. While the correlation sum scal-
ing properties can be expected to be sensitive with respect to
the dynamic range of this dependence, the specific functional
form is of lesser importance. So,Ax can be substituted by
some other monotonically increasing functionf (x), assum-
ing that the dynamic range remains unchanged, i.e.,f (0.1)
5A(0.1), andf (2.1)5A(2.1).

For a Gaussian signal, the correlation dimension is infi-
nite, and the scaling exponent should be equal to the embed-
ding dimensionm56. This is exactly what is observed for
plain unmodulated Gaussian time series, see Fig. 3. How-
ever, for the noise of modulated amplitude, the finite size
effects are significant: the scaling exponentD of such time
series depends on the model parametersa, b, c, f , and on
the resolving power. By adjusting the parametersb, c, and
the resolving power, we were able to obtain the values rang-
ing from D54 to D56. At the resolving power of 6 ms, and
with the parameter set being given by Eq.~4!, there was
almost no difference between the correlation sums of the two
model signals@Eqs.~3! and~5!#, and the correlation sums of
real patients, see Fig. 3. This is in a complete agreement with
the theoretical expectations.

The similarity between the correlation sums of our signal
with functionally modulated Gaussian noise and real physi-
ological data extends beyond the six-dimensional embedding
space. We have studied the time delay spaces with dimen-
sionalities ranging from 3 to 10. The scaling exponents have
been calculated for the real data, and for model time series
~3!, ~5!. The results presented in Fig. 4 show that the scaling
exponent of the correlation sum increases persistently toward
large embedding dimensionalities. The similarity between
the D(m) curves of the generated time series and the real

data is quantitative, and in the case of some patients, nearly
perfect, see Fig. 4. Note that for large embedding dimension-
alities and~too! short data series, this increase is not smooth,
due to high statistical uncertainties. Strong enough fluctua-
tions @which are expected when condition~2! is violated#
form random ‘‘plateaus’’ of theD(m) curve; which can be
falsely interpreted as the signs of saturation of the scaling
exponent. The effect of the resolving power of the recording
apparatus is demonstrated in Fig. 5, where the correlation
sums of raw clinical data are compared with that of the
downsampled data~with the effective resolving power of 11
ms!.

V. MODE LOCKING

Finally, we discuss the phenomenon of mode locking
between the respiration and heart rate, which has been dem-
onstrated by simultaneous recording of ECG and respiration
activity, together with the technique called cardiorespiratory
synchrogram8 ~and which has been also detected using
univariate HRV time series9!. In the case of simple
respiration-induced HRV, the decorrelation time between res-
piration and heart rhythm is of the order of 10 s; mode lock-
ing increases this time by an order of magnitude. The ratio of
the mode-locked periods is typically small, 2:1, 3:1, 5:2, etc.,
and the phenomenon gives rise to specific patterns in the
reconstructed phase space~satellite clouds around the central
elongated conical cloud of points!, see Fig. 6. These patterns
can be easily misinterpreted as traces of an attractor of a
nonlinear deterministic system.

In order to show the causal relationship between the
mode locking and the presence of ‘‘satellite clouds,’’ we de-
vised a quantitative method for the detection of mode lock-
ing; as compared with the alternative univariate technique,9

our method is simpler, more intuitive, and equally sensitive.
To begin with, let us introduce the fluctuation function

F~n!5^utn2tn1nu& ~7!

FIG. 4. Correlation sum scaling exponents for five typical patients and for
the model time series are plotted vs the embedding dimensionality.

FIG. 5. The effect of the ECG resolving power on the correlation sum
scaling exponent is demonstrated by downsampling the raw data of three
randomly selected subjects. The effect is weak; however, lower sampling
rate decreases systematically the scaling exponent values.
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~angular brackets denote averaging overn). Unlike in the
case of ‘‘single-cloud-patients,’’ the fluctuation function of
the patients with satellite clouds revealed a presence of an
oscillatory component, see Fig. 7~b!. As a quantitative mea-
sure of the amplitude of such oscillations, the discrete Fou-
rier transform amplitude can be used;n:m mode locking is
related to the Fourier transform amplitudeFa at the wave-
length a5n/m. In order to reduce the influence of non-
mode-locked respiration~and thereby attain a better sensitiv-
ity with respect to the mode-locking!, the small values of the
delayn have to be ignored. For instance, a good sensitivity is
achieved when the Fourier transform is applied to the range
5<n&30 ~the range length must be a multiple ofn).

By dividing the entire 24 h HRV record into 1 h inter-
vals, and calculating the amplitude of the oscillatory compo-
nent of the fluctuation function for each interval, we were
able to locate the periods responsible for the satellite clouds
in the reconstructed phase space, see Fig. 7~b!. These were
always the periods before falling asleep, around 10 or 11 pm,
characterized by a low heart rate and a high respiration-
driven short-time variability. The phase between the heart

rate and respiration is locked during tens of seconds, con-
firming the observations of Kurthset al.8 Thus, in a certain
sense, the heart and respiratory complex act as a system of
coupled oscillators, cf. Ref. 9; however, by no means does
this imply that there is a deterministic chaos inside the heart.
Since the mode locking occurs during a relatively small frac-
tion of the whole recording time, it has almost no effect on
the scaling behavior of the correlation sum~as has been
tested by calculating the correlation sum for different time-
windows: including and excluding the mode locking peri-
ods!.

Note that our method of mode-locking detection is very
simple, and does not require synchronous respiration rhythm
recording~unlike the thorough method8!. Besides, it can be
conveniently used to find relatively short (*10 min) locking
periods from a 24 h recording, because, unlike in the case of
the alternative univariate data analysis technique,9 there is a
simple quantitative measure of the effect, the amplitude of
the oscillatory component of the fluctuation functionF(n).
The sensitivity of the method is high: the ratio of the Fourier
transform amplitude of the locked modeFa0

to the root-
mean-square of the amplitudes of the other modes is typi-
cally between 10 and 30.

VI. CONCLUSION

Comparative analysis of real and model data showed that
in the case of human heart rate, the correlation sum proper-
ties are defined by the interplay of the following factors:~a!
finite resolution of the recording equipment~which leads to
finite-size effects!; ~b! a significant level of long-time vari-
ability ~the dynamical range of the mean heart rate exceeds
the typical level of short-time variability!; ~c! the fact that
the amplitude of short-time variability is a decreasing func-
tion of the mean heart rate. As a result, the correlation sum
exhibits a scaling behavior, and the scaling exponent can be
noticeably less than the dimensionality of the time-delay
space. The scaling exponent value is mostly defined by the
dynamics of the short-time variability, but depends also on
the resolving power of the recording apparatus and is an
increasing function of the embedding dimensionality. There-
fore, the scaling exponent can be used as a certain measure
of short-time variability of the signal~however, in order to
obtain comparable values, time-resolution, record length, and
the dimensionality of the time-delay space have to be kept
constant!. The diagnostic and/or prognostic value of this
measure is possible, but has been found to be nonsignificant
for our patient groups~see Table II!. We have also shown
that the above-drawn conclusion remains valid even in these
cases, when a mode locking between the respiration and
heart rhythm leads to ‘‘satellite clouds’’ in the time-delay
space~see Fig. 6!. Finally, we have devised a simple method
of detecting the presence of the mode locking, based on the
fluctuation function~7!.
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FIG. 6. Two-dimensional intersection of three-dimensional reconstructed
phase space for a patient with pronounced mode locking between heart rate
and respiration. The number of points per unit cell is given in gray-scale
coding.

FIG. 7. Patient with 3:1 mode locking between heart rate and respiration:~a!
heart beat intervals~in milliseconds! plotted vs the beat number. Heart rate
has a pronounced oscillatory component; vertical lines mark the period of
three heart beats, horizontal lines indicate the sequences with coherent
phase.~b! Fluctuation function~arbitrary units! is plotted vs the time lagn
~in heart beats!; the oscillating component is magnified.
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Abstract. Human heart rate fluctuates in a complex and nonstationary manner. Elaborating
efficient and adequate tools for the analysis of such signalshas been a great challenge for the
researchers during last decades. Here, an overview of the main research results in this field is
given. The following questions are addressed: What are the intrinsic features of the heart rate
variability signal? What are the most promising nonlinear measures, bearing in mind clinical
diagnostic and prognostic applications?

Key words: heart rate variability, nonlinear time-series, intermittency.

1. INTRODUCTION

The heart rate of healthy subjects fluctuates in a complex manner. These non-
stationary and nonlinear fluctuations are related mainly to a nonlinear interaction
between competing neuroautonomic inputs: parasympathetic input decreases and
sympathetic stimulation increases the heart rate. Meanwhile, heart pathologies may
decrease the responsiveness of the heart and lead to a failure to respond to the
external stimuli. Evidently, such pathologies lead to an overall reduction of heart
rate variability (HRV). Understanding the diagnostic and prognostic significance of
the various measures of HRV has great importance for the cardiology as awhole,
because unlike the invasive methods of diagnostics, the required measurements
are low-cost and harmless for patients. A particularly important application isthe
prognostics of the patients with increased risk of sudden cardiac death. While
the “linear measures” of HRV are nowadays widely used in clinical practice, the
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importance of more complicated measures has been hotly disputed in the scientific
literature during the recent decades.

The structure of this review is as follows. In Section 2, general aspects of the
heart rate generation, electrocardiogram (ECG) structure, and data acquisition are
discussed. In Section 3, we give a brief overview of the “linear era” ofthe HRV
analysis. Section 4 is devoted to the early studies of the nonlinearity of HRV, i.e. to
the methods based on the reconstructed phase-space analysis. Here wealso provide
the modern view on the applicability of these methods. In Section 5, we discuss
the self-affine and multi-affine aspects of HRV (including the wavelet-transform-
based techniques). Section 6 deals with the phenomenon which can be referred
to as “intertwining of low- and high-variability periods”. Section 7 examines the
effect of synchronization between the heart rate and respiration. Section 8 provides
a brief conclusion.

2. HEART RATE GENERATION, ECG, AND DATA ACQUISITION

The quasi-periodic contraction of the cardiac muscle is governed by the
electrical signal, which is generated by the sino-atrial (SA) node – a set of
electrically active cells in a small area of the right atrium. The signal spreads
through the atrial muscle leading to its contraction. It also spreads into a set of
specialized cells – the atrio-ventricular (AV) node. Further the signal spreads via
the His-Purkinje bundle (which is a fractal-like set of electrically conductive fibres)
to the myocardial cells causing their contraction. The ECG is measured as the
electrical potential between different points at the body surface. The activity of
the SA node by itself is not reflected on the ECG. The electrical activation ofthe
atrial cells leads to the appearance of the P-wave of the ECG. The Q, R, S,and T
waves (see Fig. 1) are caused by the electrical activity of the ventricularmuscle.
The heart rate is generally measured as the RR-intervaltRR – the time-lag between
two subsequent R-pikes (R-pike itself corresponds to the ventricular contraction).
For the HRV analysis, only the normal heart activity is taken into account. Allthe
QRS-complexes are labelled as normal or arrhythmic. Note that even for healthy
patients, some heartbeats can be arrhythmic. Normal-to-normal (NN) interval tNN

is defined as the value oftRR for such heartbeats, which have both starting and
ending R-pikes labelled as normal (see Fig. 1).

Typically, HRV analysis is based on the 24-hour recordings of theHolter-
monitoring. Shorter ECG recordings can be used for this purpose as well; however,
in that case it is impossible to observe the long-scale variations and compare the
sleep-awake differences in the heart rhythm. Portable apparatus stores the ECG
data as the time-dependent voltageU(t) either on a tape or on a PC flash card;
the sampling rate is 125 Hz or higher. The data are later analysed by computer
software. Typical commercial software allows visualization of the ECG recording,
automated or semiautomated recognition of arrhythmias and artifacts, and the
calculation of the standard “linear” characteristics of HRV. Most often, aresearch
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Fig. 1. Left image: normal ECG recording. Image on the right:tNN sequences of low and high
variability.

devoted to the methods of nonlinear dynamics is based on plain sequences of
NN-intervals and disregards the details of the continuous ECG recordings. Other
aspects of the ECG, e.g. the clustering of arrhythmic beats [1] and dynamics of QT
intervals [2] (pp. 13–16) are also of high clinical importance, but remain beyond
the scope of this review.

The experimental data serving as the basis of the original research performed
by the authors of the review were recorded (a) at the Tallinn Nõmme Hospital
(children) and (b) Tallinn Diagnostic Centre (adult subjects). The schemeof data
acquisition is presented in Fig. 2. For group (a), the recordings of ambulatory
Holter-monitoring covered 12 healthy subjects of mean age11.5 ± 3.3 years, 6

-

Fig. 2.The analysis of heart rate variability: the scheme of data acquisition and analysis.
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Table 1. Test groups of patients. Abbreviations are as follows: IHD – ischemic heart disease 

(stenocardia); SND – sinus node disease; VES – ventricular extrasystole; PCI – post cardiac 

infarction; RR – blood pressure disease; FSK – functional disease of sinus node 

 Healthy IHD SND VES PCI RR FSK 

No. of patients 103 8 11 16 7 11 6 

Mean age 45.5 65.4 50.0 55.9 47.3 55.5 11.7 

Std. dev. of age 20.5 11.4 19.3 14.3 11.6 14.4 4.6 

children with clinically documented sinus node disease (mean age11.5±1.9 years),
and 12 subjects with miscellaneous diagnosis. The sampling rate of the ECG was
125 Hz. For group (b), specifics are given in Table 1. These data have been
obtained during regular diagnostical examinations of more than 200 patients using
the Rozinn equipment; the ECG sampling rate has been 180 Hz. It is known that
there can be significant differences between the HRV dynamics of youngand adult
subjects. The primary goal of including the children groups has been to test the
universality (age-independence) of the scaling behaviour of HRV qualitatively. The
diagnostics and data verification have been made by a qualified cardiologist.The
data preprocessing included filtering out falsely detected QRS-complexes(artifacts
and arrhythmias) using the commercialRozinn software.

