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Introduction 

 
Nanomaterials (NM) and functionally graded materials (FGM) are becoming 
increasingly popular, allowing marked improvement of the efficiency of different types 
of structures and products. Nanomaterials and nanotechnologies are advancing 
continually in various research areas from mechanics, physics, chemistry to biology and 
medicine. Adding nanoparticles or graphene in the matrix of a composite is one of the 
simplest and most widely used techniques for producing materials with improved 
properties such as stiffness, strength, thermal and electrical conductivity, wear 
resistance, etc. (Ekrem et al., 2016). Nanocomposites are most commonly produced 
from polymer, ceramics or metal by applying various techniques like vapour phase 
processing, powder metallurgy and solidification processing, etc. In practice, FG 
materials are utilized most commonly as interfaces between two different materials. 
For example, the metal-ceramic interface allows excellent strength and thermal 
properties of the material simultaneously as well as avoiding stress concentrations 
caused by sharp changes in material properties. Both FG and nanomaterials have found 
application in the automotive and aerospace industry (reinforcement, thermal 
protection), energy industry (batteries, solar cells, fuel cells), electronics (sensors, 
actuators), medicine (a nanoparticle can pass through the lining of the intestines into 
the bloodstream). 

Current study addresses numerical modelling of the stress-strain behaviour of FGM 
and NM. A number of numerical methods are available in the literature for the analysis 
of solid structures. The choice of the numerical method for solving a particular problem 
is rather complicated due to the presence of a huge number of techniques. The 
selection of a numerical method depends mainly on the nature of the problem, also on 
the commercial software available. However, problems related to advanced material 
models and constitutive laws are much less covered by existing numerical techniques 
and commercial software. Obviously, the material models for FGM and NM belong to 
the latter class of problems and the numerical techniques available for the analysis of 
FG and nanomaterials are still limited in comparison with traditional solid mechanics. 
Based on the literature review, the author has observed that the finite difference 
method (FDM), differential quadrature method (DQM) and finite element method 
(FEM) are most frequently used for the analysis of FG and nanostructures. These 
methods can be classified as most widely used in engineering design. From most recent 
methods, the Haar wavelet method (HWM) has been pointed out as a simple and 
effective method for solving a wide class of differential and integral equations covering 
FG materials (Lepik et al., 2014; Hariharan et al., 2014; Feklistova et al., 2015). However, 
most commonly, these evaluations are based on its simplicity of implementation and 
reasonable absolute error against other simple and strong formulation based methods 
like the Semi-orthogonal B-spline wavelet method, Legendre polynomials and block-
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pulse functions approach, triangular functions method (Islam et al., 2013a), and quantic 
spline-based approach (Majak et al., 2009a).   

Thus, in the early stage of the current study: 
• on the one hand, HWM was considered as a perspective method (simple and 

effective);  
• on the other hand, the author was unable to find from the literature 

comparisons of HWM with mainstream methods in engineering design like 
FDM and DQM, neither any proved convergence results for HWM. 
  

Motivation of the current study is based on the latter two facts. Detailed analysis and 
evaluation of the HWM was planned.  

Main goal of the current study is to evaluate HWM for the analysis of FG and 
nanostructures based on the comparison with widely used methods in engineering 
design. The accuracy of the numerical results and simplicity of the implementation, also 
complexity of the solution, are the topics of interest. The following activities have been 
performed in order to achieve the posed goal.  
 
Activity 1:  

• Implementation of the Haar wavelet method for the analysis of the FGM 
and nanostructures  

Activity 2: 
• Comparison of the accuracy of HWM, FDM and DQM based on the case 

studies covering FGM and nanostructures (absolute error) 
•  Analysis and comparison of numerical convergence rates 

Activity 3:  
• Evaluation of improved HWM, comparison with widely used HWM 

(absolute error, convergence rate) 
•  Complexity analysis 

 
The novelties of the current study can be outlined as follows: 
 

• The comparison of HWM with widely used methods in engineering design 
leads to a principally new understanding – the Chen and Hsiao approach 
based HWM needs improvement in order to compete with mainstream 
methods in engineering design. The conclusion made formed a basis for the 
development of a higher order Haar wavelet method (HOHWM). 

• Testing of HOHWM produced unexpectedly accurate results. However, these 
results need validation for the particular problems considered. 

 
The main results of the study have been published in peer-reviewed journal papers 

and presented at a number of conferences. 
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Abbreviations 
 

AbsErr Absolute Error 

APDL Ansys Parametric Design Language 

DQM Differential Quadrature Method 

FDM Finite Difference Method 

FEM Finite Element Method 

FG Functionally Graded 

FGM Functionally Graded Materials 

GDQM Generalized Differential Quadrature Method 

HOHWM Higher Order Haar Wavelet Method 

HWM Haar Wavelet Method 

NM Nanomaterials 

ODE Ordinary Differential Equation 

PDE Partially Differential Equation 

RConv Rate of Convergence 
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Symbols 
 

Greek 

𝛽𝛽 value of the exponent parameter 

𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎_𝑥𝑥𝑥𝑥_𝑁𝑁 absolute error at fixed point x=xi and mesh size N 

𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑁𝑁 absolute error of i-th eigenfrequency with mesh size 
N  

𝜀𝜀max _𝑎𝑎𝑎𝑎𝑎𝑎_𝑁𝑁 maximum absolute error with mesh size N 

𝜀𝜀𝑓𝑓𝑓𝑓𝑟𝑟_𝑥𝑥𝑥𝑥_𝑁𝑁_𝑝𝑝𝑓𝑓𝑟𝑟𝑟𝑟 relative error at fixed point x=xi and mesh size N in 
percentages 

𝜀𝜀1(𝑖𝑖) initial point of the i-th wavelet 

𝜀𝜀2(𝑖𝑖) midpoint of the i-th wavelet 

𝜀𝜀3(𝑖𝑖) endpoint of the i-th wavelet 
η  upper bound for derivative 

∆ℎ step size of the grid 

Δ(N) 
relative increase of the area underneath the curve 

|𝑢𝑢𝑁𝑁(𝑥𝑥)| , 𝑥𝑥 ∈ [0,1] for one iteration step 
∆𝑥𝑥 length of subinterval 

ᴨ product - product of all values in range of series 

𝜌𝜌 density 

𝜌𝜌𝜌𝜌(0) reference value of distributed mass per unit length 
of the beam at x=0 

𝜌𝜌𝜌𝜌(𝑥𝑥) distributed mass per unit length 

Σ summation 

𝛺𝛺 frequency parameter 

Ω𝑥𝑥,𝑓𝑓𝑥𝑥 exact value of the i-th eigenfrequency 

Ω𝑥𝑥,𝑁𝑁 numerical value of i-th eigenfrequency with mesh 
size N 

𝜔𝜔 eigenfrequency of the beam 

 

Latin 

𝜌𝜌 cross-section of the beam 

[𝜌𝜌,𝐵𝐵] closed interval {x|A ≤ x ≤ B} 

𝜌𝜌𝑥𝑥,𝑗𝑗
(𝑚𝑚) weighting coefficient for the m-th order derivative 

ia  coefficient of i-th Haar wavelet 

)0(DV  differential equation at point x=0 

𝐸𝐸 Young’s modulus 

𝐸𝐸𝐸𝐸(0) reference value of bending stiffness of the beam at 
x=0 
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𝐸𝐸𝐸𝐸(𝑥𝑥) bending stiffness 

2ME  L2 norm of error function 

,0),,...,,,( )()1( =′′′ − nn uuuuuxG  general form of ODE 

𝐺𝐺(𝑧𝑧) effective local shear modulus 

ℎ𝑥𝑥(𝑥𝑥) i-th Haar wavelet 

𝐸𝐸 area moment of inertia of the beam cross-section 
about the axis of interest 

𝐽𝐽 maximum value of dilatation parameter 

𝑗𝑗 dilatation parameter 

𝑘𝑘 translation parameter 

k𝐴𝐴 
numerical rate of convergence when exact solution 

is unknown 

k𝐸𝐸 
numerical rate of convergence when exact solution 

is known 
𝐾𝐾(𝑧𝑧) effective local bulk modulus 

𝐿𝐿 length of the beam 

𝑀𝑀 maximum level of resolution 

𝑚𝑚 level of the wavelet 

N  number of collocation points (mesh size) 

𝑃𝑃𝐴𝐴 value of the effective property of material A 

𝑃𝑃𝑟𝑟 value of the effective property of ceramic 

𝑃𝑃𝐵𝐵 value of the effective property of material B 

𝑃𝑃𝑚𝑚 value of the effective property of metal 

𝑝𝑝𝑛𝑛,𝑥𝑥(𝑥𝑥) n-th order integral of Haar function 

𝑃𝑃(𝑧𝑧) 
effective material property according to z 

coordinate 

)(xq  load of the beam 

)(xSBT  boundary term 

S(N) area underneath the curve |𝑢𝑢𝑁𝑁(𝑥𝑥)| in interval [0,1] 

z coordinate in thickness direction 

𝑡𝑡𝑟𝑟 𝑙𝑙-th uniform grid point for discretization 

𝑉𝑉𝐴𝐴(𝑧𝑧) volume fraction function of the material A according 
to z coordinate 

𝑣𝑣(𝑥𝑥) trial function 

W  corresponding amplitude function 

)(xw  transverse deflection of the beam at position x 

X  non-dimensional coordinate 

𝑥𝑥 variable, unknown value to find 
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1 Theoretical background 
 
The Haar wavelet method was introduced by Chen and Hsiao (Chen et al., 1997) to 
solve differential equations.  According to this approach, the highest order derivative 
included in the differential equation is expanded into the series of Haar functions. Most 
commonly, approximations are proposed to solve the differential equation. However, 
the Haar functions are not differentiable due to their piece-wise constant character. 
Thus, expanding the solution of the differential equation into Haar wavelets causes 
problems in the evaluation of the derivatives included in the differential equation. For 
that reason, an approach proposed by Chen and Hsiao has been used during two 
decades as mainstream in the Haar wavelet method for solving a wide class of ordinary 
(Hsiao, 1997; Lepik, 2005; Majak et al., 2009a, Xie et al., 2013, 2014a, 2014b, 2014c; 
Lepik, 2009; Paper II) and partial (Lepik, 2007a, 2007b; 2011; Jiwari, 2012; Islam et al., 
2013a; Arbabi et al., 2017) differential equations. In (Hsiao, 1997) the state analysis of 
the linear time delayed systems is reported. In (Lepik, 2005) the segmentation method 
is proposed, according to which the interval of integration is divided into segments 
(reduced Haar transform). Both ordinary and partial differential equations are covered. 
The vibration analysis of the rectangular tapered composite plates, cylindrical shells 
and composite laminated cylindrical shells is reported in (Majak et al., 2009a), (Xie et al., 
2013; 2014), respectively. In these studies, first, the partial differential governing 
equations are converted to an ordinary differential equation (ODE) by changing of 
variables and then the HWM is applied to ODE. In (Paper II) HWM is applied to the 
vibration analysis of nanobeams. The two-dimensional Haar wavelet method was 
developed in (Lepik, 2011) and applied for the solution of diffusion and Poisson as well 
as evolution equations. In (Jiwari, 2012) the HWM is adapted for solving Burgers’ 
equation. The parabolic partial differential equations (PDE) are explored in (Islam et al., 
2013a) by implementing the Haar and Legendre wavelet methods. Solution of systems 
of PDE by applying HWM is studied in (Arbabi et al., 2017). In all of these papers, the 
strong formulation based approach has been applied, i.e. the wavelet expansions for 
solution and its derivatives are inserted to original differential equations. The weak 
formulation based HWM approach is developed in (Majak, 2009b) and applied for 
solving the nonlinear Burgers equation. Despite weak formulation, the Chen and Hsiao 
approach has been applied in this study. An alternative approach how to overcome 
non-smooth properties of Haar wavelets is proposed in (Cattani, 2005; Castro et al., 
2010), where the regularization of quadratic waves has been performed (for example, 
smoothing with interpolating splines). In the latter case, the solution of the differential 
equation can be expanded into Haar wavelets (regularized) and all necessary 
derivatives computed. However, such regularization is an additional task and the 
simplicity of the method is blemished. For that reason, the latter approach is not widely 
applied.  
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The HWM proposed by Chen and Hsiao for the solution of differential equations has 
been extended to solve integro-differential (Lepik, 2006; Islam et al., 2013, 2014; 
Babaaghaie et al., 2017; Kumar et al., 2018) and integral equations (Lepik 2008; Aziz  
et al., 2013, 2014). In (Lepik, 2006) the Haar wavelet method is developed for nonlinear 
Volterra integral equations and integro-differential equations. The Newton method is 
applied for handling nonlinearity. Modified HWM approach for solving integral and 
integro-differential equations is proposed in (Islam et al., 2013, 2014; Aziz 2013; Singh 
et al., 2016). According to this approach, the Kernel function is expanded into wavelets 
(also, the highest order derivative if it exists in an integro-differential equation). In 
earlier studies, the Kernel function was expanded into 2D Haar wavelets (Islam et al., 
2013; Aziz 2013). Later in (Islam et al., 2014), the Kernel function is expanded into 1D 
wavelets, which allows reduction of the computational cost of the algorithm. In recent 
studies (Babaaghaie et al., 2017; Kumar et al., 2018), HWM is applied for solving 
nonlinear two-dimensional partial integro-differential equations.  Lepik (Lepik, 2008) 
adapted HWM for solving integral equations. In (Lepik, 2008) HWM for non-uniform 
grid was developed. In (Aziz et al., 2014) HWM based solution procedure is developed 
for nonlinear Volterra and Fredholm integral equations. Nonlinear Volterra integral 
equations of the first kind were explored by applying HWM in (Singh et al., 2016). 

