

Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Lauri Linros

DESIGN OF LOG MANAGEMENT SYSTEM

INFRASTRUCTURE WITH A PROOF OF

CONCEPT IMPLEMENTATION

Master’s thesis

Supervisor: Ph.D. Enn Õunapuu

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Lauri Linros

LOGIDE HALDAMIS SÜSTEEMI DISAIN JA

KATSESÜSTEEMIGA KONTROLL

Lõputöö liik: magistritöö

Juhendaja: Enn Õunapuu

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Lauri Linros

23.10.2017

4

Abstract

The goal of this thesis was to create an IT system that is capable of receiving and

analyzing log events from several distinct sources.

The biggest challenges in doing so were that most log sources output logs in different

formats and the system had to be able to work with any of them. Another problem to

solve was the transport of the logs to a central location as some logs were output to files

while others were sent over the network. A set of requirements was created for the

system in order to be able to verify the final solution. The main requirements were that

the logs need to be gathered at a central location and transformed to a unified format.

For the solution, three different software applications were considered. The applications

were Splunk, Graylog and ELK stack.

The solution was designed using the Graylog software in a high-availability setup and

capable of receiving large amounts of data.

The result of this work was an architectural infrastructure design for aggregating log

events to a centralized location that is capable of receiving log events in any format and

using files or data streamed over the network as an input. The log events are then

transformed to a unified format so it could be further processed using machine learning

or some other methods.

This thesis is written in English and is 61 pages long, including 26 chapters, 12 figures

and 5 tables.

5

Annotatsioon

Magistritöö peamiseks eesmärgiks oli leida lahendus, mis oleks võimeline keskses

kohas talletama IT süsteemide poolt loodud logisid. Suuremateks väljakutseteks selle

saavutamiseks on see, et rakendused talletavad logisid erinevates formaatides ja

asukohtades. Loodud süsteem peab olema võimeline nende tingimustega toime tulema.

Probleemi lahendamiseks loodi nõuded, mille järgi on võimalik kindlaks teha kas

süsteem täidab talle seatud eesmärke. Põhilised nõuded panid paika, et süsteem peab

olema võimeline vastu võtma ja siis ühisele vormingule viima erineval kujul sisse

tulevaid logisid ja erinevad võimalused, kuidas logisid transportida kesksesse kohta.

Lisaks olid ka nõuded, et logidele ligipääs peab olema kontrollitud ning juba

analüüsitud logisid ei tohi olla võimalik muuta.

Kui nõuded olid paigas, siis võrreldakse kolme erinevat tarkvaralist lahendust, millega

on võimalik antud probleemi lahendada. Võrdluseks valiti välja Splunk, Graylog ja

ELK tarkvara tooted. Antud kolme toote vahelt lõpliku lahenduse loomiseks valiti

Graylog.

Graylogi kasutades loodi lahendus, mis on võimeline vastu võtma suure hulga logisid ja

samas laialdaselt kättesaadav. Saadud lahendusest implemeteeriti lihtsustatud variant,

millega oli võimalik kontrollida vastavust nõutele.

Magistritöö tulemuseks on arhitektuuriline lahendus, mis on võimeline erinevatest

allikatest, kasutades erinevaid meetodeid, kesksesse kohta kokku koondama logisid.

Antud logid töödeldakse ka ühisele kujule, et oleks võimalik neid edasi töödelda kas siis

masinõppega või mõnel muul meetodil.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 61 leheküljel, 26 peatükki, 12

joonist, 5 tabelit.

6

List of Abbreviations and Terms

Log Record of events within organizations systems

Node One instance of an application

JSON JavaScript Object Notation

SIEM Security Information and Event Management

DBMS Database Management System

LDAP Lightweight Directory Access Protocol

AD Microsoft Active Directory

SAML Security Assertion Markup Language

SSO Single Sign-On

JVM Java Virtual Machine

JDBC Java Database Connectivity

PoC Proof of Concept

KPI Key Performance Indicator

Docker Software for operating system level virtualization

Docker Swarm High-availability deployment of the Docker software

DIY Do It Yourself

Syslog Standard for Message Logging

7

Table of Contents

1 Introduction ... 10

1.1 Background ... 10

1.2 Thesis Goals ... 12

1.3 Problem Description ... 13

1.4 Methodology ... 15

1.5 Defining Scope ... 16

1.5.1 Log Generators in Scope ... 17

1.5.2 Further Limitations .. 21

2 Requirements ... 23

2.1 Functional Requirements .. 23

2.2 Non-functional Requirements ... 24

3 Solution Design ... 25

3.1 Initial Architecture .. 26

3.2 Tool Selection ... 30

3.2.1 Splunk .. 31

3.2.2 ELK ... 35

3.2.3 Graylog .. 41

3.2.4 Comparing the Tools ... 46

3.3 Adapting the Tools to the Architecture .. 51

4 Solution Verification ... 57

4.1 Installation .. 59

4.2 Receiving Data ... 62

4.3 Analyzing the Data ... 64

4.4 Data Presentation .. 66

4.5 User Management and Alerting .. 67

5 Summary .. 68

References .. 70

Appendix 1 – docker-compose.yml for the PoC .. 71

Appendix 2 – collector_sidecar.yml for PoC ... 73

Appendix 3 – Parsed Nexus Access Log Entry .. 74

8

List of Figures

Figure 1 - Small Service Architecture Diagram [4] ... 18

Figure 2 - Large Service Architecture Diagram ... 20

Figure 3 - Basic Workflow ... 26

Figure 4 - Initial Component View .. 29

Figure 5 - Splunk High-level Architecture [13] ... 32

Figure 6 - ELK Stack Architecture [15] ... 39

Figure 7 - Graylog Architecture [16] .. 42

Figure 8 - Graylog Collector Sidecar [17] .. 43

Figure 9 - Component Architecture .. 54

Figure 10 - Graylog Login Screen .. 60

Figure 11 - Graylog Collectors View ... 61

Figure 12 - Graylog Dashboard .. 66

9

List of Tables

Table 1 - Expected Data Amounts .. 22

Table 2 - Feature Comparison .. 46

Table 3 - Server Requirements ... 55

Table 4 - Consolidate Server Requirements ... 56

Table 5 - PoC Software Versions ... 59

10

1 Introduction

1.1 Background

A log is usually a timestamped record of events that have occurred within the

organization's systems and networks. Logs are generated by every application and

device that is part of any IT system. All the servers, workstations, network equipment

and applications are most likely constantly generating logs.

Initially, when application logs were created, they were mostly a tool for

troubleshooting problems. This is also the reason for standard log levels of ERROR,

INFO etc. The purpose of logs was to give an idea of how applications were behaving

and if there were any problems. This enabled system administrators and engineers to

better diagnose the issues that applications were having and to find solutions on how to

fix the problems. In recent years this has changed and applications have also started to

log data much more relevant to day to day operations.

Applications are now quite often also recording user actions and performance metrics.

Having that information can be very important as it gives insight into the usability of the

application and decisions can be made on how to improve the application from the user

experience side rather than just the technical solution. An example would be that if an

application includes forms that users have to fill and a large number of users stop at the

same place some changes are needed to encourage users to move forward. Having the

data from applications analyzed and centralized also helps with proactive monitoring. It

is much easier to see if there are irregularities and it is possible to react to them swiftly.

As an example, the log data could be tied to the monitoring system and is able to trigger

alerts based on defined rules.

Centralized logging is also very helpful from a security perspective. This allows to

quickly identify any wrongdoing within applications. If the application is subject to

compliance standards, log aggregation and analysis might even be mandatory.

11

The amount of security-related logs has increased considerably, for example, every

device on a computer network is capable of outputting events in some manner and if

those were analyzed it could be possible to tell if someone is attacking the system.

Organizations use a lot of security software that all output large amounts of logs that

need to be processed. After the logs have been centralized in one location it is possible

to detect the attack vectors quicker and actions can be taken against the attack faster. It

also makes it easier to detect what systems were attacked to be able to verify if the

attack was successful or not.

Another benefit of having logs analyzed is that it gives more transparency into change

management events. Metrics are available for before and after the implementation of the

change, which enables measuring the success of the change.

12

1.2 Thesis Goals

There is a wide variety of applications and tools available for the purpose of log

management with each of them with their own strengths and weaknesses. As a result of

this thesis, an infrastructure architecture design will be created using one of the tools for

an organization with a vast amount of data. There are instructions on how to set up

those applications on a smaller scale, but doing it for data volumes in hundreds of

gigabytes requires a different approach. There will be a specific set of data sources that

are used in the system, so the tools have to be chosen appropriately. In order to create

the architecture design the following questions have to be answered:

 What are the requirements for handling logs

 What tools/applications can be used to meet the requirements

 What infrastructure will be needed for the IT system

After the tools have been chosen and the design created there is also need to verify that

the IT system is valid so a proof of concept system will be created in order to make sure

that the requirements have been fulfilled.

13

1.3 Problem Description

In this thesis, IT service will be designed that is able to centralize and analyze logs from

several different sources with different sizes, formats, and output types, to a single

service that could be accessed to view events from those log generators. The assumption

is that this is all taking place in the scope of a large organization. The organization is

using software that has been developed in-house and also 3
rd

 party applications. In case

of in-house applications, it is possible to change the logging setup to make

centralization easier. For 3
rd

 party applications, it is not possible to modify the logging

component of the software and solution needs to take that into account. The applications

that the organization is running can range from small one node applications to

microservices running in hundreds of Docker containers. The log management system

must also be able to handle logs from servers and workstations. Some of the biggest

problems that will need to be solved are the following:

 Log generation. Applications are generating different types of logs to different

locations on many different hosts. The number of hosts can be in the range of

thousands and the hosts themselves are constantly also generating log entries.

Another problem is, that the same data in different application logs might be

identified differently, making comparisons quite hard. Formatting of the log

lines also differs between applications. The simplest example of that would be

how to present the timestamp. Some applications use the ISO standard, others

use UNIX timestamp etc. Log formats can also differ as some applications

output lines using a delimiter while in other cases applications output JSON

lines or some other method.