3. LINEAR MEASURES OF HRV

The clinical importance of HRV was first noted in 1965 by Hon and Lee [3].
Since then, the statistical properties of the interbeat interval sequences have
attracted the attention of a wide scientific community. An increased risk of post-
infarction mortality was associated with the reduced HRV by Wolf et al. [4] in
1977.

The problem received wider attention in the early 1980s, when Akselrod
et al. [5] introduced the spectral methods for the HRV analysis. The spectral
characteristics are generally referred to as “frequency-domain characteristics” and
are opposed to the “time-domain methods”, which are derived directly from the
tNN-sequence. In the late 1980s, the clinical importance of HRV became generally
recognized. Several studies confirmed that HRV was a strong and independent
predictor of mortality following an acute myocardial infarction [6−8]. As a result, a
breakthrough has been achieved: the “linear” measures of HRV becameimportant
tools of clinical practice.

A nonexhaustive list of the parameters currently used in medical practice isas
follows: the mean NN-interval, the difference between night and day heart rate,
the longest and shortest NN-intervals, the standard deviation of the NN-interval
(SDNN, typically calculated over a 24-hour period), the standard deviation of
locally (usually 5 min) averaged NN-intervals (SDANN), the mean of the 5-minute
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standard deviation of the NN-interval (averaged over 24 h; SDNN index), the
square root of the mean squared differences of successive NN-intervals (RMSSD),
the percentage of interval differences of successive NN-intervals greater than 50 ms
(pNN50), the spectral power of high- and low-frequency fluctuationsin NN-
sequences.

4. RECONSTRUCTED PHASE-SPACE

It is widely accepted that the heart rhythm generation in the complex of
the sinus node and atrio-ventricular node can be well described by nonlinear
dynamical models, where the SA node and AV node form a system of nonlinear
coupled oscillators [9−10]. The model has been proven to be viable and predicts
several experimentally observed phenomena, such as Wenckebach and Mobitz type
II arrhythmias and bistable behaviour [10]. This deterministic nonlinear model
predicts that the phase trajectories of an healthy heart lie on an attractor ofthe
coupled system of oscillators. Consequently, one should be able to observe well-
defined patterns on the Poincarè sections of the phase-space. Note thatin the
case of physiological data, there is no information, what might be the canonical
variables. Therefore, the phase trajectory is reconstructed in time-delaycoordinates
U(t), U(t + τ), . . . , U [t + (D − 1)τ ] [or tNN(n), t(n + 1), . . . , t(n + D − 1)].
HereD is the so-called embedding dimensionality, i.e. the dimensionality of the
reconstructed phase-space. It is expected that the real phase trajectory is mapped
to the reconstructed trajectory by a smooth transform.

Exactly such a reasoning has led to the idea that the dynamical characteristics
from the theory of nonlinear dynamics could be used for the diagnostic purposes.
The early studies by Babloyantz et al. [11] gave rise to extensive studies in the
1990s [12−15]. The experimental observations seemingly confirmed the theoretical
expectations. Particularly, the correlation dimension of the continuous ECG
recording (i.e. the recorded voltage as a function of time) has been reported to
be between 3.6 and 5.2. The conclusion has been that the dynamics of the heart
of a healthy person is less regular than that of a person with severe cardiac
pathologies. Correspondingly, the correlation dimension has often been thought
to be a measure for the healthiness of the heart. The other tools of the analysis of
nonlinear dynamical systems (such as Lyapunov exponents; Kolmogorov, Shannon,
pattern, and approximate entropies; etc.) have been exploited to an equal extent.

The correlation dimension of a data sequence is typically calculated according
to the Grassberger–Procaccia algorithm [16]. In a reconstructed phase-space of
dimensionalityD, the correlation sumC = 2

N(N−1)

∑

i,j θ(r − |ri − rj |) is
calculated as a function of the radiusr; it is expected to behave as a power-law
C ∝ rν(D). Hereri denotes theD-dimensional radius-vector of theith data-point,
andθ(r) stands for the Heaviside function. The correlation dimensiondc is found
as the limit ofν at large values ofD (in fact, it is expected that forD > dc, the
exponentν is independent ofD, and in that caseν = dc).
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However, there are various arguments leading us to the conclusion that the
formally calculated correlation dimension of a heart rhythm does not correspond
to the dimensionality of an intrinsic attractor; similarly, the formally calculated
Lyapunov exponents, entropies, etc. do not describe the respectiveaspects of
underlying nonlinear dynamics. First, it has been pointed out that physiological
time-series are typically nonstationary and noisy, and therefore, the correlation
dimension cannot be calculated reliably [17−19]; this fact is nowadays widely
accepted. In the case of the human heart, the “noise” comes from the autonomous
nervous system in the form of inputs regulating the heart rate (cf. [20−22]): from
the viewpoint of the underlying nonlinear deterministic system, these effectively
nondeterministic signals perform the role of high-level noise. It should also be
noted that some inputs of the autonomous nervous system may lead to quasi-
periodic signals – an easy source of false detection of low-dimensional chaos and
apparent patterns in simple time delay maps (see Figs. 3, 4). Thus, respiration gives
rise to the signal of a typical period of 4 s; the effect is most pronouncedwhen the
patient is at rest, and is stronger for young persons. Second, it has been emphasized
that a reasonable fitting of a correlation sum to a power law does not necessarily
mean that the obtained exponent is the correlation dimension of the underlying
dynamical system; instead, a thorough nonautomatable verification procedure has
to be done [23]. Third, the length of the data sequences is often inadequate for
reliable calculation of high values of the correlation dimensiondc

>
∼

6, cf. [15,23].
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Fig. 3. A cross-section of the 3-dimensional reconstructed phase-space for a patient with
pronounced 4:1 mode-locking (see also Section 7); around the central cloud of points, three
major satellite-clouds can be seen; these satellite-clouds correspond to the sequence of interbeat
intervals, shown on the right-hand plot. The observed oscillations with period 4 can be
attributed to the modulation of the heart rate by respiration.
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Fig. 4. The same as in Fig. 3. Mode-locking (4:1 and 5:1) is weaker, but the heart rate
modulation by the respiration is significant. One can distinguish two branches of the central
cloud, which are caused by the respiratory modulation.

The above discussed research results can be summarized as follows: (1) The
correlation sums of the human heart rate follow typically a scaling law. (2) In
most cases, the scaling exponents are not the correlation dimensions. Thisleads
us to a natural question: what is the physical meaning of these formally calculated
exponents? Our answer to this question is based on simple observations, valid for
healthy patients: (a) the long-time variability of the interbeat intervals is typically
much higher than the variability on the time-scale of few heartbeats; (b) for
the periods when the mean heart rate is high (when the subject is performing
physical exercise) HRV is low; (c) the heart rate is controlled by effectively
random nondeterministic inputs arriving from the autonomous nervous system. As
a consequence, in time delay coordinates, an HRV time-series generates a baseball
bat-shaped cloud of points. Although the theoretical value of the correlation
dimension of such a cloud is infinite, the finite resolution of the recording apparatus,
finite length of the time-series, and the linear structure of the cloud result in a
smaller value. This is evident for a very narrow “bat”, which is efficiently one-
dimensional.

Our conjecture passes also a quantitative test: the correlation sum of surrogate
data-sets constructed using Gaussian random data-series and mimicking the
features (a)–(c) (see Fig. 5) scales almost identically to that of clinical HRV data
(see Fig. 6 and [24]).
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Fig. 5. Time-series for real HRV data (a), surrogate data (b), and Gaussian noise (c); the beat
intervaltn is plotted versus the beat numbern.

Fig. 6.The correlation sumC2(r) (as a function of the radiusr) of surrogate data scales almost
identically to the real clinical data.

To conclude, the measures based on the reconstructed phase-space fail to
describe a deterministic chaos inside the heart, because the deterministic dynamics
is suppressed by essentially intermittent signals arriving from the autonomous
nervous system and regulating the heart rhythm. However, some fine-tuned
measures (e.g. various entropies; cf. [25]) can be useful in describing the level
of short-time variability of the heart rhythm, and complement the linear quantity
pNN50 (which also measures the high-frequency component of HRV).
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5. SCALE-INDEPENDENT MEASURES

Recent studies have shown that scale-invariant characteristics can besuccess-
fully applied to the HRV analysis [26−29]. However, this conclusion has been
disputed, and certain scale-dependent measures (particularly, the amplitude of
the wavelet spectra at a specific time-scale) have been claimed to provide
better results [30]. The scale-independent methods have been believed to be
more universal, subject-independent, and to reflect directly the dynamicsof
the underlying system, unlike the scale-dependent methods which may reflect
characteristics specific to the subject and/or to the method of analysis [29]. The
opposing argument has been that certain heart disorders affect HRVat a specific
scale or range of scales; owing to this circumstance, at the properly chosen time-
scale, scale-dependent measures may provide a useful information [30].

The simplest relevant scale-independent measure is the Hurst exponent H,
which has been introduced to describe statistically self-affine random functions
f(r) of one or more variables [31]. Such a function is referred to as afractional
Brownian function and satisfies the scaling law

〈

[f(r1) − f(r2)]
2
〉

∝ |r1 − r2|2H .

Note thatH = 1
2 is a special case of ordinary Brownian function – the increments

of the function are delta-correlated, andf(r) can be thought to be the displacement
of a Brownian particle as a function of timer. Therefore, in the case ofH < 1

2 ,
there is a negativelong-range correlation between the increments of the function.
Analogously,H > 1

2 corresponds to a positive correlation. Note that the early
scale-invariant studies of HRV were based on power spectra [32,33], an aspect
closely related to the scaling exponentH.

Many phenomena in nature exhibit this kind of scale-invariance and lead to
fractional Brownian time-series [31]. The same is true for HRV: after filtering out
short-scale components withτ < 30 s (corresponding to the respiratory rhythm, to
the blood-pressure oscillations, and to the pathological Cheyne–Stokes respiration),
the fluctuation functionF (n), defined as

F (ν) = 〈|tn − tn+ν |〉 (1)

revealed a good scaling behaviourF (ν) ∝ νH [26]. While for healthy patients,
the increments of the heart rhythm were found to be significantly anticorrelated
resulting inH < 1

2 , the heart rhythm of the patients with dilated cardiomyopathy
was essentially Brownian withH ≈ 1

2 [26]. In the case of our patient groups,
there was no significant correlation between the diagnosis and the Hurst exponent,
and there were also ca 7% healthy subjects withH = 0.5 ± 0.05 (cf. Fig. 7 and
Table 2).

Finally, various techniques, such as detrended fluctuation analysis [27],
detrended time-series analysis [34], and wavelet amplitude analysis [35] have been
proposed to fine-tune the Hurst-exponent-based approach.
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Fig. 7. The fluctuation functionF (ν) is plotted versus the time lagν. The almost straight line
indicates a good scaling behaviourF (ν) ∝ νH (here withH = 0.50).

Table 2. For the patient groups of Table 1, the diagnosis and the Hurst exponent H values were 

effectively uncorrelated 

 Healthy IHD SND VES PCI RR FSK 

Mean value of H 0.30 0.28 0.32 0.35 0.29 0.29 0.28 

Std. dev. of H 0.10 0.09 0.11 0.12 0.12 0.08 0.06 

Complex nonstationary time-series cannot be described by a single scaling
exponentH. Indeed, simple scaling behaviour is expected if there is a Gaussian
distribution of increments. However, even in the case of Gaussian functions,
the scaling exponent is not necessarily constant over the whole range of scales.
Instead, it can be a slow (e.g. logarithmic) function of the scale, so that other
descriptions (such as stretched exponentials) may be required. Physiological time-
series are typically non-Gaussian. For such functions, scale-invariance can be very
complicated. A nonexhaustive way to describe such a behaviour is to calculate the
multifractal spectrum of Hurst exponents [36]. Therefore, it is not surprising that
the human heart rate signal was found to obey a multi-affine structure [28,29].

Qualitatively, a multifractal time-series behaves as follows. Each point of
the time-series is characterized by its own Hurst exponenth (referred to as
the Lipschitz–Hölder exponent); this exponent describes the local scaling of
fluctuations. Then, the distribution of points of fixed values ofh is self-similar
and is described by a fractal dimensionf(h). Technically, the spectrumf(h) can
be calculated by the means of wavelet transform (cf. [29]). This scheme includes
the calculation of the scaling exponentsτ(q) (referred to as the mass exponents),
which describe, how theqth moment of the wavelet transform amplitude scales with
the wavelet width. The scaling exponentsτ(2) andτ(5) have been found to have
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a significant prognostic value (for the post-infarction prognosis) [29]. The wavelet
transform amplitudes, calculated for a specific wavelet width (≈ 5 min) have been
claimed to be of even higher prognostic value [30]. However, independent studies
have shown that the scale-invariant measures seem to be superior tools [37]. It
should also be noted that the wavelet transform amplitude at a fixed time-scale
is closely related to the linear measure SDANN. Substituting the robust standard
deviation by a wavelet transform amplitude is a technical fine-tuning which cannot
be expected to result in a qualitatively new information.

The multifractal structure of the heart rate signal has several consequences.
Thus, theqth-order structure function (a concept borrowed from the theory of the
fully-developed turbulence) of the heart rate interval has a scaling behaviour, with
the scaling exponentζ(q) being a function ofq [38]. Note that this spectrum
of exponents is very closely related to the above-mentionedτ(q) spectrum
(both describing the same physical phenomenon, differences being of atechnical
kind). However, the wavelet-transform-based technique makes a more complete
utilization of the underlying data and therefore, theτ(q) spectrum can be expected
to yield somewhat superior prognostic and/or diagnostic results.