New methods are often used to solve problems covering advanced material and 
constitutive models for which commercial software and solution methods are not yet 
available. One emerging research area is the solution of fractional differential and 
integral equations (Lepik, 2009; Ray et al., 2014; Ray, 2012; Saeed et al., 2013, 2014, 
2015; Li et al., 2014; Wang et al., 2014; Yi et al., 2014; Majak et al., 2016). Fractional 
derivatives allow us to describe more accurately real world materials and processes  
(e.g. viscoelastic materials). One of the pioneering studies here was conducted by Lepik. 
In (Lepik, 2009) an HWM based solution procedure was developed for fractional linear 
Volterra and Fredholm integral equations. In (Ray et al., 2014) the HWM is adapted for 
solving the fractional order stationary neutron transport equation. Fractional 
differential equations were solved first by applying HWM in (Lepik, 2009), where the 
differential equation of fractional harmonic vibration was converted into the Volterra 
integral equation and then solved numerically. Li and Zhao (Li et al., 2010) and Ray (Ray, 
2012) introduced the Haar wavelet operational matrix method for the numerical 
solution of the fractional Bagley Torvik equation. The solution obtained by Ray (Ray, 
2012) validated the results against an analytical solution given in (Podlubny, 1999). The 
Haar wavelet operational matrix method has been employed by Yi and Huang (Yi et al., 
2014) for solving fractional differential equations with variable coefficients and by Li  
et al. (Li et al., 2014) for solving the Riccati differential equation. By applying the 
quasilinearization technique, the HWM is adapted for solving fractional nonlinear 
differential equations in (Saeed et al., 2013, 2014, 2015). In (Wang et al., 2014) a 
truncated Haar wavelet series together with the wavelet operational matrix are used to 
reduce the fractional partial differential equations to Sylvester equations. In (Majak  
et al., 2016) it is reported that in the case of fractional ODE, the order of convergence 
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of the Haar wavelet method is equal to two if a higher order derivative α in the 
fractional differential equation exceeds one (α>1). However, in the case of 0< α<1, the 
order of convergence of the Haar wavelet method tends to the value 1+ α. 

From the point of view of the current thesis research, the studies addressing 
composite and nanostructures are most interesting. The composite structures were 
explored by HWM in (Chun et al., 2007; Majak et al., 2009a; Hein et al., 2011; Jin et al., 
2013, 2014; Xie et al., 2014a, 2014b, 2014c; Paper I). In (Majak, 2009a) the free 
vibration analysis of the multilayer composite plate is performed and possibilities for 
higher order wavelet expansion are discussed. In (Hein et al., 2011) delamination of the 
composite beam is studied. In (Xie et al., 2014b, 2014c; Jin et al., 2014) the HWM is 
adapted for the vibration analysis of conical and cylindrical shells and a general 
approach for handling boundary conditions is introduced. Functionally graded (FG) 
structures were studied by applying HWM in (Chun et al., 2007; Jin et al., 2014; Xie  
et al., 2014a; Paper I, IV). In (Chun et al., 2007) the HWM is employed for the stress-
strain analysis of 3D functionally graded plate. First, the trigonometric expansion is 
utilized and the governing differential equations are converted to ordinary differential 
equations (ODE). Next, the HWM is implemented for solving a system of ODE. Free 
vibration analysis of FG conical and cylindrical shells is covered in (Jin et al., 2014; Xie  
et al., 2014a). In (Paper I, IV) main attention is paid to the comparison of HWM with 
widely used numerical methods in engineering (finite difference method-FDM, 
differential quadrature method-DQM, finite element method-FEM), also to the 
accuracy analysis.  The author has not found studies addressing the structural analysis 
of nanostructures by employing HWM. In (Paper II) an attempt is made to adapt HWM 
for the vibration analysis of nanobeams using the Eringen’s nonlocal elasticity model. In 
(Majak et al., 2013) the design of graphene laminate is optimized considering 
orientations of layers as design variables and maximal fundamental frequency as an 
objective.   

The HWM has been successfully applied in all abovementioned studies. 
Furthermore, this method was considered commonly as simple and effective; later it 
was confirmed also in a review paper (Hariharan et al., 2014) and a monograph (Lepik 
et al., 2014). However, as pointed out above, the HWM is a simple rather than a 
powerful and widely used numerical method for structural analysis like FDM, DQM and 
FEM. Also, in the early phase of the current study, the theoretical convergence results 
for the Chen and Hsiao approach based HWM were not yet available.  

In the current study, an attempt is made to cover at least partially the 
abovementioned white spaces, i.e. to evaluate HWM for the analysis of FGM and 
nanostructures based on their comparison with widely used numerical methods in 
engineering design. Planned study includes detailed analysis and comparison of the 
accuracy and numerical convergence rates.  
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1.1 Haar wavelet method (HWM) 
The Haar wavelet is a sequence of rescaled "square-shaped" functions which together 
form a wavelet family or a basis (see Figure 1.1). It was proposed in 1909 by Alfred Haar 
to give an orthonormal system for the space of square-integrable functions on the unit 
interval [0, 1].  

The i-th Haar wavelet is defined as (Lepik, 2014): 
 

ℎ𝑥𝑥(𝑥𝑥) = � 
1      𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ∈ [𝜀𝜀1(𝑖𝑖), 𝜀𝜀2(𝑖𝑖)),
−1  𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ∈ [𝜀𝜀2(𝑖𝑖), 𝜀𝜀3(𝑖𝑖)),

0   𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑓𝑓𝑒𝑒,
 (1.1) 

 
where 
 
𝜀𝜀1(𝑖𝑖) = 𝜌𝜌 + 2𝑘𝑘𝑘𝑘∆𝑥𝑥,  𝜀𝜀2(𝑖𝑖) = 𝜌𝜌 + (2𝑘𝑘 + 1)𝑘𝑘∆𝑥𝑥,  
𝜀𝜀3(𝑖𝑖) = 𝜌𝜌 + 2(𝑘𝑘 + 1)𝑘𝑘∆𝑥𝑥,         𝑘𝑘 = 𝑀𝑀/𝑚𝑚 . (1.2) 
 
Haar wavelets are defined in the interval 𝑥𝑥 ∈ [𝜌𝜌,𝐵𝐵], where A and B are given constants. 
The interval [𝜌𝜌,𝐵𝐵] is divided into 2𝑀𝑀 subintervals of equal length, where the length of 
each subinterval  ∆𝑥𝑥 = (𝐵𝐵 − 𝜌𝜌)/(2𝑀𝑀). The integer 𝑚𝑚 = 2𝑗𝑗  (𝑗𝑗 = 0,1, … , 𝐽𝐽) indicates 
the level of the wavelet and 𝑗𝑗 is called the dilatation parameter (when we increase the 
value of 𝑗𝑗, then the wavelet narrows down). Maximum level of the resolution is 
denoted by 𝑀𝑀 = 2𝐽𝐽. The parameter 𝑘𝑘 = 0,1, … ,𝑚𝑚− 1 is the translation parameter; it 
indicates the location of the particular square wave (Figure 1.1). 

The index  𝑖𝑖 is calculated according to the formula 𝑖𝑖 = 𝑚𝑚 + 𝑘𝑘 + 1; at minimal values, 
𝑗𝑗 = 0, 𝑚𝑚 = 1, 𝑘𝑘 = 0  and it implies that 𝑖𝑖 = 2 , at maximum values, 𝑖𝑖 = 2𝑀𝑀 = 2𝐽𝐽+1. It is 
assumed that the value 𝑖𝑖 = 1 corresponds to the scaling function for which ℎ1 ≡ 1 in 
the whole interval [0,1] and vanishes elsewhere. 

The n-th order integrals of the Haar function (1.1) can be computed as: 
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Any integrable and finite function in the interval [𝜌𝜌,𝐵𝐵] can be expanded into Haar 

wavelets as: 

).()(
1

xhaxf i
i

i∑
∞

=

=  (1.4) 

However, in the numerical calculation, the sum (1.4) is limited to the finite number of 
the terms 
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iiM xhaxf
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)()( . (1.5) 

Let us consider the Euler-Bernoully beam equation as a simple sample  

  ),()(
4

4

xq
x

xwEI =
∂

∂  (1.6) 

where )(xw  is the deflection of the beam, EI and q  stand for the flexural rigidity and 

load terms, respectively. According to the approach proposed by Chen and Hsiao (Chen 
et al., 1997), the higher order derivative included in the differential equation is 
expanded into the Haar wavelet, i.e. 

).()()(
1

4

4

xha
dx

xudxf i
i

i∑
∞

=

==  (1.7) 

The solution of the differential Eq. (1.6) )(xu can be obtained by integrating the 
relation (1.7) n  times  
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 (1.8) 

In (1.8) )(xSBT  stand for the boundary term and )(12,4 xp kj ++
 is computed according 

to relations (1.3). 

Substituting the solution (1.8) and all its derivatives in the differential equation (1.6) 
(in the considered simple sample only fourth order derivative is present in (1.6)), 
satisfying boundary conditions and taking into account the finite number of terms, one 

obtains a linear algebraic system with respect to coefficients ia  (uniform grid points 

)N/()l(tl 212 −= , N,...,l 1=  are used for discretization). After determining the 

coefficients ia , the value of the solution )(xu can be computed in any point in the 

interval [𝜌𝜌,𝐵𝐵] by use of the formula (1.8). Obviously, the HWM introduced above can 
be applied for solving a wide class of ordinary and partial differential equations. 
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Figure 1.1 Eight first Haar wavelets 
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1.2 Reference methods 
Two strong formulation based numerical methods FDM and DQM used widely in 
engineering design are considered as reference methods for the evaluation of the Haar 
wavelet method. The FEM as a more complex weak formulation based method is used 
for general validation/comparison. In the following, a short description of the reference 
methods and FEM is given to review basic working principles and formulas.  

1.2.1 Differential quadrature method (DQM) 

The differential quadrature method is a numerical solution technique developed by 
Richard Bellman in the early 1970s for initial and/or boundary problems. The idea of 
the DQM is that the solution domain is discretized into N sampling points and the 
derivatives at any point are approximated by a weighted sum of function values at 
discrete points in the variable domain. 

𝑑𝑑(𝑚𝑚)𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑚𝑚𝑥𝑥

�
𝑥𝑥=𝑥𝑥𝑖𝑖

≅ ∑ 𝜌𝜌𝑥𝑥,𝑗𝑗
(𝑚𝑚) ∗ 𝑓𝑓�𝑥𝑥𝑗𝑗�𝑁𝑁

𝑗𝑗=1 ,        𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, . . . ,𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 = 1, 2, … ,𝑀𝑀. (1.9) 

In (1.9) the 𝑚𝑚-th derivative of a function 𝑓𝑓(𝑥𝑥) with respect to 𝑥𝑥 at point 𝑥𝑥 = 𝑥𝑥𝑥𝑥  is 
approximated by the sum over the product of weighting coefficients 𝜌𝜌𝑥𝑥,𝑗𝑗𝑚𝑚  and the values 
of the function at 𝑥𝑥 = 𝑥𝑥𝑗𝑗. Here, 𝑁𝑁 and 𝑀𝑀 stand for the number of the grid points and 
the order of the highest derivative in the differential equation.  

In (Bellman et al., 1972) two different approaches for determining the weighting 
coefficients are introduced: 

• In the first approach, such simple functions as test functions were utilized, but 
when the sampling points are relatively large, the coefficient matrix becomes 
ill conditioned; 

• In the second approach, similarly, simple functions are used as test functions, 
but the grid points are chosen as the roots of shifted Legendre polynomial. 

To overcome the abovementioned shortcomings, the DQM was generalized in (Shu 
et al., 1990; 1992; Shu, 1991, 2000). In the latter studies, the Lagrange interpolating 
polynomials were employed as the set of tests functions.  The advantages of the 
generalized differential quadrature method (GDQM) can be outlined as: 

• The weighting coefficients of the first and higher order derivatives can be 
computed by a simple algebraic formula and a recurrence relationship, 
respectively; 

• There are no restrictions on the distribution of discrete grid points.  

Applying the Lagrangian interpolation formula, the weighting coefficients for the 
first order derivative can be computed as (Shu, 1991): 
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𝜌𝜌𝑥𝑥,𝑗𝑗
(1) = 𝑀𝑀(𝑥𝑥𝑖𝑖)

�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�∗𝑀𝑀(𝑥𝑥𝑗𝑗)
    𝑖𝑖 = 1, 2, … ,𝑁𝑁, 𝑗𝑗 = 1, 2, … ,𝑁𝑁,   𝑖𝑖 ≠ 𝑗𝑗, (1.10) 

𝜌𝜌𝑥𝑥,𝑥𝑥
(1) = −∑ 𝜌𝜌𝑥𝑥,𝑗𝑗

(1)𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑥𝑥     𝑖𝑖 = 1, 2, … ,𝑁𝑁. (1.11) 

where 
 
 𝑀𝑀(𝑥𝑥𝑥𝑥) = ∏ (𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑘𝑘) 𝑁𝑁

𝑘𝑘=1,𝑘𝑘≠𝑥𝑥 ,      𝑖𝑖 = 1, 2, … ,𝑁𝑁. (1.12) 
 
Similarly, the weighting coefficients for the higher order derivative can be determined 
by using such recurrence relationship as (Shu, 1991): 
 

𝜌𝜌𝑥𝑥,𝑗𝑗
(𝑚𝑚) = 𝑚𝑚�𝜌𝜌𝑥𝑥,𝑗𝑗

(1)𝜌𝜌𝑥𝑥,𝑥𝑥
(𝑚𝑚−1) −

𝐴𝐴𝑖𝑖,𝑗𝑗
(𝑚𝑚−1)

�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�
�     𝑖𝑖 = 1, 2, … ,𝑁𝑁, 𝑗𝑗 = 1, 2, … ,𝑁𝑁,   𝑖𝑖 ≠ 𝑗𝑗,𝑚𝑚 = 2,3, . ..

 (1.13) 

𝜌𝜌𝑥𝑥,𝑥𝑥
(𝑚𝑚) = −∑ 𝜌𝜌𝑥𝑥,𝑗𝑗

(𝑚𝑚)𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑥𝑥     𝑖𝑖 = 1, 2, … ,𝑁𝑁. (1.14) 

For the discretization points, the normalized Gauss-Chebychev – Lobatto distribution is 
a frequently used method 
 
𝑥𝑥𝑥𝑥 = 1

2
�1 − 𝑐𝑐𝑓𝑓𝑒𝑒 �(𝑥𝑥−1)𝜋𝜋

𝑁𝑁−1
��  , 𝑖𝑖 = 1, 2, … ,𝑁𝑁. (1.15) 

 
In the current study, the GDQM has been used for the comparison of the results.  
 

1.2.2 Finite difference method (FDM) 

The finite difference approximation to solve differential equations has been known 
already from the 18th century for a one-dimension space and was extended for a  two-
dimension space at the beginning of the 20th century.  

The principle of finite difference methods is to approximate the differential 
operator by replacing the derivatives in the equation using differential quotients. The 
domain is partitioned in space and in time and approximations of the solution are 
computed at the space or time points. 
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Figure 1.2 Geometric interpretation of the finite difference method 

By definition of the derivative 
 
 𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

= lim
∆𝑥𝑥→0

𝑓𝑓𝑖𝑖+1−𝑓𝑓𝑖𝑖
∆𝑥𝑥

≈ ∆𝑓𝑓
∆𝑥𝑥

 ,       where     𝑥𝑥𝑥𝑥+1 = 𝑥𝑥 + ∆𝑥𝑥,      𝑓𝑓𝑥𝑥+1 = 𝑓𝑓( 𝑥𝑥𝑥𝑥+1).  (1.16) 
 
It can be seen from the graph (Figure 1.2) and from the formula (1.16) that the more ∆𝑥𝑥 
tends to 0, the closer the values between the differential and difference of the rate 
change of the function. 

