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1 Introduction

Urbanization has been a critical driver of development (Bertinelli & Black, 2004), and
currently, the world is experiencing a significant wave of urbanization (Erell, Pearlmutter,
& Williamson, 2012) Projections suggest that by 2030, almost five billion people,
equivalent to 61 percent of the global population, will reside in urban areas (Erell,
Pearlmutter, & Williamson, 2012). The world's urban population is expected to increase
by an additional 2.5 billion people by 2050 (Akbari, et al., 2016). This growth will likely be
distributed among metropolitan areas of all sizes, including small market towns and
administrative centers (Cohen B., 2004). In Europe, nearly 73 percent of the population
lives in cities, which is expected to reach 82 percent (Akbari, et al., 2016). The rapid growth
of urbanization has led to several interconnected problems, such as the degradation of
the thermal environment, land uptake, and climate change, which require integrated
solutions (Akbari, et al., 2016). Access to a healthy and comfortable shelter is critical to
physical, psychological, and social health. Therefore, it is crucial to implement sustainable
urban development strategies that aim to enhance the quality of urban planning and
design, reduce the negative impact of cities on the environment, and mitigate the effects
of rapid urbanization and climate change on cities.

Urban design is essential for creating a sustainable built environment and improving
the quality of life for city dwellers by controlling factors that affect the urban
microclimate (Erell, PearImutter, & Williamson, 2012). Conversely, poor urban design can
exacerbate the impacts of climate change in cities (Akbari, et al., 2016). One of the
worldwide phenomena affected by urbanization is the urban heat island effect, which
significantly impacts the estimation of global warming (Nakata-Osaki, Lucas Souza, &
Souto Rodrigues, 2018).

The urban heat island effect refers to the difference in air temperature between
urban and rural areas (Ul Moazzam, Hoi Doh, & Gul Lee, 2022), and it can have severe
implications for the economic and social systems of cities (Akbari, et al., 2016), as well as
the quality of life and health of their citizens (Aflaki, et al., 2017) (Rizwan, Dennis, &
Chunho, 2008) (Vasquez-Alvarez, Flores-Vazquez, Cobos-Torres, & Cobos-Mora, 2022).
At the same time, the urban heat island effect directly affects a severe impact on the
economic and social system of cities (Akbari, et al., 2016), the quality of life of citizens,
health problems for urban dwellers, as well as health, well-being, human comfort, and
the local atmosphere (Aflaki, et al., 2017) (Rizwan, Dennis, & Chunho, 2008) (Vasquez-
Alvarez, Flores-Vazquez, Cobos-Torres, & Cobos-Mora, 2022). Therefore, there is increasing
awareness among scientists, planning authorities, and governmental bodies about the
effects of urban design and planning on the intensity of the urban heat island effect
during the summer (Aleksandrowicz, Vuckovic, & Kristina, 2017). Many policymakers and
governmental sectors are implementing practical solutions to cool cities and improve
them to be more sustainable, resilient, and liveable environments (Eslamirad, De Luca, &
Sakari Lylykangas, The role of building morphology on pedestrian level comfort in Northern
climate, 2021) (Aflaki, et al., 2017).

Offering sustainable solutions to urban microclimatic issues is crucial and challenging,
requiring the adoption of a holistic approach that considers urban development, features
of buildings and their contents, and characteristics of built environments.

This academic thesis aims to create a comprehensive design framework known as the
CLEAR model. This innovative approach integrates data-driven and model-implemented



workflows to gain insights into the causes of urban heat island and heat waves in urban
areas.

The ultimate goal is to propose effective solutions that mitigate these phenomena,
fostering a better living environment while aligning with sustainability objectives in urban
development.

The approach aims to address the challenges faced in various urban areas and promote
sustainable urban development strategies to benefit residents and the environment.

The CLEAR model is an innovative and valuable tool to integrate urban data, leverage
the model and mitigate the urban heat island effect in Tallinn.

The word of ‘CLEAR’ refers to:

‘C’: Capture data

‘L’: Learn from data

‘E’: Extract models

‘A’: Apply the model

‘R’: Repeat the model

The CLEAR model tackles the limitations of existing methods by considering the built
environment as a complex adaptive system. It follows a series of iterative steps:

e  Gathering and geoprocessing urban geospatial data, urban heat island effect
data, and Tallinn, Estonia meteorological data.

e Employing machine learning techniques to process the collected data and
create predictive and explainable machine learning models. These models
estimate the urban heat island level in different parts of the city and highlight
the significance of urban features in the occurrence of the urban heat island
effect.

e Developing machine learning techniques to leverage urban data for identifying
and implementing effective strategies that mitigate microclimatic urban issues.

e Creating a transparent machine learning model that predicts the urban heat
island effect and generates a prioritized list of urban features, which
represent both thermal and non-thermal aspects of urban environments.
This model is intended to be a valuable tool for designers, researchers, and
urban planners, as it enables them to assess the likelihood of urban heat island
occurrences by considering various factors such as building characteristics,
environmental conditions, and weather data. It succinctly conveys the purpose
and potential utility of the machine learning model within the context of urban
planning and environmental research.

e  Proposing mitigation strategies based on machine learning models’ outcomes
that integrate urban, meteorological, and urban heat island data involves
conducting numerical modelling simulations in urban areas. The machine
learning models are analysed in a way that aligns with human perception and
thermal comfort, facilitating the development of strategies to mitigate the
urban heat island effect and contribute to sustainable urban development.

The accomplishments of the thesis research underscore the importance of the CLEAR
model as a groundbreaking and valuable tool in addressing the urban heat island effect
in Tallinn. The methodology’s versatility allows it to be applied to other locations with
varying climatic conditions and urban data, making it a valuable asset for tackling urban
heat island challenges in diverse urban settings.
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The study has created a comprehensive dataset that includes detailed information on
building features and their neighboring areas, encompassing data related to specific
areas of the city that have been exposed to urban heat island or have the potential to
experience it.

Furthermore, the research has developed various models, such as predictive and
explainable machine learning based models, to understand the relationship between
urban features, weather data, urban heat island phenomena, and heat waves in the city.
These models have provided valuable insights for improving city planning and replanning
processes by proposing effective mitigation strategies and solutions aligned with
sustainable built environment goals. The findings highlight the potential impact of the
CLEAR model in addressing the challenges associated with urban heat island effects and
heat waves.

By utilizing the comprehensive dataset and the developed models, urban planners,
policymakers, and stakeholders can make informed decisions and implement strategies
that promote sustainable urban development. This approach improves the quality of life
for residents, enhances the comfortability of urban areas, and contributes to creating
more resilient cities.

Architects and urban designers can utilize data-driven insights into significant features
impacting the urban heat island effect to make informed decisions about urban design
and development. The research has also deepened the understanding of the unique
characteristics and challenges specific to Tallinn’s urban areas, facilitating the development
of sustainable urban development strategies based on evaluating the value and impact
of different features on the urban heat island effect.

Overall, the thesis research has significantly advanced understanding the relationship
between urban features, weather data, and urban heat island phenomena, providing
practical tools and insights that can be applied to real-world scenarios.

The outcomes of this research have the potential to benefit cities and communities
worldwide by addressing urban heat island effects, promoting sustainable urban
development, and creating more comfortable and livable urban environments.

Research questions and objectives

Research questions
Q1: Which methodologies can be utilized to capture, calculate, and process urban
data from diverse sources, such as meteorological and climatic data, urban heat
island data, and information about buildings and their surroundings?
Furthermore, how can this data be effectively integrated to gain a
comprehensive understanding of the urban heat island effect?

Q2: How can machine learning facilitate learning and extract correlations between
features that cause the urban heat island effect?

Q3: How can predictive and explainable machine learning models be used to
comprehend the impact of critical urban features on the urban heat island effect?

Q4: How can the findings and achievements of machine learning and simulation
approaches can be applied to develop mitigation strategies to decrease the urban
heat island effect in the urban area and improve sustainable urban development
guidelines?
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Research objectives
O1: To propose a method for capturing urban spatial data that can provide a
comprehensive understanding of the urban environment, considering location
and context. The method aims to incorporate essential features related to
buildings, their surroundings, and meteorological and climatic data, specifically
focusing on the urban heat island effect (Paper I).

02: To build a Predictive machine learning model that utilizes the captured data and
learning algorithm to predict the target (Papers Il).

03: To build a transparent machine learning model that helps comprehend urban
features’ importance, roles, and values in the urban heat island effect (Paper lll).

04: To provide valuable insights into the design and configuration of urban
environments to decrease the urban heat island effect and improve the comfort
level in the urban area. This is achieved by generating strategies and solutions to
mitigate the urban heat island effect using the captured data (Papers IV and V).

The methods, approaches, and tools of the thesis

The study employed several methods, approaches, and tools to achieve its objectives.
The Python 3 programming language was utilized through the Jupyter notebook interface.
The packages that were used are: Python libraries such as NumPy and Pandas for data
processing, Matplotlib and Seaborn for visualization, and Geopandas for geodata
processing and spatial data manipulation were used.

The study utilized Scikit-learn and transparent machine learning models to build the
Predictive and explainable models.

In addition, the integration of geodata was accomplished using the QGIS Tool, while
geometric modelling, simulation, and numerical analysis were carried out within the
ENVI-met environment. Excel was employed for dataset processing and visualization
through charts, and figures and diagrams were designed using PowerPoint.

Thesis outcomes
The thesis includes a comprehensive overview of the approval of associated works and
the results of the various papers.

Paper | presents a proposed workflow for collecting geospatial data on buildings, their
context, and the urban heat island phenomenon in Tallinn, Estonia. The study employs
an ascending hierarchical grid system to capture heterogeneous dynamic urban data in
a homogeneous static ground. The QGIS Tool is used to perform the hierarchical grid
system and capture location-based urban data, which is then referenced to underlying
grids for defining urban indices related to both static and dynamic data. The Geopandas
package in the Python environment adds additional features to the built environment
and buildings. Meteorological data from the summer of 2014-2019 is incorporated into
the dataset, assigning urban heat island effect values to each element accordingly.

In Paper Il, a predictive and data-generative model is developed based on the ML
approach to assess the comfort level of pedestrians on the sidewalks surrounding the
buildings in Tallinn. The machine learning approach uses urban data, building characteristics,
weather data, and thermal and wind comfort. The results of simulation in the ENVI-met
environment for thermal and wind comfort are used together to define the dataset used
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in the machine learning process. The machine learning pipeline based on the Random
Forest classifier model is performed in the Python environment, and the model generates
new trustworthy results about outdoor comfort at the pedestrian level in Tallinn, Estonia.

Paper Ill combines machine learning approaches to building predictive and explainable
ML models. The study aims to develop a framework to employ machine learning based
models using geo-processed urban data to build a dataset that is used to build an
ML-based transparent model that explains the importance of features impacting the
urban heat island effect in urban areas. The outcomes indicate that the transparent
machine learning model results show that the feature importance in the classified model
is trustable.

In Paper IV, a multi-objective optimization-based workflow is proposed to improve the
quality of the built environment in the urban area of Tallinn. The study uses captured
geodata and the urban heat island effect of Tallinn to identify critical residential buildings
that experience a high urban heat island effect. The simulations in an ENVI-met
environment in different orientations of the urban canyon are performed to optimize the
surface temperature and outdoor thermal comfort in the urban area of the case studies.
The study results can be used to propose mitigation solutions to enhance thermal
comfort, create suitable conditions for thermal comfort levels, and leverage the urban
heat island level in cities.

Paper V introduces an innovative research framework for enhancing thermal comfort
in urban areas, with a particular focus on the relationship between microclimatic
conditions, human thermal sensation, and preferences. It utilizes simulations within an
ENVI-met environment to conduct quantitative assessments of outdoor thermal comfort
and gather subjective thermal sensation ratings. The study’s findings enable the
identification of areas with varying levels of thermal comfort, thereby contributing to
urban sustainability goals.

The theoretical and practical novelty of the thesis

The present work explores the novel application of data-driven approaches and
techniques in capturing and processing urban data, meteorological data, and urban heat
island data in the context of Tallinn, Estonia. The study utilizes geoprocessing,
programming, modelling, simulation, and analysis techniques to develop a comprehensive
data-driven approach with the aim of promoting sustainable built environments.

The novelty of the study lies in multiple aspects. Firstly, the geoprocessed dataset,
encompassing building samples, location information, building and urban characteristics,
urban heat island data, and climate data, provides a valuable resource that can be
applied in future studies and research endeavours. This dataset provides detailed insights
into the urban environment and holds significance across multiple research fields,
encompassing environmental studies, urban sustainability, and studies related to the
built environment.

Secondly, the developed machine learning models offer a unique approach to proposing
solutions and mitigation strategies for reducing the occurrence of heat waves and urban
heat island phenomena in urban areas. These models enable architects, urban planners,
policymakers, and local authorities to monitor urban data, investigate relationships
between data, and enhance the quality of future development projects. The machine
learning models also aid in identifying patterns and relationships between urban features
and microclimate conditions, informing strategies and policies for mitigating the urban
heat island effect on human health and the environment.
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Furthermore, in conjunction with machine learning based models, the CLEAR model
provides a comprehensive framework for evaluating the effectiveness of different
strategies for mitigating the urban heat island effect. By simulating microclimate
conditions, considering the impact of urban features, and analyzing the results of
machine learning models, the CLEAR model informs decision-making processes to create
more resilient and sustainable urban environments.

Overall, this study’s methodology and framework have significant implications for
comprehending the urban heat island effect and heat waves in cities located in colder
regions and for developing effective strategies to mitigate their impact on urban
environments and human health. The combination of data-driven approaches,
geoprocessing techniques, and machine learning models contributes to advancing the
understanding and management of the urban heat island effect, ultimately fostering
sustainable and livable cities.

Limitations of the work

While this thesis presents substantial contributions, it is imperative to acknowledge the
limitations encountered throughout the research process. Despite yielding promising
results, the study does recognize certain constraints that warrant consideration.

A notable limitation pertains to the compilation of urban data, which encountered
hurdles in terms of data source availability and completeness. Data quality emerged as a
concern, impacting the precision and dependability of the findings. Furthermore, certain
features necessitated on-site inspections, introducing both time and cost implications.
Additionally, specific data sources with a higher level of detail were indispensable to
ensure the approach's efficacy. The study's efficacy was profoundly influenced by the
distinctive attributes inherent in the dataset.

Challenges in data acquisition arise from the necessity for more specific and detailed
data sources, as well as concerns surrounding data accuracy and quality. Another
limitation relates to the data-driven approach and utilization of specific machine learning
models. While the selected models were suitable for the study, there exists a need to
delve deeper into exploring alternative models to enhance prediction accuracy and
reliability. It is noteworthy that the accuracy of machine learning models directly hinges
on the quality and reliability of the data utilized for training and testing. Overfitting poses
another challenge when models become overly intricate and closely tailored to training
data, thereby leading to inadequate generalization to new data. Likewise, striking a
balance between interpretability and predictive performance holds significance, as
excessive simplification may compromise accuracy. The success of the approach hinges
on the distinctive attributes of the dataset, necessitating the exploration of alternative
models to effectively address these limitations.

Consequently, while the CLEAR model serves as a valuable methodology with the
capability of being updated with new data and helping researchers and designers better
understand urban features to mitigate phenomena like urban heatwaves and the urban
heat island effect, it necessitates supplementation with other approaches, such as policy
interventions, to encompass a more comprehensive and holistic strategy for mitigating
climate-related concerns in cities and advancing sustainable urban development.

In spite of these limitations, the findings and methodologies presented in this study
contribute significantly to a broader comprehension of the urban heat island effect and
offer insights into potential strategies for mitigating its impact.
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Abbreviations

AT
CFD
CRS
Ccsv
DL

DT
E-W
GIS
GLMs
HSR
KNN
LIME
LIR

LR
LST
MEMI
ML
NE-SW
NN

NW-SE
OTCA
PDP
PET

RF

RH
SE-NW
SHAP
SL
SML
S-N

ST

STD
SUHI
SVC
SVF
SVM
SW-NE
UHI

Air Temperature

Computational Fluid Dynamic
Coordinate Reference System
Comma-separated values

Deep Learning

Decision Tree

East-West

Geographic Information System
Generalized Linear Models
Hierarchical Spatial Reasoning
K-Nearest Neighbours

Local Interpretable Model-agnostic Explanations
Linear Regression

Logistic Regression

Land Surface Temperature

Munich Energy-balance Model for Individuals
Machine Learning

North East-South West

Neural Network

North-South

North West-South East

Outdoor Thermal Comfort Autonomy
Partial Dependence Plot
Physiological Equivalent Temperature
Random Forest Classifier

Relative Humidity

South East- North West

SHapley Additive Explanation
Supervised Learning

Supervised Machine Learning

South- North

Surface Temperature

Standard Deviation

Surface Urban Heat Island

Support Vector Classifier

Sky View Factor

Support Vector Machines

South West- North East

Urban Heat Island
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uSL
WD

Wm-PET
WS

Ws-PET

Unsupervised Learning
Wind Direction
Weighted mean
Weighted mean of PET
Wind Speed

Weighted score
Weighted score of PET
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2 Background

2.1  Urban heat island and surface temperatures in urban areas

Urban areas tend to experience higher temperatures than non-urban areas (Rosenzweig).
Even urban areas can be 2-5°C hotter than their surrounding rural areas (Aflaki, et al.,
2017) (Onishi, Cao, Ito, Shi, & Imura). Even it is projected that they will continue to
experience warming throughout the 21st century due to global climate change and urban
development (Rosenzweig). Rapid urban growth and the increase in impervious surfaces
in dense urban areas can have significant impacts on the ST of cities (Erell, Pearimutter,
& Williamson, 2012) can have significant impacts on the ST of metropolitan cities
(Ul Moazzam, Hoi Doh, & Gul Lee, 2022).

In 2012, Brian Stone declared that urban areas are experiencing a more significant
increase in temperature compared to the overall planet, indicating the presence of global
warming in cities (Ching, 2013). Urban planners are showing growing concern regarding
the influence of climate on urban planning (Chirag & Ramachandraiah, 2010). They
continuously work towards enhancing the well-being of urban residents by establishing
a comfortable and enjoyable atmosphere (Luo, He, & Ni, 2017).

High heat emissions can influence the surface energy balance and emit toxic gases
that can cause environmental problems, such as air and water pollution, and impact the
Surface Urban Heat Island (SUHI) (Ul Moazzam, Hoi Doh, & Gul Lee, 2022). Remote
sensing techniques are widely used to monitor Urban Heat Island (UHI) and understand
its features and urban climatology, and Surface Temperature (ST) helps define the SUHI
(Leigiu & Brunsell, 2013). The SUHI effect can be observed due to the loss of natural
landscapes to built-up land (urban areas), making the urban area warmer than the rural
area. Thermal imagery has shown that urban centers are hotter than natural landscapes
(Ul Moazzam, Hoi Doh, & Gul Lee, 2022).

The occurrence and intensity of UHI can be classified into two primary categories,
as Rajagopalan, Lim, and Jamei claimed: meteorological factors and urban design factors.
Meteorological factors, including Wind Speed (WS), Wind Direction (WD), humidity, and
cloud cover, can impact the transfer of heat energy between surfaces and the atmosphere,
thereby affecting the intensity and spatial distribution of heat islands. Conversely, urban
design factors pertain to the physical features of the built environment, including building
density, aspect ratio, sky view factor (SVF), and construction materials (Eslamirad, De Luca,
& Sakari Lylykangas, The role of building morphology on pedestrian level comfort in
Northern climate, 2021).

Heat waves and the UHI effect are significant climate risks affecting cities, and various
studies have been conducted to research and classify different methods to reduce their
impact (Sagris & Sepp, 2017). The UHI effect and heat waves are critical climate risks for
cities, and many studies have explored and categorized various strategies to mitigate
their impact (Akbari, et al., 2016). Therefore, it is crucial to explore sustainable UHI
mitigation solutions (Aflaki, et al., 2017). Mitigation aims to modify the urban microclimate
through physical environmental changes (Aleksandrowicz, Vuckovic, & Kristina, 2017).

The concept of “mitigation” and its application to UHI can be attributed to the research
of Hashem Akbari, Arthur Rosenfeld, and Haider Taha at the Lawrence Berkeley National
Laboratory (Aleksandrowicz, Vuckovic, & Kristina, 2017). Akbari identified various
mitigation strategies to reduce UHI and improve thermal comfort for people living in
cities (Akbari, et al., 2016). The implementation of many mitigation measures on a large
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scale can significantly impact the urban microclimate as a whole, and many studies have
examined mitigation strategies. In 2009, Giguére provided an extensive inventory of UHI
mitigation strategies, categorizing them into four groups: vegetation and cooling,
sustainable urban infrastructure, sustainable water management, and reduction of
anthropogenic heat. While the list is comprehensive, scientific evidence supporting the
effectiveness of some measures in reducing UHI intensity is lacking. Additionally, there is
partial overlap between categories, particularly concerning trees and vegetation
(Aleksandrowicz, Vuckovic, & Kristina, 2017).

Some UHI mitigation strategies proposed by Giguére’s comprehensive list lack definite
scientific proof for effectively reducing UHI intensity. Additionally, there is some overlap
between Giguere’s categories, particularly regarding trees and vegetation (Aleksandrowicz,
Vuckovic, & Kristina, 2017). In Toronto, a study evaluated various UHI mitigation strategies
in urban neighbourhoods using numerical simulations with ENVI-met software. The study
found that the duration of direct sunlight and mean radiant temperature, influenced by
the urban form, are crucial factors in determining urban thermal comfort (Wang, Berardi,
& Akbari, 2016).

Another study analysed the impact of various urban design factors on the distribution
of ambient and ST in open spaces, using the Sydney metropolitan area as a case study.
The results showed a strong correlation between the gradient of temperature decrease
along the precinct axis and the average aspect ratio of the precincts, with and without
mitigation. The study suggests that urban design interventions that modify the aspect
ratio of buildings and streets may effectively mitigate UHI effects and improve thermal
comfort in open spaces (Kolokotsa, et al., 2022). Furthermore, a study by Xu et al.
investigated the potential of using the spatial equity of green areas in cities and LST to
mitigate UHI effects. The study found that increasing the amount of urban green spaces
can be beneficial in reducing urban average temperatures and mitigating UHI effects (Xu,
et al., 2022).

In another study, the authors explored UHI mitigation in Mandaue, Philippines,
by increasing vegetation, adding open spaces, employing green roofs, or a combination.
The changes in AT, ST, and thermal comfort of the study areas were considered to
understand the impact of changes in green areas and green roofs on reducing the UHI
effect (Cortes, Jesfel Rejuso, Ace Santos, & Blanco, 2022). In addition, Farhadi et al.
conducted research on daytime UHI mitigation strategies in Tehran, which is a city that
experiences urban warming. They found that lower ST strongly correlates with the UHI
effect and thermal comfort (Farhadi, Faizi, & Sanaieian, 2019). In a similar vein, Arnfield
discovered that street orientation is more useful for estimating the amount of solar
energy that walls absorb (Arnfield, 1990).

Van Esch et al. discussed the effects of urban elements such as street width and
orientation, building parameters like roof shape and envelope on solar access to the
urban canopy, and the feasibility of passive solar heating strategies in residential buildings
(Esch, Looman, & Bruin-Hordijk, 2012). In the Netherlands, the evaluation of UHI effects in
many small to large cities and villages has shown that most Dutch cities experience
significant UHI. The 95th percentile of the UHI is well-correlated with population density
(Steeneveld, Koopmans, Heusinkveld, Hove, & Holtslag, 2011). Additionally, the design of
streets, the urban canyons’ orientation, and the trees’ presence significantly influence ST
and outdoor thermal comfort (Yahia & Johansson, 2012), and thus the UHI effect.
Research on the UHI phenomenon often focuses on the canopy layer and examines it at
micro- and local scales, such as single-street canyons and neighbourhoods (Renganathan
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& Emmanuel, 2018). The design configuration of urban areas, including optimized
building and street geometry and orientation, plays a crucial role in influencing solar
radiation and airflow within urban canyons (Shishegar, 2013).

By employing various approaches, it becomes evident that the discernible influence
of urbanization and other land-use alterations on the long-term trajectory of global
temperature is apparent (Erell, Pearlmutter, & Williamson, 2012).

Ambient temperatures, including air and ST, are vital indicators for assessing the UHI
effect (Aflaki, et al., 2017). Solar radiation directly affects pedestrians’ thermal comfort
in urban street canyons (Shishegar, 2013). Therefore, integrating these strategies into
urban development plans can create more sustainable, resilient, and liveable cities
(Eslamirad, De Luca, & Sakari Lylykangas, The role of building morphology on pedestrian
level comfort in Northern climate, 2021).

2.2  Urban spatial data

Urban planning relies heavily on urban data collection and spatial data analysis. To address
the challenges posed by complex urban systems, advanced interdisciplinary analysis
methods such as urban informatics or urban data science are necessary (Kovacs-Gyori,
et al., 2020). One powerful urban studies and planning tool is Geographic Information
System (GIS), which can capture, store, analyze, and display spatial data and capture
numerical and spatial interactions between geographic objects (Nakata-Osaki, Lucas
Souza, & Souto Rodrigues, 2018).

With GIS, users can create, edit, and analyze spatial data by linking geographic features
to attribute data. GIS can also perform complex spatial analysis, such as overlaying multiple
data layers to identify relationships or patterns, modelling scenarios based on input
parameters, and creating maps and other visualizations to communicate results (Nakata-
Osaki, Lucas Souza, & Souto Rodrigues, 2018).

However, spatial data analysis presents a challenge due to the non-stationarity of
relationships and processes across space, referred to as spatial non-stationarity (Brunsdon,
Fotheringham, & Charlton, 1999). Local analysis emerged in the late 1960s (Fotheringham
& Brunsdon, 2010) to tackle this issue, and urban analysis, which draws on multidisciplinary
knowledge and skills to solve urban issues, has been defined (Paez, 2005). Additionally,
urban areas have different spatial boundaries created by various departments, leading to
inconsistencies. The urban basic grid concept has been introduced as a solution (Peng,
2009), but the boundaries have been created uncoordinatedly, resulting in information
fragmentation. A proposed solution involves using Hierarchical Spatial Reasoning (HSR)
and a GIS-based algorithm to reorganize the spatial environment and automate the
delineation of boundaries (Eagleson, Escobar, & Williamson, 2002).

HSR theory is a way of breaking down complex problems into smaller ones using
spatial structuring and reasoning. While HSR has been used in spatial information theory,
it has yet to be widely implemented in GIS environments (Eagleson, Escobar, & Williamson,
2002). In 1997, Car introduced spatial information theory’s hierarchical structuring of
space and reasoning as fundamental components for defining HSR (Car, 1997). In addition,
in a study conducted by Mingjun, the concept of a primary urban grid was proposed,
defined as the basic urban grid, and an algorithm based on HSR was designed to help
delineate the primary urban grid, taking into consideration various factors such as land
use, geometry compactness, and major roads (Peng, 2009).

The proposed solution to the issues of scale and aggregation in spatially aggregated
data studies involves identifying a set of zones that optimize an objective function related
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to model performance rather than trying to model the effects of scale and aggregation
(Openshaw, 1977). This approach has implications for spatial data analysis. As urban
design projects become increasingly complex and massive, there is a growing need for
efficient analysis tools and rational design methods (Xiao Wang and Yacheng Song and
Peng Tang, 2020).

Another study utilized a framework of digital description for block form, focusing on
block morphological complexity. This framework was put to the test in an urban design
setting. The study incorporated hierarchical structure and access structure theory to
evaluate the spatial form of blocks under investigation (Wang, Song, & Tang, 2020).

The other study discussed the issue of incompatible boundary systems that hinder
effective data integration in GIS. It highlights that the uncoordinated manner in which
individual organizations generate boundaries has limited the potential of technologies
for analyzing geospatial information. The authors propose an algorithm that uses the
hierarchical spatial system to structure administrative boundaries and facilitate accurate
data analysis while meeting agency requirements (Eagleson, Escobar, & Williamson, 2002).

2.3 Machine learning approaches and application in urban studies

Integrating spatial science with Al and related technologies such as Machine Learning
(ML) and Deep Learning (DL) has been made possible through digitalization (Balogun,
Tella, Baloo, & Adebisi). Such tools and principles have become increasingly important in
sustainable development (Balogun, Tella, Baloo, & Adebisi), and although Al and ML are
transforming scientific disciplines, their full potential has not yet been realized (Milojevic-
Dupont & Creutzig, 2021). With the urgency of climate change, there is recognition
among researchers and practitioners of the need for systematic research to upscale and
implement place-specific climate solutions while respecting local variation and context
(Milojevic-Dupont & Creutzig, 2021).

In smart cities, ML and big data analytics can facilitate assessment by analyzing large
amounts of data from air quality sensors, weather stations, and other sources to identify
patterns and predict air quality levels in different parts of the city (Balogun, Tella, Baloo,
& Adebisi). High granularity analyses and improvements to climate solutions are possible
using the wealth of data provided by significant data sources like satellite and aerial
imagery, GIS data, social media data, and surveys (Milojevic-Dupont & Creutzig, 2021).
However, generating mitigation-relevant digital models of cities requires spatialized
climate data, which is a crucial challenge (Milojevic-Dupont & Creutzig, 2021).

Combining ML and DL techniques with geospatial data has opened the possibility of
extracting valuable insights and knowledge from large and complex datasets. This
approach can help identify effective solutions tailored to specific locations and contexts,
discover hidden patterns and insights that traditional methods may miss, and optimize
processes and outcomes (Balogun, Tella, Baloo, & Adebisi) (Milojevic-Dupont & Creutzig,
2021) (Belle & Papantonis, 2021).

In a recent study, the authors reviewed the use of DL and meta-analysis in various
studies, focusing on data sources, preparation methods, training details, and performance
comparisons. The study found that DL outperforms traditional methods in terms of
accuracy and can address challenges previously faced. The authors also suggest future
research directions in this field (Neupane, Horanont, & Aryal, 2021).

Advancements in Al research, increased computational power, and data availability
have paved the way for a new era of science focused on data-intensive methodologies
(Papadakis, et al., 2022). However, despite the successful application of ML approaches,
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they are still primarily black boxes (Ribeiro, S, & Guestrin, 2016). In order to improve
transparency and trust in ML models, it is essential to understand and interpret the
model’s inner workings. This is where the idea of explainable ML models comes in
(Ribeiro, S, & Guestrin, 2016). Transparency in ML refers to the ability to understand and
interpret the inner workings of a model (Marco Tulio Ribeiro, Sameer Singh, Carlos
Guestrin, 2016), and it is often used in contrast to the concept of opacity or black
box-ness (Lipton Z. C., 2016). Explanations are essential for ensuring that the predictions
made by models are accurate and trustworthy. Black box ML models can be challenging
to understand and explain, so the need for explainable ML models has arisen (Ribeiro, S,
& Guestrin, 2016).

ML refers to various families and traditions of techniques that can handle high-level
tasks such as classification, regression, or probability density estimation (Milojevic-Dupont
& Creutzig, 2021). There are different families within ML, such as Supervised Learning
(SL), Unsupervised Learning (USL), and reinforcement learning (learning occurs through
interactions with an environment), each with their own sub-families like kernel methods
or tree-based methods for SL (Milojevic-Dupont, Nikola, and Felix Creutzig, 2021).

The advantages of using ML-based approaches include their ability to handle simple
to complex methods. For example, linear classifiers are sufficient for simple tasks like
classifying built-up areas on satellite imagery. At the same time, generative adversarial
networks can achieve complex tasks like mimicking the style of an image, such as
generating a realistic image of a climate-induced flooded area from a picture taken with
typical weather (Milojevic-Dupont & Creutzig, 2021).

ML tasks are embedded in the larger life cycle of a data science project, which includes
data collection, problem formulation, and model maintenance when a model is used with
new streams of data over time. Many resources are available on generic aspects of the
data science life cycle, focusing on interpretable approaches. Practical tips on model
training are also available (Milojevic-Dupont & Creutzig, 2021). While the largest neural
networks (NN) require training billions of parameters and consume extreme amounts of
energy, most ML methods can run within seconds to hours on personal computers.
The energy impact of training models can be explicitly considered to contain the deep
NN energy footprint (Milojevic-Dupont & Creutzig, 2021).

Al and ML have great potential to transform scientific disciplines (Milojevic-Dupont &
Creutzig, 2021). With the increasing urgency of climate change, there is growing
recognition among researchers and practitioners for systematic and well-grounded
research to implement place-specific climate solutions while considering local variation
and context (Milojevic-Dupont & Creutzig, 2021). In the field of urban data science,
ML techniques, such as unsupervised ML algorithms and semi-supervised ML systems,
are being applied to extract insights from large and complex datasets (Kovacs-Gyori, et al.,
2020). These techniques are significant in smart cities’ air quality monitoring and
assessment. ML algorithms can analyze data from various sources to identify patterns
and predict air quality levels (Balogun, Tella, Baloo, & Adebisi).

Integrating spatial science with Al and ML has become possible through digitalization,
enabling the extraction of valuable insights from large and complex geospatial datasets
(Balogun, Tella, Baloo, & Adebisi). In the context of climate solutions, ML methods
combined with big data sources offer the potential to improve climate solutions with
high granularity and tailored to specific locations (Milojevic-Dupont & Creutzig, 2021).

ML models have become integral in urban studies because they can process and
analyze large volumes of data accurately and efficiently (Jing & W Biljecki, 2022). While
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supervised ML techniques are commonly used in urban studies, ML is also employed to
develop predictive models and estimate unknown values while explaining relationships
among phenomena (Jing & W Biljecki, 2022). The application of ML techniques, including
linear regression (LIR), classification methods like K-Nearest Neighbors (KNN), Support
Vector Classifier (SVC), and tree-based models such as Decision Trees (DT), Random
Forest (RF), and XGBoost, has demonstrated their effectiveness in urban data-related
research fields (Jing & W Biljecki, 2022).

In specific studies, ML models have been applied to predict land use/land cover (LULC)
and seasonal Land Surface Temperature (LST). The influence of land use patterns on the
UHI effect has also been investigated using ML methods. Random Forest classifier (RF)
has been used to figure out how non-linearly morphological factors affect the intensity
of UHI, which is helpful for reducing UHI and planning land use when there is not much
green space (Lin, Qiu, Tan, & Zhuang, 2023). Furthermore, ML techniques, including RF,
have been employed to enhance the land use regression model for obtaining spatial
distributions of ozone and the UHI, with the interpretation of feature variable impact
using SHapley Additive Explanation (SHAP) and Partial Dependence Plot (PDP) techniques
(Han, Zhao, Gao, & Gu, 2022).

In another study, authors (Balogun, Tella, Baloo, & Adebisi) used ML-based temperature
spatial downscaling to look at the effect of UHI on the atmosphere. They did this by making
a regression model that shows how urban structure affects temperature.

Considering the prediction of the UHI effect, the integration of ML models prioritizing
interpretability is gaining attention. The review of existing literature highlights two main
approaches: white-box and black-box methods, with the former characterized by easily
interpretable working processes and the latter involving less transparent procedures
(Lipton Z. C., 2016).

In summary, Al and ML techniques, including black-box and transparent methods, are
increasingly being applied to address climate-related challenges in urban environments.
ML models enable the analysis of large and complex datasets, offering valuable insights
for climate solutions, air quality monitoring, land use prediction, and understanding the
UHI effect. Integrating spatial science, Al, and ML opens new possibilities for extracting
knowledge and enhancing sustainable development.

24 Outdoor thermal comfort optimization in urban areas

The potential for reducing outdoor Air Temperature (AT) in a square in Rome was studied
by using a numerical model created using the ENVI met tool to simulate different
mitigation scenarios to reduce warming in urban areas. The study found solutions like
using grass pavers to provide the most significant advantages that could enhance the
thermal conditions of the air and reduce outdoor AT (Gabriele, Octon, & De Lieto Vollaro,
2023).

Fazia Ali-Toudert et al. discuss the role of street design, like aspect ratio and
orientation, in developing pedestrian-level comfortability. The study benefits from the
three-dimensional numerical model ENVI-met, which simulates microclimatic changes
within urban environments with high spatial and temporal resolution in Ghardaia,
Algeria. The study analyzed the symmetrical urban canyons with various height-to-width
ratios and different solar orientations (i.e., East-West (E-W), North-South (N=S), North
East-South West (NE-SW), and North West-South East (NW-SE). In addition, the study
assessed outdoor thermal comfort values in the physiologically equivalent temperature

22



(PET) index. The results show contrasting patterns of thermal comfort between shallow
and deep urban streets and the various orientations.

Moreover, the results prove that PET at the street level depends strongly on aspect
ratio and street orientation (Ali-Toudert & Mayer, 2006). Another study evaluated the
potential for UHI mitigation by greening parking lots and the relationships between LST
and LULC in different seasons in Nagoya. The results show that different LULC types play
different roles in different seasons and times, and using more green areas slightly
reduced the LST for the whole study area in spring or summer (Onishi, Cao, Ito, Shi, &
Imura). The other study that used qualitative and quantitative approaches to assess
outdoor thermal comfort as a mixed method identified which urban areas needed more
improvement during the summer. The results of thermal comfort assessment through
the PET index and subjectively perceived thermal sensation using ENVI-met environment
to do Computational Fluid Dynamic (CFD) simulation and thermal comfort assessment
(Eslamirad, Sepulveda, De Luca, & Sakari Lylykangas, 2022).

In the study by Giridharan, the author defines urban compactness as a combination of
various urban design factors, including the building area-to-volume ratio, aspect ratio
(height to width), SVF, distance to the nearest wall, width of the street, built-up area,
green areas, albedo, water surface size, roads, open areas, and distance to a heat sink
(Giridharan & R, 2018). These factors influence the urban microclimate, and their
combination can affect the level of UHI and outdoor thermal comfort in urban areas.
In addition, Aleksandrowicz et al. outline the physical features of the urban environment,
such as the density of buildings, the area of land used and unoccupied areas, and the
type of materials in urban components, which all affect UHI level and strength
(Aleksandrowicz, Vuckovic, & Kristina, 2017).

The background studies and literature review show that heat waves and the UHI effect
are significant climate risks affecting cities. There are many ways in which urban design
can be modified to mitigate the UHI effect in cities, such as increasing green spaces,
using reflective or high albedo materials, modifying the built environment, reducing
anthropogenic heat, and optimizing building and urban canopy orientation and layout.
These changes can significantly reduce ST in urban areas, which can have a negative
impact on the UHI effect and the level of thermal comfort felt by those who live and work
there. Furthermore, an assessment of building orientation and urban canyon extension,
both of which influence solar radiation levels, plays a role in local temperature variations.
This, in turn, affects subjective thermal perceptions, particularly in urban areas. This
approach aids in mitigating elevated temperatures, enhancing pedestrian-level comfort,
regulating thermal conditions within urban canyons, and alleviating the UHI effect on
scorching summer days. Moreover, these adaptations yield additional advantages,
encompassing improved urban comfort, heightened livability, and the cultivation of
sustainable and resilient environments that foster the well-being of residents.
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3 Methodology

3.1 Theresearch workflow; CLEAR model

The overall flow of the thesis is closely tied to the CLEAR model, which serves as the
foundation for the data-driven Model. This model encompasses four essential steps,
as illustrated in Figure 1.

Step 1: Data Capture (C) — In this step, urban data is collected and aggregated to be
used in the ML models for UHI analysis.

Step 2: Learning (L) — The captured data is utilized to develop learning algorithms and
create ML models, including predictive and explainable models.

Step 3: Rule Extraction (E) — From the ML models, rules are extracted to develop a
model that enables easy prediction of UHI phenomena in urban areas.

Step 4: Application (A) — The captured dataset and research findings are applied to
propose effective mitigation strategies aimed at reducing heat waves and UHI in the
urban environment.

Additionally, the research workflow includes an iterative process (R) where the model
can be repeated and applied to other locations with different urban scenarios and
climatic conditions. This allows for the adaptability and applicability of the CLEAR model
in diverse contexts.

Section 3.6

Explainable
ML Model

= Repeni ‘

I
Section 3.3 | Section 3.5 \

Figure 1. General structure of the thesis and defined steps.

