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Introduction

Although modern cars are constantly being improved with advanced driver assistance
systems and in—vehicle information systems, mortality on public roads do not tend to
decrease as some experts predicted. Contrariwise, the number of traffic accidents with
dramatic outcomes remains unacceptably high with 1.35 million people dying worldwide
annually. Not to mention significant effects on global economy due to the financial harm
from traffic accidents, it results in the 8t leading cause of death for people of all age, and
the 1% leading cause of death for children and young adults of the age of 5 — 29
(The International Traffic Safety Data and Analysis Group, 2018), (World Health
Organization, 2018).

The ground vehicle safety systems’ improvement is mainly obstructed with outdated
technology and deficiencies in infrastructure (Post, Motor—vehicle safety, 2014). A part
of it is occupied by lack of intelligent control algorithms and methods, because most of
the known problems in vehicle safety control are complex and ill-defined that require
several aspects to be considered simultaneously. To some degree the set point oriented
control systems (i.e. based on proportional-integral-derivative, sliding mode control,
He, etc.) often perform poorly or are not applicable at all in such complex and dynamic
disciplines as vehicle safety due to fundamental lack of robustness to varying
environmental conditions and human factor that always appear in transportation
systems. Nevertheless, research over the past decade shows a rapid development of
computational—-intelligence—based control methods that brings up scientist into a new
era in controlling uncertain systems with lack of precise information. The computational
intelligence algorithms provide a rich and meaningful addition to standard logic for the
purpose of engineering control due to its capability to approximate qualitative aspect of
human reasoning and decision—making process (Jang, Sun, & Mizutani, 1997), (Passino &
Yurkovich, 1998), (Castillo 0., 2012).

The purpose of this research is to increase safety of the ground vehicles by providing
their high robustness to heavily changing environmental and human factors. New
intelligent vehicle safety management will result in the effective antilock braking system
with retained steerability, maximal braking force and energy recuperation of electric and
hybrid cars, what in turn decreases braking distance, fuel consumption and consequent
emissions. New intelligent safety function will essentially reduce the driver distraction
influence on driving quality, safety, humans’ life protection, and traffic accidents.
Therefore, this research is an influential on ground vehicle safety systems, which are
characterised by complicated human—machine—environment interaction, where two
fundamentally distinct safety systems, namely antilock braking system and driver
distraction detection and evaluation, are investigated simultaneously and designed
applying the same solutions, specifically computational intelligence algorithms. Lastly,
the research will help to achieve the European Union’s "Vision Zero" objective
(i.e. “to reduce road deaths to almost zero by 2050”) by advancing ground vehicle safety
systems (Communication from the Commission to the European Parliament, the Council,
the European Economic and Social Commitee and the Commitee of the Regions, 2018).
The developed concepts and solutions will also contribute to European Union’s
sustainable development goals, Goal 3. Target 3.6: "By 2020, the halved number of global
deaths and injuries from road traffic accidents".

Up to now, management of such multi—input, multi—-output human—machine systems
as vehicles met various challenges due to their essential complexity. Solutions of the car



safety problems, the environmental safety problems, and the human safety problems
are conflicted with each other, what often results in impossibility for their combined
implementation. The main idea of the presented research is to merge these three groups
of problems together via the development of the universal methodology based on such
novel computational intelligence tools as fuzzy logic, machine learning, artificial neural
networks, and neuro—fuzzy systems. The first issue, which may be resolved by the offered
method, is to arrange the intelligent road surface recognition aiming to maximize the
antilock braking system force at full steerability, thus guaranteeing the overall vehicle
safety. On the other hand, by prioritizing the usage of the electric motors along with
introducing the blended braking and considering the battery state—of—charge,
the amount of recuperated energy can be raised considerably, hence ensuring the
environmental safety. At the same time, by predicting driver performance in multiple
distractive situations, the driver behaviour can be continuously identified with high
precision, thus enabling the human safety.
Hence, the following tasks are set:

1. Expansion of the artificial intelligent approach towards the safety in the
automotive sector.

2. Comparative study of the neuro—fuzzy and traditional binary logic
approaches in view of their robustness to heavily changing environmental
and human factors.

3. Research and development of a method for an antilock braking system
management aiming to recognize the road surface and to enable maximal
force during emergency braking manoeuvres.

4. Research and development of a torque blending strategy for an antilock
braking system, which enables maximal amount of recuperated energy
during emergency braking manoeuvres.

5. Research and development of a novel driver distraction detection and
evaluation methodology fitting the accurate distraction measurement and
evaluation of various secondary tasks.

6. Investigation and analysis of the model-based methods suitability for driver
modelling, and development of a novel method for driver performance
prediction.

7. Experimental validation of the designed methods.

The theoretical novelty achieved during the research are as follows:

1. Fuzzy logic control method for antilock braking system management with
road surface recognition, which maintains vehicle steerability and decreases
braking distance on heavily changeable surfaces.

2. Torque blending strategy for the antilock braking system, which ensures
remarkable energy recuperation capability at actively varying surfaces and
vehicle states.

3. Driver distraction detection and evaluation methodology based on the fuzzy
logic and machine learning combination, which allows for accurate detection
and precise measurement of driver distraction.

4. Research environment including the library of driver models, flexible
algorithms, and simulation tools intended for high quality prediction of
driver performance on different road segments.

The practical value obtained during the research are:
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1. The antilock braking system with intelligent road surface estimation
providing braking distance decrease by 12% and 41% in comparison to the
conventional electro—hydraulic braking systems and the antilock—free
braking systems, respectively.

2. The blended braking module ensuring energy recuperation extension up to
10% (17 kJ) thanks to the new blending control strategy.

3. The experimental setup including the instruments for advanced
experimental investigation of driver distraction.

4. The software for analysis of driver distraction including recommendations
on safe and intuitive human—machine interface installation in ground vehicle
cockpit.

The results of the research are approbated via scientific publications, conferences,
symposiums, and workshops presentations. In total, during the Ph.D. studies the author
contributed to 22 publications related to the research and development of the ground
vehicle safety systems applying computational intelligence methods. Among them, five
works are the peer-reviewed journal publications, the rest are published in highly ranked
international conference or workshop proceedings. The dissertation is based on ten main
scientific publications attached to this edition, including four journals and six conference
papers presented at different IEEE international conferences and workshops.

The dissertation is logically divided into four chapters. Chapter 1 discusses the
state—of-the—art in development of computation—intelligence—based safety systems for
ground vehicles. The problem statement is also considered here. Chapter 2 is dedicated
to the description of the fuzzy—logic—based control method for blended antilock braking
system and to experimental verification in hardware—in—the—loop research environment.
Chapter 3 describes the method for driver distraction detection and evaluation together
with experimental verification in multiple driver—in—the—loop tests. Finally, the dissertation
is concluded in Chapter 4, where the future work is also proposed. Each chapter is divided
to clearly numbered and labelled subchapters and is summarized with a brief conclusion.
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Abbreviations

3D
ABS
ANN
CAN
cl
DD
DIL
EHB
EV
FB
FLC
HIL
HMI
IVIS
k—NN
MF
ML
MISO
PID
RB
SMC
SRM
ST
SUvV
SVM
uoD

Three—dimensional
Antilock braking system
Artificial neural network
Controller area network
Computational intelligence
Driver distraction
Driver—in—the—loop
Electro—hydraulic brake
Electric vehicle

Friction braking

Fuzzy logic controller
Hardware—in—the—loop
Human—machine interface
In—vehicle information systems
k—nearest neighbour
Membership function
Machine learning
Multi-input, single—output
Proportional—integral—-derivative
Regenerative braking
Sliding mode control
Switched reluctance motor
Secondary task

Sport utility vehicle
Support vector machine
Universe of discourse
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Terms

Artificial neural
network
Auditory
distraction mode
Biomechanical
distraction mode
Boolean? logic

Brake blending
Classification
Classifier
Cognitive
distraction mode

Control surface

Crisp

Defuzzification
Driver
Driver distraction

Fuzzification
Fuzzy logic

Fuzzy logic
controller
Fuzzy rule

Fuzzy set

A mathematical model composed of a large number of
processing elements organized into layer.
Driver distraction caused by “taking ears off the road”.

Driver distraction caused by “taking hands off the road”.

Binary—type logic where any variable may have two values only:
true or false.

A process of utilizing dual braking system approach. True for the
regenerative braking system used in electric or hybrid vehicles.
A mathematical method to assign the input to one of the
classes.

A mathematical model conducting classification analysis.

Driver distraction caused by “taking mind off the road”.

A plot, which virtually presents how the controller output
depends on the inputs.

A collection of objects of any kind. In fuzzy set theory, it can be
considered as a specific type of the fuzzy set with a membership
function having the value of unity for the elements of the crisp
set and zero for others.

A process of converting a fuzzy set into a crisp output.

A person responsible for vehicle lateral and longitudinal control.

An activity performed by a driver that diverts attention away
from primary activity potentially leading to safe driving
performance degradation. It appears due to some event,
activity, object, or person within or outside the vehicle, which
compels or induces the driver’s shifting attention away from the
primary task.

A process of converting crisp inputs into fuzzy sets.

A system of logic operators defined by calculus of interaction
that attempts to construct a model for the various modes of
human reasoning, which are approximated rather than exact.

A control and regulation system which implies the methodology
of fuzzy logic.

A rule of the “If <antecedent1> and/or <antecedent2> ... Then
<consequence>" structure.

A set of ordered pairs, consisting of an element of the universe
of discourse and the membership degree. The theory was firstly
introduced by professor Lotfi Zadeh? in 1965.

1 George Boole (1815 — 1864) — an English mathematician, philosopher and logician.
2 Lotfi Aliasker Zadeh (1921 — 2017) — mathematician, computer scientist, electrical engineer,
artificial intelligence researcher and professor emeritus of computer science.
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Fuzzy singleton

Inference
mechanism
(engine)

Linguistic variable

Machine learning

Membership
degree

Membership
function
Modus ponens

PID controller

Plant
Prediction

Pre—process
Primary task
(activity)
Regression

Robustness

Rule base

Secondary task
(activity)
Sugeno’s® type
inference
Training set
Universe of
discourse

Visual distraction
mode

A fuzzy set with a membership function that is unity in a
particular point on the universe of discourse and zero
everywhere else.

A process of mapping fuzzy inputs into fuzzy outputs by
applying the pertinent rules from the rule base.

A variable with a linguistic value that is a word of a word
sentence.

An adaptive mathematical mechanism that enables computer
to learn from experience, learn by example, or learn by analogy.
Also called “degree of certainty”. A number between 0 and 1
characterizing the degree to which the element of the universe
belongs to the fuzzy set.

A function which corresponds to a real number between 0 and
1 for any generic element of the universe of discourse.

Valid argument form in logic (If-Then form).

A controller that consists of three parts: proportional to the
input, integral of the input and input derivative. Can be also
realized as Pl—controller or PD—controller.

A controlled or regulated object or system.

An operation applied to novel input to forecast the future
output.
Training set simplification and dimensional reduction.

A task needed to drive a vehicle correctly.

Estimation of relationship among variables, where the outputs
are the real numbers.

The ability of the system to withstand or overcome changes
without changing its initial configuration.

A block of fuzzy logic controller containing fuzzy rules, which
has a linguistic description of the desired behaviour of the
plant.

All other tasks not related to the primary ones.

A type of fuzzy inference engines, in which the consequent part
of each rule is a linear combination of the inputs.

A subset of data used to learn the hyperparameters.

The range of values for an input or output. The set which
contains all the elements considered in the problem.

Driver distraction caused by “taking eyes off the road”.

3 Michio Sugeno (1940) — Japanese scientist, mathematician engineer and inventor.
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Symbols

Ovx
asw
aswp
aswr
cr
Cd
DD
Fx
Fy
F;
g
ij
Jw
ko
L
my
Db
rw
Th
Ta
Trs
Trs
Vi
Vvx
Vi
Av
Avp
Avy

Axp
Dxr

)\opt

n*

Longitudinal acceleration of vehicle
Acceleration of steering wheel

Predicted acceleration of steering wheel
Resultative acceleration of steering wheel
Radius of road curve

Direction of road curve

Level of driver distraction

Longitudinal force of tire

Lateral force of tire

Vertical force of tire

Gravitational acceleration

Phase current of switch reluctance motor
Moment of inertia of wheel

Friction braking coefficient

Phase bulk inductance of switch reluctance motor
Mass of vehicle

Line pressure of brake

Radius of tire

Braking torque of wheel

Driving torque of wheel

Friction braking torque

Regenerative braking torque

Speed limit

Longitudinal velocity of vehicle
Longitudinal velocity of wheel

Real vehicle speed deviation

Predicted vehicle speed deviation
Resultative vehicle speed deviation

Real lane keeping offset

Predicted lane keeping offset

Resultative lane keeping offset

Rotor aligned position of switch reluctance motor
Longitudinal slip of wheel

Optimal longitudinal slip of wheel
Tire—road adhesion coefficient

Estimated road surface

Output of fuzzy logic controller

Angular speed of wheel
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1 Literature review

This Chapter opens the dissertation with literature overview of related works in the area
of development of the Cl-based safety systems for ground vehicles. The focus is
addressed to ABS control and DD detection methods. The problem of systems’
complexity and states’ imprecision are also stressed here.

The Chapter is divided to three subchapters. In Road safety, the concept of
vehicle—environment—human interaction is introduced and their correlation. The ABS
safety concern and related works are described in Antilock braking system. Problem
statement and literature review of recent developments in DD detection and evaluation
are provided in Driver distraction subchapter. Finally, the Chapter conclusion is delivered
in Summary.

1.1 Road safety

Road safety is one of the most important and complex parts of the intelligent
transportation systems. Mary Ward* became the world’s first recorded victim of
automobile accident in 1869. Since then, the number of road victims only grows each
year. The first ground vehicle eventually was equipped with all four—wheel hydraulic
brakes only in 1922. Until now, for instance, the brakes are the key elements of every
ground vehicle. However, with intensive population grow and consequent increase of
number of passenger vehicles on the roads, braking system can hardly be accepted as
enough for vehicle safety (Post, Motor—vehicle safety, 2014).

[ Road safety ]

Environment Vehicle Human being
Active Safety Passive Safety
+ Antilock
braking system; I
+ Traction control
system; External Safety Internal Safety
+ Electronic
stability + Exterior body
program; shape; + Seatbelt;
* Driver * Deformation * Airbags;
distraction; behaviour; + etc.
* etc. * etc.

Figure 1. Road safety concept and influencing variables (adapted from (Post, Motor—vehicle safety,
2014)).

Road safety roughly depends on three main influencing factors: environment
(e.g. weather, road surface, traffic condition, etc.), vehicle (e.g. equipment, components
wear, etc.), and human being (e.g. driving skills, health conditions, etc.) (Figure 1). Vehicle
involves active and passive safety systems. The first ones tend to “actively” prevent

4 Mary Ward (née King, 1827 — 1869) —an Anglo—Irish naturalist, astronomer, microscopist, author,
and artist.
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accidents in the first place, while the second — to reduce the severity of accidents, when
they do occur (Post, Motor—vehicle safety, 2014). Most of the modern ground vehicle
safety systems are designed, yet, without consideration of vehicle—environment or
vehicle-human interaction. It makes them, on one hand, simple, but, on the other hand,
limited in functionality.

Within past decades, to advance vehicle safety systems, different
environment—vehicle—human interaction concepts were developed by the researchers
all over the world. Most of the impressive solutions have been achieved applying
Cl-based methods (Ivanov V., 2015). Burying in mind only safety functions that are
related to the present dissertation (i.e. ABS and DD detection) and revisiting Figure 1,
the new concepts of safety systems are rudimentary summarized in Figure 2.

[ Road safety ]

|
I \ ]

Environment Vehicle Human being

l

Driver distraction
detection and
evaluation

Antilock braking
system

Figure 2. Road safety concept and influencing variables of the studied safety systems.

1.1.1 Antilock braking system and driver distraction safety correlation

Despite fundamental functionality and aim disparity, there is a clear correlation between
ABS and DD safety systems. On one hand, drivers’ mistakes caused by DD often lead a
vehicle to exit the road or late recognition of probable collision. In this occasion, rapid
vehicle deceleration with presumed latera controllability is critical, when the ABS plays a
great role. On the other hand, emergency braking with help of ABS may lead to additional
distraction created by safety system functionality. The unusual ABS operation may lead
to changes in road user behaviour (Ashenbrenner, Biehl, & Wurm, 1987). This distraction
may result in additional mistakes delivered by the driver. As a consequence, driver
behaviour may cause to ABS functionality burden or even vehicle deceleration failure
and following vehicle occupants’ and other traffic participants’ life danger.

1.2 Antilock braking system

In this subchapter, the state—of-the—art on advancements in ABS control methods is
reported. The focus is addressed to Cl-based approaches that involve more complex
solutions, where vehicle—environment interaction is considered. First, the problem
statement is delivered, then the previously proposed solutions are analysed.

1.2.1 Problem definition

The ABS introduction to ground vehicles was motivated from aerospace industry and for
the first time used on a volume—production ground vehicle in 1978. Nowadays, the ABS
is an obligatory system in almost every country in the world (Post, Car braking systems,
2014). To understand the complexity of the safety problem and the aim of an ABS, it is
necessary to understand the safety concern caused by the vehicle’s wheels lockage
during braking manoeuvres.

17



An exhaustive braking torque applied to the wheels during emergency braking leads
to wheel lockage, i.e. the condition when the wheel of a moving vehicle is no longer
rotating. This action, in its turn, arouses vehicle control degradation and significant
reduction of braking force. As a result, the vehicle goes into a slip or/and leaves the road.
Therefore, an ABS (as it comes from its name “antilock”) aims at wheel lockage avoidance
by means of braking torque reduction resulting in steerability maintenance and braking
force minimization (Koch—-Diicker & Papert, 2014).

The main problem of an ABS enhancement is its dependence on highly changing
environmental and vehicle condition factors (lvanov & Shyrokau, 2010). Precisely, how
fast will the wheels lock highly depends on numerous factors: condition of the tire
(e.g. worn or new, pressure, etc.) and on surface of the road (e.g. dry, wet, icy, etc.) or
road—tire friction coefficient, etc. This latter has a dramatic impact on vehicle
deceleration force, what negatively influences vehicle stability and braking distance.
Therefore, to increase the efficiency of an ABS, intensively changing and hardly
predictable environmental factors, namely road surface, must be take into consideration
(Pacejka, 2012), (Koch—Ducker & Papert, 2014).

1.2.2 Literature review

Traditional control algorithms that are characterized with good robustness to noise and
nonlinearities are actively applied in conventional and electric vehicles braking system
control. For instance, SMC (Regolin, Incremona, & Ferrara, 2017), model predictive
control (Jacquet, et al., 2008), nonlinear PID (Tanelli, Astolfi, & Savaresi, 2006), linear
matrix inequality (Baslamisli, Kése, & Anlas, 2007), and other robust control methods
were recently developed for ABS. Unfortunately, those approaches always require
complex mathematical modeling and reference slip input, which is in reality vague due
to dynamically changing environmental conditions.

The Cl algorithms, especially fuzzy logic, are also widely used in ABS control methods
for both FB and RB (lvanov V. , 2015). The CI method unlike conventional control
algorithms are successfully applied to highly nonlinear and complex plans, which are
described by ill-defined or lack of precise information. Some of the first patents, where
fuzzy logic was applied to ABS control were issued to the Nissan Motor Co., Ltd. for
conventional FB (USA Patent No. 4 842 342, 1989) and to the Ford Motor Company for
RB (USA Patent No. 5358 317, 1994).

Simple FLCs with set point regulation were developed for different vehicle types,
including EV with on—board motor powertrain. The optimal FLC designed to maintain the
wheel slip to a desired level on various road surfaces outperformed FLC and Pl controllers
(Mirzaei, Moallem, Dehkordi, & Fahimi, 2006). The self-learning fuzzy SMC capable to
automatically generate and reduce fuzzy rules was proposed for ABS to hold wheel slip
at 20% for any road surface (Lin & Hsu, 2003). Later, the authors improved the control
method by introducing the self-organized function—-link fuzzy cerebellar model
articulation controller (Lin & Li, 2013). A combination of SMC and FLC, where the latter
serves as parameters optimization, was designed for RB, in which motor torque is taken
full advantage of (Guo, Jian, & Lin, 2014). A control method for a hybrid EV with four
separate wheel drives, where fuzzy logic is applied as a vehicle speed estimator reading
the motor current and wheel speeds, was developed in (Pusca, Ait-Amirat, Berthon, &
Kauffmann, 2004). Fuzzy logic accompanied with genetic algorithm is a strong tool for
PID controller self-tuning for varying road surfaces (Sharkawy, 2010). Those methods,
however, have strong limitation, because they hold only one reference wheel slip (i.e.
15-20%) on different road surfaces, what is optimal only for dry asphalt. This limitation
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does not allow for adaptation to highly changing environment, because braking with an
optimal slip for dry road on icy one will lead to more than 50% of efficiency losses
(Koch—-Diicker & Papert, 2014).

As the reference slip regulation does not solve a problem of efficient ABS performance
on varying road conditions, the following logical extension in the discipline was to
develop road recognition methods. As a result, it was assumed that the road conditions
can be inferred by observing the slip ratio resulting from a given braking force, where an
FLC was designed for an ABS (Mauer, 1995). In (Ivanov, Algin, & Shyrokau, 2006), the
fuzzy logic together with statistical regularities were combined for road and
environmental properties identification and adaptive, self-learning control strategy.
A genetic algorithm crossed with FLC was exploited to obtain optimal braking torque
distribution between RB and FB (Kim, Kim, Hwang, & Kim, 2007). An FLC—based ABS and
traction control system successfully demonstrated that the FLC adjusts a vehicle at
changing environment (Khatun, Bingham, Schofield, & Mellor, 2003).

The fuzzy slip controller guaranteed the highest traction or braking force on each
wheel on every road condition by individually controlling slip ratio of each wheel (Jalali,
Uchida, McPhee, & Lambert, 2012). The FLC and PID merging resulted in torque control
method for various drive—slip conditions involving abrupt change in road—tire friction
conditions. The Cl algorithm compensated sudden changes in the road friction (Li, et al.,
2012). A quasi-SMC and fuzzy—neuro—system—based control method for nonlinear
discrete—time system verified in the experiment on ABS test bed was described in (Peric,
et al., 2016). Intelligent FLC also copes with more complex braking manoeuvre than
straight road with even road surface. For example, via fuzzy logic road identification
method it finds optimal wheel slip and ensures wheels lockage avoidance on split—L road
profiles (i.e. two halves of the roads have different surfaces) (Aly, 2010).

The FLC was used to tune and switch gains of an SMC. The controller coped well with
normal and emergency braking cases under changing environmental conditions and
vehicle initial states. Moreover, the controller showed significant advantage over
traditional PID and conventional SMC (Peng, Jia, He, Yu, & Lv, 2018). Another control
method obtains information about the type of the road by means of fuzzy logic and
controls brake pressure using one more FLC. Accordingly, the method was able to provide
optimal slip by interacting with the surrounding environment (Cabrera, Ortiz, Castillo, &
Simon, 2005). A decade later, the authors enhanced the control method with another Cl
algorithm, ANN, where FLC served as optimal slip generator for identified road surface.
Finally, additional FLC determined braking pressure in the braking circuit (Castillo,
Cabrera, & Guer, 2016).

An FLC-based life—extending control achieved significant improvement in service life
by the trade—off between satisfactory dynamic performance and safe operation, where
the FLC predicts the wear rate of the brake pads/disc and modifies its control strategy
on-line to keep safe ABS operation (El-Garhy, ElI-Sheikh, & El-Saify, 2013). A braking
torque distribution strategy for an all-wheel drive EV with single electric motor, based
on estimation of the tire—road friction coefficient using the fuzzy logic estimation
approach was delivered in (Paul, Velenis, Cao, & Dobo, 2017). The goal was to maximize
regenerative power during deceleration for a given vehicle speed and deceleration
demand on changing road surfaces. Furthermore, the friction coefficient realised with
FLC did not rely on any specific tire model. Some works used the knowledge—based
methodology to overcome the complexity of tire—road friction coefficient estimation (Xu,
Xu, Zheng, Zhang, & Zahid, 2016). An FLC—based control method is capable of maximizing
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adhesion force even without road surface information and vehicle speed signal (Chen,
Yang, Du, & Wang, 2010).