The simplest finite difference schemes for the approximation of the first derivative 
can be outlined as (LeVeque, 2005): 
 
Forward difference scheme:         𝑑𝑑𝑓𝑓(𝑥𝑥)

𝑑𝑑𝑥𝑥
�
𝑥𝑥=𝑥𝑥𝑖𝑖

= 𝑓𝑓𝑖𝑖+1−𝑓𝑓𝑖𝑖
∆𝑥𝑥

, (1.17) 

 
Backward difference scheme:      𝑑𝑑𝑓𝑓(𝑥𝑥)

𝑑𝑑𝑥𝑥
�
𝑥𝑥=𝑥𝑥𝑖𝑖

= 𝑓𝑓𝑖𝑖−𝑓𝑓𝑖𝑖−1
∆𝑥𝑥

, (1.18) 

 
Central difference scheme:          𝑑𝑑𝑓𝑓(𝑥𝑥)

𝑑𝑑𝑥𝑥
�
𝑥𝑥=𝑥𝑥𝑖𝑖

= 𝑓𝑓𝑖𝑖+1−𝑓𝑓𝑖𝑖−1
2∆𝑥𝑥

. (1.19) 

 
Note that the central difference scheme is a second order scheme (error 𝑂𝑂(ℎ2)), and 
the remaining two schemes are first order schemes. The accuracy of the forward and 
backward schemes (also central scheme) can be improved by including new terms. For 
example, the second order forward difference scheme can be introduced as (LeVeque, 
2005): 
 
𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

�
𝑥𝑥=𝑥𝑥𝑖𝑖

= −𝑓𝑓𝑖𝑖+2+4𝑓𝑓𝑖𝑖+1−3𝑓𝑓𝑖𝑖
2∆𝑥𝑥

. (1.20) 

 
The simplest second order scheme, i.e. the central difference scheme, is 
computationally the cheapest and most widely used approach. This approach is also 
used in the current study. The higher order derivatives included in the governing 
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equations of the FG and nanostructures considered can be approximated by the second 
order central difference scheme as (LeVeque, 2005): 
 

 𝑑𝑑
2𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥2

�
𝑥𝑥=𝑥𝑥𝑖𝑖

= 𝑓𝑓𝑖𝑖+1−2𝑓𝑓𝑖𝑖+𝑓𝑓𝑖𝑖−1
∆𝑥𝑥2

, (1.21) 

 
𝑑𝑑3𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥3

�
𝑥𝑥=𝑥𝑥𝑖𝑖

= 𝑓𝑓𝑖𝑖+2−2𝑓𝑓𝑖𝑖+1+2𝑓𝑓𝑖𝑖−1−𝑓𝑓𝑖𝑖−2
2∆𝑥𝑥3

, (1.22) 

 
𝑑𝑑4𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥4

�
𝑥𝑥=𝑥𝑥𝑖𝑖

= 𝑓𝑓𝑖𝑖+2−4𝑓𝑓𝑖𝑖+1+6𝑓𝑓𝑖𝑖−4𝑓𝑓𝑖𝑖−1−𝑓𝑓𝑖𝑖−2
∆𝑥𝑥4

. (1.23) 

 
Substituting the approximations of the derivatives (1.19), (1.21)-(1.23) in the governing 
differential equations (e.g. in (1.6)), we obtain the system of algebraic equations with 
respect to the values of the function 𝑓𝑓𝑥𝑥  in node points 𝑥𝑥𝑥𝑥. Thus, solution of the latter 
algebraic system results in the solution of the governing differential equation(s) in node 
points 𝑥𝑥𝑥𝑥. 

1.2.3 Finite element method (FEM) 

Finite element method (FEM) is a numerical method that grew out of aerospace and 
civil engineering for solving problems with complicated geometries, loadings and 
material properties. Nowadays, FEM is obviously the most widely used mathematical 
method in engineering design and it is difficult to underestimate the role of FEM.   

In FEM, the physical structure (one-, two- or three-dimensional solid) is divided 
hypothetically into an assembly of small parts called finite elements (Zienkiewicz, 1977). 
The finite elements are interconnected at points common to two or more elements and 
boundary lines/surfaces. The connection points of the two or more elements are called 
nodes. There is no overlapping, neither are there any cracks or surfaces between the 
elements. The complete set of elements is known as a mesh.   

In the finite element analysis, the accuracy of the solution is judged by “mesh” 
convergence, checking difference of various solutions of the same problem. H-refinement 
and p-refinement are two main methods of mesh refinement, to find out the size of the 
elements where the results are not affected by changing the size of the mesh. In the  
h-refinement method, using the same element type, the existing elements are divided into 
two or more elements. In the p-refinement method, the number of elements is not 
changed, but the degree of the polynomial within an element is increased (Moaveni, 2007). 

Benefits of the FEM: 

• Well-developed theory - close relationship between the numerical formulation 
and weak formulation of the PDE problem; 

• A number of powerful software packages that provide selection of materials, 
constitutive laws, pre-processing and post processing tools are available; 

• It offers great freedom in the selection of discretization, both in the elements 
that may be used to discretize space and the basic functions. 
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Some limitations of the FEM: 

• As a rule, in the FEM, software packages/tools are used where the newest 
material models, constitutive laws, etc. are not covered (or covered poorly); 

• Using software packages/tools sets certain limitations for implementing 
features of the particular problems, also user defined material models, etc. 

FEM in its widely used “classical” form is a weak formulation based method, the 
working principle of which is explained on the sample of a simple second order ordinary 
differential equation (ODE) given as (Zienkiewicz, 1977; Mohsen, 1982): 
 
𝑦𝑦′′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥). (1.24) 
 
First, the differential equation (1.24) is multiplied by a trial function  𝑣𝑣(𝑥𝑥)  and 
integrated with the interval [0, 1]. 
 
∫ 𝑦𝑦′′(𝑥𝑥)𝑣𝑣(𝑥𝑥)𝑎𝑎𝑥𝑥1
0 = ∫ 𝑓𝑓(𝑥𝑥)𝑣𝑣(𝑥𝑥)𝑎𝑎𝑥𝑥1

0 . (1.25) 
 
Next, the left hand side of (1.25) is integrated by parts 
 
𝑦𝑦′(𝑥𝑥)𝑣𝑣(𝑥𝑥)|01 − ∫ 𝑦𝑦′(𝑥𝑥)𝑣𝑣′(𝑥𝑥)𝑎𝑎𝑥𝑥1

0 = ∫ 𝑓𝑓(𝑥𝑥)𝑣𝑣(𝑥𝑥)𝑎𝑎𝑥𝑥1
0 . (1.26) 

 
Note that the obtained integral equation includes the derivatives of order one 
(integration by parts reduce the order of the derivative). As a result, the solution of 
(1.26) is less restrictive than that of (1.24). The solution 𝑦𝑦(𝑥𝑥) of (1.24) is required to be 
differentiable, but not twice differentiable.  

Basic steps of the FEM are depicted in Figure 1.3. As a rule, generating mesh and the 
whole second group of activities are performed in most cases by software tools (if not 
own coded method).   
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Figure 1.3 Basic steps of the FEM (http://www.open.edu/openlearn/science-maths-

technology/introduction-finite-element-analysis/content-section-1.6) 
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Since FEM is a powerful but also a more complicated weak formulation based 

method, it is used in the current study for general validation of the FG structures only 
(not for direct comparison). 

1.3 Evaluation criteria 
The evaluation of the Haar Wavelet method is the main aim of the current study.  The 
reference methods were introduced above. However, to analyse and compare the 
methods, certain criteria are needed. A number of criteria characterizing numerical 
methods can be outlined: 

• Consistency - discretization of a PDE should become exact as the mesh size 
tends to zero (truncation error should vanish); 

• Stability - numerical errors which are generated during the solution of 
discretized equations should not be magnified; 

• Convergence - the numerical solution should approach the exact solution of 
the ODE or PDE and converge to it as the mesh size tends to zero (measure – 
rate of convergence); 

• Conservation - underlying conservation laws should be respected at the 
discrete level (artificial sources/sinks are to be avoided); 

• Boundedness - quantities like densities, temperatures, concentrations etc. 
should remain nonnegative and free of spurious wiggles; 

• Accuracy – deviation from exact value (absolute or relative error of the 
particular parameter, absolute or relative error at fixed point, maximum error, 
average error, truncation error etc.); 

• Complexity – number of basic operations needed to perform may be given as a 
complexity class by use of O notation.  
 

In the studies addressing Haar wavelets, most attention is paid to the accuracy, 
convergence and simplicity/complexity of the implementation. Furthermore, similar to 
the well-known traditional methods considered (FD and DQM), the Haar wavelet 
method is characterized as a strong formulation based method with simple 
implementation (Lepik, 2005; Lepik et al., 2014; Hariharan et al., 2014; Majak et al. 
2015a, 2015b; Xie 2014a, 2014b, 2014c; Islam et al., 2014). For that reason, in the 
following, two evaluation criteria - the accuracy and the rate of convergence are 
considered. Obviously, these two criteria are critical for any numerical method.   

1.3.1 Accuracy 

As was pointed out above, a number of characteristics can be used to describe the 
accuracy of the numerical method like HWM, FDM and DQM. Note that in the following, 
different error measures will be introduced for an 1D problem (can be extended for 2D 
and 3D). One of the simplest and most widely used characteristics is the absolute error 
𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎_𝑥𝑥𝑥𝑥_𝑁𝑁 at fixed point 𝑥𝑥 = 𝑥𝑥𝑥𝑥 and mesh size 𝑁𝑁 = 2𝑀𝑀. 
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𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎_𝑥𝑥𝑥𝑥_𝑁𝑁 = |𝑢𝑢𝑁𝑁(𝑥𝑥𝑥𝑥) − 𝑢𝑢𝑓𝑓𝑥𝑥(𝑥𝑥𝑥𝑥)|. (1.27) 

In (1.27)  𝑢𝑢𝑓𝑓𝑥𝑥(𝑥𝑥𝑥𝑥) and 𝑢𝑢𝑁𝑁(𝑥𝑥𝑥𝑥) stand for the values of the exact and obtained numerical 
solutions at point 𝑥𝑥 = 𝑥𝑥𝑥𝑥, respectively (𝑁𝑁 = 2𝑀𝑀). In practice, the absolute error is most 
commonly used, but in cases where the error limit is defined in terms of percentages of 
the quantity, it is reasonable to use the relative error 𝜀𝜀𝑓𝑓𝑓𝑓𝑟𝑟_𝑥𝑥𝑥𝑥_𝑁𝑁_𝑝𝑝𝑓𝑓𝑟𝑟𝑟𝑟 in the following 
form: 

𝜀𝜀𝑓𝑓𝑓𝑓𝑟𝑟_𝑥𝑥𝑥𝑥_𝑁𝑁_𝑝𝑝𝑓𝑓𝑟𝑟𝑟𝑟 = �𝑢𝑢𝑁𝑁(𝑥𝑥𝑖𝑖)−𝑢𝑢𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖)
𝑢𝑢𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖)

� × 100%. (1.28) 

In practice, it is often important to find out a worse situation, i.e. maximum absolute 
error in the whole domain 𝐷𝐷 (in the case of 1D problems, most commonly unit interval 
[0, 1]). In the latter case, the error 𝜀𝜀max _𝑎𝑎𝑎𝑎𝑎𝑎_𝑁𝑁 can be expressed as: 

𝜀𝜀max _𝑎𝑎𝑎𝑎𝑎𝑎_𝑁𝑁 = max
𝑥𝑥𝑥𝑥𝑥𝑥

|𝑢𝑢𝑁𝑁(𝑥𝑥) − 𝑢𝑢𝑓𝑓𝑥𝑥(𝑥𝑥)|. (1.29) 

The problems considered may include other key parameters among numerical solutions 
of the differential equations 𝑢𝑢𝑁𝑁(𝑥𝑥). In the case of free vibration analysis, problems of 
the FG material and nanostructure parameters are the values of eigenfrequencies.   

𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑁𝑁 = �Ω𝑥𝑥,𝑁𝑁 − Ω𝑥𝑥,𝑓𝑓𝑥𝑥�. (1.30) 

In (1.30) Ω𝑥𝑥 and Ω𝑥𝑥,𝑓𝑓𝑥𝑥 stand for the obtained numerical and exact values of the i-th 
eigenfrequencies, respectively. From a practical point of view, the first frequency or 
fundamental frequency is most important. Thus, the two solutions can be compared by 
comparing two scalars (the values of fundamental frequencies), only. For that reason, 
the vibration problems are often selected for the validation of new numerical methods 
in the area of engineering design. 

The error estimates (1.27)-(1.30) are based on the comparison of a numerical 
solution with an exact one, i.e. it assumes that the exact solution is known.  However, 
the exact solution is known in the case of simple test problems only. In the case of most 
problems, the exact solution is unknown and the following integral criteria can be 
employed for estimating the accuracy (Lepik, 2006):  
 

Δ(N) = �𝑆𝑆(2𝑁𝑁)
𝑆𝑆(𝑁𝑁)

− 1�, (1.31) 

where 

S(N) = Δ𝑥𝑥(𝑁𝑁) ∑ |𝑢𝑢𝑁𝑁(𝑥𝑥𝑓𝑓)|2𝑀𝑀
𝑓𝑓=1 . (1.32) 

In (1.32) the notation introduced in section (1.1) is used. Here 𝑁𝑁 = 2𝑀𝑀, Δ𝑥𝑥(𝑁𝑁) = (𝐵𝐵 −
𝜌𝜌)/𝑁𝑁,  
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𝑥𝑥𝑓𝑓 = (2𝑓𝑓−1)Δ𝑥𝑥(𝑁𝑁)

2
,   𝑓𝑓 = 1, … ,𝑁𝑁 and S(N) stands for the area which lies underneath the 

curve  |𝑢𝑢𝑁𝑁(𝑥𝑥)| in the integration domain, respectively. 