Another aspect related to the multifractal nature of the heart rhythm is the multi-
scale entropy (MSE) [39]. While the single-scale entropies (approximate entropy,
Shannon entropy) are related to the short-time dynamics of the heart rhythmand
to the probability distribution function of points in the reconstructed phase-space,
the MSE extends these concepts to longer time-scales. The MSE is not directly
reducible to the multifractal spectraf(h) [or τ(q)]; however, both techniques
address the question of how wide is the range of dynamics for the mean heart rate
(averaged over a timeT ), depending on the time-scaleT . The clinical usefulness of
the MSE is still unclear (apart from the fact that it has been claimed to distinguish
between healthy subjects and patients with congestive heart failure [39]).

6. INTERMITTENCY OF HRV

A multifractal spectrum addresses only one aspect of the non-Gaussianity of the
time-series increments by revealing the possible range of scaling laws for thelong-
range [at time-scale of many (� 1) heartbeat intervals] dynamics of the mean heart
rhythm. While the origin of the multifractal scaling is in the intertwining of periods
of different variability levels (cf. [12] and Fig. 8), the multifractal spectra fail to
reflect all the features of the intertwining phenomena. In particular, this applies
to the long-term correlations in the dynamics of short-time variability (which, in
effect, does fluctuate in a complex manner). A quantitative scale-invariantanalysis
of this aspect is based on the distribution law of the low-variability periods [40,41],
which will be discussed below. Another aspect of such an intertwining is the
clustering of the periods of a similar mean heart rate: the heart rate signal can
be divided into segments of a different mean heart rate, with distinct boundaries
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Fig. 8. For healthy patients, the high- and low-variability periods of the heart rhythm are
intertwined.

between these segments; there is a power-law segment-length distribution of the
segments [42].

In order to analyse quantitatively the intertwining of high- and low-variability
periods, we have studied the distribution of low-variability periods and showed
that typically, it follows a multiscaling Zipf’s law. Originally, Zipf’s law has been
formulated by G. K. Zipf for the frequency of words in natural languages [43]. For
a given language (e.g. English), the frequency (the number of occurrences divided
by the total number of words) of each word is calculated on the basis of a large
set of texts. The ranks are determined by arranging the words according to their
frequencyf : the most frequent word obtains rankr = 1, the second frequent –
r = 2, etc. It turns out that for a wide range of ranks (starting withr = 1), there
is a power lawp(r) ∝ r−α, whereα ≈ 1. This law is universal; it holds for all the
natural languages and for a wide variety of texts [43]. Furthermore, similar scaling
laws describe the rank-distribution of many other classes of objects as well.Thus,
when cities are arranged according to their populations, the population of a city
s ∝ r−α, with α ≈ 1 [43]. Another example is the income-rank relationship for
companies; here we have againα ≈ 1 [43]. In the most general form, the law
can be formulated asp ∝ (r + r0)

−α, andα is not necessarily close to unity [36].
This more general form of the law can be applied to the distribution of scientists
according to their citation index, to the distribution of internet sites according to
the number of visitors, etc.

Zipf’s law is characteristic of such dynamical systems at statistical equilibrium,
which satisfy the following conditions: (a) the system consists of elements of
different size; (b) the element size has upper and lower bounds; (c) there is no
intermediate intrinsic size for the elements. The human heart rate, when divided
into the low-variability periods, satisfies all these requirements. The durationτ
of these periods varies in a wide range of scales, from few to several hundreds
of heartbeats. Thus, one can expect that the rank-length distributionr(τ) follows
Zipf’s law,

r ∝ τ−γ . (2)

First we have to define the local HRV as the deviation of the heart rate fromthe
local average,
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δ(n) = [tNN(n) − 〈tNN(n)〉]/ 〈tNN(n)〉 ;

the local average is calculated using a narrow (≈ 5-second-wide) Gaussian weight-
function. Then, the low-variability regions are defined as consecutive sequences of
intervals with|δ(n)| < δ0; the lengthτ of such a region is measured as the number
of beats in the sequence. Further, all the low-variability regions are numbered (to
identify them later), and arranged according to their length; regions of equal length
are ordered randomly. In such a way, the longest observed region obtains rank
r = 1, second longest –r = 2, etc. Typically, the length-rank relationship reveals
multiscaling properties, i.e. within a certain range of scales, the scaling law (2)is
observed, the scaling exponentγ being a (nonconstant) function of the threshold
level,γ = γ(δ0) (see Fig. 9).

It is not surprising that the scaling behaviour is not perfect. Indeed, the heart
rhythm is a nonstationary signal affected by the nonreproducible daily activities
of the subjects. The nonstationary pattern of these activities, together with their
time-scales, is directly reflected in the rank-length law. This distribution law can
also have a fingerprint of the characteristic time-scale (10 to 20 s) of the blood
pressure oscillations (which modulate the level of HRV, cf. [44]). It should be
emphasized that the problem of the nonreproducible daily activities affectsalso the

Fig. 9. Multiscaling behaviour: the rankr of low-variability intervals is plotted against the
length l of the intervals (measured in the number of heartbeats). Thescaling exponentγ
depends on the threshold valueδ0.
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reliability of the other scale-invariant measures and is probably the main obstacle
preventing the clinical application of the seemingly extremely efficient diagnostic
and prognostic techniques. Finally, there is a generic reason why Zipf’slaw is
nonperfect at small rank numbers: while Zipf’s law is a statistical law, eachrank-
length curve is based only on a single measurement. In particular, there is only one
longest low-variability period (likewise, only one most-frequent word), the length
of which is just as long as it happens to be; there is no averaging whatsoever. For
large ranks, the relative statistical uncertainty can be estimated as1/

√
r.

The distribution function of the low-variability periods as a whole contains a
significant amount of diagnostically valuable information, which is not covered by
any other (linear or nonlinear) measure of HRV. The most part of this information
seems to be reflected (according to the Student test analysis using the test groups
of Table 1) by the parametersτend (the scale at which the scaling law breaks; for
a precise definition, see [41]), rmax (the maximal observed rank), andr100 (the
rank of the interval withτ = 100; the diagnostical performance of this parameter
is similar to that ofrmax). These measures allow a clear distinction between the
healthy subjects and the IHD, VES, and PCI groups [41]; thep-values are presented
in Table 3 (for a reference, the data of the two best-performing linear measures are
also provided).

Table 3. p-values of the Student test. Data in the topmost triangular region (with labelA) are
calculated using the parameterln τend (the logarithmic measure is used to achieve a nearly-
Gaussian data distribution). Triangular regionB corresponds to the parameterln rmax, region
C – to the linear measure pnn50, and regionD – to the linear measure SDNN. Since multiple
tests were carried out, modified Bonferroni correction [45] has to be applied. Grey background
highlights the tests with the adjusted significancep′ < 10%. The control parameter value
δ0 = 0.05 has been used
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7. MODE-LOCKING BETWEEN THE HEART RHYTHM AND
RESPIRATION

As mentioned above, respiration affects (modulates) the heart rhythm. This
effect is mediated by the blood pressure, and the effect known as baroreflex (heart
rhythm depends on the blood pressure). The heart is most responsive with respect
to the signals of the autonomous nervous system when the heart rate is slow,i.e.
when the patient is at rest. In that case, HRV is driven by weaker signals, like
the signals induced by respiration, which (due to their quasi-periodic nature) may
lead to a mode-locking. In the case of mode-locking, the heart rate is automatically
slightly adjusted so that the respiration and heart beat periods relate to each other as
(small) integers. As a result, the decorrelation time between the heart rhythm and
respiration can be very long. This is the effect which is in most cases the cause of
the patterns (isolated clouds of points) observable in the reconstructed phase space
(see Fig. 3).

The mode-locking has been studied using bivariate data (simultaneous ECG
and respiration data) and the technique called cardiorespiratory synchrogram [44].
Also, a univariate data analysis method using the angle-of-returntime map hasbeen
elaborated [46]. In that case, the data-set is used to reconstruct the phase of forcing
(breathing) and the phase of oscillator (heart). These phases are plotted versus each
other; in the case of mode-locking, disjoint clouds of points will appear.

Recently, we have developed an independent, intuitive and easy to use method
of mode-locking detection from univariate data (RR-interval sequence), which is
based on analysis of the fluctuation functionF (ν), defined by Eq. (1) [24]. The
fluctuation function of the patients with mode-locking revealed the presence of an
oscillatory component, see Fig. 10b. By dividing the entire 24-hour HRV record
into one-hour intervals, and calculating the amplitude of the oscillatory component
(via a wavelet transform) of the fluctuation function for each interval, we were
able to locate the periods responsible for the satellite clouds in the reconstructed
phase-space. These were always the periods before falling asleep,around 10 or
11 pm, characterized by a low heart rate and a high respiration-driven short-time
variability. The phase between the heart rate and respiration is locked during tens
of seconds, confirming the observations of Schäfer et al. [44]. Thus, in a certain
sense, the heart and respiratory complex act as a system of coupled oscillators.
Finally we note that a specific feature of the patients with strong mode-locking
was the presence of well-defined “satellite clouds” in time-delay map (see Fig.3).
Therefore, the time-delay map can be also used to detect mode-locking; however,
this method is nonquantitative, less sensitive than the fluctuation-function-based
technique, and does not give a hint which mode-locking modes are observed. The
presence of a natural quantitative measure (the wavelet transform amplitudes) is
also the main advantage of our approach over the alternative method.

As compared with the alternative techniques, our method of mode-locking
detection is very simple and does not require synchronous respiration rhythm
recording (unlike the thorough method [44]), and can be conveniently used to find
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Fig. 10. Patient with 3:1 mode-locking between the heart rate and respiration: (a) heartbeat
intervals (in milliseconds) plotted versus the beat number. The heart rate has a pronounced
oscillatory component; vertical lines mark the period of three heartbeats, horizontal lines
indicate the sequences with coherent phase. (b) Fluctuation function (arbitrary units) is plotted
versus the time lagν (in heartbeats); the oscillating component is magnified.

relatively short (>
∼

10 min) locking periods from a 24-hour recording. Besides,
it provides a natural measure to quantify the degree of mode-locking (unlike the
method of using the angle-of-returntime map [46]).

8. CONCLUSIONS

Below is an attempt to classify the measures of heart rate variability.
1. “Classical” linear methods – based on standard statistical measures and on

the Fourier analysis. These are the only methods widely used in clinical practice.
2. “New” linear methods: wavelet spectra.
3. Nonlinear methods:

(a) scale-invariant methods:
i. single-scaling analysis (calculation of the Hurst exponentH);
ii. multi-scaling analysis – calculation of the exponent spectra [Lipschitz–

Hölder spectrumf(h), mass exponentsτ(q), or structure function exponent
spectrumζ(q)]; these seem to be the most promising measures, at least for
prognostic purposes;

iii. calculation of the multiscale entropy;
iv. analysis of the HRV-data segments with a similar mean heart rate;
v. analysis of the distribution law of low-variability periods (performs

well in diagnostic tests, there are no prognostic tests yet);
(b) scale-dependent methods:

i. performing a phase-space analysis (entropy-based measures, correla-
tion dimension, Lyapunov exponents, etc.);

ii. heart rhythm and respiration mode-locking analysis.
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The human heart rate fluctuates in a complex and nonstationary manner.
Elaborating efficient and adequate tools for the analysis of such signals has been
a great challenge for the researchers during last decades. The above long list of
nonlinear techniques proves that the research has been successfuland various
important features of such time-series have been revealed. Nevertheless, there is no
consensus of which methods are the most efficient ones from the point ofview of
clinical applications. On the one hand, this is caused by the high nonstationarity and
irreproducibility of these time-series: the complex measures of HRV depend not
only on the healthiness of the heart, but also on the daily habits of the subject[47]
and on the random events of the recording day. On the other hand, dialogue
between physicists and doctors seems to be inefficient: physicists publish research
results based on small test groups; doctors are waiting for follow-up studies using
extended and homogeneous test groups. However, the situation is expected to
start improving, owing to the new projects bringing together medical doctors and
physicists (cf. http://www.physionet.org).
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Mittelineaarne ja mastaabi-invariantne südamerütmi
muutlikkuse analüüs

Jaan Kalda, Maksim Säkki, Meelis Vainu ja Mari Laan

Inimese südamerütm fluktueerub keerulisel ja mittestatsionaarsel moel. Efek-
tiivsete ja seda tüüpi ajajadade jaoks adekvaatsete analüüsimeetodite väljatööta-
mine on viimaste aastakümnete jooksul olnud teadlastele tõsiseks väljakutseks.
Käesolevas ülevaates käsitletakse selles valdkonnas saavutatud põhitulemusi.
Pearõhk pannakse küsimustele, millised on südamerütmi ajajada olulisimad eri-
omased jooned ja millised on diagnostiliste ja prognostiliste rakenduste seisukohast
kõige perspektiivikamad mittelineaarsed rütmimuutlikkuse mõõdud.
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Abstract

We study the long-term dynamics of the short-time variability level of human heart rate, an
aspect which is not addressed by the traditional methods of non-linear time-series analysis. The
length-distribution of low-variability periods in human heartbeat dynamics typically follows a
multi-scaling power law. The values of the scaling exponents are personal characteristics and
depend on the daily habits of the subjects. Though, the distribution function of the low-variability
periods as a whole discriminates e2ciently between several heart pathologies.
c© 2004 Elsevier B.V. All rights reserved.