3.2  The Location of the case study

The location of the spatial data is Tallinn, the capital city of Estonia. The latitude and
longitude coordinates are 59.436962 and 24.753574 (Weatherdata, n.d.). The geographical
information of Tallinn is 445,005 people and 159 km? of area. The number of city districts
in Tallinn is 8 (GeoJournal, 2005). Moreover, Tallinn is characterized by a humid continental
climate with cold winters, according to the Koppen-Geiger classification Dfb (Peel,
Finlayson, & McMahon, 2007). (Figure 2)
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Figure 2. Monthly wind velocity and temperature averages for Tallinn, Estonia.
Furthermore, the weather data is related to the days of UHI value in the summer of

2014-2019. The weather data resource is the Underground website (Weather
Underground, n.d.).

Figure 3. SUHI map of Tallinn, July 25, 2014, 12:30 Estonian summer time (9:30 GMT). The green
areas are outside of the SUHI, the yellow areas are the areas over the mean SUHI, and the red areas
are “inside” the SUHI (over mean + std.dev) (Sagris & Sepp, 2017).

The UHI data downloaded from the Environment Agency is based on national
monitoring data collected by the Environment Agency and analyses carried out on
Landsat-8 (USA) satellite data (UHI 2014-2019) (keskkonnateadlik hub, n.d.). For example,
Figure 3 shows the heat map of the UHI on July 25, 2014. All UHI data used are Shapefiles
in the formats SHP and SHX (Martens, Parg, & Sluzenikina, 2020). The data shows the UHI
value in Tallinn is categorized into three levels: lower than 30°C (29°C), 30°C and 35°C.

This research concentrates on the residential buildings with the greatest volume
(maximum height and area) that went through an intense heatwave and UHI in 2014,
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2018, and 2019. Moreover, case studies were chosen by sampling and utilizing the
histogram to locate the more critical and more severe residential buildings from the
Tallinn UHI dataset (Eslamirad, De Luca, Sakari Lylykangas, Ben Yahia, & Rasoulinezhad,
Geoprocess of geospatial urban data in Tallinn, Estonia, 2023).

3.3  Step 1: Capture (the C’ of the CLEAR’ model); Data capturing

This section of the methodology, described in Paper I, focuses on creating a dataset for
the Machine Learning (ML) model using urban data, meteorological data, and UHI data
specifically obtained from Tallinn, Estonia. The dataset is a valuable resource that enhances
the understanding of urban environments and enables professionals in various fields,
including urban planning, architecture, policymaking, and stakeholder engagement, to
make well-informed decisions. It is available as supplementary material and provides
essential baseline information for future research and planning endeavors.

Additionally, integrating geospatial data into the QGIS tool facilitates the application
of the study’s findings and analysis to propose effective mitigation strategies. The analysis
and modelling processes are conducted using the Python 3 environment in Jupyter
Notebook, ensuring comprehensive data analysis and interpretation.

To summarize, the methodology comprises three key steps: data collection,
the establishment of an ascending hierarchical grid system for data capture, the application
of experimental methods to extract data, and the completion of the dataset.

Figure 4 visually represents these three main steps in the methodology.
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Figure 4. Data capturing framework: structured steps for effective data collection.

The first step involves extracting urban data (Sagris & Sepp, 2017) (General data of
Tallinn., n.d.), weather data (Weather Underground, n.d.), and SUHI data from Tallinn,
Estonia. The SUHI data was obtained from the Environment Agency, which collected
national monitoring data and analyzed Landsat-8 satellite data (SUHI 2014-2019)
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(keskkonnateadlik hub, n.d.). Figure 5 displays a heat map of the UHI on July 25, 2014,
illustrating the UHI values categorized into three levels: lower than 30°C (29°C), 30°C, and
35°C. The collected data, including UHI Shapefiles and other relevant data, serves as
valuable input for subsequent research steps.
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Figure 5. Heat map of UHI, Tallinn, July 25, 2014. Tallinn 25 of 2014 (Mdrtens, Pdrg, & Sluzenikina, 2020).

3.3.1 Substep 1: Data description

The considered features of buildings are described in Tables 1 and 2. The focused features
of buildings in Tallinn are general and technical characteristics. The main features of
buildings are the purpose of use, material, absolute height, area, length, and number of
floors.

Table 1. The description of building data based on Open data information and instructions.

Object ID The ID of each building is a unique combination of numbers
Material The main materials of the construction: are stone, wood, metal,
composite material, and stone, composite material and metal

Absolute height (m) | The highest point of the highest structure

Height (m) The largest vertical dimension of the building from the ground or
pavement immediately surrounding the buildings to the highest point
of the highest structure of the building, without taking into account
local smaller depressions and elevations.

Area (m?) All building areas are in common use by residential and non-residential
users.

Length (m) The length and shape of the building

Number of floors The horizontal plane in a building, on which it is possible to use the

building according to its purpose.
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Table 2. Purpose of use of buildings.

The purpose of Description

buildings

Residential building Buildings for dwelling purposes.

Public building Buildings for particular public or common use (such as schools,

shopping centers, banks, and offices)

Outbuilding Buildings that are not residential not industrial facilities, and not
public
Underground building = Building with no floors above ground

Industrial facilities Building for manufacturing and production processes, or a
warehouse; not public building

Underground storage = Storage building with no floors above ground
space
Parking facilities Underground garage or parking lot for cars

The data available is split into three categories: Urban, Weather and Climate, and
UHI. The Estonian government and local authorities own the Tallinn Land Authority
Geospatial Data Portal, which is a source of urban data. It is available as spatial data in
the form of ESRI shapefiles (.SHP) and Shape Index files (.SHX). This data contains details
on buildings, land, green spaces, roads, water bodies, and infrastructure in Tallinn.
For example, according to the Data Portal of Tallinn (Maaamet) (Martens, Parg, &
Sluzenikina, 2020). Tallinn has 67,113 buildings (General data of Tallinn., n.d.). Data
formats are Spatial data (ESRI shapefile), Shapefile (.SHP), and Shape Index file (.SHX).
The data format indicates information about the buildings, land, green spaces, roads,
water bodies, and infrastructure in Tallinn. The number of buildings located in Tallinn is
67, 113 (General data of Tallinn., n.d.)

The data on SUHI was obtained through a study that used Landsat-8 images and LST
data, which were suitable for analyzing the UHI effect. The study aimed to evaluate the
impact of heatwaves on Estonian cities and measure the extent and magnitude of UHI
effects (Martens, Parg, & Sluzenikina, 2020) (Sagris & Sepp, 2017).

The threshold for defining a heat wave in Estonia is an AT of over 30°C that lasts for
several days, with dangerous temperatures defined as over 27°C. UHI effect data was
produced for Tallinn, with an intensification of 5°C according to Landsat-8 images, and
the threshold for UHI data is categorized into three ranges: 30—35°C, 35-40°C, and over
40°C. The related weather data was also included in the dataset based on the UHI effect
in Tallinn (Sagris & Sepp, 2017).

The related weather data was added to the dataset based on the UHI effect in Tallinn.
The geoprocessing methodology involves collecting geospatial data on buildings and UHI
phenomena, integrating them into QGIS, and analyzing them in Python. The methodology
consists of three steps: (1) considering the available resources of urban data and their
schema, (2) categorizing data schema into homogeneous or heterogeneous, static or
dynamic, and implementing the hierarchical grid system, and (3) using the homogeneous
ground to define urban indices mainly related to the heterogeneous data, accommodating
both static and dynamic data in the hierarchical grid system. The aim of creating the
hierarchical grid system is to provide a solid basis for collecting data based on their
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locations (General data of Tallinn., n.d.) (Building data of Tallinn, n.d.) (Eslamirad, De Luca,
Sakari Lylykangas, Ben Yahia, & Rasoulinezhad, Geoprocess of geospatial urban data in
Tallinn, Estonia, 2023).

3.3.2 Substep 2: Geoprocessing and dataset development

The raw data (General data of Tallinn., n.d.) is used in the second sub-step to develop a
geoprocessed dataset. This dataset incorporates multi-scale urban data, allowing urban
planners, researchers, and practitioners to integrate urban data into their activities.
The process involves using an ascending hierarchical grid system to collect heterogeneous
data within a homogeneous ground. This approach ensures the organization and
integration of data at different grid levels, from level O to level 3.

The final sub-step focuses on processing, arranging, and collecting the data.
Python libraries and packages are employed to facilitate this process. Additionally,
the geoprocessing attributes and expressions of the QGIS Tool are utilized, enabling the
development of methods for data collection across different grid levels. The systematic
arrangement and processing of the data ensure its accessibility and usability for further
analysis and research.

By following these steps, the methodology ensures the extraction, geoprocessing, and
arrangement of relevant urban, weather, and SUHI data from Tallinn. The resulting
dataset provides a comprehensive foundation for integrating urban data into research
and decision-making processes.

Figure 6 displays the defined ascending hierarchical grid system used to organize the
spatial data in Tallinn. The hierarchical structure allows for the collection and analysis of
data based on location, with grids characterized by homogeneous static data in one layer
and including all recognized elements within the grid. The grids are divided into different
levels, such as Neighborhood Zone, Residential Zone, and Mega Urban Zone, with the
building level (level 0) being the smallest scale.
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Figure 6. The defined ascending hierarchical grid system.

The available data is divided into two components: static heterogeneity data and
dynamic heterogeneity data. Static heterogeneity data includes elements in an urban
area that remain unchanged or change little over time, while dynamic heterogeneity data
refers to frequently changing data such as climate, microclimate, and UHI data.
A hierarchical grid system is created to aid in analyzing extensive spatial data by dividing
the areas of the earth into identifiable grid cells. This structure provides a solid basis for
collecting data based on their locations, and each grid is characterized by homogeneous
static data in one layer and includes all points, geometries, and other recognized
elements below the grid.
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The aim of creating the hierarchical grid system is:

*  First, a spatial index is created for each object on the map, and the objects
are referenced to the underlying grids. The grid system aids in analyzing
extensive spatial data by effectively dividing the areas of the earth into
identifiable grid cells.

* Secondly, use the homogeneous ground to define urban indices mainly
related to the heterogeneous data, which means accommodating both static
and dynamic data in the solid hierarchical grid system.

This means that the hierarchical structure provides a solid basis for collecting data
based on their locations. Thus, each grid is characterized by homogeneous static data in
one layer and includes all points, geometries, and other recognized elements below the
grid. The total building area located in grid level 1 is considered an example in the
definition of built-up area.

This section uses a hierarchical grid system in QGIS Tool to represent polygons
covering all parts of the map of Tallinn in three independent layers. The system has three
ascending levels of geometric grids, starting from a 200-meter square to a 2,000-meter
square, which are respectively called levels 1 to 3. This grid system aids in analyzing the
spatial data of the target area on the map.

Neighbourhood Zone, Residential Zone, and Mega Urban Zone, while the base level is
the building level (level 0) as the smallest scale (Figure 6).

The set X= {x1, X2, ..., X"} is the set of building objects in the building dataset (level 0).
First, this set is aggregated into the defined ascending hierarchical grid system (Peng,
2009). For example, xi is the building located in the i" grid of level 1, so the i*" grid is
aggregated by the j™ grid of level 2 and the kth grid of level 3. Then the spatial index of
each building is appended to the dataset to determine the exact position of the building
in the ascending hierarchical grid system. For example, figure 6 shows that each grid unit
of level 3, a grid of 2,000 meters by 2,000 meters, contains four squares of level 2 grids
of 1,000 meters by 1,000 meters and at the same time includes 25 squares of level 1 ata
200-meter dimension.

In the third step of the methodology, data processing, arranging, and collection are
carried out using Python libraries and QGIS geoprocessing attributes and expressions.
The hierarchical structure system is used to collect data related to the level of the grid
system and the defined indices mentioned in Table 3.

Table 3. Defined indices using a hierarchical structure system.

Index Grid level Description

Building data Grid: 200 m*200m Building data
level 1

built-up area Grid 200 m*200m B = Sum of buildings’ areas located in grid
level 1 Level 1

Density Grid: 200 m*200m D = Sum of all buildings’ areas located in grid level
level 1 1/40000

Green area Grid: 200 m*200m G = Sum of the area of green spaces, located in grid
level 1 level 1
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3.3.3 Substep 3: The experimental methods to capture data
This section describes the experimental methods used to capture data for the geospatial
dataset.

Data acquisition I: object detection

The first step is object detection in the hierarchical grid system, which involves detecting
the UHI value of each building. This is done in Grid 2, Level 1 of the hierarchical grid
system. The UHI intensity levels in the main levels of SUHI are also mentioned as being
lower than 30°C (29°C), 30°C, and 35°C. The dataset is then completed by adding more
details about the buildings.

The QGIS Tool deals with polygons when detecting objects like buildings, and the
Coordinate Reference System (CRS) is used to track objects located in the same place.
The code developed in Python uses this relationship to list buildings in each UHI area with
unique identification codes. The libraries used in Python are Pandas and Numpy for data
import and processing, and Geopandas for object detection using GeoSeries.intersection
attributes. Within the hierarchical grid system’s coverage area are these layers.
The codes were developed and executed using the Jupyter Notebook interface.

The method needs to use the unique code of buildings to find out the intersected
geometries and return the ID of the building and the UHI map for the next step of
appending other features. To do this, a function to iterate pairs is required, such as the
zip () function in Python, which pairs the first element in each passed iterator and then
the second element in each passed iterator.

To develop the geospatial dataset, the for-loop function is utilized to iterate over a
sequence of tuples. The for loop runs a set of instructions for each element in the tuple.
This loop is repeated twice to build the dataset and the UHI data with the zipped iterated
objects. Using Geopandas’ intersection attributes, Python’s zip function, and finding the
intersection between two geometries of the two datasets, the building’s ID that
intersects with the UHI values is obtained. The collected data includes the UHI value and
the date, enabling the identification of buildings with different heat values in the city.
The code to determine which building is under which grid is similar to this code.

The codes are given below:

forr, s in zip (Buildingdata.geometry, Buildingdata.ID): for v and o in zip (UHl.geometry, UHI.ID):
Intersection_area = r.buffer(0).intersection(v.buffer(0)) if not intersection_area.is_empty:
p = gpd.GeoSeries(intersection_area) print(f"{int(o)} has intersection with {s}")

Data acquisition Il: the nearest neighbour

The distance between buildings is crucial to understanding urban density and city
compactness. To determine the shortest Euclidean distance between buildings in a
neighbourhood, the spatial index defined in the previous step can be used, which is faster
than looping through a large data frame to find the minimum distance.

The code uses the zip () function to get the ID of each building and identify
neighbouring buildings using a for-loop in Python. The Geopandas package’s distance
attributes are also used to find the shortest Euclidean distances between neighbouring
buildings at the neighbourhood scale.

The code generates a list of distances between each building and its nearest
neighbour. The list starts with 0 as the minimum distance (since the distance of each
building to itself is 0), followed by the distance to the nearest neighbour. The code then
uses this list to get the distance to the nearest neighbour of each building by calling the

31



second item in the list (since the first item is the distance to itself). Figure 7 illustrates
the shortest Euclidean distance between buildings, which is used to determine the
nearest neighbour to each building.

The code presented can find the nearest neighbour of a given geometry by calculating
the distance between the outer wall of the building and the other geometries. It does
this by iterating through each member of the building dataset and calculating the
distance to all other members. If the distance between the centers of the geometries is
needed, centroids can be calculated using the centroid attributes of the Geopandas
package. The distance function of the Geopandas package is used to calculate the
distances, which are usually defined as the smallest Euclidean or straight-line distance
between two geometries. The method can be used to find the nearest street, green
space, or other location as a geometry, point, or line, even in two different data
resources.

Figure 7. The nearest neighbour to each building.

Through the utilization of distance, alignment of index values within the GeoSeries
(geometries) can be achieved, enabling the comparison of elements possessing identical
indices via align=True. Alternatively, an index-independent comparison can be
conducted, based on the sequential order of matching elements, employing align=False.
(geopandas, 2022). (Figure 8)

align=True align=False

Figure 8. The GeoSeries distance, index value True or False.
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The code back ID of two adjacent buildings with the minimum distance in meters
between them. The codes for calculating the nearest neighbour are given below:

for i, y in zip (DFB.geometry, DFB.objectid):
distance = DFB.distance(i, align = True) sorted_list=sorted(distance.to_list())
min_sorted_list=sorted_list
print (f"the nearest neighbour of {int(y)} building ID is located in min_sorted_list} meters")

In addition, if the maximum, mean, and average distances are needed, the following
attributes of Geopandas in the codes can be applied:

maximum_distance = distance.max() mean_distance = distance.mean()

Data acquisition Ill: main angle and orientation of buildings

The orientation of the building is a factor of paramount importance that affects the
incident solar radiation and the absorbed heat wave. According to Mondal, a building
with an E-W orientation has maximum solar gain, and a building with an N-S orientation
has minimum solar gain (Mondal, 2018). Since data collection aims to create a
predictable and explainable ML UHI model, the sub-scoring of buildings oriented in the
NE-SW and NW-SE is crucial because it shows how buildings are exposed to solar
radiation and receive heat waves.

The orientation of a building is important for understanding its exposure to solar
radiation and heat waves. The conventional axes are used to denote directions, with east
being 0 degrees and angles calculated in an anticlockwise direction. The main angle of a
building is located on the right side, while its orientation is the direction or angle to which
its length is facing. Figure 9 shows how building direction and angle are calculated using
QGIS Tools. The east direction (positive x-axis) is assumed to be 0 degrees, as shown in
Figure 9. The orientation of a building is the direction or angle to which its length is facing.
Since the axis of a building is parallel to its length, or conversely, perpendicular to its
orientation, the main angle of the building located on the right side of the following figure
is 45°. In contrast, the orientation of the building is 135° in the NE-SW direction.
Considering the building on the left side of the figure, the angle is 135°, the orientation
is 45°, and the direction is NW-SE.

Figure 9. Direction, angle, and orientation of buildings.
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The main_angle expression is used in the field calculator window of QGIS Tools to
determine the main angle of all buildings in the dataset. It is applied to all geometries by
calling Sgeometry in the expression part.

The final step in preparing the dataset involves appending other general and technical
characteristics of buildings at different levels of the hierarchical grid system. Tables 1, 2,
and 3 are used to collect this information. The resulting dataset includes information
about the characteristics of the buildings, their spatial indices on the hierarchical grid
system, the UHI value of each building, defined indexes based on buildings and different
zones in the city area, and weather data.

3.4 Step 2, Learn (‘L’ of ‘CLEAR’ model); Learning from the captured data

3.4.1 Machine learning process, predictive models

This section focuses on developing ML models, particularly predictive models, to construct
a learning algorithm based on ML. The goal is to apply these models in the subsequent
stage to extract ML models that are transparent and explainable.

The methodology employed in this research section draws upon the concepts
presented in Papers |l and Ill. The study is situated in urban studies and focus on the
implementation paradigm of urban assessment practice. These ML models were built
using a geoprocessed dataset, which forms a crucial component of Paper I.

The first step in designing an ML dataset is finding the most relevant data through
pre- processing. As a result, the type of features, their classes, and their range create and
define a raw tabular data set. Because the ML model algorithm requires not only
precision, accuracy, and minimum error to make an accurate prediction but also works
better with features with higher correlation rates, the dataset needs to be evaluated in
the pre-processing step to find and omit the data that is out of range. Therefore, while
the feature engineering process is performing, the raw input data was modified and
cleaned of outlier data (that falls outside the range) and features with the lowest
correlation. Figure 10 shows the processes of training and testing of a ML model.

[Phase 1: Model Training]

-

B = i = )1

Machine Learning Predictive Model

Input Data Algorithms

[Phase 2: Model Testing]

o= s = @

New Data Predictive Model Outcomes
Prediction

Figure 10. ML training and scoring process.
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An extensive multidisciplinary dataset that contains 34,001 building samples (rows) and
30 features (columns) of Tallinn, Estonia (Eslamirad N., 2023) including the characteristics
of the buildings and their neighbours in the hierarchical grid system (Eslamirad, De Luca,
Sakari Lylykangas, Ben Yahia, & Rasoulinezhad, Geoprocess of geospatial urban data in
Tallinn, Estonia, 2023).

The attributes of the dataset, derived from the original data sources, can be
summarized as follows:

e Object ID: A unique numerical identifier for each building

e Purpose of use: Categorization of buildings into Residential (for dwelling
purposes), Public (for public or common use like schools, shopping centers,
etc.), outbuildings (not used for residential or public purposes), Underground
buildings (no floors above ground), and Industrial facilities (for manufacturing,
production, or warehousing).

e  Material: The primary construction material of the building, such as stone, wood,
metal, composite material, or a combination of stone, composite material, and
metal.

e Absolute height (m): The highest point of the tallest structure in the building.

e Height (m): The vertical dimension of the building from the ground or
surrounding pavement to the highest point of the tallest structure, disregarding
minor local depressions and elevations.

e Area (m?): The total area of the building that both residential and non-residential
users commonly use.

e Length (m): The measurement of the building’s shape in terms of length.

e Number of floors: The count of horizontal planes within the building that can be
used according to their intended purpose.

The features of the dataset are Material, Height (m), Absoult Height (m), Number of
Floors Above Ground, Shape Length (m), Shape Area (m?), the spatial indices of buildings
on the hierarchical system grid, like, Built up area (G200, levell), Urban Density D1 (G200,
level 1), Urban Density D2 (G1000, level 2), Urban Density D1 (G2000, level3), Average
Building Area in G200 (m?), Max Area in G200 (m?), Number of Buildings in G200,
the defined indexes based on buildings and different zones in the city area, The Nearest
Neighbour (m), Green Area in G200 (m?), The Ratio of Green Area / Grid Area (G200),
Purpose of Building, Main Angle, Orientation, Height to wide (G200), the weather data,
and the UHI value of each building (Eslamirad N., 2023) (Eslamirad, De Luca, Sakari
Lylykangas, Ben Yahia, & Rasoulinezhad, Geoprocess of geospatial urban data in Tallinn,
Estonia, 2023).

Furthermore, the dataset incorporates meteorological data from the recorded UHI
dates in Tallinn. Table 4 provides an overview of the meteorological data within the dataset.

Table 4. The meteorological data in the dataset (Eslamirad N., 2023).

Date Dry Bulb Temperature (°C) Dew Point Temperature (°C) Wind Speed
(Ws) (km/h)
Highest Lowest Highest Lowest
02-06-2018 24 12 12 5 35
05-06-2019 28 14 15 12 15
25-07-2014 29 15 17 12 13
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The ML approach relies on the fundamental principle of learning algorithms derived
from identified patterns, structures, and correlations among labelled features and
targets. The Python environment is utilized for this purpose, enabling the prediction of
outdoor comfort data within an urban context.

To initiate the ML process, the first step involves importing the data in comma-separated
values (CSV) format into the Python environment. Subsequently, a data frame (Eslamirad,
De Luca, Sakari Lylykangas, Ben Yahia, & Rasoulinezhad, Geoprocess of geospatial urban
data in Tallinn, Estonia, 2023) is created to facilitate further analysis and modelling
(Eslamirad, De Luca, Sakari Lylykangas, & Ben Yahia, Data generative machine learning
model for the assessment of outdoor thermal and wind comfort in a northern urban
environment, 2023).

The aim is employing ML based models using geoprocessed urban data to clarify how
different urban features affect the UHI effect (Eslamirad, De Luca, Sakari Lylykangas, Ben
Yahia, & Rasoulinezhad, Geoprocess of geospatial urban data in Tallinn, Estonia, 2023).
The framework of the study comprises two sections, as Figure 11 shows.

The first section is related to the urban assessment practice of building explainable
ML models based on UHI phenomena to perform geoprocessing on the data (Eslamirad N.,
2023). The steps in this section to build the explainable ML model are:

1- Building the RF Classifier model

2- Finding the essential urban features (Permutation feature importance)

3- Finding the marginal contribution and threshold of the essential attributes

Feature Importance
Tree based '

ML model LIME

Dataset

‘Geoprocessingl \ _ MI approaches
Figure 11. Schematic diagram of the framework of building predictive and explainable ML models.

The geodata is integrated into QGIS Tool, and the data analysis is implemented in
Python 3 in the Jupyter notebook interface. The Python libraries used are NumPy and
Pandas for data manipulation, Matplotlib and Seaborn for visualization, and Geopandas
for geodata manipulation.

The objective of this section is to ascertain the significance of features influencing the
UHI effect and determine the pivotal thresholds within the ML model. The initial step
involved constructing a tree-based RF Classifier model, followed by the application of
methodologies aimed at comprehending feature roles within the dataset. Feature
importance analysis using the permutation importance technique was carried out on the
RF Classifier model.

For the preliminary stage of feature engineering, the UHI effect was categorized into
two classes: 30°C and 35°C. This consolidation facilitated the creation of a binary
classification model, distinguishing urban areas with and without the UHI effect,
represented by 29°C. Subsequently, the dataset was segregated into independent and
dependent variables to represent features and targets. The UHI effect level was designated
as the target variable, while the remaining factors served as features.
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3.5 Step 3, Extract (‘E’ of the CLEAR’ model); Extracting from models

3.5.1 Explainable machine learning model

This step presents an ML-based transparent model, explainable ML model, which explains
the importance of features impacting the UHI effect in urban areas. The explainable
model based on the RF model was built to analyze the performance and transparency of
the model. Transparency in ML refers to the ability to understand and interpret the inner
workings of a model (Ribeiro, S, & Guestrin, 2016). They typically operate by relating the
inputs of a model to its outputs without making assumptions about the internal workings
of the model. Based on learning theory, ML methods can extract meaningful information
and patterns from this data, allowing for the identification of practical solutions tailored
to the specific location and context (Milojevic-Dupont, Nikola, and Felix Creutzig, 2021).
The importance of informing how the machine makes models and predicts features
develops the idea of using the explanation of ML models. Explanations are essential to
trust that the predictions made by models are correct. The needs for explainable ML
models are because black-box ML models make it hard to understand and explain the
behavior of a mode (Ribeiro, S, & Guestrin, 2016).

Building and implementing explainable models

The implemented explainable ML-based models in the study are Local Interpretable
Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) models.
Both models aim to provide insight into how specific predictions were made (Lipton Z. C.,
2016).

3.6 Step 4, Apply (‘A’ of ‘CLEAR’ model); Application of the research

This section focuses on the practical implementation of the research findings, utilizing a
geoprocessed dataset encompassing UHI phenomena and urban data to apply in outdoor
thermal comfort and urban livability. Specifically, in this section the correlations between
building data, heat waves and ST were examined.

Urban planners increasingly focus on the impact of climate on urban development,
with a primary goal of improving residents’ well-being by creating more comfortable
environments. The quality of outdoor life is a crucial measure for assessing the urban
microclimate, and various design solutions are employed to enhance public spaces.
Moreover, research into urban-scale thermal comfort highlights the link between urban
and landscape planning, emphasizing the importance of considering pedestrians and
climate. This emphasis on outdoor thermal comfort has grown significantly since the early
2000s. The thermal comfort assessment used in Paper IV constitutes the quantitative
approach of Paper V, which seeks to assess the outdoor thermal comfort and thermal
sensation in an urban area.

The objective of this section is to propose effective mitigation strategies that enhance
thermal comfort in the studied areas of Tallinn, encompassing both the city and its urban
surroundings. Leveraging the insights obtained from the research outcomes and the
comprehensive geoprocessed dataset, the section aims to identify suitable measures and
interventions that improve thermal comfort in these specific areas.

In summary, this section utilizes the research outcomes, geoprocessed datasets
related to UHI phenomena and urban data to find the samples, and the established
correlations between building data, heat waves, ST, and outdoor thermal comfort.
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The ultimate goal is to propose mitigation strategies that optimize thermal comfort in
the case-studied areas of Tallinn. To achieve this, three case studies were conducted,
analyzing the area between the target building and the nearest adjacent neighbour
across the street. These case studies incorporate a geometric model of a real residential
building in Tallinn, the urban canopy, including neighbouring buildings, and the connecting
street. By representing the orientation of building mass, the aim is to explore the optimal
urban environment orientation that ensures the highest level of outdoor thermal
comfort and lowest ST in the analyzed area on a hot summer day.

The building direction often describes the orientation of the canyon axis (e.g., N-S,
E-W) or (NW-SE, NE=SW) (Erell, Pearlmutter, & Williamson, 2012). In the definition of
scenarios and the simulated models of the study, the orientation of the canyon axis
represents the direction of an elongated space, measured (in degrees) as the angle
between a line running N-S and a significant axis running the length of a street or other
linear area, measured counterclockwise. Figure 12 shows the mentioned orientations on
the axes of four main directions.

00

NE 315°
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!\
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180°
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Figure 12. The eight main orientations of the urban environment used in the study.

This study analyzes existing buildings in their actual orientation and other hypothetical
orientations. Thus, the orientations of 0°-180° refer to the extension of N-S and S—N,
and 270°-90° means the extension of the urban canyon is in the direction of E-W.

Furthermore, the orientation of 45°-225° refers to NW-SE, while the orientation of
135°- 315° goes back to South West- North East (SW-NE), respectively. Figure 13 displays
three selected residential case studies in Tallinn.
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Case study 1: XY coordination based on Google earth: 59°24°51" N24°44 18"E
Harju county, Talhnn Kesklmna district, Parnu mnt 110

b

= na"

Case study 2: XY coordmatlon based on Google earth: 59°26 08’ N24°49 15"E
Harju county, Tallinn, Lasnamae district, Pae tn 68

Case study 3: XY coordination based on Google earth: 59°25° 57 N24°46 45"E
Address: Harju county, Tallinn, Kesklinna district, Vesivdrava tn 50

Figure 13. Case studies of three residential buildings in Tallinn, Estonia.

Table 5 outlines the specifications of each case study. Moreover, Table 6 outlines the
characteristics that were considered when defining different scenarios during modelling
and simulations for case studies 1 through 3.

Table 5. Features of the main building in case studies.

Sample Height (m) Floors Length (m) Total area (m?)
Case study 1/M1 50 17 291.3 2258.4
Case study 2/M2 45.4 14 208.5 2093.3
Case study 3/M3 37.3 9 202.8 2470.6
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Table 6. The general features of the simulated models.

Scenarios of simulated case studies in the different extensions of canopy

Model Case study Orientation (°) Extension
M1 Csl 347 NE-SW
M2 Cs2 22 N-S
M3 Cs3 325 NE-SW
M1-1 Csl 0 N-S
M1-2 Csl 45 NW-SE
M1-3 Csl 90 W-E
M1-4 Csl 135 SW-NE
M1-5 Csl 180 S-N
M1-6 Csl 225 SE-NW
M1-7 Csl 270 E-W
M1-8 Csl 315 NE-SW
M2-1 Cs2 0 N-S
M2-2 Cs2 45 NW-SE
M2-3 Cs2 90 W-E
M2-4 Cs2 135 SW-NE
M2-5 Cs2 180 S-N
M2-6 Cs2 225 SE-NW
M2-7 Cs2 270 E-W
M2-8 Cs2 315 NE-SW
M3-1 Cs3 0 N-S
M3-2 Cs3 45 NW-SE
M3-3 Cs3 90 W-E
M3-4 Cs3 135 SW-NE
M3-5 Cs3 180 S-N
M3-6 Cs3 225 SE-NW
M3-7 Cs3 270 E-W
M3-8 Cs3 315 NE-SW

The methodology is designed with five sequential steps, beginning with Step 0 for data
acquisition and concluding with Step 4 for inventory creation and the application of the
study (Figure 14).

level 0: Capturing data
level 1: Sampling

level 2: Simulation
level 3: Assessment
level 4: Application
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Figure 14. Application of the model: structured steps for urban canyon optimization.

3.6.1

Substep 1: Sampling and finding critical urban canyons

In this section, the study mainly concentrated on residential buildings that are critical
cases in the city and experience high intensities of temperatures in the environment,
according to the city’s UHI data. Thus, the dataset was initially filtered to divide the data
according to purpose and directed attention to residential building use. Figure 15 shows
the correlation between features that helps to understand which feature has more
significance to be concentrated when the heat wave and UHI phenomena in the urban
area are concentrated. This is the concept of sampling and finding case studies.

Urillevel

Height (m) -
NumberofFloorsAboveGround -
ShapeArea(m2) -
Shapelenght(m) -

Extension- NW-SE -

Extension- NE-SW

MaxWindspeed

The NearestNeighbour(m)

Extension-g.w

Extension-N-S

Features Correlating with UHIlevel

0099

0046

0077

2081

019

Ullevel

-100

--0.50

--0.75

Figure 15. Dependency values between the features of the dataset and the UHI level.
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In the initial histogram, the area of the buildings was considered. This data is random
and lacks an identifiable pattern. As illustrated in Figure 16.a, buildings larger than
2,000 m? have less frequent footprint areas in the dataset. Because of this, the entire
dataset was examined to differentiate between buildings with an area greater than
2,000 m? and identify the tallest buildings, which are not as frequent in this dataset. Thus,
as the histogram shows, filtering the dataset to the highest volume buildings helps to
find which buildings are the critical cases to study. In addition, Figure 16.b shows samples
in the highest area and height of residential buildings in the UHI dataset (more correlated
features with the UHI effect) with an area of more than 2000 m? and a height of over
30 m. The graph shows fewer samples with an area higher than 2000 m? and a height
higher than 30 m. Consequently, Figure 16.b reveals samples that meet the research
question’s goal, pointing to some residential buildings in the UHI dataset with an area
greater than 2000 m and a height above 30 m. The selected samples with an area of more
than 2000 m and a height of over 30 m are shown in red.
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Figure 16. Sampling by using a histogram to choose case studies from urban UHI dataset.

3.6.2 Substep 2: Simulation of buildings at an urban scale

The focus of step 2 is on the geometric modelling and simulation process of case studies
in different scenarios to verify outdoor thermal comfort and solar access. Based on the
sampling results and the UHI dataset, three urban canyons with high-volume residential
buildings in Tallinn, Estonia, were chosen.

To conduct CFD simulation, a three-dimensional computational model of fluid dynamics
and energy balance, designed to simulate the microclimate of the study at street level,
was employed. The simulation is performed using ENVI-met, a software package
specifically developed for urban microclimate modelling.

To assess outdoor thermal comfort, the PET index, which measures the combined
effect of AT, RH, WS, and radiation on human thermal comfort, was utilized. PET uses the
range of thermal index predicted by human beings and physiological stress on human
beings (Cohen, Potchter, & Matzarakis, 2013). The PET index is based on the Munich
Energy-balance Model for Individuals (MEMI), which is a two-node model that simulates
the thermal balance of the human body in a physiologically relevant way (Deb &
Ramachandraiah, 2010).

Through the utilization of this index, it becomes feasible to assess the thermal comfort
of the outdoor environment across various scenarios and detect potential concerns
associated with heat stress and discomfort. Table 7 shows thermal perception and
the ranges of PET in each thermal comfort class. Also, ST, a crucial parameter for
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comprehending the potential effects of absorbed solar radiation, was evaluated. This
assessment holds the potential to elucidate heightened ST, which in turn can contribute
to the UHI effect (Ul Moazzam, Hoi Doh, & Gul Lee, 2022), exacerbate heat waves, and
influence the overall thermal performance of buildings and outdoor areas in response to
various factors.

Table 7. The range of thermal index predicted thermal perception by human beings and physiological
stress on human beings (Cohen, Potchter, & Matzarakis, 2013).

Thermal Perception Grade of physiological stress

PET(°C) Thermal Perception Grade of physiological stress
Very cold Extreme cold stress
4
Cold Strong cold stress
8
Cool Moderate Cold stress
13
Slightly cool Slight cold stress
18
Comfortable No thermal stress
23
Slightly warm Slight heat stress
29
Warm Moderate heat stress
35
Hot Strong heat stress
41
Very hot Extreme heat stress
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4 Results and discussion

4.1 Results of step 1: Data capture; geoprocessed urban data

The dataset used in the thesis was obtained through geoprocessing, programming, and
analysis techniques (Eslamirad N., 2023) as a result of the first step of the CLEAR model
(Paper I). The dataset served a dual purpose in the subsequent stages. It was not only
employed for constructing the ML models but also possesses the versatility to be utilized
in other research endeavors and projects associated with the building and urban data of
Tallinn, Estonia.

The utilization of an ascending hierarchical grid system is based on the concept of
dynamic variation within urban areas. It considers the structure of the data, its features,
and its location. To process the data, Python programming packages, and the QGIS Tool
were employed for geoprocessing, capture, and analysis.

The dataset presented is extensive and encompasses various disciplines. It consists of
34,001 building samples collected from all eight districts of Tallinn. The dataset includes
location, building characteristics, urban characteristics, UHI data, and climate data
(Buildingdata, n.d.; keskkonnateadlik hub, n.d.). The proposed methodology to
capture urban data establishes a framework to classify the data into homogeneous or
heterogeneous, static or dynamic schemes, and then collects the data while considering
the homogeneous grid system.

In practical terms, the hierarchical structure guarantees an effective method of
gathering data according to location. It achieves this by creating a spatial index for every
object on the map and associating them with specific grid cells. This division of the Earth
into identifiable grid cells allows for efficient analysis of large sets of spatial data. Each
grid in this structure contains consistent and unchanging data in one layer and
encompasses all the points, shapes, and other identifiable components within that grid.
This hierarchical approach improves the organization and retrieval of spatial data,
making it easier to access and manage. Additionally, this solid hierarchical grid system
can handle static and dynamic data, allowing for the integration of different types of
information (Eslamirad N., 2023).

Implementing the hierarchical grid system in the data collection process has a number
of advantages. First, it enables the creation of a spatial index for each object and establishes
a connection between the objects and the grid system. Second, it utilizes the homogeneous
ground to define an urban index primarily based on the heterogeneous data (Eslamirad N.,
2023). The meteorological conditions related to the days that the UHI value was measured
in the summer of 2014-2019 were assigned to the dataset. The weather data resource
is the Underground website (Eslamirad N., 2023).

4.2  Results of step 2: Learning; predictive models

The outcome of Step 2 adds value to the field of ML by underscoring the advantages of
model simplification through numerical feature emphasis. The findings obtained from
this study have the potential to facilitate the development of efficient ML models that
utilize the intrinsic characteristics of the dataset's features.

This section presents spatial data and UHI data acquisition to build a dataset that is
used to build an ML-based transparent model, which explains the importance of features
impacting the UHI effect in urban areas.
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The dataset was further divided into training and testing subsets. After establishing a
model based on the RF model, rigorous assessments of model performance and accuracy
were conducted to ensure its efficacy. Notably, precision assumed a critical role
given the emphasis on maximizing model performance within this context. The model’s
accuracy is 90%, while the precision is 82% and 92% in classes 1 and 2, respectively.
Impurity-based feature importance breaks the relationship between the feature and the
target. Thus, the drop in the model score indicates how much the model depends on the
feature. For example, according to the bar chart in Figure 17, the numerical feature
related to the ‘Built Area in G200’, the built area in the minor grid of the defined
ascending hierarchical grid system, is the most significant; after that, ‘Angle,” ‘Height,” and
‘Shape Area’ of the building are the most important features. The last essential features
are ‘Purpose of Building’ and ‘Material,” which are categorical.

Random Forest Feature Importances (MDI)

BuiltAreaG200

Angle
Height
ShapeArea
GreenAreainG200
NearestNeighbour
Shapelenght

PurposeofBuilding

Material

F T T T T T

00 01 02 03 04 05

Figure 17. The importance of features in the classifier ML model (Eslamirad, De Luca, Ben Yahia, &
Lylykangas, 2023).

According to the impurity-based feature importance, ‘BuiltAreaG200’, ‘Angle,” ‘Height,’
and ‘ShapeArea’ of the building are the most important features that impact the labelling
of a sample in the class with the UHI effect. Furthermore, the results show that when the
value of the feature of ‘BuiltAreaG200’ increases to more than 10000 m?, the building is
more likely to be classified in UHI class 2, and the UHI effect is more than 30°C. To check
the results of feature importance, the initial dataset used for the model creation was
considered.

The samples show that just 5.9% of samples with a value of ‘BuiltAreaG200’ greater
than 10000 m? are in UHI class 1 (lower than 30°C). Therefore, the transparent ML model
results show that the feature importance in the classified model is trustable. Subsequently,
the methodology of the study and Explainable model can be applied to develop mitigation
strategies to improve the quality of the microclimate conditions in the urban area in
other climatic conditions. However, the results rely on site-specific data.
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4.3  Results of step 3: Extracting; Results of explainable models

Each attribute holds a certain weight in predicting the occurrence of a class depending
on a particular threshold. To explain the decisions behind the ML model, the marginal
weights of four top features ranked as the most significant attributed to the impurity-based
feature importance were interpreted.