1.3.2 Convergence 

Convergence is one of the main characteristics of the numerical methods. Most 
commonly and also herein, the convergence in regard to the mesh is considered (in the 
case of nonlinear problems, convergence to the solution with a fixed mesh can be 
studied additionally). Thus, in the following, the convergence means that at  ∆ℎ → 0 
(here ∆ℎ stands for the step size of the grid), the numerical solution collapses onto the 
exact solution and the error vanishes. However, in practice not only the fact of 
convergence is extremely important, but also how fast the convergence process is,  
i.e. the value of the rate of convergence.    

The numerical rate of convergence can be estimated through the ratio of absolute 
errors computed for two sequential values of the step size ∆h. In the Haar wavelet 
method, it is common to reduce the step size of the grid twice in each iteration, 
i.e. ℎ𝑥𝑥 = ℎ𝑥𝑥−1/2 and the numerical rate of convergence k𝐸𝐸 is given as (Paper III): 

k𝐸𝐸 = 𝑙𝑙og (�
Ω𝑖𝑖,𝑁𝑁/2−Ω𝑖𝑖,𝑒𝑒𝑒𝑒
Ω𝑖𝑖,𝑁𝑁−Ω𝑖𝑖,𝑒𝑒𝑒𝑒

�)/𝑙𝑙og(2). (1.33) 

Obviously, the formula (1.33) can be used only in cases when the exact solution is 
known. When the exact solution is unknown, the numerical rate of convergence can be 
computed using three values of the eigenfrequencies Ω𝑥𝑥,𝑁𝑁/4 , Ω𝑥𝑥,𝑁𝑁/2 and Ω𝑥𝑥,𝑁𝑁 , 
corresponding to the three sequential values of the mesh 𝑁𝑁/4, 𝑁𝑁/2 and 𝑁𝑁, respectively 

k𝐴𝐴 = 𝑙𝑙og (�
Ω𝑖𝑖,𝑁𝑁/4−Ω𝑖𝑖,𝑁𝑁/2

Ω𝑖𝑖,𝑁𝑁/2−Ω𝑖𝑖,𝑁𝑁
�)/𝑙𝑙og(2). (1.34) 

Similarly, formulas (1.33)-(1.34) can be implemented for the function 𝑢𝑢(𝑥𝑥). 
Although the Haar wavelet method was introduced already in 1997 (Chen and Hsiao, 

1997), the theoretical convergence results were open when the current PHD study was 
started. The convergence theorem has been proved in (Paper III) for the n-th order ODE 
( 2n ≥ ). 

THEOREM: Let us assume that )()()( 2 RL
dx

xudxf n

n

∈=  is a continuous function on 

[ ]1,0  and its first derivative is bounded [ ] .)(:1,0 ηη ≤∃∈∀
dx

xdfx  (1.35) 

Then the Haar wavelet method based on the approach (Chen et al., 1997) will be 
convergent, i.e. absolute error ME vanishes as the number of collocation points N
goes to infinity. 
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 The convergence is of order two  

2

2

1
ME O

N
  =   
   

. (1.36)   

Thus, based on the above theorem, the values of the numerical rate of convergence 
computed using (1.33) or (1.34) should tend to two (with growing mesh). 

The theoretical convergence results and evaluation results of the HWM obtained in 
(Paper I, IV) lead to unequivocal corollary - in order to compete with mainstream 
numerical methods in engineering (like FDM, DQM, FEM), the HWM needs further 
improvement.  

1.4 Improved Haar Wavelet Method (HOHWM) 
 
Recently, a new higher order Haar wavelet method approach has been introduced 
(Majak et al., 2018). This approach is based on: 
 

• higher order wavelet expansion, 
• algorithms for determining integration constants.  

 
The higher order wavelet expansion is introduced as: 

 

),()()(
1

2

2

xha
dx

xudxf i
i

isn

sn

∑
∞

=
+

+

==      ,...2,1=s  (1.37) 

 
where n stands for the order of highest derivative included in the differential equation. 
In comparison with the Chen and Hsiao approach, the order of expansion is increased 
by s2 . However, it has been confirmed that the higher order expansion itself may not 
provide higher convergence rate and accuracy if the integration constants are not 
determined appropriately. Note that the number of boundary conditions is equal to n  

and there is a need for additional conditions for determining s2 integration constants. 
In (Majak et al., 2018) two algorithms are proposed based on the use of  
 

− selected uniform grid points, 
− selected Chebyshev-Gauss-Lobatto grid points. 
 

In the case of 1=s , these two algorithms coincide, the selected additional points 
where the differential equation will be satisfied are the boundary points. On the one 
side, the obtained results confirm that the new approach allows principal improvement 
of the accuracy and the rate of convergence (from two to four) even with 1=s . On the 
other side, the double precision computing used (MATLAB) seems not good enough for 
computing at higher values of s ( 1>s ). For that reason, in the current study, the 
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higher order Haar wavelet expansion (1.37) with 1=s  is employed and the differential 
given in the general form 
 

,0),,...,,,( )()1( =′′′ − nn uuuuuxG  (1.38) 
 
is completed by the following two supplemental conditions (in addition to the 
boundary conditions) 
 

0))0(),0(),...0(),0(),0(,0()0( )()1( =′′′= − nn uuuuuGDV , (1.39) 

0))1(),1(),...1(),1(),1(,1()1( )()1( =′′′= − nn uuuuuGDV . (1.40) 

According to (1.37), in the case of 1=s , there are 2+n integration constants from 
which n can be determined from the boundary conditions and two from the conditions 
(1.39)-(1.40). Note that the collocation points used in the widely used HWM (Chen and 
Hsiao approach) are internal points. Thus, there is no conflict with existing and added 
discretization points.  

Similar to the HWM discussed in detail in section 1.1, the coefficients ia  can be 
determined from the linear system obtained by substituting the expansion (1.37) in 
governing differential equations and performing discretization in uniform grid points  
( )N/()l(tl 212 −= , N,...,l 1= ). 

 

1.5 Objectives of the research 
 
Objective and activities: 
The main objective of the current study is to evaluate the Haar wavelet method for the 
analysis of FG structures and nanostructures. The following activities (sub-objectives) 
can be performed to achieve the posed goal.  
 
Activity 1:  

Implementation of the Haar wavelet method for the analysis of the FG structures 
and nanostructures. 

 
Activity 2: 

Comparison of the accuracy of HWM, FDM and DQM based on the case studies 
covering FG structures and nanostructures (absolute error). Analysis and 
comparison of numerical convergence rates. 
 

Activity 3:  
Evaluation of improved HWM, comparison with the widely used HWM (absolute 
error, convergence rate). Complexity analysis. 
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Main hypothesis of the thesis research: 

The main hypotheses of the study can be outlined as: 
 

H1: HWM is known by its simple implementation, which can be confirmed also in 
the case of structural analysis of FG structures and nanostructures.  
 

H2: The accuracy of the HWM and FDM is in the same range. The convergence rate 
is equal to two in the case of both methods. The absolute error of the HWM 
outperforms that of the FDM (observed in the case of considered problems, 
exceptions area available). 

 
H3: The accuracy of the HWM is lower than that of DQM (exceptions may occur at 

high resolution where DQM has certain limitations). Although simple in 
implementation, HWM based on the Chen and Hsiao approach needs 
improvement. 

 
H4: The accuracy of the HWM can be improved substantially. The order of 

convergence can be improved to four and the absolute error can be reduced 
several orders magnitude depending on the mesh level used. The increase of 
complexity can be kept minimal for the problems considered. 

 
H5: Simplicity of the HWM forms a basis for further applications for new materials, 

constitutive models not yet well covered by traditional numerical techniques 
(including nanomaterials, fractional calculus, etc.).    
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2 Evaluation of Haar wavelet method – case studies 

In the following, the HWM has been applied for the analysis of the following two kinds 
of advanced structures: 

- functionally graded structures 
- nanostructures.  

The FG materials have a key role in applications such as interface layers, providing a 
smoother change of material properties and avoiding stress concentrations, cracks, 
spalling, etc. Use of FG material allows often provision of multiple 
properties/functionalities like high strength and thermal resistance (e.g., metal ceramic 
FG materials). Nanomaterials/nanostructures allow the small scale effect to be 
considered.  

2.1 Functionally Graded Structures 
This section gives an overview of FG materials and their advantages, widely used 
models for describing FG material properties and presents a case study to evaluate a 
wide HWM and compare it with improved HOHWM. 

2.1.1 Description of functionally graded materials 

Materials in which the composition, microstructure or porosity are changing across the 
volume in arbitrary direction are called functionally graded materials (FGM). There are 
three main types of FGMs: porosity and pore size gradient-structured FGMs, chemical 
gradient-structured FGMs, and microstructural gradient-structured FGMs (Mahamood 
et al., 2017).  The idea of functionally graded materials is to combine two distinct 
material phases smoothly and continuously to avoid abrupt changes in the stress and 
displacement distributions (Moita et al., 2016) (Figure 2.1). That kind of composition 
constitutes a new material which includes desirable properties of used materials.  

Figure 2.1 Example of stress distributions in Conventional Thermal Shielding and FGM [Gupta A., 
Talha M. (2015)] 
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The principle of FGM is used in sandwich-structured composites, where the inner 
lightweight and thicker core is covered with thick and stiffer skin layers, to obtain a 
strong and lightweight structure. There are two main types of functionally graded 
sandwich-structures: in the first case, the core is functionally graded, in the second case, 
the skins are functionally graded (Figure 2.2).  

 
Figure 2.2 Types of functionally graded sandwich-structure composites 

The structure of FGMs may be graded continuously or step-wise (Figure 2.3). At step-
wise graduation, the multi-layered structure is generated with interfaces existing 
between discrete layers (Miyamoto et al., 1999).   

 
Figure 2.3 Types of graded structures: a) continuously graded structure, b) step-wise graded 

structure 

The shape of this material gradient is an important factor in determining the properties 
of an FGM structure (Sayyad et al., 2018). Obviously, structures can be graded axially, 
through thickness or even in multiple directions simultaneously. 

2.1.2 Modelling properties of the FG material 

In the numerical analysis, the FGM properties of the structure are commonly 
implemented through variation of the elasticity properties, density, volume fraction, 
etc. In the following, four widely used functions for describing the variation of FG 
materials are introduced, where graduation is assumed in the thickness direction.  

The power-law gradient function 
Let us assume that the structure is made of two materials with properties  𝑃𝑃𝐴𝐴 and 𝑃𝑃𝐵𝐵 
and the properties vary through the thickness. The effective material properties of the 
FG structure can be evaluated by applying the rule of mixtures (Chi et al., 2006; 
Bhandari et al., 2015; Sayyad et al., 2018) 

     
𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝐵𝐵 + (𝑃𝑃𝐴𝐴 − 𝑃𝑃𝐵𝐵)𝑉𝑉𝐴𝐴(𝑧𝑧), (2.1) 

https://www.intechopen.com/books/nanocomposites-with-unique-properties-and-applications-in-medicine-and-industry/review-fabrication-of-functionally-graded-materials-under-a-centrifugal-force#B6
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where 𝑉𝑉𝐴𝐴 is the volume fraction function of the material 𝜌𝜌 given as: 
 

𝑉𝑉𝐴𝐴(𝑧𝑧) = �1
2

+ 𝑧𝑧
ℎ
�
𝑝𝑝

    𝑓𝑓𝑓𝑓𝑓𝑓    𝑧𝑧 ∈ [−ℎ/2,ℎ/2],    (0 ≤ 𝑝𝑝 ≤ ∞). (2.2) 
 

In (2.1)-(2.2) ℎ is a thickness of the structure, 𝑧𝑧 - a coordinate in thickness direction,  
 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝐵𝐵 stand for the values of the effective properties of the materials 𝜌𝜌 and 𝐵𝐵, 
respectively. The material variation is described by the non-negative power law 
exponent parameter  𝑝𝑝.  

The exponential-law gradient function 
The function 𝑃𝑃(𝑧𝑧) describing material distribution through thickness can be presented 
as (Chi et al., 2006; Bhandari et al., 2015; Sayyad et al., 2018): 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝐵𝐵𝑒𝑒𝑥𝑥𝑝𝑝 �(
1
2

+ 𝑧𝑧
ℎ

)𝑙𝑙𝑎𝑎 �𝑃𝑃𝐴𝐴
𝑃𝑃𝐵𝐵
��     𝑓𝑓𝑓𝑓𝑓𝑓  𝑧𝑧 ∈ [0, 𝐿𝐿].  (2.3) 

The notation introduced for the power law function is utilized. This function is often 
used especially in the fracture mechanics analyses of functionally graded materials.  

The sigmoid-law gradient function 
If a single power-law function is utilized in the multi-layered composite, the stress 
concentrations appear on one of the interfaces where the material is continuous but 
changes rapidly. Therefore, to provide more smooth distribution of stresses among all the 
interfaces, the two power-law functions can be introduced as in (Chung et al., 2001):  
 

• Anti-symmetric power law function 
 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑚𝑚 + (𝑃𝑃𝑟𝑟 − 𝑃𝑃𝑚𝑚) �1 + �𝑧𝑧
ℎ
− 1

2
�
𝑝𝑝
�    𝑓𝑓𝑓𝑓𝑓𝑓   𝑧𝑧 ∈ �− ℎ

2
, 0�,  (2.4) 

 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑚𝑚 + (𝑃𝑃𝑟𝑟 − 𝑃𝑃𝑚𝑚) �𝑧𝑧
ℎ

+ 1
2
�
𝑝𝑝

   𝑓𝑓𝑓𝑓𝑓𝑓   𝑧𝑧 ∈  �0, ℎ
2
�. (2.5) 

 
• Symmetric power law function 

 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑟𝑟 + (𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑟𝑟) �−2𝑧𝑧
ℎ
�
𝑝𝑝

   𝑓𝑓𝑓𝑓𝑓𝑓   𝑧𝑧 ∈  �− ℎ
2

, 0�, (2.6) 
 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃𝑟𝑟 + (𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑟𝑟) �2𝑧𝑧
ℎ
�
𝑝𝑝

   𝑓𝑓𝑓𝑓𝑓𝑓   𝑧𝑧 ∈  �0, ℎ
2
�. (2.7) 

 
The combination of the two power-law functions is used in the case of bi-sectioned (bi-
layered) structural elements, laminates, etc. 