PACS: 87.10.+e; 05.45.Tp; 87.80.Tq

Keywords: Biological and medical physics; Time-series analysis; Biological signal processing and
instrumentation

1. Introduction

Human heart rate ;uctuates in a complex and non-stationary manner. This phe-
nomenon can be related to the intermittent nature of human life, the events of which are
re;ected in the heart rate dynamics via competing (non-linearly interacting) neuroauto-
nomic signals (parasympathetic signals decrease and sympathetic stimulations increase
the heart rate). Heart pathologies may decrease the responsiveness of the heart and lead
to an overall reduction of the heart rate variability (HRV). Understanding the diagnos-
tic and prognostic signi>cance of the various measures of HRV has a great importance
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for the cardiological practice, because HRV measurements are low-cost and harmless
for the patients, unlike the invasive methods of diagnostics.
As a result of intensive studies following the pioneering paper [1], various linear

measures of HRV became widely used by practical medicine as important non-invasive
diagnostic and prognostic tools. Meanwhile, recent studies have revealed the importance
of non-linear and scale-invariant characteristics, and resulted in many methods of very
high prognostic performance on test groups [2–7]. The scale-independent methods have
been believed to be less subject-independent than the scale-speci>c measures [2]. It has
been recognized that the heart rhythm re;ects the activities of the subject (sleeping,
watching TV, walking, etc.) [8,9]. The most adequate model of HRV dynamics has
been believed to be multi-a2ne fractional Brownian motion (fBm) [2,3].
While the approach based on fBm addresses long-time dynamics of the heart rhythm,

it neglects the short-scale dynamics on time scales less than one minute (these frequen-
cies are typically >ltered out [6]). The short-time variability has been described only
by some linear measures, e.g. pNN50 (the probability that two adjacent normal heart
beat intervals diIer more than 50 ms). Meanwhile, the level of short-time variabil-
ity varies also in a complex manner (the high- and low-variability periods are deeply
intertwined [8]) and therefore, cannot be appropriately described by linear measures.
Switching between low and high levels of short-term variability is a physiologically im-
portant aspect, because typically, low levels are caused by the heart being in a stressed
state. The scale-invariant aspects of such switching can be addressed by studying the
length-distribution of the low-variability periods [10]. Here, we provide a brief descrip-
tion of this method and show that typically, the distribution of low-variability periods
in the activity of a normal heart follows a power law. We also discuss >tting the dis-
tribution function by stretched exponentials and derive some diagnostically signi>cant
measures.

2. Experimental data

Our analysis is based on ambulatory Holter-monitoring data (recorded at Tallinn
Diagnostic Centre) of 218 patients with various diagnoses, the main groups are shown
in Table 1. The ECG-s were recorded at the sampling rate of 180 Hz during 24 h, under

Table 1
Test groups of patients

Healthy IHD SND VES PCI RR FSK

Number of patients 103 8 11 16 7 11 6

Mean age 45.5 65.4 50.0 55.9 47.3 55.5 11.7
Standard deviation of age 20.5 11.4 19.3 14.3 11.6 14.4 4.6

Abbreviations are as follows: IHD—Ischemic Heart Disease (Stenocardia); SND—Sinus Node Dis-
ease; VES—Ventricular Extrasystole; PCI—Post Cardiac Infarction; RR—Blood Pressure Disease; FSK—
Functional Disease of Sinus Node.
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normal daily activities of the patients. The commercial software (Rozinn) was used to
calculate the sequence of the normal-to-normal (NN) intervals tNN (in milliseconds),
which are de>ned as the intervals between two subsequent normal heartbeats (normal
QRS complexes).

3. Intermittency of HRV and distribution of low-variability periods

It has been pointed out that the NN-sequences of healthy subjects consist of inter-
twined high- and low-variability periods [8]. This conclusion can be easily veri>ed by
a simple visual observation of the sequences of NN-intervals, see Fig. 1. The duration
� of the low-variability periods varies in a wide range of scales, from few to several
hundreds of heart beats. In order to analyse quantitatively this aspect of HRV, we have
studied the distribution of low-variability periods. To begin with, we de>ne the local
variability for each (ith) interbeat interval as the deviation of the heart rate from the
local average,

�(i) =
|tNN (i)− 〈tNN (i)〉|

〈tNN (i)〉 ; (1)

where tNN is the interval between two adjacent non-arrhythmic beats. The angular
braces denote the local average, which is calculated using a narrow (5 beats wide)
Gaussian weight function. Further, we introduce a threshold value �0; ith interbeat
interval is said to have a low variability, if the condition

�(i)6 �0 (2)

is satis>ed. A low-variability period is de>ned as a set of consecutive low-variability
intervals; its length � is measured in the number of heartbeats. Finally, all the low-
variability periods are arranged according to their lengths and associated with ranks
(the longest period obtains rank r = 1). The rank of a period is plotted versus its
length in a logarithmic graph, see Fig. 2. For a very low threshold parameter �0, all
the low-variability periods are very short, because it is di2cult to satisfy the stringent
condition (2). Also, in that case, the inertial range of scales is too short for a meaningful

Fig. 1. Periods of low variability for 600 interbeat intervals (approx. 9 min of ECG recording) are shown
below as gray thick lines (�0 = 0:03). The longest period is measured to be 127 beats long, the shortest—1
beat.
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Fig. 2. Left: rank-length curves for a patient with a good power law (a) and for a patient with no power law
(b). In both cases, the threshold parameter �0 = 0:05. Right: multi-scaling distribution of the low-variability
periods: the rank r of a period is plotted versus its duration � (measured in heartbeats) for diIerent values
of the threshold parameter �0.

rank-length law. On the other hand, for a very high value of �0, there is a single
low-variability period occupying the entire HRV-recording. Between these two extreme
cases, there is such a range of the values of �0, which leads to a non-trivial rank-length
law. Typically, the length-rank relationship reveals multiscaling properties, i.e. within
a certain range of scales, the scaling law

r(�)˙ �−
 (3)

is observed, the scaling exponent 
 being a (non-constant) function of the threshold
level, 
= 
(�0).
It is not surprising that the scaling behaviour is not perfect. Indeed, the heart rhythm

is a non-stationary signal aIected by the non-reproducible daily activities of the sub-
jects. The non-stationary pattern of these activities, together with their time-scales, is
directly re;ected in the rank-length law. This distribution law can also have a >nger-
print of the characteristic time-scale (10–20 s) of the blood pressure oscillations, which
modulate the level of HRV, cf. [12]. It should be emphasized that the problem of the
non-reproducible daily activities aIects also the reliability of the other scale-invariant
measures and is probably the main obstacle preventing the clinical application of the
seemingly extremely e2cient diagnostic and prognostic techniques.
It turned out that for a typical patient, the best approximation of the function r(�)

with a power law is achieved for �0 ≈ 0:05 (see Fig. 2a); in what follows, all further
calculations were done for �0 = 0:05. For some patients, the length-rank distribution
is still far from a power law (Fig. 2b), and is better >tted by a stretched exponen-
tial Ae−a�
 . However, power law turned out to be more typical. For our test groups,
there was no signi>cant correlation between the type of the law (power law, stretched
exponential, or something intermediate), and the diagnosis. The parameters based on
the stretched exponential (a, 
) had a signi>cantly lower diagnostic value than those
discussed below.
First, we analysed the correlation between the diagnosis of a patient and the scaling

exponent 
. This parameter has been calculated (see [10] for details) for the curves of
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Table 2
p-values of the Student test

Data in the triangular region A are calculated using the parameter ln �end. Triangular region B corresponds
to the parameter ln rmax, region C—to ln r100, and region D—to ln �40. Since multiple tests were carried out,
modi>ed Bonferroni correction [11] has been applied. In total, there are 84 p-values; therefore, the adjusted
signi>cance of the nth smallest p-value is obtained as p′ = 84p=n. Gray background highlights the tests
with p¡ 10%.

all the patients using a >xed threshold �0 =0:05; Student test was applied to every pair
of groups. Typically, the signi>cance was low; the best distinguishable groups were
RR and FSK (with p ≈ 5:7%). One can argue that the slopes of linear parts are mostly
personal characteristics depending on the daily habits of the subjects, and are weakly
correlated with diagnosis.
Further we tested, how is the failure of the power law correlated with the diagnosis.

The width of the scaling range � was used as a measure of how well the curve is
corresponding to a power law. The Student test results for the parameter � turned out
to be similar to what has been observed for the parameter 
: the correlation between the
failure of the power law and diagnosis was weak. Thus, a rank-length curve resembling
the one depicted by a dashed line in Fig. 2, does not hint to heart pathology. It should
be also noted that the dashed curve in Fig. 2 can be considered as a generalized form
of scale-invariance with scale-dependent diIerential scaling exponent.
Finally, we analysed the diagnostic signi>cance of start- (ln �start) and end-points

(ln �end) of the scaling range (see Ref. [10] for details). Note that the scaling range
edge-points can be expected to correspond to certain physiologically relevant time-
scales. The parameter ln �end provided, indeed, a remarkable resolution between the
groups of patients, see Table 2. According to the Student test, the healthy patients,
were distinct from >ve heart pathology groups with probability p¡ 1:6%. The diag-
nostical information contained in r(�)-law turned out to be not limited by ln �end: the
overall number of low-variability periods rmax (which is small, if there are lot of long
low-variability periods) and the coordinates of speci>c points of the r(�)-curve (such
as the length �R of the period with a >xed rank R, e.g. �40, and the rank rT of a period
with a >xed length T ) were also of high diagnostic performance, see Table 2.

4. Conclusion

In conclusion, new aspect of non-linear time-series has been discovered, the scale-
invariance of low-variability periods. We have shown that the distribution of low vari-
ability periods in the activity of human heart rate typically follows a multi-scaling
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power law. The presence or failure of a power law, as well as the values of the scal-
ing exponents, are personal characteristics depending on the daily habits of the subjects.
Meanwhile, the distribution function of the low-variability periods as a whole contains
a signi>cant amount of diagnostically valuable information These quantities character-
ize the complex structure of human HRV signal, where the short-time variability level
;uctuates intermittently, an aspect which is not addressed by the other methods of
heart rate variability analysis (such as fractional Brownian motion based multifractal
analysis). The support of Estonian SF Grant No. 5036 is acknowledged.
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Abstract—The study compared traditional spectral analysis and a new scale-invariant
method, the analysis ofthe length distribution of low-variability periods (LDLVPs), to
distinguish between electro-encephalogram (EEG) signals with and without a weak
stressor, a low-level modulated microwave field. During the experiment, 23 healthy volun-
teers were exposed to a microwave (450 MHz) of 7 Hz frequency on-off modulation. The
field power density at the scalp was 0.16 mW cm ^. The experimental protocol con-
sisted often cycles of repetitive microwave exposure. Signals from frontal EEG chan-
nels FPl and FP2 were analysed. Smooth power spectrum and length distribution
curves of low-variability periods, as well as probability distribution close to normal,
confirmed that stationarity of the EEG signal during recordings was achieved. The
quantitative measure of iDLVPs provided a significant detection of the effect of the
stressor for the six subjects exposed to the microwave field but for none ofthe sham
recordings. The spectral analysis revealed a significant result for one subject only. A
significant effect of the exposure to the EEG signal was detected in 25% of subjects,
with microwave exposure increasing EEG variability. The effect was not detectable by
power spectral measures.

Keywords—Scaling analysis. Spectral analysis. Distribution, Stationarity, EMF effects.
Microwave
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1 Introduction
MODtRN TECHNOLOGY generates electromagnetic tields
(EMFs) much stronger than the fields created by natural
soutces. Electromagnetic fields of various devices can affect
humans, especially their central nervous system, the most sen-
sitive organ wilh respect to such external stimuli. However,
except for extreme non-healthy environments, the effect of
EMFs is too weak to result in easily detectable changes in
the ititrinsically very non-stationary bio-electrical activity of
the human brain.

Quantitative analysis of changes in the electro-eticephalogram
(EEG) dynamics is complicated owing to the irregular nature
of the signal. Traditionally. EEG is treated as a realisation of
a litiear stochastic process, and nutnerous applications in the
clitiical lield are based on this idea. In general, these mainly
involve different methods based on the spectral analysis
of EEG.

The four terms, delta, theta, alpha and beta, have corre-
spotided to the medical standard of classifying EEG frequency
bands for several decades (NlEDERMEYER and LoPES DA SILVA.
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1993), Different tiiethods and parameters, such as the weighted
spectral intensity of the EEG beta, alpha, theta and delta
rhythms, bispectral index, burst-suppression ratio and others,
have been successfully realised in EEG monitors, with appli-
cations in clinical work. During recent years, the methods
based on non-linear dynamics have become popular in EEG
analysis. These studies require the assumption ofthe stochastic
nature of EEG signals. Indeed, in the case of Gaussian stochas-
tic signals, non-linear measures cannot reveal any new infor-
mation (compared with linear measures).

Achievements in EEG analysis have made it possible to
distinguish between states of the brain disturbed owing to a
strong stressor. Various methods can be used to evaluate
the depth of anaesthesia (WlDMAN et ai, 2000), to detect
physiological disorders in the brain in epilepsy (ELGER and
LENHERZ. 1997; MCSHARRY et al., 2fK)3: Rossd et al., 2004:
LOPES DA SU.VA CT ai, 2003; VAN DRONGEI-EN et al., 2003).
to distinguish between sleep stages (considered as different
psychophysiological states) (HUUPPONEN ei al., 2003;
PEREDA et ai, 1998; SiNHA. 2004. SHEN et al, 2003) etc. In
many cases, the analysis and prediction of epileptic seizures
by non-linear methods have proved useful. For example.
LOPES DA SILVA et ai (2003) proposed that the neuronal net-
works involved in epilepsy possess multistable dynamics that
can be characterised in phase-space with different attractors.
It has also been demonstrated that entropy measures and
correlation dimensions are useful for anticipating seizures
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(VAN DRONGELEN et ai. 2003; ELGER and LENHERZ, 1997).
Sleep analysis has been believed to be one of the best pros-
pective uses of non-linear EEG analysis (SHEN et al, 2003;
PHREDAC^a/., 1998).