In the next step, two explainable models based on the Random Forest (RF) model were
employed to assess the model’s performance and transparency. These models typically
function by establishing a connection between the model’s input and its outputs, without
making assumptions about the model’s internal mechanisms. The study implemented
two explainable ML-based models: LIME, which simplifies explanations, and SHAP
models, which provide insights into feature relevance. Both models are geared towards
shedding light on the specific reasoning behind the model’s predictions (Lipton Z. C.,
2016). Each attribute carries a particular weight in predicting the occurrence of a class,
contingent upon a specific threshold. To elucidate the rationale behind the ML model’s
decisions, the marginal weights of the top four features, ranked as the most significant
based on impurity-based feature importance in Figure 17, were interpreted.

4.3.1 Substep 1: The explainable model of LIME

According to Figure 18, LIME predicts class 1 with 46% and class 2 with 54% confidence.
The first important attribute, ‘BuiltAreainG200’, indicates the threshold of 10805, meaning
above the value, the value increases the chance to be labeled in class 2 with a weight of
0.12, whereas below, it increases the chance of being labeled in class 1 with a weight of
0.12. The following important attribute, ‘Angle,” indicates the threshold of 133°, which
means when the angle of the building is higher than 133° the UHI class is more likely to
be class 2, but a lower angle will lead the sample to be labeled in class 1 (without UHI).
The next is ‘Height,” while 4 m is the threshold to label a building in class 2, otherwise in
class 1. In addition, the feature of ‘ShapeArea’, which refers to the area of buildings in
the dataset, with a threshold of 70.5 m?, shows that when the area of the building is
higher than 70.5 m?, the sample has a better chance of being labeled in class 2 (UHI
level = 30°C); otherwise, it will be in class 1.

1 1

Prediction probabilities GreenAreaG200 > 0.00j GreenAreaG200 > 0.00
1 0. ]'d 0.17
2 l()f(})C:vaO() < BuiltAreaG... 10805.00 < BuillAr:Ts}...
70.50 < ShapeArea <=... 70.50 < ShapeArea <=...
| 0.07
36.00 < ShapeLenght <... 36.00 < ShapeLenght <...
0.03 0.03
Height <= 4,00 Height <= 4.00
0.01 0.01
0.00 < NearestNeighb... 0.00 < NearestNeighb...
0.0 0.01
Angle > 133.00 Angle > 133.00
0.00 0.0

Figure 18. The threshold and value of top features in the LIME Explainable model (Eslamirad, De Luca,
Ben Yahia, & Lylykangas, 2023).
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4.3.2 Substep 1: The explainable model of SHAP

SHAP is the most popular explainable model, based on coalitional Game Theory (Shapley
values), and involves identifying the essential features that contribute to the model’s
predictions to explain and interpret the coefficients as the feature’s importance.
In the plotted results of the SHAP model, the red marks push the prediction of the UHI
value higher toward the base value (about 30°C), while the blue marks just push the value
lower than 30°C (Figure 19).

higher = lower
base value f(x)
2954 29.59 29.64 29.69 29.74 29.79 29.84 29.89 29.9394 29.99 30.04
GreenAreaG200 = 41 BuiltAreaG200 = 482 ShapeArea = 169 ' ShapeLenght = 54

Figure 19. Performance of the SHAP explainable Model (Eslamirad, De Luca, Ben Yahia, & Lylykangas,
2023).

Moreover, according to the plot of dependency in Figure 20. a, between all the most
significant values in the model, the shape value increases with an increase in the value
of ‘BuiltAreainG200’ as the highest feature value in the SHAP model, in the wide range,
and then ‘ShapeArea’ and ‘Angle’ as the second and third features. Also, Figure 20.b
shows dots as a single prediction (row) from the dataset. In addition, the x-axis is the
value of the ‘BuiltAreainG200,” and the y-axis is the SHAP value for that feature, which
represents how much the value of the feature changes the model's output for that
sample’s prediction. Moreover, the red dots represent the feature of ‘ShapeArea’ as a
second feature that may interact with the plotted feature. Therefore, as the plot
indicates, the high value of ‘BuiltAreainG200’ and ‘ShapeArea’ maximizes the SHAP value.
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Figure 20. The plot of the dependence (a), the scatter plot of ‘BuiltAreainG200’ in SHAP value (b)
(Eslamirad, De Luca, Ben Yahia, & Lylykangas, 2023).
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4.4  Results of step 4: Application of the research findings

4.4.1 Substep 1: Assessment of thermal comfort and surface temperature
Through the CFD simulation and analysis, output data related to the thermal comfort of
people at the pedestrian level and the ST of the urban area under different scenarios were
acquired.

To evaluate thermal comfort, a comprehensive approach to evaluating the thermal
performance of the studied urban area under different scenarios was used. The first
thermal comfort analysis is about finding the non-uniform spatial distribution of PET in
each particular scenario in the urban canopy between the target building and the nearest
neighbour.

The second analysis aims to create a model based on the scoring system to show the
uniform or normalized spatial distribution of PET. The normalized PET of the urban
canyon in each scenario is the weighted PET value calculated by considering the quality
and quantity of PET data. The highest value of the weighted PET leads to finding the
optimal degree of orientation in the urban canyon.

The scoring system that was implemented considers the thermal comfort level at each
point in the canopy area. The scoring system allows one to calculate the overall level of
comfortability at the pedestrian level by combining the scores of all the individual points.
In addition, the ST assessment of the studied areas was performed using the results of
the CFD simulation. Overall, the orientations lead to the lowest ST highlighted as the
optimum building mass extension and taken into account in the final assessment to
determine the best urban environment orientation to ensure comfortability.

4.4.2 Substep 2: Application to find the optimal building mass orientation
Output data related to the optimal building mass orientation is helpful to imagine more
sustainable solutions in cities. Furthermore, by improving outdoor thermal comfort and
ST in urban areas and leveraging UHI data, the study provides valuable insights into the
thermal performance of the studied urban area.

The evaluation is particularly beneficial to guide urban planners and architects in
proposing mitigation solutions to enhance thermal comfort in cities and create suitable
conditions for achieving approved thermal comfort levels with complementary solar
access in the city area. With this information, planners and architects can make more
informed decisions about the design of new buildings, the placement of green spaces
and other urban elements, and the use of shading devices and other technologies to
reduce heat gain and improve outdoor thermal comfort.

Overall, the study’s findings highlight the importance of considering outdoor thermal
comfort and solar access in urban design and planning to create more livable and
sustainable cities.

48



CFD simulation and numerical analysis
The section is related to the CFD simulation and the numerical analysis to assess the
outdoor thermal comfort and ST in the studied areas. CFD simulation is used to simulate
the microclimate of the studied area at street level, considering the influence of various
factors on thermal comfort, such as AT, RH, WS, and radiation. By combining CFD
simulation and numerical analysis, a holistic comprehension of the thermal performance
of the studied area is achieved across diverse scenarios. This information can then be
used to identify potential issues related to heat stress and discomfort and propose
mitigation solutions to improve outdoor thermal comfort.

Figure 21 and Table 8 show more detailed information about the areas focused on in
the CFD simulation and the area of the urban canyon in which PET results were evaluated.

Figure 21. The Canopy areas (the hatched rectangular shapes) and the whole simulated areas of each
case study (the dashed rectangular shapes) (a) The Canopy area, cases study 1; (b) The Canopy area,
cases study 2; (c) The Canopy area, cases study 3, (e) The whole simulated area, case study 1;
(f) The whole simulated area, case study 2, (g) The whole simulated area, case study 3.

Table 8. Detailed information about the CFD simulated areas of each case study.

Case studies Canopy area (m?) Simulated area (m?)
Case study 1 20,650 5,000

Case study 2 15,000 770

Case study 3 12,700 1,400

Different scenarios of case studies were simulated based on the specific orientation of
the canopy extension, including E-W, N-S, Southeast Northwest (SE-NW), and Northeast
Southwest (NE-SW).

ENVI-met requires information about surrounding environmental features and
meteorological data to conduct the CFD simulation of the generated geometric models.

The input data for the simulation models are the physical properties of the studied
urban areas (buildings, soil, and vegetation) and geographic and meteorological data
(Yahia & Johansson, 2012). This study conducted the CFD simulation on July 25, 2014,
during a high UHI and heat wave period (Yahia & Johansson, 2012). The simulated period
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lasted from 16:00 to 17:00, including the maximum AT during a summer day of 28°C.
The outdoor thermal comfort assessment was conducted at 17:00 and evaluated at
1.80 m, the average human height. Simple forcing was used in all scenarios to adjust for
the meteorological conditions, creating a 24-hour weather data cycle that defined the
meteorological boundary conditions for the ENVI-met simulation.

Table 9 gives information about the weather condition of Tallinn on the supposed date
and time that was chosen for the CFD simulation.

Table 9. The input meteorological data during the CFD simulation by ENVI-met.

Date: July 25, 2014. Time: 17:00.
Temperature (AT) (°C) Max 28/Min 17
Relative Humidity (RH) (%) Max 75/Min 45

Wind speed (WS) at inflow border at inflow border (m/s) = 2.00

Wind Direction (WD) at inflow (°) 90.00
Roughness length (m) 0.010
Specific humidity in 2500m (g/kg) 8.00

Outdoor thermal comfort assessment

PET, expressed in °C, is based on the human energy balance model MEMI and includes
the physiological thermoregulatory processes of human beings to adjust to a climatic
situation outdoors. The thermal comfort zone for the PET index was initially defined as
18-2°C (Yahia & Johansson, 2012). In this section, the authors listed all the parameters
used in the CFD simulation. Also, during the simulation, the building’s indoor temperature
was set to a constant value of 20°C. Therefore, the outside microclimate did not influence
the building temperature. Overall, using the PET index and CFD simulations is a useful
approach to assess the thermal comfort of the studied area. By taking into account the
physiological thermoregulatory processes of human beings and using advanced simulation
techniques, a more accurate and comprehensive understanding of outdoor thermal
comfort in urban areas will be achieved.

Thermal comfort is a subjective concept that depends on personal features and
describes a person’s state of mind regarding whether they feel comfortable (Faria Neto,
Indcio, Wurtz, & Delinchant, 2016). Thus, once the meteorological data and environmental
characteristics are added to the input data used in the CFD simulation, thermal comfort
in PET indices needs to set the individual personal data that are supposed as the users of
the urban areas.

In this section, PET is taken as the outdoor thermal comfort assessment and calculated
just for a male pedestrian wearing very light summer clothes in the standing position
with the walking speed of 1.2 m/s. For a simple PET assessment process, just male
pedestrians wearing unique clothing values with normal body parameters were
considered. Table 10 shows other personal parameters used in PET evaluation.
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Table 10. Personal parameters applied in PET assessment in ENVI-met simulations.

Basic personal parameters

Age of the person 35
Weight (kg) 75
Height (kg) 1.75
Surface area of the body (sm?) 191
Clo 0.10
Metabolic work(W) 164.70

Surface temperature assessment

The assessment of the ST of the urban canopy in each scenario is a valuable approach to
understanding the impact of changes in canopy orientation on urban temperature. By
analyzing the minimum, maximum, and median values of ST, the optimum orientation of
the canopy for maximizing thermal comfort and decreasing temperatures on urban
surfaces can be identified. Additionally, the ST is a crucial metric for evaluating the UHI
effect because it shows how much heat the surfaces of the urban environment have
absorbed. Thus, by reducing ST, it is possible to mitigate the UHI effect and improve
thermal comfort for pedestrians.

Through the ST analysis, the impact of canopy orientation on ST and the optimal
orientation that reduces ST and maximizes thermal comfort can be determined. This
information can then inform urban planning and design strategies that prioritize thermal
comfort and sustainability. It is important to consider these orientations as they can cause
more heat on urban surfaces and potentially result in lower levels of thermal comfort for
pedestrians.

According to Figures 22.a and 22.b, in case studies 1 and 2, scenarios M1-8, M1-6 (24.9
and 28.3°C), and M2.8, M2.6 (24.3 and 24.4°C) have the lowest median ST when oriented
at 315°C and 225°C, respectively. This suggests that these orientations can provide the
highest thermal comfort for pedestrians in the case studies. Likewise, Figure 22.c shows
in case study 3 that the median ST data is observed in M3-5 and M3-4 (22.4 and 23.6°C)
with orientations of 180°C and 135°C, respectively. The finding indicates that these
orientations can also provide high thermal comfort for pedestrians in this case study.
Furthermore, in case study 1, the orientations with the highest median of ST are M1-1,
M1-2, and M1-3, with orientations of 0°, 45°, and 90°, respectively. In case study 2,
the orientations with the highest median of ST are M2-1, M2-4, M2-2, and M2-3, with
orientations of 0°, 135°, 45°, and 90°, respectively.

Finally, in case study 3, the orientations causing the highest median of ST in the analyzed
areas are M3-2, M3-1, M3-3, and M3-8 with orientations of 45°, 0°, 90°, and 315°,
respectively.

This section presents the results of outdoor thermal comfort, expressed in terms of
the PET index and ST in degrees centigrade (°C), to choose the best orientations in each
case study that lead to the highest comfort level. The spatial distribution of outdoor
thermal comfort in terms of the metric PET was calculated via simulation for all scenarios
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in three case studies. The thermal comfort assessment results are explained in two
forms: non-uniform and normalized spatial distributions of PET.

Surface Temperature (°C), Case study | Surface Temperature (°C), Case study 2 _ Surface Temperature (°C), Case study 3
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Figure 22. Results of ST (°C) in the urban canopy of different scenarios (a), Case study 1, (b) Case
study 2, and (c) Case study 3.

Non-uniform spatial distribution of PET

Figures 23, 24, and 25 show the initial results of PET for case studies in a different
scenario, taking into account the input setting, meteorological data, and parameters
during the CFD simulation in the defined canyon orientation.

For example, in Figure 23, the initial results of PET assessment in different scenarios
of case study 1 are demonstrated. Furthermore, Figures 24 and 25 show the results of
the PET assessment of case studies 2 and 3, respectively.

It can be seen in the line graph in Figure 23 that, although the minimum value of PET
in all scenarios is almost the same, different scenarios have different values in the
average, median, and maximum of PET. Likewise, M1 with the original orientation of 347°
NE-SW has the lowest minimum value of PET, while the other values are even higher
than others. Moreover, M1-1 and M1-5, with orientations of 0 and 180°, have the highest
values of the maximum and median of PET. Likewise, a comparison of all different
orientations in the urban canopy of case study 1 indicates M1-2 with an orientation of
45°has the lowest median PET value compared to other scenarios.
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Figure 23. Graphical distribution of PET in different canyon orientations, obtained from CFD
simulation, cases study 1, Scenarios: M1, M1-1, to M1-8. For the configuration shown in (a), The line
graph shows the minimum, average, median, and maximum of PET in each scenario, Spatial
distribution of PET: (b) M1 (c) M1-1, (d) M1-2, (e) M1-3, (f) M1-4, (g) M1-5, (h) M1-6, (i) M1-7, (k) M1-8.
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Figure 24. Graphical distribution of PET in different canyon orientations, obtained from CFD simulation,
cases study 2, Scenarios: M2, M2-1 to M2-8. For the configuration shown in (a), The line graph shows the
minimum, average, median, and maximum of PET in each scenario. Spatial distribution of PET: (b) M2
(c) M2-1, (d) M2-2, (e) M2-3, (f) M2-4, (g) M2-5, (h) M2-6, (i) M2-7, (k) M2-8.
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Figure 25. Graphical distribution of PET in different canyon orientations, obtained from CFD simulation,
cases study 3, Scenarios: M3, M3-1 to M3-8. For the configuration shown in (a), The line graph shows
the minimum, average, median, and a maximum of PET in each scenario, Spatial distribution of PET,

(b) M3 (c) M3-1, (d) M3-2, (e) M3-3, (f) M3-4, (g) M3-5, (h) M3-6, (i) M3-7, (k) M3-8.

Thus, there are different measures of PET, such as the minimum, maximum, median,
and average values, which can vary depending on the scenario. But, based on the initial
evaluation of PET of the simulated scenarios, it is impossible to conclude which orientation
offers a higher level of thermal comfort. Therefore, the non-uniform spatial distribution
of PET can indeed make it difficult to interpret the results of the study and draw definitive
conclusions about which scenario offers a better level of thermal comfort at the pedestrian

level.
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Normalized spatial distribution of PET

According to Joshi et al., measuring subjective experiences or phenomena can be a
challenging task, as they are often difficult to quantify using conventional measurement
techniques (Joshi, Kale, Chandel, & Pal, 2015). Therefore, for a thorough analysis and to
determine the optimal orientation of the urban canopy within various scenarios, it is
imperative to take into account both the frequency of PET data at each level and the
highest, lowest, and average PET values within each urban canyon.

Therefore, evaluation scales can be presented in various graphical ways with different
levels of detail, and no standard gives specifications on the choice of the most suitable
configuration; thus, the selection is often a matter of the specifications of the study
(Giampaoletti, et al., 2020).

In the study, Nazarian et al. used the continuous Outdoor Thermal Comfort Autonomy
(OTCA) scale as a metric to measure outdoor thermal comfort. According to the authors,
OTCA considers the percentage of time an outdoor space is within the desired thermal
comfort range, including periods where the thermal comfort level is below the threshold.
It is an extension of Spatial OTCA, which is defined as the percentage of outdoor space
that is within the desired thermal comfort range for at least half of the occupied time
(over a year or a prescribed period of use) (Nazarian, Acero, & Norford, 2019).

Here, a weighted scale was designed to consider the level of thermal comfort in the
studied areas and rank the PET data based on the frequency of data in each PET class. As
a widespread scale used in different areas like psychology, sociology, health care,
marketing, attitude, preference, customers’ quality perceptions or expectations, and
subjective well-being in health care, Likert scales have wide applications in different
sciences (Chakrabartty, 2014). In addition, Likert scales are examples of such scales in
Psychometrics used widely in social science & educational research (Joshi, Kale, Chandel,
& Pal, 2015). Therefore, the Likert scale was designed to weigh the PET classes and rank
the importance of data at each thermal comfort level.

Figure 26 shows the Likert scaling system applied in the study.

+4 +3 1 -3 -4
L | | |

| |
L e ol

> -
Comfortable 23 Slightly warm 29 Warm 3s Hot 41 Very hot

Figure 26. Five-point Likert scale used in the PET analysis of scenarios.

Each item in the Likert scale usually has an odd number of response categories, up to
five or seven levels (Chakrabartty, 2014), and is named the five-point or seven-point
Likert scale. Here are five points: The Likert scale was applied by considering the
comfortability of the area that the Likert scale should measure and assigning the highest
indicator equal to +4 to the PET class of Comfortable, +3 to Slightly Warm, +1 to Warm,
and the negative scores to the worst classes of PET that cause a high level of discomfort
in the urban area, meaning -3 and -4 to Hot and Very Hot classes.

56



Statistical methods and exploration of data

In this section, to better interpret the results of the overall thermal comfort level of each
scenario, not only considering the arithmetic and mathematical average of PET, but also
taking into account the frequency of data in each level of PET is essential. Therefore, it is
an excellent approach to consider the frequency of data at each level of PET to better
interpret the results of each scenario’s overall thermal comfort level. Accordingly, at first,
the results of the PET assessment of each scenario were sorted as the experimental data
in a matrix and split into five levels of thermal perception.

To describe the process of analyzing the results of a study on thermal comfort levels
in different urban scenarios, it should be mentioned that, at first, the results of the PET
assessment of each scenario were split into five levels of thermal perception based on a
five-point Likert scale. To better understand the distribution of PET data in each thermal
comfort level, an experimental matrix and pie charts that show the percentage of PET
data distribution of scenarios in different classes of PET (Figures 27, 28, and 29) were
created.
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Figure 27. The distribution of PET data in each class of PET/ Case study 1.
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Figure 28. The distribution of PET data in each class of PET/ Case Study 2.
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Figure 29. The distribution of PET data in each class of PET/Case Study 3.

The experimental matrix contains the thermal perception of all scenarios and the
arithmetic average (mathematical average) of PET at each thermal comfort level, starting
from comfortable to very hot. Moreover, the quantity of PET data in each thermal
comfort level is counted to understand how much of each urban areain the urban canopy
offers the considered thermal comfort level. To further refine the analysis, the Likert
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scaling system was applied to assign a score to each thermal comfort level that reflected
its importance. By combining the arithmetic average of PET in each thermal comfort level
with the weight or value of each thermal perception level and the quantity of PET data
in each level, it is possible to obtain a more accurate and meaningful measure of the
overall thermal comfort level of each scenario.

Hence, a statistical approach was established, employing the arithmetic mean of PET
within each thermal comfort level. This classification ranged from the comfortable zone
with PET below 23°C, signifying the comfort zone, to the very hot level with PET surpassing
41°C.

The next step is calculating the statistical average of each PET level by multiplying the
arithmetic average of each PET level by the weights of the Likert scale and the respective
count of data in each PET level. Therefore, Equation 1 shows the final formula that shows
the Weighted mean (WM) of PET (Wm-PET), that is used in the PET exploration method,
and Figure 30 is the schematic diagram of the model to evaluate PET in each scenario.

n

n
Weighted Mean (Wm) = E (xi = wi)/ Z wi
ni=1

ni=1
Wm = wixi + Waxz +...... + WnXn/W1 + W... + Wh

Where: 5 denotes the sum
w is the weights, and x is the value of PET
In cases where the sum of weights is 1,

n
Wm = Z (xi * wi)
ni=1
Equation 1. The formula of Weighted mean of PET

Outdoor thermal comfort data:
Results of CFD simulation

}

‘ Quantity of data of each PET class ‘ ‘ Weight: Quality of data of each PET class

\ | )
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+4 3 1 3 1
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Weighted Average of PET in each scenario = A(°C)* Count * Likert scale

Figure 30. The evaluation model for PET value.
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Assessment and analysis of urban thermal environment
The next step is calculating the statistical average of each PET level. For example, to
calculate the Wm-PET for scenario M1, the arithmetic average of each PET level (22.5,
24.6, 34.5, 38, and 43.4) was multiplied by the weights of each response in the Likert
scale (4, 3, 1, -3, and -4), and then each of those values was multiplied by the count of
responses (0.064, 0.597, 0.022, 0.233, and 0.083).

For example, for PET level 1 (Comfortable), the Weighted score (Ws) would be:

(22.5 %4 % 0.064) = 5.76

The process is repeated for each PET level, and then the weighted scores of PET
(Ws-PET) for all PET levels are summed up to get the overall Wm-PET in scenario M1.
The calculation for the overall Wm is:

Wm_PET, M1 = (Ws_PET levell) + (Ws_PET _level2) + ... + (Ws_PET_level5)
= (22.5+4%0.064) +(24.6%3+0.597) +(34.5 %1 %0.022) +(38 % (-3) #0.233) +(43.4 * (-4) +0.083)
=57+44.1+0.8-26.6-14.5=9.5

Therefore, the Wm-PET in scenario M1 is 9.5, which represents the overall level of
perceived exertion for this scenario, taking into account both the quantity of data in PET
classes and the weight of each class as well as the arithmetic average of PET data in each
level. To report the result regarding the optimal orientation for achieving the highest
thermal comfort in different scenarios, the summarized weighted average of each
scenario is shown in Figure 31.

Outdoor thermal comfort (PET) Vs Orienation of urban canopy

(0°) N-S
100.0

50.0
* (45°) NW-SE (135°) NE-SW *

* (90°) W-E (270°) E-W *

v
* (135°) SW-NE - -~ (225°) SE-NW *

'\"\rThe highest PET = Case study 1
g —— Case study 2

@ The lowest PET (180°) S-N = Case study 3

X

Figure 31. The results of the weighted average PET of each case study in different orientations of
the urban canopy.

Based on the information in Figure 31, the highest thermal comfort value in the PET
index in case study 1 is observed in scenario M1-7 when the urban canyon is oriented in
the E-W direction (270°). For case studies 2 and 3, the highest PET levels were observed
in scenarios M2-7 and M3-4, respectively, with an orientation of 270°, an extension E-W,
and an orientation of 135°, the extension of South West to North East in urban canyons.
Based on the assessed outcomes of outdoor thermal comfort in the urban canopy of the
case studies, it seems that the extension of the canopy from N to S has the lowest thermal
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comfort value in all three case studies. This could be due to the fact that the sunis at a
high angle during the day, which can create hot and uncomfortable conditions in these
orientations. Additionally, as Figure 31 shows, the optimum orientation for outdoor
thermal comfort can vary depending on the specific features of the case study.

The study’s findings suggest that the orientation of urban canyons can significantly
impact thermal comfort and ST in urban environments. By considering the orientation of
urban canyons, urban planners and designers can optimize the design of urban
environments to prioritize the well-being of residents and visitors.

The study results are shown in Figure 32, which summarizes the finding that the
West-East and E-W orientations offer the best thermal comfort and lowest ST for all case
studies. However, the orientation of urban canyons should also consider the tallest
wall’s location in the canyon, as this can significantly impact thermal comfort and s ST.
Additionally, the study found that orientations of NE-SW and NW-SE offer optimum
thermal comfort for case studies 1 and 2 at the pedestrian level but create the lowest
thermal comfort for case study 3. Finally, the orientation from Southwest to Northeast
offers optimum outdoor thermal comfort for case studies 1 and 3. In contrast,
the orientation of south-east-northwest causes good thermal comfort only for case study
3. The optimal orientation for canopies varies depending on the specific characteristics
of each case study and its surroundings. In cases where a tall building is located on one
side of a canyon or street, the orientation of the canopy can play a significant role in
determining the levels of thermal comfort experienced in the shaded areas. For example,
in case studies 1 and 2, extending the canopy from NE-SW does not provide ideal shading
for the area due to the orientation of the taller building on the left side of the canyon.
This could result in high levels of PET in the shaded area, which could lead to discomfort
at the pedestrian level. On the other hand, in case study 3, where the taller wall of the
canopy is located on the right side, extending the canopy from NE to -SW could provide
better shading and improve thermal comfort. Therefore, it is essential to consider the
specific morphological features of the building and surrounding area when designing.

Mi1-3

M2-3

s 1(180°)

M2-4 i M2-6

Scenarios with the best
PET and ST values

Scenarios with the lowest
value of PET and ST

Figure 32. Final results regarding optimum thermal comfort and ST of each scenario in different urban
environments.
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The results can be beneficial in determining the optimal extension of the canopy layer
that maximizes thermal comfort, thus providing more areas of thermal comfort to
pedestrians.

Overall, this study’s findings can be helpful for urban planners and designers to create
more livable and sustainable urban environments that prioritize the well-being of
residents and visitors. In addition, by taking into account the specific features of the
urban canyon, planners can design and implement targeted strategies for shading,
ventilation, and other thermal comfort measures that can further improve outdoor
thermal comfort in the area.

This investigation aims to explore the effect of various orientations of the urban
canopy on the level of outdoor thermal comfort and ST during hot days, while the case
studies taken from the urban UHI data experienced substantial UHI. In this study,
numerical analysis and CFD simulations were used to evaluate thermal comfort and ST in
urban areas. This investigation aims to find the connection between building mass
orientation, pedestrian-level outdoor thermal comfort, and ST in the urban canopy area.
By identifying building orientations that lead to maximum ST and thermal comfort in the
urban area, urban planners and designers can choose more appropriate insights to
optimize thermal comfort and mitigate the UHI effect in cities. Thus, the findings of the
study can be applied to create more livable and sustainable urban environments that
prioritize the well-being of residents and visitors and mitigate the UHI effect in the urban
environment.

The results of the assessment of outdoor thermal comfort in the urban canopy can
provide important insights for urban planners and designers to optimize the extension of
the canopy layer for maximum thermal comfort. By identifying the ideal orientation for
the extension of the canopy layer, planners can create more areas of thermal comfort
for pedestrians, which can help improve the residents’ quality of life and well-being.
Furthermore, urban planning and associated elements extensively affect microclimatic
conditions in cities and the lifestyle and well-being of those who inhabit them.
Consequently, the study’s result can enhance the quality of urban areas by improving
thermal comfort and the temperature of surfaces in urban areas. In addition, the findings
of this study have the potential to apply to other locations in similar climates and
latitudes, especially in the early stages of designing cities or redeveloping and renovating
projects in urban areas.

Overall, prioritizing outdoor thermal comfort in the design and planning of urban
areas can have significant benefits for both residents and the city as a whole. By designing
urban areas that prioritize outdoor thermal comfort on hot summer days, planners can
create more livable and sustainable cities that are comfortable for residents and visitors
alike. In addition to the social and environmental benefits, there can also be significant
economic benefits. By reducing the demand for cooling energy during hot weather
conditions, cities can save on energy costs and reduce their carbon footprint.
The study shows that the orientation of the urban environment, buildings, and streets in
an urban canyon significantly impacts the thermal comfort levels experienced by people
in the area. The study also highlights the importance of building mass and the features
of the environment, such as the height and layout of canopy walls, in evaluating thermal
comfort and ST. By considering these factors when designing and planning urban
environments, urban planners and designers can create more comfortable and sustainable
living spaces for residents and visitors.
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5 Conclusion

The urban microclimate is a vital element within sustainable urban development,
exerting a significant influence on the well-being of city dwellers and playing a pivotal
role in critical environmental issues like the UHI effect and the occurrence of heatwaves.
The UHI effect, influenced by urbanization, significantly impacts global warming
assessments. Addressing these multifaceted challenges requires a comprehensive strategy
encompassing urban planning, architectural considerations, and environmental factors.

This thesis represents a pioneering application of data-driven methodologies and
techniques in addressing the intricacies of UHI effects and heatwaves. It bestows us a
geoprocessed dataset with the potential to illuminate the path for future research
endeavors, enriching our comprehension of urban features. In the thesis, the CLEAR
model is introduced as a comprehensive and innovative framework to tackle urgent
urban climate challenges, particularly addressing the UHI phenomenon. Additionally, the
ML models developed through this research offer practical solutions that can be
invaluable aids for architects, urban planners, and policymakers as they grapple with the
multifaceted challenges presented by urban climate dynamics.

To summarize the publications this thesis comprises, a series of papers collectively
explore various facets of urban microclimate research and cover the main outcomes of
the thesis.

The main research outcomes are as follows:

1. The introduction of a geospatial data workflow for studying Tallinn’s UHI
phenomenon and incorporating meteorological data from 2014-2019 provided a
comprehensive dataset for UHI analysis in Tallinn. Additionally, the geoprocessed
dataset can be particularly valuable for research related to buildings, their contextual
relationships, neighboring features, and other location-based data that require precise
assignment (Paper |);

2. Development of ML models to assess heatwaves and the UHI effect in Tallinn involved
leveraging urban, building, weather data, and UHI data. This process encompassed
quantifying, building a learning algorithm, and comprehensively understanding the
factors influencing the UHI effect using urban geoprocessed data. The outcome was
the creation of predictive ML models utilized in transparent and explainable models,
all offering valuable insights into these urban climate phenomena (Paper Il);

3. Utilization of ML techniques to create transparent and explainable models. These
models enhance our understanding of the built environment’s features, significantly
impacting the UHI phenomena. They shed light on the contributing factors and their
thresholds. Therefore, considering these features and their threshold values can
assist urban designers, architects, and policymakers in designing, redesigning, and
improving the current state of the built environment to effectively mitigate heatwaves
and the UHI effect in Tallinn (Paper Il1);

4. Presentation of a multi-objective optimization approach that considers the orientation
of buildings and urban canyons to reduce sun exposure on the hottest summer days.
This approach aims to enhance outdoor thermal comfort in the urban environment,
mitigating heat-related issues. It holds significant implications for urban planning,
sustainability, and the transformation of urban areas into spaces that offer greater
thermal comfort and enjoyment for public use (Paper IV);
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5. Introduction of a research framework for improving thermal comfort in urban areas.
Focus on microclimate, human sensation, and sustainability goals, providing a
holistic approach to urban climate management (Paper V);

The core objective of the CLEAR model extends beyond merely dissecting the intricacies
of these climatic phenomena; it strives to emerge with insightful and actionable findings.
By seamlessly integrating data-driven and model-based workflows, the CLEAR model
facilitates an in-depth exploration of the root causes underpinning UHI and heatwaves in
urban areas. Ultimately, the outcomes generated by the CLEAR model serve as a valuable
guidepost, directing the formulation of pragmatic and sustainable solutions.

The potential applications of the results for architects and designers are as follows:

1. Data-driven approach in urban analysis:

One of the most significant potentials of applying the thesis is the insights gained from
employing a data-driven approach and integrating ML into urban data analysis. This can
provide architects and designers with profound insights into the intricate relationships
within the built environment.

The analysis of current and historical urban data, supplemented with meteorological
information, offers a holistic understanding of how the city and its elements interact
under varying climatic and microclimatic conditions.

This comprehensive perspective enables architects and designers to grasp better how
the built environment shapes and influences the city’s microclimate, aiding in making
informed design decisions.

2. Mitigation strategies for UHI effects and other climatic phenomena:
The CLEAR model goes beyond unraveling the complexities of urban climate challenges;
it contributes to formulating mitigation strategies for reducing UHI effects in cities.

Architects and designers can use the insights gained from this model to design urban
spaces and structures that actively address heat-related challenges while promoting
sustainable urban growth and development.

3. Improving the built environment and enhancing urban conditions:
Models like the CLEAR model are potent tools for capturing, leveraging, and learning
from urban data.

These models provide architects and designers with invaluable insights that can
inform design solutions to enhance overall urban conditions.

By utilizing such models, architects and designers can contribute to creating more
sustainable, livable, and comfortable cities for their inhabitants, effectively addressing
challenges like urban heatwaves and the UHI effect.

4. Adaptability to diverse settings and relevance across locations:
The adaptability of the CLEAR model extends beyond Tallinn, encompassing diverse
climatic, microclimatic, urban, and architectural scenarios.

This empowers architects, designers, and researchers to tailor the model and
methodologies to different urban settings, aligning them with unique research questions
and requirements.

Architects and designers can harness the benefits of the CLEAR model to address
specific urban phenomena or issues in various locations.

This research highlights the pivotal role played by the CLEAR model in effectively
addressing the UHI effect in Tallinn, Estonia, making it relevant to diverse urban settings
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characterized by varying climatic conditions and different urban scenarios, fostering
a global exchange of best practices in urban design and climate mitigation.

The main potential applications of the results for regulation makers are as follows:

1. Valuable dataset and predictive models:
This research provides regulation makers with a valuable geoprocessed dataset
encompassing Tallinn’s urban characteristics and meteorological data.

Equips them with predictive and interpretable ML models to help make data-driven
decisions and policies.

Mitigate UHI and enhance thermal comfort and sustainable development:

The research extends strategies to enhance thermal comfort in urban areas.

Aims to reduce thermally affected urban areas, addressing challenges associated with
the UHI effect.

Promotes the principles of sustainable urban development, aligning policies with long-
term environmental and social goals.
2. Informed decision making:
The implications of this research empower regulation makers, urban planners,
policymakers, and stakeholders to make informed decisions.

The insights and methods gained from this research can guide the development of
policies and strategies to foster sustainability and enhance urban comfort.
3. Resilient urban centers:
The research equips regulation makers with tools to develop resilient urban centers.

Strategies derived from this research can aid in building cities that are better prepared
to withstand the challenges of climate change and urbanization.
4. Global applicability:
This research represents a groundbreaking advancement in understanding the interplay
among urban characteristics, meteorological data, and UHI phenomena.

Offers practical approaches and insights that have the potential for global
applicability.

Serves as a guiding beacon for regulation makers worldwide to address UHI effects,
champion sustainable urban development, and create urban environments that are both
inviting and sustainable.

5.1 Future work

Looking ahead to future research, the path forward is brightly lit by the continued
utilization of the findings from this thesis and the development of easily understandable
ML models. These models will be instrumental in addressing issues related to the green
transition and aligning with the ambitious goals of sustainable built environments.
Expanding the scope of the investigation is essential. This should involve a broader
range of urban features and considerations for temporal dynamics. Incorporating climatic
and microclimatic data from various dates and times will provide a more comprehensive
view of urban thermal dynamics. Moreover, exploring qualitative approaches to capture
data relevant to identifying thermal and non-thermal urban areas is of utmost importance.
Collaborative efforts and the cultivation of innovative methodologies will be key
drivers of progress. These efforts hold the potential to deepen our understanding of
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urban thermal environments and further fortify the foundations of sustainable urban
development.

Future research will concentrate on harnessing data-driven methodologies and
interpretable ML models. The aim is to bolster urban sustainability amid escalating
environmental challenges spurred by rapid urbanization. By thoroughly analyzing
geospatial data and applying ML techniques, the goal is to pinpoint the critical urban
factors influencing heatwaves and to devise sustainable urban strategies that address
them.

Furthermore, future endeavors may consider incorporating supplementary variables,
temporal dynamics, and external influences to enhance the predictive capabilities of the
models. Additionally, integrating qualitative data and user preferences could provide a
holistic understanding of urban thermal comfort, facilitating user-centric design choices
that promote well-being.

Continuing to employ innovative methodologies, such as Co-design and fostering
collaborative initiatives in urban thermal environment research, holds immense potential
for making substantial contributions to sustainable and resilient urban development.

By exploring diverse datasets and applying alternative techniques, we can advance
our understanding of streamlining ML models using numerical features and uncover
fresh insights into the complex dynamics of urban thermal environments. This ongoing
research journey promises to pave the way for more environmentally friendly and
comfortable urban spaces in our rapidly evolving world.
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Abstract

Data-Driven Urban Modelling: The Case of Explainable
Detection of Urban Heat Island

The imperative to create a more sustainable society underscores the need for a profound
comprehension of the intricate environmental dynamics inherent in urban systems.
As urbanization progresses, cities struggle with escalating environmental challenges that
deeply impact human well-being. These changes in urban climate, accompanying the
urbanization process, can lead to shifts in microclimates and the degradation of thermal
environments. The situation is further worsened by Urban Heat Islands (UHI) and the rise
in cities’ temperatures. The adverse effects of UHIs extend to health, quality of life, and
urban livability, emphasizing the critical necessity of developing effective mitigation
strategies to amplify outdoor thermal comfort and elevate the overall quality of life
within cities.

Moreover, this research endeavor aspires to generate crucial insights into how urban
environments can be thoughtfully designed and strategically configured to enhance
sustainability, livability, and outdoor thermal comfort for pedestrians. The study’s
findings empower researchers to identify efficacious interventions by leveraging UHI data,
geoprocessing techniques, and data-driven approaches. This comprehensive evaluation
serves as a guideline, directing urban planners and architects towards informed mitigation
solutions for heatwaves and thermal urban areas to elevate thermal comfort within cities
while also cultivating conditions aligned with approved thermal comfort levels.

At the heart of this study lies the theme of sustainable urban development. Employing
generative and predictive Machine Learning (ML) models, which create new data samples,
explainable ML models that provide insights into decision-making, and interpreting the
models to make them easy to understand played vital roles as features in the study of
UHI assessment in Tallinn. Utilizing ML empowers this research to establish meaningful
connections between urban design, sustainability, and resident well-being, driving the
exploration of spatial data and ML techniques to create energy-efficient and enduringly
sustainable urban environments. This endeavor ultimately contributes to urban well-being
and energy efficiency, highlighting ML’s role in understanding urban design’s profound
impact on sustainability and overall quality of life, thus catalyzing the creation of more
comfortable and sustainable urban spaces.

Papers | through V have meticulously covered different facets of the research journey,
spanning from the initial data collection phase (Paper I) to the subsequent development
of machine learning algorithms (Papers Il and Ill). The culmination of this work is
observed in the practical application of the study, where it is used to evaluate heatwaves
and thermal conditions in urban environments, ultimately guiding the optimization of
urban areas to enhance thermal comfort (Paper IV and Paper V). The methodology, built
upon the CLEAR model, comprises four primary steps:

Data Capture (C): In this initial step (Paper I), urban data is systematically captured.

Learning (L) (Papers Il and Ill) involves leveraging this captured data to develop
learning algorithms and create various ML models. This encompasses the development
of predictive and explainable models.