The related works’ analyses prove Cl-based control methods’ potential in new
advanced ground vehicle safety systems concepts development via vehicle—environment
interaction. Despite mentioned, it is missing today any relatively simple approach for
connecting environment together with vehicle to obtain highly efficient ABS functionality
(i.e. fast deceleration with presumed lateral control) on varying road surfaces, which is
also capable to enhance energy recuperation for EV via advanced torque blending
strategy, and which avoids set—point—based control. Therefore, the blended ABS control
method described here aims at filling this gap in advanced ABS design for ground vehicle
by using Cl algorithms for providing simple interaction between vehicle and environment
with supreme energy recuperation capability for fully and hybrid EVs. Hence, the method
enables safety of occupants, vehicle, and environment concurrently.

1.3 Driver distraction

The state—of-the—art in improvements of DD detection is delivered in this subchapter.
The attention is paid to Cl-based methods that involve more complex solutions, where
human—vehicle—environment interaction is important. The DD problem is stated next,
then, the recent advancements are discussed.

1.3.1 Problem definition

Rapid development of IVIS noticeably improves road transportation. These systems allow
drivers for enjoying their favourite music, listening to the news and even for remaining
in touch with their family members, friends, and colleagues while driving a car. What is
more, IVIS, such as navigation, vehicle state, etc. appreciably improves road safety and
efficiency, vehicle maintenance cost and time spent on transportation. Though, driver’s
interaction with IVIS contributes to a newly arose problem of DD. The relevance of the
problem is justified with tremendous number of people (i.e. 3450) killed on the roads
due to the distracted driving in 2016 in the USA alone (National Traffic Law Center, 2017).
In EU, 20% of all fatalities on the roads are caused by DD (European Union, 2017).
Unfortunately, the statistics promise no improvement in the nearest future.

The main uncertainty in DD remains the driver her—/himself, who is often guilty for
multitasking. Driving already demands high concentration and prudence, and performing
ST in parallel only increases the cognitive and biomechanical loads. In addition, it is well
known that “humans are limited in their ability to divide attention between competing
tasks” (Regan, Young, & Lee, Introduction, 2009). There are different factors influencing
DD, and most of them depend only on driver (i.e. current state, drowsy or inebriated,
curiosity and boredom, etc.), yet, the results (i.e. traffic accidents) are always dramatic.
Hence, the complexity of DD hazard is enhanced by human—vehicle interaction, what
makes the problem much challenging (Regan, Young, & Lee, Introduction, 2009).

To this aim, various public and governmental road safety foundations and ground
vehicle manufacturers work together to solve safety threat caused by DD. The first ones
tend to establish road safety policies. Vehicle manufacturers are mainly focused on
vehicle cockpit and HMI technology design to decrease driver’s workload and reduce or
even entirely eliminate IVIS—induced DD (Young, Regan, & Lee, 2009). Counting on every
human uniqueness, preferences, and values it is severe for the vehicle manufacturers to
design mass production vehicles according to each individual needs. Thus, considering
dynamically changing environmental and human factors DD remains serious matter for
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its detection and mitigation, because it appears to be that “distraction is inevitable
consequence of being human” (Regan, Young, & Lee, Introduction, 2009).

1.3.2 Literature review

As there are different sources of distraction (Regan, Young, Lee, & Gordon, 2009), there
are also different modes of DD: auditory, biomechanical, cognitive, and visual. In most of
the cases DD is composed of more than one if not all modes of DD at the same time
(Westin, Dougherty, Depcik, Hausmann, & Sprouse IIl, 2013). Furthermore, there are four
main attributes to measure DD: behaviour (e.g. eye and head movement), physiological
(e.g. electrocardio— and electroencephalographical measure), performance—based
(e.g. vehicle lateral and longitudinal performance), and subjective (e.g. survey and expert
evaluation) (Arun , Sundaraj , & Murugappan , 2012), (Papantoniou, Papadimitriou, &
Yannis, 2017). The most progressive results in DD detection have been achieved by
applying Cl, including ML, which are discussed below.

The subjective measures for DD evaluation were used for very long time and are still
used today. Among the most popular ones is the workload identification analysis NASA>
Task Load Index (Hart & Staveland, 1988), which was applied in DD studies in (Kim & Son,
2011) and (Horberry, Anderson, Regan, Triggs, & Brown, 2006). In (Rajesh, Srinath,
Sasikumar, & Subin, 2016), the questionnaire was used to analyse influence of human
factors, driver space, and driving conditions on perception of mobile phone use while
driving as a distractive activity. The main problem of subjective measures is that they
depend on human examiner’ or evaluator’ opinions.

Different kinds of ML algorithms were explored for DD detection by measuring driver’s
gaze, head, and body part movement, what appears to be the most popular among
existing measures. Gradient boosting machine in cooperation with 3D convolutional ANN
was used in driver drowsiness detection system (Huynh, Park, & Kim, 2017). Random
forest classifier (Lex, Langhans, Lee, & Reimer, 2016) and convolutional ANN (Choi, Hong,
& Kim, 2016) were useful for driver glance region prediction. The dynamic Bayesian®
network outperformed logic regression, static Bayesian network, and SVM in visual DD
detection (Azman, Ibrahim, Meng, & Edirisinghe, 2014). A semi—supervised extreme
learning machine was combined with SVM for DD detection from eye and head
movement (Liu, Yang, Huang, Yeo, & Lin, 2016). Real time IVIS—-induced DD state
monitoring is possible with classifier based on Mahalanobis’ distance calculation
algorithm (Jiménez, Bergasa, Nuevo, Hernandez, & Daza, 2012). The fuzzy expert system
is also useful in driver face monitoring for level of human fatigue estimation (Sigari, Fathy,
& Soryani, 2013). Different classifiers (i.e. SVM, k—NN, and graph-regularized extreme
learning machine) were designed for DD detection using driver’s behavioural measures
(Jiao, et al., 2014). Another impressive solution was proposed by combining SVM with
linear discriminate analysis and principle component analysis (Jo, Lee, Jung, Park, & Kim,
2011). Drowsy driving prediction is performed with the probabilistic restricted Coulomb?
energy ANN (Matsuo & Khiat, 2012). By monitoring body parts of a driver via video
camera mounted inside of a vehicle, DD induced by different STs is recognizable with
kernel SVM algorithm (Billah, Rahman, Ahmad, & Swamy, 2018). Seven drivers gaze zone
classifier applying different architectures of a convolutional ANN was studied in (Vora,

5 The National Aeronautics and Space Administration (Washington, DC, USA).

6 Thomas Bayes (1701 — 1761) — an English statistician, philosopher, and Presbyterian minister.
7 Prasanta Chandra Mahalanobis (1893 — 1972) — an Indian scientist and applied statistician.

8 Charles—Augustin de Coulomb (1736 — 1806) — a French military engineer and physicist.
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Rangesh, & Trivedi , 2018). The main disadvantage of the methods is that they always
require one or multiple cameras to be mounted inside of a vehicle, what negatively
affects system’s cost and complexity. Furthermore, behavioural measures only
guarantee visual DD detection, whereas cognitive and auditory DD remain unrecognized.
Lastly, some systems require a driver to wear additional devices, such as gaze—tracking
googles, what is considered as distraction itself and for some individuals is not always
feasible.

Another DD measurement mode is psychological, where human’s brain activity, heart
rate, skin conductivity, temperature, etc. are tracked. The brain activity measured by
electroencephalographic signals was used for online early detection of DD (Wang, Zhang,
Wu, Darvas, & Chaovalitwongse, 2014). The same brain activity signals were exploited in
DD detection applying numerous ML techniques, namely decision tree, random forest,
k-NN, SVM, and naive Bayes (Alizadeh & Dehzangi, 2016). Logistic—regression—based ML
algorithm was applied for drowsy driving recognition from heart rate electrocardiogram
signals (Babaeian, Bhardwaj, Esquivel, & Mozumdar, 2016). Electrocardiogram-signals—based
driver inattention identification method using deep convolutional ANN was proposed
(Taherisadr, Asnani, Galster, & Dehzangi, 2018). The psychological measures appear to
be very efficient, because they track drive’s conditions, which are not externally
observable, and what the human itself is not able to recognize. However, those methods
always involve expansive devices worn by the driver, what makes them unsatisfactory
for practical use. Again, those devices may cause distraction as well.

Popular measures are extracted from vehicle performance, because they directly
reflect ST or driver’s fatigue impact on vehicle safe operation. In addition,
those measures do not need additional devices, because most of the vital signals can be
obtained directly from vehicle CAN—bus. Multiple STs were studied on DD detection using
in—vehicle signals with classifier built with ANN and Gaussian® mixture model
combination (Im, Lee, Yang, Kim, & You, 2014). The ANN-based DD classifier from
CAN-bus information was incorporated with forward collision warning framework
(Iranmanesh, Mahjoub, Kazemi, & Fallah, 2018). Driver behaviour was reproduced from
the global positioning system, and Gaussian mixture model was used to capture the
sequence of driving characteristics and classify distracted or non—distracted driving
(Yang, Chang, & Hou, 2010). Extreme learning machine algorithm (Martinez, del Campo,
Echanobe, & Basterretxea, 2015) and SVM (Ersal, Fuller, Tsimhoni, Stein, & Fathy, 2010) were
also efficient in classifying distractive or attentive driving through performance—based
measures. In (Tango & Botta, 2013), the SVM-based DD classifier outperformed other
ML algorithms such as feedforward and layer—-recurrent ANNs, and neuro—fuzzy system.
Visual-manual SVM-based DD detection using kinematic signals from the vehicle
CAN-bus and nonlinear autoregressive exogenous algorithm for vehicle speed prediction
was developed in (Li, Bao, Kolmanovsky, & Yin, 2018). In (Miyajima & Takeda, 2016),
the on-road driver—performance—based data were collected, which were used for
predicting the driver behaviour and detecting risky driver frustration.

Ultimately, performance—based, psychological, behavioural, and even subjective
measures can be combined. Steering wheel angle and lane position accompanied with
head movement tracking data are utilized in DD detection with random forest and hidden
Markov model (Schwarz, Brown, Lee, Gaspar, & Kang, 2016). Driver eye movement
crossed with driving performance were used in real-time cognitive DD detection with

9 Carl Friendrich Gauss (1777 — 1855) — German mathematician and physicist.
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SVM (Liang, Reyes, & Lee, 2007) and Bayesian network (Liang, Lee, & Reyes, 2007). Online
DD detection by observing driving data and head tracking with long short—term memory
ML recurrent ANN was presented in (Wo6llmer, et al., 2011). The SVM recursive feature
elimination algorithm was built for cognitive DD detection at stop—controlled
intersections and speed—limited highways using eye movement and vehicle operation
data (Liao, et al., 2016). The features from different sources (i.e. audio, colour video,
depth map, hearth rate, steering wheel and pedals positions) were fused for fatigue and
DD assessment applying hidden Markov models and SVM with Bayesian network for data
fusion (Craye, Rashwan, Kamel, & Karray, 2016). Human psychological stats, such as
electrodermal, electrocardio, and brain activities were combined with capacitive
touch and position detection sensors signals for human stress level monitoring
(Miihlbacher—Karrer, et al., 2017). There the cellular ANN outperformed other designed
classifiers based on SVM with radial basis function, naive Bayes, decision tree, and ANN.

The accuracy of DD detection is very high for most of the previously developed
methods. Nevertheless, they all have a common disadvantage: they are classifiers based
on ML techniques mainly with only two possible outputs, i.e. distracted or non—distracted.
This is not suitable for different HMI technologies for accurate 1VIS comparative analysis
and consequent vehicle cockpit design. Therefore, the method described here is
developed to be capable of not only precisely detecting DD, but also measuring its
influence on safe vehicle operation. Therefore, the method assures vehicle occupants
and vehicle safety simultaneously.

1.4 Summary

In this Chapter, the existing problem and concept solutions in ground vehicle safety
systems are introduced. More deeply, the problems of state—of-the—art on control
methods for ABS and DD detection are discussed. Theoretical background of both safety
systems is reviewed with special attention dedicated to Cl-based solutions.
The advantage of the methods developed by the author described in this dissertation
next is also briefly highlighted with respect to other related works.
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2 Control method for blended antilock braking system

In this Chapter the control method for managing the blended ABS is described.
The Chapter is divided into three subchapters: Control method description, Experimental
verification, and Summary. In the first subchapter, the control method description
together with FLC design is presented. The second subchapter is dedicated to control
method’s HIL experimental verification. In Summary, this Chapter is finalized.

A better understanding on ABS operation around the maximum tire-road friction
coefficient is achieved by modelling a torque balance of a braked wheel. In Figure 3,
a simplified single wheel drawing is introduced. The variables’ description is listed in
Symbols. As only a straight braking manoeuvre is considered during the ABS mode,
the rolling resistance and lateral dynamics, as well as the side slip angle are neglected
(Pacejka, 2012). Thus, disregarding driving torque, what is true for braking, the torque
balance of a wheel is expressed as (Kiencke & Nielsen, 2005):

]W(i)W =Tw" Fx - Tb' (2.1)

where Jw— moment of inertia of wheel, kg-m?,
wy, — angular acceleration of wheel, rad/s?,
rw — radius of tire, m,
Fx—longitudinal force of tire, N,
Tb — braking torque of wheel, N-m.

Figure 3. A simplified schematic drawing of a braked wheel for a single—wheel model.

In FB, the braking torque at the wheel base Trs is proportional to the braking pressure
ps (Kiencke & Nielsen, 2005):

Trg = kp "Dy " 1w (2.2)
where Trs — friction braking torque, N-m,
kp — friction braking coefficient,

p» — line pressure of brake, Pa,
rw - radius of tire, m.
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The friction braking coefficient k» depends on brake disc friction area, mechanical
efficiency of brake components and braking factor. Tire deformation due to small impact
is neglected. Thus, both ks and rw are assumed as constants.

In EV, the FB torque is accompanied with the RB torque Trs. The RB torque of the SRM
for saturated phase is found as (Ehsani, Gao, Gay, & Emadi, 2005):

i i OL(B,ij) . ,.
s = Jy) =55 iidij, (2.3)

where Trs—regenerative braking torque, N-m,
j—phase number of SRM,
ij— phase current of SRM, A,
L — phase bulk inductance of SRM, H,
0 — rotor aligned position of SRM, °.

The sum of all phase torques is the output torque of an SRM:

Tre = 201 Tdp (i, 0), (2.4)
where N —total number of phases of SRM.

Consequently, a converter controls torque by acting on the phase current j; (Ehsani,
Gao, Gay, & Emadi, 2005). Pertinent sensors measure p» and jj (Zabler, 2014), which are
approximately proportional to Trs and Trs, respectively. Hence, for the simplicity,
the FLCs corrective variables are expressed as regenerative and friction torques directly.
At last, total braking torque Ty is @ summation of the torques generated by the RB and
FB actuators.

2.1 Control method description

The main task of the ABS is to decrease braking distance with presumed lateral control.
Moreover, for the EV, the ABS must also feature energy recuperation from vehicle
deceleration manoeuvres. The main task is fulfilled by keeping the wheel slip rate for
various tire—road friction coefficients as close as possible to, but not exceeding its
optimal value. Additional requirement for the EVs is contented by prioritizing the usage
of electric drive actuators. Friction braking torque is added in series, when regenerative
torque is not enough to achieve maximum braking potential on a given road surface.

The blended ABS control method depicted in Figure 4 is identical for each wheel of the
electric SUV with four on—board motor powertrain. It requires integrated signals
transmitted from the vehicle CAN—-bus. The method is composed of three main steps.
First, the vehicle CAN—bus transmits signals required for states observation and torque
blending. The signals are vehicle longitudinal deceleration avx, angular speed of the
wheel ww, and state—of—charge of the battery SOC.

The wheel longitudinal slip of each wheel is estimated from avx and ww. The wheel slip
serves as a first input of the FLCs. Although vehicle body deceleration rate does not
provide friction coefficient directly, the variable can still be utilized for road recognition.
The latter is used as the second input of the FLCs (I).

During the first step of heavy braking, a driver requests maximum braking torque from
the actuators by slamming on a brake pedal. At this moment, the peak deceleration value
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of the vehicle is measured. Therefore, this peak deceleration rate is mapped to an
appropriate road surface, on which the same acceleration peak is achievable. This
maximum avx is maintained by the FLC via holding the optimal wheel slip during the
braking process. The road recognition is expressed as pu* (VII).

Controller area network bus

Ty, Wy soc
vy, Observer
h 4 (27)
Road surface Vi
estimation (2.8)
W A calculation
(2.6); (2.5)
1 A
FB FLC RB FLC
XX | XX
req_in reg_in
Trp | Tre 1

| Torque blending |

req_out req_out
Trp ! Trp
| Electro—hydraulic brake system | | Switched reluctance motor model |
T »(i)e

I Tre
n

Figure 4. Block scheme of the blended antilock braking system control method for a single wheel:
RB FLC — regenerative braking fuzzy logic controller; FB FLC — friction braking fuzzy logic controller.
The symbols’ description is introduced in Symbols.

In addition, during the deceleration, u* is reset to zero with a fixed frequency. While
the variable is reset, the ABS is turned off allowing maximum requested braking torque
on the wheels. During this period, the peak avx is measured again. Hence, if the road
surface remains unchanged, the same maximum reached avx is measured as in the
previous step. Though, if the road surface changes, the value of u* is updated according
to the road profile. The reset principle, which is essential in road detection, is described
with more details in (VII).

The road recognition principle is proved to be very efficient in combination with CI
methods, such as FLC, because the Cl algorithms, unlike conventional control methods
(e.g. PID, SMC, Hw, etc.), successfully deal with stochastic and ill-defined data. To this
aim, the control method does not require knowledge of vehicle peak decelerations and
optimal wheel slip on every possible road surface. It is enough to know the tire
specifications on most common ones, like dry, damp, wet, and icy. According to their
tendency, an artificial decision—making system based on fuzzy logic is derived (1), (VII).

When the road is neither damp nor wet (i.e. partly true and partly false to any degree
simultaneously), the optimal slip must be held also somewhere between two optimal
rates. For example, when the control method detects maximum avx somewhere between
damp and dry to any degree of certainty, it is not efficient to hold the wheel slip neither
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for damp nor for dry road precisely. The optimal slip is somewhere between the optimal
ones for those two surfaces. Hence, the FLC inferences these data in modus ponens form
(If premise Then consequence) well understandable for human (Negnevitsky, 2005), for
instance, with following fuzzy rule as: If the road surface value is between damp and dry,
And wheel slip ratio is high for dry road, Then decrease torque to reach wheel slip to
optimal between damp and dry road (X).

Second, the estimated variables, namely wheel slip ratio A and road surface
recognition p*, enter the FLC blocks that are designed for the FB and RB actuators
separately. Taking into consideration the input values, the FLCs calculate required RB and
FB torques, Tpe?"™ and Tj£%™, to be directed to the Torque blending block. The FLCs
obtain MISO forms.

Finally, the control method decides, how much torque to request from the actuators
(i.e. EHB and SRM). This decision is made thanks to torque blending strategy, which also
simultaneously considers vehicle speed and battery’s state—of—charge.

2.1.1 States observation

The FLCs require two variables: longitudinal wheel slip and road surface derived from
the deceleration rate of the vehicle body. In case of braking, the longitudinal wheel slip
A expressed in percentage is calculated as (Kiencke & Nielsen, 2005):

A =220 100%, (2.5)

Vvx
where A —longitudinal slip of wheel, %,

vvx — longitudinal velocity of vehicle, m/s,
vwx — longitudinal velocity of wheel, m/s.

The longitudinal wheel velocity is proportional to the angular wheel speed measured
by the sensor (Kiencke & Nielsen, 2005):

Vwyx = Ty * Wy, (26)

where rw—radius of tire, m,
ww — angular speed of wheel, rad/s.

The longitudinal wheel velocity in ABS mode is determined by integration of the signal
transmitted from the vehicle acceleration sensor (Kiencke & Nielsen, 2005):

vy = [ aydt, (2.7)
where aw— longitudinal acceleration of vehicle, m/s?.

The tire—road friction coefficient is determined as a ratio between tire vertical and
longitudinal forces (Kiencke & Nielsen, 2005), (1):

— B _ mvavx _ avx
) =T =" " =5 (2.8)

where p(A) —tire road friction coefficient,
Fx— longitudinal force of tire, N,
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F; — vertical force of tire, N,
my— mass of vehicle, kg,
g — gravitational acceleration, m/s2.

This blended ABS control method uses vehicle body deceleration rate to comprehend
which kind of road is under the tires. In this regard, u is connected to aw, and, as the
variable has vague characteristic, the road recognition is performed by the fuzzy logic,
which is described in the following subsection.

2.1.2 Fuzzy logic controller

The FLC is composed of four main elements: fuzzification, inference mechanism, rule
base, and defuzzification. In fuzzification interface, the crisp inputs are transformed into
fuzzy sets, each of which includes a MF and a membership degree of an input. Referring
to the pre—defined rule base (i.e. a set of modus ponens form rules) and using an
inference engine, the input and output fuzzy sets are mapped. Rule base is a tabular
representation of input—output relation. It contains expert’s linguistic knowledge about
how to control the plant. The finite number of MFs guarantees the finite number of fuzzy
rules. Finally, defuzzification procedure transforms consequent linguistic outputs back
into numerical value (Passino & Yurkovich, 1998). Sugeno’s type inference mechanism
based on matrix operation is used for blended ABS control method (l1).

2.1.2.1 Fuzzification

The first FLCs' input, wheel slip, has seven MFs symmetrically dispersed and overlapping
between each other over the whole UOD (Figure 5). The input contains a set of linguistic
variables {“slip equals to 0” (So); “slip equals to 3” (S3); “slip equals to 6” (Se); “slip equals
to 9” (So); “slip equals to 12” (S12); “slip equals to 15” (Sis); “slip equals to 18” (Sis)}.
Its UOD is bounded inside of [0 18] limit, which provides the range of values the A can
assume. The second input is p*. It has five symmetrically dispersed and overlapping MFs.
Its set of MF values is {“Zero”; “Icy”; “Wet”; “Damp”; “Dry”}. The UOD is bounded inside
[0 10]. All MFs have triangular form (X).

0.17
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Figure 5. Fuzzy logic controller’s membership functions and fuzzification interface for randomly
chosen A and u*: u (A / u*) — membership degree of an input.
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Symmetrical MFs’ dispersion is due to equal sensitivity of the inputs. Triangular shapes
of MFs are characterized by fast response and simplicity. The UODs are selected based
on the inputs’ workspace (Passino & Yurkovich, 1998).

In Figure 5, a fuzzification operation for the designed control method is introduced.
The numerical inputs are fuzzified with fuzzy singleton functions (blue). Fuzzification
results in formation of two arrays, a and b (VII). Each position of the array corresponds
to an appropriate MF’s linguistic value, and it contains a rate of its degree of membership
(value between 0 and 1) for a given input. When the input singleton does not intersect a
MF, its array position value is equal to zero. Thereafter, a dyadic product of two arrays is
calculated resulting in matrix C (l1):

C =a®b =ab”. (2.9)

2.1.2.2 Rule base and inference mechanism

The output of the RB FLC is the requested torque Tp?-™. In total, it has eleven possible
values starting from 0 to 200 with equal step of 20 between variables. Its rule base is

presented in Table 1 for front and rear wheels. The requested FB pressure pj %"

(proportional to Tped-™) Is limited to 150 bar in this application. Therefore,
its consequent values from 0 to 150 form sixteen output options with a fixed step of 10
between each other. Input—output mapping of the FB FLC for front and rear wheels is
introduced in Table 2. Each FLC has 35 rules (X).

Table 1. Fuzzy logic controller rule base for regenerative braking for front / rear wheels.

