
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Department of Software Science

Jaak Kütt 200814IAIB
Georg Margus 193294IAIB

Lauri Kask 193685IAIB

SOFTWARE FOR PROTEIN DETERMINATION
Bachelor Thesis

Supervisor
Priit Järv

PhD

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Jaak Kütt 200814IAIB
Georg Margus 193294IAIB

Lauri Kask 193685IAIB

TARKVARA VALKUDE MÄÄRAMISEKS
Bakalaureusetöö

Juhendaja
Priit Järv

PhD

Tallinn 2022

Author’s Declaration of Originality

We hereby certify that we are the sole authors of this thesis. All the used materials,
references to the literature and the work of others have been referred to. This thesis has not
been presented for examination anywhere else.

Author: Jaak Kütt, Georg Margus, Lauri Kask
(signature)

Date: May 30th, 2022

i

Annotatsioon

Bakalaurusetöö raames loodi Tallinna Tehnikaülikooli Küberneetikaosakonna
Süsteemibioloogia laborile töölauarakendus. Rakenduse eesmärk on senise geelianalüüsi
tööprotsessi optimiseerimine, kiirendades teatud toiminguid mis nõudsid ebavajalikul
määral korduvaid liigutusi ja täpsust.

Tarkvara ehitati Qt raamistikule. Rakendus loodi Pythonis, kasutades PySide6 mähisteeki.
Andmetalletuseks on valida SQLite ja PostgreSQLi andmebaaside vahel, ning piltide
laadimiseks failisüsteemi või OMERO andmebaasi.

Tulemuseks on tarkvaralahendus, mis suudab geelipilte sisse laadida, pildilt alamosa
valida ning seda pöörata, ning teostada taustaeemaldust. Pildile saab paigutada radu,
mille põhjal koostatakse intensiivsusgraafe, mida saab vajadusepõhiselt piiritleda nõutud
pindala kättesaamiseks. Tulemusena saadud andmeid saab talletada andmebaasi hilisemaks
ülevaatluseks ja analüüsiks.

Alguses planeeriti valminud rakendus avaldada publikule avatud lähtekoodiga, aga
lõpupoole selgus, et rakendus pole veel piisavalt valmis, nõudes lisaviimistlusi.

Projekti GitLabi salv on leitav aadressilt https://gitlab.cs.ttu.ee/jakutt/
iaib.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 30 leheküljel, 8 peatükki, 25
joonist, 9 tabelit.

ii

https://gitlab.cs.ttu.ee/jakutt/iaib
https://gitlab.cs.ttu.ee/jakutt/iaib

Abstract

As part of this thesis, a desktop application for Tallinn University of Technology’s Cy-
bernetics Institute’s Systems Biology laboratory was made. The goal was to optimize the
current protein analysis workflow, speeding up certain tasks and operations that required
unnecessary repetition and precision.

The software was built on the Qt framework. It was written in Python, using the PySide6
wrapper library. It uses either SQLite or PostgreSQL for data storage and the filesystem or
OMERO for images.

The result is a software that can load gel images and crop, rotate, perform background
subtraction on them. Lane regions can be defined on the image for intensity plot generation,
which can be cut off at places to extract desired areas. Those results can be stored in a
database for later review and analysis.

The software was planned to be released to the public as an open-source project. Towards
the end of development, however, it was considered not to be ready yet, requiring more
polish.

The project’s GitLab repository can be found at https://gitlab.cs.ttu.ee/
jakutt/iaib.

The thesis is in English and contains 30 pages of text, 8 chapters, 25 figures, 9 tables.

iii

https://gitlab.cs.ttu.ee/jakutt/iaib
https://gitlab.cs.ttu.ee/jakutt/iaib

List of Abbreviations and Terms

API Application Programming Interface
COX4 Cytochrome c oxidase subunit 4, mitochondrial
CRUD Create, Read, Update, Delete
CSS Cascading Style Sheets
CSV Comma-separated values
DBMS Database Management System
GPLv3 GNU General Public License version 3
GUI Graphical User Interface
HTML Hypertext Markup Language
ORM Object-relational mapper
OS Operating system
ROI Region of Interest
SQL Structured Query Language
SSL Secure Sockets Layer
UI User interface
UX User experience

iv

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Domain Overview . 2

1.1.1 Protein Determination . 2
1.1.2 Gel . 2
1.1.3 Gel Processing . 2
1.1.4 Gel Analysis . 3
1.1.5 Data Analysis . 3

1.2 Project Scope . 3

2 Project Description 4
2.1 Problem Outline . 4
2.2 Requirements Analysis . 4

2.2.1 Initial Outline . 5
2.2.2 Use Case Analysis . 5
2.2.3 User Flow Validation . 6
2.2.4 Identified User Stories . 7

2.3 Existing Solutions . 7
2.3.1 ImageJ . 7
2.3.2 Image Lab . 8

2.4 Project Management . 8

3 Project Design 9
3.1 Frameworks and Libraries . 9
3.2 Architectural Choices . 11

3.2.1 Dependency Injection . 11
3.2.2 Events . 12
3.2.3 Undo/redo . 12
3.2.4 Database . 13

3.3 Measuring User Confidence . 14

4 Software Description 15
4.1 Prerequisites and Installation . 15

v

4.1.1 Application Startup . 16
4.2 Application Layout . 17

4.2.1 Toolbar . 17
4.2.2 Navigation . 17
4.2.3 Content Area . 17

4.3 Application Views . 17
4.3.1 Gel List View . 18
4.3.2 Gel Detail View . 18
4.3.3 Measurement Types View . 18
4.3.4 Gel Image Raw View . 19
4.3.5 Gel Image Adjust View . 19
4.3.6 Gel Image Background View . 19
4.3.7 Gel Image Lanes View . 20
4.3.8 Gel Image Measurements View 20
4.3.9 Settings View . 21

5 Validation 23

6 Results 24
6.1 Internationalization . 24
6.2 CSV Export . 25
6.3 Curved Lanes . 25
6.4 Gel Filtering . 25

7 Comments and Discussion 26
7.1 Domain Knowledge . 26
7.2 Project Management . 26
7.3 Curved Lanes . 27
7.4 Qt . 28
7.5 Python . 28
7.6 Application Architecture . 28
7.7 Alternative Image Sources . 29

8 Conclusion and Future Development 30

Bibliography 31

Appendix 1 – UI Draft 34

Appendix 2 – User Stories 38

Appendix 3 – Application Views 40

vi

Appendix 4 – Requirements Comparison 46

Appendix 5 – Questionnaire Results 48

Appendix 6 – Database Schema 50

Appendix 7 – Non-exclusive licence for reproduction and publication of a
graduation thesis 51

vii

List of Figures

1 Change in the order of associations between components 7

2 Software design. 9

3 Cropping/rotation selection ROI. 19
4 Gel image graph and lanes plot . 20
5 Integration limit lines . 21

6 Application layout. 34
7 Application gels list view. 34
8 Application gels single view. 35
9 Application raw image view. 35
10 Application adjust image view. 36
11 Application gel background view. 36
12 Application gel lanes view. 37
13 Application gel measurements view. 37
14 Application gel list view. 40
15 Application gel lanes popup view. 41
16 Application measurement types list view. 41
17 Application gel detail view. 42
18 Application image selection popup view (local folder). 42
19 Application image raw view. 43
20 Application image adjust view. 43
21 Application image background subtraction view. 44
22 Application image lanes view. 44
23 Application image measurements view. 45
24 Application settings view. 45
25 Application database entity relationship diagram. 50

viii

List of Tables

1 Time costs of gel analysis . 4

2 Steps to add alternative database support 10

3 Requirements of the Systems Biology lab project lead 38
4 Requirements of scientist working at the Systems Biology lab 38
5 Requirements of scientist not working at the Systems Biology lab 38
6 Requirements of a scientist . 39
7 Requirements satisfied by alternative applications 46
8 Questionnaire: user roles . 48
9 Questionnaire: user confidence . 48

ix

1. Introduction

The main motivation for this project was the client’s need to analyze protein concentrations
efficiently and conveniently. Clients understood the problem well since this is a rather
common task in molecular biology. Existing solutions had certain limitations which made
them either inefficient or lacking in necessary functionality. We tried to provide a solution
that would overcome these limitations.

Protein quantification is a method for finding protein concentrations from blots. The
Systems Biology lab currently uses ImageJ for this purpose. The blot image can be
adjusted by cropping it, adjusting brightness, and performing background subtraction.
Lanes are identified on the processed image and marked with selection tools and defined
as lanes. The lanes can then be plotted as histograms, where peaks or valleys indicate
band intensities. Those indentations can be closed off with lines, then the enclosed areas
selected and exported [1].