Rule Extraction (E): Rules are extracted from these ML models to formulate a
predictive ML model as the explainable model for understanding and anticipating UHI
phenomena.
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Application (A): The knowledge and insights gained from the research, along with the
captured dataset, are employed to propose effective mitigation strategies (Paper IV and
Paper V) to reduce heatwaves and mitigate the UHI effect in urban environments.

Moreover, an iterative approach ensures that the model can be repeated and adapted
for application in diverse urban scenarios and climatic conditions, enhancing its
versatility as a UHI analysis and mitigation tool.

Effectively countering the UHI effect and fostering enhanced urban spaces necessitates
the availability of an accurate dataset incorporating critical urban environmental
features, location indices, meteorological data, and UHI levels. The case study of the
thesis is Tallinn, Estonia, where an all-encompassing approach encompassing spatial data
capturing (Paper 1), assessment, preparation, and the development of a learning
algorithm based on ML and data-driven approaches (Paper Il) were undertaken to serve
as a foundation for an explainable UHI model (Paper Ill) based on ML models. The model
integrates essential building and urban features to craft strategies to mitigate UHI levels,
thereby contributing to broader urban sustainability objectives (Paper IV and Paper V).
Noteworthy transformations in building and urban features have emerged as influential
contributors, effectively reshaping areas from UHI absence to marked presence
characterized by heatwaves. These insights provide a pivotal foundation for architects,
urban planners, researchers, policymakers, and city administrations involved in built
environment projects.

Integrating data-driven approaches, as discussed in Papers Il and Ill has emerged
as a pivotal strategy for fostering sustainability within urban analysis. By leveraging
geoprocessing and ML techniques, this study addresses challenges such as UHI,
uncovering insights into configuring urban environments to enhance sustainability,
livability, and outdoor thermal comfort (Paper IV and Paper V).

The study’s achievements are underscored by the geospatially processed dataset,
which, after preprocessing and labeling with UHI levels, serves as training data for a
diverse range of ML models.

The data-driven approach and derived equation shed light on effective mitigation
strategies (Paper IV) and promote sustainable urban development within Tallinn while
providing valuable guidance for diverse locations characterized by varying climates.
Furthermore, this study underscores the significance of designing urban canyons with
optimal orientation to mitigate the UHI effect effectively, thereby maximizing outdoor
thermal comfort during hot summer days. The strategic optimization of building
orientation further fosters shaded and cooler pedestrian areas, ultimately leading to
reduced surface temperatures and more comfortable and sustainable urban
environments.

The study’s findings emphasize the pivotal role of architectural and urban design
choices in molding the city’s thermal environment, providing valuable insights for
prioritizing specific features to optimize thermal comfort and decrease the number of
heated urban areas.
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Lihikokkuvote

Andmepohine linnamodelleerimine: soojussaarte seletatav
tuvastamine

Hadavajadus luua saastlikum hiskond rohutab sligava md&istmise olulisust seoses
linnastisteemide keeruliste keskkonnamuutuste diinaamikaga. Urbaniseerumise
edenedes seisavad linnad silmitsi Gha suurenevate keskkonnavaljakutsetega, mis
mojutavad sligavalt inimeste heaolu. Nii linna kliima kui ka urbaniseerumise protsessi
muutused vdivad viia mikrokliima muutusteni ja halvendada soojuskeskkonda.
Probleemi teravdab veelgi linnade soojussaarte efekt ja linnasisese temperatuuri tous.
Linnade soojussaared avaldavad negatiivset md&ju elanike tervisele ja elukvaliteedile,
réhutades tGhusate leevendusstrateegiate hdadavajalikkust, et suurendada valitingimustes
viibivate inimeste soojusmugavust ning parandada linnaelanike Uldist elukvaliteeti.

Lisaks pulab kdesolev uurimist6d Iluua olulist arusaamist sellest, kuidas
linnakeskkondi saab terviklikult ja strateegiliselt kujundada, et suurendada
jatkusuutlikkust, elukvaliteeti ning jalakdijate OGues viibimise ajal tuntavat
soojusmugavust. Uuringu tulemused vdimaldavad teadlastel tuvastada téhusaid
sekkumisi, kasutades UHI andmeid, geotddtluse tehnikaid ja andmepdhiseid
Idhenemisviise. See ulatuslik hindamine toimib juhendina, suunates linnaplaneerijaid ja
arhitekte teadlikult kuumalainete ja termiliste linnapiirkondade leevenduslahenduste
suunas, et tdsta linna soojusmugavust, samal ajal luues tingimused, mis on kooskdlas
heakskiidetud soojusmugavuse standarditega.

Selle uuringu keskmes on jatkusuutlik linnakeskkond. MasinGppe (ML) generatiivsed
ja ennustavad mudelid mangisid olulist rolli Tallinnas labi viidud uuringus, mis hindas
linna soojusmugavust. ML mudelid loovad uusi andmestikke, selgitavad ning télgendavad
ML-mudelid, mis aitavad otsuste tegemisel ja mudelite tdlgendamisel nende lihtsaks
moistmiseks. ML kasutamine vGimaldas selle uuringu raames luua tdhendusrikkaid
seoseid linnakujunduse, jatkusuutlikkuse ja elanike heaolu vahel, suunates
ruumiandmete ja ML-tehnikate uurimist energiatdhusate ning jatkusuutlikkust
energiatdhusalt tagava linnakeskkonna loomise suunas. See ettevGtmine aitab
I6ppkokkuvdottes kaasa linna heaolule ja energiatdhususele, réhutades ML rolli
linnakujunduse md&istmisel ning selle siigava moju mdistmisel jatkusuutlikkusele ja
Uldisele elukvaliteedile. Selle ldhenemisviisi tulemusena innustatakse looma
mugavamaid ning jatkusuutlikke linnaruume.

Artiklid | kuni V on pdhjalikult kajastanud erinevaid uurimise aspekte, ulatudes algse
andmete kogumise faasist (Artikkel |) masindppe algoritmide edasisse arendamisse
(Artiklid 1l ja 111). Selle t66 tulemusena on praktilises uurimise rakenduses naha, kuidas
seda kasutatakse kuumalainete ja termiliste tingimuste hindamiseks linnakeskkonnas,
suunates |6puks linnaalade optimeerimist termilise mugavuse parandamiseks (Artikkel
IV ja Artikkel V). Metoodika, mis p&hines CLEAR mudelil, koosneb neljast pShipunktist:

Andmete kogumine (C): Selles algstaadiumis (Artikkel 1) kogutakse linnandmeid
sUstemaatiliselt.

Oppimine (L) (Artiklid Il ja Ill) hdlmab nende kogutud andmete irakasutamist, et
arendada Oppimisalgoritme ja luua erinevaid ML-mudeleid. Selle hulka kuulub
ennustavate, selgitatavate ja télgendatavate mudelite arendamine.

Reeglite ekstraheerimine (E): Reeglid eraldatakse nendest ML-mudelitest, et sdnastada
ennustava valemi loomiseks arusaamine ja UKS nahtuse ettearvamine.
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Rakendamine (A): Uurimusest saadud teadmisi ja arusaamu kasutatakse koos kogutud
andmestikuga tohusate leevendusstrateegiate ettepanekute tegemiseks (Artikkel IV ja V)
kuumalainete vahendamiseks ja UKS mdju leevendamiseks linnakeskkonnas.

Lisaks tagab korduv ldhenemine selle, et mudelit saab korrata ja kohandada
rakendamiseks erinevates linnakeskkondades ja kliimatingimustes, suurendades selle
mitmekilgsust kui UKS analiiiisi ja leevendusvahendit.

UHI mdju téhusaks vastandumiseks ja paremate linnaruumide arendamiseks on
vajalik tdpsete andmete kattesaadavus, mis hdlmab olulisi linnakeskkonna omadusi,
asukohaindekseid, meteoroloogilisi andmeid ja UHI taset. Uuringu juhtumianaliilsiks on
Tallinn, Eesti, kus ldbivoetud on kdikehdlmav ldhenemine, mis hdlmab ruumiandmete
kogumist (Artikkel 1), hindamist, ettevalmistamist ja Gppimisalgoritmi arendamist ML ja
andmetepdhiste ldhenemiste pdhjal (Artikkel 1) aluseks selgitatavale UHI mudelile
(Artikkel 111) ja ML mudelitele pdhinevale tdlgendatavale UHI mudelile. Mudel integreerib
olulisi hooneid ja linnakeskkonna omadusi, et kujundada strateegiaid UHI taseme
leevendamiseks, andes seeldbi panuse laiematele linnajatkusuutlikkuse eesmarkidele
(Artikkel 1V). Hoone ja linnakeskkonna omadustes on margatavaid muutusi, mis on
tbhusad tegurid, mis muudavad piirkonnad UHI puudumisest kuumalainetele
iseloomulikuks. Need teadmised pakuvad olulist alust arhitektidele, linnaplaneerijatele,
teadlastele, poliitikakujundajatele ja linnajuhtidele, kes osalevad ehitatud
keskkonnaprojektides.

Andmepdéhiste lahenemisviiside integreerimine, nagu seda on arutatud Artiklites Il ja
Ill, on osutunud keskkonnauuringutes jatkusuutlikkuse soodustamiseks oluliseks
strateegiaks. Geoprotsesside ja ML-tehnikate drakasutamisega tegeleb see uuring
valjakutsetega, nagu UHI, tuues esile teadmisi sellest, kuidas kujundada linnakeskkondi
jatkusuutlikkuse, elukvaliteedi ja Gues termilise mugavuse suurendamiseks (Artikkel 1V
and Artikkel V).

Uuringu saavutusi réhutab geoprotsesside kaudu to6deldud andmestik, mis parast
eeltootlemist ja margistamist UHI tasemetega toimib mitmekilgsete ML-mudelite
koolitusandmetena.

Andmepdhine ldhenemine ja saadud vdrrand heidavad valgust tShusatele
leevendusstrateegiatele (Artikkel 1V) ja soodustavad jatkusuutlikku linnakeskkonna
arengut Tallinnas, pakkudes samas vaartuslikku juhendamist erinevatele asukohtadele,
mis on erinevate kliimatingimustega. Lisaks réhutab see uuring urbanistliku kanjoni
optimaalse orienteerituse tahtsust UHI mdju tShusaks leevendamiseks, suurendades
seeldbi Oues termilist mugavust kuumadel suvepdevadel. Hoone orienteerituse
strateegiline optimeerimine soodustab varjulisi ja jahedamaid jalakaijate alasid, viies
I6puks kaasa madalamad pinnatemperatuurid ning mugavamad ja jatkusuutlikumad
linnakeskkonnad.

Uuringu tulemused rohutavad arhitektuuri- ja linnakujunduse valikute votmerollilinna
soojuskeskkonna kujundamisel, pakkudes vaartuslikke teadmisi konkreetsete omaduste
prioriteetide seadmiseks termilise mugavuse optimeerimiseks ja kuumade
linnapiirkondade arvu vahendamiseks.
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Specifications Table

Subject Architecture

Specific subject area Architecture and urban planning, built environment, urban heat island (UHI)
assessment

Type of data Vector data
Table

How the data were acquired Data were acquired via geoprocessing, programming, and analysis. Applying an

ascending hierarchical grid system is based on the theory of dynamic urban
heterogeneity and considers data schema, features, and location. Data were
processed using Python programming packages and the QGIS Tool for
geoprocessing and analysis.

Data format Raw and analyzed

Description of data collection An extensive multidisciplinary presented dataset is collected with 34, 001
building samples (raws) and 30 features (columns) in Tallinn, including
location, building characteristics, urban characteristics, UHI data, and climate
data. The current work methodology proposes a framework to categorize data
into homogeneous or heterogeneous, static or dynamic schemes, and then
collect data considering the homogeneous grid system. Implementing the
hierarchical grid system in the data collection process helps create a spatial
index for each object and connects the objects to the grid system.
Second, use the homogeneous ground to define urban indices mainly anchored
in the heterogeneous data. The methodology uses the Python, Numpy, Pandas
libraries, the Geopandas package, and QGIS Tool. The approach helps to
capture urban data from GIS resources, taking into account the location,
general characteristics, and other spatial properties of urban elements.

Data source location « City: Tallinn, Country: Estonia

- Latitude and longitude for collected data: 59.436962 and 24.753574 [1]
« Domain size (km2): 159 km2 area [2]

Data accessibility https://geoportaal.maaamet.ee/eng/Spatial-Data/Cadastral-Data-p310.html
https://veeb.tallinnlv.ee/pilv/index.php/s/gdqlbwwbT70cqv3 Repository name:
Mendeley
Direct URL to data: https://data.mendeley.com/datasets/gwpbktrx9g/1
Direct URL to images:
https://data.mendeley.com/datasets/xm92bw2f49/1
Direct URL to codes: https://github.com/maraso-TTU/Urban-Data

Value of the Data

« The usefulness of the presented dataset lies in its ability to provide a comprehensive un-
derstanding of the urban environment by incorporating various essential features related to
buildings, their surroundings, and meteorological and climatic data, with a specific focus on
the UHI effect.

« The data can benefit a wide range of stakeholders, including architects, urban planners, poli-

cymakers, and local authorities, who can use the information to monitor urban data, set mit-

igation strategies, and improve the urban quality and quality of life of future development
projects.

Moreover, the data can be reused for further insights and development of experiments in

various research fields, such as environmental studies, urban sustainability, and built environ-

ment studies, to understand better the UHI effect and its impact on the urban environment.

The presented workflow and method can also be replicated in other comparative studies to

collect and analyze relevant spatial data.

 Overall, not only the presented dataset has significant potential to contribute to the devel-
opment of sustainable and liveable cities by providing detailed information on the urban
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environment, which can inform decision-making and policy development, but also the pre-
sented workflow and method allow researchers to extrapolate building and city data, includ-
ing location-based features and metrological conditions with urban data and UHI intensify.

1. Objective

Geographic information systems (GIS) are now widely used, data-intensive disciplines for
managing, displaying, and developing data queries on maps. One of the biggest challenges for
urban planners remains the transformation of data into knowledge to facilitate planning efforts
in addressing issues of complex urban systems, which requires advanced interdisciplinary an-
alytical methods [3]. Therefore, there is a constant need for efficient methods, analytical tools,
and rational design methods. GIS is characterized by various spatial and numerical interactions
of geographical objects compared to other computational tools that can present data in tabular
form [4].

In the data capturing method, some solutions, such as hierarchical principles, widely used
in various disciplines to split complex problems into smaller ones, are applied to consider het-
erogeneous urban data in a homogeneous base. For the first time, the hierarchical system is
defined as Hierarchical Spatial Reasoning (HSR) based on Car’s spatial theory in 1997 [5]. Hier-
archical principles allow the Part-Whole system to apply to all elements within the hierarchical
system, forming a part of the whole [5]. Each level connects the lower and the higher levels [5].
Furthermore, spatial heterogeneity is often assumed to result from large-scale regional effects or
administrative subdivisions that narrow the scope of a process [2].

2. Data Description

The initial available data are divided into three groups: Urban, Weather and climate, and
UHI. The urban data are mainly downloaded from the Tallinn Land Authority Geospatial Data
Portal (Maaamet), owned by the Estonian state, local governments, and legal persons governed
by public laws [6]. Data formats are Spatial data (ESRI shapefile), Shapefile (.SHP), and Shape
Index file (.SHX) and indicate data of buildings and land information, green areas, landscape,
streets, blue bodies, and details of facilities and infrastructures in the city of Tallinn. For example,
according to the Data Portal of Tallinn (Maaamet), the number of buildings located in Tallinn is
67, 113 [6].

The data relating to Surface Urban Heat Island (SUHI) is the output of the study that used
Landsat-8 images suitable for the UHI effect studies and Land Surface Temperature (LST) data
[7]. The authors used Landsat-8 to assess the heat wave’s impact on Estonian cities and explore
the extent and magnitude of the UHI effects.

Furthermore, the air temperature used to define the threshold of heat waves in Estonia is an
unusually high air temperature that lasts at least several days. The maximum air temperature
was measured at 30°C and over. Therefore, the dangerous air temperature was defined as more
than 27°C that lasted several days in Estonia [7].

We also produce the UHI effect data for Tallinn, which can be successfully used for adapta-
tion measures. The intensification of UHI in Tallinn is 5°C according to the study that assessed
Landsat-8 images to acquire SUHI Thus, the threshold of the UHI data is 30-35°C, 35-40°C, and
more than 40°C [7].

According to the date of the UHI effect in Tallinn, the related weather data was added to the
dataset.
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Fig. 1. The graphical abstract.
2.1. Data Location Description

The location of spatial data is Tallinn, the capital city of Estonia (Fig. 2). The latitude and
longitude coordinates are 59.436962 and 24.753574 [1]. The geographical information of Tallinn
is 445, 005 population and 159 km? area. The number of city districts in Tallinn is 8 [2]. More-
over, Tallinn is characterized by a humid continental climate with cold winters, according to the
Koppen-Geiger classification Dfb [8].

The considered features of buildings are described in Tables 1 and 2. The focused features of
buildings in Tallinn are general and technical characteristics. The main features of buildings are
the purpose of use, material, absolute height, height, area, length, and a number of floors.

Table 1
The description of building data based on Open data information and instructions [9].

Name of features Description

General data of the building

Object ID The ID of each building is a unique combination of numbers
Purpose of use The purpose of use with the largest area (Table 3)

General technical data of the building

Material The main material of the construction: Stone, wood, metal, composite
material, and stone, composite material and metal

Absolute height (m) The highest point of the highest structure

Height (m) The largest vertical dimension of the building from the ground or

pavement immediately surrounding the buildings to the highest point
of the highest structure of the building, without taking into account
local smaller depressions and elevations

Area(m2) All building areas are in common use by residential and
non-residential users

Length (m) The length of the shape of the building

Number of floors The horizontal plane in a building, on which it is possible to use the

building according to its purpose
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Fig. 2. SUHI map of Tallinn, July 25, 2014, 12:30 Estonian summer time (9:30 GMT). The green areas are outside of
SUHI, the yellow areas are the areas over the mean SUHI, and the red areas are “inside” the SUHI (over mean + std.dev)

[7].

Table 2
Purpose of use of buildings.
The purpose of buildings Description
Residential building Buildings for dwelling purposes
Public building Buildings for particular public or common use (such as schools, shopping
centers, banks, and offices)
Outbuilding Buildings that are not used for residential purposes that are not industrial
facilities, and not for public use
Underground building Building with no floors above ground
Industrial facilities Building for manufacturing and production processes, or a warehouse; a
building not for public use
Underground storage space Storage building with no floors above ground
Parking facilities Underground garage or parking lot for cars

Furthermore, the weather data is related to the days of UHI value in the summer of 2014-
2019. The weather data resource is the underground website [10]. The data of UHI downloaded
from the Environment Agency is based on national monitoring data collected by the Environ-
ment Agency and analyses carried out on Landsat-8 (USA) satellite data (UHI 2014-2019) [11].
For example, Fig. 3 shows the heat map of the UHI on 25 July 2014. All UHI data used are Shape-
files in the format of (.SHP and .SHX files). The data shows UHI value in Tallinn is categorized
into three levels: lower than 30°C (29°C), 30°C and 35°C.
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Fig. 3. Heat map of UHI, Tallinn July 25, 2014, UHI map of in Tallinn, July 25, 2014, 12:30 Estonian summer time (9:30
GMT) [7].

3. Experimental Design, Materials and Methods

The framework is tested in an urban assessment practice to collect geospatial data of build-
ings and their context on the one hand and data related to the UHI phenomenon to perform
geoprocessing of the data on the other hand. The geodata is integrated into the latest version of
the QGIS Tool (QGIS 3.22.11 'Bialowieza’, 3.26.x Buenos Aires, Ubuntu), and the data analysis is
implemented in Python 3 environment in Jupiter notebook interface. To generate the dataset, a
three-step methodology is developed:

3.1. First Step: Resources of Urban Data

The first step is to consider the available resources of urban data and the schema of all data
types. This part of the process starts with defining urban data as the subject of data collection
from different complex systems and resources.

The spatial information available in the public domain is downloaded and imported from the
Tallinn Geoportal and Geodata [6,9,11].

3.2. Second Step: Urban Heterogeneity, Homogeneity, and the Ascending Hierarchical Grid System

The second step refers to the data recognition and categorizing of the data schema into ho-
mogeneous or heterogeneous and static or dynamic, then implementing the hierarchical grid
system in the environment of the QGIS Tool.

The initial available data combine two components of the schema: static heterogeneity data
and dynamic heterogeneity data.
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Static heterogeneity means that elements in an urban area, like buildings, streets, and the
natural landscape, remain unchanged or change little over time.

Dynamic heterogeneity refers to frequently changing data, such as climate, microclimate, and
UHI data.

Here, when data collection does not consider the context of buildings, it is called static het-
erogeneity. However, when the data is based on urban elements at a larger scale, i.e., considering
objects in an urban area in the context, such as characteristics of buildings in their neighbor-
hood, the data is called dynamic heterogeneous data.

The aim of creating the hierarchical grid system is:

First, a spatial index is created for each object on the map, and the objects are referenced
to the underlying grids. The grid system aids in analyzing extensive spatial data by effectively
dividing the areas of the earth into identifiable grid cells.

Secondly, use the homogeneous ground to define urban indices mainly related to the hetero-
geneous data, which means accommodating both static and dynamic data in the solid hierarchi-
cal grid system.

This means that the hierarchical structure provides a solid basis for collecting data based on
their locations. Thus, each grid is characterized by homogeneous static data in one layer and
includes all points, geometries, and other recognized elements below the grid. For example, in
the definition of built-up area, the total buildings’ area located in grid level 1 is considered
(Table 3).

Table 3
Defined indices, using a homogeneous hierarchical structure system and heterogeneous urban data.
Index Grid level Description
Building data Grid 200 m*200m level 1 Buildings in 29°C, 30°C and 35°C UHI level
Built up area Grid 200 m*200m level 1 B = Sum of buildings’ area located in grid level 1
Density Grid 200 m*200m level 1 D = Sum of all buildings’ area located in grid level 1/40000
Green area Grid 200 m*200m level 1 G = Sum of the area of green spaces, located in grid level 1

In this work, the hierarchical grid system in QGIS Tool represents polygons covering all parts
of the map of Tallinn in three independent layers. The polygons are defined in three scales of
geometric grids in a Shapefile format, as Fig. 4 shows.

Level 0 : Building

i 1000w 1000

'

Level 1: Grid 200m*200m

| B
e

v

City

=,

i={il, %2, ..., 125]

Grid 20002000

Fig. 4. The defined ascending hierarchical grid system.

As mentioned earlier, the data collection benefits from the hierarchical grid system and an-
alyzes the spatial data of the target area on the map. Each level of the grid system has an as-
cending hierarchical structure, starting with the smallest scale, the square with a size of 200
meters. The second level of the grid system is a square with a dimension of 1, 000 meters in
1, 000 meters, while the largest level is a square with a dimension of 2, 000 meters in 2, 000
meters. The ascending grids are respectively called from levels 1 to 3:
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Neighbourhood Zone, Residential Zone, and Mega Urban Zone, while the base level is the
building level (level 0) as the smallest scale (Fig. 4)

The set X= Xxq, X3, . . ., Xn} is the building objects in the building dataset (level 0). First,
this set is aggregated to the defined ascending hierarchical grid system. For example, x; is the
building located in the i th grid of level 1, so the i th grid is aggregated by the j th grid of level
2 and the k th grid of level 3. Then the spatial index of each building is appended to the dataset
to determine the exact position of the building in the ascending hierarchical grid system. For
example, Fig. 4 shows that each grid unit of level 3, a grid of 2, 000 meters by 2, 000 meters
contain four squares of level 2 grids of 1, 000 meters by 1, 000 meters, and at the same time
includes 25 squares of level 1 at 200 meters dimension.

3.3. Third Step: Object Detection and Index Definition

The last step of this section is related to the processing, arranging, and collecting data. Here
we have used Python libraries and packages on the one hand and benefited from the geopro-
cessing attributes and expressions of the QGIS Tool, which have helped us develop methods for
data collection in the different grid levels, starting from level 0 to level 3.

The hierarchical structure system is used to collect data related to the level of the grid system
and defined indices mentioned in Table 3.

3.4. Experimental Methods to Capture Data

This subsection summarizes the approach taken to develop the geospatial dataset.
Data acquisition I: object detection in the hierarchical grid system

This part aims to show how the UHI value of each building is detected. The next step is com-
pleting the dataset by appending more details about buildings. As we mentioned, UHI intensity
levels in the main levels of SUHI are:

Lower than 30°C (29 °C);

30 °C;

And 35 °C [7,6].

Moreover, this part’s data collection process is done in Grid 2, Level 1 of the hierarchical grid
system.

According to the geometric classes of objects in the QGIS Tool, we are dealing with polygons
when the objects that should be detected are buildings. Moreover, objects located in the same
places can be tracked based on the coordinate reference system (CRS) as a reference system
to define the location of features in space [12]. When features are retrieved from a layer, the
associated geometries have coordinates in the CRS layer. Therefore, objects on the map on the
same CRS have intersections. In the code we developed in Python, we used this relationship to
list buildings in each UHI area. The list contains buildings with unique identification codes in
the specific ID of UHI. Furthermore, these two layers are in the area covered by the hierarchical
grid system.

The codes are developed and executed in Python in the Jupiter Notebook interface. The used
libraries are Pandas and Numpy to import the data as a Shapefile and process the imported data.
Next, the Geopandas package is imported into the Notebook. The next is object detection, where
we used GeoSeries.intersection attributes from the Geopandas package.

Since we need the identification code of each building to append other features in the next
step, the method should use the unique code of buildings (ObjectID in the initial data), then find
out the intersected geometries and return the ID of the building and the UHI map. Furthermore,
in this method, we need to use more than one feature of each object. Therefore, we should
consider a function to iterate pairs. For example, the zip () function in Python returns a zip
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object that is an iterator of tuples where the first element in each passed iterator is paired.
Then the second element in each passed iterator is paired.

The for-loop function is used to iterate over a sequence of tuples. The for loop can execute
a series of statements, once for each element in the tuple. The "for loop" is repeated twice to
build up the dataset and the UHI data with the zipped iterated objects.

The following codes use the intersection attributes of Geopandas, Python’s zip function, and
find the intersection between two called geometries of the two datasets and the ID of the build-
ing that has intersected with the UHI values. Considering the UHI value and the date, we could
collect data from buildings with different heat values in the city. Moreover, the codes to deter-
mine which building is under which grid are similar to this code.

The codes are given below:

for r, s in zip (Buildingdata.geometry, Buildingdata.ID): for v, o
in zip (UHI.geometry, UHI.ID):

Intersection_area = r.buffer(0).intersection(v.buffer(0)) if not
intersection_area.is_empty:

p = gpd.GeoSeries(intersection_area) print(f"{int(o)} has
intersection with {s}")

Data acquisition II: the nearest neighbor

Another important feature in understanding the urban area’s density and the city’s compact-
ness is the distance between buildings. We aim to find the shortest Euclidean distances between
buildings at the neighborhood scale. We can use the spatial index defined in the previous step
to determine the size faster than looping through the data frame and then finding the minimum
of all distances when working with a large data frame.

As in the previous code, we used the zip () function to return the ID of each building and
understand the pair of neighboring buildings and the for-loop function in Python, as well as the
distance attributes of the Geopandas package.

According to the codes, the output will be the list of distances, starting with 0 as the mini-
mum distance, i.e., the distance of each building to itself, and the second member of the list is
the nearest building. Then we use the list of minimum distances and call the second member
(element number of the second item = 1 since the first element is the Oth item in the list).

The codes can also find the distance to other boundaries for any geometry or the furthest
neighbor. Furthermore, the method can be useful to find the nearest street, green space, or other
location as a geometry, point, or line, even in two different data resources. Fig. 5 shows how
the nearest neighbor is defined. First, each building is set as a target geometry to calculate the
distance between the outer wall of the building. The distance is the shortest line between two
objects. For each x, member of the building dataset, the distance to (n-1) members of the list is
calculated. If the distance between the centers of geometries is important, we should calculate
the centroids for all the polygons that represent the boundaries of the buildings. The centroids
can be calculated using the centroid attributes of the Geopandas package. It can be helpful when
the distance between the center of two or more geometries, like cities, is needed.

To calculate distances, we invoke the distance function of the Geopandas package. In the
latter, the distance between two objects is usually defined as the smallest Euclidean distance or
straight-line distance among the possible distance pairs of the two geometries.

By applying distance, we can match the index values of the GeoSeries (geometries) and com-
pare elements with the same index with align=True or ignore the index and compare elements
based on their matching order with align=False [13] (Fig. 6).
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(x2,y2)

-y
Shortest distance(m)

Fig. 5. The nearest neighbor to each building.

Fig. 6. The GeoSeries distance, index value True or False [13].

The code back ID of two adjacent buildings with the minimum distance in meters between
them. The codes for calculating the nearest neighbor are given below:

for i, y in zip (DFB.geometry, DFB.objectid):

distance = DFB.distance(i, align = True) sorted_list=sorted
(distance.to_list()) min_sorted_list=sorted_list[1]

print (f"the nearest neighbour of {int(y)} building ID is located
in min_sorted_list} meters")

In addition, if the maximum, mean, and average distance are needed, the following attributes
of Geopandas in the codes can be applied.

maximum_distance = distance.max() mean_distance= distance.mean()
Data acquisition III: main angle and orientation of buildings

The orientation of the building is of paramount importance factor that affects the incident
solar radiation and the absorbed heat wave. According to Mondal, a building with an east-west
orientation (EW) has maximum solar gain, and a building with a north-south orientation (NS)
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Fig. 7. Direction, angle, and orientation of buildings.

has minimum solar gain [14]. Since data collection aims to create a predictable and explainable
ML UHI model, the sub-scoring of buildings oriented in NE-SW and NW-SE is crucial because it
shows us how buildings are exposed to solar radiation and receives heat wave.

To determine the angle values of the building, we need to know the orientation of the longer
side of the building and the direction of each building. The conventional axes denote the direc-
tions, as Fig. 7 shows. The east direction (positive x-axis) is assumed to be 0 degrees, as shown
in Fig. 1. The angles are calculated in an anticlockwise direction, i.e., north is 90 ° and west is
180 ° [14]. The orientation of a building is the direction or angle to which the length is facing.
Since the axis of a building is parallel to its length, or conversely, perpendicular to its orienta-
tion, the main angle of the building is located on the right side of the following figure is 45°. In
contrast, the orientation of the building is 135° in the NE-SW direction. Considering the build-
ing on the left side of the figure, the angle is 135°, the orientation is 45°, and the direction is
NW-SE.

In addition, Fig. 7 indicates the building direction and angle calculated using QGIS Tools.

The expression is available in the windows of the field calculator.

To determine the main angle of all buildings in the dataset, all geometries should be called
with $geometry in the field calculator window of the expression part of QGIS Tools. expression
main_angle ($geometry)

3.5. Completing the Dataset

The last step to prepare the dataset is appending other general and technical characteristics
of buildings in different levels of the hierarchical grid system on a different scale (Tables 1, 2,
and 3).

Ultimately, the dataset is created according to the characteristics of the buildings, their spatial
indices on the hierarchical system grid, the UHI value of each building, the defined indexes based
on buildings and different zones in the city area, and the weather data on dates that the city
experienced UHI phenomena.
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4. Study Limitations

This work is subject to the following limitations in exploring and acquiring urban data, es-
pecially when creating a comprehensive dataset that covers various essential features related to
buildings, their surroundings, and other environmental factors in different scales.

Some of the limitations that we faced while collecting urban data are:

Lack of data sources: In data acquisition on the urban scale, there is a need for more data
sources for specific features related to buildings and their surroundings.

Need for more data: Even if data sources are available, in some cases, the information may
need to be completed or detailed enough to create a comprehensive dataset. For example, the
available data on green areas or open spaces in the city need to be more detailed to capture
all the necessary information about the vegetation cover or the quality of the environment.
Data quality: Another limitation of urban data acquisition is its quality. Generally, data collect-
ing needs to be more accurate and complete, which can affect the accuracy and reliability of
the dataset. For example, there is just some general information, not detailed data, about some
of the features of buildings, like the shape of the roofs, compositions of facade materials, and
morphology of buildings.

In addition, there are other challenges that one might face when collecting and analyzing
urban data. For example, collecting data on some features, such as the shape of the roof of
a building or the features of neighbors, require on-site inspections, which are time-consuming
and costly. Moreover, some data sources, such as GIS and geo data, must provide the level of
detail required to capture the necessary information accurately.
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urban planners are challenged to find solutions that ensure
comfort in cities (Steemers and Yannas, 2000; De Luca
et al., 2018, 2021). Urban planners are constantly striving
to improve the quality of life of urban dwellers (Luo et al.,
2017) through various design concepts and solutions for
liveable and pleasant public spaces (Kim et al., 2018).
Studies on building configurations can guide decision-
making to improve both existing urban areas and new de-
velopments to increase the level of outdoor thermal com-
fort. Recently, several researchers have investigated the
factors affecting outdoor thermal comfort and the method
for assessing thermal comfort (Wang et al., 2020; Lai et al.,
2014; De Freitas and Grigorieva, 2015; Jamei and
Rajagopalan, 2019; Chen and Ng, 2012; Lawson, 1978;
Cohen et al., 2013).

Although urban planners and researchers are very
interested in assessing the quality of urban open spaces
(Nikolopoulou and Lykoudis, 2006), there is still a short-
coming in the existing outdoor thermal comfort studies,
such as the low efficiency of simulations and incapability to
apply the result of outdoor thermal comfort assessment in
the initial steps of the design process. Therefore, there is
unexplored potential in investigating optimal building
morphologies for outdoor comfort to support the imple-
mentation of conscious design and planning practices
(Marshall and Caliskan, 2011). The ML approach is a
powerful method for capturing non-linear relationships
between independent and dependent variables and could
also be used to map subjective responses to the physical
environment (Wang et al., 2020).

Although there have been few studies on outdoor com-
fort based on Artificial Intelligence (Al) and ML methods, in
this paper, we propose a data-driven approach to predict
the outdoor comfort level in urban areas based on the re-
sults of Computational Fluid Dynamics (CFD) simulation on
the sidewalk around buildings in Tallinn by applying various
environmental and building feature, and weather data. The
current study focuses on building features, the main ones
are morphology, area, and height in Tallinn, Estonia (Lat. 59
26'N Lon. 24 45'E), which is characterized by a humid
continental climate with warm summers, according to the
Koppen-Geiger classification Dfb (Peel et al., 2007).

The present study is novel in two ways: firstly, it aims to
create a model to assess outdoor thermal comfort, while
few studies consider outdoor thermal comfort in cold cli-
matic conditions. Secondly, the study’s methodology can be
generalized and applied in other locations with different
urban and climatic features since the study is based on
using urban data to build predictive and data-generative
ML. The input data for the ML process of the current study
comes from the modeling and simulation process conducted
with three-dimensional building models using the ENVI-met
simulation software. ENVI-met calculates the changes in a
microclimate around urban structures and open spaces
based on the principles of fluid mechanics, thermody-
namics, radiation exchanges between urban surfaces, and
temperature calculation, as well as the laws of atmospheric
physics (Eslamirad et al., 2021; Park et al., 2014; Eslamirad
et al., 2022).

The remainder of this paper is organized as follows: the
related works are summarized in Section 2. Then, Section 3
thoroughly describes the proposed study’s purpose and
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methodology. In Section 4, we thoroughly described the
machine learning steps and the building of the ML model of
the study. Section 5 looks at the results and achievements
of the study and finally sketches the study’s limitations and
future issues. Section 6 focuses on the discussion in which
we analyzed, explained, and interpreted the study results.
The last section, Section 7, recalls the conclusion and take-
home study outcomes.

2. Related works

Urban planning and design influence microclimate factors,
which determine people’s outdoor thermal comfort (Park
et al., 2014). Over the past 30 years, several studies have
focused on wind effects in the urban canopy layer by
applying field measurements, the morphometric (geometric)
method, wind tunnel experiments, and CFD simulations at
the district, neighborhood, and building scales (Taleghani
et al., 2015; Marshall and Caliskan, 2011; Javanroodi et
al., 2022). Therefore, researchers have developed tech-
niques to assess the environment (Zhang et al., 2020).
Taleghani et al. (2015) compared microclimatic conditions
allowed by three building forms during June in the
Netherlands and showed that courtyards provide the most
comfortable microclimate compared to the other forms.
Mittal et al. (2018) investigated methods for evaluating wind
comfort at the pedestrian level by comparing different
comfort criteria that significantly changed near high rise
buildings. Indeed, Kim et al. (2018) considered both wind
comfort and thermal comfort to assess pedestrian comfort
levels and pointed out that the wind speed in the winter
season could cause discomfort for pedestrians. In another
study, wind speeds and direction were estimated in the
ENVI-met environment based on the measured wind data
and used to evaluate outdoor thermal comfort (Park et al.,
2014). Pancholy et al. (2021) studied pedestrian comfort in
the street canyon between parallel buildings and investi-
gated canyon geometry on pedestrian comfort. In another
study to help urban planners to measure heat stress in Mel-
bourne, ENVI-met was used for modeling and simulation
(Jamei and Rajagopalan, 2019). In 1996, John Gero
described Al as a new design process (Tamke et al., 2018).
Similarly, ML opens new perspectives in planning (Ramsgaard
Thomson et al., 2020). ML tools deal with endowing pro-
grams with the ability to learn and adapt (Osisanwo et al.,
2017). In the past years, data-driven approaches and ML
have succeeded to predict the environmental performance
of design solutions in the early design stages (Huang et al.,
2022).

Thomsen et al. mentioned that information is advanced
due to its predictive power, and urban developments can be
modeled through self-organizing systems. They proposed
Neural-Network Steered Robotic Fabrication method ex-
plores novel path planning approaches for robotic fabrica-
tion and it uses Machine Learning (Ramsgaard Thomson et
al., 2020).

Al and ML-based methods are fully explored in urban
planning. ML planners can evaluate large amounts of data,
find patterns or anomalies, and ultimately use them to
make better-informed decisions (Tamke et al., 2018).
Okhoya (2015) states that ML can be used for a familiar
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architectural task. In addition, ML can potentially be used
by the engineering community to speed up complex CFD
simulations. (Sebestyen and Tyc, 2020) trained an ML model
comparing datasets of different complexities and energy
rating prediction performance.

In addition, in a new study, a hybrid framework to
perform a rapid wind assessment evaluation at the pedes-
trian level was applied by He et al. (2021). As the authors
mentioned there is great potential in the integration of
multiple computational tools such as parametric design and
machine learning technique in sustainable and environ-
mental research (Javanroodi et al., 2022) deployed a data-
driven hybrid model to predict extreme microclimate con-
ditions based on deep neural network (NN) machine
learning architecture that was trained using the results of
CFD simulation. Another study proposed an automated
design process by applying a generative adversarial network
(GNA) machine learning approach to achieve the real-time
optimization of urban morphology. According to the study,
the proposed method has an advantage in computational
time comparing than traditional methods of outdoor envi-
ronment optimization when the number of optimized
samples is higher than 174 (Huang et al., 2022). Moreover,
the ML approach could also be used to map subjective re-
sponses to the physical environment and to identify hidden
trends (Wang et al., 2020).

This study analyzed the relationship between factors of
the urban environment affecting outdoor thermal and wind
comfort. The data of buildings features such as the
morphological classes of the buildings, height, density of
each building at the site, and orientation were collected
from the cadastral map of Tallinn (Tallinn.ee) and used as
variables. Then, defined samples of buildings that reflect
actual buildings features in Tallinn were used for modeling,
simulation, and ML approach through various interactive
tools and metrics. This method helped to determine the
effective design parameters to improve the outdoor ther-
mal comfort of pedestrians and, consequently, outdoor
quality of life even at the early design stage, considering
patterns and structures of the urban data without the ne-
cessity of complicated and computer-intensive modeling
and simulation processes.

3. Materials and methods

This study developed a predictive and data-generative
model based on the ML approach to assessing outdoor
comfort levels in Tallinn (cf., Fig. 1). The proposed meth-
odology makes it possible to generate a high-accuracy
learning algorithm.