TRrgq_in [Nm] > p* [m/s?]
ero Icy Wet Damp Dry
So 60 80 160 200/120 | 200/ 140
S3 40 60 140 200/100 | 200/ 120
Se 20 40 120 200/60 | 200/100
A [%] So 0 20 100 180/ 40 200/ 80
S12 0 0 60 160 /20 200/ 40
S15 0 0 20 140/0 180/ 20
Sis 0 0 0 120/0 160/0

Table 2. Fuzzy logic controller rule base for friction braking for front / rear wheels.

req_in H* [m/SZ]

Py [bar] Zero Icy Wet Damp Dry
So 20 30 60 90/70 150 /90
S3 10 20 50 80/ 50 130/ 80
Se 0 10 30 70/ 30 110/70

A [%] So 0 0 10 50/ 10 90/ 50
S12 0 0 0 30/0 60/ 30
Sis 0 0 0 10/0 30/10
S1s 0 0 0 0/0 0/0
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o p* [m/s?] 60 80 160 200 200 |
(Nm] | Zero | ley | Wet| Damp | Dy 40 60 140 200 200

s, |60 | 80 | 160 200 | 2001
s, |40 | 60 [140] 200 | 200" 20 40 120 200 200
A S |' 20 40 | 120 | 200 | 200y * R= 20 100 180 200

) |52 10 | 20 [100] 180 200! 8 0 60 160 200
s,[to | o |s0| 160 |200
Sis|lo [ o [20] 140 [1801 0 20 140 180
ssLo | 0 | o |_120 160 0

0 120 160_
Figure 6. Front wheel RB FLC rule base (Table 1) transformation into matrix R.

The rule bases are designed to keep wheel slip as close as possible to its optimal rate
on a given road surface. Linguistic quantification for one of the rear wheels in RB mode
(Table 1) may be realised as follows: If wheel “slip equals to 6” And road surface is “Dry”
Then request from the SRM Tj 59" equals to “100” Nm (X).

In Figure 6, rule base expression as matrix R is depicted. Matrix R has the same size as
matrix C (e.g. 7x5), which depends on the number of MFs of every input. The same
transformation is true for other rule bases. Finally, fuzzy inference is done via
Hadamard?® product of two matrices of the same dimension, Cand R (II):

D=CoR. (2.10)

2.1.2.3 Defuzzification

The last element of the FLC is defuzzification interface. Here, the resultative numerical
(crisp) value is generated. For this, two derived matrices, D and C are utilized to calculate
the single output. A weighted average of the matrix elements is calculated: the sum of
the elements in matrix D is divided to the sum of the elements in matrix C. The output u
is calculated as follows (II):

it
Wi’
SRR

SO
DR
R
R

dls

R

e
AN
s
R
i

0 0
n* m/s?] A [%] u* [m/s?] A [%]

10
0 0
w* [m/s?] A [%] w* [m/s%] A %]

Figure 7. FLC 3D surfaces for RB and FB front (subscript ‘f’) and rear (subscript r’) wheels.

10 Jacques Salomon Hadamard (1865 — 1963) — French mathematician.
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SN (2.11)

i=1;j=1Cij

where i=1,2,..Mandj=12,..,N,
dij — element of i" row and j column of matrix D,
cij— element of i row and j column of matrix C,
u —output of an FLC.

Finally, in Figure 7, the nonlinear 3D control surfaces for every FLC are generated (X).
The surfaces represent the outputs of the FLCs against the controller inputs (Passino &
Yurkovich, 1998). The FLCs output shows requested braking torques, Tpe®" and Ty g%,
that follow inside the Torque blending block (Figure 4).

2.1.3 Torque blending strategy

Torque blending strategy is designed to maximize the usage of the SRMs during the
braking process without overcharging (i.e. without damaging) the battery of the EV (IX).
Therefore, it guarantees a highest energy recuperation capability on a given road surface
(VIl). Torque blending strategy is completed with binary logic. The strategy’s flowchart is
presented in Figure 8 (IX).

First, the algorithm checks the velocity of the vehicle. When vehicle longitudinal speed
Vv« is slower than fixed minimum threshold v{,’}f” (e.g. 15 — 8 km/h), the ABS control is
deactivated, because the distance travelled with very low speed with locked wheels is
not critical (IX).

C Activate ABS ) C Deactivate ABS )

req_out _
Tap =0
req_out _mreq_in
TFB‘ _TF‘B

SOC = 50C,,,
?

Treq?outﬁ max

RB “'RB
req_out_mpreq_in _ mmax
TFB _TFB TRB

Treq,in _ mmax
RB ~ *RB
]

req_out_mnreq_in
TRB _TRB
req_out _
1ffes =0

Figure 8. Torque blending strategy flowchart for a single wheel.
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Second, when the SOC reaches maximum allowed threshold SOCmax (e.g. 90%), braking
switches to pure FB mode, where the torque for the SRM is equal to zero (IX):

req_out __
{ Trp =0
req_out __ mreq_in’
TFB - TFB

(2.12)

Third, the blended ABS considers the SRM’s peak performance. Specifically, when
peak torque TFE** of the SRM is requested by the FLC, the block supplies the peak torque
request to the SRM and calculates additional torque for the FB actuator to ensure
optimal A deceleration as (I1X):

Treq_out — Tmax
{ RB RB (2.13)

_out req_in max’
Treq out _ T _
FB

FB RB

Finally, when none of the previous conditions are true, the EV decelerates only with

SRMs as the ABS actuators (IX):
Treq_out — Treq_in

{ kB kB (2.14)

req_out __
Teg =0

2.2 Experimental verification

The blended ABS control method was tested in sets of experiments. First, the control
method was applied to an SUV model with conventional FB system (I). Thereafter,
the control method has been combined with torque blending strategy and simulated for
the fully electric SUV with four on—board motors powertrain (VII). Finally, its functionality
was verified against the HIL platform available at Technische Universitit lImenau?! (IX),
(X). The outcomes of the latter are presented in this Chapter.

2.2.1 Vehicle modelling and parameterization

Vehicle under investigation is an electric SUV with four independent SRM drives
connected through half-shaft transmission on each wheel as a propulsion system
(Appendix 2, Figure A2.1). A schematic drawing of four on—board motors powertrain
architecture is introduced in Appendix 2 (Figure A2.2). Vehicle and powertrain
configurations are listed in Appendix 2 (Table A2.1) (VII), (X).

An experimentally validated SUV is modelled as 14 degree of freedom vehicle in IPG
CarMaker'? 6.0. The model is integrated with MATLAB/Simulink!® R2015a (64 bit)
simulation environment. Visual representation of the simulation allows users for deep
understanding of the vehicle behaviour (X).

The SRM'’s torque-rotational speed characteristics are obtained experimentally.
The plots are delivered in Appendix 2 (Figure A2.3). Taking into account transmission gear
ratio (i.e. 1:10.56) and motor’s peak torque (i.e. 200 Nm), the maximum achievable
torque on the wheel is 2100 Nm. The SRM’s dynamic performance is described by the
second-order transfer function (VII).

11 Imenau, Germany.
12 CarMaker is a registered trademark of the IPG Automotive GmbH (Germany, Karlsruhe).
13 MATLAB/Simulink is a registered trademark of the MathWorks, Inc. (Natick, MA, USA).
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Figure 9. Tire—road friction—slip curves for a modelled with Pacejka’s “Magic Formula 6.1” (Pacejka,
2012) tire on various road surfaces: (a) front wheels; (b) rear wheels.

Table 3. Optimal wheels’ slip rates and vehicle’s body deceleration values for common road
surfaces.

Icy Wet Damp Dry
Front wheel A [%] | 2.51 5.25 7.81 9.83
Rear wheel A [%] | 2.71 6.09 8.95 11.64
Peak avx [m/s?] 2.66 5.12 7.66 10.03

2.2.2 Tire model
The tires are modelled with Pacejka’s “Magic Formula 6.1” (Pacejka, 2012). In Figure 9,
the slip—friction curves for front and rear wheels on common road surfaces (i.e. dry,
damp, wet, and icy) are shown. Table 3 contains the optimal wheel slip values together
with vehicle body peak deceleration rates for a given tire and vehicle (X).

The peaks of the curves are emphasized with dots, where the wheel slip is optimal for
a given road surface. The region from zero slip to its optimal value is called stable. In the
stable region due to positive force—slip gradient, the vehicle presumes steerability.
The remaining curve region is called unstable, where the vehicle lateral control is no
longer possible (Rajamani, 2012).

2.2.3 Hardware—-in-the—loop test bed

In Figure 10, the EHB is presented. The system is based on the slip control boost
technology developed by the ZF TRW Automotivel®. The test rig contains EHB and its
control unit. The test rig’s task is to reproduce real pressure dynamics of the brake circuit.
It consists of the brake calipers mounted on two brake disks fixed with respect to the
structure frame. The test bed is equipped with sensors for brake line pressure

14 Koblenz, Germany.
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measurement in four brake calipers in a range from 0 to 20 MPa with cut—off frequency
of 1 kHz (X).

Figure 10. EHB hardware—in—the—loop test bed at Technische Universitit llmenau (Germany):
1 - brake disk; 2 — brake caliper; 3 — master cylinder with reservoir.
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Figure 11. Hardware—in—the—loop hardware and software communication.

The ABS test rig is connected to the host personal computer via dSPACE*® electronic
platform (Figure 11). The latter unit serves as an intermediate connection between EHB
system and vehicle model. Its task is to convert signals from digital and analogue and
back. The personal computer runs multibody electric SUV model (X).

2.2.4 Experimental results

The simulation results of the FLC—-based ABS control method on various road surfaces
and under complex braking manoeuvres, like curved split—y, straight split—, braking on
changing road surfaces, etc., are elaborately discussed in I. The comparison between no
control braking and braking with intelligent FLC ABS is also presented. Supreme
functionality of the control method proves its robustness to changing environmental
conditions and advanced safety performance of the ABS, namely stability maintenance
and braking distance reduction.

In VII, the ABS control method is simulated for both FB and RB actuators. The results
of braking with decoupled regenerative, pure friction, and locked wheels braking
performance on different road surfaces are provided and compared between each other.
The proposed control method is not only capable of decelerating EV with decoupled
braking system faster than with conventional EHB system, but also of recuperating up to
10.27 % (save up to 17.74 kJ) of energy spent on braking.

Torque blending strategy functionality is studied in IX. The HIL simulation on high—u
surface is conducted with battery SOC and vehicle speed taken into consideration.
The blended ABS control method showed high efficiency and robustness against varying
road conditions and changing system’s states. During the experiment, the SOC of the
battery achieves its maximum threshold. As a result, the torque blending switched from
RB to a pure FB mode. The SUV continues deceleration with optimal slip without SRMs’
intervention and performance degradation.

The blended ABS control method functionality on real EHB system is performed in IX and
X. The HIL simulation is conducted for decoupled braking system and compared to pure FB
system. The results on low—p and transient road surface (i.e. from high—p to low—u) are
presented. The latter is scoped in Figure 12, where the vehicle starts deceleration on
high— surface and proceeds to low—u one.

15 dSPACE (digital signal processing and control engineering) is a registered trademark of the
dSPACE GmbH (Paderborn, Germany).
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Figure 12. Hardware—in—the—loop simulation results of blended antilock braking system control
method from braking on varying road surface (from high—u to low—u): (a) vehicle and wheels speed;
(b) wheels longitudinal slips; (c) RB torques; (d) FB torques; (e) road detection with vehicle body

deceleration. Subscript “i” is for each wheel: [front left (FL), front right (FR), rear left (RL), rear right
(RR), f— front, r —rear].
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In Figure 12. (a), wheel speeds and vehicle longitudinal velocity diagrams are plotted.
The wheels’ speeds tend to follow the vehicle body velocity, while the controller does
not allow the wheels’ lockage. The vehicle decelerates with higher wheel slip values at
the beginning of the manoeuvres (Figure 12. (b)). Whilst the slip of the rear wheels is close
to its optimal value, for the front wheels the value is much lower. This phenomenon is
because the peak braking torque for the front wheels exceeds the SRMs limits
(Figure 12. (c)). Consequently, the controller activates the FB to supply the braking torque
gap (Figure 12. (d)). However, the FB dynamics are not as fast as RB’s one, what leads to
the control accuracy losses (X).

The road estimator successfully detects transient road conditions (Figure 12. (e)).
At the beginning, the peak deceleration is around 10 m/s2, which refers to high—u surface
(Table 3). After 4 seconds, the vehicle drives on a low—u road, the control method resets
p* and measures peak avx again. As the road surface has changed, a new value of p* is
recognized. Thereafter, the controller reduces the braking torques (Figure 12. (c)) to
maintain the wheel slip rates close to their optimal values for a low—u road surface
(Table 3). The FB torque is no longer requested (Figure 12. (d)), because the SRM’s torque
is enough to decelerate the SUV with optimal wheel slips (Figure 12. (b)) (X).

2.3 Summary

In this Chapter the blended ABS control method is proposed. The method uses vehicle
body deceleration to recognise road surface under the tires. Intelligent FLC
simultaneously considers detected road and longitudinal wheel slip to determine an
appropriate braking torque for RB and FB separately to hold optimal wheel slip during
the whole braking manoeuvre for a given tire—road friction coefficient. Hence, the
method reaches maximum braking potential on various road surfaces. The FLC designed
for each actuator and every wheel separately (1), (VII).

Torque blending strategy accounts battery’s SOC, vehicle speed, and requested RB
and FB braking torques. The strategy focuses on usage of the electric motors as brakes
on their maximum potential. The conventional EHB system is added only, when braking
torque generated by the SRM is not enough to keep wheel slip on its optimal value.
Therefore, blended ABS control method not only diminishes braking distance with
maintained steerability, but also regenerates peak energy during braking. Thus, it allows
for enhancing the EV’s driving range (IX), (X).

A set of experiments on HIL test bed was conducted with various road conditions.
The case with transient road surface (i.e. braking from high—u to low—) is presented and
discussed. Thanks to intelligent FLC accompanied with road detection and torque
blending strategy, the control method adapts to stochastic environmental conditions.
Consequently, the maximum deceleration force is reached with concurrently peak
recuperation energy for a given electric SUV (X).
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3 Method for driver distraction detection and evaluation

Present Chapter is dedicated to the DD detection and evaluation method. It is organized
in three subchapters: Method description, Experimental verification, and Summary.
In the first one, the method for driver distraction detection and evaluation is described.
The second subchapter is dedicated to DIL experimental study, which was conducted for
multiple STs. Finally, the Chapter is briefly outlined in Summary.

3.1 Method description

A block scheme of the method for detection and evaluation of DD induced by secondary
activity while operating a vehicle is introduced in Figure 13. The method includes three
blocks. The first one is a model of normal driving performance of an individual
participant, which is unique for every single driver (IV). Next, the distracted driving
performance is compared to the predicted one in the Error Calculation block. As a result,
the performance—based errors caused by the ST are calculated. Finally, the model for
total DD evaluation merges the data from the previous step into a single variable (ll).

Tramingsetl Av Ax dsw

Vi el of
AVl AXG ag,t

Av, Av, | Evaluator

v, o—> .
Driver Bx, Error Ax, DD
¢, &> model Calculation —
(Predictor) |_%swp (3.1)-(3.3) [[Gswr
Cy >

Figure 13. Drive distraction detection and evaluation method block scheme. The symbols
descriptions are listed in Symbols. Superscript “t” refers to “training set” collected during the
distraction—free driving.

7

The main idea of the method is to observe the difference between person’s driving
without distraction and driving under the influence of distractive ST. To explain the
principle of the DD evaluation Figure 14 is added. It depicts one of the driver
performance—based measures, lane keeping ability Ax.

The transparent vehicle symbolizes driver’s usual angle cutting in turning manoeuvre.
The vehicle’s centreline trajectory is drawn with light blue dotted line. Assume that when
the driver is distracted, the vehicle’s centreline trajectory follows the blue solid line
(Figure 14, filled vehicle). By comparing the normal driving performance with the one
under DD, the difference can be noticed (Figure 14, red surface). This difference is a
resultative lane keeping ability for each individual driver (V).

In the same way the second driver performance—based measure, speed limit holding
ability Av, is tracked. A schematic explanation is presented in Figure 15. Again, the dotted
light blue line symbolizes participant’s usual speed keeping ability on a specific road
segment, which in this instance is 90 km/h. On the contrary, when driving under
distraction, the speed of the vehicle was held around 78 km/h (Figure 15, blue solid line).
Thus, the deviation between normal and distracted speed limit maintenances is another
performance—based measure for DD detection and evaluation method (Figure 15, red
surface). Finally, the third measure is the difference between normal (i.e. predicted)
steering wheel acceleration and steering wheel acceleration while completing the ST (V).
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Figure 14. Driver performance—based measure, lane keeping ability: light blue dotted line — Ax,;
blue solid line — Ax; red surface — Ax;.
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Figure 15. Driver performance—based measure, speed limit keeping ability: light blue dotted
line — Avy; blue solid line — Av; red surface — Av,.

3.1.1 Driver model

The first step of the DD detection and evaluation method is to predict with a reasonable
degree of accuracy driver’'s normal performance on a specific road segment.
The segment is described with an information about the road, namely speed limit v, road
curvature (radius) cr, and road curve direction cq. The latter is a Boolean type with the
crisp values: -1 meaning that the road curve goes to the left, 0 —it is straight, 1 — it turns
to the right. As the Driver model tends to forecast driver performance, it is also called
the Predictor (V).

The Driver model uses the pre—processed Training set collected for each individual
driver during a DD—free run in DIL experiment. During the experiment, the participants
are requested to drive as accurate as possible obeying all the traffic rules, in particular
by remaining inside of the driving lane and by holding all the speed limits. Hence, they
are completely dedicated to show their best performance from the safety point of view
(v1).

39



The model receives an information about the road segment and outputs driver’s
performance, what are the lane and speed limit keeping abilities and the force applied
to the steering wheel. Therefore, the Predictor forecasts driver’s lateral and longitudinal
behaviour on a given road segment (V).

To complete the task of mapping the pre—collected and newly received data, a Cl
algorithm, i.e. ML, is applied. To generate continues output, regression algorithms that
are widely used in practice are exploited (Alpaydin, 2004). Among them are Gaussian
process regression model, ANN, layer recurrent ANN, neuro—fuzzy system, and k—NN.
The detailed information about models design and parameters selection as well as their
prediction accuracies comparison are introduced in (1V), (VI), (VIII).

In short, the k-NN outperformed in prediction accuracy other known nonlinear
regression algorithms (VIII). The k—NN comparing to other Cl methods used for prediction
(e.g. neuro—fuzzy system, ANN, etc.) achieves minimum possible training error on any
regression dataset (Goodfellow, Bengio, & Courville, 2016). The principle of the
algorithm’s operation for DD detection and evaluation method is described in (VI).

3.1.2 Error calculation

The second block is Error calculation. During this stage, the predicted driver
performance—based measures generated by the Predictor, Axp, Avp, aswp, are compared
to the driving under the influence of ST, Ax, Av, asw. The outcomes of this block are the
resultative performance, Ax:, Avr, aswr, calculated using the following rules (I11):

Av —Av,, if Av>0; Av, > 0; |Av| > |Av
( P D D
Av = Avy, if Av < 0; Av, < 0; |Av| > |Avy|

Av, = Av + Avy,,  if Av > 0; Av, < 0; |Av| > |Avy], (3.1)
Av + Av,, if Av < 0; A, > 0; |Av| > |Av|
0, if |Av| < |Av,|

where Av, —resultative vehicle speed deviation, km/h,
Av — real vehicle speed deviation, km/h,
Avp — predicted vehicle speed deviation, km/h.

(Ax —Ax,, if Ax > 0; Ax > 0; |Ax| > |Ax,|
Ax —Axy, if Ax < 0; Axy, < 0; |Ax| > |Ax,|

Ax, = Ax + Ax,, if Ax > 0; Ax, < 0; |Ax| > |Ax,], (3.2)
LAx + Ax,, if Ax < 0; Ax, > 0; |Ax| > |Ax,|
0, if |Ax| < |Axy|

where Axr—resultative lane keeping offset, m,
Ax —real lane keeping offset, m,
Axp — predicted lane keeping offset, m.
(Asw — Aswp, if asw > 0; asyp > 0; lasy| > |aswpl
sw — Aswpr  if agy < 0; asyy < 0; |asw| > |aswyl
Aswr =

asw + Aswp,  if asw > 0; asyy < 0; |asw| > |aswyl, (3.3)
Lasw + aswp, U asw < 0; aswp > 05 lasw| > |aswpl
0, if lasw| < laswyl
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where aswr — resultative steering wheel acceleration, °/s?,
asw — real steering wheel acceleration, °/s?,
aswp — predicted steering wheel acceleration, °/s.

More precisely, the block assigns zero to any variable, when the performance measure
under DD is smaller or equal to its predicted one. It means that the driver passed the
road segment in the same way as she/he does in normal driving and, thus, was not
distracted. Contrariwise, if the value under DD is greater than the predicted one,
the difference between two values is calculated. Hence, when the performance becomes
worse due to DD, the block detects unusual vehicle dynamic performance and measures,
how much does the ST influence vehicle dynamic performance from the safety point of
view (l11).

For a given road segment, positive values of Ax:, Avr, aswr mean driving to the right
from its normal trajectory, excess its normal speed, and turning the steering wheel to the
right, respectively. Contrariwise, negative values of Ax:, Avr, aswr mean driving to the left
from its normal trajectory, slowdown its normal speed, and turning the steering wheel
to the left, accordingly (V).

3.1.3 Driver distraction evaluation

To evaluate DD, another Cl-based (i.e. fuzzy logic) solution is promoted. In this method,
the main purpose of the FLC is to fuse the resultative performance—based measures into
a uniform output, which symbolizes a level of driver distraction in percentage DD.
The algorithm serves here as an artificial decision—making system.

The fuzzy Evaluator is realised using the same approach as described in (ll), hence,
Sugeno’s type inference engine is applied. However, now the FLC has three inputs and a
single output (Figure 13), making it, just like in case with the blended ABS controller
(2.1.2), a MISO system.

3.1.3.1 Fuzzification

The Evaluator input MF’s are depicted in Figure 16. The first input, Av,, has five
symmetrically dispersed and overlapping each other triangular shape MFs (Figure 16.(a)).
It has a set of linguistic variables for speed deviation from segment speed limit:
{“negatively high deviation” (neg_high); “negatively low deviation” (neg_low);
“no deviation” (zero); “positively low deviation” (pos_low); “positively high deviation”
(pos_high)}. The UOD is restricted inside [-12 12] (V).

The second input, resultative lane keeping offset Ax,, MFs are illustrated in Figure 16.(b).
As the first input, it has five triangular shape symmetrically dissipated and overlapping
between each other over the whole UOD MFs. The UOD is constrained between
[-1.5 1.5]. Its linguistic variables are {“negatively far offset” (neg_far); “negatively close
offset” (neg_close); “no offset” (zero); “positively close offset” (pos_close); “positively far
offset” (pos_far)} (V).
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Figure 16. DD detection and evaluation method'’s input MFs: (a) resultative speed keeping ability;
(b) resultative lane keeping offset; (c) resultative steering wheel acceleration.

Table 4. Fuzzy logic Evaluator rule base.

aswr [°/s%] = negative
DD [%] A [m]
neg_far | neg_close zero pos_close | pos_far
neg_high 100 85.8 42.9 85.8 100
Av neg_low 100 57.2 14.3 57.2 100
[km/h] zero 57.2 28.6 0 28.6 57.2
pos_low 85.8 42.9 14.3 42.9 85.8
pos_high 100 85.8 42.9 85.8 100
aswr [°/s?] = zero
DD [%] Ax: [m]
neg_far | neg_close zero pos_close | pos_far
neg_high 100 71.5 42.9 71.5 100
Ave neg_low 85.8 14.3 0 14.3 85.8
zero 42.9 0 0 0 42.9
[km/h]
pos_low 71.5 14.3 0 14.3 71.5
pos_high 85.8 57.2 28.6 57.2 85.8
aswr [°/s?] = positive
DD [%] A [m]
neg_far | neg_close zero pos_close | pos_far
neq_high 100 85.8 42.9 85.8 100
Av neg_low 100 57.2 14.3 57.2 100
[km/h] zero 57.2 28.6 0 28.6 57.2
pos_low 85.8 429 14.3 429 85.8
pos_high 100 85.8 42.9 85.8 100

42



The last input is a resultative steering wheel acceleration aswr, which is also composed
of triangular symmetrically disseminated and overlapping between each other MFs
(Figure 16.(c)). It has three MFs, with a set of linguistic variables: {“negative acceleration
(i.e. to the left)” (negative); “zero acceleration” (zero); “positive acceleration (i.e. to the
right)” (positive)}. The UOD is settled in [-500 500] (V).