There were a few problems with using ImageJ for this:

■ accidentally creating a wrong lane selection is not undoable, meaning reopening
the project from the last saved state and doing everything again up to that point is
necessary;

■ the data needs to be manually exported and inserted into a database;
■ there can only be a single item in the undo/redo buffer, meaning more than one

mistake, in general, requires restarting.

Due to the problems with using ImageJ, the Systems Biology lab requested an application
to be made specifically for protein quantification that would resolve them, by providing
better undo/redo functionality, a direct database connection, and ability to edit selections
and recalculate changes. The application was written in the Python programming language
using the PySide6 framework.

1

1.1 Domain Overview

1.1.1 Protein Determination

Protein determination is the process of finding out the concentration of a protein in a
sample [2].

1.1.2 Gel

A gel is a quasi-solid with a wide range of possible properties. Its cross-linked system
makes it weigh like a liquid, act like a solid and contributes to its hardness and adhesiveness
[3]. There are various types of gels, of which typically relevant to gel electrophoresis
are agarose, polyacrylamide and starch. Gel electrophoresis for proteins commonly uses
polyacrylamide gels [4].

In gel electrophoresis, gels have wells for the samples, each well run forming a lane. Some
lanes, usually one, may be used as a reference, utilizing a commercially available matter
for comparison with samples. As voltage is applied, the samples migrate through the lane,
forming separate bands within it [4].

1.1.3 Gel Processing

For protein detection, western blotting is a widely used analytical technique involving
gel electrophoresis. Proteins in the sample are first separated through gel electrophoresis,
then transferred from the gel onto a membrane, most commonly using the electroblotting
method. The protein on the membrane is then stained so that it can be visualized, which is
used to check the uniformity of the transfer and perform normalization. There are many
methods for staining, with Coomassie brilliant blue R 250 and Ponceau S, among others,
commonly used. In order to prevent interactions between the membrane and antibody,
blocking is done with a protein solution. The membrane is then probed for the protein
of interest in a process called incubation, which, when successful, should produce an
indicating color. In the detection and visualization phase, the failed probes will be washed
away, and a variety of detection methods can be applied for protein level determination.
The banding patterns are usually documented by photographing or scanning the gel, which
can then be used for further analysis [4]. The image should be taken such that the bands
look sharp, without indistinct edges or fuzziness [5].

2

1.1.4 Gel Analysis

Band quantification is the process of measuring signal intensity of protein bands. Because
the intensity is proportional to target protein concentration, it is possible to compare
samples with other samples or the control. This data can then be used for further statistical
analysis [5].

Measuring by Blot Image

The grayscale blot image can be loaded into an image processing software for analysis.
Region of Interest (ROI) can be defined on the image around the lanes/bands subject to
analysis. The pixel values in the region of interest are added up in top-to-bottom chunks,
with the values from the chunks forming an intensity graph. The difference in areas
between the graph and a defined baseline determines the intensity of the given region,
which can then be compared with other regions.

1.1.5 Data Analysis

Results from western blotting are commonly used in biochemistry to study different aspects
of proteins and disease diagnosis [6]. It can be used, for example, to detect tissue factor in
animals [7], act as a confirmatory test for syphilis [8], and for studying asthma [9].

1.2 Project Scope

The given project aims to help with processing the results of western blots through image
manipulation and image data analysis, as well as automatically storing analysis results in a
database. Source images can be cropped, rotated, have their background subtracted, and
color-mapped for ease of use. Sections of the image can have lane regions defined, which
will produce intensity graphs based on pixel values within the lane region. The intensity
graphs can have hand-applied zero-lines to calculate the desired area. The created lanes,
zero-lines, and lane measurements are saved to a database in a form that allows for further
analysis with additional tools and retroactive changes.

3

2. Project Description

The goal was to develop an application that could automate the analysis of gels based on
their protein content. The application was supposed to overcome certain limitations of
alternative solutions. The clients also imposed certain requirements for the used technology
stack and the type of application.

2.1 Problem Outline

The primary issue with the current method are its inefficiencies: the tools used to perform
image analysis and store the results have a lot of repetitive, manual steps and require
precision and consistency to avoid losing significant chunks of progress. Table 1 outlines
the current steps and the reported time taken to perform them for one experiment, keeping
in mind that making a mistake requires previous steps to be redone. Since at least three
experiments are done, the total time taken can exceed 7.5 hours per protein.

Order Action Time taken
1 Signal analysis 10 minutes
2 Ponceau analysis (normalization) 10 minutes
3 Cytochrome c oxidase subunit 4, mitochondrial (COX4)

analysis (normalization by another protein)
10 minutes

4 Upload data to database 120 minutes
150 minutes

Table 1. Time costs of gel analysis

Ponceau, signal, and COX4 analyses were performed using ImageJ. Data upload was done
through a web interface for textual data and OMERO for images. The main pain points
were using ImageJ for the analysis steps due to quirks of the software and data insertion
through the web interface for the database, which was slow primarily from having to
pick out relevant values from ImageJ results and performing repetitive creation/insertion
operations using the web interface.

2.2 Requirements Analysis

The requirements for the project were gathered in three phases: 1) initial outline and
domain knowledge transfer, 2) use case analysis, 3) user flow validation through visual

4

design.

2.2.1 Initial Outline

Initial meetings with the clients introduced the general technical and non-technical require-
ments for the software. Two significant goals were set out for the project. Primarily, the
software should improve the speed of analysis done at the Systems Biology lab. Secondar-
ily it should be published as open-source software under the GNU General Public License
version 3 (GPLv3) to increase adoption by the scientific community.

To that end the first major requirement was that the software should be a desktop application
to ease distribution and minimize the overhead required for individual scientists or labs
using it. Since the clients wanted to retain the ability to maintain the software tools that
they use, it was recommended that the project would be based on the Qt framework1 which
they were familiar with. It was agreed that since the authors were not that familiar with
C++ which is native to Qt, a Python middleware framework would be used.

The software was supposed to support individual analysis work and a shared setting -
the latter was modeled after the need to integrate with the client’s existing systems: 1)
PostgreSQL database, 2) OMERO image repository2.

This divide helped to identify different interested parties from whose perspectives were
used to derive the requirements for the project: 1) project lead at the Systems Biology lab,
2) scientist working at the lab, 3) scientist working outside of the lab.

The only existing alternative software found during this phase was ImageJ, which was
subsequently tested, and its documentation was used as a means to help derive a common
domain vocabulary with the client.

2.2.2 Use Case Analysis

Three main use cases were identified: 1) preparing for analysis, 2) analyzing gel images,
and 3) reviewing prior analysis results. Since it was concluded that the scientist working
with the software would want to switch between these activities freely, a single user role
representing the scientist was enough to describe the use cases.

1https://www.qt.io/product/framework
2https://www.openmicroscopy.org/omero/

5

Preparing for Analysis

The user should be able to describe the general context around the analysis, implemented
as data table views. This includes:

■ describing the physical gel object and the samples added to its lanes;
■ describing which types of measurements were done on which gel images.

Analyzing Gel Images

This is the primary use case of the software - the results obtained here are used in further
scientific research outside of the application.

The user should be able to select and modify the gel image on which to perform the
analysis. Modifications include: 1) crop and rotate the area of interest, 2) subtract image
background, and 3) specify the visual false-color mapping for the image. The user should
be able to indicate where on the image specific lanes are positioned and how they are
shaped. The user should be able to indicate the areas on which the pixel intensity analysis
is performed, what is considered the signal, and what the background is, compare, and
annotate the analysis results.

Reviewing Prior Analysis

The user should be able to view all previously defined general data and image analysis
results without the fear of accidentally modifying anything. It was agreed that a button to
toggle between the viewing and editing modes should always be present on the toolbar,
clearly indicating which mode is currently active. The user should not be able to perform
any actions which may result in data being modified when not in the editing mode. To
simplify the review process the user should be able to search for the previously analyzed
gels and measurements.

2.2.3 User Flow Validation

A month after the start of the project a longer meeting with the clients was held to finalize
the use case details. As a result a mock-up of the application user interface (UI) views was
drawn and finalized over several iterations of feedback from the clients. The visual look
and user experience (UX) elements described with it also became part of the requirements.
The mock-up can be seen in Appendix 1.

As a result of working through a visual means, a previously missing case of the main

6

analysis flow was discovered leading to substantial changes in the existing implementation.

Figure 1. Change in the order of associations between components
Top: initial order; Bottom: final order

2.2.4 Identified User Stories

Together with the initially identified interested parties and the requirements found for
the scientist role during use case analysis, a total of 39 requirements were identified and
described as user stories in tables 3 - 6 of Appendix 2. The stories were divided as:

■ three from the perspective of the Systems Biology lab project lead;
■ three from the perspective of a scientist working at the Systems Biology lab;
■ four from the perspective of a scientist not working at the Systems Biology lab;
■ 24 from the perspective of a scientist.