The influence of a weak stressor, such as a mental task or
low-level non-ionising radiation, on EEG activity is usually
very small, and linear statistical analysis is unable to provide
a reliable, statistically significant distinction between the
EEG signals with and without the .stressor (KRAUSE et al.,
2000; LASS et al., 2002. WOOD et al., 2003). Therefore the
question of whether a feasible effect, if any. of low-level radia-
tion on the brain's bio-electric activity exists is still open.

Non-linear methods of EEG analysis can be expected to be
more sensitive with respect to small changes in the signals.
Indeed, bio-electric signals are generated by simultaneous
activity of multiple sources modulated by different physiologi-
cal factors, which are intermittent by their nature. Therefore
EEG can also be expected to be non-Gaussian and intermittent.
Such intermittency can severely lower the stationarity of linear
measures; various non-linear measures have been devised to
cope with intermittency and non-stationarity in the best pos-
sible way.

In this study, we propose a new method for EEG analysis;
scaling analysis of the length distribution of low-variability
periods (LDLVPs). Measures based on the scaling of
LDLVPs have proved sensitive tools for the non-linear
interpretation of heart rate variability (KALDA et ai, 2001;
SAKKI et ai, 2004a). The LDLVP analysis provides a simple
route to detecting the multifractal characteristics of a time
series and yields somewhat better temporal resolution than
traditional multifractal analysis. Thus it can be expected that
this method is sensitive with respect to small, "hidden'
changes in such a complicated physiological signal as the
EEG. We cbose spectral analysis, a widely used method in
quantitative EEG analysis, for purposes of comparison.

The aim of this study was to compare the sensibility of non-
linear analysis of LDLVPs and linear spectral analysis to detect
EEG signals with and without the influence of a low-level
modulated microwave field. The hypothesis was that micro-
wave exposure increases the variability of the EEG signal
and causes a decrease in the length of low-variability periods
as well as changes in the power spectrum.

2 Method and equipment

2.1 Subjects

An experimental study was carried out on a group of volun-
teers. The group consisted of 23 young persons (aged 21 -24):
12 male and 11 female. Their physical and mental condition
(tiredness, sleepiness) before the experiment was evaluated
by a questionnaire and a clinical interview. All the subjects
selected were healthy, without any medical or psychiatric dis-
orders; tired or sleepy people were excluded. After the record-
ings, they described how they felt during the experiment. The
subjects reported neither alertness nor any strain experienced
during the recordings.

The measurements were performed in a dark laboratory, but
no other special conditions were provided. The subjects lay in
a relaxed position, with eyes closed and ears blocked during
the experiments.

All the subjects were exposed and sham-exposed. Only
one experimental EEG recording was performed for a subject
during a day. The measurements were double blinded.
During each test session, the exposed and sham-exposed
subjects were randomly assigned. The subjects were not informed
of their exposure; however, they were aware of the possibility
of being exposed. Subjective factors were also excluded from
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the computer-performed data analysis: the .same algorithms
were applied for all the recordings (both lor exposed and
sham-exposed subjects).

The experiments were conducted with the understanding and
written consent of each subject.

2.2 Mictowave exposure

We used modulated microwave radiation at a non-thermal
level of field power density, identical to our previous studies
(LASS et ai. 2002; PARTS et ai, 2003). Microwave exposure
conditions were the same for all subjects.

The 450 MHz microwave radiation was generated by a
signal generator*. The RF signal was 100% amplitude modu-
lated by a pulse modulator at 7 Hz frequency (duty cycle
50%). The generator signal was amplified by a power
amplifier*. Located in the laboratory, the generator and
amplifier were carefully shielded. The I W HMF output
power was guided by a coaxial lead to a 13 cm quarter-
rhythm antenna**, located 10 cm from the subject's skin on
the left side of the head.

The calculation of the specific absorption rate {SAR)
inside the brain was based on the known field power density
on skin. The Central Physical Laboratory of the Estonian
Health Protection Inspection measured the spatial distribution
of the microwave power density with a field strength meter.^'
The calibration curves of the field power density dependence
on the distance from the radiating antenna were obtained
from these measurements taken in the actual conditions of tbe
experiment. During the experiments, the stability of the micro-
wave level was monitored hy another field strength meter.**

Estimated from the measured calibration curves, the field
power density at the skin was 0.16 mW cm''^. The SAR, calcu-
lated by the formula SAR — a E~ J2p for brain conductivity at
450 MHz. o-= l . lSSm" ' and density p = 100(1 kg m '. was
0.35 W kg '. The level of power density, as well as the calcu-
lated SAR, was so low that thermal effects were extremely
unlikely.

2.3 Recording protocols and eqtiipment

The study consisted of two experimental protocols, identical
for all subjects. The first protocol was recorded as described
below.

First, tbe reference EEG was recorded over 60 s.
Secondly, modulated microwave radiation was applied.

The duration of the exposure was 60 s, and the compensatory
pause after the exposure was 60 s. Continuous EEG recordings
were made during and 60s after exposure. The procedure of
the cycle was repeated ten times. The microwave exposure
was switched on every first 60 s of the cycle. During ten
cycles of microwave exposure, the modulation frequency
always remained at 7 Hz.

The recording protocol for one subject la.sted for 21 min,
during which the EEG was continuously recorded.

The second protocol for the sham-exposure Included the
same steps, except that the microwave generator was
switched off.

EEG measurement equipment*** was used for tbe EEG
recordings. The EEG was recorded by means of nine electrodes,
placed on the subject's head according to the international 10-20
electrode position classification system. The following channels

•Model SML02, Rhode & Swartz, Germany
'Model SML-B3, Rhode & Swartz, Germany
*Model MSD-2597601, Dage Corporation, USA
•'NMT450 RA3206, Augon Mobile Communication AB, Sweden
"Fieldmeter CA 43 Chauvin Arnoux, France
"Dig i Field C. IC Engineering, USA

II EEG, Cadwell, USA
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were chosen: frontal: FPl. FP2; temporal: T3. T4; parietal: P3.
P4; occipital: Ol. 02; and the reference electrode Cz. The EEG
recordings were stored on a computer at a sampling frequency
of 4(K) Hz. The recorded EEG signals were examined by an
experienced neurologist. Artifacts were detected by visual
inspection. The recordings containing multiple artifacts were
removed, and the whole recording was repeated.

The pre-processing of the signals was performed in the
LabVIEW programming and signal-processing environment.
The EEG spectrum of 0.5-48 Hz was selected for the analysis.
The modulating frequency belonged to the same region
(7 Hz); therefore it was removed by a narrow-band (0.2 Hz)
filter. The results of the preceding validation of the set-up con-
firmed the absence of otber low-frequency modulation com-
ponents, caused by parasitic interference between EEG and
radio-frequency equipmetit.

2.4 Selection of signals

Our previous results demonstrated that the effect of micro-
wave radiation is more noticeable in frontal EEG channels
(HiNRlKUS et ai, 2004). Therefore recordings from channels
FPl and FP2 were selected for further analysis.

Initially, all the EEG recordings were divided into two sub-
signals. The recordings performed with the first recording pro-
tocol were divided as follows;

• the first subsignal contained all 1 min periods without micro-
wave exposure (all the odd minutes from the initial EEG
recording)

• the second subsignal contained all minutes with microwave
exposure (all even minutes of the initial EEG recording).

The recordings performed with the second recording protocol
were divided similarly:
• the first sham subsigna! contained all the odd minutes
• the second sham subsignal contained ali the even minutes of

the initial recording.

2.5 Scaling analysis of the EEG signal based on the
LDLVP tnethod

When .selecting a method for the EEG analysis, we should
take into account the features of the EEG signal. Linearity
and stochasticity are, in fact, very restricting assumptions that
are, typically, not satisfied for natural time-series (such as
ECG. rainfall time-series, financial time-series etc.). This was
realised over a decade ago (KANTZ and SCHREIBER, 1997).
Accordingly, a wide variety of non-linear and scale-invariant
tools of analysis have been elaborated, as a rule, taking into
account the heart rate variability data (BABLOYANTZ and
DHSTEXHE, 1988; PENG et al.. 1993; IVANOV et ai. 1999;
Co,STA et ai. 2002); for a review, see KALDA et ai (2004).

Some authors have reported that EEG rhythms refiect the
existence of a chaotic dynamics of sources, at least for a specific
range of parameters of thalamo-cortical neurons (ROSCHKE
et ai. 1997; THEItJiR and RAPP. 1996; WANG. 1994). Other
authors have not obtained evidence that would allow for the
conclusion that EEG rhythms, in general, refiect the existence
of chaotic dynamics. EEG rhythms are most likely to arise in
neuronal networks that work as complex filters of random
sources (LoPHS DA StLVA et ai, 1974; 1997).

Although the problem of the presence of deterministic chaos
caused by the formation of EEG signals certainly deserves
comprehensive studies, the measures to be adopted on tbe

'Cadwell Easy II

bases of (reconstructed) phase-space dynamics are still pre-
mature. Indeed, even assuming that deterministic dynamics
participates in the bio-electrical activity of the brain, meaning-
ful calculation of measure, such as the correlation dimension
and Lyapunov exponents, requires noiseless long signals
(KANTZ and SCHREIBER, 1997). a requirement directly contra-
dicting the above-mentioned assumption of stochasticity.

This conclusion is in agreement with observations concern-
ing heart rate variability: the heart rhythm of patients with
severe heart failure may show fingerprints of deterministic
dynamics (BABLOYANTZ and DESTEXHE. 1988). However, for
a more or less, healthy heart, this dynamics is suppressed by
intermittent, non-deterministic inputs (SAKKI et al., 2004/7).
Thus, taking into account that EEG signals are much more
complicated than ECG signals, we can presume that, on
time-scales longer than a few periods of the gamma rhythm.
EEG signals also behave in an efficiently non-detenninistic
and intermittent manner.

Unlike the measurements based on the analysis of time-
delay space, the LDLVP method does not assume any determi-
nistic dynamics and is suited to characterise the (supposedly)
intermittent pattern of EEG fluctuations. This method has
common roots with multifractal analysis (IVANOV et ai,
1999). However, multifractal analysis assumes the presence
of scale-invariance throughout the analysed time-scales. For
tbat reason, multifractal analysis is not used for heart rate varia-
bility in the shortest time-scales (where the fingerprints of res-
piration and blood pressure oscillations are evident). For the
same reason, multifractal analysis is not suited for EEG analy-
sis at time-scales comparable with the periods of the known
physiological frequency bands.

The LDLVP analysis consists of several steps.
First, we define the local variability as the deviation of the

current value of the signal from the local average

dVU) =
7-/2

(1)

where V(t) is the recorded voltage, and the time-window width
T is a free (adjustable) parameter. The particular choice of this
parameter is guided by the following considerations. First, it
should not be smaller than the dominant time-scale of high-
frequency variations. Secondly, it should not be uw large,
because, otherwise, tbe scaling range of LDLVP would be
too narrow (because T also plays the role of tbe lower cutoff
scale of LDLVP). To achieve the widest possible scaling
range, we opted for the smallest sensible value 7'=6()ms
(which is of the order of the reciprocal of the EEG alpha-
rhythm frequency). Here, it should be noted that the micro-
wave radiation (modulated at 7 Hz frequency) bas been
found to have the most pronounced effect on the EEG energy
spectrum at the frequencies of the alpha rhythm (HiNRlKUS
et ai, 2004).

Secondly, low-variability periods are defined as continuous
intervals with

(2)

Finally, the number of low-variability periods N exceeding
length To is plotted against length 7",,.

The character of this length distribution depends quali-
tatively on the threshold parameter So: if 6i, is very small,
all the low-variability periods are very short; if 8^ is very
large, there is a single low-variability period occupying the
whole recording. For intermediate values of di), the non-
trivial scale-invariant distribution law is observed (KALDA
et al., 2001; SAKKI et al., 2004a). In this study, the value of
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Sf) was adjusted for each recording individually, reaching a
minimum value so tbat, for both subsignals, the length of the
longest low-variability period was at least 3750 ms.

The hypothesis of this work was that microwave exposure
increases EEG variability. Owing to higher variability, there
are fewer long low-variability periods. Therefore it is expected
that microwave exposure lowers the curve in the right-hand
part of the graph (i.e. at large values of TQ). According to
this assumption, the weighted area

t28
Sw —

N=l

N

max(A'- 1.1/4)
(3)

under the curve of tbe function r,, = To(,N) was selected as the
non-linear quantitative measure.

In the denominator of this formula, /V — 1 is substituted
by max (A ' -1 ,1 /4) for a simple reason: to take into
account tbe longest low-variability period (with N = V)
without divergence of the expression. The weighting factor
A '̂'̂  was introduced to enhance the stationarity of tbe
measure. In other words, the least stationary part of
the T'o{A'̂ )-curve is the region N^\, because the relative
statistical uncertainty of A'̂  at a given To is inversely pro-
portional to the square root of the number of underlying
data points A'"''' . The overall variance is minimised
when each term of the sum has a weight equal to the
reciprocal of its uncertainty.

2.6 Linear quantitative measure

The power spectral density (PSD) was estimated by means
of Welch's averaged periodogram method. The subsignals
were divided into overlapping sections (50%). with a length
of 2048 points, and windowed by a Hanning window.