The Mori-Tanaka’s gradient function 
The micromechanics based approach proposed by (Mori et al., 1973) accounts the 
effect of elastic fields among neighbouring inclusion and its interactions with the 
constituents. It is assumed that the matrix phase is reinforced by spherical particles of a 
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particulate phase. The estimated effective local bulk modulus  𝐾𝐾(𝑧𝑧)  and shear 
modulus 𝐺𝐺(𝑧𝑧)read (Sayyad et al., 2018; Ke et al., 2012) 

𝐾𝐾(𝑧𝑧)−𝐾𝐾𝐴𝐴
𝐾𝐾𝐵𝐵−𝐾𝐾𝐴𝐴

= 𝑉𝑉𝐵𝐵(𝑧𝑧)

1+(1−𝑉𝑉𝐵𝐵(𝑧𝑧))�(𝐾𝐾𝐵𝐵−𝐾𝐾𝐴𝐴)

𝐾𝐾𝐴𝐴+
4
3𝐺𝐺𝐴𝐴)

�
, 𝐺𝐺(𝑧𝑧)−𝐺𝐺𝐴𝐴

𝐺𝐺𝐵𝐵−𝐺𝐺𝐴𝐴
= 𝑉𝑉𝐵𝐵(𝑧𝑧)

1+(1−𝑉𝑉𝐵𝐵(𝑧𝑧))�(𝐺𝐺𝐵𝐵−𝐺𝐺𝐴𝐴)
𝐺𝐺𝐴𝐴+𝑓𝑓𝐴𝐴) �

, (2.8) 

where 

 𝑓𝑓𝐴𝐴 = 𝐺𝐺𝐴𝐴(9𝐾𝐾𝐴𝐴+8𝐺𝐺𝐴𝐴)
6(𝐾𝐾𝐴𝐴+2𝐺𝐺𝐴𝐴)

. 

The effective Young’s modulus and Poisson’s ratio can be derived in terms of  𝐾𝐾(𝑧𝑧) and 
𝐺𝐺(𝑧𝑧) as (Sayyad et al., 2018; Ke et al., 2012; Ebrahimi et al., 2014) 

𝐸𝐸(𝑧𝑧) = 9𝐾𝐾(𝑧𝑧)𝐺𝐺(𝑧𝑧)
3𝐾𝐾(𝑧𝑧)+𝐺𝐺(𝑧𝑧)

,      𝜈𝜈(𝑧𝑧) = 3𝐾𝐾(𝑧𝑧)−2𝐺𝐺(𝑧𝑧)
6𝐾𝐾(𝑧𝑧)+2𝐺𝐺(𝑧𝑧)

. (2.9) 

Note that in the Mori-Tanaka model, it is commonly assumed that the volume fraction 
follows a simple power law (2.2). 

2.1.3 Free vibration analysis of FGM beam 

The case study comprises the formulation of the problem, the user defined procedure 
for modelling the FGM beam (FG beam) using ANSYS and the numerical results. 

Problem formulation 
The free vibration analysis of the FGM beam is considered as one of the two case 
studies for the evaluation of the HWM. On the one hand, it provides exact analytical 
solutions with a better possibility for error estimation and convergence analysis. On the 
other hand, due to varying material properties, the FG structures cover a much wider 
class of problems than isotropic or even orthotropic materials/structures.    

The free vibration analysis of the axially graded FGM Euler-Bernoulli beam of length 
𝐿𝐿 is considered in Figure 2.4.  

Figure 2.4 Beam graded functionally along the x-axis 
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The boundary conditions utilized are depicted in Figure 2.5. 
 

 
Figure 2.5 Boundary conditions for the FGM beam 

 
In the following, two of the above described widely known gradient functions are 

implemented: the exponential and power law functions. However, due to the radial 
graduation direction, the graduation laws differ from (2.2) and (2.4). Radial graduation 
functions applied for the bending stiffness 𝐸𝐸𝐸𝐸(𝑥𝑥) and the distributed mass per unit 
length 𝜌𝜌𝜌𝜌(𝑥𝑥) are given for the exponential law function as (Li et al., 2013; Lu et al., 
2017; Paper I, IV): 
 
 𝐸𝐸𝐸𝐸(𝑥𝑥) = 𝐸𝐸𝐸𝐸(0)𝑒𝑒2𝛽𝛽𝑥𝑥/𝐿𝐿, 𝜌𝜌𝜌𝜌(𝑥𝑥) = 𝜌𝜌𝜌𝜌(0)𝑒𝑒2𝛽𝛽𝑥𝑥/𝐿𝐿, (2.10) 
 
and for the power law function as:  
 

 𝐸𝐸𝐸𝐸(𝑥𝑥) = (𝐸𝐸𝐸𝐸𝐿𝐿 − 𝐸𝐸𝐸𝐸𝑅𝑅) �1 − 𝑥𝑥
𝐿𝐿
�
𝑘𝑘

+ 𝐸𝐸𝐸𝐸𝑅𝑅  ,   𝜌𝜌𝜌𝜌(𝑥𝑥) = (𝜌𝜌𝜌𝜌𝐿𝐿 − 𝜌𝜌𝜌𝜌𝑅𝑅) �1 − 𝑥𝑥
𝐿𝐿
�
𝑘𝑘

+ 𝜌𝜌𝜌𝜌𝑅𝑅. (2.11) 
 
In (2.10) 𝐸𝐸𝐸𝐸(0) and 𝜌𝜌𝜌𝜌(0) stand for the reference values of the bending stiffness and 
distributed mass per unit length at the left end of the beam (𝑥𝑥 = 0). The indexes 𝐿𝐿 and 
𝑅𝑅 in (2.10)-(2.11) refer to the left and right end of the beam, respectively. Note that the 
power law function (2.11) is more flexible than (2.10), allowing provision of different 
material distributions depending on the values assigned to the power law exponent 𝑘𝑘. 
At the exponential law function (2.10), the value of the exponent parameter 𝛽𝛽 is 
determined by the value of the bending stiffness or distributed mass per unit length at 

the right end of the beam (𝛽𝛽 = 1
2

ln (𝐸𝐸𝐸𝐸(𝐿𝐿)
𝐸𝐸𝐸𝐸(0)

)). 

At harmonic vibrations, the governing differential equation of the FG beam 
corresponding to the exponential law function (2.10) can be derived in the non-
dimensional form as (Lu et al., 2017; Paper I, IV): 
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where the non-dimensional coordinate X and the frequency parameter Ω are given 
as: 

L
xX = , Ω = 𝜔𝜔𝐿𝐿2�𝜌𝜌𝐴𝐴(0)

𝐸𝐸𝐸𝐸(0)
 . (2.13) 

Similarly, more comprehensive expressions for the power law function are omitted 
herein for the sake of conciseness.  

The implementation of the HWM, reference methods (FDM and DQM) and also 
improved HOHWM in the case of the particular differential equation considered is 
described in Chapter 1. However, the implementation of the FEM using the software 
package ANSYS is quite different. The standard steps of the ASNYS model development 
are well-known and are omitted herein. However, to model a functionally graded beam, 
the user coded procedure has been developed by the author of the thesis.   

Modelling of FGM beam in ANSYS APDL 
In the FEM analysis, it is assumed that the length of the FGM beam 𝐿𝐿 = 1𝑚𝑚 is divided 
into 𝑁𝑁𝐿𝐿 parts, the cross-section of the beam is square, where the height and the width 
of the cross-section are equal to 𝑏𝑏 = 0.01𝑚𝑚 and are divided respectively into 𝑁𝑁𝑊𝑊 and 
𝑁𝑁𝐻𝐻 parts. 

The elements considered were cubic 3D 8-Node Homogeneous Structural Elements 
SOLID185, which have plasticity, hyperelasticity, stress stiffening, creep, large 
deflection, and large strain capabilities. The FGM beam with two different material 
compositions has been analysed for two symmetric and three non-symmetric boundary 
conditions and for four different finite elements partitions 𝑁𝑁𝑊𝑊𝑥𝑥𝑁𝑁𝐻𝐻𝑥𝑥𝑁𝑁𝐿𝐿respectively 
3x3x300, 4x4x400, 5x5x500 and 10x10x1000 (see Figure 2.6). 

Figure 2.6 Zoomed right end of the FGM beam with finite elements 

The basic steps of the user coded procedure are shown in Fig. 2.7. 
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In (Paper I) commercial analysis software Mechanical APDL 16.0 a 3D finite element 
model was created to model the free vibration analysis problem of an axial functionally 
graded beam. The APDL code was generated for the modelling of the FGM beam that is 
portioned through the length of the beam into a number of strips with constant 
properties. In the code, the varying properties of the bending stiffness 𝐸𝐸𝐸𝐸(𝑥𝑥) and the 
distributed mass per unit length 𝜌𝜌𝜌𝜌(𝑥𝑥) were described for different FG beam material 
compositions.  

Figure 2.7 below shows the scheme describing the user-defined code for adding 
material properties to the finite elements of the functionally graded beam. The 
describable code assumes that the certain FG beam is already divided into cubic shaped 
finite elements and the distribution function is the exponential-law gradient function: 
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Next element will be chosen, 𝑒𝑒𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑒𝑒𝑟𝑟𝑢𝑢𝑓𝑓, 
𝑒𝑒𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑒𝑒𝑛𝑛𝑥𝑥𝑛𝑛 + 1, 𝑒𝑒𝑟𝑟𝑢𝑢𝑓𝑓 = 𝑒𝑒𝑛𝑛𝑥𝑥𝑛𝑛 

𝑒𝑒𝑁𝑁𝑢𝑢𝑚𝑚 >= 𝑒𝑒𝑟𝑟𝑢𝑢𝑓𝑓 

New material with new number will be 
generated (𝑁𝑁 = 𝑁𝑁 + 1)  with new 
properties 

Material properties E and M are calculated 
according to  z and by  corresponding 
material distribution function.  

𝑧𝑧 ≠ 𝑧𝑧𝑐𝑐𝑢𝑢𝑓𝑓 𝑧𝑧 = 𝑧𝑧𝑐𝑐𝑢𝑢𝑓𝑓 

Determination of initial material properties according to 
material distribution function: (E0 (modulus of elasticity 
on right  end of the beam) and M0 (material density on 

right end of the beam) by exponential-law.  Β = 0.549306 

Counting and numbering all finite elements (eNu) in the 
beam, starting from the right end of the beam. 

Determination of the „current“ element (ecur), current 
material properties  (Ecur = E0 and Mcur = M0) and 

current z-coordinate (zcur). 

Determination  of the z-coordinate (z) of the 
center of the smallest counted finite element 
(emin). Assigning certain properties to the 
current element. ecur = emin, zcur = z 

Calculated material properties will 
assign to current finite element: 

EMODIF,ecur,MAT,N 

𝐸𝐸𝑟𝑟𝑢𝑢𝑓𝑓 = 𝐸𝐸 , 𝑀𝑀𝑟𝑟𝑢𝑢𝑓𝑓 = 𝑀𝑀 

Enddo; beam is 
functionally 

graded 

𝑒𝑒𝑁𝑁𝑢𝑢𝑚𝑚 < 𝑒𝑒𝑟𝑟𝑢𝑢𝑓𝑓 

Figure 2.7 Scheme of code for the Finite Element Model 
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Numerical results 
The numerical results were obtained for five boundary conditions depicted in Figure 2.5. 
In Tables 2.1-2.10, the results obtained by applying the widely used HWM (based on Chen 
and Hsiao approach), FDM and DQM are compared at five different boundary conditions.  
 
Table 2.1 Fundamental frequency parameter Ω1 values for a clamped-clamped beam (β=2, exact 
solution 24.78955023) 

N HWM FDM DQM 

 𝛀𝛀𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 21.24272 3.5468  21.21278 3.5768     

8 24.01679 0.7728 2.1984 23.51733 1.2722 1.4913 24.2427724 5.47E-01 5.50 

16 24.60232 0.1872 2.0452 24.43203 0.3575 1.8313 24.7895491 1.08E-06 18.95 

32 24.74310 0.0464 2.0111 24.69728 0.0923 1.9542 24.7895502 5.48E-11 14.27 

64 24.77796 0.0116 2.0028 24.76629 0.0233 1.9883 24.7895502 2.77E-09 -5.66 

128 24.78665 0.0029 2.0007 24.78372 0.0058 1.9971 24.7895501 1.00E-07 -5.18 

256 24.78882 0.0007 2.0002 24.78809 0.0015 1.9993 24.7895509 6.85E-07 -2.77 

Exact:  24.789550 FEM analysis results - 100000 elem. (10x10x1000) 24.8074   

 
Table 2.2 Fundamental frequency parameter Ω2 values for a clamped-clamped beam (β=2, exact 
solution 64.70943426) 

N HWM FDM DQM 

 𝛀𝛀𝟐𝟐 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝛀𝛀𝟐𝟐 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 R𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝛀𝛀𝟐𝟐 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 

4 57.20269 7.5067        

8 62.96688 1.7425 2.1070 57.405312 7.3041  65.2103257 5.01E-01  

16 64.28732 0.4221 2.0455 62.612504 2.0969 1.8004 64.7094620 2.78E-05 14.14 

32 64.60487 0.1046 2.0133 64.163748 0.5457 1.9421 64.7094342 5.13E-11 19.05 

64 64.68335 0.0261 2.0034 64.571582 0.1379 1.9849 64.7094342 2.56E-09 -5.64 

128 64.70291 0.0065 2.0009 64.674880 0.0346 1.9962 64.7094343 7.55E-08 -4.88 

256 64.70780 0.0016 2.0002 64.700790 0.0086 1.9990 64.7094380 3.77E-06 -5.64 

Exact:  64.709434 FEM analysis results - 100000 elem. (10x10x1000) 64.7032   

 
Table 2.3 Fundamental frequency parameter Ω1 values for a pinned-pinned beam (β=2, exact 
solution 8.41047573) 

N HWM FDM DQM 

 𝛀𝛀𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 7.23557 1.1749  8.157141 0.2533     

8 8.11895 0.2915 2.0108 8.332735 0.0777 1.7043 8.4082266 2.25E-03  

16 8.33794 0.0725 2.0069 8.390010 0.0205 1.9255 8.4104757 9.02E-12 27.89 

32 8.39236 0.0181 2.0018 8.405292 0.0052 1.9813 8.4104757 1.55E-10 -4.10 

64 8.40595 0.0045 2.0005 8.409176 0.0013 1.9953 8.4104757 5.78E-08 -8.54 

128 8.40934 0.0011 2.0001 8.410150 0.0003 1.9988 8.4104771 1.37E-06 -4.57 

256 8.41019 0.0003 2.0000 8.410394 0.0001 1.9997 8.4104751 5.93E-07 1.21 

Exact:    8.410475 FEM analysis results - 100000 elem. (10x10x1000) 8.4136   
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Table 2.4 Fundamental frequency parameter Ω2 values for a pinned-pinned beam (β=2, exact 
solution 41.07055822) 

N HWM FDM DQM 

 𝛀𝛀𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 36.59523 4.4753  34.453858 6.6167     

