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1 Introduction
In our modern lives, electronic devices are ubiquitous. From basic household items like
radios and televisions to sophisticated machinery such as airplanes, automobiles, and
medical equipment, these devices all rely on digital and embedded systems [1–4]. With
each iteration, these systems grow increasingly intricate. Given their application in vari-
ous safety-critical contexts, ensuring their correctness and trustworthiness is paramount.
Any malfunction or failure within these systems can lead to dire consequences, ranging
from financial or environmental damage to loss of life or serious injury [5, 6].

To ensure the correctness of the functionality of these systems various functional
verification techniques are employed [7–11]. Functional verification techniques aim to
verify that a hardware design behaves in accordance with a specified set of requirements
outlined in its specification [12]. Throughout the verification process, a verification
engineer ensures that the system is developed according to its specifications and
requirements [13]. As hardware designs continue to increase in size and complexity,
verification becomes a critical process of modern design flows [14]. Based on the 2020
Wilson Research Group’s study on functional verification, approximately 51% of the
total cost and time in the design process is allocated to verification [7, 15].

The costs associated with undetected bugs in designs escalate over time. Early
detection of bugs during the design process reduces the expenses incurred in identifying
and resolving them later when the design is being used in the real operational environment.
Detecting a bug in a system post-fabrication can result in significant financial losses,
often amounting to thousands of dollars, as it necessitates re-fabrication and prolongs
time-to-market. Moreover, undetected bugs during the design process may be identified
by customers, leading to warranty replacements and potentially damaging the reputation
of the company or brand. These bugs and errors can affect the functionality of the
system or lead to even security issues and vulnerabilities in the system [7,16–19]. Given
the significant costs associated with verification, it is imperative to improve and enhance
current verification techniques.

To enhance existing functional verification techniques, it is vital to understand
various methods and approaches in verification. These include static verification
techniques, also referred to as formal verification [8, 20–25], dynamic verification
approaches known as simulation-based verification techniques [26–28], and semi-formal
methods commonly referred to as Assertion-Based Verification (ABV) techniques
[7, 29–33]. Formal verification techniques aim to establish the functional correctness of
a design through proof rather than simulation [34]. These techniques encompass various
methods, including model checking, theorem proving, and equivalence checking [34].
Conversely, simulation-based verification techniques assess design functionality through
simulation, checking its correctness within the simulated environment [26, 35, 36].
Despite the advantages of each verification method, they encounter drawbacks such as
scalability issues in formal verification techniques and limitations in exhaustiveness for
simulation-based approaches [34,37,38].

Although formal and simulation-based verification techniques hold promise, assertion-
based verification has emerged as a popular approach for verifying complex digital
systems. ABV combines the strengths of both formal and simulation-based methods
to verify design functionality [39–46]. It can be implemented across various levels of
verification abstraction, from high-level assertions within transaction-level testbenches to
implementation-level assertions synthesized into hardware [7,40,47–51]. Assertion-based
verification techniques rely primarily on the efficacy of assertions. These assertions are
regarded as valid and accurate rules that delineate the behavior and functionality of
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designs, which the designs must adhere to [42,52].
On the other hand, given the various security vulnerabilities and attacks prevalent in

contemporary designs, it is imperative to include security verification alongside functional
verification in the design process. Functional verification techniques, such as formal
verification and ABV, have demonstrated significant potential in verifying designs. The
efficacy and benefits of these verification techniques have prompted researchers to explore
their application in security verification as well [53]. Consequently, current research
efforts are exploring the integration of functional verification techniques into the realm
of security verification [53]. Some researchers have started utilizing formal verification
for security verification to establish the trustworthiness of the designed systems against
security vulnerabilities [53]. However, studies indicate that due to the effectiveness
of assertion-based verification in verifying designs, ABV has attracted considerable
attention for the security verification of hardware designs [54]. Hence, considering
the advantages of ABV for functional verification and its efficacy in detecting security
vulnerabilities, its incorporation into security verification processes shows significant
promise.

This thesis introduces several innovative data mining-based solutions and method-
ologies designed to enhance assertion-based verification techniques. These proposed
solutions, applicable in both verification and security verification domains, strive to gen-
erate assertions of superior quality and accuracy, ultimately reducing overall verification
costs. Moreover, these methodologies cater to both academia and industry, providing
valuable insights for researchers and engineers.

1.1 Motivations and Objectives
As illustrated in Fig. 1, this thesis endeavors to improve both functional verification and
security verification by introducing innovative solutions for the automatic generation
of assertions. These assertions, applicable for the verification and security verification
of hardware designs, embedded systems, and cyber-physical systems like autonomous
vehicles (AVs), can subsequently undergo automatic evaluation and minimization. This
process yields a set of evaluated, minimized, and high-quality assertions, consequently
reducing the overall costs associated with functional verification and security verification
processes.

Regarding functional verification, while formal verification techniques hold promise
and can accurately verify designs, they also suffer from some limitations. Applying these
techniques to large-scale designs can be time-consuming and may result in memory
explosion [34,55]. Conversely, while memory explosion is a significant issue in formal
verification, simulation-based verification approaches face a critical challenge due to
the lack of exhaustiveness inherent in simulation-based verification processes [37,56].
Therefore, simulation-based verification is adept at identifying bugs but cannot guarantee
their absence [37].

Assertion-based verification leverages both formal verification and simulation-based
verification to offer a more robust and streamlined approach to verifying complex
digital systems [7]. This technique utilizes assertions, which serve as the golden rules
to which the implementation is compared and any deviation from these rules can
cause design errors [57]. In the domain of assertion-based verification, two primary
approaches exist for defining assertions: manual and automatic approaches of assertion
generation [42,58].

The manual creation of assertions requires human expertise and a profound un-
derstanding of the design’s functionality [57, 59–61]. Furthermore, it is costly and
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Figure 1: Contributions of the thesis

error-prone [59, 62]. Consequently, there have been numerous efforts to automate
assertion mining [42, 63–75]. While these automated techniques hold promise, they
still suffer from certain limitations and drawbacks. One significant drawback of current
assertion miners is their inability to generate accurate assertion sets with comprehensive
design behavior coverage. This can result in assertions that fail to encompass all design
scenarios and corner cases, ultimately leading to incomplete assertion sets in terms of
design behavior coverage. Other key limitations of state-of-the-art assertion miners
include the excessive number of generated assertions, redundancy (i.e., assertions that
describe the same design behavior) and inconsistency (i.e., assertions that contradict
each other) in the mined assertions, prolonged execution times for assertion mining,
and lack of readability in the generated assertions [76, 77]. Any of these deficiencies
can render the verification process more error-prone, time-consuming, and costly.

Furthermore, in the current state-of-the-art, several studies have focused on eval-
uating the quality, interestingness, and ranking of assertions [63, 78–82]. However,
although these methods are capable of evaluating and ranking assertions, each may yield
a different set of ranked assertions, with rankings varying significantly between different
methods. This discrepancy arises from the diverse criteria and metrics employed by
each method to evaluate and rank assertions. Consequently, there is a notable absence
in the literature of a unified method that integrates all existing interestingness and
evaluation techniques, providing a cohesive and comprehensive set of evaluated and
ranked assertions. Each of these shortcomings can present challenges for verification
engineers in verifying hardware designs, ultimately resulting in various costs associated
with the verification process.

On the other hand, in the realm of security and security verification, there has
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been limited effort to leverage assertion and assertion-based verification techniques
to enhance system security [33, 83–86]. For instance, in [83], security assertions for
System-on-Chip (SoC) vulnerabilities are manually defined, yet they tend to be overly
general, lacking coverage of design corner cases. Conversely, in [87], security assertion
sets are automatically generated, albeit solely applicable to firmware. Additionally, there
are endeavors concentrating on processor security using assertions, such as [54, 88–91].
However, these approaches are hindered by the manual assertion generation process or
are restricted to specific processor types.

In the context of the safety and security of autonomous vehicles, there are a few
works using assertions [92–95]. Nevertheless, these methodologies are limited to only
addressing the software-level security of autonomous vehicles. Furthermore, they rely
on manual processes tailored to individual AV models, rendering them inapplicable to
other autonomous vehicles.

In this thesis, innovative solutions are proposed to enhance assertion-based verification
techniques and improve the quality of existing assertion miners and their generated
assertion sets, consequently overcoming the current limitations in the state of the art.
Furthermore, several novel methods and solutions are proposed to enhance the security
verification of processors and autonomous vehicles, addressing the aforementioned
shortcomings in this domain.

1.2 Novelty, Contributions, and Outline of the Thesis
The outcomes of this thesis are structured into three primary branches, each explored
in distinct chapters. Table 1 briefly illustrates the interconnection among the chapters,
papers, and contributions. One branch of the thesis, as also depicted in 1 is associated
with the automatic generation of assertions for functional verification. This branch
involves the introduction of ARTmine, an automated assertion miner proposed for use
by researchers and verification engineers in academia and industry. Chapter 4 delves into
ARTmine, complemented by the details provided in paper I. In contrast to conventional
methods where assertion miners rely on Finite State Machine (FSM) creation, ARTmine
employs a suite of association rule mining algorithms specifically tailored for the context
of ABV and assertion mining. These algorithms form the foundation of ARTmine,
facilitating the generation of more accurate assertions within shorter timeframes. The
proposed assertion miner offers superior design behavior coverage with a reduced number
of assertions compared to existing assertion miners. ARTmine produces assertions that
effectively address corner cases in designs and offer extensive design behavior coverage.

As presented in Fig. 1, the other branch of this thesis is associated with the
automatic generation of assertions for security verification. In this branch of the thesis,
the application of assertion-based verification is extended to the domain of security to
address the limitations of existing approaches in security verification. Here, ADAssure is
proposed as a data mining-driven technique designed for debugging and localizing bugs
within the autonomous driving control algorithms of autonomous vehicles. This method
employs a novel data mining algorithm to analyze the behavior of AVs and pinpoint
bugs, particularly those manifesting as adversarial cyber-attacks, with the support
of assertions. Additionally, an automatic security-based assertion miner tailored for
generating security assertions specific to RISC-V processors, with potential applicability
to security verification across other processor types, is introduced. The proposed
security-based assertion miner is capable of detecting security vulnerabilities, including
hardware Trojans. To the best of my knowledge, this marks the first instance of an
assertion miner capable of automatically generating security assertions for processors.
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Table 1: Thesis contributions and outline

Chapter Paper Contribution

4 I Automatic Generation of Assertions
for Functional Verification (ARTmine)

5 II, III Automatic Evaluation and Minimization
of Assertions (Dominance and IMMizer)

6 IV, V Automatic Generation of Assertions for Security
Verification (ADAssure and Security-Based Assertion Miner)

Comprehensive details of these methodologies are expounded upon in Chapter 6. The
corresponding paper for ADAssure is paper IV, while the paper corresponding to the
security-based assertion miner for RISC-V processor is paper V.

The final branch of this thesis, as illustrated in Fig. 1, focuses on the automatic
evaluation and minimization of assertions. While in this thesis the methodologies
and solutions proposed in this branch have been employed for functional verification,
they are also applicable to security verification. This branch of the thesis focuses
on addressing the deficiencies present in the current state-of-the-art assertion-based
verification, particularly concerning assertion evaluation, interestingness, redundancy, and
inconsistency. To tackle these challenges, Dominance, a data mining-based approach for
analyzing, evaluating, and qualifying assertion sets, is introduced. This method is capable
of assessing various assertion rankings, consolidating them, and presenting a unified
and integrated collection of evaluated, high-quality assertions, while considering diverse
rankings from other methodologies. Furthermore, to address issues of redundancy and
inconsistency within assertions, IMMizer, a novel method that identifies and minimizes
redundant and inconsistent assertions is presented. IMMizer has been specifically
designed to detect and minimize these types of assertions. IMMizer generates a reduced
number of assertions with minimal redundancy and inconsistency compared to the
original assertions while maintaining the same level of design behavior coverage. The
intricacies of these methods are elaborated in Chapter 5, with detailed discussions
available in papers II and III. Incorporating ARTmine, Dominance, and IMMizer into the
hardware design verification process can furnish a comprehensive toolkit, significantly
reducing overall verification costs.

The organization of the thesis and a brief description of each chapter are as follows:

■ Chapter 2 This chapter offers the relevant background and concepts necessary
for comprehending the remainder of the thesis. It provides a concise overview of
verification, outlining its various approaches and types. Additionally, the chapter
introduces assertion-based verification and defines assertions. Finally, it delves
into the mutant analysis technique utilized in assertion-based verification.

■ Chapter 3 In this chapter, state-of-the-art methods and approaches documented
in the literature pertaining to automatic assertion mining, automatic assertion
evaluation and minimization, and the application of assertion-based verification in
the realm of security are elucidated. The doctoral contributions in this thesis lie
within these domains, and the subsequent chapters elaborate on each contribution
in greater depth.

■ Chapter 4 The primary objective of this chapter is to introduce the automatic
assertion miner, ARTmine. To develop ARTmine, several association rule mining
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algorithms specifically tailored for extracting crucial temporal patterns within the
framework of assertion-based verification are introduced. This chapter provides
an overview of these algorithms, followed by a detailed exposition of ARTmine.

■ Chapter 5 This chapter introduces Dominance, a data mining-based algorithm
designed to analyze the quality of assertions. Unlike conventional assertion
evaluation methods that merely rank assertions, Dominance can assess assertion
quality and eliminate low-quality ones. The intricacies of Dominance are elaborated
upon in this chapter. Additionally, this chapter provides details on IMMizer.
IMMizer operates by categorizing assertions into various classes and subsequently
identifying redundant and inconsistent assertion sets. Upon detection, IMMizer
minimizes these types of assertions collectively.

■ Chapter 6 This chapter incorporates assertion-based verification into the realm
of security and elucidates the intricacies and outcomes of the contributions made
by this PhD thesis in this domain. A method is introduced for bug localization
and debugging within autonomous driving control algorithms in autonomous
vehicles, utilizing assertions, which is expounded upon in this chapter. The
proposed method was implemented and assessed using the TalTech autonomous
vehicle, IseAuto, as a case study. Moreover, this chapter introduces an automatic
security-based assertion miner tailored for the security verification of RISC-V
processors.

■ Chapter 7 This chapter serves as the conclusion to my thesis and outlines
potential future research and development directions.
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2 Background
Traditionally, the verification of hardware designs and embedded systems has involved
two distinct techniques: static verification and dynamic verification [8,37,96,97]. Static
verification employs formal methods to ensure design correctness, while dynamic verifi-
cation relies on simulation [23,26, 98]. While both techniques offer unique advantages,
they also have limitations in hardware verification. Recently, there has been significant
interest in assertion-based verification, which combines the mathematical rigor of formal
methods with the intuitive and rapid approach of simulation and its coverage met-
rics [99,100]. In the following, an overview of static verification, dynamic verification,
and assertion-based verification is elaborated in sections 2.1, 2.2, and 2.3, respectively.
Furthermore, to explore the application of these functional verification techniques for
security verification purposes, an overview of security verification is presented in section
2.4.

2.1 Static Verification

Static verification, also known as formal verification, utilizes mathematical proofs to
establish the correctness of the Design Under Verification (DUV) [12]. Unlike dynamic
verification, static verification is static in nature, as it verifies the presence of errors
without explicitly simulating the behavior of the model [101].

A formal verification framework comprises three fundamental elements: a mathemati-
cal model of the system under verification, a formal language for framing the correctness
problem, and a methodology for proving the correctness statement [101]. Based on
these components, there are two primary formal verification mechanisms that can be
applied for different purposes: model checking and equivalence checking [23]. In model
checking, the correctness problem involves demonstrating whether the model satisfies the
specification represented as logical formulas [23,102]. Its primary application is to detect
design errors at the early stage of the design process [103]. Conversely, equivalence
checking addresses the task of verifying if two models implement the same functionali-
ties [23,103]. Its main application is to identify discrepancies between descriptions of
the same system at different abstraction levels [23,103]. Static approaches in functional
verification offer significant advantages. However, they also present limitations, such
as memory explosion and scalability issues, particularly in large-scale designs [34,55].
Consequently, it is beneficial to consider alternative verification techniques.

2.2 Dynamic Verification

An extensively utilized alternative to formal verification is dynamic verification, also
known as simulation-based verification, which assesses the correctness of a design through
simulation-based techniques [37]. In dynamic verification, the model’s functionality is
verified by generating a substantial number of input stimuli (test cases), which are then
simulated to observe the behavior of the DUV at its primary outputs [27, 104,105]. To
execute dynamic verification, several components are required: a description of the
design, a testbench for applying stimuli to the primary input of the design, obtaining
simulation traces, and a method for establishing the correctness of the design based
on the simulation results [37, 105]. While dynamic verification shows promise in bug
detection, it cannot guarantee their absence due to the lack of exhaustiveness inherent
in the simulation-based verification process [104,105].
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2.3 Assertion-Based Verification
Assertion-based verification leverages the strengths of both formal verification and
simulation-based verification techniques to offer a more robust approach to verifying
complex digital systems [7, 106]. ABV primarily relies on the efficacy of assertions
[75, 107]. In the domain of hardware verification, a significant challenge pertains to
enhancing controllability and observability to uncover internal errors and bugs [7].
Controllability refers to the capability to control internal signals, while observability
denotes the ability to monitor the state of designs [7]. Embedded assertions serve to
capture any unexpected behavior, thereby increasing observability of internal activities
within the design [7]. For instance, an assertion may verify that the output of an adder
corresponds to the sum of its inputs, even when the implementation occurs within
the execution stage of a CPU. Any deviation from the predefined properties within
assertions can readily reveal and detect design bugs [7, 106,108].

Enhancing the observability of internal states facilitates faster error localization,
resulting in a considerable reduction in overall verification time [7, 106, 108]. As
depicted in Fig. 2, ABV improves both controllability and observability, accelerating
the debugging process and reducing functional errors within designs [7]. In the event of
assertion failure during simulation, sufficient information is provided to designers and
verification engineers, enabling them to promptly address the issue. Conversely, without
assertions, diagnosing the cause of failure may take hours or even days. Consequently,
the effective utilization of assertions can significantly reduce both verification and
debugging times [7, 106,108].

Additionally, ABV can be applied at various levels of abstraction, including
Transaction-Level Model (TLM), Register-Transfer Level (RTL), and gate-level [7, 42].
Compared to RTL designs, TLM is more abstract and offers faster simulation [7,42].
Consequently, TLM designs are better suited for verifying large designs and hardware/-
software co-designs [7, 26, 42]. Furthermore, as illustrated in Fig. 2, assertion-based
verification utilizes assertions that can be employed for pre-silicon verification, post-
silicon verification, and in-field operations [7].
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Figure 2: Overview of Assertion-Based Verification in Hardware Designs

2.3.1 Definition of Assertions
In ABV, an assertion represents a Boolean expression that delineates the behavior
of hardware designs [42, 72]. Assertions are classified as immediate and concurrent
depending on their integration into the design [7]. For instance, assert(req2==ack2)
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constitutes an immediate assertion, triggered promptly after the execution of the
statement ’req2=ack2’ if req2 is unequal to ack2. Conversely, assert property(ack1
|-> ∼ ack2) is a concurrent assertion, operating concurrently with other modules and
activating when both ack1 and ack2 become true. Subsequently, the following section
formally defines the assertion by outlining several key terms [42]:

Definition 1 An atomic proposition P is a logical formula that does not contain
logical connectives.

Example: Examples of atomic propositions are such as P1 = True, and P2 = False.

Definition 2 A proposition is a composition of atomic propositions P through logical
connectives such as && and ||.

Example: An example for proposition is a1 = True && b1 = False && c1 = True.

Definition 3 An assertion A is a composition of propositions through temporal oper-
ators that must hold or must become true during the execution of the design. Typically,
an assertion is divided into two parts: the left side, named antecedent, and the right
side, called consequent.

The general structure of an assertion in Property Specification Language (PSL) is
like always(antecedent → consequent), which implies that the consequent will hold
whenever the antecedent occurs [109].

2.4 Security Verification
In the literature, numerous studies aim to enhance the security verification of DUVs
by leveraging functional verification techniques. The fundamental distinction between
functional and security verification lies in their objectives: the former addresses functional
problems in alignment with functional specifications, while the latter identifies security
issues by considering security requirements and threat models [110]. The majority of
security verification techniques rely on various formal verification methods such as model
checking and theorem proving, primarily applicable to the RTL level of abstraction, while
some works also utilize information flow tracking techniques [53]. However, employing
these techniques introduces various overheads in the design process, primarily due to the
inherent limitations of static and formal verification methods (section 2.1). Conversely,
assertion-based verification techniques show promise in covering diverse security aspects
and detecting various classes of security vulnerabilities and attacks [54, 111,112]. This
underscores the potential of ABV for utilization and enhancement in the context of
current complex DUVs.
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3 State-of-the-Art
In this chapter, the state-of-the-art in automatic generation of assertions for func-
tional verification, automatic evaluation and minimization of assertions, and automatic
generation of assertions for security verification are presented.

3.1 Automatic Generation of Assertions for Functional Verification
In the domain of assertion-based verification, numerous automatic assertion miners
have been developed with the objective of automatically extracting assertions. The
study presented in [65] introduced an assertion miner that utilizes dynamic dependency
graphs to extract signal relationships within the design and generate assertions. Notably,
this assertion miner requires only a few simulation runs, significantly reducing the
necessary number of use cases compared to alternative methods. Furthermore, the
approach proposed in this study does not rely on expression templates to establish signal
relationships within the design.

Another approach, as outlined in [66], involves a syntax-guided enumeration assertion
miner that produces a collection of short and comprehensible assertions for sequential
logic networks. In this study, the generated temporal properties delineate the relationship
between the primary inputs and outputs, as well as the latches within the network.
The methodologies proposed in [42] and [80] involve techniques that extract assertions
utilizing various templates structured as Finite State Machines (FSMs). A-Team, as
described in [42], integrates coverage analysis and data mining to generate a compact
and expressive set of Linear Temporal Logic (LTL) assertions. This miner, guided by
user-defined templates, extracts assertions from the simulation trace of the design,
irrespective of the abstraction level (TLM, RTL, gate-level) of the design. HARM [72]
represents a hint-based assertion miner, generating LTL assertions from a set of user-
defined hints and the simulation trace of the DUV. An advantage of this approach
is its ability to extract assertions without access to the source code of the design
under verification, rendering it a notably efficient assertion miner. However, it tends
to produce an excessive number of assertions, potentially prolonging the verification
process. Furthermore, the work presented in [73] constitutes an extended version of
HARM, leveraging a clustering algorithm to refine the assertion sets. Compared to the
original HARM [72], this extended version yields a more effective assertion set in terms
of mutant detection coverage.

The GoldMine assertion miner, introduced in [64], can generate assertions for a given
RTL design through the utilization of formal verification and static code analysis. As one
of the pioneering assertion miners in the field of automatic assertion mining, GoldMine
aims to minimize human effort, time, and resources required for the verification process.
However, its applicability is restricted to the source code of the DUV in Verilog alone,
lacking support for other Hardware Description Language (HDL) DUVs. Additionally,
the method outlined in [71] extracts assertions by converting sequential designs into
pseudo-combinational designs. This assertion miner is proficient in generating compact
and comprehensible assertions, facilitating verification engineers in the verification
of designs with a limited number of assertions. Another assertion miner outlined in
the literature is discussed in [58]. This assertion miner adopts a dynamic approach,
incrementally analyzing control signals within the simulation traces of the DUV. The
assertions generated by this approach are notably more expressive, effectively capturing
the I/O communication protocol. Additionally, the study outlined in [52] combines
dynamic dependency graphs and FSMs to harness the advantages of both techniques
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for assertion mining.
While current assertion miners exhibit promise, they are not without their drawbacks,

indicating a need for improvement. For instance, assertion miners discussed in [42,65,66]
suffer from redundancy and inconsistency, necessitating additional tools like IMMizer [76]
for resolution. Some miners, such as those outlined in [66], [72], and [73], produce an
excessive number of assertions, requiring tools like Dominance [77] and Shayan [78] to
sift through and select the most appropriate assertions. Readability issues may arise,
particularly with complex antecedents, as seen in the work described in [65]. Furthermore,
extended execution times observed in works such as [113] result in increased costs during
the verification process. These limitations underscore the importance and necessity of
proposing new techniques aimed at mining more effective assertion sets.

3.2 Automatic Evaluation and Minimization of Assertions
The assertions generated by existing assertion miners in the state-of-the-art exhibit
certain shortcomings that require resolution. Specifically, there remains a significant
need for efforts in ranking and evaluating assertions to ensure high-quality assertions
capable of providing comprehensive coverage of design behavior. In this regard, studies
have been conducted to estimate the quality of assertions using various proposed metrics.
For instance, in [81], assertions are evaluated and ranked based on two primary metrics:
’Importance’ and ’Complexity’. The degree of ’Importance’ is higher for assertions
describing the output of the design, while ’Complexity’ pertains to the number of
logical operators used in an assertion. In [63], the quality estimation is predicated
on the number of propositions included in the antecedent of the assertion. Another
study, as presented in [114], introduced a ranking function that assesses the quality
of mined assertions based on a cause-effect relationship between the antecedent and
consequent of an assertion. In works [78–80,82], mined assertions are primarily ranked
using data mining-based metrics such as ’Support’ (i.e., their frequency of occurrences
during simulation), ’Correlation Coefficient’ (i.e., the correlation of the occurrence of
an assertion to other assertions during simulation), and ’IS’ measure (i.e., assertions
with a low frequency of occurrence but high correlation to other assertions), etc.

However, these assertion evaluators primarily compute incompatible degrees of quality
for a specific assertion. This disparity arises from the inclusion of multiple metrics in
existing approaches, with each metric addressing a specific aspect of the assertion. For
example, the methodology outlined in [79] assesses the quality of each assertion based
on three metrics: ’Support’, ’Correlation Coefficient’, and ’IS’ measure. Nevertheless,
the quality assessment for each assertion based on these metrics may differ. For instance,
assertion A may be classified as high-quality based on ’Support’, but as medium-quality
and low-quality based on ’Correlation Coefficient’ and ’IS’ measure, respectively.

Hence, the crucial question at this juncture is: which metric can dominate the other
metrics for estimation of the assertion quality? Is assertion A deemed high-quality,
medium-quality, or low-quality? The studies mentioned above fail to establish assertion
quality using a unified metric, resulting in a lack of consensus on the evaluation of
assertions. This limitation underscores the necessity of introducing an innovative method
for ranking and evaluating mined assertions, as well as unifying the outcomes of diverse
assertion evaluation techniques in the current state-of-the-art.

On the other hand, apart from assertion evaluation, the generated assertions from
assertion miners exhibit additional shortcomings. These assertions are often not human-
readable, containing numerous propositions that diminish their readability. Moreover,
each proposition typically requires memory allocation, thereby imposing overheads (e.g.
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memory overhead) on the system. Furthermore, within the set of generated assertions,
redundancy and inconsistency are prevalent, resulting in prolonged verification time,
increased costs, and a susceptibility to errors during the verification process.

To address the aforementioned drawbacks, several studies have been conducted to
minimize the extracted assertion sets. Typically, the main concept in the literature
is to select only the best and most interesting assertions for the verification process.
These approaches are generally categorized into two groups. The first approach involves
data-mining-based techniques, such as those discussed in previous paragraphs ( [63,78–
82,114]). The second approach is the mutant-analysis-based approach ( [115–117]). In
the second approach, mutants are injected into the DUV, and the assertions that detect
more mutants are typically selected for the verification process. While these approaches
are primarily utilized for assertion evaluation, they can also be considered for assertion
minimization.

However, despite the aim of the aforementioned studies to generally reduce the
number of assertions, they can only select a few of the best assertions among the
others. In fact, they are unable to minimize the initially generated assertion set to
eliminate their redundancy and inconsistency and consequently decrease the overheads
imposed on the system. In practice, in these approaches, the number of assertions
remains unchanged, and the verification engineer selects a subset from the assertion set.
However, this kind of assertion selection typically leads to issues such as inaccuracies in
the verification process and lower design behavior coverage. Therefore, a gap exists in
assertion minimization in the literature, and novel solutions are needed to address it.

3.3 Automatic Generation of Assertions for Security Verification
While there is an extensive body of literature on utilizing assertions for functional
verification, there has been limited initial effort in addressing security vulnerabilities
using assertions. In the realm of security, assertions can be employed to ensure that
an unspecified transition in an FSM does not grant a user access to a higher privilege
level. Similarly, assertions can be utilized to identify a wide range of other security
vulnerabilities. The study in [54] delineated several classes of security vulnerabilities
detectable using assertions. These classes are such as permissions and privileges,
unauthorized resource accesses, illegal states and transitions in FSMs, numeric exceptions,
buffer errors, malicious implants, and spectre attacks. Furthermore, there have been
preliminary endeavors to employ assertions for detecting vulnerabilities in processors, as
evidenced by studies such as [88–91].

In [88], security assertions for processor vulnerabilities are manually crafted to validate
security requirements against the processor design. However, this manual approach
demands significant time and expertise, leading to high costs. The method presented
in [89] translates security assertion sets from one design to another but relies on manual
assertion definition and has only been evaluated for OR1200 processors. The work in [90]
introduces a tool named Isadora for generating security properties based on information
flow tracking, which is suitable for security verification. However, it produces overly
general security properties that merely delineate signal paths between block diagrams.
The work in [91] formally verifies information flow security for ARM processor kernel
and user modes. Nevertheless, its formal nature introduces scalability issues, making it
less applicable to large designs. Moreover, the HARM assertion miner presented in [72]
has been explicitly designed for the functional verification of hardware designs. However,
it also claims to have the capability to identify Trojans within these designs.

On the other hand, as this thesis leverages assertions for ensuring the safety and
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security of autonomous vehicles, this section delves into the pertinent literature in
this domain. The study outlined in [92] presents a methodology for constructing and
implementing assertion checks to validate the behavior of an autonomous vehicle. They
have devised procedures for translating driving codes of practice into formal logical
expressions that can be automatically monitored by computers, either through direct
translation or physical modeling. However, the assertions generated in this study are
mainly in the form of Structured Query Language (SQL), rendering them unsuitable
for lower levels of abstraction, such as the hardware level. In [95], formal verification
and simulation-based verification techniques have been integrated to demonstrate a
proof-of-concept application for a basic autonomous vehicle. The correctness of the
proposed approach has been formalized and verified through interactive theorem proving
with the Prototype Verification System. However, this study solely establishes the
correctness of AV operation without providing any assertions, either automatically or
manually. The approach introduced in [118] introduces a unified scenario coverage
framework capable of offering a formal assessment of safety verification for Level 3 and
Level 4 autonomy in AVs. Level 3 autonomy refers to vehicles capable of performing
all driving tasks that might require human intervention under specific situations and
conditions [119, 120]. Level 4 autonomy signifies vehicles capable of executing all
driving tasks and functions under particular conditions or environments without human
intervention, even in challenging driving scenarios [121].

The study described in [122] utilizes an assertion-based monitoring framework to
assess the correctness of a Distributed System Interface (DSI3) mixed-signal protocol
implementation within a modern airbag SoC application for autonomous vehicles.
Meanwhile, the paper referenced in [123] tackles the challenge of generating efficient
tests for simulation-based verification of autonomous vehicles using software testing
agents. Specifically, this research concentrates on crafting tests capable of triggering
the precondition of an assertion. Additionally, several other studies in the current
literature, such as the works presented in [124–128] have focused on the verification of
autonomous vehicles. Nevertheless, these investigations predominantly rely on formal
or simulation-based verification techniques and do not offer an automated approach for
AV verification using assertions.

Moreover, in the state-of-the-art, there exists a gap in leveraging Assertion-Based
Verification for the purposes of security and attack detection in Autonomous Vehicles.
Although the studies mentioned above have utilized verification techniques such as
formal methods, simulation-based approaches, or ABV, they have not applied these
methodologies for detecting security attacks. Detecting various types of attacks, such
as adversarial cyber-attacks targeting autonomous vehicles, poses a significant challenge
in ensuring the safety and security of these systems. Given the efficacy of assertions
in ABV for identifying errors and bugs within the realm of verification, it would be
advantageous to utilize them to address security and attack detection concerns in
autonomous vehicles.
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4 Automatic Generation of Assertions for Functional Ver-
ification

This chapter introduces an innovative data mining-based approach for the automatic
generation of assertions. Unlike traditional methods in the literature that rely on
FSM-based approaches for assertion mining, this chapter proposes an association rule
mining algorithm specifically tailored for ABV and functional verification contexts. The
proposed algorithm forms the foundation of ARTmine, an automatic assertion miner
that generates assertion sets from simulation traces of designs under verification [129].
ARTmine is capable of mining assertions in the forms of next[N], Until, and Eventually.
Section 4.1 provides the necessary background and concepts for understanding the
methodology. Section 4.2 outlines the algorithms and intricacies of ARTmine, while
section 4.3 presents the experimental results of it. Finally, section 4.4 offers concluding
remarks for the chapter.

4.1 Preliminaries
In this section, the definitions and concepts utilized in this chapter are briefly explained.
Alongside the definitions presented herein, definitions 1 to 3 of Chapter 2 have also
been referenced in this chapter.

Definition 4 A simulation trace consists of the values of multiple variables of hardware
designs ({v1, ...,vm}) that have been stored as records of data for a finite sequence of
time instants (clock cycles) ({t1, t2, ..., tn}) during the execution of the designs [72].

Definition 5 Temporal pattern next[N]: next[N] temporal pattern in PSL is in the
form of: always(antecedent → next[N ] consequent). This pattern indicates that
when antecedent occurs, after N time instant (clock cycle), consequent will occur [109].
N is an integer value and N > 0.

Definition 6 Temporal pattern until: until temporal pattern in PSL is in the form of:
always(antecedent until consequent). This pattern indicates that the antecedent is
true and holds up until the time that the consequent happens [109].

Definition 7 Temporal pattern eventually: Eventually temporal pattern in PSL is in
the form of: always(antecedent → eventually! consequent). This pattern indicates
that there exists a future time instant (clock cycle) where the consequent of assertion
finally holds [109].

Definition 8 Frequent itemsets refer to a set of variables in simulation trace that occur
with a frequency (minimum support), indicating significant relations and associations
between the variables. In this definition, each single variable v is called an item.

Definition 9 An Association Rule (AR) is defined as an implication of the form X →
Y where X, Y ⊆ I, with X ∩ Y = ø, and I is an itemset [130–132]. In this definition, X
and Y are frequent itemsets.

Definition 10 Support is a metric in association rule mining that indicates how
frequently an itemset appears in the dataset (simulation trace) [132]. The value of
support is in the range of 0 and 1. For the rule X → Y, this value is calculated with
the following formula [133]:

Supp(X→ Y ) = P (X ∪Y ) (1)
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In (1), P (X ∪Y ) is the probability where X ∪Y indicates that a record contains both
X and Y, that is the union of itemsets X and Y.

Definition 11 The min_supp value is the threshold and a minimum value for support
to decide whether an itemset is frequent (i.e., occurs frequently in the simulation trace)
or not. If the frequency of the itemset is more than this threshold, the itemset is
considered a frequent itemset. A higher min_supp value results in the generation of
commonly occurring (general) association rules, whereas a lower min_supp value leads
to the generation of rarely occurring ARs (corner cases) [132].

Definition 12 Confidence is an indication of how often the rule has been found to
be true [134]. For the rule X → Y, confidence value is calculated with the following
formula [132,134]:

Conf(X→ Y ) = P (Y |X) (2)

The confidence evaluates the certainty degree of the detected association rule. This is
calculated as the conditional probability P (Y | X), representing the probability that a
record containing X also contains Y. This value ranges between 0 and 1.

Definition 13 The min_conf is the minimum value for confidence. The higher value
of min_conf leads to fewer but more accurate and valid association rules [132].

To illustrate these definitions, consider the example provided in Table 2. This table
displays a list of records in a simulation trace, each identified by an ID (e.g., T1 in the
’Record ID’ column) and featuring a set of variables (items) per record (e.g., A, B, C
for T1 in the ’Variables’ column).

Table 2: List of records

Record ID Variables
T1 A, B, C
T2 A, C, D
T3 A, C, E
T4 B, E, F
T5 B, C, D, E, F

In this example, record T1 shows an itemset that contains items A, B, and C. The
support value for item A is calculated as 3/5 = 0.6 since it appears in 3 out of 5 records.
Furthermore, the support value for the association rule A → B is computed as 1/5 =
0.2 as these two items co-occur in only record T1. Additionally, the confidence value for
the association rule A → B in this example is calculated as 1/3 = 0.2. This is because
A and B have occurred together in only 1 record (T1) and there are 3 records in which
A has occurred.

4.2 Proposed Methodology
Fig. 3 illustrates the general flow of ARTmine. ARTmine begins by taking a simulation
trace (Definition 4) of the design under verification as input. The resulting output
includes a set of temporal assertions, namely next[N] (Definition 5), until (Definition
6), and eventually (Definition 7). These temporal assertions are then incorporated into
the DUV for use in the verification process. The first phase of ARTmine, illustrated
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Figure 3: General flow of ARTmine

in Fig. 3, is the Association rule mining, which encompasses two steps: preprocessing
and rule mining. Subsequently, phase 2 is Assertion mining which consists of two steps:
Time notation and Assertion conversion.

During the Association rule mining phase, the simulation trace of the design under
verification is initially preprocessed to prepare the data. Afterward, a procedure is
applied to the preprocessed data to mine all association rules (Definition 9) derived
from the simulation trace.

In the second phase, known as Assertion mining, the association rules derived from
the initial phase are passed to the Time notation step. Here, these extracted association
rules are integrated with the concept of time to formulate suitable time-integrated
rules (temporal association rules). These rules serve as the input for the Assertion
conversion step. Subsequently, the Assertion conversion step transforms the rules from
the preceding step into assertions. The generated assertions are now ready for use in the
verification process. In the following subsections, each phase of the method is discussed
in detail.

4.2.1 Association Rule Mining
The main objective of Association rule mining phase is to first preprocess the simulation
trace and second, mine the association rules from the preprocessed data. Traditional
association rule mining algorithms such as Apriori and FP-growth [132] often lack the
ability to integrate temporal aspects necessary for extracting crucial temporal patterns
in assertion-based verification. To overcome this limitation and introduce a time-aware
method for association rule mining in ABV, Algorithm 1 is proposed. This algorithm
delineates the entire procedure in the Association rule mining phase.

Lines 1 to 10 of Algorithm 1 pertain to its initialization. ’N’ denotes the time instant
used for mining the next[N] pattern, while ST represents the simulation trace from
which association rules are to be mined. The minimum support threshold is referred
to as min_supp (Definition 11), and the minimum confidence threshold is denoted as
min_conf (Definition 13). In this algorithm, FI represents a set of frequent itemsets
(Definition 8). Moreover, α and β signify the values of a variable at consecutive time
instants in the simulation trace (e.g., time instants t1 and t2). The output of the
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Algorithm 1 ARTmine – Association Rule Mining
1: Inputs: ▷ initialization
2: N = time instant;
3: simulation trace ST ;
4: minimum support threshold min_supp;
5: minimum confidence threshold min_conf;
6: Set of frequent itemsets FI;
7: α = value of variable a in time t1;
8: β = value of variable a in time t2;
9: Output:

10: Set of association rules R;
11: case (next[N]): ▷ preprocessing of next[N]
12: for all records of ST :
13: move each output of ST , N records to up;
14: store(moved ST );
15: go to line 32;
16: case (until): ▷ preprocessing of until
17: F = (β−α)/α;
18: if F = 0 or F = undefined: ▷ F = 0÷0 = undefined
19: β = 0;
20: if F =∞:
21: β = 0.5;
22: if F =−1:
23: β =−1;
24: store(modified ST );
25: go to line 32;
26: case (eventually): ▷ preprocessing of eventually
27: for every input of the ST in time t:
28: for every output from time(t+1) to time(t+N):
29: move the output to the front of the input in time t;
30: store(moved ST );
31: go to line 32;
32: initialize FI to be an empty set; ▷ association rule mining
33: generate frequent itemsets of size 1 and add them to FI;
34: while FI is not empty do:
35: generate candidate itemsets Ck+1 of size k+1 by joining frequent itemsets of size k;
36: for each record in ST :
37: count the support for each candidate itemset in Ck+1;
38: prune the candidate itemsets in Ck+1 that is not equal to the minimum support

threshold min_supp;
39: add the remaining candidate itemsets to FI;
40: Increment k;
41: generate association rules from the frequent itemsets in FI:
42: for each frequent itemset X in FI:
43: generate all non-empty subsets Y of X;
44: for each subset Y:
45: generate the rule Y => X-Y;
46: calculate the support and confidence of each rule;
47: prune the rules that do not meet the minimum confidence threshold min_conf;
48: add the remaining rules to R;
49: return R;
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algorithm is a set of association rules (R) (Definition 9). Following that, lines 11 to 14
comprise the preprocessing steps for mining association rules for the next[N] pattern.
Lines 16 to 24 in Algorithm 1 handle the preprocessing for the until pattern and lines
26 to 30 perform the same for the eventually pattern. After preprocessing the ST
for each pattern, lines 32 to 49 identify frequent itemsets in the simulation trace and
subsequently mine association rules.

Preprocessing of Simulation Trace – next[N]
In Algorithm 1, lines 11 to 13 represent the preprocessing of the simulation trace for

the next[N] pattern. To elucidate the algorithm’s hypothesis, consider a rule in the form
of antecedent → next[N ]consequent. To prepare the simulation trace for mining this
temporal pattern, all the output of the simulation trace is moved N records above its
original position, while the inputs remain unchanged. The simulation trace is modified
in this way since the corresponding output of input variables in a sequential hardware
design may occur in the simulation trace N time instants later. This modification
ensures the correct alignment of outputs with their corresponding inputs, facilitating
accurate temporal analysis and also the extraction of patterns for various N time instants
(clock cycles). In line 14, the preprocessed simulation trace is stored for mining the
next[N] temporal pattern using lines 32 to 49 of the Algorithm 1.

In Fig. 4, an example of preprocessing for the next[2] pattern is illustrated. The
simulation trace in Fig. 4.1 undergoes preprocessing by moving the output parts 2 time
instants above their original positions, resulting in the modified simulation trace shown
in Fig. 4.2. The figure represents true values with ’T’ and false values with ’F’. The
simulation trace comprises 5 records, categorized into input and output variables. Each
variable is assigned its corresponding value at each time instant. For example, the first
row indicates that v2 equals 01 at time t0 and 11 at time t1. The last two records
in Fig. 4.2 are marked as ’NA’ (not available) due to the absence of data after time
instant t4 to be moved in front of these two records.

Notably, ARTmine primarily emphasizes mining essential temporal patterns such as
next[N], which are of significant importance in ABV. However, the method is readily
extensible to other temporal patterns, such as before[N], owing to the symmetry shared
between these two patterns [135].

Figure 4: (1) Simulation trace (2) Preprocessed simulation trace

Preprocessing of Simulation Trace – until
Lines 16 to 24 in Algorithm 1 outline the details of preprocessing for the until pattern

(Definition 6). To elucidate the algorithm’s hypothesis, consider a temporal pattern
antecedent → until consequent, where antecedent encompasses input variables of
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the simulation trace, and consequent represents an output variable of the simulation
trace. The preprocessing step explores the points in the simulation trace where the value
of an input variable undergoes a change and subsequently identifies the corresponding
output. This information is derived through the execution of lines 17 to 23 in Algorithm
1. In this algorithm, α and β denote the values of a variable at two consecutive time
instants (e.g., t1 and t2).

The result of the equation in line 17 of the algorithm is stored in F . Using this
value, a mapping is performed on the simulation trace as described below to investigate
the changes in variable values within the simulation trace according to the definition of
the until pattern:

• the first row of the simulation trace remains unchanged.

• if F = 0 or F = undefined, β is mapped to 0, indicating no change in the values
of variables (α and β).

• if F = ∞, β is mapped to 0.5, indicating a change from 0 (α) to 1 (β).

• if F = −1, β is mapped to -1, indicating a change from 1 (α) to 0 (β).

The mapped values (i.e., 0, 0.5, and -1) serve solely as indicators for ARTmine to
enhance the detection of changes in the simulation trace and facilitate the categorization
of these distinct changes.

Fig. 5 illustrates an example of mapping performed on a simulation trace, as
described in lines 17 to 23 of Algorithm 1. Additionally, for further clarification, α and
β are depicted in this figure. For instance, at time t3, the value of v2 is mapped to 0.5
since (β −α)/α = (1-0)/0 = ∞.

While ARTmine primarily targets mining crucial temporal patterns in ABV, it can be
easily expanded to include other patterns such as release [135] with minor adjustments
to its algorithm. This expandability arises from the similarities shared between release
and until patterns. Specifically, while the until pattern dictates that the consequent
must hold until the antecedent becomes true, the release pattern mandates that the
consequent must persist continuously until the antecedent becomes true [135].

Figure 5: An example of mapping for until pattern

Preprocessing of Simulation Trace – eventually
Algorithm 1 undertakes preprocessing of the simulation trace for the eventually

pattern in lines 26 to 31. To elucidate the algorithm’s hypothesis, consider a rule in the
form of antecedent → eventually! consequent, where antecedent encompasses input
variables of the simulation trace, and consequent represents an output variable of the
simulation trace. To prepare the concept of time for the eventually pattern according
to Definition 7, for each row of inputs at time t in the simulation trace, all outputs
from time t+1 to t+n are moved to the front of the input at time t.
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Figure 6: An example for preprocessing of eventually pattern

Fig. 6 illustrates an example of preprocessing the simulation trace for the eventually
pattern, corresponding to the rule 001010 → 110. In this rule, 001010 appears in the
simulation trace at time instants t0 and t3. Consequently, for time instant t0, after
preprocessing, in addition to the output at this time instant, the outputs from time t1
to t7 are moved to the front of the time t0. This has happened similarly for the outputs
at time instant t3. According to the definition of eventually, when 001010 occurs, there
exists a future time instant (i.e., t4 and t6) where the consequent (110) finally holds.

Rule Mining – next[N], until, and eventually
Following the preprocessing of the simulation trace in the previous steps to handle

temporal patterns next[N], until, and eventually, the resulting preprocessed simulation
trace is then fed into lines 32 to 49 of Algorithm 1 to extract association rules for these
three patterns. This segment of the algorithm is executed uniformly across all pattern
types.

The lines 32 to 40 of Algorithm 1 iteratively generate frequent itemsets (FI)
(Definition 8) of various sizes (1-itemsets, 2-itemsets, etc.) until the FI list is empty.
The algorithm specifically mines frequent itemsets whose support values (Definition 10)
exceed the min_supp value (Definition 11), while pruning the others. In this algorithm,
1-itemsets comprise individual variables of the simulation trace, 2-itemsets represent
pairs of variables, etc.

After extracting the frequent itemsets and adding them to the FI list, lines 41 to
49 of the algorithm mine association rules from the FI list. To elucidate these lines of
the algorithm, let’s consider an example where FI comprises 4-itemsets of {A, B, C,
D}. To generate association rules from this frequent itemset, all non-empty subsets of
it are considered. These subsets include 1-itemsets of {A}, {B}, {C}, {D}, 2-itemsets
of {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}, as well as the 3-itemsets of {A, B,
C}, {A, B, D}, {A, C, D}, {B, C, D}, and the 4-itemset of {A, B, C, D}. Subsequently,
for each non-empty subset Y, an association rule of the form Y ⇒ X-Y is generated.
This approach allows the algorithm to explore all possible combinations of items within
the frequent itemset to identify significant associations between different sets of items.
For instance, if X = {A, B, C, D} and Y = {A, B, C}, then the rule {A, B, C} ⇒
{D} is generated. Here, the antecedent of the rule (Y) is the subset {A, B, C}, while
the consequent of the rule (X-Y) is the set difference between the frequent itemset
{A, B, C, D} and the antecedent {A, B, C}, which is {D}. This iterative process is
applied to each non-empty subset of FI, yielding a set of association rules. Finally,
each association rule is evaluated for its support and confidence, with those below the
min_conf threshold (Definition 13) being pruned.
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In this part of the algorithm, ARTmine optimizes the generation of assertions by
thoroughly inspecting non-empty subsets of itemsets, exploring various combinations,
and selectively pruning those that are subsets of each other and also fail to meet
the min_supp and min_conf thresholds. This process minimizes the redundancy of
assertions while ensuring the creation of valid and accurate assertion sets with minimal
overhead.

Increasing the min_supp value yields fewer assertions that describe more general
design behavior, while decreasing it results in assertions covering rare design behavior
(corner cases). Similarly, raising the min_conf value generates fewer but more valid
assertions. Valid assertions are those that will not be violated during the simulation with
various scenarios. Utilizing these values in ARTmine facilitates an effective verification
process. In this chapter, min_supp and min_conf are set to 0.01 and 1, respectively,
aiming to uncover corner cases while achieving high design behavior coverage (details
are presented in section 4.3).

At this point, following the completion of association rule mining for all three patterns
(i.e., next[N], until, and eventually), these rules constitute the foundational components
of the Assertion mining phase.

4.2.2 Assertion Mining
This phase comprises two steps: Time notation and Assertion conversion, which are
presented in the following:

Time Notation
In this step, ARTmine incorporates the concept of time into the association rules

generated in the first phase, resulting in a set of temporal association rules. Algorithm
2 illustrates the time notation process for all three temporal patterns, as elaborated
in the subsequent subsections. The first seven lines of the algorithm pertain to its
initialization, wherein U denotes a set of mined association rules, and R, R′, and R′′

represent three distinct association rules.

Time Notation – next[N]
After mining association rules in the initial phase (section 4.2.1), the method

furnishes a set of rules in the general form of antecedent → consequent. Afterward, in
the Time notation step, ARTmine determines to which temporal pattern each extracted
rule belongs. Consequently, it assigns the corresponding time label to the rule using
Algorithm 2.

In line 9 of the algorithm, ARTmine detects which rules are associated with the
next[N] pattern. Subsequently, line 10 assigns the corresponding N to next[N] in the
rule antecedent → next[N ] consequent. If the antecedent value matches an input in
the simulation trace, and the consequent value has already been moved to another
record of it (’move_flag == true’), the rule is labeled as a next temporal association
rule. Otherwise, other mined rules are discarded.

Time Notation – until
In lines 13 to 15 of Algorithm 2, the process of identifying the until pattern is

described. If the value of F (computed in phase 1) is 0.5 or -1, and for this value, both
antecedent → consequent and consequent → antecedent rules were obtained in the
first phase, the rule is labeled as an until temporal association rule. Subsequently, the
rule consequent → antecedent is eliminated from the set of mined rules. Indeed, the
required criterion for identifying a rule as an until pattern is the presence of both the
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Algorithm 2 ARTmine – Time Notation
1: U = set of mined association rules; ▷ initialization
2: R = antecedent→ consequent in time instant ti;
3: R′ = antecedent→ consequent in time instant tj ;
4: R′′ = consequent→ antecedent;
5: {R, R′} ∈ U ;
6: TID = time instant difference;
7: move_count = number of moved records in the preprocessing phase, it corresponds with

N in the next[N] pattern;
8: for a rule R in U : ▷ next[N] time notation
9: if (antecedent == an input of preprocessed sim. trace) and ((consequent == an

output of preprocessed sim. trace) and (move_flag == true)):
10: label R as next[move_count] temporal association rule;
11: else:
12: discard R;
13: if ((F = 0.5) or (F = -1)) and (R′′ ∈ U): ▷ until time notation
14: label R as until temporal association rule;
15: discard R′′;
16: for rules in form of R and R′ in U : ▷ eventually time notation
17: if (count(antecedent) == count(consequent)) and (move_flag == true):
18: for each corresponding antecedent and consequent in R:
19: TID[R] = time_instant[antecedent] - time_instant[consequent];
20: for each corresponding antecedent and consequent in R′:
21: TID[R′] = time_instant[antecedent] - time_instant[consequent];
22: if (TID[R] < 0) and (TID[R′] < 0) and (TID[R] != TID[R′]):
23: label R as eventually temporal association rule;

antecedent → consequent and consequent → antecedent rules in the set of mined
rules of phase 1.

Time Notation – eventually
Lines 16 to 23 in Algorithm 2 pertain to detecting the eventually pattern.

To accomplish this, ARTmine first computes the occurrences of antecedent and
consequent in the preprocessed simulation trace, represented as count(antecedent)
and count(consequent), respectively. If these two values are equal, the time instants
of their occurrences are captured. Subsequently, ARTmine calculates the difference
in time instants (TID in Algorithm 2) between antecedent and consequent. If the
differences are negative and unequal (line 22), the extracted association rule represents
an eventually pattern and is labeled as an eventually temporal association rule (lines
23). Indeed, the required condition for identifying a rule as an eventually pattern is
that the TIDs must be negative and unequal.

Assertion Conversion
In the Assertion conversion step, the temporal association rules mined by ARTmine

are transformed into temporal assertions using the labels assigned in the Time notation
step (section 4.2.2). While ARTmine provides assertions in the SystemVerilog Assertions
(SVA) [136] language, this section elucidates the general structure and format of temporal
mined rules in PSL [109] for enhanced comprehension.

The output of the Time notation step for temporal association rules labeled as
next[N] is transformed into the PSL format of "always(antecedent → next[N] conse-
quent)". Temporal association rules labeled as until are converted to the assertion
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"always(antecedent until consequent)". Finally, temporal rules with the eventually label
are changed to the assertion "always(antecedent → eventually! consequent)". The
generated assertion sets in this phase are now ready for use in the verification process.

4.3 Experimental Results
In this section, a brief overview of mutant analysis is provided, and afterward, the
experimental results of ARTmine are presented.

4.3.1 Mutant Analysis
In this thesis, to evaluate the assertions and experiments mutant analysis has been
used. Mutation analysis operates based on the concept of generating multiple models
of the DUV, each mutated by incorporating a syntactically correct functional alteration
(mutant) [137–139]. These mutations are intended to disrupt the behavior of the model
and ascertain whether the test suite can identify discrepancies between the original
model and the mutated versions [139–142].

Table 3: Example of mutation operators

Source Code Mutant 1 Mutant 2 Mutant 3
if (a && b)
C = 1;
else
C = 1;

if (a || b)
C = 1;
else
C = 1;

if (a && b)
C = 0;
else
C = 1;

if (a && b)
C = 1;
else
C = 0;

As an illustration, Table 3 demonstrates the creation of three mutants derived from
a segment of Verilog code. The initial mutant substitutes the ’and’ operator (&&)
of the original program with the ’or’ operator (||). The remaining two mutants alter
two assignment statements. A mutation operator refers to a transformation rule that
generates a mutant from the original program [143]. Table 3 showcases only three
instances of mutation operators, while several others could be considered. Typical
mutation operators are designed to modify variables, expressions, and assignments
through replacement, insertion, or deletion operators. Subsequently, once a mutant
is generated, a test set is administered to the system, and the outputs of the model
without the mutation are compared to those of the model with the mutation.

If differences are detected in these outputs, the mutant is deemed ’killed’; otherwise,
it is considered ’survived’. Even after executing all test sets, some mutants may still
survive. Consequently, verification engineers may introduce additional test inputs to
kill these surviving mutants, thereby improving the quality of the test set and mutant
analysis. A mutant that cannot be killed by any input or sequence of inputs is deemed
’equivalent’ [142]. Models containing equivalent mutants are syntactically different but
functionally equivalent to models without mutants. Automatically detecting equivalent
mutants is infeasible, as determining model equivalence is undecidable. Mutation testing
yields an adequacy score, referred to as a mutation score, which reflects the quality of
the input test set and mutant analysis [142,143]. The mutation score represents the
ratio of killed mutants to the total number of non-equivalent mutants. The objective
of mutation analysis is to achieve a mutation score of 100%, indicating that the test
set is comprehensive enough to identify all design errors represented by the mutants.

In this thesis, mutant analysis has been conducted to assess the effectiveness of
the proposed methods and assertions, using Table 4. To evaluate the assertion sets,
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Table 4: Description of injected mutants

Mutation operator types List of operators
arithmetic operators +, −, ×, /, %
relational operators ==, !=, >, <, >=, <=

logical operators &&, ||
assignment operators +=, − =, ×=, /=, %=, =

unary operators +, −, ∼, !
bitwise operators ≪, ≫, &, |, ∧

bitwise assignment operators ≪=, ≫=, & =, |=, ∧ =

an automatic mutant generator and injector were implemented, according to the
details presented in [71, 76, 77, 144]. A comprehensive set of mutants was employed,
encompassing the conversion of all operators and bits, which were subsequently injected
into the RTL designs. Table 4 provides detailed information about the injected mutants,
including the types of mutated operators in the ’Mutation operator types’ column and
the alterations made to the operators listed in each row of the ’List of operators’ column.
Additionally, all 0s and 1s were interchanged.