2.3 Existing Solutions

The main alternatives to our application are ImageJ and Image Lab. Neither of them fully
covers the client’s needs. A comparative table based on the requirements specified in the
previous section can be found in Table 7 of Appendix 4.

2.3.1 ImageJ

The existing (partial) alternative to our solution is ImageJ which is an image processing and
analysis software for scientific usage. It lacks certain functionalities that our application
aims to provide. Firstly, it does not offer the possibility to undo any actions during analysis.
Mistakes made at later stages of analysis mean starting the process over again. Several
hours of wasted time are possible because of that limitation. Our application does allow
the user to correct their errors without discarding the whole analysis. Also, ImageJ does
not allow selecting curved regions on images. That means it is not possible to correctly
analyze gel lanes if they happen to be curved. One of the requirements was to implement
this functionality in our application. It is also not possible to save any data, only to export

7

the results to comma-separated values (CSV) file. Therefore scientists have to start their
work all over again every time they want to analyze a new gel.

2.3.2 Image Lab

Image Lab is a software meant for imaging and analyzing gels and blots. It supports most
of the same features as ImageJ, most notably adding the possibility to analyze curved lanes.
However, its main drawback is that it is not possible to save data to resume the work later.
Only data export is provided [10].

2.4 Project Management

Development work was organized in one-week-long sprint cycles. Meetings with the
clients and supervisor took place on Mondays and focused mostly on verifying the im-
plementations, prioritization, and acquiring domain knowledge. Planning meetings with
the developers took place on Fridays (and later on Sundays), where issues were detailed
and development times estimated. For estimations the average hours suggested by all
developers was used with the addition of buffer time which was modified based on the
performance of prior sprints. During the final few sprints, less effort was placed on time
estimations since it was clear there was no time where to split or postpone their delivery.

Summaries of the meetings, as well as various documentation can be found on the GitLab
Wiki page3. Most of the meetings and communication took place over Microsoft Teams4.

Milestones, issues, and source code was managed as a project on the university GitLab5.
Feature development was done on separate branches and required approval from a reviewer
before merging to the main branch.

3https://gitlab.cs.ttu.ee/jakutt/iaib/-/wikis/home
4https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
5https://gitlab.cs.ttu.ee/jakutt/iaib

8

3. Project Design

This chapter will cover the frameworks and libraries used in the project, architectural
choices made and the theoretical background for the method used to acquire user feedback.

The software architectural diagram is provided here for a general overview.

Figure 2. Software design.

3.1 Frameworks and Libraries

PySide6

PySide6 is the framework used to develop the application. It is the official module for the
Qt for Python project. It offers all of the UI elements and functionality provided by the Qt
framework to be used in Python development [11].

9

As an alternative, the PyQt 1 library was initially considered due to being around longer
and having more usage examples available online. After short testing with both PySide6
and PyQt components, it was apparent that their application programming interfaces (APIs)
were similar enough to be mostly interchangeable. PySide6 was preferred as the officially
supported framework with the knowledge that a larger example base was still available.

PyQtGraph

PyQtGraph is a graphics and graphical user interface (GUI) library intended for use in
mathematical, scientific, and engineering applications [12]. It is used in the project for
selecting and visualizing ROIs on the Gel images, plotting intensity data, and manipulating
limits for intensity analysis. It was chosen because of its high compatibility with the Qt
framework, as well as for its selection of available components.

NumPy

NumPy is the fundamental package for scientific computing in Python. It ... provides
a multidimensional array object, various derived objects (such as masked arrays and
matrices), and an assortment of routines for fast operations on arrays ... [13]. In the project,
it is mainly used for manipulating the matrices containing the image data.

PostgreSQL

PostgreSQL is one of the most widely used object-relational database management systems
[14]. In the application, it can be configured by the user to store the application data.
Support for PostgreSQL integration was required by the client so they could integrate the
analysis results with in-house software directly. Supporting alternative databases was a
consideration and to that end, effort was made to simplify that process.

Step File location
Implement adapter interface iocbio/gel/gui/dialogs/database_connection_settings/

database_connection_settings.py
Add adapter to form iocbio/gel/gui/dialogs/database_connection_settings/

db_selection_form.py
Add driver as a dependency setup.py

Table 2. Steps to add alternative database support

SQLite

SQLite is a file-based Structured Query Language (SQL) engine for storing application
data. It is a convenient option for storage due to its stand-alone nature and minimal
configuration (path to file). The user can choose this option when locally stored data is

1https://www.riverbankcomputing.com/software/pyqt/

10

acceptable. [15]

SQLAlchemy

SQLAlchemy is the Python SQL toolkit and Object-relational mapper (ORM) that gives
application developers the full power and flexibility of SQL. It provides a full suite of well
known enterprise-level persistence patterns, designed for efficient and high-performing
database access, adapted into a simple and Pythonic domain language [16]. It was chosen
for the project for its popularity, extensive documentation and as a way to abstract the
database layer for working with both PostgreSQL and SQLite.

OMERO

OMERO provides a complete platform for managing images in a secure central repository.
It provides access to the images through a desktop app (Windows, Mac or Linux), from
the web or from 3rd party software [17]. Providing integration for importing Gel images
from OMERO was one of the main requirements for the project. Communication with the
OMERO server is handled by the OMERO.py 2 client library.

Alembic

Alembic is a lightweight database migration tool for usage with the SQLAlchemy
Database Toolkit for Python [18]. This tool was chosen because of its compatibility with
SQLAlchemy and ease of setup.

Dependency Injector

Dependency Injector is a dependency injection framework for Python [19]. An alternative
framework, python-inject3, was considered, but Dependency Injector was found to be more
widely used and has better documentation.

3.2 Architectural Choices

3.2.1 Dependency Injection

Dependency Injection is a pattern that separates service configuration from the use of
services within an application. It can help make it easier to see what the dependencies are
and simplify testing by allowing to replace the real service implementations with stubs or
mocks [20].

2https://github.com/ome/omero-py
3https://github.com/ivankorobkov/python-inject

11

Python applications rarely make explicit use of the pattern as the interpreted and dynamic
nature of the language makes it unnecessary [21].

However, as the project advanced and the number of components which depended on the
same services grew, it became evident that using a dedicated framework for managing de-
pendencies would help to reduce the growing complexity. Dependency Injector framework
was chosen and subsequently all of the component configurations were moved into a single
Container class. That Container is responsible for injecting the object instances, factories,
as well as configuration parameters to the components using constructor injection.

3.2.2 Events

Qt has a concept known as signals and slots. Signals are emitted by certain actions, for
example, by clicking a button. Slots are functions that listen for emitted signals and
perform appropriate tasks [22].

Project software consists of various isolated views and components that nevertheless need
to communicate with each other to keep different parts of the application synchronized. In
the application events are managed by EventRegistry class which contains the definitions
of all used signals. Every component that needs to emit or consume events could do it
only through the injected EventRegistry instance. The main goals of this approach were
to decrease the coupling between components, keep all the events defined in one place,
and avoid the possibility of widgets emitting events that no other component of the system
was listening to. It also helped to avoid the situation in which multiple different signals are
actually signaling the same event.

3.2.3 Undo/redo

The software user is expected to perform a series of graph manipulations with the mouse
during the intensity analysis. To avoid errors from accidental motions, the undo/redo
mechanism was implemented using the Command pattern.

„The Command pattern lets toolkit objects make requests of unspecified application objects
by turning the request itself into an object. This object can be stored and passed around
like other objects. Use the The Command’s Execute operation can store state for reversing
its effects in the command itself. The Command interface must have an added Unexecute
operation that reverses the effects of a previous call to Execute. Executed commands are
stored in a history list. Unlimited-level undo and redo is achieved by traversing this list

12

backwards and forwards calling Unexecute and Execute, respectively” [23].

Data modifications were executed through a single HistoryManager instance, which stored
the command objects for the current user scope. History was cleared when the user
changed scope (either by navigating or switching application into viewing mode) to avoid
accidentally executing events which were not visible anymore. Keeping the history through
deletion and creation of objects was achieved using soft-delete flags and only performing
the actual deletion when the scope changed.

3.2.4 Database

The application uses one database table for keeping track of the software migration versions
and eight tables for storing the data which the user either entered directly in a form field
or created with graph manipulation tools. Although most of the database tables and used
types were a result of the initial requirements analysis and directly reflected the needs of
scientific data, some choices deserve closer attention.

Originally the gel_image table was supposed to store both the values of its original_file and
omero_id in a single field file_location since the application itself doesn’t have a use for
that separation on the database level. The client requested to store the omero_id separately
so they could use that in conjunction with their in-house software.