Fuzzification is completed in accordance with equation (2.9). Nonetheless, in this
method, there are three input variables. Thus, matrix C takes size of 5x5x3, which is
proportional to the number of MFs for each input of the Evaluator (VIIl).

3.1.3.2 Rule base and inference mechanism

The output of the Evaluator is a level of DD expressed in percentage DD. Therefore, the
UOD is bounded between [0 100]. It has eight possible values with equal step of 14.3
between each other {0; 14.3; 28.6; 42.9; 57.2; 71.5; 85.8; 100}, what gives also equal
responsiveness of the output MFs (ll).

The input—output mapping is completed via 75 modus ponens form linguistic rules.
The rule base is introduced in Table 4. An example of the input—output relation is as
follows: If steering wheel acceleration is “positive”, And vehicle speed deviation is
“neg_low”, And lane keeping offset is “pos_close”, Then DD is “57.2” % (VIII).

On the same principle as in Figure 6, the rule base forms matrix R of 5x5x3 in size,
where for every layer of 3D matrix a rule base exists. Again, Hadamard product of two
matrices C and R of the same size results in matrix D applying equation (2.10) (l1).
Each element of D contains information about certainty of every output MF activation
for a given input.
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Figure 17. Fuzzy logic Evaluator 3D surfaces for several constant steering wheel acceleration values:
(a) -500; (b) O; (c) 300; (d) 500.
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3.1.3.3 Defuzzification

The final stage of the fuzzy Evaluator is conversion of the calculated matrices D and C
back into a single crisp number. The centre of gravity is used, where the sum of elements
in Cis divided by the sum of elements in D, applying equation (2.11). The result of the
designed Evaluator is observable in Figure 17, where nonlinear 3D surfaces are
introduced for several constant aswr values (ll1).

3.2 Experimental verification

The DD detection and evaluation method is verified in DIL experiments in two stages.
First, the DIL experiment with a single ST exploiting the simple driver simulator was
conducted. The DIL experiment was organized in cooperation with IPG Automotive
GmbH?®, Text messaging on a cellular phone while driving served as a ST. The participants
were instructed to have natural chat conversation with an experimenter. Furthermore,
the DD was evaluated only with two performance—based measures: lane keeping ability
and speed limit maintenance. The methodology described in this subchapter was also
true for the single ST experiment (ll), (VI). Thereafter, the method functionality was
studied in DIL with multiple IVIS—induced STs on advanced driver simulator (l11), (V), (VIII).
The list of the tasks is located in Appendix 3 (Table A3.1). These studies were conducted
in cooperation with SKODA Auto a.s.”?, and the results are presented in this subchapter.
The k—NN is used in DD detection and evaluation method experimental verification as
the Driver model, because it appeared to be the most accurate Predictor among the
tested algorithms (VIII).

3.2.1 Participants

Thirty drivers without serious physical or mental health disorders contributed to this
study. They were regular participants of the DIL DD experiments, and, thus, were well
acquainted with the simulator. The participants owned valid driving licenses and daily
used personal vehicles for transportation. Five contributors were women, the rest —men.
The participation in the DIL experiment was rewarded (V), (VIII).

3.2.2 Apparatus

The DIL experiment was performed using the advanced vehicle simulator (Figure 18)
available at SKODA Auto laboratory in Mlad4 Boleslav, Czech Republic. It is a fixed—base
vehicle mock—up with the screen in front of the wall, where the virtual world is projected.
A two-lane rural highway road with different curvatures and speed limits (i.e. 30, 50,
90 km/h) was modelled in the virtual world. The lane width was 3.5 m. The lane can be
roughly divided into two parts: the one that has a lower speed limitation (i.e. 30 and
50 km/h) with lots of curvatures, and the one that has a higher speed limit, 90 km/h,
but almost straight road (i.e. big road radius). The road shape is identical to the one
existing in the Czech Republic. Its total distance is 10626 m, what takes about 10 mins of
driving a full lap, if all the traffic signs are respected. There were no other dynamic objects
(e.g. other vehicles, pedestrians, etc.) introduced in the virtual world (l1). The road shape
together with speed limits is presented in Appendix 3, in Figure A3.1.

16 Karlsruhe, Germany.
17 Mlada Boleslav, Czech Republic.
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(b)

Figure 18. Multiple secondary tasks experiment test facilities: (a) advanced vehicle simulator;
(b) a participant operating the simulator while performing a secondary task.

A participant is settled down inside the simulator. As the test rig has an automatic
transmission, the driver operates it by acting only on steering wheel and throttle and
braking pedals. The simulator cockpit is identical to the one used in ground vehicles.
Its head—up instrumental panel displays vehicle velocity. All the STs are executed via the
IVIS display, which is placed, like in most of the European counties, on the driver’s right.
The data are collected with 10 Hz frequency (lll).

The vehicle and the virtual world scene are modelled with an open source library for
C++!® programming language, Open Dynamics Engine v 5.0 (Smith, 2006). This model
includes vehicle body, suspension system, and four wheels completed with Pacejka’s
“Magic Formula” (Pacejka, 2012). The vehicle is parametrized according to Skoda Yeti
SK316 with 1.4 liters twin charged stratified injection 77 kW engine specifications (VIII).

The steering wheel acceleration was obtained from a signal transmitted from the
steering wheel sensor mounted on the shaft end of the steering axle. Lane keeping ability

18 An object—oriented extension of C programming language.
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and vehicle velocity abnormalities were calculated from x, y, and z coordinates received
from the global positioning system of the virtual world (V). More information with visual
illustration on the data extraction is provided in (VI).

3.2.3 Procedure

Before the DIL experiment, the participants received unlimited time to get acquainted
with the simulator. In addition, before the beginning of the DIL test, the drivers were well
instructed to the exploited IVIS and all the STs (Table A3.1) execution (ll1).

The DIL experiment had two steps. First, the participants were asked to pass two laps
in the virtual world fully dedicated to safe vehicle operation. They were requested to
drive in the middle on their lane and to hold speed limit as good as possible. No DD
appeared during this step. The collected data were utilized for the Driver model (Figure 13)
for each individual participant.

For the second step, the participants were requested to continue driving following all
the traffic rules as accurate as feasible, though, this time they were requested to submit
a ST in parallel to vehicle control. The drivers had no time restriction for the STs
execution. What is more, each task was called with a reasonable time delay. Therefore,
the participants drove roughly equal time under DD and free from secondary activity (lIl).

The experimenter sent the vocal order to execute a random ST from the list (Table A3.1).
Each ST was executed several times during the experiment. When ST is accomplished,
the driver sent a feedback via windshield washer switch behind the steering wheel. If the
task is correctly completed, the driver heard a vocal signal that informed about the
correctness of the submitted task. When the task is wrong and the participant did not
hear the vocal confirmation, she/he had to perform the ST again (VIII).

3.2.4 Experimental results

The results of DD detection and evaluation for a random DIL experiment participant are
introduced. During the experiment each driver drove more than two laps under
distraction. Nevertheless, for better observability the results from only one lap (i.e. 10
minutes of experimentation) are presented. The DD detection and evaluation is realized
offline after the data collection phase (3.2.3).

3.2.4.1 Driver model

In Figure 19, the prediction results (blue curve) versus the training set (black curve) are
presented. The bright green curve represents the information about the road segment,
namely speed limit (Figure 19.(a)) and curvature (Figure 19.(b)). The small radius
designates a sharp turn, while the big radius — almost straight road.

The speed deviation on a 50 km/h speed limit road segment (Figure 19.(a), from 630 to
890 s) is relatively low, in average 3 km/h below the limit (i.e. 47 km/h). The k—-NN well
copes with this data, and accurately predicts this speed maintenance ability. On the other
hand, when the participant drove on high speed limit segment (Figure 19.(a), from 900 to
1200 s), in average the vehicle speed was up to 5 km/h lower. This approximation is also
true for the Predictor.

Lane keeping ability is depicted in Figure 19.(b). The model precisely predicts driver’s
performance on a low speed limit segment (Figure 19.(b), from 630 to 890 s).
This segment is characterized with numerous different road curvatures (bright green
line). On the straight road segment (Figure 19.(b), from 900 to 1200 s) the lane keeping
ability is averaged to almost constant variable, 0.1 m (blue line), what means that the
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driver stayed in the middle of the lane almost for the whole segment. However, it was
not true in practice (black curve).
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Figure 19. Driver performance prediction in comparison to training set: (a) vehicle speed deviation;
(b) lane keeping offset; (c) steering wheel acceleration.

In case of steering wheel acceleration (Figure 19.(c)), high acceleration rates were
predicted and indeed were executed on curvy road segment (Figure 19.(c), from 630 to
890 s). On the contrary, low acceleration rates were recognized by the Predictor on
straight road segment with high speed limit (Figure 19.(c), from 900 to 1200 s). This is
logical, because the one does not need to act actively on steering wheel on a straight
road.

In short, the prediction is not accurate enough for some performance—based variables
on some specific road segments, what can negatively affect the DD detection and
evaluation method functionality. The accuracy losses can be explained with highly
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nonlinear data of human behaviour and complexity of the driver modelling challenges.
Nevertheless, for this application the driver modelling is accepted as satisfactory, due to
relatively low mean square error for each variable (VI).

In Figure 20, the predicted performance versus the driving under the influence of DD is
introduced. The grey background on each figure depicts the period of ST execution. The
black—colour number on the grey background on top of each figure is the number of the
ST (Table A3.1). The blue curve is again the variable forecasted by the Driver model, and
red curve is distracted driving.

For instance, the driver significantly dropped the speed of the vehicle, while
completing the task number 9 (media item selection) (Figure 20.(a)). The prediction
assigns around 3 km/h speed deviation on this segment, yet, the speed was decreased
by more than 20 km/h when submitting the ST. For the same ST, the driver failed to keep
the lane (Figure 20.(b)) as she/he stayed relatively far to the left from the middle lane
instead of predicted 0.5 m to the right of the road lane centre. Needless to say, the
acceleration of the steering wheel was very high to both the left and the right directions
(Figure 20.(c)), what is unusual for the given driver. It symbolizes that the driver had to
act on a steering wheel very intensively to pass the curvy segment. In addition, the task
took the driver considerable time to complete.

Another example is noticed in case of the tasks 14 and 15 (both are operation in IVIS
navigation). Both STs lead the driver to diminish the speed (Figure 20.(a)): the velocity was
dropped to 75 km/h on a 90 km/h speed limit segment. The Predictor instead outputs
not more than 5 km/h, what is normal for this participant.

Moreover, while operating the in—vehicle navigation system, the driver conducted a
swing manoeuvre completing task 14 and went too far from the middle lane to the left
submitting the task number 15 (Figure 20.(b)). These manoeuvres were especially
dangerous for holding the stability of the vehicle, even if the road was almost straight.
What is more, the tasks were performed on high speed limit road (90 km/h), what makes
the mentioned mistakes more dangerous for the driver and other traffic participants.

For steering wheel acceleration (Figure 20.(c)), the ST number 14 and 15 were
noticeably demanding. Again, considering almost straight road of the segment,
the prediction suggests that the minimum force must be applied on a steering wheel by
the driver. Though, the participant had to energetically act on the steering wheel.

On one hand, some tasks lead to comparative impact on driver’s control over the
vehicle. For this driver, the tasks number 6, 7, 8, 9, 14, and 15 were very influential.
They caused speed decrease, what normally would irritate other traffic members.
Simultaneously, the DD was the reason for departing the driving lane and unnecessarily
active control of the steering wheel. The first one is a potential danger of collision, while
the second one — of vehicle stability degradation.

Contrariwise, there are STs, which execution while driving does not affect driver’s
behaviour. For example, tasks 3, 4, 10, and 11 did not cause the driver either to
increase/decrease vehicle velocity, or to drive the car off the driving lane, or to drastically
act on the steering wheel (Figure 20). Consequently, by comparing the predicted driver
performance to the performance under the influence of the ST, the abnormal driving
behaviour can be easily recognized. Taking into consideration that this behaviour is
accompanied with distractive ST accomplishment, it can be concluded that the method
is effectively capable of DD detection.
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Figure 20. Driving with ST accomplishment versus driver performance prediction: (a) vehicle speed
deviation; (b) lane keeping offset; (c) steering wheel acceleration.

3.2.4.2 Resultative performance

The resultative driving performance, Av;, Ax;, aswr, diagrams are presented in Figure 21.
The red curve depicts driver’s performance while completing the STs. The purple lines
are the resultative performances, which are the products of equations (3.1) — (3.3).
The plots show the difference between predicted and real values. Fundamentally, the
purple curve is a difference between red and blue plots from Figure 20 for each
performance—based variable.
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Figure 21. Resultative driver performance—based measures versus driving with secondary task
accomplishment: (a) vehicle speed deviation; (b) lane keeping offset; (c) steering wheel
acceleration.

3.2.4.3 Driver distraction evaluation

The final stage of the method is DD evaluation with fuzzy logic. The results of
performance—based data fusion by the FLC are shown in Figure 22. The black area shows
the level of DD expressed in percentage.

In 3.2.4.2, it has been concluded that STs 6, 7, 8, 9, 14, and 15 were very demanding,
what caused considerable variation in driver’s vehicle operation. This variation had
sensible impact on safe vehicle driving. As a result, the fuzzy—logic—based Evaluator
measures exclusively high level of DD for these STs, while for the other tasks and also for
normal driving with ST (white background) the level of DD is very low, less than 20%.

Driver distraction remains high even after ST fulfilment. As it has been noticed by the
experimenter, it happens, because the drivers, after completing the ST, realize their
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performance errors and try to correct them as fast as feasible. This leads to additional
mistakes in vehicle control. Therefore, DD is dangerous not only during the IVIS
operation, but also after the secondary activity execution.
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Figure 22. Driver distraction evaluation.

3.3 Summary

The DD detection and evaluation method based on Cl algorithms combination is
described in this Chapter. The method contains three blocks: a unique for each individual
Driver model, a subsystem for driver performance errors measurement, and total DD
calculation with fuzzy logic. The method tends to predict human performance on a given
road segment using previously collected data. This performance is then compared to
driving under DD. At last, the result of the data comparison passes through
fuzzy—logic—based Evaluator to turn into the conclusive level of DD measured in
percentage (VI).

A sub—block of the method, Driver model (Figure 13), is completed with ML algorithm.
It acquires an information about the road (i.e. curvature, direction, and speed limit) and
generates vehicle dynamic performance on a given road segment. Several nonlinear
regression methods were examined on accuracy of driver performance prediction (VIII).
The most precise model was achieved using k—-NN, which is recommended for creating a
unique driver performance model for each person for DD and autonomous driving
research (IV).

The method is verified in a set of DIL experiments with real people. First, a single ST's
(i.e. text messaging on a cellular phone) impact on DD was studied on a simple car
simulator (l1), (VI). The final experiment was conducted on an advanced driver simulator
with an identical to ground vehicles cockpit. Multiple STs from IVIS were studied on their
influence on DD. The methodology is divided to two phases. During the first one the data
from DD—free driving is collected for driver performance modelling. The second stage
involves ST accomplishment in parallel to driving a vehicle (l11), (V), (VIII).

The results showed that the method is efficient in abnormal driving recognition
simultaneously considering multiple performance—based measures. From the recognized
unusual behaviour, the method is capable of not only detecting DD, but also of precisely
measuring its level. Hence, it allows for studying the secondary activity impact on safe
vehicle control and for comparative analysis of different STs' influences on DD.
The method is exploited as a benchmark for safe and intuitive IVIS design with minimum
DD in passenger vehicles (VI).
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4 Conclusions and future works

4.1 Conclusions

In addition to transportation, vehicle technology (i.e. marine, air, and ground vehicles)
must ensure safety of occupants, goods, and environment, which has higher priority than
time or cost. Vehicle safety systems address a large variety of safety matters such as
providing optimal stability control, collision avoidance, enhanced vehicle handling, etc.
One of the oldest vehicle safety systems, ABS, aims at decelerating a vehicle as fast as
possible along with simultaneous maintaining steerability and driving stability during an
emergency braking manoeuvre. Furthermore, in addition to vehicle longitudinal and
lateral control, traffic perception, root planning, etc., drivers often perform secondary
activities, like interaction with IVIS. Due to exceeding multitasking, ST-induced DD
contributes to a significantly large number of traffic accidents with fatal outcomes.
Therefore, DD elimination is a vital challenge for human, vehicle, and environmental
safety.

To meet rapidly expanding safety requests, the FLC—based blended ABS control
method accompanied with simple, yet effective road surface recognition is herein
presented. With respect to other related works analysed in subchapter 1.2.2, the MISO
structured FLC recognizes road surface and holds optimal wheel slip simultaneously for
each wheel of electric SUV separately. Hence, the Cl method works as a vehicle—environment
interaction and as a controller at the same time and can potentially be adopted to any
other ground vehicle. The offered control method avoids complex mathematical
modelling, state estimation, and feedback control loop. What is more, it secures an
efficient interaction between ill-defined environment and vehicle for such a complex and
nonlinear plant, like ABS.

The road identification is accomplished through vehicle body deceleration rate and
inferenced by the FLC, which serves as a knowledge—based artificial decision—making
system. By tracking current wheel slip, the same FLC determines optimal braking torque
for both FB and RB actuators to ensure maximum efficient deceleration on a various road
surfaces. The systems are blended to achieve high safety performance during emergency
braking. Priority is given to the RB with electric motors to maximize energy recuperation
on a given road surface. Only when the torque generated from electric motors is not
enough to reach the optimal slip, the control method requests additional braking force
from the conventional FB. Moreover, the blending strategy considers the SOC of a
battery to make sure that it will not lead to overcharge during energy recuperation.
Therefore, the new blended mechanism allows for recovering as much energy as possible
from braking manoeuvres, decelerating vehicle as fast as feasible, and mitigating the use
of conventional braking, hence, reducing the energy dissipation.

The blended ABS control method is verified in HIL test with experimentally validated
electric SUV equipped with four on—board electric motors. The HIL platform features a
personal computer connected to the EHB test rig capable of reproducing real pressure
dynamics of the brake circuit and simulating a variety of tire—road adhesions conditions
and brake blending scenarios. The experiment is conducted on transient road surface.
The results promise vehicle’s stopping distance decrease in comparison to deceleration
with only conventional EHB or no ABS activation. In addition, torque blending strategy
allows for up to 10% of energy recovery and simultaneous vehicle battery safety
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consideration. The results also demonstrate method’s robustness against dynamically
changing environment and ABS’s supreme safety feature functionality.

From the other side, the state—of-the—art solutions analysed in 1.3.2 propose
accurate DD detection in human interacting with ST. The common disadvantage of the
conventional approaches is binary classification allowing for output only two variables:
distracted/non—distracted. This simple classification is not sufficient for precise HMI
technology comparative analysis and consequent ground vehicle cockpit design
prioritizing occupants and vehicle safety on fullest. Therefore, a new method is herein
introduced capable not only to detect DD, but also to measure and evaluate its impact
on vehicle dynamic performance by solving a nonlinear regression problem. This method
is essential for passenger vehicle cockpit and HMI technology design.

The method combines Cl algorithms. It includes several steps: a model of normal
driving for each individual person built with ML techniques; a subsystem for
performance—based errors calculation; and an intelligent module for data fusion and
total level of DD evaluation. The ML defines a usual driver performance on a specific road
segment. To recognize DD, a normal driving is compared to a distracted human
behaviour. The final step is fulfilled with FLC, whose main task is to evaluate and measure
the level of DD in percentage referring to vehicle dynamic performance errors.

A novel driver model is introduced in a framework of the DD detection and evaluation
methodology. It accepts an information about the road environment, namely road
segment speed limitation, direction, and curvature, and outputs each individual driver’s
road lane keeping and speed maintenance abilities and steering wheel force. Hence,
a model forecasts, how accurate each driver performs on various road segments from
safety point of view. Several most superb and practically applicable ML algorithms for
nonlinear regression are compared on a precision of driver performance prediction.
The k—NN outperformed such other studied algorithms as ANN, fuzzy—neural system,
layer—recurrent ANN, and Gaussian process regression models.

The designed method is verified on a fixed—base vehicle simulator identical to ground
vehicles. Virtual world is shown on the wall in front of the test rig. Thirty drivers
contributed to the DIL experimental study. Several IVIS operations were exploited as STs.
The DIL results demonstrate that the method is capable to detect abnormal and
hazardous driving and to measure a level of DD for specifically driver—IVIS interactions.
The results delivered precise measurement of DD level, allowing for examining each ST
separately and comparing them between each other on a degree of safety.

In sum, the experimental results have shown that Cl-based control systems
have a huge potential in improving existing safety systems in ground vehicles. With
human-driver—environment interaction, vehicle, driver, and environmental
sustainability are significantly improved. This has been achieved thanks to novel
intelligent control algorithms, namely Cl, what is not possible for traditional controllers
due to lack of robustness to dynamically changing environment and human factors.

4.2 Future works

As it is mentioned in Chapter 1 (Figure 1), ground vehicle safety systems are not limited
with only ABS and DD detection systems. There are lots of other systems exist, moreover,
new safety systems will likely appear in the nearest future as the transportation systems
are constantly being developed. In the future, the extension of Cl-based safety systems
is planned, firstly, on theoretical level, and after — in practical application.

53



Traction control system and electronic stability control will be interacted with human
and environment, because in those systems the latter plays an essential role in case of
efficiency and functionality. Electronic stability program, for example, will take into
consideration road curvature and applied steering wheel angle by the driver to ensure
stability of the vehicle on a changing road surfaces. Traction control system will, for
instance, consider vehicle tilt angle, etc. For collision avoidance system, vehicle must
interact not only with the environment, but also with other humans (e.g. pedestrians,
other drivers, cyclists).

Passive safety systems have also room for improvement, what can be fulfilled with CI.
For instance, ML will be used in vehicle body design, which will be optimal under various
deformation cases. Airbags, for example, thanks to interaction with the environment and
other drivers will be inflating before the actual collision, avoiding traumatic impact on
occupants, what can be again completed by Cl algorithms.

As for the blended ABS control method, it will be tested on a real SUV with four
on-board motors powertrain. Concerning DD detection and evaluation method,
its slightly simplified version will be used for practical evaluation of the HMI concepts
before installation in ground vehicle. Another possible system’s extension is a DD alert
system, which can be installed in a ground vehicle as an advanced safety system.
Ultimately, the DD detection and evaluation method also misses statistical analysis of
every possible ST.
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Abstract
Research and Development of Computational-Intelligence—-Based
Safety Systems for Ground Vehicles

Traffic accidents have a terrible impact on societal, environmental, and economical
norms all over the world. Unfortunately, the number of deplorable road accidents does
not decrease annually even with constant advancements in transportation and road
security. To raise the safety systems of ground vehicles to a new advanced level,
vehicle—environment—driver interaction is of high importance. To some extent, due to
problem uncertainty and complexity, multiple restrictions are caused by lack of
intelligent control methods, what requires multidisciplinary solutions not attainable by
classical controllers. Nonetheless, novel computational intelligence algorithms
(i.e. artificial neural networks, fuzzy system, etc.) open a great opportunity for managing
and creating synergy between complex stochastic plants and human factor. These
algorithms provide capability to approximate qualitative aspect of human reasoning and
decision—making process in human-machine-environment systems.

