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Introduction

Nanomaterials (NM) and functionally graded materials (FGM) are becoming
increasingly popular, allowing marked improvement of the efficiency of different types
of structures and products. Nanomaterials and nanotechnologies are advancing
continually in various research areas from mechanics, physics, chemistry to biology and
medicine. Adding nanoparticles or graphene in the matrix of a composite is one of the
simplest and most widely used techniques for producing materials with improved
properties such as stiffness, strength, thermal and electrical conductivity, wear
resistance, etc. (Ekrem et al., 2016). Nanocomposites are most commonly produced
from polymer, ceramics or metal by applying various techniques like vapour phase
processing, powder metallurgy and solidification processing, etc. In practice, FG
materials are utilized most commonly as interfaces between two different materials.
For example, the metal-ceramic interface allows excellent strength and thermal
properties of the material simultaneously as well as avoiding stress concentrations
caused by sharp changes in material properties. Both FG and nanomaterials have found
application in the automotive and aerospace industry (reinforcement, thermal
protection), energy industry (batteries, solar cells, fuel cells), electronics (sensors,
actuators), medicine (a nanoparticle can pass through the lining of the intestines into
the bloodstream).

Current study addresses numerical modelling of the stress-strain behaviour of FGM
and NM. A number of numerical methods are available in the literature for the analysis
of solid structures. The choice of the numerical method for solving a particular problem
is rather complicated due to the presence of a huge number of techniques. The
selection of a numerical method depends mainly on the nature of the problem, also on
the commercial software available. However, problems related to advanced material
models and constitutive laws are much less covered by existing numerical techniques
and commercial software. Obviously, the material models for FGM and NM belong to
the latter class of problems and the numerical techniques available for the analysis of
FG and nanomaterials are still limited in comparison with traditional solid mechanics.
Based on the literature review, the author has observed that the finite difference
method (FDM), differential quadrature method (DQM) and finite element method
(FEM) are most frequently used for the analysis of FG and nanostructures. These
methods can be classified as most widely used in engineering design. From most recent
methods, the Haar wavelet method (HWM) has been pointed out as a simple and
effective method for solving a wide class of differential and integral equations covering
FG materials (Lepik et al., 2014; Hariharan et al., 2014; Feklistova et al., 2015). However,
most commonly, these evaluations are based on its simplicity of implementation and
reasonable absolute error against other simple and strong formulation based methods
like the Semi-orthogonal B-spline wavelet method, Legendre polynomials and block-



pulse functions approach, triangular functions method (Islam et al., 2013a), and quantic
spline-based approach (Majak et al., 2009a).
Thus, in the early stage of the current study:

e on the one hand, HWM was considered as a perspective method (simple and
effective);

e on the other hand, the author was unable to find from the literature
comparisons of HWM with mainstream methods in engineering design like
FDM and DQM, neither any proved convergence results for HWM.

Motivation of the current study is based on the latter two facts. Detailed analysis and
evaluation of the HWM was planned.

Main goal of the current study is to evaluate HWM for the analysis of FG and
nanostructures based on the comparison with widely used methods in engineering
design. The accuracy of the numerical results and simplicity of the implementation, also
complexity of the solution, are the topics of interest. The following activities have been
performed in order to achieve the posed goal.

Activity 1:
e Implementation of the Haar wavelet method for the analysis of the FGM
and nanostructures
Activity 2:
e Comparison of the accuracy of HWM, FDM and DQM based on the case
studies covering FGM and nanostructures (absolute error)
e  Analysis and comparison of numerical convergence rates
Activity 3:
e Evaluation of improved HWM, comparison with widely used HWM
(absolute error, convergence rate)
e  Complexity analysis

The novelties of the current study can be outlined as follows:

e The comparison of HWM with widely used methods in engineering design
leads to a principally new understanding — the Chen and Hsiao approach
based HWM needs improvement in order to compete with mainstream
methods in engineering design. The conclusion made formed a basis for the
development of a higher order Haar wavelet method (HOHWM).

e Testing of HOHWM produced unexpectedly accurate results. However, these
results need validation for the particular problems considered.

The main results of the study have been published in peer-reviewed journal papers
and presented at a number of conferences.



Abbreviations

AbsErr
APDL
pamM
FDM
FEM
FG
FGM
GDQM
HOHWM
HWM
NM
ODE
PDE

RConv

Absolute Error

Ansys Parametric Design Language
Differential Quadrature Method
Finite Difference Method

Finite Element Method

Functionally Graded

Functionally Graded Materials
Generalized Differential Quadrature Method
Higher Order Haar Wavelet Method
Haar Wavelet Method
Nanomaterials

Ordinary Differential Equation
Partially Differential Equation

Rate of Convergence
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Symbols

Greek

B

€abs_xi_N

eabs,freq,N
€max_abs_N

Erel_xi_N_proc

(1)
& (@)
5(1)
n
Ah

A(N)

Ax

pA(0)
PA(x)

Qi,ex

Qin

Latin

[4,B]
(m)
Apj

DV (0)

EI(0)

value of the exponent parameter
absolute error at fixed point x=x;and mesh size N

absolute error of i-th eigenfrequency with mesh size
N

maximum absolute error with mesh size N

relative error at fixed point x=x;and mesh size N in
percentages

initial point of the i-th wavelet

midpoint of the i-th wavelet

endpoint of the i-th wavelet

upper bound for derivative
step size of the grid

relative increase of the area underneath the curve
[uM (x)|, x € [0,1] for one iteration step
length of subinterval
product - product of all values in range of series
density

reference value of distributed mass per unit length
of the beam at x=0

distributed mass per unit length
summation
frequency parameter
exact value of the i-th eigenfrequency

numerical value of i-th eigenfrequency with mesh
size N

eigenfrequency of the beam

cross-section of the beam
closed interval {x|]A < x < B}
weighting coefficient for the m-th order derivative
coefficient of i-th Haar wavelet
differential equation at point x=0
Young’s modulus

reference value of bending stiffness of the beam at
x=0
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El(x) bending stiffness

”EM ”2 L2 norm of error function
G(X, u,u’, U”,...U(n_l) ) U(n)) =0, general form of ODE
G(2) effective local shear modulus
h;(x) i-th Haar wavelet
! area moment of inertia of the beam cross-section
about the axis of interest
J maximum value of dilatation parameter
j dilatation parameter
k translation parameter
! numerical rate of convergence when exact solution
is unknown
KE numerical rate of convergence when exact solution
is known
K(z) effective local bulk modulus
L length of the beam
M maximum level of resolution
m level of the wavelet
N number of collocation points (mesh size)
Py value of the effective property of material A
P, value of the effective property of ceramic
Py value of the effective property of material B
P, value of the effective property of metal
Pn,i(x) n-th order integral of Haar function
P(2) effective material property according to z
coordinate
C](X) load of the beam
SBT (X) boundary term
S(N) area underneath the curve [u" (x)| in interval [0,1]
z coordinate in thickness direction
t [-th uniform grid point for discretization
V() volume fraction function of the material A according
A to z coordinate
v(x) trial function
W corresponding amplitude function
W(X) transverse deflection of the beam at position x
X non-dimensional coordinate
X variable, unknown value to find
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1 Theoretical background

The Haar wavelet method was introduced by Chen and Hsiao (Chen et al., 1997) to
solve differential equations. According to this approach, the highest order derivative
included in the differential equation is expanded into the series of Haar functions. Most
commonly, approximations are proposed to solve the differential equation. However,
the Haar functions are not differentiable due to their piece-wise constant character.
Thus, expanding the solution of the differential equation into Haar wavelets causes
problems in the evaluation of the derivatives included in the differential equation. For
that reason, an approach proposed by Chen and Hsiao has been used during two
decades as mainstream in the Haar wavelet method for solving a wide class of ordinary
(Hsiao, 1997; Lepik, 2005; Majak et al., 2009a, Xie et al., 2013, 2014a, 2014b, 2014c;
Lepik, 2009; Paper Il) and partial (Lepik, 2007a, 2007b; 2011; Jiwari, 2012; Islam et al.,
2013a; Arbabi et al., 2017) differential equations. In (Hsiao, 1997) the state analysis of
the linear time delayed systems is reported. In (Lepik, 2005) the segmentation method
is proposed, according to which the interval of integration is divided into segments
(reduced Haar transform). Both ordinary and partial differential equations are covered.
The vibration analysis of the rectangular tapered composite plates, cylindrical shells
and composite laminated cylindrical shells is reported in (Majak et al., 2009a), (Xie et al.,
2013; 2014), respectively. In these studies, first, the partial differential governing
equations are converted to an ordinary differential equation (ODE) by changing of
variables and then the HWM is applied to ODE. In (Paper 1) HWM is applied to the
vibration analysis of nanobeams. The two-dimensional Haar wavelet method was
developed in (Lepik, 2011) and applied for the solution of diffusion and Poisson as well
as evolution equations. In (Jiwari, 2012) the HWM is adapted for solving Burgers’
equation. The parabolic partial differential equations (PDE) are explored in (Islam et al.,
2013a) by implementing the Haar and Legendre wavelet methods. Solution of systems
of PDE by applying HWM is studied in (Arbabi et al., 2017). In all of these papers, the
strong formulation based approach has been applied, i.e. the wavelet expansions for
solution and its derivatives are inserted to original differential equations. The weak
formulation based HWM approach is developed in (Majak, 2009b) and applied for
solving the nonlinear Burgers equation. Despite weak formulation, the Chen and Hsiao
approach has been applied in this study. An alternative approach how to overcome
non-smooth properties of Haar wavelets is proposed in (Cattani, 2005; Castro et al.,
2010), where the regularization of quadratic waves has been performed (for example,
smoothing with interpolating splines). In the latter case, the solution of the differential
equation can be expanded into Haar wavelets (regularized) and all necessary
derivatives computed. However, such regularization is an additional task and the
simplicity of the method is blemished. For that reason, the latter approach is not widely
applied.
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The HWM proposed by Chen and Hsiao for the solution of differential equations has
been extended to solve integro-differential (Lepik, 2006; Islam et al., 2013, 2014;
Babaaghaie et al., 2017; Kumar et al., 2018) and integral equations (Lepik 2008; Aziz
et al.,, 2013, 2014). In (Lepik, 2006) the Haar wavelet method is developed for nonlinear
Volterra integral equations and integro-differential equations. The Newton method is
applied for handling nonlinearity. Modified HWM approach for solving integral and
integro-differential equations is proposed in (Islam et al., 2013, 2014; Aziz 2013; Singh
et al,, 2016). According to this approach, the Kernel function is expanded into wavelets
(also, the highest order derivative if it exists in an integro-differential equation). In
earlier studies, the Kernel function was expanded into 2D Haar wavelets (Islam et al.,
2013; Aziz 2013). Later in (Islam et al., 2014), the Kernel function is expanded into 1D
wavelets, which allows reduction of the computational cost of the algorithm. In recent
studies (Babaaghaie et al.,, 2017; Kumar et al.,, 2018), HWM is applied for solving
nonlinear two-dimensional partial integro-differential equations. Lepik (Lepik, 2008)
adapted HWM for solving integral equations. In (Lepik, 2008) HWM for non-uniform
grid was developed. In (Aziz et al., 2014) HWM based solution procedure is developed
for nonlinear Volterra and Fredholm integral equations. Nonlinear Volterra integral
equations of the first kind were explored by applying HWM in (Singh et al., 2016).

New methods are often used to solve problems covering advanced material and
constitutive models for which commercial software and solution methods are not yet
available. One emerging research area is the solution of fractional differential and
integral equations (Lepik, 2009; Ray et al., 2014; Ray, 2012; Saeed et al., 2013, 2014,
2015; Li et al., 2014; Wang et al., 2014; Yi et al., 2014; Majak et al., 2016). Fractional
derivatives allow us to describe more accurately real world materials and processes
(e.g. viscoelastic materials). One of the pioneering studies here was conducted by Lepik.
In (Lepik, 2009) an HWM based solution procedure was developed for fractional linear
Volterra and Fredholm integral equations. In (Ray et al., 2014) the HWM is adapted for
solving the fractional order stationary neutron transport equation. Fractional
differential equations were solved first by applying HWM in (Lepik, 2009), where the
differential equation of fractional harmonic vibration was converted into the Volterra
integral equation and then solved numerically. Li and Zhao (Li et al., 2010) and Ray (Ray,
2012) introduced the Haar wavelet operational matrix method for the numerical
solution of the fractional Bagley Torvik equation. The solution obtained by Ray (Ray,
2012) validated the results against an analytical solution given in (Podlubny, 1999). The
Haar wavelet operational matrix method has been employed by Yi and Huang (Yi et al.,
2014) for solving fractional differential equations with variable coefficients and by Li
et al. (Li et al., 2014) for solving the Riccati differential equation. By applying the
quasilinearization technique, the HWM is adapted for solving fractional nonlinear
differential equations in (Saeed et al., 2013, 2014, 2015). In (Wang et al., 2014) a
truncated Haar wavelet series together with the wavelet operational matrix are used to
reduce the fractional partial differential equations to Sylvester equations. In (Majak
et al., 2016) it is reported that in the case of fractional ODE, the order of convergence

14



of the Haar wavelet method is equal to two if a higher order derivative a in the
fractional differential equation exceeds one (a>1). However, in the case of 0< a<1, the
order of convergence of the Haar wavelet method tends to the value 1+ a.

From the point of view of the current thesis research, the studies addressing
composite and nanostructures are most interesting. The composite structures were
explored by HWM in (Chun et al., 2007; Majak et al., 2009a; Hein et al., 2011; Jin et al.,
2013, 2014; Xie et al., 2014a, 2014b, 2014c; Paper 1). In (Majak, 2009a) the free
vibration analysis of the multilayer composite plate is performed and possibilities for
higher order wavelet expansion are discussed. In (Hein et al., 2011) delamination of the
composite beam is studied. In (Xie et al., 2014b, 2014c; Jin et al., 2014) the HWM is
adapted for the vibration analysis of conical and cylindrical shells and a general
approach for handling boundary conditions is introduced. Functionally graded (FG)
structures were studied by applying HWM in (Chun et al., 2007; Jin et al., 2014; Xie
et al., 2014a; Paper I, IV). In (Chun et al., 2007) the HWM is employed for the stress-
strain analysis of 3D functionally graded plate. First, the trigonometric expansion is
utilized and the governing differential equations are converted to ordinary differential
equations (ODE). Next, the HWM is implemented for solving a system of ODE. Free
vibration analysis of FG conical and cylindrical shells is covered in (Jin et al., 2014; Xie
et al., 2014a). In (Paper I, IV) main attention is paid to the comparison of HWM with
widely used numerical methods in engineering (finite difference method-FDM,
differential quadrature method-DQM, finite element method-FEM), also to the
accuracy analysis. The author has not found studies addressing the structural analysis
of nanostructures by employing HWM. In (Paper Il) an attempt is made to adapt HWM
for the vibration analysis of nanobeams using the Eringen’s nonlocal elasticity model. In
(Majak et al., 2013) the design of graphene laminate is optimized considering
orientations of layers as design variables and maximal fundamental frequency as an
objective.

The HWM has been successfully applied in all abovementioned studies.
Furthermore, this method was considered commonly as simple and effective; later it
was confirmed also in a review paper (Hariharan et al., 2014) and a monograph (Lepik
et al.,, 2014). However, as pointed out above, the HWM is a simple rather than a
powerful and widely used numerical method for structural analysis like FDM, DQM and
FEM. Also, in the early phase of the current study, the theoretical convergence results
for the Chen and Hsiao approach based HWM were not yet available.

In the current study, an attempt is made to cover at least partially the
abovementioned white spaces, i.e. to evaluate HWM for the analysis of FGM and
nanostructures based on their comparison with widely used numerical methods in
engineering design. Planned study includes detailed analysis and comparison of the
accuracy and numerical convergence rates.

15



1.1 Haar wavelet method (HWM)
The Haar wavelet is a sequence of rescaled "square-shaped" functions which together
form a wavelet family or a basis (see Figure 1.1). It was proposed in 1909 by Alfred Haar
to give an orthonormal system for the space of square-integrable functions on the unit
interval [0, 1].

The i-th Haar wavelet is defined as (Lepik, 2014):

1 forx € [g (i), &(D),
hi(x) = § =1 for x € [g,(1), £3(D)), (1.1)
0 elsewhere,

where
& () = A+ 2kuAx, &) = A+ 2k + DuAx,
&) = A+ 2(k + Dulx, u=M/m. (1.2)

Haar wavelets are defined in the interval x € [A, B], where A and B are given constants.
The interval [4, B] is divided into 2M subintervals of equal length, where the length of
each subinterval Ax = (B — A)/(2M). The integerm = 2/ (j = 0,1, ... ,]) indicates
the level of the wavelet and j is called the dilatation parameter (when we increase the
value of j, then the wavelet narrows down). Maximum level of the resolution is
denoted by M = 2/. The parameter k = 0,1, ... ,m — 1 is the translation parameter; it
indicates the location of the particular square wave (Figure 1.1).

The index i is calculated according to the formula i = m + k + 1; at minimal values,
j=0,m=1,k =0 anditimplies that i = 2, at maximum values, i = 2M = 2/*1 Itis
assumed that the value i = 1 corresponds to the scaling function for which h; = 1in
the whole interval [0,1] and vanishes elsewhere.

The n-th order integrals of the Haar function (1.1) can be computed as:

0 for  xe[A&())

(X—e;(l)) for xela®&®) o
Poi (X) = (X—é(i))"—nf(x—fz(‘))" for  xe[&, (i), &)
(x—é(i))”—2(x—riz(i))”+(x—<fs(‘))” for  xel£().B)

Any integrable and finite function in the interval [4, B] can be expanded into Haar

wavelets as:
f(x) =D aih(x). (14)
i=1

However, in the numerical calculation, the sum (1.4) is limited to the finite number of
the terms

16



fy (X) = %ai h.(x). (1.5)

Let us consider the Euler-Bernoully beam equation as a simple sample

o'w(x)

= 1.6
El v q(x), (1.6)

where W(X) is the deflection of the beam, El and ( stand for the flexural rigidity and

load terms, respectively. According to the approach proposed by Chen and Hsiao (Chen
et al.,, 1997), the higher order derivative included in the differential equation is
expanded into the Haar wavelet, i.e.

£(x) :%:iaihi(x). (7)

The solution of the differential Eq. (1.6) U(X) can be obtained by integrating the
relation (1.7) N times

a1X4 w 2141
U(X) = 4 + Z Z a21+k+1 p4,21+k+1(x) + SBT (X)
: j=0 k=0 (1.8)

In (1.8) Sgr (X) stand for the boundary term and P, 2,-+k+l(X) is computed according
to relations (1.3).

Substituting the solution (1.8) and all its derivatives in the differential equation (1.6)
(in the considered simple sample only fourth order derivative is present in (1.6)),
satisfying boundary conditions and taking into account the finite number of terms, one

obtains a linear algebraic system with respect to coefficients &; (uniform grid points
t, =(21-1)/(2N ), 1 =1,...,N are used for discretization). After determining the

coefficients @;, the value of the solution U(X) can be computed in any point in the

interval [4, B] by use of the formula (1.8). Obviously, the HWM introduced above can
be applied for solving a wide class of ordinary and partial differential equations.
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Figure 1.1 Eight first Haar wavelets
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1.2 Reference methods

Two strong formulation based numerical methods FDM and DQM used widely in
engineering design are considered as reference methods for the evaluation of the Haar
wavelet method. The FEM as a more complex weak formulation based method is used
for general validation/comparison. In the following, a short description of the reference
methods and FEM is given to review basic working principles and formulas.

1.2.1 Differential quadrature method (DQM)

The differential quadrature method is a numerical solution technique developed by
Richard Bellman in the early 1970s for initial and/or boundary problems. The idea of
the DQM is that the solution domain is discretized into N sampling points and the
derivatives at any point are approximated by a weighted sum of function values at
discrete points in the variable domain.

d™f(x)
dMmx  ly=

=¥, AT« f(x),  fori=1,2,..,Nandm=1,2,..,M. (19)
X g

In (1.9) the m-th derivative of a function f(x) with respect to x at point x = x; is
approximated by the sum over the product of weighting coefficients A{’j and the values
of the function at x = x;. Here, N and M stand for the number of the grid points and
the order of the highest derivative in the differential equation.

In (Bellman et al., 1972) two different approaches for determining the weighting
coefficients are introduced:

e In the first approach, such simple functions as test functions were utilized, but
when the sampling points are relatively large, the coefficient matrix becomes
ill conditioned;

e In the second approach, similarly, simple functions are used as test functions,
but the grid points are chosen as the roots of shifted Legendre polynomial.

To overcome the abovementioned shortcomings, the DQM was generalized in (Shu
et al., 1990; 1992; Shu, 1991, 2000). In the latter studies, the Lagrange interpolating
polynomials were employed as the set of tests functions. The advantages of the
generalized differential quadrature method (GDQM) can be outlined as:

e The weighting coefficients of the first and higher order derivatives can be
computed by a simple algebraic formula and a recurrence relationship,
respectively;

e There are no restrictions on the distribution of discrete grid points.