3.1. The climatic condition of Tallinn in the studied
date and time

The present work is based on the results of previously pub-
lished research by the authors about the assessment of ther-
mal and wind comfort around buildings in Tallinn (Eslamirad
et al., 2021), conducted using the reference weather data
of the springtime on 21 March, 10 a.m. in Tallinn (Table 1).
March is the month with the highest wind speeds and one
of the coldest of the year (Fig. 2). The day and time were
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chosen because they represent a worst-case scenario for
thermal and wind comfort in spring during the morning when
people are likely to spend some time in outdoor spaces. The
rationale was that if people in this scenario are comfortable
on the walkways of a particular building morphology, they
are likely to be comfortable most of the time in spring.

3.2. Modeling and simulation process

Thanks to advanced computational techniques, the use of
CFD is improving microclimate studies (Javanroodi et al.,
2022). CFD simulation procedure consists of dominating
equations, computational domain, boundary conditions,
experimental validation, and mesh convergence analysis
(He et al., 2021).

To define the geometric models, 11 morphological
classifications were considered based on the most common
morphology and shape of the buildings in the city plan of
Tallinn: “Aggregated Blocks”, “Articulated 1”, “Articu-
lated 2”, "Block”, "C-shape”, “Court”, "“Free Form”, “L-
shape 1”7, “L-shape 2”, “Linear” and "Series” (Table 2,
Fig. 3). Then, the simplified geometries of the morpho-
logical classes were modeled in the geometric modeling
process.

In the data shuffling process, the samples are defined
based on their typical morphology and categorized
following existing literature (De Luca et al., 2018). The
approach followed in the study is to define building models
based on six variables: morphological classes (11 types);
several floors (1—19); the number of buildings in a site;
density of the built area, floor area ratio per site
(500—9500 m?); height (3—57 m); and orientation (0, 20, 40,
60, 80°), as Table 3 shows.

The results of CFD simulation in the ENVI-met environ-
ment for thermal and wind comfort were used together to
define the target used in the ML process (Eslamirad et al.,
2021). Furthermore, Table 4 and Table 5, respectively,
show more details about personal parameters and surface
features applied in the CFD simulation and PET calculation.

As a result, the area considered for the thermal comfort
assessment (green margin in Fig. 4) has a depth of 4 m for
the entire building perimeter and a height of 1.1 m.

3.3. Thermal and wind comfort analyses

The data used in the study is related to the results of another
published research by the authors (Eslamirad et al., 2021)
that assessed outdoor thermal and wind comfort by applying
the PET, Physiological Equivalent Temperature (°C) (Table 4)
as the thermal comfort index and the LDDC variant of the
Lawson comfort criteria (Lawson, 1978; Lawson and
Penwarden, 1975; Lawson and Bristol, 1990) through the
Wind Comfort Level (WCL) method (De Luca, 2019). Wind
comfort was then determined using the LDDC Lawson criteria
for pedestrian comfort (Table 7).

The ML method is based on the principle of learning al-
gorithms from the discovered patterns, structures, and
correlation of the labelled features and targets in the Py-
thon environment to predict outdoor comfort data in an
urban context. The raw data set consisted of the attributes
as independent variables in the numerical and categorical
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The workflow developed for the study and the manuscript sections where the workflow steps are presented.

Fig. 1

features, the PET thermal comfort metric, and the Wind
Comfort Level (WCL).

The first step of the ML process is to import the data into
the Python environment as Comma Separated Values (CSV)
format file and create the data frame. To define the target
in the data set, which indicates the outdoor comfort level
of each sample based on thermal and wind comfort, the
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Jenks optimizations method was applied. Based on the
ranges of PET and WCL, the target comfort values were split
into three groups: Very Cold (Target 1), Cold (Target 2), and
Cool (Target 3).

The next step is pre-processing, which here the process
benefits from the libraries in the Python environment to
prepare the dataset for processing through the ML approach.
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Table 1 Weather data.
Weather data, 21 March, 10 a.m.

Wind speed (m/s) 8.40
Wind direction (degree) 202
Dry Bulb Temperature (°C) 6.30
Dew Point Temperature (°C) 2
Humidity (%) 74
Direct Normal Radiation (Wh/m?) 63

First, the entire data is divided into a training set and a test
set to build the ML model. The next is applying the Standard
Scaler function, so the variables of the training dataset are
in the same range. Then, the Random Forest Classifier
trained on the training data, adjusted, and called predict to
obtain predictions on the targets. Finally, the classification
accuracy is evaluated to check the accuracy of the learning
algorithm in the following criteria: Accuracy value, Confu-
sion Matrix, and Area Under the Curve (AUC) in the Receiver
Operator Characteristic (ROC) curve.

The last step is building the Pipeline model based on the
ML learning algorithm, which comes from the Random
Forest Classifier. Then, the Pipeline is trained with the new
data from the other dataset. Finally, the prediction func-
tion is called only for the pipeline object based on the
Random Forest Classifier to make predictions and generate
new data for the target column. For example, this study
evaluates the comfort level of pedestrians on the sidewalks
surrounding the buildings in Tallinn. By applying the ML
approach and using urban data, building characteristics,
weather data, and thermal and wind comfort, the ML model
will be able to generate new trustworthy results about the
level of outdoor comfort in the pedestrian level in the city.

4. Machine learning process

The ML process of the study consists of two steps (Fig. 5).
First, we trained a model to reach the learning algorithm.
The next is using the learning algorithm in Pipeline to
predict and score new input data.

The first step consists of four sub-steps to build, eval-
uate, and check the learning algorithm of ML before
building the data generative Pipeline model.

45
4
E3s
2 3
S
>
25
2
z z § T z g
% g L 2 = 2
—— Average wind velocity
Fig. 2

Table 2 The definition and height of the morphological

classification of the study.

Morphological  The explanation of the Height
morphological classes

class (m)

Block Compact square or rectangle 3-57

Aggregated The aggregation of a few or 3-57

blocks several blocks

Linear A long rectangle 3-27

Series The aggregation of small blocks ~ 3-27
in the main rectangle

L-shape Two rectangles or some small 3-27
aggregations

C-shape Three rectangles with small 3-27
aggregations

Articulated Different rectangles and blocks ~ 3—12
without a central main part

Court A block shape with an open 3-18
area in the centre

Free-form Non-rectangular, curved, 3—-12
aggregated shapes

Cluster Separated or articulated 3-12

buildings

1. Pre-processing and data exploration

2. Classification and building the ML model

3. Checking the accuracy of the classified data and the ML
model

4.1. Data exploration and pre-processing

The first step in designing an ML dataset is finding the most
relevant data through pre-processing. Thus, a raw tabular
data set is created and characterized by the type of fea-
tures, their classes, and their range. Because the ML model
algorithm requires not only precision, accuracy, and mini-
mum error to make an accurate prediction but also works
better with features with higher correlation rates, the
dataset needs to be evaluated in the pre-processing step to
find and omit the data that are out of range. Therefore,
while the feature engineering process is performing, the

(Do) Ameaadud

uly
August

September
October
December

November

- Average dry bulb temperature
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Wind velocity and monthly temperature averages of Tallinn.
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Block Aggregated blocks

Linear L-shape

Articulated Court

Free-form Cluster

Fig. 3  The morphological classification and models of the study.

Table 3  The definition of samples.

Morphological class Number of floors Number of buildings Density (m?) Tallness (m) Orientation

Block 1-19 1—6 500—9500 3-57 0, 20, 40, 60, 80
Aggregated block 1-19 1—6 500—9000 3-57 0, 20, 40, 60, 80
Linear 1-9 1-6 1000—9000 3-27 0, 20, 40, 60, 80
Series 1-9 1—4 1000—9000 3-27 0, 20, 40, 60, 80
L shape 1 1-9 1—4 1000—9000 3-27 0, 20, 40, 60, 80
L shape 2 1-9 1—4 1000—9000 3-27 0, 20, 40, 60, 80
C shape 1-9 1—6 1000—9000 3-27 0, 20, 40, 60, 80
Articulated 1 1—4 1—6 2000—8000 3-12 0, 20, 40, 60, 80
Articulated 2 1—4 1—6 2000—8000 3-12 0, 20, 40, 60, 80
Court 1—6 1—6 1500—9000 3-18 0, 20, 40, 60, 80
Free form 1—4 1—6 2000—8000 3-12 0, 20, 40, 60, 80

raw input data was modified and cleaned of outlier data

aella s M) [PV U e eeltadini, (that falls outside the range) and features with the lowest

Personal human parameters correlation.

Age of person (year) 35 The next step before building the ML model is to cate-
Garitar Male gorize the target columns, which indicate the comfort level
Weight (kg) 75 of each sample based on thermal and wind comfort. Here
Height (m) 1.75 one of the best range finder algorithms, the Jenks optimi-
Static Clothing Insulation (clo) 0.90 zation method, is the data clustering method used to
Work Metabolism (W) 80 determine the best arrangement of values in different
Calculate from walking speed (m/s) 1.21 classes. Additionally, the Jenks optimization method was

applied to classify PET and WCL into three classes. Table 6
shows the defined Targets based on the Jenks optimization
method.

Table 5 The surface parameter in PET calculation.

@ PET class 1: 0.17 °C-2.77 °C, WCL class 1: 50.00%—

Surface feature of buildings 72.97%
Roughness 0.010 @ PET class 2: 2.77 °C-4.5 °C, WCL class 2: 72.97%—
87.77%
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Fig. 4 The supposed sidewalk area in the simulation process.

@ PET class 3: 4.5 °C-11.7 °C, WCL class 1: 87.77%—
100%

In the feature selection, two variables, “Orientation”
and “Density” were removed from the dataset as they had
the lowest correlation with the variable “Target”, which
defines the outdoor comfort level on the sidewalks in Tal-
linn. Fig. 6 gives general information about samples in 4
different Area, Number of buildings(s), Height, and Target
in Design Explorer tool. Fig. 6 samples show by filtering
according to the area value; different colours represent
specific areas 500 m?, 1000 m?, 1500 m?, and 2000 mZ.

4.1.1. Transformation of the categorical variable

Before the data is transferred to the ML algorithm, the
categorical variables of the morphological classes of the
buildings are transformed into numerical features that are
easier to identify in the ML process.

The transformation has a significant impact on the per-
formance of the model. In this study, embedded layers for
Deep Learning were created using Keras, which provides a
complete framework. The input is the variable of each
morphological class of buildings. This step results in a nu-
merical representation of each morphological class in Tal-
linn in the 11 dimensions of the input set.

According to (Cerda et al., 2018) practical recommen-
dations for encoding categorical features are an efficient
choice for capturing resemblance. In this study, the output
is a scaled column of the target (the degree of conve-
nience). As categorical features differ from numerical, an
operation to define a feature matrix is needed. Machine

- i

Input Data

Algorithms
New Data Predictive Model

Fig. 5

Machine Learning

learning models that need vector data are applied after a
categorical variable encoding to replace the tuple element
with feature vectors. Each category is mapped to a
particular vector, and the properties of the vector are
adapted or learned when training a neural network. The
vector space provides a projection of categories so that
close correlated categories are naturally grouped. Here,
the model has been trained for 50 iterations or epochs. This
approach allows us to capture the relationships between
categories and define three embedding variables that
determine each class of building morphology in the dataset.
The final result of the embedding process for each
morphological class looks as follows, where each row in
three elements represents one class of building morphology
(Table 7).

The definition of “Target” classes is based on the clas-
sification of PET and WCL, applying the Jenks optimization
method.

4.2. ML model building and classification

The learning algorithm finds patterns in the training data
that map the attributes of the input data to the target and
the results of an ML model that captures these patterns.
First, the machine is trained with training data, and then it
is checked to see how well it has learned by providing it
with a test set. The test set has the same structure as the
training set but does not contain any answers (Ramsgaard
Thomson et al., 2020).

In this study, the Random Forest algorithm was used, one
of the most popular algorithms for regression problems that

[Phase 1: Model Training]

= @

Predictive Model
[Phase 2: Model Testing]

= @

QOutcomes
Prediction

Machine Learning training and scoring process.
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Table 6 The range of thermal index predicted thermal
perception by human beings and physiological stress on
human beings (Cohen et al., 2013).

PET (°C) Thermal Perception Grade of physiological stress

Very cold Extreme cold stress
4

Cold Strong cold stress
8

Cool Moderate cold stress
13

Slightly cool Slight cold stress
18

Comfortable No thermal stress
23

Slightly warm Slight heat stress
29

Warm Moderate heat stress
35

Hot Strong heat stress
41

Very hot Extreme heat stress
Table 7 LDDC Lawson comfort criteria (Lawson and Pen-

warden, 1975).
LDDC Lawson comfort criteria

Category Comfort activity Threshold
Wind Velocity
(m/s)

1 Sitting 4

2 Standing 6

3 Walking 8

4 Business walking/cycling 10

5 Uncomfortable for all >10

activities

work with both categorical and numerical input variables
well. Leo Breiman proposed Random Forest in the 2000s to
create a predictor ensemble with a set of decision trees
that grow in randomly selected data subspaces (Wang
et al., 2020).

Like the decision tree, the idea of the Random Forest
Regressor comes from the ordinary tree structure, which
consists of a root and nodes (the positions where branches

Categories
Series 1=

Linear -

L Shape 2 4

L Shape 1
Free form 1
Court—

C Shape
Block -
Articulated 2 -
Articulated 1

, pArea (m)

Number of building(s)

=

divide), branches, and leaves (Jehad et al., 2012) repre-
sented by the segments connecting the nodes.

This study uses the Random Forest Classifier from the
Scikit Learn library. From the Sklearn model selection, the
train test split function was applied to split the dataset into
the train and test subsets. In this study, the classification
performance was tested based on the different sizes of
training and test datasets. Finally, the best classification
performance was obtained with a training size of 75% and a
test size of 25%. In addition, we used the stratification
parameters in the splitting step to ensure that the training
and test datasets contained examples of each target class
in the same proportions as in the original dataset.

The next step was normalized and rescaled the training
dataset in Python using the Standard Scaler function, so the
variables were put in the same range.

Finally, the forest model was externalized by fitting the
training subset data and calling predict to obtain pre-
dictions. In this way, we fitted and evaluated the model on
separate chunks of the dataset by applying the Random
Forest Classifier.

5. Results

5.1. Evaluation of classification accuracy

Three methods were applied to assess the accuracy of the
classification (Table 8). This subsection describes the
application of the methods to assess classification accuracy
and the interpretation of the assessment results mentioned
in the Results section.

5.1.1. Accuracy score

The classification accuracy score is the first method to
determine the accuracy of the built learning model, which
measures how many labels got right out of the total number
of predictions. This metric evaluation benefits Scikit Learn
by using the true labels from the test set and the predicted
labels for the test set. In this study, the classification ac-
curacy is 0.69.

5.1.2. Confusion matrix

A confusion matrix, also known as an error matrix expresses
how many of a classifier’s predictions were correct and, if
they were incorrect, where the classifier was confused. It
allows visualization of an algorithm’s performance and easy
identification of confusion between classes, e.g., when one
class is frequently mislabelled (website of geeksforgeeks.

Height (m) Target

Col

Fig. 6 The initial data before the categorical data transformation and scaling.
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Table 8 The definition of “Target” classes is based on the
classification of PET and WCL, applying the Jenks optimi-
zation method.

Level of outdoor comfortability

PET WCL “Target”

0.17C-2.77 °C 50.00%—72.97% Target 1
72.97%—87.77% Very Cold
87.77%—100%

2.77C-4.5°C 50.00%—72.97% Target 2
72.97%—87.77% Cold
87.77%—100%

4.5C-11.7 °C 50.00%—72.97% Target 3

72.97%—87.77% Cool
87.77%—100%

org). The columns of a Confusion Matrix represent the results
of the prediction classes, and the rows represent the results
of the actual classes. It enumerates all possible cases of a
classification problem (Zhang et al., 2020).

A confusion matrix of size nxn associated with a classi-
fier shows the predicted and actual classification, where n
is the number of different classes. Table 9 shows a confu-
sion matrix for n = 2, whose entries have the following
meanings.

a is the number of correct negative predictions;
b is the number of incorrect positive predictions;
c is the number of incorrect negative predictions;
d is the number of correct positive predictions.

The prediction accuracy and classification error can be
obtained from this matrix (Visa et al., 2011).

Accuracy = (@+d)/(a+b+c+d).

Error = (b+c)/(a+b+c+d).

In the confusion matrices, the rows represent the true
labels, and the columns the predicted labels. The values on
the diagonal indicate the number of cases in which the
predicted label matches the true label. The values in the
other cells represent cases where the classifier mislabelled
an observation. The column indicates what the classifier
predicted, and the row indicates the correct label.

The Python library Sklearn was applied to calculate the
confusion matrix and the results of the classification report.
Based on the dataset, 26% of the data in the Target column
are Target 1, while Target 2 and 3 account for 36% and
37.5%, respectively.

Fig. 7 shows the confusion matrix plot using labels and
the colour scale, with the normalized values of all three
targets. The Confusion Matrix shows Target 1 was labelled
86% correctly, i.e., 74 out of 86, while Target 2 (86 out of
120), meaning Cold label, was marked 72%, and Target 3 (68
out of 124) as Cool label was correctly labelled only 55%.
Fig. 7 also shows that 14% (12 out of 86) of Target 1 in-
stances were incorrectly labelled as Target 3, and 28% of
Target 2 instances (34 out of 120) were considered Target 3
when classified. For Target 3, only 0.48% (less than 1 out of
124) were misclassified as Target 1, while 40% of instances
in Target 3 were misclassified as Target 2 (50 out of 124).

5.1.3. AUC in ROC
We also used Area Under the Curve (AUC) in the Receiver
Operator Characteristic (ROC) curve, also known as area
under the curve, the evaluation metric used to calculate
the performance of a binary classifier to find out how ac-
curate the classification is. It is a curve that plots the True
Positive Rate (TPR) against the False Positive Rate (FPR) at
different thresholds, separating the “signal” from the
“noise”. The AUC value measures a classifier’s ability to
discriminate between classes and is used as a summary of
the ROC curve. The higher the AUC value, the better the
model’s performance in distinguishing between the positive
and negative classes. Here, the AUC value in ROC indicates
0.78.

Meaning AUC in ROC shows the classification perfor-
mances very well.

5.2. Designing pipeline skeleton

The next step is to create a Pipeline since we have done the
necessary pre-processing and ML processing. The Pipeline
creation process starts with classification and then assess-
ment of the classification (Yahia and Johansson, 2011).
Since classification and evaluation of the accuracy of the
ML model were completed in the previous steps, next is
fitting the algorithm to the new training data and predicting
the target values in the three different groups: Very Cold,

Table 9 The embedding categorical morphological class in three sizes.

Name of the Morphological class Embedding_1 Embedding_2 Embedding_3
1 Aggregated blocks —0.07856157 0.04777364 0.12004933
2 Articulated 1 —0.09694797 0.12489636 0.140933

3 Articulated 2 0.09129719 —0.09825113 —0.11955576
4 Block 0.07574975 —0.12907775 —0.11605914
5 C Shape 0.05438302 —0.08725278 0.01638534
6 Court 0.03764237 —0.10152158 —0.06313951
7 Free form 0.05259462 —0.07555065 —0.10173931
8 L Shape 1 0.00210845 —0.02964082 —0.02180827
9 L Shape 2 0.1176304 —0.06369058 —0.04275405
10 Linear 0.06750278 —0.02232246 —0.01423943
11 Series 0.07436664 —0.0262874 —0.03133094
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Target 1, Very Cold

Target 2, Cold

True Label

Target 3, Cool

Target 1, Very Cold

Fig. 7

Cold, and Cool. The new dataset has the same building
features of Table 3, but the Target column is missing. By
applying the built learning algorithm and fitting the new
training data, Targets will predict through the ML Pipeline.
Here the dataset is created with the samples representing
the different models in the initial dataset. Therefore, the
prediction function is only called for the Pipeline object to
make predictions about the targets in the new test data. In
this step, the new test data must first be entered into the
Python environment as a CVS file using the Pandas library.
Then, about 10,500 new target variables were predicted
based on the learning algorithm and the model capability of
ML Pipeline. The target variables correspond to the ML
model in three classes representing the comfort quality of
the sidewalks around each building in Tallinn in the ranges
from Target 1 to Target 3, i.e., the sidewalks with different
comfort levels around the building models.

The Pipeline ML model reads the data from the new
dataset as training data and calls the learning algorithm
based on the Random Forest Classifier. Finally, the highly
accurate target values were saved in an Excel CSV file and
added as the last column of the test data with about 10,500
building models showing the comfort value of the sidewalks
of the building models in Tallinn based on the predictive
and data-generative ML model.

5.3. The evaluation of the model
In classification problems, good classification accuracy is

the primary concern (Visa et al., 2011). The accuracy of the
ML model was assessed in three ways (Table 10). The first

Table 10  The metrics for evaluation of classification.

The metric of evaluation The value of
the accuracy

Classification accuracy score 0.69

Confusion Matrix (Macro average) 0.71

AUC in ROC 0.78

Target 2, Cold

08
07
06
05

-04

-03

-02

-01

-00
Target 3, Cool

Predicted Label

The representation of the confusion matrix in this study.

assessment of the model’s performance as an accuracy
score yields 69%, which means that most of the labels in the
test data set were detected very well in all three targets
(Table 11).

However, since accuracy is the perfect measure of the
classifier’s performance when the classes are unbalanced
(like the dataset in this study), the other metrics should be
used to evaluate the model’s performance.

The Confusion Matrix results show that the classifier and
ML model perfectly understood Target 1 as a Very Cold level
and Target 2 as defining the Cold level. But for Target 3,
which denotes the Cool level of comfort (Cool), the model
was confused and misclassified 50% of the labels as Target 2
as Cold. The results show that the model ML recognized the
difference between Very Cold and other targets. Therefore,
although the classification is not good enough to label Target
3, it is good enough to distinguish Target 1 (no comfort
quality) from the others that correspond to comfort level.

The report of the classification contains the following
values:

Precision is the number of correctly identified class
members divided by the number of model predictions for
that class.

Recall as the number of members of a class correctly
identified by the classifier divided by the total number of
members of that class.

F1 is a quick method to determine whether the classifier
identifies the members of a class well.

Although the model has a high accuracy rate in all
three metrics precision, Recall, and F1 score for Target 1,
it mixes labels of Target 2 and Target 3. The classification
report shows that the model ML and classification were

Table 11 The confusion matrix for two-class classification
problems (Visa et al., 2011).

Predicted Positive

b
d

Predicted Negative

Actual Negative
Actual Positive

a
©
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Name Area(m?)
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Fig. 8

able to classify the classes of the target very well, as at
least 60% of the instances were classified correctly. In this
study, the results of applying AUC in ROC using the Scikit-
Learn libraries show 0.78. Therefore, the maximum value
of the AUC in the ROC metric is 1. Then in the case of
0.5 < AUC<1, there is a high probability that the classifier
can distinguish the positive class values from the negative
class values, and the classifier can detect more numbers
of True positives and True negatives than False negatives
and False positives. Thus, the value of 0.78 in AUC in the
ROC metric tells us that the ML model and classification
work well, and the algorithm is reliable to apply in the
next step.

Name
Series

Linear

L Shape 2

L Shape 1
Free form 1
Court

C Shape
Block
Articulated 2
Articulated 1

Numbersol building(s)

Using ML Pipeline, the generated data over Targets 1, 2, and 3.

5.4. The evaluation of the generated data

Fig. 8 shows the results of the generated target in the new
dataset introduced into the ML model. The target column
was filtered by “Target 1”, “Target 2” and “Target 3”. The
generated data includes features of 500 initial geometric
models.

In this study, according to the diagrams in Fig. 9, side-
walks surrounded by buildings of the morphological classes
“Articulated” and "Aggregated” have the lowest level of
thermal and wind comfort, i.e., the first level (Target 1,
Very Cold). The remaining morphological classes provide
the medium or highest level of comfort, i.e., the lowest

Fig. 9 The samples in the “Aggregated” morphological class cause the lowest.
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Area (m?)

2,008-

L Shape 2
L Shape 1
Free form 1

Aggregated

Fig. 10

Table 12 The report on the classification of the ML
model.

Precision Recall F1-score
Target 1, Very Cold 0.93 0.86 0.89
Target 2, Cold 0.63 0.72 0.67
Target 3, Cool 0.61 0.55 0.57

level of discomfort, i.e., Cold or Cool, on the sidewalks
around the buildings.

Furthermore, the results in Fig. 10 show that the build-
ings of the morphological class “Aggregated” with the
smallest area (500 m?) and aggregated in groups of 3—5 in
one place cause very cold discomfort for pedestrians on the
sidewalk around the buildings. In addition, this morpho-
logical class leads to a higher level of outdoor comfort, Cold
and Cool level when the variables are in the higher values.

The evaluation of two morphological classes with me-
dium comfort levels shows that the “Articulated” class (1
and 2) causes medium, i.e., Cool, comfort level on the
sidewalk of the studied cases when the number of buildings
on the site is high (6). On the other hand, the height is the
lowest (3 m, 6 m, or 9 m) (Fig. 10).

As Table 13 shows, most of the morphological classes in
the studied cases in Tallinn provide the medium or highest
comfort level (Table 12). Thus, the sidewalks around the
buildings are suitable for creating a pleasant space like all
kinds of activities in spring during the analyzed time and
day. However, considering the effects of variables such as
the area, the number of buildings on the site, and the
height of the buildings on the site does not clearly indicate
their independent relationships to the level of comfort
around buildings. Therefore, assessing outdoor thermal

Table 13

Number of building(s)

Height (m)

Target
307

The outdoor comfort level in the "Aggregated” morphological class.

comfort depends on considering not just one of the vari-
ables but several.

6. Discussion

6.1. Analyzing data based on the ML model

Since the study aims to determine the level of outdoor
thermal and wind level at the pedestrian level and under-
stand the best morphological classes of the building that
provide optimal thermal comfort, the predictive targets
show us which morphological classes could offer the best
comfort level to people.

Moreover, since the data were classified into three
classes and the classification was assessed using the
Confusion Matrix, the report shows us that the data with
the labels of Target 2 and Target 3 were mixed in some
cases. Therefore, ML could not identify them very well.
This may be because the definition of these two classes
stands for the Cold and Cool classes, while the definition of
the first class, which stands for the Very Cold comfort level,
is clearly different from the other comfort levels.

Therefore, evaluating the collected data on the comfort
level in urban areas in the early stages of urban planning
would be more helpful if the target classes were defined in
binary classes (two groups), i.e., Comfort and Non-Comfort.
In this way, the model of ML can better divide the samples
into two groups, and the results are more accurate.

Optimizing outdoor thermal comfort at the urban scale
helps to create a better environment where people engage
in various activities, so architects and urban planners seek
to consider the elements that contribute to maximizing
comfort quality in urban areas. Collecting data on the
condition of buildings in the urban area, assessing thermal

The definition of “Target” is based on the classification of PET and WCL.

Models Morphological Area (m?) Height (m)  Density (m?) Orientation WS (m/s) PET (C) WCL Comfort
class (degree) Level
M74 Block 500 45 7500 60 1.22 12.2 85.29 Cool
M86 500 54 9000 0 0.65 12.8 85.29 Cool
M226  Aggregated 500 36 6000 0 2.23 12 85.29 Cool
M236  blocks 500 42 7000 0 2.23 12 85.29 Cool
M240 500 42 7000 80 1.97 12.2 85.29 Cool
M242 500 45 7500 20 1.97 12.2 85.29 Cool
M246 500 48 8000 0 1.97 12.2 85.29 Cool
M256 500 54 9000 0 1.78 12.2 84.29 Cool
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comfort and wind comfort around the buildings, and using
this data to make predictions and generate comprehensive
data on other buildings can be helpful steps in the pre-
design and design processes in architecture and urban
planning. The results of this study provide new information
about the comfort level on the sidewalks around buildings
in Tallinn, which can be helpful in the planning and pre-
liminary design of buildings and urban areas. In this way,
applying the generated data from the predictive ML Pipe-
line model can be considered a design tool to meet urban
users’ outdoor thermal and wind comfort needs.

6.2. Analyzing results

Since the study aims to evaluate outdoor comfort, it fo-
cuses on the sidewalk around the building to determine
which morphological classification of buildings provides
better thermal and wind comfort for people standing,
sitting, and working around the buildings.

In this study, data from more about 500 models were
derived and analyzed separately through a simulation pro-
cess to obtain thermal and wind comfort in the proximity
buildings to feed the ML model. Then, the data is evaluated
with all variables that correlate with the concept of ther-
mal and wind comfort conditions on the sidewalks around
different buildings to create an ML Pipeline model and
generate new data on the comfort quality. In the study, the
correlations between climatic factors that determine out-
door thermal comfort and wind comfort was considered and
applied in the ML process to predict outdoor comfort about
morphological aspects and other characteristics of build-
ings. The results of the comfort level of new buildings show
that the proposed framework has the potential to be
applied in architectural and urban design studies to provide
results based on both engineering and statistical modeling.
This helped in finding effective design alternatives and
reliable data, such as the morphological building class, the
area, the number of buildings on the site and the height of
the buildings, and their impact on the outdoor thermal and
wind comfort and consequently, on the level of activities
that people can perform in the city. The results show that,
except for the “Articulated” and "Aggregated” morpho-
logical classes, other samples provide the comfort level of
Cool or Cold and that the surrounding sidewalks of these
patterns are better spaces for all levels of activities for
people.

7. Conclusions

This article provides information on the correlation be-
tween climatic factors that are important for determining
outdoor thermal and wind comfort around buildings in
Tallinn, Estonia, and the ML approach to assess them. This
study is subject to the following limitations.

The first limitation relates to the input data for the
assessment of PET in the ENVI-Met software. Depending on
the aim of the study, personal data, clothing and activity
level of people, and climatic data can be changed. More-
over, though 500 building cases were generated to train and
evaluate the ML model, the data was still relatively few.
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The second limitation is considering weather data of a
specific date and time during the CFD simulation process.
Since outdoor thermal comfort depends on climatic condi-
tions, the input data and, consequently, the thermal com-
fort and wind comfort will change at different seasons,
dates, and times.

However, because of not considering the impact of urban
elements, like green areas and vegetables, simulated models
would be more or less different from realistic designs. In the
same meaning, during the CFD simulation process, buildings’
anthropogenic energy was not considered.

Nevertheless, in the previous study by the authors, the
day and time were selected because it represents air
temperature and wind conditions during winter and spring
in Tallinn. The third limitation is the difficulty of consid-
ering the qualitative approach and people’s thermal sen-
sations. However, people’s thermal senses can be
considered when assessing the extent to which an area is
perceived as comfortable or uncomfortable. To address this
issue, the ML model will be based on microclimatic mea-
surements, simulations, interviews, and surveys in the
development of the work. The last limitation of the study is
related to the fact that the prediction results of the ma-
chine learning method are less accurate than CFD simula-
tion, and more on mathematics, and machine learning is
based on empirical predictive models. The hybrid simula-
tion is based on mathematics, and machine learning is
based on empirical predictive models. The hybrid frame-
work presented in this research suggests that machine
learning can be applied in urban studies as a trustable
assistance to CFD simulation.

For future work, the authors are considering a quanti-
tative and a qualitative approach to assessing outdoor
thermal comfort. This means that thermal comfort will be
evaluated through simulation processes and people’s sub-
jective thermal sensations obtained through interviews and
surveys. Thus, the ML algorithm will benefit from both as-
pects to generate new and more accurate data for outdoor
thermal comfort assessments. In addition, future research
aims to study larger pedestrian areas in urban environments
during cold and hot seasons.
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Abstract. Urbanization is associated with increasing the temperature of urban areas and
phenomena like UHI. The UHI produces a sensible impact on people’s health, quality of life,
urban liveability, and even the mortality rate. As a result, reducing high temperature in cities will
improve the quality of life in cities. Overall, the understanding of the relationship between UHI
and urban features is not well captured due to a lack of accessibility to data and cost implications
related to long-term monitoring and simulation processes. Machine Learning (ML) offers
significant opportunities to develop approaches that lead to high accuracy in discovering the
significant features of buildings and urban areas, improving the conditions of the inhabitants.
The paper aims to describe how the actual spatial data of Tallinn, Estonia, were assessed and
applied to build an Explainable ML-based model. The study outcomes include the ML-based
models that help understand the importance of urban features and their value in developing
strategies and solutions to mitigate the UHI effect. The study’s findings show that changes in the
most important features of urban areas and buildings, such as the built area in the neighbourhood
zone and the area and orientation of buildings, play the most significant role in transforming an
urban area from one with no UHI effect to one that experiences heat waves. The results provide
essential information for urban planners who implement built environments.

Keywords: Spatial data, Urban analysis, Urban Heat Island, Machine Learning Explainable model.

1. Introduction

Urbanization has been a critical driver of development throughout history [1], which caused a
significant impact on the world [2]. One of the critical challenges facing urban design in the digital age
is modelling the complexities of urban environments, particularly concerning environmental issues like
the UHI effect, which refers to the air temperature difference between urban and rural areas [3].
Scientists, planning authorities, and governments have increasingly recognized the impact of urban
design and planning on the severity of the UHI [4]. Therefore, urban planners have employed practical
measures to mitigate the UHI effect and enhance cities’ sustainability and livability. These efforts aim
to create more favorable conditions for human habitation while ensuring ecological balance [5, 6].

Since urban environments are becoming increasingly complex, it is essential to have efficient
analytical tools to aid in planning projects. In this regard, spatial data analysis is crucial in facilitating
urban planning to address the challenges [7]. Furthermore, digitalization has opened new possibilities
for integrating spatial science with ML to extract valuable insights from large and complex datasets by
discovering hidden patterns that would be difficult to detect using traditional methods [8].



This research implemented a novel framework to capture spatial data from different scales, buildings,
neighborhood zone, and urban scales to build an ML-based transparent model that explains the
importance of features impacting the UHI effect. The current study highlights the importance of ML in
increasing trust and confidence in urban studies. To address these shortcomings, the key aim of this
study is to develop a holistic design framework considering interrelated research questions concerning:
How can spatial data be captured from different resources? Moreover, how can ML-based models show
the importance of urban feature that impacts the UHI effect?

2. Background studies

Rapid urban growth and the increase in impervious surfaces in dense urban areas can have significant
impacts on the surface and air temperature of metropolitan cities [9] [10] to 2-5°C than those in
surrounding rural [11] [5]. Brian Stone proclaimed in 2012 that the world’s big cities are escalating in
temperature faster than the planet [12] and explored global warming underway in cities [13]. Urban
design factors are related to the physical characteristics of the built environment [14]. As the urgency of
climate change grows, researchers and practitioners increasingly recognize the need for systematic,
methodically well-grounded research to upscale and implement place-specific climate solutions while
respecting local variation and context [15]. Based on learning theory, ML methods can extract
meaningful information and patterns from this data, allowing for the identification of practical solutions
tailored to the specific location and context [15]. The importance of informing how the machine makes
models and predicts features develops the idea of using the explanation of ML models. Explanations are
essential to trust that the predictions made by models are correct. The needs for Explainable ML models
are because black-box ML models make it hard to understand and explain the behavior of a mode [16].
3. Methodology

This research is situated in urban studies and focuses on the implementation paradigm of urban
assessment practice. The study aims to collect geospatial data relating to buildings and their context and
data of the UHI phenomenon within an urban area. Furthermore, this research seeks to employ ML-
based models using geo-processed urban data to clarify how different urban features affect the UHI
effect. The framework of the study comprises two sections, as Figure 1 shows.

The first section is related to the urban assessment practice of collecting geospatial data of buildings
and their context on the one hand and data related to the UHI phenomenon, on the other hand, to perform
geoprocessing on the data. The data relating to the UHI effect in Tallinn are related to the summers of
2014 and 2019. Lastly, the meteorological data recorded when the city was affected by heat waves was
assigned to the processed data. The steps in the second section are:

1- Building the Random Forest Classifier model of the UHI dataset as the base ML model.
2- Finding the essential urban features (Permutation feature importance).
3- Finding the marginal contribution and threshold of the most important attributes in the ML model.

Feature Importance

Tree based

LR ML model

- J |
Geoprocessingl

Figure 1. The schematic diagram of the framework of the study.

The geodata is integrated into QGIS Tool, and the data analysis is implemented in Python 3 in the
Jupiter notebook interface. The Python libraries used are NumPy and Pandas: for data manipulation,
Matplotlib and Seaborn: for visualization, and Geopandas for geodata manipulation.

3.1. Geoprocessing

The initial data used in the study are divided into three groups: Urban, Weather, and climate, and

data related to the UHI effect. The urban data are based on the Tallinn Land Authority Geospatial Data



Portal [17, 18, 19] and indicate urban data in buildings and neighborhood details of Tallinn, Estonia
(67,113 buildings) [20]. Moreover, to prepare the dataset, Estonian cities' assessed heat wave data that
explored the extent and magnitude of the UHI effects were used [21]. The geographical information of
the city is 445,005 population and 159 km? area [22] with a humid continental climate with cold winters,
according to the Képpen-Geiger classification [23].

3.1.1. Ascending hierarchical grid system

The type of urban data was recognized as homogeneous or heterogeneous and static or dynamic
types. The hierarchical grid system in the environment of the QGIS Tool was performed to capture the
location-based urban data, considering their context. Each level of the grid system has an ascending
hierarchical structure, starting with the smallest scale, the first grid, the square with a size of 200 meters,
the second level with a dimension of 1000 meters, while the most significant level is a square with a
dimension of 2000 meters [20]. The initial available data combine two components of the schema, and
static heterogeneity means that elements in an urban area, like buildings, streets, and the natural
landscape, remain unchanged or change little over time, and dynamic heterogeneity that refers to
frequently changing data, such as climate, microclimate, and UHI data. The hierarchical grid system
aims to create a spatial index for each object on the map [20].

3.1.2. Location-based features

The objects are referenced to the underlying grids and use the homogeneous ground to define urban
indices mainly related to the heterogeneous data, which means accommodating static and dynamic data
in the solid hierarchical grid system to detect objects on the map and define location-based indexes.
According to the geometric classes of objects in the QGIS Tool, we considered polygons when the
objects that should be detected are buildings [20]. Moreover, we aim to find the shortest Euclidean
distances between buildings at the neighborhood scale with the spatial index to determine the size faster
than looping through the data frame and then finding the minimum of all distances when working with
a large data frame, that named ‘NearestNeighbour’ in the dataset [20]. In addition, the orientation of the
building is a vital factor that affects the incident solar radiation and the absorbed heat [24] determined
for all buildings in the dataset, named ‘Angle’ [20]. The last step to prepare the dataset is appending
other general and technical characteristics of buildings in different levels of the hierarchical grid system
on a different scale. Ultimately, the dataset is created according to the characteristics of the buildings,
their spatial indices on the hierarchical system grid, the UHI value of each building, and the defined
indexes based on buildings and different zones in the city area.

Furthermore, the meteorological data of the days during which the UHI effect was recorded in Tallinn
(during the summer of 2014-2019) was assigned to the dataset, accordingly [25]. Finally, the UHI effect
dataset in Tallinn, Estonia, involves 34,001 building samples from all eight districts of Tallinn, including
location, building characteristics, urban characteristics, UHI data, and climate data. The UHI effect has
three classes, 29 °C, 30°C, and 35°C [20] [26].

3.2. ML process

This section aims to find the importance of features that impact the UHI effect and the thresholds of
the essential features in the ML model. Therefore, we first built a tree-based Random Forest Classifier
model, then implemented approaches to understand the role of features in the dataset.

Feature importance of RandomForestClassifier model was performed with the permutation
importance method. In the initial step to do feature engineering, we merged two classes of the UHI
effect, which are 30 and 35, to make a class that shows the urban areas with the UHI effect (30°C and
35°C) and areas without the UHI effect (29°C) to make a binary classification with two values. The next
was splitting the data into independent and dependent variables to indicate features and targets. The
level of the UHI effect is selected as the target, and the rest are features. Next, we divided the dataset
into training and testing datasets. After defining a model based on a random forest, we checked the
model’s performance and accuracy to ensure the model’s performance was high enough. Here, the
precision of the model is more critical since we are looking for the maximum performance of the model.
The model’s accuracy is 90%, while the precision is 82% and 92% in classification for classes 1 and 2,
respectively.