4.3.2 Experimental Results – ARTmine
ARTmine has been implemented in Python and evaluated using several benchmarks
developed in Verilog and SystemVerilog Assertions languages. The benchmarks comprise
some of the ISCAS’89 designs from [145] and Arb2, Id_stage, Decoder, Controller, and
Multdiv from the GoldMine repository in [146]. One benchmark is the Bridge that is
used to connect memory and IO. The other benchmarks, Arbiter, and LBDR, are crucial
components of an open-source project named NoC router Bonfire [147].

In all the experiments for ARTmine, the minimum support (Definition 11) and
minimum confidence (Definition 13) values have been set to 0.01 and 1, respectively.
These settings enable the verification engineer to guide ARTmine in mining fewer yet
more valid assertions, effectively addressing the corner cases of designs. Additionally, N
has been set to 2 for the next[N] pattern, but it can be adjusted to other values.

Table 5: Experimental results of ARTmine

Benchmarks T_Len Lines I/O #A-N #A-U #A-E ETN ETU ETE
Arb2 100 28 6 8 0 0 0.001s 0.11s 0.05s

Id_stage 1K 813 82 1793 107 2 13s 6m11s 50s
Decoder 1K 426 4 369 20 1 0.24s 2m 38s

Controller 10K 788 57 748 72 1 12s 5m14s 37s
Multdiv 1K 559 15 348 79 4 49s 6m9s 3m12s
Arbiter 30K 245 22 105 55 3 10s 6m 3m
LBDR 80K 95 13 195 27 3 57s 7m3s 4m
Bridge 100K 196 16 79 36 1 7s 13m 7m

S27 1K 36 5 1 0 0 0.05s 20s 15s
S15850 1K 11247 227 9542 227 3 1m55s 16m42s 5m13s
S35932 1K 39481 355 1084 48 1 54s 9m11s 4m5s
S38417 1K 26190 134 1509 308 12 18s 15m 3m
S38584 1K 22734 342 5093 1460 8 1m10s 22m21s 8m14s
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Table 5 presents the experimental results of ARTmine, including the number of
mined assertions for next[N], until, and eventually patterns (columns ’#A-N’, ’#A-U’,
and ’#A-E’), along with their corresponding execution times (’ETN’, ’ETU’, and
’ETE ’). In this table, the ’T_Len’ column indicates the length of the simulation traces,
while the ’Lines’ column displays the lines of code for each benchmark. Furthermore,
’I/O’ represents the number of Inputs/Outputs in each benchmark. The experimental
results demonstrate that ARTmine is capable of generating a reasonable number of
assertions in a suitable amount of time, even for large-scale designs such as the ISCAS’89
benchmarks.

Table 6: Comparison of ARTmine with other assertion miners

Benchmarks #Mutants #Assertions Mutant Detection (%) Execution time
ARTmine HARM GoldMine ARTmine HARM GoldMine ARTmine HARM GoldMine

Arb2 10 8 12 9 100 100 100 0.161s 0.49s 2.4s
Id_stage 660 1902 105716 2790 90 80 45 7m14s 13m41s 18m11s
Decoder 400 390 780 418 69 53 40 2m38.24s 4m33s 4m11s

Controller 644 821 13672 1068 91 76 37 6m3s 9m17s 15m51s
Multdiv 1801 431 21620 700 96 88 54 10m10s 17m30s 13m23s
Arbiter 860 163 2017 113 100 66 68 9m10s 20m14s 26m12s
LBDR 632 225 480 100 100 39 18 12m 15m38s 16m10s
Bridge 560 116 1596 806 78 50 31 20m7s 1h15m 36m4s

S27 12 1 1 NS * 100 100 NS * 35.05s 0.56s NS *

S15850 2642 9772 68174 NS * 80 60 NS * 23m50s 33m09s NS *

S35932 3700 1133 159315 NS * 52 34 NS * 14m10s 38m18s NS *

S38417 3022 1829 15889 NS * 68 40 NS * 18m18s 25m12s NS *

S38584 2905 6561 145925 NS * 84 62 NS * 31m45s 41m37s NS *

* GoldMine could not provide any solution (assertion) for this benchmark.

Table 6 shows the efficiency of ARTmine compared to the leading assertion miners
in the literature, namely HARM [72] and GoldMine [64]. The column ’#Mutants’
denotes the number of injected mutants for each benchmark. The column ’#Assertions’
compares the number of assertions generated by ARTmine, HARM, and GoldMine,
while the column ’Mutant Detection (%)’ represents the percentage of the detected
mutants. To mine the assertions for HARM, and GoldMine, the tools available on
their repositories in [72] and [146] have been executed. In the experiments, the same
simulation traces and designs have been used for all assertion miners, and mutant
injection has been performed similarly for all the designs.

As can be seen, ARTmine has generated significantly fewer assertions compared to
the other tools in nearly all cases, while demonstrating notably higher effectiveness in
mutant detection. The results show that HARM has mined an excessive number of
assertions for most benchmarks, which could potentially prolong the verification process.
Conversely, GoldMine shows limitations in handling ISCAS’89 benchmarks, as indicated
by ’NS’ (No Solution) in Table 6. Unlike other tools, GoldMine exclusively operates
with Verilog designs and cannot handle simulation traces or Value Change Dump (VCD)
files [64]. Furthermore, it is limited to mining assertions solely from designs in the RTL
format [64], rendering GoldMine incapable of generating any assertions for ISCAS’89
benchmarks which are implemented in the gate-level format. However, ISCAS’89
benchmarks have been employed to evaluate ARTmine with large-scale designs and
compare it to the latest miner in the literature, HARM [72]. Moreover, ARTmine
demonstrates shorter execution times in contrast to HARM and GoldMine.
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4.4 Conclusions
Considering the shortcomings of the assertion miners in the state-of-the-art, in this
chapter, a set of association rule mining algorithms were introduced that form the
foundation of the automatic assertion miner, ARTmine. This assertion miner efficiently
mines accurate assertion sets, including next[N], until, and eventually temporal patterns.
Experimental results demonstrate that ARTmine surpasses other leading assertion
miners such as HARM [72] and GoldMine [64] by detecting more injected mutants with
fewer assertions. According to the experimental results, on average, ARTmine detects
20% more mutants than HARM and 55% more than GoldMine.
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5 Automatic Evaluation and Minimization of Assertions
The assertions generated by assertion miners often exhibit drawbacks such as redundancy
and inconsistency. Moreover, these assertions may feature excessively long antecedents,
resulting in low readability and complicating the verification process for engineers.
Conversely, there remains a need for a method to accurately evaluate and rank assertion
sets based on their quality. To address these shortcomings, this chapter first introduces
an innovative data mining-based algorithm called Dominance to evaluate the quality
of assertions and rank them accordingly. Additionally, an assertion minimizer named
IMMizer is proposed to significantly minimize the assertion sets. Utilizing Dominance
and IMMizer by verification engineers has the potential to substantially lower overall
verification costs. Section 5.1 provides detailed insights into Dominance, while section
5.2 elucidates IMMizer.

5.1 Automatic Evaluation of Assertions – Dominance
Dominance was initially defined within the domain of data mining to evaluate the quality
of association rules (Definition 9) [148, 149]. In this section, Dominance is adapted
and, for the first time, utilized within the context of ABV and assertion evaluation.
Dominance takes the assertion sets generated by assertion miners as its input and
produces an evaluated set of assertions as its output. In the following, the details of
the Dominance algorithm are elucidated.

5.1.1 Dominance Algorithm
To delineate the Dominance algorithm, each assertion within an assertion set is consid-
ered as an association rule (Definition 9), and R represents the set of all mined rules,
denoted by R = {r1, r2, . . . , rn}. These rules undergo evaluation based on a set M
of various measures such as Support, Correlation Coefficient (CC), and IS, represented
by M = {m1, m2, . . . , mn}. Consequently, the relation Ω = (R, M) creates a table
(similar to Table 7) comprising the rules in R and the measures in M. Furthermore, the
value of the measure m for the rule r is denoted as r[m] such that r ∈ R and m ∈ M.

Table 7: Relation between the rules and measures (Ω)

Rules Support CC IS
r1: a→d 0.20 0.67 0.02
r2: b→c 0.10 0.50 0.00
r3: c→a 0.10 0.50 0.02
r4: a→b 0.20 0.40 0.10
r5: b→d 0.20 0.33 0.02
r6: d→c 0.20 0.33 0.10
r7: c→b 0.10 0.20 0.01
r8: b→a 0.10 0.17 0.02

The evaluation of rule quality based on each measure differs from the others,
potentially resulting in varying rankings and quality assessments for the rule sets. For
instance, Table 7 presents eight different rules along with the values of their measures
for Support, CC, and IS. In this table, according to the Support measure, r1, r4, r5, and
r6 are deemed the best rules, while according to the CC measure, only r1 is considered

37



superior. In terms of the IS measure, r4, and r6 emerge as the top rules. To address
this issue, Dominance is defined on two levels: value dominance and rule dominance.

Definition 14 Value dominance: Considering two values of a measure m from the set
M corresponding to two rules r and r′ from the set R, we say that r[m] dominates r′[m],
denoted by r[m] ⪰ r′[m], iff r[m] is preferred to r′[m]. If r[m] ⪰ r′[m] and r[m] ̸= r′[m]
then, r[m] strictly dominates r′[m], denoted by r[m] ≻ r′[m]. Consequently, the
dominant values will be retained, and the others will be removed.

Definition 15 Rule dominance: Considering two rules r and r′ ∈ R, we define the
dominance relationship with respect to the set M of measures as follows:

• r dominates r′, denoted by r ⪰ r′, iff r[m] ⪰ r′[m], ∀ m ∈ M.

• If r ⪰ r′ and r′ ⪰ r, i.e., r[m] = r′[m],∀ m ∈ M then r and r′ are equivalent,
denoted by r ≡ r′.

• If r ⪰ r′ and ∃ m ∈ M so that r′[m] ≻ r[m], then r′ is strictly dominated by r,
denoted by r ≻ r′.

Furthermore, the strict dominance relationship fulfills the following properties:

• Irreflexive: r ⊁ r, i.e., r ≻ r is false for each m ∈ M,

• Transitive: ∀ r, r′ and r′′ ∈ R, if r ⪰ r′ and r′ ⪰ r′′ then r ⪰ r′′.

As a consequence of rule dominance, the dominant rules will be retained while the
others will be eliminated. In other words, according to the Dominance algorithm, if a
rule r dominates another rule r′, it signifies that r is equal to or superior to r′ across
all measures in the set M.

As an illustrative example, in Table 7, rule r3 strictly dominates r2, because
r3[Support] ⪰ r2[Support], r3[CC ] ⪰ r2[CC ], and r3[IS] ≻ r2[IS]. Therefore, the
Dominance algorithm preserves rule r3 and eliminates rule r2. By applying the Domi-
nance algorithm to all rules in Table 7, the resulting table will be equivalent to Table 8.
This indicates that no rule in R dominates either r1 or r4. Consequently, rules r1 and
r4 are regarded as high-quality rules to retain.

Table 8: Dominance results

Rules Support CC IS
r1: a→d 0.20 0.67 0.02
r4: a→b 0.20 0.40 0.10

According to the Definition 3 and Definition 9, the structures of an assertion and an
association rule exhibit similarities. Moreover, similar to the evaluation of the quality
of association rules, various measures are considered in evaluating the quality of an
assertion. Therefore, the Dominance algorithm is adaptable to the context of assertion
evaluation. It assists verification engineers in comparing assertions based on the value
of each important metric and measure and evaluate them in a unified manner. Section
5.3.1 illustrates the efficiency of the Dominance algorithm in evaluating the quality of
assertions.
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5.2 Automatic Minimization of Assertions – IMMizer
This section introduces IMMizer, an innovative method designed to identify redundant
and inconsistent assertions and subsequently minimize them. IMMizer takes assertion
sets generated by various assertion miners as input and produces a set of minimized
assertions with reduced redundancy and inconsistency as output. The IMMizer process
comprises three primary steps: Assertion Classification, Deduction based on Contra-
dictory Terms, and Assertion Composition. These steps are discussed in detail in the
following subsections.

5.2.1 Preliminaries
The following subsection briefly explains the definitions and concepts necessary for a
comprehensive understanding of IMMizer. Initially, two examples of assertions in SVA
language are showcased in Listing 1 to elucidate the ensuing definitions more effectively.
In this listing, property p1 signifies that whenever a && !b occurs, t1 occurs at the
same time instant (represented by |->). Property p2 demonstrates that whenever a
&& b && !c occurs, t2 occurs after 2 clock cycles (denoted by ##2).

Listing 1: Example of assertions
property p1;

@( posedge clk) a && !b | -> t1;
endproperty

property p2;
@( posedge clk) a && b && !c | -> ##2 t2;

endproperty

Definition 16 Different Terms is defined as a set denoted by DT, representing
propositions that differ in the antecedent of an assertion compared to another assertion.

In Listing 1, (!b -) and (b !c) in properties p1 and p2, respectively, are considered
as elements of DT. In property p1, since there is neither proposition c nor !c, it is
considered as don’t care (denoted by -). Thereby, the set DT is as follows:

DT = {(!b -), (b !c)} = {(!b c), (!b !c), (b !c)}, where two different values, c and
!c are assigned to ’-’. Note that a is not considered as an element of DT since it exists
in both properties p1 and p2.

Definition 17 Sum-Of-Products (SOP) is a type of Boolean algebra expression where
different product inputs are summed together [150].

For example, considering the set DT computed in Definition 16 for the properties of
Listing 1, the SOP expression is as follows:

SOP(DT) = (!b c) + (!b !c) + (b !c) = !b(c + !c) + (b !c) = !b + (b !c)

Definition 18 Contradictory Terms are defined as the complement of the SOP of
the set DT, represented by SOP (DT )C .

The complement for the calculated SOP in Definition 17 is as follows:
SOP (DT )C = (!b+(b !c))C = b(!b+ c) = (b c)
To provide further clarity on why calculating the SOP and its complement is necessary

in IMMizer, let’s consider two terms, β and γ, and the Universal set U comprising all
distinct combinations of these two terms:
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U = {(β γ),(β !γ),(!β γ),(!β !γ)}

Let’s consider the set of distinct combinations produced by each DT as follows:

DT = {(β γ),(β !γ),(!β !γ)}

The SOP for the set DT is calculated as:

SOP (DT ) = (β γ)+(β !γ)+(!β !γ) = β +(!β !γ)

To find the Contradictory Terms, the complement of SOP(DT), denoted as
(SOP (DT )C), is calculated:

SOP (DT )C = (β +(!β !γ))C = !β(β +γ) = (!β γ)

SOP (DT )C consists of terms that do not exist in the set DT and can complete
the Universal set U such that:

SOP (DT )C /∈ DT and SOP (DT )C ∪DT = U

In other words, SOP (DT )C represents the Contradictory Term that is sought by
IMMizer, which are terms not present in DT but necessary to complete U:

SOP (DT )C ∪DT = U

After obtaining the SOP (DT )C (Contradictory Term), IMMizer finally calculates
∼ (SOP (DT )C) (more details in Assertion Composition section):

∼ (SOP (DT )C) = ∼ (!β γ) = (β + !γ) (i.e. β or !γ)

The reason for this calculation is that comparing the set DT with (β + !γ) reveals
that all three terms in DT ((β γ),(β !γ),(!β !γ)) are included in the new term (β +
!γ). Thus, the new term (β + !γ) is equivalent to all the previous terms in DT and
can be replaced with them by IMMizer.

Structure of generated assertions studied in this work

In this study, IMMizer is employed to analyze various assertions extracted by different
assertion miners [42,65,66]. Typically, these assertions are generated in diverse formats
and languages, including SVA, PSL, and LTL [151]. As one of IMMizer’s advantages is
its applicability to assertions written in different languages, we provide examples studied
in this research to illustrate its effectiveness.

Listing 2 demonstrates an example of assertions generated by the assertion miner
introduced in [66]. Listing 3 illustrates an extracted assertion from the work in [65].
Finally, Listing 1 represents the format of assertions produced by the assertion miner
in [42]. Each of these assertions describes a specific behavior of the DUV. For instance,
property p1 in Listing 2 states that eventually, from time 0 to an infinite clock cycle
later, the condition a==1 will occur. This implies that eventually, from time 0 to an
infinite clock cycle later, the condition !(t1==1) will occur as a consequence.

Listing 2: Example of generated assertions in [66]
property p1;

((( s_eventually [0:$]( a==1 )))) implies ((( s_eventually [0:$](!( t1 ==1)))));
endproperty
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Listing 3: Example of generated assertions in [65]
property p1;

@( posedge clk)
(( reset )

##1 (! reset && !(c==’b1) && !(d==’b1))[*2]
##1 (! reset && !(a==’b1) && !(c==’b1) && !(d==’b1))
##1 ((a==’b1) && ! reset && !(b==’b1))
##1 ((d==’b1) && ! reset && !(a==’b1) && !(b==’b1))
##2 ((c==’b1) && ! reset && !(b==’b1) && !(e==’b1))
##1 (! reset && !(b==’b1) && !(e==’b1))[*8]
##5 ((b==’b1) && ! reset )
##1 ((a==’b1) && (b==’b1) && ! reset ))
| -> ##1 t1==’ b100;

endproperty

5.2.2 Proposed Methodology
In this section, the proposed method for minimizing assertion sets is discussed. As
illustrated in Fig. 7, IMMizer comprises the following main steps:

• Assertion Classification

• Deduction based on Contradictory Terms

• Assertion Composition

The initial step (Assertion Classification) involves applying three distinct classifica-
tions to the assertions generated by assertion miners. These classifications are conducted
according to the similarity of consequents, temporal patterns, and antecedents of asser-
tions (Definition 3), respectively. Such classifications aid IMMizer in grouping assertions
more uniformly, thereby facilitating easier and faster assertion minimization.

The second step (Deduction based on Contradictory Terms) comprises two sub-
steps: 1) Proposition Extraction, and 2) Proposition Subtraction. This step forms the
core of IMMizer, where the main tasks of minimization are executed. Initially, the
method conducts ’Proposition Extraction’ on the classified assertion sets to analyze
propositions (Definition 2) within all the antecedents. If there exist Different Terms
(DT) (Definition 16) among the antecedents, ’Proposition Subtraction’ is then applied
to identify the Contradictory Terms (Definition 18). This is performed by computing
the Sum-Of-Products (SOP) (Definition 17).

In the third step (Assertion Composition), a new set of minimized assertions is
generated based on the ingredients provided by the previous steps.

This flow is further elucidated in Algorithm 3 to provide a clearer overview of the
proposed method, and is discussed in greater detail in the subsequent subsections.

Figure 7: General flow of IMMizer
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Algorithm 3 IMMizer
1: Assertion Classification:
2: classified_assertions← classification(assertion(consequent));
3: classified_assertions← classification(assertion(temporal_patterns));
4: classified_assertions← classification(assertion(antecedent));
5: Deduction based on Contradictory Terms:
6: similar_terms← explore_similar_terms(classified_assertions(antecedent));
7: DT ← explore_different_terms(classified_assertions(antecedent));
8: DT _comb← different_combinations(DT );
9: Contradictory_T erm← SOP(DT _comb)C ;

10: Assertion Composition:
11: if (Contradictory_T erm == 0) then
12: remove(DT _comb);
13: else
14: negated_Contradictory_T erm← ∼ (Contradictory_T erm);
15: minimized_assertion← replace(DT,negated_Contradictory_T erm);

Assertion Classification

This step focuses on classifying the initial assertion set to establish the necessary
conditions for subsequent steps. Classifying assertions involves grouping similar assertions
together, thereby facilitating the identification of redundant and inconsistent assertions.
Fig. 8 illustrates the three classifications employed in IMMizer: classification on
consequents, temporal patterns, and antecedents.

The initial classification is based on the similarities among the consequents of the
assertion sets. This implies that assertions can only be minimized together if they
pertain to the same consequent. Otherwise, it is logically untenable to minimize and
combine them together, as they describe disparate behaviors of the DUV.

As an illustrative example, in Listing 4, a selection of assertions generated by A-
Team [42], an assertion miner used for one of our benchmarks (Arbiter), have been
examined. Following the first classification, these assertions are classified into three
distinct classes (Class 1, Class 2, and Class 3) as depicted in Listing 5. This classification
is determined by the similarity of consequents associated with each class. In these
listings, A, !A, B, C, !C, D, and !D are included in the antecedent part of the assertions,
while F, !F, and G are in their consequents. Additionally, ##2 and ##3 specify the
number of clock cycles where the consequent occurs after the antecedent.

Figure 8: Three different classifications of IMMizer
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Listing 4: A group of assertions provided by A-Team [42]
1) !A && B && !C | -> F
2) A && D | -> G
3) B && C && !D | -> ##2 G
4) !A && !C | -> F
5) !A && C | -> F
6) B && C | -> ##3 F
7) A && B && C ##1 !A && !C | -> ##2 !F
8) A && !C ##1 !A && D && C | -> ##2 !F
9) A && C ##1 !A && !C | -> ##2 !F

Listing 5: First classification on consequents
Class 1:
1) !A && B && !C | -> F
4) !A && !C | -> F
5) !A && C | -> F
6) B && C | -> ##3 F
Class 2:
7) A && B && C ##1 !A && !C | -> ##2 !F
8) A && !C ##1 !A && D && C | -> ##2 !F
9) A && C ##1 !A && !C | -> ##2 !F
Class 3:
2) A && D | -> G
3) B && C && !D | -> ##2 G

The assertions analyzed in this research exhibit diverse temporal patterns, necessitat-
ing classification based on similarities in their temporal patterns to facilitate minimization.
Therefore, following the classification based on consequents of assertions, the second
classification categorizes the assertions according to their temporal patterns. The results
of this classification are presented in Listing 6.

Listing 6: Second classification on temporal patterns (clock cycles)
Class 1.1:

1) !A && B && !C | -> F

4) !A && !C | -> F

5) !A && C | -> F

Class 1.2:
6) B && C | -> ##3 F
Class 2.1:

7) A && B && C ##1 !A && !C | -> ##2 !F

8) A && !C ##1 !A && D && C | -> ##2 !F

9) A && C ##1 !A && !C | -> ##2 !F

Class 3.1:
2) A && D | -> G
Class 3.2:
3) B && C && !D | -> ##2 G

In the final classification, IMMizer heuristically identifies assertions with the most
similarities in their antecedents. Essentially, it detects and classifies assertions with the
most similar propositions in their antecedents. Referring back to the illustrative example
in Listing 6, Classes 1.1 and 2.1 contain assertions with the most similar propositions
in their antecedents among all other assertions. Consequently, assertions in Classes
1.2, 3.1, and 3.2 are unique and devoid of any redundancy or inconsistency. Therefore,
the outcome of the final classification is represented by the two gray sections shown in
Listing 6.
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Figure 9: Example 1 for minimizing the assertions

Figure 10: Example 2 for minimizing the assertions

Following the completion of the three classifications and the categorization of asser-
tions for minimization, the subsequent step, namely Deduction based on Contradictory
Terms, is implemented on the classified assertions to facilitate their minimization. The
ensuing sections delve into these processes in greater detail.

Deduction based on Contradictory Terms
In this section, the process of deduction based on Contradictory Terms is discussed.

The objective is to identify behaviors of the DUV that are not covered by the assertion
set. To achieve this, assertions grouped within the same class are analyzed (as detailed
in the previous section) to identify which DUV behaviors are absent and are not covered
by those assertions. These unaddressed behaviors are referred to as Contradictory Terms.
These Contradictory Terms are then utilized to formulate a new assertion set.

This section primarily comprises two steps: 1) Proposition Extraction and 2) Propo-
sition Subtraction. The first step seeks similar terms, as well as Different Terms i.e.,
dissimilar propositions among the antecedents of assertions. Conversely, the second
step focuses on identifying Contradictory Terms by computing the SOP for dissimilar
propositions in the antecedents of assertions. Further details are described in the
following.

Proposition Extraction
This step identifies Different Terms (DTs) (Definition 16), within a classified assertion

set. For this purpose, at first, the propositions that are the same in the antecedents of
the classified assertion sets are identified. Second, dissimilar propositions among the
assertions are determined. In other words, DT s are extracted here. In essence, the
calculation of DTs delineates conditions that result in a ’don’t care’ situation, denoted
by ’-’.

As an illustrative example, Fig. 9 depicts the Proposition Extraction, Proposition
Subtraction, and Assertion Composition steps for Class 1.1 in Listing 6. Observing
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Fig. 9, in the antecedent part of the three assertions within the box labeled ’Classified
Assertions’, !A appears in all of them. However, B and C appear with different values.
Thereby, in the provided example, !A is retained as is. Subsequently, B and C are
identified as Different Terms (DT).

At this step, all possible combinations generated by the (DTs) of any of the assertions
are computed. Combinations denote the scenario where, if a proposition does not appear
in the classified assertion set, it is marked as a ’don’t care’ situation, represented by ’-’.
For example, in the first assertion within the ’Classified Assertions’ box, all propositions
are present, hence no ’don’t care’ is indicated, resulting in B !C (displayed in the
Different Terms (DT) box). Conversely, in the second assertion, neither B nor !B is
present, thus they are considered ’don’t care’ (-). Consequently, for this assertion, - !C
is displayed in the Different Terms (DT) box, as illustrated in Fig. 9. This procedure is
repeated for the third assertion, resulting in the computation of - C.

If the classified assertions contain a temporal operator (e.g., ##1) in the antecedent,
the workflow of IMMizer undergoes a slight change. Specifically, IMMizer needs to
deconstruct the antecedents based on the number of temporal operators used in each
antecedent of the classified assertion. Consequently, DT s are identified.

Fig. 10, illustrates an example of a classified assertion set containing a temporal
operator in the antecedent. Here, two flows are delineated: one for the antecedent
segment preceding the temporal operator ##1, and another for the segment following
##1. In the ’Classified Assertions’ box, propositions for the first flow are depicted in
brown, while those for the second flow are depicted in blue. Correspondingly, DT boxes
are computed as described earlier.

Proposition Subtraction
The objective of this step is to identify behaviors of the DUV that are absent in

the classified assertion set, i.e., to find the Contradictory Terms. This involves, firstly,
extracting all possible combinations from the Different Terms box (from the previous
step). Secondly, extracting Contradictory Terms based on the DT. To achieve this, the
Sum-Of-Products (SOP) for the DT set is computed, and its corresponding complement
is determined. This outcome is subsequently utilized to formulate a new and minimized
assertion set.

Returning to the illustrative example depicted in Fig. 9, it is observed that, DT =
{B !C, - !C, - C}. In this step, all possible combinations resulting from replacing ’-’ are
computed. Therefore, DT becomes {B !C, !B !C, B C, !B C}. This arises from the
generation of DT elements corresponding to each assertion: B !C for the first assertion,
B !C and !B !C for the second assertion, and B C and !B C for the third assertion.
Consequently, the SOP of this set is expressed as detailed in Fig. 9, namely (B !C) +
(!B !C) + (B C) + (!B C). Evidently, the final result of the SOP simplifies to (B +
!B). At this juncture, the Contradictory Term, which is the complement of (B + !B), is
extracted, i.e., (!B B) = 0. In this example, this value equates to 0, indicating that the
DTs (B, !B, C, and !C) should be excluded and not incorporated into the minimized
assertion.

As mentioned, when dealing with classified assertions containing a temporal operator
in their antecedents, IMMizer follows a slightly different workflow. In such instances,
each temporal operator’s preceding and succeeding components are treated as separate
flows. Consequently, SOP and Contradictory Terms are computed for each flow.
Referring back to the illustrative example depicted in Fig. 10, where ##1 is present in
the assertions’ antecedents, two DT boxes are compiled from the assertion set. For
the left side of ##1, DT = {(B C), (B !C), (!B !C), (!B C)}. The computed SOP for
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this segment equals (B + !B), whose complement is (!B B) = 0. Consequently, for the
left side of ##1, B, !B, C, and !C will be excluded from the final minimized assertion.
Conversely, for the right side of ##1, the DT box comprises {(!C -), (C D), (!C -)} =
{(!C D), (!C !D), (C D)}. The SOP and its corresponding complement are (!C + (C
D)) and (C !D), respectively. (C !D) signifies that (C && !D) is the new term to be
replaced with the DT s and will be added to the right side of ##1 in the minimized
assertion.

Assertion Composition
In this step, the final minimized assertion set is generated. To achieve this, the result

of (SOP (DT )C) is taken into consideration. If the result equals 0, it signifies that the
DT s should be removed and not included in the final assertion set. Otherwise, if the
result of (SOP (DT )C) equals a set of propositions, a negation (i.e., ∼) is applied to
(SOP (DT )C), i.e., ∼ (SOP (DT )C). Subsequently, ∼ (SOP (DT )C) is appended to
the final result. In other words, while similar propositions from the classified assertions
remain unchanged, all the generated DT s are replaced with ∼ (SOP (DT )C).

Returning to the illustrative example depicted in Fig. 9, the result of (SOP (DT )C)
equals B !B = 0. Consequently, all DTs, i.e., B !C, - !C, - C are eliminated from
the assertions within the ’Classified assertion’ box. As a result, the final assertion set
is minimized to only one assertion (!A |-> F ). It is evident that the final assertion
set contains a significantly reduced number of propositions compared to the classified
assertions.

Referring to Fig. 10, two Contradictory Terms are identified. The first yields
’0’, signifying that the DTs should be excluded from the final assertion set. How-
ever, for the result of the second flow (C !D), a negation is applied to (C !D), re-
sulting in ∼(C !D). Consequently, the resultant minimized assertion is as follows:
A ##1 !A && ∼(C && !D) |-> ##2 !F.

5.2.3 Discussion on computation time of IMMizer
This section discusses how the proposed method can execute the algorithm within
a reasonable timeframe and without imposing additional overhead on the system.
As previously mentioned, during the Deduction step, IMMizer must explore various
combinations generated by each DT, calculate the SOP, and its complement to identify
Contradictory Terms. This process can lead to longer execution times, particularly when
there are numerous propositions with varying values in the antecedent of assertions. To
address this concern and prevent IMMizer from additional computational comparisons,
equations (3) and (4) are utilized.

u =
n∑

i=1
2#don′t cares +

∑
#combinations without don′t care (3)

In equation (3), u represents the total number of all possible combinations that
classified assertions can generate. The first segment of this equation, denoted as∑n

i=1 2#don′t cares, pertains to those combinations of Different Terms (DT ) containing
at least one don’t care (-). Here, n signifies the number of combinations with don’t
care in DT with n ⩾ 1. If no combinations contain don’t care, this portion of the
equation yields 0. #don′t cares denotes the count of don’t cares in each combination
of DT. Additionally, #combinations without don′t care refers to the number of
combinations in DT that do not have any don’t care.

F = r− (u−s) (4)
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In equation (4), s represents the number of repetitive created combinations generated
by different terms (e.g., B !C in Fig. 9), while r denotes the number of all possible
combinations that these terms (e.g., B and C in Fig. 9) can generate. The value of F
determines whether IMMizer can classify assertions together or not.

If F < (#grouped assertions), IMMizer can classify them. Otherwise, the assertions
cannot be classified with each other for minimization. The reason is that in this case,
the number of generated Contradictory Terms is more than or equal to the count of
assertions that have been grouped together, thereby yielding more or an equal number of
assertions compared to the initially grouped ones. Here, #grouped assertions represents
the number of assertions IMMizer has grouped together based on the highest similarities
in the propositions of their antecedent part, aiming at their minimization. In the
illustrative example depicted in Fig. 9, u equals 5 (21 +21 +1), while s and r equal 1
and 4, respectively. Thus, the value of F amounts to 0, which is lower than 3 (3 is the
number of assertions that have been grouped for minimization (#grouped assertions)).

In the proposed minimizer, a pivotal aspect is the initial computation of F before
determining whether to minimize the grouped assertion set. Calculating F requires
only identifying the Different Terms and the count of don’t cares in each DT. Thus,
there is no immediate need to identify various combinations generated by each DT,
perform SOP computations, or undertake other processes in the Deduction step. The
parameters in F , i.e., r, u, and s can be calculated solely by identifying the Different
Terms (DT) and the number of don’t cares in each DT. This approach helps alleviate
potential system overheads, particularly in cases with numerous propositions of differing
values in the antecedent part of assertions, thereby contributing to reduced execution
time.

5.3 Experimental Results – Dominance and IMMizer
In this section, the experimental results concerning the automatic evaluation and
minimization of assertions are presented. Subsection 5.3.1 outlines the findings regarding
the Dominance algorithm, while subsection 5.3.2 delves into the results for IMMizer.

5.3.1 Experimental Results – Dominance
The efficiency of the Dominance algorithm has been evaluated on the crucial components
of an open-source NoC router Bonfire, namely the Arbiter, LBDR, and crossbar switch
[147]. The Dominance algorithm has been implemented in Python and the benchmarks
have been developed in Verilog and SystemVerilog Assertions languages.

The Dominance algorithm has been applied to the assertions generated by the
method presented in [66] for the three benchmarks of Arbiter, LBDR, and crossbar
switch. Moreover, the measures utilized by Dominance have been adopted from the
study in [79]. Table 9 showcases these results.

Table 9: Result of assertion evaluation after applying dominance algorithm

Benchmarks #Measures #Initial assertions #Selected assertions
Arbiter 3 4175 544
LBDR 3 1546 238

Crossbar Switch 3 500 124

In this table, the column ’#Measures’ denotes the number of measures reported
for each assertion. In this study, these metrics and measures consist of Support,
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Correlation Coefficient, and IS. Interested readers seeking detailed information on how
these measures compute the quality of assertions are referred to [79]. The column
’#Initial assertions’ reports the quantity of initial assertions generated by the assertion
miner, while the column ’#Selected assertions’ indicates the number of assertions
chosen by Dominance. This figure represents the count of high-quality assertions after
the assertion evaluation. In other words, these assertions are identified as superior for
the verification process.

As evident from the data presented in Table 9, the number of initial assertions for
Arbiter and LBDR stands at 4175 and 1546, respectively. For the crossbar switch,
this figure is equal to 500 assertions. The count of selected assertions deemed as
high-quality, attained after applying the Dominance algorithm, equals 544 and 238 for
Arbiter and LBDR, respectively. Similarly, for the crossbar switch, this number equals
124 assertions. This highlights that leveraging the Dominance algorithm allows us to
achieve nearly the same level of assertion quality while utilizing fewer assertions.

To ensure the effectiveness of Dominance, the results underwent evaluation through
mutant analysis. For this purpose, an automatic mutant generator and injector have been
implemented, following the details presented in section 4.3.1 of Chapter 4. Moreover, a
complete set of mutants, as described in Table 4, has been used.

The Dominance algorithm proposed in this study has been compared with an assertion
quality evaluator tool named Shayan [78]. The results of this comparison have been
depicted in Fig. 11, Fig. 12, and Fig. 13 for Arbiter, LBDR, and the crossbar switch,
respectively. In these figures, the blue bar represents the results of mutant analysis,
indicating the number of mutants detected by an assertion set without the application
of any assertion evaluator. The orange bar illustrates the number of mutants detected
by the high-quality assertions as evaluated by Shayan. Finally, the gray bar depicts the
number of mutants detected by the high-quality assertions as evaluated by the proposed
Dominance algorithm.

Figure 11: Comparison between Dominance and Shayan (Arbiter)

For the Arbiter benchmark (refer to Fig. 11), the initial set comprises 4175 assertions
capable of detecting 207 injected mutants (first set of bars). Upon the application
of Dominance to the initial assertions, 544 assertions out of the initial 4175 remain,
detecting 168 injected mutants. Conversely, the top 544 assertions identified by Shayan
can detect 62 injected mutants (second set of bars). The results indicate that Shayan
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Figure 12: Comparison between Dominance and Shayan (LBDR)

Figure 13: Comparison between Dominance and Shayan (Crossbar Switch)

requires between 2544 and 3044 assertions to detect the same number of mutants as
those detected by Dominance (sixth and seventh sets of bars). The remaining bars
provide further clarification on the accuracy of the proposed algorithm.

In the case of LBDR (refer to Fig. 12), the initial assertion set comprises 1546
assertions, capable of detecting up to 260 injected mutants (first set of bars). Upon
applying Dominance to these initial assertions, 238 assertions that detect 250 mutants
are obtained. Conversely, the top 238 assertions identified by Shayan can detect only
16 mutants, indicating that Shayan requires approximately 1546 assertions to detect
nearly the same number of mutants as those detected by Dominance (second and last
sets of bars).

Fig. 13 illustrates the comparison results between Shayan and Dominance for the
crossbar switch benchmark. The initial assertion count for this benchmark is 500, which
can detect 300 mutants. Dominance yields 124 high-quality assertions out of the 500
initial assertions, which can detect 268 injected mutants. Meanwhile, Shayan detects
100 mutants, and the initial assertions detect 170 mutants with 124 assertions.

49



Table 10: Reduction in the number of assertions after applying IMMizer, the report on what
percentage of the detected mutants by the initial set are correspondingly detected by the
minimized set, and the execution time of IMMizer for each benchmark

Assertion
Miners

#Initial
Assertions

#Minimized
Assertions

Reduction in
#Assertions

Mutant
Detection

Execution
Time

A-Team [42]
(Arbiter) 318 198 38% 100% 15s

DDG [65]
(Arbiter) 207 199 4% 100% 21s

Assertion Miner
[66] (Arbiter) 4175 304 93% 100% 60s

Assertion Miner
[66] (LBDR) 1546 258 83% 100% 48s

It is important to highlight that Dominance retains assertions capable of detecting
more mutants while pruning the rest. Conversely, Shayan does not have the capability
to prune assertions. Essentially, Shayan functions solely as a ranker, and the number of
assertions remains unchanged. This explains why only one bar (in gray) is displayed for
Dominance results, while different bars are shown for Shayan.

5.3.2 Experimental Results – IMMizer
To assess the effectiveness of the assertion minimization method, IMMizer has been
applied to the generated assertions of different assertion miners. These assertion miners
correspond to the studies outlined in [42], [65], and [66].

The assertion miners are applied to an open-source project named NoC router
Bonfire [147], along with two of its crucial components: Arbiter and LBDR. Arbiter
facilitates the connection of input links to output links based on the routing algorithm,
while LBDR serves as the control component of the router, responsible for determining
the candidate output ports for packet forwarding. Given their role in constructing the
control aspect of the router, the verification of these two components is paramount.

Table 10 presents the number of initial assertion sets (#Initial Assertions) provided
by the assertion miners, the number of minimized assertion sets (#Minimized Asser-
tions), and the percentage of reduction in the number of assertions (Reduction in
#Assertions). Additionally, the percentage of detected mutants by the initial set which
is correspondingly detected by the minimized set (Mutant Detection), along with the
execution time of IMMizer (Execution Time) are presented in this table. One notable
advantage of IMMizer is its capacity to minimize assertions generated through various
approaches. As detailed in section 6.1.2, the general structure of the assertions provided
by the assertion miners resembles those in Listings 1, 2, and 3. According to Table
10, IMMizer reduces the assertions of A-Team [42] by 38%. It achieves a significant
reduction of 93% for the assertions generated by [66] for Arbiter and 83% for LBDR.
The reduction percentage for assertions from [65] is 4%.

It is important to note that the reduction percentage indicates the level of redundancy
and inconsistency within the assertions generated by each assertion miner. In essence,
IMMizer is capable of identifying and addressing redundant and inconsistent assertions.
The 4% reduction observed in the assertions from [65] can be attributed to the
uniqueness of assertions generated by this miner. Consequently, the level of redundancy
and inconsistency in assertions produced by this assertion miner tends to be lower
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Table 11: Reduction in the Allocated Memory and Propositions

Assertion
Miners

Initial
Assertions

Minimized
Assertions

Memory
Reduction

Proposition
Reduction

A-Team [42] (Arbiter) 45.28 KB 30.32 KB 33.03% 10%
DDG [65] (Arbiter) 31.76 KB 27.36 KB 13.85% without change

Assertion Miner [66] (Arbiter) 33.24 MB 4.1 MB 87.66% 24%
Assertion Miner [66] (LBDR) 31.36 MB 4 MB 87.24% 73%

compared to other assertion miners.
Furthermore, a complete set of mutants according to the details presented in section

4.3.1 of Chapter 4 has been employed and injected into the benchmarks. Based on the
mutant analysis results outlined in Table 10, there is no reduction in the percentage of
detected mutants. This is evident in the column ’Mutant Detection’, where mutant
detection remains at 100% across all benchmarks. This signifies that all mutants
detected by the initial assertion set are also accounted for by the minimized assertion set.
This underscores a key advantage of IMMizer, which manages to detect mutants with
identical coverage as the initial assertion sets, but with fewer assertions and reduced
overhead.

Furthermore, concerning the execution time required for minimizing assertions, as
per the data in Table 10, IMMizer accomplishes the minimization process for A-Team’s
assertions [42] within 15 seconds. Similarly, for DDG’s assertions [65], the process
takes 21 seconds, while for assertions from [66], it takes 60 seconds for Arbiter and 48
seconds for LBDR.

In addition to IMMizer’s capability to reduce the number of generated assertions, in
some cases, it can enhance their readability by eliminating extra propositions from the
antecedent of assertions. This is exemplified in the illustrative example depicted in Fig.
9, where B, !B, C, and !C have been removed in the minimized assertion. According
to the experiments presented in the ’Proposition Reduction’ column of Table 11, for
A-Team [42], in 10% of assertions, the number of propositions has been decreased. This
percentage remained constant for DDG [65]. However, in the assertion miner of [66], a
reduction of 73% and 24% has occurred for LBDR and Arbiter, respectively.

Moreover, a reduction in the number of assertions and propositions results in a
reduction in the memory allocated for these assertions. This outcome is presented in
Table 11. The columns labeled ’Initial Assertions’ and ’Minimized Assertions’ display
the memory allocated to the initial and minimized assertions, respectively. The column
’Memory Reduction’ indicates the reduction in the allocated memory for the minimized
assertion sets. For the assertions associated with A-Team [42], approximately 33%
memory reduction has occurred after minimization. Similarly, for DDG [65], this
reduction is 13.85%. For the assertion miner in [66] 87.24% memory reduction for
LBDR and 87.66% for Arbiter have been reported.

To investigate the efficiency of the proposed method compared to other approaches,
a comparison has been conducted between IMMizer and a tool called Shayan [78]. It is
important to note that Shayan employs various data mining metrics to rank all assertions,
subsequently selecting the top-ranked ones for verification engineers. Therefore, for a
fair comparison, an equal number of top-ranked assertions from Shayan, matching the
number of minimized assertions by IMMizer, has been considered. For instance, in the
case of A-Team - Arbiter as shown in the first row of Table 10, where the number of
minimized assertions equals 198, the first 198 top-ranked assertions from Shayan have
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Table 12: Efficiency of IMMizer over Shayan

Assertion
Miners #Assertions Improvement in

Mutant Detection(%)
A-Team [42] (Arbiter) 198 equivalent

DDG [65] (Arbiter) 199 5
Assertion Miner [66] (Arbiter) 258 45
Assertion Miner [66] (LBDR) 304 25

been included in the comparison.
Table 12, presents these results. The number of assertions has been reported in the

column labeled ’#Assertions’, while the efficiency of the method over Shayan has been
detailed in the column ’Improvement in Mutant Detection (%)’. For A-Team [42], the
top 198 assertions ranked by Shayan have been compared with 198 minimized assertions
by IMMizer. After performing mutant analysis, both methods were able to detect
the same number of injected mutants. In the case of DDG [65], IMMizer detected
5% more injected mutants compared to Shayan. Moreover, for the assertion miner
proposed in [66], IMMizer detected 25% and 45% more mutants for LBDR and Arbiter,
respectively, compared to Shayan. These results demonstrate that while IMMizer can
minimize the number of initial assertions, it also surpasses other tools like Shayan in
detecting mutants.

5.4 Conclusions
In this chapter, two innovative methods, Dominance and IMMizer, were presented
to enhance the assertion-based verification domain in terms of automatic assertion
evaluation and minimization. Dominance, a data mining-based method, evaluates the
quality of assertions and consolidates them into a unified set, while IMMizer significantly
minimizes the number of assertions by identifying redundant and inconsistent ones.

Experimental results indicate that the Dominance algorithm can select high-quality
assertions capable of detecting nearly the same percentage of mutants as the initial
set, with significantly fewer assertions. On the other hand, the experimental results of
IMMizer demonstrate its remarkable ability to minimize assertions from various assertion
miners without compromising design behavior coverage. Furthermore, compared to
other assertion minimization approaches (e.g., data mining-based methods), IMMizer
exhibits superior accuracy in mutant detection while utilizing fewer assertions. Moreover,
IMMizer enhances assertions readability by eliminating unnecessary propositions, thereby
reducing memory overhead on the system.
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6 Automatic Generation of Assertions for Security Verifi-
cation

This chapter aims to utilize assertion-based verification and tap into the potential of
assertions within the realm of security verification. To achieve this goal, a security-based
assertion miner, based on the paper [152], is proposed in section 6.1. This miner is
capable of automatically generating a set of security assertions tailored for RISC-V
processors to detect security vulnerabilities such as hardware Trojans. Furthermore,
in section 6.2, a method named ADAssure is introduced to enhance the safety and
security of autonomous vehicles [153]. ADAssure utilizes assertions for debugging and
bug localization of autonomous driving control algorithms in AVs. This methodology
has been implemented and tested on a real autonomous vehicle, IseAuto [154].

6.1 Automatic Generation of Assertions for Processors: RISC-V
Case Study

In this section, an automated security-based assertion miner for RISC-V processors is
proposed [152]. To the best of the author’s knowledge, this is the first automated
security-based assertion miner that can extract security assertions with the guidelines
of ISA characteristics of security properties, directly from the simulation trace of
the processor [152]. This extracted security assertion set is employed in the security
verification process to uncover vulnerabilities, such as hardware Trojans, embedded
within the design. It is noteworthy that the proposed method is expandable to any
processor family and is not limited to RISC-V. In the following subsections, the proposed
method is elaborated in more detail.

6.1.1 Preliminaries
In this subsection, the definitions used in this chapter are briefly explained. Furthermore,
the definitions presented in Chapters 2 and 4 are referred to in Chapter 6.

Definition 19 A security property in this study is defined as a critical security aspect
of the processor that neglecting consideration of it can lead to security vulnerabilities in
the processor. These security properties are usually presented in the specification of the
processor [152,155,156].

Definition 20 A security assertion in this study checks the consistency between the
defined behaviors in the security properties (Definition 19) and the actual implementation
when it faces an attack [152]. A security assertion is a composition of propositions
through temporal operators that must hold or must become true during the execution
of the design [42, 152]. Typically, a security assertion is divided into two parts: the left
side, named antecedent, and the right side, called consequent [42,152].

The general structure of a security assertion in PSL is like always(antecedent →
consequent), which implies that the consequent will hold whenever the antecedent
occurs [109,152].

6.1.2 Background
In this subsection, the related concepts and background used in this chapter are briefly
explained.
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RISC-V Instruction Set Architecture
RISC-V provides a flexible instruction set for various general and application-specific

scenarios. Around a set of basic mandatory instructions for arithmetic, control flow
and memory instructions, called the base instruction set (e.g., RV32I for the 32bit base
instruction set) [152,155,157], various instruction set extensions can be appended (e.g.,
multiply/divide, floating point numbers, vector operations).

In this work, the RV32I base instruction set is used, but the proposed method is
independent of the specific ISA or utilized instruction set extensions. The RV32I base
instruction set defines a 32bit architecture around 32 general-purpose registers x0 to
x32 (with x0 being constant 0). More information on the RISC-V instruction set,
and its various extensions can be found in Volume 1 [155] and further details on the
privileged architecture details, especially CSRS, can be found in Volume 2 [156] of the
RISC-V Specification, respectively.

Threat model: MicroRV32 Platform
Amongst the many available open-source implementations, the MicroRV32 plat-

form [158], implemented in the open-source Hardware Description Language SpinalHDL
has been chosen. Through the modern SpinalHDL language, it is possible to prototype
modifications in the data path quickly, while keeping control over the generated Ver-
ilog or VHDL description [152]. The platform is synthesizable for FPGAs and ASICs,
while providing a lightweight and robust microarchitecture. MicroRV32 features a
configurable multi-cycle processor compliant to RV32IMC, meaning it is capable of the
aforementioned RISC-V 32-bit base instruction set (I), the multiply/divide extension
(M) and the compressed instruction extension (C) [152]. Within the platform, a set
of peripherals enables the interaction with the outside environment, similar to other
microcontroller units.

In this work, the threat model environment consists of a processor based on Mi-
croRV32 embedded in a SoC, with various peripherals and a memory hierarchy [152].

Attack Model
To evaluate the proposed method, Hardware Trojans (HTs) have been implemented

based on the following details. The attacker targets the RISC-V RTL code, aiming
to disrupt normal operations of IPs and cause damages to the IP design house, e.g.,
financial losses for any reason [152]. Specifically, the attacker intends to add three
Hardware Trojans to the processor: two of them alter the control unit’s functionality,
while one focuses on the memory and illegal access to it [152]. The attacker possesses
knowledge of the design modules and implementation. HTs typically consist of a trigger
and a payload [152,159]. The trigger is the condition activating the Trojan, while the
payload executes the malicious function [152,159]. Triggers can be of different types
like Always-On, Conditional, or Time-Based, with payloads causing diverse corruptions
like Data and Control Flow Manipulation, Denial-of-Service (DoS), etc [152,159]. The
implemented HTs use conditional triggers, activating under specific rare conditions,
and their payload manipulates program data and control flow. Trojan 1 triggers a
specific input combination in the control flow. Its payload alters the execution flow and
causes incorrect computation in specific part of control unit [152]. Trojan 2 activates
through a specific sequence of control signals, initiating illegal memory access with
a payload involving unauthorized memory access [152]. Trojan 3 is triggered by an
improbable combination of input conditions, leading to the alteration of the opcode
signal and manipulation of update registers. Its payload executes incorrect instructions,
disrupting the normal program flow, potentially compromising system integrity, and
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Figure 14: Overview of the proposed method [152]

enabling the attacker to control the instruction sequence [152]. In this study, the HTs
have been implemented so that they will be activated in very rare conditions, making
their detection difficult.

6.1.3 Methodology
Fig. 14 provides an overview of the proposed method, which is structured in three key
phases [152]. These phases are 1- Collecting the Security Properties, 2- Identifying the
ISA Characteristics, and 3- Security-Based Assertion Miner [152].

In the first phase, leveraging RISC-V specifications [155,156] and already introduced
security properties from literature [88, 89, 160–162], a set of RISC-V security properties
(Definition 19) is collected [152]. This set, along with the RISC-V implementation,
becomes the input for the second phase. In the second phase, the security properties of
the processor are translated to the instruction set architecture [152]. The main aim of
this phase is to systematically identify corresponding instruction sets and the associated
signals related to each security property.

Based on this identification, a guideline is formulated for the next phase. This guide
assists the security-based assertion miner in the third phase [152]. Operating with the
simulation trace generated from the RISC-V design and the guidance report, the security-
based assertion miner automatically mines a set of security assertions (Definition 20).
These assertions encompass the behaviors outlined in the security properties identified in
the initial phase [152]. Further details for each phase are elaborated in the subsequent
subsections.

Collecting the Security Properties
After reviewing the RISC-V specifications [155, 156] and its security properties

from literature [88,89,160–162], a set of security properties (Definition 19) have been
collected for the purpose of this work. These collected security properties are outlined
in Table 13. However, it is noteworthy that the proposed method can seamlessly extend
to encompass other security properties [152]. This versatility enables the method to
cater not only to the collected set in the case study benchmark (RISC-V) but also to
the diverse security properties of other processors.

In this study, security properties have been collected from the most important
categories pertinent to processor security, namely Memory Access, Control flow, and

55



Table 13: Collected Security Properties [152]
Security Properties Security Property Type

1: Calculation of memory address and memory data is correct Memory Access
2: Jumps update the program counter correctly Control Flow
3: Jumps update the link register correctly Update Register
4: Addition with register value and immediate value results in
correct result in the correct target register Update Register

5: Load immediate value into the upper 20 bits in the correct
target register Update Register

6: Adds the immediate as upper 20 bits to the program counter
and puts it into the correct target register Update Register

updating Registers [152]. In papers [88, 89, 160–162] which represent the latest studies
on processor security properties, these categories have been reported as critical areas
requiring scrutiny in the security verification process of processors. Consequently, as
depicted in Table 13, security properties corresponding to each of these categories have
been delineated [152]. More details for these security properties are as follows [152]:

• Security property 1: The first security property of Table 13 describes the correct-
ness and relation between the current load or store instruction and the resulting
memory address and data on the memory interface. For example, if an HT
corrupts the address maliciously to redirect the data, the mismatch between the
intended address and the actual address should become visible.

• Security property 2: The second security property ensures, that the jump in-
structions redirect the control flow correctly, i.e., the change in program counter
reflects the provided register and immediate values accordingly. In this case, an
HT could redirect the control flow to malicious code before returning to the
original application’s code.

• Security property 3: As jump instructions are used to call functions and return to
the code calling a function, the storage of this return address can similarly be
tampered with. Thus, the third security property ensures, that the return address
saved on jump instructions is correct.

• Security property 4: As control flow and memory access instructions prepare
addresses and values through arithmetic and logic operations, their correctness is
vital for security. To avoid information leakage through HT, the fourth security
property assures that the ADDI (add immediate) instruction saves the correct result
only into the correct target register. As an example, an HT could enable writing
to the target register and a temporary register, in order to leak the information in
a different subroutine.

• Security property 5: Similarly, the fifth security property ensures the correctness
for the LUI (load upper immediate) instruction, that the accordingly extended
immediate value is stored into the correct target register.

• Security property 6: Lastly, the sixth security property addresses the AUIPC (add
upper immediate and program counter) instruction. The security property ensures
the correct arithmetic and storage in the correct target register. As this instruction
is utilized to prepare target addresses, an HT can potentially redirect the control
flow to a different part of the code.
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These security properties serve as the inputs for the next phase, i.e., Identifying the
ISA Characteristics.

Identifying the ISA Characteristics
In order to identify which parts of the ISA specification contribute to a security

property, an example is utilized that covers security properties 2 and 3. Consider the
RISC-V instruction JAL rd, offset, Jump And Link. This instruction manipulates
the control flow of the application, jumping to a new location in the program by setting
the Program Counter (PC) to an offset encoded as an immediate value (i.e., PC =
offset) [152]. As a second part, the instruction will store the value of program counter
of the instruction after the JAL instruction (rd = PC + 4). We can consider possible
violation of security if, for example, a Hardware Trojan introduces are change of the
offset under specific system conditions. This could lead to a possible attack in which
an unwanted execution of different code occurs. Therefore, for the JAL instruction, we
can denote two possible high-level properties [152]:

• Jumps update the PC correctly according to the offset passed in the instruction
immediate.

• Jumps update the register rd with the correct PC (i.e., rd = PC+4).

Consequently, the security-based assertion miner would need to find potential security
assertions covering the signals mentioned in the high-level properties. In a more general
sense, these steps can be abstracted as follows [152]:

1. Identifying instructions affected by threat model (e.g., control flow integrity affects
the instructions for branch, jump, and address manipulation).

2. Identifying each part of functional behavior contributing to instructions (e.g.,
jump instruction changes PC and a register based on PC value).

3. Formulating high-level property reflecting parts of the functional behavior (e.g.,
resulting addresses for store or load operations have to be consistent with the
initial instruction and register values).

4. Utilizing the high-level property to identify the affected signals in the processor
and its interfaces. This includes the relation between instruction bits and the
observable behavior on results and interfaces.

In this phase, alongside the guidance report created based on the identified ISA
characteristics, a simulation trace is generated from the RISC-V design. These inputs
are utilized by the security-based assertion miner in the next phase.

Security-Based Assertion Miner
In this phase, the details of the proposed security-based assertion miner are elaborated.

As illustrated in Fig. 15, the proposed miner is comprised of four primary steps: 1)
Signal Identification and preprocessing of Simulation Trace, 2) Association Rule Mining,
3) Time Notation, and 4) Assertion Conversion [152].

During the Signal Identification and preprocessing step, after identifying the RISC-V
signals that are associated with the identified security properties, the exhaustive simula-
tion trace of the RISC-V undergoes preprocessing to prepare the data. Subsequently, in
the Association Rule Mining step, the proposed algorithm is applied to the preprocessed
simulation trace to mine all association rules (Definition 9) derived from the simulation
trace [152].
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Figure 15: Proposed Security-Based Assertion Miner [152]

Afterward, the association rules obtained from the second step are passed to the
third step, i.e., Time Notation. Here, the extracted association rules are integrated with
the concept of time to generate appropriate time-integrated rules (temporal association
rules) in the form of next[N ] pattern (Definition 5) [152]. These rules serve as the
input for the Assertion Conversion step. Consequently, the Assertion Conversion step
transforms the rules from the previous step into assertions, rendering them ready for
utilization in the security verification process of the RISC-V design [152].