Afterwards, the power on the theta-alpha-beta band
(4-40 Hz) Wp,,, was computed for each subject (indexed by
n £ [ I , 2 3 ] ) and subsignal (indexed by m = I , 2 ) as the
area under the spectrum for the corresponding frequency
band (integral of the band).

To locate the possible infiuences of microwave exposure, the
powers computed from the first subsignals were subtracted
from the powers computed from the second subsignals. Tbe
channel FPl or FP2 with a smaller power difference was
chosen for further analysis.

The same procedure was repeated with sbam subsignals,
resulting in spectral powers H',,,,,.

2.7 Statistical analysis

For sham recordings, the subsignals were completely equiva-
lenL The mathematical expectation of the difference in their
spectral powers was zero, {WQ - Wi) = 0. Next, an estimate
of the variance could be obtained as the mean of squared
differences

(4)
n=l

According to the 'zero hypothesis', the EEG recordings of
subjects under microwave exposure cannot be distinguished
from sham signals. Thus, the zero hypothesis implies that
(H',,-H',) = O and <(Wo - W,)") = ((IV,, - W,)^). Conse-
quently, if the zero hypothesis is true, the quantity x = (WQ,, —
Win)^o'~'^ is an/-distributed random quantity, the cumulative
distribution of which is routinely designated as F|_2.i(-v); the
indices 1 and 23 stand for the numbers of degrees of freedom.

Accordingly, the ratio of the computed power difference
to the standard deviation of the differences can be used as a
quantitative measure, showing how well the zero hypothesis
is satisfied; respective /7-values are obtained by means of the
cumulative /-distribution

(5)

The same technique has been applied to the non-linear quanti-
tative measure (derived from LDLVP), resulting in another
series of/J-values.

3 Results

As an example, the calculated PSD distribution of the first
and second subsignals for exposed and sham recordings for
one subject is shown in Fig. I. For the same subsignals, the
number of low-variability periods N exceeding length 7o is
plotted against length 7"(, in Fig. 2.
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Fig. 1

4 7 10 13 16 19 22 25 28 31 34 37 40
Hz

Power spectral density for typical subject: (—} second
suhsignal of exposed recording (intervals with microwave):
( •) jirst subsignal of exposed recording (intervals
without microwave): ( ) jirst and second suh.signals
for sham recordings

1000
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Fig. 2 Number of low-variahility periods N exceeding length To for
typical .subject: (—) .second .subsignal of exposed recording
(intervals with microwave): ( •) jirst suhsignal i>f
exposed recording {inter\'als without microwave): ( )
jirst and second subsignals for sham recordings
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Table ! PSD and LDLVP quantitative measures for microwave-exposed and sham recordings for each .subject

Microwave

PSD

vA

3.73
0.44
0.08

-0 .30
1.03
0.89
0.02
0.04

-0 .06
2.53
0.36

-0.27
0.65

-0.05
-0 .20

0.02
0.04
0.94
0.97

-0.29
- 0.48
-0.13
- 2.75

exposure

P

(UH)1
0.663
0.939
0.768
0.313
0.385
0.981
0.969
0.950
0.019
0.719
0.788
0.521
0.960
0.840
0.987
0.967
0.359
0.340
0.774
0.635
0.896
0.0 II

- 8 . 2 4
- 7 . 8 4
- 7 . 1 8
- 4 . 3 2
- 4 . 2 8
-2 .73
-1 .65
-1 .59
"1.57
-1.51
-0 .90
-0 .62
-0 .24

0.00
0.14
0.24
0.62
0.92
1.30
1.21
1.39
1.87
4.58

LDLVP

P

2.58 X 10""
6.05 X 10""
2.58 X 1 0 " '
2.55 X 10"' '
2.81 X IO"'*
0.012
0.112
0.125
0.130
0.144
0.380
0.543
0.813
1.000
0.890
0.813
0.543
0.370
0.208
0.237
0.177
0.074
1.34 X 10 "•*

v5

2.04
0.33
1.67

-0 .40
0.24

-0.11
3.18

-0.35
-0 .08
-0 .91
-0 .18
-0 .05
-0 .52

0.70
-0.01
-0 .20
-1 .58

0.12
-0.31
-0 .10
-0 .49
-0 .48

0.02

PSD

P

0.053
0.742
0.109
0.694
0.815
0.915
0.004
0.732
0.935
0.374
0.860
0.961
0.610
0.492
0.995
0.841
0.128
0.903
0.758
0.918
0.630
0.635
0.987

Sham

LDLVP

-1.97
- L 5 9
-1 .59
-1 .45
-1 .25
-0 .70
-0 .62
-0 .40
-0 .39
-0 .36
-0 .32
-0 .12

0.00
0.06
0.46
0.46
0.56
0.62
0.74
0.94
1.14
1.43
1.81

P

0.061
0.125
0.125
0.160
0.223
0.493
0.54.^
0.694
0.704
0.723
0.753
0.906
1.000
0.953
0.651
0.651
0.583
0.543
0.469
0.3.59
0.267
0.165
0.083

Visual inspection of the PSD distribution of EEG suhsignals,
with and without microwave exposure, in Fig. 1 indicated no
considerable difference between the subsignals. The difference
became evident in Fig. 2: three curves of EEG subsignals
(without microwave exposure) were close to each other, hut
the lowering of one of the curves (subsignal with microwave
exposure) was obvious in the right-hand part of the graph
(i.e. at targe values of TQ).

The PSD and LDLVP quantitative mea.sures of the first and
second subsignals lor microwave-exposed and sham record-
ings, calculated for each subject, are presented in Table 1.
The ratio of the computed power difference to the standard
deviation of the differences y/x of more than three, and p
values not larger than 0.001 were considered as significant
deviations from the zero hypothesis and are marked bold.
Note that these resuits remain significant even after application
of the modified Bonferroni correction, according to which
the smallest /j-value is to be multiplied by the numher of
data points 23, the .second smallest is to be multiplied by
2 3 / 2 ^ 11.5 etc.

As can be seen, the PSD measures for exposed, as well as for
sham recordings, resulted in the ratio of the computed power
difference to the standard deviation of the differences (calcu-
lated on the basis of sham signals) exceeding a value of 3 only
lor one subject. LDLVP measures resulted in the ratio of the
computed power difference to the standard deviation of the
differences being higher than 3 for six subjects in the case of
microwave exposure and for no subjects in the case of the
sham recordings.

Histograms of the numher of subjects against the ratio of the
computed spectral power difference to the standard deviation
of the differences are shown in Fig. 3, hoth for recordings
with microwave exposure and sham recordings. Histograms
of the number of subjects against the ratio of the computed
LDLVP weighted area difference to the standard deviation of
the.se differences are shown in Fig. 4.

146

3...4

Fig. 3 Di.strilmtion of subjects according to ratio of computed
spectral power difference to standard deviation of differences
•fx for (a) recordinfis with microwave exposure und (b)
.sham recordings

4 Discussion

4.1 Quality of EEG recordings

The EEG signals observed are highly variable and non-
stationary during short-term recordings. Non-stationarity can
be either fundamental (regardless of the observation period,
no stationarity can be observed) or conditional (signals
become stationary during sufficiently long-term recordings).
Dominating sources of non-stationarity for EEG signals are
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Fig. 4 Distribution of subjects according to ratio of computed
LDLVP weighted area difference to standard deviation
of differences ./x for (a) recordings with microwave
exposure and (b) sham recording.^

external stimuli, which themselves arrive intermittently. To
achieve stationarity of the EEG signal during the recording
period (in the absence of the studied stressor. the low-level
modulated microwave field), all external stimuli were mini-
mised (eyes closed, ears blocked, etc.) during the experiments.
The fact that, in the cases of sham exposure, the probability
distribution in the histograms for differences (Figs 3 and 4) is
close to normal supports the idea that EEG signals are stati-
onary if external stimuli (microwave exposure) do not affect
them.

The results of EEG recordings presented in Figs 1 and 2
demonstrated a smooth power spectrum and smooth length dis-
tribution curves of low-variability periods, Stationarity is not
achievable for EEG analysis at time scales comparable with
the periods of the known physiological frequency bands.
Smooth curves confirm that the selected length of the recording
was sufficient, and stationarity of the EEG signal during the
recordings was achieved.

The probability distribution of differences in the case of
sham exposure is symmetrical and close to normal (Figs 3b
and 4/?). This fact supports the idea of the random nature of
EEG rhythms (the presence of one subject with /? % 0.004
may. but not necessarily, refer to slight non-Gaussianity:
after the Bonferroni correction, this value translates into
23 X 0.004 ==; 0,09). This finding is in good agreement with
the conclusion in the theoretical work by LoPES DA SiLVA
et al. (1974: 1997). reporting that EEG rhythms, in general,
are stochastic rather than reHect the existence of chaotic
dynamics. This fact also shows that the recording was of
sufficient length, and recording conditions guaranteed the
stationarity of EEG signals.

4.2 Distinction of stressor effect

The character of the probability distribution is substantially
different in the case of microwave-exposed EEG recordings:
the histogram in Fig. 4a corresponds to a constant rather than
to a normal distribution. This trend of change in the probability
distribution is not noticeable in Fig. 3<a. A comparison of the

histograms shows that the LDLVP enables us to determine
the effecl of microwave exposure, whereas the PSD does not.

The probability distribution in Fig. 4 demonstrates changes
in the nature of the EEG rhythm compared with the sham
recordings: the evidence of the microwave effect as an external
stimulus leads to different distributions of the proposed
measures. The existence of difterent dynamics in the case of
a specific stressor may not be surprising in view of the tnodel
studies by WANG (1994), who demonstrated the existence of
chaotic dynamics only for a specific range of parameters of
neurons.

Differences in the subsignals with and without microwave
exposure are also confirmed by Fig. 2, where the distribution
of the number of low-variability periods N. exceeding length
Ti). is plotted against length 7"(). The effect of the lowering of
one curve (subsignals with microwave exposure), compared
with three other curves (subsignals without exposure), is
obvious in the area of large Tu values. It means that microwave
exposure increases short-term variability: high-variability epi-
sodes are met more often, so thai long, low-variability periods
are broken into smaller parts.

Visual inspection of the PSD distribution of EEG subsignals
with and without microwave exposure indicated no considera-
ble difference between subsignals (Fig. I), thus indicating no
influence of microwave exposure.

Differences in the ability of the PSD and LDLVP methods to
detect the eft'ect of microwave exposure are most evident when
we compare the quantitative measures calculated according to
these methods (see Table I),

As can be seen, the PSD measures provide only one result in
both groups (exposed and sham), exceeding the limit of signifi-
cant deviation trom the zero hypothesis. Those results can be
explained by statistical variability,

However. LDLVP measures resulted in significant results
for six subjects in the case of microwave exposure and for
none of the subjects in the case of sham recordings
(Table 1). For five subjects under exposure, the computed
LDLVP weighted area decreased and it increased for only
one subject. Such a decrease in the number of low-variability
periods allows us to conclude that, typically, microwave
exposure causes an increase in EEG variability.

Previously, several linear and non-linear methods were
applied by our group to detect possible changes in EEG
signals, using the same exposure conditions and an experimen-
tal protocol similar to that of this study, except for the use of
photie stimulation (HiNRiKUS et al., 2004; PARTS et al..
2003), In particular, linear statistical analysis has been
applied to relative changes in EEG rhythms energy of the
cycles with and without low-level modulated microwave
exposure. These results demonstrated changes in the EEG
theta and alpha rhythm activity, induced by microwave
exposure, in different EEG channels that were observable
during different cycles of exposure. However, these findings
were not statistically significant (HiNRtKUS et al., 2004).

In addition, bispectral analysis has been applied to evaluate
the effects of photic and microwave exposure tin human EEG.
The analysis demonstrated clear differences between EEG
signals with and without photic exposure. However, the
effect of microwave exposure was not detected (PARTS et al.,
2003).

Anotber research group u.sed Higuchi's fractal dimension
analysis on the same signals (LIPPING et ai, 2003). Their
results showed that photic stimulation caused a significant
increase in the fractal dimension of the EEG signal; however,
no consistent correlation was noticed between microwave
stimulation and the fractal dimension of the EEG. Other
research groups have obtained similar results; for a review
see D'ANDREA et al. (2003).
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These efforts demonstrate that the EEG changes induced by
low-level microwave expcjsure cannot be detected by the
methods above. However, the analysis by the LDLVP
method used for the detection of the EMF effect demonstrated
good sensitivity. A large variability in individual subject sensi-
tivity with respect to the EMF exposure has been observed.
Compared with our earlier results (LA.SS et al., 2002; HiNRlKUS
et al., 2(M)4). significant EMF effects detected for a quarter of
subjects suggest an advance in the studies.

5 Conclusions

Non-linear scaling analysis of the length distribution of low-
variability periods is a sensitive method for distinguishing EEG
.signals with and without a weak stressor and is superior to
spectral analysis.

The probability distribution of the studied measures of the
EEG signal, which was close to normal, and the smooth
power spectrum and smooth length distribution curves of the
low-variability periods showed that the recording length was
suflicient. and the recording conditions were under adequately
rigorous control to guarantee EEG signal stationarity.