Hence, the motivation of this research is to significantly improve such essential and
comprehensive ground vehicle safety modules, as antilock braking system and driver
distraction detection and evaluation system, applying the computational intelligence
approaches. On one hand, the antilock braking system complexity is caused by many
nonlinearities, such as the hydraulic brake circuit dynamics and the tire—road adhesion
coefficient characteristic, which considerably depends on road states (i.e. weather
conditions and quality of the surface, temperature, etc.), as well as on vehicle conditions.
On the other hand, driver distraction hardship is resonated with human factor, which is
unpredictable and very comprehensive to deal with.

The developed antilock braking system control method accompanied with advanced
torque blending strategy competently identifies the road surface and supplies optimal
braking torque to each wheel for braking force maximization on varying driving
conditions. Besides, the method utilizes electric actuators on their full potential to
guarantee supreme energy recuperation under dynamically changing environment.
It leads to vehicle steerability preservation, braking distance decrease, and maximum
energy recuperation on highly changing road surfaces, what in its turn consolidates
vehicle, occupants, and environmental safety at once. Accordingly, the new driver
distraction detection and evaluation method based on the driver—vehicle interaction
model provides minimization of secondary task impact on safe vehicle operation and
traffic accidents, as well as human life protection. The machine—learning—based
personalized detection method is unique for each independent driver, what only
increases evaluation accuracy.

The results of hardware—in—the—loop experimentation with real electro—hydraulic
brakes and electric sport utility vehicle model showed that the blended antilock braking
system control method successfully recognizes road surface even under dynamically
changing weather conditions, and supplies appropriate braking torque to guarantee
maximum braking force on a given road surface. Moreover, the control method
concentrates on regenerative braking on its full potential and turns on the conventional
braking actuator only when maximum braking force is not achieved by the electric one.

The results of driver—in—the—loop experiment on advanced driver simulator and thirty
participants demonstrated that the driver distraction detection and evaluation method
not only detects driver distraction induced by abnormal driver’s behaviour, but also
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precisely measures and predicts its impact on safe vehicle operation. The method’s
personalization allows for exclusive interaction between driver and vehicle. Hence, it
promises comparative analyses of different human—machine interaction technologies in
ground vehicles.

Comparing to other existing solutions the proposed blended antilock braking system
is managed by a universal fuzzy logic unit, which serves as a road surface identifier and a
controller simultaneously. Consequently, this research goes well beyond traditional
mathematical modelling, state estimation, and set—point—oriented control in favour of
enhanced system safety. Furthermore, the developed driver distraction detection and
evaluation method, with respect to other related works, avoids simple solutions, where
the output obtains only Boolean variables (i.e. distracted/non—distracted). It results in
continues level of driver distraction estimation, what allows for precise measurement of
driver distraction influence on the secure vehicle control, and, consequent human—machine
interface technology comparative analysis for safe vehicle cockpit design. The method
combines machine learning as driver model and fuzzy logic as an intelligent evaluation.

In short, the dissertation results have shown that the computational intelligence
methods permit a relevant improvement of stochastic ground vehicle safety at changing
environmental and human factors, like antilock braking system and driver distraction
detection and evaluation. Therefore, with the reinforced ground vehicle safety systems
road security, environmental sustainability, and human life protection are noticeably
improved.
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Lihikokkuvote
Tehisintellekti meetoditel pohinevate ohutussiisteemide
uurimine ja arendamine maapealsete soidukite jaoks

Liiklusdnnetused kohutavalt m&jutavad kogu maailma thiskondlikke, keskkondlikke ja
majanduslikke norme. Kahjuks ei vdhene liiklusGnnetuste arv isegi transpordi— ja
liiklusohutuse pideva edenemisega. Selleks, et tuua maapealsete sGidukite
ohutussiisteemid uuele tasemele on sdiduki—keskkonna—juhi koostoime hadavajalik.
Mingil madral, probleemi madramatuse ja keerukuse tdttu on ohutussisteemide
paranemine piiratud tarkade juhtimismeetodite puudumisega, mis nduab teadmistel
pdhinevaid interdistsiplinaarseid lahendusi, ja mida klassikalised regulaatorid ei
vGimalda. Siiski, avavad uudsed tehisintellekti meetoditel pdhinevad algoritmid (s. o.
tehisnarvivorgud, hdgusloogikasiisteemid, jne.) suurepédrast voimalust juhtida ning luua
interaktsiooni keeruliste stohhastiliste protsesside vahel, nagu inimene—masin—keskkond
siisteemid, mida iseloomustab tdpse informatsiooni puudumine ja inimfaktor. Need
algoritmid modelleerivad inimeste motlemise ja otsustuste tegemise protsessi
kvalitatiivse aspekti.

Selle uurimistdod eesmargiks on markimisvaarselt parandada maapealsete sdidukite
olulised kuid vaga keerulised ohutusstisteemid, nagu ABS—pidurid (blokeerumisvastane
pidurisiisteem) ja soidukijuhi tdhelepanu hairituse tabamise ning hindamise meetod.
Eesmargi saavutamiseks soiduki—keskkonna—juhi koostoime meetodid on taiendatud
arukate algoritmidega. Uhelt poolt, p&hjustavad ABS—pidurite keerukust mitmed
diinaamilised mittelineaarsused ja rehvi—tee haardeteguri omadused, mis oluliselt
sGltuvad tee (s. o. ilmastikutingimused ja teepinna kvaliteet, temperatuur, jne.) ja séiduki
seisukorrast (s. o. mass, rehvid, jne.). Teiselt poolt, hairib sdidukijuhi tdhelepanu
ettearvamatu inimfaktor.

Elektriautodele on vélja t6é6tanud ABS—piduri juhtimismeetod, millega kaasneb
efektiivne rekuperatiivpidurduse ja mehaanilise piduri koostdd strateegia, ja mis
tuvastab teepinna ja loob erinevatel teepindadel igale rattale optimaalse pidurdusjou.
Pealegi, kasutab juhtimismeetod pidurdamisel tdielikku potentsiaaliga elektriajameid.
See garanteerib sdiduki juhitavuse tagamise, pidurdusteekonna vahenemise ja
maksimaalse energia regenereerimise pidevalt muutuvas keskkonnas. Samuti tagab see
sdiduki—, autojuhi— ja keskkonnaturvalisuse. Uus sd&idukijuhi tdhelepanu hairituse
tabamise ja hindamise meetod madrab inimese—masina koostoime abil muude
tingimuste mdju sdiduki ohutu juhtimisele, mis vdahendab liiklusdnnetuste arvu ja
avaldab positiivse m&ju inimelu kaitsele. Masindpe algoritmil pdhinev personaliseeritud
soidukijuhi tahelepanu hairituse tuvastamise mudel on igale juhile ainulaadne, mis ainult
suurendab hindamise tapsust.

Hardware—in—the—loop  simulatsiooni  tulemused, kus elektro—hidraulilise
pidurisiisteemi katseseade on kombineeritud elektri-sportmaasturi matemaatilise
mudelige, naitasid, et ABS—piduri juhtimismeetod edukalt tuvastab teepinna
diinaamiliselt muutuvas keskkonnas ja annab sobiva pidurdusjoudu, et suurendada
pidurdusvdimet antud teepinna peal. Peale selle, keskendub juhtimismeetod taielikku
potentsiaaliga rekuperatiivpidurduse peale ja lllitab mehaanilise piduri sisse ainult siis,
kui rekuperatiivpidurdusel genereeritud moment ei ole maksimaalse pidurdusjoudu
saavutamiseks piisav.

Kolmekiimne osalejatega sGidusimulaatoril |dbi viidud driver—in—the—loop katsed
naitasid, et pakutud ohutusisteem edukalt tuvastab nii sGidukijuhi tahelepanu hairituse,
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kui ka tapselt hindab selle mdju sdiduki ohutule juhtimisele. Meetodi personaliseerimine
vdimaldab unikaalse juhi—sdiduki vahelist koostoimet ja erinevate inimene—masinate
liidesetehnoloogiate vardleva analiilsi 1abi viimist maapealsete sdidukite jaoks.

Vorreldes varem kasutusel olnud ABS—pidurite juhtimismeetoditega, kus olid samuti
kasutatud arukad algoritmid, pakutud ABS—piduri juhtimismeetod juhib protsessi uudse
hagusloogika—kontrolleriga, mis toimib nii teepinna tuvastajana kui ka kontrollerina.
Tulemusena, juhtimismeetod valdib keerulist matemaatilist mudelit, olekutaastajat ja
seadesuurusele—orienteeritud juhtimist, kuid aga ohutussisteemi funktsionaalsust
kahjustamata. Peale selle, valdib arendatud sGidukijuhi tahelepanu hairituse tuvastamise
ja hindmaise meetod vdrreldes varem vdlja to6tatud meetoditega klassifitseerimist,
kus valjund omab ainult binaarse vaartuse (s. o. hairitud / mittehairitud). Selle
tulemusena on sdidukijuhi tahelepanu héirituse pidevajaline tuvastamine ja hindamine,
mis moddab sdidukijuhi tdhelepanu hairituse moju auto juhtimisele. Jarelikult, meetod
vBimaldab erinevate inimese—masinate liidesetehnoloogiate vérdleva analiitsi ja ohutu
siduki kabiini projekteerimist. Meetod p&hineb masindpe ja hagusloogika algoritmide
kombinatsioonil.

Kokkuvotteks, koik doktoritéds pilstitatud eesmargid on edukalt saavutatud.
Katsetulemused nditasid, et tehisintellekti meetoditel pdhinevad algoritmid véimaldavad
oluliselt parendada maapealsete stohhastiliste sGidukite ohutussiisteeme, mis on seotud
pidevalt muutuva keskkonna— ja / v&i inimfaktoriga, nagu naiteks ABS—piduri juhtimine
ning sGidukijuhi tahelepanu hairituse tuvastamine ja hindamine. Selliste ohutussisteemide
funktsionaalsuse paranemiseks on inimese—masina—keskkonna koost66 valtimatu.
Seet6ttu, on paranenud uute ohutussiisteemidega séidukite liiklusohutus, sealhulgas ka
keskkonna ja inimelu turvalisus.
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Abstract: Automotive driving safety systems such as an anti-lock braking system (ABS) and an
electronic stability program (ESP) assist drivers in controlling the vehicle to avoid road accidents.
In this paper, ABS and the ESP, based on the fuzzy logic theory, are integrated for vehicle stability
control in complex braking maneuvers. The proposed control algorithm is implemented for a sport
utility vehicle (SUV) and investigated for braking on different surfaces. The results obtained for the
vehicle software simulator confirm the robustness of the developed control strategy for a variety of
road profiles and surfaces.

Keywords: energy-efficient computing; fuzzy control; high-performance computer systems;
road vehicles; vehicle safety

1. Introduction

The rapidly growing demand for passenger and commercial vehicles increases the number of
road accidents around the world. In addition to their negative influence on road safety, accidents
also have an indirect harmful impact on the environment and cause threats to human health and life.
In cases when the human factor plays an important role, modern electronics and control systems may
support the driver’s reaction and skills to improve the stability and performance of the vehicle and
avoid accidents. Two of the most important on-board safety systems are ABS and ESP. Both systems
have become mandatory for all passenger vehicles and most commercial vehicles. The ABS and ESP
safety features in vehicle dynamics control have been known for a long time. However, the existing
control algorithms are rarely investigated from the viewpoint of robust operation in different road
conditions. Many of the results discussed in the published studies are describing simple maneuvers,
such as straight-line braking with a uniform road surface. Few investigations are known for emergency
braking on complex road profiles, such as a curved road with split-p or a curved road with varying
tire-road friction coefficients.

Within the framework of the presented study, fuzzy theory has been selected for the controller
implementation. The fuzzy logic controllers (FLC) are known as efficient tools in solving complex
tasks such as ABS and ESP control. A combination of ABS and ESP can solve the robustness problem
of the braking performance. To confirm it, the FLC-based braking will be discussed for the different
complex maneuvers such as a combination of road profiles and split-p road surfaces.

The first ABS applications arose several decades ago [1] and still use rule-based methods as
the dominant control approach. In the modern ABS systems installed in commercial vehicles, the
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braking pressure is increased or reduced based on the wheel speed and the slip switching threshold
comparison [1]. The slip is set to a constant value, for instance 20% as it is optimal for the most
common surface—dry asphalt. The braking surface is not recognized and the threshold value is
equal for every road condition. This approach leads to energy losses because each road adhesive
characteristic requires its optimal wheel slip value. This is why many researchers have focused on
intelligent control algorithms for braking processes, trying to estimate an optimal one for every road
condition slip threshold.

However, the analysis of the bibliography presented in [2] shows that nowadays the FLC is
also being intensively used in ABS and ESP design. One of the first ABS control mechanisms based
on the fuzzy algorithm was patented in 1989 by the Nissan Motor Co., Ltd., (Yokohama, Japan) [3].
Furthermore, many other solutions based on the FLC were proposed. Thanks to its simplicity and
robustness, FLC proved to be equally applicable to on-road [4] and off-road vehicles [5].

In [6], a model reference adaptive control (MRAC) was introduced to tune the FLC in order to be
able to control all kinds of nonlinear systems. Furthermore, the MRAC was used in a braking system
in [7] as an ABS intelligent control. The simulation results were shown for a variety of road conditions
(from icy to wet). The proposed solution requires a reference slip value, which is set to 20% for any kind
of road surface. A similar assumption for the constant value of the optimal wheel slip is also proposed
for ABS, as described in [8]. Another example is the model-based Takagi-Sugeno (T-S) FLC designed
for a single-car model [9]. The controller copes well in optimal braking wheel slip maintenance, which
the model considers a reference constant. Many different fuzzy proportional-integral-derivative (PID)
approaches were also investigated [10-12]. Yet the results are limited because the situation considered
in most cases is braking on a straight road with an optimal slip of 20%.

Adaptive and self-tuning intelligent FLC solutions have also been introduced in various
studies [13,14]. In [15] a genetic neural FLC is designed, where the algorithm requires the reference
wheel slip profile. The approach with the estimation of road parameters is used in [16], where various
roads can be identified to keep the optimal slip by the controller. This controller demonstrated good
performance but its operation was illustrated for simple straight braking maneuvers.

Many studies have presented the validation of fuzzy-based ABS algorithms through tests on a
hardware-in-the-loop (HIL) experimental setup or ABS test bench connected to the real-time vehicle
software simulator. For example, in [17] the authors introduced the fuzzy ABS with the road friction
estimation algorithm. Consequently, the experiments were conducted for the variable road conditions
proving the FLC robustness. In [18] the ABS algorithm holds the optimal wheel slip for different roads
and is validated for quarter-car HIL systems.

For complex braking maneuvers on split-u surfaces and curved roads the activation of the
ESP system can be required. In this field, fuzzy logic methods are also finding wide application.
For example, patents have been issued to FLC control algorithm, where yaw rate and steering wheel
angle signals were considered the control inputs to maintain vehicle stability during braking [19].
Nevertheless, the described controller is still P or PD FLC, which requires the reference input.

In addition, many known examples are validated for specific maneuvers only. In particular, the
PID FLC for yaw motion control [20,21] was investigated on double line maneuvers. The FLC neural
network [22] shows the experimentation results conducted for split-u straight road maneuvers. The T-S
FLC [23] and fuzzy robust Hoo [24] methods were tested on line change maneuvers. The authors in [25]
have integrated yaw moment and active front steering controllers based on the FLC. The results are
demonstrated by the single line change maneuvers.

It should be noted that the use of simple maneuvers for the controller validation cannot
demonstrate the FLC robustness. In reality, the driver deals with different road scenarios. Therefore,
the controller applicability has to be studied on more complex and different braking maneuvers
such as emergency braking on curved split-p or variable road surfaces to assure controller robustness.
Moreover, the reference slip direct control does not guarantee safety assistance on the split-p surfaces
as the steerability is not preserved. This issue must also be addressed.
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As suggested in many previous studies, controllers as well as the currently installed systems in
the vehicles set the slip value at 20% for any kind of roads. On the one hand, such an approach can be
enough to maintain the steering ability. On the other hand, it leads to a decline in braking performance.
For example, on average the optimal slip for icy roads is between 7% and 10%. Thus A = 20% would
cause a more than 50% loss of braking performance and the vehicle operation would become unstable,
i.e., a diminution in steerability. Therefore, by holding the optimal wheel slip value and avoiding the
controller restriction with reference variable, as it is proposed in the current paper, the effectiveness
and energy efficiency of the braking process is maintained [1] (pp. 74-94).

This paper contributes to the advancement of ABS and brake-based ESP systems using FLC.
In particular, the article describes the research results connected with the following topics:

e  ESP and ABS control combination, both designed using fuzzy theory.
e Use of a 10 degrees-of-freedom (10 DOF) four-wheel vehicle model in the controller.
e  Demonstration of the control robustness on different road surfaces and profiles.

The paper is organized as follows. The next section is dedicated to vehicle dynamics and model
parameterization. Section 3 explains the FLC design. The Section 4 is devoted to the experimental
facilities. Next, the simulation outcomes are provided. Conclusions are summarized in Section 6.

2. Vehicle Dynamics

2.1. Vehicle Model

The single-wheel model of the vehicle is shown in Figure la. The single-track (bicycle) model
is introduced in Figure 1b. Table 1 introduces nomenclature for all variables used in these and other
models mentioned in the paper.

(a) (b)

Figure 1. Vehicle model schematic drawing: (a) single-wheel model; (b) single-track model.

Single wheel dynamics can be expressed by the following equations:

Lyi » i = Ty —1i - Fyj — Ty @
in =m- Z'JJci (2)
Fi=m-g. 3)

Brake torque depends on the applied brake pressure:

Tpi = 1i - kp - pyis 4

where k;, is the braking coefficient, which depends on the brake disc friction area, mechanical efficiency
of the brake components, and the braking factor is the constant value. In this paper, the ABS controller
output variable is the braking pressure for each wheel, py;.
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The wheel slip at braking is calculated as follows:

Uy — Uwx_i

A=
i Uy

The longitudinal wheel speed be can also simply calculated as:

Owx_i = Ti* Wi

Table 1. Parameters description.

40f18

®)

(6)

Symbol Description Annotation
w Wheel angular speed ! rad/s
Aox Vehicle longitudinal acceleration 1 m/s?
oy Vehicle lateral acceleration ! m/s?
Vv Yaw rate ! rad/s
5 Steering wheel angle ! rad
Pb Braking pressure ! bar
r Wheel radius m
m Mass of the vehicle g
g Gravitational acceleration m/s?
Ty Braking torque Nm
T Traction torque Nm
kp Braking coefficient -
Vox Vehicle longitudinal velocity m/s
Vwx Wheel longitudinal velocity m/s
AN Wheel slip %o
u Tire-road friction coefficient (general) -
Tire-road friction coefficient based on vehicle
Ha longitudinal acceleration )
! Distance from the vehicle Center of Gravity m
f (COG) to the front axles
I, Distance from the vehicle COG to the rear axles m
I, Yaw moment of inertia about z-axis g-m?
Fy Longitudinal force N
Fy Lateral force N
F, Vertical force N
PABS Pressure generated for ABS braking bar
Pressure generated for the yaw rate regulation for b
PEspi the left side wheels of the vehicle ar
Pressure generated for the yaw rate regulation for b
PEsPr the right side wheels of the vehicle ar
s Distance m
—laverage Average deceleration m/s?
ABS1p ABS operation index of performance -
Aaverage Average wheel slip value Y%
Wp-t-p ABS adaptability peak-to-peak value %

1

Subscript for each wheel; i € [FL, FR, RL, RR] 2

1 Measured by the sensor; 2 (Front Left, Front Right, Rear Left, Rear Right).

In reality the tire radius r; is a dynamic variable. In our case we simplify the equation and consider

it as a constant value as the change in radius dimension is negligibly small.

The FLC design requires information about the friction-slip curves. Tire-road friction coefficient

can be determined as follows:

F
He(A) = ITX
z

@)
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Using Equations (2) and (3), ., can be estimated:

4
By & gx~ ®)

The 3 DOF single-track model, Ob, is required for the formulation of control inputs in the case of
vehicle maneuvers with lateral dynamics. The model is described by the following system of equations:

m-avx:Fxf~c056+Fx,—Fyf~sir16+m~y-1b
m~av}/:Fxfvsin5+1-”w~cosé+1-"y,—mdc~1b . 9)
VL =1 (Fxf~sin§+Fyf~cosé> — 1By

2.2. Model and Controller Parameterization

Before the simulation, the vehicle model is parameterized according to the sport-utility vehicle.
The parameters are taken from the vehicle manufacturer. The total mass is 2170.39 kg. The tires for
each wheel are set Continental® (Hanover, Germany) 235/55 R19 and are modeled with Pacejka’s tire
magic formula, the coefficients are also provided by the tire manufacturer.

In order to set the initial parameterization of the FLCs, a specific case study was conducted first.
The model was simulated under heavy braking conditions on different surfaces to obtain the wheel
lock. The ABS and ESP control was not activated. During the case study simulation, the normalized
traction/braking forces for every road condition with the locked wheels were evaluated. Therefore,
the curves of the normalized traction/braking force of the tire p versus the wheel slip A for different
road surfaces were built (Figure 2).

A %]

Figure 2. The u versus A curves for the different road surfaces for the studied vehicle model: 1—dry
road rear wheels, 2—dry road front wheels, 3—damp road rear wheels, 4—damp road front wheels,
5—wet road rear wheels, 6—wet road front wheels, 7—icy road rear wheels, 8—icy road front wheels.

The stable area is where the curve grows from 0 by A to its maximum value of u. The second
part of the curve is the unstable region, when the steering remains uncontrollable. Efficient ABS
performance depends on the road surface. Each surface (dry, damp, wet, icy) has its own optimal slip
while braking. The optimal slip refers to the top area of the curve where p obtains its maximum value
during braking (Figure 2), thus remaining stable. The optimal slip values for each curve, according to
the plots in Figure 2, are presented in Table 2.
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Table 2. Optimal wheel slip values for several road conditions.

A (%) Front Wheels Rear Wheels
Dry road surface 19.85 18.96
Damp road surface 17.53 14.65
Wet road surface 13.21 10.88
Icy road surface 8.95 7.55

The plots are important for the FLC universe of discourse (UOD) design, to set the workspace
for the slip input variables in order to guarantee the controller robustness. During the case study the
workspace for friction coefficient was also investigated. In addition, the yaw rate UOD was explored
in the case study for emergency braking.

3. Fuzzy Logic Control Design

When the dynamical behavior of the object is studied, the controller is ready to be designed.
One of the advantages of the solution described in this paper is that the controller requires the input
variables, for which signals are transmitted in real time by the sensors available in modern vehicles.

The fuzzy logic controller architecture is shown in Figure 3. In this case the plant is a vehicle
model. The FLC consists of four design steps. Fuzzification is the process of converting the “crisp”
(real number) input into fuzzy sets. A fuzzy set in turn is a pair consisting of an element in UOD and
membership degree. The inference mechanism (engine) is used to turn the fuzzy input into a fuzzy
output, using the composed rule-base block. Finally, defuzzification converts the fuzzy output into a
numerical value.

Fuzzy Logic Controller

= Inference g

5 — : =

= mechanism ®
rt) f 8 S| u (1)
— WS = Pl Bl

= ‘] ant

N N

y &

[ jo )

Rule-base e

I

Figure 3. Fuzzy logic controller system block diagram: r(t)—reference input, u(t)—process inputs,
y(t)—process.

The MATLAB® (Natick, MA, USA) Fuzzy Logic Toolbox™ is used to design the FLC. At the
beginning, the inputs and outputs must be stated. Two separate FLCs for ABS and ESP are introduced
and combined to obtain robust brake and stability control.

The block diagram scheme for a single wheel is presented in Figure 4. The anti-lock braking
system controller involves longitudinal wheel speeds and vehicle acceleration. Using Equations (5)
and (6), the slip for each wheel A; is calculated and the variable serves as an input. The second input is
the tire-road friction coefficient, which corresponds to the vehicle body acceleration and is donated as
Wy, as stated in Equation (8).