Algorithm 4 presents the detailed process of the first three steps of the security-based
assertion miner [152]. In this algorithm, ST denotes the simulation trace and ST ′ is
the preprocessed simulation trace, while f and t represent the simulation trace’s outputs
and input values.

In the following subsections, each phase of the security-based assertion miner is
discussed in more detail.

Signal Identification and preprocessing of Simulation Trace
Lines 6 to 8 of the Algorithm 4 are related to the Signal Identification and prepro-

cessing step of the security-based assertion miner.
In this phase of the security-based assertion miner, at first, the RISC-V simulation

trace and guidance report generated from the second phase of the method (Identifying the
ISA Characteristics) are processed for signal identification [152]. In signal identification,
the assertion miner prunes all the signals of the simulation trace that are not relevant
to the identified security properties. Once signals associated with the specified security
properties are identified, the simulation trace undergoes preprocessing [152].

To preprocess the simulation trace, all the identified output of the simulation trace
is moved N records above its original position (line 8 of the Algorithm 4). However,
the identified inputs of the simulation trace remain as they are [152]. Traditional
association rule mining algorithms (e.g., apriori [132]) cannot typically mine the rules in
the form of next[N ]. Because of this reason, and also since the corresponding output
of input variables in a sequential hardware design may occur in the simulation trace N
time instants later, this preprocessing needs to be performed. This ensures the correct
alignment of outputs with their corresponding inputs, allowing for accurate temporal
analysis and also mining patterns for different N time instants (clock cycles) [152].
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Algorithm 4 Security-Based Assertion Miner [152]
1: Inputs: N , ST , min_supp;
2: Output: next[N ] = antecedent→ next[N ]consequent;
3: R = antecedent→ consequent;
4: L1 = {frequent 1− itemsets ∈ ST ′};
5: K = 2;
6: ST ′← prune_nonrelevant_security_signals(ST )
7: forall f ∈ ST ′ do
8: ST ′ = MoveUp(f(N ));
9: while Lk−1 ! = ∅ do

10: Ck = generate_candidate_itemsets(Lk−1);
11: Lk = prune_infrequent_itemsets(Ck,min_supp);
12: k = k + 1;
13: foreach frequent itemset Li ∈ L do
14: foreach subset S of Li do
15: if (S ! = ∅) && (S ! = Li) then
16: confidence = support(Li) / support(S);
17: if confidence >= min_conf then
18: R← association_rule(S => Li);
19: return R;
20: if (R.antecedent == (t ∈ ST ′)) and (R.consequent == (f ∈ ST ′)) then
21: next[N ]← label(R);
22: else
23: Discard(R);

Association Rule Mining
After preprocessing the simulation trace in the previous step, the resulting pre-

processed simulation trace is subsequently fed into lines 9 to 19 of Algorithm 4 to
mine association rules [152]. Applying these lines of the algorithm to the prepro-
cessed simulation trace provides us with a set of association rules in the form of
antecedent → consequent.

In lines 9 to 12 of Algorithm 4, frequent itemsets (Definition 8) of various sizes
(1-itemsets, 2-itemsets, etc.) are generated iteratively until the list of the frequent
itemsets is empty. Specifically, the algorithm mines frequent itemsets whose support
values (Definition 10) exceed the min_supp value (Definition 11), while pruning the
others [152]. In line 10 of the algorithm, Ck is the candidate itemsets of size k that
are generated by combining frequent (k-1)-itemsets and Lk in line 11 of the algorithm
is the set of frequent k-itemsets. In this algorithm, 1-itemsets consist of individual
variables of simulation trace, 2-itemsets are pairs of variables, etc.

After mining the frequent itemsets and adding them to the Lk list, in lines 13
to 19 of the algorithm, the association rules are extracted from the list of frequent
itemsets [152]. To clarify these lines of the algorithm, let’s consider an example where
the list of frequent itemsets is equal to 4-itemsets of {A, B, C, D}. To generate
association rules from this frequent itemset, we consider all non-empty subsets of it.
These subsets are 1-itemsets of {A}, {B}, {C}, {D}, 2-itemsets of {A, B}, {A, C},
{A, D}, {B, C}, {B, D}, {C, D}, as well as the 3-itemsets of {A, B, C}, {A, B, D},
{A, C, D}, {B, C, D}, and 4-itemset of {A, B, C, D}. Afterward, for each non-empty
subset Y, an association rule of the form Y => X − Y is generated. By doing so,
the algorithm considers all possible combinations of items in the frequent itemset to
identify significant associations between different sets of items [152]. For example, if X
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= {A, B, C, D} and Y = {A, B, C}, then the rule {A, B, C} => {D} is generated.
The antecedent of the rule (Y) is the subset {A, B, C}, and the consequent of the
rule (X −Y) is the set difference between the frequent itemset {A, B, C, D} and the
antecedent {A, B, C}, which is {D}. This process is repeated for each non-empty subset
of the frequent itemsets list, yielding a set of association rules. Finally, we evaluate
each association rule for its confidence, pruning those that are below the min_conf
threshold (Definition 13) [152].

Increasing the min_supp value results in fewer assertions that describe more general
design behavior, while decreasing the min_supp value leads to assertions covering rare
design behavior (corner cases) [152]. These corner cases are important as attackers
can consider them for performing any corruption in the design. Similarly, raising the
min_conf value produces fewer but more valid assertions [152]. Valid assertions refer to
assertions that will not be violated during the simulation with different attack scenarios.
The utilization of these values in the security-based assertion miner facilitates an effective
vulnerability detection process. In this study, min_supp and min_conf are set to 0.01
and 1, respectively, as we aim to discover corner cases while achieving high vulnerability
detection (details are presented in subsection 6.4.1) [152].

At this point, with the completion of the association rule mining, these rules serve
as the fundamental components of the Time Notation step.

Time Notation
In the previous step, the method provides us a set of rules in the general form of

antecedent → consequent. In this step, the method integrates the concept of time
into the association rules generated in the association rule mining step, leading to a set
of temporal association rules in the form of antecedent → next[N ]consequent [152].
Lines 20 to 23 in Algorithm 4 describe the details of the Time Notation step. If the
antecedent value matches an input in the simulation trace, and the consequent value
has already been moved to another record in the simulation trace, the rule is labeled as
a next temporal association rule. Otherwise, other mined rules are discarded [152].

Assertion Conversion
In this step, the mined temporal association rules are transformed into temporal

security assertions (Definition 20) in SVA language [136] using the labels assigned
in the Time Notation step [152]. While the security-based assertion miner provides
assertions in the SVA language, this section elucidates the general structure and format
of temporal mined rules in PSL [109] for enhanced comprehension. Consequently, the
output of the Time Notation step for temporal association rules labeled as next[N ] is
transformed into the PSL format of "always(antecedent → next[N ]consequent)" [152].

6.2 Automatic Generation of Assertions for Autonomous Vehicles:
IseAuto Case Study

The development of ADAssure is motivated by three main objectives. Firstly, it seeks to
furnish Autonomous Driving (AD) system designers with a methodology to detect and
rectify vulnerabilities that correspond to the design of AD algorithms. Secondly, in light
of the dynamic nature of autonomous vehicle systems, it strives to establish a structured
methodology conducive to consistent, flexible, and repeatable testing practices. Lastly,
it aims to facilitate unit testing, enabling the testing of individual components of the
autonomous system independently of other dynamic factors influencing autonomous
control.
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Figure 16: Different Phases of Assertion Generation

The underpinnings of the ADAssure methodology are rooted in the analysis of
vehicle dynamics and sensing data, which guides the creation of assertions regarding the
vulnerability of AD control algorithms. This analysis involves conducting a sensitivity
analysis of vehicle dynamics data (e.g., velocity, yaw, and steering angle), sensor data
(e.g., lateral and longitudinal movement), and visualization of the trajectory of the
AD system. This process aids in identifying crucial parameters for creating assertions
concerning the AD control algorithms. Designers of AD control systems can utilize these
assertions to identify and locate vulnerabilities within the control model and develop
mechanisms to test and rectify errors. The ADAssure methodology comprises three
principal phases: Autonomous Driving Data Collection, Association Rule Generation, and
Assertion Review and Debugging. In the following, each of these phases is elaborated
in further detail.

6.2.1 Autonomous Driving Data Collection
This phase involves generating data from either real-world system or simulation environ-
ment. The advantage of utilizing a simulation environment lies in its ability to automate
driving scenarios or design them to test specific conditions, such as cyber-attacks or
corner cases. The output data is structured according to predefined metrics, which may
include vehicle dynamics parameters (yaw angle, velocity, etc.), sensing data (position
co-variance, point-cloud, etc.), and safety parameters (distance-to-collision, etc.). The
AD data is formatted in a way that can be interpreted by analytical tools, with the
chosen format of .csv in this study.

6.2.2 Association Rule Generation Phase
The objective of this phase is to analyze the data generated in the preceding phase
and generate a set of association rules, which will be translated into assertions during
the Assertion Review and Debugging phase. This phase comprises three main steps, as
illustrated in Fig. 16: a) Association Rule Mining, b) Time Notation, and c) Attack
Detection.

The association rule mining is applied to both benign and malicious datasets, resulting
in two distinct sets of association rules. Subsequently, these sets of rules are processed
through the Time Notation step to integrate temporal information, yielding temporal
association rules (assertions) in the form of next[N ] and before[N ] patterns. The
next[N ] type of rule is defined in the general form of X → next[N ]Y. This rule
signifies that when X occurs, after N time instants, Y will occur. Here, N represents
a positive integer value. Furthermore, the before[N ] rule is defined in the general
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Algorithm 5 Association rule mining & time notation
1: Inputs: N , D;
2: Outputs: next[N ] = antecedent→ next[N ]consequent;
3: before[N ] = antecedent→ before[N ]consequent;
4: R = antecedent→ consequent; ▷ Initialization and Preprocessing
5: forall f ∈ D do
6: D′ = MoveUp(f(N ));
7: R← apriori(D′); ▷ Mining
8: if (R.antecedent == (t ∈D′)) and (R.consequent == (f ∈D′)) then ▷ Time Notation
9: next[N ]← label(R);

10: if (R.antecedent == (f ∈ D′)) and (R.consequent == (t ∈ D′)) then
11: before[N ]← label(R);

form of X → before[N ]Y . This rule indicates that whenever X occurs, Y should have
occurred N time instants before that. In the ’Attack Detection’ step these temporal
association rules are compared and ultimately detect attacks and anomalies within the
datasets. The following sections present a more in-depth discussion of each step.

Association Rule Mining
This step primarily serves two purposes: preprocessing the datasets and consequently

mining association rules from the preprocessed data. In order to mine the association
rules, the apriori algorithm [132] was adapted and enhanced to mine temporal rules
capable of detecting attacks at various time instances during AV operation. Algorithm
5 demonstrates the details of the Association Rule Mining and Time Notation steps.
In this algorithm, D represents the dataset and D′ is the preprocessed dataset, while
f and t denote the dataset’s features and target values. To prepare the dataset for
mining the next[N ] and before[N ] temporal patterns, all the features of the dataset
are moved N records above their original position (Line 6). However, the target of
the dataset remains unchanged. Subsequently, the apriori algorithm is applied to the
preprocessed dataset to mine a set of association rules. The output of this phase
comprises association rules in the general form of antecedent → consequent. These
association rules are then forwarded to the Time Notation step.

Time Notation
Here, the method incorporates the concept of time into the association rules generated

in the previous step, producing a set of temporal association rules. The method identifies
the temporal pattern (next[N ] or before[N ]) associated with each extracted rule and
accordingly assigns the appropriate time label. If the value of the antecedent matches
a target value in the dataset, and the consequent value has already been moved to
another record in the dataset, the rule is labeled as a next temporal association rule
(Line 9). Conversely, if the antecedent of a rule mined in the association rule mining
step aligns with a dataset feature that has been moved to another record, and the
consequent of the rule aligns with the target value of the dataset, this rule is labeled
as a before temporal association rule (Line 11). The mined rules are in the forms of
antecedent → next[N ]consequent, and antecedent → before[N ]consequent, serving
as assertions for debugging the autonomous driving system.

Attack Detection
This step is dedicated to the identification of rules indicating potential attacks on the

AV. The assumption is that the rule sets extracted from benign and malicious datasets
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should exhibit similarity under normal conditions, devoid of any AV attacks. Any
disparity observed between these rule sets indicates an anomaly within the autonomous
vehicle. In accordance with this assumption, the temporal association rules (assertions)
generated during the time notation phase are categorized into two distinct sets.

The first category encompasses rules solely mined from the malicious dataset, without
corresponding counterparts in the benign dataset. Any rule exclusively extracted from
the malicious dataset, lacking a counterpart in the benign dataset, indicates an attack.
These rules reveal abnormal behavior in the malicious dataset, contrasting with different
behavior observed in the corresponding time instance of the benign dataset. Subsequently,
these rules are classified as attacks.

The second category encompasses similar rules mined from both benign and malicious
datasets, but with different values for minimum support (min_supp) and minimum
confidence (min_conf). Discrepancies in these values indicate that, while the mined
rules are similar, anomalies and abnormal behaviors exist between the datasets. The
apriori algorithm utilizes these two metrics (i.e., min_supp and min_conf). The
min_supp value serves as the threshold and minimum value, determined by the expert
to ascertain whether a rule occurs frequently in the dataset or not [77, 163]. The
min_conf represents the minimum value that is selected by the expert and is an
indication of how often a rule has been found to be true [132, 133]. Increasing the
min_supp value results in fewer association rules describing more general behavior of
the autonomous vehicle, while decreasing it leads to rules covering rare behaviors (corner
cases). Similarly, raising the min_conf value generates fewer but more valid rules. Valid
rules refer to association rules that remain consistent across various attack scenarios,
including corner cases. These values incorporated into ADAssure facilitate an efficient
attack detection process. The second category of rules aids the ADAssure in effectively
identifying corner cases and the attacks that rarely occur on the AV. These rare attacks
manifest behavior closely resembling normal vehicle operation but are malicious and
can potentially cause AV failure.

6.2.3 Assertion Review and Debugging
During this phase, the association rules generated from the preceding phase are reviewed
alongside an analysis of control behavior and individual data parameters to formulate
assertions. Trajectory maps of the AD system and graphs illustrating the sensitivity of
data parameters in benign and cyber-attack scenarios are compared with the anomalous
behavioral patterns identified by the association rule generation phase. Leveraging
expertise from algorithm designers and safety validation engineers aids in identifying
parameters capable of uniquely demonstrating algorithm vulnerabilities within the
system. Once assertions regarding system vulnerabilities are established, debugging
efforts concentrate on control flow analysis. As the assertion aids in pinpointing the
specific module, the static analysis can focus on the control flow of the substituent
functions within the module. For instance, a local-planning module may encompass 15
diverse algorithms, each containing multiple methods or functions. As AD algorithm
code comprises differential equations, debugging can suggest optimizations to implement
mitigation mechanisms against identified vulnerabilities.

6.3 Autonomous Driving Control Algorithm
To evaluate the methodology, the focus is on an AD control algorithm employed in a
real-world AD ride-hailing service. The AD pipeline comprises four pivotal modules:
localization, perception, planning, and control. In this study, the localization and
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Figure 17: Localization Algorithm Flow within AD System

planning modules are considered.

6.3.1 Localization Module
This module provides accurate information concerning the vehicle’s position and orien-
tation. Employing a Normal Distributions Transform (NDT) matching search algorithm,
it identifies the best matching position based on sensor perception. It utilizes input
from the Inertial Measurement Unit (IMU) and the point cloud generated by the LiDAR.
Subsequently, it attempts to match the points from the current scan to a grid of proba-
bility functions extracted from the map. NDT matching algorithms can further leverage
the GNSS sensor, offering initial approximate localization estimates on geo-referenced
maps to avoid sudden errors in localization calculations that could result in failures. Fig.
17 illustrates the flow of the localization algorithm within the AD system.

6.3.2 Planning Module
To initiate mission planning within the AD system, the global planner initially generates
a global reference path utilizing a vector (road network) map. The function of the
global planner is to delineate a route between the mission’s starting and goal positions
on the road map. Subsequently, the local-planner generates smooth and obstacle-free
trajectories within the operational local domain, adhering to the global route. The
local-planner encompasses various modules, as depicted in Fig. 18: trajectory generation,
trajectory evaluation, intention and trajectory estimator, object-tracker, and behavior
selection (decision making) [164]. The trajectory generation module produces alternative
tracks, referred to as roll-outs, parallel to the main path defined by the global planner.
Subsequently, the trajectory evaluation module assesses all potential roll-outs and inputs
data from the AV’s sensed-data to estimate costs. The behavior selector then directs
the AV to motion on a roll-out based on the least-cost trajectory.

6.4 Experimental Results – RISC-V and ADAssure
In this section, the experimental results concerning the security-based assertion mining
for the RISC-V processors and debugging and bug localization of AD control algorithms
of AVs (i.e., ADAssure) are presented. Subsection 6.4.1 outlines the findings regarding
the security-based assertion miner, while subsection 6.4.2 delves into the results for
ADAssure.

6.4.1 Experimental Results – RISC-V
For the experimental evaluation, the security-based assertion miner is utilized to generate
security assertions in the form of SVA. As shown earlier, in Fig. 15, the security-based

64



Figure 18: Abstract Local Planning Algorithm Flow within AD System

assertion miner requires a simulation trace generated from a processor. In this case study,
the processor embedded in the open-source MicroRV32 platform [158] is utilized. For
generating the simulation trace, a software application on the processor that is centered
around checksum calculations for embedded systems has been executed. It features
different types of control flow, loops, arithmetic operations, and interaction with the
memory as well as the available peripherals [152]. Hence, a simulation trace with 10000
records has been generated that activates various parts of the microarchitecture to
provide a diverse data set for security assertion mining. The generated assertions are then
evaluated by including Hardware Trojans in the processor’s microarchitecture together
with the generated security properties, to verify them. Notably, in the experiments the
values for the minimum support (Definition 11) and minimum confidence (Definition
13) have been set to 0.01 and 1, respectively [152]. These values allow us to guide
the security-based assertion miner in mining fewer yet more valid assertions, effectively
considering the corner cases of designs. Moreover, N has been set to 2 for the next[N ]
pattern, but it can be adjusted to other values [152].

Table 14 exhibits the detailed experimental results about the assertions that are
associated with any of the security properties that have been presented in the Collecting
the Security Properties section [152]. The proposed security-based assertion miner
generated a total of 4036 security assertions. It should be noted that while the total
number of generated assertions is 4036, some of them overlap so that they contain the
signals of the design that are related to several security properties [152]. According to
the experimental results in Table 14, 870 and 1490 security assertions are related to
security properties 1 and 2, which means that these numbers of assertions can cover
the behaviors that have been described for these two security properties [152]. The
results indicate that for security properties 3 and 4, 1522 and 2026 security assertions
have been mined, respectively. This figure for both the security properties 5 and 6 is
1898 assertions [152].

Table 15 presents the experimental results on the Trojan detection [152]. The column
’#Security Assertions Detecting Trojans’ presents the number of security assertions
that could detect any of the Trojans. For Trojan 1, 16 assertions detected it and 64
and 176 security assertions detected Trojans 2 and 3, respectively [152].

Table 16 presents a comparative analysis between the proposed security-based
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Table 14: Detailed Experimental Results on Six Different Security Properties [152]
Total Number
of Assertions

Number of Assertions Covering the Security Properties
Security

Property 1
Security

Property 2
Security

Property 3
Security

Property 4
Security

Property 5
Security

Property 6
4036 870 1490 1522 2026 1898 1898

Table 15: Experimental Results on Detected Trojans [152]
Trojans #Security Assertions Detecting Trojans Trojan Detection
Trojan 1 16 ✓
Trojan 2 64 ✓
Trojan 3 176 ✓
✓ : Trojan has been detected.

assertion miner and HARM, the latest assertion miner in the literature [72,152]. HARM
is explicitly presented as a tool that can be employed in the context of security
verification for Trojan detection, making it a relevant tool for the comparison. While
HARM generated an extensive set of 16073 assertions, contributing to prolonged
security verification process, the proposed method yielded a more compact and accurate
set of 4036 assertions [152]. Among all the mined assertions by HARM, a total of
397 assertions could detect the Trojans, while the proposed method is this chapter
accomplished Trojan detection with 256 assertions [152]. The ratio of security assertions
that detect Trojans to the total number of assertions demonstrates that our mined
security assertions are more effective in Trojan detection. These assertions exhibited
a superior effectiveness with a ratio of 6.3%, in contrast to HARM’s 2.4% [152].
Considering the fact that there are only three Trojans, and as mentioned in the Attack
Model section, the probability of their activation is very rare, 6.3% shows promise.
These findings underscore the efficiency of the proposed method in producing a smaller
yet more potent and accurate set of security assertions. Furthermore, the security-
based assertion miner demonstrated significantly shorter execution time, completing the
assertion mining process in approximately 5 minutes, compared to HARM’s duration of
over an hour [152].

6.4.2 Experimental Results – ADAssure
To evaluate the influence of corner cases on AD system behavior using the ADAssure
methodology, the datasets comprising corner case scenarios obtained from both sim-
ulation and real-world driving scenarios of the target AD system have been utilized.
The first corner case scenario dataset encompasses three distinct cyber-security attacks
on the AD system conducted in a simulation environment. Given our focus on the
planning and localization algorithms, a low-fidelity simulation environment provided
by Autoware.AI, coupled with the OpenPlanner 2.5 planning algorithm has been
employed. The second corner case scenario dataset involves a Global Positioning System
(GPS) spoofing event that occurred on the AD system during its operation in the urban
road network of a capital city.

Table 16: Comparison of the proposed method with HARM [152]

Assertion
Miner

Total number of
Security Assertions

#Security Assertions
Detecting Trojans

Ratio of Security Assertions
Detecting Trojans to the

Total Number of Assertions (%)
Execution

Time

Proposed Method 4036 256 6.3 5min30sec
HARM [72] 16073 397 2.4 74min31sec
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Figure 19: The threat model used for conducting the attack cases

AD Control System Datasets
In the following, details of the datasets utilized in this study are presented:

Cyber-security Corner Case Dataset
Within this dataset, three attacks were carried out on the target AD vehicular

system while attempting an overtaking maneuver. These attacks are categorized as
follows: 1) Lateral Position Offset Attack, 2) Longitudinal Position Offset Attack,
and 3) Message Time-Delay. In the lateral and longitudinal position offset attack, an
attacker injects malicious data input into the lateral or longitudinal position while the
AD vehicular system is executing the overtaking maneuver (Fig. 19). This attack could
be executed through GPS spoofing or interception and manipulation of the localization
sensor data. For the message time-delay attack, the attacker introduces a delay into
the current_pose (lateral and longitudinal) sensor messages reaching the AD control
pipeline. The malicious data is injected between the 21m and 67m marks of the AV
journey (traveled distanced). Each attack has been executed 300 times, encompassing
a range of different attack parameters. The lateral and longitudinal attacks introduced
deviations ranging from 0.16% to 1.0%, equivalent to approximately 20cm to 1m. The
message time-delay introduced delays of 0.3%, 0.6%, and 1.0% second, as a message is
transmitted every 20ms, this range demonstrates a delay of 15 to 50 messages. Overall,
the dataset encompasses over 1500 scenario runs of both attacks and benign safety
cases.

GPS Spoofing Real-World AV Dataset
The sensor data from the AD ride-hailing service is transmitted to an edge server

through a logging node, where it stores the AD System data in a database. While
operating in the vicinity of the city’s port area, the AD vehicle experienced a loss of
localization due to a GPS spoofing incident, which also impacted other GPS-enabled
platforms.

This GPS spoofing occurred intermittently over the preceding months. The dataset
utilized in this study originates from the logging system of the AD ride-hailing service.

AD System Data
The simulation and real-world datasets have been structured to output data as

shown in Table 17.
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Table 17: AD System Data

AD Data Type Description
AV_X Longitudinal Position of the AD System as to the HD Map
AV_Y Lateral Position of the AD System as to the HD Map
AV_Steer Steering Angle of the AD System
AV_Vel Velocity of the AD System
AV_Yaw Orientation of the AD System based on its centre of gravity

Roll-out_Num Current Lane according to the lane selector of the AD
Control Algorithm

DTC Distance to collision of the AD vehicular system to the
overtaking vehicle

Position
Co-variance GPS position co-variance

Altitude Altitude derived from the GPS

Table 18: ADAssure Assertion Generation phase results

Dataset Assertion Execution
TimeName #Records Total #Next[N ] #Before[N ]

Longitude 412 5 3 2 1ns
Latitude 356 7 7 0 1ns

Delay 417 5 3 2 1ns
GNSS 16 5 4 1 1ns

Results and Analysis
To evaluate the effectiveness of the ADAssure methodology, six attack types and

their corresponding safety (benign) scenarios have been chosen. These attack types
encompass each of the aforementioned attacks with varying levels of noise (lateral and
longitudinal position offsets, delay message).

Automated Analysis
Employing the ADAssure methodology on the three attack types resulted in three

distinct sets of assertions, corresponding to each attack type. The results of the
assertion generation phase are detailed in Table 18. The minimum support threshold
(min_supp) was set at 0.01, while the minimum confidence threshold (min_conf) was
1. Furthermore, N has been set to 2 for the next[N ] and before[N ] patterns, but it
can be adjusted to other values. Notably, the method exhibits swift execution times.
Within the analysis of the three attacks of the cybersecurity corner case dataset, the
assertions identified two patterns of anomalous AD behavior. Firstly, extreme steering
angles of 20◦ and -20◦, accompanied by sudden lane transitions. Secondly, multiple
lane-transitions coupled with extreme steering angle and sudden changes in vehicular
velocity. This behavior indicates the impact of cyber activity on the smoothness of the
initiation of the overtaking maneuver, resulting in erratic movements and, in some cases,
a collision event. The assertions generated from the GNSS spoofing dataset identified
alterations in altitude and position co-variance, which were consistent with significant
changes in GPS coordinate values and resultant changes in altitude.
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Figure 20: Lateral position offset attack vehicle parameters

Assertion Review and Debugging
The patterns identified in the association rules allow us to infer that the Yaw angle

and angular velocity serve as good indicators to illustrate the impact of cyber-attacks.
During the injection of position offset attacks, the vehicle’s orientation exhibits dramatic
action; in some circumstances, the vehicle sometimes appears to spin. As depicted in
Fig. 20, the Yaw (angle) of the vehicle during the Lateral Position Offset Attack shows
sharp fluctuations, reaching 15deg/sec from the 15 meters mark of the AV journey. This
dynamic behavior of the vehicle is a characteristic also observed in both the longitudinal
position offset (Fig. 21) and delay message attack (Fig. 22). The results for the velocity
parameter indicate that it only reflects immediate collision of the vehicle, and it does
not support early detection of anomalous vehicle behavior. Assertion 1 contends that
the AD system should prevent movements that exceed the physical limitations of the
steering model.

Assertion 1: To determine the vulnerability of the yaw angle and mo-
mentum, we can derive the assertion: AV.displacement_of_yaw_angle >
max_yaw_angle_threshold && time < time_threshold.

The roll-out transition, steer, and distance-to-collision parameters exhibit discernible
changes during a cyber-attack. Manipulating the lateral and longitudinal position alters
the vehicle’s position on the map, thereby inducing greater transitions between roll-outs,
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Figure 21: Longitudinal position offset attack vehicle parameters

which represent the effective position of the vehicle on the road. The frequency of
these transitions affects the smoothness of the steering angle. Regarding the distance-
to-collision parameter, it is observed that the effect of the attack is most prominent
during the overtaking maneuver, particularly during the cut-in process, when the vehicle
cuts-in front of the passing vehicle (NPC). Assertion 2 contends that when the vehicle
transitions across multiple roll-outs, demonstrates a 180◦ steering angle, and approaches
within less than 0.5m of the passing vehicle, it signifies behavior affected by the cyber
attack.

Assertion 2: To identify vehicle dynamic changes from cyber-attack: AV.x −
NPC.x < distance_threshold && AV.lane_transition > max_transition_number
&& AV.steer_angle /∈ [min, max]_steer_angle.

Assertion 3 contends with behavior observed in the longitudinal position offset (Fig.
21) wherein the AV collides with the passing vehicle and subsequently accelerates to its
previous set-point.

Assertion 3: To identify collisions, we can derive the assertion: |AV.vk −
AV.vk+1| > threshold.

Assertion 3 can also serve to identify anomalies in GPS data. The GNSS spoof-
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Figure 22: Delay message attack vehicle parameters

ing attack exhibits a considerable deviation in the altitude and position co-variance
parameters. Assuming that velocity data originates from two sources, a wheel sensor
measurement and calculated by deriving the position from GPS data, the results from
both sources should closely align. In the case of a GNSS spoofing attack, the deviation
in the position co-variance would lead to a spike in velocity (calculated by deriving
position from GPS data), thus violating assertion 3.

For our specific AD system, the threshold for assertion 1 is a yaw angle displacement
of 15◦ within a 1-second duration. The threshold for assertion 2 is identified as a distance
between the AV and passing vehicle of less than 0.5m, a lane transition exceeding
1 roll-out, and a steering angle beyond the bounds of 20 and -20◦. It is important
to note that these values are applicable for a low-speed AV ride-hailing service, and
designers of different classes of vehicles must calculate values consistent with their
specific application.

Solvable bugs originate from various points in the controller. One common issue
arises from incorrect or imprecise saturation values of the control signal, leading to
excessive acceleration or a high steering angle in the vehicle. This phenomenon is clearly
depicted in Fig. 21, where a signal overshoot results in multiple lane changes by the
vehicle. Another notable example, as evident in Fig. 20, 21 and 22 is the absence of a
fallback plan. A distinct indication of a collision occurs when the vehicle speed suddenly
drops to 0ms−1 and then rapidly accelerates back to the reference point, thus violating
Assertion 3. A robust controller should incorporate a fallback plan to address such
scenarios, indicating a bug in the functional design of the controller. In such scenarios,
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the vehicle should recognize that it can no longer adhere to the global trajectory and
switch to emergency mode.

The primary objective of identifying unexpected behaviors is to debug the controller.
Upon analyzing the experimental results, a violation of Assertion 1 can be associated with
a bug within the /ndt_pose module (refer to Fig. 17), while a violation of Assertion 2 can
be backpropagated to the module /op_trajectory_evaluator. Likewise, a violation
of assertion 3 can be backpropagated to the modules of /op_trajectory_generator
and /op_behavior_selector (refer to Fig. 17). To precisely pinpoint the violation
of assertion 3 to a specific function, we abstracted from the local_planner algorithm
and its substituent lane_rule algorithm, the getClosestWaypointNumber method.
This method selects the next waypoint to follow in the global trajectory and returns
an exception to be handled as a different driving behavior (e.g., there was a crash,
emergency mode activated).

In the case of a GNSS attack, the NDT localization algorithm fails to detect the
deviation in position co-variance, attributed to the normal vector pointing in the same
direction. Debugging efforts prioritize optimizing the NDT localization by leveraging
visual odometry to maintain the local position at short-distances until the disturbance
source is resolved.

6.5 Conclusions
In this chapter, with the aim of studying assertion-based verification in the context of
security and security verification, two innovative methods were presented.

In section 6.1, a method was introduced for generating security assertions tailored to
a RISC-V processor. The method involves systematically analyzing design specifications
and requirements to pinpoint critical security properties, neglecting which could result in
design vulnerabilities. By identifying the pertinent security properties and the associated
design signals, the proposed security-based assertion miner is applied to the processor’s
simulation trace. The miner automatically outputs security assertions. The experiments
demonstrate that these assertions proficiently encapsulate the behavior described by
identified security properties, effectively detecting injected Hardware Trojans within the
design.

On the other hand, in section 6.2, a method called ADAssure was presented for
debugging and bug localization of autonomous driving control algorithms in AVs.
ADAssure comprises three phases 1) AD Data collection 2) Assertion Rule Generation
and 3) Assertion Review and Debugging. The concept behind ADAssure is to mine
association rules from AD data, which can be transformed into assertions to detect
the vulnerabilities in the system. Evaluation of ADAssure using various cyber-security
datasets from both simulation and real-world scenarios revealed that the ADAssure could
provide three assertions on the vulnerability of the OpenPlanner 2.5 AD planning
algorithm. These assertions provide valuable guidance to algorithm designers and safety
engineers in pinpointing specific modules within the planning algorithm for debugging
purposes.
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7 Conclusions and Future Directions
In the current technological landscape, hardware designs and embedded systems are
progressively growing in complexity with each iteration. This complexity often introduces
bugs and errors that can compromise the functionality of these designs. To address this
challenge and verify the correctness of the functionality of hardware designs, various
functional verification techniques are available, including static verification, dynamic
verification, and assertion-based verification methods.

In this thesis, with the aim of enhancing the assertion-based verification techniques,
several innovative methods were proposed. These solutions and methods are applicable
in the contexts of both functional verification and security verification and can be
utilized by both academicians and engineers.

In this thesis, an automatic assertion miner, ARTmine, was proposed, utilizing
data mining and association rule mining techniques for generating assertions. The
experimental results demonstrated that ARTmine effectively generates accurate assertion
sets, outperforming leading assertion miners, and enhancing the functional verification
of hardware designs.

Furthermore, with the aim of enhancing the security verification of hardware designs,
in this thesis, the utilization of assertions in the context of security verification was
studied. To this end, for the first time, an automatic security-based assertion miner was
presented that is able to generate a set of security assertions. While in this thesis, the
proposed miner examined Hardware Trojan detection on RISC-V processors, it is not
limited to only this type of processor and is applicable to other types of processors and
various hardware designs. Additionally, it is not limited to only the detection of Hardware
Trojans and can be utilized for the detection of other kinds of security vulnerabilities
and attacks. Moreover, the application of security assertions was studied in the context
of autonomous vehicles, and a method called ADAssure was proposed for automatically
generating security assertions for debugging and bug localization of autonomous driving
control algorithms within AVs.

Given the fact that the generated assertions for functional verification can suffer
from redundancy and inconsistency and also the importance of evaluating the quality of
assertions and selecting the best and highest-quality ones for utilization in the verification
process, two novel techniques were proposed. For the first time, a data mining-based
solution called Dominance was introduced, able to evaluate the quality of assertions
and select the highest-quality ones, which can provide more design behavior coverage.
Moreover, Dominance can integrate various rankings of other evaluation methods and
provide a unique set of high-quality assertions. Furthermore, for the first time, in this
thesis, an innovative method named IMMizer was proposed for identifying redundant
and inconsistent assertions and minimizing them. The experimental findings showcased
that IMMizer can significantly reduce and minimize the number of assertions, while the
minimized set can provide the same design behavior coverage as the initial assertions
did. Although in this thesis Dominance and IMMizer were studied in the context of
functional verification, they can easily be utilized in the realm of security verification as
well.

Overall, this PhD thesis, by proposing several novel solutions and methods, signifi-
cantly enhanced both the functional verification and security verification of hardware
designs. For future research studies, considering the importance and utilization of
quantum hardware designs and circuits in recent years, and the considerable efficiency
of the proposed solutions in this thesis, it is remarkable to apply them to the context of
quantum hardware verification. Additionally, the proposed solutions can be studied and
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applied to broader security and security verification domains for analyzing the detection
of various types of security vulnerabilities and attacks. Last but not least, as hardware
test techniques such as Built-in Self-Test (BIST), Memory Built-in Self-Test (MBIST),
and fuzz testing approaches are struggling with huge amounts of test vectors, the
data mining-based solutions presented in this PhD thesis are applicable to significantly
optimize the test vectors in these kinds of testing techniques.
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Abstract
Enhancing Assertion-Based Verification in Hardware De-
signs through Data Mining Algorithms
In the field of functional hardware verification, there exists a range of techniques including
static verification, dynamic verification, and assertion-based verification methods. While
static and dynamic approaches show promise in functional verification, assertion-based
verification techniques have garnered increasing interest. They offer the combined
benefits of both static and dynamic techniques. Assertions play a pivotal role in
assertion-based verification and are fundamental to its methodology. Given their
significance in functional and even security verification, considerable efforts have been
made in the literature to create high-quality assertion sets that offer comprehensive
design behavior coverage.

These efforts can be broadly categorized into two main approaches: manual and
automatic assertion creation. Manual assertion definition is time-consuming and prone to
errors. Moreover, for large-scale designs, manual assertion definition necessitates a deep
understanding of the design under verification, increasing the cost of assertion creation.
To address these challenges, various studies have focused on automatic assertion
generation. While these techniques have mitigated the limitations of manual assertion
definition, they still exhibit some shortcomings. These include the generation of a high
number of assertions by automatic assertion miners, the production of redundant and
inconsistent assertions, and sometimes the lengthy execution time required by existing
assertion miners for mining assertion sets. Furthermore, there remain limitations in the
state-of-the-art in terms of evaluating the quality of assertions and analyzing whether
they offer comprehensive design behavior coverage. These shortcomings and limitations
result in high costs in the functional verification of designs under verification.

Additionally, in recent years, there have been preliminary efforts to incorporate
assertions into security verification practices. While there have been notable contributions
in this field, there is still a need for further study and improvement. Previously, assertions
were primarily generated for functional verification purposes, focusing on verifying the
functionality of designs. However, there is now a demand to enhance these functional
assertions into security assertions, enabling their use in the security verification of
designs.

This PhD thesis endeavors to enhance both functional verification and security
verification processes for designs under verification. In pursuit of this goal, several
innovative methods and solutions, many of which are introduced for the first time, are
proposed. To enhance functional verification and address the limitations of existing
automatic assertion miners, this thesis presents ARTmine, an automatic assertion
miner that efficiently generates accurate assertion sets within a significantly reduced
execution time. The assertions produced by ARTmine offer extensive coverage of design
behavior, surpassing leading assertion miners in the field with minimal redundancy and
inconsistency.

On the other hand, this thesis introduces two novel techniques aimed at enhancing
the security verification of designs under verification. Firstly, an automatic security-
based assertion miner is introduced for the first time, capable of effectively generating
security assertion sets to detect inserted Hardware Trojans in the designs. Furthermore,
to address security verification in the domain of autonomous vehicles, an innovative
method named ADAssure is presented. ADAssure automatically generates security
assertions with the objective of debugging and localizing bugs in autonomous driving
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control algorithms amidst potential attacks.
Furthermore, this thesis introduces two innovative methods aimed at enhancing

the current assertion evaluation techniques in the state-of-the-art and addressing the
shortcomings of automatic assertion miners in producing redundant and inconsistent
assertions. Firstly, a novel data mining-based method named Dominance is introduced
for the first time. It not only evaluates the quality of assertions and selects those offering
high design behavior coverage but also analyzes various rankings of other evaluation
methods to present a unified set of high-quality assertions. Secondly, for the first time, a
novel method named IMMizer is proposed to minimize the redundancy and inconsistency
of assertions. IMMizer effectively detects redundant and inconsistent assertions and
minimizes them, ensuring that the design behavior coverage of the minimized set equals
that of the initial assertion set. While Dominance and IMMizer are examined in the
context of functional verification and functional assertions in this thesis, they are readily
applicable in the realm of security verification and security assertions.

In summary, this PhD thesis introduces several innovative methods and solutions,
most of them for the first time, effectively enhancing the fields of functional verification
and security verification. These methods include: 1) ARTmine, an automatic assertion
miner; 2) an automatic security-based assertion miner; 3) ADAssure, a novel method for
bug localization and debugging of autonomous driving control algorithms in autonomous
vehicles; 4) Dominance, a data mining-based method for assertion evaluation; and
finally, 5) IMMizer, a technique for minimizing the assertions generated by automatic
assertion miners.
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Kokkuvõte
Andmekaeve algoritmide kasutamine riistvarasüsteemide
väidete-põhise verifitseerimise parendamiseks
Riistvara funktsionaalseks verifitseerimiseks on olemas mitmed erinevad tehnikad, seal-
hulgas staatilised, dünaamilised ja väidete-põhised lähenemised. Kuigi nii staatilised kui
ka dünaamilised meetodid on näidanud häid tulemusi, on väidete-põhised meetodid,
mis kombineerivad staatiliste ja dünaamiliste tehnikate eelised, pälvimas üha suure-
mat tähelepanu. Arvestades väidete-põhise lähenemise olulisust nii funktsionaalse kui
ka turvalisuse verifitseerimise jaoks, on tehtud viimasel ajal olulisi jõupingutusi kõrge
kvaliteediga väitekomplektide loomiseks, mis tagaksid disainide ulatusliku katvuse.

Need jõupingutused võib laias laastus jaotada kaheks: manuaalne ja automaatne
väidete loomine. Manuaalne väidete loomine on aeganõudev ja ka aldis vigadele. Lisaks
nõuab suurte disainide jaoks manuaalne väidete loomine detailset arusaamist verifitseeri-
tavast disainist, suurendades sedasi väidete loomisega seotud kulusid. Eelpool mainitud
probleemide lahendamiseks on hakatud arendama automaatseid väitekaevureid. Kuigi
nimetatud lähenemine leevendab mõningaid manuaalse väidete loomisega seotud prob-
leeme, siis sellele vaatamata on ka sellel meetodil omad puudused. Nende hulka kuuluvad
näiteks automaatselt genereeritavate väidete suur kogus, liiaste ja vastuoluliste väidete
hulk ning vahel ka genereerimisele kuluv aeg. Lisaks ei ole isegi kõige kaasaegsemad
meetodid jätkuvalt väga head väidete kvaliteedi hindamisel ja nende analüüsimisel, et
veenduda disaini katvuses. Seetõttu on verifitseerimisega seotud kulud aga endiselt
kõrged.

Viimastel aastatel on tehtud olulisi jõupingutusi ka disainide turvalisuse verifitseeri-
miseks. Kuigi selles valdkonnas on märkimisväärseid arenguid, on uurimistöö vajadus
veel endisel suur. Seetõttu on väidete-põhiseid lähenemisi, mis siiani olid suunatud ainult
funktsionaalsuse verifitseerimiseks, edasi arendatud ka turvalisusega seotud aspektide
verifitseerimiseks.

Käesoleva doktoritöö eesmärgiks on edendada nii funktsionaalse kui ka turvalisuse ve-
rifitseerimise meetodeid. Eesmärgi saavutamiseks on välja pakutud mitmeid uuenduslikke
meetodeid ja lahendusi. Funktsionaalse verifitseerimise parendamiseks ja olemasolevate
automaatsete väitekaevurite piirangute leevendamiseks tutvustatakse väitekaevurit ART-
mine, mis genereerib täpseid väitekomplekte oluliselt kiiremini, kui senised meetodid.
ARTmine’i poolt toodetud väited pakuvad ulatuslikku disaini katvust, ületades seniseid
väitekaevureid väiksema liiasuse ja vastuolulisusega.

Samuti tutvustab käesolev doktoritöö kahte uut tehnikat, mille eesmärk on parendada
disainide turvalisuse verifitseerimist. Esmakordselt esitletakse automaatset turvalisusele
suunatud väitekaevurit, mis suudab tõhusalt genereerida verifitseerimiseks vajalikke väi-
tekomplekte, et tuvastada disainides peituvaid Trooja hobuseid. Täiendavalt pakutakse
välja meetod nimega ADAssure, et lahendada turvalisuse verifitseerimise väljakutseid
autonoomsete sõidukite valdkonnas. ADAssure genereerib turvalisuse väiteid autonoom-
sete juhtimisalgoritmide juures nii veaotsinguks kui ka vigade lokaliseerimiseks võimalike
rünnakute tingimustes.

Lisaks tutvustab käesolev doktoritöö kahte innovaatilist meetodit, millede eesmärgiks
on parendada olemasolevaid väidete hindamise tehnikaid, et lahendada automaatsete
väitekaevurite poolt toodetud üleliigsete ja vastuoluliste väidete probleem. Esmakordselt
tutvustatakse andmekaevel põhinevat meetodit nimega Dominance. See meetod hindab
väidete kvaliteeti ja valib välja need väited, mis pakuvad suurimat disaini katvust. Samuti
analüüsitakse ka teiste hindamismeetodite tulemusi, et esitada ühtne kõrgkvaliteediline
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väitekomplekt. Lisaks pakutakse välja meetod nimega IMMizer, mis on suunatud väidete
üleliigsuse ja vastuolulisuse vähendamisele. IMMizer tuvastab ja ellimineerib üleliigsed
ja vastuolulised väited, tagades samas, et minimeeritud väitekomplekti katvus vastab
algse väitekomplekti omale. Kuigi Dominance’i ja IMMizerit on käesolevas doktoritöös
välja pakutud funktsionaalse verifitseerimise kontekstis, siis on võimalik neid kasutada
ka turvalisuse verifitseerimise valdkonnas.

Kokkuvõtvalt tutvustab käesolev doktoritöö mitmeid innovaatilisi meetodeid ja la-
hendusi, millest enamik on esitatud esmakordselt, ja edendab seeläbi funktsionaalse
ja turvalisuse verifitseerimise valdkondi. Pakutud meetodid hõlmavad: 1) ARTmine’i,
automaatset väitekaevurit; 2) automaatset turvalisusel põhinevat väitekaevurit; 3)
ADAssure’i, innovaatilist meetodit autonoomsete juhtimisalgoritmide veaotsinguks ja
vigade lokaliseerimiseks autonoomsetes sõidukites; 4) Dominance’i, andmekaeve mee-
todil põhinevat meetodit väidete hindamiseks; ja lõpuks 5) IMMizerit, meetodit, mis
minimeerib automaatsete väitekaevurite poolt genereeritud väited.
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Abstract—Association rule mining is a promising data mining
approach that aims to extract correlations and frequent patterns
between items in a dataset. On the other hand, in the realm
of assertion-based verification, automatic assertion mining has
emerged as a prominent technique. Generally, to automatically
mine the assertions to be used in the verification process, we
need to find the frequent patterns and correlations between
variables in the simulation trace of hardware designs. Existing
association rule mining methods cannot capture temporal
behaviors such as next[N], until, and eventually that hold
significance within the context of assertion-based verification. In
this paper, a novel association rule mining algorithm specifically
designed for assertion mining is introduced to overcome this
limit. This algorithm powers ARTmine, an assertion miner
that leverages association rule mining and temporal behavior
concepts. ARTmine outperforms other approaches by generating
fewer assertions, achieving broader design behavior coverage in
less time, and reducing verification costs.

Index Terms—verification, assertion-based verification, auto-
matic assertion mining, data mining, association rule mining

I. INTRODUCTION

Functional verification ensures that a system’s design
meets its specification before manufacturing, by identifying
and rectifying design errors [1]. Among the various methods
to ensure system correctness, Assertion-Based Verification
(ABV) has emerged as one of the most popular solutions
for checking the design functionality [2].

Assertions are Boolean expressions that define the de-
sign’s behavior [1]. Traditionally, verification engineers man-
ually defined assertions [2]. However, the manual definition
of assertions is a time-consuming task and requires human
expertise and a profound understanding of the design’s
functionality [3]. Therefore, some studies have been con-
ducted to automatically mine the assertions [4–9].

In the literature, there are several works on the auto-
matic assertion mining of digital designs. The work in [4]
proposed an assertion miner that employs dynamic depen-
dency graphs to extract the design’s signal relations and
generate assertions. Another approach presented in [5] is a
syntax-guided enumeration assertion miner. The proposed
methods in [6] and [7] are techniques that extract assertions
using several templates in the form of Finite State Machines
(FSMs). HARM [10] and its extended version [11] are hint-
based assertion miners that generate Linear Temporal Logic
(LTL) assertions from simulation traces. The GoldMine in-
troduced in [8] can generate assertions for a given Register-
Transfer Level (RTL) design by leveraging formal verification
and static code analysis. Finally, the method described in
[12] extracts assertions by transforming sequential designs
into pseudo-combinational designs.

This work was supported by the Estonian Research Council grants
PSG837.

While existing assertion miners show promise, they do
have some drawbacks that require improvement. Assertion
miners in [4–6] suffer from redundancy (i.e., assertions that
describe the same design behavior) and inconsistency (i.e.,
assertions that contradict each other), requiring additional
tools like IMMizer [13] for resolution. Certain miners such
as [5], [10], and [11] generate excessive assertions, ne-
cessitating tools like Dominance [14] and Shayan [15] for
selecting the best assertions among all the generated ones.
Readability issues arise with complex antecedents in miners
like the work in [4]. Moreover, high execution times in the
works such as [16] incur costs in the verification process.

On the other hand, association rule mining algorithms in
the realm of data mining tend to neglect the incorporation
of mining temporal information [17]. The primary focus
of these algorithms such as FP-growth and Eclat lies in
handling static data, which remains unchanged over time
[18]. Nevertheless, they typically employ various data min-
ing metrics to generate a limited yet accurate set of associ-
ation rules [18]. These algorithms continue to demonstrate
efficiency in swiftly extracting valuable information from
big datasets within a short timeframe [18]. Furthermore,
while some research has explored temporal association rule
mining [19, 20], none of these approaches can capture
temporal behaviors such as next[N], until, and eventually
that are vital for ABV.

This paper introduces an innovative association rule min-
ing algorithm to address the aforementioned drawbacks.
This algorithm is capable of extracting rules that incorpo-
rate the concept of time, which is necessary in the context
of ABV. Based on this algorithm, an automatic assertion
miner called ARTmine is proposed to generate next[N],
until, and eventually temporal behaviors from hardware
designs. Remarkably, the data mining literature lacks dedi-
cated algorithms for mining these temporal behaviors [20,
21], making the algorithm presented in this paper a unique
and specific solution for assertion mining.

ARTmine efficiently produces readable assertions in sig-
nificantly less time compared to other approaches. It gen-
erates a compact assertion set, minimizing redundancy and
inconsistency while effectively covering the design behavior.
As a result, ARTmine reduces verification costs and time.

The contributions of this paper are listed as follows:

● A new association rule mining algorithm is proposed to
create an assertion miner called ARTmine, which can
automatically generate the most important temporal
patterns in ABV, i.e., next[N], until, and eventually,
in a shorter amount of time in comparison with the
proposed methods in the literature;● ARTmine integrates suitable data mining metrics (e.g.,
min_supp, and min_conf) that aid it in generating
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fewer assertions, prioritizing only the most accurate
and valid ones;● ARTmine achieves broader design behavior coverage
than the state-of-the-art through an efficient algorithm
capable of analyzing all relationships among all hard-
ware design variables with minimal overhead.

The paper is organized as follows: The preliminaries are
presented in section II and the proposed method is elab-
orated in section III. Section IV presents the experimental
results and finally, Section V concludes the paper.

II. PRELIMINARIES

In this section, we briefly explain the definitions and
concepts used in this paper.

Definition 1: An atomic proposition is a logic formula
that does not contain logical connectives [6]. Examples of
atomic propositions are such as a1 = True, and b1 = False.

Definition 2: A proposition is a composition of atomic
propositions through logical connectives [6]. An example
for proposition is a1 = True && b1 = False && c1 = True.

Definition 3: An assertion is a composition of proposi-
tions through temporal operators that must hold or must
become true during the execution of the design [6]. Typ-
ically, an assertion is divided into two parts: the left side,
named antecedent, and the right side, called consequent [6].
The general structure of an assertion in Property Spec-
ification Language (PSL) is like al w ay s(antecedent →
consequent), which implies that the consequent will hold
whenever the antecedent occurs [22].

Definition 4: A simulation trace consists of the values
of the variables of hardware designs that have been stored
as records of data for different time instants (clock cycles)
during the execution of the designs [10].

Definition 5: Temporal pattern next[N]: In PSL,
next[N] temporal pattern will be in the form of:
al w ay s(antecedent → next[N] consequent) [22]. This
means that when antecedent occurs, after N time instant
(clock cycle), consequent will occur [22]. N is an integer
value and N > 0.

Definition 6: Temporal pattern until: In PSL,
until temporal pattern will be in the form of:
al w ay s(antecedent unti l consequent) [22]. This
means that the antecedent is true and holds up until the
time that the consequent happens [22].

Definition 7: Temporal pattern eventually: In PSL,
this pattern is in the form of: al w ay s(antecedent →
eventual l y ! consequent) [22]. This means that there ex-
ists a future time instant (clock cycle) where the consequent
of assertion finally holds [22].

Definition 8: Frequent itemsets refer to a set of variables
in simulation trace that occur with a frequency, indicating
significant relations/associations between the variables.

Definition 9: An Association Rule (AR) is defined as an
implication of the form X → Y where X, Y ⊆ I, with X ∩ Y
= Ø, and I is a set of items [18, 20, 21]. X and Y are called
frequent itemsets.

Definition 10: Support is a metric in association rule
mining that indicates how frequently an itemset appears in
the dataset [18]. This value is between 0 and 1. For the rule
X → Y, the value of support is calculated with the following
formula [18, 23]:

Supp(X → Y ) = P(X ∪Y ) (1)

Figure 1: General flow of ARTmine
In (1), P(X ∪Y ) is the probability where X ∪Y indicates
that a record contains both X and Y, that is the union of
itemsets X and Y.

Definition 11: The min_supp value is the threshold and
a minimum value for support to decide whether an itemset
is frequent (i.e., occurs frequently in the simulation trace)
or not [18]. If the frequency of the itemset is more than this
threshold, the itemset is considered a frequent itemset [18].
A higher value of min_supp leads to generating commonly
occurring (general) ARs, while a lower value of min_supp
leads to generating rarely occurring ARs (corner cases) [18].

Definition 12: Confidence is an indication of how often
the rule has been found to be true [24]. For the rule X → Y,
this value is calculated with the following formula [18, 24]:

Con f (X → Y ) = P(Y ∣X ) (2)
It evaluates the degree of certainty of the detected associ-
ation rule. This is taken to be the conditional probability
P(Y ∣X ), that is the probability that a record containing X
also contains Y. This value is between 0 and 1.

Definition 13: The min_conf is the minimum value for
confidence [18]. The higher value of min_conf leads to fewer
but more accurate and valid association rules [18].

III. PROPOSED METHODOLOGY

Fig. 1 depicts the general flow of ARTmine, taking a simu-
lation trace (Definition 4) of the Design Under Verification
(DUV) as input. The resulting output comprises a set of
temporal assertions, encompassing next[N] (Definition 5),
until (Definition 6), and eventually (Definition 7). These
temporal assertions are then utilized in the verification
process. As illustrated in Fig. 1, the first phase of ARTmine
is Association rule mining. Consequently, phase 2 is Asser-
tion mining which includes two sub-phases named Time
notation and Assertion conversion.

During the Association rule mining phase, at first, the
simulation trace of the hardware design undergoes prepro-
cessing to prepare the data. Subsequently, a procedure is
applied to the preprocessed data to mine all association
rules (Definition 9) derived from the simulation trace.

In the second phase, Assertion mining, the association
rules obtained from the first phase are passed to the Time
notation step. Here, these extracted association rules are
integrated with the concept of time to generate appropriate
time-integrated rules (temporal association rules). These
rules serve as the input for the Assertion conversion step.
Consequently, the Assertion conversion step transforms the
rules from the previous step into assertions, rendering
them ready for utilization in the verification process. In the
following subsections, each phase of the method has been
discussed in more detail.

A. Association Rule Mining

The primary objective of this phase is to first preprocess
the simulation trace and second, mine the association
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rules from the preprocessed data. Conventional association
rule mining algorithms (e.g., Apriori, and FP-growth [18])
typically lack the capability to incorporate temporal consid-
erations required for extracting crucial temporal patterns in
ABV. To address this limitation and introduce a time-aware
approach for association rule mining in ABV, we propose
Algorithm 1. This algorithm outlines the entire procedure
in the Association rule mining phase.

Lines 1 to 10 of the Algorithm 1 handle its initialization.
’N’ denotes the time instant used for mining the next[N]
pattern, and ST represents the simulation trace from which
we aim to mine association rules. The minimum support
threshold is min_supp (Definition 11) and the minimum
confidence threshold is min_conf (Definition 13). In this
algorithm, FI signifies a set of frequent itemsets (Definition
8). α and β represent the values of a variable at consecutive
time instants in the simulation trace (e.g., time instants t1
and t2). The output of the algorithm is a set of associa-
tion rules (R) (Definition 9). Subsequently, lines 11 to 14
encompass the preprocessing steps for mining association
rules for the next[N] pattern. In Algorithm 1, lines 16 to 24
handle the preprocessing for the until pattern, while lines
26 to 30 accomplish the same for the eventually pattern.
After preprocessing the ST for each pattern, lines 32 to 49
perform the tasks of identifying frequent itemsets in the
simulation trace and then mining the association rules.