 Log storage. It is very likely that the information that is stored in the logs

should not be readily readable for everyone as quite often they can contain

information that could be abused if fallen into the wrong hands. That means the

solution has to have an adequate security to be able to dictate who can access

what logs. There is also the question of availability. The service used to

centralize the logs should be quite robust and highly available as the log data

needs to be always accessible. There also might be requirements to keep some of

the log data for longer periods of time meaning some sort of archiving option

14

has to be available. Transport of the data should also be done securely to make

sure the log information is not tampered with.

 Log analyzing. The logs also have to be analyzed and the data inside the

loglines categorized to be able to search for the data you are interested in later.

In general, this means parsing the loglines into more granular parts so searches

could be made over the parts that interest you. Also, some sort of rules needs to

be set on naming conventions to make life easier for the people analyzing logs.

An example would be that HTTP response code should always be named

responseCode.

The problem itself is quite a complex one with many aspects that have to be taken into

consideration when coming up with an appropriate solution. To achieve an adequate

result is an organization-wide effort and support has to be secured from management

side in order to have the resources required.

15

1.4 Methodology

Since this solution would be implemented in a large organization it is entirely possible

that some compliance standards have to be met. To do so the following publication is in

order to create the requirements for the system:

NIST Special Publication 800-92 [1]

This is a document created in 2006 by National Institute of Standards and Technology

and is a guide of what steps should be done in order the set up a successful centralized

log management system and also provides information on why such steps should be

taken.

After the creation of the requirements comes the design phase where the architecture

layout of the proposed system will be created. During the process, different software

solutions will be analyzed that can be used to achieve the goals. After which the final

architecture of the required service will be created.

The design process itself will be iterative where components will be added to the system

as needed in order to fulfill the requirements.

The whole document can be viewed as a project where requirements and restrictions for

the problem are created which then need to be solved during the course of the thesis.

16

1.5 Defining Scope

Creating a log management system for an organization, in general, would consist of

several steps in order to come to a fully functioning solution. The following steps

should be taken when starting from scratch:

 Creation of organization-wide policies that define how to handle logs. This

would contain instructions on what logs have to be stored for how long and also

would define the general approach to log centralization. Information on how the

incoming data should be analyzed and what data should be present for log

events.

 Infrastructure for log management has to be created and maintained. The

designed system has to be capable of receiving large amounts of data over

secure channels and store it for a predefined timeframe. Data volumes that the

infrastructure has to handle can vary a lot because during incidents it is possible

that the amount of incoming data can be multiple times larger than during

regular operation. The data also has to be secured from accidental or intentional

modification or deletion.

 Organize support for staff with log management responsibilities. The goal is

to have unified logging procedures that can be applied throughout the

organization so the staff has to be trained so they would know which logs need

to be centralized and in what manner. Also, training is required for people who

will use the data to know what data is available and how to search the huge

amounts of data.

In the scope of this thesis, the focus is on the log management infrastructure part by

creating a list of requirements that the solution should adhere to and then creating such a

system and find tools that could be used to realize it.

For the creation of the requirements, several different types of log generators are used

ranging from single node applications to large services that are being run in large

Docker swarms. The number of different software solutions that are analyzed in this

thesis will be scaled down to three in order to keep the length of the document

reasonable.

17

1.5.1 Log Generators in Scope

For the purpose of being able to create requirements that could be applied universally,

log generators that are as diverse as possible are taken as a basis. For this reason,

applications that generate logs as files and applications that can send out data over the

network are in scope. Application cluster size has to be taken account also to make sure

that the input of the log management system can scale from single node applications to

larger ones. Another large source of logs is servers and workstations used in the

organization and for that reason, it has to be ensured that the solution is able to handle

logs from those sources.

1.5.1.1 Single Node Application

This is an application that is running on a single host and is generating log files locally.

Since it is a 3
rd

 party application modification to logging is not possible therefore

whatever logging has been set up by the provider has to be adapted. As an example of

this application, Sonatype Nexus OSS application is used [2]. This application generates

several types of logs:

 Access logs

 Application logs

Both log types have to be gathered as the first one gives us data about user activity with

the application and the 2
nd

 one allows us to troubleshoot in case of problems with the

application and possibly also predict some issues.

1.5.1.2 Single Node Application (in-house)

This application is similar to the previous one with the main difference being that it is

an in-house developed application and it is possible to change how logging works with

this application. In the scope of this application, a solution will be tested that does not

rely on log files at all, but events are sent directly to the logging solution. This is a

simple web application using expressjs [3] and morgan [4] middleware for logging

purposes. Since it is possible to change the logging system used by this application it

could be used to see what changes would need to be made to skip the creation of files on

the application server and send the log events directly to the designed system.

18

1.5.1.3 Small Service

This service consists of several different applications, but together they make a single

service so from a log aggregation point of view logs from all these applications should

be looked at as a whole. The application used for examples here is Atlassian Bitbucket

DataCenter edition [5]. This service consists of the following components:

 Load balancer: Application used in this case is HAProxy

 Search database: Elasticsearch is used to provide the search database

 2 x Application nodes

Logs from the DBMS system and shared file system are not in scope for this as that is

handled when setting up logging management for DMBS in general.

Figure 1 - Small Service Architecture Diagram [5]

19

There are several types of logs generated and the following types need to be

consolidated:

 Cluster access logs

 Cluster audit logs

 Cluster java logs

 Elasticsearch logs

 Load balancer logs

Description of how the Bitbucket nodes do the logging can be found on their web page

[6].

Documentation on how the Elasticsearch logging can be configured can be found in the

documentation [7].

As a load balancer in this instance, HAProxy is used with documentation for logging

available on their web page [8]. In case of HAProxy getting the logs is a bit more

complicated as there are no logging components build into HAProxy itself but it relies

on 3
rd

 party tools for the logging.

1.5.1.4 Large Microservices Application

The largest system that is within the scope of this thesis is a large client facing web

application that is using microservices architecturally. High availability is required by

the application so at any time there are at least two instances of any component running

with load balancers distributing workloads. The application is deployed using containers

and an orchestration engine. Due to this architecture, this allows starting additional

nodes of any microservice very fast if the load on the system requires it. This also

means that containers are destroyed if they are no longer needed. This raises the

problem that all the logs generated into that container would also be deleted on its

destruction. Having the logs transported to a central location for storage is a good

solution for this. The service consists of the following components:

 Load Balancer. HAProxy is once again used here to load balance between

application nodes.

20

 HTTP Accelerator. Varnish is used here to cache the static data to speed up the

application and also to balance between microservices.

 Web Server. Apache web server is used for serving static content.

 N x Microservices. These are in-house services that offer content over REST

APIs.

Each of these components will have N number of instances running at the same time.

Figure 2 - Large Service Architecture Diagram

The general flow of the application is that web pages are put together using the static

content supplied by Apache servers and then data shown is gathered using REST API

calls to the microservices. Access logs and applications logs are generated by this

application.

21

1.5.1.5 Servers and Workstations

One of the biggest sources of logs in any organization is the servers that run the

applications and workstations used by staff in everyday work. For this reason, the

designed infrastructure has to be able to grab log entries from UNIX system logs and

also Windows Event Logs. In case of UNIX systems, it is assumed that rsyslog is used

to do the logging on the operating system level.

1.5.2 Further Limitations

1.5.2.1 Cloud Services

There are cloud services which could be used for the purpose of storing and displaying

the log entries so using those would mean that one would only have to set up the part of

gathering the logs and possibly parsing them in case of custom formats, but the storage

side and displaying it would be handled by the service provider. This approach is

feasible in some situations but might not be worth it in others. This solution can be

considered when dealing with logs that are not security related and the source of the log

is not coming from the organization's data center but from applications running on client

machines. The problem with using this for applications that are running inside the

organization is that this could quite quickly overload the connection to the outside world

due to all the traffic generated by transferring logs. This would also be more important

when there are actual issues and the number of logs generated has increased meaning it

has potential to cause more issues.

1.5.2.2 Data Volume

An important factor when choosing the solution will also be its ability to process the log

volume. For that reason, data estimation needs to take place. In the table below the

estimated data amounts for the applications that are in scope can be found. The log

amounts for servers and workstations are a bit harder to estimate, but during normal

working, it is expected that they generate about 1MB of data per day.

22

Application Data amount per day

Single node application 1GB

Small service 5GB

Large application 50GB

Servers 2GB

Workstations 3GB

TOTAL: 60GB

Table 1 - Expected Data Amounts

The table above shows the data amounts for single applications, but the organization has

several other applications also which when it comes to sizing will have to be taken into

consideration. Due to this, the excepted volume of data per day that is taken as a basis

for this thesis amounts to 150GB of data per day.

23

2 Requirements

Requirements are divided into two main categories and consist of functional and non-

functional requirements.

2.1 Functional Requirements

 Logs have to be available in a central location. There should be a single point

of entry to be able to access the logs

 Files as log source. It should be possible to read the files that the application is

generating as the source of the log data. This is the most common use-case as

currently, most applications create log files on the servers that they are running

on.

 Receive log data over the network. Sending log events directly from the

application to the central solution should be possible as in some writing files

with the log data can be avoided. This is especially true in Docker containers

where the files that would be written are destroyed on container destruction.

 Events have to be analyzed. The logs have to be parsed into more manageable

bits to enable searching for certain values, for example, to search HTTP access

logs for all 4xx return values.

 Standardization of input data. As the format in which log entries are generated

varies between different applications the system should take those incoming

events and convert them to a unified standard.

 User Access lists. It must be possible to configure who can see what data. This

should work on the service, application and log type level.

 Archiving the data. Some data has to be archived in case it is needed later for

auditing or some other reason.

 Monitoring alerts: It should be possible to automatically create alerts based on

incoming data. As the amount of data that is coming in is very large it can’t be

24

expected that someone is constantly looking at it to be able to detect issues. For

that reason, alerts should be set up with appropriate triggers. An example of it

would be that in case a web application the HTTP responses with code 401 are

above a threshold there might be an attack happening on the service so an alert

should be raised so someone would have a look.

2.2 Non-functional Requirements

 Read-only system. Log data modification by users should not be allowed to

preserve the integrity of the log.

 High availability has to be achieved. The solution needs to be able to survive

interruptions in any part of its design as the access to logs at any time is critical.