Applying the Lagrangian interpolation formula, the weighting coefficients for the
first order derivative can be computed as (Shu, 1991):
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M (x;)

AL@}].) = G o) i=12,..,N, j=12,..,N, i #j, (1.10)
AP =30, LAY i=12,.,N (1.12)
where

M(x) = [Tty gwii — %), i=1,2,...,N. (1.12)

Similarly, the weighting coefficients for the higher order derivative can be determined
by using such recurrence relationship as (Shu, 1991):

(m-1)
m) _ () ym-1) _ Aij : _ D
A =mlA A = i=12,..,N,j=1,2,..,N, i#jm=23,..
(1.13)
AT = =3 AT i=1,2,.,N. (1.14)

For the discretization points, the normalized Gauss-Chebychev — Lobatto distribution is
a frequently used method

X, = %[1 — cos (“};_11”)] i=1,2,..,N. (1.15)

In the current study, the GDQM has been used for the comparison of the results.

1.2.2 Finite difference method (FDM)

The finite difference approximation to solve differential equations has been known
already from the 18th century for a one-dimension space and was extended for a two-
dimension space at the beginning of the 20th century.

The principle of finite difference methods is to approximate the differential
operator by replacing the derivatives in the equation using differential quotients. The
domain is partitioned in space and in time and approximations of the solution are
computed at the space or time points.
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Figure 1.2 Geometric interpretation of the finite difference method
By definition of the derivative

e _ i Fierfi A

o = Am = o+ Where X, =x+Ax, firr = f(xi41)- (1.16)

It can be seen from the graph (Figure 1.2) and from the formula (1.16) that the more Ax
tends to 0, the closer the values between the differential and difference of the rate
change of the function.

The simplest finite difference schemes for the approximation of the first derivative
can be outlined as (LeVeque, 2005):

Forward difference scheme: 4 (x) =i fi (1.17)
dx lx=x; Ax

Backward difference scheme: L& = m, (1.18)
dx lx=x; Ax

Central difference scheme: Y| =L Sima (1.19)
dx |x=xi 2Ax

Note that the central difference scheme is a second order scheme (error 0(h?)), and
the remaining two schemes are first order schemes. The accuracy of the forward and
backward schemes (also central scheme) can be improved by including new terms. For
example, the second order forward difference scheme can be introduced as (LeVeque,
2005):

df(x) — “fira+4fiva—3fi (1.20)

ax lx=x; 2Ax

The simplest second order scheme, i.e. the central difference scheme, is
computationally the cheapest and most widely used approach. This approach is also
used in the current study. The higher order derivatives included in the governing
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equations of the FG and nanostructures considered can be approximated by the second
order central difference scheme as (LeVeque, 2005):

d?f(x) — fiva=2fitfia (1.21)
dx? ly=y; Ax? ! '
d3f(x) — fit2=2fiv1+2fi-1—fi2 (1.22)
dx3 ly=y, 2Ax3 ! '
d*f(x) _ five=4fi41+6fi—4fi-1—fi—2
dx* lx=x; - Ax* ’ (1.23)

Substituting the approximations of the derivatives (1.19), (1.21)-(1.23) in the governing
differential equations (e.g. in (1.6)), we obtain the system of algebraic equations with
respect to the values of the function f; in node points x;. Thus, solution of the latter
algebraic system results in the solution of the governing differential equation(s) in node
points x;.

1.2.3 Finite element method (FEM)

Finite element method (FEM) is a numerical method that grew out of aerospace and
civil engineering for solving problems with complicated geometries, loadings and
material properties. Nowadays, FEM is obviously the most widely used mathematical
method in engineering design and it is difficult to underestimate the role of FEM.

In FEM, the physical structure (one-, two- or three-dimensional solid) is divided
hypothetically into an assembly of small parts called finite elements (Zienkiewicz, 1977).
The finite elements are interconnected at points common to two or more elements and
boundary lines/surfaces. The connection points of the two or more elements are called
nodes. There is no overlapping, neither are there any cracks or surfaces between the
elements. The complete set of elements is known as a mesh.

In the finite element analysis, the accuracy of the solution is judged by “mesh”
convergence, checking difference of various solutions of the same problem. H-refinement
and p-refinement are two main methods of mesh refinement, to find out the size of the
elements where the results are not affected by changing the size of the mesh. In the
h-refinement method, using the same element type, the existing elements are divided into
two or more elements. In the p-refinement method, the number of elements is not
changed, but the degree of the polynomial within an element is increased (Moaveni, 2007).

Benefits of the FEM:

e Well-developed theory - close relationship between the numerical formulation
and weak formulation of the PDE problem;

e A number of powerful software packages that provide selection of materials,
constitutive laws, pre-processing and post processing tools are available;

e [t offers great freedom in the selection of discretization, both in the elements
that may be used to discretize space and the basic functions.
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Some limitations of the FEM:

e Asarule, in the FEM, software packages/tools are used where the newest
material models, constitutive laws, etc. are not covered (or covered poorly);

e  Using software packages/tools sets certain limitations for implementing
features of the particular problems, also user defined material models, etc.

FEM in its widely used “classical” form is a weak formulation based method, the
working principle of which is explained on the sample of a simple second order ordinary

differential equation (ODE) given as (Zienkiewicz, 1977; Mohsen, 1982):

y"'(x) = f (). (1.24)

First, the differential equation (1.24) is multiplied by a trial function v(x) and
integrated with the interval [0, 1].

fol y" (X)v(x)dx = folf(x)v(x)dx. (1.25)

Next, the left hand side of (1.25) is integrated by parts

Y Gw@I - [}y (' ()dx = [ f(v()dx. (1.26)

Note that the obtained integral equation includes the derivatives of order one
(integration by parts reduce the order of the derivative). As a result, the solution of
(1.26) is less restrictive than that of (1.24). The solution y(x) of (1.24) is required to be
differentiable, but not twice differentiable.

Basic steps of the FEM are depicted in Figure 1.3. As a rule, generating mesh and the
whole second group of activities are performed in most cases by software tools (if not
own coded method).
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Figure 1.3 Basic steps of the FEM (http://www.open.edu/openlearn/science-maths-
technology/introduction-finite-element-analysis/content-section-1.6)
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Since FEM is a powerful but also a more complicated weak formulation based
method, it is used in the current study for general validation of the FG structures only
(not for direct comparison).

1.3 Evaluation criteria

The evaluation of the Haar Wavelet method is the main aim of the current study. The
reference methods were introduced above. However, to analyse and compare the
methods, certain criteria are needed. A number of criteria characterizing numerical
methods can be outlined:

e Consistency - discretization of a PDE should become exact as the mesh size
tends to zero (truncation error should vanish);

e Stability - numerical errors which are generated during the solution of
discretized equations should not be magnified;

e Convergence - the numerical solution should approach the exact solution of
the ODE or PDE and converge to it as the mesh size tends to zero (measure —
rate of convergence);

e Conservation - underlying conservation laws should be respected at the
discrete level (artificial sources/sinks are to be avoided);

e Boundedness - quantities like densities, temperatures, concentrations etc.
should remain nonnegative and free of spurious wiggles;

e Accuracy — deviation from exact value (absolute or relative error of the
particular parameter, absolute or relative error at fixed point, maximum error,
average error, truncation error etc.);

e Complexity — number of basic operations needed to perform may be given as a
complexity class by use of O notation.

In the studies addressing Haar wavelets, most attention is paid to the accuracy,
convergence and simplicity/complexity of the implementation. Furthermore, similar to
the well-known traditional methods considered (FD and DQM), the Haar wavelet
method is characterized as a strong formulation based method with simple
implementation (Lepik, 2005; Lepik et al., 2014; Hariharan et al., 2014; Majak et al.
2015a, 2015b; Xie 2014a, 2014b, 2014c; Islam et al., 2014). For that reason, in the
following, two evaluation criteria - the accuracy and the rate of convergence are
considered. Obviously, these two criteria are critical for any numerical method.

1.3.1 Accuracy

As was pointed out above, a number of characteristics can be used to describe the
accuracy of the numerical method like HWM, FDM and DQM. Note that in the following,
different error measures will be introduced for an 1D problem (can be extended for 2D
and 3D). One of the simplest and most widely used characteristics is the absolute error
Eaps xi_n at fixed point x = x; and mesh size N = 2M.
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€abs xi N = |uN(xi) - uex(xi)l- (1.27)

In (1.27) u,.,(x;) and uy(x;) stand for the values of the exact and obtained numerical
solutions at point x = x;, respectively (N = 2M). In practice, the absolute error is most
commonly used, but in cases where the error limit is defined in terms of percentages of
the quantity, it is reasonable to use the relative error &.¢; x; v proc in the following
form:

up () —uex ()

£ i = [/ X 100% 1.28

rel_xi_N_proc Yo (X)) 0. ( )
In practice, it is often important to find out a worse situation, i.e. maximum absolute

error in the whole domain D (in the case of 1D problems, most commonly unit interval
[0, 1]). In the latter case, the error &y,.x qps v Can be expressed as:

€max_abs.N = r};leanluN(x) — Uy (X)]. (1.29)

The problems considered may include other key parameters among numerical solutions
of the differential equations uy(x). In the case of free vibration analysis, problems of
the FG material and nanostructure parameters are the values of eigenfrequencies.

Eabs _freq_ N — |QI.N Qi,exl- (1-30)

In (1.30) O; and ; ., stand for the obtained numerical and exact values of the i-th
eigenfrequencies, respectively. From a practical point of view, the first frequency or
fundamental frequency is most important. Thus, the two solutions can be compared by
comparing two scalars (the values of fundamental frequencies), only. For that reason,
the vibration problems are often selected for the validation of new numerical methods
in the area of engineering design.

The error estimates (1.27)-(1.30) are based on the comparison of a numerical
solution with an exact one, i.e. it assumes that the exact solution is known. However,
the exact solution is known in the case of simple test problems only. In the case of most
problems, the exact solution is unknown and the following integral criteria can be
employed for estimating the accuracy (Lepik, 2006):

S(2N)

A(N) = |S(N) , (1.31)
where
S(N) = Ax™ X2M Juy (x,)]. (1.32)

In (1.32) the notation introduced in section (1.1) is used. Here N = 2M, Ax™) = (B —
A)/N,
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_ (2r—1)Ax(N)
L 2
curve |uy(x)|in the integration domain, respectively.

, ¥ =1,...,N and S(N) stands for the area which lies underneath the

1.3.2 Convergence

Convergence is one of the main characteristics of the numerical methods. Most
commonly and also herein, the convergence in regard to the mesh is considered (in the
case of nonlinear problems, convergence to the solution with a fixed mesh can be
studied additionally). Thus, in the following, the convergence means that at Ah — 0
(here Ah stands for the step size of the grid), the numerical solution collapses onto the
exact solution and the error vanishes. However, in practice not only the fact of
convergence is extremely important, but also how fast the convergence process is,
i.e. the value of the rate of convergence.

The numerical rate of convergence can be estimated through the ratio of absolute
errors computed for two sequential values of the step size Ah. In the Haar wavelet
method, it is common to reduce the step size of the grid twice in each iteration,
i.e. h; = h;_;/2 and the numerical rate of convergence k¥ is given as (Paper IlI):

QiN/2=Qjex

kf = log( Y )/log(2). (1.33)

Obviously, the formula (1.33) can be used only in cases when the exact solution is
known. When the exact solution is unknown, the numerical rate of convergence can be
computed using three values of the eigenfrequencies Q;y/s, Q;n/2 and Q;y,
corresponding to the three sequential values of the mesh N/4, N/2 and N, respectively

— lo (|5’iﬂi-9—‘—”—/E )/l0g(2). (1.34)

Similarly, formulas (1.33)-(1.34) can be implemented for the function u(x).

Although the Haar wavelet method was introduced already in 1997 (Chen and Hsiao,
1997), the theoretical convergence results were open when the current PHD study was
started. The convergence theorem has been proved in (Paper lll) for the n-th order ODE

(n=2).

d"u(x)
dx"

THEOREM: Let us assume that f (X) = € LZ(R) is a continuous function on

[0,1] and its first derivative is bounded VX € [O,l] dn

KGR

Then the Haar wavelet method based on the approach (Chen et al.,, 1997) will be
convergent, i.e. absolute error |EM|vanishes as the number of collocation points N

goes to infinity.
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The convergence is of order two

1 2
el =0| (%] | (39

Thus, based on the above theorem, the values of the numerical rate of convergence
computed using (1.33) or (1.34) should tend to two (with growing mesh).

The theoretical convergence results and evaluation results of the HWM obtained in
(Paper I, IV) lead to unequivocal corollary - in order to compete with mainstream
numerical methods in engineering (like FDM, DQM, FEM), the HWM needs further
improvement.

1.4 Improved Haar Wavelet Method (HOHWM)

Recently, a new higher order Haar wavelet method approach has been introduced
(Majak et al., 2018). This approach is based on:

e higher order wavelet expansion,
e algorithms for determining integration constants.

The higher order wavelet expansion is introduced as:

(o = 47U Zah(x) s=12,. (1.37)

d n+2$

where N stands for the order of highest derivative included in the differential equation.
In comparison with the Chen and Hsiao approach, the order of expansion is increased
by 2S. However, it has been confirmed that the higher order expansion itself may not
provide higher convergence rate and accuracy if the integration constants are not
determined appropriately. Note that the number of boundary conditions is equal to n
and there is a need for additional conditions for determining 2S integration constants.
In (Majak et al., 2018) two algorithms are proposed based on the use of

— selected uniform grid points,
— selected Chebyshev-Gauss-Lobatto grid points.

In the case of S=1, these two algorithms coincide, the selected additional points
where the differential equation will be satisfied are the boundary points. On the one
side, the obtained results confirm that the new approach allows principal improvement

of the accuracy and the rate of convergence (from two to four) even with S =1. On the
other side, the double precision computing used (MATLAB) seems not good enough for

computing at higher values of S(S>1). For that reason, in the current study, the
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higher order Haar wavelet expansion (1.37) with S =1 is employed and the differential
given in the general form

G(x,u,u’,u",..u™ uM =0, (1.38)

is completed by the following two supplemental conditions (in addition to the
boundary conditions)

DV (0) = G(0,u(0),u’(0),u”(0),..u"*(0),u™(0)) =0, (1.39)
DV (1) =G(Lu(),u'),u"@),.u"1),u™ 1) =0. (1.40)

According to (1.37), in the case of S =1, there are N+ 2 integration constants from
which N can be determined from the boundary conditions and two from the conditions
(1.39)-(1.40). Note that the collocation points used in the widely used HWM (Chen and
Hsiao approach) are internal points. Thus, there is no conflict with existing and added
discretization points.

Similar to the HWM discussed in detail in section 1.1, the coefficients @, can be

determined from the linear system obtained by substituting the expansion (1.37) in
governing differential equations and performing discretization in uniform grid points

(t, =(21=1)/(2N), 1 =1,..,N).

1.5 Objectives of the research

Objective and activities:

The main objective of the current study is to evaluate the Haar wavelet method for the
analysis of FG structures and nanostructures. The following activities (sub-objectives)
can be performed to achieve the posed goal.

Activity 1:
Implementation of the Haar wavelet method for the analysis of the FG structures
and nanostructures.

Activity 2:
Comparison of the accuracy of HWM, FDM and DQM based on the case studies
covering FG structures and nanostructures (absolute error). Analysis and
comparison of numerical convergence rates.

Activity 3:

Evaluation of improved HWM, comparison with the widely used HWM (absolute
error, convergence rate). Complexity analysis.
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Main hypothesis of the thesis research:

The main hypotheses of the study can be outlined as:

H1:

H2:

H3:

H4:

H5:

HWM is known by its simple implementation, which can be confirmed also in
the case of structural analysis of FG structures and nanostructures.

The accuracy of the HWM and FDM is in the same range. The convergence rate
is equal to two in the case of both methods. The absolute error of the HWM
outperforms that of the FDM (observed in the case of considered problems,
exceptions area available).

The accuracy of the HWM is lower than that of DQM (exceptions may occur at
high resolution where DQM has certain limitations). Although simple in
implementation, HWM based on the Chen and Hsiao approach needs
improvement.

The accuracy of the HWM can be improved substantially. The order of
convergence can be improved to four and the absolute error can be reduced
several orders magnitude depending on the mesh level used. The increase of
complexity can be kept minimal for the problems considered.

Simplicity of the HWM forms a basis for further applications for new materials,

constitutive models not yet well covered by traditional numerical techniques
(including nanomaterials, fractional calculus, etc.).
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2 Evaluation of Haar wavelet method — case studies

In the following, the HWM has been applied for the analysis of the following two kinds
of advanced structures:

- functionally graded structures
- nanostructures.

The FG materials have a key role in applications such as interface layers, providing a
smoother change of material properties and avoiding stress concentrations, cracks,
spalling, etc. Use of FG material allows often provision of multiple
properties/functionalities like high strength and thermal resistance (e.g., metal ceramic
FG materials). Nanomaterials/nanostructures allow the small scale effect to be
considered.

2.1 Functionally Graded Structures

This section gives an overview of FG materials and their advantages, widely used
models for describing FG material properties and presents a case study to evaluate a
wide HWM and compare it with improved HOHWM.

2.1.1 Description of functionally graded materials

Materials in which the composition, microstructure or porosity are changing across the
volume in arbitrary direction are called functionally graded materials (FGM). There are
three main types of FGMs: porosity and pore size gradient-structured FGMs, chemical
gradient-structured FGMs, and microstructural gradient-structured FGMs (Mahamood
et al., 2017). The idea of functionally graded materials is to combine two distinct
material phases smoothly and continuously to avoid abrupt changes in the stress and
displacement distributions (Moita et al., 2016) (Figure 2.1). That kind of composition
constitutes a new material which includes desirable properties of used materials.

Cracking = Spalling
| [ T T —
Compression |/

Tension

Conventional Thermal Shielding  Thermalby Induced Stress

=g &b 1

Compression

'rr Tension

Functionally Graded Material Thermally Induced Stress

Figure 2.1 Example of stress distributions in Conventional Thermal Shielding and FGM [Gupta A.,
Talha M. (2015)]

31



The principle of FGM is used in sandwich-structured composites, where the inner
lightweight and thicker core is covered with thick and stiffer skin layers, to obtain a
strong and lightweight structure. There are two main types of functionally graded
sandwich-structures: in the first case, the core is functionally graded, in the second case,
the skins are functionally graded (Figure 2.2).

Z F4

Skin (ceramic) Skin (FGM)

Core (FGM) Core (ceramic)

Skin (metal)

A B
Figure 2.2 Types of functionally graded sandwich-structure composites

Skin (FGM)

The structure of FGMs may be graded continuously or step-wise (Figure 2.3). At step-
wise graduation, the multi-layered structure is generated with interfaces existing
between discrete layers (Miyamoto et al., 1999).

Figure 2.3 Types of graded structures: a) continuously graded structure, b) step-wise graded
structure

The shape of this material gradient is an important factor in determining the properties
of an FGM structure (Sayyad et al., 2018). Obviously, structures can be graded axially,
through thickness or even in multiple directions simultaneously.

2.1.2 Modelling properties of the FG material

In the numerical analysis, the FGM properties of the structure are commonly
implemented through variation of the elasticity properties, density, volume fraction,
etc. In the following, four widely used functions for describing the variation of FG
materials are introduced, where graduation is assumed in the thickness direction.

The power-law gradient function

Let us assume that the structure is made of two materials with properties P, and Pg
and the properties vary through the thickness. The effective material properties of the
FG structure can be evaluated by applying the rule of mixtures (Chi et al., 2006;
Bhandari et al., 2015; Sayyad et al., 2018)

P(z) = Pg + (Py — Pp)Va(2), (2.1)
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where V, is the volume fraction function of the material A given as:

P
Va(2) = (3+2)" for ze[-h/2,h/2], (0<p< o). (2.2)
In (2.1)-(2.2) his a thickness of the structure, z - a coordinate in thickness direction,
P, and Py stand for the values of the effective properties of the materials A and B,
respectively. The material variation is described by the non-negative power law
exponent parameter p.

The exponential-law gradient function
The function P(z) describing material distribution through thickness can be presented
as (Chi et al., 2006; Bhandari et al., 2015; Sayyad et al., 2018):

P(z) = Pgexp [(i + i)ln (ﬁ—’;)] for z €[0,L]. (2.3)

The notation introduced for the power law function is utilized. This function is often
used especially in the fracture mechanics analyses of functionally graded materials.