The impurity-based feature importance breaks the relationship between the feature and the target.
Thus, the drop in the model score indicates how much the model depends on the feature. For example,
according to the bar chart in Figure 2, the numerical feature related to the ‘Built Area in G200°, the built
area in the smallest grid of the defined ascending hierarchical grid system, is the most significant; after
that, ‘Angle,” ‘Height,” and ‘Shape Area’ of the building are the most important features. The last

essential features are ‘Purpose of Building’ and ‘Material,” which are categorical.
Random Forest Feature Importances (MDI)

BuiltAreaG200

Angle

Height

ShapeArea
GreenAreainG200
NearestNeighbour
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Figure 2. The feature importance in the classifier ML model.

3.2.1.The Explainable model

In the next step, we built the Explainable model based on RandomForestClassifier to analyze the
performance and transparency of the model. Transparency in ML refers to the ability to understand and
interpret the inner workings of a model [16]. They typically operate by relating the input of a model to
its outputs without making assumptions about the internal workings of the model. The implemented
Explainable ML-based models in the study are Local Interpretable Model-agnostic Explanations (LIME)
& SHapley Additive exPlanations (SHAP) models. The explainable models that provide additional
information about the model’s predictions, used in this study, are LIME (explanation by simplification)
and SHAP (feature relevance techniques). Both models aim to provide insight into how specific
predictions were made [27]. Each attribute holds a certain weightage in predicting the occurrence of a
class depending on a particular threshold. To explain the decisions behind the ML model, we interpreted
the marginal weights of four top features ranked as the most significant attributed to the impurity-based
feature importance (Figure 2).
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Figure 3. The threshold and value of top features in the LIME Explainable model.

According to Figure 3, LIME predicts class 1 with 46% and class 2 with 54% confidence. The first
important attribute, ‘BuiltAreainG200°, indicates the threshold of 10805, meaning above the value
increases the chance to be labelled in class 2 with a weight of 0.12, whereas below, it increases the
chance of being in class 1 with a weightage 0.12. The following important attribute, 'Angle,” indicates
the threshold of 133°, which means when the angle of the building is higher than 133° the UHI class is
more likely to be class 2, but lower will lead the sample to label in class 1 (without UHI). The next is
‘Height,” while 4m is the threshold to label a building in class 2, otherwise in class 1. In addition, the
feature of ‘ShapeArea’, refers to the area of buildings in the dataset, with the threshold of 70.5 m? shows



that when the area of the building is higher than 70.5m?, the sample has more chance to label in class 2
(UHI level=30°C); otherwise, it will be in class 1.

SHAP is the most popular explainable model, based on coalitional Game Theory (Shapley values),
and involves identifying the essential features that contribute to the model's predictions to explain and
interpret the coefficients as the feature’s importance.

In the plotted results of the SHAP model, the red marks push the prediction higher toward the base
value (about 30°C), while the blue marks do just the opposite. As Figure 4 shows, increases in the value
of ‘BuiltAreainG200’ move the sample to be classified in UHI Class 2. The opposite changes are about
the ‘ShapeArea,’ in the lower SHAP values.

higher = lower
base value f(x)
29.54 29.59 29.64 29.69 29.74 29.79 29.84 29.89 29.9394 29.99 30.04
GreenAreaG200 = 41 BuiltAreaG200 = 482 ShapeArea = 169 ' ShapelLenght = 54

Figure 4. The performance of the SHAP Explainable model.

Moreover, according to the plot of dependency in Figure 5. a, between all most significant values in
the model, the shape value increases with an increase in value of ‘BuiltAreainG200’ as the highest
feature value in the SHAP model, in the wide range, and then ‘ShapeArea’ and ‘Angle’ as the second
and third features. Also, Figure 5. b shows dots as a single prediction (row) from the dataset. In addition,
the x-axis is the value of the ‘BuiltAreainG200,” and the y-axis is the SHAP value for that feature, which
represents how much the value of the feature changes the model's output for that sample’s prediction.
Moreover, the red dots represent the feature of ‘ShapeArea’ as a second feature that may have an
interaction effect with the feature we are plotting. Therefore, as the plot indicates, the high value of
‘BuiltAreainG200° and ‘ShapeArea’ maximizes the SHAP value.
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Figure 5. The plot of the dependence (a), the scatter plot of ‘BuiltAreainG200’ in SHAP value (b).

4. Conclusion

This study presents the spatial data and UHI data acquisition to build a dataset that is used to build
an ML-based transparent model, which explains the importance of features impacting the UHI effect in
urban areas. According to the impurity-based feature importance, ‘BuiltAreaG200’, ‘Angle,” ‘Height,’
and ‘ShapeArea’ of the building are the most important features that impact the labeling of a sample in
the class with the UHI effect. Furthermore, the results show that when the value of the feature of
‘BuiltAreaG200’ increases to more than 10000 m2, the building is more likely to be classified in the
UHI class 2. It means that the building probably experiences the UHI effect more than 30°C. To check
the results of feature importance, we considered the initial dataset used for the model creation. The
samples show that just 5.9% of samples with a value of ‘BuiltAreaG200’ greater than 10000 m2 are in
the UHI class 1 (lower than 30°C). Therefore, the transparent ML model results show that the feature
importance in the classified model is trustable. Therefore, the Explainable model can be applied to
develop mitigation strategies to improve the quality of the microclimate conditions in the urban area.
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Abstract: Climatic and micro-climatic phenomena such as summer heat waves and Urban Heat
Island (UHI) are increasingly endangering the city’s livability and safety. The importance of urban
features on the UHI effect encourages us to consider the configuration of urban elements to improve
cities” sustainability and livability. Most solutions are viable when a city redevelops and new areas are
built to focus on aspects such as optimum design and the orientation of building masses and streets,
which affect thermal comfort. This research looks beyond outdoor thermal comfort studies using UHI
data and geoprocessing techniques in Tallinn, Estonia. This study supposes that designing urban
canyons with proper orientation helps to mitigate the UHI effect by maximizing outdoor thermal
comfort at the pedestrian level during hot summer days. In addition, optimizing the orientation
of buildings makes it possible to create shaded and cooler areas for pedestrians, reducing surface
temperature, which may create more comfortable and sustainable urban environments with lower
energy demands and reduced heat-related health risks. This research aims to generate valuable
insights into how urban environments can be designed and configured to improve sustainability,
livability, and outdoor thermal comfort for pedestrians. According to the study results, researchers
can identify the most effective interventions to achieve these objectives by leveraging UHI data and
geoprocessing techniques and using CFD simulations. This evaluation is beneficial in guiding urban
planners and architects in proposing mitigation solutions to enhance thermal comfort in cities and
creating suitable conditions for approved thermal comfort levels. Results of the study show that in
the location used for the survey, Tallinn, Estonia, the orientation of West-East offers the optimum

level of comfort regarding thermal comfort and surface temperature in the urban environment.

Keywords: urban climate changes; outdoor thermal comfort; Urban Heat Island (UHI); surface
temperature; mitigation strategies of UHI effect

1. Introduction

According to the European Environment Agency (EEA) [1], the number of megacities
has nearly tripled since 1990 [2]. Recognizing the paramount importance of providing
secure, healthy, and comfortable housing for individuals” overall well-being, urban design
plays a critical role in mitigating the adverse effects of climate change on cities [2]. The
rapid expansion of urban areas brings about significant alterations in surface temperatures,
particularly in densely populated regions characterized by impermeable surfaces that
absorb substantial solar radiation, resulting in heat retention within buildings [3]. By
effectively managing the factors that influence the urban microclimate, the quality of life
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for city residents can be significantly improved [2]. Conversely, inadequate urban design
exacerbates the impacts of climate change in urban areas [1].

The UHI effect is a specific phenomenon associated with urban environments, leading
to substantially higher temperatures than surrounding rural areas [2]. UHI contributes
to a 2-5 °C temperature rise in urban areas [3]. The low level of thermal comfort in cities
emphasizes the urgent need for urban planners to prioritize sustainability and reevaluate
their approaches. This is particularly significant due to the far-reaching impacts of urban
warming on health, well-being, human comfort, and the local atmosphere [4,5], as well as
the economic and social systems of cities [1]. Brian Stone highlighted in 2012 that major
cities worldwide are experiencing temperature increases faster than the rest of the planet [6].

Consequently, there is a pressing need to present mitigation strategies to address the
exponential growth of UHI and heat waves associated with rising urban temperatures. As a
result, scientific interest in mitigating UHI has increased, reflecting an increased awareness
among scientists, urban planners, and governmental organizations [7,8]. This is primarily
due to UHI’s direct impact on urban residents” health [4,9] and its implications for their
well-being, human comfort, and the local atmosphere [8].

Research on the UHI phenomena often focuses on the canopy layer and investigates
it at micro and local scales, such as single-street canyons and neighborhoods [10]. The
design configuration of urban areas, including optimized building and street geometry and
orientation, plays a crucial role in influencing solar radiation and airflow within an urban
canyon [11]. Among the various measures used to assess UHI, ambient temperatures,
including air and surface temperatures, are particularly important [4]. In urban street
canyons, the amount of solar radiation directly impacts solar access and, consequently, the
thermal comfort experienced by pedestrians [11]. Hence, incorporating these strategies into
urban development plans could create more sustainable, resilient, and livable cities [12].

However, there are still limitations in studies concerning outdoor thermal comfort,
mainly due to the inefficiency of simulations and the challenge of applying assessment
results during the early stages of the design process [13]. Furthermore, UHI mitigation
strategies still face several hurdles, such as the complexity of execution and the diffi-
culty in effectively communicating scientific knowledge to municipal governments and
urban planners [7].

While various strategies for mitigating the UHI effect have been acknowledged, there
is still a need to bridge the gap between the accumulated knowledge and the practical
implementation of UHI mitigation measures. One approach to address this is to consider
the influence of outdoor comfort levels and surface temperatures during the design process
of urban elements and building extensions. Furthermore, Computational Fluid Dynam-
ics (CFD) and numerical simulations allow researchers to assess design scenarios and
compare their effectiveness in mitigating UHI and improving outdoor thermal comfort in
urban areas.

Furthermore, rather than retrofitting existing urban areas, it is advantageous to incor-
porate UHI mitigation strategies right from the start when developing new cities. Since
thermal comfort is a crucial factor in design considerations [14], analyzing the geome-
try and orientation of urban canyons and surrounding buildings enables researchers to
determine the optimal configuration that maximizes shading, airflow, and solar radia-
tion. This optimization approach helps minimize the UHI effect and enhance outdoor
thermal comfort.

This study offers a unique contribution through its innovative approach of sampling
urban areas using geoprocessed urban data. It extensively analyzes the relationship be-
tween building orientation, outdoor thermal comfort, urban surface temperature, and
the UHI effect, specifically in Tallinn, Estonia. Additionally, the study introduces a novel
method for analyzing the Physiological Equivalent Temperature (PET) value, utilizing a
scaling evaluation method. This study provides a valuable opportunity to gain insights
into the intricate interplay between urban features, microclimate conditions, and human
well-being through the implementation of optimization research. The findings obtained
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from this research can inform and guide decision-making processes in urban design and
planning. This study offers valuable insights that can contribute to developing informed
and effective strategies for mitigating the UHI effect. By incorporating these insights, urban
planners, architects, and policymakers can make informed decisions and create design
guidelines that promote sustainable and livable urban environments.

The essence of this research as an optimization urban research has three main objectives:

Objective 1: To evaluate the outdoor thermal comfort at the pedestrian level in different
scenarios of building mass orientation in the urban canyon. This objective holds significance
as it directly impacts the well-being of city residents and aids in identifying the most
favorable and sustainable design solutions for residential areas.

Objective 2: To evaluate the surface temperature of different building mass orientation
scenarios. Surface temperature plays a pivotal role in the UHI effect, and comprehending its
behavior in different scenarios is essential for identifying effective UHI mitigation strategies
and making informed design decisions.

Objective 3: To propose solutions that improve the quality of life regarding outdoor
thermal comfort to help reduce the effect of UHI in Tallinn. This objective holds great
importance in light of the growing significance of urbanization and climate change as
global concerns.

After the Introduction, the paper is divided into five sections:

Section 2 provides an overview of the literature review and related works based on an
extensive review of published academic research studies. Section 3 discusses the material
and methods applied in the study. Section 4 presents the numerical analysis and CFD
simulation to assess the outdoor thermal comfort and surface temperature of case studies
in different scenarios. Section 5 is related to the assessment results. The discussion follows
in the next section with the interpretation of the results and the study’s conclusion.

2. Background
2.1. UHI Effect and Surface Temperature Studies

Rapid global urbanization has resulted in extensive urban development, with a signifi-
cant portion of the global population residing in cities. This trend is projected to increase to
around five billion people, or 61 percent of the global population, by 2030 [2]. In Europe,
the percentage of the population living in cities is currently around 73%, with an expected
rise to 82% [1]. Due to urbanization and global climate change, urban areas experience
higher temperatures than non-urban regions. This trend is expected to continue throughout
the 21st century, leading to higher temperatures in urban areas than in non-urban regions
due to the UHI phenomenon [15]. The phenomenon of UHI resulting from urbanization
was first observed in 1818 by Howard [5]. The occurrence of heatwaves and the UHI effect
presents significant climate risks to cities, leading to extensive research efforts to explore
various methods to mitigate their impacts [6]. The intensity of the UHI is a measure of the
additional heat introduced into the atmosphere by urban areas [16]. Changes in the urban
thermal environment substantially impact the energy balance within urban areas, affecting
boundary meteorology and climatology [3]. These factors have socio-economic implica-
tions, including increased energy consumption, heightened vulnerability to heat-related
illnesses, and higher mortality rates [17]. Consequently, it is essential to investigate UHI mit-
igation strategies sustainably [4]. Accurate analysis and understanding of UHI's spatial and
temporal variations of UHI are crucial for effective management and mitigation efforts [17].

Mitigating the UHI phenomenon through physical environmental modifications is
crucial for altering the urban microclimate. Implementing large-scale mitigation measures
encompassing the entire urban environment can significantly impact the urban microcli-
mate [7]. The research conducted by Akbari, Rosenfeld, and Taha at the Lawrence Berkeley
National Laboratory played a crucial role in popularizing the concept of UHI mitigation [7].
UHI mitigation is essential for improving human thermal comfort and creating better
living environments in urban residential areas. However, limited attention has been given
to understanding the combined effects of UHI mitigation strategies on human thermal
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comfort [18]. Akbari suggests various strategies to reduce UHI and enhance thermal com-
fort in cities, highlighting that the intensity of UHI is influenced by urban characteristics,
micro-climatic conditions, urban materials, and green spaces within urban areas [1]. The
arrangement of buildings and the land’s topography play crucial roles in determining
temperature distribution within a city [19]. Additionally, urban geometry plays a pivotal
role in controlling the retention and release of heat, emphasizing its significance in the UHI
phenomenon. Therefore, it is vital to understand how urban geometry influences these
factors to implement effective strategies for UHI mitigation [17].

In 2009, Giguére compiled a comprehensive inventory of UHI mitigation strategies,
categorizing them into four groups. These categories include vegetation and cooling
measures such as selective tree planting, greening of parking lots, and implementing green
roofs. The second category is sustainable urban infrastructure, focusing on designing
buildings and roads with UHI mitigation in mind. Third, sustainable water management
is another category that utilizes trees, green roofs, permeable surfaces, and retention
ponds to manage water in urban areas. Lastly, reducing anthropogenic heat involves
controlling heat production, reducing vehicle numbers, and implementing efficient air
conditioning systems [7].

Dynamic numerical approaches are the most reliable and satisfactory method for
assessing the effectiveness of UHI mitigation strategies [5]. Similarly, in a study conducted
in Toronto, various UHI mitigation strategies were evaluated in different urban neighbor-
hoods using numerical simulations with the ENVI-met software to gauge their impact on
reducing UHI effects. The study revealed that urban form significantly influences the dura-
tion of direct sun and mean radiant temperature, which are crucial factors in determining
urban thermal comfort [20].

In a study conducted in the Sydney metropolitan area, researchers examined the
impact of various urban design factors on ambient and surface temperatures in open spaces.
Factors such as building height, street width, aspect ratio, built area ratio, orientation,
and dimensions of open spaces were analyzed. Using the ENVI-met simulation tool, the
study developed fourteen precincts to simulate different scenarios, both with and without
mitigation measures. The results demonstrated a strong correlation between the gradient
of temperature decrease along the precinct axis (GTD) and the average aspect ratio of
the precincts, regardless of whether mitigation strategies were implemented. As a result,
the study suggests that implementing urban design interventions that modify the aspect
ratio of buildings and streets can effectively mitigate the UHI effect and improve thermal
comfort in open spaces [21].

Additionally, Xu et al. conducted a study investigating the potential of using the spatial
equity of green areas in cities and land surface temperature to mitigate UHI effects. Their
findings indicated that increasing the amount of urban green spaces can be beneficial in
reducing the average urban temperature and mitigating UHI effects [22]. Similarly, another
study focused on improving UHI in Mandaue, Philippines, through various mitigation
measures, including increasing vegetation, adding open spaces, employing green roofs,
and combining these strategies. The study considered changes in air temperature, surface
temperature, and thermal comfort in the study areas to understand the impact of altering
green areas and implementing green roofs on reducing the UHI effect [23].

Using ENVI-met simulations, another study investigates how the built environment
impacts microclimate parameters. It confirms the existence of the UHI phenomenon in
Chennai, India, emphasizing the importance of urban planning in designing neighbor-
hoods that prioritize thermally comfortable outdoor spaces to enhance pedestrian comfort.
These findings have significant implications for urban planners, underscoring the need to
consider thermal comfort when designing outdoor areas [24]. Similarly, the study explores
the influence of urban form parameters on pedestrian thermal comfort in the arid climate of
Mashhad, Iran. By employing the ENVI-met software, the researchers analyze these param-
eters to predict outdoor thermal comfort conditions in current and future urban contexts.
To assess outdoor thermal comfort, the study proposes an alternative approach for cities,
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advocating using UHI zoning to replace traditional urban form zoning. This alternative
method proves particularly advantageous in large cities where gathering data on the urban
form is challenging due to limited resources and time constraints. By incorporating UHI
zoning, urban planners can effectively evaluate and enhance outdoor thermal comfort in
urban areas [25].

In another study focusing on hot climate conditions, Farhadi et al. assessed various
strategies for mitigating the UHI effect and improving thermal comfort in Tehran, which
experiences urban warming. Their findings revealed a strong correlation between lower
surface temperatures and the reduction of the UHI effect, leading to improved thermal
comfort [26]. Similarly, Arnfield’s research indicated that the orientation of streets plays a
significant role in determining the amount of solar energy absorbed by walls [27]. Likewise,
Van Esch et al. examined the effects of street width and orientation, as well as building pa-
rameters such as roof shape and building envelope, on solar access to the urban canopy and
the viability of passive solar heating strategies in residential buildings [28]. Furthermore,
evaluations of the UHI effect in numerous cities and villages across the Netherlands demon-
strated a significant UHI in most Dutch cities. The 95th percentile of the UHI is strongly
correlated with population density [29]. Additionally, the design of streets, the orientation
of urban canyons, and the presence of trees had a remarkable impact on ground surface
temperatures and outdoor thermal comfort, consequently influencing the UHI effect [30].

2.2. Outdoor Thermal Comfort Studies

The potential for reducing outdoor air temperatures in a square in Rome was studied
using a numerical model created using the ENVI met tool to simulate different mitigation
scenarios to reduce warming in urban areas. The study found solutions such as using
grass pavers to provide the most significant advantages that could enhance the thermal
conditions of the air and reduce outdoor air temperatures [31].

Fazia Ali-Toudert et al. discuss the role of street design, such as aspect ratio, and
orientation, towards developing pedestrian-level comfortability. The study benefits of the
three-dimensional numerical model ENVI-met, simulating microclimatic changes within
urban environments in a high spatial and temporal resolution in Ghardaia, Algeria. The
study analyzed the symmetrical urban canyons with various height-to-width ratios and
different solar orientations (i.e., East-West, North—-South, North East-South West, and North
West-South East). In addition, the study assessed outdoor thermal comfort value in the
physiologically equivalent temperature (PET) index. The results show contrasting patterns
of thermal comfort between shallow and deep urban streets and the various orientations.
Moreover, the results prove that PET at the street level depends strongly on aspect ratio
and street orientation [32]. Another study evaluated the potential for UHI mitigation of
greening parking lots and the relationships between land surface temperature (LST) and
land use/land cover (LULC) in different seasons in Nagoya. The results show that different
LULC types play different roles in different seasons and times, and using more green areas
slightly reduced the LST for the whole study area in spring or summer [3]. The other
study that used qualitative and quantitative approaches to assess outdoor thermal comfort
as a mixed method identified which urban areas need more improvement during the
summer. The results of thermal comfort assessment through the PET index and subjectively
perceived thermal sensation using ENVI-met environment to do CFD simulation and
thermal comfort assessment [33].

In the study by Giridharan, the author defines urban compactness as a combination
of various urban design factors, including the building area-to-volume ratio, aspect ratio
(height to width), sky view factor, distance to the nearest wall, width of the street, built-
up area, green areas, albedo, water surface size, roads, open areas, and distance to a
heat sink [10]. These factors influence the urban microclimate, and their combination
can affect the level of UHI and outdoor thermal comfort in urban areas. In addition,
Aleksandrowicz et al. outline the physical features of the urban environment, such as the
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density of buildings, the area of land used and unoccupied areas, and the type of materials
in urban components, which all affect UHI level and strength [7].

The background studies and literature review show that heat waves and the UHI
effect are significant climate risks affecting cities. There are many ways in which urban
design can be modified to mitigate the UHI effect in cities, such as increasing green spaces,
using reflective or high albedo materials, modifying the built environment, reducing the
anthropogenic heat, and optimizing building and urban canopy orientation and layout.
These modifications can help decrease surface temperatures in urban areas, which can
significantly impact the UHI effect and the level of thermal comfort experienced by people
living and working in these environments. Additionally, by evaluating the orientation
and extension of buildings and urban canyons that affect the amount of solar radiation,
which impacts local temperatures and, consequently, the surface temperature and thermal
sensation in the urban area, we can help to lower temperatures and improve thermal
comfort at the pedestrian level, the surface temperature in the urban canyon, and UHI
effect in the urban area during hot summer days. Furthermore, these modifications can
also provide other benefits, such as enhancing the comfort and livability of urban areas
and creating more sustainable and resilient environments that promote the health and
well-being of all residents. The study’s findings will be valuable to urban planners and
designers as they influence decisions about designing and configuring urban elements to
create more sustainable and comfortable environments.

2.3. Novelty of This Investigation

The literature review highlights the significant influence of city layout and structure
on heat waves and the UHI effect. Previous research emphasizes dynamic numerical
approaches to assess UHI, outdoor thermal comfort, and surface temperatures, enabling
the identification of mitigation strategies.

This study suggests designing urban canyons with proper orientation as an effective
method to mitigate the UHI effect and enhance pedestrian comfort during hot summer
days. Optimizing building orientation creates shaded and cooler areas, reducing surface
temperatures and heat concentration. This approach promotes more sustainable urban
environments with lower energy demands and decreased health risks.

The study’s novelty lies in the innovative sampling technique using geoprocessed UHI
urban data from Tallinn. Extensive numerical analysis establishes the relationship between
building orientation, outdoor thermal comfort, urban surface temperature, and the UHI
effect. In addition, a new method for analyzing the Physiological Equivalent Temperature
(PET) value is introduced. By prioritizing resident well-being, addressing heat waves, and
proposing UHI mitigation strategies, this research contributes to the development of livable
and sustainable urban spaces.

3. Methodology

Using three specific case studies, we examined the space between a target building
and its nearest neighboring building across the street. Each case study involved a geometric
model of an actual residential building in Tallinn, including the urban canopy, the nearby
neighbor building(s), and the street in between. These case studies aimed to determine the
optimal orientation of the building mass that would ensure the highest level of outdoor
thermal comfort and the lowest surface temperature in the analyzed area during hot
summer days.

The building direction often describes the orientation of the canyon axis (e.g., North—
South, East-West) or (North West-South East, North East-South West) [2]. In the definition
of scenarios and the simulated models of the study, the orientation of the canyon axis
represents the direction of an elongated space, measured (in degrees) as the angle between
a line running North-South and a significant axis running the length of a street or other
linear area, measured counterclockwise. Figure 1 shows mentioned orientations on the axis
of four main directions.
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Figure 1. Main eight orientations of the urban environment used in the study.

In this study, we examine real buildings in their current orientation as well as hy-
pothetical orientations. The orientations of 0°~180° correspond to the extension of the
urban canyon in the North-South and South-North directions, while 270°-90° represent
the extension in the East-West direction. Additionally, the orientations of 45°-225° indicate
the North West-South East extension, and 135°-315° refer to the South West-North East
extension. The specifications of each case study are summarized in Table 1.

Table 1. Features of the main building in case studies.

Sample Height (m) Floors Length (m)  Total Area (m?)
Case study 1/M1 50 17 291.3 2258.4
Case study 2/M2 45.4 14 208.5 2093.3
Case study 3/M3 37.3 9 202.8 2470.6

Figure 2 displays three selected residential buildings in Tallinn as case studies.
Table 2 outlines the characteristics considered when defining different scenarios during
modeling and simulations for case studies 1 through 3.
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Case study 1: XY coordination based on Google earth: 59°24°51"N24°44°18"E

Harju county, Tallinn, Kesklinna district, Parnu mnt 110

e

fatano 9

Case study 2: XY coordination based on Google earth
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Case study 3: XY coordination based on Google earth: 59°25°57"N24°46°45"E
Address: Harju county, Tallinn, Kesklinna district, Vesiviarava tn 50

Figure 2. Case studies, three residential buildings in Tallinn, Estonia.

The methodology of the study is designed in five steps, starting with step 0 to
acquire data and finishing with step 4 to make an inventory and explain the application of
the study.

According to Figure 3, the steps are in the following order:
Step 0: Capturing data

Step 1: Sampling

Step 2: Simulation

Step 3: Assessment

Step 4: Application

e o o o o
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Table 2. The general features of the simulated models.

Scenarios of Simulated Case Studies in the Different Extensions of the Canopy

Model Case Study Orientation (°) Extension
M1 Csl 347 NE-SW
M2 Cs2 22 N-S
M3 Cs3 325 NE-SW

Mi-1 Csl 0 N-S
M1-2 Csl 45 NW-SE
M1-3 Csl 90 W-E
M1-4 Csl 135 SW-NE
M1-5 Csl 180 S-N
M1-6 Csl 225 SE-NW
M1-7 Csl 270 E-W
M1-8 Csl 315 NE-SW
M2-1 Cs2 0 N-S
M2-2 Cs2 45 NW-SE
M2-3 Cs2 90 W-E
M2-4 Cs2 135 SW-NE
M2-5 Cs2 180 S-N
M2-6 Cs2 225 SE-NW
M2-7 Cs2 270 E-W
M2-8 Cs2 315 NE-SW
M3-1 Cs3 0 N-S
M3-2 Cs3 45 NW-SE
M3-3 Cs3 90 W-E
M3-4 Cs3 135 SW-NE
M3-5 Cs3 180 S-N
M3-6 Cs3 225 SE-NW
M3-7 Cs3 270 E-W
M3-8 Cs3 315 NE-SW

Step 0: Capturing data \
e r—— Step 1: Sampling

o Tallinn < s

S

Features Correlating with UHllevel

m» Step 2: Simulation

b

T \
J'[ J Step 3: Conclusion

Outdoor thermal comfort
Solar radiation
Solar access

Urban Canopy:
*The target building
*The closest neighbor(s)
*The street between them

How
Simulation and analysis along

different canyon axis orientation
(4 orientation)

Optimal axis orientation
regarding:
Outdoor thermal comfort

Solar access
Solar radiation

’ \ Step 4: Application

Sustainable solutions to
mitigate UHI,  heat
waves in the wurban
areas

* Optimal urban canyon
orientation that leads to
good trade-off between
solar  access, solar
radiation, thermal
comfort

Figure 3. The framework for the study.
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3.1. Step 0 “Urban Data Geoprocessing”

This research concentrates on the residential buildings with the greatest volume
(maximum height and area) that went through an intense heatwave and UHI in 2014, 2018,
and 2019. Moreover, case studies were chosen by sampling and utilizing the histogram
to locate the more critical and more severe residential buildings from the Tallinn UHI
dataset [34]. Thus, each case study is an actual building in Tallinn, Estonia (Lat. 59°26' N
Lon. 24°45' E); the country has a humid continental climate with mild summers, as
mentioned in the Koppen-Geiger classification in Dfb class [35] as Figure 4 shows.

45 25
20
a
15
y 35 10
mys C
3 5
0
2.5
5
2 -10
z z . z z e z ] g 3 5 3
| 5 2 2 g z £
8 z 8 S z g
] = a

= Average wind velocity = Average dry bulb temperature
Figure 4. Monthly wind velocity and temperature averages of Tallinn, Estonia.

An extensive multidisciplinary presented dataset is collected with 34,001 building
samples (rows) and 30 features (columns) in Tallinn, including the characteristics of the
buildings, for example, Material, Height (m), Absolute Height (m), Number of Floors
Above Ground, Shape Length (m), Shape Area (m?), the spatial indices of buildings on the
hierarchical system grid, such as Built-up area (G200, level 1), Urban Density D1 (G200, level
1), Urban Density D2 (G1000, level 2), Urban Density D1 (G2000, level 3), Average Building
Area in G200 (m?), Max Area in G200 (m?), Number of Buildings in G200, the defined
indexes based on buildings and different zones in the city area, the Nearest Neighbour (m),
Green Area in G200 (m?), the Ratio of Green Area/Grid Area (G200), Purpose of Building,
Main Angle, Orientation, Height to Width (G200), the weather data on dates that the city
experienced UHI phenomena, and the UHI value of each building [34,36].

The methodology to acquire data in the geoprocessed UHI dataset proposes a frame-
work to categorize data into homogeneous or heterogeneous, static, or dynamic schemes
and then collect data considering the homogeneous grid system [34]. Capturing data is the
implementation of the hierarchical grid system in the data collection process:

First, create a spatial index for each object and connect the objects to the grid system.

Second, use the homogeneous ground to define urban indices mainly anchored in

the heterogeneous data. The methodology uses the Python, Numpy, and Pandas

libraries, the Geopandas package, and QGIS Tool. The approach helps to capture
urban data from Tallinn GIS resources [37], taking into account the location, general

characteristics, and other spatial properties of urban elements [34,37].

3.2. Step 1: Sampling, Finding Critical Urban Canyons

Our initial analysis investigated the relationship between the urban dataset and the
Urban Heat Island (UHI) effect. The findings, depicted in Figure 5, revealed significant
correlations and dependencies between various features of the dataset and UHI levels.
Notably, we identified the size of the building, its height, and its area as influential fac-
tors affecting the UHI value. With this understanding, we focused our attention on the
area and height of the buildings to identify large-volume structures in Tallinn using the
collected data.
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Figure 5. Dependency values between the features of the dataset and UHI level.

Moreover, our study placed particular emphasis on residential buildings, recognizing
them as critical cases in the city, as they are susceptible to higher temperatures based
on UHI data. To streamline our analysis, we initially filtered the dataset by prioritizing
residential buildings, narrowing our focus.

As we delved into the analysis, we specifically examined the footprint area of the
buildings. However, we discovered that the data exhibited a random distribution with-
out any discernible patterns. Figure 6a visually represents this observation, indicating
that buildings with a footprint area exceeding 2000 m? were less common in the dataset.
Consequently, we conducted a more comprehensive investigation of the entire dataset,
specifically targeting buildings with an area greater than 2000 m? to identify the infrequent
occurrence of taller structures within this subset.

Area/Residentialbuildings Height/Residentialbuildings
e . -
10,000 i
: 30
8,000 i b3
o) ! o
e 3
g 6,000 H 3
g i
< 4,000 ; -
; 10
2,000 i 5
]
0 o T T T T 0 T e e
0 1,000 2,000 3.000 4.000 5000 6,000 7,000 10 20 30 40 50
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Figure 6. Sampling by using a histogram to choose case studies from the urban UHI dataset in Tallinn.
(a) The highest value of the area in the residential buildings, (b) The highest value of the height in the
residential buildings.
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Thus, as the histogram shows, filtering the dataset to the highest volume buildings
helps us to find which buildings are the critical cases to study. In addition, Figure 6a shows
samples in the highest area and height of residential buildings in the UHI dataset (more
correlated features with the UHI effect) with an area of more than 2000 m? and a height of
over 30 m. Conversely, the graph shows fewer samples with an area higher than 2000 m?
and a height higher than 30 m. Consequently, Figure 6b reveals samples that meet the
research question’s goal, pointing to some residential buildings in the UHI dataset with an
area greater than 2000 m and a height above 30 m. The selected samples with an area of
more than 2000 m and a height over 30 m are shown in red.

3.3. Step 2: Simulation in Building and Urban Scale

In step 2, we focused on the geometric modeling and simulation process of case studies
in different scenarios (Table 2) to verify outdoor thermal comfort and solar access. Based on
the sampling results and the UHI dataset, we have chosen three urban canyons with high-
volume residential buildings in Tallinn, Estonia. The urban canopy layer refers to the space
enclosed by the vertical boundaries of urban buildings, extending up to their rooftops [38].

To conduct CFD simulation, a three-dimensional computational model of fluid dy-
namics and energy balance, designed to simulate the microclimate of the study at the
street level, was employed. The simulation uses ENVI-met, a software package specifically
developed for urban microclimate modeling.

To evaluate outdoor thermal comfort, we employed the Physiological Equivalent Tem-
perature (PET) index, which considers various factors that impact human thermal comfort,
including air temperature, humidity, wind speed, and radiation. The PET index utilizes a
range of thermal perceptions and physiological stress levels experienced by humans [39].
The PET index is based on the Munich Energy-balance Model for Individuals (MEMI). This
two-node model simulates the thermal balance of the human body in a physiologically
relevant way [40]. By utilizing this index, we were able to assess the thermal comfort of the
outdoor environment across different scenarios and identify any potential issues related to
heat stress and discomfort. The thermal perception and corresponding ranges of PET for
each thermal comfort class are presented in Table 3. Additionally, we examined surface
temperature, as it plays a crucial role in understanding the potential effects of absorbed
solar radiation, which can contribute to increased surface temperatures, UHI effects [41],
heat waves, and the overall thermal performance of buildings and outdoor spaces.

Table 3. The range of thermal index predicted thermal perception by human beings and physiological
stress on human beings [39].

Thermal Perception Grade of Physiological Stress

PET (°C) Thermal Perception Grade of Physiological Stress
Very cold Extreme cold stress
4
Cold Strong cold stress
8
Cool Moderate Cold stress
13
Slightly cool Slight cold stress
18
Comfortable No thermal stress
23
Slightly warm Slight heat stress
29
Warm Moderate heat stress
35
Hot Strong heat stress
41

Very hot Extreme heat stress




Energies 2023, 16, 4546

13 of 28

3.4. Step 3: Assessment and Results

Through the CFD simulation and analysis, output data related to the thermal comfort
of people at the pedestrian level and the surface temperature of the urban area under
different scenarios were acquired.

To evaluate thermal comfort, we used a comprehensive approach to evaluate the
thermal performance of the studied urban area under different scenarios (Table 2). The
first thermal comfort analysis is about finding the non-uniform spatial distribution of
PET in each particular scenario in the urban canopy between the target building and the
nearest neighbor.

The second analysis aims to create a model based on the scoring system to show
uniform or normalized spatial distribution. The normalized PET of the urban canyon
in each scenario is the weighted PET value by considering the quality and quantity of
PET data. The highest value of the weighted PET leads us to find the optimal degree of
orientation in the urban canyon.

The scoring system we implemented considers the thermal comfort level at each
point in the canopy area. The scoring system allows us to calculate the overall level
of comfortability at the pedestrian level by combining the scores of all the individual
points. In addition, the surface temperature assessment of the studied areas was performed
using the results of the CFD simulation. Overall, the orientations lead to the lowest
surface temperature highlighted as the optimum building mass extension and taken into
account in the final assessment to determine the best urban environment orientation to
ensure comfortability.

3.5. Step 4: Application

Output data related to the optimal building mass orientation is helpful to suppose
more sustainable solutions in cities. Furthermore, by improving outdoor thermal comfort
and surface temperature in urban areas and leveraging UHI data, the study provides
valuable insights into the thermal performance of the studied urban area.

The evaluation is particularly beneficial to guide urban planners and architects in
proposing mitigation solutions to enhance thermal comfort in cities and create suitable
conditions for achieving approved thermal comfort levels with complementary solar access
in the city area. With this information, planners and architects can make more informed
decisions about the design of new buildings, the placement of green spaces and other urban
elements, and the use of shading devices and other technologies to reduce heat gain and
improve outdoor thermal comfort.

Overall, the study’s findings highlight the importance of considering outdoor ther-
mal comfort and solar access in urban design and planning to create more livable and
sustainable cities.

4. CFD Simulation and Numerical Analysis

The section is related to the CFD simulation and the numerical analysis to assess the
outdoor thermal comfort and surface temperature in the studied areas. CFD simulation is
used to simulate the microclimate of the studied area at the street level, considering the
influence of various factors on thermal, such as air temperature, humidity, wind speed,
and radiation.

By combining CFD simulation and numerical analysis, we can comprehensively under-
stand the studied area’s thermal performance under different scenarios. This information
can then identify potential heat stress and discomfort issues and propose mitigation solu-
tions to improve outdoor thermal comfort.

Table 4 and Figure 7 show more detailed information about the areas focused on CFD
simulation and the area of the urban canyon in which PET results were evaluated.
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Table 4. Detailed information about the CFD simulated areas of each case study.

Case Studies Canopy Area (m?) Simulated Area (m?)
Case study 1 20,650 5000
Case study 2 15,000 770
Case study 3 12,700 1400

Figure 7. The canopy areas (the hatched rectangular shapes) and the whole simulated areas of each
case study (the dashed rectangular shapes). (a) The canopy area, cases study 1, (b) The canopy area,
cases study 2, (¢) The canopy area, cases study 3, (d) The whole simulated area, case study 1, (e) The
whole simulated area, case study 2, (f) The whole simulated area, case study 3.

Different scenarios of case studies were simulated based on the specific orientation of
the canopy extension, including east-west (E-W), north-south (N-S), southeast-northwest
(SE-NW), and northeast-southwest (NE-SW), as shown in Table 2. Additionally, Table 4
provides details on the simulation area and the corresponding canopy coverage area
for each model. Moreover, the canopy area and simulated area for each scenario were
determined based on the information presented in Table 4. The geometry modeling process
took into account the real physical attributes of the case studies described in Table 1.

In order to perform the CFD simulation using ENVI-met, specific inputs are required,
including information about the surrounding environmental features and meteorological
data. Additionally, the construction system of the buildings and the surface materials
within the simulated urban areas are defined using the material library provided by ENVI-
met. For instance, the envelope of the models was defined using a concrete material with
moderate insolation properties, which was available in the ENVI-met software’s database.
Moreover, precise calculations of solar reflectivity and radiation values were conducted,
taking into account the specific date, time, and location of the case studies, in order to
determine the sun’s position during the simulation.

4.1. Meteorological Setting

The input data for the simulation models are the physical properties of the studied
urban areas (buildings, soil, and vegetation) and geographic and meteorological data [30].
This study conducted the CFD simulation on 25 July 2014, during a high UHI and
heat wave period [37]. The simulated period lasted from 16:00 to 17:00, including the
maximum air temperatures during a summer day of 28 °C. The outdoor thermal comfort
assessment was conducted at 17:00 and evaluated at 1.80 m, the average human height.
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Simple forcing was used in all scenarios to adjust for the meteorological conditions, creating
a 24-h weather data cycle that defined the meteorological boundary conditions for the
ENVI-met simulation.

Table 5 gives information about the weather condition of Tallinn on the supposed date
and time that was chosen for the CFD simulation.

Table 5. The input meteorological data during the CFD simulation by ENVI-met.