 Access has to be logged. Who has viewed what data? The data about access has

to be also stored for security reasons in order to be able to later verify what was

viewed.

 Maintenance works on the system should come with minimal downtime for

the users. Since log data has to be available at all times for users the

infrastructure should have minimal or no downtime when changes to the system

are required.

 The data availability duration. The data has to be available on the cluster

within 30 seconds of the application creating the logline.

 The service has to be easily scalable in case more applications are added to

it. As the number of logs coming into the system will only increase with time as

more and more sources are added, it is required that the system could be scaled

to handle the increased load.

 Secure transport of the logs. The transport of the logs from the application

server to the central system needs to be encrypted to minimize the risk of log

alteration during transport.

 Configurable log retention. The time that logs are kept has to be configurable

depending on the service, application or log type.

25

3 Solution Design

The architecture design to be used will be created in three main steps:

 Initial architecture.

 Tool selection.

 Adapt the architecture.

In the first step, a high-level design will be created in order to be able to identify

components that are part of the final design. For the creation of this, only the functional

requirements are considered and what components might be needed to achieve this.

The next step would be to find suitable applications that can be used instead as those

components. In this part examination of different applications that could be used in the

final design takes place and the infrastructure design is expanded to match the tools that

are chosen.

In the final part of the design phase, the solution has to be made compliant with all the

non-functional requirements. This will have changes on the design and might even

introduce new components if needed in order to fulfill all the requirements.

26

3.1 Initial Architecture

The current situation is that all log generation sources are writing the log events into

files. The files are spread out on the hosts where the application or system is running

and there are a very large number of those hosts. The files are then left on these hosts

and if administrators run into issues with these applications they have to access those

hosts and use command line tools in order to view the data inside the files. In some

cases the files can be several gigabytes in size making the use of the command line tools

rather hard as it can be quite hard to find the required data for and searching the files

takes a long time. To make matters even more complicated the logging format of

applications does not have any standardization making it harder for administrators to

switch from working with one application to another. Unfortunately, this creates an

environment where specialization on certain applications is going to happen therefore

lowering the change that there are several people able to tackle a problem less likely.

First, a general workflow of how the log entities will be going through the system is

created. To do this a simple diagram of the workflow was created.

Figure 3 - Basic Workflow

From this workflow, it became apparent that since every application has its own log

files which are stored with the application and the format of the logs also varies between

applications, it would not be feasible to manage the reading and analyzing part of the

workflow by a central team. For this reason, the reading and the analyzing of the data

will need to set up by the team who is responsible for the application. This also means

that analyzing of the log entries has to be done before they are forwarded to the central

location for storage.

An overview of the types of log generators that are going to be used is a must and the

differences between them also need to be taken into when deciding what components

are required for reading in log entries.

27

 Applications that write logs to files

 Applications that write logs to network socket

 UNIX syslog (rsyslog)

 Windows event log

With the information gathered from the workflow, it is possible to create an initial

design of how the infrastructure for the log management system could look like. When

looking at the list of requirements it can be assumed that initially for each of the

activities a separate component is required, therefore the following components are in

scope:

 Read log files. The log files are read from the hosts where they currently reside

on. Since all the files reside on host machines for the application this means that

for each application separate agent has to be installed that will then read the logs

of that application. As the number of applications is too large to manage this

centrally the responsibility for the initial processing of the log entries will fall to

the application teams. Reading of the files has to be reactive, meaning when a

new entry is created into the file it should be read as soon as possible for further

processing. In some cases, applications are not writing into files but sending the

data over the network. For these cases, the log reading component should also be

able to accept connections and be able to receive the data in order to send it

further. Initially, two separate components are used for this.

 Analyze log file. Since all the applications don’t follow a standard when writing

the log entries it falls upon the application teams to standardize their logs. In

case of in-house applications it might be possible to do this already on the

application side, but in case of 3
rd

 party applications, it is likely that the log entry

generated by the source have to be transformed to a standardized format. There

will be some mandatory values that have to be present for all applications and

naming convention has been set up for common values between applications to

make it easier for administrators to switch between applications.

28

 Forward log file to central storage. After the logs have been read in and

analyzed transportation to a central storage location is required. The channel that

is used to move the log entries has to be secured in order to avoid tampering

with the data. There also has to be some fault tolerance set up that the system

would not break in case of network outages or when the amount of data that

needs to be transferred gets too large.

 Output the data. When the data has been stored in the central storage solution

there has to be a way to view it. Since the data has been analyzed and

standardized it should be possible to narrow down the data query to entries that

have values of interest to the administrator at the time. This can be something

simple like only to output entries from a specific application between a certain

timeframe or to very complicated queries to output data from a certain host

where a predetermined functionality of an application was used by a defined

user.

 Archive the data. The amount of data that potentially has to be stored can grow

to be very large. In order to not bog down the system, some log entries have to

be moved to an archiving solution. For this a separate component is required that

could efficiently store large amounts of data. The archiving process itself should

allow the data also be restored in case a need arises. When to archive a log entry

will be dependent on the application itself and the type of log event in question.

 Monitoring alerts. There is a requirement to be able to set up a notification in

case some predefined conditions are found in the incoming data. This is a

separate component that periodically checks the incoming data against some

triggers. This functionality can be used as an early warning system for

administrators to quickly react to potential issues.

 User authentication. As the data that is being gathered by the system most

likely contains secure information there has to be a way to restrict access to the

data. The best solution would be if it was possible to set up access lists of what

types of data what person or group of people have to access. Authentication is

set up as a separate component as it is not clear in what part of the solution

authentication is applied at currently.

29

From the previous list of components, the following diagram has been created.

Figure 4 - Initial Component View

As can be seen, there are is quite a large number of components and in some cases,

there might be several instances of the same component running. This is best seen in

case of log reader components as there has to be one available at every location where

logs are generated. In the later parts of the workflow, it should be possible to reduce the

number of component instances by reusing already existing ones. Also, some logical

grouping would be beneficial for example in case of larger services the logs from

different applications that make up the service could be transferred to a log analyzing

instance that is capable of parsing logs from all of the applications that make up the

service.

30

3.2 Tool Selection

Now that there is a good overview of what components are needed and what activates

need to be taken in order to achieve the log management process, it is time to start

looking at applications that could be used for it. Doing some searching on the internet

reveals that there are several solutions available for analyzing and centralizing logs but

quite a lot of them only offer cloud-based services. SaaS-based solutions have been

ruled out previously so the list of possible options grows significantly smaller.

Most of the software seems to offer quite a lot of functionality in the same package and

the only part that would need to be set up separately is the initial sending of the data to

the application. After a lot of searching on the internet to find what the popular tools are

for log management three potential candidates were chosen for the setup of the system:

 Splunk [9]

 Graylog [10]

 ELK stack [11]

These three products were chosen as from initial inspection they could be used to meet

the requirements that were set. Another reason for choosing these three products was

that they are quite different from each other. Splunk being a full enterprise commercial

product that in theory should mean it would be simplest to set up. Graylog is an open

source program that is offering a lot of the functionality that is required. ELK stack is

the most DIY offering of the three with many of the features not offered out of the box

but have to be added either using other applications or plug-ins.

31

3.2.1 Splunk

Splunk as an American company that is offering an application with the same name

with the purpose of collecting analyzing and then visualizing log and machine data. Out

of the chosen products Splunk is the only fully commercial product. It was chosen as

one of the candidates due to being one of the first solutions around years ago, so it has

had time to mature and offers a large set of features. For analyzing log data they are

currently offering three different products:

 Splunk Enterprise

 Splunk Cloud

 Splunk Light

The cloud offering can be discarded immediately. For a comparison between the

versions, a handy web page is hosted on their site. [12] From this page the Splunk Light

version can also be discarded as it offers a max daily volume of 20GB per day which is

less than the expected amount. This leaves only the Splunk Enterprise version as a

possible candidate. The documentation for the application seems quite adequate and

with the Enterprise version support for the product is also included. The feature list for

the product is very impressive and it offers some features that were not set up as a

requirement. The most useful part seems to be that by default Splunk is able to make

sense from a lot of standard log formats so application teams would not have to spend

time on describing their log formats for the shippers. Searching through the data also

seems to be convenient in the application, as they have developed their own syntax for

doing so. I’ve added a diagram of the high-level architecture of a system that has been

set up using high-availability.

32

Figure 5 - Splunk High-level Architecture [13]

As can be seen, here high-availability is achieved by having more than one node of each

component that makes up the application. The diagram is showing three different layers

of the application

 Data input. External data is consumed by these forwarding nodes and is then

sent to the indexers. These forwarders are also aware of all the cluster indexers

available and load balance between them as needed

 Indexing. Here the data is stored and ready for being queried.

 Search Management. This is the layer of the application that handles all

searches that are done on the data in the indexer layer.

Inside the cluster, there is also an additional master node. The purpose of this node is to

regulate the functioning of all the other nodes.

33

The most important thing would be to make sure that Splunk is able to handle all the

data sources that are required. By default, it seems that the Splunk instance can monitor

files and directories that are available on the host where it is installed to. This is not

something that is very useful as installing Splunk instances on all the hosts in the

organization is not feasible as it uses quite a lot of resources. It is also possible to upload

files directly from the interface. This functionality could be useful in some cases, but for

analyzing application logs it would not work as everything would be done as a reaction

to some event and having someone to upload logs from all the hosts is a task that is not

feasible. Splunk does offer the option of setting up TCP/UDP ports to listen to incoming

data, this would satisfy the requirement to be able to receive information over the

network. The incoming data is also be secured with SSL which was a requirement that

was given. For reading files on remote hosts and forwarding them to the Splunk

instance a separate application is offered named Splunk Universal Forwarder. This

application would have to be deployed on the source host and it would then monitor

files and directories on that host. After reading the files the data would be sent to the

central indexers for processing over a secure channel. With these options available it

would be possible to send in the log data from all of the sources that are in scope. It is

also possible to manage the configurations of all the Universal Forwarders from a

central deployment server once initial installation has been done making maintaining

the system much simpler.

For viewing the stored data Splunk has developed its own Search Processing Language.