The ABS is activated together with the braking pedal displacement. When the vehicle velocity is
lower than 8 km/h, the ABS does not function because, after the vehicle speed of 8 km/h, the distance
traveled with locked wheels is not critical. The activation requirements are taken from [1] (pp. 74-94).
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a B Slip calculation A
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Figure 4. Controller block scheme for a single wheel: ABS FLC—anti-lock braking system fuzzy logic
controller, ESP FLC—electronic stability program fuzzy logic controller, 1/s—integrational operation.

As soon as the emergency brake (full pedal actuation) is deployed, before the ABS is activated,
the controller has enough time to measure the car’s maximum deceleration and use it as a constant
variable to understand the road surface. Moreover, the controller resets the p, variable every second
and the maximum value of 4, is measured again. The fast reset has no effect on driving comfort as
the process is very rapid. The reset is necessary for the FLC to understand if the road condition has
remained the same, for example, when the road changes from a dry to an icy surface.

The inputs of the ESP are the angular velocity of the vehicle about the vertical axis { and the
steering wheel angle  operated by the driver (Figure 4). The ESP is activated together with the braking
pedal and deactivates when the vehicle speed is below 8 km /h.

The output of the ABS and the ESP is the braking pressure. The yaw controller has no impact
when the yaw moment is not created, thus only ABS is responsible for efficient braking on a straight
homogeneous road.

The ESP FLC controls both sides of the vehicle. It either regulates the right or left pair of the
vehicle wheels, depending on the body yaw rate direction. According to the curves in Figure 2, the
front and rear wheels require different optimal wheel slip values. Therefore, the front and rear wheels
will have different membership functions (MFs) for the A input in ABS. Consequently, each wheel has a
different controller. When the yaw FLC understands that the driver is losing vehicle control, it reduces
the braking pressure from the side of the car, in which direction the vehicle starts to spin around its
center of gravity (COG). Otherwise, only the ABS control is operating.

The next step is to design membership functions for all the inputs and outputs (Figure 5).
The linear (triangular) MFs were applied, which are characterized by fast reaction due to the narrow
shape as compared to other MFs (exponential, quadratics).

The MFs are symmetrical to provide an equal sensitivity for the whole UOD and obtain the
whole overlap of the UOD between the MFs. Each variable UOD must have a closed frontier between
[min, max]. For the input variables, the bounds are obtained during the parameterization described in
Section 2.

The slip input MFs for the ABS are introduced in Figure 5. There are nine MFs in total. The UOD
for the front wheels lay between [0.08, 0.22]. This area is accepted according to the operational space
obtained in Figure 2 for the front wheels. The only difference between the front and the rear wheels is
that the UOD of the slip input for the last ones is accepted in a range [0.07, 0.2], which is also based on
the rear slip curves in Figure 2 for the rear wheels. In short, UOD for the slip covers all stable areas for
relevant roads.
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Figure 5. Fuzzy logic controller membership functions: (a) ABS A input; (b) ABS p, input; (c) ESP
P input; (d) ESP 6 input; (e) ABS paps output; (f) ESP prsp; and pgsp, outputs.

The w, MFs are plotted in Figure 5b. The UOD parameterization was obtained during the case
study. The p, operational space is bounded between [10, 40].

The first input of the ESP FLC is the yaw rate. The state consists of nine MFs; UOD is limited in
the range between [—4, 4] and introduced in Figure 5c. The reason behind the range for the UOD is
next: when the angular velocity exceeds 4 rad/s and the steering wheel angle change is not conducted,
vehicle spin appears and the driver is no longer able to act on lateral control.

The second input of the ESP steering wheel angle MFs is shown in Figure 5d. Like the first input,
it has nine symmetrically dispelled MFs that are normalized between [—180, 180]. It is assumed that
driver reaction in extreme situation must be limited to half of one full steering wheel turn to each side,
left or right, which gives in total 360°.

The maximum pressure of the braking system for the studied case is 151 bar. The UOD for the
output pressure variables (Figure 5e) is therefore located between [0, 151] and consists of eight MFs.
The FLC decides how many bars shall be provided to obtain an optimal slip. Finally, the pressure
output for the ESP is obtained in Figure 5f. Likewise, for the ABS the UOD lay between [0, 151].
The ESP has two outputs (Figure 4): brake pressure for the left and the right sides. The decision of
which side of the vehicle to control is determined by the rule-base operator.

The modus ponens (If-Then) form has been used in this paper for the rule-base design.
The multiple input, single output (MISO) form of the linguistic rules for ABS is (taken from [6]):

If u; is A/y and u is AX, ... Then yq is By, (10)

where 17 and u, denote the FLC inputs wheel slip and road condition, respectively; y; denotes the brake
pressure; A/; and A, relate to the jth and kth linguistic value associated with A and i, respectively;
and BF; is the linguistic value of the output braking pressure.
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Linguistic values for the ABS are expressed in Table 3. There are 54 rules for the ABS control in
total. The rule base for the ESP is observable in Table 4. It has a multi input, multi output (MIMO)
structure. In total, 81 rules are required to control the state. The controlled side of the vehicle depends
on the yaw moment direction from the center line of the car.

Table 3. Fuzzy linguistic rules for the ABS control.

) A ME MF, MF; MF, MFs MFe MEF, MFs  MF,
X

MF; MF, MF, MF, MF, MF, MF, MF, MF;  MF
MF, MF, MF; MF, MF; MF; MF; MF, MF, MK
MF; MF; MFs MF, MF; MF, MF; MF, MF;  MF
MFy MF; MF; MF MFs MF, MF; MF, MF,  MF,
MFs MF; MF; MF; MF; MF MF; MF; MF;  MF
MFe MF; MF;g MFg MFg MFg MF; MFs MF;  MF

Table 4. Fuzzy linguistic rules for the ESP regulation: blue—left side of the vehicle, black—right side

of the vehicle.
N MF, MF, MF; MF, MFs MF, MF, MF;  MF,
MF ME vk MF MF MF;  MF MF MFs  MFs
1 MF1 2 2 3 3 | | 5 5
MF,  MF, I:/H: ' MF, MF, MF;  MF,  MF,  MF,  MFs
1
MF, MF, MF U up wE, ME, ME, ME, MF,
ME,
MF, MF, MF, MF U wum oM ME, ME ME
ME,
MFs MF; MF; MF, MF, ;41;] MF, MF, MF;  MF;
1
MFg MF, MF; MF; MF, MF, ;41;1 ME, ME, MF,
1
MF, MF, MF, MF, MF MF  MPR ;/hr: L MF, MR
1
MFs MFs MF, MF, MF; MF; MF, MF, ;/}LJ MF,
1
MF,  MF;  MFs MF, MF, MF; MF, MF,  MF 1’:&1
1

For further fuzzy inference, Mamdani’s method is applied in this paper. The last step in every
FLC design is the defuzzification procedure. Relying on experience and due to the good computational
complexity, the ABS is defuzzified by the centroid and the ESP by the smallest-of-maxima methods.

When all the design steps are finished, the rule base FLC can be expressed in a three-dimensional
surface form. The ABS FLC for the front wheels is presented in Figure 6, whereas the ESP FLC for the
left side of the vehicle surface is shown in Figure 7.

The ABS algorithm controls the slip by acting on the breaking pressure of each wheel. The ESP
stabilizes the yaw rate by influencing the braking pressure with subtraction from the pressure generated
for the ABS control. Table 5 summarizes the FLC design in this work.
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Figure 7. ESP FLC rule surface for the left side of the vehicle.

Table 5. Fuzzy logic controller design conclusion.

Parameter ABS FLC ESP FLC
Structure MISO MIMO
Crisp input Slip A (9 MFs()é I;/(I);:l) condition p,  Yaw rate ¢ (9 MF?)g, f/};&sz;ing wheel angle 5
Crisp output Braking pressure psps (8 MFs) Bégilz;r;gpﬁzssztzerliegﬁtsicilcileep ;;5 ;r(5(5MI\/I;1§)s,)
Fuzzy conjunction AND = min (A, py) AND = min (\, 5)
MFs Linear Symmetric Linear Symmetric
Inference method Mamdani’s Mamdani’s
Rule-base 54 Modes Ponens 81 Modes Ponens
Implication operation min (pags) min (pgspr) V min (Pespy)
Aggregation method max (paps) max (pgspy) V max (Pespy)

Defuzzification Geometric center Smallest-of-maxima
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4. Simulation Conditions

The control algorithm is designed in Automotive Simulation Models™ (ASM) provided by
the dSPACE® GmbH Software 2014-B (64-bit, Paderborn, Germany) and interacted with the
MATLAB®/Simulink® R2013b (64 Bit, Natick, MA, USA). The ASM allows the multibody vehicle
simulation procedures. The car model has 10 DOF. An overall software interface is presented in
Figure 8.

Vehicle - Performance
parameterization __ Visualization

Figure 8. Simulation software interface by the dSSPACE® GmbH.

During the simulation, the braking processes were conducted on a straight road as well as in
combination with cornering maneuvers. Different complex maneuvers, such as straight or cornering
braking on a split-pu road surface and straight or cornering with change of the tire-road friction
coefficients, were simulated. The results are introduced as a comparison of the vehicle motion with
and without the activated controllers. Road variations such as dry, wet, and icy surfaces as well as
their combinations were designed and simulated to prove the ABS controller robustness and its ability
to hold the optimal wheel slip in different road conditions.

The reaction of the ABS controller on the wheel slip characterizes the system adaptability.
The factor can be expressed in percentage and calculated by the following equation:

Wyt = omax T Pmin 00, (11)
Wmax
Furthermore, the effect of the ABS controller performance can be described with the index of
performance ABSip. The variable is a ratio between the vehicle deceleration with and without the
controller and is found as follows:
ABS;p = —ZABS (12)
—Askid
First, the simulation is dedicated to split- roads. When half of the road has a significantly
higher friction coefficient as compared to the other half, a high yaw moment occurs. The driver is
not able to compensate properly for the yaw dynamics, and the vehicle can spin around the COG.
The corresponding simulation in this study is performed for cornering and straight braking maneuvers.
For the straight road, half wet-half dry and half icy—half wet surfaces were chosen. For the curved
road, half dry-half icy and half wet-half dry surface profiles were designed.
Next, the model was simulated on a curved road line for different tire-road friction characteristics.
The road friction conditions vary during the braking process from icy and dry to wet. Afterwards,
the same road conditions were applied to the straight road profile. In this experimentation part the
controller robustness is studied.
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5. Results

5.1. Study on Controller Functionality

The first part of the simulation experiments is addressed to the vehicle safety investigation on the
split-u surface profiles. The maneuvers are simulated on straight and curved roads. For the straight
braking, the vehicle was accelerated to 100 km /h and after that the emergency braking was conducted.
For curved road braking the vehicle was accelerated to 65 km /h while the transport is cornering left.

Braking on a curved road with a split-p surface is the most extreme situation for vehicle safety,
because the yaw rate is created by the driver while cornering. The left side of the road is dry and the
right side is icy in the present instance. The vehicle body and the wheel speed curves are shown in
Figure 9.

70

v [km/h]
7

t[s]

Figure 9. Braking on a curved split-u road with a half dry-half icy surface; velocity profile curves: 1—FL
wheel velocity, 2—FR wheel velocity, 3—RL wheel velocity, 4—RR wheel velocity, 5—vehicle velocity.

Before the ABS is activated, the ESP is already reducing the braking pressure from the left side of
the vehicle (the dry surface). The slip values of the left side wheels are therefore lower compared to
the right side (Figure 10). Although the left side of the road is dry, the left wheels have less than 10% of
the wheel slip values, because the ESP reduces the braking pressure from the left half of the vehicle.
The driver, thus, is able to control the car path to follow the road.

26

Figure 10. Braking on a curved split-u road with a half dry-half icy surface; slip profile curves: 1—FL
wheel slip, 2—FR wheel slip, 3—RL wheel slip, 4—RR wheel slip.
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The dry surface has a higher friction coefficient than the icy road. In this case, the yaw rate is
extremely high due to the left cornering. The yaw rate grows after the start of the braking process
(Figure 11). However, the ESP reacts very fast and the braking pressure is minimized rapidly. Therefore,
the yaw rate remains almost zero during the whole braking distance on the cornering maneuvers.
Hence, the driver is able to maintain lateral stability during emergency braking.

00 Controlled ] - a0
400 === NoControl . 170

|
v [9/s]

t [s]

Figure 11. Braking on a curved split-pu road with a half dry-half icy surface profile angle curves:
1—steering wheel angle , 2—yaw rate 1.

When the controller is switched off (Figure 11, dashed lines), the vehicle spins left. The driver
turns the steering wheel to the right until the maximum allowed angle. Nevertheless, the high yaw
rate in the opposite direction makes the car spin.

The simulation results with other split-u road maneuvers are introduced in Table 6, the plots are
represented in Figures S1-59. The ESP safety assistance performance is also compared to the same
condition simulations with the turned-off controller. The maximum yaw rate {max does not exceed
26°/s. When the controller is turned off the yaw rate is very high, which makes the car spin around its
COG even if the driver tries to keep the vehicle following the road. The braking distance s and the
average body deceleration —asperage for no control simulation are not introduced in the table, because
in every case, when the controller is turned off, the car spins.

Table 6. Controller functionality results.

Criterion  Braking Performance ABS Control Performance ESP Control Performance

—Aaverage Wit Smax (°) Pmax (°/s)
s (m) 2 Aaverage (%) PP Controlled/ Controlled/
Type (m/s%) %) No Control No Control
FL 18.41 46.91
Straight split-u FR 13.97 46.10 )
wet/dry 47.16 —4.25 RL 14.00 45.37 175.00/449.96  —16.86/—268.52
RR 14.20 45.61
FL 12.74 32.51
Straight split-u FR 7.34 27.63 )
icy/wet 102.51 —3.31 RL 10.62 2485 60.16/450 —7.08/-313.73
RR 5.10 18.15
FL 471 28.26
Cornering split-p FR 15.96 35.04 )
drylicy 44.74 —3.14 RL 4.40 23.24 —182.46/—450 25.49/-180.71
RR 13.05 28.58
FL 19.29 49.36
Cornering split-p FR 14.32 46.95 ;.
wet/dry 20.19 —5.23 RL 17.30 48.16 363.52/450 —15.42/-78.78

RR 13.77 46.49
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In short, the comparison simulation, where the controller was turned on and turned off, shows
the importance of the proposed solution in terms of vehicle safety. Different complex maneuvers
were studied. The driver is able to remain on the road, following the path. When the controller is
turned off, steering is impossible and, the vehicle starts to spin around the COG, causing unfortunate
car accidents.

5.2. Study on Controller Robustness

The next simulation study is devoted to an investigation of the controller robustness on curved
and straight road profiles. The road surfaces are even. However, they are different for the whole
braking distance. Again, in cornering maneuvers the vehicle is accelerated to 65 km/h in a straight
line—to 100 km/h. Afterwards, emergency braking is performed.

The vehicle body and the vehicle wheels velocity plots for the varying road conditions on a
straight road maneuvers are introduced in Figure 12. The vehicle starts braking on a dry road with
transition to a wet surface. The car finishes braking on icy asphalt. The vehicle changes the deceleration
according to the tire-road adhesive characteristics. The algorithm is able to recognize the road surface
and, according to the obtained information supply, appropriate pressure to maintain efficient braking
is applied.

DRY WET ICY

v [km/h]
F -9

Figure 12. Braking on a straight road with dry-wet-icy surfaces profile speed curves: 1—FL wheel
velocity, 2—FR wheel velocity, 3—RL wheel velocity, 4—RR wheel velocity, 5—vehicle velocity.

The slip curves for the each wheel are shown in Figure 13. No wheel lock has been obtained.
The controller holds the optimal slip for each wheel on every road surface. The wheel pressure
distribution aims to obtain an optimal wheel slip.

DRY WET ICY

‘ - [\
L)

| 4 1

15 16 17 18 1 20 21

t[s]

Figure 13. Braking on a straight road with dry-wet-icy surfaces profile slip curves: 1—FL wheel slip,
2—FR wheel slip, 3—RL wheel slip, 4—RR wheel slip.
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Other braking results for the maneuvers with even road profiles studied in this paper are
introduced in Figures S10-S17. To conclude the wheel slip control robustness and compare it to
the theoretical energy efficient values from Figure 2, Table 7 is introduced. The simulation wheel slip
results are taken as the average numbers. It can be concluded that the controller is able to maintain the
optimal slip to maintain energy-efficient braking.

Table 7. Controller robustness results.

Criterion Braking Performance ABS Control Performance ESP Control Performance

s (m) —Aaverage (m/s?) ® Smax (°) Pmax (°/s)
Tyve Controlled/ Controlled/ ABSip Aaverage (%) (OP/'I)'P Controlled/  Controlled/
P No Control No Control ° No Control No Control
FL  11.45-16.62 34.76
Cornering even FR  14.27-17.79 37.88 )
wet to dry 21.59/30.88 —6.75/—-3.48 1.94 RL 9.94-16.94 32.93 103.55/450  10.82/-27.89
RR 11.61-17.90 35.44
FL 19.14-3.68-9.918  50.25
Comering even 5 )8/3133 369/ 2.9 103 ERI1998-930-1107 5096 ) 05450 1061/ 2072

RL 17.34-2.94-8.93 48.04
RR 17.85-1.37-11.16  48.86

dry to icy to wet

FL 10.01-18.99-1416 28.64
Straight even icy N FR 18.49-18.99-14.13 28.64
todrytowet  O049/14004  —429/-236 182 RL773-1713-1233  19.58 0/0 0/0

RR 7.73-17.13-12.33  19.59

FL 1971-1424930  55.66
Straight even dry o _ FR 19.71-1424-930  55.66
towettojey ~ 0251/14004  —3.85/-197 195 R 18.05-1156-7.68 4852 070 0/0

RR 18.05-11.56-7.68  48.53

In cornering maneuvers, as the vehicle is turning left, the wheel slip values for the left side of
the vehicle are smaller compared to the right side. The difference is caused by the ESP assistance.
In addition, even when the road surface is even, the yaw rate appears when the vehicle starts to
brake. However, the driver reacts by controlling the steering wheel and the car remains on the road.
Therefore, the robustness of the proposed controller is investigated through several examples of
different complex maneuvers.

The braking and ESP performance results on the same roads without controllers are also
introduced in Table 7. It is clear that the braking distances without the controllers are longer for every
considered case. Due to the wheels’ blockage, the average deceleration results (—aaperqge) are lower.

When the controllers are turned off, the driver rotates the steering wheel as far as possible to
remain on the road while conducting the cornering maneuvers. The car, however, drives off the road
without controller assistance. When the controllers are turned on, contrariwise, it is enough for the
driver to slightly control the vehicle steering wheel to remain on the road.

All in all, the ABS FLC is able to recognize the tire-road adhesive coefficient and supply the
appropriate braking pressure to maintain energy-efficient deceleration. The simulation results of the
controller on the straight and cornering profiles prove the controller’s robustness.

6. Discussion and Conclusions

This paper describes the FLC algorithm for vehicle safety assistance control. The ABS and the ESP
integration introduced in this work provides energy-efficient and robust responses to different road
surfaces and curved braking performance. In order to design a robust FLC, the tire-road adhesive
coefficients versus tire slip curves for dry, damp, wet, and icy roads were plotted first (Figure 2).
The studied vehicle model was parameterized according to the SUV parameters. The proposed
solution is suitable for the studied SUV model.

A combination of ABS and ESP controllers both based on FLC theory is introduced. Each wheel
has an independent controller. The simulation results conducted on different complex maneuvers
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involving curved road profiles and split-u road surfaces as well as varying road friction coefficients
prove the controller robustness. The algorithm assists the driver with steering. Thus, a driver with
average reaction times is able to follow the road during emergency heavy braking.

The simulation results introduced in Section 5 prove the FLC robustness to varying road surfaces
and split-u profiles. Moreover, optimal slip braking on even road profiles is maintained, providing
energy-efficient braking. Comparing the research results to other intelligent computation control
algorithms introduced in Section 1, the current study offers several novel proposals for the vehicle
dynamics and safety control fields.

First, the proposed controller does not require a reference error and change of error input variables
as in [10-12,15] Instead, the controller covers the whole braking process stable area. The human
experience containing rule-base block provides a suitable pressure to hold an optimal for every
studied road surface slip value. Therefore, the dependence on the constant reference value, which is
unpredictable in reality, is avoided.

Second, in most of the previously proposed cases, as for instance in [10-12,16], braking on a
straight even surface excludes the lateral dynamics influence on the controller, and, thus, on the
vehicle safety performance. The simulation results in Section 5 show that the lateral dynamics during
cornering maneuvers and on split-u road profiles braking must be taken into consideration as they are
essential in car spin and roll-over avoidance. Otherwise, the ABS and ESP safety assistance cannot
be ensured.

Third, the simple quarter-car model studied in [9,18] is not enough to prove the controller
productivity and robustness. In reality, the four-wheel vehicle model represents a more complex
control task. Consequently, the vehicle model examined in this paper has an advantage over other
similar works.

Finally, regarding the ESP performance, most researchers [20,21,23-25] limit their results with a
simple line change maneuver. There were no publications found testing the ABS and ESP designed
with FLC on a cornering split-u road profile, as has been done in the current work.

In short, the results obtained from the current research are as follows:

e The ESP and ABS FLC control integration to obtain energy-efficient braking performance.
e The controls safety and robustness in different kinds of complex maneuvers is studied.
e Use of a complex 10 DOF vehicle model in the controller simulation.

The main drawback of the presented work, however, is its restriction by the numerical simulation.
In the PC software simulation, the real vehicle dynamics and physical behavior are missing. A computer
simulation does not completely solve the problem.

Future research covers the experimentation on the HIL brakes test bench. Moreover, the controller
will be designed and applied on a four in-wheel-motor drive passenger electric vehicle providing the
torque-base brake solution to study recuperative braking.