8 39.99909 1.0715 2.0624 39.252370 1.8182 1.8636 41.0759676 5.41E-03  

16 40.80503 0.2655 2.0127 40.603112 0.4674 1.9596 41.0705582 7.27E-10 22.83 

32 41.00432 0.0662 2.0031 40.952833 0.1177 1.9894 41.0705582 5.12E-11 3.83 

64 41.05400 0.0166 2.0008 41.041072 0.0295 1.9973 41.0705583 9.15E-08 -10.8 

128 41.06642 0.0041 2.0002 41.063183 0.0074 1.9993 41.0705586 3.34E-07 -1.87 

256 41.06952 0.0010 2.0000 41.068714 0.0018 1.9998 41.0705603 2.08E-06 -2.64 

Exact:  41.070558 FEM analysis results - 100000 elem. (10x10x1000) 41.0672   

 
Table 2.5 Fundamental frequency parameter Ω1 values for a clamped-pinned beam (β=2, exact 
solution 11.18278324) 

N HWM FDM DQM 

 𝛀𝛀𝟏𝟏 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝛀𝛀𝟏𝟏 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 R𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝛀𝛀𝟏𝟏 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 

4 8.76459 2.4182  9.455451 1.7273     

8 10.64780 0.5350 2.1764 10.572089 0.6107 1.5000 11.1725812 1.02E-02  

16 11.05259 0.1302 2.0389 11.012971 0.1698 1.8465 11.1827832 1.75E-10 25.80 

32 11.15044 0.0323 2.0094 11.139111 0.0437 1.9592 11.1827832 1.53E-11 3.51 

64 11.17471 0.0081 2.0023 11.171786 0.0110 1.9896 11.1827832 2.55E-08 -10.7 

128 11.18076 0.0020 2.0006 11.180029 0.0028 1.9974 11.1827830 2.25E-07 -3.14 

256 11.18227 0.0005 2.0001 11.182094 0.0007 1.9993 11.1827828 3.94E-07 -0.81 

Exact:  11.182783 FEM analysis results - 100000 elem.(10x10x1000) 11.1901   

 
Table 2.6 Fundamental frequency parameter Ω2 values for a clamped-pinned beam (β=2, exact 
solution 48.26066843) 

N HWM FDM DQM 

 𝛀𝛀𝟐𝟐 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝛀𝛀𝟐𝟐 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 R𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝛀𝛀𝟐𝟐 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 

4 41.945882 6.3148  35.930268 12.330     

8 46.799191 1.4615 2.1113 43.888087 4.3726 1.4957 48.3140160 5.33E-02  

16 47.903565 0.3571 2.0330 47.016589 1.2441 1.8134 48.2606684 4.22E-08 20.27 

32 48.171942 0.0887 2.0089 47.938093 0.3226 1.9474 48.2606684 1.22E-11 11.76 

64 48.238522 0.0221 2.0023 48.179262 0.0814 1.9864 48.2606685 4.19E-08 -11.75 

128 48.255134 0.0055 2.0006 48.240268 0.0204 1.9966 48.2606685 8.33E-08 -0.99 

256 48.259285 0.0014 2.0001 48.255565 0.0051 1.9991 48.2606684 1.86E-08 2.16 

Exact:  48.260668 FEM analysis results - 100000 elem.(10x10x1000) 48.2589   

 
Table 2.7 Fundamental frequency parameter Ω1 values for a pinned-clamped beam (β=2, exact 
solution 20.77797932) 

N HWM FDM DQM 

 𝛀𝛀𝟏𝟏 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝛀𝛀𝟏𝟏 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 R𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝛀𝛀𝟏𝟏 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 

4 18.79963 1.9783  19.770973 1.0070     

8 20.30997 0.4680 2.0797 20.506995 0.2710 1.8938 20.7785283 5.49E-04  

16 20.66246 0.1155 2.0184 20.708729 0.0693 1.9683 20.7779793 6.45E-10 19.70 

32 20.74919 0.0288 2.0045 20.760567 0.0174 1.9917 20.7779793 2.67E-11 4.59 
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64 20.77078 0.0072 2.0011 20.773620 0.0044 1.9979 20.7779793 9.10E-09 -8.41 

128 20.77618 0.0018 2.0003 20.776889 0.0011 1.9995 20.7779792 1.13E-07 -3.63 

256 20.77753 0.0004 2.0001 20.777707 0.0003 1.9999 20.7779784 9.49E-07 -3.07 

Exact:  20.777979 FEM analysis results - 100000 elem.(10x10x1000) 20.7897   

 
Table 2.8 Fundamental frequency parameter Ω2 values for a pinned-clamped beam (β=2, exact 
solution 56.29443858) 

N HWM FDM DQM 

 𝛀𝛀𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

8 54.96516 0.4680  52.599124 0.2710     

16 55.96900 0.1155 2.0302 55.338806 0.0693 1.9512 56.0970548 2.18E-07  

32 56.21350 0.0288 2.0075 56.053355 0.0174 1.9869 56.2944388 1.13E-11 14.23 

64 56.27423 0.0072 2.0019 56.234028 0.0044 1.9967 56.2944386 7.51E-09 -9.38 

128 56.28938 0.0018 2.0005 56.279327 0.0011 1.9992 56.2944386 9.66E-08 -3.68 

256 56.29317 0.0004 2.0001 56.290660 0.0003 1.9998 56.2944385 2.37E-06 -4.62 

Exact:  56.294439 FEM analysis results - 100000 elem.(10x10x1000) 56.2907   

 
Table 2.9 Fundamental frequency parameter Ω1 values for a clamped-free beam (β=-0.549306, 
exact solution 4.87119849) 

N HWM FDM DQM 

 𝛀𝛀𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟏𝟏 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 4.92596 0.0548     4.74555243 1.26E-01  

8 4.88462 0.0134 2.0280 4.842031 0.0292  4.87118515 1.33E-05 13.20 

16 4.87454 0.0033 2.0068 4.863858 0.0073 1.9904 4.87119849 7.46E-11 17.44 

32 4.87203 0.0008 2.0017 4.869360 0.0018 1.9974 4.87119849 1.08E-10 -0.54 

64 4.87140 0.0002 2.0004 4.870739 0.0005 2.0004 4.87119860 1.16E-07 -10.1 

128 4.87125 0.0001 2.0001 4.871084 0.0001 2.0049 4.87120710 8.62E-06 -6.21 

256 4.87121 0.0000 2.0000 4.871170 0.0000 2.0069 4.86997855 1.22E-03 -7.15 

Exact:   4.871198 FEM analysis results - 100000 elem.(10x10x1000) 4.8758   

 
Table 2.10 Fundamental frequency parameter Ω2 values for a clamped-free beam (β=-0.549306, 
exact solution 24.42645172) 

N HWM FDM DQM 

 𝛀𝛀𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝛀𝛀𝟐𝟐 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 26.04020 1.6138        

8 24.79828 0.3718 2.1177 23.143597 1.2829  24.4170467 9.41E-03 29.46 

16 24.51767 0.0912 2.0272 24.092313 0.3341 1.9408 24.4264517 1.27E-11 -0.71 

32 24.44915 0.0227 2.0067 24.342014 0.0844 1.9845 24.4264517 2.08E-11 -11.9 

64 24.43212 0.0057 2.0017 24.405285 0.0212 1.9961 24.4264516 8.21E-08 -5.35 

128 24.42786 0.0014 2.0004 24.421156 0.0053 1.9989 24.4264484 3.35E-06 -6.40 

256 24.42680 0.0004 2.0001 24.425128 0.0013 2.0002 24.4261691 2.83E-04 29.46 

Exact:   24.426452 FEM analysis results - 100000 elem.(10x10x1000) 24.4397   

 
Abbrevisions in Tables 2.1-2.10 AbsErr and RConv stand for the absolute error and 

the rate of convergence computed by formulas (1.30) and (1.33), respectively. In all 
Tables 2.1-2.10, the material properties are varied according to the exponential law 
(2.10). 
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It can be observed from Tables 2.1-2.10 that: 
− In all 10 sample problems (5 boundary conditions and first 2 frequencies for 

each), the rate of the convergence of the HWM and FDM methods tends to 
two, but in the HWM, the final value is reached more strictly. 

− In most sample problems (7 of 10), the accuracy (AbsErr) of the HWM 
outperforms that of FDM. However, in the pinned-clamped beam, the accuracy 
of the FDM is higher for both the first and the second frequency and in the 
pinned-pinned beam for the first frequency. Note that in the latter cases, the 
accuracy of the HWM and FDM are nearing to each other with a growing mesh. 

− The accuracy of the HWM and FDM remains in the same range. 
− The accuracy of the DQM is substantially higher than that of the HWM and 

FDM if the number of collocation points is in the range 8-32. With a higher 
mesh, the accuracy of DQM declines, but for a wide class of practical problems, 
the required accuracy is already achieved with 32 collocation points. However, 
such a mesh is not capable of covering local behaviour of the solution. Also, 
DQM is not applicable or gives relatively poor results for the smallest mesh 
considered (N=4, see Table 2.9).  

− The numerical rate of the convergence of DQM is extremely high in a small 
mesh (in range 5-30) and will be negative for a larger mesh. 

− The results obtained by HWM, DQM and FDM are in excellent agreement with 
the exact solution given in table headings and FEM results given in the last row 
of the tables. Since FEM analysis results were obtained using 3D analysis, 
100000 elements and weak formulation based method, the direct/detailed 
comparison with FEM seems not reasonable. 

 
The reason why the exponent parameter β has “normal” value 2 in Tables 2.1-2.8, 

but “strange” value β =-0.549306 in Tables 2.9-2.10 is as follows. The values 2 used in 
Tables 2.1-2.8 were taken from the literature. In Tables 2.9-2.10, it is taken into account 
that the left and right side materials of the beam are steel and aluminium with material 
properties given in Table 2.11.  
 
Table 2.11 Material properties of the aluminium and steel 

Property Unit Steel Aluminium 
𝐸𝐸 GPa 210 70 
𝜌𝜌 kg/m3 7800 2600 

 
Thus, the value of the modulus of the elasticity 𝐸𝐸 varies from 210 GPa to 70 GPa and 

the value of the density 𝜌𝜌 varies from 7800 kg/m3  to 2600 kg/m3. The value of the β is 
computed based on formulas (2.10) and values of material properties given in Table 2.11. 
Table 2.12 shows FEM results in more detail (different mesh) for three boundary 
conditions. 
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Table 2.12 Fundamental frequency parameter values obtained by FEM analysis (β=2) 
Number of 
elements Clamped-Clamped Clamped- Pinned Pinned-Pinned Pinned-Clamped 

 𝛀𝛀𝟏𝟏 𝛀𝛀𝟐𝟐 𝛀𝛀𝟏𝟏 𝛀𝛀𝟐𝟐 𝛀𝛀𝟏𝟏 𝛀𝛀𝟐𝟐 𝛀𝛀𝟏𝟏 𝛀𝛀𝟐𝟐 

3x3x300 24.92177 65.00745 11.24135 48.48355 8.45222 41.25789 20.88545 56.55424 

4x4x400 24.87612 64.88564 11.22081 48.39319 8.43663 41.18073 20.84697 56.44809 

5x5x500 24.84950 64.81488 11.20887 48.34088 8.42762 41.13628 20.82465 56.38673 

10x10x1000 24.80744 64.70323 11.19007 48.25888 8.41360 41.06718 20.78967 56.29065 

Exact sol. 24.78955 64.70943 11.18278 48.26067 8.41048 41.07056 20.77798 56.29444 

 
The convergence of the FEM results to the exact solution given in the last row of 

Table 2.12 can be observed in the case all boundary conditions and frequencies 
considered. 

In Table 2.13 it is suggested that the bending stiffness and distributed mass per unit 
length of the beam are varying according to power law functions (2.11). The material 
properties given in Table 2.11 are considered and the value of the exponent is taken 
equal to 1.5. The first four values of the frequency parameter Ω computed by HWM are 
given for clamped-clamped and clamped-free boundary conditions. 
 
Table 2.13 Fundamental frequency parameter values obtained by HWM (power law fun., 𝒌𝒌 = 𝟏𝟏.𝟓𝟓) 

 Clamped-Clamped Clamped-Free  (Console) 

N 𝛀𝛀𝟏𝟏 𝛀𝛀𝟐𝟐 𝛀𝛀𝟑𝟑 𝛀𝛀𝟒𝟒 𝛀𝛀𝟏𝟏 𝛀𝛀𝟐𝟐 𝛀𝛀𝟑𝟑 𝛀𝛀𝟒𝟒 

8 22.5738 62.6483 124.8020 211.3142 4.8951 24.8537 66.4053 131.2274 

16 22.5598 62.0976 122.0458 202.7884 4.8861 24.5613 64.6866 125.2330 

32 22.5529 61.9585 121.3843 200.7914 4.8855 24.4863 64.2716 123.8332 

64 22.5489 61.9206 121.2166 200.2947 4.8866 24.4653 64.1658 123.4860 

128 22.5463 61.9089 121.1723 200.1682 4.8877 24.4584 64.1373 123.3972 

256 22.5445 61.9044 121.1595 200.1348 4.8887 24.4556 64.1286 123.3733 

512 22.5433 61.9022 121.1551 200.1252 4.8893 24.4541 64.1254 123.3661 

1024 22.5424 61.9008 121.1531 200.1219 4.8898 24.4531 64.1238 123.3635 

 
In the latter case, the exact solution is unknown, but the obtained results are close 

to those obtained by applying the exponent law at the same boundary conditions. In 
general, the exponential and power law functions are different and thus, the results 
may also differ substantially. In the current case, the parameter  𝑘𝑘 in the power law 
function (2.11) is selected such that the material distributions are similar. The variation 
of the elastic modulus corresponding to the exponential and power law functions is 
shown in (Paper I) in Fig.3. 