The language allows you to search for specific values from the log lines that one might

be interested in. There is a decent amount of conditionals included allowing for the

creation of specific queries. There are also visualization tools available in order to make

dashboards with a wide variety of graphs and such and from which regular reports about

the data could be made. It is also possible to export these into PDF format for use in

other documentation. From the security perspective access to this data can be controlled

with granular access control. There are several options available for user directories

with LDAP/AD availability but also support for SAML single sign-on solutions.

Splunk also allows for the creation of monitoring alerts. It is possible to set it up in a

way that e-mail alerts will be sent when certain conditions are met. The more interesting

part is that it is also possible to make the system to trigger actions instead of sending out

34

just e-mails. This means that it would be possible to automatically remedy a situation

that is affecting the system.

The application also has archiving part covered with two main options on how to deal

with it. One option is to keep the data in Splunk itself and it seems to compress it into a

different format. In which case searching it would be much slower, but it would still be

visible. The second option offered is to use an external Hadoop cluster for long-term

storage or even to use Amazon S3 instances.

Overall it can be said that it is an excellent tool and seems to meet all the requirements

that were set forward. The major drawback of all these features is that it all comes with

a hefty price tag. The cheapest option available on their website has a price of 600$ per

GB for a month. [14] With the estimation of 150GB of data per day this would come at

a cost of 90000$ per year. Also one would have to take into account that if the amount

of data grows, so will the licensing fees.

35

3.2.2 ELK

ELK is shorthand used for Elasticsearch-Logstash-Kibana. It is a set of tools offered by

Elasticsearch company that if used together provide the ability to collect logs, store

them and the display them. Out of the three options considered in this thesis, this is the

most customizable solution on offer. The only part of the ELK stack that has to be used

is the Elasticsearch database server. The other parts can be replaced with alternative

applications that might suit the needs better than the default offering. When searching

for solutions for log centralization ELK is one of the most popular options that one

would be presented with. The main reason for this is, that the by default this solution

does not have any license fees attached to it so it’s a very likely first choice for

organizations to create PoC solutions in order to see how log management could benefit

them. There are some features that are offered for the ELK stack by the company that

does require you to have an active subscription, but adding those features is a matter of

installing a plug-in to an already existing installation so it can be added as the need

arises. As mentioned before ELK consists of three separate applications.

 Elasticsearch

 Logstash

 Kibana

From these 3 applications, Elasticsearch is the storage solution where the data is stored.

Logstash is the transport and analyzing agent used to move the data into the database.

Kibana is used in order the view and visualize the data present in the Elasticsearch

database. There are popular alternatives available for both Logstash and Kibana.

3.2.2.1 Elasticsearch

This is the heart of the ELK cluster, where all the data is stored and queried from. The

main reason why Elasticsearch is used for storing the data instead of traditional

relational DBMS solutions like PostgreSQL or Oracle is the speed at which

Elasticsearch is able to return results for queries. This is most apparent when doing full-

text queries over very large data amounts. Elasticsearch is usually installed in a cluster

that consists of many nodes and that cluster is very easily scalable. It is possible to add

or remove nodes without any downtime and when set up correctly without any data loss.

36

To achieve this Elasticsearch is using the Apache Lucene indexing and search library.

Data in the Elasticsearch cluster is stored in indexes. The index can be looked at as a

grouping of similarly defined documents. It can also be looked at as if indexes are

database tables.

These indexes can then be divided into shards. Each shard in itself is a fully-functional

index. The reason for this is to allow horizontal scaling of the data. It can be possible

that a single index can contain more data than available on a single node inside the

cluster, for that reason indexes can be split into separate shards that can be then

distributed between the available nodes in the cluster. As a result of this, it decreases the

load on a single node of the cluster also increasing the throughput.

Another core feature of Elasticsearch is replication. At any time it is possible to have

more than one instance of a shard available. Having more shards available has two main

benefits. Firstly it ensures that in case there are node failures inside the cluster there are

replicas available so no data loss can occur. And as data searches are executed on all

replicas it can speed up search performance.

Elasticsearch does have a featured named snapshots and restore that can be used for the

purpose of archiving. It is possible to create snapshots of images on local hard drives,

Hadoop clusters or Amazon S3. After a snapshot has been created it can be removed

from Elasticsearch and quickly restored when needed. In order to make the management

of this simpler log data for each day should be stored in separate indexes.

A separate tool named Curator has been released by Elastic to curate and manage

Elasticsearch indexes and snapshots. This is a command line tool that would then need

to be set up to run periodically to snapshot the indexes you want to archive and also

remove the indexes that you no longer need.

3.2.2.2 Logstash

Logstash is a data collection engine with real-time pipelining capabilities. From log

management view Logstash is an application that is deployed on software hosts in order

to read in the data from logs and to transform the log events into an improved

searchable format. Logstash comes with a wide array of input plug-ins out of the box

which can be used for reading the data from hosts. Reading from files comes with the

default installation. There is also the possibility to open TCP/UDP sockets and receive

37

events over the network. As a bonus it comes with a syslog plug-in which can read

syslog events over the network, this allows to set up a Logstash instance in order to read

events from a large number of infrastructure devices that don’t have file-based logging

capabilities.

After the data has been read into Logstash it can then be transformed to a better format

for indexing. What one would want to do in this part depends a lot on the quality of the

incoming data. In case of reading from the log file, the usual format is one big string

which contains the whole logline. In this case, the log lines probably follow some logic

which can be applied to it in order to extract data from it. As an example, this would

mean extracting usernames, response times, response codes etc into separate fields. This

allows for much simpler searching for results after the log event has been stored in the

database. It is also common that log events are written to file as JSON string with the

meaning of values already designated. This makes life a lot easier as log events already

have a good structure when reading into Logstash. With Logstash it is also possible to

enrich the data before sending it for storage. For example, you might want to populate a

certain field with a value that depends on response time in order to quickly see how

many slow requests are being processed by the system. After the processing of the data

has been completed it is then sent to an output. There is a decent list of output options

available by default. In this case, the Elasticsearch output is used in order to send the

data for storage.

There seems to be a general opinion that Logstash uses a bit too many resources in order

to do what it does, this is due to the fact that it runs on the JVM as it is written in JRuby.

Another common issue seems to be that it is very hard to debug what is happening with

the log event inside the application so in the case where log events are not analyzed

correctly fixing it is very complicated. Due to this another log gatherer has emerged that

is gaining popularity that could be used as a substitute for Logstash, that tool is named

Fluentd. The main difference between them comes from the design focus each of them

has. Logstash is focusing on flexibility and interoperability whereas Flutentd prioritizes

simplicity and robustness. As a result, there are two different products that can be used

to do pretty much the same thing. The biggest factor that has to be taken into account

when choosing between the two is that they use different approaches when processing

events. Logstash uses algorithmic if-then statements to decide on what to do with events

whereas Fluentd uses tags. In case of complex message processing the tags system can

38

end up being more understandable, but in most cases, it is not needed. The big

difference comes on how transport of messages is handled. This is where Fluentd has an

advantage as it has the built-in reliability that ensures that messages get to where they

need to be. Logstash by default keeps the data that it is processing only in memory and

in case there is a problem with the Logstash instance the data can be lost. Another issue

coming from this is that since the memory queue uses a fixed size and cannot be

configured. In situations where there is a lot of incoming messages, this can cause some

messages to be missed because the memory buffer was full. In the recent versions, a

new feature has been added named persistent queues which protect against data loss on

application crashes, but it does not help against data peaks. In order to solve the issue

with data peaks, an external buffering solution should be used. This could be a Redis

server or Apache Kafka for example. Both of these applications can be set up to act as

FIFO buffering applications in order the allow Logstash to pull new events at the pace

that it is able to process them.

In order to cut down the resource usage on application hosts for log management, a

separate log reader was created for Logstash named Filebeat. Filebeat is a lightweight

application that reads data files and then forwards the events to Logstash for further

processing. It is also able to to do simple buffering for Logstash in case the volume gets

too high for Logstash to handle at any given time. In some common formats like

Apache web server logs, for example, it is able to parse the log events into analyzed

data and can send the data directly to storage.

3.2.2.3 Kibana

Kibana is the application that is used for searching data and also for visualizing the data.

Theoretically, you could query the Elasticsearch server directly using its REST API and

get the results in JSON format. The query language to get the data from the REST API

is not that simple and as all the results are just documents in JSON understanding what

is happening can be quite tricky. For that reason, Elastic offers an application named

Kibana as the frontend from where it is possible to do searches and visualize the data

you have stored. It can also be used to create dashboards to get a quick overview of the

status of the application.

For visualizing data there are also alternatives that can be considered. One of the

possible options is Grafana which can be used to create visualizations to present the data

39

you have. The main drawback of Grafana is that it does not support searching and

exploring the data inside the cluster and is just for visualizing the data. This means that

it can be used for the purpose of visualizing metrics and KPIs that are aggregated from

log data, but in case of troubleshooting issues, it is not much help. A feature that

Grafana does offer that is missing by default from Kibana is user management. Grafana

allows setting up a role-based access internally to control who has access to what

dashboards. It would also be possible to run both applications in parallel and for

example to use Kibana for operational issues while using Grafana to display metrics and

KPIs of the application.

3.2.2.4 Conclusion

While the ELK stack does offer the most freedom when coming up with designs for log

management it is also the setup that would require most work to maintain. There is

chance, that there will be someone dedicated to just keeping the stack operational and

making changes as needed. The whole infrastructure that would be required to set up

can be found in the documentation for Elasticsearch and it is quite large.

Figure 6 - ELK Stack Architecture [15]

The number of parts in this system would be very large and someone would have to

keep all this running at all times. The big issue is also a lack of any security in the

default configuration. To have officially supported plug-in to enable security for the

ELK stack a subscription is required which in case of a 10 node Elasticsearch cluster

can cost up to 35000$ yearly. There are also free alternatives available for

40

authentication and authorization like search-guard, the downside of the non-official

solutions is that they are updated slower than the official ones which are released at the

same time as new Elasticsearch stack versions. This can lead to situations where updates

are required due to bugs in the stack but a new version of the 3
rd

 party plug-in is not

available.

Another feature that is missing from the default installation but can be achieved with the

subscription is monitoring and alerting. Theoretically one could use an existing

monitoring solution to directly query the Elasticsearch database for parameters and

trigger events that way, but this can lead to creating a lot of load on the Elasticsearch

cluster which in turn can lead to instability which you would want to avoid.