All of the tables which are directly affected by the user have a boolean is_deleted field to
support the undo/redo functionality.

Since SQLite stores numbers as floating-point numbers [24], some of the numerical field
types were also converted to floats instead of decimals. The loss in accuracy was estimated
not to be an issue by the client. Fields in question are: 1) gel_lane.protein_weight, 2)
gel_image.rotation, 3) measurement_lane.value.

Fields storing relative locations of graphical elements used internally by the software are
serialized and stored as text types on the database - since their values don’t hold any mean-
ing outside of the application context, there would be no benefit from using more complex
field types like JSON. These fields are: 1) gel_image.region, 2) gel_image_lane.region, 3)
gel_image_lane.zero_line_points.

The schema of the database is shown in Figure 25 of Appendix 6.

13

3.3 Measuring User Confidence

During the active development of the project, emphasis was put on continuously discussing
and verifying the algorithmic correctness of the required features. When the project
started to fall behind in scope, features supporting the main gel image analysis flow were
prioritized and tested by the client. But a lot of the features described to improve user
interface and enhance user experience were discarded. By the end of the project, the
authors were left with a question: the application is functional - is it also usable?

Corno et al. (2015) reviewed existing literature on how the role of the user is considered
during software design and evaluation. A concept they paid closer attention to was
the level of confidence the user had while interacting with technology. They note that
user confidence is influenced by a correct and reliable system behavior. “One aspect of
reliability, often neglected, is guaranteeing the consistency between system operation and
user expectations, so that users may build confidence over the correct behavior of the
system and its reaction to their actions” [25].

Since the number of people able to test our application was expected to be low and
limited only to the available Systems Biology lab workers, no existing study methods were
considered.

To gain a better understanding of how the application met both the testers’ expectations
and user experience a Google Forms questionnaire was created. First, they were asked
to identify their role by indicating whether they planned to use the software only while
working at the lab or not. Then they were asked to indicate how confident they felt that
the features listed worked and met their expectations. A scale of one (Not at all confident)
to five (Very confident) was offered to allow the users to express their opinions more
dynamically. The list of features covered in the questionnaire was derived from the user
stories previously described in tables 3 - 6. Questions covered only the features that were
implemented at the time of user testing.

14

4. Software Description

The project was implemented as a desktop Python application capable of running on
Windows and Unix-like operating systems.

The application uses a SQL database to store both the operational and user-created data. If
the user does not specify connection parameters for an external database the application
creates a SQLite database file in the current working directory.

The application creates a cache directory under operating system (OS) provided temporary
path. On Unix/Linux systems this is the path specified in the TMPDIR environment
variable or /tmp if TMPDIR is not defined. On Windows this is usually the path specified in
the TEMP or TMP environment variable [26]. Two types of files are written there: images
fetched from OMERO and the results of image processing steps.

Credentials necessary to authenticate with the databases are stored using the Python keyring
library. Therefore, on Windows the credentials are stored to Credential Locker, on macOS
to Keychain and on UNIX-like systems to KWallet [27].

4.1 Prerequisites and Installation

The minimum required Python version to use the application is Python 3.8. It is recom-
mended to use the Python virtual environment for installing and running the application (in
the following steps, the virtualenv module1 is used). Due to an underlying dependency and
the specific OS version the application is being installed on, an OS-specific C++ compiler
may be required.

On Linux/Unix and macOS systems, the environment can be set up by running the follow-
ing commands in the application root directory using a Unix shell program like Bash:

python -m virtualenv .venv

source .venv/bin/activate

1https://pypi.org/project/virtualenv/

15

The application can then be installed by running the following command:

python -m pip install -r requirements.txt .

If previous steps produced no errors, then application can be executed by running the
following command:

.venv/bin/iocbio-gel

Installing and running the application on Windows is similar to the case of Linux. Com-
mands can be run in Powershell or a similar command-line application. Setting up the
application:

py -m virtualenv .venv

.venv\Scripts\activate

Installing the application:

py -m pip install -r requirements.txt .

Running the application:

.venv\Scripts\iocbio-gel

4.1.1 Application Startup

During the initial startup, the user is shown a database configuration dialog where it’s
possible to specify the database management system (DBMS) to be used and the parameters
to connect to the database, as well as an image source configuration dialog, where the
user can choose between local filesystem storage or specify connection parameters to an
OMERO server. The application tries to connect with given parameters and shows an
error message if a connection can not be established. The user can then add the correct
parameters. If the user closes the dialog, then the application does not proceed and is
closed.

16

After the database connection has been established SQLAlchemy checks the migration
history. Any unapplied migration scripts located at iocbio/gel/db/alembic/versions/*.py will
be run to ensure that the database schema conforms to the requirements of the application.

When the application is configured to connect to an OMERO instance, then, during the
startup process, fresh copies of images are fetched from OMERO and stored in the local
cache folder.

4.2 Application Layout

Visually the application is divided into three components: mostly static toolbar on top, a
narrow navigation menu with embedded gels list on the left, and the main content area.

4.2.1 Toolbar

The horizontal toolbar at the top of the application provides the user with access to both
context-dependent and globally relevant functionalities. “Undo” and “Redo” buttons allow
the user to revert their previous action or reapply previously reverted actions. “Current
mode: Editing” and “Current mode: Viewing” either enable or disable the user’s ability to
modify objects and data. The “Settings” button acts as a link to the settings view. “Add
new Gel” or “Add new Measurement” buttons are available depending on the view and
provide a shortcut for creating new objects.

4.2.2 Navigation

Left side of the application contains a “Gels” button which opens up the gels list view, a
list of individually named gel buttons which lead the user to gel detail view for the selected
gel and a “Types” button at the bottom, which opens the measurement types view.

4.2.3 Content Area

The main area which displays the views listed below. On the application startup the gels
list view is displayed by default.

4.3 Application Views

The application views can be grouped into three different categories:

17

■ data tables which provide general overview of previous work and allow to specify
context for the analysis - gels list view, gel detail view, measurement types view;

■ gel image and graph manipulation views for the analysis steps - raw, adjust, back-
ground, lanes and measurements;

■ settings view for changing the application configurations.

4.3.1 Gel List View

A table view where the user can navigate by clicking on the “Gels” button on the left upper
corner of the application. The following columns are presented for every gel: ID, name,
transfer, comment. In addition, the counts of attached lanes and measurements are shown.
The value of every field except for the ID can be changed if the editing mode is active. The
gel list view can be seen in Figure 14.

4.3.2 Gel Detail View

To navigate into the gel detail view one must click on one of the buttons with gel names
on the left menu below the “Gels” button. On the upper part of the view, the gel name
and creation time are displayed. The lanes table contains the ID, lane number, sample
ID, protein amount in micrograms (µg), comment fields, and a checkbox field indicating
if it is a reference lane that samples can be compared to. All fields except the ID can be
changed if the editing mode is turned on. Lanes can also be deleted in this mode. The
measurements table contains the data of all the measurements linked to the gel. The table
shows the image, time, ID, type, comment, and identifiers of connected lanes. All the
fields can be changed in editing mode. The gel detail view can be seen in Figure 17.

4.3.3 Measurement Types View

The measurements type view is a table view where one can navigate by clicking the “Types”
button in the lower-left corner, below the gel buttons. The table shows the ID, name, and
comment of every measurement type. The value of each field can be changed and the
type can be deleted in editing mode. An error box appears and deletion fails if the user
tries to delete a measurement type that is connected to one or more measurements. The
measurement types view can be seen in Figure 16.

18

4.3.4 Gel Image Raw View

The gel image view contains different sub-views meant for processing and analyzing the
gel image. The user can move between these views by clicking on corresponding tabs. The
raw image view shows the gel image without any processing done on it. Image can not be
changed in this view.

4.3.5 Gel Image Adjust View

Adjust view allows the user to specify a region on the image that is used for analysis in
subsequent steps. A rectangle appears when the image is clicked. The size, rotation, and
position of this rectangle can be changed by dragging it from the handles. The region can
be confirmed for analysis by clicking on the “Apply” button. Adjust view can be seen in
Figure 20.

Figure 3. Cropping/rotation selection ROI.

4.3.6 Gel Image Background View

The background subtraction view gives the user the option to apply the rolling ball back-
ground subtraction algorithm, specifying kernel type (“ball”, “ellipsoid”, or “none”), ball
radius (two radiuses for ellipsoid), and whether the image is inverted before passing into
the algorithm. When “none” is chosen, background subtraction will not be performed).
Pressing “Apply” will execute the algorithm with the given parameters. Three images are
shown: how it looked from the previous step, the extracted background from the algorithm,
and the result, which is the difference of the input image and background (matrix subtrac-
tion). If the image was set to be inverted, the algorithm will use an inverted version of
the image and the result will be subtracted from the inverted image, which will then be
inverted again to restore the original colors. The image should be inverted if the source
image has a dark background. The rolling ball implementation used is the one from the
scikit-image library [28]. The gel image background view can be seen in Figure 21.