Preprocessing of Simulation Trace – next[N]:
In Algorithm 1, lines 11 to 13 demonstrate the prepro-

cessing of the simulation trace for next[N] pattern. To clarify
the algorithm’s hypothesis, consider a rule in the form of
antecedent → next[N]consequent . In order to prepare
the simulation trace for mining this temporal pattern, all
the output of the simulation trace is moved N records
above its original position. However, the inputs of the
simulation trace remain as they are. The simulation trace
is modified in this way since the corresponding output
of input variables in a sequential hardware design may
occur in the simulation trace N time instants later. This
ensures correct alignment of outputs with their correspond-
ing inputs, allowing for accurate temporal analysis and also
mining patterns for different N time instants (clock cycles).
In line 14, the modified simulation trace is stored for mining
the next[N] pattern using lines 32 to 49 of the Algorithm 1.

Fig. 2 illustrates an example of preprocessing for next[2]
pattern. The simulation trace in Fig. 2.1 is preprocessed by
moving the output parts 2 time instants above their original
positions, resulting in the modified simulation trace shown
in Fig. 2.2. The figure uses T to represent the true value, and
F to show the false value. The simulation trace consists of
5 records, divided into two categories: input variables and
output variables. Each variable is assigned its corresponding
value at each time instant. The last two records in Fig. 2.2
are marked as not available (NA) due to the absence of
data after time instant t4 to be moved in front of these two
records.

Notably, ARTmine primarily focuses on mining the essen-
tial temporal patterns such as next[N], which hold signifi-
cant importance in ABV. Nevertheless, the method is easily
extensible to other temporal patterns like before[N], due to
the symmetry shared between these two patterns [25].

Preprocessing of Simulation Trace – until:

Figure 2: (1) Simulation trace (2) Preprocessed simulation trace

Algorithm 1 ARTmine – Association Rule Mining
1: Inputs: ▷ initialization
2: N = time instant;
3: simulation trace ST ;
4: minimum support threshold min_supp;
5: minimum confidence threshold min_conf;
6: Set of frequent itemsets FI;
7: α = value of variable a in time t1;
8: β = value of variable a in time t2;
9: Output:
10: Set of association rules R;
11: case (next[N]): ▷ preprocessing of next[N]
12: for all records of ST :
13: move each output of ST , N records to up;
14: store(moved ST );
15: go to line 32;
16: case (until): ▷ preprocessing of until
17: F = (β−α)/α;
18: if F = 0 or F = unde f i ned : ▷ F = 0÷0 = unde f i ned
19: β = 0;
20: if F =∞:
21: β = 0.5;
22: if F =−1:
23: β =−1;
24: store(modified ST );
25: go to line 32;
26: case (eventually): ▷ preprocessing of eventually
27: for every input of the ST in time t:
28: for every output from time(t+1) to time(t+N):
29: move the output to the front of the input in time t;
30: store(moved ST );
31: go to line 32;
32: initialize FI to be an empty set; ▷ association rule mining
33: generate frequent itemsets of size 1 and add them to FI;
34: while FI is not empty do:
35: generate candidate itemsets Ck+1 of size k+1 by joining frequent itemsets of

size k;
36: for each record in ST :
37: count the support for each candidate itemset in Ck+1;
38: prune the candidate itemsets in Ck+1 that is not equal to the minimum

support threshold min_supp;
39: add the remaining candidate itemsets to FI;
40: Increment k;
41: generate association rules from the frequent itemsets in FI:
42: for each frequent itemset X in FI:
43: generate all non-empty subsets Y of X;
44: for each subset Y:
45: generate the rule Y => X-Y;
46: calculate the support and confidence of each rule;
47: prune the rules that do not meet the minimum confidence threshold

min_conf;
48: add the remaining rules to R;
49: return R;

Lines 16 to 24 in Algorithm 1 detail the preprocessing
procedure for the until pattern (Definition 6). To clar-
ify the algorithm’s hypothesis, consider a temporal pat-
tern antecedent → unti l consequent , where antecedent
comprises input variables from the simulation trace, and
consequent represents an output variable from the simu-
lation trace. The preprocessing method explores the points
in the simulation trace where the value of an input variable
undergoes a change and subsequently identifies the corre-
sponding output. This information is obtained through the
implementation of lines 17 to 23 in Algorithm 1. In this

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on June 23,2024 at 11:08:32 UTC from IEEE Xplore.  Restrictions apply. 



algorithm, α and β represent the values of a variable at
two consecutive time instants (e.g., t1 and t2).

The result of the equation on line 17 of the algorithm is
stored in F . Based on this value, we perform a mapping
on the simulation trace as follows to explore the changes
in variable values in the simulation trace according to the
definition of until pattern:
● the first row of the simulation trace remains un-

changed.● if F = 0 or F = unde f i ned , β is mapped to 0, indicat-
ing no change in the values of variables (α and β).● if F =∞, β is mapped to 0.5, indicating a change from
0 (α) to 1 (β).● if F =−1, β is mapped to -1, indicating a change from
1 (α) to 0 (β).

The mapped values (i.e., 0, 0.5, and -1) only serve as
indicators for the tool to enhance the detection of changes
in the simulation trace and facilitate the categorization of
these distinct changes.

Although ARTmine focuses on mining the crucial tem-
poral patterns in ABV, it can be readily extended to other
patterns like release [25] with minor changes in its algorithm
as release and until patterns share certain similarities.
Specifically, the until pattern specifies that the consequent
must hold until the antecedent becomes true, whereas the
release pattern mandates that the consequent must persist
continuously until the antecedent becomes true [25].

Preprocessing of Simulation Trace – eventually:
Algorithm 1 preprocesses the simulation trace for the

eventually pattern in lines 26 to 31. To clarify the algorithm’s
hypothesis, consider a rule of the form antecedent →
eventual l y ! consequent , where antecedent comprises
input variables from the simulation trace, and consequent
represents an output variable from the simulation trace.
To prepare the concept of time for the eventually pattern
according to Definition 7, for each row of inputs at time t
of the simulation trace, all the outputs from time t+1 to t+n
are moved to the front of the input at time t.

Association Rule Mining – next[N], until, eventually:
After preprocessing the simulation trace in the preced-

ing steps to handle temporal patterns next[N], until, and
eventually, the resulting preprocessed simulation trace is
subsequently fed into lines 32 to 49 of Algorithm 1 to mine
association rules for these three patterns. This part of the
algorithm is executed similarly across all pattern types.

In lines 32 to 40 of Algorithm 1, frequent itemsets
(FI) (Definition 8) of various sizes (1-itemsets, 2-itemsets,
etc.) are generated iteratively until the FI list is empty.
Specifically, the algorithm mines frequent itemsets whose
support values (Definition 10) exceed the min_supp value
(Definition 11), while pruning the others. In this algorithm,
1-itemsets consist of individual variables of simulation
trace, 2-itemsets are pairs of variables, etc.

After mining the frequent itemsets and adding them
to the FI list, in lines 41 to 49 of the algorithm, the
association rules are extracted from the FI list. To clarify
these lines of the algorithm, let’s consider an example whereFI is equal to 4-itemsets of {A, B, C, D}. To generate
association rules from this frequent itemset, we consider
all non-empty subsets of it. These subsets are 1-itemsets of
{A}, {B}, {C}, {D}, 2-itemsets of {A, B}, {A, C}, {A, D}, {B, C}, {B,

D}, {C, D}, as well as the 3-itemsets of {A, B, C}, {A, B, D}, {A,
C, D}, {B, C, D}, and 4-itemset of {A, B, C, D}. Afterward, for
each non-empty subset Y, we generate an association rule
of the form Y => X-Y. By doing so, the algorithm considers
all possible combinations of items in the frequent itemset
to identify significant associations between different sets of
items. For example, if X = {A, B, C, D} and Y = {A, B, C}, then
we generate the rule {A, B, C} => {D}. The antecedent of the
rule (Y) is the subset {A, B, C}, and the consequent of the
rule (X-Y) is the set difference between the frequent itemset
{A, B, C, D} and the antecedent {A, B, C}, which is {D}.
This process is repeated for each non-empty subset of FI ,
yielding a set of association rules. Finally, we evaluate each
association rule for its support and confidence, pruning
those that are below the min_conf threshold (Definition 13).
In this part of the algorithm, ARTmine optimizes assertion
generation by thoroughly inspecting non-empty subsets of
itemsets, exploring diverse combinations, and selectively
pruning those that are a subset of each other and also fall
below the min_supp and min_conf thresholds. This process
minimizes redundancy while ensuring the creation of valid
and accurate assertion sets with minimal overhead.

Increasing the min_supp value results in fewer asser-
tions that describe more general design behavior, while
decreasing the min_supp value leads to assertions covering
rare design behavior (corner cases). Similarly, raising the
min_conf value produces fewer but more valid assertions.
Valid assertions refer to assertions that will not be vio-
lated during the simulation with different scenarios. The
utilization of these values in ARTmine facilitates an effective
verification process. In this paper, min_supp and min_conf
are set to 0.01 and 1, respectively, as we aim to discover
corner cases while achieving high design behavior coverage
(details are presented in Section IV).

At this point, with the completion of the association
rule mining for all three patterns, these rules serve as the
fundamental components of the Assertion mining phase.

B. Assertion Mining

This phase consists of two steps: Time notation and
Assertion conversion, which are explained in the following:

1) Time Notation
In this step, the method integrates the concept of time

into the association rules generated in the first phase,
leading to a set of temporal association rules. Algorithm
2 covers the time notation process for all three temporal
patterns, detailed in the following sections. The initial 7
lines of the algorithm handle its initialization. It involves U
as a set of mined association rules, and R, R′, and R′′ as
three distinct association rules.

Time Notation – next[N]:
After mining association rules in the first phase (section

III-A), the method provides us a set of rules in the general
form of antecedent → consequent . In this step, ARTmine
determines to which temporal pattern each extracted rule
belongs. Subsequently, it assigns the corresponding time
label to the rule using Algorithm 2.

Line 9 of the algorithm detects which rules are associated
with the next[N] pattern. Subsequently, line 10 assigns the
corresponding N to next[N] in the rule antecedent →
next[N] consequent . If the antecedent value matches an
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Algorithm 2 ARTmine – Time Notation
1: U = set of mined association rules; ▷ initialization
2: R = antecedent → consequent in time instant ti ;
3: R′ = antecedent → consequent in time instant t j ;
4: R′′ = consequent → antecedent ;
5: {R, R′} ∈ U ;
6: TID = time instant difference;
7: move_count = number of moved records in the preprocessing phase, it corre-

sponds with N in the next[N] pattern;
8: for a rule R in U : ▷ next[N] time notation
9: if (antecedent == an input of preprocessed sim. trace) and ((consequent ==

an output of preprocessed sim. trace) and (move_flag == true)):
10: label R as next[move_count] temporal association rule;
11: else:
12: discard R;
13: if ((F = 0.5) or (F = -1)) and (R′′ ∈ U ): ▷ until time notation
14: label R as until temporal association rule;
15: discard R′′;
16: for rules in form of R and R′ in U : ▷ eventually time notation
17: if (count(antecedent) == count(consequent)) and (move_flag == true):
18: for each corresponding antecedent and consequent in R:
19: TID[R] = time_instant[antecedent ] - time_instant[consequent ];
20: for each corresponding antecedent and consequent in R′:
21: TID[R′] = time_instant[antecedent ] - time_instant[consequent ];
22: if (TID[R] < 0) and (TID[R′] < 0) and (TID[R] != TID[R′]):
23: label R as eventually temporal association rule;

input in the simulation trace, and the consequent value has
already been moved to another record of it (’move_flag ==
true’), the rule is labeled as a next temporal association
rule. Otherwise, other mined rules are discarded.

Time Notation – until:
Lines 13 to 15 in Algorithm 2 describe the process of

identifying the until pattern. If the value of F (computed in
phase 1) is 0.5 or -1, and for this value, both antecedent →
consequent and consequent → antecedent rules were
obtained in the first phase, the rule is labeled as an
until temporal association rule. The rule consequent →
antecedent is then removed from the set of mined rules.
Indeed, the essential criterion for identifying a rule as an
until pattern is the presence of both the antecedent →
consequent and consequent → antecedent rules in the
set of mined rules of phase 1.

Time Notation – eventually:
Lines 16 to 23 in Algorithm 2 are for detecting the even-

tually pattern. To achieve this, ARTmine first calculates the
occurrences of antecedent and consequent in the prepro-
cessed simulation trace, denoted as count(antecedent)
and count(consequent), respectively. If these two values
are equal, the time instants of their occurrences are cap-
tured. Subsequently, the difference in time instants (TID in
Algorithm 2) between antecedent and consequent is cal-
culated. If the differences are negative and non-equivalent
(line 22), the extracted association rule represents an even-
tually pattern and is labeled as an eventually temporal
association rule (lines 23). In fact, the essential condition
for identifying a rule as an eventually pattern is that the
TIDs must be negative and non-equivalent.

2) Assertion Conversion
In this step, the mined temporal association rules are

transformed into temporal assertions using the labels as-
signed in the Time notation step (section III-B1). ARTmine
provides assertions in SVA syntax. However, in this section,
we will focus on explaining the general format of temporal
mined rules in PSL [22] as it is more understandable.

The output of the Time notation step for temporal

association rules labeled as next[N] is converted to the
PSL format of "always(antecedent → next[N] consequent)".
Temporal association rules labeled as until are transformed
into "always(antecedent until consequent)", and rules with
the eventually label are changed to "always(antecedent →
eventually! consequent)" in PSL. The generated assertion
sets in this phase are now ready for the verification process.

IV. EXPERIMENTAL RESULTS

ARTmine1 has been implemented in Python and evalu-
ated using several benchmarks developed in Verilog and
SystemVerilog. The benchmarks include some of the IS-
CAS’89 designs from [26] and Arb2, Decoder, Multdiv, Con-
troller, and Id_stage from the GoldMine repository in [27].
One benchmark is the Bridge that connects memory and
IO. The Arbiter and LBDR benchmarks are vital components
of an open-source project named NoC router Bonfire [28].

Table I: Description of injected mutants

Mutation operator types List of operators
arithmetic operators +, −, ×, /, %
relational operators ==, !=, >, <, >=, <=

logical operators &&, ∣∣
assignment operators +=, − =, ×=, /=, %=, =

unary operators +, −, ∼, !
bitwise operators ≪, ≫, &, |, ∧

bitwise assignment operators ≪=, ≫=, & =, ∣ =, ∧ =
Table II: Experimental results of ARTmine

Benchmarks T_Len Lines I/O #A-N #A-U #A-E ETN ETU ETE
Arb2 100 28 6 8 0 0 0.001s 0.11s 0.05s

Id_stage 1K 813 82 1793 107 2 13s 6m11s 50s
Decoder 1K 426 4 369 20 1 0.24s 2m 38s

Controller 10K 788 57 748 72 1 12s 5m14s 37s
Multdiv 1K 559 15 348 79 4 49s 6m9s 3m12s
Arbiter 30K 245 22 105 55 3 10s 6m 3m
LBDR 80K 95 13 195 27 3 57s 7m3s 4m
Bridge 100K 196 16 79 36 1 7s 13m 7m

S27 1K 36 5 1 0 0 0.05s 20s 15s
S15850 1K 11247 227 9542 227 3 1m55s 16m42s 5m13s
S35932 1K 39481 355 1084 48 1 54s 9m11s 4m5s
S38417 1K 26190 134 1509 308 12 18s 15m 3m
S38584 1K 22734 342 5093 1460 8 1m10s 22m21s 8m14s

To evaluate the assertion sets, we have implemented
an automatic mutant generator and injector following the
details in [29]. We used a complete set of mutants that
converted all operators and bits, injecting them into the RTL
designs. Table I provides details on the injected mutants,
including the types of mutated operators in the column
’Mutation operator types’ and the changes made to the
operators listed in each row of the ’List of operators’
column. Additionally, all 0 and 1 bits have been changed
to each other. Furthermore, in all the experiments for
ARTmine the values for the minimum support (Definition
11) and minimum confidence (Definition 13) have been
set to 0.01 and 1, respectively. These values allow the
verification engineer to guide ARTmine in mining fewer
yet more valid assertions, effectively considering the corner
cases of designs. Moreover, N has been set to 2 for the
next[N] pattern, but it can be adjusted to other values.

Table II shows experimental results of ARTmine, including
the number of mined assertions for next[N], until, and
eventually patterns (columns ’#A-N’, ’#A-U’, and ’#A-E’),

1https://github.com/MohammadRezaHeidariIman/ARTmine
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Table III: Comparison of ARTmine with other assertion miners

Benchmarks #Mutants
#Assertions Mutant Detection (%) Execution time

ARTmine HARM GoldMine ARTmine HARM GoldMine ARTmine HARM GoldMine
Arb2 10 8 12 9 100 100 100 0.161s 0.49s 2.4s

Id_stage 660 1902 105716 2790 90 80 45 7m14s 13m41s 18m11s
Decoder 400 390 780 418 69 53 40 2m38.24s 4m33s 4m11s

Controller 644 821 13672 1068 91 76 37 6m3s 9m17s 15m51s
Multdiv 1801 431 21620 700 96 88 54 10m10s 17m30s 13m23s
Arbiter 860 163 2017 113 100 66 68 9m10s 20m14s 26m12s
LBDR 632 225 480 100 100 39 18 12m 15m38s 16m10s
Bridge 560 116 1596 806 78 50 31 20m7s 1h15m 36m4s

S27 12 1 1 NS * 100 100 NS * 35.05s 0.56s NS *

S15850 2642 9772 68174 NS * 80 60 NS * 23m50s 33m09s NS *

S35932 3700 1133 159315 NS * 52 34 NS * 14m10s 38m18s NS *

S38417 3022 1829 15889 NS * 68 40 NS * 18m18s 25m12s NS *

S38584 2905 6561 145925 NS * 84 62 NS * 31m45s 41m37s NS *

* GoldMine could not provide any solution (assertion) for this benchmark.

along with their corresponding execution times (’ETN ’,
’ETU ’, and ’ETE’). In this table, column ’T_Len’ indicates the
length of the simulation traces, and column ’Lines’ shows
the lines of code for each benchmark. Furthermore, ’I/O’ is
the number of I/O in each benchmark. Experimental results
show that ARTmine is capable of generating a reasonable
number of assertions in a suitable amount of time, even
for large-scale designs like the ISCAS’89 benchmarks.

Table III presents the efficiency of ARTmine in contrast
to the most popular assertion miners in the literature,
i.e., HARM [10] and GoldMine [8]. The column ’#Mutants’
represents the number of injected mutants for each bench-
mark. The column ’#Assertions’ compares the number of
assertions generated by ARTmine, HARM, and GoldMine,
and the column ’Mutant Detection (%)’ presents the per-
centage of the detected mutants. To mine the assertions
for HARM, and GoldMine, we ran the tools available on
their repositories in [10] and [27]. In our experiments,
all assertion miners used the same simulation traces and
designs, and mutant injection was performed similarly for
all of them.

As can be seen, ARTmine has generated significantly
fewer assertions than the other tools (in almost all cases),
while being considerably more effective in mutant de-
tection. The results indicate that HARM has generated
an excessive number of assertions for most benchmarks,
potentially prolonging the verification process. Conversely,
GoldMine cannot handle ISCAS’89 benchmarks, as indi-
cated by ’NS’ (No Solution) in Table III. Unlike other tools,
GoldMine only works with Verilog designs and cannot
handle simulation traces or vcd files [8]. Moreover, it is
limited to mining assertions from designs in the RTL format
[8], while the ISCAS’89 benchmarks are implemented in
the gate-level format, making GoldMine unable to mine
any assertion for them. However, we employed ISCAS’89
benchmarks to evaluate our assertion miner with large-
scale designs and compare it to the latest miner in the
literature, HARM [10]. Moreover, ARTmine exhibits shorter
execution times compared to HARM and GoldMine.

V. CONCLUSION

In this paper, we proposed an association rule mining
algorithm that forms the foundation of ARTmine, an au-
tomatic assertion miner that efficiently generates accurate
assertion sets encompassing next[N], until, and eventually
temporal patterns. ARTmine outperforms other methods by
detecting more injected mutants with fewer assertions.
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A B S T R A C T

Assertion-Based Verification (ABV) is one of the promising ways of functional verification. The efficiency of
ABV largely depends on the quality of the assertions in terms of how accurately they capture the consistency
between implementation and specification. To this end, several assertion miners have been developed to
automatically generate assertions. However, existing automatic assertion miners typically generate a huge
amount of assertions which can lead to overhead in the verification process. Assertion evaluation, on the other
hand, has recently appeared to evaluate and select high-quality assertions among the huge generated assertion
set. These methods typically measure the quality of an assertion based on different metrics. These metrics
nonetheless, consider dissimilar and distinct aspects which lead to difficulties in deciding what metric should
influence more in assertion evaluation. Thereby, to exceed the state-of-the-art, a flow is proposed in which an
assertion miner and an assertion evaluator are introduced. The assertion miner is capable of generating a set
of readable and compact assertions. The assertion evaluator instead estimates the quality of the assertion set
with a data-mining-based algorithm called dominance. Dominance is able to analyze the outcome of different
metrics to unify them. Experimental results present the effectiveness of the proposed flow by comparing them
to the state-of-the-art.

1. Introduction

Digital systems become more complex with each generation [1].
Therefore, verifying that their behavior is correct has become a very
challenging task. To this end, functional verification aims at guar-
anteeing that the design of a system satisfies its specification before
manufacturing, by detecting and removing design errors [2]. Among
all the solutions for ensuring the robustness of the systems, Assertion-
Based Verification (ABV) has emerged as one of the most popular
solutions for checking the design functionality [2].

An assertion is a Boolean expression that defines the behavior of
designs [2,3]. Traditionally, assertions were defined manually [4,5].
However, the manual definition of assertions needs human expertise,
it is costly and error-prone [4,5]. In general, to write an assertion set,
a verification engineer needs creativity and a deep understanding of the
design’s functionality [6,7]. Therefore, some studies have been carried
out to automatically mine the assertion sets [8–16].

Several works on assertion mining for digital designs have been
proposed. The work in [8] is an automatic assertion miner which
generates assertions using a dynamic dependency graph. They have
extracted relations between signals of the design using simulation
traces. The method in [9] is another approach that uses a syntax-guided
enumeration assertion miner. Studies in [10,11] are techniques that

∗ Corresponding author.
E-mail addresses: mohammadreza.heidari@taltech.ee (M.R. Heidari Iman), jaan.raik@taltech.ee (J. Raik), maksim.jenihhin@taltech.ee (M. Jenihhin),

gert.jervan@taltech.ee (G. Jervan), tara.ghasempouri@taltech.ee (T. Ghasempouri).

extract assertions using several templates in the form of Finite State
Machines (FSMs). The GoldMine tool is presented in [12,13]. The tool
automatically generates assertions for a given Register-Transfer Level
(RTL) design. This tool uses simulation traces, formal verification, and
static code analysis. Finally, [14–16] combine a dynamic dependency
graph and FSM to achieve the strength of both techniques for assertion
extraction.

However, it is notable that in most of the assertion mining ap-
proaches, the number of generated assertions is considerably high,
which can lead to redundancy in assertions, (i.e. assertions that de-
scribe the same behavior of the design), or inconsistent assertions,
(i.e. assertions that describe a contradictory behavior of the design
in comparison with another assertion). Consequently, these issues can
cause exhaustive and non-compact assertion sets.

To this end, some studies have been performed to select a set
of high-quality assertions from a large number of generated asser-
tions [17–19]. The high-quality assertions are mainly the ones that can
cover more of the design’s behaviors. Analyzing the design behavior
coverage is performed with the aid of mutants. In this regard, the
assertions that detect more mutants can cover more behavior of the
design. Obviously, selecting high-quality assertions and pruning the bad
ones from the verification process can significantly reduce the time
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Fig. 1. General flow of the proposed method.

and cost of this process. As said, a bad assertion can typically refer to
redundant assertions or inconsistent assertions.

In the context of assertion evaluation, studies have been performed
to estimate the quality of assertions based on several proposed metrics.
For instance, in [20], the assertions are evaluated and ranked based on
two main metrics, Importance, and Complexity. The degree of Importance
is higher in the assertions which are describing the output of the
design and Complexity is related to the number of logical operators
that are used in an assertion. In [13], the quality estimation is based
on the number of propositions included in the antecedent of the as-
sertion. In [17–19,21], mined assertions are mainly ranked according
to data-mining-based metrics such as Support (i.e. their frequency of
occurrences during simulation); Correlation Coefficient (i.e. correlation
of the occurrence of an assertion to other assertions during simula-
tion); and IS measure (i.e. assertions which have a low frequency of
occurrence but highly correlated to other assertions), etc.

However, these assertion evaluators mainly calculate incompatible
degrees of quality for one specific assertion. This is due to the fact
that existing approaches include several metrics where each metric
considers a particular aspect of the assertion. For instance, the approach
in [18] calculates the degree of quality of each assertion based on
three metrics, (i.e., Support, Correlation Coefficient and IS measure).
Nonetheless, the calculated degree of quality of each assertion accord-
ing to these metrics can be different, e.g. assertion A is ranked as a
high-quality assertion by Support, medium-quality, and low-quality by
Correlation Coefficient and IS measure, respectively. Thereby, at this
point, the critical concern is, which metric can dominate the other
metrics for estimation of the assertion quality? Is assertion A considered
as a high-quality assertion, medium-quality, or low-quality?

The aforementioned works are not able to determine the quality of
assertions based on a unified metric to provide a unique set of evaluated
assertions. This paper exceeds the state-of-the-art, first, by proposing an
assertion miner which is able to generate a set of compact and readable
assertions. Second, by presenting a data-mining-based algorithm called
dominance for ranking and evaluating the mined assertions.

Fig. 1 demonstrates the overall workflow of the methodology. As
can be seen, the method takes the Design Under Verification (DUV) as
an input and produces two main outputs. The first output, i.e. generated
assertions are related to the assertion miner and the second output
i.e. ranked assertions is the outcome of the assertion evaluator.

The assertion mining phase works with a new algorithm for mining
a compact assertion set. Assertion evaluating phase instead utilizes a
data mining algorithm called dominance to evaluate and rank the
assertions. Dominance is capable of calculating the degree of quality
of each assertion in a unified way thus, filling in the gap of current
approaches. Moreover, this assertion evaluator is not limited to the gen-
erated assertions by the proposed miner, in fact, it is able to evaluate
the assertion’s quality even if they are extracted by other miners i.e.
third-party assertion miners.

Therefore, the contributions of this work are listed as follows:

• an innovative methodology is proposed for the automated mining
of compact assertion sets that is based on a complete verification
environment of exhaustive valid simulation traces;

• an assertion miner is introduced to automatically generate a
human-readable assertion set from the simulation traces of hard-
ware designs;

• a novel algorithm, called dominance is demonstrated, that assists
verification engineers with unifying all different assertion qual-
ification metrics, to provide a unique and integrated assertion
set;

• the proposed dominance algorithm is able to select a set of high-
quality assertions among a huge number of generated assertions.
This leads to a reduction in the cost and time of the verification
process;

• the proposed assertion miner yields more accurate assertion sets
than existing approaches by achieving 100% mutant coverage for
the considered benchmarks;

• an added external feature is integrated into the methodology
such that it can communicate with users to provide a localized
assertion set based on the user’s need for further design analysis
and debugging.

It should be noted that the paper is the extension of the work described
in [22], and in this paper, we propose a new algorithm – dominance –
for assertion evaluation.

The remainder of the paper is organized as follows: The related
preliminary concepts are presented in Section 2. The proposed method-
ology is discussed in Section 3. Section 4 presents the experimental re-
sults and comparisons of the proposed method with the state-of-the-art.
Finally, Section 5 concludes the paper.

2. Preliminaries

In this section, the definitions and concepts which are deployed
in this article are briefly explained to assist the readers in better
understating the method.

Definition 1. An atomic proposition is a logic formula that does
not contain logical connectives [10]. A proposition is a composition of
atomic propositions through logical connectives [10]. For example, a1 =
True, b1 = False, and c1 = True are atomic propositions. Moreover, a1
= True && b1 = False && c1 = True is an example of proposition.

Definition 2. An assertion is a composition of propositions through
some temporal operators. An assertion is typically divided into two
parts, the left side of an implication which is called antecedent, and the
right part of the implication which is called consequent [10].

An example of assertion in Linear Temporal Logic (LTL) [23] can
be as ’always (antecedent1 |-> consequent1)’, which states whenever
antecedent1 happens one clock cycle later consequent1 occurs.

Definition 3. Let 𝐼 = {𝑖1, 𝑖2,… , 𝑖𝑛} be a set of items and 𝐷 =
{𝑑1, 𝑑2,… , 𝑑𝑚} be a dataset, i.e., a set of observations, called transac-
tions, with respect the set of items I. Each element in D contains a subset
of the items in I. An association rule is defined as an implication of the
form X → Y where X, Y ⊆ I and X ∩ Y = ∅ [24]. X and Y are called
itemsets.

As can be seen in Definitions 2 and 3, the structure of an assertion
is similar to the structure of an association rule. In fact, the antecedent
and consequent of an assertion in Definition 2 is the same as X and Y,
respectively, in Definition 3.

3. Proposed methodology

In this section, we demonstrate the proposed methodology for au-
tomated assertion mining, as well as automated assertion evaluation.

Fig. 2 represents the main steps of the method. Regarding the
assertion mining flow, two pre-processing steps are needed i.e., design
extraction and environment generation. In fact, these steps provide a
suitable environment for assertion mining step. Assertion evaluating step
instead gets the generated assertions by the proposed miner or assertion
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Fig. 2. Flow of the proposed methodology.

sets from the third-parties as inputs to evaluate the quality of the
assertion set. Moreover, the figure shows an external feature that uses
an adapted expert system [25,26] to communicate with verification
engineers to provide a localized set of assertions based on their needs.
The detail of each step is described in the following:

(A) Design extraction: This step deals with converting sequential
designs to pseudo-combinational ones by removing flip-flops in order to
enable a complete analysis of the assertion space within a single clock
cycle. This step is performed for the immediate error detection, within
a single clock cycle, thus preventing perturbing the errors in the system.

(B) Environment generation: In this step, with analyzing specifications
of design under verification, a pattern generator is led to extract an
exhaustive valid input sequence. Thereby, it prevents the flow to deal
with the exhaustive input sequences, as well as with any invalid input
combinations. This step is an essential part of the flow since generating
an assertion set from the exhaustive valid input sequences provides a
complete verification environment for the assertion mining step.

(C) Assertion mining : This step is in charge of mining the assertion
set. An algorithm is presented that mines the assertion set directly from
the output of the previous step.

(D) Assertion evaluating : This step is able to estimate the quality of
assertions provided by the proposed assertion miner or by any other
assertion miners in the state-of-the-art. The proposed algorithm, called
dominance, ranks the assertions by integrating all the available assertion
quality metrics in the literature to provide a unique integrated ranking
framework for the assertion set.

Moreover, an adapted expert system has been used to communicate
with users to provide a localized assertion set based on the user’s
requests. In the following, the description of these components is
detailed.

3.1. Design extraction

In order to prepare the suitable inputs for the proposed assertion
miner, the pseudo-combinational designs are derived-out from the
original sequential designs. This is performed by removing the flip-flops
and converting them to pseudo primary inputs and pseudo primary
outputs [27]. Design extraction step in Fig. 2 represents this flow.

In the following, in the illustrative case study, the application of
this conversion is presented. As a case study, we have considered an
open-source 5-port NoC router Bonfire [27]. A high-level overview of
this router is illustrated in Fig. 3.1. As shown in this figure, the router

consists of an input buffer in the form of First-In-First-Out (FIFO),
LBDR, Arbiter, crossbar, and an output buffer.

The router has 5 input/output ports, four of which (North — N, East
— E, South — S, West — W) are connected to each cardinal direction.
The last port (Local (L)) is connected to the local processing element.
Besides, in the router, packets are sent in the form of flits, and each flit
is composed of header flit, and tail flit, as well as body flit(s).

LBDR and Arbiter (demonstrated in a gray box in Fig. 3.1) are
the control parts of the router and the rest are considered as the
datapath. The control part controls all the main procedures of the
router. Generally, the control part of any design is considered as the
critical and the hard-to verify elements since the program flow of
the design is maintained by it. For this reason, LBDR and Arbiter are
specifically targeted for the proposed workflow.

Fig. 3.2 and 3.3 demonstrate these components after conversion
to pseudo-combinational version. As shown here, this is performed
by removing the flip-flops and converting their outputs and inputs to
pseudo primary inputs and pseudo primary outputs, respectively. This
allows deriving of assertions corresponding to a form A -> next C,
where A is the antecedent and C is the consequent of the assertion.

In the next step, it is described how for the above components, a
set of exhaustive valid simulation traces are generated to derive the
complete verification environment for the assertion miner.

3.2. Environment generation

In this step, a pattern generator is developed to extract a set of ex-
haustive valid input sequences. Therefore, the specifications of the ver-
ification environment of LBDR and Arbiter, more specifically, ELBDR
and SArbiter are studied, because they have one of the most connected
signals. These specifications guide the pattern generator to extract the
set of exhaustive valid input sequences. These sequences are then fed
to the simulator to produce a set of exhaustive valid simulation traces.
Environment generation step in Fig. 2 demonstrates this flow.

As shown in Fig. 3.2 and Fig. 3.3, ELBDR’s output port signals
are the N, W, S, and L signals, while for SArbiter, request and grant
signals exist for the N, E, W, and L. In ELBDR, 3 bits are considered
for the flit_id (FLIT_TYPE), and 4 bits for the destination address
(DEST_ADDR). Moreover, an Eempty bit that is coming from the East
input buffer is considered for ELBDR. The other inputs of ELBDR (iN,
iW, iS, and iL) are one bit. For SArbiter, there is one bit input for any
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Fig. 3. (1) High-level overview of the router (2) ELBDR pseudo-combinational design (3) SArbiter pseudo-combinational design.

of the N_Req, E_Req, W_Req, L_Req, as well as 5 bits for any of the
iCurrentState and oCurrentState.

Based on the specifications, two different conditions should be
considered for ELBDR to lead the pattern generator for generating the
exhaustive valid input sequences:

• if Eempty is equal to 1 (East input is empty):

– the input ports, (i.e. iN, iW, iS and iL) can have any values,
– flit_id (FLIT_TYPE in Fig. 3.2) can have any value,
– destination address (DEST_ADDR) can have any value.

• if Eempty is equal to 0 (East input is not empty):

– iN, iW, iS and iL must be one-hot (i.e. at the same time only
one of the inputs could be 1),

– flit_id (FLIT_TYPE) is one-hot (e.g. Header = 001, Body =
010, Tail = 100),

– the outputs of ELBDR will always be one-hot (assuming that
the routing algorithm is XY and we can only go from East
to North, South, West, or Local. And they cannot be active
at the same time).

Initially, the number of sequences for the exhaustive simulation
trace was equivalent to 212 = 4096 for ELBDR due to the fact that the
number of input bits is equal to 12. After feeding the pattern generator
based on the specifications, the number of sequences for the simulation
trace is reduced to 2144. As a result, the invalid conditions from the
exhaustive input sequences are removed and filtered out.

Similarly, for SArbiter, the specifications are studied to guide the
pattern generator. The specification is as follows:

• only one input can be granted at the same time. Hence, the grant
vector (iCurrentState) state is defined as one-hot,

• N_Req, E_Req, W_Req, and L_Req can have any values (because
SArbiter can get requests from different inputs except the South
port).

Initially, the number of sequences for the exhaustive simulation
trace was equivalent to 29 = 512 for SArbiter due to the fact that
the number of input bits is equivalent to 9. After guiding the pattern
generator according to the specification, the number of sequences for
the simulation trace is reduced to 80.

It is notable that this section adapted the idea of producing ex-
haustive valid input sequences from the work in [27]. However, the
proposed methodology markedly improved the work in [27], as it
developed an automatic tool to generate the valid exhaustive sequences
based on the specifications. On the contrary, the work in [27], manually
applies a set of filters on the exhaustive input sequence to gain the valid
one. Thereby, the proposed method considerably reduced the time and
cost in terms of memory requirement in comparison with [27].

The generation of exhaustive valid simulation trace is significantly
pivotal since it prevents the assertion miner from being in non-realistic
conditions and only the functionally of feasible values are retained.

Thereby, the miner generates a complete assertion set that is based
on valid scenarios. In the following, the assertion miner’s algorithm is
detailed.

3.3. Assertion mining

As demonstrated in assertion mining step of Fig. 2, the assertion
miner generates a set of assertions from the output of the previous
step, i.e. exhaustive valid simulation trace. This step is one of the
fundamental components of the proposed methodology since it is in
charge of discovering the relations between the primary inputs and
primary outputs of the design. The assertions are generated according
to the proposed Algorithm 1. As it can be seen, the algorithm is divided
into three phases.

Phase 1 starts by reading the sequences of simulation trace to
discover the similarities among them. Note that 𝑁 in the algorithm
indicates the number of sequences in the simulation trace file. Besides,
input() and output() methods show the input and output parts of a
sequence. 𝑙𝑒𝑛𝑔𝑡ℎ() method indicates the length of a sequence. In this
phase, all the sequences are compared. For every comparison, each
bit in a sequence is compared with its corresponding bit in the next
sequence. Lines 5 to 8 of Algorithm 1 describe how this comparison is
performed. If both bits are equal, the value of the bit is kept. Otherwise,
it is considered as a ‘don’t care’ status and the result is stored in the
variable ‘result1’. Note that the comparisons in which all the input or
output bits are determined as a ‘don’t care’ are not analyzed in the next
phase. Lines 11 and 12 show the input and output parts of a sequence.

Phase 2 aims at finding similarities among the outcomes of phase
1. At first, the input parts of all the results of phase 1 are compared
(looking at Fig. 4 to distinguish the input part and output part of a
sequence). If the bits in the input part are equivalent, the output part
of the sequences is checked.

To achieve this, similar to phase 1, each bit is compared with its
corresponding bit in the other sequence. If they are equal, the value of
the bit is stored in the variable ‘result2’. Otherwise, ‘don’t care’ status is
considered. On the contrary, according to lines 29 and 30 of Algorithm
1, if a sequence is not equal to any other sequences, it will go to the
next phase of the algorithm.

Note that in both phase 1 and 2, there might be some results where
their input/output parts all are ‘don’t care’. In such cases, those results
should be discarded. This is described in lines 13, 14, 35, and 36 of the
algorithm.

Finally, phase 3 decides which logic operator should be inserted
among the variables of Result2. The mechanism is as follows: A logical
AND is inserted between the bits of the input part of a Result2. More-
over, it checks if a bit in the output part is equal to its corresponding
bit in another generated Result2. In this condition, an OR will be added
between those cases.

Fig. 4 demonstrates several examples from C17 [28] design for each
phase of algorithm 1. As shown in this figure, phase 1 starts by reading
and comparing all the sequences of the simulation trace. For a better
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Fig. 4. Three phases of the assertion miner’s algorithm.

Algorithm 1 Assertion Miner
1: index = 0 ⊳ Phase 1
2: for 𝑖 in 1 to N-1 do
3: for 𝑗 in 𝑖+1 to N do
4: for 𝑘 in 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(seq) do
5: if (seq[𝑖,𝑘] == seq[𝑗,𝑘]) then
6: Result1[index,𝑘] = seq[𝑖,𝑘]
7: else
8: Result1[index,𝑘] = ’don’t care’
9: index = index + 1

10: for 𝑖 in 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(Result1) do
11: in = input(Result1[𝑖])
12: out = output(Result1[𝑖])
13: if (in.allBits[𝑖] == ’don’t care’) or (out.allBits[𝑖] == ’don’t care’) then
14: discard(Result1[𝑖])
15: index = 0 ⊳ Phase 2
16: for 𝑖 in 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(Result1)-1 do
17: cnt = 0
18: for 𝑗 in 𝑖+1 to 𝑙𝑒𝑛𝑔𝑡ℎ(Result1) do
19: if (input(Result1[𝑖]) == input(Result1[𝑗])) then
20: input(Result2[index]) = input(Result1[𝑖])
21: for 𝑘 in 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(output(Result1[𝑖])) do
22: if (output(Result1[𝑖])[𝑘] == output(Result1[𝑗])[𝑘] then
23: output(Result2[index])[𝑘] = output(Result1[𝑖][𝑘])
24: else
25: output(Result2[index])[𝑘] = ’don’t care’
26: index = index + 1
27: else
28: cnt = cnt + 1
29: if (cnt == 𝑙𝑒𝑛𝑔𝑡ℎ(Result1)-𝑖)) then
30: Result2[index] = Result1[𝑖]
31: index = index + 1
32: for 𝑖 in 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(Result2) do
33: in = input(Result2[𝑖])
34: out = output(Result2[𝑖])
35: if (in.allBits[𝑖] == ’don’t care’) or (out.allBits[𝑖] == ’don’t care’) then
36: discard(Result2[𝑖])
37: temp = ’ ’ ⊳ Phase 3
38: index = 0
39: for 𝑖 in 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(Result2)-1 do
40: temp = AND(temp, input(Result2[𝑖]))
41: for 𝑗 in 𝑖+1 to 𝑙𝑒𝑛𝑔𝑡ℎ(Result2) do
42: for 𝑘 in 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(output(Result2[𝑖])) do
43: if (output(Result2[𝑖])[𝑘] == output(Result2[𝑗])[𝑘] then
44: temp = OR(temp, AND(input(Result2[𝑗])))
45: Result3[index] = temp
46: index = index + 1

illustration, five different examples are shown for this phase. Each pair
of sequences is shown by A and B.

After applying the first phase of Algorithm 1, the EX1, EX2, EX3,
EX4 and EX5 are calculated which are equal to 0-01- 0-, 0-01- 0-, 00–1

01, 00–1 01 and, 11— –, respectively. In these examples, the first part
of bits (e.g., 0-01- in EX1) indicates the input bits, and the second part
(e.g., 0- in EX1), indicates the output bits. Moreover, each bit represents
a variable name of the simulation trace. For instance, in 0-01- 0-, the
first bit represents the i0 variable, the second one represents the i1
variable, and finally 0- represent out0 and out1 variables, respectively.

In these examples, EX1 and EX2 create Case 1, and EX3 and EX4
create Case 2. Subsequently, Case 1 and Case 2 go to phase 2 since
each pair has the same inputs. On the contrary, EX5 will be discarded
since its output is equal to ’-’, i.e., ‘don’t care’.

As said and as shown in Fig. 4, Case 1 and Case 2 are entered into
phase 2. Since the input of both cases is equivalent, their outputs should
be analyzed according to the algorithm. As a result, EX6 and EX7 are
calculated.

Finally, in phase 3 the mined assertions have been generated. Going
back to the illustrative example in Fig. 4, phase 3 combines EX6 and
EX7 on the basis of finding similar output bits. Since the first bit in the
output part of both EX6 and EX7 are equal to 0, their input bits have
been ORed with each other i.e., 0 − 01− || 00 − 1−. To this end, with
looking at the name of the variables in the simulation trace it is clear
that the extracted assertion is equal to (∼ 𝑖0&& ∼ 𝑖2&&𝑖3) ∥ (∼ 𝑖0&& ∼
𝑖1&&𝑖3)|− >∼ 𝑜𝑢𝑡0.

It should be noted that the proposed algorithm uses ‘don’t care’ like
some tools such as ABC [29]. However, tools like ABC are able to only
minimize the logic, and how much the minimized logic can cover the
same behavior as the original logic is not an important issue for these
tools. For instance, according to our analysis, ABC cannot consider all
the corner cases of the design behavior.

3.4. Assertion evaluating

This step is performed to evaluate the quality of assertion sets based
on an algorithm called dominance, which was defined in the concept of
data mining in [30,31]. Note that this algorithm for the first time is
adopted and used in the assertion evaluation context by the proposed
method.

According to Fig. 2, the input of this step is an assertion set, which
can be provided by the proposed assertion miner or third-parties. The
output of this phase is the evaluation of the quality of assertion sets.

In the literature, there exist approaches for evaluating the quality of
assertions. However, each method considers different metrics for such
an evaluation. For instance, some studies show that if the occurrence
of an assertion during simulation is higher than the others, it typically
covers the design’s behavior more. Consequently, if an error takes place
in the design, this assertion is more probable to detect the error [17–
19,21]. Another work assumes that if an assertion has more number of
propositions (Definition 1) than another one, it is more likely to be a
higher quality assertion thus, it should be ranked higher [13].

Nevertheless, applying any of these different metrics for assertion
evaluation generally leads to different results. For instance, assertion A
is determined as a higher quality assertion than assertion B according
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Table 1
Relation between the rules and measures (𝛺).
Rules Support CC IS

r1: a→d 0.20 0.67 0.02
r2: b→c 0.10 0.50 0.00
r3: c→a 0.10 0.50 0.02
r4: a→b 0.20 0.40 0.10
r5: b→d 0.20 0.33 0.02
r6: d→c 0.20 0.33 0.10
r7 : c→b 0.10 0.20 0.01
r8: b→a 0.10 0.17 0.02

to the metric in [17–19,21] however, this result is vice versa according
to the metric in [13]. The reason is that any of these metrics mainly
considers one specific aspect of the quality of assertions. Thereby, ver-
ification engineers deal with the issue to select high-quality assertions
for the verification process.

The dominance algorithm aims at filling this gap and provides a
unique ranking for an assertion. In the following, we have formulated
the details of this algorithm.

3.4.1. Dominance algorithm
We have considered any of the assertions in an assertion set as an

association rule (Definition 3) and  is the set of all mined rules:  =
{𝑟1, 𝑟2, . . . , 𝑟𝑛}.

Any of these rules are evaluated according to a set  of dif-
ferent measures such as Support, CC, IS and etc. Therefore,  =
{𝑚1, 𝑚2,… , 𝑚𝑛}. 𝛺 = (, ) creates a table (Table 1) that consists of
the rules in  and measures in . Moreover, the value of the measure
m for the rule r has been denoted by r[m] such that r ∈  and m ∈ .

As discussed before, the evaluation of each measure is different from
the others and this can lead to different rankings subsequently, different
quality evaluations for the rules. For example, according to the Support
measure, 𝑟1, 𝑟4, 𝑟5, and 𝑟6 are the best rules and according to the CC 𝑟1,
and regarding the IS measure, 𝑟4, and 𝑟6 are the best rules. To resolve
this issue with dominance, we define it in two levels, which are value
dominance and rule dominance:

Definition 1. value dominance: Considering two values of a measure
m from the set  corresponding to two rules r and r’ from the set ,
we say that r[m] dominates r’[m], denoted by r[m] ⪰ r’[m], iff r[m] is
preferred to r’[m]. if r[m] ⪰ r’[m] and r[m] ≠ r’[m] then, r[m] strictly
dominates r’[m], denoted by r[m] ≻ r’[m]. Therefore, as a result, the
dominated values will be kept and the others will be removed.

Definition 2. rule dominance: Considering two rules r and r’ ∈
, we define the dominance relationship according to the set  of
measures as follows:

• r dominates r’, denoted by r ⪰ r’, iff r[m] ⪰ r’[m], ∀ m ∈ .
• If r ⪰ r’ and r’ ⪰ r, i.e., r[m] = r’[m], ∀ m ∈  then r and r’ are
equivalent, denoted by r ≡ r’.

• If r ⪰ r’ and ∃ m ∈  so that r’[m] ≻ r[m], then r’ is strictly
dominated by r, denoted by r ≻ r’.

Moreover, the strict dominance relationship fulfills the following
properties:

• irreflexive: r ⊁ r, i.e., r ≻ r is false for each m ∈ ,
• transitive: ∀ r, r’ andr’’ ∈ , if r ⪰ r’ and r’ ⪰ r’’ then r ⪰ r’’.

As a result of rule dominance, the dominated rules will be kept and the
other rules will be removed. In other words, according to dominance
algorithm, if a rule r dominates a rule r’, this means that r is equal to
or better than r’ for all measures in the set .

As an illustrative example, looking at Table 1, the rule 𝑟3 strictly
dominates 𝑟2, because 𝑟3[Support] ⪰ 𝑟2[Support], 𝑟3[CC] ⪰ 𝑟2[CC], and

Table 2
Dominance results.
Rules Support CC IS

r1: a→d 0.20 0.67 0.02
r4: a→b 0.20 0.40 0.10

𝑟3[IS] ≻ 𝑟2[IS]. Thereby, dominance keeps the rule 𝑟3 and removes the
rule 𝑟2.

By applying the dominance algorithm on all the rules in Table 1, the
result will be equal to Table 2. This means no rule in  dominating 𝑟1
or 𝑟4. Hence, the aforementioned rules are considered as high-quality
rules to be kept.

As explained in Section 2, the structures of an assertion (Defi-
nition 2) and an association rule (Definition 3) are similar. Thus,
the dominance is adaptable in the context of assertion evaluation. To
this end, dominance is capable of assisting verification engineers with
comparing assertions based on the value of each metric to evaluate
them in a unified manner. Section 4 demonstrates the efficiency of the
dominance algorithm for evaluating the quality of assertions.

3.5. Adapted expert system

In this phase, a feature is presented that provides the methodology
with the ability to communicate with the users. In this way, verification
engineers can request a specific set of assertions related to a specific
module or variable under analysis that meets their needs and interests.
The difference between this feature and the dominance algorithm is that
dominance can integrate other rankings metrics and provides a unique
one based on its algorithm, however, the adapted feature is able to
localize the assertions according to the users’ needs.

The proposed feature adapts an expert system [25] for the purpose
of this work. In general, any expert system has two main components
which are a knowledge base and an inference engine [26]. The former
consists of Facts and the latter is based on a set of Expert-System-
Rules. With the help of the Facts stored in the knowledge base and
Expert-System-Rules in the inference engine, the expert system provides
a selective set of assertions based on the users’ needs.

The details about the Facts and Expert-System-Rules are provided in
the following. As the proposed expert system has been implemented in
CLIPS language, (which is a specific tool and language for implement-
ing expert systems) the descriptions and the Listings in the following
subsections have been written in CLIPS syntax.

3.5.1. Facts and expert-system-rules in the adapted expert system

Definition 3. FACT s, are a formal form of describing knowledge and
information required to solve a specific problem. Generally, these Facts
are gathered from the knowledge of the experts in the domain related to
that specific problem. For instance, in the real world, headache and fever
are two symptoms of flu that are reported by the experts in the domain
i.e., medical doctors. Thereby, to prepare the knowledge for an expert
system, headache and fever are stored as two Facts for the detection of
flu. We have adapted these concepts for the proposed flow.

In the proposed adapted expert system, these Facts are mainly
extracted from the left part of the implication of each mined assertion.
As an illustrative example, we can consider the generated assertion in
phase 3 of Fig. 4.

As can be seen, the left part of the implication for this assertion is
equivalent to (∼ 𝑖0&& ∼ 𝑖2&&𝑖3) ∥ (∼ 𝑖0&& ∼ 𝑖1&&𝑖3). Correspond-
ingly, the Facts related to this assertion has been presented in Listing
1.

In this listing, each Fact is written in CLIPS syntax and represented
by i[n] which demonstrates the name of the variable i, and its cor-
responding bit ‘‘n’’. For instance, f1 means that the value for input
variable i[0] is equal to 0. Similarly, for the other Facts, f2, f3, and
f4 the variables and their values are i[2] = 0, i[3] = 1 and i[1] = 0,
respectively.
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Listing 1: Example of a Fact
(deffacts minedFacts

(f1 !i[0]) (f2 !i[2]) (f3 i[3]) (f4 !i[1]))

Definition 4. Expert-System-RULE, the structure of an Expert-System-
Rule is similar to the 𝐼𝐹 − 𝑇𝐻𝐸𝑁 statements. If the first part of
an Expert-System-Rule (𝐼𝐹 ), matches with one or more stored Facts
in the knowledge base of the expert system then the second part of
the Expert-System-Rule (𝑇𝐻𝐸𝑁) will be fired and the Expert-System-
Rule will produce the result. For example, in the real world, 𝐼𝐹 the
symptoms in a person are headache and fever, 𝑇𝐻𝐸𝑁 we can realize
that the person has gotten flu. Accordingly, this concept has been
adapted for the proposed flow.

Listing 2 demonstrates the Expert-System-Rule related to the asser-
tion in phase 3 of Fig. 4 in CLIPS syntax. This Listing represents that
𝐼𝐹 (i[0] = 0 && i[2] = 0 && i[3] = 1) || (i[0] = 0 && i[1] = 0 &&
i[3] = 1) 𝑇𝐻𝐸𝑁 𝑜𝑢𝑡0 is always 0. Thus, if the users are interested in
selecting the assertions related to 𝑜𝑢𝑡0, this Expert-System-Rule causes
the selection of the mentioned assertion.

Listing 2: Example of an Expert-System-Rule
(or(and(i[0]=0)(i[2]=0)(i[3]=1))(and(i[0]=0)(i

[1]=0)(i[3]=1)) => ~out0)

The above described the basic components of an expert system and
the process it is adapted for purpose of this work. In the following,
we demonstrate further usage of this feature. According to Fig. 2,
the adapted expert system can be fed by the assertions from the
proposed assertion miner, as well as assertions provided by third-parties
for a specific design. This can enhance the methodology with two
advantages.

Firstly, in cases that the generated assertions by an assertion miner
cannot completely cover all the functionality of the design, the adapted
expert system can learn from what assertions have been stored by the
third-parties in its knowledge base and generate a new set of assertions
to increase the coverage. Secondly, the adapted expert system can
reduce the redundancy of the assertion sets after the selection phase.
Formula (1), formula (2), and formula (3) represent the reduction
mechanism. As can be seen here, 𝑚1, 𝑚2,… , 𝑚𝑛 is repeated in both
formula (1) and formula (2) which is omitted in formula (3). With
this straightforward mechanism, this feature can prevent this kind of
redundancy.

(𝑎1 && ... && 𝑎𝑛) ‖ ... ‖
(𝑚1 && ... && 𝑚𝑛) |− > 𝛿, 𝑛 ⩾ 0 (1)

(𝑚1 && ... && 𝑚𝑛) ‖ ... ‖
(𝑧1 && ... && 𝑧𝑛) |− > 𝛿, 𝑛 ⩾ 0 (2)

(1), (2) => ((𝑎1 && ... && 𝑎𝑛) ∥ ... ∥

(𝑚1 && ... && 𝑚𝑛) ∥ ...

∥ (𝑧1 && ... && 𝑧𝑛)) |− > 𝛿, 𝑛 ⩾ 0 (3)

3.5.2. User interface in the adapted expert system
Users can interact with the system through the user interface. A user

interface generally asks questions from the users to understand their
needs. To this extent, the expert system is able to select an assertion
set for a specific module or an output variable. For instance, the Expert-
System-Rule in Listing 2 is related to the case that the user’s desire is
generating assertion for ∼ 𝑜𝑢𝑡0 output.

Table 3
Comparison between the approaches in [16] and the proposed method.

Benchmarks Features Approach 1 Approach 2 Proposed
approach

SArbiter

#mutants 73 73 73
#assertions 449 689 10
%detected mutants 97% 99% 100%
execution time 2 h 5 m 2 h 22 m 20 s .65 ms

ELBDR

#mutants 76 76 76
#assertions 37 36 8
%detected mutants 100% 100% 100%
execution time 20 m 19 m 13 m

4. Experimental results

The efficiency of the proposed methodology has been studied on
the mentioned NoC router Bonfire in Section 3.1, and its two main
components, i.e., LBDR, and Arbiter, as well as the crossbar switch of
this router [32]. The programming languages that have been used in
this work are SystemVerilog, Python, and CLIPS. The benchmarks are
developed in SystemVerilog. Assertion miner and dominance algorithm
are implemented in Python. Finally, CLIPS is the suitable language for
the expert system.

Furthermore, with the aid of the adapted expert system, the gen-
erated assertions can be provided in two different syntaxes which
are SystemVerilog Assertions (SVA), or Property Specification Lan-
guage (PSL). This can be helpful in analyzing the designs which are
programmed in any of these languages.

Table 3 presents the experimental results regarding the assertion
mining step. Column ‘Benchmarks’ represents the name of benchmarks,
i.e. Arbiter and LBDR. Column ‘Features’ contains four different features
i.e. ’#mutants’, ’#assertions’, ’%detected mutants’, and ’execution time’,
which report the number of injected mutants, the number of generated
assertions, the number of detected mutant, and the execution time, re-
spectively. Columns ’Approach 1’ and ’Approach 2’ show the results for
two different assertion miners represented in [16]. Finally, ’Proposed
methodology’ refers to the approach of this work.

As shown here, the proposed methodology has advantages, since
it generates a considerably smaller number of assertions i.e., 10 and
8 for Arbiter and LBDR, respectively. In contrast, these numbers for
Approach 1 are 449 and 37, and for Approach 2 are 689 and 36. The
mutant coverage is slightly increased for the proposed methodology in
comparison with the other approaches for Arbiter, and remained steady
in LBDR. Moreover, the execution time of the proposed assertion miner
has drastically reduced in comparison with Approach 1 and Approach
2. As can be seen here, it reached 20.65s and 13 m for Arbiter and
LBDR, respectively. However, these numbers are 2h5 m and 20 m for
Approach 1 and, 2h22 m and 19 m for Approach 2.