The sigmoid-law gradient function

If a single power-law function is utilized in the multi-layered composite, the stress
concentrations appear on one of the interfaces where the material is continuous but
changes rapidly. Therefore, to provide more smooth distribution of stresses among all the
interfaces, the two power-law functions can be introduced as in (Chung et al., 2001):

e Anti-symmetric power law function

P(z)=PB,+ (P.— B,) [1 + (% - %)p] for ze€ [—%,0], (2.4)

1

p h
P(z)=PB,+ (P.— B,) (% + 3) for z€ [0,5]. (2.5)
e  Symmetric power law function
P(z) = .+ (Fn — F) (%) for ze€ [—;, 0], (2.6)

P(z) = P. + (P, — P.) (zf)p for ze [0 (2.7)

The combination of the two power-law functions is used in the case of bi-sectioned (bi-
layered) structural elements, laminates, etc.

The Mori-Tanaka’s gradient function

The micromechanics based approach proposed by (Mori et al., 1973) accounts the
effect of elastic fields among neighbouring inclusion and its interactions with the
constituents. It is assumed that the matrix phase is reinforced by spherical particles of a
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particulate phase. The estimated effective local bulk modulus K(z) and shear
modulus G (z)read (Sayyad et al., 2018; Ke et al., 2012)

K(z)-Ka _ VB(2) G(z)-G4 _ Vg(2) 2.8
Kp—-Ka (Kg-Kp)\  GB—Ga - 14+(1-V (Z))((GB_GA))' (2.8)
1+(1—VB(Z))<—4) B Gatfa)
KA+§GA)
where
f _ Ga(9K4+8G4)
AT 6(Ka+2G)

The effective Young’s modulus and Poisson’s ratio can be derived in terms of K(z) and
G(z) as (Sayyad et al., 2018; Ke et al., 2012; Ebrahimi et al., 2014)

_ 9K(2)G(2) _ 3K(2)-2G(2)
E(2) = 3K(2)+G(z)’ (2) = 6K (2)+2G(z)" (2.9)

Note that in the Mori-Tanaka model, it is commonly assumed that the volume fraction
follows a simple power law (2.2).

2.1.3 Free vibration analysis of FGM beam

The case study comprises the formulation of the problem, the user defined procedure
for modelling the FGM beam (FG beam) using ANSYS and the numerical results.

Problem formulation
The free vibration analysis of the FGM beam is considered as one of the two case
studies for the evaluation of the HWM. On the one hand, it provides exact analytical
solutions with a better possibility for error estimation and convergence analysis. On the
other hand, due to varying material properties, the FG structures cover a much wider
class of problems than isotropic or even orthotropic materials/structures.

The free vibration analysis of the axially graded FGM Euler-Bernoulli beam of length
L is considered in Figure 2.4.

F4
'y 4
Y
]
ey
Py X h =y
o L
/
- b
L .
ot - Cross-section
O Material 1
() Material 2

Figure 2.4 Beam graded functionally along the x-axis
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The boundary conditions utilized are depicted in Figure 2.5.

a) Pinned - Pinned c) Clamped - Pinned

| .-
jres =2 as

b} Clamped - Clamped d) Pinned - Clamped

AANEN
ALV
VAN

e) Clamped - Free

VALY

Figure 2.5 Boundary conditions for the FGM beam

In the following, two of the above described widely known gradient functions are
implemented: the exponential and power law functions. However, due to the radial
graduation direction, the graduation laws differ from (2.2) and (2.4). Radial graduation
functions applied for the bending stiffness EI(x) and the distributed mass per unit
length pA(x) are given for the exponential law function as (Li et al., 2013; Lu et al.,
2017; Paper |, IV):

ElI(x) = EI(0)e?P*/L, pA(x) = pA(0)e?Px/L, (2.10)

and for the power law function as:

X k X k
EIG) = (El, = EI) (1=2) + Elg , pA(x) = (pA, — pAg) (1-%) + pAg. (211)

In (2.10) EI(0) and pA(0) stand for the reference values of the bending stiffness and
distributed mass per unit length at the left end of the beam (x = 0). The indexes L and
R in (2.10)-(2.11) refer to the left and right end of the beam, respectively. Note that the
power law function (2.11) is more flexible than (2.10), allowing provision of different
material distributions depending on the values assigned to the power law exponent k.
At the exponential law function (2.10), the value of the exponent parameter f is

determined by the value of the bending stiffness or distributed mass per unit length at

the right end of the beam (f = %ln(%)).

At harmonic vibrations, the governing differential equation of the FG beam
corresponding to the exponential law function (2.10) can be derived in the non-
dimensional form as (Lu et al., 2017; Paper |, IV):
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2 2

where the non-dimensional coordinate X and the frequency parameter Q are given
as:

X =X 2o [PA@ (2.13)
L ! EI(0) ’

Similarly, more comprehensive expressions for the power law function are omitted
herein for the sake of conciseness.

The implementation of the HWM, reference methods (FDM and DQM) and also
improved HOHWM in the case of the particular differential equation considered is
described in Chapter 1. However, the implementation of the FEM using the software
package ANSYS is quite different. The standard steps of the ASNYS model development
are well-known and are omitted herein. However, to model a functionally graded beam,
the user coded procedure has been developed by the author of the thesis.

Modelling of FGM beam in ANSYS APDL

In the FEM analysis, it is assumed that the length of the FGM beam L = 1m is divided
into N, parts, the cross-section of the beam is square, where the height and the width
of the cross-section are equal to b = 0.01m and are divided respectively into Ny, and
Ny parts.

The elements considered were cubic 3D 8-Node Homogeneous Structural Elements
SOLID185, which have plasticity, hyperelasticity, stress stiffening, creep, large
deflection, and large strain capabilities. The FGM beam with two different material
compositions has been analysed for two symmetric and three non-symmetric boundary
conditions and for four different finite elements partitions Ny, xNyxN, respectively
3x3x300, 4x4x400, 5x5x500 and 10x10x1000 (see Figure 2.6).

Figure 2.6 Zoomed right end of the FGM beam with finite elements
The basic steps of the user coded procedure are shown in Fig. 2.7.
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In (Paper 1) commercial analysis software Mechanical APDL 16.0 a 3D finite element
model was created to model the free vibration analysis problem of an axial functionally
graded beam. The APDL code was generated for the modelling of the FGM beam that is
portioned through the length of the beam into a number of strips with constant
properties. In the code, the varying properties of the bending stiffness EI(x) and the
distributed mass per unit length pA(x) were described for different FG beam material
compositions.

Figure 2.7 below shows the scheme describing the user-defined code for adding
material properties to the finite elements of the functionally graded beam. The
describable code assumes that the certain FG beam is already divided into cubic shaped
finite elements and the distribution function is the exponential-law gradient function:
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Determination of initial material properties according to
material distribution function: (EO (modulus of elasticity
on right end of the beam) and MO (material density on

right end of the beam) by exponential-law. B = 0.549306

Counting and numbering all finite elements (eNu) in the
beam, starting from the right end of the beam.
Determination of the ,current” element (ecur), current

material properties (Ecur = EO and Mcur = MO0) and

current z-coordinate (zcur).

Determination of the z-coordinate (z) of the
center of the smallest counted finite element
(emin). Assigning certain properties to the
current element. ecur = emin, zcur = z

Z # zcur

New material with new number will be Material properties E and M are calculated
generated (N = N + 1) with new according to z and by corresponding
properties material distribution function.

Calculated material properties will
assign to current finite element:
EMODIF,ecur,MAT,N

Eor =E, My =M

eNum < €cur
Next element will be chosen, e, = ecyr,

€nxt = Cnxt + 1: €cur = Cnxt

Enddo; beam is
enum >= €cur functionally
graded

Figure 2.7 Scheme of code for the Finite Element Model
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Numerical results

The numerical results were obtained for five boundary conditions depicted in Figure 2.5.
In Tables 2.1-2.10, the results obtained by applying the widely used HWM (based on Chen
and Hsiao approach), FDM and DQM are compared at five different boundary conditions.

Table 2.1 Fundamental frequency parameter Q; values for a clamped-clamped beam (8=2, exact
solution 24.78955023)

N HWM FDM DOM
Q AbsErr | RConv Qq AbsErr | RConv Q AbsErr | RConv
4 21.24272 3.5468 21.21278 3.5768

8 24.01679 0.7728 2.1984 23.51733 1.2722 1.4913 242427724 | 5.47E-01 5.50

16 24.60232 0.1872 2.0452 24.43203 0.3575 1.8313 24.7895491 1.08E-06 18.95

32 24.74310 0.0464 2.0111 24.69728 0.0923 1.9542 247895502 | 5.48E-11 14.27

64 24.77796 0.0116 2.0028 24.76629 0.0233 1.9883 24.7895502 | 2.77E-09 -5.66

128 24.78665 0.0029 2.0007 24.78372 0.0058 1.9971 24.7895501 1.00E-07 -5.18

256 24.78882 0.0007 2.0002 24.78809 0.0015 1.9993 24.7895509 | 6.85E-07 -2.77

Exact: 24.789550 FEM analysis results - 100000 elem. (10x10x1000) 24.8074

Table 2.2 Fundamental frequency parameter Q, values for a clamped-clamped beam (6=2, exact
solution 64.70943426)

N HWM FDM pam

Q, AbsErr | RConv Q, AbsErr | RConv Q, AbsErr RConv
4 57.20269 7.5067
8 62.96688 1.7425 2.1070 | 57.405312 7.3041 65.2103257 | 5.01E-01

16 64.28732 0.4221 2.0455 62.612504 2.0969 1.8004 64.7094620 2.78E-05 14.14

32 64.60487 0.1046 2.0133 64.163748 0.5457 1.9421 64.7094342 5.13E-11 19.05

64 64.68335 0.0261 2.0034 64.571582 0.1379 1.9849 64.7094342 2.56E-09 -5.64

128 64.70291 0.0065 2.0009 64.674880 0.0346 1.9962 64.7094343 7.55E-08 -4.88

256 64.70780 0.0016 2.0002 64.700790 0.0086 1.9990 64.7094380 3.77E-06 -5.64

Exact: 64.709434 FEM analysis results - 100000 elem. (10x10x1000) 64.7032

Table 2.3 Fundamental frequency parameter Q; values for a pinned-pinned beam (6=2, exact

solution 8.41047573)
N HWM FDM alel\V]
Q AbsErr | RConv Q, AbsErr | RConv Q AbsErr | RConv
4 7.23557 1.1749 8.157141 0.2533

8 8.11895 0.2915 2.0108 8.332735 0.0777 1.7043 8.4082266 2.25E-03

16 8.33794 0.0725 2.0069 8.390010 0.0205 1.9255 8.4104757 9.02E-12 27.89

32 8.39236 0.0181 2.0018 8.405292 0.0052 1.9813 8.4104757 1.55E-10 -4.10

64 8.40595 0.0045 2.0005 8.409176 0.0013 1.9953 8.4104757 5.78E-08 -8.54

128 8.40934 0.0011 2.0001 8.410150 0.0003 1.9988 8.4104771 1.37E-06 -4.57

256 8.41019 0.0003 2.0000 8.410394 0.0001 1.9997 8.4104751 5.93E-07 1.21

Exact: 8.410475 FEM analysis results - 100000 elem. (10x10x1000) 8.4136
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Table 2.4 Fundamental frequency parameter Q, values for a pinned-pinned beam (6=2, exact
solution 41.07055822)

N HWM FDM bam
Q, AbsErr | RConv Q, AbsErr | RConv Q, AbsErr | RConv

4 36.59523 4.4753 34.453858 6.6167

8 39.99909 1.0715 2.0624 39.252370 1.8182 1.8636 41.0759676 5.41E-03

16 40.80503 0.2655 2.0127 40.603112 0.4674 1.9596 41.0705582 7.27E-10 22.83
32 41.00432 0.0662 2.0031 40.952833 0.1177 1.9894 41.0705582 5.12E-11 3.83
64 41.05400 0.0166 2.0008 41.041072 0.0295 1.9973 41.0705583 9.15E-08 -10.8
128 41.06642 0.0041 2.0002 41.063183 0.0074 1.9993 41.0705586 3.34E-07 -1.87
256 | 41.06952 0.0010 2.0000 | 41.068714 0.0018 1.9998 | 41.0705603 | 2.08E-06 -2.64
Exact: 41.070558 FEM analysis results - 100000 elem. (10x10x1000) 41.0672

Table 2.5 Fundamental frequency parameter Q; values for a clamped-pinned beam (6=2, exact
solution 11.18278324)

N HWM FDM [alel\V]
Q, AbsErr | RConv Q, AbsErr | RConv Q AbsErr RConv

4 8.76459 2.4182 9.455451 1.7273

8 10.64780 0.5350 2.1764 10.572089 0.6107 1.5000 11.1725812 1.02E-02

16 11.05259 0.1302 2.0389 11.012971 0.1698 1.8465 11.1827832 1.75E-10 25.80
32 11.15044 0.0323 2.0094 11.139111 0.0437 1.9592 11.1827832 1.53E-11 3.51
64 11.17471 0.0081 2.0023 11.171786 0.0110 1.9896 11.1827832 2.55E-08 -10.7
128 11.18076 0.0020 2.0006 11.180029 0.0028 1.9974 11.1827830 2.25E-07 -3.14
256 11.18227 0.0005 2.0001 11.182094 0.0007 1.9993 11.1827828 3.94E-07 -0.81
Exact: 11.182783 FEM analysis results - 100000 elem.(10x10x1000) 11.1901

Table 2.6 Fundamental frequency parameter Q, values for a clamped-pinned beam (6=2, exact

solution 48.26066843)
N HWM FDM DaM
Q, AbsErr | RConv Q, AbsErr | RConv Q, AbsErr RConv

4 41.945882 6.3148 35.930268 12.330

8 46.799191 1.4615 2.1113 43.888087 4.3726 1.4957 48.3140160 5.33E-02

16 47.903565 0.3571 2.0330 47.016589 1.2441 1.8134 48.2606684 4.22E-08 20.27
32 48.171942 0.0887 2.0089 47.938093 0.3226 1.9474 48.2606684 1.22E-11 11.76
64 48.238522 0.0221 2.0023 48.179262 0.0814 1.9864 48.2606685 4.19E-08 -11.75
128 48.255134 0.0055 2.0006 48.240268 0.0204 1.9966 48.2606685 8.33E-08 -0.99
256 | 48.259285 0.0014 2.0001 | 48.255565 0.0051 1.9991 | 48.2606684 | 1.86E-08 2.16
Exact: 48.260668 FEM analysis results - 100000 elem.(10x10x1000) 48.2589

Table 2.7 Fundamental frequency parameter Q; values for a pinne
solution 20.77797932)

d-clamped beam (6=2, exact

N HWM FDM DaM

Q AbsErr | RConv Q AbsErr | RConv Q AbsErr RConv
4 18.79963 1.9783 19.770973 1.0070
8 20.30997 0.4680 2.0797 | 20.506995 0.2710 1.8938 | 20.7785283 | 5.49E-04
16 20.66246 0.1155 2.0184 20.708729 0.0693 1.9683 20.7779793 6.45E-10 19.70
32 20.74919 0.0288 2.0045 20.760567 0.0174 1.9917 20.7779793 2.67E-11 4.59
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64 20.77078 0.0072 2.0011 20.773620 0.0044 1.9979 20.7779793 9.10E-09 -8.41

128 20.77618 0.0018 2.0003 20.776889 0.0011 1.9995 20.7779792 1.13E-07 -3.63

256 20.77753 0.0004 2.0001 20.777707 0.0003 1.9999 20.7779784 9.49E-07 -3.07

Exact: 20.777979 FEM analysis results - 100000 elem.(10x10x1000) 20.7897

Table 2.8 Fundamental frequency parameter Q, values for a pinned-clamped beam (8=2, exact

solution 56.29443858)
N HWM FDM bamMm

Q, AbsErr | RConv Q, AbsErr | RConv Q, AbsErr | RConv
8 54.96516 0.4680 52.599124 0.2710

16 55.96900 0.1155 2.0302 55.338806 0.0693 1.9512 56.0970548 | 2.18E-07
32 56.21350 0.0288 2.0075 56.053355 0.0174 1.9869 56.2944388 | 1.13E-11 14.23

64 56.27423 0.0072 2.0019 56.234028 0.0044 1.9967 56.2944386 | 7.51E-09 -9.38

128 56.28938 0.0018 2.0005 56.279327 0.0011 1.9992 56.2944386 | 9.66E-08 -3.68
256 56.29317 0.0004 2.0001 56.290660 0.0003 1.9998 | 56.2944385 | 2.37E-06 -4.62
Exact: 56.294439 FEM analysis results - 100000 elem.(10x10x1000) 56.2907

Table 2.9 Fundamental frequency parameter Q; values for a clamped-free beam (6=-0.549306,
exact solution 4.87119849)

N HWM FDM pam

Q AbsErr | RConv Q AbsErr | RConv Q AbsErr | RConv
4 4.92596 0.0548 4.74555243 1.26E-01
8 4.88462 0.0134 2.0280 4.842031 0.0292 4.87118515 1.33E-05 13.20

16 4.87454 0.0033 2.0068 4.863858 0.0073 1.9904 4.87119849 7.46E-11 17.44

32 4.87203 0.0008 2.0017 4.869360 0.0018 1.9974 4.87119849 1.08E-10 -0.54

64 4.87140 0.0002 2.0004 4.870739 0.0005 2.0004 4.87119860 1.16E-07 -10.1
128 4.87125 0.0001 2.0001 4.871084 0.0001 2.0049 4.87120710 8.62E-06 -6.21

256 4.87121 0.0000 2.0000 4.871170 0.0000 2.0069 4.86997855 1.22E-03 -7.15

Exact: 4.871198 FEM analysis results - 100000 elem.(10x10x1000) 4.8758

Table 2.10 Fundamental frequency parameter Q, values for a clamped-free beam (6=-0.549306,
exact solution 24.42645172)
N HWM FDM hlel]

Q, AbsErr | RConv Q, AbsErr | RConv Q, AbsErr | RConv

4 26.04020 1.6138

8 24.79828 0.3718 21177 23.143597 1.2829 244170467 | 9.41E-03 29.46

16 24.51767 0.0912 2.0272 24092313 0.3341 1.9408 244264517 | 1.27E-11 -0.71
32 24.44915 0.0227 2.0067 24.342014 0.0844 1.9845 244264517 | 2.08E-11 -11.9

64 24.43212 0.0057 2.0017 24.405285 0.0212 1.9961 244264516 | 8.21E-08 -5.35

128 24.42786 0.0014 2.0004 24.421156 0.0053 1.9989 24.4264484 | 3.35E-06 -6.40
256 24.42680 0.0004 2.0001 24425128 0.0013 2.0002 24.4261691 | 2.83E-04 29.46

Exact: 24.426452 FEM analysis results - 100000 elem.(10x10x1000) 24.4397

Abbrevisions in Tables 2.1-2.10 AbsErr and RConv stand for the absolute error and
the rate of convergence computed by formulas (1.30) and (1.33), respectively. In all
Tables 2.1-2.10, the material properties are varied according to the exponential law
(2.10).
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It can be observed from Tables 2.1-2.10 that:

In all 10 sample problems (5 boundary conditions and first 2 frequencies for
each), the rate of the convergence of the HWM and FDM methods tends to
two, but in the HWM, the final value is reached more strictly.

In most sample problems (7 of 10), the accuracy (AbsErr) of the HWM
outperforms that of FDM. However, in the pinned-clamped beam, the accuracy
of the FDM is higher for both the first and the second frequency and in the
pinned-pinned beam for the first frequency. Note that in the latter cases, the
accuracy of the HWM and FDM are nearing to each other with a growing mesh.
The accuracy of the HWM and FDM remains in the same range.

The accuracy of the DQM is substantially higher than that of the HWM and
FDM if the number of collocation points is in the range 8-32. With a higher
mesh, the accuracy of DQM declines, but for a wide class of practical problems,
the required accuracy is already achieved with 32 collocation points. However,
such a mesh is not capable of covering local behaviour of the solution. Also,
DQM is not applicable or gives relatively poor results for the smallest mesh
considered (N=4, see Table 2.9).

The numerical rate of the convergence of DQM is extremely high in a small
mesh (in range 5-30) and will be negative for a larger mesh.

The results obtained by HWM, DQM and FDM are in excellent agreement with
the exact solution given in table headings and FEM results given in the last row
of the tables. Since FEM analysis results were obtained using 3D analysis,
100000 elements and weak formulation based method, the direct/detailed
comparison with FEM seems not reasonable.

The reason why the exponent parameter 8 has “normal” value 2 in Tables 2.1-2.8,
but “strange” value B =-0.549306 in Tables 2.9-2.10 is as follows. The values 2 used in
Tables 2.1-2.8 were taken from the literature. In Tables 2.9-2.10, it is taken into account

that the left and right side materials of the beam are steel and aluminium with material

properties given in Table 2.11.