19

4.3.7 Gel Image Lanes View

The lanes view contains an image graph with the image processed in the three previous
views. The “New lane” button allows the user to place a vertical variable-width lane inside
the bounds of the image, which will span from top to bottom. Existing lanes can be moved
along the horizontal axis, change widths, or be removed entirely. The number of placeable
lanes is bounded by the number of lanes defined in the gel detail view. For each lane, there
is a corresponding graph showing the pixel intensities along the lane, the y-axis being the
pixel intensity and the x-axis the position of the horizontal chunk of pixels in the lane,
starting from the top of the lane. The graph has a modifiable zero-line below the reading
that can be dragged around by their points, which can be added to the line by clicking on
it. The resulting area for the lane is determined by the difference between the readings
integral and zero-line integral from zero to the height of the lane. The gel image lanes view
can be seen in Figure 22.

(a) Gel image lanes view: image plot with
lanes L1 and L2.

(b) Gel image lanes view: graph for lane L1 zero-
line in blue.

Figure 4. Gel image graph and lanes plot

4.3.8 Gel Image Measurements View

The measurements view contains four components: a) lanes’ graph, b) intensity plots, c)
measurement lanes table, and d) measurements table. (Figure 23)

a) Image graph with the lanes marked on the previews analysis step. Placed lanes can’t be
manipulated in this view anymore. Clicking on a lane allows the user to add or remove it
from the selected measurement.

b) An intensity plot is shown for every selected lane for the current measurement. Each
plot shows the vertically combined pixel intensity values for every pixel row along the
lane. Minimum and maximum integration limit lines can be adjusted to specify what area
of the plot should count toward the area of interest.

20

Figure 5. Integration limit lines
Shown as vertical yellow lines

c) An optional comment can be added to the measured area per lane and indicated whether
the measurement was successful or not.

d) Measurement type and comment can be added. Clicking on a measurement row will
mark that measurement as selected and update the information on other components to
match that change.

4.3.9 Settings View

The user can navigate to the settings view by clicking on the “Settings” button on the
toolbar. It allows the user to change configured database settings and offers the same
options as the initial database dialog. The “Image source” section allows the user to choose
between local and OMERO options for storing images. The “Database connection” section
lets users specify the same database connection options as in the database configuration
dialog. The settings view can be seen in Figure 24.

Database Configuration

The database configuration section lets the user choose between SQLite and PostgreSQL
for the DBMS from the dropdown menu, and according to the choice specific configuration
parameters will appear. In the case of SQLite, there are no additional settings to be shown.
For PostgreSQL, the user can specify database host, port, Secure Sockets Layer (SSL)
mode, database name, user, and password. This section will be shown to the user as a
dialog when the application is first started and no database is configured.

Image Source Configuration

The image source configuration section lets the user choose the source for the images to be
analyzed. The user can choose between a folder on the local filesystem and an existing
OMERO database. If the local filesystem is chosen, files will be fetched from a folder in
the application’s directory. If OMERO is selected, the user can specify the hostname, port,
username, and password for the connection. This section is shown to the user as a dialog

21

when the application is started and the image source has not been configured.

22

5. Validation

To validate if the goals set out by the project were successful, we rely on both comparing
the list of features initially described as requirements and the results of user feedback
testing.

28 out of the 39 identified user stories were implemented during the project. 27 of those
were included in the user feedback questionnaire - one was excluded since it was only a
requirement specific to the project lead at the Systems Biology lab - “I want the software
to be released under GPLv3 license”. The questionnaire was filled out by three of the lab
workers.

Summary of user feedback after testing:

■ testers felt very confident that 16 features worked and met their expectations;
■ all but one feature - “I can use the software on macOS computer” - got at the highest

confidence rating from at least one tester;
■ average rating on a scale of one to five was 4.65.

The full result of the feedback can be seen in Table 9 of Appendix 5.

General feedback from the client was that the software can perform the main use cases
regardless of the features which were not finished. It can be used to manage the process
and perform intensity analysis on gel images. Thus the primary project goal set during the
start of the project was achieved.

23

6. Results

Despite not meeting all the requirements set out at the start of the project, the authors
were able to prioritize features supporting the primary goal of creating software that would
reduce the gel analysis process time for the Systems Biology lab. The application allows
a scientist to prepare and manage the gel context for analyses, measure protein sample
quantities on the gel images and review prior work. The authors gained new knowledge
and skills about used technologies, the development process, and the domain of the project.

An overview of which of the requirements were implemented can be seen in tables 3 - 6 of
Appendix 2.

Seven features that were part of the requirements for the secondary goal of making the
software publicly available as an open-source project were not implemented:

■ I want GitLab pipeline configured to build packaged executables;
■ I want the software to look as agreed on the UI design document;
■ I want to use the software in my own language;
■ I want to export the results of my work as a CSV file;
■ I want to curve the lanes individually;
■ I want a user manual for the software;
■ I want the implementation of analysis steps formally documented.

6.1 Internationalization

At the ending phases of development, clients communicated the requirement for appli-
cation to support other languages besides English. That would have been necessary for
users whose first language is not English. PySide has a package for the convenient im-
plementation of internationalization [29], and therefore authors believe that adding such
functionality will not be a big issue in the future. It was currently left out of the scope
mainly because it was communicated too late.

24

6.2 CSV Export

Exporting gel and measurement data to Excel would have been useful for performing
additional analysis in third-party software. Since it was not a high priority requirement,
it was left out of the project scope due to time constraints. It should not be an overly
complicated feature to add in the future, as generating CSV files from relational data is a
relatively standard task.

6.3 Curved Lanes

The most prominent feature that was not implemented was the ability to select curved
lanes for analysis. According to the clients, the need for that feature would be rare and
only required when the physical gel gets damaged or distorted, but in that circumstance, it
would be valuable. They estimated that a loss of a gel would result in two days of work to
prepare another gel and that only if the study material is still available. Unfortunately, it
did not get implemented as it was also one of the most complicated features.

6.4 Gel Filtering

The possibility to filter the gel list by search queries would be useful if there are many
gels added. This would have also improved the user experience to a large degree. It was
decided to leave it unimplemented due to it not being critical for application functioning
and having more important features to implement at the time.

25

7. Comments and Discussion

This section provides analysis of the development process and an overview of important
elements in the technology stack, with commentary on specific aspects during development
that involved significant decisions or affected flow of development.

7.1 Domain Knowledge

At the time of choosing this topic for the thesis, we had little knowledge about protein
determination methods and processes, how/what applications are used to perform analysis,
and why. As we started working on the project and having meetings with the project
owners, we received some details on the current way of processing gel images and their
shortcomings. However, our understanding of how some features should work or relate to
the processes was partially faulty for some aspects, which required some rework down the
line. This may have been mitigated with more detailed communication and development
of clearer specifications, and by periodically releasing partial versions of the applications
for the project owner to test specific aspects of workflows. More thorough research into
the backgrounds of the algorithms and motivations behind the methods, stepping into the
scientist’s shoes, may have also helped for some implementations.

7.2 Project Management

Two main causes were identified that contributed to a significant enough time delay and
eventually resulted in cutting some features out of the scope - communication and external
time management.

Although the features initially planned for the start of the project were simplistic, the
authors spent a lot of time familiarizing themselves with the framework, libraries, and exact
requirements of the project, but they did not take enough time to agree on development
practices and communicate their specific implementation details before developing those
features. This resulted in an initial codebase where duplication was hard to spot and rectify
because of three varying styles of implementation - most of which required refactoring
later on.

26

It was an open discussion on whether or not the authors should have tried to more specialize
in developing different aspects of the application. This would have perhaps decreased the
combined time that was spent on individually learning all the frameworks and libraries. It
would have also forced a stricter initial structure for the software and exposed the need
to improve communication between the authors. Unfortunately, due to circumstances,
the authors were able to work on the project on differing days of the week, and the
communication overhead felt more like a blocker. Additionally, the initial development
effort was placed on creating the different application views, and so at the time it made
sense to focus everyone on creating vertical slices of the software.

Secondly, external time constraints were not properly taken into account in project manage-
ment during the second half of the project. The authors were too optimistic in estimating
their capabilities or available time and realized fairly late that the project scope should be
reprioritized.