Regarding mutant analysis, a mutant injector tool according to
the details provided in [33] has been implemented. Note that this
mutant injector is complete in sense of converting all different types of
operators to create mutants. In Table 4, the details about these injected
mutants in the benchmarks have been presented. The column ’Mutation
operator types’ demonstrates different types of operators that have been
modified by the mutants. Any of the operators in each row of the
column ’List of operators’, has been changed to the others. In addition
to these mutants, we randomly converted all 0 bits to 1 and vice versa.

As for Arbiter, the number of injected mutants is equal to 73. Note
that these mutants are injected according to the details provided in
Section 3.4. The number of generated assertions are 449, 689, and
10 for the three approaches, respectively. As for fault coverage, the
results in percentage are 97, 99, and 100, respectively. Finally, the
execution time for the three approaches is as follows 2h5 m, 2h22 m,
and 20s65 ms.

For LBDR, the number of injected mutants is equal to 76. The
numbers of generated assertions are 37, 36, and 8 for the three ap-
proaches, respectively. Moreover, for fault coverage, the results for all
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Fig. 5. Comparison between Dominance and Shayan (Arbiter).

Fig. 6. Comparison between Dominance and Shayan (LBDR).

Fig. 7. Comparison between Dominance and Shayan (Crossbar Switch).

three approaches are 100%. Finally, the execution time for the three
approaches is as follows 20 m, 19 m, and 13 m.

Regarding the assertion evaluating step, we applied the dominance
algorithm on the assertions generated by the approach in [9] on Ar-
biter, LBDR and crossbar switch benchmarks, respectively. Moreover,
the metrics which are used for this step are taken from the work in [18].

Table 5 demonstrates these results. Column ’#Metrics’ represents
the number of metrics reported for each assertion. In this work, these
metrics are Support, Correlation Coefficient, and IS measure (for detail
on how these metrics calculate the quality of assertions, we refer
the interested readers to [18]). Column ’#Initial assertions’ report the
number of initial assertions produced by the miner and finally, column
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Table 4
Description of injected mutants.
Mutation operator types List of operators

arithmetic operators +, -, *, /, %

relational operators ==, !=, >, <, >=, <=

logical operators &&, ∥

assignment operators +=, -=, *=, /=, %=, =

unary operators +, -, ∼, !

bitwise operators ≪,≫, &, | , ˆ

bitwise assignment operators ≪=, ≫=, &=, | =, ˆ=

Table 5
Result of assertion evaluation after applying dominance algorithm.

Benchmarks #Metrics #Initial assertions #Selected assertions

Arbiter 3 4175 544
LBDR 3 1546 238
Crossbar Switch 3 500 124

’#Selected assertions’, demonstrates the number of selected assertions
by dominance. This number represents the number of high-quality
assertions after performing the assertion evaluating step. In other words,
these assertions are identified as good assertions for the verification
process.

As can be seen here, the number of initial assertions for Arbiter
and LBDR are 4175 and 1546, respectively. This figure for the crossbar
switch is 500 assertions. The number of selected assertions as high-
quality assertions that were achieved after applying dominance is equal
to 544 and 238 for Arbiter and LBDR, respectively. This number is equal
to 124 assertions for the crossbar switch. This indicates that according
to the proposed assertion evaluating phase, by using fewer assertions
for verification, we can achieve the same level of accuracy in detecting
errors.

To guarantee the efficiency of the proposed assertion evaluating step,
the results have been evaluated by mutant analysis. Moreover, the
proposed approach is compared with an assertion quality evaluator tool
called Shayan [17].

In Fig. 5, Fig. 6, and Fig. 7 these results have been presented for
Arbiter, LBDR, and crossbar switch, respectively. The blue bar shows
the result of mutant analysis, i.e., it represents how many mutants are
detected by an assertion set without applying any assertion evaluator.
The orange bar represents how many mutants are detected by the
high-quality assertions according to Shayan’s evaluation. The gray bar
indicates how many mutants are detected by the high-quality assertions
according to the proposed method in this work.

For Arbiter (Fig. 5), the number of initial assertions is 4175 that they
can detect 207 injected mutants (the first set of bars). After applying
dominance on the initial assertions, 544 assertions out of 4175 have
remained that are able to detect 168 injected mutants. On the other
hand, the first top 544 assertions of Shayan can detect 62 injected
mutants (the second set of bars). The results show that Shayan needs
more than 2544 and less than 3044 assertions to detect the same
mutants as dominance can detect (looking at the 6th and 7th sets of
bars). The rest of the bars are demonstrated for more clarification on
the accuracy of the assertion evaluating phase.

The number of initial assertions for LBDR (Fig. 6) is 1546 that are
able to detect at most 260 of the injected mutants (the first set of
bars). By applying dominance to these initial assertions, we achieved
238 assertions that can detect 250 mutants. On the other hand, the
top 238 assertions of Shayan are able to detect only 16 mutants and
Shayan needs about 1546 assertions to detect almost the same mutants
as dominance can detect (looking at the second and the last sets of bars).

Fig. 7 illustrates the results of the comparison between Shayan and
dominance for the crossbar switch benchmark. The number of initial
assertions for this benchmark is 500 which can detect 300 mutants.

Dominance provides 124 high-quality assertions out of 500 initial asser-
tions that can detect 268 injected mutants, while Shayan can detect 100
mutants and initial assertions detect 170 mutants with 124 assertions.

It should be noted that dominance is able to keep those assertions
that can detect more mutants and prune the rest. This is the reason
that the result of dominance has been demonstrated in only one bar
(in gray). However, Shayan is not able to prune the assertions. In fact,
Shayan is a ranker thus the number of assertions remained unchanged.
This is the reason that different bars have been shown for Shayan.

5. Conclusions

This work proposed an efficient methodology for the automated
mining of compact and accurate assertion sets. Furthermore, an algo-
rithm has been introduced for evaluating the quality of assertions. In
order to mine the assertions, the methodology specified an environ-
ment in terms of exhaustive valid simulation traces which served as
a complete verification environment for the assertion miner. Conse-
quently, the generated assertions represented a set of valid assertions.
Moreover, the assertion evaluator algorithm called dominance is able
to determine the quality of assertions and provide a unified assertion
set. To that end, the experimental results showed that the proposed
approach generated significantly more compact assertion sets than the
state-of-the-art while achieving 100% fault detection in terms of the
injected mutants. The proposed miner is able to generate 10 assertions
for SArbiter in less than a minute and 8 assertions for ELBDR in
13 min. Moreover, according to the experimental results, the dominance
algorithm is capable of selecting the highest quality of assertions that
can detect almost the same number of mutants as the initial assertions
with much fewer numbers of assertions. In this regard, the dominance
algorithm selects only 544 assertions out of 4175 assertions for Arbiter
and 238 assertions out of 1546 for LBDR. This result for the crossbar
switch benchmark is 124 selected assertions out of 500 assertions.
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Abstract—Assertion-based verification is one of the viable
solutions for the verification of computer systems. Assertions
can be automatically generated by assertion miners however,
these miners typically generate a high number of possibly
redundant assertions. In turn, this results in higher costs
and overheads in the verification process. Furthermore, these
assertions have every so often low readability due to the high
number of propositions that they contain. In this paper, an
Innovative cost-effective Method for Minimizing assertion sets
(IMMizer) has been proposed. IMMizer is performed by iden-
tifying Contradictory Terms. These terms present the behaviors
of the design under verification which are not specified by
the initial assertion sets. Subsequently, a new assertion set is
extracted based on the identified Contradictory Terms. Contrary
to data-mining approaches that are unable to minimize the
initial assertion set, but can only rank the set according to
data-mining measurements, or mutant analysis approaches that
require a long execution time, IMMizer is able to minimize the
initial assertion set in a very short execution time. Experimental
results showed that in the best case, this method has drastically
reduced the number of assertions by 93% and the memory
overhead imposed on the system by 87%, without any reduction
in the detection of injected mutants.

Keywords: Hardware Verification, Assertion-Based Verifica-
tion, Assertion Mining, Assertion Minimization

I. INTRODUCTION

Digital and embedded systems become more complex
with each generation. These systems are employed in dif-
ferent industries and safety-critical applications such as
medical and automotive [1]. Due to the application of
these systems, their correctness, safety, robustness, and in
general, dependability have a significant importance [1–4].
One of the important concepts that can affect the depend-
ability of these systems, is their verification process [5].
The verification process ensures that a system is developed
consistently to its specifications and documentation [6].

One of the promising approaches for design verification
is Assertion-Based Verification (ABV). Assertions play a key
role in ABV. Assertions are Boolean expressions that define
the designs’ behaviors. They principally are considered as
the ’golden rules’ to which the implementation is compared
and any deviations from these rules can lead to design
errors [7].

To this end, several approaches have been carried out to
automatically generate assertions [6–12]. However, these ap-
proaches generally extract a very high number of assertions
that are typically redundant i.e. describe the same behavior
of the Design Under Verification (DUV). Therefore, it leads
to more cost and time in the verification process.

Moreover, the generated assertions are typically not read-
able by human experts. These assertions mostly contain a
lot of propositions that reduce their readability. In addition,
each proposition allocates at least one memory bit for itself,

consequently imposing overheads (e.g. memory overhead)
on the system.

Figure 1: General flow of the IMMizer

Thereby, to resolve the mentioned drawbacks several
studies have been conducted to minimize the extracted
assertion sets, consequently, selecting the interesting ones
for the verification process. These approaches are mainly
categorized into two groups, first, data-mining-based [13–
19] and second, mutant-analysis-based approaches [20–22].
In the first approach, the assertions are ranked according
to several data-mining metrics to select the highest-ranked
ones for the verification process. However, in the second
approach mutants are injected into the DUV and the
assertions which detect more mutants are typically selected
for the verification process.

For instance, the work in [13] ranks the assertions based
on two main metrics, i.e., Importance and Complexity. The
former is higher in the assertions which are describing the
output of the design and the latter is related to the number
of logic that has been used in an assertion. In [14], the
interestingness measurement is according to the number
of propositions included in the antecedent of assertions. In
some other studies such as the works in [16–19], mined
assertions are mainly ranked according to several data-
mining metrics. These metrics are such as Support, Cor-
relation Coefficient (CC), and IS. Support is the frequency
of occurrences of assertions during the simulation, while
CC is the correlation of the occurrence of an assertion
to other assertions during the simulation. Furthermore,
IS determines assertions that have a low frequency of
occurrence but are highly correlated to other assertions.

In spite of the fact that the aim of the aforementioned
studies is to generally minimize and reduce the number of
assertions, they can only select a few of the best assertions
among the others. In fact, they are not capable of mini-
mizing the initially generated assertion set to exclude its
redundancy and as a consequence decrease the overheads
that have been imposed on the system. In practice, in these
approaches, the number of assertions remained unchanged,
and the verification engineer selects a subset of an assertion
set. However, this kind of assertion selection typically leads
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to issues such as inaccuracy in the verification process and
lower behavior coverage of designs.

To overcome these shortcomings, this paper proposes
IMMizer, an Innovative cost-effective Method for Minimiz-
ing assertion sets. The main idea of IMMizer is performed
by identifying Contradictory Terms in the assertion sets.
Contradictory Terms present the behaviors of the DUV
which are not specified by the initially generated assertion
set. Subsequently, a new assertion set is extracted based on
the identified Contradictory Terms (more detail in section
III). Fig. 1, demonstrates the overall flow of the proposed
IMMizer. As is shown here, the input of the flow is an
assertion set that is automatically generated by an assertion
miner. The output of the flow is a minimized assertion
set where all the redundant assertions have been pruned.
IMMizer is composed of three main steps, i.e., Assertion
classification, Deduction based on Contradictory Terms,
and Assertion composition. The first step finds the most
similar assertions (assertions with the same propositions
and the same temporal patterns) in order to classify them
together. The second step applies to the classified assertion
sets to find the Contradictory Terms. Finally, the third
step composes the identified similar propositions and the
Contradictory Terms from the previous steps to extract the
new minimized assertion set.

Overall, the proposed IMMizer aims at reducing the
verification costs and time by pruning the redundant asser-
tions, i.e., assertions that describe the same behavior of the
design, and providing minimized and more effective ones
to the verification engineers. Therefore, the contributions
of the paper are listed as follows:● significantly reduction in the number of (redundant)

assertions in a very short amount of time without any
decrements in mutant detection in comparison with
the original assertion set;● reducing the memory overhead imposed on the system
as a result of assertion minimization;● improving the readability of assertions by reducing the
number of propositions of assertions;● detecting the unique and non-redundant assertions for
a more effective verification process.

The remainder of the paper is organized as follows: The
preliminary concepts have been discussed in section II.
Section III presents the proposed method for minimization
of assertions. Section IV, discusses the computation time of
IMMizer. The experimental results have been elaborated in
section V and finally, section VI concludes the paper.

II. PRELIMINARIES

In this section, the definitions and concepts which are
deployed in this article are briefly explained to assist the
readers in better understating the method.

Definition 1: An Atomic Proposition is a logic formula that
does not contain logical connectives [10]. A Proposition is a
composition of atomic propositions through logical connec-
tives [10]. Examples of atomic propositions and propositions
are presented in Listing 1 and 2, respectively.

Listing 1: Example of atomic propositions
a1 = True, b1 = False, c1 = True

Listing 2: Example of propositions
a1 = True && b1 = False && c1 = True

Definition 2: An Assertion is a composition of propo-
sitions through some temporal operators. An assertion is
typically divided into two parts, the left side of an impli-
cation which is called antecedent, and the right part of the
implication which is called consequent [10].
Listing 3 represents two examples of assertions in Sys-
temVerilog Assertions (SVA) language [23]. Property p1
indicates whenever a && !b occurs then at the same time
instant (represented by |->) t1 occurs. Property p2 indicates
whenever a && b && !c occurs then after 2 clock cycles
(represented by ##2) t2 occurs.

Listing 3: Example of assertions
property p1;

@(posedge clk) a && !b |-> t1;
endproperty

property p2;
@(posedge clk) a && b && !c |-> ##2 t2;

endproperty

Definition 3: We define Different Terms as a set de-
noted by DT where represents dissimilar propositions in
the antecedent of an assertion in comparison with another
assertion.

In Listing 3, (!b -) and (b !c) in properties p1 and p2,
respectively, are considered as elements of DT. Since there is
neither proposition c nor !c in property p1, it is considered
as don’t care (-). Therefore, the set DT is as follows:

DT = {(!b -), (b !c)} = {(!b c), (!b !c), (b !c)}, where two
different values, c and !c are assigned to ’-’.

Note that a is not considered as an element of DT since
it exists in both assertions.

Definition 4: Sum-Of-Products (SOP) is a type of Boolean
algebra expression in which different product inputs are
being added together [24].

For instance, for the set DT in Definition 3, SOP is as
follows:

SOP(DT) = (!b c) + (!b !c) + (b !c) = !b(c + !c) + (b !c) = !b
+ (b !c)

Definition 5: Contradictory Terms are equal to the com-
plement of the SOP of the set DT, denoted by SOP(DT )C .

Complement for the calculated SOP in Definition 4 is as
follows:

SOP(DT )C = (!b + (b !c))C = b(!b + c) = (b c)
To make the reason of calculating SOP and its comple-

ment in IMMizer more clear, let’s say we have two terms
β and γ and the Universal set U equal to the all different
combinations for these two terms:

U = {(β γ),(β !γ),(!β γ),(!β !γ)}
Let’s assume the set of different combinations produced

by each DT is equal to the following set:
DT = {(β γ),(β !γ),(!β !γ)}
The SOP for the set DT is as follows:
SOP(DT ) = (β γ) + (β !γ) + (!β !γ) =β+ (!β !γ)
To find the Contradictory Terms, the complement of

SOP(DT) i.e., (SOP(DT )C ) is calculated, which is:
SOP(DT )C = (β+ (!β !γ))C = !β(β+γ) = (!β γ)
SOP(DT )C is equal to the terms that are not in the set

DT such that:
SOP(DT )C ∉ DT and SOP(DT )C ∪ DT = U
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In fact, SOP(DT )C consists of the term that has not been
appeared in the set DT and can complete the set U. This is
the Contradictory Term that IMMizer aims at finding it, i.e.
the terms that do not exist in the set DT and will complete
the set DT to reach the Universal set U so that:

SOP(DT )C ∪ DT = U
After achieving the SOP(DT )C (Contradictory Term), IM-

Mizer will finally calculate the ∼ (SOP(DT )C ) (more details
in section III-C). The reason is that:∼ (SOP(DT )C ) = ∼ (!β γ) = (β + !γ) (i.e. β or !γ). By
comparing the set DT with (β + !γ), it can be proved that
all the three terms in the set DT ((β γ),(β !γ),(!β !γ)) have
been covered by the new term (β + !γ). In fact the new term
(β + !γ) is equal to all the previous terms in the set DT and
can be replaced with them by IMMizer.

A. Structure of generated assertions studied in this work

In this work, IMMizer is applied to different assertions
extracted by different assertion miners [8–10]. Generally,
these assertions are produced in different formats such as,
SVA, Property Specification Language (PSL) [25], as well
as Linear Temporal Logic (LTL) [26]. Due to the fact that
an advantage of IMMizer is to be applicable to assertions
written in different languages, in the following, we present
some examples which are studied in this article.

Listing 4 presents an example of assertions generated by
the miner introduced in [9]. Listing 5, shows the extracted
assertions of the work in [8]. Finally, Listing 3 represents
the format of assertions produced by the assertion miner
in [10]. Any of these assertions are describing a specific
behavior of the DUV. For example, property p1 in Listing 4
means that eventually from 0 to an infinite clock cycle later,
the proposition a==1 will happen, and then it implies that
eventually from 0 to an infinite clock cycle later !(t1==1)
will happen.

Listing 4: Example of generated assertions in [9]
property p1;

(((s_eventually[0:$]( a==1 )))) implies (((s_eventually
[0:$](!(t1==1)))));

endproperty

Listing 5: Example of generated assertions in [8]
property p1;

@(posedge clk)
((reset)

##1 (!reset && !(c==’b1) && !(d==’b1))[*2]
##1 (!reset && !(a==’b1) && !(c==’b1) && !(d==’b1))
##1 ((a==’b1) && !reset && !(b==’b1))
##1 ((d==’b1) && !reset && !(a==’b1) && !(b==’b1))
##2 ((c==’b1) && !reset && !(b==’b1) && !(e==’b1))
##1 (!reset && !(b==’b1) && !(e==’b1))[*8]
##5 ((b==’b1) && !reset)
##1 ((a==’b1) && (b==’b1) && !reset))
|-> ##1 t1==’b100;

endproperty

III. PROPOSED METHODOLOGY

In this section, the proposed method for minimizing the
assertion sets has been discussed. As mentioned in Fig. 1,
IMMizer consists of the following main steps:

● Assertion Classification● Deduction based on Contradictory Terms● Assertion Composition
The first step (section III-A) works by applying three

different classifications to the assertions provided by as-
sertion miners. These classifications are performed based

on the similarity of consequents, temporal patterns, and
antecedents of assertions (Definition 2), respectively. These
classifications help IMMizer to group assertions more ho-
mogeneously therefore the flow can minimize the assertions
easier and faster.

The second step (section III-B) consists of two sub-steps
which are 1) Proposition Extraction (Section III-B1), and
2) Proposition Subtraction (Section III-B2). This step is
the core of IMMizer and the main tasks of minimization
are performed here. The method at first performs the
’Proposition Extraction’ on the classified assertion sets to
analyze propositions (Definition 1) in all the antecedents.
If there are Different Terms (DT) (Definition 3) among
the antecedents, ’Proposition Subtraction’ applies to find
the Contradictory Terms (Definition 5). This is done by
calculating the Sum-Of-Products (SOP) (Definition 4).

In the third step (Assertion Composition (section III-C)),
a new set of minimized assertions is generated based on
the provided ingredients from the previous steps.

The above flow is elaborated in Algorithm 1 for a better
demonstration of the overview of the proposed method
and has been discussed in more detail in the following
subsections.

Algorithm 1 IMMizer

1: Assertion Classification:
2: Apply classification based on consequent of assertions;
3: Apply classification based on temporal patterns of assertions;
4: Apply classification based on the antecedent of assertions;
5: Deduction based on Contradictory Terms:
6: Find the similar terms in the antecedent of the classified

assertions;
7: Find the DT in the antecedent of the classified assertions and

consider different combinations that each DT can produce;
8: Calculate the Sum-Of-Products (SOP) for DTs;
9: Calculate complement of SOP and consider it as Contradictory

Term;
10: Assertion Composition:
11: If the result of Step 9 is equal to 0 then omit all the DTs from

the minimized assertion;
12: If the result of Step 9 led to new propositions then apply a

negation (∼) before them and replace these new propositions
with the DTs in the minimized assertion.

A. Assertion Classification

This step aims at classifying the initial assertion set,
in order to prepare the appropriate conditions for the
next steps. Classifying assertions leads to placing similar
assertions in the same group and thus more effectively
discovering the redundant assertions.

Figure 2: Three different classifications

The first classification is based on the similarities among
the consequent of the assertion sets. This means that, in
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order to minimize assertions with each other, they have to
be related to the same consequent. Otherwise, logically it
is not possible to minimize and compact them together as
they are describing different behaviors of the DUV.

As an illustrative example, we have considered some
of the assertions provided by A-Team [10], an assertion
miner for one of our benchmarks (Arbiter), in Listing 6.
After performing the first classification, the assertions are
classified according to the Listing 7 and in three different
classes (Class 1, Class 2, and Class 3). This is due to the
fact that the corresponding consequent for each obtained
class is similar.

Listing 6: A group of assertions provided by A-Team [10]
1) !A && B && !C |-> F
2) A && D |-> G
3) B && C && !D |-> ##2 G
4) !A && !C |-> F
5) !A && C |-> F
6) B && C |-> ##3 F
7) A && B && C ##1 !A && !C |-> ##2 !F
8) A && !C ##1 !A && D && C |-> ##2 !F
9) A && C ##1 !A && !C |-> ##2 !F

Listing 7: First classification on consequents
Class 1:
1) !A && B && !C |-> F
4) !A && !C |-> F
5) !A && C |-> F
6) B && C |-> ##3 F
Class 2:
7) A && B && C ##1 !A && !C |-> ##2 !F
8) A && !C ##1 !A && D && C |-> ##2 !F
9) A && C ##1 !A && !C |-> ##2 !F
Class 3:
2) A && D |-> G
3) B && C && !D |-> ##2 G

Note that, in the above Listings, A, !A, B, C, !C, D, and !D
are in the antecedent part of the assertions, and F, !F, and G
are in their consequents. Moreover, ##2, and ##3 determine
the number of clock cycles where consequent occurs after
antecedent.

After doing classification on consequents of assertions,
the second classification which aims at categorizing the
assertions based on the behavior of temporal patterns
is performed. Listing 8 has presented the result of the
second classification. The assertions that we analyzed in
this research are with different temporal patterns. Thereby,
to minimize these assertions, we have to classify them
based on the similarities of their temporal patterns.

Listing 8: Second classification on clock cycles

Class 1.1:

1) !A && B && !C |-> F

4) !A && !C |-> F

5) !A && C |-> F

Class 1.2:
6) B && C |-> ##3 F

Class 2.1:

7) A && B && C ##1 !A && !C |-> ##2 !F

8) A && !C ##1 !A && D && C |-> ##2 !F

9) A && C ##1 !A && !C |-> ##2 !F

Class 3.1:
2) A && D |-> G
Class 3.2:
3) B && C && !D |-> ##2 G

In the last classification, IMMizer works heuristically to
find the assertions that their antecedents are with the most

similarities. In fact, it finds and classifies those assertions
that have more similar propositions in their antecedents.
Going back to the illustrative example in Listing 8, in
Classes 1.1 and 2.1, the assertions are with the most sim-
ilar propositions in their antecedents among all the other
assertions. Accordingly, assertions in Classes 1.2, 3.1, and
3.2 are unique and without any redundancy. Thus, the final
classification’s result will be the two dark gray parts which
are shown in Listing 8.

After performing the three classifications and catego-
rizing the assertions for minimization, the next step, i.e.
Deduction based on Contradictory Terms, is applied to the
classified assertions to minimize them. In the following,
these processes are discussed in more detail.

B. Deduction based on Contradictory Terms

In this section, the process of ’deduction based on
Contradictory Terms’ has been discussed. The idea is to
distinguish the behavior of the DUV which is not illustrated
by the assertion set. For this purpose, the assertions which
are collected in the same class (in the previous section) are
analyzed to determine which behavior of the DUV is not
covered by them. These missing behaviors are called Con-
tradictory Terms. Consequently, these Contradictory Terms
are used to create a new assertion set.

This section mainly consists of two steps, i.e., 1)
Proposition Extraction and; 2) Proposition Subtraction. The
first step looks for the similar terms, as well as the Different
Terms i.e., dissimilar propositions among the antecedent of
assertions, and the second step instead, aims at finding the
Contradictory Terms by calculating the SOP for dissimilar
propositions in the antecedent of assertions. More detail is
described in the following.

1) Proposition Extraction
This step determines DTs (Definition 3), in a classified

assertion set. For this purpose, first, the propositions that
are the same in the antecedents of the classified assertion
sets are identified. Second, dissimilar propositions among
the assertions are determined. In other words, DTs are
extracted. Consequently, with calculating DTs, conditions
that lead to a ’don’t care situation, i.e., ’-’, are defined.

As illustrative examples, part B.1 in Fig. 3, shows how
Proposition Extraction is performed for Class 1.1 in Listing
8. Note that the next steps, i.e., Proposition Subtraction and,
Assertion Composition are shown in this figure as step B.2
and step C which are described later.

Looking at Fig. 3, in the antecedent part of the three
assertions in the box ’Classified Assertions’, !A has been
appeared in all of them, however, B and C have been
appeared with different values. Therefore, in the provided
example, we keep !A as it is. Subsequently, B and C have
been considered as DT.

At this step, all combinations that DTs of any of the
assertions can produce are computed. Combinations refer
to the fact that if a proposition does not occur in the clas-
sified assertion set, a don’t care situation, ’-’ is placed. For
instance, in the first assertion in the ’Classified Assertions’
box, all the propositions do occur, as a result, no don’t care
is placed wherefore B !C is written (in the box of Different
Terms (DT)). In the second assertion, instead, there is no
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Figure 3: Example 1 for minimizing the assertions

Figure 4: Example 2 for minimizing the assertions

proposition either for B or !B, subsequently, it is considered
as don’t care (-). Therefore, for this assertion, we have - !C
in the box of Different Terms (DT) in the illustrated example
in Fig. 3. This process has been done for the third assertion,
as well, which leads to calculating, - C.

In the condition that the classified assertions include a
temporal operator (e.g. ##1) in the antecedent, the workflow
of IMMizer is slightly changed. In fact, IMMizer has to break
down the antecedents corresponding with the number of
temporal operators which is used in each antecedent of
the classified assertion. Accordingly, DTs are determined.

Fig. 4, shows an example of a classified assertion set
including a temporal operator in the antecedent. As can be
seen here, two flows are created, one regarding the part of
antecedent before the temporal operator ##1 and one flow
related to the part of antecedent after ##1. In the ’Classified
Assertions’ box, the propositions for the first flow are shown
as ’brown’ and propositions for the second flow are shown
as ’blue’. As described previously, DT boxes are calculated,
correspondingly.

2) Proposition Subtraction
The aim of this step is to find the behavior of DUV

which is not described in the classified assertion set, i.e.
finding the Contradictory Terms. This is performed, first,
by extracting all the possible combinations which can be
produced from the box of Different Terms (previous step).
Second, by extracting Contradictory Terms, based on the
DT. For this purpose, Sum-Of-Products (SOP) for the DT
set is calculated and its corresponding complement is
determined. This result is used later to create a new and

minimized assertion set.
Going back to the illustrative example in Fig. 3, as can

be seen, DT = {B !C, - !C, - C}. At this step, all the possible
combinations which can be produced by replacing ’-’ are
calculated. Thus, DT will be equal to {B !C, !B !C, B C, !B
C}. This is due to the fact that for the first assertion B !C,
for the second assertion, B !C, and !B !C, and for the third
assertion B C and !B C are produced in DT set, respectively.
Accordingly, SOP of this set can be written as is reported
in Step B.2, i.e., (B !C) + (!B !C) + (B C) + (!B C). Obviously,
the final result of SOP is equal to (B + !B).

At this phase, the Contradictory Term which is the com-
plement of (B + !B) is extracted i.e., (!B B) = 0. In this
example, this value is equal to 0, which means that the
DTs (B, !B, C, and !C) should be removed and not added
to the minimized assertion.

As said, for the classified assertions which include a tem-
poral operator in their antecedents the workflow is slightly
different. In such a case, IMMizer considers the before
and after of each temporal operator as a separate flow.
Accordingly, SOP and Contradictory Terms are calculated for
each flow. Going back to the illustrative example in Fig. 4,
there is ##1 in the antecedent of the assertions. Therefore,
two boxes for DTs have been complied from the assertion
set. For the left side of the ##1, DT = {(B C), (B !C), (!B !C),
(!B C)}. The calculated SOP for this part is equal to (B +
!B) that its complement is (!B B) = 0. Therefore, for the left
side of the ##1, B, !B, C, and !C will be removed from the
final minimized assertion. On the other hand, for the right
side of the ##1, the DT box consists of {(!C -), (C D), (!C
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-)} = {(!C D), (!C !D), (C D)}. The SOP and its corresponding
complement are (!C + (C D)) and (C !D), respectively. (C !D)
means that (C && !D) is the new term that will be replaced
with the DTs and will be added to the right side of the ##1
in the minimized assertion.

C. Assertion Composition

In this step, the final minimized assertion set is produced.
For this purpose, the result of (SOP(DT )C ) is considered.
If the result is equal to 0, it indicates that the DTs should
be removed and not added to the final assertion set.
Otherwise, if the result of (SOP(DT )C ) is equal to a set of
propositions, a negation (i.e., ∼) is applied on (SOP(DT )C ),
i.e., ∼ (SOP(DT )C ). Consequently, ∼ (SOP(DT )C ) is added
to the final result. In other words, the similar proposition
in the classified assertions remains as it is, however, all the
produced DTs are replaced by ∼ (SOP(DT )C ).

Going back to the illustrative example in Fig. 3, the result
of (SOP(DT )C ) is equal to B !B = 0. Thus, all the DTs,
i.e, B !C, - !C, - C are removed from the assertions in the
’Classified assertion’ box. Thereby, the final assertion set is
minimized to only one assertion (!A |-> F). As can be seen,
the final assertion set has a significantly lower number of
propositions in comparison with the classified assertions.

Regarding Fig. 4, two Contradictory Terms are identified.
The first is equal to ’0’ and the second is equal to (C
!D). ’0’ indicates that the DTs should be removed from
the final assertion set, however, for the result of the sec-
ond flow a negation is applied on (C !D), i.e., ∼(C !D).
Therefore, the generated minimized assertion is equal to:
A ##1 !A && ∼(C && !D) |-> ##2 !F.

IV. DISCUSSION ON COMPUTATION TIME OF IMMIZER

In this section, we elaborate that the proposed method
can perform the algorithm in a reasonable execution time
and without any additional overheads on the system.

As mentioned before, in the Deduction step, to find the
Contradictory Terms, IMMizer needs to consider different
combinations produced by each DT, and calculate the SOP
and the complement of SOP. This can cause more execu-
tion time in cases where there are too many propositions
(with different values) in the antecedent of assertions. To
resolve this issue and to prevent IMMizer from additional
comparisons, equations (1) and (2) have been employed.

u = n∑
i=12

#don′t car es +∑#combi nati ons wi thout don′t car e

(1)
In equation (1), u is the number of all possible combina-

tions that classified assertions can produce. The first part
of this equation, i.e.: ∑n

i=1 2#don′t car es , is related to those
combinations of Different Terms (DT) that have at least
one don’t care (-). n is the number of combinations with
don’t care in DT and n ⩾ 1. If there is no combination with
don’t care, this part of the equation will be 0. #don′t car es
is the number of don’t cares in each combination of DT.
Furthermore, #combi nati ons wi thout don′t car e is the
number of combinations in DT that do not have any don’t
care. F = r −(u− s) (2)

In equation (2), s is the number of repetitive created
combinations produced by different terms (e.g. B !C in Fig.

3) and r is the number of all possible combinations that
these terms (e.g. B and C in Fig. 3) can produce. The value
of F determines whether IMMizer can classify assertions
together or not.

If F < (#grouped assertions), IMMizer can classify them.
Otherwise, the assertions cannot be classified with each
other to perform the minimization on them. The reason
is that in this case, the number of generated Contradictory
Terms is more than or equal to the number of assertions
that have been grouped together, and in fact, it generates
more or equal assertions than the number of first assertions
that had been grouped together. #grouped assertions is the
number of assertions that IMMizer has grouped together
based on the most similarities in the proposition of their
antecedent part and aims at minimizing them. In the
illustrative example in Fig. 3, u is equal to 5 (21 + 21 + 1),
and s and r are equal to 1 and 4, respectively. Thereby, the
value of F is 0, which is less than 3 (3 is the number of
assertions that we have grouped for minimization (#grouped
assertions)).

The important point in the proposed minimizer is that
it first calculates the value of F and after that, decides
to whether minimize or not the grouped assertion set. To
calculate the value of F , IMMizer needs to only find the
Different Terms (DT) and the number of don’t cares in each
DT. Subsequently, at first, there is no need for finding the
different combinations produced by each DT, calculating
the SOP and other computations and processes of the
IMMizer in the Deduction step. The parameters in F , i.e.
r, u, and s can be calculated by only finding the Different
Terms (DT) and the number of don’t cares in each DT. This
can prevent the overheads that might be imposed on the
system in cases where there are a lot of propositions with
different values in the antecedent part of the assertions and
moreover, it reduces the execution time.

V. EXPERIMENTAL RESULTS

To evaluate the efficiency of the method, the proposed
minimizer has been applied to the generated assertions of
different assertion miners. These miners are related to the
works in [8], [9], and [10].

The miners are applied to an NoC framework, (an open-
source project named NoC router Bonfire [27]) and two
of its important components which are Arbiter and LBDR.
Arbiter connects input links to the output links according to
the routing algorithm. LBDR instead is the control part of
the router, used for calculating the candidate output ports
to forward the packets. These two components are critical
since they build the control part of the router thus, their
verification is essential.

In Table I, the number of initial assertion sets (#Initial
assertions) provided by the assertion miners, the number
of minimized assertion sets (#Minimized assertions), as well
as the percentage of reduction in the number of assertions
(Reduction in #assertions (%)) have been reported. Further-
more, the percentage of detected mutants by the initial set
which is correspondingly detected by the minimized set
(Mutant detection (%)), and the execution time of IMMizer
(Execution Time (Sec)) have been presented. One advantage
of IMMizer is its ability in minimizing assertions generated
by different approaches. As mentioned in section II, the
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Table I: Reduction in the number of assertions after applying IMMizer, the report on what percentage of the detected mutants by the
initial set are correspondingly detected by the minimized set, and the execution time of IMMizer for each benchmark.

Assertion Miners #Initial Assertions #Minimized Assertions Reduction in #Assertions (%) Mutant Detection (%) Execution Time (Sec)
A-Team [10] - Arbiter 318 198 38 100 15
DDG [8] - Arbiter 207 199 4 100 21

Assertion Miner [9] - Arbiter 4175 304 93 100 60
Assertion Miner [9] - LBDR 1546 258 83 100 48

general structure of the assertions that have been provided
by the assertion miners are similar to the assertions in
Listings 3, 4, and 5. According to Table I, IMMizer has
reduced the assertions of A-Team [10] by 38%, it has
significantly reduced the generated assertions in [9] by 93%
for Arbiter and by 83% for LBDR. This figure for assertions
provided by [8] is 4%.

It should be noted that the percentage of reduction shows
the amount of redundancy in the assertions generated by
each assertion miner. In other words, IMMizer is able to
check the redundancy and find the redundant assertions.
4% reduction in assertions of the work in [8] is because
of the fact that assertions of this tool are typically unique,
therefore the redundancy of assertions generated by this
tool is less than other tools.

Furthermore, according to the details provided in [28]
and Table II, a complete set of mutants in terms of con-
verting all operators and bits has been used and injected
into the RTL designs. In Table II, the details about these
injected mutants have been presented. The column ’Mu-
tation operator types’ demonstrates different types of the
operators that have been modified by the mutants. Any of
the operators in each row of the column ’List of operators’,
has been changed to others. In addition to these mutants,
we randomly converted all 0 bits to 1 and vice versa.

According to the mutant analysis results that have been
presented in Table I, there is no reduction in the number
of detected mutants. This is shown in column (Mutant
detection (%)) where mutant detection is equal to 100
percent for all the benchmarks. This indicates that all the
mutants that are detected by the initial assertion set, are
covered by the minimized assertion set, correspondingly.
This is an important advantage of IMMizer that can detect
the mutants with the same coverage as the initial assertion
sets, but with a less number of assertions and with less
overhead imposed on the system. Moreover, regarding

Table II: Description of Injected Mutants

Mutation Operator Types List of Operators
arithmetic operators +, -, *, /, %
relational operators ==, !=, >, <, >=, <=
logical operators &&, ||

assignment operators +=, -=, *=, /=, %=, =
unary operators +, -, ∼, !
bitwise operators ≪,≫,&, ∣,^

bitwise assignment operators ≪=,≫=,& =, ∣ =,^ =
the execution time for minimizing assertions, according to
Table I, IMMizer minimizes assertions of A-Team [10] in
15 seconds. This figure for DDG [8] is 21 seconds and for
assertions of [9] is 60 seconds for Arbiter and 48 seconds
for LBDR.

In addition to the ability of IMMizer in reducing the
number of generated assertions, in some cases, it can

improve the readability of assertions by removing extra
propositions from the antecedent of assertions. This can
be seen in the illustrative example in Fig. 3 that in the
minimized assertion, B, !B, C, and !C have been removed.
According to our experiments, for A-Team [10], in 10% of
assertions, the number of propositions has been reduced.
This figure did not change for DDG [8], while, in assertion
miner of [9], a reduction of 73% and 24% has occurred
for LBDR and Arbiter, respectively. These results have been
presented in the ’Proposition Reduction (%)’ column of
Table III.

Furthermore, a reduction in the number of assertions
and propositions leads to a reduction in the allocated
memory for these assertions. Table III presents this result. In
the columns ’Initial Assertions’ and ’Minimized Assertions’,
the amount of memories that have been allocated to the
initial and minimized assertions have been reported. The
column ’Memory Reduction (%)’ presents the reduction in
the allocated memory for minimized assertion sets. For
the assertions related to A-Team [10], about 33% memory
reduction has occurred after minimization. This figure for
DDG [8], is 13.85%. For the assertion miner in [9] 87.24%
memory reduction for LBDR and 87.66% for Arbiter have
been reported.

To investigate the efficiency of our method in comparison
with other approaches, IMMizer has been compared with
a tool called Shayan [17]. It should be noted that Shayan
ranks all the assertions according to several data-mining
metrics, consequently, it selects the top-ranked assertions
for verification engineers. Therefore, to make a better com-
parison, the same number of top-ranked assertions from
Shayan equal to the number of minimized assertions by
IMMizer have been considered (e.g. for A-Team - Arbiter, in
the first row in Table I, the number of minimized assertions
is equal to 198, thus the first 198 top-ranked assertions by
Shayan are considered for the comparison).

Table IV, reports these results. The number of assertions
has been reported in column ’#Assertions’ and the efficiency
of the method over Shayan has been presented in the
column ’Improvement in Mutant Detection (%)’. For A-
Team [10], the top 198 assertions that have been ranked by
Shayan have been compared with 198 minimized assertions
by IMMizer. After performing mutant analysis, both could
detect the same number of injected mutants. Regarding
the DDG [8], IMMizer detected the injected mutants 5%
more than Shayan. Moreover, for assertion miner proposed
in [9], IMMizer could detect 25% and 45% more mutants in
comparison with Shayan for LBDR and Arbiter, respectively.
The results prove that while IMMizer can minimize the
number of initial assertions, it can also detect more mutants
in comparison with other tools like Shayan.
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Table III: Reduction in the Allocated Memory and Propositions

Assertion Miners Initial Assertions Minimized Assertions Memory Reduction (%) Proposition Reduction (%)
A-Team [10] - Arbiter 45.28 KB 30.32 KB 33.03 10
DDG [8] - Arbiter 31.76 KB 27.36 KB 13.85 without change

Assertion Miner [9] - Arbiter 33.24 MB 4.1 MB 87.66 24
Assertion Miner [9] - LBDR 31.36 MB 4 MB 87.24 73

Table IV: Efficiency of IMMizer over Shayan

Assertion Miners #Assertions
Improvement in

Mutant Detection (%)
A-Team [10] - Arbiter 198 equivalent
DDG [8] - Arbiter 199 5

Assertion Miner [9] - Arbiter 258 45
Assertion Miner [9] - LBDR 304 25

VI. CONCLUSIONS

This paper proposed IMMizer, a cost-effective method
for minimizing assertion sets. IMMizer considers the Con-
tradictory Terms among assertions for minimization pur-
pose. The experimental results prove the significant ability
of the method in minimizing the assertions extracted by
different assertion miners without any reduction in design
behavior coverage in a very short execution time. Moreover,
experimental results showed that in comparison with other
approaches for minimizing assertions like data-mining-
based approaches, IMMizer is remarkably more accurate
in mutant detection with a less number of assertions. In
addition, IMMizer can improve the readability of assertions
by removing unnecessary propositions, subsequently, it can
reduce the memory overhead imposed on the system.
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Abstract—Autonomous driving (AD) system designers need
methods to efficiently debug vulnerabilities found in control
algorithms. Existing methods lack alignment to the requirements
of AD control designers to provide an analysis of the parameters
of the AD system and how they are affected by cyber-attacks.
We introduce ADAssure, a methodology for debugging AD con-
trol system algorithms that incorporates automated mechanisms
which support generation of assertions to guide the AD system
designer to identify vulnerabilities in the system. Our evalua-
tion of ADAssure on a real-world AD vehicular system using
diverse cyber-attacks developed a set of assertions that identified
weaknesses in the OpenPlanner 2.5 AD planning algorithm
and its constituent planning functions. Working with an AD
control system designer and safety validation engineer, the results
of ADAssure identified remediation of the AD control system,
which can support the implementation of a redundant observer
for data integrity checking and improvements to the planning
algorithm. The adoption of ADAssure improves autonomous
system design by providing a systematic approach to enhance
safety and reliability through the identification and mitigation of
vulnerabilities from corner cases.

Index Terms—Security, Autonomous Driving

I. INTRODUCTION

Autonomous driving (AD) vehicles are increasingly being
utilised for transportation on public roads. Waymo and Cruise
offer AD ride-hailing services in San Francisco, Apollo Baidu
in China, and numerous such services are operating in Europe.
Central to the wider-adoption of AD vehicles on public roads
is the security and safety of their control algorithms that enable
self-driving technology. AD control algorithms comprise a
complex code-base of interconnected modules that perform
tasks and sub-tasks that enable a vehicle to sense, perceive,
localise, and navigate in a driving environment. With the
increase in diversity of AD use-cases from valet parking to
public transportation in public traffic, the code base of AD
control algorithms will reputedly grow from 100-200 million
to billions of lines of code [1].

Within this complex environment, debugging the code for
logical errors arising from unexpected control behaviour is
a fundamental challenge [2]. AD system designers need to
pinpoint where in the control software weaknesses are, in order
to focus debugging efforts in an efficient manner. Existing
studies attempt to rectify unexpected AD control behaviour
at run-time through smoothing trajectories utilising neural
networks [3] [4] [5]. The applicability of these studies in real-
world AD programs are limited due to the highly dynamic
environment of autonomous driving and the probabilistic na-
ture of the algorithms for planning.

⋄ These authors contributed equally to this work.
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Fig. 1: Comprehensive ADAssure methodology overview that illus-
trates each step of the process, from data collection to assertion
creation, review of assertions, and debugging.

Furthermore, in these studies, the analysis lacks the ex-
pertise from the algorithm designer and safety engineer to
inform on the nature of the behaviour of vehicle dynamics,
whether noise identified as irregular could be considered for
a control engineer within normal constraints, whether AD
behaviour could be considered a legitimate safety response
to an unexpected event and whether the parameters for which
the run-time solution is designed are appropriate for differing
class of vehicles with different dynamic profiles. We consider
the design phase to offer the most promising area of initial
investigation to improve the robustness of control algorithms,
which can be translated to real-world AD systems.

In this work, we propose ADAssure, a methodology for
debugging control algorithms during the design-time phase
of AD control software development (Fig. 1). ADAssure is
built upon the idea that the data of vehicle dynamics and
sensing of AD systems can be analysed for anomalous control
behaviour, which can then be transformed into assertions on
the AD control. We use association rules that enable us to mine
datasets of varying scales and fingerprint the pattern of anoma-
lous activity. These rules can be used to guide AD system
designers to focus on the debugging of the control algorithms.
To evaluate ADAssure, we focus on a control system algorithm
used in a real-world AD vehicular system providing ride-
hailing services. To summarise, the paper makes the following
contributions:
• We propose ADAssure, a methodology designed for de-

bugging AD control algorithms during the autonomous
system development’s design phase (see § II).

• To demonstrate our methodology’s feasibility, we applied
it to diverse datasets, revealing three new vulnerabilities
in Openplanner 2.5 AD, used in real-world vehicles.
(see § IV).

• We provide to the community our artifacts to enable
reproducibility and assist with developing efforts to im-
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prove AD control system design. These artifacts in-
clude simulation datasets and real-world AD system data
(ADAssure Datasets).

II. ADASSURE: METHODOLOGY

The development of ADAssure has three main motiva-
tions. First, it aims to provide AD system designers with
a methodology to identify and fix vulnerabilities that align
with the design of AD algorithms. Second, given the ever-
changing nature of the autonomous vehicle system, it strives to
establish a structured methodology that allows for consistent,
flexible, and repeatable testing. Third, it aims to support
unit testing, allowing testing of individual components of the
autonomous system in isolation from other dynamic factors
affecting autonomous control.

The foundations of the ADAssure methodology are based on
the analysis of the vehicle dynamics and sensing data to guide
the creation of assertions of the vulnerability of the AD control
algorithms. The analysis consists of a sensitivity analysis
of vehicle dynamics data (e.g., velocity, yaw, and steering
angle), sensor data (e.g., lateral and longitudinal movement),
and visualisation of the trajectory of the AD system. This
helps identify key parameters to build assertions of the AD
control algorithms. The AD control system designers can use
the assertions to identify and locate the vulnerabilities of
the control model and develop mechanisms to test and fix
the errors. The ADAssure methodology comprises three main
phases: AD Data Collection, Association Rule Generation, and
Assertion Review and Debugging. Next, we will explore each
phase in more depth.

A. Autonomous Driving Data Collection
This phase consists of generating data from the real-world

system or simulation environment. The benefit of a simulation
environment is that driving scenarios can be automated or
designed to test a specific condition, such as a cyber-attack
or a corner case. The data output is structured according to
established metrics. These can be vehicle dynamics parameters
(yaw angle, velocity, etc.), sensing data (position co-variance,
point-cloud, etc.), and safety parameters (distance-to-collision,
etc.). The AD data is outputted in a format that can be
interpreted by analytical tools, in our use-case, .csv format.

B. Association Rule Generation Phase
The goal of this phase is to process the data generated

from the previous phase and produce a set of association
rules that can be translated into assertions in the Assertion
Review and Debugging phase. This phase is comprised of
three primary steps (as shown in Fig. 2): a) Association
Rule Mining, b) Time Notation, and c) Attack Detection. The
association rule mining is applied to both benign and malicious
datasets, resulting in two distinct sets of association rules.

Algorithm 1: Association rule mining & time notation
1 Input: N , D
2 Output: next[N ] = antecedent→ next[N ]consequent,
before[N ] = antecedent→ before[N ]consequent
/* Initialization and Preprocessing */

3 R = antecedent→ consequent
4 forall f ∈ D do
5 D′ = MoveUp(f(N ))

/* Mining */
6 R← apriori(D′)

/* Time Notation */
7 if (R.antecedent == (t ∈ D′)) and (R.consequent ==

(f ∈ D′)) then
8 next[N ]← label(R)
9 if (R.antecedent == (f ∈ D′)) and (R.consequent ==

(t ∈ D′)) then
10 before[N ]← label(R)

These rules are then processed through the Time Notation
step to incorporate temporal information, yielding temporal
association rules (assertions) in the form of next[N ] and
before[N ] patterns. We define next[N ] type of rule in the
general form of X → next[N ]Y . This rule indicates that
when X occurs, after N time instants, Y will occur. N is a
positive integer value. Moreover, we define before[N ] rule in
the general form of X → before[N ]Y . This rule demonstrates
that whenever X happens, Y should have occurred N time
instants before that. The ”Attack Detection” step compares
these temporal association rules, ultimately detecting attacks
and anomalies within the datasets. Subsequent sections provide
a more in-depth discussion of each step.

a) Association Rule Mining: This step primarily serves
two objectives: pre-processing the datasets and subsequently
mining association rules from the preprocessed data. To mine
the association rules, apriori algorithm [6] was adopted and
enhanced to mine temporal rules capable of detecting attacks at
various time instances during autonomous vehicle (AV) oper-
ation. Algorithm 1 presents the details of the Association Rule
Mining and Time Notation steps. In this algorithm, D denotes
the dataset and D′ is the preprocessed dataset, while f and t
represent the dataset’s features and target values. To prepare
the dataset for mining the next[N ] and before[N ] temporal
patterns, all the features of the dataset are moved N records
above its original position (Line 5). However, the target of the
dataset remains as it is. Afterwards, the apriori algorithm is
applied to the preprocessed dataset to mine a set of association
rules. The output of this phase is a set of association rules in
the general form of antecedent → consequent that are ready
to be forwarded to the Time Notation step.

b) Time Notation: In this step, the method integrates
the concept of time into the association rules generated in
the association rule mining step, leading to a set of temporal
association rules. The method determines to which temporal
pattern (next[N ] or before[N ]) each extracted rule belongs
and subsequently assigns the corresponding time label to the
rule. If the antecedent value matches a target value in the
dataset, and the consequent value has already been moved
to another record in the dataset, the rule is labelled as a
next temporal association rule (Line 8). Otherwise, if the
antecedent of a rule mined in the association rule mining
step matches a dataset feature that has already been moved
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to another record and the consequent of the rule matches the
target value of the dataset, we label this rule as a before
temporal association rule (Line 10). The mined rules are
in the forms of antecedent → next[N ]consequent, and
antecedent → before[N ]consequent, serving as assertions
for debugging the AD system.

c) Attack Detection: This step aims to identify rules
indicating attacks on the AV. We assume that the sets of
mined rules from the benign and malicious datasets should
be similar under normal conditions, without any AV attacks.
Any deviation between these rule sets signifies an anomaly
in the autonomous vehicle. Per this assumption, the temporal
association rules (assertions) mined during the time notation
phase are classified into two sets. The first category comprises
rules exclusively mined from the malicious dataset, lacking
counterparts in the benign dataset. Any rule extracted solely
from the malicious dataset, without a corresponding counter-
part in the benign dataset, signifies an attack. These rules
reveal abnormal behaviour in the malicious dataset, contrasting
with different behaviour observed in the corresponding time
instance of the benign dataset. Consequently, we classify
these as attacks. The second category comprises similar rules
mined from both benign and malicious datasets, but with
different minimum support (min_supp) and minimum con-
fidence (min_conf) values. The variations in these values
indicate that, while the mined rules are similar, abnormal
behaviours and anomalies exist between the datasets. The
apriori algorithm employs these two metrics (i.e., min_supp
and min_conf). The min_supp value is the threshold and a
minimum value that is chosen by the expert to decide whether
a rule occurs frequently in the dataset or not [7], [8]. The
min_conf is the minimum value that is chosen by the expert
and is an indication of how often a rule has been found to
be true [6], [9]. Increasing the min_supp value results in
fewer association rules that describe more general behaviour
of the autonomous vehicle, while decreasing the min_supp
value leads to rules covering rare behaviours (corner cases).
Similarly, raising the min_conf value produces fewer but
more valid rules. Valid rules refer to association rules that
will not be violated with different attack scenarios like corner
cases. These values in the ADAssure facilitate an effective
attack detection process. The second category of rules aids
the ADAssure in effectively identifying corner cases and the
attacks that rarely occur on the AV. These rare attacks exhibit
behaviour very similar to normal vehicle operation but are
malicious and can lead to AV failure.

C. Assertion Review and Debugging
Within this phase, the association rules generated from

the association rule mining are reviewed in conjunction with
an analysis of the control behaviour and individual data
parameters to develop assertions. Trajectory maps of the AD
system and graphs, which demonstrate the sensitivity of the
data parameters during benign and cyber-attack scenarios, are
compared to the anomalous behavioural patterns detected by
the association rule mining tool. Using expertise from the
algorithm designer and safety validation engineer assists in
understanding which parameters can uniquely demonstrate a
vulnerability of an algorithm within the system. From devel-
oping an assertion on the system’s vulnerability, the debugging
effort focuses on a control flow analysis. As the assertion as-

Fig. 3: Localisation Algorithm Flow within AD System.

sists in pinpointing the specific module, the static analysis can
focus on the control flow of the substituent functions within the
module. As an example of the importance of this pinpointing,
a local-planning module could have 15 diverse algorithms,
and within these, each could have multiple different methods
or functions. As the code of AD algorithms are differential
equations, debugging can suggest optimisations that enable
mitigation mechanisms against the identified vulnerabilities.

III. AUTONOMOUS DRIVING CONTROL ALGORITHM

To evaluate the methodology, we focus on an AD control
algorithm used in a real-world AD ride-hailing service. Within
the AD pipeline, there are four key modules: localisation,
perception, planning, and control. Within our study, we focus
on the localisation and planning modules.

A. Localisation Module
This module provides accurate information regarding the

position and orientation of the vehicle. Using a Normal Distri-
butions Transform (NDT) matching search algorithm, it iden-
tifies the best matching position based on sensor perception.
It uses input from the Inertial measurement unit (IMU) and
the point cloud generated by the LiDAR. Then, it attempts to
match the points from our current scan to a grid of probability
functions derived from the map. NDT matching algorithms
can also benefit from the GNSS sensor, which provides
initial rough estimates of localization on geo-referenced maps,
thereby avoiding any sudden errors in localization calculations
that may result in failures. Fig. 3 displays the flow of the
localisation algorithm within the AD system.

B. Planning Module
For the AD system to plan a mission, firstly, a global planner

generates a global reference path using a vector (road network)
map. The function of the global planner is to stipulate a
route between the starting position and goal position of the
mission on the road map. The local-planner generates smooth
and obstacle-free trajectories in the operational local domain
following the global route. The local-planner consists of
several modules (see Fig. 4); trajectory generation, trajectory
evaluation, intention and trajectory estimator, object-tracker
and behavior selection (decision making) [10]. The trajectory
generation module generates alternative tracks parallel to the
main path defined by the global planner. These tracks are
named roll-outs. The trajectory evaluation module assesses all
possible roll-outs and the data input from sensed-data of the
AV and makes a cost estimation. The behaviour selector will
lead the AV to motion on a roll-out based on the least-cost.

IV. EXPERIMENTATION AND RESULTS

To evaluate the impact of corner cases on AD system
behaviour using the ADAssure methodology, we use datasets
of corner cases from simulation and real-world driving from
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Fig. 4: Abstract Local Planning Algorithm Flow within AD System.

the target AD system. The 1st corner case scenario dataset is
of three diverse cyber-security attacks on the AD system con-
ducted in a simulation environment. As our focus is the plan-
ning and localisation algorithms, we used a low-fidelity sim-
ulation provided by Autoware.AI and the OpenPlanner
2.5 planning algorithm. The 2nd corner case scenario dataset
is of a Global Positioning System (GPS) spoofing event that
occurred on the AD system during its operation on the roads
of a capital city.