Sen.sitivity to microwave exposure varied a great deal for
different subjects; a significant effect of exposure to the EEG
signal was detected for about 25% of subjects. Prevalently,
microwave exposure Increased EEG variability.
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Summary. This study focuses on discrimination of changes, produced by low-level microwave exposure in 

intensity and time variability of the human EEG at rest. The power spectral density (PSD) method and nonlinear 

scaling analysis of the length distribution of low variability periods (LDLVP) were selected for analysis of the 

EEG signal. During the study, 19 healthy volunteers were exposed to a microwave (450 MHz) of 217 Hz 

frequency on-off modulation. The field power density at the scalp was 0.16 mW/cm2. The experimental protocol 

consisted of ten cycles of repetitive microwave exposure. Signals from frontal, temporal, parietal and occipital 

EEG channels on EEG theta, alpha and beta rhythms were analysed. Exposure to microwave causes average 

increase of EEG activity.  LDLVP analysis discriminated significant effect in time variability for 2 subjects 

(11%). PSD method detected significant changes in intensity for 4 subjects (21%). The effect of low-level 

microwave exposure is stronger on EEG beta rhythm in temporal and parietal regions of the human brain.  

    

Keywords: EMF effects, nonionising radiation, microwave radiation, time variability, scaling analysis, spectral 

analysis, EEG rhythms. 
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1 Introduction 

Starting with the new era of portable telecommunication solutions, artificial electromagnetic fields present 

stronger radiation than the fields created by natural sources. For most of the time, people may not be aware of 

such radiation, so they solely rely on safety standards. 

Modulated microwave radiation at non-thermal level of field power density can affect human central nervous 

system in a sensible way (D'ANDREA et al., 2003; SALFORD et al., 2003). Except in unhealthy artificial 

conditions, the effect of electromagnetic field is weak and difficult-to-detect. With carefully planned 

measurement technique and recording protocol, the measurement of the bioelectrical activity of the brain has 

been proven to be one of the most successful ones and selected as our primary data source. The measurement 

and data analysis must take into account the normal fluctuations of EEG signal and presence of other complicate 

detectable factors. Thus, quantitative measures should be carried out to estimate the overall effect. 

During recent years, non-thermal effect of low-level electromagnetic field on human nervous system has become 

a subject of discussions. The reports of possible non-thermal effects are often contradictory. Several 

investigators have reported that low-level exposure produces alterations in the EEG signal and brain behavior 

(BAWIN et al., 1973; VOROBYOV et al., 1997; MANN et al., 1996; WAGNER et al., 1998; HUBER et al., 2000; 

LASS et al., 2002; HINRIKUS et al., 2004). The conclusion reported by the other researchers is that the exposure 

to electromagnetic field does not alter the resting EEG (HIETANEN et al., 2000; KRAUSE et al., 2000; KRAUSE et 

al., 2000). Mechanisms behind the effects are still unclear and the question about the existence of any feasible 

effect of a low-level radiation on brain bioelectric activity has been left open. 

In our previous studies the relative changes in the EEG rhythms energy, mainly in theta and alpha bands, were 

investigated and effect, produced by microwave exposure, reported (HINRIKUS et al., 2004). Modulation of 

microwave at 7 Hz frequency, which belongs to the band of physiological frequencies of the brain, was applied. 

However, those results did not present statistically important changes. Likewise, the power spectrum analysis 

could not differentiate sham recordings from recordings under the influence of microwave stimulation at 7 Hz 

on-off modulation. However, nonlinear scaling analysis of the length distribution of low variability periods 

(LDLVP) detected significant effect of exposure to the EEG signal for about 25% of subjects (BACHMANN et al., 

2005). Increase in EEG variability, caused by microwave exposure, was reported. 

The analyzed frequencies are lower, than modulation and pulse frequencies in technical systems. Therefore, here 

we study the physiological effect of the modulation frequency 217 Hz. To this end, we compare the EEG signals 
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recorded at the presence of a modulated low-level microwave field, with sham signals. 217 Hz is the GSM 

signal’s pulse frequency and the population is most widely exposed to microwave modulated at that frequency.  

The mechanisms of low-level microwave interaction with biological tissues are not clear. Therefore, it is not 

possible to predict the character of changes in brain bioelectrical activity, caused by microwave exposure. The 

effect could be related to stimulation or depression of the brain activity, which leads to changes in intensity of 

the EEG signal. The effect could be related to changes on neurons spiking frequency or processes in synapses, 

which leads to changes in time variability of the EEG signal. Experimental effects that depend on low frequency 

modulation of microwave radiation can also be related to more complicated nonlinear responses in biological 

tissue and living cells (BALZANO et al., 2003). Therefore, two different methods for analysis of the EEG signals 

were used in this study: the first for discrimination of changes in intensity, and the second for discrimination of 

changes in time variability of the EEG signals.  

The intensity of the EEG signal is most completely described by power spectrum of the EEG signal. The power 

spectral density method, a widely used method in quantitative EEG, was selected for intensity analysis of the 

EEG signals. The powers of EEG theta, alpha and beta rhythms bands were analyzed. 

The LDLVP analysis provides a simple route to detecting the multifractal characteristics of a time-series and 

yields somewhat better temporal resolution than the traditional multifractal analysis. Thus, it can be expected 

that this method is sensitive with respect to small “hidden” changes in such a complicated physiological signal as 

EEG. The LDLVP method was selected for time variability analysis of the EEG signals.  

The hypothesis, evaluated in this study, is that modulated at 217 Hz microwave exposure increases variability of 

the EEG signal and causes changes in the power spectrum of the human EEG.  

 

2 Method and equipment 

2.1 Subjects 

An experimental study was carried out on a group of volunteers. The group consisted of 19 healthy, young 

people (aged 21-24): 8 male and 11 female. Their physical and mental condition (tiredness, sleepiness) before 

the experiment was evaluated by a questionnaire and a clinical interview. After the recordings, they described 

how they felt during the experiment. The subjects reported neither alertness nor any strain experienced during 

the recordings.  
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The experiments were conducted with the understanding and written consent of each subject. The study was 

conducted in accordance with the Declaration of Helsinki and has formally approved by the local Medical 

Research Ethics Committee.  

The measurements were performed in a dark laboratory, but no other special conditions were provided. The 

subjects lay in a relaxed position, with eyes closed and ears blocked during the experiments.  

All the subjects were exposed and sham exposed. Only one experimental EEG recording was performed for a 

subject during a day. The measurements were double blinded. During each test session, the exposed and sham-

exposed subjects were randomly assigned. The subjects were not informed of their exposure; however, they were 

aware of the possibility of being exposed. Subjective factors were also excluded from the computer-performed 

data analysis: the same algorithms were applied for all the recordings (both for exposed and sham-exposed 

subjects).  

2.2 Microwave Exposure 

The modulated microwave radiation at non-thermal level of field power density, identical to our previous 

studies, except modulation frequency (LASS et al., 2002), was used. Microwave exposure conditions were the 

same for all subjects. The 450 MHz microwave radiation was 100% amplitude modulated at 217Hz frequency 

(duty cycle 50%). The 1W EMF output power was guided by a coaxial lead to the 13cm quarter-rhythm antenna, 

located 10 cm from the subject's skin on the left side of the head.  

Estimated field power density at the skin was 0.16 mW/cm2. The level of power density was so low that thermal 

effects were extremely unlikely.  

2.3 Recording protocols and equipment 

The study consisted of two experimental protocols, identical for all subjects. The first protocol was recorded as 

described below. 

First, the reference EEG was recorded over 60 s. Secondly, modulated microwave radiation was applied. The 

duration of the exposure was 60 s, and the compensatory pause after the exposure was 60 s. Continuous EEG 

recordings were made during and 60 s after exposure. The procedure of the cycle was repeated ten times. The 

microwave exposure was switched on every first 60 s of the cycle. During ten cycles of microwave exposure, the 

modulation frequency always remained at 217 Hz.  

The recording protocol for one subject lasted for 21 min, during which the EEG was continuously recorded. 

The second protocol for the sham-exposure included the same steps, except that the microwave generator was 

switched off.  
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The Cadwell Easy II EEG measurement equipment was used for the EEG recordings. The EEG was recorded by 

means of 19 electrodes, placed on the subject's head according to the international 10-20-electrode position 

classification system, with Cz as reference. The recorded EEG signals were examined by an experienced 

neurologist. Artifacts were detected by visual inspection. The recordings containing multiple artifacts were 

removed, and the whole recording was repeated.  

For the analysis, EEG spectrum 0.5 - 40 Hz was selected, as the results of the preceding validation of the set-up 

confirmed the absence of modulation components, caused by parasitic interference between EEG and radio 

frequency equipment. 

2.4 Selection of signals  

Recordings from the following channels were selected for further power analysis: frontal: FP1, FP2; temporal: 

T3, T4; parietal: P3, P4; occipital: O1, O2. For scaling analysis, only channels FP1 and FP2 were used, as 

formerly shown, the results from different EEG channels did not differ (BACHMANN et al. 2005). 

Initially, all the EEG recordings were divided into two sub-signals. The recordings performed with the first 

recording protocol were divided as follows: the first subsignal contained all 1 min periods without microwave 

exposure (all the odd minutes from the initial EEG recording); the second subsignal contained all minutes with 

microwave exposure (all even minutes of the initial EEG recording). 

The recordings performed with the second recording protocol (sham) were divided similarly: the first sham 

subsignal contained all the odd minutes; the second sham subsignal contained all the even minutes of the initial 

recording. 

2.5 Scaling analysis of the EEG signal based on the LDLVP method 

The LDLVP method has been used and described in details in our previous studies (KALDA et al., 2001; SÄKKI 

et al., 2004; BACHMANN et al., 2005). The analysis consists of several steps. 

First, we define the local variability as the deviation of the current value of the signal from the local average. The 

time-window width T, for the local average, is a free (adjustable) parameter. For EEG signals, a reasonable value 

is provided by T = 60 ms, cf (BACHMANN et al., 2005). 

Secondly, low-variability periods are defined as continuous intervals where local variability is smaller than 0δ . 

The value of 0δ  was adjusted for each recording individually, reaching a minimum value so that, for both 

subsignals, the length of the longest low-variability period was at least 3750 ms. 

Finally, the number of low-variability periods N exceeding length T0 is plotted against length T0. 

The weighted area of the function T0 = T0(N) was selected as the non-linear quantitative measure.  
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2.6 Power spectral density analysis  

The power spectral density (PSD) was estimated by means of Welch's averaged periodogram method. The 

subsignals were divided into overlapping sections (50%), with a length of 2048 points, and windowed by a 

Hanning window.  

Afterwards, the power Wmnf  was computed for each subject (indexed by n∈ [1,19]), subsignal (indexed by 

m=1,2) and frequency band (f = θ for theta band [4-8Hz], f = α for alpha band [8-13 Hz] and f = β for beta band 

[13-40 Hz] ), as the area under the spectrum for the corresponding frequency band (integral of the band).  

To locate the possible influences of microwave exposure, difference of two sub-signals was selected as the PSD 

measure for further analysis.  

The same procedure was repeated with sham subsignals, resulting in spectral powers mnfW~ . 

2.7 Statistical analysis 

For sham recordings, subsignals were completely equivalent. According to the “zero hypothesis”, the EEG 

recordings of subjects under microwave exposure cannot be distinguished from sham signals. Consequently, if 

the zero hypothesis is true, the ratio of the computed power difference to the standard deviation of the 

differences is an f-distributed random quantity and it can be used as a quantitative measure, showing how well 

the zero hypothesis is satisfied; respective p-values are obtained by means of the cumulative f-distribution. 

The same technique has been applied to the non-linear quantitative measure (derived from LDLVP), resulting in 

another series of p-values.  

 

3 Results 

The results of LDLVP analysis for a subject are presented in Fig. 1. The number of low-variability periods N 

exceeding the length T0 is plotted versus the length T0 for the first and second sub-signal for exposed recording. 

As can be seen, microwave exposure lowers the curve at the right-hand part of the graph (large values of T0). 

Such a change in curve indicates that microwave exposure increases variability of the EEG signal: owing to 

higher variability there are fewer long low variability periods. 

Fig. 2 presents the average values of calculated relative changes in PSD measures for different frequency bands, 

for exposed and sham recordings. While in sham recordings the power in theta frequency band increases, the 

power decreases for alpha and beta frequencies. Average values of the measure for microwave-exposed 

recordings are always positive, therefore, the power of all frequency bands is increasing during microwave 

stimulation. 
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Statistical analysis of the PSD and LDLVP quantitative measures for microwave-exposed and sham recordings, 

were calculated for each subject. The ratio of the computed power difference to the standard deviation of 

differences of more than three, and p values not larger than 0.001 were considered as significant deviations from 

the zero hypothesis.  

The analysis based on the PSD measures resulted in the ratio of the computed power difference to the standard 

deviation of differences (calculated on the basis of sham signals) being higher than three for 12 cases in the case 

of microwave exposure. For sham recordings, 2 cases were significant. The analysis based on the LDLVP 

measures for exposed recordings resulted in the ratio of the computed power difference to the standard deviation 

of differences exceeding the value of three for 2 subjects and for no subjects in case of the sham recordings. 

All of the results, except for two cases in frontal region (PSD measures), remain significant even after 

application of the modified Bonferroni correction. The number of subjects having significant results after 

Bonferroni correction for microwave exposed and sham recordings are presented in Table 1. As for PSD 

measures, there was no significant result for theta and alpha frequency band, only beta band is presented. 

 

4. Discussion 

LDLVP measures resulted in significant results for two subjects in the case of microwave exposure and for none 

of the subjects in the case of sham recordings (Table 1). Accordingly, significant effect of exposure to the EEG 

signal was detected for about 11 % of subjects. However, for one subject under the exposure, the computed 

LDLVP weighted area decreased and for other, it increased. For both subjects, the departure from the sham 

behavior is statistically reliable. This is somewhat different from what has been observed for the modulation 

frequency 7 Hz, when the sign of the departure was always negative (corresponding to increased variability) 

(BACHMANN et al., 2005). This observation gives us a hint that the physiological effect of the microwave 

stimulation depends on the modulation frequency (at least there is a difference between the 7 Hz and 217 Hz 

frequencies). 