The project management process failed to properly identify which of the external time
sinks were recurring in their nature and which were one-time events. This made planning
issues for upcoming sprints more difficult. A strategy to cope with this was adopted in
form of splitting the issues even smaller so it would be possible to pick them up more
readily in an ad-hoc manner. It helped a little but was not a sufficient solution. When
a developer fell behind on their input, the situation was compounded by the additional
need to familiarize themselves with changes done in the software in the meanwhile. As
a remedy, perhaps implementing pair-programming sessions would have helped, but the
need for this was not communicated clearly at the time.

7.3 Curved Lanes

One of the initial requirements for the application, curved lanes, was eventually found to
be notably difficult to implement, and therefore not implemented within the current scope.
There was one idea of how it may be done relatively easily, using the MultiRectROI widget.
It was a ready-made widget that allowed chaining together multiple rectangular ROIs at
variable angles and would’ve provided a single concatenated array of image data, much like
a regular ROI for easy usage [30]. The issue with it was that the ROIs when connected at
angles, overlapped with each other at one side and left a gap on the other, which wouldn’t
have been the desired result. Other ideas revolved around creating polygonal ROIs that
joined edge-to-edge and could have curved edges or simply two curved lines (PyQtGraph
offers methods to implement curved lines using the PlotCurveItem class [31]) from which
the region data would be calculated with a custom-made algorithm, staying perpendicular
to the centerline. Both of those ideas would have needed to solve the issue of curving

27

causing one side to have fewer pixels than the other, meaning each rectangular row of
pixels had to expand into a circular arc from the shorter line to and along with the longer.
We had little idea of how to properly/most efficiently implement this and feared it would
eat up too much time, so in the face of time constraints, we decided to drop it.

7.4 Qt

Using the Qt framework for our application was considered a given since it was desired
by the project owner and deemed standard for the problem domain and user base. Since
we were unfamiliar with the framework and making standard desktop applications, the
rate of feature development was affected. It was difficult to tell if opting for a more
familiar web-based app paradigm would’ve decreased initial friction and allowed us to
implement more features, as some of the libraries for image processing and plotting
might’ve been hard to find mature and feature-equivalent versions for. Performance
implications were also considered, as some image processing algorithms are slow even in
the current implementation. Visuals of the application may have been significantly better
though, as Hypertext Markup Language (HTML) / Cascading Style Sheets (CSS) pages
are easier to customize.

7.5 Python

We had the option to either use C++ or Python with a wrapper library for Qt, and we
chose the latter due to familiarity and perceived ease of development when compared to
the former. While the application might’ve been more performant on C++, the extra layer
of unfamiliarity with the language, its lack of memory management, and fewer batteries-
included libraries with usable widgets like PyQtGraph and skimage would have most likely
increased the learning curve and development time for the same set of features significantly.
The overall performance of the application, even with the overhead of Python, is good,
with one exception being the background subtraction algorithm, which is implemented
differently from its ImageJ equivalent.

7.6 Application Architecture

During the later stages of development, the authors found out about Qt’s Model-View1

system, which may have benefited the project significantly. Having a separate model
object to more conveniently map the database entities and allow for easy state sharing
across view components may have made implementing and maintaining some aspects,

1https://doc.qt.io/qt-6/model-view-programming.html

28

like Create, Read, Update, Delete (CRUD) tables for measurements and lanes, easier. The
documentation for it wasn’t very in-depth, however, so the question of how to properly
encode more complex views like graphs and integrate with other libraries remained and
may have been too much of an undertaking by that stage of development.

7.7 Alternative Image Sources

Not nearly enough was done to support alternative image sources, as it was the case for
adding databases. There is an interface select_image.py2 for implementing the visual dialog
component which is shown to the user when attempting to select or change an image. But,
since fetching images from a local folder didn’t require managing a connection, a common
interface for such a client was not created. As such, the first steps for implementing a new
image source would be to follow the implementation and usage of the omero_client.py3

class and separate image source specifics from the shared interface.

2iocbio/gel/gui/dialogs/select_image.py
3iocbio/gel/application/image_source/omero_client.py

29

8. Conclusion and Future Development

The project met its primary goal - the created application aids biologists sufficiently to be
usable in laboratories for managing analysis process metadata and measuring the quantities
of the protein samples on the gel images. During the project, 28 out of the 39 identified
user stories were implemented, and the overall feedback from the client and the testers was
positive.

The requirements for the secondary goal of being able to publish the software as an open-
source project were not met due to time constraints. Some development was done towards
that goal, but not all of the features were implemented or were implemented in a limited
way.

In addition to finishing the missed functionality, there are some features that the authors
believe could enhance the utility of the application.

Certain processes like lane and ROI detection, zero-line placement, and background
detection could at least to some extent be automated. Zero-line placement should be
relatively straightforward to implement as it is only necessary to determine the minimum
value of the data and draw the horizontal line accordingly.

Currently, background subtraction is slow, partly because of the image dimensions. A
possible option to reduce the time to run the rolling ball algorithm would be to downscale
the image, apply the algorithm to get the background matrix, and then upscale the image
again, and then subtract that from the original. The process could also be optimized by
performing the background subtraction on a separate thread and avoiding freezing the UI.
This way, the user could also stop the process if necessary.

30

Bibliography

[1] Protein Quantification Using ImageJ. https://openwetware.org/wiki/
Protein_Quantification_Using_ImageJ. Accessed: 2022-05-08.

[2] Maria Hayes. “Measuring Protein Content in Food: An Overview of Methods”.
In: Foods 9.10 (2020). ISSN: 2304-8158. DOI: 10.3390/foods9101340. URL:
https://www.mdpi.com/2304-8158/9/10/1340.

[3] Sebastian Seiffert. Supramolecular Polymer Networks and Gels. Vol. 268. Jan. 2015.
ISBN: 978-3-319-15403-9. DOI: 10.1007/978-3-319-15404-6.

[4] Sameh Magdeldin, ed. Gel Electrophoresis - Principles and Basics. 2012. DOI:
10.5772/2205. URL: https://app.dimensions.ai/details/
publication/pub.1108429868.

[5] Ellen C. Jensen. “The Basics of Western Blotting”. In: The Anatomical Record 295.3
(2012), pp. 369–371. DOI: https://doi.org/10.1002/ar.22424. eprint:
https://anatomypubs.onlinelibrary.wiley.com/doi/pdf/

10.1002/ar.22424. URL: https://anatomypubs.onlinelibrary.
wiley.com/doi/abs/10.1002/ar.22424.

[6] Gholam Hossein Meftahi et al. “Applications of western blot technique: From
bench to bedside”. In: Biochemistry and Molecular Biology Education 49.4 (2021),
pp. 509–517. DOI: https://doi.org/10.1002/bmb.21516. eprint:
https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/

bmb.21516. URL: https://iubmb.onlinelibrary.wiley.com/
doi/abs/10.1002/bmb.21516.

[7] Axel Rosell et al. “Evaluation of different commercial antibodies for their ability
to detect human and mouse tissue factor by western blotting”. In: Research and

Practice in Thrombosis and Haemostasis 4.6 (2020), pp. 1013–1023. DOI: https:
//doi.org/10.1002/rth2.12363. eprint: https://onlinelibrary.
wiley . com / doi / pdf / 10 . 1002 / rth2 . 12363. URL: https : / /
onlinelibrary.wiley.com/doi/abs/10.1002/rth2.12363.

31

https://openwetware.org/wiki/Protein_Quantification_Using_ImageJ
https://openwetware.org/wiki/Protein_Quantification_Using_ImageJ
https://doi.org/10.3390/foods9101340
https://www.mdpi.com/2304-8158/9/10/1340
https://doi.org/10.1007/978-3-319-15404-6
https://doi.org/10.5772/2205
https://app.dimensions.ai/details/publication/pub.1108429868
https://app.dimensions.ai/details/publication/pub.1108429868
https://doi.org/https://doi.org/10.1002/ar.22424
https://anatomypubs.onlinelibrary.wiley.com/doi/pdf/10.1002/ar.22424
https://anatomypubs.onlinelibrary.wiley.com/doi/pdf/10.1002/ar.22424
https://anatomypubs.onlinelibrary.wiley.com/doi/abs/10.1002/ar.22424
https://anatomypubs.onlinelibrary.wiley.com/doi/abs/10.1002/ar.22424
https://doi.org/https://doi.org/10.1002/bmb.21516
https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/bmb.21516
https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/bmb.21516
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/bmb.21516
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/bmb.21516
https://doi.org/https://doi.org/10.1002/rth2.12363
https://doi.org/https://doi.org/10.1002/rth2.12363
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rth2.12363
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rth2.12363
https://onlinelibrary.wiley.com/doi/abs/10.1002/rth2.12363
https://onlinelibrary.wiley.com/doi/abs/10.1002/rth2.12363

[8] Josephine L. Backhouse and Serge I. Nesteroff. “Treponema pallidum western
blot: Comparison with the FTA-ABS test as a confirmatory test for syphilis”. In:
Diagnostic Microbiology and Infectious Disease 39.1 (2001), pp. 9–14. ISSN: 0732-
8893. DOI: https://doi.org/10.1016/S0732-8893(00)00213-3.
URL: https://www.sciencedirect.com/science/article/pii/
S0732889300002133.