A. AD Control System Datasets

a) Cyber-security Corner Case Dataset: Within this
dataset, three attacks were conducted on the target AD vehicu-
lar system, which is attempting an overtaking manoeuvre. The
three attacks are classified as: 1) Lateral Position Offset Attack
2) Longitudinal Position Offset Attack 3) Message Time-Delay.
In the lateral and longitudinal position offset attack, an attacker
injects malicious data input into the lateral or longitudinal
pose whilst the AD vehicular system is in the process of the
overtaking manoeuvre (Fig. 5). This attack could be conducted
through GPS spoofing or interception and manipulation of
the localisation sensor data. The attacker introduces a delay
into the current_pose (lateral and longitudinal) sensor
messages reaching the AD control pipeline for the message
time-delay. The malicious data is injected at around the 21m
mark of the AV journey (travelled distanced) to the 67m. Each
attack was conducted 300 times, accommodating a variation
of different attack parameters. The lateral and longitudinal
attacks introduced a deviation ranging from 0.16% to 1.0%,
which equates to around 20 cm to 1m. The message time-
delay introduced delays of 0.3%, 0.6%, 1.0% second, as a
message is transmitted every 20ms, this range represents a
delay of 15 to 50messages. In total, the dataset comprises
over 1500 scenario runs of attacks and benign safety cases.

b) GPS Spoofing Real-World AV Dataset: The AD ride-
hailing service transmits its sensor data via a logging node to
an edge server, which stores the AD System data in a database.

Fig. 5: The threat model used for conducting the attack cases.

TABLE I: AD System Data.

AD Data Type Description

AV X Longitudinal Position of the AD System as to the HD Map
AV Y Lateral Position of the AD System as to the HD Map
AV Steer Steering Angle of the AD System
AV Vel Velocity of the AD System
AV Yaw Orientation of the AD System based on its centre of gravity
Roll-out Num Current Lane according to the lane selector of the AD

Control Algorithm
DTC Distance to collision of the AD vehicular system to the

overtaking vehicle.
Position Co-
variance

GPS position co-variance

Altitude Altitude derived from the GPS

During its operations near the port area of the city, the AD
vehicle encountered a loss of localisation from a GPS spoofing
event which also affected other GPS-enabled platforms. This
GPS spoofing continued intermittently throughout the preced-
ing months. The dataset used in this study is from the logging
system of AD ride-hailing service.

c) AD System Data: The simulation and real-world
datasets were structured to output data as shown in Table I.

B. Experimental Results
To evaluate the ADAssure methodology, we chose six attack

types and their corresponding safety (benign) scenarios. These
attack types included each of the aforementioned attacks with
differing levels of noise (lateral and longitudinal position
offset, delay message).

a) Automated Analysis: Utilising the ADAssure method-
ology on the three types of attacks yields three distinct set of
assertions corresponding to each attack type. The results of
the assertion generation phase are presented in Table II. The
threshold for minimum support (min_supp) is set at 0.01 ,
while the minimum confidence (min_conf) threshold is 1
Notably, the method exhibits a swift execution time. Within
the 3 attacks of the cybersecurity corner case dataset, the
assertions identify two patterns of anomalous AD behaviour.
Firstly, extreme steering angles of 20◦ and −20◦ and sudden
lane transition. Secondly, multiple lane-transitions combined
with the extreme steering angle and sudden changes in ve-
hicular velocity. This behaviour can be seen to be the effect
of cyber activity on the smoothness of the initiation of the
overtaking manoeuvre which results in turbulent movements
and in some cases, a collision event. The assertions generated
from the GNSS spoofing dataset identified the changes to the
altitude and position co-variance. These were consistent with
dramatic change in the values of the GPS coordinates and the
resultant change in altitude.

b) Assertion Review and Debugging: The patterns iden-
tified in the association rules enables us to extrapolate that the
Yaw angle and angular velocity are good reference point to
show the effect of cyber-attacks. During the injection of the
position offset attacks, the vehicle’s orientation demonstrates
dramatic action; in some circumstances, the vehicle can be

TABLE II: ADAssure Assertion Generation phase results.

Dataset Assertion Execution Time

Name #Records Total #Next[N ] #Before[N ]

Longitude 412 5 3 2 1ns
Latitude 356 7 7 0 1ns
Delay 417 5 3 2 1ns
GNSS 16 5 4 1 1ns
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Fig. 6: Lateral position offset attack vehicle parameters.

Fig. 7: Longitudinal position offset attack vehicle parameters.
seen to be essentially spinning. As displayed in Fig. 6, the
Lateral Position Offset Attack displays the Yaw (angle) of the
vehicle making sharp changes, of 15 deg/sec from 15 meters
mark of the AV journey. This vehicle dynamic behaviour is
a characteristic also seen in both the longitudinal position
offset (Fig. 7) and delay message attack (Fig. 8). The results
for the velocity parameter demonstrate that it only indicates
immediate collision of the vehicle, and it does not support
early identification of anomalous vehicle behaviour. Assertion
1 contends that the AD system should not allow movements
that challenge the physical limitations of the steering model.

Assertion 1: To determine the vulnerability of
the yaw angle and momentum, we can derive
the assertion: AV.displacement of yaw angle >
max yaw angle threshold && time < time threshold.

The roll-out transition, steer, and distance-to-collision pa-
rameters demonstrate identifiable change during a cyber-

Fig. 8: Delay message attack vehicle parameters.

attack. The manipulation of the lateral and longitudinal posi-
tion alters the vehicle position on the map and, therefore, has
the effect of inducing greater transitions between roll-outs,
which is the effective position of the vehicle on the road.
The frequency of transition impacts the smoothness of the
steering angle. From the distance-to-collision parameter, it is
noted that the effect of the attack is most prominent during
the overtaking maneuver and mostly during the cut-in process,
when the vehicle cuts-in front of the passing vehicle (NPC).
Assertion 2 contends that when the vehicle transitions across
multiple roll-outs and displays 180◦ steering and closes to
less than 0.5m to the passing vehicle, this represents affected
behaviour from the cyber attack.

Assertion 2: To identify vehicle dynamic changes
from cyber-attack: AV.x − NPC.x < distance threshold
&& AV.lane transition > max transition number &&
AV.steer angle /∈ [min, max] steer angle

Assertion 3 contends with activity seen in the longitudinal
position offset (Fig. 7) where the AV collides with the passing
vehicle and then accelerates to the previous set-point.

Assertion 3: To identify collisions we can derive the
assertion: |AV.vk −AV.vk+1| > threshold.

Assertion 3 could also be used to detect anomalies in GPS
data. The GNSS spoofing attack demonstrates a significant
deviation in the altitude and position co-variance parameters.
Assuming that velocity data comes from two sources, a wheel
sensor measurement and calculated by deriving the position
from GPS data, the two results should be close to each other.
In the case of a GNSS spoofing attack, the deviation in the
position co-variance would generate a spike in the velocity
(calculated by deriving the position in GPS data), and thus
violating assertion 3.

For our specific AD system, the threshold for assertion 1 is
15◦ yaw angle displacement within 1 s duration. Assertion 2
threshold is identified as a distance between AV and passing
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vehicle as less than 0.5m, lane transition greater than 1 roll-out
and steering angle that is outside the bounds of 20 and −20◦.
It is important to note that these values are valid for a low-
speed AV ride-hailing service and for designers of different
classes of vehicles, it is required to calculate values consistent
with their specific application.

Solvable bugs come from several points in the controller;
a simple one is wrong or imprecise saturation values of the
control signal, which generates a high acceleration or a high
steering angle in the vehicle. This is clearly visible in Fig. 7
where a signal overshoot causes the vehicle to change lane
multiple times. Another example, clearly visible in Fig. 6,7& 8
is the lack of a fallback plan. There is a clear indication of
a collision as the vehicle speed suddenly drops to 0m s−1

and then quickly accelerates to the reference point, this is a
violation of Assertion 3. A robust controller should have a
fallback plan for such a case which indicates a bug in the
functional design of the controller. In such a case, the vehicle
should be aware of the fact that the global trajectory cannot
be followed anymore and switch to emergency mode.

The main reason for searching for unexpected be-
haviours is to debug the controller, with reference to
the experimental results, a violation of Assertion 1 can
be associated to a bug in the /ndt_pose module (see
Fig. 3), while a violation of Assertion 2 can be back-
propagated to the module /op_trajectory_evaluator.
A violation of assertion three can be backpropagated
to the modules of /op_trajectory_generator and
/op_behaviour_selector (see Fig. 3). To pinpoint
the violation of assertion 3 to a specific function, we ab-
stracted from the local planner algorithm and its substituent
lane rule algorithm, the getClosestWaypointNumber
method, which selects the next waypoint to follow in the
global trajectory and returned an exception to be handled as a
different driving behaviour (e.g., there was a crash, emergency
mode activated).

In the case of GNSS attack, the NDT localisation algorithm
doesn’t detect the deviation in position co-variance, and this
is due to the normal vector pointing in the same direction.
Debugging focuses on optimisation of the NDT localisation
using visual odometry for holding the local position at short-
distances until the source of the disturbance has been resolved.

V. RELATED WORK

Recent publications on anomaly detection in vehicular AD
control systems propose the usage of vehicle dynamics as
a key detection indicator for cyber-attacks [11] [12] [13].
Studies such as Guo et al. [14] emphasise the effect cyber-
attacks have on the trajectory of the AD system and the
noise of individual sensors. Mitigation mechanisms focus on
two diverse approaches 1) implementation of an observer
of AD vehicle state estimation which can inform an emer-
gency action (sensor switching etc.) [14] 2) implementation of
trajectory smoothing algorithm to correct unplanned vehicle
behaviour [12] [13]. However, these solutions for detection
and mitigation are developed based on assumptions of driving
environment and algorithm configuration and this limits the
scope of their applicability.

VI. CONCLUSION

Cyber-attacks present new challenges to the design of AD
algorithms. Designers need methods to debug vulnerabilities to
improve robustness. In this paper, we introduced ADAssure, a
methodology for debugging AD algorithms during the design
phase. The methodology consisted of three phases; 1) AD
Data collection 2) Assertion Rule Generation 3) Assertion
Review and Debugging. The concept of the methodology was
to develop association rules from mining AD data which can
be transformed into assertions on the vulnerability of the
system.

Our evaluation of ADAssure on diverse cyber-security
datasets from simulation and real-world revealed that the
ADAssure method could identify three assertions on the
vulnerability of the OpenPlanner 2.5 AD planning al-
gorithm. These assertions were able to guide an algorithm
designer and safety engineer to pinpoint the specific modules
in the planning algorithm for debugging.
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Abstract—As RISC-V processors become more widely dis-
tributed, security issues arise in them. To this end, security
verification techniques for processors should be incorporated
into the design process to ensure the processor specifica-
tions, security requirements, and its actual implementation
are consistent. Among the verification techniques, assertion-
based verification has emerged as one of the most promising
techniques. Although assertions are widely used for functional
verification, there is limited effort in applying assertions for se-
curity verification. Thus, in this work, a novel security assertion-
based technique is introduced for verifying the invulnerability of
the processors against attacks. The method works in three main
steps, first, collecting the security properties related to RISC-V,
second, systematically identifying characteristics of instruction
set architecture for each security property. Third, with the guide
of input from the previous step, a security-based assertion miner
is proposed to automatically extract a set of security assertions
for the RISC-V. The experiments show that the proposed method
can automatically generate security assertions in a very short
amount of time and detect all the inserted Hardware Trojans in
the processor, thereby accurately verifying the security of the
processor.

Keywords—Automatic Security Verification, RISC-V Security
Verification, Security Assertion Mining, Data Mining

I. INTRODUCTION

Processors are ubiquitous in our daily lives and are
embedded in nearly every electronic device. In the world
of processor design, RISC-V is regarded as one of the
most promising technologies. RISC-V’s Instruction Set Ar-
chitecture (ISA) is increasingly adopted in open-source
and commercial processor designs due to its flexibility in
supporting extensions and customization, as well as its
open instruction set [1]. While the openness of the RISC-
V ISA is advantageous for fostering a large community
to examine and extend the ISA continually, it also poses
a disadvantage, as attackers can more easily target the
architecture [2]. In recent years, several notable processor
vulnerabilities, such as the Spectre and Meltdown attacks,
have been identified [3]. These attacks exploit security
vulnerabilities in processors to leak confidential data.

In this context, an innovative method is required to
verify the alignment between the specifications and security
requirements of RISC-V, the corresponding security-related
ISA, and the practical implementation of the RISC-V exten-
sion.

Numerous mature works on functional verification in
the design process exist in the literature [4–11], and some
of them can be applied to security verification [6, 12,
13]. The fundamental distinction between functional and
security verification lies in their objectives: the former
addresses functional problems in alignment with functional
specifications, while the latter identifies security issues by
considering security requirements and threat models [14].

Meanwhile, semi-formal verification techniques like
assertion-based verification (ABV) [15] have garnered in-
terest for their scalability. In the realm of ABV, assertions
represent logical formulas that describe the design’s behav-
ior. They enhance both the design’s observability and error
localization capabilities [16, 17].

There is limited literature on utilizing assertions for the
security verification of processors [18–24]. In [19], security
assertions for processor vulnerabilities are manually crafted
to validate security requirements against the processor
design. However, this manual approach demands signifi-
cant time and expertise, incurring high costs. The method
presented in [20] translates security assertion sets from
one design to another, but it relies on manual assertion
definition and is only evaluated for the OR1200 processor.
The other study presented in [22] proposes a method for
manually identifying security-critical properties for use in
the security verification of the OR1200 processor. Another
study analyzing the security properties of the OR1200 pro-
cessor is the paper presented in [23]. It employs model
checking and formal approaches to detect processor errors
that can lead to security vulnerabilities [23]. Furthermore,
[24] introduces a method named SPECS, which serves as a
lightweight mechanism to protect software from security-
critical bugs in the OR1200 processor. The work in [21]
introduces a tool named Isadora for generating security
assertions based on information flow tracking techniques,
which is more suitable for only tracking the information
flows of the processors and hardware designs. It produces
overly general security assertions that merely delineate sig-
nal paths between block diagrams. The work in [18] formally
verifies information flow security for ARM processor kernel
and user modes. Nevertheless, its formal nature introduces
scalability issues, making it less applicable to large designs.



Moreover, the work presented in [6] introduces an assertion
miner called HARM designed explicitly for the functional
verification of hardware designs. However, it purports the
ability to identify Hardware Trojans (HTs) within these
designs.

All in all, the majority of current approaches neither
explicitly focus on the security verification of processors
nor include an automated method to generate security
assertions to check the consistency between processor’s
security requirements and the actual implementation [25].

Thus, to fill in the gap, in this paper, the proposed
method first, collects the most important security prop-
erties of RISC-V processors by studying RISC-V specifica-
tions [26, 27] and processor security requirements in the
literature [19, 20, 22–24] (details are described in Section
IV-A); second, proposes a systematic approach to extract
ISA characteristics of each security property (details are
presented in section IV-B); third, introduces an automatic
assertion miner which takes these ISA characteristics as
well as simulation trace of the processor as inputs to
automatically extract a set of security assertions (details are
described in section IV-C).

To the best of the author’s knowledge, this is the first
automated security-based assertion miner that can extract
security assertions with the guidelines of ISA characteristics
of security requirements, directly from the simulation trace
of the processor. This extracted security assertion set is
employed in the security verification process to uncover
vulnerabilities, such as hardware Trojans, embedded within
the design. Therefore, the contributions of this paper are
listed as follows:

● A systematic method for translating security properties
of the processor to the instruction set architecture. The
idea is that the security properties that describe the
general behavior of a 32-bit processor (e.g., read cor-
rectly from memory) will be translated to the proposer
32-bit instruction set;

● An automatic security-based assertion miner to gen-
erate security assertions with a high Trojan detection
rate;

● The proposed security-based assertion miner can au-
tomatically analyze the ISA characteristics (32-bit in-
struction set) and the simulation traces of the proces-
sor to generate security assertions in a short execution
time;

● The proposed method is expandable to any processor
family and is not limited to RISC-V.

The paper is organized as follows: The preliminaries
are presented in section II. The related background and
concepts are described in section III and the proposed
method is elaborated in section IV. Section V presents the
experimental results and finally, section VI concludes the
paper.

II. PRELIMINARIES

In this section, we briefly explain the definitions used in
this paper.

Definition 1: A simulation trace consists of the values
of the variables of hardware designs that have been stored
as records of data for different time instants (clock cycles)
during the execution of the designs [6].

Definition 2: A security property in this study is defined
as a critical security aspect of the processor that neglecting
consideration of it can lead to security vulnerabilities in the
processor. These security properties are usually presented
in the specification of the processor [26, 27].

Definition 3: An atomic proposition is a logical formula
that does not contain logical connectives [8]. Examples of
atomic propositions are such as a1 = True, and b1 = False.

Definition 4: A proposition is a composition of atomic
propositions through logical connectives [8]. An example for
proposition is a1 = True && b1 = False && c1 = True.

Definition 5: A security assertion in this study checks the
consistency between the defined behaviors in the security
properties (Definition 2) and the actual implementation
when it faces an attack. A security assertion is a composition
of propositions through temporal operators that must hold
or must become true during the execution of the design
[8]. Typically, a security assertion is divided into two parts:
the left side, named antecedent, and the right side, called
consequent [8].
The general structure of a security assertion in Property
Specification Language (PSL) is like al w ay s(antecedent →
consequent), which implies that the consequent will hold
whenever the antecedent occurs [28].

Definition 6: Temporal pattern next[N ]: Next[N ] tempo-
ral pattern in PSL is in the form of: al w ay s(antecedent →
next[N ] consequent) [28]. This temporal pattern means
that when antecedent occurs, after N time instant (clock
cycle), consequent will occur [28]. N is an integer value
and N > 0.

Definition 7: Frequent itemsets refer to a set of variables
in simulation trace that occur with a frequency, indicating
significant relations/associations between the variables.

Definition 8: An Association Rule (AR) is defined as an
implication of the form X →Y where X ,Y ⊆ I , with X ∩Y =
Ø, and I is a set of items [29–31]. X and Y are called
frequent itemsets.

Definition 9: Support is a metric in association rule
mining that indicates how frequently an itemset appears
in the dataset [31]. This value is between 0 and 1. For the
rule X → Y , the value of support is calculated with the
following formula [31]:

Supp(X →Y) = P(X ∪Y) (1)

In (1), P(X ∪Y) is the probability where X ∪Y indicates
that a record contains both X and Y , that is the union of
itemsets X and Y .

Definition 10: The min_supp value is the threshold and
a minimum value for support to decide whether an itemset



is frequent (i.e., occurs frequently in the simulation trace)
or not [31]. If the frequency of the itemset is more than this
threshold, the itemset is considered a frequent itemset [31].
A higher value of min_supp leads to generating commonly
occurring (general) ARs, while a lower value of min_supp
leads to generating rarely occurring ARs (corner cases) [31].

Definition 11: Confidence is an indication of how often
the rule has been found to be true [32]. For the rule X →Y ,
this value is calculated with the following formula [31, 32]:

Con f (X →Y) = P(Y ∣X ) (2)

It evaluates the degree of certainty of the detected associ-
ation rule. This is taken to be the conditional probability
P(Y ∣X ), that is the probability that a record containing X
also contains Y . This value is between 0 and 1.

Definition 12: The min_conf is the minimum value for
confidence [31]. The higher value of min_conf leads to fewer
but more accurate and valid association rules [31].

III. BACKGROUND

In this section, we briefly explain the related concepts
and background used in this paper.

A. RISC-V Instruction Set Architecture

RISC-V provides a flexible instruction set for various
general and application-specific scenarios. Around a set of
basic mandatory instructions for arithmetic, control flow
and memory instructions, called the base instruction set
(e.g., RV32I for the 32 bit base instruction set) [26, 33],
various instruction set extensions can be appended (e.g.,
multiply/divide, floating point numbers, vector operations).

In this work, we utilize the RV32I base instruction set, but
the proposed method is independent of the specific ISA or
utilized instruction set extensions. The RV32I base instruc-
tion set defines a 32 bit architecture around 32 general-
purpose registers x0 to x32 (with x0 being constant 0).
More information on the RISC-V instruction set, and its
various extensions can be found in Volume 1 [26] and
further details on the privileged architecture details, espe-
cially CSRS, can be found in Volume 2 [27] of the RISC-V
Specification, respectively.

B. Threat model: MicroRV32 Platform

Amongst the many available open-source implemen-
tations, we choose the MicroRV32 platform [34], imple-
mented in the open-source Hardware Description Language
SpinalHDL. Through the modern SpinalHDL language, it is
possible to prototype modifications in the data path quickly,
while keeping control over the generated Verilog or VHDL
description. The platform is synthesizable for FPGAs and
ASICs, while providing a lightweight and robust microar-
chitecture. MicroRV32 features a configurable multi-cycle
processor compliant to RV32IMC, meaning it is capable
of the aforementioned RISC-V 32-bit base instruction set
(I), the multiply/divide extension (M) and the compressed
instruction extension (C). Within the platform, a set of
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Figure 1: Overview of the proposed method

peripherals enables the interaction with the outside envi-
ronment, similar to other microcontroller units.

In this work, our threat model environment consists of
a processor based on MicroRV32 embedded in a SoC, with
various peripherals and a memory hierarchy.

C. Attack Model

To evaluate the proposed method, we have implemented
Hardware Trojans (HTs) based on the following details. The
attacker targets the RISC-V RTL code, aiming to disrupt
normal operations of IPs and cause damages to the IP de-
sign house, e.g., financial losses for any reason. Specifically,
the attacker intends to add three Hardware Trojans to the
processor: two of them alter the control unit’s functionality,
while one focuses on the memory and illegal access to it.
The attacker possesses knowledge of the design modules
and implementation. HTs typically consist of a trigger and
a payload [35]. The trigger is the condition activating the
Trojan, while the payload executes the malicious function
[35]. Triggers can be of different types like Always-On,
Conditional, or Time-Based, with payloads causing diverse
corruptions like Data and Control Flow Manipulation, DoS,
etc [35]. Our HTs use conditional triggers, activating under
specific rare conditions, and their payload manipulates
program data and control flow. Trojan 1 triggers a specific
input combination in the control flow. Its payload alters the
execution flow and causes incorrect computation in specific
part of control unit. Trojan 2 activates through a specific
sequence of control signals, initiating illegal memory access
with a payload involving unauthorized memory access.
Trojan 3 is triggered by an improbable combination of input
conditions, leading to the alteration of the opcode signal
and manipulation of update registers. Its payload executes
incorrect instructions, disrupting the normal program flow,
potentially compromising system integrity, and enabling
the attacker to control the instruction sequence. In this
work, the HTs have been implemented so that they will
be activated in very rare conditions, making their detection
difficult.

IV. METHODOLOGY

Fig. 1 provides an overview of our proposed method,
which is structured in three key phases. These phases are
1- Collecting the Security Properties, 2- Identifying the ISA
Characteristics, and 3- Security-Based Assertion Miner.



Table I: Collected Security Properties

Security Properties Security Property Type
1: Calculation of memory address and memory data is correct Memory Access
2: Jumps update the program counter correctly Control Flow
3: Jumps update the link register correctly Update Register
4: Addition with register value and immediate value results in
correct result in the correct target register

Update Register

5: Load immediate value into the upper 20 bits in the correct
target register

Update Register

6: Adds the immediate as upper 20 bits to the program counter
and puts it into the correct target register

Update Register

In the first phase, leveraging RISC-V specifications [26,
27] and already introduced security properties from liter-
ature [19, 20, 22–24], a set of RISC-V security properties
(Definition 2) is collected. This set, along with the RISC-V
implementation, becomes the input for the second phase.
In the second phase, the security properties of the processor
are translated to the instruction set architecture. The main
aim of this phase is to systematically identify corresponding
instruction sets and the associated signals related to each
security property.

Based on this identification, a guideline is formulated
for the next phase. This guide assists the security-based
assertion miner in the third phase. Operating with the
simulation trace generated from the RISC-V design and the
guidance report, the security-based assertion miner auto-
matically mines a set of security assertions (Definition 5).
These assertions encompass the behaviors outlined in the
security properties identified in the initial phase. Further
details for each phase are elaborated in the subsequent
subsections.

A. Collecting the Security Properties

After reviewing the RISC-V specifications [26, 27] and its
security requirements from literature [19, 20, 22–24], a set
of security properties (Definition 2) have been collected for
the purpose of this work. These collected security properties
are outlined in Table I. However, it is noteworthy that
the proposed method can seamlessly extend to encom-
pass other security properties. This versatility enables the
method to cater not only to the collected set in our case
study benchmark (RISC-V) but also to the diverse security
properties of other processors.

In this study, we have collected security properties from
the most important categories pertinent to processor se-
curity, namely Memory Access, Control flow, and updat-
ing Registers. In papers [19, 20, 22–24] which represent
the latest studies on processor security properties, these
categories have been reported as critical areas requiring
scrutiny in the security verification process of processors.
Consequently, as depicted in Table I, security properties
corresponding to each of these categories have been de-
lineated. More details for these security properties are as
follows:

● Security property 1: The first security property of Table
I describes the correctness and relation between the
current load or store instruction and the resulting
memory address and data on the memory interface.

For example, if an HT corrupts the address maliciously
to redirect the data, the mismatch between the in-
tended address and the actual address should become
visible.

● Security property 2: The second security property en-
sures, that the jump instructions redirect the control
flow correctly, i.e., the change in program counter
reflects the provided register and immediate values
accordingly. In this case, an HT could redirect the
control flow to malicious code before returning to the
original application’s code.

● Security property 3: As jump instructions are used to
call functions and return to the code calling a function,
the storage of this return address can similarly be tam-
pered with. Thus, the third security property ensures,
that the return address saved on jump instructions is
correct.

● Security property 4: As control flow and memory ac-
cess instructions prepare addresses and values through
arithmetic and logic operations, their correctness is
vital for security. To avoid information leakage through
HT, the fourth security property assures that the ADDI
(add immediate) instruction saves the correct result
only into the correct target register. As an example, an
HT could enable writing to the target register and a
temporary register, in order to leak the information in
a different subroutine.

● Security property 5: Similarly, the fifth security prop-
erty ensures the correctness for the LUI (load upper
immediate) instruction, that the accordingly extended
immediate value is stored into the correct target reg-
ister.

● Security property 6: Lastly, the sixth security property
addresses the AUIPC (add upper immediate and pro-
gram counter) instruction. The security property en-
sures the correct arithmetic and storage in the correct
target register. As this instruction is utilized to prepare
target addresses, an HT can potentially redirect the
control flow to a different part of the code.

These security properties serve as the inputs for the next
phase, i.e., Identifying the ISA Characteristics.

B. Identifying the ISA Characteristics

In order to identify which parts of the ISA specification
contribute to a security property, we will utilize an example
that covers security properties 2 and 3. Consider the RISC-
V instruction JAL rd, offset, Jump And Link. This



instruction manipulates the control flow of the application,
jumping to a new location in the program by setting the
Program Counter (PC) to an offset encoded as an im-
mediate value (i.e., PC = offset). As a second part, the
instruction will store the value of program counter of the
instruction after the JAL instruction (rd = PC + 4). We
can consider possible violation of security if, for example,
a HW Trojan introduces are change of the offset under
specific system conditions. This could lead to a possible
attack in which an unwanted execution of different code
occurs. Therefore, for the JAL instruction, we can denote
two possible high-level properties:

(a) Jumps update the PC correctly according to the
offset passed in the instruction immediate.

(b) Jumps update the register rd with the correct PC (i.e.,
rd = PC+4).

Consequently, the security-based assertion miner would
need to find potential security assertions covering the
signals mentioned in the high-level properties. In a more
general sense, these steps can be abstracted as follows:

1) Identifying instructions affected by threat model (e.g.,
control flow integrity affects the instructions for
branch, jump, and address manipulation).

2) Identifying each part of functional behavior contribut-
ing to instructions (e.g., jump instruction changes PC
and a register based on PC value).

3) Formulating high-level property reflecting parts of the
functional behavior (e.g., resulting addresses for store
or load operations have to be consistent with the initial
instruction and register values).

4) Utilizing the high-level property to identify the affected
signals in the processor and its interfaces. This includes
the relation between instruction bits and the observ-
able behavior on results and interfaces.

In this phase, alongside the guidance report created
based on the identified ISA characteristics, a simulation
trace is generated from the RISC-V design. These inputs
are utilized by the security-based assertion miner in the
next phase.

C. Security-Based Assertion Miner

In this phase, we elaborate on the details of the proposed
security-based assertion miner. As illustrated in Fig. 2,
the proposed miner is comprised of four primary steps:
1) Signal Identification and Pre-processing of Simulation
Trace, 2) Association Rule Mining, 3) Time Notation, and
4) Assertion Conversion.

During the Signal Identification and Pre-processing step,
after identifying the RISC-V signals that are associated with
the identified security properties, the exhaustive simulation
trace of the RISC-V undergoes pre-processing to prepare the
data. Subsequently, in the Association Rule Mining step, we
apply our algorithm to the pre-processed simulation trace
to mine all association rules (Definition 8) derived from the
simulation trace.

Step 3: Time 
Notation

Step 2: Association 
Rule Mining

RISC-V
Processor

Simulation
Trace

Pre-Processing of
Simulation Trace

Pre-Processed
Simulation Trace

Association Rule 
Mining

Association 
Rules

Temporal 
Association Rules

Assertion 
Conversion

Security
Assertions

Time
Notation

Step 1: Signal Identification and 
Pre-processing of Simulation Trace

Step 4: Assertion 
Conversion

Guidance for
Security-Based
Assertion Miner

Signal
Identification

Figure 2: Proposed Security-Based Assertion Miner

Algorithm 1: Security-Based Assertion Miner
1 Input: N , ST , min_supp
2 Output: next[N ] = antecedent → next[N ]consequent

/* Initialization */
3 R = antecedent → consequent
4 L1 = { f r equent 1− i temset s ∈ST ′}
5 K = 2

/* Signal Identification & Preprocessing */
6 ST ′← prune_nonrelevant_security_signals(ST )
7 forall f ∈ST ′ do
8 ST ′ = MoveUp( f (N))

/* Association Rule Mining */
9 while Lk−1 ! =∅ do

10 Ck = generate_candidate_itemsets(Lk−1)
11 Lk = prune_infrequent_itemsets(Ck , mi n_supp)
12 k = k +1

13 foreach f r equent i temset Li ∈ L do
14 foreach subset S o f Li do
15 if (S ! =∅) && (S ! = Li ) then
16 con f i dence = suppor t(Li ) / suppor t(S)
17 if con f i dence >=mi n_con f then
18 R← association_rule(S => Li )

19 return R
/* Time Notation */

20 if (R.antecedent == (t ∈ST ′)) and (R.consequent == ( f ∈ST ′)) then
21 next[N ]← label(R)
22 else
23 Discard(R)

Afterward, the association rules obtained from the second
step are passed to the third step, i.e., Time Notation.
Here, the extracted association rules are integrated with
the concept of time to generate appropriate time-integrated
rules (temporal association rules) in the form of next[N ]
pattern (Definition 6).

These rules serve as the input for the Assertion Con-
version step. Consequently, the Assertion Conversion step
transforms the rules from the previous step into assertions,
rendering them ready for utilization in the security verifi-
cation process of the RISC-V design.

Algorithm 1 presents the detailed process of the first
three steps of the security-based assertion miner. In this
algorithm, ST denotes the simulation trace and ST ′ is the
pre-processed simulation trace, while f and t represent the
simulation trace’s outputs and input values.

In the following subsections, we discuss each phase of
the security-based assertion miner in more detail.



1) Signal Identification and Pre-processing of Simulation
Trace

Lines 6 to 8 of the Algorithm 1 are related to the Signal
Identification and Pre-processing step of the security-based
assertion miner.

In this phase of the security-based assertion miner, at
first, the RISC-V simulation trace and guidance report
generated from the second phase of the method (section
IV-B) are processed for signal identification. In signal iden-
tification, the assertion miner prunes all the signals of
the simulation trace that are not relevant to the identified
security properties. Once signals associated with the speci-
fied security properties are identified, the simulation trace
undergoes pre-processing.

To pre-process the simulation trace, all the identified
output of the simulation trace is moved N records above its
original position (line 8 of the Algorithm 1). However, the
identified inputs of the simulation trace remain as they are.
Traditional association rule mining algorithms (e.g., Apriori
[31]) cannot typically mine the rules in the form of next[N ].
Because of this reason, and also since the corresponding
output of input variables in a sequential hardware design
may occur in the simulation trace N time instants later,
this pre-processing needs to be performed. This ensures
the correct alignment of outputs with their corresponding
inputs, allowing for accurate temporal analysis and also
mining patterns for different N time instants (clock cycles).

Fig. 3 illustrates an example of pre-processing for next[2]
clock cycles. The simulation trace in Fig. 3.1 is pre-
processed by moving the output parts 2 time instants above
their original positions, resulting in the modified simulation
trace shown in Fig. 3.2. The figure uses T to represent the
true value, and F to show the false value. In this example,
the simulation trace consists of 5 records, divided into
two categories: input variables and output variables. Each
variable is assigned its corresponding value at each time
instant. For example, the first row indicates that v2 is equal
to 01 at time t0 and 11 at time t1. The last two records in
Fig. 3.2 are marked as not available (NA) due to the absence
of data after time instant t4 to be moved in front of these
two records.

Figure 3: (1) Simulation trace (2) Pre-processed simulation trace

2) Association Rule Mining
After pre-processing the simulation trace in the previous

step, the resulting pre-processed simulation trace is sub-
sequently fed into lines 9 to 19 of Algorithm 1 to mine
association rules. Applying these lines of the algorithm to

the pre-processed simulation trace provides us with a set of
association rules in the form of antecedent → consequent .

In lines 9 to 12 of Algorithm 1, frequent itemsets (Def-
inition 7) of various sizes (1-itemsets, 2-itemsets, etc.) are
generated iteratively until the list of the frequent itemsets is
empty. Specifically, the algorithm mines frequent itemsets
whose support values (Definition 9) exceed the min_supp
value (Definition 10), while pruning the others. In line 10
of the algorithm, Ck is the candidate itemsets of size k that
are generated by combining frequent (k-1)-itemsets and Lk

in line 11 of the algorithm is the set of frequent k-itemsets.
In this algorithm, 1-itemsets consist of individual variables
of simulation trace, 2-itemsets are pairs of variables, etc.

After mining the frequent itemsets and adding them to
the Lk list, in lines 13 to 19 of the algorithm, the association
rules are extracted from the list of frequent itemsets. To
clarify these lines of the algorithm, let’s consider an example
where the list of frequent itemsets is equal to 4-itemsets
of {A, B, C, D}. To generate association rules from this
frequent itemset, we consider all non-empty subsets of it.
These subsets are 1-itemsets of {A}, {B}, {C}, {D}, 2-itemsets
of {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}, as well as
the 3-itemsets of {A, B, C}, {A, B, D}, {A, C, D}, {B, C, D},
and 4-itemset of {A, B, C, D}. Afterward, for each non-
empty subset Y , an association rule of the form Y =>X −Y is generated. By doing so, the algorithm considers
all possible combinations of items in the frequent itemset
to identify significant associations between different sets
of items. For example, if X = {A, B, C, D} and Y = {A,
B, C}, then the rule {A, B, C} => {D} is generated. The
antecedent of the rule (Y) is the subset {A, B, C}, and the
consequent of the rule (X −Y) is the set difference between
the frequent itemset {A, B, C, D} and the antecedent {A, B,
C}, which is {D}. This process is repeated for each non-
empty subset of the frequent itemsets list, yielding a set
of association rules. Finally, we evaluate each association
rule for its confidence, pruning those that are below the
min_conf threshold (Definition 12).

Increasing the min_supp value results in fewer asser-
tions that describe more general design behavior, while
decreasing the min_supp value leads to assertions covering
rare design behavior (corner cases). These corner cases are
important as attackers can consider them for performing
any corruption in the design. Similarly, raising the min_conf
value produces fewer but more valid assertions. Valid asser-
tions refer to assertions that will not be violated during the
simulation with different attack scenarios. The utilization of
these values in the security-based assertion miner facilitates
an effective vulnerability detection process. In this paper,
min_supp and min_conf are set to 0.01 and 1, respectively,
as we aim to discover corner cases while achieving high
vulnerability detection (details are presented in Section V).

At this point, with the completion of the association rule
mining, these rules serve as the fundamental components
of the Time Notation step.



Table II: Detailed Experimental Results on Six Different Security Properties

Total Number of
Security Assertions

Number of Generated Security Assertions for each Security Property
Security

Property 1
Security

Property 2
Security

Property 3
Security

Property 4
Security

Property 5
Security

Property 6
4036 870 1490 1522 2026 1898 1898

3) Time Notation
In the previous step, the method provides us a set of

rules in the general form of antecedent → consequent .
In this step, the method integrates the concept of time
into the association rules generated in the association rule
mining step, leading to a set of temporal association rules
in the form of antecedent → next[N ]consequent . Lines
20 to 23 in Algorithm 1 describe the details of the Time
Notation step. If the antecedent value matches an input in
the simulation trace, and the consequent value has already
been moved to another record in the simulation trace,
the rule is labeled as a next temporal association rule.
Otherwise, other mined rules are discarded.

4) Assertion Conversion
In this step, the mined temporal association rules are

transformed into temporal security assertions (Definition
5) in SystemVerilog Assertions (SVA) language [36] using
the labels assigned in the Time Notation step. While the
security-based assertion miner provides assertions in the
SVA language, this section elucidates the general struc-
ture and format of temporal mined rules in PSL [28]
for enhanced comprehension. Consequently, the output
of the Time Notation step for temporal association rules
labeled as next[N ] is transformed into the PSL format of
"always(antecedent → next[N ]consequent)".

V. EXPERIMENTAL RESULTS

For our experimental evaluation, we utilized the security-
based assertion miner to generate security assertions in
the form of SVA. As shown earlier, in Fig. 2, the security-
based assertion miner requires a simulation trace gener-
ated from a processor. In our case study, we utilized the
processor embedded in the open-source MicroRV32 plat-
form [34]. For generating the simulation trace, we executed
a software application on the processor that is centered
around checksum calculations for embedded systems. It
features different types of control flow, loops, arithmetic
operations, and interaction with the memory as well as
the available peripherals. Hence, we generated a simulation
trace with 10000 records that activates various parts of
the microarchitecture to provide a diverse data set for
security assertion mining. The generated assertions are then
evaluated by including Hardware Trojans in the proces-
sor’s microarchitecture together with the generated security
properties, to verify them. Notably, in our experiments
the values for the minimum support (Definition 10) and
minimum confidence (Definition 12) have been set to 0.01
and 1, respectively. These values allow us to guide the
security-based assertion miner in mining fewer yet more
valid assertions, effectively considering the corner cases of
designs. Moreover, N has been set to 2 for the next[N ]
pattern, but it can be adjusted to other values.

Table III: Experimental Results on Detected Trojans

Trojans #Security Assertions Detecting Trojans Trojan Detection
Trojan 1 16 ✓
Trojan 2 64 ✓
Trojan 3 176 ✓
✓ : Trojan has been detected.

Table II exhibits the detailed experimental results about
the assertions that are associated with any of the security
properties that we presented in section IV-A. The proposed
security-based assertion miner generated a total of 4036
security assertions. It should be noted that while the total
number of generated assertions is 4036, some of them
overlap so that they contain the signals of the design that
are related to several security properties. According to the
experimental results in Table II, 870 and 1490 security
assertions are related to security properties 1 and 2, which
means that these numbers of assertions can cover the
behaviors that have been described for these two security
properties. The results indicate that for security properties 3
and 4, 1522 and 2026 security assertions have been mined,
respectively. This figure for both the security properties 5
and 6 is 1898 assertions.

Table III presents the experimental results on the Tro-
jan detection. The column ’#Security Assertions Detecting
Trojans’ presents the number of security assertions that
could detect any of the Trojans. For Trojan 1, 16 assertions
detected it and 64 and 176 security assertions detected
Trojans 2 and 3, respectively.

Table IV presents a comparative analysis between our
proposed security-based assertion miner and HARM, the
latest assertion miner in the literature [6]. HARM is explic-
itly presented as a tool that can be employed in the context
of security verification for Trojan detection, making it a
relevant tool for our comparison. While HARM generated an
extensive set of 16073 assertions, contributing to prolonged
security verification process, our method yielded a more
compact and accurate set of 4036 assertions. Among all
the mined assertions by HARM, a total of 397 assertions
could detect the Trojans, while we accomplished Trojan
detection with 256 assertions. The ratio of security asser-
tions that detect Trojans to the total number of assertions
demonstrates that our mined security assertions are more
effective in Trojan detection. Our assertions exhibited a
superior effectiveness with a ratio of 6.3%, in contrast to
HARM’s 2.4%. Considering the fact that there are only three
Trojans, and as mentioned in section III-C, the probability
of their activation is very rare, 6.3% shows promise. These
findings underscore the efficiency of our method in pro-
ducing a smaller yet more potent and accurate set of secu-
rity assertions. Furthermore, our security-based assertion
miner demonstrated significantly shorter execution time,
completing the assertion mining process in approximately



Table IV: Comparison of the proposed method with HARM

Assertion
Miner

Total number of
Security Assertions

#Security Assertions
Detecting Trojans

Ratio of Security Assertions Detecting Trojans
to the Total Number of Assertions (%)

Execution
Time

Proposed Method 4036 256 6.3 5min30sec
HARM [6] 16073 397 2.4 74min31sec

5 minutes, compared to HARM’s duration of over an hour.

VI. CONCLUSION

In this paper, we introduced a method for generating
security assertions tailored to a RISC-V processor. The
method involves systematically analyzing design specifica-
tions and requirements to pinpoint critical security proper-
ties, neglecting which could result in design vulnerabilities.
By identifying the pertinent security properties and their
associated design signals, our proposed security-based as-
sertion miner is applied to the processor’s simulation trace.
The miner automatically outputs security assertions. Our
experiments demonstrate that these assertions proficiently
encapsulate the behavior described by identified security
properties, effectively detecting injected Hardware Trojans
within the design.
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Abstract—Assertion-based verification has become a viable
solution for functional verification. Manual definition of as-
sertions is costly and needs human expertise. On the other
hand, the automatic approaches are still struggling with gen-
erating high-quality assertion sets in terms of accuracy, and
readability. To overcome the mentioned shortcomings, this
paper exceeds the state-of-the-art by introducing a new fully
automated approach to generate a set of complete and accurate
assertions. Moreover, the mined assertions are readable thereby,
easy to understand by the verification engineer. Furthermore,
the method is equipped with a feature that communicates
with users to select the assertions related to a specific block
based on the user’s need for further debugging and design
analysis. Experimental results present the effectiveness of the
proposed approach by showing that it generates significantly
more compact assertion sets than the state-of-the-art while
achieving 100% detection of the injected mutants.

I. INTRODUCTION

Digital systems become more complex with each gen-
eration. Therefore, verifying that their behavior is correct
has become a very challenging task. To this end, functional
verification aims at guaranteeing that the design of a system
satisfies its specification before manufacturing, by detecting
and removing design errors [1]. Among all the solutions
for ensuring the robustness of the systems, Assertion-Based
Verification (ABV) has emerged as one of the most popular
solutions for checking the design functionality [1].

An assertion is a Boolean expression that defines the be-
havior of designs [1]. Traditionally, assertions were defined
manually [2, 3]. However, the manual definition of asser-
tions needs human expertise, it is costly and error-prone
[2, 3]. In general, to write an assertion set, a verification
engineer needs creativity and a deep understanding of the
design’s functionality [4, 5]. Therefore, some studies have
been carried out to automatically mine the assertion sets
[6–14].

Several works on assertion mining for digital designs
have been proposed. The work in [6] is an automatic
assertion miner which generates assertions using a dynamic
dependency graph. They have extracted relations between
signals of the design using simulation traces. [7] is another
approach that uses a syntax-guided enumeration assertion
miner. [8] and [9] are techniques that extract assertions
using several templates in the form of Finite State Machines
(FSMs). The GoldMine tool is presented in [15] and [16]. The
tool automatically generates assertions for a given Register-
Transfer Level (RTL) design. This tool uses simulation
traces, formal verification, and static code analysis. Finally,
[12–14] combine a dynamic dependency graph and FSM
to achieve the strength of both techniques for assertion
extraction.

However, it is notable that in most assertion mining
approaches, the number of generated assertions is pro-
hibitively high, which can lead to a redundant or incon-
sistent assertion set, consequently resulting in exhaustive,
non-compact assertion sets. To that end, some studies have
been performed to select a set of good quality assertions
from a large number of generated assertions [17–19].

In the context of assertions’ selection from a large num-
ber of generated assertions, there are some works in the
literature to rank the assertions and select the interesting
ones to provide this set to the verification engineer. For
instance, in [20], the assertions are ranked based on two
main metrics, Importance, and Complexity. The degree of
Importance is higher in the assertions which are describing
the output of the design and Complexity is related to the
number of logic operators used in an assertion. In [21],
the estimation is based on the number of propositions
included in the antecedent of the assertion. In [17–19, 22],
mined assertions are mainly ranked according to several
data mining metrics such as Support (i.e. their frequency of
occurrences in the simulation trace); Correlation Coefficient
(i.e. their correlation to other assertions); IS measure (i.e.
assertions which have a low frequency of occurrence but
highly correlated to other assertions), etc.

This paper exceeds the state-of-the-art, first, by introduc-
ing an automated methodology to extract a set of verifica-
tion assertions from simulation trace thus overcoming the
shortcomings of manual definition. Second, the methodol-
ogy specifies an environment in terms of exhaustive valid
simulation traces which serves as a complete verification
environment for the assertion miner. Consequently, the
generated assertions represent a set of valid assertions that
lead to a significant reduction in the number of generated
assertions in comparison with the state-of-the-art. Third,
the assertion miner is enhanced by an algorithm that
provides a compact and accurate assertion set with 100%
fault coverage when mutant analysis has been performed.

In addition, in the context of assertion selection, the
flow is equipped with an external feature that is able to
communicate with the users to understand their needs
during the verification process. This feature allows selecting
a specific set of assertions related to an IP core or individual
variable of the design, thus offering the ability of assertion
selection for further design analysis to the users.

Thus, the contributions of this work are listed as follows:

● we propose a methodology for automated mining of
compact assertion sets which is based on a complete
verification environment of exhaustive valid simulation
traces,● we propose an assertion miner to automatically gen-978-1-6654-0712-0/21/$31.00 ©2021 IEEE
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Figure 1: Flow of the proposed methodology

erate a human-readable assertion set from the simu-
lation traces of hardware designs,● the methodology yields more accurate assertion sets
than existing approaches, achieving 100% mutant cov-
erage for the considered examples,● an added external feature to the methodology is that
it can communicate with users to select an assertion
set based on the user’s need for further design analysis
and debugging.

The remainder of the paper is organized as follows. The
proposed methodology is discussed in Section II. Section III
presents the experimental results and a comparison of the
proposed method with the other related works and finally,
Section IV concludes the paper.

II. PROPOSED METHODOLOGY

In this section, we propose the methodology for auto-
mated mining of compact and accurate assertion sets. Fig.
1 demonstrates in detail the three main steps which lead
to generating the assertion set, i.e., A) Design extraction, B)
Environment generation, and C) Assertion mining. More-
over, the figure shows an external feature that uses an
adapted Expert System. Furthermore, an assertion evalua-
tion phase based on mutant analysis is applied for assessing
the quality of the generated assertions. The flow of each
step is described in the following:

A) Design extraction: This step deals with converting
sequential designs to pseudo-combinational ones by re-
moving flip-flops in order to enable a complete analysis
of the assertion space within a single clock cycle.

B) Environment generation: In this step, with analyzing
specifications of design under verification, a pattern gen-
erator is led to extract an exhaustive valid input sequence.
Thereby, it prevents the flow to deal with the exhaustive
input sequences, as well as with any invalid input com-
binations. This step is an essential part of the flow since
generating an assertion set from the exhaustive valid input
sequences provides a complete verification environment for
the assertion mining step.

C) Assertion mining: This step is in charge of mining the
assertion set. An algorithm is presented which mines the
assertion set directly from the output of the previous step.

Moreover, an adapted Expert System has been used to
communicate with users to provide a selected assertion
set based on the user’s requests. In the following, the
description of these components is detailed.

A. Design extraction

In order to prepare the suitable inputs for the pro-
posed assertion miner, the pseudo-combinational designs
are derived out from the original sequential designs. This is
performed by removing the flip-flops and converting them
to pseudo primary inputs and pseudo primary outputs [23].
Step A in Fig. 1 represents this flow.

In the following, in the illustrative case study, application
of this conversion is presented. As a case study, we have
considered an open-source 5-port NoC router Bonfire [23].
A high-level overview of this router is illustrated in Fig. 2.1.
As shown in this figure, the router consists of an input
Buffer in form of First-In-First-Out (FIFO), LBDR, Arbiter,
Crossbar, and an output Buffer.

The router has 5 input/output ports, four of which (North
– N, East – E, South – S, West – W) are connected to each
cardinal direction. The last port (Local (L)) is connected to
the local processing element. Besides, in the router, packets
are sent in form of flits, and each flit is composed of header
flit, and tail flit, as well as body flit(s).

LBDR and Arbiter (demonstrated in a gray box in Fig.
2.1) are the control parts of the router and the rest are
considered as the datapath. The control part controls all the
main procedures of the router. Generally, the control part
of any design is considered as the critical and the hard-
to verify elements since the program flow of the design is
maintained by it. For this reason, LBDR and Arbiter are
specifically targeted for the proposed workflow.

Fig. 2.2 and 2.3 demonstrate these components after con-
version to pseudo-combinational version. As shown here,
this is performed by removing the flip-flops and converting
their outputs and inputs to pseudo primary inputs and
pseudo primary outputs, respectively. This allows deriving
of assertions corresponding to a form A -> next C, where A
is the antescedent and C is the Consequent of the assertion.

In the next step, it is described how for the above
components, a set of exhaustive valid simulation traces are
generated to derive the complete verification environment
for the assertion miner.

B. Environment generation

In this step, a Pattern generator is developed to extract
a set of exhaustive valid input sequences. Therefore, the
specifications of the verification environment of LBDR and
Arbiter, more specifically ELBDR and SArbiter since they
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Figure 2: (1) High-level overview of the router (2) ELBDR pseudo-combinational design (3) SArbiter pseudo-combinational design

have one of the most connected signals are studied. These
specifications guide the Pattern generator to extract the set
of exhaustive valid input sequences. These sequences are
then fed to the simulator to produce a set of exhaustive
valid simulation traces. Step B in Fig. 1 demonstrates this
flow.

As shown in Fig. 2.2 and Fig. 2.3, ELBDR’s output port
signals are the N, W, S, and L signals, while for SArbiter,
request and grant signals exist for the N, E, W, and L. In
ELBDR, 3 bits are considered for the flit_id (FLIT_TYPE),
and 4 bits for the destination address (DEST_ADDR). More-
over, an Eempty bit that is coming from the East input
buffer is considered for ELBDR. The other inputs of ELBDR
(iN, iW, iS, and iL) are one bit. For SArbiter, there is one bit
input for any of the N_Req, E_Req, W_Req, L_Req, as well
as 5 bits for any of the iCurrentState and oCurrentState.

Based on the specifications, two different conditions
should be considered for ELBDR to lead the Pattern gener-
ator for generating the exhaustive valid input sequences:

● if Eempty is equal to 1 (East input is empty):
– the input ports, (i.e. iN, iW, iS and iL) can have any

values,
– flit_id (FLIT_TYPE in Fig. 2.2) can have any value,
– destination address (DEST_ADDR) can have any

value
● if Eempty is equal to 0 (East input is not empty):

– iN, iW, iS and iL must be one-hot (i.e. at the same
time only one of the inputs could be 1),

– flit_id (FLIT_TYPE) is one-hot (e.g. Header = 001,
Body = 010, Tail = 100),

– the outputs of ELBDR will always be one-hot (as-
suming that the routing algorithm is XY and we can
only go from East to North, South, West, or Local.
And they cannot be active at the same time),

Initially, the number of sequences for the exhaustive
simulation trace was equivalent to 212 = 4096 for ELBDR
due to the fact that the number of input bits is equal
to 12. After feeding the Pattern generator based on the
specifications, the number of sequences for the simulation
trace is reduced to 2144. As a result, the invalid conditions
from the exhaustive input sequences are removed and
filtered out.

Similarly for SArbiter, the specifications are studied to
guide the Pattern generator. The specification is as follows:

● only one input can be granted at the same time. Hence,
the grant vector (iCurrentState) state is defined as one-

hot,● N_Req, E_Req, W_Req, and L_Req, can have any val-
ues, (because SArbiter can get requests from different
inputs except the South port),

Initially, the number of sequences for the exhaustive
simulation trace was equivalent to 29 = 512 for SArbiter
due to the fact that the number of input bits is equivalent
to 9. After guiding the Pattern generator according to the
specification, the number of sequences for the simulation
trace is reduced to 80.

It is notable that this section adapted the idea of produc-
ing exhaustive valid input sequences from the work in [23].
However, the proposed methodology markedly improved
the work in [23], as it developed an automatic tool to
generate the valid exhaustive sequences based on the speci-
fications. On the contrary, the work in [23], manually applies
a set of filters on the exhaustive input sequence to gain
the valid one. Thereby, the proposed method considerably
reduced the time and cost in terms of memory requirement
in comparison with [23].

The generation of exhaustive valid simulation trace is sig-
nificantly pivotal since it prevents the assertion miner from
being in non-realistic conditions and only the functionally
of feasible values are retained. Thereby, the miner generates
a complete assertion set that is based on valid scenarios.
In the following the assertion miner’s algorithm is detailed.

C. Assertion mining

As demonstrated in step C of Fig. 1, the assertion miner
generates a set of assertions from the output of the previous
step, i.e. exhaustive valid simulation trace. This step is one
of the fundamental components of the proposed methodol-
ogy since it is in charge of discovering the relations between
the primary inputs and primary outputs of the design.
The assertions are generated according to the proposed
Algorithm 1. As it can be seen, the algorithm is divided
into three phases.

Phase 1 starts by reading the sequences of simulation
trace to discover the similarities among them. Note that N
in the algorithm indicates the number of sequences in the
simulation trace file. Besides, input() and output() methods
show the input and output parts of a sequence. leng th()
method indicates the length of a sequence. In this phase, all
the sequences are compared. For every comparison, each
bit in a sequence is compared with its corresponding bit
in the next sequence. Lines 5 to 8 of Algorithm 1 describe
how this comparison is performed. If both bits are equal,
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the value of the bit is kept. Otherwise, it is considered as
a ’don’t care’ status and the result is stored in the variable
’result1’. Note that the comparisons in which all the input or
output bits are determined as a ’don’t care’ are not analyzed
in the next phase. Lines 11 and 12 show the input and
output parts of a sequence.

Phase 2 aims at finding similarities among the outcomes
of Phase 1. At first, the input parts of all the results of
Phase 1 are compared (Looking at Fig. 3 to distinguish the
input part and output part of a sequence). If the bits in the
input part are equivalent, the output part of the sequences
is checked.

To achieve this, similar to Phase 1, each bit is compared
with its corresponding bit in the other sequence. If they are
equal, the value of the bit is stored in the variable ’result2’.
Otherwise, ’don’t care’ status is considered. On the contrary,
according to lines 29 and 30 of Algorithm 1, if a sequence
is not equal to any other sequences, it will go to the next
phase of the algorithm.

Note that in both Phase 1 and 2, there might be some
results where their input/output parts all are don’t care.
In such cases, those results should be discarded. This is
described in lines 13, 14, 35, and 36 of the algorithm.

Finally, Phase 3 decides which logic operator should be
inserted among the variables of Result2. The mechanism is
as follows: A logical AND is inserted between the bits of
the input part of a Result2. Moreover, it checks if a bit in
the output part is equal to its corresponding bit in another
generated Result2. In this condition, an OR will be added
between those cases.

Fig. 3 demonstrates several examples from C17 design for
each phase of algorithm 1. As shown in this figure, Phase
1 starts by reading and comparing all the sequences of
the simulation trace. For a better illustration, five different
examples are shown for this phase. Each pair of sequences
is shown by A and B.

After applying the first phase of Algorithm 1, the EX1,
EX2, EX3, EX4 and EX5 are calculated which are equal to
0-01- 0-, 0-01- 0-, 00-1 01, 00-1 01 and, 11— –, respectively.
In these examples, the first part of bits (e.g., 0-01- in EX1)
indicates the input bits, and the second part (e.g., 0- in EX1),
indicates the output bits. Moreover, each bit represents a
variable name of the simulation trace. For instance, in 0-01-
0-, the first bit represents the i0 variable, the second one
represents the i1 variable, and finally 0- represent out0 and
out1 variables, respectively.

In these examples, EX1 and EX2 create Case 1, and EX3
and EX4 create Case 2. Subsequently, Case 1 and Case 2
go to Phase 2 since each pair has the same inputs. On the
contrary, EX5 will be discarded since its output is equal to
’-’, i.e., ’don’t care’.

As said and as shown in Fig. 3, Case 1 and Case 2
are entered to Phase 2. Since the input of both cases is
equivalent, their outputs should be analyzed according to
the algorithm. As a result, EX6 and EX7 are calculated.