Table 2.11 Material properties of the aluminium and steel

Property Unit Steel Aluminium
E GPa 210 70
p kg/m?3 7800 2600

Thus, the value of the modulus of the elasticity E varies from 210 GPa to 70 GPa and
the value of the density p varies from 7800 kg/m? to 2600 kg/m3. The value of the 8 is
computed based on formulas (2.10) and values of material properties given in Table 2.11.

Table 2.12 shows FEM results in more detail (different mesh) for three boundary

conditions.
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Table 2.12 Fundamental frequency parameter values obtained by FEM analysis (6=2)

Number of Clamped-Clamped Clamped- Pinned Pinned-Pinned Pinned-Clamped
elements
Qq Q, Qq Q, Q Q, Q Q,
3x3x300 24.92177 | 65.00745 | 11.24135 | 48.48355 | 8.45222 | 41.25789 | 20.88545 | 56.55424
4x4x400 24.87612 | 64.88564 | 11.22081 | 48.39319 | 8.43663 | 41.18073 | 20.84697 | 56.44809
5x5x500 24.84950 | 64.81488 | 11.20887 | 48.34088 | 8.42762 | 41.13628 | 20.82465 | 56.38673
10x10x1000 24.80744 | 64.70323 | 11.19007 | 48.25888 | 8.41360 | 41.06718 | 20.78967 | 56.29065
Exact sol. 24.78955 | 64.70943 | 11.18278 | 48.26067 | 8.41048 | 41.07056 | 20.77798 | 56.29444

The convergence of the FEM results to the exact solution given in the last row of
Table 2.12 can be observed in the case all boundary conditions and frequencies
considered.

In Table 2.13 it is suggested that the bending stiffness and distributed mass per unit
length of the beam are varying according to power law functions (2.11). The material
properties given in Table 2.11 are considered and the value of the exponent is taken
equal to 1.5. The first four values of the frequency parameter 0 computed by HWM are
given for clamped-clamped and clamped-free boundary conditions.

Table 2.13 Fundamental frequency parameter values obtained by HWM (power law fun., k = 1.5)

Clamped-Clamped Clamped-Free (Console)
N Q Q, Q3 Q, Q Q, Q3 Q,
22.5738 62.6483 124.8020 211.3142 4.8951 24.8537 66.4053 131.2274
16 22.5598 62.0976 122.0458 202.7884 4.8861 24.5613 64.6866 125.2330
32 22.5529 61.9585 121.3843 200.7914 4.8855 24.4863 64.2716 123.8332
64 22.5489 61.9206 121.2166 200.2947 4.8866 24.4653 64.1658 123.4860

128 22.5463 61.9089 121.1723 200.1682 4.8877 24.4584 64.1373 123.3972

256 22.5445 61.9044 121.1595 200.1348 4.8887 24.4556 64.1286 123.3733

512 22.5433 61.9022 121.1551 200.1252 4.8893 24.4541 64.1254 123.3661

1024 22.5424 61.9008 121.1531 200.1219 4.8898 24.4531 64.1238 123.3635

In the latter case, the exact solution is unknown, but the obtained results are close
to those obtained by applying the exponent law at the same boundary conditions. In
general, the exponential and power law functions are different and thus, the results
may also differ substantially. In the current case, the parameter k in the power law
function (2.11) is selected such that the material distributions are similar. The variation
of the elastic modulus corresponding to the exponential and power law functions is
shown in (Paper 1) in Fig.3.

Tables 2.14-2.16 compare the results obtained by using the HWM based on
expansion (1.7) and higher order approach (HOHWM) based on expansion (1.37).
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Table 2.14 Fundamental frequency parameter Q; values, absolute errors and convergence rates
for a pinned-pinned FGM beam (8=3)

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)
N :ri:iaer:::;: Absolute error Co:\a\;:rg. :;';Tjir:::g: Absolute error | Converg.rate | Error ratio
4 5.49612520 1.35E+00 7.81629606 9.73E-01 1.4
8 6.56237797 2.81E-01 2.2627 6.87693058 3.39E-02 4.8442 8.3
16 6.76542022 7.76E-02 1.8542 6.84538131 2.33E-03 3.8607 333
32 6.82322484 1.98E-02 1.9693 6.84319842 1.49E-04 3.9644 133.0
64 6.83806767 4.98E-03 1.9927 6.84305841 9.40E-06 3.9908 529.9
128 6.84180211 1.25E-03 1.9982 6.84304960 5.88E-07 3.9977 2120.6
256 6.84273719 3.12E-04 1.9995 6.84304905 3.68E-08 3.9995 8473.5
512 6.84297105 7.80E-05 1.9999 6.84304901 2.29E-09 4.0074 34044.6
Exact 6.84304901 6.84304901

Table 2.15 Fundamental frequency parameter Q, values, absolute errors and convergence rates
for a pinned-pinned FGM beam (6=3)

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)
N Frequency Q, | Absolute error Co:\avtzrg. Frequency Q, | Absolute error | Converg.rate | Error ratio
4 34.46004357 8.95E+00 43.08502120 3.26E-01 27.5
8 41.13904609 2.27E+00 1.9781 43.43718723 2.61E-02 3.6437 87.1
16 42.85246913 5.59E-01 2.0240 43.41285000 1.75E-03 3.8961 318.8
32 43.27200957 1.39E-01 2.0059 43.41121057 1.13E-04 3.9555 1231.4
64 43.37636085 3.47E-02 2.0015 43.41110475 7.13E-06 3.9859 4872.5
128 43.40241562 8.68E-03 2.0004 43.41109806 4.47E-07 3.9960 19431.3
256 43.40892726 2.17E-03 2.0001 43.41109764 2.80E-08 3.9941 77401.5
512 43.41055504 5.43E-04 2.0000 43.41109762 3.65E-09 2.9418 148680.8
Exact | 43.41109762 43.41109762

Table 2.16 Fundamental frequency parameter Qs values, absolute errors and convergence rates
for a pinned-pinned FGM beam (8=3)

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)
N Frequency Q; | Absolute error Co:\a\;t:rg. Frequency Q; | Absolute error | Converg.rate | Error ratio
4 67.93869901 2.63E+01 85.92836185 8.33E+00 3.2
8 88.96819949 5.29E+00 2.3149 93.89193730 3.66E-01 4.5095 14.5
16 92.97128669 1.29E+00 2.0398 94.23719747 2.04E-02 4.1616 62.9
32 93.93811063 3.20E-01 2.0093 94.25640628 1.23E-03 4.0594 260.7
64 94.17787846 7.98E-02 2.0023 94.25755622 7.57E-05 4.0179 1054.1
128 94.23770142 1.99E-02 2.0006 94.25762716 4.71E-06 4.0048 4229.1
256 94.25264975 4.98E-03 2.0001 94.25763158 2.95E-07 3.9991 16904.5
512 94.25638638 1.25€-03 2.0000 94.25763185 2.51E-08 3.5536 49621.3
Exact | 94.25763187 94.25763187

Obviously, it can be observed from Tables 2.14-2.16 that the HOHWM outperforms
HWM with the fourth order convergence and absolute error lower than that of HWM
(in the case of a larger mesh several magnitudes lower). However, the accuracy and
rate of convergence are not the only measures important from an engineering/practical
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point of view. The complexities of the solution as well as the implementation of the
method are important. In the case of the problem and boundary conditions considered,
the increase of the solution, also implementation complexity are minimal (see details in
Majak et al., 2018).

2.2 Nanostructures

Nanoscience is an emerging research area due to the outstanding mechanical, chemical,
electrical, optical and electronic properties of nanomaterials/structures. This chapter is
focused on nanomechanics. Modelling of nanomechanics is under development, but a
number of approaches and models are available in (Paper II).

2.2.1 Nonlocal elasticity model

Classical continuum models neglect the scale effect in nanomaterial studies and
therefore applicability of classical or local continuum models is incorrect. On a small
scale, the influences of long range interatomic and intermolecular cohesive forces on
the static and dynamic properties become significant and thus could not be neglected
(Narendar et al., 2012).

In the analysis of nanostructures, the small-scale effect is most commonly
introduced by (Elishakov, 2012):
— nonlocal continuum mechanics or
— atomic theory of lattice dynamics.

For taking into account the scale effect, various size-dependent continuum
mechanics models have been developed, such as nonlocal elasticity theory (Eringen,
1983), strain gradient theory (Nix et al., 1998), modified couple stress theory (Asghari
et al., 2010), and couple stress theory (Hadjesfandiari et al., 2011). In the current study,
the nonlocal Eringen theory is considered (Eringen, 1983).

A = uVvHal* = Cijagn, (2.14)
U= ela?, (2.15)

where ai’;{L, griand G stand for the nonlocal stress tensor, strain tensor and fourth

order elasticity tensor, respectively. In (2.14) V2 and u stand for the Laplacian operator

and nonlocal parameter, respectively. The parameters eo and 4 in (2.15) describe

material properties and internal characteristic length. In the nonlocal elasticity theory,
the stress at a point is a function of the strains at all points in the domain whereas in
the classical continuum models, the stress at a point is a function of the strains at those
points in the domain (Murmu et al., 2010).
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2.2.2 Free Vibration analysis of nanobeams

In the following, a brief problem formulation is introduced and numerical results for
three boundary conditions are presented.

Problem formulation

The governing differential equations for the free vibration analysis of the nanobeams
can be derived similar to classical continuum mechanics, but the classical Hook’s law
should be replaced with the nonlocal model (2.14). Combining the nonlocal constitutive
equation (2.14) and the moment deflection relation of the Euler-Bernoully beam, the
governing differential equation for the nonlocal Euler-Bernoully beam in terms of
displacement can be derived as in (Paper Il):

2
d“\/\:+y/21 dZV\le/IZ\N, (2.16)
dX L2 dX
X =m’L*El, (2.17)

where W is the deflection, L is external length, M is defined by formula (2.15), @,

mo and El stand for natural frequency of vibration, the moment of inertia and

bending stiffness of the beam, respectively. Detailed derivation is omitted herein for
conciseness sake; details can be found in (Paper II; Aydogdu, 2009; Elishakov, 2012).
Obviously, in particular cases when the nonlocal parameter 1z =0, equation (2.16)
reduces to the classical Euler-Bernoully beam equation. Because the governing
differential equation of the nonlocal Euler-Bernoully beam (2.16) is a fourth order ODE,
the traditional and higher order wavelet expansions (1.7) and (1.37) introduced above
can be applied and the solution can be reached similar that done for FGM beam in
section 2.1.

Numerical results

In the following, two symmetric (pinned-pinned and clamped-clamped) conditions and
one asymmetric (clamped-pinned) boundary condition are considered (see Fig. 2.5).
The non-dimensional governing differential equations (2.16) are solved. The value of
the nonlocal parameter LI is varied from O to 5 and the length of the beam is taken

equal to 10 nm.

a) Pinned-pinned nanobeam

Tables 2.17-2.19 compare the results obtained by the use of HWM, FDM and DQM.
The values of the fundamental frequency parameter F = +/1 , absolute error (AbsErr)

and rate of convergence (RConv) are given.
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Table 2.17 Fundamental frequency parameter F values, rates of convergence and absolute errors
(u=0)

N HWM FDM DQM
F AbsErr | RConv F AbsErr | RConv F AbsErr | RConv
4 3.161916 2.03E-02 3.061468 8.01E-02 3.26598632 0.12439

8 3.146649 5.06E-03 2.0069 3.121445 | 2.01E-02 1.9916 3.14159694 | 4.29E-06 14.8

16 3.142855 1.26E-03 2.0021 3.136549 | 5.04E-03 1.9981 3.14159265 | 7.48E-13 22.4
32 3.141908 3.15E-04 2.0006 3.140331 | 1.26E-03 1.9992 3.14159265 | 7.03E-12 -3.2

64 3.141672 7.89E-05 2.0001 3.141277 | 3.16E-04 1.9989 3.14159266 1.14E-08 -10.7

128 3.141612 1.97E-05 2.0000 3.141514 | 7.87E-05 2.0048 3.14159271 5.16E-08 -2.2
256 3.141598 4.93E-06 2.0000 3.141573 1.97E-05 2.0007 3.14159109 1.57E-06 -4.9
512 3.141594 1.23E-06 2.0000 3.141588 | 4.65E-06 2.0784 3.14159932 6.67E-06 -2.1

Exact: 3.141593

Table 2.18 Fundamental frequency parameter F values, rates of convergence and absolute errors

(m=3)
N HWM FDM DQM
F AbsErr | RConv F AbsErr | RConv F AbsErr | RConv
4 2.963169 1.88E-02 2.877579 6.68E-02 3.04698895 1.03E-01

8 2.949087 4.72E-03 1.9930 2.927620 | 1.67E-02 1.9960 2.94436580 | 3.56E-06 14.8

16 2.945544 1.18E-03 1.9988 2.940174 | 4.19E-03 1.9991 2.94436224 | 8.44E-15 28.7

32 2.944658 2.96E-04 1.9997 2.943315 1.05E-03 1.9998 2.94436224 | 6.62E-14 -3.0
64 2.944436 7.39E-05 1.9999 2.944100 | 2.62E-04 1.9976 2.94436224 | 4.68E-12 -6.1
128 2.944381 1.85E-05 2.0000 2.944297 | 6.52E-05 2.0071 2.94436224 | 7.01E-10 -7.2
256 2.944367 4.62E-06 2.0000 2.944346 1.62E-05 2.0063 2.94436222 1.96E-08 -4.8
512 2.944363 1.15E-06 2.0000 2.944358 | 4.24E-06 1.9379 2.94436204 1.96E-07 -3.3

Exact: 2.944362

Table 2.19 Fundamental frequency parameter F values, rates of convergence and absolute errors

(m=5)
N HWM FDM DQM
F AbsErr | RConv F AbsErr | RConv F AbsErr | RConv
4 2.859891 1.80E-02 2.781004 6.08E-02 2.93498048 9.31E-02

8 2.846396 4.55E-03 1.9868 2.826607 | 1.52E-02 1.9975 2.84184573 | 3.24E-06 14.8
16 2.842983 1.14E-03 1.9973 2.838032 | 3.81E-03 1.9994 2.84184249 | 2.62E-14 26.9

32 2.842128 2.85E-04 1.9993 2.840890 | 9.52E-04 2.0002 2.84184249 2.36E-13 -3.2
64 2.841914 7.13E-05 1.9998 2.841604 | 2.38E-04 1.9978 2.84184249 2.67E-12 -3.5
128 2.841860 1.78E-05 2.0000 2.841783 | 5.95E-05 2.0031 2.84184249 6.68E-10 -8.0
256 2.841847 4.46E-06 2.0000 2.841828 1.45E-05 2.0373 2.84184248 1.86E-08 -4.8
512 2.841844 1.11E-06 2.0000 2.841839 | 3.49E-06 2.0526 2.84184231 1.89E-07 -3.3

Exact: 2.841842

In Table 2.17-2.19, the nonlocal parameter p is varied from 0 to 5 and the results
are compared against exact solution given in (Wang et al., 2007).

It can be observed from Tables 2.17-2.19 that the absolute error of the Haar
wavelet method is less than that of the finite difference method, but remains in the
same range. The numerical rate of convergence tends to two in both methods,
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independent of the value of nonlocal parameter yu. With a growing mesh (see case
N=512), the rate of convergence of the FDM has significant deviations from 2, which
refers to the loss of accuracy. The convergence of the DQM is extremely fast in the
case of a small mesh (N=16, N=32) and decline to negative values thereafter. Also,
Tables 2.17-2.19 show that in the case of the smallest mesh considered N=4, the
frequency computed by DQM has largest deviation from the final values to that
solution converge (i.e., the DQM has the largest absolute error for N=4). The
convergence to the same final value is obvious with all the methods utilized. Note that
the small scale effect is significant. Increase of the nonlocal parameter from 0 to 5
causes a decrease of the fundamental frequency from 3.141593 to 2.841842.

b) Clamped-clamped nanobeam

The results obtained by use of HWM, FDM and DQM are presented in Table 2.17. The
value of the nonlocal parameter [{ is taken equal to five in order to cover the small

scale effect (nonlocal behaviour).

Table 2.20 Fundamental frequency parameter F values and rates of convergence (u = 5)

N HWM FDM ple]lV]
F RConv F RConv F RConv

4 4.252952 3.832771 4.125996322243

8 4.207325 4.095779 4.191209634539

16 4.195622 2.0817 4.167331 1.8781 4.191682530895 7.11
32 4.192669 2.0018 4.185572 1.9718 4.191682530902 26.14
64 4.191929 1.9993 4.190153 1.9932 4.191682530908 -0.10
128 4.191744 1.9998 4.191300 1.9983 4.191682531462 -6.34
256 4.191698 1.9999 4.191587 1.9996 4.191682527306 -2.91
512 4.191686 2.0000 4.191659 2.0006 4.191682535006 -0.89

The structure of Table 2.20 differs from that of Tables 2.17-2.19. The columns for
the absolute error are omitted, since closed form exact solution not given. Also, the
rate of convergence is computed by utilizing formula (1.34), i.e. without the use of
exact solution. Again, the rate of convergence of the HWM and FDM tends to two, but
in HWM it is more strict. The DQM has excellent convergence at 16 and 32 collocation
points. High accuracy is achieved fast (10 digits after comma coincide), thereafter the
rate of convergence turns to negative and the accuracy is lost due to computing errors
(double precision computing used).

c) Clamped-pinned nanobeam

Table 2.21 compares the results obtained by use of HWM, FDM and DQM. The
structure of Table 2.21 coincides with that of Table 2.20 and the same value of the
nonlocal parameter Al is used ( I =5).

48



Table 2.21 Fundamental frequency parameter F values and rates of convergence (u = 5)

N HWM FDM ple]\V]
F RConv F RConv F RConv

4 3.535756 3.320272 3.481931648438

8 3.510894 3.455128 3.502377143331

16 3.504564 1.9737 3.490504 1.9306 3.502443568840 8.27
32 3.502974 1.9932 3.499452 1.9831 3.502443568841 27.11
64 3.502576 1.9983 3.501695 1.9958 3.502443568833 -4.07
128 3.502477 1.9996 3.502256 1.9990 3.502443569003 -4.46
256 3.502452 1.9999 3.502397 2.0000 3.502443575002 -5.14
512 3.502446 2.0000 3.502431 2.0489 3.502443511944 -3.39

The behaviour of the solutions obtained by applying HWM, FDM and DQM is similar
to that described for clamped — clamped nanobeam. The asymmetric boundary
conditions do not affect this behaviour. High number of decimal places for DQM is
used to show that up to 10 digits after comma coincide at N=16, N=32 and N=64.

Tables 2.22-2.23 compare the results obtained by the widely used HWM and HOHWM.

Table 2.22 Fundamental frequency parameter Q; values, absolute errors and convergence rates
for pinned-pinned nanobeam (u = 3)

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N Frequency Q; | Absolute error Co:lavtc:rg. Frequency Q;, | Absolute error | Converg.rate | Error ratio

4 2.9631691775 1.88E-02 2.9454323919 1.07E-03 17.6

8 2.9490867632 4.72E-03 1.9930 2.9444268262 6.46E-05 4.0504 73.1
16 2.9455443778 1.18E-03 1.9988 2.9443662390 4.00E-06 4.0129 295.5
32 2.9446578302 2.96E-04 1.9997 2.9443624877 2.49€E-07 4.0032 1184.8
64 2.9444361397 7.39E-05 1.9999 2.9443622538 1.56E-08 4.0008 4742.0
128 | 2.9443807138 1.85E-05 2.0000 2.9443622392 9.74E-10 4.0004 18973.2
256 | 2.9443668571 4.62E-06 2.0000 2.9443622383 6.28E-11 3.9559 73607.9
512 | 2.9443633929 1.15E-06 2.0000 2.9443622382 2.84E-12 4.4650 406411.2

Exact | 2.9443622382 2.9443622382

Table 2.23 Fundamental frequency parameter Q; values, absolute errors and convergence rates
for pinned-pinned nanobeam (u = 5)

HWM (Chen and Hsiao, 1997) HOHWM (Majak et al., 2018)

N Frequency Q; | Absolute error Co:\avtirg. Frequency Q; | Absolute error | Converg.rate | Error ratio

4 2.8598908866 1.80E-02 2.8428724147 1.03E-03 0 17.5

8 2.8463961818 4.55E-03 1.9868 2.8419047893 6.23E-05 4.0473 73.1
16 2.8429830790 1.14E-03 1.9973 2.8418463546 3.86E-06 4.0121 295.4
32 2.8421277689 2.85E-04 1.9993 2.8418427345 2.41E-07 4.0031 1184.7
64 2.8419138205 7.13E-05 1.9998 2.8418425088 1.50E-08 4.0008 4742.0
128 2.8418603259 1.78E-05 2.0000 2.8418424947 9.40E-10 4.0004 18973.1
256 | 2.8418469518 4.46E-06 2.0000 | 2.8418424938 6.06E-11 3.9559 73608.3
512 2.8418436082 1.11E-06 2.0000 2.8418424937 2.74E-12 4.4641 406162.2

Exact | 2.8418424937 2.8418424937
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Similar to the FGM beam considered above, the HOHWM outperforms HWM in
accuracy. The complexities of the solution and implementation have a minimal increase
in the case of the considered problem and boundary conditions. However, the
complexities of the solution and implementation depend on the problem considered,
the boundary conditions applied, effectiveness of the implementation, etc.
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3 Conclusions

According to the main goal set for the thesis research, the Chen and Hsiao wavelet
expansion based on the Haar Wavelet method was applied in the analysis of
functionally graded structures and nanostructures, to study the accuracy of the
numerical results, simplicity of the implementation and complexity of the solution of
the HWM. The numerical results from the analysis were validated against the results
obtained by the finite difference and differential quadrature methods (FDM and DQM).
The reference method FDM and DQM were selected as widely used strong formulation
based numerical methods in engineering. These methods are known for simple
implementation as well as the HWM considered. In the case of FGM structures, the
general validation was performed additionally by FEM (more complex weak formulation
based method). Based on the numerical analysis performed for FGM and
nanostructures, the following conclusions can be made for the activities set at the early
stage of the current research:

1. The results obtained by HWM are in good agreement with those obtained

by FDM, DQM and FEM for all numerical samples performed for FGM and
nanostructures.
Implementation of HWM appeared simple in all the problems considered.
The accuracy of the HWM is in the same range of those of FDM. The rate
of convergence tends to two in both methods, but this process is stricter
in HWM. For most samples considered, the accuracy of the HWM was
higher, however, not for all cases.