41

3.2.3 Graylog

Graylog is an open-source log management solution. In many ways, it seems to be

similar to Splunk with the difference in the cost. Most of the features on offer by the

system are free, but there are some features that are considered enterprise and licensing

fees are required for it. With the enterprise, version support is also included in addition

to the added features.

When compared to the offering from Splunk, Graylog more customizable, meaning you

have a lot more control over the final setup. Where with Splunk you had a single install

file that encapsulated everything, Graylog consists of several applications that have to

set-up in tandem. At its core, Graylog seems to be further development of the ELK

cluster that was looked at previously.

The main database used is an Elasticsearch cluster where all the log data is stored. In

order to make the usage of the database as fast as possible, the Graylog application

connects to the Elasticsearch cluster as a node and does not use the REST API for

pulling and storing the data. This is much faster as in this case the data does not have to

be transformed into JSON and then back in order to be used. This behavior has been

changed starting from Graylog version 2.3 where they started to use a lightweight HTTP

client to connect to the Elasticsearch cluster. This has resulted in much less coupling

with the Elasticsearch versions allowing for a wider variety to be used.

The application configuration itself is stored in a MongoDB database set. This is where

all the users, visualizations and dashboards are stored. The application is set up in a way

that if this database is down, the data input part of the application would still be working

but viewing the data is not possible. It is recommended to set up both Elasticsearch and

MongoDB in a high-availability setup.

In order to achieve full high availability, it is possible to run several Graylog nodes in

parallel and load balance between them. In case one of the nodes would fail the

operation of the cluster would not be affected.

42

Figure 7 - Graylog Architecture [16]

The typical setup for a larger installation of the Graylog application would look

something like this. This setup is fully high-available and failures in any part of the

system should not affect the application as a whole. The load balancer also has to have a

failover node available for this.

For inputting the data there are several options available. It is possible to use the

Logstash and Fluentd applications that were discussed in when looking at the ELK

cluster. Both of these applications have output plug-ins for GELF format. GELF is

Graylog Extended Log Format which defines some structure to the messages that are

being sent. This means that everything that was possible to be sent to ELK is also

possible to do with Graylog. However, there is also the option to collect the data using

Graylog Collector Sidecar. It can be deployed on Windows or Linux hosts and have the

following structure.

43

Figure 8 - Graylog Collector Sidecar [17]

When sidecars are deployed you have to assign them tags and then you can centrally

configure what data is being sent from the hosts. This is a very good feature for larger

application deployments as configurations on a large number of hosts can be maintained

in a central location making changes much simpler. The sidecar itself has been built so

it has minimal resource usage on the host.

From a security side, all the data being transported can be encrypted in order to avoid

tampering. It is also possible to encrypt the connections between the Graylog

application and the Elasticsearch cluster.

The analyzing part of the log entries can happen in several locations. If logs are being

transferred using Logstash they can be parsed there before being sent to the Graylog

server. If the Sidecar is used to collect the logs from the servers there isn’t much that

can be done on the host itself. Basic filtering can be done in order to exclude some data

that you are not interested in but the general analyzing of the log events will take place

on the Graylog server. For this Graylog has a featured name Extractors that can be

configured using regular expression or grok patterns in order to parse log events in

custom formats.

44

User management has been built into Graylog by default a built-in user directory is

used, It is possible to use LDAP or Active Directory as user directories in order to avoid

having to set up users locally in the applications. Access is managed via roles that can

be defined. By default, every user will have some role attached to them. It is also

possible to use access tokens for authentication in case you want to set up some

automated process that extracts data from Graylog for some purpose. It is also possible

to extend the possible options for authentication providers via plug-ins to include for

example SSO solutions.

To have arching set up by the Graylog application it is required to buy the enterprise

license for it. The cost of the license is 9000$ per node of the application used, so with a

2 node cluster that would be a cost of 18000$ yearly. Since Graylog stores everything in

an Elasticsearch server it would be possible to set up a custom solution as described in

the ELK section of the thesis. In order to do this, indexes need to be set up to rotate

daily, which allows to set up a job to snapshot the indexes from previous days that are

no longer getting any new data.

Graylog does come with a built-in monitoring and alerting system. One has to set up

conditions that would be creating these alerts in the monitoring system. The types of

alerts can look for values in some fields or use aggregated values in order to make more

complex alerts. It would be possible to check that if the number of incoming requests is

outside of some standard deviation number an alert is triggered. What happens after the

alert is triggered is also configurable. It is possible to send out e-mails or to make some

HTTP requests which in turn can trigger actions to remedy the situation. This could

easily be used to monitor the load of some application and if it gets above a threshold

trigger creation of more application nodes in order to not overload the existing nodes.

The alerts once triggered remain visible in the application until the condition that

triggered the alert is no longer active, then the alert is moved to a resolved state.

The application also has an interface for searching for certain messages from the

dataset. The search functions quite similarly to how it is set up in Kibana and both of

them use Lucene syntax in order to search for messages. In fact, it is quite simple to set

up a Kibana instance to be used with the data gathered by Graylog. It is also possible to

create dashboards which include pre-defined views of the data. This can easily be used

45

to gather metrics about applications and to get a quick overview of what is happening

with them.

As a conclusion, it can be said that Graylog works quite similarly to the ELK cluster,

but some work has been put into in order to make the operation of a log management

system simpler as some of the work is done for you by the application. It could be said

that Graylog is a development upon the ELK stack. The main benefits being that the

management of indexes is done by the application and a central configuration platform

for the log gather agents. It is also beneficial that it comes with a user management

system and alerting options which are missing from the free version of ELK.

46

3.2.4 Comparing the Tools

All of the log management solutions that were examined boasted a lot of features that

could all be used when setting the system up. To have a better overview of the situation

I’ve created a table for comparison.

Feature Splunk

Enterprise

Graylog ELK

Read logs from files X X X

Receive logs from

network

X X X

Parse logs X X X

Search logs X X X

Create visualizations X X X

Control user access X X X/License

requiered

Monitoring and alerting X X X/License

required

Configure log retention

times

X X X

Archive old logs X X/License

required

X

Secure transportation X X X

High availability X X X

Table 2 - Feature Comparison

It should be noted that Spunk Enterprise is an application that requires a license and

there is no free version available for it.

47

For the purpose of reading the log data from files, all three applications have similar

approaches. They require you to run an agent on the host machine where the files are

located which then reads in the data and forwards it for processing. Splunk uses a

custom application to achieve this while both ELK and Graylog use similar solutions.

The main difference between Graylog and ELK comes from the fact that it is possible to

install an agent on the host machine that takes care of configuring the application that

gathers the log data. This allows for Graylog to manage the data collectors from a

central location giving it an edge over the standard ELK stack deployment. Central

management of log forwarders is also a feature that is present in the Splunk Enterprise

application.

For the purpose of being able to receive logs over network sockets, Splunk and Graylog

have an advantage over the ELK stack. In case of an ELK stack, a separate Logstash or

Fluentd instance would have to be set up in order to receive the data over the network

and then parse it. With Graylog and Splunk, the support for receiving the data is directly

in the application so no extra steps are needed. Both of the applications support

receiving the data over TCP/UDP but also support for getting data as HTTP messages

with JSON payloads is supported. It is also possible with all of the applications to

receive data over TCP/UDP in syslog format meaning it’s possible to send the logs from

Linux servers.

For the purpose of sending logs from Windows event logs, both ELK and Graylog use

Winlogbeat. This application is very similar to Filebeat that is used by those

applications to read files but instead of files, it is able to read Windows Event Logs

when running on Windows hosts. The reason that a separate application is required is

that files where Windows stores its log data are not directly accessible and can only be

accessed using Window API. In case of Splunk, it is also possible to send data from

Windows logs but it is using the same Universal Forwarder that is used for sending data

from files on both Windows and Linux hosts.

Another data source that might need to be used is databases. For Splunk, there is a tool

named Splunk DB Connect that can be used in order to connect to a traditional database

and pull structured data from there. For ELK and Graylog Logstash can be used with its

JDBC input plug-in, there are also plug-ins available for this for Fluentd.

48

Parsing the logs to extract the data you are most interested in from the log events is a

critical part of any log management system. After the data has been parsed it is much

simpler to navigate the huge amounts of logs and find the relevant events that you are

looking for. Splunk is able to extract fields from XML and JSON documents without

any problems. In case of custom log formats, it is possible to use regular expression in

order the extract the data from log events. In case of ELK stack, the parsing takes place

in the Logstash pipeline before being sent for storage in Elasticsearch. For this purpose,

Logstash comes with multiple plug-ins in order to achieve this. There are possibilities to

parse data automatically from events in JSON, XML, CSV or events that are using

delimiters. In most cases, the grok filter is used in order to analyze the log event. Grok

is a language where you define the patterns for log events and then the patterns are used

in order to extract the data from log events according to the pattern. In case of Graylog

by default, the messages are sent to the application without being parsed by sidecars.

After the message has been received it is possible to extract the data. It is possible to use

grok and regular expressions in order to extract data. There are also extractors available

for JSON and for cases where the data is in key/value pairs. In general, it is possible to

parse the entries with all of the applications but in case of ELK cluster, the parsing is

done in a distributed manner before being sent to the central location as opposed to

Splunk and Graylog where the parsing happens after being transferred to the

application.

Searching the stored logs is possible with all three applications and in case of ELK and

Graylog, the options to do so are very similar. Both use Lucene syntax in order to query

the underlying Elasticsearch cluster in order to retrieve the data. In case of Graylog, it is

possible to use a Kibana application in parallel as the data is stored in a similar manner

for both. For the purpose of searching the data Splunk has developed its own language

in order to simplify searching the data. It must be said that the Lucene syntax is not that

easy and when trying to do searches it is highly probable that a reference sheet is

required in order to get the results that you expect. The general rule is that complexity

of searching depends a lot on the data being looked at. If the data has been properly

analyzed and relevant data has been extracted from log events, it makes searching for

relevant data a lot simpler. The Splunk query language is trying to improve the situation

and it is a bit simpler in some cases but in general, it not that much better. Due to this, it

is possible to save searches in all of the applications. This allows you to work out the

49

syntax once for the type of search you want to do and then you can just modify some

parameters according to what you are searching for.