Supplementary Materials: The following are available online at www.mdpi.com/2076-3417/6/12/382/s1,
Figure S1: Straight split-u road with a half wet-half dry surface profile velocity curves, Figure S2: Straight
split-u road with a half wet-half dry surface profile wheel slip curves, Figure S3: Straight split-p road with a half
wet-half dry surface profile angle curves, Figure S4: Straight split-p road with a half icy-half wet surface profile
velocity curves, Figure S5: Straight split-p road with a half icy-half wet surface profile wheel slip curves, Figure S6:
Straight split-u road with a half icy-half wet surface profile angle curves, Figure S7: Curved split-u road with a
half wet-half dry surface profile velocity curves, Figure S8: Curved split-u road with a half wet-half dry surface
profile wheel slip curves, Figure S9: Curved split-p road with a half wet-half dry surface profile angle curves,
Figure S10: Curved even road with wet-dry surface profile velocity curves, Figure S11: Curved even road with
wet-dry surface profile wheel slip curves, Figure 512: Curved even road with wet-dry surface profile angle curves,
Figure S13: Curved even road with dry-icy-wet surface profile velocity curves, Figure S14: Curved even road with
dry-icy-wet surface profile wheel slip curves, Figure S15: Curved even road with dry-icy-wet surface profile angle
curves, Figure S16: Straight even road with icy-dry-wet surface profile velocity curves, Figure S17: Straight even
road with icy-dry-wet surface profile wheel slip curves.
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Figure S1. Straight split-p road with a half wet-half dry surface profile velocity curves: 1—FL wheel
velocity, 2—FR wheel velocity, 3—RL wheel velocity, 4—RR wheel velocity, 5—vehicle velocity.
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Figure S2. Straight split-u road with a half wet-half dry surface profile wheel slip curves: 1—front
left, 2—front right, 3—rear left, 4—rear right.
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Figure S3. Straight split-u road with a half wet-half dry surface profile angle curves: 1—steering
wheel angle d, 2—yaw rate .
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Figure S4. Straight split-p road with a half icy-half wet surface profile velocity curves: 1—front left
wheel, 2—front right wheel, 3—rear left wheel, 4 —rear right wheel, 5—vehicle.
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Figure S5. Straight split-u road with a half icy-half wet surface profile wheel slip curves: 1—front left,
2—front right, 3—rear left, 4—rear right.
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Figure S6. Straight split-u road with a half icy-half wet surface profile angle curves: 1—steering wheel
angle d, 2—yaw rate ..
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Figure S7. Curved split-u road with a half wet-half dry surface profile velocity curves: 1—front left
wheel, 2—front right wheel, 3—rear left wheel, 4 —rear right wheel, 5—vehicle.
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Figure S8. Curved split-p road with a half wet-half dry surface profile wheel slip curves: 1—front left,

2—front right, 3—rear left, 4—rear right.
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Figure S9. Curved split-p road with a half wet-half dry surface profile angle curves: 1—steering wheel
angle o, 2—yaw rate ..
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Figure S10. Curved even road with wet-dry surface profile velocity curves: 1—front left wheel, 2—
front right wheel, 3—rear left wheel, 4 —rear right wheel, 5—vehicle.
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Figure S11. Curved even road with wet-dry surface profile wheel slip curves: 1—front left, 2—front
right, 3—rear left, 4—rear right.
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Figure 512. Curved even road with wet-dry surface profile angle curves: 1—steering wheel angle o,
2—yaw rate .
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Figure S13. Curved even road with dry-icy-wet surface profile velocity curves: 1—front left wheel,
2—front right wheel, 3—rear left wheel, 4—rear right wheel, 5—vehicle.
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Figure S14. Curved even road with dry-icy-wet surface profile wheel slip curves:

front right, 3—rear left, 4 —rear right.
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Figure S15. Curved even road with dry-icy-wet surface profile angle curves: 1—steering wheel angle

0, 2—yaw rate .
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Figure S16. Straight even road with icy-dry-wet surface profile velocity curves: 1—front left wheel,
2—front right wheel, 3—rear left wheel, 4—rear right wheel, 5—vehicle.
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Figure S17. Straight even road with icy-dry-wet surface profile wheel slip curves: 1—front left, 2—
front right, 3—rear left, 4 —rear right.
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Abstract—A novel method for evaluating driver distraction
and situation awareness while performing a secondary task using
a fuzzy set theory is proposed in this paper. A fuzzy inference
engine realization process based on simple matrix operations is
described in detail. The drivers’ performance is evaluated
referring to the vehicle behavior, in particular, the abilities to
keep the vehicle in the center of the lane and to observe the speed
limit. The evaluation technique was tested on a vehicle mock-up
driving simulator. Text messaging on a cell phone is studied as a
secondary distractive activity. Driver-in-the-loop experimental
results as well as the conclusions regarding different age, gender,
and driving experience groups are discussed.

Keywords—fuzzy logic; performance evaluation; vehicle safety;
real-time systems

1. INTRODUCTION

Nowadays, people spend more time than ever behind a
steering wheel. However, not all drivers can remain constantly
focused on their primary tasks — performing maneuvers,
reading traffic signs, monitoring traffic, overcoming weather —
while driving. Frequently, they perform different kinds of
secondary tasks that are not related to safe driving and, on the
contrary, may be extremely dangerous due to drivers’
increasing workload [1, 2, 3].

The tasks that may potentially affect driving are divided
into two main groups: interaction with in-vehicle features,
such as vehicle information and entertainment systems, and
items brought into the vehicle, such as portable devices [1].
Nevertheless, there are no certain measures which could
evaluate the influence of the secondary tasks on drivers’
situation awareness and level of vigilance and therefore
conclude what secondary activity leads to a potential traffic
accident, to what degree it can be dangerous, and how to
eliminate its effect.

In the current decade, portable electronic devices, such as
cell phones or smartphones, became an essential part of
everyday life. However, phones are often used in cases when
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they may lead to a dramatic aftermath and even cause serious
accidents with fatal consequences [4].

Only in the USA, fatalities of drivers involved in vehicle
crashes increased by 7.2% in 2015 over 2014 [5]. Among
different causes of traffic accidents, driver distraction is
considered one of the most common, especially among young
drivers (58% in the period 2007-2013) [6]. Notably dangerous
is the usage of portable electronic devices, such as e-readers,
cell phones, tablets, or MP3 players while driving [7].
Although the AAA Foundation for Traffic Safety reports that
81.1% of surveyed drivers are aware that “text messaging or
emailing while driving are a very serious threat to their
personal safety”, still 11.2% of drivers regularly read text
messages while driving. What is more, 8.2% of them admit to
typing or sending texts [7].

The development of a robust method for driver distraction
evaluation while performing a secondary task is of interest for
both road safety foundations and vehicle manufacturers. It
could help the first group in establishing traffic safety policies,
and the second one in improving human-machine interface
systems that would be intuitive and logical, thus producing
minimum drivers’ disturbance. A driver distraction and
human-machine interface evaluation technique also offer the
possibility to test and evaluate such advanced driver assistance
systems as collision avoidance, lane departure warning, and
others.

Various approaches were offered for an evaluation of
driver distraction and situation awareness. Drivers’ eye
tracking or head movement are among the oldest techniques
[8]. The effect of hands-free cell phone conversations was
examined in [9] using eye-tracking data. Different age groups
of drivers (novice drivers, young adults, and older adults) were
studied on their ability to recognize risks [10]. Separate groups
of novice drivers were tested on risk awareness in [11]. Eye
movement was involved in evaluation in the above studies.
Eye tracking was also used in driver distraction evaluation
while having a conversation with a passenger [12].



Another widely used group of evaluation methods is based
on vehicle dynamic performance. Using driving simulators,
drivers’ steering ability, speed limit maintenance, brake and
gas pedal actuation as well as reaction time can be accepted as
a measure for the driver distraction estimation. In [4, 13], the
level of driver distraction was evaluated via steering wheel
performance and lane-keeping ability. In the first work, the
effects of handheld and hands-free phone conversations while
driving were studied. In the second one, the steerability was
tested using clear, large, and high luminance visual scenes.

Driving behavior characterization was developed by
combining fuzzy and probabilistic models [14]. The driving
performance was tested in real time. A gap between vehicles
and vehicle velocity were used as evaluation measures.

Another methodology uses the ability of experimentation
subjected for maintenance the spatial location knowledge
while performing dynamic real-time tasks, such as driving, air
traffic control, flying, and others. For example, a recall of
vehicle location and focus on the location of potentially
hazardous cars were used in [3] as a measures for the level of
situation awareness.

Finally, some researchers went further and combined
several measures to evaluate driver distraction while
interacting with in-vehicle secondary tasks. Researchers in [2]
used the mean speed and deviation from the posted speed limit
to measure driver distraction. Thereafter, a multidimensional
subjective workload index, the NASA Task Load Index, of the
perceived workload was recorded. In [15], the authors
combined eye and head movement data with lane keeping.

Fuzzy theory [16] is not a novel idea in driver behavior
and distraction detection. Fuzzy logic (FL) was applied as an
online driving style recognition system [17]. The system has a
high accuracy in driving style classification. However, the
application was tested only via simulation. In [18], a driver
activity index was designed using FL.

In [19, 20], driver face monitoring systems were
introduced. The fuzzy algorithms were applied to detect driver
fatigue and distraction. The first work uses the driver’s
position in a vehicle. The system in the second paper collects
the driver’s eye and face symptoms as the fuzzy expert system
inputs. Finally, four levels of driver distraction FL
classification wusing EEG signals were offered [21].
Unfortunately, the researchers did not study yet the secondary
task influence on the driving quality.

An old evaluation method used in SKODA AUTO as.
Technology Centre (Mlada Boleslav, Czech Republic) has
some drawbacks. First, driver distraction is only recorded
when the participant drives outside the road boundaries. Even
driving close to a road marking can be significantly dangerous
for both the driver and for other traffic participants, which is
not yet considered. Second, vehicle speed maintenance is not
considered in the old method. However, it has been observed
that many drivers significantly decelerate (even down to a full
stop) while performing a secondary task. To study the level of
driver distraction while performing a secondary activity more
accurately, the development of a new advanced driver

situation awareness and distraction evaluation technique is
required. Following the driver’s expectations, the most
suitable in view of driving safety human-machine interface is
to be suggested for installation in a real passenger vehicle.

In the first step of the research, it is proposed to extend the
driver performance evaluation by two measures: lane keeping
and optimal vehicle velocity maintenance ability. The authors
believe that these two measures are among the most important
ones for safe vehicle operation, which, in turn, is a driver’s
primary task. Considering that it is quite difficult to use two
independent variables for a comparative evaluation, FL is
applied in this study to transform the vehicle dynamic
behavior into a single output, namely, the level of driver
distraction. FL is known to be a perfect approach for empirical
modeling of human behavior reasoning because it allows
considering several vague inputs simultaneously [16, 22].

Furthermore, the Sugeno-type fuzzy inference system is
realized here with simple matrix operations. This approach
makes a fuzzy algorithm easy to program using such
languages as C, C++, MATLAB® script, and many others.

The next section describes the fuzzy inference system as
well as the evaluation method in detail. The driver distraction
test is conducted on a driving simulator test rig. As cell phone
usage while driving is one of the most dangerous tasks [7], it
is studied as a secondary activity. The participants of the
driver-in-the-loop experiment were divided into three groups
based on their gender, age, and driving experience. Section III
is dedicated to the experimental facilities and procedure. The
experiment results are introduced and discussed in Section IV.
Finally, the research outcomes are concluded in Section V.

II. Fuzzy LOGIC DRIVER DISTRACTION EVALUATOR

A general FL inference system diagram is introduced in
Fig. 1. It may have a multiple number of inputs and outputs.
The input numerical signals are called “crisp”. They are
translated into the fuzzy sets through a fuzzification process.
A fuzzy set, in turn, is a pair consisting of an element in the
universe of discourse (UOD) and a degree of certainty of a
membership function (MF). The rule-base block stores a
linguistic knowledge, which is used to convert the fuzzy input
sets into the fuzzy output sets by the inference engine. The
fuzzy set outputs are then turned back to the real numbers
using a defuzzification procedure.

A. Inference mechanism

In the fuzzy inference engine presented here, the
fuzzification process turns the crisp input into a column vector
every element of which equals to a degree of certainty a
relevant MF uMF, which can be any quantity between 0 and 1.

ry(t) | - Inference S
ot 2 mechanism B
(), 5 s |uo vt
3 & -]
i I T
ralt) = 2
—>] Rulefbase‘ a

Fig. 1. Fuzzy logic inference diagram: r,(2) — first input; r>(2) — second input;
74(t) — n™ input; u(z) — fuzzy logic output/process input; y(t) — process output.



For a “2 inputs — 1 output” system, for instance, the first
input turns into an nx1 column vector a, where n is a number
of MFs for the first input. The second input turns into an m x1
column vector b, where m is a number of MFs for the second
input. Next, a dyadic product of two vectors, a and b,
generates an m xn matrix C:

b
C=b®a=bd =| > [ =
=b®a=ba' =| ’ |a, a, a,|=
b, Y
b-a, b-a, b-a, i G Gy
_ ba ba, b-a, G G ot Gy
br .al bm.aZ e bm.an cml cmZ o Cmn

The fuzzification procedure example for a “2 inputs — 1
output” system with the linear MFs is introduced in Fig. 2.
The first input is turned into a 3x1 while the second input is
turned into a 5x1 column vector. The size of each vector
depends on the number of MFs chosen for each input variable.
After applying (1), the 5x3 matrix C is obtained (Fig. 2) every
element of which is a real number between 0 and 1.

A fuzzy logic rule-base consists of the modus-ponens-form
linguistic rule “If-Then", and is often introduced as a table. In
our approach, a rule-base table is represented as an mXn
matrix R. This transformation from the modus-ponens rules
table to a matrix is shown in Fig. 3. It is important to note that
the matrix elements are the constant values. Thus, this fuzzy
inference method makes the system similar to the zero-order
Sugeno inference system.

Next, matrix D is obtained as a Hadamard product for the
same dimension matrices C and R:

b-ar, brayrn, - bra-n,
b-a-r, b-a-r b,-a, -,
D=CoR ¢) _1 2 9 2 22 ¢l " | _
b,-a-r, b,ar, - bra-r,| . 2
d]l dlz d]n
_ d21 dzz dZn
dml dm2 dmn

The defuzzification process is the last step in every fuzzy
inference system. During the defuzzification procedure, the
fuzzy sets are converted back to the crisp output. In our case,
the constructed matrices are transformed to a single numerical
value by finding a weighted average of the matrix elements.
The FL inference technique output u is obtained by dividing
the sum of the elements in matrix D by the sum of the
elements in matrix C:

MF3 MF, MF
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Fig. 2. Fuzzification process visual explanation.
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where dj; is an element of the i row and j” column of D and
¢ is an element of the i row and j column of C.

B. Fuzzy logic driver distraction evaluator

The FL driver distraction evaluator has a “2 inputs — 1
output” structure. The offset dx between the road centerline
and the position of the car on the road serves as a first input.
Second input is the difference dv between the speed limit on a
road segment and the real vehicle speed. Thus, the vehicle
dynamic performance is tracked for driver distraction
evaluation.

Symmetrically dispersed MFs of the triangular (linear)
shape are designed for both inputs. The linear narrow shape of
MFs ensures fast response and they are simple for
programming. The MFs overlap with each other over the
whole UOD. Symmetrical dispersion guarantees equal
sensitivity of the inputs.

The FL input and output variables must have a closed
frontier [min, max] of the UOD. For dx, a UOD restriction was
narrowed to [0, 1.5]. A UOD of the speed difference input dv
lies in the range [0, 12]. Both inputs have three MFs.

The output variable represents the driving distraction in
percentages. Thus, the output UOD is bounded within [0 100].

Ifais MF, and b is MF, Then R is r;, ——
gl 1 u [ MF, | MF, | ... |MF,
b
If ais MF, and b is MF, Then R is r5; MF, | 1, Iy Ty
MF, | 1 | 1t | ... | T
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Fig. 3. Transformation of a fuzzy logic rule-base into an m xn matrix.



TABLE IL Fuzzy LOGIC EVALUATION RULE-BASE TABLE L Fuzzy LOGIC EVALUATOR OUTLOOK
dx N
Driver Distraction Parameter Fuzzy logic evaluator
close far out Structure Multi-input, single-output

good no negligible low isp i dx=[0,1.5] (3 MFs)

o glig Crisp input dv=[0.12] (3 MFs)
bad no medium high Crisp output Driver Distraction = [0 100] (8 Singletons)
awful very_low | very_high | inacceptable

Singletons represent the consequent MFs as the set of values
with an equal step between each set: {no = 0, negligible =
14.3, very low = 28.6, low = 42.9, medium = 57.2, high =
71.5, very_high = 85.8, inacceptable = 100}.

The FL evaluation was realized via the modus-ponens-
form rule “If-Then”. The inference system has two inputs and
one output. The linguistic knowledge is stored in a 3x3 matrix,
the elements of which are the values of the output sets. Table I
shows the linguistic relation between the variables. The MFs
are named suitably for human understanding. An example of
the linguistic input-output mapping is as follows:

«

IF the vehicle middle point is “far” off the road centerline
AND driver’s speed limit observation is “bad”, THEN Driver
Distraction is “medium”.

The three-dimensional surface of the designed FL
inference mechanism is displayed in Fig. 4. The FL driver
distraction evaluator design summary is introduced in Table II.

III. METHODOLOGY

A. Subjects

The participants of the driver distraction experiment were
employees of IPG Automotive GmbH (Karlsruhe, Germany).
All participants (13 male and 5 female) took part in the
experiment voluntarily. Their age ranged between 24 and 39
(mean 30.11). The participants’ driving experience ranged
between 1 and 21 years (mean 11.33).

Before the experiment, the drivers were questioned
regarding their use of electronic devices, such as tablets,
smartphones, laptops, or e-readers while driving. Two
participants stated that they never use them while driving; two
drivers admitted to the occasional use of a device. The rest of
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Fig. 4. Driver distraction fuzzy evaluator three-dimensional surface.
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the participants reported that they rarely use electronic
devices. All the participants pointed out that they are aware of
the danger of using devices while driving.

B. Apparatus

The vehicle mock-up driving simulator equipment System
Experience Platform (SEP) is shown in Fig. 5. The test rig has
a steering wheel and two pedals: acceleration and brake. The
SEP has two liquid-crystal displays and it can be extended to
up to three displays. The virtual world is shown on a display
which is placed in front of the driver. The SEP has an
adjustable driver’s seat.

The virtual vehicle model has a manual transmission. The
driver can monitor the vehicle’s speed on the head-up display.
The performance data are collected with 50Hz frequency
(0.02 s sample period). The SEP supports real-time integration
with  MATLAB®/Simulink® (Natick, MA, USA) and
CarMaker by IPG Automotive (Karlsruhe, Germany).

C. Procedure

The participants drove a two-way, two-lane highway road
of a total length of 10,626 m. The lane width was 3.5 m. The
road had three segments with different speed limits (30, 50
and 90 km/h) and curvatures. The road shape was displayed on
one of the SEP screens. The drivers could also track their
position on the road. There were neither other vehicles nor

Fig. 5. The static System Experience Platform driving simulator.



pedestrians nor animals modeled in the virtual world.

Before the experiment, the drivers received unlimited time
to familiarize themselves with the test rig. Each driver passed
at least one full road lap. Thus, the participants were familiar
with the road in advance.

During the experiment, the drivers were asked to drive in
the right lane, keeping the car in the middle of the lane, and to
observe all traffic signs. While the participants were driving in
the virtual world, one of the experiment organizers sent text
messages to the cell phone prepared for the participants. The
drivers were requested to answer the text messages and to
continue driving following all traffic rules.

The drivers were instructed to have a natural chat
conversation. The experimenter asked the participants simple
questions. For instance, “How are you?”, “What are your
plans for the weekend?” and similar. The secondary task
period was captured starting when the drivers took the phone
in their hands and ending when they put the phone aside. The
experimenter allowed a reasonable time between the
distractive messages. Therefore, each participant drove
roughly the equal amount of time both when distracted and
when free of the secondary task.

IV. RESULTS AND DISCUSSIONS

In this section, the outcomes of the driver-in-the-loop
experiment are discussed. The results of driver distraction
evaluation based on the FL for a random driver are shown in
Fig. 6. The periods with a green background represent the time
of interaction between the driver and the cell phone. The blue
curves indicate the driver distraction level in percent. For all
the participants, the evaluation results are quite similar: a high
percentage during texting and a low evaluation during free
driving.

Although all the participants were familiar with the road
curvature, they were performing significantly better (low
percentage of distraction) during normal driving compared to
the times when they were texting. For instance, one random
driver whose drive is presented in Fig. 6, in a period from 350
to 410 seconds, was performing badly for a quite lengthy

Evaluation
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Fig. 6. Driver distraction versus time plot: green background symbolizes the
secondary task accomplishment period. Evaluation example for one of the
experiment participants.

period, around one minute. In real life, this could potentially
lead to severe injury or even fatal accidents. In short, the
proposed evaluation technique recognizes when and how
strongly (in percent) the driver is distracted.

To calculate the driver distraction performance, first, the
area of the driver distraction curve was found (Fig. 6, blue)
using a trapezoidal rule. Second, the area value was divided by
the total time the driver was distracted with the cell phone
texting chat (Fig. 6, green background).

Therefore, all the driver’s evaluations were summarized
and distributed between three main groups that were formed
according to the participants’ gender, age, and driving
experience. The average performance for different group
members was calculated. Fig. 7 introduces the results of driver
distraction in each group.

Two subgroups according to the participants’ responses
were formed for a gender group: female and male. Referring
to the experiment results, the male drivers performed a
secondary activity better than their female colleagues did.

Two groups were distributed into subgroups regarding the
mean age and driving experience of the participants. In the age
group, the drivers were divided into younger than 30 years old
and the ones of 30 years or older. The last group formed the
drivers with less than 11 years of driving experience and the
drivers who had at least 11 years of experience.

Among young experiment participants and those older than
30 years, the performance difference was not significant.
Younger drivers showed slightly better performance. In
contrast, in the experienced group, participants that were more
skilled performed noticeably better than the beginners did.

CONCLUSION

This paper presents an evaluation method based on a fuzzy
set theory focusing on a driver distraction while performing a
secondary task. An inference mechanism easily realizable in
programming languages and based on matrix operations is
described. A driver-in-the-loop experiment on driving while
performing a secondary task is conducted. Text messaging on
the cell phone was examined as a secondary task.

The designed FL inference system evaluates driver
distraction considering several aspects concurrently: lane
keeping and the ability to observe the speed limit. The
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Fig. 7. Driver distracuon comparison results for the three groups: gender, age
and driving experience.
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experiment’s results show that the proposed method allows to
recognize and to calculate the level of driver distraction in
percentage based on safe vehicle dynamic performance. The
presented method allows for driver distraction experiments to
be conducted more accurately compared to the old one used in
the laboratory as it involves more input measures.

Further research might be directed towards the
advancement of the evaluation methodology. In particular,
other parameters of vehicle dynamics are expected as new
algorithm inputs. In addition, the mechanism improvement via
the combination of different evaluation approaches is planned.
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Abstract— A robust methodology for detecting and evaluating
driver distraction induced by in-vehicle information system using
artificial neural network and fuzzy logic is introduced in this
paper. An artificial neural network is used to predict driver’s
performance on a specific road segment. The predicted
performance-based measures are compared to the driving with
secondary task accomplishment. Fuzzy logic is applied to fuse the
variables into a single output, which constitutes a level of driver
distraction in percentage. The technique was tested on a vehicle
simulator by ten drivers that exploited in-vehicle information
system as a secondary activity. The driver-in-the-loop experiment
outcomes are discussed.

Keywords—artificial neural networks; fuzzy logic; vehicle
safety; machine learning; prediction methods

1. INTRODUCTION

Driver distraction (DD) causes serious environmental
problem every year. Not to mention injuries, DD contributes to
more than 5000 traffic fatalities yearly in the USA alone.
Unfortunately, this trend does not tend to decline [1].

DD is defined as “anything that delays the recognition of
information necessary to safety maintain the lateral and
longitudinal control of the vehicle (driver’s primary task) due
to some event, activity, object or person, within or outside the
vehicle that compels or tends to induce the driver’s shifting
attention away from the fundamental driving task by
compromising the driver’s auditory, biomechanical, cognitive
or visual faculties or combinations thereof”. The activities not
related to primary tasks driver perform while driving are
defined as secondary activities [2, 3, 4, 5].

There are two types of secondary tasks: interaction with in-
vehicle information system (IVIS) (e.g. controlling comfort
and entertainment), and interaction with the items brought to a
vehicle (e.g. portable electronic devices, passengers, pets) [2].
DD minimization caused by IVIS is under vehicle
manufacturers’ responsibility. In particular, the vehicle cockpit
and human-machine interface (HMI) must be safe for
operation, intuitive, well organized, and, what is most
important, not distract a driver from her/his primary task.
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Development of a robust DD detection and assessment
methodology while interacting with IVIS allows testing
different HMI technologies and cockpit designs before they are
accepted in series vehicle. DD evaluation is also applied in
advanced driver assistance systems impact on driver’s situation
awareness. Today, there are still no accurate evaluation
technologies for DD induced by IVIS [2, 6, 7].

Previously, many different attributes were proposed for DD
detection. Among them, psychological [8], behavioral [9],
subjective [10], performance-based or their combinations [11]
are known. For DD detection, machine learning (e.g. support
vector machine, graph-regularized extreme learning machine,
k-nearest neighbor) deserved special attention among other
algorithms [12].

Artificial neural network (ANN) is one of the most popular
machine learning approaches [13] due to its robustness, ability
to learn by example, and efficiency in intelligent systems. The
ANNs are used in various disciplines: physics, statistics,
psychology, cognitive science, neuroscience, and linguistics,
not to mention computer science, electrical engineering, and
adaptive control [14]. Many researchers on DD detection and
assessment applied ANN to solve their problems.

In [15], a three-dimensional convolutional neural network
(CNN) and gradient boosting algorithms combination were
proposed for drowsiness classification. Gaze zone
categorization was designed using CNN in [16]. A probabilistic
restricted Coulomb energy ANN was implemented for drowsy
driving prediction in [17]. In these works, the researchers
preferred behavioral attributes. Unfortunately, behavioral and
psychological attributes always require supplementary devices
(e.g. cameras and neuro-scan systems) that increase system
cost and complexity [18].