4. The accuracy of the HWM appeared lower than that of DQM, except at
high resolution where DQM has complications.

5. The improved wavelet method HOHWM tested in the current study
provides an increase of the rate of convergence from two to four and a
decrease of the absolute error for several orders of magnitude depending
on the mesh level used.

6. HOHWM with improved accuracy is more competitive and has
preliminaries for use in future for the analysis of new materials and
constitutive models.

The above conclusions cover the work hypotheses posed in the introduction of the
study.
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The scientific novelty

The comparison of HWM with mainstream methods in engineering (FDM, DQM) in the
current study leads to a principally new understanding — the accuracy of widely used
HWM is substantially lower than that of DQM and in the same range with FDM.
Results of the validation of widely used HWM against FDM and DQM obtained in the
current study form a reason and a base for the development of an improved HOHWM.
Testing of new HOHWM led to accuracy higher than that initially expected. Also,
some tests performed provide input for design/configure HOHWM.

Future work

HOHWM presented in the current study showed good results on the basis of the
analysed case studies and evaluation criteria against HWM. To acquire a clearer picture
of the strengths and weaknesses of HOHWM, further studies are required. Therefore,
the focus in the future work will be on the application and evaluation of HOHWM for a
wider class of engineering design problems.
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Abstract

Evaluation of Haar wavelet method for analysis of functionally
graded and nanostructures

Advanced materials, like functionally graded materials and nanomaterials, are
increasingly used in various structures and products, but the numerical techniques
available for the analysis of FG structures and nanostructures are limited in comparison
with traditional solid mechanics. Based on the literature, the most popular methods for
the analysis of FG structures and nanostructures are FDM, DQM and FEM that may be
classified as the most widely used methods in engineering design. From recent methods,
the Haar wavelet method has been reported as a simple and an effective method;
however, most commonly, HWM has been evaluated based on its simplicity of
implementation and reasonable absolute error against other simple and strong
formulation based methods. Thus, comparisons of the method with mainstream
methods in engineering design appear insufficient.

The main objective of the current study was to evaluate HWM for the analysis of FG
and nanostructures based on the comparison with FDM, DQM and FEM. This thesis
research is based on the published articles.

Chapter 1 introduces the widely used Chen and Hsiao approach based Haar wavelet
method and reference methods FDM, DQM and FEM. Next, the evaluation criteria are
described. The absolute error and the rate of convergence, also simplicity of the
implementation of the method, are considered as evaluation criteria. At the end of
Chapter 1, the basics of the higher order Haar wavelet method (HOHWM) are given.

Chapter 2 presents two case studies for evaluating the Haar wavelet method for the
analysis of FG and nanostructures. The problem of case study 1 was the free vibration
analysis of the FGM beam; the following steps were taken:

e FG materials and FG structures were reviewed with their advantages
pointed out.

e  Four widely used gradient functions were described.

e  Free vibration analysis of an axially graded FG Euler-Bernoulli beam was
made by applying HWM, FDM and DQM. Five different boundary
conditions and two gradient functions (exponential law and power law)
were examined.

e User code was developed for modelling an axially graded 3D FG beam in
ANSYS APDL and the FEM analysis was performed.

e HOHWM was compared with the widely used Chen and Hsiao approach
based HWM.

e The results were compared according to the evaluation criteria and the
conclusions were made.
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The problem of case study 2 was the free vibration analysis of the nanobeam and
the following steps were performed:

e The nonlocal elasticity theory considering the small scale effect was
introduced.

e Free vibration analysis of the nonlocal Bernoulli — Euler nanobeam was
performed at three different boundary conditions.

e The HOHWM was compared with the widely used Chen and Hsiao
approach based HWM.

e The results were compared according to the evaluation criteria and the
conclusions were made.

The main goal of the study was achieved. The comparison of HWM with mainstream
methods in engineering design leads to a principally new understanding about the
accuracy of HWM in relation to FDM and DQM. The obtained results form a basis for
the development of an improved Haar wavelet method.
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Lihikokkuvote

Haar’i lainikute meetodi hindamine funktsionaalgradient- ja
nanostruktuuride anallitisiks

Uued materjalid, nagu funktsionaalse gradiendiga materjalid ja nanomaterjalid, leiavad
tha enam kasutamist erinevates konstruktsioonides ja toodetes, kuid numbrilised
meetodid, mis voimaldaks funktsionaalgradient- ja nanostruktuure analllsida, on
piiratud vorreldes sarnaste meetoditega traditsioonilise tahke keha mehaanika jaoks.
Lahtuvalt kirjandusest on kdige populaarsemad meetodid funktsionaalgradient-
struktuuride ja nanostruktuuride analiilisimiseks IGplike vahede meetod (LVM),
diferentsiaalkvadratuuride meetod (DKM) ja (I6plike elementide meetod (LEM), mida
voib klassifitseerida kdige levinumateks meetoditeks insenerirakendustes. Uuematest
meetoditest on esile tdstetud Haari lainikute meetodit (HLM), kui lihtsat ja efektiivset
meetodit ldhtudes meetodi rakendatavuse lihtsusest ja mdddukast absoluutsest veast,
vorreldes teiste lihtsate tugeval formulatsioonil pohinevate meetoditega. HLM vordlust
insenerirakendustes laialdaselt kasutatavate numbriliste meetoditega (LVM, DKM) leiab
kirjandusest vahe.

Kadesoleva uurimust6d peamine eesmdrk on hinnata Haari lainikute meetodit
funktsionaalgradient- ja nanostruktuuride analiilisimiseks ldhtudes vd&rdlusest
insenerirakendustes laialdaselt kasutatavate tugeval formulatsioonil pdhinevate
meetoditega (LVM,DKM). Kdesolev t66 pdhineb avaldatud artiklitel.

Esimeses peatikis tutvustatakse Chen ja Hsiao aproksimatsioonil baseeruvat Haari
lainikute meetodit ning referentsmeetodeid FDM, DQM ja LEM (see viimane on
keerukam ndrgal formulatsioonil pdhinev meetod ning seda kasutatakse (uldiseks
evalveerimiseks). Seejarel on antud (levaade hindamiskriteeriumidest, milleks
kasutatakse absoluutset viga ja koonduvuskiirust aga ka meetodi rakendamise
keerukust. Esimese peatiiki I0pus tutvustatakse kdrgemat jarku Haari lainikute meetodi
(KJHLM) Gldist to6pShimétet.

Teises peatikis on toodud kaks rakendusnaidet Haari lainikute meetodi hindamiseks
funktsionaalgradient- ja nanostruktuuride analtsiks. Esimese rakendusndite
probleemiks oli funktsionaalse gradiendiga materjalist tala vabavGnkumise analls,
mille realiseerimiseks teostati jargmised sammud:

e Anti luhike (levaade funktsionaalse gradiendiga materjalidest ja
struktuuridest ning nende eelistest;

e  Kirjeldati nelja peamist gradiendi funktsiooni;

e Kasutades HLM, LVM ja DKM meetodeid teostati vabavinkumise anallits
pikitelje sihis gradueeritud funktsionaalse gradiendiga materialist Euler-
Bernoulli talale viiel erinevatel rajatingimustel ning kahe erineva
gradiendifunktsiooni korral;
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e  Koostati programmikood modelleerimaks ANSYS APDL tarkvaras ruumiline
pikitelje sihiliselt gradueeritud funktsionaalse gradiendiga materjalist tala
ning teostati arvutused I0plike elementide meetodil;

e  Vorreldi KIHLM-i ja Chen ja Hsiao aproksimatsioonil pohinevat meetodit;

e  Rakendusnaite tulemusi vorreldi vastavalt hindamiskriteeriumitele ja toodi
valja jareldused.

Teise rakendusndite probleemiks oli nanotala vabavonkumise analiits, mille
realiseerimiseks teostati jargmised sammud:

e  Tutvustati mastaabiefekti arvessevotvat mittelokaalset elastsusteooriat;

e Teostati mittelokaalse Bernoulli — Euler tala vabavonkumise analiiiis kolme
rajatingimuse jaoks;

e Vorreldi KJHLM-dit ja Chen ja Hsiao aproksimatsioonil baseeruvat Haari
lainikute meetodit;

e Rakendusnaite tulemusi vorreldi vastavalt hindamiskriteeriumitele ja toodi
vdlja jareldused.

Kdesoleva t00 peamine eesmark on saavutatud. Haari lainikute meetodi evalveerimine
andis uue arusaamise HLM-i tdpsuse osas vorreldes peamiste insenerirakendustes
kasutatavate meetoditega (LVM ja DKM). Saadud tulemused loovad baasi Haari
lainikute meetodi edasiarendamiseks.
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Abstract. The current study focuses on the evaluation of the Haar wavelet method, i.e. its comparison with widely used strong
formulation based methods (FDM-finite difference method and DQM-differential quadrature method). A solid element 3D finite
element model is developed and the numerical results obtained by using simplified approaches are confirmed.

Key words: Haar wavelet method, convergence, accuracy evaluation.

1. INTRODUCTION

Accuracy and complexity are two key factors charac-
terizing any numerical method. The Haar wavelet
method (HWM) considered in the current study was
introduced by Chen and Hsiao in [1,2] almost 20 years
ago and up to now it has been applied for solving a wide
class of differential and integral equations covering
engineering, economic, etc. problems [3—7]. An overview
of the applications of the HWM is given in [8]. The
wavelet techniques based on the use of an operational
matrix of integration are developed for solving ordinal
and partial differential equations in [1-10] and for integral
equations in [11-13]. All these studies implement the
strong formulation based approach of the HWM. The
weak formulation based approach of the HWM was
introduced in [14].

Most of the authors characterize the HWM as a
simple and effective method [3-9]. These estimates
cover mainly implementation of the HWM, less its

) Corresponding author, Maarjus.Kirs@ttu.ce

accuracy and convergence results, which are still under
development. It is shown in [15] that in the case of
function approximation with direct expansion into the
Haar wavelet the convergence is of order one. However,
according to the HWM approach considered, the highest
order derivative included in the differential equation is
expanded into a series of Haar functions. Thus, the
estimate given in [15] holds good for estimating the
accuracy of the highest order derivative, but not the
solution of the differential equation. Recently, the
convergence theorem of the HWM was proved in [16]
for the nth order ordinal differential equations (ODEs)
(n>2). It was stated that the order of convergence of
the HWM is equal to two. In [17] the accuracy estimates
for the extrapolated results in the case of the fourth
order ODE are derived, and it is shown that the order of
convergence of the extrapolated results is equal to four
(Richardson extrapolation is applied).

The application area of new simple methods often
includes problems with advanced material models,
constitutive laws, etc., which are not yet (well) covered
by commercial software.
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A new trend in the development of wavelet methods
can be outlined as solution of fractional differential and
integral equations [15,18-24], which is an area not
yet well covered by commercial software (finite element
method (FEM), etc.). It is observed in [21] that in the
case of fractional ODE the order of convergence of
the HWM is equal to two if higher order derivative a
in the fractional differential equation exceeds one
(o> 1). However, in the case of 0 < a < 1 the order of
convergence of the HWM tends to the value 1 + o.

In [25,26] the HWM was adapted for the analysis of
structures of functionally graded material (FGM). In the
current study the vibration analysis of the FGM beams
is performed and the results obtained by the HWM are
compared with the corresponding results obtained by
using the finite difference method (FDM) and the
differential quadrature method (DQM). Selection of FDM
and DQM for comparison of results was motivated by
the fact that these methods are widely used numerical
methods in engineering and are based on strong
formulation (the complexity of implementation is similar).
The methods considered are implemented by the authors
in the MATLAB code.

In order to verify the obtained results and prepare
solution procedures for structures with complex geometry
and loading cases, the solid element 3D finite element
model was developed.

2. BASICS OF HAAR WAVELETS

The Haar function is defined in [8,9] as

1 for
hi(x)=4-1 for
0 elsewhere

xe[&@),& D)
P GIOR-10) )

In (1) i=m+k+1, m=2’is the maximum number
of square waves that can be sequentially deployed in
interval [A,B] and the parameter £ indicates the location
of the particular square wave,

& (i) = A+ 2k pAx,

& (i) = A+ (2k +1) uAx,

&) = A+ 2(k +1) pAx,
w=M/mAx=(B—-A)/(2M),M =2’

()]

The Haar functions are orthogonal to one another and
form a good transform basis

[ (o)t = {2] i=l=2k
° 0 i+l

Any function f(x) that is square integrable and finite
in the interval ([4, B] can be expanded into Haar
wavelets as

= ah(x). @)

The integrals of the Haar functions (1) of order n can be
calculated analytically as [9]

0 x 4&(0)
(x_f!@)” EECEUTI
p,X)= (x—&0)' :j( &) xe{é@é@).
(x=40)" —qx—j@)“ Hx=¢0)' <dE0,B)

The integrals of the Haar functions determined by (5)
are continuous functions in the interval[ 4, B].

3. FREE VIBRATION ANALYSIS OF THE
FGM BEAM

In the following the free vibration analysis of the FGM
beam is considered [27-29]. It is assumed that the
material properties of the beam of length L vary axially.
The governing differential equation of the beam can be
written as

8

7[E1(x) *w(x, 1)

ox’

o’w(x,t)
or

o ©

v j+ PA(x)

O<x<L.

The varying properties of the bending stiffness
EI(x) and the distributed mass per unit length pA4(x)
are described by exponential functions as

EI(x) = EI(0)e*™'E | pA(x) = pA(0)*#/ . @)

The reference values of the bending stiffness and
distributed mass per unit length at x =0 are denoted
by EI(0) and pA(0), respectively. Relation (7) is used
in a number of papers [27-29]. The volume fractions of
the material corresponding to relation (7) can be derived
as

o e 1

V=  Va=
1 ez'/j—l 2

®)

e -1

The wavelet method approach considered can be
applied for a wide range of functions describing
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properties of FGM. In the following a more general
power law relation for describing FG materials is
considered:

E:(EL—ER)(l—%j + Ex, )
p=(pL—pR)(1—%j + . (10)

Here k is the non-negative power-law exponent
describing the material variation profile along the
length of the beam and the indexes , and j stand for
the values of the material properties on the left and
right support of the beam, respectively. Relations
(9)—(10) seem to be the most widely used relations for
describing FGM properties found in the literature [30].

In the following the solution of the partial differential
equation (6) is assumed in the form

w(x,t) =W (x)sin(wt) . (11)
Considering Eqs (7) and (11), the governing differential

equation (6) can be rewritten in a non-dimensional
form as

2
;z[ e ddeJ QW =0, (12)
where
X*—Q 2 15 (13)

As a result, the vibration analysis problem of the FGM
beam considered above is converted to solving the
ordinal differential equation (12). The particular boundary
conditions are introduced in Section 7.

4. THE HAAR WAVELET DISCRETIZATION
METHOD

Herein the most commonly used approach of the HWM
is employed. According to this method, the highest
order derivative existing in a differential equation is
expanded into Haar wavelets. Thus, Eq. (12) implies
that the fourth order derivative should be expanded into
Haar wavelets as

4

N
%:Za,lz,(X), (14)
i=1

where N = 2M is the resolution used.

The solution of the differential governing equation
(12) W(X) can be obtained by integrating the expansion
(14) four times with respect to X as

x° X2
W(X)=a"P¥ +c3?+027+cl)(+co. (15)

In (15) the operational matrix of integration PW s
defined by formulas (5) and a” is a vector of coefficients.
The integration constants cy,...,c; can be determined
for each particular boundary condition separately.
Corresponding expressions of the integration constants
are omitted for conciseness sake.

Inserting the solution of (15) in the differential
equation (12) and assuming uniform grid points in the
form

=QI-)/2N), I=1,..,N, (16)

one obtains a linear system of algebraic equations, which
can be solved with respect to coefficient vectora’ .
Finally, substituting the values of @’ in (15) gives the
solution of the posed problem in an analytical form.

5. CONVERGENCE AND ACCURACY
ESTIMATES

The convergence theorem for the HWM is given in [16]
for the nth order ODE (n >2) as

L(R)

THEOREM: Let us assume that f(x)= d;(x)

is a continuous function on [0,1] and its first derivative
is bounded

Vxe[O 1] dn: ‘ (17)

Then the HWM, based on the approach in [1,2], will be
convergent, i.e. |Ey| will vanish as the number of
collocation points approaches N infinity. The convergence
is of the order two

al-o(]] o

The proof of the theorem is given in [16]. Further-
more, the quadrate of the L -norm of the error function
can be estimated as

4#( 1 Jz. (19)
9 (floor(n/2)!)*

£l <
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In the case of the considered problem the highest order
derivative in differential equation equals four (n=4)
and formula (19) reduces to

n(1Y
Il <25

Furthermore, it is proved in [17] that in the case of
the general fourth-order ODE the accuracy of the results of
the HWM can be improved from two to four by applying
Richardson’s extrapolation method. The theoretical
estimates pointed out above are validated numerically
in the following section.

(20)

6. FEM SIMULATION MODEL

Commercial analysis software Mechanical APDL 16.0
was used to develop a 3D finite element simulation model
for free vibration analysis of an axially functionally
graded beam. The FGM beam was partitioned through
its length into a number of strips with constant material
properties inside the strip (see Fig. 1).

Figure 1 shows the mesh of the zoomed right-hand
side of the beam corresponding to the third row of
Table 1 (5 elements in the thickness and width directions
and 500 elements in the length direction). The elements
considered were cubical 3D 8-Node Homogeneous
Structural Elements SOLID185. The detailed mesh values
used are given in column 1 of Table 1.

The geometrical parameters of the beam considered
are width (b), height (%), and length (L). The material
properties of the steel and aluminium used in the FEM
analysis are given in Table 2. The boundary conditions
considered correspond to a cantilever beam. The results
obtained from FEM analysis were originally in the

ELEMENTS ANSYS Release 16.0 16.0
MAR 13 2017
MAT - NUM 10:54:23

Fig. 1. FGM beam. Mesh, zoomed right end of the beam.

Table 1. FEM model. First three values of frequency parameter,
pinned—pinned beam

N Q Q, Q

2700 8.4522 412579 91.5302
(3 % 3 x 300)

6400 8.4366 41.1807  91.3549
(4 x 4 x 400)

12500 8.4276 411363 91.2543
(5 % 5 x 500)

100000 8.4136 410672  91.0984

(10 x 10 x 1000)

Table 2. Material properties of FG steel/aluminium material

Property Unit Steel Aluminium
E GPa 210 70
P Kg/m? 7800 2600

dimensional form, i.e. computed for a particular beam
with the given geometry, rigidity, and mass per unit
length values. In order to compare these results with
the results of the FDM, DQM, and HWM, the frequency
parameter was converted into the non-dimensional form
using the following formula:

Q= 2ﬂ'fL2 pA0)

o) (21
where f stands for natural/dimensional frequency
parameter value (in Hz). The FEM results are discussed
in detail in the following section.

7. NUMERICAL RESULTS

In the following five different boundary conditions
of the FGM beam are considered (see Fig. 2) and the
results obtained by applying HWM, FDM, and DQM
are compared (two symmetric and three non-symmetric
conditions).

The first two values of the fundamental frequency
parameter Q are presented in Tables 3 and 4 for a pinned—
pinned beam, in Tables 5 and 6 for a clamped—clamped
beam, in Tables 7 and 8 for a clamped—pinned beam,
in Tables 9 and 10 for a pinned—clamped beam, and in
Tables 11 and 12 for a clamped—free beam).