Tables 2.14-2.16 compare the results obtained by using the  HWM based on 
expansion (1.7) and higher order approach (HOHWM) based on expansion (1.37).   
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Table 2.14 Fundamental frequency parameter Ω1 values, absolute errors and convergence rates 
for a pinned-pinned FGM beam (β=3) 

 HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)  

N Fundamental 
frequency Ω1 

Absolute error Converg. 
rate 

Fundamental 
frequency Ω1 

Absolute error Converg. rate Error ratio 

4 5.49612520 1.35E+00  7.81629606 9.73E-01  
1.4 

8 6.56237797 2.81E-01 2.2627 6.87693058 3.39E-02 4.8442 8.3 

16 6.76542022 7.76E-02 1.8542 6.84538131 2.33E-03 3.8607 33.3 

32 6.82322484 1.98E-02 1.9693 6.84319842 1.49E-04 3.9644 133.0 

64 6.83806767 4.98E-03 1.9927 6.84305841 9.40E-06 3.9908 529.9 

128 6.84180211 1.25E-03 1.9982 6.84304960 5.88E-07 3.9977 2120.6 

256 6.84273719 3.12E-04 1.9995 6.84304905 3.68E-08 3.9995 8473.5 

512 6.84297105 7.80E-05 1.9999 6.84304901 2.29E-09 4.0074 34044.6 

Exact 6.84304901   6.84304901    
  
Table 2.15 Fundamental frequency parameter Ω2 values, absolute errors and convergence rates 
for a pinned-pinned FGM beam (β=3) 

 HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)  

N Frequency Ω2 Absolute error Converg. 
rate Frequency Ω2 Absolute error Converg. rate Error ratio 

4 34.46004357 8.95E+00 
 

43.08502120 3.26E-01 
 

27.5 

8 41.13904609 2.27E+00 1.9781 43.43718723 2.61E-02 3.6437 87.1 

16 42.85246913 5.59E-01 2.0240 43.41285000 1.75E-03 3.8961 318.8 

32 43.27200957 1.39E-01 2.0059 43.41121057 1.13E-04 3.9555 1231.4 

64 43.37636085 3.47E-02 2.0015 43.41110475 7.13E-06 3.9859 4872.5 

128 43.40241562 8.68E-03 2.0004 43.41109806 4.47E-07 3.9960 19431.3 

256 43.40892726 2.17E-03 2.0001 43.41109764 2.80E-08 3.9941 77401.5 

512 43.41055504 5.43E-04 2.0000 43.41109762 3.65E-09 2.9418 148680.8 

Exact 43.41109762   43.41109762    
  
Table 2.16 Fundamental frequency parameter Ω3 values, absolute errors and convergence rates 
for a pinned-pinned FGM beam (β=3) 

 HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)  

N Frequency Ω3 Absolute error Converg. 
rate Frequency Ω3 Absolute error Converg. rate Error ratio 

4 67.93869901 2.63E+01 
 

85.92836185 8.33E+00 
 

3.2 

8 88.96819949 5.29E+00 2.3149 93.89193730 3.66E-01 4.5095 14.5 

16 92.97128669 1.29E+00 2.0398 94.23719747 2.04E-02 4.1616 62.9 

32 93.93811063 3.20E-01 2.0093 94.25640628 1.23E-03 4.0594 260.7 

64 94.17787846 7.98E-02 2.0023 94.25755622 7.57E-05 4.0179 1054.1 

128 94.23770142 1.99E-02 2.0006 94.25762716 4.71E-06 4.0048 4229.1 

256 94.25264975 4.98E-03 2.0001 94.25763158 2.95E-07 3.9991 16904.5 

512 94.25638638 1.25E-03 2.0000 94.25763185 2.51E-08 3.5536 49621.3 

Exact 94.25763187   94.25763187    
  

Obviously, it can be observed from Tables 2.14-2.16 that the HOHWM outperforms 
HWM with the fourth order convergence and absolute error lower than that of HWM 
(in the case of a larger mesh several magnitudes lower). However, the accuracy and 
rate of convergence are not the only measures important from an engineering/practical 
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point of view. The complexities of the solution as well as the implementation of the 
method are important. In the case of the problem and boundary conditions considered, 
the increase of the solution, also implementation complexity are minimal (see details in 
Majak et al., 2018).  

2.2 Nanostructures 
Nanoscience is an emerging research area due to the outstanding mechanical, chemical, 
electrical, optical and electronic properties of nanomaterials/structures. This chapter is 
focused on nanomechanics. Modelling of nanomechanics is under development, but a 
number of approaches and models are available in (Paper II). 

2.2.1 Nonlocal elasticity model 

Classical continuum models neglect the scale effect in nanomaterial studies and 
therefore applicability of classical or local continuum models is  incorrect. On a small 
scale, the influences of long range interatomic and intermolecular cohesive forces on 
the static and dynamic properties become significant and thus could not be neglected 
(Narendar et al., 2012). 

In the analysis of nanostructures, the small-scale effect is most commonly 
introduced by (Elishakov, 2012):   
− nonlocal continuum mechanics or 
− atomic theory of lattice dynamics. 

For taking into account the scale effect, various size-dependent continuum 
mechanics models have been developed, such as nonlocal elasticity theory (Eringen, 
1983), strain gradient theory (Nix et al., 1998), modified couple stress theory (Asghari 
et al., 2010), and couple stress theory (Hadjesfandiari et al., 2011). In the current study, 
the nonlocal Eringen theory is considered (Eringen, 1983).  
 
(1 − 𝑘𝑘∇2)𝜎𝜎𝑥𝑥𝑗𝑗𝑁𝑁𝐿𝐿 = 𝐶𝐶𝑥𝑥𝑗𝑗𝑘𝑘𝑟𝑟𝜀𝜀𝑘𝑘𝑟𝑟 , (2.14) 

𝑘𝑘 = 𝑒𝑒02𝑎𝑎2,  (2.15) 

where 𝜎𝜎𝑥𝑥𝑗𝑗𝑁𝑁𝐿𝐿, 𝜀𝜀𝑘𝑘𝑟𝑟and 𝐶𝐶𝑥𝑥𝑗𝑗𝑘𝑘𝑟𝑟 stand for the nonlocal stress tensor, strain tensor and fourth 
order elasticity tensor, respectively. In (2.14) ∇2 and 𝑘𝑘 stand for the Laplacian operator 

and nonlocal parameter, respectively. The parameters  0e and a  in (2.15) describe 

material properties and internal characteristic length. In the nonlocal elasticity theory, 
the stress at a point is a function of the strains at all points in the domain whereas in 
the classical continuum models, the stress at a point is a function of the strains at those 
points in the domain (Murmu et al., 2010). 
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2.2.2 Free Vibration analysis of nanobeams 

In the following, a brief problem formulation is introduced and numerical results for 
three boundary conditions are presented. 

Problem formulation 
The governing differential equations for the free vibration analysis of the nanobeams 
can be derived similar to classical continuum mechanics, but the classical Hook’s law 
should be replaced with the nonlocal model (2.14). Combining the nonlocal constitutive 
equation (2.14) and the moment deflection relation of the Euler-Bernoully beam, the 
governing differential equation for the nonlocal Euler-Bernoully beam in terms of 
displacement can be derived as in (Paper II): 

W
dX

Wd
LdX

Wd 2
2

2

2

2

4

4

λµλ
=+ ,  (2.16) 

  EILm /42
0

2 ωλ = , (2.17) 

where W is the deflection, L is external length, µ is defined by formula (2.15), ω ,

0m  and EI  stand for natural frequency of vibration, the moment of inertia and 

bending stiffness of the beam, respectively. Detailed derivation is omitted herein for 
conciseness sake; details can be found in (Paper II; Aydogdu, 2009; Elishakov, 2012). 
Obviously, in particular cases when the nonlocal parameter 0=µ , equation (2.16) 

reduces to the classical Euler-Bernoully beam equation. Because the governing 
differential equation of the nonlocal Euler-Bernoully beam (2.16) is a fourth order ODE, 
the traditional and higher order wavelet expansions (1.7) and (1.37) introduced above 
can be applied and the solution can be reached similar that done for FGM beam in 
section 2.1.  

Numerical results 
In the following, two symmetric (pinned-pinned and clamped-clamped) conditions and 
one asymmetric (clamped-pinned) boundary condition are considered (see Fig. 2.5). 
The non-dimensional governing differential equations (2.16) are solved. The value of 
the nonlocal parameter µ is varied from 0 to 5 and the length of the beam is taken 

equal to 10 nm. 
 

a) Pinned-pinned nanobeam 
 

Tables 2.17-2.19 compare the results obtained by the use of HWM, FDM and DQM.  
The values of the fundamental frequency parameter λ=F , absolute error (𝜌𝜌𝑏𝑏𝑒𝑒𝐸𝐸𝑓𝑓𝑓𝑓) 
and rate of convergence (𝑅𝑅𝐶𝐶𝑓𝑓𝑎𝑎𝑣𝑣) are given.  
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Table 2.17 Fundamental frequency parameter F values, rates of convergence and absolute errors 
(μ = 0) 

N HWM FDM DQM 

 F  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 3.161916 2.03E-02  3.061468 8.01E-02  3.26598632 0.12439  

8 3.146649 5.06E-03 2.0069 3.121445 2.01E-02 1.9916 3.14159694 4.29E-06 14.8 

16 3.142855 1.26E-03 2.0021 3.136549 5.04E-03 1.9981 3.14159265 7.48E-13 22.4 

32 3.141908 3.15E-04 2.0006 3.140331 1.26E-03 1.9992 3.14159265 7.03E-12 -3.2 

64 3.141672 7.89E-05 2.0001 3.141277 3.16E-04 1.9989 3.14159266 1.14E-08 -10.7 

128 3.141612 1.97E-05 2.0000 3.141514 7.87E-05 2.0048 3.14159271 5.16E-08 -2.2 

256 3.141598 4.93E-06 2.0000 3.141573 1.97E-05 2.0007 3.14159109 1.57E-06 -4.9 

512 3.141594 1.23E-06 2.0000 3.141588 4.65E-06 2.0784 3.14159932 6.67E-06 -2.1 

Exact:     3.141593  

 
Table 2.18 Fundamental frequency parameter F values, rates of convergence and absolute errors 
(μ = 3) 

N HWM FDM DQM 

 F  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 2.963169 1.88E-02  2.877579 6.68E-02  3.04698895 1.03E-01  

8 2.949087 4.72E-03 1.9930 2.927620 1.67E-02 1.9960 2.94436580 3.56E-06 14.8 

16 2.945544 1.18E-03 1.9988 2.940174 4.19E-03 1.9991 2.94436224 8.44E-15 28.7 

32 2.944658 2.96E-04 1.9997 2.943315 1.05E-03 1.9998 2.94436224 6.62E-14 -3.0 

64 2.944436 7.39E-05 1.9999 2.944100 2.62E-04 1.9976 2.94436224 4.68E-12 -6.1 

128 2.944381 1.85E-05 2.0000 2.944297 6.52E-05 2.0071 2.94436224 7.01E-10 -7.2 

256 2.944367 4.62E-06 2.0000 2.944346 1.62E-05 2.0063 2.94436222 1.96E-08 -4.8 

512 2.944363 1.15E-06 2.0000 2.944358 4.24E-06 1.9379 2.94436204 1.96E-07 -3.3 

Exact:     2.944362  

 
Table 2.19 Fundamental frequency parameter F values, rates of convergence and absolute errors 
(μ = 5) 

N HWM FDM DQM 

 F  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 2.859891 1.80E-02  2.781004 6.08E-02  2.93498048 9.31E-02  

8 2.846396 4.55E-03 1.9868 2.826607 1.52E-02 1.9975 2.84184573 3.24E-06 14.8 

16 2.842983 1.14E-03 1.9973 2.838032 3.81E-03 1.9994 2.84184249 2.62E-14 26.9 

32 2.842128 2.85E-04 1.9993 2.840890 9.52E-04 2.0002 2.84184249 2.36E-13 -3.2 

64 2.841914 7.13E-05 1.9998 2.841604 2.38E-04 1.9978 2.84184249 2.67E-12 -3.5 

128 2.841860 1.78E-05 2.0000 2.841783 5.95E-05 2.0031 2.84184249 6.68E-10 -8.0 

256 2.841847 4.46E-06 2.0000 2.841828 1.45E-05 2.0373 2.84184248 1.86E-08 -4.8 

512 2.841844 1.11E-06 2.0000 2.841839 3.49E-06 2.0526 2.84184231 1.89E-07 -3.3 

Exact:     2.841842  

 
In Table 2.17-2.19, the nonlocal parameter μ is varied from 0 to 5 and the results 

are compared against exact solution given in (Wang et al., 2007).   
It can be observed from Tables 2.17-2.19 that the absolute error of the Haar 

wavelet method is less than that of the finite difference method, but remains in the 
same range. The numerical rate of convergence tends to two in both methods, 
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independent of the value of nonlocal parameter μ. With a growing mesh (see case 
N=512), the rate of convergence of the FDM has significant deviations from 2, which 
refers to the loss of accuracy.  The convergence of the DQM is extremely fast in the 
case of a small mesh (N=16, N=32) and decline to negative values thereafter. Also, 
Tables 2.17-2.19 show that in the case of the smallest mesh considered N=4, the 
frequency computed by DQM has largest deviation from the final values to that 
solution converge (i.e., the DQM has the largest absolute error for N=4). The 
convergence to the same final value is obvious with all the methods utilized. Note that 
the small scale effect is significant. Increase of the nonlocal parameter from 0 to 5 
causes a decrease of the fundamental frequency from 3.141593 to 2.841842.  

 
b) Clamped-clamped nanobeam 
 

The results obtained by use of HWM, FDM and DQM are presented in Table 2.17.  The 
value of the nonlocal parameter µ is taken equal to five in order to cover the small 
scale effect (nonlocal behaviour). 
 
Table 2.20 Fundamental frequency parameter F values and rates of convergence (μ = 5) 

N HWM FDM DQM 

 F  𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 4.252952  3.832771  4.125996322243  

8 4.207325  4.095779  4.191209634539  

16 4.195622 2.0817 4.167331 1.8781 4.191682530895 7.11 

32 4.192669 2.0018 4.185572 1.9718 4.191682530902 26.14 

64 4.191929 1.9993 4.190153 1.9932 4.191682530908 -0.10 

128 4.191744 1.9998 4.191300 1.9983 4.191682531462 -6.34 

256 4.191698 1.9999 4.191587 1.9996 4.191682527306 -2.91 

512 4.191686 2.0000 4.191659 2.0006 4.191682535006 -0.89 

 
The structure of Table 2.20 differs from that of Tables 2.17-2.19. The columns for 

the absolute error are omitted, since closed form exact solution not given. Also, the 
rate of convergence is computed by utilizing formula (1.34), i.e. without the use of 
exact solution. Again, the rate of convergence of the HWM and FDM tends to two, but 
in HWM it is more strict. The DQM has excellent convergence at 16 and 32 collocation 
points. High accuracy is achieved fast (10 digits after comma coincide), thereafter the 
rate of convergence turns to negative and the accuracy is lost due to computing errors 
(double precision computing used). 
     

c) Clamped-pinned nanobeam 
 

Table 2.21 compares the results obtained by use of HWM, FDM and DQM.  The 
structure of Table 2.21 coincides with that of Table 2.20 and the same value of the 
nonlocal parameter µ is used (µ =5). 
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Table 2.21 Fundamental frequency parameter F values and rates of convergence (μ = 5)     
N HWM FDM DQM 

 F  𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  R𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 F  𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

4 3.535756  3.320272  3.481931648438  

8 3.510894  3.455128  3.502377143331  

16 3.504564 1.9737 3.490504 1.9306 3.502443568840 8.27 

32 3.502974 1.9932 3.499452 1.9831 3.502443568841 27.11 

64 3.502576 1.9983 3.501695 1.9958 3.502443568833 -4.07 

128 3.502477 1.9996 3.502256 1.9990 3.502443569003 -4.46 

256 3.502452 1.9999 3.502397 2.0000 3.502443575002 -5.14 

512 3.502446 2.0000 3.502431 2.0489 3.502443511944 -3.39 

 
     The behaviour of the solutions obtained by applying HWM, FDM and DQM is similar 
to that described for clamped – clamped nanobeam. The asymmetric boundary 
conditions do not affect this behaviour.  High number of decimal places for DQM is 
used to show that up to 10 digits after comma coincide at N=16, N=32 and N=64.  
  