Finally, in Phase 3 the mined assertions have been
generated. Going back to the illustrative example in Fig.
3, Phase 3 combines EX6 and EX7 on the basis of finding
similar output bits. Since the first bit in the output part
of both EX6 and EX7 are equal to 0, their input bits have
ORed with each other i.e., 0− 01− || 00− 1−. To this end,

Algorithm 1 Assertion Miner

1: index = 0 ▷ Phase 1
2: for i in 1 to N-1 do
3: for j in i +1 to N do
4: for k in 1 to leng th(seq) do
5: if (seq[i ,k] == seq[ j ,k]) then
6: Result1[index,k] = seq[i ,k]
7: else
8: Result1[index,k] = ’don’t care’
9: index = index + 1

10: for i in 1 to leng th(Result1) do
11: in = input(Result1[i ])
12: out = output(Result1[i ])
13: if (in.allBits[i ] == ’don’t care’) or (out.allBits[i ] == ’don’t care’)

then
14: discard(Result1[i ])
15: index = 0 ▷ Phase 2
16: for i in 1 to leng th(Result1)-1 do
17: cnt = 0
18: for j in i +1 to l eng th(Result1) do
19: if (input(Result1[i ]) == input(Result1[ j ])) then
20: input(Result2[index]) = input(Result1[i ])
21: for k in 1 to leng th(output(Result1[i ])) do
22: if (output(Result1[i ])[k] == output(Result1[ j ])[k] then
23: output(Result2[index])[k] = output(Result1[i ][k])
24: else
25: output(Result2[index])[k] = ’don’t care’

26: index = index + 1
27: else
28: cnt = cnt + 1
29: if (cnt == l eng th(Result1)-i )) then
30: Result2[index] = Result1[i ]
31: index = index + 1
32: for i in 1 to leng th(Result2) do
33: in = input(Result2[i ])
34: out = output(Result2[i ])
35: if (in.allBits[i ] == ’don’t care’) or (out.allBits[i ] == ’don’t care’)

then
36: discard(Result2[i ])
37: temp = ’ ’ ▷ Phase 3
38: index = 0
39: for i in 1 to leng th(Result2)-1 do
40: temp = AND(temp, input(Result2[i ]))
41: for j in i +1 to l eng th(Result2) do
42: for k in 1 to l eng th(output(Result2[i ])) do
43: if (output(Result2[i ])[k] == output(Result2[ j ])[k] then
44: temp = OR(temp, AND(input(Result2[ j ])))

45: Result3[index] = temp
46: index = index + 1

with looking at the name of the variables in the simulation
trace it is clear that the extracted assertion is equal to(∼ i 0&& ∼ i 2&&i 3)∣∣(∼ i 0&& ∼ i 1&&i 3)− >∼ out0.

D. Assertion evaluation

This phase is performed to assure the accuracy and
validity of the mined assertion sets. According to Fig. 1,
the input of this phase is the generated assertion set which
is provided by the assertion miner and the output of
this phase is a detailed report on the effectiveness of the
assertions in detecting the injected mutants.

We implemented the mutant injector tool according to
the details provided in [24]. Note that this mutant injector
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Figure 3: Three phases of the assertion miner’s algorithm

Table I: Description of injected mutants.

Mutation operator types List of operators
arithmetic operators +, -, *, /, %
relational operators ==, !=, >, <, >=, <=

logical operators &&, ||
assignment operators +=, -=, *=, /=, %=, =

unary operators +, -, ∼, !
bitwise operators ≪,≫,&, ∣,^

bitwise assignment operators ≪=,≫=,& =, ∣ =,^ =

is complete in sense of converting all different types of
operators to create mutants. In Table I, the details about
these injected mutants in the benchmarks have been pre-
sented. The column ’Mutation operator types’ demonstrates
different types of the operators that have been modified
by the mutants. Any of the operators in each row of the
column ’List of operators’, has been changed to the others.
In addition to these mutants, we randomly converted all
0 bits to 1 and vise versa. As mentioned above, this
section is mainly for proving the accuracy of the mined
assertions. Thus, the reports of this phase is discussed in
the Experimental result i.e., Section III.

E. Adapted Expert System

In this phase, a feature is presented that provides the
methodology with the ability to communicate with the
users. In this way, verification engineers can request a
specific set of assertions related to a specific module or
variable under analysis that meets their needs and interests.

In other words, this feature assists the user by discarding
unnecessary assertions and provide a compact assertion
set associated with the module under analysis. Correspond-
ingly, this leads to an easier design’s behavior understanding
and a faster bug localization.

The proposed feature adapts an Expert System [25] for
the purpose of this work. In general, any Expert System
has two main components which are a Knowledge base
and an Inference engine [26]. The former consists of Facts
and the latter is based on a set of Rules. With the help of
the Facts stored in the knowledge base and Rules in the
inference engine, the Expert System provides the selective
set of assertions based on the users’ needs.

The details about the Facts and Rules are provided in
the following. As the proposed Expert System has been im-
plemented in CLIPS language, (which is a specific tool and

language for implementing Expert Systems) the descriptions
and the Listings in the following subsections have been
written in CLIPS syntax.

1) Facts and Rules in the adapted Expert System:
Explanation 1: FACTs, are a formal form of describing

knowledge and information required to solve a specific
problem. Generally, these Facts are gathered from the
knowledge of the experts in the domain related to that
specific problem. For instance, in the real world headache
and fever are two symptoms of flu that are reported by
the experts in the domain i.e., medical doctors. Thereby, to
prepare the knowledge for an Expert System, headache and
fever are stored as two Facts for detection of flu. We have
adapted these concepts for the proposed flow.

Listing 1: Example of a Fact

(deffacts minedFacts
(f1 !i[0]) (f2 !i[2]) (f3 i[3]) (f4 !i[1]))

In the proposed adapted Expert System, these Facts
mainly extract from the left part of the implication of each
mined assertion. As an illustrative example, we can consider
the generated assertion in Phase 3 of Fig. 3.

As can been seen, the left part of the implication for
this assertion is equivalent to (∼ i 0&& ∼ i 2&&i 3)∣∣(∼ i 0&& ∼
i 1&&i 3). Correspondingly, the Facts related to this assertion
has been presented in Listing 1.

In this listing, each Fact is written in CLIPS syntax and
represented by i[n] which demonstrates the name of the
variable i, and its corresponding bit "n". For instance, f1
means that the value for input variable i[0] is equal to 0.

Similarly, for the other Facts, f2, f3, and f4 the variables
and their values are i[2] = 0, i[3] = 1 and i[1] = 0, respectively.

Explanation 2: RULE, the structure of a Rule is similar to
the I F −T HE N statements. If the first part of a Rule (I F ),
matches with one or more stored Facts in the knowledge
base of the Expert System then the second part of the Rule
(T HE N ) will be fired and the Rule will produce the result.
For example, in the real world, I F the symptoms in a person
are headache and fever, T HE N we can realize that the
person has gotten flu. Accordingly, this concept has been
adapted for the proposed flow.

Listing 2 demonstrates the Rule related to the assertion
in Phase 3 of Fig. 3 in CLIPS syntax. This Listing represents
that I F (i[0] = 0 && i[2] = 0 && i[3] = 1) || (i[0] = 0 && i[1]
= 0 && i[3] = 1) T HE N out0 is always 0. Thus, if the users
are interested in selecting the assertions related to out0,
this rule causes the selection of the mentioned assertion.
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Listing 2: Example of a Rule

(or(and(i[0]=0)(i[2]=0)(i[3]=1))(and(i[0]=0)(i
[1]=0)(i[3]=1)) => ~out0)

The above described the basic components of an Expert
System and the process it is adapted for purpose of this
work. In the following, we demonstrate further usage of
this feature. According to Fig. 1, the adapted Expert System
can be fed by the assertions from the proposed assertion
miner, as well as assertions provided by third parties for a
specific design. This can enhance the methodology by two
advantages.

Firstly, in cases that the generated assertions by an as-
sertion miner cannot completely cover all the functionality
of the design, the adapted Expert System can learn from
what assertions have been stored by the third parties in
its knowledge base and generate a new set of assertions
to increase the coverage. Secondly, the adapted Expert
System can reduce the redundancy of the assertion sets
after the selection phase. Formula (1), formula (2), and
formula (3) represent the reduction mechanism. As can be
seen here, m1, m2, ..., mn is repeated in both formula (1)
and formula(2) which is omitted in formula (3). With this
straightforward mechanism, this feature can prevent this
kind of redundancy.

(a1 && ... && an) ∣∣ ... ∣∣ (m1 && ... && mn) ∣− > δ, n ⩾ 0 (1)

(m1 && ... && mn) ∣∣ ... ∣∣ (z1 && ... && zn) ∣− > δ, n ⩾ 0 (2)

(1),(2) => ((a1 && ... && an) ∣∣ ... ∣∣ (m1 && ... && mn)) ∣∣ ...∣∣ (z1 && ... && zn)) ∣− > δ, n ⩾ 0 (3)
2) User interface in the adapted Expert System:

Users can interact with the system through the user
interface. A user interface generally asks questions from the
users to understand their needs. To this extent, the expert
system is able to select an assertion set for a specific module
or an output variable. For instance, the Rule in Listing 2
is related to the case that the user’s desire is generating
assertion for ∼ out0 output.

III. EXPERIMENTAL RESULTS

The efficiency of the proposed methodology has been
studied on the mentioned NoC router Bonfire in Section
II-A, and its two main components, i.e., ELBDR, and SAr-
biter [27]. The programming languages that have been
used in this work are SystemVerilog, Python, and CLIPS.
The benchmarks are developed in SystemVerilog. Assertion
miner is implemented in Python. Finally, CLIPS is the
suitable language for the Expert System.

Furthermore, with the aid of the adapted Expert System,
the generated assertions can be provided in two different
syntaxes which are SystemVerilog Assertions (SVA), or Prop-
erty Specification Language (PSL). This can be helpful in
analyzing the designs which are programmed in any of
these languages.

Table II presents the experimental results. Column
’Benchmarks’ represents the name of benchmarks, i.e. SAr-
biter and ELBDR. Column ’Metrics’ contains four different
metrics i.e. ’#mutants’, ’#assertions’, ’%detected mutants’,
and ’execution time’, which report the number of injected

mutants, the number of generated assertions, the number
of detected mutant, and the execution time, respectively.
Columns ’Approach 1’ and ’Approach 2’ show the results for
two different assertion miners represented in [14]. Finally,
’Proposed methodology’ refers to the approach of this work.

Table II: Comparison between the approaches in [14] and the
proposed method.

Benchmarks Metrics Approach 1 Approach 2 Proposed approach

#mutants 73 73 73

#assertions 449 689 10

%detected mutants 97% 99% 100%
SArbiter

execution time 2h5m 2h22m 20s.65ms

#mutants 76 76 76

#assertions 37 36 8

%detected mutants 100% 100% 100%
ELBDR

execution time 20m 19m 13m

As for SArbiter, the number of the injected mutants is
equal to 73. Note that, these mutants are injected according
to the details provided in Subsection II-D. The number
of generated assertions are 449, 689, and 10 for the three
approaches, respectively. As for fault coverage, the results
in percentage are 97, 99, and 100, respectively. Finally, the
execution time for the three approaches is as follows 2h5m,
2h22m, and 20s65ms.

For ELBDR, the number of the injected mutants is equal
to 76. The number of generated assertions is 37, 36, and
8 for the three approaches, respectively. Moreover, for fault
coverage, the results for all the three approaches are 100%.
Finally, the execution time for the three approaches is as
follows 20m, 19m, and 13m.

As shown above, the proposed methodology has advan-
tages, since it generates a considerably smaller number of
assertions i.e., 10 and 8 for SArbiter and ELBDR, respec-
tively. In contrast, these numbers for Approach 1 are 449
and 37, and for Approach 2 are 689 and 36. The mutant
coverage is slightly increased for the proposed methodology
in comparison with the other approaches for SArbiter, and
remained steady in ELBDR. Moreover, the execution time
of the proposed assertion miner has drastically reduced
in comparison with Approach 1 and Approach 2. As can
be seen here, it reached 20.65s and 13m for SArbiter and
ELBDR, respectively. However, these numbers are 2h5m and
20m for Approach 1 and, 2h22m and 19m for Approach 2.

IV. CONCLUSIONS

This work proposed an efficient methodology for auto-
mated mining of compact and accurate assertion sets. The
methodology specified an environment in terms of exhaus-
tive valid simulation traces which served as a complete
verification environment for the assertion miner. Conse-
quently, the generated assertions represented a set of valid
assertions. The assertion miner was further enhanced by an
algorithm that provides a compact and accurate assertion
set. To that end, the experimental results showed that the
proposed approach generated significantly more compact
assertion sets than the state-of-the-art while achieving 100%
fault detection in terms of the injected mutants.
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Abstract—Assertion-based verification is a promising method
that uses predefined rules, known as assertions, to check the
functionality of hardware designs. The manual assertion definition
is time-consuming and requires expert knowledge. Automatic
assertion mining is gaining acceptance as a trustworthy method
for assertion definition. Some automatic assertion miners extract
assertions from simulation traces of the design, but the quality
of mined assertions depends on the coverage of the stimuli used
to generate the traces. Existing stimuli generation methods are
either random or exhaustive. A random approach can only cover
some design behavior, resulting in incomplete assertions. On the
other hand, an exhaustive approach can cover all the design
behavior but produces lengthy simulation traces that cause a high
overhead for the miner. We propose a novel approach for stimuli
generation based on constraint random verification. A set of user-
defined metrics then examines the generated stimuli to measure
how much of the design specification has been exercised by the
verification environment. Our approach uses a coverage model
that defines, collects, and analyzes the design’s functionalities and
identifies the gaps in the verification. The assertions generated
by the proposed method have been compared with a well-known
assertion miner, GoldMine. The result showed that our method
detects 20.63% more faults in the design than GoldMine in a
shorter time. Moreover, it produces assertions that are about 79%
more effective.

Index Terms—Assertion-based verification, constraint random
verification, Simulation trace, Stimuli

I. INTRODUCTION

Verification methods are employed to confirm that a design
precisely aligns with its defined requirements and specifica-
tions. By applying these methods, developers can identify
discrepancies between the design’s intended behavior and its
actual behavior under various conditions, thereby reducing the
risk of failures and enhancing the quality of the final product.
Due to digital systems’ growing complexity and the importance
of time to market, hardware verification has become the biggest
bottleneck in creating new electronic products [1].

Assertion-based verification (ABV) [2] has emerged as one
of the most effective techniques for validating “pre-Silicon”

designs [1] among all the available methods. Assertions allow
for the explicit specification of desired behaviors and properties,
providing a direct means to test design intents and ensuring
correct behavior under all conditions. They enable continuous
monitoring of a design’s internal workings, not just its inputs
and outputs, allowing for the immediate detection and easier
debugging of issues and enhancing observability. Moreover,
assertions automate and enhance the verification process, acting
as dynamic checklists for constant evaluation against expected
behaviors, thus significantly reducing manual effort.

Traditionally, the definition of assertions is a fully manual
effort that is time-consuming and error-prone, and the quality of
them depends on human expertise [3]. To address the challenges
associated with manually defining assertions, various strategies,
approaches, and tools have been developed to automate the
extraction of assertions directly from the Design Under Ver-
ification (DUV). This automation serves as a supplementary
method, enhancing the traditional manual process by leverag-
ing algorithms and software that can analyze the DUV and
automatically generate assertions based on its behavior [4].

Two methods are commonly used for automatically ex-
tracting assertions from the DUV implementation [5]. One
approach involves the static analysis of the DUV’s source
code [6], which focuses on automatically generating formal
properties for a given design. In contrast, the second approach
analyzes simulation traces generated by simulating the DUV
using stimuli [7]. While static methods face scalability issues,
dynamic assertion mining is more computationally efficient.
Independently from the adopted techniques, mined assertions
can be compared with design intents to discover unexpected
behaviors implemented in the DUV, to confirm that relevant
behaviors are actually implemented, and for documentation
purposes [4].

Dynamic assertion mining is a popular method for extracting
assertions from a DUV because it is more scalable than other
methods. However, the effectiveness of this method depends
on the quality and diversity of the stimuli used to generate
simulation traces. It is essential to use appropriate stimuli to979-8-3503-7055-3/24/$31.00 ©2024 IEEE



ensure a comprehensive DUV exploration [8].
In recent verification methodologies, constrained random

verification (CRV) has emerged as a preferred approach for
generating numerous stimuli while adhering to specific con-
straints [9-10]. These constraints serve the purpose of ensuring
that the generated input stimuli follow particular design require-
ments, encompassing considerations such as data ranges, timing
constraints, and interface protocols. Through developing many
stimuli, CRV contributes to thoroughly examining the design,
containing many potential scenarios [11].

The underlying concept of CRV is grounded in the notion
that stimuli can adopt arbitrary values. Through randomization,
these elements can accept different values in each verification
iteration. Constraints play a pivotal role in this mechanism,
controlling the values of these randomly generated elements.

During the generation of stimuli using CRV and subsequent
simulation, it is essential to monitor metrics related to the
DUV to ensure that the design is being examined as expected.
Functional coverage, a metric manually defined by engineers
focusing on corner cases, is a valuable measure for evaluating
the thoroughness of stimuli in verification processes [12].
Prioritization of corner cases is crucial for verification. These
cases represent rare or extreme conditions that standard tests
may not cover. Functional coverage addresses these critical
situations, ensuring a more comprehensive evaluation.

This paper introduces a flexible method for rapidly generat-
ing high-functional coverage stimuli to provide dynamic asser-
tion miners with appropriate simulation traces. This accelerates
the automatic ABV process. Furthermore, the paper suggests
a way to evaluate the assertions using these stimuli. The main
contributions of this research are outlined below:

• A novel approach is introduced to generate high-functional
coverage stimuli. This method stands out for its swiftness
in producing stimuli that thoroughly exercise DUV’s func-
tionalities.

• The proposed method for generating simulation traces is
scalable since it uses the CRV technique and introduces a
set of metrics for determining functional coverage.

• The proposed method improves assertion-based verifica-
tion by generating high-functional coverage stimuli, con-
sequently extracting high-quality assertions, thus reducing
the time and cost of the verification process.

To the best of our knowledge, the method proposed in this
paper for rapidly generating high-functional coverage stimuli
represents a first in the field of automatic assertion-based
verification techniques. This innovative approach is expected
to significantly contribute to the efficiency and effectiveness of
the verification process, marking a notable advancement in the
domain.

The remainder of the paper is organized as follows: Section
2 reviews previous related works. Section 3 introduces some
preliminary definitions. Section 4 provides an overview of
the proposed method. Section 5 reports experimental results.
Finally, section 6 concludes the paper.

II. RELATED WORK

Different methodologies for assertion mining have been
developed. In [13], GoldMine is designed to generate assertions
directly from Register-Transfer Level (RTL) designs. It accom-
plishes this by employing static analysis of the DUV’s source
code and data mining techniques applied to the behavioral
data of the design. However, when utilizing formal verification
techniques like model checking within this tool, there’s a
notable challenge known as ”state explosion” that becomes
prominent with complex designs.

The research in [14] presents an automatic assertion mining
tool that leverages a dynamic dependency graph to generate
assertions. They could extract relationships between signals
in the design by analyzing simulation traces. They utilize use
cases to create simulation traces but have yet to suggest any
approach to create these use cases. Additionally, they employ a
model checker to verify the accuracy of their mined assertions,
which necessitates access to the source code of the DUVs.

M.R. Heidari Iman et al. [15] proposed an assertion miner
and evaluator. The assertion miner can generate a set of read-
able and compact assertions. The assertion evaluator employs
a data-mining algorithm called dominance to assess the quality
of the assertions. They use exhaustive, valid simulation traces
to extract assertions dynamically. However, this method for
generating simulation traces is impractical when dealing with
complex DUVs and suffers from scalability issues. Further-
more, no approach for verifying mined assertions is suggested,
assuming that the mined assertions are always factual by using
exhaustive valid simulation traces.

The researchers in [16]–[18] start their automatic mining
flow from a set of given simulation traces. As previously
mentioned, the quality of mined assertions heavily relies on
the quality of simulation traces. However, the authors did not
propose any approaches for generating appropriate simulation
traces.

Although several approaches to assertion mining and vali-
dation have been proposed, a dependable and rapid approach
for generating stimuli to provide dynamic assertion miners with
high-quality and valid simulation traces has yet to be developed.

III. PRELIMINARIES

In this section, we’ll briefly explain the definitions and con-
cepts used in this article to help the readers better understand
the approach.

Definition 1: An assertion is a logic formula that describes
the behavior of the design through temporal operators that must
hold or must become true during the execution of the design
[16].

Definition 2: A seed is a numerical value that initializes the
generation of a sequence of pseudo-random numbers. To obtain
different sequence values from a random number-generating al-
gorithm, we must start with different seed values [20]. Initiating
the process with the same seed yields an identical sequence of
numbers each time.

Definition 3: Bins serve as fundamental elements for or-
ganizing and categorizing the various states or values that
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variables within a DUV might assume. These bins enable
the systematic analysis of both static conditions and dynamic
sequences, facilitating a comprehensive understanding of the
DUV’s behavior.

Definition 4: Functional coverage mapping each functional
feature of a design to a user-defined coverpoint, in this work
named as bin. A coverpoint essentially encapsulates a specific
aspect of the design that requires evaluation in terms of
functional coverage. Within each coverpoint is a collection of
bins, each associated with either the sampled values or the
transitions between values of the targeted variable.

IV. METHODOLOGY

The proposed method consists of three steps, which are
illustrated in Fig. 1.

The verification process begins by creating a simulation
trace, which involves providing stimuli to the DUV to initiate
the simulation. The results of this simulation are then recorded
in the simulation trace. Following this, an assertion miner
automatically utilizes the simulation trace to generate asser-
tions (definition 1). These newly created assertions undergo
validation through simulation, and any assertions that fail the
validation process are discarded and finally, we evaluate the
valid assertions.

The subsequent section provides a thorough examination for
a more in-depth exploration of these steps.

A. Generating Simulation Trace

The automatic generation of assertions from simulation
traces begins with the creation of a simulation trace covering
all expected functionalities of the DUV. At this step, bins
(definition 3) are defined. They are derived from the design
specifications. This foundational step is crucial as it bridges
the gap between the theoretical aspects of the design and
the practical components that require validation. Bins serve
as pivotal markers or checkpoints, directing the process of
generating stimuli.

Functional coverage (definition 4) is a measure used to eval-
uate the extent to which a design’s intended functionalities have
been tested during the verification process. This metric stands
in contrast to other measures like code and toggle coverage,
which respectively gauge the execution of code blocks and
the changes in signal states, but may not directly reflect the
testing of specific design functionalities. Functional coverage is
thus regarded as a critical metric for ensuring that all specified
functionalities of a design have been thoroughly tested [21].
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To achieve comprehensive functional coverage, a deliberate
process of bin definition is undertaken. This process starts with
the identification of the key functional requirements of the
DUV, which can encompass various operational modes, states,
and precise value ranges that the design is expected to handle.
For each distinct requirement, corresponding bins are created
to monitor these functionalities. For instance, the occurrence of
a particular output signal being activated can be defined as a
bin; if this specific output is triggered during the verification
phase, the corresponding bin is marked as covered.

Following the definition of bins, the subsequent step is to
choose a seed (definition 2). This seed is used to kick-start
the CRV method. The CRV method then employs this seed to
randomly generate input signal values. However, these values
aren’t completely random; they are confined within the bounds
of predefined constraints.

The seed selection process, as shown in Fig. 2, begins with
randomly selecting a seed, such as ’7’. Stimuli are generated
using the CRV method based on this seed, and an initial
set of stimuli is created for simulation to measure functional
coverage. In this example, seed ’7’ increases the coverage to
10%. If additional stimuli generated by seed ’7’ do not improve
coverage beyond 10%, a new seed, like ’3’, is selected, and
the process repeats. This methodology ensures adaptability.
When a selected seed cannot produce a sequence of random
numbers conducive to increased functional coverage, the system
switches to a different seed. The objective is to replace an
under-performing seed with a more effective one, ultimately
attaining the desired functional coverage. This iterative ap-
proach persists until the specified functional coverage target
is achieved, enhancing the process’s efficiency to reach the
desired functional coverage. A similar approach is suggested
in [22]. By adjusting the testbench seed dynamically, the
verification flow is dynamic, and its structure changes based on
the feedback obtained from functional coverage assessments.

In conventional CRV environments, achieving comprehen-
sive functional coverage typically involves conducting multiple
independent verifications. Subsequently, the union of the results
from these verifications is used to assess the sufficiency of
functional coverage. In contrast, our approach autonomously
identifies a complete stimulus solution to fulfill the functional
coverage objectives within a single run. The current tools
and infrastructures employed in functional verification tasks,
such as the Universal Verification Methodology (UVM) [23]
or the SystemVerilog [24] hardware verification language,
require enhanced functionality to apply advanced verification
mechanisms effectively. To meet this need, a new solution has
been developed: the COCOTB platform [25]. This platform,



Algorithm 1: Generating Simulation Traces
1 SET max-limit-iteration, initial-iteration, additional-iteration;
2 FCdesired ← 100;
3 FCprevious, FCcurrent, Niterations, cnttotal, cntinner ← 0;
4 while cnttotal < max-limit-iteration do
5 while FCcurrent < FCdesired do
6 Niterations ← initial-iteration;
7 seed ← random value;
8 while cntinner < Niterations do
9 generate stimuli (seed);

10 simulate (design, stimuli);
11 FCcurrent ← assess functional coverage;
12 if cntinner == Niterations then
13 if FCcurrent > FCprevious then
14 FCprevious ← FCcurrent;
15 Niterations ← Niterations + additional-iteration;
16 end if
17 end if
18 cntinner ← cntinner+1
19 end while
20 end while
21 cnttotal ← cnttotal+1
22 end while

which is both free and open-source, allows for the creation of
testbench environments using Python.

The process of generating simulation traces, outlined in Al-
gorithm 1, involves a systematic approach to stimuli generation.

This algorithm initiates by setting several key parameters:
max-limit-iteration which defines the maximum number of
iterations allowed for the entire simulation process, initial-
iteration which specifies the number of iterations for each
internal cycle at the outset, additional-iteration for adding
extra iterations in response to progress, and FCdesired as the
target functional coverage percentage. Additionally, it initial-
izes various counters and trackers such as FCprevious, FCcurrent,
Niterations, cnttotal, cntinner to zero. The simulation operates within
an outer loop that continues until the total iterations exceed
the set limit, managing the overall simulation cycles. Nested
within is an inner loop that runs until the current functional
coverage meets or surpasses the desired level. For each cycle
in this loop, a random seed is generated to diversify simulation
inputs, and the number of iterations (Niterations) is initially set
to the initial-iteration value. During the internal iteration loop,
the algorithm generates stimuli from the current seed and
simulates the design with these stimuli, assessing functional
coverage after each iteration. If by the end of these iterations
the current functional coverage improves over the previous,
the algorithm updates FCprevious to FCcurrent and increments
Niterations by additional-iteration, fostering further exploration.
Loop management involves cntinner, which tracks the iterations
within the current cycle and increments until it aligns with
Niterations. If no improvement in functional coverage is noted by
the end of Niterations, the loop restarts with the same number
of iterations but potentially different stimuli, influenced by
a new random seed. The process outlined in the algorithm
concludes when the outer loop’s conditions are not met, which
can occur when either the maximum number of iterations
is reached or the desired functional coverage is achieved.
If the desired functional coverage is not reached within the
specified maximum iterations, further analysis is necessary to
determine which specific functionalities were not covered and

to understand why these gaps in coverage occurred.

B. Assertion mining

In the next step of our process, we begin mining asser-
tions, employing a specialized tool as recommended in [15]
to produce SystemVerilog Assertions. This tool is particularly
effective in our analysis, offering significant benefits for our
purposes.

This assertion mining tool scrutinizes the simulation trace
created in the earlier step, searching for patterns and rela-
tionships among the signals of the DUV. Leveraging these
observations, it crafts precise SystemVerilog Assertions that
closely mirror the functional behaviors observed in the design.

C. Assertion validation and evaluation

In the final step of our method, we validate and evaluate the
assertions acquired from the earlier mining process. The ab-
sence of exhaustive stimuli during assertion mining introduces
uncertainty regarding whether the mined assertions accurately
reflect the intended behavior or conditions. To address this issue
we have introduced a specific validation procedure.

We avoid using formal methods for validating assertions
because they need an internal view of the DUV, often un-
available with third-party intellectual property (IP). Moreover,
formal methods can struggle with complex designs due to
state explosion. In contrast, our method can effectively handle
complex designs without requiring direct access to the design
code. we employ a new set of stimuli to validate the assertions
under different conditions. This approach significantly increases
the likelihood of the validity of the mined assertions in diverse
testing scenarios due to the randomness involved in creating
the simulation trace. In this phase, we simulate the DUV using
the new stimuli and concurrently check the mined assertions to
detect potential counterexamples. If an assertion fails, we dis-
card it. The validation process significantly boosts confidence
in the validity of the retained assertions, regardless of the initial
simulation trace used for their discovery.

In addition to the validation phase, we use mutation testing
to evaluate the assertions. The starting point of this stage is the
set of valid assertions and the output of this phase results in a
comprehensive report detailing how effectively these assertions
identify the introduced mutants. In this paper, RTL benchmarks
were mutated by injecting mutations listed in Table. I. The
column ’Mutation operator type’ displays the many operators
affected by the mutation [15]. In each row of the ’List of
operators’ column, any operators have been replaced with the
others in the same row. In addition to these mutations, all 0
bits are randomly converted to 1 and vice versa.

TABLE I: List of Operators for Mutation [15]
Mutation operator types List of operators

arithmetic operators +, −, ×, /, %
relational operators ==, !=, >, <, >=, <=

logical operators &&, ||
assignment operators +=, − =, ×=, /=, %=, =

unary operators +, −, ∼, !
bitwise operators ≪, ≫, &, —, ∧

bitwise assignment operators ≪=, ≫=, & =, | =, ∧ =

In our approach to mining assertions, we deliberately avoid
relying on a golden model as a reference because such models



may not always be accessible. Instead, we first mine a broad set
of assertions directly from the DUV and subsequently engage
in a rigorous filtering process. Through this filtering, we ensure
that only valid and effective assertions—those that accurately
represent the intended functionality and specifications of the
DUV—are retained. Following the selection of these assertions,
a thorough comparison against the design specifications can be
done. This crucial step verifies that the properties and behaviors
identified and extracted by the automatic assertion miner align
perfectly with what is desired and correct for the DUV.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our approach when
applied to two primary components of an NoC router [26],
including an Arbiter and a Logic Based Distributed Routing
(LBDR) and an Advance Bus Protocol (ABP) used in the
[27]. All experiments were conducted on a virtual system with
access to 4 cores of an 11th Gen Intel® Core™ @ 2.60GHz
processor and 8GB of RAM, A 64-bit Ubuntu.v20.04 operating
system, the COCOTB.v1.7.0 testbench environment, and the
Questasim.v2021.1 simulator.

Table. II shows the number of bins determined for each
benchmark. This table also reports the total time required to
generate the number of stimuli for each benchmark to reach the
desired functional coverage using the first step of the proposed
approach.

TABLE II: Stimuli and Time Required for Different Functional
Coverage Levels in Various Benchmarks

Benchmarks #Bins
Functional converge

80% 100%
#Stimuli Time(s) #Stimuli Time(s)

LBDR 4147 7230 5.92 36000 26.48
Arbiter 159 241 0.23 1336 1.13
APB 542 779 0.45 3726 2.28

As LBDR has the highest number of bins, the process
of generating sufficient stimuli to cover them takes a longer
duration. The reliability of functional coverage improves with
an increased total number of bins. To attain 100% functional
coverage, up from 80% across all benchmarks, the number of
stimuli had to be quadrupled. This is due to the diminishing
likelihood of covering the remaining bins with random stimuli
as functional coverage rises.

A. Comparative Performance Analysis: GoldMine vs. Our Ap-
proach

We compare our methodology with the GoldMine tool,
employing mutation testing to enable a meaningful and rigorous
evaluation of our approach against GoldMine.

GoldMine features a random stimuli generator, where the
user must specify the quantity of stimuli to be produced.
However, the tool does not provide instructions on determining
this quantity. To decide on the number of stimuli, we adopt a
strategy where we allow GoldMine to generate an equivalent
amount of stimuli as required by our method to achieve 100%
functional coverage. This means we use the number of stimuli
our method needs to fully cover all functional aspects as a
benchmark for GoldMine.

Following the generation of stimuli, we move to the assertion
validation phase. This phase is crucial as it sifts through
the assertions derived from both our method and GoldMine,
ensuring only valid assertions are taken forward. The next
step involves the mutation testing phase, where the validated
assertions from both methodologies are tested against the same
set of mutants across each benchmark. This process allows
us to directly compare the efficiency and effectiveness of
our methodology against GoldMine in detecting and handling
various mutations within the design. Table. III, providing clear
insights into the comparative performance and effectiveness of
our approach relative to GoldMine.

TABLE III: Comparison between the GoldMine and the pro-
posed method.

Proposed Methodology GoldMine
LBDR Arbiter APB LBDR Arbiter APB

#Stimuli 36000 1366 3726 36000 1366 3726
mining
time (s) 28 3.25 3.18 6884 207 389

#mined
assertions 591 638 124 1507 189 6

#failed
assertions 475 257 55 314 53 0

#valid
assertions 116 381 69 1193 136 6

#effective
assertions 5 14 8 14 11 3

%detected
mutants 62.1 75.5 75 78.9 59.3 12.5

%mutant detection
effectiveness

(per assertion)
12.42 5.39 9.37 5.63 5.39 4.16

Our experiment reveals that our method outperforms Gold-
Mine significantly across three benchmarks. In the LBDR
benchmark, our method completed the task in 28 seconds
compared to GoldMine’s 6884 seconds. Similar trends were
observed in Arbiter and APB benchmarks, where our method
demonstrated faster execution times of 3.25 seconds and 3.18
seconds, respectively, compared to GoldMine’s 207 seconds
and 389 seconds. This consistent superiority underscores the
efficiency of our method.

To provide a comprehensive assessment of the overall perfor-
mance improvement, we employ the concept of speedup [28],
which is calculated as the ratio of GoldMine’s execution time to
that of our method for each benchmark. Utilizing the geometric
mean to consolidate these benchmarks’ speedup values, we
derive an overall speedup factor, yielding a single numerical
representation of the comparative efficiency.

The calculated overall speedup factor stands at approxi-
mately 5.76, signifying a substantial improvement in efficiency
achieved by our method across all benchmarks. This metric
serves as a quantitative indicator of the consistent superiority of
our method over GoldMine, thereby substantiating its potential
for broader application in scenarios requiring expeditious task
execution.

The amount of assertions extracted through mining is influ-
enced by the intricacy of the design. Given that the APB is a
simple combinational design, the quantity of assertions mined
for it by both methods is relatively small when compared to
other, more complex benchmarks.



In Table. III the number of valid assertions is obtained by
deducting the count of failed assertions from the overall total
of mined assertions. This yields the quantity of assertions that
have successfully passed the verification process.

To calculate the number of effective assertions we adopt a
two-step pruning procedure. Initially, we retain only those valid
assertions that successfully kill at least one mutant, thereby
ensuring that each assertion contributes to identifying potential
design faults. Subsequently, we eliminate redundant asser-
tions—those whose detected mutants are entirely subsumed by
the mutants detected by other assertions. This elimination step
is crucial as it streamlines the verification suite by removing
superfluous assertions without compromising the thoroughness
of the test. By implementing this strategy, we aim to curate a
suite of assertions that not only demonstrate high efficacy in
mutant detection but also encompass the broadest spectrum of
DUV behaviors.

In comparing the mutant detection results for three bench-
marks between our method and GoldMine, distinct performance
trends emerge. GoldMine outperforms our method in the LBDR
benchmark, scoring 78.9% compared to our method’s 62.1%.
However, our method demonstrates superiority in Arbiter and
APB benchmarks, achieving mutant detection of 75.5% and
75%, respectively, while GoldMine lags behind with scores of
59.3% and 12.5%.

In the LBDR benchmark, GoldMine attains a marginally
higher mutant detection by employing static code analysis to
refine the quality of the extracted assertion from the simula-
tion trace. However, this enhancement is accompanied by a
noticeable time overhead. In contrast, our approach emphasizes
efficiency by exclusively depending on simulation traces, sub-
stantially reducing overall processing time.

GoldMine’s limitations come to light in the APB benchmark
as it grapples with creating random stimuli. This challenge be-
comes significantly pronounced when specific input values are
critical in determining certain outputs. The random approach
employed by GoldMine often falls short of generating the
required stimuli promptly, leading to a lack of essential output
traces in the simulation. In contrast, our method tackles this
challenge by efficiently generating comprehensive simulation
traces that encompass all functionalities expected from the
DUV. Consequently, our approach consistently outperforms
GoldMine, presenting a notable advantage in scenarios where
precision, speed, and adaptability are paramount considerations.

To quantify the overall performance difference, we can
calculate the average percentage improvement of our method
over GoldMine, which is approximately 20.63%. This indicates
that, on average, our method achieves a 20.63% higher mutant
detection than GoldMine across the considered benchmarks.

In our research, we present a metric known as ”Mutant
Detection Effectiveness,” detailed in the last row of Table. III.
This metric is critical for evaluating the effectiveness of each
assertions, as it measures the ability of each assertion to detect
mutants, calculated by the ratio of detected mutants to the
number of effective assertions.

Our method exhibits a pronounced advantage in ”Mutant

Detection Effectiveness” across all three benchmarks. We not
only surpass GoldMine in every benchmark but also achieve
an average effectiveness of approximately 9.06%, compared to
GoldMine’s 5.06%. This translates to our method being roughly
79% more effective than GoldMine, affirming the exceptional
quality and comprehensive nature of our assertions in probing
the DUV.

In contrast, GoldMine’s approach leads to overly specific as-
sertions. Each becomes a lengthy and complex formula aimed at
capturing minute behaviors of the DUV. While trying to cover
an extensive range of DUV behaviors, GoldMine generates a
vast number of assertions. This results in a bloated verification
process that demands more time. A case in point is the
LBDR benchmark, where out of 1507 mined assertions, only
14 are effective, with the remainder being unnecessary. This
inefficiency in GoldMine’s approach highlights the precision
and effectiveness of our methodology.

In summary, our experiments clearly show that our method
surpasses GoldMine across the LBDR, Arbiter, and APB
benchmarks, not just in terms of speed and scalability but
also in effectiveness. Our approach boasts significantly faster
execution times, emphasizing its efficiency and capability to
handle extensive testing scenarios without compromising on
thoroughness. While GoldMine manages to detect a marginally
higher number of mutants in the LBDR benchmark through
the application of static code analysis, our strategy focuses on
optimizing efficiency by exclusively utilizing simulation traces,
which notably reduces the overall processing time.

Our method’s effectiveness is especially prominent in the
APB benchmark, where it excels at overcoming the hurdles
associated with the generation of random stimuli. This superior
performance demonstrates our method’s ability to adapt and
accurately cover the required testing ground, making it an
outstanding option for situations that demand precision, speed,
and a high degree of adaptability.

VI. CONCLUSIONS AND FUTURE WORKS

This article introduces a new method for rapidly producing
high-quality stimuli for dynamic assertion miners used in ABV.
The proposed method enhances the ABV process by improving
speed and accuracy compared to existing techniques. It also
includes a mechanism for validating the mined assertions using
these stimuli. The effectiveness of the proposed method was
demonstrated by comparing its results to those of GoldMine.
The experimental results reveal a remarkable reduction in asser-
tion mining time by 5.76 times and an identification of 20.63%
more faults in the design than GoldMine, while also yielding
assertions that are 79% more effective. These findings indicate
that our method is significantly faster and more efficient than
GoldMine regarding assertion mining.
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Abstract: NTFS USN Journal tracks all the changes in the files, directories, and streams of a volume for various reasons
including backup. Although this data source has been considered a significant artifact for digital forensic
investigations, the utilization of this source for automatic malicious behavior detection is less explored. This
paper applies temporal association rule mining to data obtained from the NTFS USN Journal for malicious
behavior detection. The proposed method extracts association rules from two data sources, the first one with
normal behavior and the second one with a malicious one. The obtained rules, which have embedded the
sequence of information, are compared with respect to their support and confidence values to identify the ones
indicating malicious behavior. The method is applied to a ransomware case to demonstrate its feasibility in
finding relevant rules based on USN journal activities.

1 INTRODUCTION

The detection and exploration of malicious behavior
are one of the mainstream research directions in the
digital forensics domain. A huge number of data
sources can be utilized in cyber incident investiga-
tions for identifying such behavior. The sources in-
clude but are not limited to network traffic captures,
processes in memory, system call sequences, or Win-
dows registry modifications. Microsoft NTFS Change
Journal or USN Journal is another alternative that ac-
cumulates information regarding all of the operations
performed on the file system.

NTFS forensics stands out as one of the corner-
stones of conventional PC forensics due to the usage
of file systems across all of the Microsoft Windows
operating system lines. USN Journal is often used
in system forensics to manually determine malicious
or criminal actions (Cohen, 2020). It can shed some
light on the executables launched in the system. File
deletion traces of these files can still confidently be re-
covered from the journal. It enables tracking the file
system operations related to file creation, renaming,
deletion, or changing security attributes, thus, pro-

∗This work was supported in part by the European
Union through European Social Fund in the frames of the
“ICT programme” (“ITA-IoIT” topic) and by the Estonian
Research Council grants PSG837.

viding valuable information for malicious behavior
once the benign usage is profiled (Corey, 2013; Russi-
novich, 2000). It is easy to access and extract this
data when compared to, for instance, network traces
or system calls, requiring additional tools and usually
having limited historical coverage. Despite its huge
potential, limited work has been done to date regard-
ing the automated analysis of this important source of
evidence.

In this paper, we examine the ways of forensic
pattern recognition in the NTFS USN Journal using
the Apriori algorithm (Han et al., 2012) and Tempo-
ral Association Rules (TAR) (Antunes and Oliveira,
2001; Bilqisth and Mustofa, 2020). Apriori is a fast
algorithm that can provide accurate association rules
(Han et al., 2012). Association rules demonstrate in-
teresting relations among variables and data in a large
dataset (Zaki, 2000).

To this end, association rule mining became a
promising technique for extracting and exploring use-
ful information from a system for engineers. It has
shown its strength in many different domains, such
as market analysis (Brin et al., 1997), accident and
traffic analysis (Shahin et al., 2022), intrusion detec-
tion infrastructures (Treinen and Thurimella, 2006)
and health informatics (Altaf et al., 2017), as well as
its huge application in dependability and reliability of
safety-critical applications (Danese et al., 2015; Hei-
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dari Iman et al., 2021), etc.
In this research, temporal association rule mining

identifies rules that are applicable to the USN Journal
data for the detection of anomalies caused by mali-
cious behavior. Mainly, the data mining approach ex-
tracted two sets of rules, one from a snapshot of a be-
nign file system and another one from a target file sys-
tem that is suspected to be infected or attacked. These
two rule sets are compared, and the rules that detect
the anomalies are determined. Security experts can
use these rules for revealing and enumerating the files
used or infected by the actions of the adversary. Thus,
the proposed method does not only predict the exis-
tence of anomalies, but it also enables to discriminate
the infected files from the benign ones to assist in the
impact assessment of the incidents and planning the
recovery actions during incident handling processes.

In summary, the contributions of this paper are as
follows:

• An automatic malicious behavior detection
method is proposed to analyze the NTFS USN
Journal and extract a set of association rules for
detecting the anomalies induced by malicious
behavior.

• The method does not require file-level labeled
data, instead, a normal file system, which is easy
to obtain, and a target file system which is the
main subject of the analysis are enough.

• An incident regarding the ransomware analysis is
presented to demonstrate the applicability of the
method.

The outline of this paper is as follows: Section 2 gives
background information and reviews the related work.
The preliminaries of the proposed method are pre-
sented in Section 3. The datasets and their generation
are detailed in Section 4. Section 5 introduces the
proposed methodology. The case study and the rele-
vant results are presented and discussed in Section 6.
Section 7 concludes the study.

2 BACKGROUND INFORMATION
AND RELATED WORK

The USN Journal or Update Sequence Number Jour-
nal is an advanced feature of the Windows NT file
system introduced with version 3.1 of the file system
(Russinovich, 2000). It was designed to keep a record
of all changes made to the volume. There are sev-
eral use cases for the file system to maintain a full
log of changes within itself. Backup applications may
use the change journal information in order to iden-
tify files that were created or modified since the last

backup without the need to recursively parse the di-
rectory tree which is time- and resource-consuming.
Another useful application of the journal is real-time
antivirus protection: the AV application can monitor
the live USN journal to identify any incoming files
and scan them at the same moment.

The journal is stored in a system-maintained
metafile $Extend\$UsnJrnl in an alternate data stream
called $J and is comprised of a number of records
consisting of the following fields: a USN ID (a
64-bit unique identifier which is incremented with
each new record been created but not guaranteed to
be contiguous (Cooperstein and Richter, 1999)), a
timestamp, filename, reference to the parent Master
File Table (MFT) ID, the update reason, and some
other attributes. The presence of parent MFT ID
in some cases can lead to the real location of the
file. However, if the MFT entry was already reused
the reference becomes invalid. Update reason is a
64-bit integer that uses bit flags to describe what
changed in the file or directory. According to Mi-
crosoft’s documentation (Microsoft, 2022), there are
23 flags available, including creation, renaming, dele-
tion, and security information change. Multiple flags
can be set into a single update reason record. For
example, two flags USN REASON FILE CREATE
(0x100) and USN REASON CLOSE (0x80000000)
combined together will result in an integer record
0x80000100 or 2147483904 in decimal. One of the
most important aspects of the journal is the fact that it
stores information about operations on files that may
be already deleted and their entries in the Master File
Table reused. Thus, it is possible to prove some data’s
existence even if the data is a long time gone.

Different approaches for analysis of the USN jour-
nal in order to discover patterns are presented in sev-
eral works. Lees et al. in (Lees, 2013) explore iden-
tifying a user using Private Browsing mode or uti-
lizing anti-forensic software such as CCleaner. The
proposed method allowed them to clearly identify
traces and, most importantly, patterns for such activ-
ities within the change journal. Corey in their article
”Re-introducing $UsnJrnl” (Corey, 2013) discusses
ways of using the change journal for determining mal-
ware activity from the USN journal including self-
destruction, hiding in unusual locations, and tamper-
ing with the file system metadata. Cohen in their ar-
ticle (Cohen, 2020) demonstrates real-time monitor-
ing and capture of the change journal with Velocirap-
tor software in order to update the modified files hash
database to trace the malicious activity.

Association rule mining has been applied to the
detection of ransomware by using the data regarding
dynamic link libraries called by the programs (Subedi
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et al., 2018). Another study extracts association rules
from the user login information for the purpose of
user profiling (Abraham and de Vel, 2002). A so-
lution based on a classifier composed of association
rules is proposed for the problem of email authorship
attribution (Schmid et al., 2015).

All the observed works that use the USN journal
as the evidence source demonstrate semi-manual pro-
cesses in pattern recognition mostly relying on the in-
vestigators’ observations and prior knowledge of spe-
cific behavior. Obviously, these approaches need hu-
man expertise, they are costly and error-prone due to
human beings in the loop. Thus, we see a clear indi-
cation of the need for an automated way for file sys-
tem behavior patterns extraction. To the best of the
authors’ knowledge, this work is the first automatic
malicious file system behavior detection that adopted
data mining methods for this purpose.

3 PRELIMINARIES

Definition 1. Apriori is a seminal data mining algo-
rithm for mining frequent itemsets for Boolean asso-
ciation rules (Han et al., 2012). To mine association
rules, Apriori employs an iterative approach called
level-wise search, where k-itemsets are used to ex-
plore (k + 1)-itemsets (Han et al., 2012).

Definition 2. Let I = {i1, i2, ..., in} be a set of items
and D = {d1,d2, ...,dm} be a data set, i.e., a set of
observations, called transactions, with respect the set
of items I. Each element in D contains a subset of the
items in I. An association rule is defined as an impli-
cation of form X → Y where X, Y ⊆ I and X ∩ Y = /0.
X and Y are called itemsets (Han et al., 2012).

Definition 3. Temporal Association Rule (TAR) is
a kind of association rule that considers time in the
data sets when the sequence of data changes during
the time (Antunes and Oliveira, 2001; Bilqisth and
Mustofa, 2020).

Definition 4. In TAR mining, there are different pat-
terns including Next, and Before that consider differ-
ent time series in a data set (Antunes and Oliveira,
2001; Bilqisth and Mustofa, 2020). As an example,
X → Next(5min)Y means that when X occurs then
after 5 minutes Y will be implied. Moreover, rule
X → Be f ore(5min)Y means that When X occurs, 5
minutes before it Y should have occurred.

Definition 5. Support is an indication of how fre-
quently the itemset appears in the data set (Han et al.,
2012). This value is between 0 and 1. For the rule
X → Y , the value of support is calculated with the
following formula (Han et al., 2012):

Supp(X → Y ) = P(X ∪Y ) (1)

In (1), P(X ∪Y ) is the probability where X ∪Y indi-
cates that a transaction contains both X and Y, that is,
the union of itemsets X and Y.

Furthermore, in Apriori, min supp value is the
threshold and a minimum value that is chosen by the
expert to decide whether an itemset is frequent (i.e.,
occurs frequently in the data set) or not. If the fre-
quency of the itemset is more than this threshold, the
itemset is considered a frequent itemset.

Definition 6. Confidence is an indication of how of-
ten the rule has been found to be true. For the rule
X → Y , the value of confidence is calculated with the
following formula (Han et al., 2012):

Con f (X → Y ) = P(Y |X) (2)

Confidence assesses the degree of certainty of the de-
tected association rule. This is taken to be the condi-
tional probability P(Y |X), that is, the probability that
a transaction containing X also contains Y. This value
is between 0 and 1. The min con f is the threshold
and the minimum value that is chosen by the expert
for confidence.

4 DATA SETS

As noted in (Cohen, 2020) and (Lees, 2013), differ-
ent software utilizes different approaches in regard to
file manipulations depending on their needs and im-
plementation specifics that usually result in several
change records being created. For example, unpack-
ing a file from an archive will in most cases result in
three USN records being generated:

• 256 (FILE CREATE)

• 258 (DATA EXTEND FILE CREATE)

• 2147483906 (DATA EXTEND FILE CREATE CLOSE)

Various software actions (both operating system and
user applications) performing file operations result in
a continuous flow of USN records created in the jour-
nal. Thus, our assumption is that it is possible to
fingerprint specific software behavioral patterns and
classify such actions (both legitimate and malicious).

To test our assumption with different behavioral
patterns we created two datasets: the first one with
legitimate behavior only and the second one intro-
ducing some malicious activity inside the normal op-
erating system lifecycle. A fully patched Windows
7 virtual machine was set up and an origin snap-
shot was created (snapshot 1). For the ”legitimate”
dataset creation, some user activities were simulated.
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Figure 1: General flow of the proposed method.

These activities included web browsing, user docu-
ment editing, and, most importantly, software instal-
lation. On a high level, software installation involves
various file operations that might be common to ma-
licious software actions as well: files unpacked, tem-
porary files created in different locations to be later
deleted, etc. which could make the analysis harder.
After some time a snapshot was created representing
the first ”normal” dataset (snapshot 2). To introduce
malicious activity the system was reverted to the ori-
gin snapshot and infected with the WannaCry mal-
ware as a typical ransomware representative. Wan-
naCry is a ransomware crypto-worm that when trig-
gered on a target machine iterates over user files en-
crypting them and by the end of the encryption phase
displays a notification demanding ransom in order to
decrypt the files. In a worldwide attack in 2017 Wan-
naCry infected more than 200.000 machines in more
than 150 countries dealing billions of dollars in dam-
age (Trautman and Ormerod, 2018). When the system
went into the ransom-demanding state another snap-
shot was created representing the second ”infected”
dataset (snapshot 3).

The file operation sequences that represent a sin-
gle action (such as the un-archiving of a file men-
tioned above) tend to be atomic meaning that the
records representing an action will stay close to each
other in the journal. However, due to the parallel writ-
ing in the journal, the patterns relevant to several files
may be mixed with each other. Thus, to overcome this
behavior we do the initial preparation of the datasets
so that the records related to a single file are batched
together in a one-second timeframe. To demonstrate
such preparation refer to Table 1.

We extracted USN journals from snapshots 2 and
3 and after running the preparation procedure on them
as discussed above we then converted them into arrays
of USN update reasons, i.e., lists of 64-bit integers.
Thus we resulted in two datasets representing file sys-
tem activity under different circumstances: legitimate

Table 1: Raw journal data preprocessing.

Original Preprocessed

1
se

co
nd

File-1 record 1 File-1 record 1
File-2 record 1 File-1 record 2
File-1 record 2 File-1 record 3
File-2 record 2 File-2 record 1
File-1 record 3 File-2 record 2

actions (∼19.000 records) and legitimate actions with
some malicious actions mixed in (∼14.000 records).

5 PROPOSED METHODOLOGY

The general flow of the proposed method has been il-
lustrated in Fig. 1. As mentioned in Section 4, in our
case study, one data set is related to the normal behav-
ior of a user while he/she was using the system. The
other data set is related to the behavior of the system
when ransomware inflicted damage on it. As can be
seen in Fig. 1, association rule mining is applied sep-
arately on both sets of data. Therefore, at first, a data
preprocessing phase is performed on data sets to pre-
pare suitable data for association rule mining. After-
ward, in the data mining phase, the Apriori algorithm
is applied to the prepared data sets separately. The
outcome is two sets of association rules which have
been mined from any of the normal and infected data
sets.

As illustrated in Fig. 1, by reaching the associ-
ation rules, a comparison is done between the two
data sets based on the mined association rules. This
comparison is performed with the aid of the values of
Support (Definition 5) and Confidence (Definition 6)
metrics. Based on our assumption, if both data sets
are similar, the mined rules from each of them should
be similar. This similarity means that in addition to
the mined rules, the values of the Support and Confi-
dence for these rules should be the same. Therefore,
any difference in these values can show an anomaly.
The result of the comparison will be two new sets of
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association rules (shown in the green box in Fig 1),
which both indicate the anomalies in the system. One
of these two sets of anomalies contains the rules that
have occurred only in the infected data set. The other
one is the set of rules that have occurred in both data
sets, however, the values of their support and confi-
dence are different.

More details about each phase and how the mined
rules will be compared are discussed in the following
subsections.

5.1 Data Preprocessing

In this phase, data preprocessing is performed to pro-
vide suitable data for Apriori to extract TARs (Def-
inition 3) from the datasets. The Apriori algorithm
extracts frequent itemsets in the form of association
rules without considering the sequence of events dur-
ing the time. However, we are interested in rules
which illustrate the sequence of events through time.

In other words, in Apriori, it does not matter
whether an itemset is followed by another or pre-
ceded by another. It only finds those itemsets that
have occurred together (without considering their se-
quences and orders). However, in NTFS USN Jour-
nal the concept of time or more specifically the se-
quence of operations that occur in the system mat-
ters. More precisely, if event X happens at second 1
and event Y happens at second 6, then the associa-
tion rule regarding this sequence of events would be
X → 5seconds Y , which means Y happens 5 seconds
after the happening of X. The mentioned association
rule is what we are interested in extracting for this
work. Mining these kinds of rules will be helpful for
security experts to more accurately find the files or di-
rectories related to the malicious behavior in the sys-
tem.

In this regard, in preprocessing step first, the user
identifies the length of time for the rules. For instance,
if a rule such as X → 5seconds Y , is in the interest
of the users, therefore number 5 should be identified.
Second, all the events in the dataset with the identified
length (in this case 5), are clustered in the same sub-
dataset. Finally, the concept of time for each event
in the sub-data set is removed and saved for future
reference (authors do not describe technical details to
make it easier to read). Finally, this sub-dataset is fed
to the next step for mining the association rules.

5.2 Data Mining

In this phase, the Apriori algorithm (Definition 1)
(Han et al., 2012) is applied to the Preprocessed data
sets to generate association rules. According to Fig.

1, this phase takes two sets of data as the inputs, one
for the normal set of data, and the other one for the
infected set. The outputs of this phase are association
rules related to both sets. Due to the space limit, we
refer interested readers about the Apriori to the litera-
ture (Han et al., 2012).