Note that in the FE model all supports with pinned
boundary conditions (a, ¢, and d) have the ability to
move in the horizontal direction (#y =u: =0,ux #0).

In Tables 1-10 the properties of the beam are
considered to vary according to formula (7), i.e. by
exponential functions.
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Table 5. Fundamental frequency parameter Q; (£ = 2, exact

a) Pinned - Pinned 3
solution 24.78955023)

|

; N HWM FDM DQM
4 21.242723 21.212781
b) Clamped - Clamped 8 24.016796 23.517337 24.24277247
16 24.602325 24.432036 24.78954915
32 24.743104 24.697286 24.78955023
g 64 24.777961 24.766296 24.78955023

- 128 24.786654 24.783725 24.78955013
256 24.788826 24.788093 24.78955092

Clamped -Pinned
€} Clamped =Pinne FEM results (10 x 10 x 1000 el.) 24.8074

W

Table 6. Second natural frequency parameter Q, (f=2, exact

- solution 64.70943426)
d) Pinned - Clamped
N HWM FDM DQM
| IE 4 57.202697
ré}? 8 62.966887 57.405312 65.21032574
16 64.287324 62.612504 64.70946202
e) Clamped- Free 32 64.604874 64.163748 64.70943427
A 64 64.683357 64.571582 6470943427
E | 128 64.702919 64.674880 6470943434
256 64.707806 64.700790 64.70943804
FEM results (10 x 10 x 1000 el.) 64.7032

Fig. 2. Boundary conditions of the FGM beam.

Table 7. Fundamental frequency parameter Q; (f=2, exact
Table 3. Fundamental frequency parameter Q; (8= 2, exact  solution 11.18278324)
solution 8.41047573)

N HWM FDM DQM
N HWM FDM DQM
4 8.764599 9.455451

4 7.235577 8.157141 8 10.647800 10.572089 11.17258124
8 8.118951 8.332735 8.40822662 16 11.052596 11.012971 11.18278324
16 8.337942 8.390010 8.41047574 32 11.150448 11.139111 11.18278324
32 8.392365 8.405292 8.41047574 64 11.174712 11.171786 1118278327
64 8.405950 8.409176 8.41047568 128 11.180766 11.180029 11.18278302
i A NSOV 256 11182279 11182094 11.18278285
FEM results (10 x 10 x 1000 el.) 8.4136 FEM results (10 x 10 < 1000 el.) 11901

Table 4. Second natural frequency parameter Q, (= 2, exact Table 8. Second natural frequency parameter 0, (5= 2, exact

solution 41,07055822) solution 48.26066843)
N HWM FDM | DQM N HWM FDM DQM

4 36.595239 34.453858 4 41.945882 35.930268
3 39.999094 39252370 41.07596761 8 46.799191 43.888087 48.31401606
16 40.805039 40.603112 41.07055821 16 47.903565 47.016589 48.26066840
32 41.004320 40.952833 41.07055821 32 48.171942 47.938093 48.26066844
64 41.054008 41.041072 41.07055830 64 48.238522 48.179262 48.26066848
128 41.066421 41.063183 41.07055855 128 48.255134 48.240268 48.26066852
256 41.069524 41.068714 41.07056029 256 48.259285 48.255565 48.26066842

FEM results (10 x 10 x 1000 el.) 41.0672 FEM results (10 x 10 x 1000 el.) 48.2589



Table 9. Fundamental frequency parameter Q, (£ = 2, exact
solution 20.777978)

N HWM FDM DQM

4 18.799637 19.770973

8 20.309972 20.506995 20.77852832
16 20.662461 20.708729 20.77797932
32 20.749190 20.760567 20.77797932
64 20.770788 20.773620 20.77797931
128 20.776182 20.776889 20.77797921
256 20.777530 20.777707 20.77797837
FEM results (10 x 10 x 1000 el.) 20.7897

Table 10. Second natural frequency parameter Q, (= 2, exact
solution 56.294438)

N HwWwM |  FDM | DQM

8 54965168 52599124

16 55969000 55338806 56.09705480
32 56213501 56.053355  56.29443879
64 56274230 56234028 56.29443858
128 56289388 56279327  56.29443857
256 56293176 56290660  56.29443848
FEM results (10 x 10 x 1000 el.) 56.2907

Table 11. Fundamental frequency parameter Q; (=—0.549306)

N HWM FDM | DQM

8 4.884627 4.842031 4.87118515
16 4.874540 4.863858 4.87119849
32 4.872033 4.869360 4.87119848
64 4.871407 4.870739 487119797
128 4871251 4.871084 4.87120621
256 4871212 4.871170 4.87220829
FEM results (10 x 10 x 1000 el.) 4.8758

Table 12. Second natural frequency parameter , (£=—0.549306)

N HWM FDM | DQM
8 24.798280 23.143597 2441704668
16 24517676 24.092313 24.42645172
32 24449153 24342014 2442645172
64 24432120 24.405285 2442645167
128 24427868 24421156 2442645138
256 24.426806 24425128 2442665633
FEM results (10 x 10 x 1000 el.) 24.4397

In Tables 3—10 the value of the parameter £ is taken
equal to 2. The exact solutions computed based on
transcendental algebraic equations derived in [27] are
given in the headings of Tables 3—10. Obviously,
the convergence of the HWM (also of the FDM and
DQM) to the exact solution can be observed in all
these tables.

Proceedings of the Estonian Academy of Sciences, 2018, 67, 1, 1-9

The numerical rates of the convergence, computed
for the solutions presented in Table 3, are presented in
Table 13.

In Table 13 the values of N start from 16 because
each rate of convergence was computed on the basis of
three consecutive values of the solution [16]. The rate of
the convergence of the HWM and FDM obviously tends
to two, but the DQM has an ultrafast rate for N <32 and
a negative rate for N > 32 (loss of accuracy).

In Table 14, the convergence rates of the extrapolated
results of the HWM are given for four different boundary
conditions considered above. The Richardson extrapolation
method was applied, and it can be seen from Table 14 that
the order of the convergence of extrapolated results tends
to four in the case of all boundary conditions considered.

Based on results given in Tables 3—12, it can be
concluded that in the case of the posed problem the
highest accuracy was achieved by applying the DQM,
also in most cases the accuracy of the results obtained
by the HWM is higher than that obtained by the FDM
(there fundamental frequencies in Tables 3 and 7 are
exceptions). Detailed analysis of DQM results shows
that the maximum accuracy was achieved extremely
quickly with N=16 or N = 32; thereafter the accuracy
of the solution decreased with increasing resolution.
These results are in agreement with the theoretical
concept of the DQM (it is based on the use of high order
polynomials whose denominator vanishes for large N)
and results found in the literature.

It can be seen from Fig. 3 that in the case of the
parameter value k= 1.5 the functions of the elasticity
modulus corresponding to the exponential and power law
functions (7) and (9) are close (here a steel/aluminium
cantilever beam with f=—-0.549306 is considered).

Table 13. Rates of convergence corresponding to results given
in Table 3

N HWM FDM | QDM
16 20122 1.6163 -
32 2.0086 19060 23.8789
64 2.0023 19766 ~8.6258
128 2.0006 19942 ~4.6331
256 2.0001 19985 ~0.4590

Table 14. Fundamental frequency parameter Q;, convergence
rates of extrapolated results

N Pinned— Clamped— | Clamped— | Pinned—
pinned clamped pinned clamped
32 2.514821 4.2685 43015 4.1711
64 3.916921 4.0516 4.0774 4.0425
128 3.984539 4.0120 4.0191 4.0105
256 3.996411 4.0029 4.0047 4.0026
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Fig. 3. Variation of elastic modulus.

In Tables 11 and 12 the FG material properties
corresponding to steel/aluminium are considered with
steel in the left and aluminium in the right support. The
particular values of the material used are presented in
Table 2.

The exponential model (7) does not include directly
material properties at the right end of the beam. The
required values of the material are obtained by deter-
mining the value of the parameter 3 (£ =—0.549300).

The first four mode shapes for the above-considered
FG steel/aluminium cantilever beam are depicted in
Fig. 4. The corresponding mode shapes obtained by a
FEM are shown in Figs 5-8.

The results given in Table 15 were obtained by
applying the HWM with the general power law function
9)-(10).

The steel/aluminium FGM with properties given in
Table 2 is considered and the value of the exponent is
taken equal to 1.5 (k= 1.5). The boundary conditions for
a clamped—clamped beam are applied.

05 1

First four mode shapes of a FGM Beam
=3

0 02 04 06 08 1
Dimensionless coordinate x/L

Fig. 4. First four mode shapes of a cantilever FGM beam.

STEP=1
SUB =2
FREQ=11. 6429

Fig. 5. First mode shape of a cantilever FGM beam in FEM.

STERP=1
SUB =4
FREQ=58.3609 ZoaX

Fig. 6. Second mode shape of a cantilever FGM beam in
FEM.

STER=1
SUB =6
FREQ=153. 035

Fig. 7. Third mode shape of a cantilever FGM beam in FEM.

STER=1
SUB =8
FREQ=294.167

Fig. 8. Fourth mode shape of a cantilever FGM beam in FEM.

Table 15. First three values of fundamental frequency parameter
(k = 1.5, power law)

N ] Q | Q, Q,
8 22573818 62.648322 124.802042
16 22.559805 62.097576 122.045771
32 22552926 61.958469 121.384345
64 22.548905 61.920592 121.216644
128 22.546296 61.908898 121.172322
256 22544517 61.904408 121.159519

The FEM results computed for all boundary con-
ditions considered above are given in the last row of each
table. The number of elements used is 10 x 10 x 1000.
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Obviously, the values of the frequency parameters
computed using 3D FEM analysis are in excellent
agreement with those given in Tables 3—12, obtained by
applying the HWM, DQM, and FDM.

An example of the results of more detailed FEM
analysis is given in Table 15. In this table the first free
frequencies for a pinned—pinned beam are presented.
The convergence of the solution with increasing mesh
can be observed. The results are in agreement with
corresponding results obtained by applying the HWM,
FDM, and DQM given in Tables 3 and 4.

8. CONCLUSIONS

Three strong formulation based numerical methods
(HWM, FDM, and DQM) were applied for the analysis
of the FGM beam and the obtained results were
compared. The algorithms for all methods were coded
by the authors in MATLAB. Good performance was
observed in the case of all three methods used.

It can be concluded that in the case of the considered
problem the accuracy of the solutions obtained by
applying the HWM and FDM was in the same range.
However, in most cases the accuracy of the results of
the HWM outperformed that of the FDM. The accuracy
of the DQM appears to be higher than that of the HWM
and FDM. The convergence results presented in Table 13
confirm the accuracy of the HWM, FDM, and DQM.
Similar accuracy was observed also for cylindrical
shells in [16].

The obtained numerical results were validated with
the solid element 3D finite element model developed for
analysing more complex FGM structures. The results
obtained with applying the 3D FEM and HWM were
found to be in good (rather excellent) agreement.

Our future studies will focus on the application of
the HWM for the analysis of nanostructures and solving
fractional differential equations, which are not yet well
covered by commercial software solutions. An interesting
subtopic, whose research is underway, is adaption of
global optimization methods and techniques, developed
by the workgroup of design composite structures [31-36]
to design nano- and graphene structures.
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Funktsionaalgradientmaterjalist tala vabavonkumised:
Haari lainikute meetodi evalveerimine

Maarjus Kirs, Kristo Karjust, Imran Aziz, Erko Ounapuu ja Ernst Tungel

Uurimistoos on keskendutud Haari lainikute meetodi evalveerimisele. Haari lainikute meetodi abil saadud tulemusi
on vorreldud insenerirakendustes laialdaselt kasutatavate tugeval formulatsioonil pShinevate meetodite, nagu 15plike
vahede meetodi ja diferentsiaalkvadratuuride meetodi tulemustega. Vaadeldava iilesande korral on Haari lainikute
meetod 10plike vahede meetodist tdpsem. Diferentsiaalkvadratuuride meetod osutus viiksema kollokatsioonipunktide
arvu korral Haari lainikute meetodist tdpsemaks, kuid selle rakendamine suurema kollokatsioonipunktide arvu korral
on komplitseeritud. Samuti on loodud 3D Idplike elementide meetodil pShinev mudel ja selle rakendamisel saadud
tulemused on eeltoodud meetodite tulemustega kooskodlas. Haari lainikute meetodi abil saadud lahendi ja ekstra-
poleeritud tulemuste koonduvuskiirus on kooskdlas vastavate koonduvusteoreemidega tdestatud teoreetiliste tulemustega.
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Abstract: In the current study the Haar wavelet method is adopted for free vibration analysis of nanobeams.
The size-dependent behavior of the nanobeams, occurring in nanostructures, is described by Eringen nonlo-
cal elasticity model. The accuracy of the solution is explored. The obtained results are compared with ones
computed by finite difference method. The numerical convergence rates determined are found to be in agree-
ment with corresponding convergence theorems.

Keywords: Haar wavelet method; nonlocal elasticity; nanobeams; Richardson extrapolation

AMS: 74530, 74B99, 65L10

1 Introduction

The Haar wavelet method considered herein has been introduced by Chen and Hsiao for solving lumped and
distributed parameter systems [12]. According to approach proposed in [12] the highest order derivative in-
cluded in the differential equation is expanded into the series of Haar functions. Such an approach allows
to overcome shortcomings caused by discontinuities of the Haar functions. An alternate approach has been
proposed by Cattani [10], Castro et al. [9], according to which the quadratic waves are “smoothed” with inter-
polating splines.

The Haar wavelet method introduced in [12] has been adjusted for solving wide class of differential and
integral equations covering solid and fluid mechanics [15, 16, 19-22, 29, 46-48], mathematical physics [18,
36, 38-40], evolutionary equations [23, 30], etc. In [22] the Haar wavelet method for solving PDE is developed.
In [16, 19, 20, 29, 46-48] the Haar wavelet method is adopted for analysis of composite structures. In [18] the
Haar wavelets method is applied for solving differential equations characterizing the dynamics of a current
collection system for an electric locomotive. The nuclear reactor dynamics equations are considered in [36,
38-40].

Recent treatments in the area of Haar wavelet method development cover solution of integral and integro-
differential equations [6, 7, 17, 25], fractional partial differential equations [26, 41, 43, 44]. The accuracy issues
of the Haar wavelet method are studied in [31, 32]. It has been proved in [31] that the order of convergence of
the Haar wavelet method is equal to two. In [32] the Richardson extrapolation method is applied and it has
been shown that the order of convergence of the extrapolated results is equal to four.

Some review papers covering development of the Haar wavelet method and its application can be referred
as [27, 28].

The vibration analysis of nanostructures, based on nonlocal elasticity theory, is performed commonly
by applying finite difference (FD) or differential quadrature (DQ) methods [8, 33, 34, 37, also finite element
method [13, 42], Rayleigh-Ritz method [11], etc. A number of analytical or semi-analytical solutions are derived
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for particular problems [2, 5]. These solutions can be employed for estimating the accuracy of numerical
methods.

In the current study the Haar wavelet method is adopted for free vibration analysis of nanobeams. The
obtained numerical results are compared with the results achieved by applying FD method (the study is fo-
cused on strong formulation based method). The numerical order of convergence of the results is computed
and validated.

2 Basics of Haar wavelets

The Haar function h;(x) is defined as [12, 21]

1 for x € [&@D), &)
h={-1  for x €[50, &) - )
0 elsewhere

In(1)i=m+k+1,m=2 (M= 2’)stands for a maximum number of square waves that can be sequentially
deployed in interval [A, B] and the parameter k indicates the location of the particular square wave

&) = A+ 2kudx, &) =A+Qk+ Dudx, &) =A+2(k+ Dudx, u=M/m, Ax=(B-A)/2M). ()

The components of the operational matrix of integration can be obtained as n-th order integrals of Haar
function (1)

0 for  xe[A,&@)
Pai0) = L (x-& (f)) N for xe [sl(z:), &(z:)) . -
TG-S0 -2 (x- &) for x € [&(1), &)
(x-&@)" -2 (x- &@)" + (x- &(@)" for x € [&(), B)
An integrable and finite function in the interval [A, B] can be expanded into Haar wavelets as
foo) = i a;hi(x) = a'H %)

i=1

In the following sections an approach of the Haar wavelet method proposed in [1] is employed.

3 Governing differential equations for nonlocal Euler-Bernoully
beam

The governing differential equations for Euler-Bernoully beam are derived in a number of papers [3, 8]. Thus,
herein the detailed derivation of governing equations is omitted for conciseness sake. In the following, a short
description of the basic concepts, assumptions and principles used is given.

Classical e.g. Euler-Bernoulli beam theory is founded on the following two key assumptions:

— Cross sections of the beam do not deform in a significant manner under the application of transverse
or axial loads and can be assumed as rigid,

— During deformation, the cross section of the beam is assumed to remain planar and normal to the de-
formed axis of the beam.

Based on above assumptions the classical Euler-Bernoully beam model describing free harmonic vibrations

read g
w 2
EIW—mOQ w =0, (5)
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According to free harmonic motion, the deflection is assumed in form w(x, t) = W(x) sin(wt), where w stand
for natural frequency of vibration. In (5) mo is mass moment of inertia, E and I stand for the Young’s modulus
and the second moment of area, respectively.

However, the classical beam governing equation (5) does not cover nonlocal behavior of the structure i.e.
“small scale effect”. In order to consider small scale effect the nonlocal elasticity theory should be introduced
instead of Hooke’s law. Herein we considered continuum mechanics based on nonlocal elasticity theory and
most widely used Eringen model [46] as

(1-a’L*V?)o = Ce, (6)

In (6) C stands for the fourth-order elasticity tensor, o and € are the second order stress and strain tensors,
respectively. The operator V2 is a Laplace operator and & = (ega)/L . The parameter e, describes material
properties. The parameters L and a stand for external and internal characteristic lengths, respectively.

The nonlocal constitutive equation (6) can be rewritten in terms of moments and deflection as (multiply-
ing (6) by z and integrating through the cross sectional area)
a*m 2w
rar e
In (7) u stands for nonlocal parameter. Combining the nonlocal constitutive equation (7) and the moment and
deflection relation of Euler-Bernoully beam

M-y ()]

a*m

dx?
one obtains the governing differential equation for nonlocal Euler-Bernoully beam in terms of displacement
as

= —mow’W, 8)

a‘w ,d*W 2
EI P + umow Frea mow”W. )
In non-dimensional variables the governing differential equation for nonlocal Euler-Bernoully beam reads
a‘w A’ a*w o,
itk AW 10)

where X = x/L, A> = mow?L"/EI
In the following section the governing differential equation (10) will be discretized by applying Haar
wavelet method.

4 Application of the Haar wavelet method

According to the HWDM considered, the highest order derivative existing in differential equation is expanded
into Haar wavelets. In the case of considered problem the fourth order derivative can be expanded into Haar

wavelets as
a‘w
dax4
By integrating (11) four times with respect to x, one obtains the solution W(x) as

-d"H. an

2

3
WX) =a"P¥ + Q% + CZX7 +c1X + ¢co, 12)

where P® is a fourth order operational matrix defined by formula (4) and co, .. ., ¢3 stand for integration
constants determined for each particular boundary conditions separately.
Inserting (10), (11) in governing differential equation (9) one obtains

A X3 X2
a'H+ ,uL—Z(aTP(Z) +c3X+¢y)=A2 (aTP(4) + C3? e X+ co) . (13)

The following boundary conditions are considered:



DE GRUYTER OPEN Haar wavelet method for vibration analysis of nanobeams = 23

a) Pinned-pinned nanobeam
wW(0) =0, W(1) =0, Wn(0) =0, Wn(1) = 0. (14)

b) Clamped-clamped nanobeam

Ww(0) =0, W(1) =0, Wr(0) =0, Ws(1) = 0. (15)

¢) Clamped-pinned nanobeam
W(0) =0, W(1) =0, Ws(0) =0, Wn(1) = 0. (16)
In the current study, firstly the integrations constants co, ..., c3 are determined from particular boundary

conditions and then the system (13) is solved with respect to frequency parameter A as an eigenvalue problem.

5 Numerical results and convergence analysis

In the following, the three types of boundary conditions are considered (pinned-pinned, clamped-clamped
and clamped-pinned) for numerical analysis of nanobeam. It is assumed that the external characteristic
length parameter L is equal to 10 nm and the nonlocal parameter varies in range [0; 5].

Let us denote two numerical solutions found on nested grids h;_1, h; = h;_1/2 by F;_4, F;.According to
Richardson extrapolation formulas, the extrapolated values of the solution can be computed as [35, 45]

Fi-Fiy

Ri=Fi+ 2k_1 N

(17)
where k stands for the theoretical order of convergence. However, the theoretical order of convergence of the
numerical method may be not preliminarily known. In latter case using the Eq. (16) and three solutions on a
sequence of grids F;_», Fi_1, F;, hi_»/hi_1 = hi_1/h; = 2 one can obtain the estimate on the theoretical order

of convergence k as [48]
o Fi;-Fiq
k = k; = log (7&_1 T, )/log(Z). (18)

In (17) k; is the value of the observed order of convergence.

a) Pinned-pinned nanobeam (PP)

The values of the fundamental frequency parameter F = v/A (square root is taken in order to compare with
results found in literature), the numerical rates of convergence and absolute errors for different grid levels
are presented in Table 1.