Date, 25 July 2014. Time: 17:00

Air temperature (°C) Max 28/Min 17

Max relative humidity (%) Max 75/Min 45
Wind speed at inflow border (m/s) 2.00
Wind direction at inflow (°) 90.00
Roughness length (m) 0.010
Specific humidity in 2500 m (g/kg) 8.00

4.2. Outdoor Thermal Comfort Assessment, PET

PET, expressed in °C, is based on the human energy balance model MEMI and includes
the physiological thermoregulatory processes of human beings to adjust to a climatic
situation outdoors. The thermal comfort zone for the PET index was initially defined as
18-20 °C [30]. The other classes of thermal comfort are mentioned in Table 3.

In this section, the authors listed all the parameters used in the CFD simulation. In
addition, during the simulation, the building’s indoor temperature was set to a constant
value of 20 °C. Therefore, the outside microclimate did not influence the building tempera-
ture. Overall, using the PET index and CFD simulations is a useful approach to assess the
thermal comfort of the studied area. Furthermore, by taking into account the physiological
thermoregulatory processes of human beings and using advanced simulation techniques,
a more accurate and comprehensive understanding of outdoor thermal comfort in urban
areas will achieve.

Personal Parameters

Thermal comfort is a subjective concept that depends on personal features and de-
scribes a person’s state of mind regarding whether they feel comfortable [42]. Thus, once
the meteorological data and environmental characteristics are added to the input data
used in the CFD simulation, thermal comfort in PET indices needs to set the individual
personal data that are supposed as the users of the urban areas. In this study, PET is
taken as the outdoor thermal comfort assessment and calculated just for a male pedestrian
wearing very light summer clothes standing with a walking speed of 1.2 m/s. For a simple
PET assessment process, just male pedestrians wearing unique clothing values with nor-
mal body parameters were considered. Table 6 shows other personal parameters used in
PET evaluation.

Table 6. Personal parameters applied in PET assessment in ENVI-met simulations.

Basic Personal Parameters

Age of the person 35
Weight (kg) 75
Height (kg) 1.75
Surface area of the body (sm?) 1.91
Clo 0.10

Metabolic work (W) 164.70
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5. Results
5.1. Surface Temperature

The assessment of the surface temperature of the urban canopy in each scenario is a
valuable approach to understanding the impact of changes in canopy orientation on the
urban temperature. By analyzing the minimum, maximum, and median values of surface
temperature, we can identify the optimum orientation of the canopy for maximizing
thermal comfort and decreasing temperatures of urban surfaces. Furthermore, surface
temperature is a critical measure in assessing the UHI effect, as it indicates the level of heat
absorbed by the surfaces of the urban environment. Thus, by reducing surface temperature,
it is possible to mitigate the UHI effect and improve thermal comfort for pedestrians.

Through the surface temperature analysis, we can determine the impact of canopy
orientation on surface temperature and identify the optimal orientation that reduces surface
temperature and maximizes thermal comfort. This information can inform urban planning
and design strategies prioritizing thermal comfort and sustainability. It is important to
consider these orientations as they can cause more heat on urban surfaces and potentially
result in lower thermal comfort levels for pedestrians.

According to Figure 8a,b, in case studies 1 and 2, scenarios M1-8, M1-6 (24.9 and
28.3 °C) and M2.8, M2.6 (24.3 and 24.4 °C) have the lowest median surface temperatures
when oriented at 315° and 225°, respectively. This suggests that these orientations can
provide the highest thermal comfort for pedestrians in the case studies. Likewise, Figure 8c
shows in case study 3, the median surface temperature data is observed in M3-5 and M3-4
(22.4 and 23.6 °C) with orientations of 180° and 135°, respectively. The finding indicates
that these orientations can also provide high thermal comfort for pedestrians in this case
study. Furthermore, in case study 1, the orientations with the highest median of surface
temperature are M1-1, M1-2, and M1-3 with orientations of 0°, 45°, and 90°, respectively.
In case study 2, the orientations with the highest median of surface temperature are M2-1,
M2-4, M2-2, and M2-3 with orientations of 0°, 135°, 45°, and 90°, respectively. Finally,
in case study 3, the orientations that cause the highest median of surface temperature in
the analyzed areas are M3-2, M3-1, M3-3, and M3-8 with orientations of 45°, 0°, 90°, and
315°, respectively.

Surface Temperature (°C), Case study 1 Surface Temperature (°C), Case study 2 < Surface Temperature (°C), Case study 3
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Figure 8. Results of surface temperature (°C) in the urban canopy of different scenarios. (a) Case
study 1, (b) Case study 2, (c) Case study 3.

This section presents the results of outdoor thermal comfort, expressed in terms of the
PET index and surface temperature in degree centigrade (°C), to choose the best orientations
in each case study to lead to the highest comfort level. The spatial distribution of outdoor
thermal comfort in terms of the metric PET was calculated via simulation for 27 scenarios
of three case studies. The thermal comfort assessment results are explained in two forms,
non-uniform and normalized spatial distribution of PET.

5.2. Non-Uniform Spatial Distribution of PET

Figures 9-11 show the initial results of PET assessed for case studies in a different
scenario considering the input setting, meteorological data, and parameters during the
CFD simulation in the defined canyon orientation, according to Table 2.
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Figure 9. Graphical distribution of PET in different canyon orientations, obtained from CFD simu-
lation, cases study 1, Scenarios: M1, M1-1 to M1-8. The minimum, maximum, and average scores
stand out prominently within the box plots, resembling a star. For the configuration shown in
(a) The box plot shows the minimum, average, median, and maximum of PET in each scenario,
spatial distribution of PET, (b) M1 (c) M1-1, (d) M1-2, (e) M1-3, (f) M1-4, (g) M1-5, (h) M1-6, (i) M1-7,

() M1-8.
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Figure 10. Graphical distribution of PET in different canyon orientations, obtained from CFD
simulation, cases study 2, Scenarios: M2, M2-1 to M2-8. The minimum, maximum, and average
scores stand out prominently within the box plots, resembling a star. For the configuration shown
in (a) The box plot shows the minimum, average, median, and maximum of PET in each scenario,
Spatial distribution of PET, (b) M2 (c) M2-1, (d) M2-2, (e) M2-3, (f) M2-4, (g) M2-5, (h) M2-6, (i) M2-7,
(j) M2-8.
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Figure 11. Graphical distribution of PET in different canyon orientations, obtained from CFD
simulation, cases study 3, Scenarios: M3, M3-1 to M3-8. The minimum, maximum, and average
scores stand out prominently within the box plots, resembling a star. For the configuration shown
in (a) The box plot shows the minimum, average, median, and maximum of PET in each scenario,
spatial distribution of PET, (b) M3, (c) M3-1, (d) M3-2, (e) M3-3, (f) M3-4, (g) M3-5, (h) M3-6, (i) M3-7,
(j) M3-8.

For example, in Figure 9, the initial results of PET assessment in different scenarios of
case study 1 are demonstrated. Furthermore, Figures 10 and 11 show the results of the PET
assessment of case studies 2 and 3, respectively.
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It can be seen in the box plot in Figure 9. However, the minimum value of PET of all
scenarios is almost the same; scenarios have different values in the average, median, and
maximum of PET. Likewise, M1, with the original orientation of 347° (North East-South
West), has the lowest minimum value of PET while the other values are even higher than
others. Moreover, M1-1 and M1-5, with the orientation of 0 and 180°, have the highest value
of the maximum and median of PET. Likewise, a comparison of all different orientations in
the urban canopy of case study 1 indicates M1-2 with the orientation of 45° has the lowest
median of PET value rather than other scenarios.

In conclusion, the non-uniform spatial distribution of PET does not give us compre-
hensive data to interpret the results and understand two meanings: (1) in which scenario
does the urban canyon offer a better level of thermal comfort in PET at the pedestrian level?
(2) in which scenario most of the area is in the comfort zones of PET, such as comfortable
(18-23 °C) and slightly warm (23-35 °C).

Thus, there are different measures of PET, such as the minimum, maximum, median,
and average values, which can vary depending on the scenario. However, based on the
initial evaluation of PET of the simulated scenarios, it is impossible to conclude which
orientation offers a higher level of thermal comfort. Therefore, PET’s non-uniform spatial
distribution can make it challenging to interpret the study results and draw definitive
conclusions about which scenario offers a better level of thermal comfort in PET at the
pedestrian level.

5.3. Normalized Spatial Distribution of PET

According to Joshi et al., measuring subjective experiences or phenomena can be
challenging, as they are often difficult to quantify using conventional measurement tech-
niques [35]. Thus, to obtain the most comprehensive analysis and find the optimum
orientation of the urban canopy in the scenarios, we need to consider both the frequency of
PET data in each level and the maximum and minimum PET, as well as the average in each
urban canyon.

Therefore, evaluation scales can be presented in various graphical ways, with different
levels of detail, and no standard gives specifications on the choice of the most suitable
configuration; thus, the selection is often a matter of the specifications of the study [43].

In the study, Nazarian et al. used the continuous Outdoor Thermal Comfort Autonomy
(OTCA) scale as a metric to measure outdoor thermal comfort. According to the authors,
OTCA considers the percentage of time an outdoor space is within the desired thermal
comfort range, including periods where the thermal comfort level is below the threshold.
It is an extension of Spatial OTCA, defined as the percentage of outdoor space within the
desired thermal comfort range at least half of the occupied time (over a year or a prescribed
period of use) [44].

Here, we designed a weighted scale to consider the level of thermal comfort in studied
areas and rank the data of PET based on the frequency of data in each PET class. As a
widespread scale used in different areas such as psychology, sociology, health care, mar-
keting, attitude, preference, customers” quality perceptions or expectations, and subjective
well-being in health care, Likert scales have wide applications in different science [45]. In
addition, Likert scales are examples of such scales in psychometrics used widely in social
science & educational research [46]. Therefore, we applied the Likert scale to weigh the
PET classes and ranked the importance of data in each thermal comfort level.

Figure 12 shows the Likert scaling system applied in the study.

+4 +3 1 -3 4

|

Compfortable 23 Slightlywarm 29 Warm 35 Hot 41 Very hot

Figure 12. Five-point Likert scale was used in the PET analysis of scenarios.
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Each item in the Likert scale usually has an odd number of response categories, to
five or seven levels [45], and is named the five-point or seven-point Likert scale. Here, we
applied five points Likert scale by considering the comfortability of the area that the Likert
scale should measure and assigning the highest indicator equals +4 to the PET class of
Comfortable, +3 to Slightly warm, +1 to Warm, and the negative scores to the worst classes
of PET cause a high level of discomfort in the urban area, meaning —3 and —4 to Hot and
Very hot classes.

Statistical Methods and Exploration of Data

In this section, to better interpret the results, calculating the overall thermal comfort
level of each scenario, not only considering the arithmetic and mathematical average of
PET but also taking into account the frequency of data in each level of PET, is essential.
Therefore, it is an excellent approach to consider the frequency of data in each level of PET
to better interpret the results of each scenario’s overall thermal comfort level. Accordingly,
at first, we stored the results of the PET assessment of each scenario as the experimental
data in a matrix and split them into five levels of thermal perception.

To describe a process of analyzing the results of a study on thermal comfort levels in
different urban scenarios, we should mention that, at first, the results of the PET assessment
of each scenario as the experimental data in were split into five levels of thermal perception
based on five-point Likert scale. To better understand the distribution of PET data in each
thermal comfort level, we created an experimental matrix and pie charts that show the
percentage of PET data distribution of scenarios in different classes of PET, Figures 13-15.
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Figure 13. The distribution of PET data in each class of PET/Case study 1 (The total of all segments
in every pie chart amount to 100%).
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Figure 14. The distribution of PET data in each class of PET/Case study 2 (The total of all segments

in every pie chart amount to 100%).
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Figure 15. The distribution of PET data in each class of PET/Case study 3 (The total of all segments
in every pie chart amount to 100%).
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The experimental matrix contains the thermal perception of all scenarios and PET’s
arithmetic average (mathematical average) in each thermal comfort level, starting from
comfortable to very hot. Moreover, the quantity of PET data in each thermal comfort
level is counted to understand how much each urban area in the urban canopy offers the
considered thermal comfort level. To further refine the analysis, we applied the Likert
scaling system to assign a score to each thermal comfort level, which reflects its importance.
Combining the arithmetic average of PET in each thermal comfort level with the weight or
value of each thermal perception level and the quantity of PET data in each level makes
it possible to obtain a more accurate and meaningful measure of each scenario’s overall
thermal comfort level.

Thus, we defined a statistical method that uses the arithmetic average of PET in each
thermal comfort level, starting from comfortable, PET lower than 23° as the comfort zone
to greater than 41° to as the zone with the very hot comfort level.

The next step is calculating the statistical average of each PET level by multiplying the
arithmetic average of each PET level by the weights of the Likert scale and the respective
count of data in each PET level. The following formula shows the weighted mean of PET
used in the PET exploration method.

n n
Weighted Mean (Wm) = E (xixwi)/ 2 wi
ni=1 ni=1
Wm = wiX] + WoXo + ... + WnXn /W1 +Wo +... + Wp

where: ) denotes the sum
w is the weights, and x is the value of PET
In cases where the sum of weights is 1,

Wm = i (xi* wi)

ni=1

Figure 16 is the schematic diagram of the model to evaluate PET in each scenario.

Outdoor thermal comfort data: ‘
Results of CFD simulation

}
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Weighted Average of PET in each scenario = A(°C)* Count * Likert scale

Figure 16. The evaluation model of PET value.

5.4. Analyzing Data Based on the Evaluation Method

The next step was calculating the statistical average of each PET level. For example,
to calculate the weighted mean of PET (Wm-PET) for scenario M1, we multiplied the
arithmetic average of each PET level (22.5, 24.6, 34.5, 38, and 43.4) by the weights of each
response in the Likert scale (4, 3, 1, —3, and —4), and then multiplied each of those values
by the count of responses (0.064, 0.597, 0.022, 0.233, and 0.083).
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For example, for PET level 1 (Comfortable), the weighted score (Ws) would be:
(22.5 x4 % 0.064) =5.76

We repeated this process for each PET level and then summed up the weighted
scores for all PET levels to obtain the overall weighted mean for PET in scenario M1. The
calculation for the overall weighted mean is:

Wm_PET, M1 = (Ws_PET_levell) + (Ws_PET _level2) + ... + (Ws_PET_level5)
=(22.5 % 4 % 0.064) + (24.6 * 3 % 0.597) + (34.5 * 1 % 0.022) + (38 * (—3) * 0.233) + (43.4 * (—4) x 0.083)
=57+441+08 —26.6 —145=95

Therefore, the weighted mean of PET in scenario M1 is 9.5, which represents the
overall level of perceived exertion for this scenario, taking into account both the quantity
of data in PET classes and the weight of each class as well as the arithmetic average of data
of PET in each level. To report the result regarding the optimal orientation for achieving
the highest thermal comfort in different scenarios, the summarized weighted average of
each scenario is shown in Figure 17.

Outdoor thermal comfort (PET) Vs Orienation of urban canopy

A

(0°) N-s
100.0

50.0
* (45°) NW-SE (135°) NE-SW *

* (90°) W-E ) :,‘ (270° E-W *

/
* (135°) SW-NE - -~ (225°) SE-NW *

':‘7The highest PET = Case study 1
iy ——Case study 2
@ The lowest PET (180°) S-N = Case study 3

Figure 17. The results of weighted average of PET of each case study in different orientations of the

urban canopy.

According to the data presented in Figure 17, the PET index indicates that the highest
level of thermal comfort in case study 1 is observed when the urban canyon is oriented
in the East-West direction (270°) in scenario M1-7. In case studies 2 and 3, the highest
PET levels are seen in scenarios M2-7 and M3-4, respectively, with orientations of 270°
(East-West) and 135° (South West-North East) for the extension of the urban canyons.
The assessment of outdoor thermal comfort in the studied case studies reveals that the
canopy extension in the North-South direction yields the lowest thermal comfort value in
all three cases. This is attributed to the sun’s high angle during the day, which can create
hot and uncomfortable conditions in these orientations. It is important to note that the
optimal orientation for achieving outdoor thermal comfort varies depending on the specific
characteristics of each case study, as Figure 17 shows.
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6. Discussion

Figure 18 presents the study’s findings, indicating that the West-East and East-West
orientations offer the best outdoor thermal comfort and lowest surface temperatures across
all examined case studies and simulation scenarios. However, it is crucial to consider the
location of the tallest wall within the urban canyon, as this significantly affects thermal
comfort and surface temperatures. Furthermore, the study reveals that the North East-South
West orientation provides optimal thermal comfort for case studies 1 and 2 at the pedestrian
level. Still, it yields lower thermal comfort for case study 3. Conversely, the South West-
North East orientation offers optimum outdoor thermal comfort for case studies 1 and 3.
In contrast, the South East-North West orientation only provides good thermal comfort
for case study 3. Consequently, the optimal orientation of canopies varies depending on
the specific characteristics of each case study, the surrounding environment, and the level
of sun exposure and shading on the surfaces. When a tall building is present on one side
of a canyon or street, the orientation of the canopy becomes crucial in determining the
thermal comfort levels in shaded areas. For instance, in case studies 1 and 2, extending
the canopy from North East to South West does not offer sufficient shading due to the
orientation of the taller building on the left side of the canyon, potentially resulting in
discomfort at the pedestrian level. In contrast, in case study 3, where the taller wall of the
canopy is located on the right side, extending the canopy from South West to North East
provides better shading and enhances thermal comfort. Therefore, it is vital to consider
the specific morphological features of buildings and the surrounding area when designing
urban canopies.

s 1as0°)

M2-6
M3-6

PET and ST values

Scenarios with the best ‘

Scenarios with the lowest
value of PET and ST

Figure 18. Final results regarding optimum thermal comfort and surface temperature of each scenario
in different urban environment orientations.

Step 4: Application of the Study

The study underscores the significant influence of urban canyon orientation on ther-
mal comfort and surface temperature within urban settings. By considering the orientation
of urban canyons, urban planners and designers can optimize urban environment design
to prioritize the well-being of residents and visitors. The findings offer insights into de-
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termining the optimal extension of the canopy layer to maximize thermal comfort, thus
providing more comfortable areas for pedestrians. Overall, these findings are valuable
for urban planners and designers seeking to develop more sustainable and livable urban
environments that prioritize the well-being of individuals. Moreover, considering the spe-
cific characteristics of the urban canyon enables planners to implement targeted strategies,
including shading, ventilation, and other measures, to enhance outdoor thermal comfort
and mitigate the effects of phenomena including the UHI effect.

7. Conclusions

This investigation focused on the impact of urban canopy orientation on outdoor
thermal comfort and surface temperature in areas with significant UHI effects. Numerical
analysis and CFD simulations were employed to evaluate these factors in urban envi-
ronments. The orientation of urban environments, buildings, and streets within urban
canyons is crucial in determining thermal comfort levels. The level of thermal comfort and
surface temperature is influenced by factors such as building mass, canopy wall height, and
arrangement. The study’s findings underscore the significance of the canopy orientation in
determining thermal comfort levels in shaded areas when there is a tall building present
on one side of a canyon or street. The research highlights that the optimal orientation
of canopies depends on the unique characteristics of each case study, the surrounding
environment, and the degree of sun exposure and shading on surfaces. It emphasizes the
importance of considering the buildings and elements surrounding them when designing
and positioning canopies to achieve optimal thermal comfort in shaded areas affected
by tall buildings. By incorporating these factors into the design and planning processes,
urban planners and designers can create comfortable and sustainable living spaces. The
assessment of outdoor thermal comfort within the urban canopy provides valuable insights
for optimizing the extension of the canopy layer, enhancing thermal comfort, controlling
the UHI effect, and improving residents’ quality of life. The findings have broad appli-
cability and can assist in early-stage city design, redevelopment, and renovation projects.
Prioritizing outdoor thermal comfort in urban design offers social, environmental, and
economic advantages.

While the study’s findings are specific to Tallinn, the methodology and approach we
employed for assessing thermal comfort and surface temperatures have broader applica-
bility and can be implemented in various locations and climates. This can be achieved
by considering the unique characteristics of the built environment and meteorological
conditions of each area. However, further research is needed to formulate effective poli-
cies and planning codes that can adequately tackle the variations in Urban Heat Islands,
manage excessively hot urban regions, and enhance thermal comfort. It is essential to base
mitigation strategies for UHI on the specific thermal attributes of the particular urban area
rather than relying solely on distinctions between urban and rural zones. Moreover, when
adapting thermal comfort indices to diverse climates and countries, cultural differences
should also be taken into consideration.

Limitations of the Study

It is crucial to acknowledge and consider the limitations of any study to ensure that
the results are not overgeneralized. In this study, several limitations should be taken
into account. To begin with, the geometric models used for the CFD simulations were
simplified by omitting detailed information regarding the systems, materials, and albedo
of the models. This simplification has the potential to impact the accuracy of the obtained
results. The thermal comfort assessment in the study was also limited to a specific subset of
the population, namely males in light clothing and seated position. This limitation calls for
future studies to include a more diverse population, especially vulnerable groups such as
the elderly and children, and gather data on their physical characteristics, clothing choices,
and activity levels to provide a more comprehensive analysis of the impact of thermal
comfort on different individuals.
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Furthermore, it is important to note that thermal comfort is just one aspect related to
the UHI effect in urban areas. Future studies should aim to provide a more holistic under-
standing of UHI by considering other strategies and elements of the urban environment
and their configurations. Lastly, it should be acknowledged that the optimal orientation
for achieving thermal comfort in an urban canyon can vary depending on various factors,
such as the local climate, building materials used, and the layout of the urban canyon itself.
Considering all these factors will contribute to more accurate and reliable results.
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Abstract: Thermal comfort in cities is increasingly becoming a concern and comfortable places can
be highly valuable for a variety of activities. Our investigation aims to explore how to improve
the quality of cities by considering the relationship between microclimatic conditions, thermal
sensation, and human preferences. The case study conducted in the open areas of Tallinn University
of Technology (TalTech) campus, which is quite populated by visitors, staff, and students. We used a
mixed-methods approach to assess outdoor thermal comfort, based on qualitative and quantitative
findings of the relationships between the measured weather conditions and the results of thermal
comfort assessment through the PET index and subjectively perceived thermal sensation. In the
qualitative part, data was collected through semi-structured interviews. The main conclusions from
the interviews were used to design a survey and the samples. Based on the results, it was possible
to identify places that offer different levels of thermal comfort. Thus, the study helps to improve
thermal comfort at the campus, which is one of the goals of the Green Transition project to make
the campus fully sustainable. Moreover, the methodology is applicable in different urban areas to
improve urban health and sustainability and create resilient urban environments.

Keywords: survey; semi structured interview; outdoor thermal comfort optimization; urban simulation

1. Introduction

In the context of urban planning, it is interesting how thermally comfortable urban
environments influence people’s behavior, use of outdoor spaces, and the quality of life
in cities [1]. Sustainable cities are designed with their environmental impact in mind [2].
Moreover, the number of users of outdoor spaces would determine the vibrancy of the place,
the local socio-economy, and sustainability of the city [3]. In addition, outdoor microclimate
or related outdoor thermal comfort is an important factor influencing the quality of urban
spaces [3]. As weather and location invite people to be active in urban spaces where many
outdoor activities take place, activity levels in cities are influenced by a range of urban
conditions [4]. However, in contrast, uncomfortable and low-quality outdoor spaces cause
people to rush home [5]. According to Gehl, since voluntary activities are more likely
to take place when outdoor space is of good quality, the number of social activities that
depend on the presence of others in public space also tends to increase significantly [4].
In addition, pedestrians are directly exposed to the immediate environment in the form
of variations in sun/shade and shade, wind speed [1], and other weather features during
recreation and leisure in the outdoor spaces [1,6]. Therefore, the quality of outdoor spaces
affects the quality of life of residents [3], and microclimatic conditions have significant
impact on urban development [7]. Accordingly, one of the main objectives in the study of
thermal comfort is to find out the relationship between the thermal environment and the
thermal perception of the inhabitants [8].
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Urban planners are increasingly concerned with the impact of climate on urban
planning [9]. They are constantly striving to maintain and improve the quality of life of city
dwellers by creating comfortable and pleasant environment [10]. Indeed, outdoor quality
of life is one of the essential parameter to assess the quality of the urban microclimate [11]
and can be improved through various design concepts and solutions to make public spaces
more livable and pleasant [12]. Similarly, studies on thermal comfort at an urban scale create
a close link between urban and landscape planners to pay more attention to pedestrians
(biometeorology) and climate (climatology) [13]. In addition, outdoor thermal comfort has
received great attention since the start of the new millennium [14]. Nevertheless, due to the
great complexity of the outdoor environment in terms of temporal and spatial variability
and the variety of activities that people engage in, there have been very few attempts to
understand outdoor comfort conditions [12]. Therefore, there is a lack of studies trying to
find out the relationship between people’s thermal perceptions and the ranges of thermal
comfort in urban areas and the cause-effect elements.

Thanks to advances in urban climatology and biometeorological techniques, some
detailed microclimatic analyses and assessments of thermal comfort have been conducted
in recent decades [1]. A criterion for qualitative assessment would also be helpful in
creating comfortable urban spaces [6]. In addition, there is a lack of understanding of
urban features that provide a comfortable urban space to urban dwellers, considering both
qualitative and quantitative features. To further explore these subjectivities, this paper aims
to explore (i) the objective and subjective elements in defining outdoor thermal comfort,
(ii) the use of both qualitative and quantitative research methods in assessing outdoor
thermal comfort and the level of comfortability in each area, and (iii) how and to what
extent all personal factors, weather conditions, and urban features influence the sense of
outdoor thermal comfort.

1.1. Background of Outdoor Thermal Comfort Evaluation

Since 1920, studies on the human thermal environment and various thermal indices
based on air temperature and relative humidity have been developed. A classical concept
to describe thermal perception was developed by Fanger who described “thermal comfort”
as “man’s satisfaction with his thermal environment” [5,15]. In 1960, Fanger started to
study thermal comfort [16] and defined this concept for indoor spaces and also developed
a physiological index Predicted Mean Vote (PMV) to describe “thermal comfort” quanti-
tatively [5], while his first results were published in 1967 [16]. Fanger’s equation was the
basis for ISO 7730 [17] and ASHRAE 55 [18]. The main thermal comfort standard [17] was
based on PMV and PPD that considers the criteria like ISO 8996 (metabolic rate) and ISO
9920 (clothing) and describes the PMV and PPD indices and specifies acceptable conditions
for thermal comfort [19].

Numerous thermal comfort biometeorological indices such as standard effective tem-
perature (SET), PMV, physiological equivalent temperature (PET), universal thermal climate
index (UTCI), perceived temperature (PT), and outdoor standard effective temperature
(OUT_SET) have been developed to describe human thermal comfort by establishing a link
between local microclimatic conditions and human thermal sensation [1,5]. PET is based
on the Munich energy balance model for individuals (MEMI) as an index with temperature
dimension expressed in degrees Celsius (°C), which makes its interpretation understand-
able even for people without much knowledge of meteorology [1]. Table 1 shows PET in
the different thermal perception by human. PET is defined using the concept of equivalent
temperature: it is the indoor air temperature of an isothermal environment that produces
the same core and skin temperature as the actual complex outdoor conditions. In this
typical room the ambient conditions are homogeneous, the air is calm (<0.1 m/s), and the
vapor pressure is 1200 Pa (50% relative humidity at 20 °C). Thus, PET allows a layman to
compare the integrated effects of complex outdoor thermal conditions with his own experi-
ence indoors [13]. Another study, Lin used PET as the primary thermal index [20]. Other
studies used PET to determine neutral temperature in different climatic regions [21-23].
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PMV and SET are based on the physically based heat balance and heat transfer model [8].
OUT_SET and PET are both based on steady-state energy balance models of the human
body. Their application is limited to situations where people spend long periods of time
outdoors [24].

Table 1. Ranges of the thermal index of PET for different grades of thermal perception by human [13].

Thermal Perception
PET (°C) (Internal Heat Production: 80 W, Heat Grade of Physiological Stress
Transfer Resistance of the Clothing: 0.9)

4 Very Cold Extreme cold stress
Cold Strong cold stress
8
Cool Moderate cold stress
13
Slightly cool Slight cold stress
18
Comfortable No thermal stress
23
Slightly warm Slightly heat stress
29
Warm Moderate heat stress
35
Hot Strong heat stress
4 Very hot Extreme heat stress

The UTCI metric was developed by 45 scientists from 23 countries to standardize
applications in the most important areas of human biometeorology [14]. The UTCI metric is
expressed as the equivalent ambient temperature of a reference environment that produces
the same physiological response in a reference subject as the actual environment [25].
The UTCI has been called for by various disciplines as a physiological response-based
assessment index that is valid for a wide range of outdoor climatic conditions, including
weather extremes.

Due to the different indices of thermal comfort, assessment methods, and procedures
used in the different studies, the results may not be comparable. Table 1 shows PET in the
different thermal perception by human. Another study, Lin [20] used PET as the primary
thermal index, and Ng et al. [21], Kéntor et al. [22], and Kruger et al. [23] used PET to
determine neutral temperature in the climatic regions they studied. In addition, the UTCI
was developed by 45 scientists from 23 countries [14] to standardize applications in the
most important areas of human biometeorology.

1.2. Literature Review

There has been significant effort to investigate the influence factors of outdoor thermal
comfort and assessment methods. Unlike indoor environments, urban microclimates, are
dynamic and the changing sunlight, wind and shading from trees make the environment
volatile [9]. In addition to the climatic aspects of thermal comfort, a number of physical and
social factors come into play that influence people’s perception of urban space when they
are outdoors [1]. In 1971, Gehl studied the influence of microclimate on outdoor activities
and showed that sunny or shady local conditions significantly influence people’s desire to
either stay or leave [4].

Nikolopoulou et al. were pioneers addressing human behavior, research frameworks
and analytical procedures [1]. They asked people, within the context of recreational areas in
Cambridge, UK, about their subjective thermal sensation, which were given on a five-point
scale from too cold to too hot. They also considered environmental characteristics (air
temperature, sunlight, etc.) and individual characteristics (age, gender, clothing, etc.) [1].
Nikolopoulou et al. showed that the thermal environment is indeed of prime importance
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for users of urban spaces, but psychological adaptation, i.e., available choices, environ-
mental stimulation, thermal history, memory effect, and expectations are also of great
importance [26].

The environmental stimulus (i.e., local microclimatic conditions) is the most impor-
tant factor influencing thermal sensation and human assessments of comfort [1]. These
assessments are dynamic in the sense that adaptation to a thermal environmental condi-
tion is progressive and that thermal sensation is primarily influenced by experience, and
subjective, which implies that the assessment of a thermal comfort condition does not
always correspond to objective climatic or biometeorological conditions [1]. Kenz et al.
reported significant influences of weather parameters and personal factors on participants’
perceived and subjective evaluations of outdoor urban areas [27].

Lenzholzer et al. used qualitative methods to design thermally comfortable urban
space, linking thermal and spatial information from to people’s perceptions [5]. Zacharias
et al. investigated seven corporate plazas and public spaces in the city center of a North
American city (Montreal) to determine the relationship between the local microclimate
and the level of use, measured as the degree of presence of people and activities (sitting,
standing, and smoking) [1]. The other study integrates theoretical findings on outdoor
thermal comfort, weather perception, and emotional experience related to travel behavior,
and collected verbal responses. Mechanisms of thermal and mechanical comfort lead to
more pleasant emotions during travel [28]. Moreover, Auliciems described the physiological
responses of the human body to thermal conditions as “thermal sensation” and argued that
the common use of the term “thermal comfort” in the literature is inadequate to describe
unpleasant thermal stimuli to which humans are frequently exposed. He proposed a
neutral and comprehensive term to describe physiological and psychological influences
together: “thermal perception” [5].

In other study, long-term perception was introduced through the terms ‘short-term’
and ‘memory’ [29]. The aim of this study was to investigate correlations between the
influences of the respective urban space on thermal perception. The method qualitative
techniques (e.g., interviews) and quantitative studies (e.g., micrometeorological measure-
ments of physical parameters and numerical modeling) to obtain a balanced view of the
objective and subjective aspects of the thermal perception. Thus, the spatial and material
properties of the environment have an influence on thermal perception [5]. The study exam-
ined people’s perceptions using a structured interview that included questions about their
perception of the place in terms of microclimate and perception of the place. Klemm et al.
asked participants about thermal perception and spatial perception on a five-point Likert
scale from “very cold” to “very hot” to obtain specific information about the descriptors
of “ambience” in relation to thermal perception for Dutch urban squares. In this study,
people’s thermal perceptions correlate with the measurements and simulation results [30].

Another study determined people’s individual thermal sensations in spatial zones
located in Cairo, Egypt, by conducting interviews in parks during summer and winter. The
survey results were presented through descriptive and correlative statistics between PET
and the voices on thermal sensations. The results showed a close relationship between the
thermal voices and the influence of the sky visibility factor, wind speed, and albedo, based
on the microclimatic influence of landscape elements such as the presence of vegetation
and fountains [31].

In other seminal study, Ahmad assessed outdoor comfort based on field research
through a survey, in the humid tropics. The study discovered factors affecting comfort
outdoors for Dhaka and a comfort range of environmental parameters [6].

From an urban design perspective, Zacharias et al. tried to find investigated the
relationship between climatic parameters and the human thermal sensation and what
significance these parameters have for people’s behavior. In this study, a quantitative
relationship between microclimate and the use of urban open spaces was described. The
results show that, among the microclimatic factors, temperature is the most important
variable influencing human well-being [32].
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Nikolopoulou et al. showed that microclimatic parameters cannot fully explain the
large differences between objective and subjective comfort ratings, although they strongly
influence the perception of warmth [33].

In another study based on large-scale interviews in within the context of Cambridge
City Centre, Nikolopoulou showed that the study of thermal comfort in an urban con-
text does not require a quantitative approach because outdoor comfort conditions are not
adequately described. The results of this study show that the design of public spaces re-
quires an understanding of dynamic human parameters and that psychological adaptations
such as available choice, environmental stimulation, thermal history, memory effect, and
expectations have a greater influence than the thermal environment [26].

In the study, which was conducted in the Nordic city, of Gothenburg, Sweden, Kenz
et al. investigated the psychological mechanisms in the evaluation of outdoor places
and weather, as well as the significant influences of weather parameters and personal
factors such as environmental attitudes and age on the perception and evaluation of urban
places [27]. A study in another Nordic city, Tallinn, Estonia investigated optimal commercial
building cluster layouts to improve outdoor thermal comfort, assessed using the UTCI
index, and indoor thermal comfort and cooling energy use needed to maintain comfort
during the warm season [34].

Eliasson et al. used a multidisciplinary and interdisciplinary approach, by focusing
on assessing the impact of weather and microclimate on people in outdoor urban envi-
ronments. The result supports the concept of climate-sensitive planning in future urban
design and planning projects [29]. The other study looked at thermal comfort in both
dynamic and subjective terms. The study was a four-level assessment framework: physical,
physiological, psychological, and social /behavioral. The results led to a general framework
for assessing outdoor thermal comfort based on behavioral aspects and outdoor thermal
comfort planning [1].

Similarly, Lai et al. assessed outdoor thermal comfort and space utilization in a resi-
dential community in Wuhan, central China. The method of the study is both observation
of the microclimate through interviews with the residents and observation of the amount
and type of activities of the residents [3]. The TSV was used to assess thermal comfort in
this study, providing valuable information for the design of outdoor areas in residential
communities [3].

1.3. Originality and Aims of the Study

Thanks to advances in urban climatology and biometeorological techniques, some
detailed microclimatic analyses and thermal comfort assessments have been conducted in
the last decade [1]. Therefore, qualitative methods that provide an explicit combination
of thermal and spatial information have been developed to link thermal and spatial infor-
mation about people’s perceptions. Based on these findings, new insights can be gained
for the design of thermally comfortable urban spaces [5]. There is a lack of understanding
of personal parameters, human preferences, microclimatic conditions, as well as urban
features that provide comfortable urban space to urban dwellers. The novelty of this study
is applying mixed approaches to assess and improve the quality of urban spaces. Thus, the
aims of this investigation are as follows:

e To study the role of objective and subjective elements in defining comfort in an
urban area;

e To apply qualitative and quantitative research methods in assessing outdoor
thermal comfort;

e To explore how and what extent personal factors, weather conditions, environmental
conditions, and phisical features of the area can affect comfort sensation.

2. Methodology

As different models and tools with varying degrees of complexity have been developed
to address the problem of thermal comfort in an urban context, providing a general, com-



Energies 2022, 15, 1577

6 of 26

prehensive, insight requires analysis at different levels of complexity and overwhelming
engagement with them.

Usually campuses are complex organisms characterised by different activities of
people living and working there [35]. We used a mixed-method methodology in this
investigation. On one hand, we studied people’s thermal preferences during summer in
the Tallinn University of Technology (Taltech), Estonia through semi-structured interviews
and surveys. On the other hand, we used the well-known ENVI-met CFD software [36,37]
to assess outdoor thermal comfort in terms of the PET metric, which is one of the most
robust outdoor thermal comfort indices nowadays [9,13].

Figure 1 shows the general framework followed in this study. The qualitative research
approach used in the study consists of semi-structured interviews with people who use the
campus during the summer season. The quantitative part involves conducting an online
survey designed from interviews analyses, as well as observing data on campus, collecting
measured climate data on campus, and finally modeling the urban area and conducting
CFD simulations. The results of the online survey were used to set simulation case studies:
people’s personal characteristics, activity levels, and thermal preferences. The measured
microclimatic data of the case study area and the city climate data were considered to
provide the data for thermal comfort assessment for each sample of the study on each
day based on the assumed scenario. The final step in the study is the conclusion and
visualization so that all the results and achievements of the study can be used to improve
the quality of urban space and provide people with a better-quality urban environment.
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Figure 1. The framework proposed in this investigation.

2.1. Case Study

The current case study is located in Tallinn, Estonia (Lat. 59°26' N Lon. 24°45' E).
Specifically, the Taltech University campus is located in the residential neighborhood of
Mustaméde and consists of interconnected buildings surrounded by paved areas, car parks,
and green spaces (Figure 2). Tallinn is categorized humid continental climate according to
Koppen-Geiger classification Dfb [38]. The medium-density neighborhood is populated by
concrete housing blocks with heights from 6 to 10 storey concrete flat blocks, industrial and
commercial buildings, and a network of major access roads. In addition, the neighborhood
also has green spaces with trees between the buildings but not along the streets [39].
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Figure 2. The location of Taltech main campus in Tallinn city map [39], top view of the buildings in
the GIS map and the geometric 3D model in ENVI-met.

Thus, the case study encompasses a variety of micro-environments, including build-
ings, green spaces, parking lots, corridors, sculptures, monuments, benches, lighting
elements, etc. In fact, visitors have many opportunities to enjoy the urban environment
and engage in different types of activities at different levels. Although the case study hosts
people all year round, whether they just enter the buildings or use the surrounding area,
people tend to use the campus more in summer when the weather is nice.

2.2. Climatic Data of the Study

Tallinn weather data in June 2021 that Figure 3 shows are dry bulb temperature (Min:
7.2 °C, Average: 19.5 °C, Max: 32.2 °C), relative humidity (Min: 20%, Average: 66%, Max:
100%), and wind speed (Min: 0 m/s, Average: 7.7 m/s, Max: 24 m/s) [38].
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Figure 3. Tallinn, Estonia Weather History, June 2021 [40]. (a) Dry bulb temperature, (b) relative
humidity, and (c) wind speed.
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In addition, remote data loggers from nZEB Taltech technological test facility [41] were
used to record the environmental profile of the outdoor microclimate and environmental
features. Mean radiant temperature Tt (°C) represents the radiative heat load received
by a standing human [15]. ENVI-met software that we used for PET assessment is one of
the common software for the simulation of Tmrt. Mean radiant temperature Tp (°C) was
calculated by the ENVI-met model by summing the contribution of short wave and long
wave and long wave radiant fluxes, from the sun, sky, surrounding buildings surfaces, and
ground considering the human body view factors of the flux sources. The software needs
the obstacle structure of buildings and the global radiation over the whole sky to calculate
Tirt in two dimensions [42].

The microclimatic data collected in June 2021 (Figure 4), considering the weather
conditions in the studied area. The measured microclimatic data are: dry bulb temperature
(Min: 12.8 °C, Average: 19.2 °C, Max: 27.5 °C), wind direction (Min: 123.3°, Average: 201.3°,
Max: 257.8°), wind speed (Min: 0.5 m/s, Average: 0.9 m/s, Max: 1.5 m/s), and relative
humidity (Min: 61.6%, Average: 76.5%, Max: 97.4%).
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Figure 4. Microclimatic data of the campus, June 2021. (a) Dry bulb temperature, (b) Wind direction,
(c) Wind speed, and (d) Relative humidity.