5.2.1 Applying Temporal Filters and Labels

This phase aims to restore the time instance of events
that were removed in the Preprocessing phase, Sec-
tion 5.1. In accordance with our previous statement,
the extracted association rules are generated in two
formats, namely next and before (Definition 4). De-
tailed instructions on how time instances are set back
to the rules are provided below:

After mining association rules in the previous
phase (section 5.2), the method provides us a set of
rules in the form of P → Q. By considering P → Q,
we will have two different conditions as follows:

• next: If the value of P is equal to some events in
the data set, and the value of Q is equal to the
events that in the data set have appeared after the
events of P, this means that the extracted associ-
ation rule is next. Therefore, the mined rule is
labeled as a next TAR.

• before: If the value of P is equal to the events that
have appeared in the data set before the events of
Q, this means that the extracted association rule is
before. Therefore, the mined rule is labeled as a
before TAR.

5.3 Anomaly Detection

This phase is in charge of automatically detecting ma-
licious behavior in the NTFS USN Journal which is
typically performed by ransomware. The assumption
in the proposed method is that in the ’normal’ sce-
nario that there is no malicious behavior in the in-
fected dataset, two data sets should be similar (normal
and infected data sets). This means that if the Apriori
algorithm is applied to both data sets, the mined rules,
as well as the values of their supports (Definition 5)
and confidences (Definition 6) should be similar.

In order to find the anomalies, the method com-
pares the two sets of mined rules. In this compar-
ison, two different conditions and two different sets
of anomalies would occur. In fact, in this compari-
son, we are looking for the conditions that neglect our
assumption (i.e., similar behavior and similar mined
rules for both data sets in a normal scenario)

The first set of rules is the one that has not oc-
curred in the normal data set and occurs only in the
infected data set. Based on our assumptions, these
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rules show malicious behavior. The other set of mined
rules is one that is the same in both data sets. For
these rules, the support and confidence values of each
rule are calculated. Next, according to the following
formulas, we calculate the difference between their
supports and confidences:

DS = (Support1−Support2)×100 (3)

It should be noted that each rule that has been
mined from the normal data set or infected data set has
a support value. With the aid of the formula (3), we
calculate the support difference for each pair of rules
that has been mined from each data set and are exactly
the same (i.e., similar rules that have been mined from
both data sets, but with different support values). In
the above formula, Support1 is the calculated support
for a specific rule that has been mined from the nor-
mal data set, and Support2 is the calculated support
of that specific rule that has been mined from the in-
fected data set.

If DS > 0, it means that a malicious behavior
has occurred, and it shows that in comparison with
the normal data set, some parts of data have been re-
moved from the infected data set. On the other hand,
if DS < 0, it means that there is malicious behavior
again, however, in comparison with the normal data
set, additional records of data have been added to the
infected results file. Furthermore, the formula (4) and
according to Definition 6 shows the probability of ma-
licious behavior in a specific rule.

DC = (Con f idence1−Con f idence2)×100 (4)

In the above formula, Confidence1 is the calcu-
lated confidence for a specific rule that has been
mined from the normal data set, and Confidence2 is
related to the calculated confidence for that specific
rule that has been mined from the infected data set.
For instance, if for a mined rule like P → Q, Confi-
dence1 – Confidence2 is equal to 95, it means that in
95% of the operations that this rule shows in data sets,
we have a malicious behavior.

Table 2: Number of Mined Association Rules.

Rules Unequal Support Infected Only
#Association Rules 1 14

#Before Rules 0 1
#Next Rules 1 13

6 EXPERIMENTAL RESULTS

The experimental results of the proposed method have
been elaborated in this section. The normal data set
that we have used in this paper has 19055 records and
the infected data set has 13721 records.

In Table 2, the number of all mined rules (’#As-
sociation Rules’), as well as the number of Before
(’#Before Rules’) and Next (’#Next Rules’) rules
have been presented. It should be noted that the length
of the sequence of operations in the data set has been
set to 9 based on the expert’s decision. Thereby, for
the preprocessing phase, the number of shifts is equal
to 9. Since the detection of the attacks is signifi-
cantly important, the minimum confidence value has
been assigned to 0.80 out of 1. Note that this number
can easily be changed by the expert as the proposed
method is fully automated. For highly critical cases
this value can be set to higher; otherwise, a lower de-
gree can be set by the user to introduce more sensitiv-
ity in rule mining.

As mentioned in section 5.3 (Anomaly detection),
the method provides two sets of rules (anomalies).
One set is related to the rules that have unequal sup-
port values and their difference is calculated accord-
ing to formula 3 (DS). However, the second rule set
is the one that has occurred only in the infected data
set. In Table 2, the number of mined rules have been
demonstrated for both of these two sets, i.e., ’Unequal
Support’ and ’Infected Only’ columns. There is only
one rule in both data sets with unequal support values
mined with the Next pattern. The figure for the rules
that have not occurred in the normal data set is 14 with
1 rule mined with the Before pattern and the rest with
the Next pattern. Regarding the execution time, the
method is able to mine both categories of rules in less
than a second.

6.1 Digital Forensics Interpretation of
Rules

All 14 rules in the unified format are presented in
the table 3. Basically, the unified format represents
all of the reasons records that are put in consecu-
tive order the way they are supposed to be found
in the dataset. If we take the first rule as an ex-
ample, the original mined rule’s consequent was
2147483652 and the list of antecedents was as fol-
lows: [6 before 4, 4 before 2147484160, 1 before 4,
8 before 256, 7 before 2147483904, 3 before 256,
5 before 2147483652, 2 before 2147483904]. It
practically means that we will be looking for a record
256, followed by a record 2147483904, followed by
4, and so on until we find the exact match of the
whole sequence ending with a 2147483652. It should
be noted that all parts of the antecedent of this rule
should occur together in the data set to finally imply
the consequent.

As the first part of our validation, we ran all our
mined rules against the infected dataset and extracted
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Table 3: Association rules in unified format.

# Rule Confidence
1 256, 2147483904, 4, 2147483652, 2147484160, 256, 2147483904, 4, 2147483652 1
2 256, 2147483904, 4, 2147483652, 2147484160, 256, 2147483904, 4, 2147483652 0.831050228
3 2147483652, 2147484160, 256, 2147483904, 4, 2147483652, 2147484160, 256, 2147483904 0.965714286
4 2147483904, 4, 2147483652, 2147484160, 256, 2147483904, 4, 2147483652, 2147484160 1
5 33026, 2147516674, 4096, 256, 258, 32768, 2147516416, 8192, 2147491840 1
6 4096, 8192, 2147491840, 4096, 8192, 2147491840, 4096, 8192, 2147491840 0.886956522
7 4, 2147483652, 2147484160, 256, 2147483904, 4, 2147483652, 2147484160, 256 0.945945946
8 258, 32768, 2147516416, 8192, 2147491840, 33026, 2147516674, 4096, 256 0.843137255
9 32768, 2147516416, 8192, 2147491840, 33026, 2147516674, 4096, 256, 258 0.931818182

10 2147484160, 256, 2147483904, 4, 2147483652, 2147484160, 256, 2147483904, 4 0.982248521
11 8192, 2147491840, 4096, 8192, 2147491840, 4096, 8192, 2147491840, 4096 1
12 256, 258, 32768, 2147516416, 8192, 2147491840, 33026, 2147516674, 4096 1
13 49152, 2147532800, 8192, 2147491840, 256, 258, 33026, 2147516674, 4096 1
14 2147491840, 4096, 8192, 2147491840, 4096, 8192, 2147491840, 4096, 8192 0.982142857

a histogram of the affected file types (Table 4). The
second and third most frequent file types are WN-
CRYT and WNCRY. These file types represent the
temporary storage and the final encrypted container
generated by the WannaCry ransomware accordingly
(Team, 2017). As for the TMP files, we suppose that
those are also temporary files generated by the mal-
ware since they were created in the infected direc-
tories (as indicated by the Parent File Reference en-
try in the record) and the timestamps match the time-
frame of the attack. The rest of the files comprise less
than 9% of the total detected records that were false-
positively identified. Having this information we may
conclude that the rules correctly detect the anomalies
caused in the file system by malicious activity. To get
the accuracy of the identification, we took all of the
unique file entries that were affected by the attack and
compared them with the ones detected by the rules:
out of 235 affected files we detected 206 which makes
an 87.7% accuracy.

Table 4: Detected file types histogram.

File Type Number of Hits
tmp 1020

wncryt 710
wncry 411
png 101
txt 31
db 24

docx 18
zip 12
js 6

vbs 5
gif 3
lnk 1

If we look closer at the 14 mined rules we can
identify that some of them are just shifted versions of
others. For example, rules 1, 2, 3, 4, 7, and 10. This
behavior was expected since the contiguous repetitive
patterns in the USN Journal can be grabbed by the
algorithm from different starting points. This leaves
us with 4 groups representing the unique rules: (1,

2, 3, 4, 7, 10), (6, 11, 14), (5, 8, 9, 12), and (13).
Only one rule number 13 does not have a shifted ver-
sion of itself. We extracted individual outputs of sin-
gle rules from the identified groups. A comparison
of the outputs showed little to no difference in the
identified records. Thus we end up with only 4 dis-
tinct rules for malicious behavior detection. Another
aspect noted is the repetitiveness of the pattern in the
mined rules. For example, rule number 6 [4096, 8192,
2147491840, 4096, 8192, 2147491840, 4096, 8192,
2147491840] is a repetition of the same 3-value pat-
tern [4096, 8192, 2147491840] three times. It is a
part of future work to address both the elimination of
shifted rule versions and the shortening of repeated
patterns.

Machine learning methods can be considered a
significant alternative to the proposed method. How-
ever, there are some obstacles to applying them in
this context. It is easy for a forensic expert to cre-
ate a snapshot with a benign file system. The target
snapshot which constitutes the subject of investiga-
tion usually contains benign and malicious files which
are blended into one file system. Supervised learn-
ing models require file-level labels to provide scrutiny
about each file, which is very hard to achieve in dig-
ital forensics tasks due to the high cost of labeling.
One-class learning models, which may just learn from
the files in the benign snapshot, cannot use the tar-
get snapshot while inducing the models, limiting the
knowledge that can be obtained from both snapshots.
Unsupervised methods (e.g., clustering) that do not
use any labeled data may give some intuition to the
expert but they do not provide explicit rules. More
importantly, machine learning models do not provide
human-readable rules, which limits their applicabil-
ity in this context enormously. Even the explainable
methods such as decision trees may require additional
steps to generate rules and strict pruning strategies
should be applied to achieve comprehendible rule sets
at expense of detection loss.
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7 CONCLUSION AND FUTURE
WORK

In this work, we proposed an automated way of dis-
covering patterns in the NTFS USN change journal
by utilizing Temporal association rule mining. A data
preprocessing method is introduced which can cus-
tomize the Apriori algorithm for mining Temporal
association rules instead of mining traditional rules
where time has no meaning. The method can be
applied for both real-time and post-mortem pattern
recognition. We assume that normal and malicious
software leave distinct fingerprints in the file system
that are recorded by the change journal. To test this
theory we validate the method by trying to detect the
patterns of ransomware presence in the system. This
is achieved by practically infecting an operating sys-
tem with malware and then running the proposed sys-
tem against the extracted USN journal. As a result of
such validation, we identified patterns specific to mal-
ware activity. More specifically, the files which are in-
fected or generated by malicious activity are found by
the association rules mined from normal and infected
data sets.

As part of future work, we envision a system that
will utilize the proposed method in real-time to mon-
itor the activity of a live system in order to detect
patterns at the moment close to emerging. Another
prominent application would be the automatic gen-
eration of a forensic timeline that shows the system
behavior and possible attack timeframes and volume.
From the perspective of technical improvement, we
are planning to address the shifted rules handling and
merging in order to reduce the number of redundant
patterns. The same applies to the repetitive patterns
inside the rules: we need to shorten the identified pat-
tern if it is just a repeated sub-pattern present in it.
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Abstract. The global COVID-19 pandemic has become a phenomenon
that has severely disrupted human life. It is widely recognized that tak-
ing faster, evidence-based measurements based on disease parameters is
crucial for monitoring and preventing the further spread of COVID-19.
One of the essential tasks in data mining is mining rules because rules
provide concise statements of potentially important information that end
users can easily understand. Therefore, attaining significant information
in rules is the key to containing COVID-19 outbreaks. Our objective is to
discover hidden but critical knowledge in the form of rules based on the
risk factor dataset of COVID-19 patients. In this paper, we use associa-
tion rule mining to extract information from rules in COVID-19 patients’
risk factor data that could be used to initiate prevention strategies. We
discovered the rules of dead and recovered or hospitalized patients to
understand and compare their characteristics. This approach can assist
clinicians in effectively managing and treating diseases by providing valu-
able insight.

Keywords: Knowledge discovery, data mining, association rule mining,
rule generation, rule discovery, logistic regression

1 Introduction

Modern society has become increasingly reliant on data mining, a method con-
sisting of various methodologies such as classification, grouping, regression, and
correlation [1]. Data mining exposes previously unknown independent item sets
and their intricate relationships within large databases through systematic pro-
cesses. Among the myriad applications of data mining, association rules play a
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pivotal role in real-world scenarios spanning web data analysis, consumer behav-
ior researchjhb, cross-marketing, catalog design, and medical record analysis [2].
Moreover, in fields like biological sciences, Association Rule Mining (ARM) con-
tributes significantly to accurate classification prediction and illness detection.

ARM, a subset of data mining, involves the exploration of patterns and cor-
relations within datasets using various algorithms such as Apriori, FP-growth,
and Eclat [3,4,5]. Through the application of support and confidence parameters,
ARM uncovers associations between seemingly unrelated datasets, facilitating
meaningful insights. The support parameter denotes the frequency of relation-
ships within the database, while the confidence parameter indicates the accuracy
of those relationships [6,7]. The primary objective of association rule mining is
the identification of distinctive frequent itemsets, achieved through sequential
steps including frequent itemset mining and rule generation. Rules failing to
meet predefined confidence thresholds are pruned, refining the extracted associ-
ations.

This paper contributes significantly to the field by employing association rule
mining algorithms to discern frequent risk factors among Covid-19 patients. This
includes those who have died, been hospitalized, or recovered. By analyzing var-
ious factors such as travel history, symptoms, race differences, chronic diseases,
and age groups, the study aims to elucidate the statistical significance of these
variables in the context of Covid-19 outcomes. This endeavor represents a novel
application of ARM techniques in public health, offering valuable insights into
pandemic mitigation strategies and healthcare management.

A support and confidence parameter is used to discover links between un-
related datasets, while an ARM is created by looking for recurring patterns in
the data. A support value reflects the frequency of relationships occurring in a
database, whereas a confidence value reflects the likelihood that these relation-
ships are accurate [6,7]. A dataset is generated with all itemsets that meet the
minimum support requirements. In the second step, all frequent itemsets are
used to develop all potential rules from the dataset. After that, rules that do not
meet specified minimum confidence levels are removed. Identifying distinctive
frequent itemsets is the main component of association rule mining. At present,
numerous ARM algorithms are in use, including Apriori [3], FP-growth [4], and
Eclat [5].

Contribution The research addresses numerous contributions, as summa-
rized below:

– The statistical significance of travel history, symptoms, race differences,
chronic diseases, and age group were determined in Covid-19 patients.

– To the best of our knowledge, this is the first study to use association rule
mining algorithms to identify the frequent risk factors for Covid-19 patients,
including those who have died, been hospitalized, or who have recovered.

Healthcare providers can obtain useful information by identifying the prac-
tical factors that influence patients whose Covid-19 tests are positive. This will
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enable them to identify and treat patients with a greater risk of Covid-19 when
an outbreak of infectious diseases or other mutation types of Covid-19 occurs. It
is possible to detect patterns in a dataset using simple association rules, which
is useful for analyzing clinical data. Furthermore, it allows professionals to make
well-informed diagnoses, gather significant data, and construct critical knowl-
edge bases within a short time. This study aimed to examine symptom patterns
in Covid-19 patients and break them down based on age, race, chronic illness,
symptoms, and travel history.

Following is an outline of the remainder of the paper. In Sect. 2, we re-
view various related works in the field. In Sect. 3, we describe the details of the
methodology, dataset, and pre-processing. In Sect.4, we demonstrate the exper-
imental results. In Sect. 5, we discuss the study findings. Finally, in Sect. 6, we
conclude the paper and present possible directions for future works.

2 Related Work

Biomedical research increasingly relies on machine learning approaches for pre-
diction and knowledge discovery. Medical applications of machine learning in-
clude genomic analysis, disease-gene analysis, mortality prediction, personalized
medicine, drug detection, adverse drug event prediction, patient similarity, and
explainable approaches to artificial intelligence.

Agrawal et al. first proposed ARM [8]. Accordingly, this technique was ini-
tially developed to analyze market basket data to identify all the rules for pre-
dicting occurrences of specific products based on the occurrence of other prod-
ucts within the same ”set of transactions.” The ARM algorithm utilizes brute
force as its basic concept. The method involves listing all feasible rules and then
pruning those that do not satisfy the condition. The large number of possible
combinations of this strategy makes it computationally prohibitive. R. Agrawal
[8] devised the Apriori approach to decrease the number of candidates. The
Apriori approach has two significant flaws. Initially, it generates many candi-
date itemsets from an extensive data set while also creating frequent itemsets.
Additionally, several database scans are required, increasing computing costs.
To overcome these limitations, Han et al. [9] proposed Frequent Pattern Growth
(FP-growth). With the FP-growth method, a tree representation of the dataset
is created, and the itemets of the dataset are associated with each other. There
are several disadvantages associated with the FP-growth method. The process
of constructing an FP tree is more complex than that of constructing an Apriori
tree. If the database is too large, the algorithm may not be able to fit into shared
memory. In both Apriori and FP-growth, horizontal data formats are used. In
[10], Zaki et al. presented the equivalence class clustering and bottom-up lattice
transversal technique for ARM, in which horizontal data could be converted into
vertical data using Eclat. The advantage of Eclat over Apriori is that it requires
less database scanning. Based on a cross-country Covid-19 dataset, Shahin et al.
[11] assessed the performance of Apriori and FP-growth through different Spark
components and seeks to understand how they differ. This strategy has the sig-
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nificant disadvantage of consuming a large amount of memory when there are
many transactions in the dataset. [12] describes an example of knowledge mining
using association rules to identify indicator diseases associated with psychiatric
disorders. ARM reliability can be confirmed by the fact that the association
rules found in the study are consistent with clinical guidelines in psychiatry.
This study has demonstrated that association rule mining can be used to ex-
tract comorbidities and identify indicator diseases from health insurance billing
data.

ARM is becoming increasingly recognized as an active research area among
data mining researchers [13,14,15,16,17,18]. Recently, different incremental meth-
ods have been presented for mining association rules to extract identified pat-
terns [15,19]. The use of ARM in healthcare has been widespread for many years.
Zhou et al. [20] systematically analyzed coupled hospital infection (HI) risks us-
ing a multimethod fusion model combining association rule mining and complex
networks. The Apriori algorithm generates association rules based on coupled re-
lations between risk factors. The risk factors associated with HI are constructed
using existing rules.

Many hidden correlations exist between qualities (symptoms) and diseases.
We can better understand the disease and its biomarkers by discovering these
connections. Certain risk factors for heart disease have been identified in par-
ticular research [21]. The prevalence of early childhood caries was determined
using the ARM method by Vladimir et al. [22]. To identify distinct risk factors
for cardiovascular disease, hepatitis, and breast cancer, Borah and Nath [23]
proposed a dynamic rare association rule mining approach. According to [24],
ARM could help curb the obesity epidemic primarily caused by a lack of phys-
ical activity. To discover adverse reactions induced by drug-drug interactions,
Cai et al. [25] employed ARM. Nirmala and Ramasamy [26] utilized ARM with
a keyword-based clustering approach to predict disease. Kamalesh et al. used
ARM to predict diabetes mellitus risk [27]. Pokharel et al. [27] employed se-
quential pattern mining with a gap limitation to uncover patient commonalities,
including death prediction and sepsis identification. The study by Nahar et al.
[28] identified factors contributing to heart disease for male and female cohorts
in symptom mining utilizing ARM. Borah et al. [23] used ARM to find symp-
toms and risk variables for three diseases (cardiovascular disease, hepatitis, and
breast cancer). Lau et al. [29] developed constraint-based ARM across subgroups
to aid doctors in finding valuable patterns in dyspepsia patients.

This paper examines significant rules for Covid-19 patients using the Covid-
19 patients’ database [30]. When physicians educate patients about risk factors
for Covid-19, rules can assist them in making informed decisions.

3 Methodology

3.1 Description of the WHO Covid Dataset

After extracting anonymized Covid-19 patient data from theWHO (World Health
Organization) Covid-19 database from December 2019 to January 2020 [30], we
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Table 1. Distribution according to travel history.

Travel History Count

Yes 1,483,209
No 397,845

exported and cleaned the data with the data management software platform
R, version 3.4. More information about the data for this study is available on
github5. The study’s primary purpose was symptom mining; therefore, we cre-
ated a dataset for patients with symptom information and excluded all missing
values. As there are relationships between the attributes within the dataset, we
extracted only 5 of the 31 attributes or columns for our analysis. An illustra-
tion of the selected attributes can be found in table 6. The distribution of all
features is shown in table 1 to table 5. Figure 2 presented the data extraction
process. Among 1,881,054 patient records, 101,800 died, while 1,779,254 were
recovered or hospitalized. Bar plots of the age group, race difference, symptoms,
and chronic disease are shown in figure 1.

It is worth mentioning that to simplify the analysis, the authors classified
the patients’ ages into five main age groups. These groups are summarized in
Table 5. Furthermore, WHO1 has classified symptoms into three main groups:
most common, less common, and serious. A fever, cough, tiredness, and loss of
taste or smell are some of the most common symptoms. Less common symptoms
include a sore throat, a headache, aches and pains, diarrhea, a rash on the skin,
discoloration of fingers or toes, redness or irritation of the eyes, and finally, the
most serious symptoms include difficulty breathing or shortness of breath, loss
of speech or mobility, confusion, or chest pain. The authors followed the WHO
symptom classification in this study as well.

Table 2. Distribution of symptoms.

Symptoms Count

Most common symptoms 898,754
Less common symptoms 419,076

Serious symptoms 563,224

3.2 Conversion of the Data into a Transactions Database

The dataset has been converted into transactions for association and class rule
mining. For instance, for a feature such as chronic diseases, there were a total
of six values, namely cancer, diabetes, hypertension, stroke, heart disease, and
pulmonary conditions; for that, six columns have been created accordingly with

5 https://github.com/beoutbreakprepared/nCoV2019
1 https://www.who.int/health-topics/coronavirus#tab=tab_3
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Fig. 1. Relative frequency of symptom, age, chronic disease and race in COVID-19
patients

Fig. 2. Data extraction and management process
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Table 3. Distribution of race differences.

Race Difference Count

White 282,158
Black 47,013

Hispanic 658,368
Asian 47,035

Table 4. Distribution according to chronic disease.

Chronic Disease Count

Yes 901,973
No 979,081

the values yes or no. For example, if an individual suffers from heart disease,
then Yes or 1 would be in the corresponding column; if not, the value would be
No or 0. In this way, a total of 46 columns have been created. So, in total, there
were 46 items or columns.

3.3 Data Analysis Approach

As a first stage, we used the logit model on the Covid-19 dataset to identify
relevant factors that may affect the likelihood of Covid-19 disease. After that,
we applied association rule mining based on these factors to find significant rules
for died and recovered or hospitalized patients.

Logit Model In the current study, the dependent attribute of recovered or
hospitalized patients’ condition (No or 0) or died (Yes or 1) is dichotomous and
thus represented as a binary variable. The binary logit model is extensively used
in clinical investigations where the response variable is binary [31]. The model
takes the natural logarithm of the likelihood ratio meaning the dependent vari-
able becomes 1 (breast cancer) or 0 (no breast cancer). Let p1 and p0 represent
the probabilities of the response to variable categories recovered or hospitalized
patients and dead patients, respectively. The binary logit model is given as:

Y = log

(
P0

P1

)
= α+ βiXi (1)

Table 5. Distribution of age groups.

Age group Count

4-12(Child) 94,052
13-19(Teen) 319,779

20-34(Young adult) 451,452
35-64(Middle-aged) 423,642

65+(Senior) 592,129
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Table 6. Selected attributes.

Attribute Description

Age group Age group of the reported case.
Symptoms List of reported symptoms in the case description.
Race List of the patients’ race.
Travel history binary 0 if the patient has no travel history,

1 if the patient has a travel history.
Chronic disease bi-
nary

0 if the patient hasn’t a chronic disease,

1 if the patient has a chronic disease.

In Equation (1), the maximum likelihood estimation technique is used to
estimate the parameters, where Y is the binary response or class variable. In
this equation, α is the intercept to be calculated, βi is the estimated vector of
parameters, and Xi is the vector of independent variables. While keeping all the
remaining factors constant, the unit increase in the independent variables Xi

will increase the likelihood ratio by exp(βi). This states the relative magnitude
by which the response outcome (patient’s condition) increases or decreases while
considering a one-unit increase in the explanatory variable. The probability of
the patient being dead (P1) is given by:

P1 =

(
exp(α+ βiXi)

(1 + exp(α+ βiXi)

)
(2)

Similarly, the probability of hospitalization of recovered patients (P0) is given
by:

P0 =

(
1

(1 + exp(α+ βiXi)

)
(3)

We used the logit model to identify and select relevant factors that may affect
the likelihood of Covid-19 severity.

Association Rule Mining Association Rule Mining (ARM) is one of the
key techniques to discover and extract useful information from a large dataset.
Mining association rules [3] can formally be defined as Let I = i1, i2, i3, ..., in,
be a set of n binary attributes called items, and Let, D = t1, t2, t3, ..., tm be
a set of transactions called the database. Each transaction in D has a unique
transaction ID and contains a subset of items in I. A rule is defined as an
implication of form X → Y where X,Y ⊆ I. The sets of items or itemset X
and Y are called antecedent (left-hand-side or LHS) and consequent (right-hand-
side or RHS) of the rule, respectively. Often rules are restricted to only a single
item in the consequent. Association rules are rules that surpass user-specified
minimum support and minimum confidence thresholds. The support supp(X) of
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an itemset X is defined as the proportion of transactions in the dataset, which
contains the item set and confidence of a rule as defined as:

Definition 1. The Support of an itemset X for a set of transactions T , denoted
by Supp(X), is the ratio of transactions that contain all items of X (number of
transactions that satisfy X) [32]:

Supp(X) =
|{t ∈ T |X ⊆ t}|

|T |

Definition 2. The confidence of an association rule X ⇒ Y concerning a set
of transaction T , denoted by Conf(X ⇒ Y ) is the percentage of transactions
that contains X which also includes Y . Technically, the confidence of an AR is
an estimation of the conditional probability of Y over X:

Conf(X ⇒ Y ) =
Supp(X ∪ Y )

Supp(X)
.

Definition 3. The lift of an association rule X ⇒ Y , denoted by Lift(X ⇒ Y ),
is used to measure misleading rules that satisfy minimum support and minimum
confidence threshold. The Lift measure is also used to calculate the deviation
between an antecedent X and a consequent Y , which is the ratio of the joint
probability of X and Y divided by the product of their marginal probabilities.

Lift(X ⇒ Y ) =
Supp(X ∪ Y )

Supp(X)× Supp(Y )

In ARM, when the number of association rules is too large to be presented to
a data mining expert or even treated by a computer, measures of interestingness
can filter the interesting association rules. After support, confidence, and lift,
more than fifty different measures of interestingness are in the literature [33,34].
These measures of interestingness are discussed in detail in the literature [35,36].
Initially, ARM was limited to large transactional datasets. Still, later, Han et
al., Lu et al., Imielinski et al., and Nguyen et al. [37,38,39,40] presented different
views on multi-level and multi-dimensional ARM. Over the years, different ARM
frameworks [41] and the use of ARM in varied application scenarios [42,43] have
also been discussed in the state-of the-art [6].

It can be interpreted as the deviation of the support of the whole rule from
the support expected under independence, given the support of both sides of
the rule. Greater lift values (≥ 1) indicate stronger associations. Measures like
support, confidence, and lift are generally called interest measures because they
help focus on potentially more interesting rules. For example, consider a rule
such as {milk, sugar} ⇒ {bread} with support of 0.1, confidence of 0.9, and lift
of 2. Now, we know that 10% of all transactions contain all three items together;
thus, the estimated conditional probability of seeing bread in a transaction un-
der the condition that the transaction also contains milk and sugar is 0.9; and
we see the items together in transactions at double the rate we would expect un-
der independence between the item sets milk, sugar, and bread [44]. Rules can
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be generated from datasets with specified classes as their consequences under
class association rule mining. These rules are {A1, A2, A3, ..., An ⇒ class}. The
objective is to use specific search techniques to find all rules with the specified
classes as their consequences that satisfy support and confidence [45,46].

Appropriate support and confidence values are the key to generating rules
since keeping a very low support value will generate extensive rules, and if the
support value is too high, we may lose rare but essential rules. In this paper, we
generated rules from the dataset having specified classes such as rules or charac-
teristics of patients who have been hospitalized or recovered. We also generated
or mined rules for dead patients. Our goal is to find rules or characteristics rules
for these two groups.

The steps for the implementation were the following:

– Implement the required libraries
– Exploring the data
– Transformation of data to lists
– Constructing the model
– Visualize the results

4 Experiments and Results

Association rule mining has been applied to the dataset. By selecting the op-
timum support and confidence value, we mined strong rules for both patient
groups(recovered and died). This section discusses the logit model and associa-
tion rule mining results. Moreover, interprets a few strong rules for both groups.

4.1 Logit Model Estimations

The binary logit regression model was used to estimate the coefficients of sig-
nificant explanatory variables in the final model. The software package SAS was
used for the model development. For the model, all attributes were used as in-
put for the likelihood of death and recovery or hospitalization. Table 7 shows
the significant predictor variables at the corresponding significance levels in the
binary logit model, which can contribute to our research. Positive coefficients
show that the probability of deterioration of the condition of the patients will
increase by a certain amount for the specific predictor variables. Table7, shows
that chronic disease, age group, race, and symptoms have a positive relationship
with the condition of the patients. However, travel history and race type have a
negative relationship.

4.2 Generating Strong Rules

We aim to extract characteristics of Covid-19 patients who have died or been
hospitalized and recovered. We generated rules using the association rule tech-
nique with the specified support and confidence. We defined the consequent of a
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Table 7. Predictor Variables With Corresponding P Values.

Parameter DF EstimateStd. Wald Chi- Pr
Error Square >Chisq

Intercept 1 -8.1897 0.0445 26578 <.0001
Symptoms 1 0.336 0.00218 8560 <.0001
Age group 1 0.1076 0.0119 91 <.0001
Race 1 -1.9671 0.0382 6851 <.0001
Travel history binary 1 -0.0175 0.00461 215 <.0001
Chronic disease bi-
nary

1 0.0148 0.00461 69 <.0001

rule to get our target rules that represent the characteristics of the patients who
have died (Died = Yes) or who have been hospitalized or recovered (Died = No).
Support and confidence play an essential role in rule generation. Initially, we set
the minimum support and confidence values to 30% and 80%, respectively. Also,
we set the minimum length to 3, which means that the generated rules should
have at least three items, including the consequent. With these specified param-
eters, the algorithm generated 48 rules, and after pruning redundant rules, we
got 27. From these 25 rules, ten rules whose lift values are greater than or equal
to one are shown in Table 8, sorted by higher lift value with corresponding sup-
port and confidence. The software R was used for the experiments. It is worth
mentioning that we did not obtain any rules for patients who have died for the
specified support and confidence. This is due to the given values of support and
confidence and also a tiny number of instances in which Covid-19 patients have
died compared to those recovered or hospitalized (the ratio is about 1:17). To
obtain the rules of dead patients after several experiments, we assigned the value
of support to 10% but a high confidence value of 90% and obtained 59 rules.

Here, we set the consequent or class value to ”yes” (Died = Yes) so we can
only get the rules for dead Covid-19 patients. From these 59 rules, the top seven
rules sorted by lift are shown in Table 9.

4.3 Interpretation of the Generated Strong Rules

We can see significant differences if we consider the rules of both groups of pa-
tients, dead and hospitalized or recovered. For died and recovered or hospitalized
individuals, its observed confidence, which indicates how often the rule is true
in the dataset, is very high (close to 100%). Regarding support, which demon-
strates how frequently the item set or factors appear in the dataset, it is high
(more than 30%) for Covid-19 patients. However, for recovered and hospitalized
patients, the support value is very low (about 0.003%). For both groups, we
can see the differences in the lift value that measures the degree of dependence
between the antecedent and the consequent value. For recovered or hospitalized
patients, the lift value is just above 1.0, which means the relationship between
factors of these rules (antecedent part) and consequent are very low. On the
other hand, for the dead Covid-19 patients, the lift value is very high (more
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Table 8. Rules generated using the association rule technique with minimum support
and confidence values 30% and 80% respectively

# Antecedents Consequents Supp Conf Lift

1 {Race: White, Age Group: Teen,
Symptom: Most Common}

{Condition of the Patient:
Recovered or Hospitalized}

59 99 1.09

2 {Travel History: No, Race: His-
panic, Age Group: Senior, Symp-
tom: Most Common}

{Condition of the Patient:
Recovered or Hospitalized}

65 99 1.09

3 {Race: White, Age Group: Teen,
Chronic Disease: No, Age Group:
Middle-Aged, Travel History: Yes}

{Condition of the Patient:
Recovered or Hospitalized}

54 99 1.08

4 {Race: Asian, Symptom: Less Com-
mon, Travel History: No, Age
Group: Child}

{Condition of the Patient:
Recovered or Hospitalize}

58 99 1.08

5 {Race: Asian, Travel History: No,
Age Group: Middle-Aged, Chronic
Disease: Yes}

{Condition of the Patient:
Recovered or Hospitalized}

58 99 1.08

6 {Race: Asian, Symptom: Most
Common, Age Group: Middle-
Aged, Chronic disease: No}

{Condition of the Patient:
Recovered or Hospitalized}

57 99 1.08

7 {Race: Black, Symptom: Most
Common, Age Group: Teen,
Chronic Disease: Yes}

{Condition of the Patient:
Recovered or Hospitalized}

45 99 1.08

8 {Race: White, Symptom: Less
Common, Travel History: No, Age
Group: Senior, Chronic Disease:
No}

{Condition of the Patient:
Recovered or Hospitalized}

31 94 1.04

9 {Symptom: Serious, Travel His-
tory: No, Age Group: Young adult,
Chronic Disease: No, Race: Black}

{Condition of the Patient:
Recovered or Hospitalized}

34 94 1.04

10 {Travel History: Yes, Age Group:
Middle-Aged, Chronic Disease: No}

{Condition of the Patient:
Recovered or Hospitalized}

63 94 1.04
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Table 9. Generated rules using association rule technique with minimum support and
confidence of 10% and 90%, respectively and with fixed consequences for dead Covid-19
patients.

# Antecedents Consequents Supp Conf Lift

1 {Symptom: Serious, Age Group: Se-
nior, Chronic Disease: Yes, Race:
Asian}

{Condition of the Patient:
Died}

0.003 1.0 12.2

2 {Symptom: Serious, Age Group: Se-
nior, Chronic Disease: Yes, Race:
Hispanic}

{Condition of the Patient:
Died}

0.003 1.0 12.2

3 {Symptom: Serious, Age Group: Se-
nior, Chronic Disease: Yes, Race:
Asian}

{Condition of the Patient:
Died}

0.003 0.9 12.2

4 {Symptom: Serious, Age Group:
Middle-Aged, Chronic Disease: No,
Race=White}

{Condition of the Patient:
Died}

0.003 0.9 12.2

5 {Symptom: Serious, Age Group:
Young Adult, Chronic Disease: Yes,
Race: Hispanic}

{Condition of the Patient:
Died}

0.002 0.89 12.1

6 {Symptom: Serious, Age Group:
Middle-Aged, Chronic Disease: No,
Race: Asian}

{Condition of the Patient:
Died}

0.002 0.89 11.8

7 {Symptom: Most Common, Age
Group: Senior, Chronic Disease:
Yes, Race: Hispanic, Travel His-
tory: Yes}

{Condition of the Patient:
Died}

0.002 0.88 11.8

8 {Symptom: Most Common, Age
Group: Senior, Chronic Disease:
Yes, Race: Hispanic, Travel His-
tory: Yes}

{Condition of the Patient:
Died}

0.002 0.88 11.8

9 {Symptom: Most Common, Age
Group: Senior, Chronic Disease:
Yes, Race: Hispanic, Travel His-
tory: Yes}

{Condition of the Patient:
Died}

0.002 0.88 11.7

10 {Symptom: Most Common, Age
Group: Senior, Chronic Disease:
Yes, Race: Hispanic, Travel His-
tory: Yes}

{Condition of the Patient:
Died}

0.002 0.88 11.5
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than 12.0), indicating a more significant association between the antecedent and
the consequent factors.

5 Discussion

One of the most challenging aspects of public health is predicting the occurrence
of contagious diseases, as these predictions can significantly influence the way
people live and the level of health care they receive. Using a reliable prediction,
individuals and clinicians will be able to make informed decisions, and clinicians
will be able to select the most effective treatment and prevention strategies for
their patients based on the most accurate and reliable information. Despite re-
cent research investigating various data mining techniques to assist clinicians in
diagnosing patients with Covid-19, an accurate prediction model for this dis-
ease remains an elusive goal. We present an investigation of association rules
for Covid-19 patients using data mining techniques. By utilizing clinical risk
factors in the target population, association rules can be developed to predict
severe cases of Covid-19. Nevertheless, any prediction should be combined with
clinical judgment and one’s assessment of the patient’s situation. It is necessary
to address several shortcomings in this paper. Although we used a large set of
Covid-19 data, we had no control over the data quality, regardless of how robust
the dataset was. We also have a limited number of features in our dataset. The
support value for Covid-19 patients is low; however, we have established a high
confidence value to demonstrate how predictive the rules are.

6 Conclusion

Association rule mining has been used to extract valuable rules from the Covid-19
dataset of risk factors. Using the logit model, we tested the statistical significance
of all predictors before applying association rule mining. We analyzed data from
dead and recovered patients and hospitalized patients with specific support and
confidence. Based on the experimental outcomes, both groups of experiments
produced the strongest confidence levels for the generated rules. The Covid-19
dataset contains fewer cases of patients dying, compared with a more significant
number of patients recovering or hospitalized, which forces us to set the support
level at a low level. As part of our analysis, we also extracted strong rules from
a large set of generated rules and interpreted those rules accordingly. This re-
search aims to improve risk prediction for individuals who may be exposed to
infectious diseases in the future. We intend to expand this research by applying
the concept of association rule mining to dynamic data sets in future work. Sev-
eral updates are made to the Covid-19 web data statistics regularly. Our method
for extracting the significant Covid-19 symptoms in the current scenario relies
on static data sets; therefore, it is not applicable in a dynamic environment.
As a result, the database patterns must be extracted using dynamic algorithms.
The use of dynamic rule mining algorithms has been reported in the literature
[47], but we aim to extend the same approach to Covid-19 data sets by applying
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an association rule mining algorithm. However, it is essential to note that the
main challenge associated with Covid-19 web data is that they are noisy. Hence,
investigating the quality of the results produced in future studies is worthwhile.
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1. Introduction

Over the past decades, traffic safety problems have been increased continuously due to the rapid growth of traffic
volume, resulting in over a million road traffic fatalities, up to 50 million injuries, and costs of trillions of dollars.
Moreover, according to the WHO [1], 90 percent of these fatal accidents occur in low and middle-income countries.
Damages can be financial or personal, which in some cases are irreparable.
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The research conducted on the cost of traffic accidents in a middle-income country, Iran, by Ayati [2], estimates
the average cost of traffic accidents and the related factors. He calculated motor vehicle accident costs, including
fines, medical expenses, administrative costs, vehicle damage, and other items. The cost for all these items regarding
the traffic accidents in Iran (urban and suburban) in 2001 was about 40 billion dollars, which is more than three
percent of gross domestic product (GDP) in the same year [2]. A significant number of studies have been analyzed
the traffic accidents data in countries with different income categories and have investigated the effect of various
factors on accidents. Despite all progress in analyzing such data, there remain several challenges in estimating the
number of fatal/injury accidents, including traffic parameters, geometrical design, and the features of the controlling
traffic system. Reducing accidents in crossroads can only be done by identifying the factors contributing to accidents,
carefully designing crossroads, and comprehensive traffic safety laws. Moreover, some other factors such as enforcing
the law, educating drivers and pedestrians, and encouraging them to follow the rules can reduce accidents at crossroads.

The nature of accident data is heterogeneous, making it difficult to analyze. A problem with heterogeneous data
is that some relationships between features are hidden. For more appropriate analysis and more accurate results, it is
necessary to eliminate this anomaly. Matthew and Tarku [3] have divided the data into different groups (such as road
conditions and accident cause) and examined each group separately. The main problem with this type of classification
is the unequal distribution of features in each group. For example, some subgroups will have more samples, and some
will have fewer samples.

Although several studies have been conducted on the analysis of crossroad accident data [4], their focus was
mainly on the relationship between parameters. Thus, it is necessary to analyze the characteristics and contributory
factors which can lead to accident casualties. Hence, special attention should be paid to the associated factors that
simultaneously impact the crossroad accident risk. This study employs the association rule approach to examine a
crossroad accident dataset’s characteristics and contributory factors. The contributions of this study are as follows.

• First, we extract numerous intriguing rules by mining the association rules to study the hidden correlations
among the crossroad accident dataset’s fundamental characteristics and contributory elements. In addition, we
look at the interactions between these variables to better comprehend the crossroad accident dataset’s overall
trends.

• Second, we can comprehend these connection rules using the data visualization technique, providing helpful
information for prioritizing countermeasures in minimizing the crossroad accident dataset risk.

The rest of this paper is organized as follows. Background and related work in Sect. 2, followed by our methodology
in Sect. 3. The experimental results from implementation are presented in Sect. 4 and finally Sect. 5 concludes the
paper.

2. Related Work

Up to now, numerous researches have been developed to analyze accident risk parameters. The majority of the
studies applied parametric models. For example, Chang and Wang [5] proposed a non-parametric tree-based model to
evaluate the influenced risk factors to injury severity in traffic accidents. They analyzed the Taipei area traffic dataset
and showed that pedestrians, motorcycles, and bicycle riders are the most vulnerable groups on the road. However,
note that the non-parametric methods may suffer from an overfitting problem. More importantly, such methods also
require a large amount of data for the modeling analysis, especially when there are many explanatory variables. Valent
et al. [6] have studied the effects of restraint devices such as seatbelts or helmets on the injury severity levels. The
findings indicated that using restraint devices mainly reduces the injury severity in traffic accidents. Zhang et al. [7]
attempted to identify groups of drivers with a greater risk of being injured or killed in traffic accidents. The results
showed that elderly drivers were the most vulnerable in traffic accidents.

Other researchers employed advanced statistical and artificial intelligence methods to investigate different accident
datasets. For instance, Xu et al. [8] applied geographically weighted regression to link crash frequency at traffic
analysis zone (TAZ) with jobs-housing ratio and other contributing factors. Prato et al. [9] used Kohonen neural
networks to a database of fatal pedestrian accidents.
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The findings revealed that most fatal run-off-road ROR collisions are caused by complex interactions between
humans, roads, and cars. When creating countermeasures for minimizing fatal ROR crash frequency, such interacting
consequences should be considered.

The association rule approach is one of the most fundamental and well-known data mining techniques. It can
deal with datasets comprising several variables and explore their relationships if proper support and confidence are
provided. Compared with traditional parametric approaches, association rule mining does not require any assumptions
or functional forms to be specified. Association rules have the advantage over non-parametric methods in that they
can also be used for a few observations [10]. Geurts et al. [11] used standard item sets to identify accident patterns.
Montella et al. [12] explored the correlation between the contributing factors of different types of collisions that occur
at urban roundabouts.

3. Methodology

3.1. Dataset Description

The crossroad accident data used in this experiment were taken from [4]. This collected dataset comprised a record
of 576 vehicles involved in an accident in 2014 and was collected from the accident database in Isfahan, Iran. Each
record extracted from the database includes the following information: (i) accident data, (ii) external environment, (iii)
traffic characteristics, and (iv) control status. The accident severity was categorized into two levels: serious and non-
serious accidents. Serious accidents are the resulting death or serious injuries that can last for a long time(i.e., coma,
paralyzation). On the other hand, non-serious accidents mainly caused financial loss, not life-threatening injuries.
Moreover, peak refers to when traffic reaches its highest level in the morning or afternoon; 7:30-9 AM and 12-13:30
PM have been considered as the peak of traffic. The details of the dataset are provided in Table 1. This table also
presents the variable’s proportions for different severity levels. For instance, the proportion of non-serious accidents
was much higher than the corresponding proportion for serious accidents. In addition, it can be seen that serious
accidents are a little more likely to occur at night, whereas non-serious accidents are more likely to occur during the
day. Because the effects of influencing factors may vary with different accident severity levels, there is a significant
need to investigate the association rules for non-serious and serious accidents separately.

3.2. Association Rule Mining

Association rule mining is a well-known technique for exploring relationships among variables in large databases
[13]. The main objective of association rule mining is to examine groups of items that frequently occur together in
the given dataset. Compared with the classical parametric and non-parametric methods, the association rule technique
has the advantage of flexible application because no specified function and no dependent variables are needed. Based
on the obtained association rules, countermeasures can be taken to break the associations and decrease the likelihood
of serious accidents for useful applications. For instance, one association rule for serious accidents is the following:
{Using seat belt=Not in use, Lighting=Night, Pedestrian=Yes} → {Accident severity=Fatal}. This rule indicates that
serious accidents are associated with the circumstances in seat belts and lighting. Hence, one primary focus should be
on avoiding accidents at night and the drivers who were not wearing seat belts.

3.3. Definition

Association rule mining intends to find out the strong rules by using diverse measurements [14]. Three parame-
ters measure the number of rules to be generated: Support, Confidence and Lift. Suppose X, Y are the independent
attributes; therefore, these three parameters for Rule X→ Y can be calculated as defined below.

• Support The value of support indicates the proportion of an accident occurrence by finding several accident
cases containing a particular accident type divided by the total number of accidents, which can be determined
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Table 1: Descriptive statistics of crossroad dataset.

Item Related factor Description Proportion
Total Non-serious Serious

Accident data Gender of driver Female 191 83 108
Male 385 289 96

Age of driver 15 ≤ age ≤ 19 31 28 3
19 ≤ age ≤ 40 396 298 98
41 ≤ age ≤ 60 101 22 79
61 ≤ age ≤ 80 48 31 17

License status Yes (valid) 467 369 98
Expired 18 11 7
No (no license) 90 28 62

Using a seat belt In use 523 386 137
Not in use 53 12 41

Collision type Pedestrian involvement 91 87 4
Side swipe 144 69 74
Rear-end 23 16 7
Head-on 31 25 6
Head to side 181 121 60
Stationary object 106 99 7

Accident severity Injury 185 102 83
Fatal 56 - 56
Financial 335 201 134

Pedestrian involved Yes 151 95 56
No 425 239 186

External Lighting Night 85 23 62
environment Day 491 323 168

Time Off peak 80 69 11
Morning peak 195 102 93
Evening peak 301 191 110

Season Spring 136 101 35
Summer 153 89 64
Fall 99 83 16
Winter 188 161 27

Road surface conditions Dry 268 215 53
Slippery (wet, snow) 308 215 93

Traffic Number of lanes One-lane 96 29 67
characteristics Two-lane 480 350 130

Angle between branches obtuse 207 195 12
of crossroad quadrant 369 311 58

Control Traffic light Pre-scheduled 496 268 228
status Intelligent 80 43 37

Traffic Yes 75 36 39
enforcement camera No 501 192 309

as follows:

Supp(X → Y) =
P(X ∩ Y)

N
(1)
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• Confidence The value of confidence is the proportion of events A and B together to event A alone. The higher
values of confidence indicate the more likelihood of happening B with the occurrence of A.

Conf(X → Y) =
P(X ∪ Y)

P(X)
(2)

Furthermore, S upp(X∪Y) ⩾ σ, and Con f (X∪Y) ⩾ δ. Where σ, and δ are the minimum support and minimum
confidence, respectively.

In general, we can gain 2k − 2 association rules at maximum from each frequent k − itemset indicated by F,
ignoring rules that have empty antecedents or consequences. As there are many association rules satisfying the
support and the confidence, a practical measure to filter or rank the found rules is the lift, which suggests the
deviation of the support of the whole rule from the one expected under independence given both sides of the
rule’s supports.

• Lift The value of lift can be interpreted in the three cases: (i) if Lift (X→Y)=1, then X and Y are independent.
(ii) if Lift (X→Y)>1 (positive correlation) X and Y , most likely happen together. (iii) if (X→Y)<1 (negative
correlation) X and Y , are very rare to happen together.

Lift(X → Y) =
(X ∪ Y)

P(X) × P(Y)
(3)

3.4. Frequent Itemset Generation

There are three primary steps employed to generate frequent itemsets satisfying the min support threshold: (i)
scan the database and compute the support, (ii) generate and compare frequent itemsets, and (iii) generate candidate
itemsets. More precisely, let Ck indicate the set of candidate k-itemsets, and Fk refer to the set of frequent k-itemsets.
Initially, we create a single pass through the dataset to discover the support of each item and reach the set of all frequent
1-itemsets. Next, we iterative generate new candidate k-itemsets Ck applying the frequent (k-1)-itemsets discovered
in the previous iteration. Afterward, we will recognize all candidate itemsets Ck contained in each transaction t by
computing the support of the candidates. Those candidate itemsets whose support counts are less than min support
are eliminated in this step. Finally, the sub-procedure of generated frequent itemset is finished when new frequent
itemsets are not created, namely, Fk = ∅.

4. Results and Findings

4.1. Rule Generation Results

Three well-known algorithms are available for mining the frequent itemsets: Apriori, FP-growth, and Eclat. It has
been considered that Apriori Algorithm shows phenomenal performance due to its high accuracy [13, 15, 16]. Hence,
this calculation is chosen to mine the association rules for the transaction dataset in this research. Apriori algorithm
includes two separate steps: (1) All of the frequent itemsets in the database are found using minimum support, and
(2) these frequent itemsets, along with the minimum confidence constraint, are utilized to build rules. The Apriori
algorithm [10] provided by the “arules” package of the R software was employed to mine association rules from a
crossroad accident dataset, including 576 transactions related to two different types of accident in this study. The
support and confidence thresholds were valued at 0.3 and 0.5, respectively. To get rules of a high-quality, lift amounts
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greater than 1.1 were accepted. Lastly, 63 rules for serious accidents and 156 rules for non-serious accidents were
generated.

Fig. 1 demonstrates the association rules using group matrix plots in R-extension packages [17]. Using the k-means
clustering technique, the antecedents were separated into 10 groups. The grouped matrix plot in Figure 1 is a balloon
plot in which the antecedents are grouped as columns, and the consequences are grouped as rows. The colors of the
balloons represent the total lift, which means the relative strength of the elements’ inter-dependency. The aggregated
support, which indicates the relative frequency of occurrence of the factor combination(s) involved, is represented by
the size of the balloon. A tiny dark balloon, for example, would suggest moderately strong factor inter-dependency
but the relatively rare occurrence of the factor combination (s), and a sizeable light balloon denotes a weaker (but still
significant) interdependence of factors but a higher frequency of the factor combination (s). As shown in Figure 1
among all the rules, the important association rules relate to lighting, pedestrian involvement, and road surface.

4.2. Association rule analysis of contributory factors

In Tables 2 and 3, association rules were reported separately for serious and non-serious accidents, along with
support, confidence, and lift.

Moreover, the first nine generated association rules are ranked according to the lift value in each table, respectively.
Rule #1 in Table 2 illustrates that if an accident occurred during a day, it is probable to be a financial accident severity.
Rules #2 and #3 show the lighting condition, where non-serious accidents occurring in a day are more likely to
involve stationary type collision.

In Table 3 Rule #9 is related to slippery, wet, or icy road surface conditions. This rule suggests that an accident
on a morning peak is more likely fatal. The support of this rule is 0.40, indicating that the rule has a relatively
high frequency in serious accident data. Accordingly, increased attention should be given to developing effective
countermeasures on these kinds of road surface conditions and time of day. Other important factors contributing to
serious cross-road accidents are related to pedestrians. Rules #1, #2, #7 suggest that serious cross-road accidents are
probably involved with pedestrians.

Table 2: The high lift rules for non-serious accidents.

Rules Association Rule Mining S(%) C(%) LAntecedent Consequent
1 {Lighting=Day, {Accident severity=Financial} 0.33 0.79 1.49

Collision type=Stationary type}
2 {Lighting=Day, Number of lanes=One-lane {Accident severity=Financial} 0.35 0.77 1.45

Time=Off peak}
3 {Lighting=Day, Season=Spring, {Accident severity=Financial} 0.41 0.78 1.44

Road surface conditions=Dry}
4 {Traffic light=Pre-scheduled, {Collision type=Head to side} 0.34 0.85 1.43

Time=Evening peak}
5 {License status=Yes(valid), Gender {Collision type=Head to side} 0.31 0.85 1.43

of driver=Female, Lighting=Day}
6 {Gender of driver=Female, {Accident severity=Financial} 0.36 0.77 1.42

Collision type=Head to side}
7 {Season=Spring, Lighting=Night, {Accident severity=Financial} 0.36 0.76 1.42

Road surface condition=Dry}
8 {Using seat belt=In use, Number of lane= {Accident severity=Financial} 0.36 0.75 1.42

Two lane, Road surface conditions=Slippery}
9 {Season=Spring, Using seat belt=Yes {Collision type=Side swipe} 0.36 0.75 1.42

Traffic enforcement camera=Yes}



Mahtab Shahin  et al. / Procedia Computer Science 201 (2022) 231–238 237
Mahtab Shahin et al. / Procedia Computer Science 00 (2022) 000–000 7

Table 3: The high lift rules for serious accidents.

Rules Association Rule Mining S(%) C(%) LAntecedent Consequent
1 {Using seat belt=Not in use, Lighting= {Accident severity=Fatal} 0.33 0.51 1.55

Night, Pedestrian=Yes}
2 {Collision type=Pedestrian involvement, {Accident severity=Fatal} 0.31 0.53 1.54

Pedestrian=Yes}
3 {Time=Evening peak {Collision type=Head to side} 0.34 0.79 1.53

Accident severity=injury}
4 {Lighting=Day, Road {Accident severity=Fatal} 0.31 0.80 1.50

surface condition=Slippery}
5 {Time=Evening peak {Collision type=Head to side} 0.36 0.79 1.49

Lighting=Day}
6 {License status=No, Age of {Collision type=Pedestrian 0.35 0.79 1.47

driver=15 ≤ age ≤ 19} involvement}
7 {License status=No, Road surface {Accident severity=Fatal} 0.41 0.57 1.47

conditions=Slippery, Pedestrian=Yes}
8 {Time=Morning peak, Accident {Collision type=Head to side} 0.38 0.59 1.46

severity=Injury}
9 {Road surface condition=Slippery, Time= {Accident severity=Fatal} 0.40 0.63 1.44

Morning peak, Collision type=Stationary object }

(i) Serious accident (ii) Non-serious accident

Fig. 1: Visualization of association for two accident severity levels by group matrix

5. Conclusion

The present study aims to investigate factors contributing to serious casualty crashes and their inter-dependencies.
The serious casualty crash data in 2014 was gathered from the crossroads of Isfahan, Iran. Each crash report was
particularly examined and employed to investigate the characteristics of serious and non-serious accidents in terms of
accident data, external environment, traffic characteristics, and control status. By applying different values for support
and confidence, we gathered helpful information about the combination of accident characteristics to analyze the
potential causes of non-serious and serious accidents, respectively. Together with the data visualization technique,
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it provides more understandable results for researchers and traffic road officials. We generated 63 association rules
for non-serious accidents and 156 for serious accidents using the Apriori algorithm. The results of the association
rules show that {Using seat belt = In use} and {Traffic enforcement camera = No} are the two items with the highest
frequency of the two accident severity levels, indicating that most crossroad accidents are related to using any seat
belt or existence of any enforcement camera.

The findings of this study indicated that the mechanisms of serious accidents are different from those of typical non-
serious accidents. For example, the accidents occurred on the rush hour and pedestrian involvement are more likely to
be fatal accident, compared with stationary involvement and non-peak hour. The impacts of weather conditions were
also different between serious accidents and non-serious accidents. Therefore, policymakers need to develop various
safety improvement policy initiatives and technical countermeasures to reduce fatalities and injuries from major ac-
cidents involving accidents in certain circumstances. For example, to prevent pedestrians involved in accidents, some
engineering improvements, such as installing warning signs, improving pavement conditions, and identifying cross-
walks with sufficient light for drivers, should be implemented on crossroads. Finally, stricter speed requirements and
other regulations should be considered to prevent serious accidents in adverse weather conditions.
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