Tables 2.22-2.23 compare the results obtained by the widely used HWM and HOHWM.   
 
Table 2.22 Fundamental frequency parameter Ω1 values, absolute errors and convergence rates 
for pinned-pinned nanobeam (μ = 3) 

 HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)  

N Frequency Ω1 Absolute error Converg. 
rate Frequency Ω1 Absolute error Converg. rate Error ratio 

4 2.9631691775 1.88E-02 
 

2.9454323919 1.07E-03 
 

17.6 

8 2.9490867632 4.72E-03 1.9930 2.9444268262 6.46E-05 4.0504 73.1 

16 2.9455443778 1.18E-03 1.9988 2.9443662390 4.00E-06 4.0129 295.5 

32 2.9446578302 2.96E-04 1.9997 2.9443624877 2.49E-07 4.0032 1184.8 

64 2.9444361397 7.39E-05 1.9999 2.9443622538 1.56E-08 4.0008 4742.0 

128 2.9443807138 1.85E-05 2.0000 2.9443622392 9.74E-10 4.0004 18973.2 

256 2.9443668571 4.62E-06 2.0000 2.9443622383 6.28E-11 3.9559 73607.9 

512 2.9443633929 1.15E-06 2.0000 2.9443622382 2.84E-12 4.4650 406411.2 

Exact 2.9443622382 
  

2.9443622382 
   

  
Table 2.23 Fundamental frequency parameter Ω1 values, absolute errors and convergence rates 
for pinned-pinned nanobeam (μ = 5) 

 HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)  

N Frequency Ω1 Absolute error Converg. 
rate Frequency Ω1 Absolute error Converg. rate Error ratio 

4 2.8598908866 1.80E-02 
 

2.8428724147 1.03E-03 0 17.5 

8 2.8463961818 4.55E-03 1.9868 2.8419047893 6.23E-05 4.0473 73.1 

16 2.8429830790 1.14E-03 1.9973 2.8418463546 3.86E-06 4.0121 295.4 

32 2.8421277689 2.85E-04 1.9993 2.8418427345 2.41E-07 4.0031 1184.7 

64 2.8419138205 7.13E-05 1.9998 2.8418425088 1.50E-08 4.0008 4742.0 

128 2.8418603259 1.78E-05 2.0000 2.8418424947 9.40E-10 4.0004 18973.1 

256 2.8418469518 4.46E-06 2.0000 2.8418424938 6.06E-11 3.9559 73608.3 

512 2.8418436082 1.11E-06 2.0000 2.8418424937 2.74E-12 4.4641 406162.2 

Exact 2.8418424937 
  

2.8418424937 
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Similar to the FGM beam considered above, the HOHWM outperforms HWM in 
accuracy. The complexities of the solution and implementation have a minimal increase 
in the case of the considered problem and boundary conditions. However, the 
complexities of the solution and implementation depend on the problem considered, 
the boundary conditions applied, effectiveness of the implementation, etc.  
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3 Conclusions 
 
According to the main goal set for the thesis research, the Chen and Hsiao wavelet 
expansion based on the Haar Wavelet method was applied in the analysis of 
functionally graded structures and nanostructures, to study the accuracy of the 
numerical results, simplicity of the implementation and complexity of the solution of 
the HWM.  The numerical results from the analysis were validated against the results 
obtained by the finite difference and differential quadrature methods (FDM and DQM). 
The reference method FDM and DQM were selected as widely used strong formulation 
based numerical methods in engineering. These methods are known for simple 
implementation as well as the HWM considered. In the case of FGM structures, the 
general validation was performed additionally by FEM (more complex weak formulation 
based method). Based on the numerical analysis performed for FGM and 
nanostructures, the following conclusions can be made for the activities set at the early 
stage of the current research: 
 

1. The results obtained by HWM are in good agreement with those obtained 
by FDM, DQM and FEM for all numerical samples performed for FGM and 
nanostructures. 

2. Implementation of HWM appeared simple in all the problems considered. 
3. The accuracy of the HWM is in the same range of those of FDM. The rate 

of convergence tends to two in both methods, but this process is stricter 
in HWM. For most samples considered, the accuracy of the HWM was 
higher, however, not for all cases. 

4. The accuracy of the HWM appeared lower than that of DQM, except at 
high resolution where DQM has complications. 

5. The improved wavelet method HOHWM tested in the current study 
provides an increase of the rate of convergence from two to four and a 
decrease of the absolute error for several orders of magnitude depending 
on the mesh level used. 

6. HOHWM with improved accuracy is more competitive and has 
preliminaries for use in future for the analysis of new materials and 
constitutive models.  
 

The above conclusions cover the work hypotheses posed in the introduction of the 
study.   
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The scientific novelty 
The comparison of HWM with mainstream methods in engineering (FDM, DQM)  in the 
current study leads to a principally new understanding – the accuracy of widely used 
HWM is substantially lower than that of DQM and in the same range with FDM.  

Results of the validation of widely used HWM against FDM and DQM obtained in the 
current study form a reason and a base for the development of an improved HOHWM. 

Testing of new HOHWM led to accuracy higher than that initially expected. Also, 
some tests performed provide input for design/configure HOHWM.  

 

Future work 

HOHWM presented in the current study showed good results on the basis of the 
analysed case studies and evaluation criteria against HWM. To acquire a clearer picture 
of the strengths and weaknesses of HOHWM, further studies are required. Therefore, 
the focus in the future work will be on the application and evaluation of HOHWM for a 
wider class of engineering design problems. 
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Abstract 

Evaluation of Haar wavelet method for analysis of functionally 
graded and nanostructures 

Advanced materials, like functionally graded materials and nanomaterials, are 
increasingly used in various structures and products, but the numerical techniques 
available for the analysis of FG structures and nanostructures are limited in comparison 
with traditional solid mechanics. Based on the literature, the most popular methods for 
the analysis of FG structures and nanostructures are FDM, DQM and FEM that may be 
classified as the most widely used methods in engineering design. From recent methods, 
the Haar wavelet method has been reported as a simple and an effective method; 
however, most commonly, HWM has been evaluated based on its simplicity of 
implementation and reasonable absolute error against other simple and strong 
formulation based methods. Thus, comparisons of the method with mainstream 
methods in engineering design appear insufficient. 

The main objective of the current study was to evaluate HWM for the analysis of FG 
and nanostructures based on the comparison with FDM, DQM and FEM. This thesis 
research is based on the published articles. 

Chapter 1 introduces the widely used Chen and Hsiao approach based  Haar wavelet 
method and reference methods FDM, DQM and FEM. Next, the evaluation criteria are 
described. The absolute error and the rate of convergence, also simplicity of the 
implementation of the method, are considered as evaluation criteria. At the end of 
Chapter 1, the basics of the higher order Haar wavelet method (HOHWM) are given.  

Chapter 2 presents two case studies for evaluating the Haar wavelet method for the 
analysis of FG and nanostructures. The problem of case study 1 was the free vibration 
analysis of the FGM beam; the following steps were taken: 

 
• FG materials and FG structures were reviewed with their advantages 

pointed out. 
• Four widely used gradient functions were described. 
• Free vibration analysis of an axially graded FG Euler-Bernoulli beam was 

made by applying HWM, FDM and DQM.  Five different boundary 
conditions and two gradient functions (exponential law and power law) 
were examined. 

• User code was developed for modelling an axially graded 3D FG beam in 
ANSYS APDL and the FEM analysis was performed. 

• HOHWM was compared with the widely used Chen and Hsiao approach 
based HWM. 

• The results were compared according to the evaluation criteria and the 
conclusions were made.  
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The problem of case study 2 was the free vibration analysis of the nanobeam and 

the following steps were performed: 
 

• The nonlocal elasticity theory considering the small scale effect was 
introduced. 

• Free vibration analysis of the nonlocal Bernoulli – Euler nanobeam was 
performed at three different boundary conditions. 

• The HOHWM was compared with the widely used Chen and Hsiao 
approach based HWM. 

• The results were compared according to the evaluation criteria and the 
conclusions were made.  
 

The main goal of the study was achieved. The comparison of HWM with mainstream 
methods in engineering design leads to a principally new understanding about the 
accuracy of HWM in relation to FDM and DQM. The obtained results form a basis for 
the development of an improved Haar wavelet method. 
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Lühikokkuvõte 

Haar’i lainikute meetodi hindamine funktsionaalgradient- ja  
nanostruktuuride analüüsiks 

Uued materjalid, nagu funktsionaalse gradiendiga materjalid ja nanomaterjalid, leiavad 
üha enam kasutamist erinevates konstruktsioonides ja toodetes, kuid numbrilised 
meetodid, mis võimaldaks funktsionaalgradient- ja nanostruktuure analüüsida, on 
piiratud võrreldes sarnaste meetoditega traditsioonilise tahke keha mehaanika jaoks. 
Lähtuvalt kirjandusest on kõige populaarsemad meetodid funktsionaalgradient- 
struktuuride ja nanostruktuuride analüüsimiseks lõplike vahede meetod (LVM), 
diferentsiaalkvadratuuride meetod (DKM) ja (lõplike elementide meetod (LEM), mida 
võib klassifitseerida kõige levinumateks meetoditeks insenerirakendustes. Uuematest 
meetoditest on esile tõstetud Haari lainikute meetodit (HLM), kui lihtsat ja efektiivset 
meetodit lähtudes meetodi rakendatavuse lihtsusest ja mõõdukast absoluutsest veast, 
võrreldes teiste lihtsate tugeval formulatsioonil põhinevate meetoditega. HLM võrdlust 
insenerirakendustes laialdaselt kasutatavate numbriliste meetoditega (LVM, DKM) leiab 
kirjandusest  vähe.  

Käesoleva uurimustöö peamine eesmärk on hinnata Haari lainikute meetodit 
funktsionaalgradient- ja nanostruktuuride analüüsimiseks lähtudes võrdlusest 
insenerirakendustes laialdaselt kasutatavate tugeval formulatsioonil põhinevate 
meetoditega (LVM,DKM). Käesolev töö põhineb avaldatud artiklitel.    

Esimeses peatükis tutvustatakse Chen ja Hsiao aproksimatsioonil baseeruvat Haari 
lainikute meetodit ning referentsmeetodeid FDM, DQM ja LEM (see viimane on 
keerukam nõrgal formulatsioonil põhinev meetod ning seda kasutatakse üldiseks 
evalveerimiseks). Seejärel on antud ülevaade hindamiskriteeriumidest, milleks 
kasutatakse absoluutset viga ja koonduvuskiirust aga ka meetodi rakendamise 
keerukust. Esimese peatüki lõpus tutvustatakse kõrgemat järku Haari lainikute meetodi 
(KJHLM) üldist tööpõhimõtet. 

Teises peatükis on toodud kaks rakendusnäidet Haari lainikute meetodi hindamiseks 
funktsionaalgradient- ja nanostruktuuride analüüsiks. Esimese rakendusnäite 
probleemiks oli funktsionaalse gradiendiga materjalist tala vabavõnkumise analüüs, 
mille realiseerimiseks teostati järgmised sammud: 

 
• Anti lühike ülevaade funktsionaalse gradiendiga materjalidest ja 

struktuuridest ning nende eelistest; 
• Kirjeldati nelja peamist gradiendi funktsiooni; 
• Kasutades HLM, LVM ja DKM meetodeid teostati vabavõnkumise analüüs 

pikitelje sihis gradueeritud funktsionaalse gradiendiga materialist Euler-
Bernoulli talale viiel erinevatel rajatingimustel ning kahe erineva 
gradiendifunktsiooni korral;  
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• Koostati programmikood modelleerimaks ANSYS APDL tarkvaras ruumiline 
pikitelje sihiliselt gradueeritud  funktsionaalse gradiendiga materjalist tala 
ning teostati arvutused lõplike elementide meetodil; 

• Võrreldi KJHLM-i ja Chen ja Hsiao aproksimatsioonil põhinevat meetodit; 
• Rakendusnäite tulemusi võrreldi vastavalt hindamiskriteeriumitele ja toodi 

välja järeldused. 
 

Teise rakendusnäite probleemiks oli nanotala vabavõnkumise analüüs, mille 
realiseerimiseks teostati  järgmised sammud: 

 
• Tutvustati mastaabiefekti arvessevõtvat mittelokaalset elastsusteooriat;  
• Teostati mittelokaalse Bernoulli – Euler tala vabavõnkumise analüüs kolme 

rajatingimuse jaoks;  
• Võrreldi KJHLM-dit ja  Chen ja Hsiao aproksimatsioonil baseeruvat Haari 

lainikute meetodit; 
• Rakendusnäite tulemusi võrreldi vastavalt hindamiskriteeriumitele ja toodi 

välja järeldused.  
 

Käesoleva töö peamine eesmärk on saavutatud. Haari lainikute meetodi evalveerimine 
andis uue arusaamise HLM-i täpsuse osas võrreldes peamiste insenerirakendustes 
kasutatavate meetoditega (LVM ja DKM). Saadud tulemused loovad baasi Haari 
lainikute meetodi edasiarendamiseks.  
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Appendix 
 
 
 
 
 
 
 
 
 
 
 
PUBLICATION I 

 
Kirs, M., Karjust, K., Aziz, I., Õunapuu, E., Tungel, E. (2018). Free vibration analysis of a 
functionally graded material beam: evaluation of the Haar wavelet method. 
Proceedings of the Estonian Academy of Sciences, 67 (1), 1−9.  
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