Another common use-case it to visualize the data in order to get a better view of what is

happening with the system. This can be used in order to identify peak times quickly or

to get an overview of the system usage at times. All of the applications allow for the

creation of dashboards which usually contain one or more visualizations on them. In

most cases, this means that log data is turned into metrics and then displayed as graphs

or charts. In case of access logs, the usual suspects are showing the rate of different

HTTP response code, average response times to different request and to display possible

sources for problems. This allows for users to get a good understand of how the system

is currently behaving from once source as the dashboards are usually set up to contain

relevant data. Another use of dashboards is for KPI tracking where it is possible to

measure the metrics and give an overview of the current values for the KPIs in one

screen and possibility to export the view for reporting.

For user access control ideally one would want to use an SSO solution in order to cut

down the needed maintenance works. As a minimum, a local user directory would also

do, but is not ideal. Unfortunately, none of the applications come with support for SSO

solution by default. For ELK reverse proxy solution should be used in front of the

application in order to communicate with SSO server and provide the username. In case

of Graylog and SSO integration can be achieved with plug-ins and with Splunk it is

included in the application. All of the applications can use AD or LDAP as the user

directory but in case of the ELK stack that requires the installation of the X-Pack plug-

in which requires a license to operate. There is a free alternative available also for

Elasticsearch to be used instead of X-Pack. All the applications use role-based approach

to access management allowing AD groups to be mapped to roles. Or in case of local

user directories assign them to the users directly.

Alerting is a feature available for all applications, but in case of the ELK stack is part of

the Watcher plug-in which is included in the licensed X-Pack feature set. The alerting

and monitoring systems offer a very similar feature sets which enable users to set up

conditions in which the alerts are triggered and what should happen if an alert is created.

It is possible to set up simple e-mail notifications or call out webhooks with relevant

50

data. The implementation of the ELK stack also has the possibility to use machine

learning in order to detect anomalies which might give it an edge over the competition.

Archiving old logs is possible with all three applications. All of them allow to store the

old logs in a Hadoop cluster and restore them from there as needed. As an extra feature,

Splunk also allows compressing of older logs inside the system so no separate

application is required in order to preserve the data for longer. With Graylog it is

possible to use a feature that comes with the enterprise server to manage the data

moving to Hadoop or to set it up directly in Elasticsearch. Only the latter option is

available when using the ELK stack. With Elasticsearch it is also possible to store the

snapshots on the file system or in a cloud-based storage solution like the Amazon S3.

From a security perspective, no application stands out from the pack. Transportation of

the data can be done using encrypted channels with all the solutions and since the hosts

where the data should be coming from rules can be set up to only accept data from those

sources. User activity can also be monitored with all of the systems through access logs

which can be configured. With the ELK stack X-Pack plug-in, it is also possible to get

detailed information on what data was queried by what user.

As a conclusion, it must be said that all three chose applications are up to the task. The

main difference between them is the amount of work required in order to set up the

system and later the amount of maintenance work. From the operations side, Graylog

and Splunk have a more centralized approach where most of the functionality can be

configured from the application itself and is then propagated down to the collector

agents whereas, in case of the ELK stack, agent configuration takes place on the hosts

themselves. From the three applications, Splunk seems to be the one offering most

features but some of them are not needed for the present requirements. All of those

features do come with a price tag that is a bit too hefty so that rules out Splunk for the

final solution. Choosing between Graylog and the ELK stack is more difficult but in the

end, the Graylog solution was chosen since a lot of the work that would have to be done

manually has already been done in case of Graylog. Also with Graylog, it is possible to

do everything that the ELK stack offers due to the architecture of the system as the data

is stored in the Elasticsearch database for both of them and where needed, Logstash can

still be used in order to send the data.

51

3.3 Adapting the Tools to the Architecture

The system will be set up using Graylog as the primary application, but due to the fact

of how Graylog works, it is also possible to use every ELK stack feature with it. This

will be important as maintaining the agents that send the log data to the system is

responsibility of the operations teams and not all of them want to use the Graylog

Sidecar Collector, but are looking to deploy their agents with the application, in order to

keep the configuration out of Graylog and in their own deployment tools.

To be able to analyze all of the incoming data effectively, some mandatory fields are

required, in order to sort the incoming data and to apply the right rules to the right data.

All the incoming data needs to contain the following fields:

 service

 application

 logtype

These 3 fields are used in order to assign the entries into correct index sets in Graylog.

This allows to set up viewing permissions so people only see indexes that they are

supposed to and also to configure removal or archiving of old data according to preset

rules. These fields should be set during the initial data gathering by the agents and if not

present the data is discarded. Service and application are separate fields as in some

cases the whole system can consist of several applications. From the example

applications, the Bitbucket service has several other applications that generate logs in

order to function.

52

The whole system consists of the following components:

 Elasticsearch. All the data is stored in an Elasticsearch cluster which consists of

several nodes. The cluster itself can be scaled horizontally or vertically as

needed by either increasing the resources available or adding additional nodes.

Initially, the setup contains seven nodes out of which four are strictly dedicated

to storing the data and three are handling the coordination of the cluster, also

known as master nodes. The three master nodes that are coordinating the cluster

are also the ones used for data input and output. HTTP interface on the data

nodes is disabled to make sure they can dedicate all their resources to data

indexing and saving the data. The reason for having three coordinating nodes is

to ensure that node failures do not cause an outage for the cluster. If only two

master nodes were present there could be present you would require both of

them to be working in order to have a cluster or there is risk splitting the cluster

into two separate instances which would lead to data loss.

 HAProxy. Load balancer software that is used in order to split the traffic

between available nodes for applications. This also helps with the high

availability setup, in case of node failures traffic will be diverted to working

nodes by HAProxy. There are two instances of HAProxy configured, a master

instance which is used in most cases and a backup instance which takes over if a

problem with the master instance is detected. To achieve this, VIP (Virtual

Internet Protocol) address is set up that is used as the entrance point for the

cluster and the HAProxy servers are listening on that IP for connections.

Routing software named keepalived is used by the servers to determine if the

master is available or backup server should be used.

 Redis. An in-memory data structure store that is used in order to buffer

incoming traffic. There are two separate instances of this Redis running in the

system and HAProxy is used to balance the load between them. High availability

is guaranteed by HAProxy as it only routes the connections to working instances

of the software.

 Graylog. The main application of the system where most of the work is done.

Graylog is responsible for extracting the data from log events, storing them in

53

the database and searching through the data in order to display results that.

Initially, the application is running on three nodes as they are set up on the same

servers and the MongoDB databases. The three nodes form a cluster and the load

balancer spreads out the connections between the servers.

 MongoDB. A database engine that is used for storing the application

configuration of Graylog. Not much load is expected for this application, but it

does have to be a high availability system as Graylog cannot work without it. To

achieve this MongoDB replica set needs to be configured and a minimum of

three nodes is required to do so.

 Graylog Sidecar. The default agent for sending the data from servers to the

Graylog application. These are deployed to all the servers and they connect back

to the main application in order to get their configurations based on the tags that

have been assigned to them. A deployment of these agents has to be integrated

into the creation of new servers for both Windows and Linux systems as they are

sending the server logs to the central system. Additional tags will have to be

configured based on what applications are running on the server and

configurations for those tags have to be created. If the application is running

inside a Docker container a separate collector needs to be added to the container

or the application inside the container has to log to standard output.

 Logstash/Fluentd/Filebeat. Alternative agents that can be used in order to

collect the data from the servers and send it to Graylog. These are available for

operations teams who don’t or can’t use the default Graylog Sidecar Collector

that is installed on the servers for some reason. For these agents, the

configuration needs to be handled by the operations teams and extracting the

data can happen already on the servers so the data reaching Graylog is already

analyzed.

 Kibana. The default application of the ELK stack that is used to view the data

inside the Elasticsearch server. This will not be set up in a high availability setup

and mostly be used for the administration of the Elasticsearch database. Users

are not granted access to this system as they should be viewing the data from the

Graylog application.

54

 Apache Hadoop. A distributed storage system that is used for archiving

purposes. Older logs that need to be preserved for an extended timeframe, but

don’t need to be available for search are moved from Elasticsearch to the

Hadoop cluster that is set up for this purpose.

Figure 9 - Component Architecture

The previous figure shows the interactions between the components of the system. The

parts before the load balancer show possible setups for the teams that wish to use their

own agents instead of the Graylog Sidecar Collector. The Redis and Logstash are also

there in order to do buffering for the Logstash instances to avoid data loss. There are

55

two main ways to collect the data. The first one would be with the Graylog Sidecar

Collector, which collects the data and sends it through the load balancer to a Graylog

instance for processing. The other option is to use some alternative agent, but in this

case, the data is sent through the load balancer to a Redis instance in order to do

buffering. After that, there is a separate Logstash instance that pulls from the Redis

server and forwards the data to the Graylog instance through the load balancer.

System Servers

ES Master 3

ES Data 4

Graylog 3

MongoDB 3

Redis 3

Logstash 3

HAProxy 2

Kibana 1

Table 3 - Server Requirements

If all this software was installed on separate servers the number of servers would go

quite high so it would be better to consolidate some applications on the same server.

Since some systems will be creating very little load it is possible to run several of them

on the same server. Since 3 servers have to b used for MongoDB and Graylog to

achieve high availability, it would make sense to also add Redis and Logstash instances

to the same servers as that would reduce the number of servers from twelve to three for

those applications. The Elasticsearch cluster would still require seven servers.

56

System Servers

ES Cluster 7

HAProxy 2

Graylog/MongoDB/Redis/Logstash 3

Kibana 1

Table 4 - Consolidate Server Requirements

The system will still be installed on a quite a large number of servers but it is required in

order to have a high availability solution. Most of the servers are used by the

Elasticsearch cluster, but the amount of expected incoming data is rather large so a

cluster with sufficient resources is needed.