2.3. Qualitative Study Based on Semi-Structured Interviews

The present part of the study is grounded on a constructivist methodology because
the author accepts that the outdoor thermal sensation of outdoor areas is a complex phe-
nomenon that requires a holistic approach to study it since it depends on each user’
construction of reality and how they perceive it [39]. Specifically, the authors used the
method of the phenomenological semi-structured interview since it could give detailed
insights not only of the subjective perception of local weather and outdoor areas of the
Tal-Tech Campus but how this is related to the development of outdoor activities and level
of clothing [40,41]. We did not include pre-set questions related to interviewees’ thermal
sensation but indirect/open questions that would lead us to understand their preferences
in terms of outdoor areas, activities, and climate conditions. With this information we
could for one side, design coherent online survey and secondly, identify the worthy case
studies to be solved by simulations.

The aim of the designed interview is to address the following main research question
(RQO): which are the most valuable aspects of outdoor thermal sensation during summer
according to Tal-Tech Campus users? In order to answer RQO, three research questions
have been formulated (Table 2):
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Table 2. Definition of question blocks used for the interview.

Block Questions and Follow-Up Questions
Reviewer’s introduction
I: Personal Reminder to the ethic consent given to be recorded
background Interviewee’s background: gender, nationality, age, education, job

position, and city of residence

II: Introduction to
the topic

Presentation of the main concept: outdoor thermal comfort and variables
Presentation of the main research question (RQO0)

Which measurable variable do you appreciate the most?

Which measurable variable do you do not care at all?

III: Outdoor habits
during summer

Which months do you consider as part of summer? Why?

Do you like outdoor activities? Why?

Which outdoor activities do you like to practice during summer?
Tell me the most valuable aspect of these outdoor activities.

How often do you practice them?

When and where do you practice them? Do you practice them alone
or in company?

Which level of clothing do you have during these outdoor activities?

IV: Preferred
climate conditions
during summer

Which are the most comfortable weather conditions for these
preferred outdoor activities? Why?
Which would be a bad day to practice these outdoor activities? Why?

V: Thermal comfort
during summer in
Taltech Campus

How often do you go to Taltech Campus?

How do you normally go to the Taltech Campus?

Which spots of the campus do you visit? How often? Why?

Could you point in this map which is the best spot to read /working
with the laptop/sunbath/cycling /dancing / picnic.

Which level of clothing would you have for these different situations?

Why?
— Inoverall, could you tell me which parts of the campus during
summer is the most/less attractive to you? Why?

RQ1: How frequently do Taltech Campus users actually use outdoor areas and why?

RQ2: Which areas of the campus are preferred for different outdoor activities and why?

RQ3: Which are the optimal weather conditions according to Taltech Campus users
for different outdoor activities in the Campus?

The interview has been structured in five thematic blocks (Table 2). Block I contains
questions that aim to know specific details of the interviewee’s personal background such
as nationality, age, and city of residence. The objective of Block II is to introduce the
re-search topic as well as to discover the valuable climate conditions for the interviewee
and to discover how familiar the interviewee is with the topic. Blocks III contains questions
that aims to know the interviewee’s outdoor habits during summertime in Estonia. The
objective of Block IV is to know about the preferred climate conditions during summer in
Estonia. Finally, Block V aims to discover the relationship between the interviewee and the
Taltech Campus area: visit frequency, outdoor activities, preferred spots, etc.

Ten interviewees with different nationalities and backgrounds were selected. They
could give insights to answer RQO, since they are whether Master/doctoral students or re-
search staff in Taltech. The interviews were conducted from 2 July 2021 until 31 September 2021
with the sign of the ethics consent form to protect their privacy [43]. The communication
ways were e-mail, posters, and social media such as Facebook posts. The qualitative data
collection consisted in the production of transcriptions from each interview [44] and its
study with the well-known thematic analysis [45].
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2.4. Quantitative Study
2.4.1. Survey Study

We used survey technique to obtain meaningful subjective information from a diverse
profiles of Taltech Campus users to set up realistic people cases. The online surveys (the
structure of the survey is in Appendix A) were answered by 40 people from September to
November 2021. The structure of the survey was built based on the results and outcomes
from in depth interview and relevant factors of the metric PET to evaluate outdoor thermal
comfort as Figure 1 in the methodology section shows. For the design of the survey, we
considered the information explained from the Section 6. Qualitative study based on
semi-structured interviews. The online survey had valid 26 answers. There were three
thematic blocks as the interview: personal background, preferred weather conditions
during summer, and Taltech Campus (Table 3).

Table 3. Definition of question blocks used for the interview.

Thematic Block Requested Information

Place of birth, age, gender, level of education, current occupation,
Personal background height, weight, physical disability, chronic disease, number of
summer periods in Estonia, summer months.

Outdoor activities in summer, preferred level of: solar radiation,
temperature, relative humidity, precipitation, wind speed, and
sky type.

Use months, distance from home, used outdoor areas, less
attractive outdoor areas, weekly hours spent in outdoor areas,
practised outdoor activities in the campus, main limitation of the
actual outdoor areas.

Preferred summer
weather conditions

Taltech Campus

Although results from survey analysis cannot be generalized because of the small
sample size, we used these results to set up diverse and realistic campus users’ profiles in
order to study how to improve their outdoor thermal comfort during summer in Taltech
Campus. In this way, we demonstrated how to apply this mixed-method approach to any
case study. Statistical analyses of the survey are detailed in Section 3.2.

2.4.2. Modeling and Simulation Process

This part of the study consisted of geometric modeling and CFD simulation. First,
all the data of the landscape, buildings, elements, and furniture of the Taltech campus are
collected based on on-site observations. Then, the details of the studied area were used
for geometric modeling in the ENVI-met software environment, a three-dimensional mi-
croscale numerical model that calculates the distribution of heat, momentum, and humidity
in the urban environment according to the equations of thermo/fluid dynamics and ther-
modynamics [46]. We conducted CFD simulations to define the PET-based comfort range
for each representative case (i.e., clothing insulation, metabolic rate, physical attributes,
etc.) study obtained from statistical analyses from online surveys (built from interviews
analyses). The ENVI-met environmental simulation software uses a microclimate model
based on the fundamental laws of fluid dynamics and thermodynamics [37]. The simulation
process was conducted with ENVI-met to prepare CFD simulations for each day according
to the defined scenarios based on the results of the weather preferences of the people in the
survey to define the thermal comfort range of the participants based on PET indices.

The thermal comfort assessment was calculated using ENVI-met. In the final stage,
using the results of different thermal comfort based on the results of the survey about
personal characteristics, activity level, clothing level and preferred weather conditions,
different parts of the campus were evaluated to indicate the comfort level and characteristics
of each part. Clothing insulation has a major impact on thermal comfort as it affects heat
loss and thus thermal balance [47]. In this study, the mean the values for metabolic rate are
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65 (class resting), 100 (class low), 165 (class moderate), 230 (class high), and 290 (class very
high) W/m? for resting, sitting at ease/standing, sustained hand/arm work, and intense
work activities, respectively [47].

3. Results
3.1. Interviews Analyses

The 60% of the interviews were conducted virtually due to the pandemic situation as
well as availability issues. The interviewees between 23-56 years old were from nine differ-
ent countries. The 80% of the interviewees were males. There was one senior researcher,
one master student and the rest were PhD students from Taltech. The main conclusions
after thematic analyses of the interviews are the following:

June and July were the commonly recognised month as part of the summer.

Among the most common features of the outdoor activities during summer in Estonia,
the interviewees used the following terms: sun, nature, fresh air, and daylight. The
preference for a specific spot in the campus depends mainly on the level of nature,
accessibility, protection against the sun, the presence of shades, and presence of places
comfortable for sitting and working with laptops, laptop battery, climate conditions,
and level of privacy. The level of clothing depends mainly on the climate conditions
and the type of outdoor activity, but generally they prefer to wear short-sleeves/light
clothes in summer (answer to RQO).

e  According to them a perfect summer day would have a temperature between 20 °C
and 25 °C with a gentle breeze and almost clear sky (answer to RQ3).

e  They consider very hot and humid/stormy days as the less desired ones during
summer in Estonia.

e Interms of level of clothing, the 60% of the interviewees like wearing short clothes
during summer. The 40% of the interviewees find normal to wear light clothes
during summer.

e  The half of the interviewees live near the campus so they normally go to the campus
by walk. The rest of them would go by car, bus, or even e-scooter. The frequency of
visit depends on each person and where they live and work.

e Among 70% of the interviews use the outdoor areas of the campus.

Their favorite areas of the campus are colored in blue in Figure 5, and the less attractive
areas are colored in red in Figure 6. The most attractive areas of the campus are concentrated
around the inner courtyard of the Taltech campus (answer to RQ2). The vegetation present
in these areas and connectivity with majority of main buildings of the university and
student houses make this inner courtyard very attractive because of its multi-functionality:
several type of activities can be done in this area. In addition, the wooden area next to
the U06 building is valued for some interviewees to go cycling, picnicking, or dancing
because of the contact with the rough nature and privacy. The less attractive areas of the
Taltech Campus are mainly areas with lack of green areas such as the parking lots, dusty
pedestrian zones next to Mektory buildings, or noisy areas due to the heavy traffic of the
avenue Akadeemia tee. In addition, some interviewees highlighted the thermal discomfort
of the garden between student dormitories due to the poor circulation of fresh air and the
reflected radiation during summer.

The main areas to develop different activities in the campus considered by the inter-
viewees are concentrated in the main inner courtyard of the Campus, at the same time,
parking lots have big potential of improvement. Therefore, the zone of the campus that we
aim to study the outdoor thermal comfort because of its potential use and improvement is
shown in Figure 5.
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Figure 5. Taltech campus map with colored preferred areas for different outdoor activities.
R = reading a book, L = working with the laptop, D = dancing, S = sunbathing, P = picnic, and
F = favorite spot. Blue lines represent preferred cycling routes [48].

Figure 6. Taltech campus map with colored less attractive areas by the interviewees [48].

The less attractive areas of the Taltech Campus are mainly areas that lack of green
space such as the parking lots, dusty pedestrian zones next to Mektory building or noisy
areas due to the heavy traffic of the avenue Akadeemia tee. In addition, some interviewees
highlighted the thermal discomfort of the garden between student dormitories due to the
poor circulation of fresh air and the reflected radiation during summer.

The main areas to develop different activities in the campus considered by the inter-
viewees are concentrated in the main inner courtyard of the Campus, at the same time,
parking lots have big potential of improvement. Therefore, the zone of the campus that we
aim to study the outdoor thermal comfort because of its potential use and improvement is
shown in Figure 7.

Figure 7. Taltech campus area of study according to the interview’s analyses. In the left subfigure,
the green zone represents the most critical area of the campus because includes preferred areas and
less attractive areas which can be improved in the future. The right subfigure shows the main area
divisions referred by the interviewees [48].
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The findings obtained from the interviews might contain bias due to the uneven
gender balance. Moreover, answers collected virtually from the same interviewee could
be different from those collected from face-to-face interviews. The main reasons of these
bias sources could be the pandemic situation, interviewees’ health, vacation periods, and
will to improve the campus in summer, level of applicability of the findings agreed by the
practitioners, etc.

3.2. Survey Analyses

The aim of this section is to analyze the survey responses and define the relevant case
studies for calculating outdoor thermal comfort. To define these samples, the following
analyses are conducted:

First, we highlight the most important features to define campus use samples that
have been optimized using the information from the interview analyses. To this end, we
developed a simple statistical analysis to define representative profiles of campus users by
considering the correlation between variables. In addition, we define the relevant weather
conditions and a summer month based on the survey responses. We classify the preferred
outdoor activities on campus based on metabolic rates.

Therefore, in order to determine a more accurate PET that is close to a person’s thermal
sensation, it is important to consider all the important parameters.

Based on the data obtained from the survey, an initial assessment of PET was made by
evaluating the CFD model of 4 June in the ENVI-met environment. This step aims to find
out the main characteristics and variables that are meaningfully related to PET as thermal
comfort indices in the study and should be considered in defining the samples of the study
with different definitions. Then, an initial sample of 30 people who use the campus in
summer was drawn based on various characteristics—e.g., gender, age, clothing level,
activity level (influence on metabolism), height and weight (influence on body surface
area). The analysis of BIO-met benefits from the microclimatic data of the campus at 16:00
on the CFD simulation results of 4 June, the first day according to the study scenario.

In this part, Pearson correlation was applied, which shows the correlated variables and
PET. According to the definition of Pearson correlation, the values close to 1 show perfect
correlation and the low correlated ones close to 0. On one hand, according to Figure 8,
the most significant variables correlated with PET are metabolic rate, M (the results of
activity level and weight and height) and I (the level of clothing). On the other hand,
gender and age are not such strongly correlated with PET, hence, we do not analyze survey
data separately according to these two variables. Therefore, during the simulation process,
we selected the following personal characteristics: clothing insulation (I.)), metabolic rate,
weight, height, and age and gender—where we assumed a 30-year-old male in all samples.

We analyzed answers from participants who used somehow the outdoor areas of the
campus and facilitated relevant personal information (28 participants): age, gender, weight,
and height. There were 46% females and 54% males. Moreover, 46% of participants are
Estonian, 14% from Iran, and the rest of participants are from different countries such as
Philippines, Spain, Pakistan, Indonesia, Russia, and Mexico. Participants’ occupation was
very diverse: from assistant professors to bachelor students. Most of participants (95%)
do not have chronic disease and none of the respondents had a physical disability. The
minimum, mean, and maximum age are 20, 30, and 44 years old, respectively.

Firstly, we calculated the body mass index (BMI) (weight in kg)/ (height in m?) from
height and weight data (Figure 8). Secondly, we calculated representative values of the
studied sample: minimum, Q1, Q2, Q3, and maximum values (Table 4) of relevant factors
of the PET metric. In addition, we selected the closest weights related to each of the
representative values of BMI values from survey answers. Finally, we determined the
height from these representative BMI and weight values (Table 4). Furthermore, we
defined 5 BMI-driven subject profiles (Table 4). As we mentioned, we fixed age and gender
variables. According to our survey answers, the gender and age of these five profiles could
be equivalent to a 30-years old male, respectively.
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Figure 8. Dependency values between PET metric and factors in outdoor thermal comfort.
Table 4. Classification of metabolic rates by activity.
Value BMI (kg/m?) Weight (kg) Height (m) Profile ID
Minimum 17.99 52 1.70 1
01 20.10 67 1.83 2
Q2 23.52 68 1.70 3
Q3 25.78 83 1.79 4
Maximum 31.55 101 1.79 5

The months in which the participants used more the Taltech Campus are May (92.9%)
and September (71.4%) (Figure 9). However, May and September are considered as part
of the summer period in Estonia by only a 7.1% and 3.6% of the participants, respectively
(Figure 10). Although July is considered the summer month by most participants (96.4%),
only a 53.6% of the participants used the outdoor areas of the campus against 71.4% related
to June. Furthermore, we select June as the most relevant summer month by our studied
sample because of its consideration of summer month and frequency of use of the outdoor
areas of the campus.
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Figure 9. Participants’ body mass index (BMI) (a), weight (b), and age (c).
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Figure 10. Months in which participants use the Taltech Campus (a) and considered summer months (b).

In terms of preferred weather conditions (Figure 10), the overall perfect summer
day according to most participants include the following weather conditions: medium
solar radiation (75%) (Uvi = 3-5) (Figure 11a), medium temperature (60.7%) (20-25.9 °C)
(Figure 11b), medium relative humidity (57.1%) (40-60%) (Figure 11c), no rain (82.1%)
(Figure 11d), gentle breeze (wind speed < 4 m/s) (Figure 11e), and full clear sky (50%)
(Figure 11f). Furthermore, we consider these weather conditions in the next simulation-
based CFD analysis as the input weather data based on measured campus microclimatic
data and Tallinn climatic data. Different weather conditions than these ones might not
encourage participants to spend time in the outdoor areas of the Campus, and there-
fore the analysis of the outdoor thermal comfort is not as relevant as under preferred
weather conditions.
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Figure 11. Preferred levels of weather conditions according to survey participants: solar radiation
in terms of UV-index (UVi) (a), outdoor dry bulb temperature (T) (b), relative humidity (%) (c),
precipitation (d), wind speed (m/s) (e), and sky condition (f). The classes used in these survey
questions were designed according to interviews’ answers (Section 3.1).

(e)

The scenarios that define the days of the CFD simulation process and the climate data
are based on two sources. First, on the preferences of the respondents in the survey and the
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days they described as most thermally comfortable conditions in the Tallinn climate data
(Table 5), and second, on the same preferred conditions in days based on the Taltech campus
microclimatic data temperature 20 °C, wind speed 0.7 m/s and relative humidity 67%.

Table 5. Selected days for CFD simulation, based on the survey. Microclimatic data of Taltech campus
in June 2021.

Air Dry Bulb Solar Radiation ~ Wind Speed Wind o Precipitation
Date Temperature (°C) (UV-Index) (m/s) Direction (°) RH (%) (Yes/No) Sky Type
4 June 20-22 5 3.3 90 46-75 No Passing clouds
7 June 21-23 52 4.2 90 48-77 No Passing clouds
10 June 22-23 55 4.2 90 46-82 No Passing clouds
11 June 24-25 5.7 3.9 90 35-85 No Passing clouds
Once the profiles of the individuals and the weather conditions are established, the
most common metabolic rates associated with common outdoor activities on campus need
to be defined. There are different classes of activities depending on the metabolic rate
(Table 6).
Table 6. Classification of metabolic rates by activity developed in the Taltech campus [19].
Metabolic . . Selected
Class Rate (W/m2) Example Outdoor Activities (Number of Times Selected) Times
Resting 65 Resting Chilling out in outdoor areas (14), read a book (6) 20
Low 100 Sitting at ease/standing Go picnic (9), e-scooter (3) 12
Moderate 165 Sustained hand/arm work Hang out (18), walking (18), go camping (1) 37
High 230 Intense work Jogging (8), hiking (3), table tennis (2), cycling (1) 14
. Very intense to maximum Running (5), beach-volleyball (1), badminton (1)
Very high 290 activity street workout (3), basketball (3), orienteering (1) 14

According to the outdoor activities developed in the outdoor areas of the campus by
the survey participants, activities with very low metabolic rate (65 W/m?) such as “chilling
out” or “read a book” were selected by the participants 20 times. Moreover, activities with
moderate metabolic rate (165 W/m?) such as “hang out”, “walking”, or “go camping” were
selected 37 times in total. On the other hand, “low”, “high”, and “very high” outdoor
activities were not such popular for the participants. This could be due to the limited space
and ground conditions in the part of the campus analyzed (Figure 11) for certain activities
such as e-scooter, hiking, cycling, running, beach-volleyball, badminton, street workout,
basketball, etc.

Therefore, we consider “very low” and “moderate” level of activities as the most com-
mon ones practiced by the participants in the outdoor areas of the campus during summer.

Input Elements to Assess Thermal Comfort Based on the Survey

Some of the parameters that lead to a person feel thermally comfortable are inherent
in the characteristics of a space, while others are more personal to the environment. The
complexity of these relationships means that none of them follow a simple cause-and-
effect situation [33]. The data that defined the sample of thermal comfort assessment
studies are based on survey information and literature reviews [19,49-51]. According to
participants’ answers the preferable level of clothing during summer could vary from swim
trunks /bikini with sandals and a cap to short sleeved clothes. Despite of the influence of
the body movements and air action on clothing thermophysical properties [52], we used a
simplified approach based on static I values. Specifically, the static I; values, meaning
the I ; value for a person wearing a bikini (upper and lower part) or swim trunks (0.1 and
0.3 clo, respectively) [18,19,49]. Moreover, we considered a I of 0.5 clo as an average value
to represent light summer short-sleeve clothes according to Blazejczyk [49].
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The spatial distribution of outdoor thermal comfort in terms of the metric PET is
calculated via simulation for 20 defined cases (5 BMIs x 2 Icls x 2 Ms) study under
preferred summer conditions (Figure 11) in Section 3.2.

Finally, we define 20 cases (5 BMIs x 2 Is x 2 Ms) of interest that represent our
analyzed sample. As can be seen in Table 7, we can consider a 30-year-old man with
different BMI conducting activities with very low (65 W/ m?) and moderate (165 W/m?)
metabolic rates while wearing different summer outfits (I of 0.1 and 0.5 clo) under different
climate conditions. The average PET assessed for each case study experience under the
supposed microclimatic data in the campus.

Table 7. Definition of the cases study considered for the calculation of outdoor thermal comfort using
the PET metric under preferred weather conditions, the level of activity, and ;.

Average PET (°C) in the Campus Area

Personal Data of Samples X X X Tallinn
Campus Microclimatic Data Climatic Data
Weight Height Metabolic
Case ID (kg) () Rate (W/m?) I (clo) 4 June 7 June 10 June 11 June 11 June
plmlcl 52 1.70 65 0.1 43 44 30.2 47.2 439
p2mlcl 67 1.83 65 0.1 36 38.2 49.8 40.1 43.6
p3mlcl 68 1.70 65 0.1 423 427 40.3 48.2 44.1
p4mlcl 83 1.79 65 0.1 31.3 41.7 413 44.8 442
p5Smlcl 101 1.79 65 0.1 35.7 37.1 29.3 37.2 43.8
plm2cl 52 1.70 165 0.1 39.3 38.7 38.7 39.9 28.6
p2m2cl 67 1.83 165 0.1 40.1 37 38.5 37.6 29.2
p3m2cl 68 1.70 165 0.1 29.5 35.6 39.4 39.7 40.3
p4m2cl 83 1.79 165 0.1 45.6 38.4 39.1 36.3 40.3
p5m2cl 101 1.79 165 0.1 38.8 39.1 29.7 39.6 39.5
plmlc2 52 1.70 65 0.5 39.4 33.8 39.1 46.6 422
p2mlc2 67 1.83 65 0.5 42.6 40.1 445 459 37.9
p3mlc2 68 1.70 65 0.5 33 37 27 46.4 29.8
p4mlc2 83 1.79 65 0.5 43.6 37.9 25.4 45.8 429
pSmlc2 101 1.79 65 0.5 33.7 30.4 39.7 47.7 429
plm2c2 52 1.70 165 0.5 38.8 38.3 38.3 39.2 40.1
p2m2c2 67 1.83 165 0.5 36.4 36.4 30.5 37.5 38.4
p3m2c2 68 1.70 165 0.5 30.1 37.6 29.6 30.6 39.9
p4m2c2 83 1.79 165 0.5 38.3 31.7 39 39 39.4
p5m2c2 101 1.79 165 0.5 38.4 37.8 35.2 38.6 413

3.3. CFD Simulation Analysis and Results

Since the study focuses on comparing the objective personal and climatic data with
people’s subjective thermal perception data, needs, and preferences, this section considers
all the collected and analyzed survey data from Table 8 to define the thermal comfort of
people with different activity levels, metabolic rates, clothing levels, and body surfaces in
PET indices in the studied area.

In the next step, the data of each person considered to evaluate PET on four days
based on the microclimatic data of the studied area on 4,7, 10, and 11 June 2021 and the
weather data of Tallinn on 11 June 2021 using the BIO-met function of ENVI-met software
as a post-processor tool to calculate the human thermal comfort indices from the output
files of ENVI-met model.

The simulation of CFD was conducted for each date at 16:00 (the hottest time of the
day based on people’s weather preferences) and the atmospheric data were used as input
data to evaluate PET for each sample in the study.
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Table 8. Evaluation of PET range in different samples, based on the microclimatic data.

Dry Bulb Wind Relative

T;,};;TAIX:;ag: Type of Activity (:1‘(1)) H(i;glt “ﬁ'(lg)h t Temperature  Speed  Humidity
8 & §e) (m/s) (%)
Slightly warm Resting 0.5 170 68
(23-29 °C) Resting 05 179 83 22-23 417 46-82
Resting 0.1 179 83
Resting, sustained arm or hand work 0.1,0.5 170 68 20-22 3.33 46-75
Resting 0.5 179 101
Resting 0.5 170 52
Warm Resting 0.5 179 101 21-23 4.16 48-77
(29-35 °C) Sustained arm or hand work 0.5 179 83
Resting, sustained arm or hand work 0.1,0.5 170 52,68
Resting, sustained arm or hand work 0.1,0.5 179 101 22-23 417 46-82
Sustained arm or hand work 0.5 183 67
Sustained arm or hand work 0.5 170 68 24-25 3.88 35-85
Resting, sustained arm or hand work 0.1,0.5 183 67
Resting, sustained arm or hand work 0.1,0.5 179 101
Resting, sustained arm or hand work 0.1,0.5 170 52 20-22 333 46-75
Sustained arm or hand work 0.5 179 83
Resting, sustained arm or hand work 0.1,0.5 183 67
Resting, sustained arm or hand work 0.1,0.5 179 83,101
Sustained arm or hand work 0.1,0.5 170 52 21-23 416 4877
Sustained arm or hand work 0.1,0.5 170 68
Hot Resting, sustained arm or hand work 0.1 170 68
(3541 °C) Sustained arm or hand work 0.1 183 67
Sustained arm or hand work 0.1,0.5 179 83 22-23 4.17 46-82
Resting, sustained arm or hand work 0.1,0.5 170 52
Resting, sustained arm or hand work 0.5 179 101
Resting, sustained arm or hand work 0.1,05 183 67
Resting, sustained arm or hand work 0.1,0.5 179 101
Sustained arm or hand work 0.1,0.5 170 52 24-25 3.88 35-85
Sustained arm or hand work 0.1 170 68
Sustained arm or hand work 0.1,0.5 179 83
Resting 0.1 170 52,68
Resting, sustained arm or hand work 0.1, 0.5 179 83 20-22 3.33 46-75
Resting 0.5 183 67
Resting 0.1 170 52, 68
Very hot Resting 0.1 179 83 21-23 4.16 48-77
(>41°C) Resting 0.1,0.5 183 67
Resting 0.1,0.5 170 52,68
Resting 0.1,0.5 179 83
Resting 05 179 101 2425 3.88 35-85
Resting 0.5 183 67

4. Analyzing the Results of PET Evaluation

The aims of the final section consist of analyzing results of the CFD simulation to
reach a better understanding of the thermal comfort condition of the campus, the causes
and effects on comfort and non-comfort areas, and give suggestions to improve outdoor
thermal comfort.

The first analysis of the results of PET relates to how the range of PET depends on
the personal and weather data. Table 8 shows the ranges of PET in different samples with
the range of activities (metabolic rate: 65 W/m? at rest and 165 W/m? at high activity),
I4 (0.1 and 0.5 clo) and microclimatic conditions on campus on 4, 7, 10, and 11 June. For
example, according to Table 8, on a day with a dry bulb temperature of 22-23 °C, wind
speed of 4.17 m/s and relative humidity of 46-82%, only people with a height of 170 and
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179 cm and weight of 68 and 83 kg, respectively, can experience a slightly warm thermal
comfort feeling, while their clothing level is 0.5 and they are doing the least activity.

Thus, the results of Table 8 give enough data to understand the relation between
thermal comfort value, human body surface, the activity level, I, and weather data. For
example, in the same weather condition a person of 170 cm height and 68 kg weight can
experience different ranges of PET that represent a normal body area, depending on the
level of activity and preferred clothing level

Figure 12 shows a simple example based on the microclimatic data of 10 June 2021.
For example, if a person has only a baseline activity level (65 W/m?) and wears the lowest
clothing (0.1), it is hot PET (i.e., 3541 °C), while the person with more clothing (I = 0.5)
has a lower value of PET, i.e., slightly warm in the range of 23-29 °C. If the same person
has a higher activity level (metabolic rate of 165 W/m?) with the same microclimatic data,
the thermal comfort is hot or warm, at I 0.1 and 0.5 respectively.

Activity level Clothing
Metabolic rate insulation RER

Resting -
G¥RY (N [az oo Slightly
warm
arm or
hand work
aeswmd | | 0.3 [ Warm

Figure 12. Different PET ranges, based on the microclimatic data on 10 June 2021.

[ Height: 170cm, Weight: 68 kg ]

5. Application of the Study Results
5.1. Visualizing the Results

The visual map calibrates the output data of the PET results to facilitate the application
of thermal comfort while showing the diversity of the thermal environment.

Figure 13a,b shows how activity level affects the thermal comfort of PET for two iden-
tical individuals engaged in different activities. For the case p3m2cl with high metabolic
rate and low clothing, thermal comfort in different parts of the campus ranges 24.5-55.5 °C
(Figure 13a). According to thermal comfort evaluation, in this condition, most parts of the
campus are comfort with slightly warm and warm thermal comfort values. However, in
Figure 13b evaluated thermal comfort value for the person (p4m1lc2), with lower metabolic
rate and higher level of clothing is in the higher ranges 27.70-54.10 °C. Thus, most areas of
the campus are considered non-comfort areas, meaning hot or very hot.
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Figure 13. Visual results of PET of evaluation sample p3m2c1 on 4 June (high level of activity) (a),
Visual results of PET of evaluation sample p4m1c2 on 4 June (low level of activity) (b).
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5.2. Mitigation Strategies for the Improvement Thermal Comfort

This paper aims to assess outdoor thermal comfort by focusing on bridging the disci-
plines by examining the relationships between objectively measured weather conditions
and subjectively perceived thermal comfort, as well as the spatial characteristics of the area
studied, as explained in Section 1.2. Therefore, matching the results is necessary to find the
optimal areas for thermal comfort with the areas that need to be improved to meet people’s
needs. Similarly, we determine which features and characteristics cause this zone to be
highlighted with high or low levels of thermal comfort perception according to PET ranges
shown in Table 8. Firstly, we searched for areas in the high range of thermal comfort in each
date (Figures 14 and 15). Secondly, we looked for the reason why some areas are thermally
comfortable and others are not. In this step, the areas that have PET in the range of 35-41 °C
and more than 41 °C are classified as “hot” and “very hot”, respectively. We consider “very
hot” areas needed of thermal comfort improvements. The final part of this assessment is to
find out which areas of the campus are more suitable for different activities.
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30.55 0 33.91 °C
329110 37.26 °C
37.26 10 40.62 °C
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Figure 14. Visual results of PET and areas with PET values higher than need improvement, sample
p4m2cl, date 4 June, based on the microclimatic data of the campus (a), sample plmlcl, date 7 June,
based on the microclimatic data of the campus (b).
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Figure 15. Visual results of PET and areas with PET values higher than need improvement sample
p2m1cl, date 10 June, based on the microclimatic data of the campus (a), sample p3m1cl, date 11 June,
based on the microclimatic data of the campus (b).



Energies 2022, 15, 1577 21 of 26

In summary, based on the analysis and according to Figure 16, outdoor areas: A, C, E,
G, L, I, and R needs improvements to offer the better thermal comfort.

Figure 16. Different areas in the campus, generated in ENVI-met (a), areas needing improvement (b).

Table 9 uses the information areas in the campus in Figure 16 to define the major
elements and the possible activities (the common activities based on the survey, Table 9). In
this part of the study, we use the label of comfort or non-comfort to categorize areas in the
campus based on PET assessment in the study.

Table 9. Specification of different part of the campus and the comfort level based on PET analysis.

Possible Activities (Based on PET

Name The Major Elements E . Main Plants Comfort Lable
valuation)

A Green area Chilling out, reading Grass, trees Non-comfort
B pavement Hang out, walking, camping Grass, bushes Comfort

C Green area, pavement Chilling out, reading Grass, bushes Non-comfort
D Green area, pavement Hang out, walking, camping Grass, pavement Non-comfort
E Green area Chilling out, reading Grass, bushes, trees Comfort

F Green area Hang out, walking, camping Grass, bushes, trees Non-comfort
G Green area Chilling out, reading Grass Comfort
H Green area, pavement Hang out, walking, camping Grass Comfort

I Green area, pavement Chilling out, reading Grass Non-comfort
K Green area Hang out, walking, camping Grass, trees

L Pavement, street Chilling out, reading - Non-comfort
M Pavement, parking lot Hang out, walking, camping - Comfort

Pavement, parking lot, . .
Q green area Hang out, walking, camping - Comfort
P Pavement, parking lot, Hang out, walking, camping Grass, tress Comfort
green area

According to the survey data and the results of Table 9, Figure 17 shows different areas
of the campus under the labels to define which areas are comfortable and popular, which
are not comfortable but preferred by people, and likewise which areas are comfortable
but not attractive to people based on the analysis, and finally which areas are neither
comfortable nor attractive to people.

Figure 17 also shows that people prefer to spend their time and various activities such
as computer work, dancing, picnicking, sunbathing, etc. in the main inner courtyard and
mostly green areas of the campus such as A, C, E, and G. The area labeled L is also not
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pleasant but is popularly used as a bicycle path. Although park areas such as P, Q, R, and K
offer thermally pleasant conditions and benefit from the shade of surrounding buildings,
they are not attractive to people. In addition, some interviewees consider these areas to
be places with great potential for improvement. There are also some areas in the middle
of the campus, (e.g., B, F, D, and H), which are both comfortable and used by people for
various activities such as gathering, reading, and sunbathing. Finally, the area marked T in
the northern part of the map provides optimal thermal comfort and is also a green space,
but not very popular due to the high acoustic pollution related to the traffic flow

Figure 17. Comparison between the areas that are more popular for different activities and the
comfort or non-comfort areas based on PET analysis.

6. Conclusions

The aim of the study is to use objective and subjective elements to assess outdoor
thermal comfort at Tallinn University of Technology, Tallinn, Estonia, using qualitative
and quantitative approaches. In this study, we mainly wanted to show how to use this
mixed-methods approach to identify which areas of an urban area would be needed
improvement of the outdoor thermal comfort during summer. The main outcomes and
practical implications of this study are as follows:

1.  The analysis of the relationship between personal characteristics and perception of
thermal comfort shows that height, weight, degree of clothing, and activity level have
an impact on thermal comfort values. The result shows that when the activity level is
high, the level of clothing has no significant influence on the thermal comfort value.
Furthermore, comparing people with high and low BMI under the same microclimatic
conditions, with the same activity and clothing level, the maximum values of PET
are higher in people with low BMI than in people with high BMI. Therefore, people
with a lower BMI can move more under the same weather conditions without feeling
uncomfortable compared to those with higher BMIs.

2. The analysis of non-environmental variables that depend on people has shown that
the choice of place where people are active sometimes depends not only on pleasant
thermal conditions, but also on other characteristics of the place, such as visual
enjoyment, openness, or enclosure and green spaces. It is like some sun-exposed
areas that are not pleasant according to the thermal comfort analysis, but which
people choose for their activities. It is the same reason with areas between buildings
or car parks that are shaded by the surrounding buildings and provide optimal
thermal conditions, but are not chosen by people as places to stay because the lack
of green/semi-open areas, and urban furniture. Based on the mentioned findings, it
seems that spatial planning for site renovation and improvement should focus on the



Energies 2022, 15, 1577

23 of 26

physical aspects of the areas, taking into account people’s preferences to provide the
enjoyable environment for visitors, while considering the thermal comfort of outdoor
residents, e.g., by providing some shaded places. This concept covers part of Taltech’s
strategic plan in the project called Green Transition.

The sample size is a limitation of our study. Furthermore, we could not generalize
our findings to all Taltech Campus users. Moreover, in this study assessment of thermal
comfort is based on the PET metrics, but it can be done and evaluated in other indices
such as the UTCI among others. The other limitation is related to the limited area and
duration that thermal comfort assessed. Our assessment criterion of thermal properties
of clothing might be conservative because we did not consider the wind effect on static
clothing insulation. Thus, in summer conditions, the thermal comfort levels could be
underestimated. Nevertheless, this approach could lead into design strategies which
are on the safe side in future microclimate conditions, which can be further studied in
future investigations.

Other future studies to complete this research and cover the limitations are planned in
two parts. the study in the field of urban thermal comfort analysis in the campus will first
explore possible solutions and strategies based on people’s preferences and the results of
the present study to improve the quality of thermal comfort on campus. Secondly, applying
the solutions and reflecting them in the software environment of the urban simulator to
analyses the CFD simulation of the campus to find the optimal one to improve areas with
low thermal and non-thermal comfort. A future study will take into account a survey done
with more participants in other zones of the city. The study will follow the results of thermal
comfort assessment in different seasons in Tallinn through different comfort indices.
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Nomenclature

CFD Computational Fluid Dynamics

PET Physiological Effective Temperature

PMV Predicted Mean Vote Index

PPD Predicted Percentage Dissatisfied Index

ISO International Organization for Standardization
MEMI Munich Energy-Balance Model for Individuals
UTCI Universal Thermal Climate Index

TSV Thermal Sensation Votes

BMI Body Mass Index

ASHRAE  American Society of Heating, Refrigerating and Air-Conditioning Engineers
OUT_SET  Outdoor Standard Effective Temperature
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Appendix A

The structure of the online survey

How old are you?
Which is your gender?

[Female, Male, Transgender female, Transgender female, Gender variant/non-coforming,
Not listed, Prefer not to answer]

Which is your level of education?
Which is your current occupation?
Which months do you consider as part of the summer in Estonia?

[June, July, August]

How many summer periods have you been in Estonia?

How much is your height?

How much is your weight?

Do you have any physical disability? In affirmative case, which one?

Do you have any chronic disease? In affirmative case, which one?

Which outdoor activities do you usually practice during summer in Estonia?

Swimming at lakes, Swimming at the sea, Go surfing, Go paddle, Go surfing, Go kitesurfing,
Tennis, Table tennis, Hang-out, Read a book, Dancing, Cricket, Baseball, Go picnic, Go
Camping, Running, Jogging, Walking, Hiking, Football, Basketball, Beach-volleyball, Com-
bat sports, Badminton, Street workout, Skateboarding, Longboarding, (e-)scooter, Chilling
out, Other(s)

12.

Please select the level of these variables to create a perfect summer day in Estonia to practice
any of your preferred outdoor activities mentioned in question 11 (UVi = UV index):

L. . Medium High Very high .
Solar radiation Low (UVi =1-2) (UVi = 3-5) (UVi = 6-7) (UVi>7) I do not mind
Low Medium High Very high .
Temperature (T) T <20°C T =20-25.9 °C T=26-30°C T>30°C Ido not mind
. s Low Medium High Very high .
Relative humidity RH)  pyy _ 400, (RH =40-509%)  (RH = 60-80%) (RH > 80%) Idonot mind
Precipitation No rain Light rain Moderate rain Heavy rain I do not mind
. . Gentle breeze Moderate wind Strong wind .
Wind speed No wind (<4 m/s) (45 m/s) (>5m/s) I do not mind
Type of sky Full overcast Intermediate sky Partially clear Full clear sky I do not mind
13.  In which months do you use the outdoor areas of the Taltech Campus?
[June, July, August]
14.  How far (in km) do you live from Taltech Campus?
15.  In which areas of the Taltech campus do you often spend time? (Figure 7)
16.  According to your opinion, which spot(s) of the TalTech Campus are the less attractive
to spend time in? (Figure 7)
17. How many hours per week do you enjoy the outdoor areas of the Campus during summer?
18. Which outdoor activities do you practice within the Taltech Campus during summer

in Estonia?

Swimming at lakes, Swimming at the sea, Go surfing, Go paddle surfing, Go kitesurf-
ing, Tennis, Table tennis, Hang-out, Read a book, Dancing, Cricket, Baseball, Go
picnic, Go Camping, Running, Jogging, Walking, Hiking, Football, Basketball, Beach-
volleyball, Combat sports, Badminton, Street workout, Skateboarding, Longboarding,
(e-)scooter, Chilling out, Other(s)
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19. Please, select the main limitations of the actual outdoor areas of the Taltech Campus:

Green areas, Lack of tables and chairs, Places with privacy, Conditions of the ground,
Conditions of the ground, Actual laces to sit are uncomfortable, Accessibility with
different ways of transport, Lack of plugs/sockets, Dirty spots, Lack of enough shadow
in certain spots, Lack of benches in certain spots, Other(s)

20. Please, leave in the following box any comment you would like to express:
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