 The PSD measures exceeded the limit of significant deviation from zero hypothesis only in beta frequency band 

(Table 1). In temporal region, the PSD measures provided the most results: 3-4 cases out of 19, ~16 – 21 %. The 

influence was somewhat smaller in parietal region: 1-2 cases out of 19, ~ 5 – 11 %. The frontal region did not 

present significant changes after Bonferroni correction, while occipital region did not present any significant 

change. 
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As for sham recordings, the PSD measure resulted in significant results for one subject in channel T3 and in T4. 

However, those were very close to the limit of significance - 0.05 - and therefore, can be arguably explained with 

the statistical variability. 

Looking at the average values calculated for sham recordings (Fig 2), one can see that the results are in a good 

agreement with the findings of MALTEZ et al., 2004. They showed that alpha and beta power decreased towards 

the end of recording session during resting conditions, while delta and theta power showed a systematic increase. 

Except for delta power, which was not under investigation, our results showed the same trend. 

However, average values for microwave-exposed recordings reveal an increase of power for all frequency bands. 

For theta frequency band the level is almost the same as for sham recordings, referring probably to the normal 

time course and variability of power. At the same time, the average values for alpha and beta band are opposite 

from sham, implying to the influence of microwave stimulation by increase of power. 

The analysis by the LDLVP and PSD methods detected the effect of exposure for about 11% and 21 % of 

subjects respectively. For instance, the rate of multiple chemical sensitivity (MCS) occurrence is estimated to be 

between 2 and 10 % in the general population (CULLEN, 1987). MCS is characterized by recurrent symptoms 

involving multiple organ systems and occurring in response to demonstrable exposures to multiple chemically 

unrelated compounds at doses far below those established to cause harmful effects. Taking this into 

consideration, low-level microwave exposure influences even higher part of population than multiple chemically 

unrelated compounds.  

 

Conclusion 

1. Modulated at 217 Hz low-level 450 MHz microwave exposure produced statistically significant changes in 

time variability and intensity of the EEG signal for 10 -20% of healthy subjects. 

2. The effect of low-level 450 MHz microwave exposure is stronger on EEG beta rhythm in temporal and 

parietal regions of the human brain.  

3. Exposure to modulated at 217 Hz low-level 450 MHz microwave causes average increase in EEG activity.  

The mechanism of these changes is not clear and the effect needs further investigation.  

 

Acknowledgements 

This study was supported by Estonian Science Foundation, Grants No 5143 and 6121. 

 



 10

References 

M. Bachmann, J. Kalda, J. Lass, V. Tuulik, M. Säkki, H. Hinrikus, “Non-linear analysis of the 

electroencephalogram for detecting effects of low-level electromagnetic fields,” Med Biol Eng Comput 2005; 

43: 142-149 

Q. Balzano, A. Sheppard, “RF nonlinear interaction in living cells-I: nonequilibrium thermodynamic theory,” 

Bioelectromagnetics 2003; 24:473-482 

S.M. Bawin, R.J. Gavalas-Medici, WR. Adey, “Effects of modulated very high frequency fields on specific brain 

rhythms in cats,” Brain Res 1973; 58: 365-84 

M.R. Cullen, “Workers with multiple chemical sensitivities,” Occupational medicine: state of the art reviews. 

Philadelphia: Hanley & Belfus, Inc. 1987; 2: 655-661 

J.A. D'Andrea, C.K. Chou, S.A. Johnston, E.R. Adair, “Microwave effects on nervous system,” 

Bioelectromagnetics 2003;  S6: 107-147. 

M. Hietanen, T. Kovala, A.M. Hamalainen, “Human brain activity during exposure to radiofrequency fields 

emitted by cellular phones,” Scand J Work Environ Health 2000; 26: 87-92 

H. Hinrikus, M. Parts, L. Lass, and V. Tuulik, “Changes in human EEG caused by low-level modulated 

microwave exposure,” Bioelectromagnetics 2004; 25(6): 431-440 

R. Huber, T. Graf, K.A. Cote, L. Wittmann, E. Gallmann, D. Matter, J. Schuderer, N. Kuster, A.A. Borbely, P. 

Achermann, “Exposure to pulsed high-frequency electromagnetic field during waking affects human sleep 

EEG,” Neuroreport 2000; 11: 3321-3325 

Kalda, J., Säkki, M., Vainu, M., and Laan, M. (2001): ‘Zipf's law in human heartbeat dynamics’, available: 

http://arxiv.org/abs/physics/0110075 

C.M. Krause, L. Sillanmäki, M. Koivisto, A. Häggqvist, C. Saarela, A. Revonsuo, M. Laine, H. Hämäläinen, 

“Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task,” Neuroreport 

2000; 11: 761-764. 

C.M. Krause, L. Sillanmäki, M. Koivisto, A. Häggqvist, C. Saarela, A. Revonsuo, M. Laine, H. Hämäläinen, 

“Effects of electromagnetic fields emitted by cellular phones on the electroencephalogram during a visual 

working memory task,” Int J Radiat Biol 2000; 76:1659-1667 

J. Lass, V. Tuulik, R. Ferenets, R. Riisalo, and H. Hinrikus, “Effects of 7Hz-modulated 450 MHz 

electromagnetic radiation on human performance in visual memory tasks,” Int. J. Radiat. Biol. 2002; 78:937-944 



 11

J. Maltez, L. Hyllienmark, V.V. Nikulin, T. Brismar, “Time course and variability of power in different 

frequency bands of EEG during resting conditions”,  J Clin Neurophysiol 2004; 34:195-202 

K. Mann, J. Roschke, “Effects of pulsed high-frequency electromagnetic fields on human sleep,” 

Neuropsychobiology 1996; 33:41-47 

L.G. Salford, A.E. Brun, J.L. Eberhardt, L. Malmgren, B.R. Persson, “Nerve cell damage in mammalian brain 

after exposure to microwaves from GSM mobile phones,” Environ Health Perspect 2003; 111(7):881-883. 

M. Säkki, J. Kalda, M. Vainu, M. Laan, “The distribution of low-variability periods in human heartbeat 

dynamics,” Physica A 2004; 338:255-260. 

V.V. Vorobyov, A.A. Galchenko, N.I. Kukushkin, I.G. Akoev, “Effects of weak microwave fields amplitude 

modulated at ELF on EEG of symmetric brain areas in rats,” Bioelectromagnetics 1997; 18: 293-298 

P. Wagner, J. Roschke, K. Mann, W. Hiller, C. Frank, “Human sleep under the influence of pulsed 

radiofrequency electromagnetic fields: a polysomnographic study using standardized conditions,” 

Bioelectromagnetics 1998; 19: 199-202. 

 



 12

Table 1. Number of subjects with significant results after Bonferroni correction in the case of microwave 

exposed and sham recordings. 

Method LDLVP PSD 
Frequency 

band 
full EEG beta 

Channel FP1/FP2 FP1 FP2 T3 T4 P3 P4 O1 O2 

Exposed 2 0 0 3 4 2 1 0 0 

Sham 0 0 0 1 1 0 0 0 0 
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Fig. 1. The number of low-variability periods N exceeding the length T0 for a significant subject: line 1 - second 

sub-signal of exposed recording (intervals with microwave); line 2 - first sub-signal of exposed recording 

(intervals without microwave). 

 



 14

Fig. 2. Calculated relative changes in intensity between exposed and non-exposed segments of the EEG signals 

on main EEG rhythms. Vertical bars denote 0.95 confidence intervals.    

 



Appendix 1: Standard measures of HRV in clinical use

A non-exhaustive list of the standard (based on linear statistical measures and on
the Fourier analysis) parameters of heart rate variability, which are currently used
in medical practice (implemented in most commercial diagnostic equipment). NN
[normal-to-normal] interval – interval between 2 adjacent non-arrithmic heart-
beats.

Time-domain measures:

• the mean NN interval

• the difference between night and day heart rate

• the longest and shortest NN intervals

• SDNN ≡ the standard deviation of the NN interval (typically calculated
over 24-hour period)

• SDSD≡ the standard deviation of differences between adjacent NN inter-
vals

• SDANN ≡ the standard deviation of locally (usually 5 min) averaged NN
intervals

• SDNN index≡ the mean of the 5-minute standard deviation of the NN
interval (averaged over 24h)

• RMSSD≡ the square root of the mean squared differences of successive
NN intervals

• pNN50≡ the percentage of interval differences of successive NN intervals
greater than 50 ms

Frequency-domain measures:

• VLF ≡ the spectral power of fluctuations in NN-sequences in very low
frequency range (� 0.04 Hz)

• LF ≡ the spectral power of fluctuations in NN-sequences in low frequency
range (0.04 - 0.15 Hz)

• HF≡ the spectral power of fluctuations in NN-sequences in high frequency
range (0.15 - 0.4 Hz)

131



Appendix 2: Nonlinear measures of HRV

A list of selected “nonlinear” measures used for describing of HRV. The classify-
ing does not pretend to be explicit because some methods can be related to several
sections, i.e. calculating multiscale entropy (MSE) is entropy-based approach,
however it is closely related to multiscaling anaysis.

Reconstructed phase space analysis:

• D2 ≡ scaling exponent of correlation sum (correlation dimension)

• λ ≡ Lyapunov exponent

• heart rhythm and respiration mode-locking analysis

Entropy-based measures:

• K2 ≡ lower bound of the Kolmogorov-Sinai entropy, Grassberger and Pro-
caccia, 1983, cf. [55]

• KER ≡ estimator of the Kolmogorov-Sinai entropy, Eckmann and Ruelle,
1985, cf. [56]

• ApEn ≡ approximate entropy, a “regularity statistic” that quantifies the
unpredictability of fluctuations in a time series, Pincus, 1991, cf. [57]

• Zhang’s Complexity≡ the sum of scale-dependent Shannon entropies over
all possible scales, Zhang, 1991, cf. [67]

• Sp ≡ pattern entropy (modified Shannon entropy), Zebrowskiet al., 1994,
cf. [69]

• SampEn ≡ sample entropy, Richman and Moorman, 2000, cf. [63]

• MSE≡ multiscale entropy, Costaet al., 2002, cf. [65]

Single- and multi-scaling analysis:

• H ≡ global Hurst exponent (single-scaling analysis), Hurst, cf. [102]

• f(h) ≡ Lipschitz-Hölder spectra;τ(q) ≡ mass exponent spectra;ζ(q) ≡
structure function exponent spectra (multi-scaling analysis)

• DFA ≡ detrended fluctuation analysis, quantifying long-range correlations
for non-stationary time series, Penget al., 1995, cf. [82].

• multiresolution wavelet analysis, Ivanovet al., cf. [85]

• analysis of the distribution law of low-variability periods (Pareto-Zipf’s
law-like distribution)

• analysis of heart rate data segments with a similar mean values [101]
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Appendix 3: Bonferroni correction

The Bonferroni correction(multiple-comparison correction) addresses the prob-
lem with standardp-values when several (dependent or independent) statistical
tests are being performed simultaneously.

Suppose that a single test was employed to test a null hypothesis, using signif-
icance levelα = 0.05 and if the null hypothesis was actually true. The prob-
ability p of reaching the right conclusion (i.e., not significant) in that case is
p = 1−α = 0.95. By running more tests on a given data set, there is an increasing
probability of getting a significant result simply by chance: ifn hypotheses were
tested on the same dataset and if all of them were true, the probability of being
right on all occasions (simply the product of the individual probabilities if tests
are independent) would decrease substantially topn = 0.95n, i.e, the probability
of getting a significant resulterroneouslywould increase to1 − pn = 1 − 0.95n.
In order to guarantee that theoverall significance test is still at the same level
(α), one has to lower the significance level of theindividual test (α′). These two
significance levels are related to each other as(1 − α′)n = 1 − α, which implies
thatα′ = 1− (1− α)1/n. For small values of significance levelα
 1 this result
reduces toα′ = α/n. For example, to make sure that the probability of falsely
attaching significance to any test (fromn) is 0.05, one can use acorrectedsig-
nificance value of0.05/n. If the corrected value is still less than0.05, only then
the null hypothesis is rejected. Such a reasoning to correctp-values for multiple
significance testing on the same data set was first proposed by Italian statistician
C.E. Bonferroni in 1936 [120].

The idea ofp-values correction leads to several still disputable conclusions.
First, if one carries out multiple tests on a single data set, the interpretation of
a relationship between two variables actually depends on how many other tests
were performed. Second, if Bonferroni correction were to be made obligatory
and universal in statistical tests, some studies would make results more signifi-
cant simply bynot includingmany other tests they would have done with non-
significant results, and thus not applying correction to same extent as they should.
Finally, tests published in previous papers on the same dataset (in medicine the
same groups of patients) or tests done subsequently would need to be corrected
taking into account the number of previous tests. These problems possess dis-
agreements among statisticians over universal use of the Bonferroni correction
[121, 122, 123]. Also note that the Bonferroni correction is too conservative if
the hypothesis tests are mutually correlated, this leads to underestimation of the
resulting significance. Therefore, Bonferroni correction in its pure form should be
used only for fully independent tests. Otherwise, one should use modified Bon-
ferroni correction [124]. In medicine, the Bonferroni correction usually used in
two cases:a) a group of individuals subjected to a number ofindependenttests
of associations betweendifferent biological parameters;b) the same test being
repeated in many subgroups (grouped by age, sex, diagnosis, etc.)
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Sünniaeg ja -koht 02.05.1977, Narva
Kodakondsus Eesti
Perekonnaseis abielus

2. Kontaktandmed

Aadress Akadeemia tee 21, 12618 Tallinn, Eesti
Telefon 620 4251
E-post max@cens.ioc.ee

3. Hariduskäik
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