57

4 Solution Verification

In order to make sure that the system works as is expected, a small-scale proof of

concept system will be set up logs events will be sent to it. This will allow to verify that

it is possible to send logs and analyze them. In the proof of concept the following:

functionality will be tested

 Sending logs

 Analyzing logs

 User management

 Viewing log entries

 Sending events directly to the API

The setup of the system is done using Docker [18] as that is the simplest way to have a

working cluster with all the required components. Testing alternative agents for log

sending is not part of the proof of concept, this makes the setup of the test system much

simpler as the only things required are a Graylog server, Elasticsearch server, and a

MongoDB server.

Data for the test comes from the Nexus application. This application was chosen as it is

simple enough that the setup does not take too long, but there is enough data to test the

solution. There are three files that are needed to be forwarded and parsed.

 Nexus access log

 Nexus Java log

 Apache access log

There is an Apache reverse proxy in front of the application so it would be possible to

connect to it directly over ports 80 and 433 as by default the application runs on port

8081. The server is running a Red Hat operating system.

58

Since the system consists of several containers that need to be able to communicate with

each other the Docker Compose tool is used to coordinate the deployment and

interactions between the containers. This allows for quick deployment of the system and

if needed it would allow scaling the system so high availability could be tested.

Before work can start on the application it has to be deployed on a host running Docker,

and the Collector has to be installed on the host that is providing the testing data. The

Docker Compose file used can be found in Appendix 1 with the configuration of the

deployed Collector in Appendix 2.

59

4.1 Installation

The Log Management system PoC is installed on a freshly installed Red Hat 7 virtual

machine. In order to be able to deploy the system, some software has to be installed.

Mainly what is needed is Docker itself and the Docker Compose command. Both of

these are available in the package repositories provided by Red Hat so the default

package management tool yum can be used in order to install the required software.

Software Version

Docker 1.12.6

Docker Compose 1.9.0

Table 5 - PoC Software Versions

Another thing that has to be verified is that the kernel setting net.ipv4.ip_forward has

been set to 1. This is required in order to forward incoming connections to the virtual

machine to the Docker containers running on that machine.

The next step would be to run the docker-compose up command in the directory

where the .yml file is located. The file describes what containers have to be started and

variables that can be configured for those containers. It also defines what containers can

connect to each other and what ports on the host machine are mapped to ports inside the

container.

After running the command Docker downloads the defined images from Docker Hub

[19], which is the official container repository used by Docker. After the containers

have been downloaded they are started using the variables that have been provided in

the configuration file.

The compose file that was used worked without any problems and after the setup had

finished the login screen on port 9000 of the server could be seen.

60

Figure 10 - Graylog Login Screen

Logging in with the default user and password worked without any problems so it can

be concluded that the server setup was successful.

The next step would be to set up a Collector Sidecar on the server that is used as the

data source for testing. For the installation of the Collector Sidecar an installer needs to

be downloaded from their Github page. Currently, there are three types of installers

available. RPM packages for Red Hat based systems, Debian packages for systems

based on that Linux distribution and an installer for Windows-based systems. Since the

server used is running Red Hat operating system the RPM package has to be

downloaded to it. After installing the package a separate command has to be run in

order to set it up as a system service in order to start/stop it during boot. Before the

Collector Sidecar can be started some modifications have to be made in the

configuration also. For the PoC there were two values that were changed from the

default, the name of the node and the server URL. Also, the tag nexus2 was added to it,

as Graylog uses these tags in order to determine what configuration should be deployed

by this Collector Sidecar. After the changes to the configuration file were made and the

Collector Sidecar was started it showed up nicely in the Graylog application.

61

Figure 11 - Graylog Collectors View

If more of the Collector Sidecars would be installed on other machines they would show

up in this list. Forwarding syslog data to the Graylog host over UDP in rsyslog

configuration has been enabled also. Installation of required software for the PoC can be

considered complete after this and work with the application itself can begin.

62

4.2 Receiving Data

All the data that is sent to the Graylog application is stored in index sets. When creating

the index set rotation rules are set. This is used in order to remove old log entries from

the system. By default it is configured to store a certain amount of messages and if the

number gets larger old ones are rotated out. In most cases this is a good rule to use as

the data usage by the system is very predictable. There are however some log files that

contain audit data that have to keep for a certain time period. In order to fulfill this goal

time-based rotation strategy can be used. When using this strategy it is defined, for how

many days you want to keep the data searchable. In some cases, the time period can be

very long and data should be moved to an Apache Hadoop cluster before it is removed

from the Graylog system. Since these rules are set up on an index set basis this means

that each type of file that is read has to be stored in a separate index set. For example,

for the nexus application, a total of 3 separate index sets are required as rules for each

are different. A separate index set was configured for syslog data also.

To decide to which index set data should be stored Graylog uses streams. It checks

incoming messages for rules and assigns them to a stream. Each stream is mapped to an

index set. Since every incoming event includes the service application and log type

fields those are used to assign the data to the correct stream in Graylog.

After these steps are done successfully the configuration on where to store the data can

be considered done, next on the agenda should be receiving the data. The first step is to

define inputs for the Graylog application. This part defines what ports Graylog is

expecting to receive what types of messages. For the purpose of the PoC two inputs

were set up. One input was set up to receive messages from the applications and another

one to receive the syslog data. Since rsyslog had already been configured on the server

to send the data to Graylog, as soon as the input was set up, the system started to receive

data from it and store it in the syslog index set. As analyzing of the messages has not yet

been set up they are saved as strings in the system, so it’s quite hard to search for

anything. This is solved a bit later as for now the logs from the Nexus application stored

also need to be stored on the server.

The next step in order to get the data from Nexus application would be to configure the

Collector Sidecar to start sending the data. The tag nexus2 was applied to the collector

63

on installation so now a configuration should be created that gets applied to this tag. The

Sidecar configurations consist of two parts. The first part is where to send the data, and

the second part is what data to read. When configuring files to read it is also possible to

add fields to the read entries, this can be used to write the required fields to all the log

entries. It is also possible to write separate advanced configurations for the Filebeat

application that are used to read the logs and use the Collector Sidecar to distribute it to

hosts. Tags can be added to every collector configuration that you create if a tag applied

to a collector configuration matches tags present for a Collector Sidecar that host pulls

the configuration and applies it. After creating a collector configuration to read the

nexus access and java logs with the output defined as the Graylog server, new log

events from the server started to appear in the configured index sets.

64

4.3 Analyzing the Data

Having the raw data from log files can be useful, but to truly benefit from collecting the

log events they should also be analyzed in order to simplify searching for relevant data.

In the scope of the PoC, the log entries from nexus access logs should be analyzed so

visualizations using the data could be created in order to verify that it works as

expected. Data coming to Graylog can be analyzed using the extractors. For every input,

it is possible to define extractors which will then be run on incoming messages.

Unfortunately, it is not possible to define sufficient conditions on when to run the

extractor so if logs from many applications were sent to one input and extractors for

each log type was defined all of them would be run on every incoming message leading

to very high load on the Graylog host. This can be used in for syslog messages as those

are coming in on a separate input from applications and all of the machines sending the

data are using the same standard so only one extractor is required in order to parse the

incoming messages. For the purpose of applications logs, in order to not overload the

server, each application should use a separate input in order to only run extractors

relevant to that application. That approach would cause a lot configuration in order to

set up new applications as changes in the load balancer and Docker port forwarding

would be required each time an application was added. Fortunately, it is also possible to

use pipelines in order to process the data. The pipeline system is much more flexible

then what was possible to do with extractors. A pipeline is a set of rules that will be

applied to all messages going through it. Each pipeline is attached to one or more

streams. This means that for each log type it is possible to define a unique pipeline that

will analyze the messages being stored. It is also possible to reuse pipeline if, for

example, you have HAProxy set up for several services, then the HAProxy pipeline can

be attached to all the streams containing messages from different services. Another

advantage of using pipelines is that it’s possible to do more with it then what extractors

offer. It is possible to add or remove fields that the message contains or to modify

already existing fields or create new fields that have data dependent on values of other

existing fields.

Depending on the log format different methods can be used in order to analyze data. In

some cases, it is possible that delimiters are used in order to split values in log entries,

but usually, the structure of the log entries is more complex and regular expressions are

used in order to define the format. Most commonly grok patterns are used which is a

65

collection of named regular expressions. Graylog application comes with a large

number of patterns already implemented by default and it is possible to define custom

patterns. In order to create the pattern for the nexus access logs, an online Grok

Constructor [20] is used. The following log line was taken as the basis for building the

pattern:

10.61.45.245 - lauri.linros [19/Oct/2017:10:07:28 +0000]

"GET

/nexus/content/groups/public/org/codehaus/plexus/plexus-

archiver/2.9/plexus-archiver-2.9.jar HTTP/1.1" 200 145376 6

Using the tool a grok pattern was created and some type definitions were added which is

a Graylog feature.

%{IPORHOST:clientip} - %{USERNAME:user}

\[%{HTTPDATE:timestamp}\] "%{WORD:verb} %{NOTSPACE:request}

HTTP/%{NUMBER:httpversion}" %{INT:response;int}

%{INT:bytesSent;int} %{INT:ms;int}

This pattern was then added to the Graylog application with the name

NEXUS_ACCESS_LOG that it can be used with the pipeline attached to the stream

containing the nexus access logs. The following rule was created for the pipeline:

rule "Extract nexus access log fields"

when

 true

then

 let m = grok("%{NEXUS_ACCESS_LOG}",

to_string($message.message), true);

 set_fields(m);

end

As the result of this, all log messages in the stream now have been parsed into more

fields that can be used in order to do searches on the data to find out trends or to create a

visualization in order to have an overview of how the system is behaving and what it is

begin used for. The value of the when directive for the pipeline rule is set to true since

this rule has to be run on all the entries, It is also possible to set up rules that are only

run of some fields that contain certain values.

66

4.4 Data Presentation

Searching the data is quite simple in Graylog, one has to open the stream they are

interested in and then run a query over a selected timeframe and Graylog outputs the

records that match the query. While the syntax of the search engine might not be the

easiest to use, it is quite powerful and complex queries can be written with it. Graylog

documentation on the matter is quite extensive and should be consulted when creating

more complex queries.

The system allows for the creation of visualizations and then to group them together in

dashboards. The process of creating these visualizations is quite simple. When looking

for data it is possible to quickly create visualizations from the search interface and add

them to existing or new dashboards. After all the desired visualizations have been added

to the dashboard it is possible to position them and do some minor modifications to

them.