It can be seen from Table 1, that the error of the Haar wavelet method is less than that of finite difference
method, but remains in the same range. The numerical rate of convergence tends to two in the case of both
methods (see columns 4 and 5), but this process is faster in the case of Haar wavelet method. In Table 1 the
scaling parameter y is equal to zero and the results are compared with exact solution given in [8] (nanoscale
effect is not considered). In Tables 2-3 the value of the scaling parameter y is varied (4 = 3 and u = 5) and
instead of absolute error the values of the extrapolated results and their convergence rates are given.

Obviously, the fundamental frequency parameters F; corresponding to HWDM and FDM are close and
converge to the same value (columns 2-3 in Tables 2-3), but in the case of lower grid (N = 4; 8; 16) the error
of the+ HWDM is significantly smaller than that of the FDM. Here the error is computed as difference from
final value achieved with N = 1024. The numerically estimated rates of convergence k; tend to two in the case
of both methods HWDM and FDM (columns 4 and 5). The numerical rates of convergence of the extrapolated
results tend to four for both methods (some deviation can be observed in the case of FDM for larger grid,
which may be caused by too close values of the frequencies). These results are in agreement with convergence
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Table 1: The values of the fundamental frequencies Fj, rates of convergence k; and errors (u = 0).

Grid Fundamental frequency F; Rate of convergence k; Error
N HWM FDM HWM FDM HWM FDM
4 3.161916 3.061468 0.0203 0.0801
8 3.146649 3.121445 0.0051 0.0202
16 3.142855 3.136549 2.0085 1.9896 0.0013 0.0050
32 3.141908 3.140331 2.0027 1.9974 0.0003 0.0013
64 3.141672 3.141277 2.0007 1.9993 7.8855E-05 0.0003
128 3.141612 3.141514 2.0002 1.9998 1.9713E-05 7.8854E-05
256 3.141598 3.141573 2.0000 2.0001 4.9283E-06 1.9754E-05
512 3.141594 3.141588 2.0000 2.0009 1.2321E-06 4.9536E-06
1024 3.141593 3.141592 2.0000 1.9053 3.0800E-07 9.5359E-07

Exact 3.14159265

Table 2: The values of the fundamental frequencies Fj, rates of convergence k;, extrapolated results and their rates of conver-
gence (u = 3).

Grid Fundamental Rate of Extrapolated results R; Rate of
frequency F; convergence convergence
k; of extr. results
N HWM FDM HWM FDM HWM FDM HWM FDM
4 2.963169 2.877579
8 2.949087 2.927620 2.944393 2.944300

16 2.945544 2.940174  1.9911 1.9949  2.944364 2.944358

32 2.944658 2.943315 1.9985 1.9987  2.944362 2.944362  4.5171 4.0137
64 2.944436 2.944100 1.9997 1.9997  2.944362 2.944362  4.1501 4.0029
128 2.944381 2.944297  1.9999 1.9999  2.944362 2.944362  4.0393 4.0608
256 2.944367 2.944346  2.0000 1.9996  2.944362 2.944362  4.0098

512 2.944363 2.944358  2.0000 1.9983  2.944362 2.944362  3.9942

1024 2.944363 2.944359  2.0000 4.0219  2.944362 2.944359  4.2251

Table 3: The values of the fundamental frequencies F;, rates of convergence kj, extrapolated results and their rates of conver-
gence (u = 5).

Grid Fundamental Rate of Extrapolated results R; Rate of
frequency F; convergence convergence
k; of extr. results
N HWM FDM HWM FDM HWM FDM HWM FDM
4 2.859891 2.781004
8 2.846396 2.826607 2.841898 2.841809

16 2.842983 2.838032 1.9832 1.9970  2.841845 2.841840

32 2.842128 2.840890 1.9966 1.9993  2.841843 2.841842  4.2765 4.0265
64 2.841914 2.841604  1.9992 1.9998  2.841843 2.841843  4.0725 4.0063
128 2.841860 2.841783  1.9998 2.0000  2.841842 2.841843  4.0184 3.9482
256 2.841847 2.841828  1.9999 1.9997  2.841842 2.841843  4.0044

512 2.841844 2.841839  2.0000 1.9937  2.841842 2.841843  4.0045

1024 2.841843 2.841844  2.0000 1.1015 2.841842 2.841846  4.0066
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Table 4: The values of the fundamental frequencies F, rates of convergence k;, extrapolated results and their rates of conver-
gence (u =5).

Grid Fundamental Rate of Extrapolated results R; Rate of
frequency F; convergence convergence
k; of extr. results
N HWM FDM HWM FDM HWM FDM HWM FDM
4 3.535756 3.320272
8 3.510894 3.455128 3.502607 3.500080

16 3.504564 3.490504  1.9737 1.9306  3.502454 3.502296

32 3.502974 3.499452 1.9932 1.9831 3.502444 3.502434  3.9299 3.9965
64 3.502576 3.501695 1.9983 1.9958  3.502444 3.502443  3.9874 4.0018
128 3.502477 3.502256  1.9996 1.9990  3.502444 3.502444  3.9971 3.9999
256 3.502452 3.502397  1.9999 2.0000 3.502444 3.502444  3.9999

512 3.502446 3.502431  2.0000 2.0489  3.502444 3.502442  3.9959

1024 3.502444 3.502441  2.0000 1.6797 3.502444 3.502445  3.9069

theorems proved in [31, 32]. Interesting is the small scale effect of the beam or dependency of the solution on
scaling parameter u. Figure 1 shows the relation between non-dimensional frequency parameter and scaling
parameter p.

1.2

0.8

0.6

0.4

0.2

Frequency parameter (nonlocal/local)

Figure 1: Effect of scaling parameter p on fundamental frequency.

Increasing the value of the scaling parameter y from 0 to 5 causes remarkable reduction of the value of
fundamental frequency parameter A (18.2%). Thus, it is reasonable to consider small scale effect for analysis
of nanobeams.
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b) Pinned-clamped nanobeam

The structure of the Table 4 is the same as Tables 2-3. It can be seen from columns 2 and 3 of Table 4 that the
fundamental frequency parameters corresponding to HWDM and FDM are close and converge to the same
value. The numerical rates of convergence k; tend to two in the case of both methods and the rates of conver-
gence of extrapolated results tend to four in the case of both methods (certain deviations appears in the case
of larger grid, which may be caused by too close values of the frequencies). Again, in the case of small grid
size (N = 4; 8; 16) the error of the HWDM is substantially smaller than that of FDM.

c) Clamped-clamped nanobeam

The structure of the Table 5 coincides with that of Table 4. In can be seen from Table 5 that in the case of
clamped-clamped nanobeam the behavior of the solutions is similar with the previous two boundary condi-
tions considered above.

Table 5: The values of the fundamental frequencies Fj, rates of convergence k; , extrapolated results and their rates of conver-
gence (u = 5).

Grid Fundamental Rate of Extrapolated results R; Rate of conv.
frequency F; convergence of extr. results
kj
N HWM FDM HWM FDM HWM FDM HWM FDM
4 4.252952 3.832771
8 4.207325 4.095779 4.192116 4.183449

16 4.195622 4167331  1.9629 1.8781  4.191720 4,191182

32 4.192669 4.185572  1.9870 1.9718  4.191685 4.191652  3.4847 4.0397
64 4.191929 4.,190153  1.9966 1.9932  4.191683 4,191681  3.9239 4.0225
128 4191744 4.191300 1.9991 1.9983  4.191683 4191682 3.9832 4.0068
256 4.191698 4,191587  1.9998 1.9996  4.191683 4.191683  3.9959 3.9994
512 4.191686 4.191659  1.9999 2.0006  4.191683 4,191683  4.0009
1024 4.191683 4,191677  2.0000 1.9645  4.191683 4191683  3.9621

Similarly to pinned-pinned beam, the influence of the scaling parameter u on fundamental frequency
parameter A is significant (21.5%).

6 Conclusions

The Haar wavelet method has been treated for free vibration analysis of nanobeams. The reference solution is
realized by FD method (also strong formulation based method). The results obtained by applying HWDM and
FDM were similar. The accuracy of the solutions obtained by applying HWDM appears higher in the case of all
three boundary conditions considered, especially in the case of small grid size (N = 4; 8; 16). The numerical
rate of convergence has been observed to be equal to two for HWDM and equal to four for extrapolated results.
These results are in agreement with convergence theorems proved recently for HWDM in [31, 32]. The obtained
results coincide also with the results given in [8] achieved by applying the differential quadrature method

(DQM).
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1. Introduction

Nowadays, the Haar wavelets are most widely used wavelets for
solving differential and integro-differential equations, outperforming
Legendre, Daubechie, etc. wavelets (Elsevier scientific publication
statistics). Prevalent attention on Haar wavelet discretization
methods (HWDM) can be explained by their simplicity. The Haar
wavelets are generated from pairs of piecewise constant functions
and can be simply integrated. Furthermore, the Haar functions are
orthogonal and form a good transform basis.

Obviously, the Haar functions are not differentiable due to dis-
continuities in breaking points. As pointed out in [1] there are two
main possibilities to overcome latter shortcomings. First, the quad-
ratic waves can be regularized (“smoofed”) with interpolating
splines, etc. [2,3]. Secondly, an approach proposed by Chen and
Hsiao in [4,5], according to which the highest order derivative
included in the differential equation is expanded into the series
of Haar functions, can be applied. Latter approach is applied suc-
cessfully for solving differential and integro-differential equations
in most research papers covering HWDM [1,4-28]. Following the
pioneering works Chen and Hsiao in [4,5] Lepik developed the
HWDM for solving wide class of differential, fractional differential
and integro-differential equations covering problems from elasto-
statics, mathematical physics, nonlinear oscillations, evolution
equations [1,6-10]. The results are summarized in monograph
[11]. It is pointed out by Lepik in [1,11] that the HWDM is conve-
nient for solving boundary value problems, since the boundary
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conditions can be satisfied automatically (simple analytical
approach).

Composite structures are examined by use of wavelets first in
[12,2]. In [12] the free vibration analysis of the multilayer compos-
ite plate is performed by adapting HWDM. The static analysis of
sandwich plates using a layerwise theory and Daubechies wavelets
is presented in [2]. The delamination of the composite beam is
studied in [13]. During last year Xiang et al. adapted HWDM for
free vibration analysis of functionally graded composite structures
[14-18]. In [14-18] a general approach for handling boundary
conditions has been proposed. In all above listed studies the Haar
wavelet direct method is applied. The weak form based HWDM
has been developed in [19], where the complexity analysis of the
HWDM has been performed. Recent studies in area of wavelet
based discretization methods cover solving fractional partial
differential equations by use of Haar, Legendre and Chebyshev
wavelets [20-25]. In [26-28] the Haar wavelets are utilized for
solving nuclear reactor dynamics equations. The neutron point
kinetics equation with sinusoidal and pulse reactivity is studied
in [26]. In [27,28] are solved neutron particle transport equations.
In [29-31] the HWDM is employed with success for solving
nonlinear integral and integro-differential equations.

Most of papers overviewed above found that the implementation
of the HWDM is simple. Also, the HWDM is characterized most
commonly with terms ,,simple”, “easy” and effective* (see [1,14-
18,25-28] and others). The review paper [32] concludes that the
HWDM is efficient and powerful in solving wide class of linear and
nonlinear reaction-diffusion equations.

However, no convergence rate proof found in literature for this
method. It is shown in several papers [33-35] that in the case of
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function approximation with direct expansion into Haar wavelets,
the convergence rate is one. This result hold good for function
approximation in integral equations, but does not hold good for
HWDM developed for differential equations above, since in these
methods instead of the solution its higher order derivative is
expanded into wavelets.

The aim of the current study is to clarify the accuracy issues of
the HWDM, based on approach introduced by Chen and Hsiao in
[4,5], and featured for solving general nth order ordinal differential
equations (ODE). This question is open from 1997 up to now.
Answer to this question allows to give scientifically founded
estimate to HWDM, also to make comparisons with other methods.

2. Haar wavelet family

In the following the Haar wavelet family is defined by using
notation introduced by Lepik [1]. Let us assume that the integra-
tion domain [A, B] is divided into 2M equal subintervals each of
length Ax = (B—A)/(2M). The maximal level of resolution J is
defined as M = 2. The Haar wavelet family h;(x) is defined as a
group of square waves with magnitude +1 in some intervals and
zero elsewhere

1 for
hi(x) =¢ -1 for
0 elsewhere,

€ [&(0), &(1),
€ [&(D), &(1)), 1)

where

(1) =A+2kuAx, &) =A+ (2k+1)uAx,
&) =A+2(k+ DuAx, p=M/m, Ax=(B—A)/(2M). @)

In Egs. (1) and (2) j=0,1,...,J and k=0,1,..., m —1 stand for
dilatation and translations parameters, respectively. The index i is
calculated as i = m + k + 1. Each Haar function contains one square
wave, except scaling function h;(x) = 1. The parameter m =2’
(M = 2) corresponds to a maximum number of square waves can
be sequentially deployed in interval [A,B] and the parameter k
indicates the location of the particular square wave. Since the
scaling function h;(x)=1 does not include any waves here
m=0, & =A, ¢ = & =B. The Haar functions are orthogonal to
each other and form a good transform basis

1 f27 i=1=24k,
/0 m(x)fa(x)dt—{o L 3)

Any function f(x) that is square integrable and finite in the interval
[A, B] can be expanded into a Haar wavelets as

Fx) =Y aihi(x). o
The Haar coefficients

ai:ZJ/ fOhxdx, i=1,....2" +k+1 (5)
A

can be determined from minimum condition of integral square
error as

B 2M
B min, Bl = 0 ~fu0l. ful) = ahix. (6)
i=0
In Eq. (5) f(x) and fy(x) stand for the exact and approximate
solutions, respectively. The integrals of the Haar functions (1) of

order n can be calculated analytically as [1]

0 for xe[A &)
= 0)" for x e [& (i), & (1)
n! ’ '
Puil®) =\ peaor-ax-aur "

for x e [&(i), & (1)),

T for
n!

x € [&5(0). B).

Note that the integrals of the Haar functions are continuous
functions in interval [A,B]. Also, the first integrals of the Haar
functions are triangular functions (o = 1).

3. Convergence analysis of Haar wavelet discretization method
Let us consider nth order ordinal differential equation (ODE) in

general form

V,u) =0, (8)

where prime stand for derivative with respect to x. According to
most commonly used approach introduced in [4,5] instead of
solution of the differential equation its higher order derivative is
expanded into Haar wavelets

Za hi(x 9)
i=1

Using notation introduced in previous section, the sum in Eq. (9)
can be rewritten as

Gx,u,u', v, ... u"=

f(f

211

a 24 k+1 2J+k+l X) UO)
=0

Mx

fx) =aihy +

Il
=)
=

J

In Egs. (9) and (10) i=m+k+1,j=0,1,...,], k=0,1,
m—1,m=2 (M =2)). By integrating relation (9) n times one
obtains the solution of the differential equation (8) as

o0 1
) = A8 S S B 00+ Br () (11)

j=0 k=0

2i_

In Eq. (11) Br(x) and p,,;,,.,(x) stand for boundary term and nth
order integrals of the Haar functions are determined by formula
(7), respectively.

Without loss of generality it can be assumed in the following
that A =0, B = 1 since the differential equations can be converted
into non-dimensional form by use of transform 7 = (x — A)/(B — A)
ie.x=A+ (B—A)T (see [19]).

Theorem 1. Let us assume that f(x) = ” X) € L?(R) is a continuous
function on [0, 1] and its first derivative is bounded

0w [0

Vx e [0, n, n > 2 (boundary value problems).

(12)

Then the Haar wavelet method, based on approach proposed in
[4,5], will be convergent i.e. |Ey| vanishes as | goes to infinity. the con-
vergence is of order two

IEull = 0{(#)2} (13)

Proof. It implies from Egs. (5), (6) and (10) The error at the Jth
level resolution can be written as

o 211

Z Za21+k+1pn 20 tk+1 ( ) (14)

j=+1k=0

[Em| = [u(x) — um(x)| =
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Expanding quadrate of the L?-norm of error function, one
obtains

2

1 00 —
1Bl = | (Z > P <x>>

1k=0
27-1 o0 271

x r1
Z Z azuk“ a2’+s+1 / pn,2’+k+1 (x)pmz’ﬂﬂ (X)dX.
j=I+1k=0r=J+15=0 /0

(15)

In order to estimate complex expression (15) it is reasonable first to
derive estimates for its components: the coefficients a; and the inte-
grals of the Haar wavelets p,;(x). By use of and formulas (5) and (1)

the coefficients a; (i = 2/ +

a,72’/ fx)h; dX*ZJ[/ fx)dx — / fx) dx]

:21[52—51 W (&) = (& = & (&) (16)
In Eq. (16) {; € (&1, &) and § € (&, &3). It follows from Eq. (2) that
& =& =& —&=1/(2m)=1/(2"") and the expression for coeffi-
cients @; in Eq. (16) can be reduced to

a4 %[f(m —f(@)] = %@1 - Cz%

k+ 1) can be evaluated as

0, (e, i)- (17)

It implies from Eq. (17) and assumption (12) of the theorem that
(18)

Note that there are no significant differences in estimation of coef-
ficients in cases where function itself of its nth order derivative is
expanded into Haar wavelets. The formula (18) is in accordance
with the results obtained in [36].

However, the function estimation is principally different, since
the integrals of the Haar wavelets p,;(x) are not orthogonal i.e.
all terms in Eq. (15) should be considered. Before direct estimation
of the integral jg Pk ®)Pnar 51 (X)dx it is reasonable to derive
estimates on the integrals of the Haar wavelets p, ;(x). It is assumed
in the following that n > 2 (boundary value problems). Particular
case n = 1 needs little different approach but leads to the same
order of convergence (studied by authors in [38]). Let us proceed
from formula (7) and derive upper bound of the function p,;(x)
in each subinterval. First note that the function p,;(x) =0 for
x €[0,& ().

In the interval x € [¢;(i), & (i)] the function p, ;(x) is monotoni-
cally increasing (power law). Thus, the upper bound value of the
function p,;(x) is reached at x = &,(i) as follows (see Eqs. (2) and
(7))

_lah-a0" 1 (L)
n! \git1) "’

Pni(X) =Ppoiigr < n!

€ &), &) (19)

In the interval x € [&,(i), &3(i)] the function p,;(x) is monotoni-
cally increasing if

. .. 1
X<EH+ (G -8) [W] (20)

The inequality (20) can be derived from formulas (2) and (7) and

condition d"'t;‘ > 0. Since the right hand size of the inequality
(20) is greater or equal to ¢; for considered values of parameter
n(n > 2) it can be stated that the function p,;(x) has a maximum

at x = &3(i) in the interval x € [&,(i), &3(i)]. The maximum value of

the function p,;(x) can be obtained by substituting x = &(i) in
Eq. (7) as

Pui(X) = Py < 22 (2}—]) L xe () &) 1)

n!

In the interval x € [&;
as (see formula (7))

ALt (£ BYE)) N

Obviously, all terms in sum (22) corresponding to the odd values of
the parameter k are equal to zero and the function p,;(x) has a
maximum at x = 1. Thus, denoting n; = floor(n/2), considering that
ki(n—k)! > (m !)2 and applying geometric progression formulas one
obtains estimate on p,;(x) as

(i), 1] the function p,;(x) can be expanded

Pni(X) =Ppoiig <

2
g 1) (2’]”> . xe &), 1). (23)
The function p,;(x) is monotonically increasing in interval [0,1],
since it is monotonically increasing in each subinterval of [0, 1] as
shown above. Furthermore, the upper bound of the function p,;(x)
in interval [0, 1] is determined by inequality equation (23).

Next the quadrate of the L*-norm of error function can be esti-
mated. Inserting Eq. (18) in Eq. (15) one obtains

o0 2/-1 0 2'-1

1 1 !
7]2 Z Z Z 2_ r+1 / pn.21+k+1 (x)pnA2'+s+1 (X>dx<
&

J=J+1 k=0r=]+1 s=

2
[[Emllz <

(24)
Introducing the following notation
8 1
Ch=3 25
3 1P (25)

one can express the estimates on upper bounds of the integrals of
Haar wavelets p, ,; ., (X) and p, .. (X) as

Cn (%)2 (26)

The coefficient C, depends on order of the differential equation
only, not on level of the resolution.
Inserting Eq. (26) in Eq. (24) yields

PSS ) G 2o

J=lH1r=J41

1 2
pnyzgkﬂ (X) <G (F) 5 Pnarisia (X) <

2
IEwl3| <
j=s

1,001\
<3l G ) (27)
Based on Eq. (27) it can be stated that the convergence of the Haar

wavelet method considered is of order two, since the integration
domain is divided into 2M = 2*! equal subintervals i.e.