[9] Virginia García-Solaesa and Sara Abad. “SDS-Polyacrylamide Electrophoresis and
Western Blotting Applied to the Study of Asthma”. In: vol. 1434. June 2016, pp. 107–
120. ISBN: 978-1-4939-3650-2. DOI: 10.1007/978-1-4939-3652-6_8.

[10] Image Lab. https://www.bio-rad.com/webroot/web/pdf/lsr/
literature/10000076953.pdf. Accessed: 2022-05-08.

[11] PySide6. https://pypi.org/project/PySide6. Accessed: 2022-04-28.

[12] PyQtGraph. https://www.pyqtgraph.org/. Accessed: 2022-04-28.

[13] NumPy. https://numpy.org/doc/stable/. Accessed: 2022-04-28.

[14] PostgreSQL. https://www.postgresql.org/. Accessed: 2022-04-28.

[15] SQLite. https://www.sqlite.org/about.html. Accessed: 2022-04-28.

[16] SQLAlchemy. https://www.sqlalchemy.org/. Accessed: 2022-04-28.

[17] OMERO. https://docs.openmicroscopy.org/omero/5.6.4/
users/index.html. Accessed: 2022-04-28.

[18] Alembic. https://alembic.sqlalchemy.org/en/latest/. Accessed:
2022-04-28.

[19] R. Mogylatov. Dependency Injector. https : / / python - dependency -
injector.ets-labs.org/index.html. Accessed: 2022-05-08.

[20] M. Fowler. Injection. https://www.martinfowler.com/articles/
injection.html. Accessed: 2022-05-08.

[21] R. Mogylatov. Dependency injection and inversion of control in Python. https://
python-dependency-injector.ets-labs.org/introduction/

di_in_python.html. Accessed: 2022-05-08.

[22] Signals Slots. https://doc.qt.io/qt-5/signalsandslots.html.
Accessed: 2022-04-28.

[23] Johnson, R. E. Vlissides, J. Gamma, E. Helm, R. “Design patterns: Elements of
reusable object-oriented software”. In: Reading, Mass: Addison-Wesley, 1995,
pp. 263–266.

[24] Floating Point Numbers. https://www.sqlite.org/floatingpoint.
html. Accessed: 2022-05-08.

32

https://doi.org/https://doi.org/10.1016/S0732-8893(00)00213-3
https://www.sciencedirect.com/science/article/pii/S0732889300002133
https://www.sciencedirect.com/science/article/pii/S0732889300002133
https://doi.org/10.1007/978-1-4939-3652-6_8
https://www.bio-rad.com/webroot/web/pdf/lsr/literature/10000076953.pdf
https://www.bio-rad.com/webroot/web/pdf/lsr/literature/10000076953.pdf
https://pypi.org/project/PySide6
https://www.pyqtgraph.org/
https://numpy.org/doc/stable/
https://www.postgresql.org/
https://www.sqlite.org/about.html
https://www.sqlalchemy.org/
https://docs.openmicroscopy.org/omero/5.6.4/users/index.html
https://docs.openmicroscopy.org/omero/5.6.4/users/index.html
https://alembic.sqlalchemy.org/en/latest/
https://python-dependency-injector.ets-labs.org/index.html
https://python-dependency-injector.ets-labs.org/index.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://python-dependency-injector.ets-labs.org/introduction/di_in_python.html
https://python-dependency-injector.ets-labs.org/introduction/di_in_python.html
https://python-dependency-injector.ets-labs.org/introduction/di_in_python.html
https://doc.qt.io/qt-5/signalsandslots.html
https://www.sqlite.org/floatingpoint.html
https://www.sqlite.org/floatingpoint.html

[25] Fulvio Corno et al. “Designing for user confidence in intelligent environments”.
In: Journal of Reliable Intelligent Environments 1.1 (July 2015), pp. 11–21. DOI:
10.1007/s40860-015-0001-7. URL: https://doi.org/10.1007/
s40860-015-0001-7.

[26] QDir Class. https://doc.qt.io/qt- 6/qdir.html#tempPath.
Accessed: 2022-05-04.

[27] Keyring. https://pypi.org/project/keyring/. Accessed: 2022-05-08.

[28] Scikit-image rolling ball algorithm. https : / / scikit - image . org /

docs / stable / api / skimage . restoration . html # skimage .

restoration.rolling_ball. Accessed: 2022-04-28.

[29] PySide internationalization. https://wiki.qt.io/PySide_Internationalization.
Accessed: 2022-05-01.

[30] pyqtgraph.MultiRectROI. https://pyqtgraph.readthedocs.io/en/
latest/graphicsItems/roi.html#pyqtgraph.MultiRectROI.
Accessed: 2022-05-09.

[31] PlotCurveItem. https://pyqtgraph.readthedocs.io/en/latest/
graphicsItems/plotcurveitem.html. Accessed: 2022-04-28.

33

https://doi.org/10.1007/s40860-015-0001-7
https://doi.org/10.1007/s40860-015-0001-7
https://doi.org/10.1007/s40860-015-0001-7
https://doc.qt.io/qt-6/qdir.html##tempPath
https://pypi.org/project/keyring/
https://scikit-image.org/docs/stable/api/skimage.restoration.html##skimage.restoration.rolling_ball
https://scikit-image.org/docs/stable/api/skimage.restoration.html##skimage.restoration.rolling_ball
https://scikit-image.org/docs/stable/api/skimage.restoration.html##skimage.restoration.rolling_ball
https://wiki.qt.io/PySide_Internationalization
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/roi.html##pyqtgraph.MultiRectROI
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/roi.html##pyqtgraph.MultiRectROI
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotcurveitem.html
https://pyqtgraph.readthedocs.io/en/latest/graphicsItems/plotcurveitem.html

Appendix 1 – Application UI Draft

Design draft as agreed with the client as part of the requirements.

Figure 6. Application layout.

Figure 7. Application gels list view.

34

Figure 8. Application gels single view.

Figure 9. Application raw image view.

35

Figure 10. Application adjust image view.

Figure 11. Application gel background view.

36

Figure 12. Application gel lanes view.

Figure 13. Application gel measurements view.

37

Appendix 2 – User Stories

Requirements described as user stories of the identified roles.

As the Systems Biology lab project lead Implemented
1 I want the software to be released under GPLv3 license. Yes
2 I want GitLab pipeline configured to build packaged executables. No
3 I want the software to look as agreed on the UI design document. No

Table 3. Requirements of the Systems Biology lab project lead

As a scientist working at the Systems Biology lab Implemented
4 I want to import images from the lab’s OMERO server. Yes
5 I want my data saved on the lab’s PostgreSQL server. Yes
6 I want the software to indicate when it has lost external connections and allow

to retry or change connection parameters.
No

Table 4. Requirements of scientist working at the Systems Biology lab

As a scientist not working at the Systems Biology lab Implemented
7 I want to import images from my local computer. Yes
8 I want my data to persist between work sessions locally. Yes
9 I want to export the results of my work as a CSV file. No
10 I want to use the software in my own language. No

Table 5. Requirements of scientist not working at the Systems Biology lab

38

As a scientist Implemented
11 I want to add and modify measurement types. Yes
12 I want to add and modify gels. Yes
13 I want to add and modify the general information about the lanes on the gel. Yes
14 I want to add multiple images for gels. Yes
15 I want to view the raw image before analysis. Yes
16 I want to select a ROI on the image before analysis (rotate and crop). Yes
17 I want to specify if the background on the image is dark or light. Yes
18 I want to correct image background (subtraction by rolling ball method). Yes
19 I want to choose a false-color mapping for the image. Yes
20 I want to mark the lane positions and widths on the Gel image. Yes
21 I want to adjust lane widths individually. Yes
22 I want to rotate the lanes individually. No
23 I want to curve the lanes individually. No
24 I want to see pixel intensity plots for marked lanes. Yes
25 I want to specify a zero-line to separate background from signal on the intensity

plots.
Yes

26 I want to add and modify measurements connected to specific gel images. Yes
27 I want to choose which lanes a measurement includes. Yes
28 I want to specify the integration limits on the pixel intensity plots. Yes
29 I want the selected limits to be visible on their lanes. No
30 I want to see a comparison and annotate analyzed lanes for measurements. Yes
31 I want to search previously analyzed gels by name, ID, sample ID, lane ID and

measurement ID.
No

32 I want the option to undo an accidental modification. Yes
33 I want a way to disable all editing operations to avoid accidental modifications

during a review.
Yes

34 I want to change my image and data source parameters after initial setup. Yes
35 I want to use the software on macOS computer. Yes
36 I want to use the software on Windows computer. Yes
37 I want to use the software on Linux computer. Yes
38 I want a user manual for the software. No
39 I want the implementation of analysis steps formally documented. No

Table 6. Requirements of a scientist

39

Appendix 3 – Application Views

Figure 14. Application gel list view.