Figure 12 - Graylog Dashboard

67

4.5 User Management and Alerting

To manage users the goal is to do everything from Active Directory. Ideally, roles are

mapped to AD groups and whoever is part of that AD group will be able to log into the

Graylog system and have the appropriate permissions related to that group. The idea

behind it is that the AD groups would be owned by the teams themselves so they can

manage their user permissions without having to request it from someone else making it

more convenient for everyone. It was possible to set up the system in this way in

Graylog configuration for LDAP/AD. How it works is that there is a main access group

in the AD. All the groups that are members of that group get imported into Graylog with

their users and each of those groups is mapped to a role in Graylog. The roles

permissions in Graylog are quite simple it is possible to set read/edit permissions on

streams and dashboards granting appropriate access to it. The permissions part also

affects alerting. The way alerts work is, that some conditions are defined on a stream

basis and if the rule is broken an alert is raised. The way this works with permissions is

that users who have permissions to read a stream also can see alerts from that stream.

As many conditions can be set up as you want. Alerts remain visible until the triggering

condition is no longer valid. It is also possible to set up notifications for each stream. By

default, it is possible to send an e-mail or to call out an URL with the HTTP POST

method. The notifications are configured on a stream level, so each of the conditions

configured for the stream triggers all notifications configured for that stream. This is not

ideal when trying to set up an automatic response for triggers as an extra layer is needed

to be created that receives the HTTP request and decides what needs to be executed in

order to fix it. It also means that it’s not possible to filter what alerts to send to what e-

mails on a condition basis for a stream.

68

5 Summary

The problem that was tackled was to set up a log management system for a large

organization. There are many benefits for doing this and in some cases, it might even be

required by some compliance standards that the company must adhere to. In the larger

scope, this activity is part of security information and event management.

In order to get a good overview of the work ahead of us, documentation provided by

NIST Special Publication 800-92 [1] written by Institute of Standards and Technology

was consulted. This document gives a very good overview of the benefits of setting up

log management but the more important part is the description of how such a system

should work. This document was relied on in order to create the requirements that the

final solution would have to adhere to.

The main requirements were that the system should be able to handle several different

data sources as the data could come from files, posted over HTTP or sent by syslog.

There were also requirements dealing with access to the data and the rules for retention

of it. Audit and security data can be more important than an applications operational

data and it is possible that it needs to be stored for a long period of time. This means

some sort of conditional archiving of the data has to be set up. Among the list of

requirements was also the ability to alert and notify in case of some conditions are

broken in the data. This has two main purposes. First one being able to detect security

issues and alert the proper people to act on it and secondly, it can be used to monitor

application behavior and if it is not without predefined conditions alert the operations

team in order to pre-empt a possible issue or to quickly respond to an incident. There

were also several non-functional requirements that dealt with data security and the

availability of the system.

With the requirements created it was possible to create an initial design so that the

necessary components of the system could be identified. With that knowledge, the

search for tools that could be used was started and three possible candidates were

chosen which could be used to set up the log management system.

The three tools chosen were Splunk, Graylog and ELK Stack. All of them were

analyzed in order to be able to tell how well they would perform against the

69

requirements. In the end, the conclusion was that it would be possible to set up the

system using any of them but the difficulty of doing so and maintaining the system

would be the deciding factor on which to use. Out of the three options in consideration,

Splunk was the one with the best feature set and would have been the one to use if it

didn’t come with a very hefty price tag attached to it. The other two options are both

software that can be used without any cost. From the remaining two options Graylog is

similar to Splunk where most of the configuration is done in a web interface and kept in

a central location. For the ELK stack web interface only exists for viewing the data in

form of Kibana, but the whole configuration part for receiving the logs is spread on all

the hosts that are sending and storing the data. In the end the decision was made to use

Graylog as that system automated a lot of the work that would have to be set up

manually for the ELK stack. Maintenance of the Geaylog system is also a lot simpler as

system administrators won’t have to search servers for the correct configuration files but

can do so straight from the interface.

When the tools had been chosen it was possible to create a final design for the log

management system that would successfully fulfill all of the requirements that were set

forth beforehand. Due to some of the requirements, mostly the volume of the data and

high availability, the final design used quite a lot of servers but in order to get the

number down some of the applications that were not creating a lot of system load, were

consolidated to using the same servers. Depending on the deployment method used the

actual server number might even be lower, but it will not be able to be less than 3 as that

is the minimum that is required for high availability.

Having completed the final design it was time to create a proof of concept(PoC) setup in

order to verify that the system works as expected. To simplify the setup for the PoC

some of the functional requirements were ignored so that everything could be set up on

just one server. During the PoC all the requirements were verified and quite a few

details were clarified on how things should be set up inside the application in order to

have the system working as expected.

With the successful completion of the PoC, it could be concluded that the design is

indeed valid and could be implemented for production use.

70

References

[1] N. I. o. S. a. Technology, “Special Publication 800-92,” [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf.

[2] Sonatype, “Sonatype Nexus OSS,” [Online]. Available:

https://www.sonatype.com/nexus-repository-oss.

[3] Express, “ExpressJS,” [Online]. Available: https://expressjs.com/.

[4] Morgan, “Morgan,” [Online]. Available: https://github.com/expressjs/morgan.

[5] Atlassian, “Bitbucket Data Center,” [Online]. Available:

https://confluence.atlassian.com/enterprise/bitbucket-data-center-668468332.html.

[6] Atlassian, “Bitbucket Server Log Formats,” [Online]. Available:

https://confluence.atlassian.com/bitbucketserverkb/how-to-read-the-bitbucket-

server-log-formats-779171668.html.

[7] Elasticsearch, “Elasticsearch Logging Configuration,” [Online]. Available:

https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html.

[8] HAProxy, “HAProxy Logging Configuration,” [Online]. Available:

https://cbonte.github.io/haproxy-dconv/1.8/configuration.html#8.

[9] Splunk, “Splunk,” [Online]. Available: https://www.splunk.com/.

[10] Graylog, “Graylog,” [Online]. Available: https://www.graylog.org.

[11] ElasticSearch, “ElasticSearch,” [Online]. Available: https://www.elastic.co/.

[12] Splunk, “Solunk version comparison,” [Online]. Available:

https://www.splunk.com/en_us/products/features-comparison-chart.html.

[13] Splunk, “High availiabilty deployment,” [Online]. Available:

http://docs.splunk.com/Documentation/Splunk/6.6.3/Deploy/Indexercluster.

[14] Splunk, “Pricing,” [Online]. Available:

https://www.splunk.com/en_us/products/pricing.html#tabs/tab1.

[15] Elasticsearch, “Deplying and Scaling,” [Online]. Available:

https://www.elastic.co/guide/en/logstash/current/deploying-and-

scaling.html#integrating-with-messaging-queues.

[16] Graylog, “Graylog architecture,” [Online]. Available:

http://docs.graylog.org/en/2.3/pages/architecture.html.

[17] Graylog, “Graylog Collector Sidecar,” [Online]. Available:

http://docs.graylog.org/en/2.3/pages/collector_sidecar.html#.

[18] Docker, “Docker,” [Online]. Available: https://www.docker.com/.

[19] Docker, “Docker Hub,” [Online]. Available: https://hub.docker.com/.

[20] H.-P. Störr, “Grok Constructor,” [Online]. Available:

http://grokconstructor.appspot.com.

71

Appendix 1 – docker-compose.yml for the PoC

version: '2'

services:

 # MongoDB: https://hub.docker.com/_/mongo/

 mongodb:

 image: mongo:3

 # Elasticsearch:

https://www.elastic.co/guide/en/elasticsearch/reference/5.6

/docker.html

 elasticsearch:

 image:

docker.elastic.co/elasticsearch/elasticsearch:5.6.3

 environment:

 - http.host=0.0.0.0

 - transport.host=localhost

 - network.host=0.0.0.0

 # Disable X-Pack security:

https://www.elastic.co/guide/en/elasticsearch/reference/5.5

/security-settings.html#general-security-settings

 - xpack.security.enabled=false

 - "ES_JAVA_OPTS=-Xms512m -Xmx512m"

 ulimits:

 memlock:

 soft: -1

 hard: -1

 mem_limit: 1g

 # Graylog: https://hub.docker.com/r/graylog/graylog/

 graylog:

 image: graylog/graylog:latest

 environment:

 # CHANGE ME!

 - GRAYLOG_PASSWORD_SECRET=d9oRehQ8mIBHChZN

 # Password: admin

 -

GRAYLOG_ROOT_PASSWORD_SHA2=8c6976e5b5410415bde908bd4dee15df

b167a9c873fc4bb8a81f6f2ab448a918

 -

GRAYLOG_WEB_ENDPOINT_URI=http://10.61.123.34:9000/api

 links:

 - mongodb:mongo

 - elasticsearch

 depends_on:

 - mongodb

 - elasticsearch

 ports:

 # Graylog web interface and REST API

 - 9000:9000

 # Syslog TCP

72

 - 514:514

 # Syslog UDP

 - 514:514/udp

 # GELF TCP

 - 12201:12201

 # GELF UDP

 - 12201:12201/udp

 # Beats input

 - 5044:5044

 # Gelf HTTP

 - 8081:8081

73

Appendix 2 – collector_sidecar.yml for PoC

server_url: http://10.61.123.34:9000/api/

update_interval: 10

tls_skip_verify: false

send_status: true

list_log_files:

node_id: tuno

collector_id: file:/etc/graylog/collector-

sidecar/collector-id

cache_path: /var/cache/graylog/collector-sidecar

log_path: /var/log/graylog/collector-sidecar

log_rotation_time: 86400

log_max_age: 604800

tags:

 - linux

 - apache

 - nexus2

backends:

 - name: nxlog

 enabled: false

 binary_path: /usr/bin/nxlog

 configuration_path: /etc/graylog/collector-

sidecar/generated/nxlog.conf

 - name: filebeat

 enabled: true

 binary_path: /usr/bin/filebeat

 configuration_path: /etc/graylog/collector-

sidecar/generated/filebeat.yml

74

Appendix 3 – Parsed Nexus Access Log Entry