Eul, = 0{(2%)} (28)

The error bound can be expressed as

MG (1Y _4  n (1Y
w2 <76 (2’“) 9 (floor(n/2)!)’ (2!“) ' @

The theorem is proved. O
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4. Numerical validation of the rate of convergence and
extrapolation of results

In the following the analytical formulas are provided for numeri-
cal estimation of the order of convergence and extrapolation of the
results.

4.1. Theoretical background

Let us consider the asymptotic error expansion in powers of the
step size h as

F(h) - F0) = ah* + 0(h"), 0<k<l (30)

Here F(h) denote the value obtained by any numerical method with
step size h, F(0) is an unknown exact value, o is unknown constant
independent on h and k is theoretical order of accuracy of the
numerical method. Such expansions have been proven for a wide
range of finite difference and finite element solutions [36].

Denote two numerical solutions found on nested grids
hi_1, hi = hi_1/2 as follows F; 1 = F(h;_1), F; = F(h;). Applying (30)
for these solutions one can write the following equality

Fiii — F(0) = ahf; + O(hl_,),

31
Fi — F(0) = ahf + O(hy). Y

By taking a linear combination of these two solutions, one can
obtain the error estimate as

Fi—F,

oL hie !
F(0) - Fi 1T O(hy) (32)

or another approximation of the value F(0) as
Fi - Fi—]
281
This formula is simple Richardson extrapolation formula
[36,37]. In other words, the approximate solutions R; have error
with higher order in relation to h than F;. Therefore, if numerical
solutions of the problem for two grids and the theoretical order
of accuracy k of the numerical method are known, a simple linear
extrapolation formula (33) eliminates the leading term from error
expansion equation (30) and leads to reasonably accurate results
[36,37]. The Richardson extrapolation is an efficient method for
error estimation and increase the accuracy of finite difference
and finite element solutions of different problems of mathematical
physics.
On the other hand, if exact solution F(0) is known, Eq. (31) give
simple method for estimating the order of convergence of
numerical method as

Fii—F(0)
F; — F(0)

R,‘:F,'+

= F(0) + O(h}). (33)

=2+ o(h™),

= log (%)/ log(2). (34)

In practice, the order of convergence of numerical method can
be estimated even when the exact solution F(0) is unknown. In lat-
ter case, the theoretical order of accuracy can be estimated using
three solutions on a sequence of nested grids F; ,, Fi 1, Fi,
hi 2/hi 1 = hi_1/h; = 2. The following ratio can be obtained from
three equations similar to Eq. (34):

Fia—Fia_ ok Ik
=2 oY, (35)

Further, from Eq. (35) the theoretical order of accuracy k can be
easily estimated [37]:

k ~ k; = log(4;)/ log(2). (36)

k~kf

A=

Here k; is a value of observed order of accuracy and Eq. (36) gives
experimental method for determining or verifying the value of
theoretical order of accuracy k of the numerical method.
Obviously, Eq. (36) can be used only for 4; > 0, i.e. three successive
values F; ,, F; 4, F; must be monotonic. The proximity of obtained
values of the ratio /; or observed order of accuracy k; respectively
to theoretical values 2* or k is a confirmation of asymptotic error
expansion (30) with leading term ah®.

Moreover, the following formula can be used to estimate the
order of convergence of the improved values R; :

I~ = log (%) / log(2). (37)
i—-1 — I\

This formula follows from Eq. (33) and can be obtained similarly to
Eq. (36). In the next sections the order of convergence of the HWDM
is evaluated numerically in the case of three model problems.

4.2. Free transverse vibrations of the orthotropic rectangular plates of
variable thickness

In the current section the order of convergence of the HWDM
treated by author in [12] is examined. Assuming that the principal
directions of orthotropy coincide with natural co-ordinate system
one can represent the equation of motion governing natural vibra-
tion of a thin orthotropic rectangular plate as

TW p, IW gy TW 0T 0w 0T Fw
oxd T oyA ox29y? T T Ox oxdyr '~ dy Oyox?
9D, Pw 0Dy Pw D Pw D, Pw
ox ox3 gy oy3 X2 Ox? ay? 0oy?
oD Pw 9D Pw 9Dy FPw *w
gt — -y —kw, (38)
gy? ox2  Ox% 0y? OX3y Oyox ot?
where

D, =Ej*/12, D,=Ej?/12. Dy=Gy)*/12, D=E3/12,

T=D+2D,, E Ex : 2]

==  E=—2 _  FE'=vE =WE.
AR PRIV A TR IR Xy

(39)

In Egs. (38) and (39) v is a Poisson’s ratio, D and E stand for flexural
rigidity and modulus of elasticity, respectively. The transverse
deflection of the plate and variable plate thickness are denoted by
w = w(t,x,y) and y = y(x), respectively. The variables p and k stand
for the mass density and the modulus of a Winkler type foundation,
respectively. It is assumed that the edges of the plate are
simply supported along y =0, y=>b and the other two edges
(x=0,x=a) are clamped or simply supported. According to the
Lévi approach the time-harmonic-dependent solution can be
expanded as

w(t,X,y) = Wa(X) sin(nmy/b)ei. (40)

In Eq. (40) w is the harmonic frequency, n - positive number and
i=+v/—1. The system (38)-(40) can be written in terms of non-di-
mensional variables as

" 6929
W, — no? ;73 w,

H27) Byl /2
wh +6£3V w4 [3(W ;‘;2/ ) 202
i

5 {“4 _307"+277)

2
+2 o 92%+ 121(/@3] W, =0, (41)
X

where prime denotes derivative with respect to t and
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Table 1 Table 3
Numerical results for Q. Simply supported plate (all sides). Numerical results for second order eigenvalue problem considered in [38].
j Fund. freq. Extrap_res ki KE I; j Fund. freq. Extrap.res. ki K ;
3 48.655448 4 12.5950
4 48.651658 48.650394 2.007 5 12.4172 12.3579 1.960
5 48.650716 48.650402 2.009 2.002 6 123711 12.3557 1.947 1.998
6 48.650481 48.650402 2.002 2.000 4.001 7 12.3595 12.3556 1.991 2.019 4.459
7 48.650422 48.650402 2.001 2.000 4.000 8 12.3566 12.3556 2.000 2.078 -
8 48.650407 48.650402 2.000 2.000 4.000
X Wn - ) . nma E" +2Gy
T:E- Wn=—, V:Es L= ":Ts Table 4
v - X Numerical results for fourth order eigenvalue problem considered in [38].
ka 12paw
K= B Qz = % (42) j Fund. freq. Extrap.res. ki kf I;
y y7o
4 16.6666
In Egs. (41) and (42) 7, stands for the thickness of the plate at 7 = 0. 5 16.5364 16.4930 2.010
According to the HWDM considered the higher order derivative 6 16.5041 16.4933 2.011 2.007
7 16.4960 16.4933 1.996 2.041 3.322

included in ODE (41) is expanded into Haar wavelets as
d‘'w,
dr4

where a’ is unknown coefficient vector. The numerical results for
fundamental frequency of the orthotropic rectangular plates of
variable thickness are given in Table 1 (all sides simply supported)
and Table 2 (simply supported along y =0,y = b, clamped along
x=0, x=a).

In Tables 1 and 2 the j is the value of resolution (see section 2,

=d'H, (43)

m = 2/). The second and third columns contain the values of the
fundamental frequency and its extrapolation performed by
formula (33), respectively. The orders of convergence k; and k,-E
given in columns four and five of Tables 1 and 2 are computed
by formulas (36) and (34), respectively. Obviously, both orders of
the convergence have limit value two. Latter results are in accor-
dance with convergence theorem proved above. It can be seen from
Tables 1 and 2 that the order of convergence computed with use of
the exact solution converges faster to two (column five) in the case
of both boundary conditions considered. The order of convergence
of the extrapolated results given in last column of the Tables 1 and
2 is equal to four (see Eq. (37)). Thus, the fundamental frequencies
with improved accuracy have higher order of convergence equal to
four.

4.3. Second, fourth and sixth order eigenvalue problems considered by
Shi and Cao [38]

In the current section the order of convergence of the HWDM
introduced by Shi and Cao in [38] is examined. Let us consider first
the following second-order eigenvalue problem

—Y"+(cos(x) +2cos(2x) +3cos(3x))y =4y, ¥(0,4)=y(m,2)=0. (44)

The orders of convergence calculated on results given in [38] are
presented in Table 3.

The structure of Table 3 coincide with that of Tables 1 and 2 i.e.
the columns contain the same parameters. In can be seen from
Table 3 that the computed rates of convergence have values near

Table 2
Numerical results for Q. Simply supported-clamped plate.
j Fund. freq. Extrap.res. ki k,E I;
3 61.172805
4 61.172392 61.172254 1.557
5 61.172236 61.172184 1.407 1.903
6 61.172194 61.172180 1.877 1.976 3.920
7 61.172183 61.172179 1.970 1.994 3.980
8 61.172180 61.172179 1.993 1.999 3.995

two. In [38] the results are given with four decimal places. Latter
fact has obviously impact on improved solution (column three)
and on its rate of convergence (column six). In this reason the only
value in column six differ from theoretically expected value four.
The last value in column six is not present due to division by zero
(the last two values obtained by extrapolation formula (33)
coincide in column four).

Next the following fourth order eigenvalue problem is
considered

yW =2y, 0<x<1, y(0)=y(0)=y(1)=y"(1)=0. (45)

The orders of convergence calculated on results given in [38]
(see Table 4 in [38]) are presented in Table 4.

Similarly to second order eigenvalue problem (Table 3) it can be
confirmed that the computed orders of convergence have values
near two in both cases with and without use of the exact solution
(columns 4 and 5, respectively). The extrapolated solution and its
order of convergence are more affected by low number (four) of
decimal placed considered in [38].

Finally, the following sixth order eigenvalue problem is
considered

YW =iy, 0<x<1, y0)=y(©0) =y1)=y(1)=0.  (46)

The orders of convergence calculated on results given in [38] (see
Table 1 in [38]) are presented in Table 5.

The results in Table 5 are similar to ones given in Tables 3 and 4
and confirm that the order of convergence of the HWDM is equal to
two. In Table 5 the rate of convergence of the extrapolated results
coincide unexpectedly well with theoretical value four despite to
low number of decimal places presented in solution [38].

4.4. Free vibration analysis of functionally graded (FG) cylindrical
shells based on the shear deformation theory [17]

In the current section the order of convergence of the HWDM
treated in [17] is examined. The governing equations and boundary
conditions are omitted herein for conciseness sake (see formulas

Table 5
Numerical results for sixth order eigenvalue problem considered in [38].
j Fund. freq. Extrap.res. ki k,E I
4 2.8068
5 2.8272 2.8340 2.083
6 2.8319 2.8335 2118 1.977
7 2.8331 2.8335 1.970 2.000 4.000
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Table 6

Numerical results for FG cylindrical shells considered in [17].
j Fund. freq. Extrap.res. ki kf I;
2 12.308
3 8.763 7.581
4 7.637 7.262 1.655
5 733 7.228 1.655 1.875 3.233
6 7.251 7.225 1.875 1.958 3.503
7 7.231 7.224 1.958 1.982 3.170
8 7.226 7.224 1.982 2.000

(22) and (24) in [17]). The orders of convergence computed based
on results given in [17] (see Table 2 in [17]) are presented in
Table 6.

Again, the order of convergence two of the HWDM can be
confirmed based on results given in Table 6. Obviously, the low
number decimal places for initial solution given in Table 6 has
considerable impact on columns three and six (extrapolated results
and their order of convergence).

5. Conclusion

The accuracy issues of the HWDM, open from year 1997, are clari-
fied. The convergence theorem is proved for general nth order ODE
(assuming n > 2, boundary value problems). As result it is shown
that the order of convergence is two and the error bound has been
derived. The numerical validation of the results of convergence
theorem has been performed by utilizing a number of case studies.
The accuracy of the HWDM considered can be improved by adopting
Richardson extrapolation method [37]. The particular case where
the order of differential equation is equal to one correspond to initial
value problem, which are less actual for composite structures and
are omitted herein for conciseness sake. Latter problem is studied
by authors and the same order of convergence is obtained.

In the case of all model problems considered the theoretical
value equal to two of the order of convergence has been confirmed.
The theoretical value equal to four of the order of convergence of
the extrapolated results has been observed in the case of first
model problem. In the case of second and third model problem,
where the initial solution has less number of decimal places (these
results are taken from literature) the order of convergence of the
extrapolated results differ from four as it can be expected.

The convergence theorem proved for ODE obviously hold good
also for integro-differential equations. However, the integral
equations where the derivatives are not present need future
investigation. Extension of the results for partial differential
equations has been also foreseen in future study.
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Abstract. The results obtained by utilizing widely used Haar wavelet method (HWM) approach are compared with those
obtained by finite difference method (FDM) and differential quadrature method (DQM). Latter methods (FDM and DQM)
are considered as mainstream strong formulation based methods used in engineering design. The comparison and analysis
of results allow to get better understanding on capabilities of most commonly used HWM. The higher order Haar wavelet
method (HOHWM) introduced recently by work group is implemented and discussed.

INTRODUCTION

For solving differential equations, the HWM was introduced in [1]. In [2] an overview of the applications of the
HWM is given. The operational matrix of integration is developed for solving ordinary and partial differential
equations in [1-8] and integral and integro-differential equations in [9-13]. In above studies the strong formulation
based approach, Chen&Hsiao wavelet extension [1] is applied and most commonly, the implementation of the HWM
is estimated to simple. The accuracy and convergence issues of the Chen&Hsiao approach based HWM are studied in
[14-15]. Non-uniform Haar wavelet techniques are developed in [1,16]. In [17] HOHWM was proposed.

TWO APPROACHES OF THE HAAR WAVELET METHOD

This section is organized as follows: first the Haar wavelet family is introduced, next the widely used HWM and
higher order HWM introduced in [1] and [16] are described.

Haar wavelet Family

The Haar wavelet family is defined as [2]

Lo sor xel6.60)
h(x)y=1-1  for  xe[&(),& () M
0 elsewhere
where i = m +k +1, m =2/ is a maximum number of square waves deployed in interval [4,B] and the parameter

k indicates the location of the particular square wave,



() =A+2kuNx, &)= A+Q2k+1)uAx, &) = A+2(k +1)puAx, )
u=M/m, Ax=(B—-A)/2M),M =2".
Widely Used Haar Wavelet Method

Let us consider n-th order ordinary differential equation (ODE) in the following form

G(x,uyuu” "™ u™) =0, 3)

According to the approach proposed by Chen and Hsiao the highest order derivative involved in differential equation
will expanded into Haar wavelets i.e. in the case of differential equation (3) the wavelet expansion reads

fx )—M Z a1y (x). @

The solution of the differential equation (3) u(x) can be obtamed by integrating the relation (4) n times with respect
x and determining the integration constants from boundary/initial conditions.

Higher Order Haar Wavelet Method (HOHWM)

The HOHWM introduced in [16] include higher order wavelet expansion given as

dn+2su(x) 0
f(x)= T Zaih,.(x), s=12,.. ©))
i=1

and algorithm for determining 2s complementary boundary conditions. In [17] two different algorithms were
proposed using selected uniform grid points and selected Chebyshev-Gauss-Lobatto grid points, respectively. In the
case of both algorithms the point is selected nearest to the boundary, but changing boundary after each new selection.

NUMERICAL RESULTS

In the following the numerical results are given for differential governing equation of the axially graded beam
introduced in [17]. In Table 1 the values of the fundamental frequency, absolute error and convergence rate obtained
by applying widely used HWM, FDM and DQM are compared. In Table 2 similar results are given for second
frequency. All solutions given in Tables 1-4 (HWM, FDM, DQM) are computed by workgroup.

TABLE 1. Fundamental frequency parameter €1 values, HWM, FDM, DQM ( 8 = 3, exact solution 6.8430490105)

HWM FDM DQM
Fundamental  Absolute Fundamental Absolute Fundamental Absolute
N frequency error  frequency Q;  error  frequency Q; error

4 5.49612520 1.35E+00  6.82589986  1.71E-02
8  6.56237797 2.81E-01  6.80779305 3.53E-02 6.72141095 1.22E-01
16 6.76542022 7.76E-02  6.83190078  1.11E-02  6.84304901  3.43E-09
32 6.82322484 1.98E-02  6.84010804 2.94E-03  6.84304901 9.94E-11
64  6.83806767 4.98E-03  6.84230401 7.45E-04 6.84304866  3.48E-07
128  6.84180211 1.25E-03  6.84286215 1.87E-04  6.84303605 1.30E-05
256 6.84273719 3.12E-04  6.84300225  4.68E-05  6.84302115  2.79E-05




TABLE 2. Fundamental frequency parameter Q values, HWM, FDM, DQM ( f# = 3, exact solution 43.4110976168).

HWM FDM DQM
Fundamental Absolute Fundamental Absolute Fundamental Absolute
N frequency Q, error frequency @,  error  frequency Q,  error

4 34.46004357 8.95E+00  37.99657810 5.41E+00
41.13904609 2.27E+00 41.83587029 1.58E+00  43.43060017 1.95E-02
16 42.85246913  5.59E-01 42.99734834 4.14B-01  43.41109768 6.45E-08
32 43.27200957 1.39E-01  43.30627067 1.05E-01  43.41109762 3.97E-11
64 43.37636085 3.47E-02 43.38480149 2.63E-02  43.41109772 1.05E-07
128 43.40241562  8.68E-03  43.40451796 6.58E-03  43.41110484 7.22E-06
256 43.40892726  2.17E-03  43.40945235 1.65E-03  43.41111652 1.89E-05

In Tables 3-4 the values of the frequency parameter, absolute error and convergence rate obtained by applying widely
used HWM and HOHWM are compared.

TABLE 3. Fundamental frequency parameter Qi values HWM, HOHWM ( 8 = 3, exact solution 6.8430490105).

HWM approach by Chen&Hsiao HOHWM ([17])
Fundamental Absolute  Converg.  Fundamental Absolute  Converg.
N frequency Q, error rate frequency Q. error rate Error ratio
4 5.49612520 1.35E+00 7.81629606  9.73E-01 1.38
6.56237797 2.81E-01 22627 6.87693058  3.39E-02 4.8442 8.28
16 6.76542022 7.76E-02 1.8542 6.84538131  2.33E-03  3.8607 33.28
32 6.82322484 1.98E-02 1.9693 6.84319842  1.49E-04 3.9644 132.68
64  6.83806767 4.98E-03 1.9927 6.84305841  9.40E-06  3.9908 530.04
128  6.84180211 1.25E-03 1.9982 6.84304960  5.88E-07  3.9977 2119.39
256 6.84273719 3.12E-04 1.9995 6.84304905  3.68E-08  3.9995 8477.23

TABLE 4. Fundamental frequency parameter Q> values HWM, HOHWM ( S = 3, exact solution 6.8430490105).

HWM approach by Chen&Hsiao HOHWM ([17])
Fundamental Absolute  Converg.  Fundamental Absolute  Converg.
N frequency Q, error rate frequency Q, error rate Error ratio
4 34.46004357 8.95SE+00 43.08502120  3.26E-01 27.45
8 41.13904609 2.27E+00  2.2627 4343718723  2.61E-02  3.6437 87.09
16 42.85246913  S5.59E-01  1.8542 43.41285000 1.75E-03  3.8961 318.78
32 43.27200957 1.39E-01  1.9693 4341121057 1.13E-04  3.9555 1231.38
64 4337636085 3.47E-02  1.9927 4341110475 7.13E-06  3.9859 4872.52
128 43.40241562  8.68E-03  1.9982 43.41109806 4.47E-07  3.9960 19431.27
256 43.40892726  2.17E-03  1.9995 43.41109764  2.80E-08  3.9941 77401.77

The exact solutions used in Tables 1-4 are computed according to formulas given in [18].



CONCLUSIONS AND FUTURE WORK

Based on results given in Tables 1-2 it can be concluded that the results obtained by HWM are in good agreement
with those obtained by FDM and DQM, also the implementation of the HWM was simple. However, accuracy of the
HWM is in the same range of those of FDM and is significantly lower than that of DQM. Obviously the widely used
HWM based on Chen and Hsiao approach need improvement to be competitive with mainstream methods in
engineering design. In can be seen from Tables 3-4 that HOHWM outperform HWM, the absolute error is smaller up
to thousands times (depending on mesh). Future study is related with application of HOHWM for wide class of
engineering problems like acoustic analysis of structures [19-22], structural analysis and design optimization of
composites [23-29] and modelling monitoring systems [30-32].
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