40

Figure 15. Application gel lanes popup view.

Figure 16. Application measurement types list view.

41

Figure 17. Application gel detail view.

Figure 18. Application image selection popup view (local folder).

42

Figure 19. Application image raw view.

Figure 20. Application image adjust view.

43

Figure 21. Application image background subtraction view.

Figure 22. Application image lanes view.

44

Figure 23. Application image measurements view.
a) lanes graph, b) intensity plots

c) measurement lanes table, d) measurements table

Figure 24. Application settings view.

45

Appendix 4 – Requirements Comparison

Table 7. Requirements satisfied by alternative applications

R
eq

ui
re

m
en

tN
o.

R
eq

ui
re

m
en

t

Im
ag

eJ

Im
ag

e
L

ab

1 I want the software to be released under GPLv3 license. Yes No

2 I want GitLab pipeline configured to build packaged executables. N/A N/A

3 I want the software to look as agreed on the UI design document. N/A N/A

4 I want to import images from the lab’s OMERO server. No No

5 I want my data saved on the lab’s PostgreSQL server. No No

6 I want the software to indicate when it has lost external connections

and allow to retry or change connection parameters.

N/A N/A

7 I want to import images from my local computer. Yes Yes

8 I want my data to persist between work sessions locally. No No

9 I want to export the results of my work as a CSV file. Yes Yes

10 I want to use the software in my own language. No No

11 I want to add and modify measurement types. No No

12 I want to add and modify gels. No No

13 I want to add and modify the general information about the lanes on

the gel.

No Yes

14 I want to add multiple images for gels. Yes Yes

15 I want to view the raw image before analysis. Yes Yes

16 I want to select a ROI on the image before analysis (rotate and crop). Yes Yes

17 I want to specify if the background on the image is dark or light. Yes Yes

18 I want to correct image background (subtraction by rolling ball

method).

Yes Yes

19 I want to choose a false-color mapping for the image. Yes Yes

20 I want to mark the lane positions and widths on the gel image. Yes Yes

21 I want to adjust lane widths individually. No Yes

22 I want to rotate the lanes individually. No Yes

23 I want to curve the lanes individually. No Yes

Continues on next page

46

Table 7 – Continued from previous page

R
eq

ui
re

m
en

tN
o.

R
eq

ui
re

m
en

t

Im
ag

eJ

Im
ag

e
L

ab

24 I want to see pixel intensity plots for marked lanes. Yes Yes

25 I want to specify a zero-line to separate background from signal on

the intensity plots.

Yes Yes

26 I want to add and modify measurements connected to specific gel

images.

N/A N/A

27 I want to choose which lanes a measurement includes. Yes Yes

28 I want to specify the integration limits on the pixel intensity plots. Yes Yes

29 I want the selected limits to be visible on their lanes. Yes Yes

30 I want to see a comparison and annotate analyzed lanes for measure-

ments.

Yes Yes

31 I want to search previously analyzed gels by name, ID, sample ID,

lane ID and measurement ID.

Yes Yes

32 I want the option to undo an accidental modification. No Yes

33 I want a way to disable all editing operations to avoid accidental

modifications during a review.

Yes Yes

34 I want to change my image and data source parameters after initial

setup.

No No

35 I want to use the software on macOS computer. Yes Yes

36 I want to use the software on Windows computer. Yes Yes

37 I want to use the software on Linux computer. Yes No

38 I want a user manual for the software. Yes Yes

39 I want the implementation of analysis steps formally documented. Yes Yes

47

Appendix 5 – Questionnaire Results

Table 8. Questionnaire: user roles

Which of the following roles apply to you? Answers
I want to use the software only while working at the Systems Biology lab. 3

I am looking to use the software outside of the Systems Biology lab. 3

Table 9. Questionnaire: user confidence

Please answer how confident do you feel the following features
work and meet your expectations on the scale of 1 (Not at all
confident) to 5 (Very confident).

1 2 3 4 5

I can import images from the lab’s OMERO server. 0 0 0 0 3

I can import images from my local computer. 0 0 0 0 3

My data is saved on the lab’s PostgreSQL server. 0 0 0 0 3

My data persist locally between work sessions. 0 0 0 0 3

I can add and modify measurement types. 0 0 0 0 3

I can add and modify gels. 0 0 0 0 3

I can add and modify the general information about the lanes on

the gel.

0 0 0 0 3

I can add multiple images for gels. 0 0 0 0 3

I can view the raw image before analysis. 0 0 0 0 3

I can select and rotate a region on the image before analysis. 0 0 0 0 3

I can specify if the background on the image is dark or light. 0 0 0 0 3

I can correct image background. 0 0 1 0 2

I can choose a false-color mapping for the image. 0 0 1 0 2

I can mark the lane positions and widths on the gel image. 0 0 0 1 2

I can adjust lane widths individually. 0 0 0 0 3

I can see pixel intensity plots for marked lanes. 0 0 0 1 2

I can specify a zero-line to separate background from signal on

the intensity plots.

0 0 0 1 2

I can add and modify measurements connected to specific gel

images.

0 0 0 0 3

I can choose which lanes a measurement includes. 0 0 1 0 2

I can specify the integration limits on the pixel intensity plots. 0 0 0 1 2

Continues on next page

48

Table 9 – Continued from previous page

Please answer how confident do you feel the following features
work and meet your expectations on the scale of 1 (Not at all
confident) to 5 (Very confident).

1 2 3 4 5

I can see a comparison and annotate analyzed lanes for measure-

ments.

0 0 0 0 3

I can undo an accidental modification. 0 0 0 0 3

I can disable all editing operations to avoid accidental modifica-

tions during a review.

0 1 0 0 2

I can change my image and data source parameters after initial

setup.

0 0 0 1 2

I can use the software on macOS computer. 1 0 2 0 0

I can use the software on Windows computer. 1 0 1 0 1

I can use the software on Linux computer. 0 0 0 0 3

49

Appendix 6 – Database Schema

Figure 25. Application database entity relationship diagram.

50

Appendix 7 – Non-exclusive licence for reproduc-
tion and publication of a graduation thesis1

We Jaak Kütt, Georg Margus, Lauri Kask

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for our thesis

"Software for Protein Determination", supervised by Priit Järv

1.1. to be reproduced for the purposes of preservation and electronic publication of the

graduation thesis, incl. to be entered in the digital collection of the library of Tallinn

University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be entered in

the digital collection of the library of Tallinn University of Technology until expiry of

the term of copyright.

2. We are aware that the authors also retains the rights specified in clause 1 of the non-exclusive

licence.

3. We confirm that granting the non-exclusive licence does not infringe other persons’ intellec-

tual property rights, the rights arising from the Personal Data Protection Act or rights arising

from other legislation.

May 30th, 2022

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean, except
in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation thesis
is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

51

	List of Figures
	List of Tables
	Introduction
	Domain Overview
	Protein Determination
	Gel
	Gel Processing
	Gel Analysis
	Data Analysis

	Project Scope

	Project Description
	Problem Outline
	Requirements Analysis
	Initial Outline
	Use Case Analysis
	User Flow Validation
	Identified User Stories

	Existing Solutions
	ImageJ
	Image Lab

	Project Management

	Project Design
	Frameworks and Libraries
	Architectural Choices
	Dependency Injection
	Events
	Undo/redo
	Database

	Measuring User Confidence

	Software Description
	Prerequisites and Installation
	Application Startup

	Application Layout
	Toolbar
	Navigation
	Content Area

	Application Views
	Gel List View
	Gel Detail View
	Measurement Types View
	Gel Image Raw View
	Gel Image Adjust View
	Gel Image Background View
	Gel Image Lanes View
	Gel Image Measurements View
	Settings View

	Validation
	Results
	Internationalization
	CSV Export
	Curved Lanes
	Gel Filtering

	Comments and Discussion
	Domain Knowledge
	Project Management
	Curved Lanes
	Qt
	Python
	Application Architecture
	Alternative Image Sources

	Conclusion and Future Development
	Bibliography
	Appendix 1 – UI Draft
	Appendix 2 – User Stories
	Appendix 3 – Application Views
	Appendix 4 – Requirements Comparison
	Appendix 5 – Questionnaire Results
	Appendix 6 – Database Schema
	Appendix 7 – Non-exclusive licence for reproduction and publication of a graduation thesis