Another famous approach of DD detection - performance-
based - does not require additional devices. These methods
depend on vehicle dynamic performance, which is tracked by
the sensors available in modern vehicles (e.g. vehicle velocity
and steering wheel angle). In [19], the scholars proposed DD
detection using in-vehicle signals without planned distraction.
The machine learning schemes, ANN, and Gaussian mixture
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models were combined to solve the problem. In [20], a real-
time DD detection classifier using vehicle dynamic data was
introduced. Different machine learning algorithms, including
static and dynamic ANNs, adaptive neuro-fuzzy inference
system, and support vector machine, were compared. The last
one outperformed all the other classifiers.

For accurate DD detection, different attributes can be
combined. For example, behavioral (i.e. head movement) and
performance-based data were integrated for the online DD
detection with long- and short-term memory recurrent ANN in
[21]. In [22], an adaptive neuro-fuzzy inference system for DD
prediction was developed. This approach showed better
performance comparing to the ANN and radial basic function
prediction algorithms.

Another computational intelligence method, fuzzy logic
(FL), is also widely used in automotive engineering, from
vehicle dynamics control [23] to DD evaluation [24]. A
thorough review on fuzzy methods in automotive engineering
applications can be found in [25].

Although the results of the related works were very positive
in DD detection, they all use the 2-class classification:
distracted or not distracted. This classification is not suitable
for measuring the DD level and consequent IVIS HMI
technology comparative evaluation. Hence, in this paper a
solution of the regression problem is proposed for DD
detection with performance-based attributes bearing in mind
that ANNSs are actively used for nonlinear regression [14].

An ANN is designed as a driver performance predictor in a
name of lane keeping ability and speed limit maintenance.
First, the ANN is trained with data collected during the DD-
free driving. Next, the predicted variables are compared to the
same variables collected during driver’s run with completing
secondary task in parallel to driving. The comparison is used
for DD detection. As FL is efficient in data fusion [26, 27], it is
applied to merge vehicle dynamics into a single variable. This
variable depicts a level of DD in percentage caused by a
secondary activity.

Next Section is dedicated to the methodology based on
ANN and FL combination description. The driver-in-the-loop
experiment was_conducted on an advanced driving simulator
provided by SKODA AUTO (Mlada Boleslav, Czech
Republic). The experiment procedure, subjects, and apparatus
are described in Section III. The DD detection and evaluation
methodology outcomes are stressed in Section IV. Finally, the
research conclusion is provided in Section V.

II. DRIVER DISTRACTION DETECTION METHOD

The block scheme of the DD detection and evaluation
method is presented in Fig. 1. The symbols’ description and
annotation are introduced in Table I. The method involves
three steps. First, the ANN predicts a vehicle dynamic
performance on a specific road segment taking as the inputs an
information about the road segment: speed limit V; and
curvature (radius) . The outputs of the ANN describe
predicted driver performance on a specific road segment:
ability to hold a speed limit Av, and to stay in the middle of the
road lane Ax,. The training data for the ANN are collected

Ax, 1) Ax,

DD
Av, Av,
)
Av l—

Fig. 1. DD detection and evaluation method block scheme.

during the first phase of the experiment, when the driver
demonstrates her/his normal vehicle operation, without
secondary activity.

Second, the predicted variables are compared to a real
driving performance Ax and Av with IVIS interaction. The
comparison outcomes are the resultative variables Ax, and Av,
calculated using the following rules:

Ax—Ax,, if Ax>0; Ax, >0;

A > |Ax,

Ax—Ax,, if Ax<0; Ax, <0;

Ax‘ > ‘Axp ‘

Ax+Ax,, if Ax>0; Ax, <0;

Ax|> [Ax, |

(O]

Ax+Ax,, if Ax<0; Ax, >0;

Av‘ > ‘Ax"‘
0, if |A <|Ax,

Av—Av,, if Av>0; Av, > 0;

Av‘ >‘Avp‘

Av—Av,, if Av<O0; Av, <0; |AY)

>‘Avp‘
Av, =<Av+Av

r P>

Av+Av,,, if Av<O0; Avp >0;

if Av>0; Av, <0; ‘Av‘ > ‘Avn

@)

AV > ‘Avp

0, if ‘Av‘ < ‘AVP

Negative Ax means that the vehicle drives closer to the road
dividing line. Contrariwise, positive Ax means that the vehicle
drives towards off road from the middle of the lane. Negative
Av shows that the vehicle velocity is lower than the speed limit
on a road segment whereas positive Av signifies speeding.
Finally, FL completes data fusion and outputs a level of DD in
percentage DD.

The evaluation method is programmed in MATLAB®
(Natick, MA, USA) environment. The Neural Network
Toolbox™ was exploited for the design of the ANN driver
performance predictor. One of the most popular methods due to
its optimal computation complexity - backpropagation [13] -

TABLE L PARAMETERS DESCRIPTION
Symbol Description Unit
r Road radius m
v, Speed limit km/h
Ax Real lane keeping offset m
Av Real vehicle speed deviation km/h
Ax, Predicted lane keeping offset m
Av, Predicted vehicle speed deviation km/h
Ax, Resultative lane keeping offset m
Av, Resultative vehicle speed deviation km/h
DD Driver distraction in percentage %
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TABLE II. RULE-BASE OF THE FL EVALUATOR
o Ax, [m]
DD %] very close | close | zero far very far

very_low 100 71.5 429 71.5 100
Ay low 85.8 14.3 0 14.3 85.8
" zero 429 0 0 0 42.9
lkm/] e 715 | 143 | 0 | 143 | 715
very_high 85.8 572 | 286 | 572 85.5

was used for computing gradients in the ANN. The algorithm
detailed description for training a multilayer perceptron for
regression is reported in [14].

The Levenberg-Marquardt method is the most suitable for
training an ANN with nonlinear regression (function fitting)
purposes. In practice, ANNs incorporate three and sometimes
four layers, including one or two hidden layers with 10 to 1000
neurons in each. More hidden layers do not guarantee better
ANN performance likewise the greater number of neurons
does. On the contrary, each additional layer increases the
computational burden exponentially [14, 15].

Two hidden layers were used for ANN in this study. The
network performance was tested on different number of
neurons in each layer. However, we did not notice the ANN
significant enhancement with more than 100 neurons. Due to
its simplicity and superior performance [13], the tangent-
sigmoid activation function was applied in the hidden layers.
As a rule, for the outputs the linear transfer functions are used
in regression [13]. In short, a feedforward ANN with two
hidden layers of 100 neurons each, with a tangent-sigmoid
transfer function in the hidden layer, and a linear transfer
function in the output layer was designed using the Levenberg-
Marquardt training method.

In this research, an FL Sugeno’s type inference mechanism
based on simple matrix operations suitable for C, C++,
MATLAB® script, and other programming languages was used
[24]. The FL DD evaluator has a “2 inputs - 1 output”
structure. The inputs are Ax, and Av,. The DD output represents
a level of DD in percentage (Fig. 1).

Five symmetrically dispersed and overlapped over the
whole universe of discourse (UOD) triangular membership
functions (MFs) capable for fast response and easy for
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Fig. 2. The DD FL evaluator nonlinear control surface.

programming were designed for both inputs. Inputs’ equal
sensitivity is guaranteed by the symmetric MFs dispersion. The
Ax, UOD was bounded between [-1.5, 1.5] whereas the Av,
UOD was narrowed in [-12, 12].

The output UOD is bounded within [0, 100]. The output
MFs represent eight singletons with equal step 14.3 between
each other: {0, 14.3, 28.6, 42.9, 57.2, 71.5, 85.8, 100}. The
step is calculated by dividing the highest value of UOD
boundary by an amount of MFs starting from the second
singleton, because the first one is equal to zero. Consequently,
the fixed step between the output MFs guarantees their equal
sensitivity inside of the UOD.

Modus-ponens-form rules “If-Then” are applied to connect
the inputs with the output. The input-output linguistic relation
is presented in Table II. The control surface for the designed
FL evaluator is shown in Fig. 2. An example of the linguistic
input-output mapping is performed as follows:

IF the vehicle center is “far” from the road dividing line
AND driver’s speed is “low” comparing to the road speed
limit, THEN driver distraction is ”14.3%".

III. METHODOLOGY

A. Subjects

Ten diver-in-the-loop experiment participants were
members of the Interdisciplinary Training Network in Multi-
Actuated Ground Vehicles (ITEAM) project. In this study, only
male drivers participated. Their age ranged between 27 and 31
years old. Every participant owned a valid driver license. All
drivers took part in the experiment voluntarily.

The experiment participation was not payed. However, for
their contribution the participants were awarded with a guided
tour to SKODA AUTO museum and vehicle production plant
(Mlada Boleslav, Czech Republic) free of charge.

B. Apparatus

The experiment was conducted on available in SKODA
AUTO HMI laboratory (Mlada Boleslav, Czech Republic)
facilities that consist of a fixed-base vehicle mockup and a wall
screen in front of the driver, where the virtual world is
projected (Fig. 3). A driver settled down inside the vehicle
simulator, which has an automatic gearbox, steering wheel,
adjustable driver’s seat, acceleration and brake pedals. The

Fig. 3. Driver-in-the-loop experiment facility.
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TABLE III. IN-VEHICLE SECONDARY TASKS

# In-vehicle secondary task
1. Volume Volume regulation
2. Radio
i Context selection "I\lf[e elg;lone
5. Navigation
6. Radio Radio station selection from a primary list
7. Radio station selection from an overall list
8. Media source selection (e.g. CD, SD-card)
9. Media Media item selection
10. Song shuffle
11. Telephone Call a number from a favorite contact list
12. Call a number from an overall contact list
13. Input location

14. | Navigation Input of a next target
15. Zoom operation

vehicle cockpit is identical to the one used in commercial
vehicles. The simulator’s head-up instrument panel displays
current vehicle velocity. All the secondary tasks are conducted
via the HMI display placed, like in most of the European
countries, on the driver’s right.

Vehicle dynamics and virtual world are modelled using an
open source library for simulating rigid body dynamics Open
Dynamics Engine™ v 0.5 in C++ programming language [28].
The vehicle model consists of the vehicle body, suspension
system, four wheels, and the tire model completed with
Pacejka’s Magic Formula [29]. The vehicle is parametrized
according to Skoda Yeti SK316 with 1.4 liters twincharged
stratified injection 77 kW engine specifications. The drivers
could understand when they drive off the road on a grass by the
screen vibration. However, they could not feel crossing the
road dividing line.

Three coordinates (i.e. x, y, z) are saved in the virtual world
for each wheel with 0.1 seconds sample period. These data are
exploited for lane keeping offset and for vehicle speed
deviation calculations. The drivers control the vehicle via the
steering wheel and the brake and acceleration pedals.

C. Procedure

The driver-in-the-loop experiment participants were asked
to drive the two-way lap of a total length of 10626 meters with
a 3.5 meters width lane. The road has two main segments: the
curvy road with a speed limit of 50 km/h and the almost
straight road with slight curvature of 90 km/h. When all the
speed limits are respected, one lap takes approximately 10
minutes for driving. There were no other traffic participants
modelled, neither pedestrians nor other vehicles.

To familiarize with the simulator, the drivers were allowed
to drive it unlimited time, before the start of the driver-in-the-
loop experiment. Thus, they were aware of the test rig and the
road shape preliminary. What is more, the participants were
instructed to the studied HMI display. They could try all the
secondary tasks in advance.

The experiment for each participant was divided into two
parts. First, the drivers were asked to pass two laps showing
their best performance in lane keeping ability and following all
the traffic regulations (i.e. speed limits). They were not
fulfilling a secondary activity during the first part of the
experiment. The data collected during the free from the
secondary task driving were used for the ANN training. During
the second part, the drivers were asked to continue driving
obeying the traffic rules and staying in the middle of the lane as
good as feasible. However, this time they drove the same road
performing a secondary activity in parallel. The participants
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Fig. 4. Driver performance prediction versus real driver performance example for one of the experiment participants: gray background — the secondary task
accomplishment period; red line — real driver performance; black line — predicted performance; green line — road information; (a) speed difference Av and

road speed limit V; (b) center lane keeping offset Ax and road radius r.
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were allowed to take a break between the experiment parts.

The in-vehicle secondary tasks are introduced in Table III.
The experiment organizer sent the vocal command to the driver
for a secondary activity request. When the secondary task is
accomplished, the driver sent a feedback to the experimenter
via a switch around the steering wheel. If the task is correct, the
driver heard a vocal signal informing that the submitted task is
correct. If the completed task is wrong and the driver did not
hear the sound signal, she/he had to perform the secondary
activity again. The participant had a reasonable time between
each secondary task request. No time restriction for a
secondary task realization was applied.

IV. RESULTS

The driver-in-the-loop experiment outcomes are presented
in this section. A random driver performance prediction, DD
detection and evaluation with FL is studied here in details. For
the rest of the participants the results are very similar: low DD
during normal driving and high level of DD while performing a
secondary activity.

In Fig. 4, the driver performance prediction for Av, and Ax,
versus real performance Av and Ax with secondary activity is
introduced. During the experiment, the driver passed more than
two full laps. However, in this paper the results only from the
last lap are presented.

Within normal driving, the driver tended to keep the speed
slightly lower its road segment limit (Fig 4a; black curve). In
average, the speed deviation did not exceed 5 km/h. When the
secondary task is performed (Fig. 4a; red curve), the speed
limit maintenance ability has higher oscillation. For example,
in the period from 820 s to 900 s the driver slowed the speed by
more than 25 km/h, while during the DD-free run the
participant was able to keep Av almost at zero.

The lane keeping ability along with road radiuses are
introduced in Fig. 4b. In average, the participant was holding

the middle line with 0.2 m error. On the contrary, when the
driver was performing a secondary activity, his driving
performance was significantly burdened. The lane keeping
ability lower than -1 m or higher than 1 m means that the
vehicle was driving out of the road bounds. When the
participant performed secondary tasks, in most of the cases the
vehicle went outside the road limits.

As it is noticed in Fig. 4, the interaction with the IVIS
influences the vehicle dynamic performance. The impact
depends on a task complexity. The proposed DD detection
method easily recognizes the difference between normal DD-
free driving and driving while performing the secondary task.
Thereafter, the FL evaluates the level of DD.

In Fig. 5, DD evaluation is presented. It is seen that DD is
noticeably higher when the driver interacts with HMI by
executing the secondary activity. For some tasks (Table III),
the DD is low, for example, in case of the task number 1 -
volume regulation. On the contrary, some tasks caused very
high DD. For instance, with the task number 13 - searching for
a new location in a navigation system, the driver performed
badly for a quite long period (Fig. 5, inset). It can also be
observed from Fig. 4 for the period between 820 s and 900 s.
During this secondary task accomplishment, the driver dropped
the speed and went off the road several times (Fig. 4). The
method easily detects these mistakes in vehicle dynamic
performance and provides an appropriate evaluation (Fig. 5).

V. CONCLUSION

A DD detection and evaluation method based on ANN and
FL combination is presented in this paper. An ANN is applied
to solve a regression problem in driver performance prediction
on a specific road segment. The prediction is based on normal
driving without performing a secondary activity. Next, the
predicted performance-based variables are compared to the
same vehicle dynamics data collected during the driver run
with secondary activity accomplishment. The performance
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Fig. 5. Driver distraction evaluation results: gray background — the secondary task accomplishment period; blue curve — DD. The secondary task number

refers to Table II1.
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degradation is accepted as a DD detection. Finally, the data
pass through FL evaluator, which outputs a level of DD.

The method is verified in driver-in-the-loop experiment on
an advanced driver decoy simulator with ten participants. The
results show that the methodology is always capable to detect
DD when an experiment participant interacts with IVIS. The
evaluation by FL allows an accurate comparison of different
in-vehicle secondary tasks. In particular, it shows what
secondary tasks lead to higher level of DD comparing to
another ones. The proposed methodology provides a practical
tool for HMI technologies comparative analysis.

In the future, more driver-in-the-loop participants will be
studied on IVIS-induced DD detection and evaluation with the
proposed methodology. Moreover, other machine learning
algorithms (e.g. k-nearest neighbor, adaptive neuro-fuzzy
inference system, and long short-term memory) efficient in
nonlinear regression [14] will be applied and compared to an
ANN. Different attributes combination and more performance-
based variables will be used for the method improvement.
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Abstract: Models of road vehicle driver behaviour are widely used in several disciplines, like driver
distraction and autonomous driving. In this paper, a novel driver performance model, which is unique for
every driver, is introduced. The driver is modelled with machine learning algorithms, namely artificial
neural network and adaptive neuro-fuzzy inference system. Every model is trained and validated with the
data collected during the real-time driver-in-the-loop experiment on a vehicle simulator for each driver
separately. In total, 18 participants contributed to the experiment. Although the prediction accuracy of the
models depends on the algorithm specifications, the artificial neural network was slightly more accurate
in driver performance prediction comparing to the adaptive neuro-fuzzy inference system. The driver
models may be used in detection of driver distraction induced by in-vehicle information system.

Keywords: Neural networks; Neural fuzzy modelling and control; Machine learning for environmental
applications; Vehicle dynamic systems; Human factors in vehicular system; Learning and adaptation in

autonomous vehicles; Safety.

1. INTRODUCTION

In 2016, 25500 people died and 135000 were seriously
injured in traffic accidents in Europe alone (European
Commission, 2017). Thanks to the traffic policies (e.g.
obligatory seat belt usage) and in-vehicle active and passive
safety features, such as anti-lock braking system, electronic
stability program, lane departure warning, and many others,
road fatality rates have dramatically decreased within past 10
years (European Commission, 2016). Nevertheless, the traffic
safety is still a very serious environmental challenge we are
involved in today.

Every year, almost half of the lost lives in road accidents are
due to improper driver behaviour. The most dangerous driver
mistakes are speeding, driving under the alcohol or forbidden
drugs influence, and driver distraction. Traffic safety
foundations (e.g. the European Commission Directorate
General for Mobility & Transport and the AAA Foundation
for Traffic Safety) along with vehicle manufacturers are
constantly working on new ideas dedicated to road safety
improvement. The first ones mainly focus on transport
policies establishment and road environment improvement.
The seconds concentrate on advanced driver assistance
systems development to reduce driver workload and to avoid
driver’s inattention, and induced by in-vehicle information
system driver distraction diminishment.

Driver modelling is successfully used in development of
autonomous driving systems. For instance, lane change
(Vallon et al., 2017), trajectory forecasting (Doshi and
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Trivedi, 2011), and human-like steering or lane keeping
control model (Hubschneider et al., 2017; Kolekar et al.,
2017; Saleh et al., 2011) were introduced previously. In
addition, Pasquier et al. (2001) developed an automated
driver prototype model, which emulates human driving
expertise with self-organising fuzzy rule-base system.

Another widely used discipline, where driver modelling is
useful, is driver distraction with secondary activity. Driver
distraction is defined as “anything that delays the recognition
of information necessary to safely maintain the lateral and
longitudinal control of the vehicle (driver’s primary task) due
to some event, activity, object or person, within or outside the
vehicle that compels or tends to induce the driver’s shifting
attention away from the fundamental driving task by
compromising the driver’s auditory, biomechanical,
cognitive or visual faculties or combinations thereof”’
(Hansen et al., 2017). Driver’s secondary tasks are defined as
all the activities different from primary tasks the drivers
perform while driving.

Brookhuis et al. (1991) made a comparison between normal
driving and driving with cell phone interaction. These
scholars studied heartrate indices and some of vehicle
performance measures. Wang et al. (2015) presented a driver
distraction start and end period prediction based on brain
activity measured by electroencephalographic signals. The
signals were monitored online with an adaptive-threshold-
based prediction framework. Choudhary and Velaga (2017)
collected driver performance data under a non-distracted
driving. Thereafter, non-distracted driver performance was
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compared to the driving with mobile phone use applying an
analysis of variance test. Simple comparison is not enough
for accurate driver distraction study. Therefore, driver
modelling is necessary to conduct the research on different
distraction case studies.

Hermannstddter and Yang (2013) applied a driver model
adopted from literature to real-road driving of a distracted
experiment in order to assess the driver state. The distraction
experiment data comprised real road driving with distraction,
as well as reference driving. The driver model features an
anticipatory and a compensatory tracking component, a
processing time delay, and a neuromuscular subsystem with a
torque control loop. Yang et al. (2010) developed a two-class
classifier based on driver behavior for driver distraction using
the nonlinear extended two-wheel vehicle dynamic model.
However, in both references, the models are derived
mathematically and have many approximations comparing to
the real driving performance.

Ersal et al. (2010) proposed a model-based approach to
analyse different effects of secondary tasks on individual
driver. For this, the authors introduced a radial-basis model-
network-based modelling framework for normal (not
distracted) driving behaviour characterization. Next, the
method was combined with support vector machines for
normal or distracted driving classification. The driver model
was expressed mathematically and was fitted with normal
driving data. Unfortunately, the model was used for all
drivers and, therefore, was not applicable for individual
driver distraction studies.

Kirscher and Ahlstrom (2010) attempted to predict visual
distraction with driver performance model. Based on the
results, each experiment participant was classified as either
distracted or attentive. Five-class drowsy driving classifier
was introduced in (Matsuo and Khiat, 2012). The authors
monitored driver’s behaviour (i.e. head sway, eye closure
rate, and frequency of subsidiary behaviour).

This work is dedicated to driver model development, which is
capable to predict each individual driver normal driving on a
specific road segment with a reasonable degree of accuracy.
Thus, machine learning techniques, like classification,
proposed by other researchers (Kirscher and Ahlstrom, 2010;
Matsuo and Khiat, 2012; Ersal et al., (2010)) are not suitable
for accurate driver modelling, because driver performance is
a highly nonlinear activity and cannot be limited with several
classes (Alpaydin, 2004). Contrariwise, nonlinear regression
methods, where the predicted responses are real numbers, are
efficient in accurate prediction from data sample. Hence,
machine learning algorithms, namely artificial neural network
(ANN) and adaptive neuro-fuzzy inference system (ANFIS),
are applied in this paper for driver performance modelling.

Moreover, the model depends on each driver individual
performance and unique for every driver. The model does not
require complex mathematical representation, like the ones
proposed in (Hermannstidter and Yang, 2013; Yang et al.,
2010; Ersal et al., 2010).
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To verify driver models, driver performance data were
collected for each individual participant in driver-in-the-loop
experiment using a vehicle simulator. Next, the unique
performance models for every driver were built. Finally, new
data were obtained on the same testbed to test the prediction
accuracy for each participant separately.

The models refer to the road segments, which are defined by
road curvature and speed limit. Thus, the models predict
driver’s manoeuvrability on a specific road section. The
predicted variables are road middle line keeping and speed
limit maintenance abilities for each individual participant.

In next section, the driver models are designed. Data
collection and driver-in-the-loop experiment is described in
Section 3. In Section 4, the experimental results of driver
performance prediction are introduced and are discussed.
Finally, the research is concluded in Section 5.

2. DRIVER MODELS

In Fig. 1, a driver model is presented. It receives an
information about a road as the inputs, which characterize a
road segment: curvature (radius) » and speed limit V. The
information about the road is instantaneous. Two variables
describe driver performance. The first one is a difference
between a vehicle velocity and a road segment speed
limitation (speed error) Av. The second output is a distance
between a road middle line and vehicle geometric centreline
(line error) Ax. For simplicity, both variables are accepted as
absolute values. Therefore, a driver model forecasts, how
well a person drives in the middle of the lane and maintains
the speed limit on various road segments.

Drivers are modelled with machine learning algorithms. In
this paper, two methods, namely ANN and ANFIS, are
applied independently. Both the ANN and the ANFIS are
trained and tested with the data set gathered separately for
every experiment participant. In this regard, the participants
drive a vehicle simulator for three laps, two of which are
exploited in algorithms training, and the third one — for
prediction precision testing. The results of the algorithms
prediction accuracies are compared for both algorithms.

Both the ANN and the ANFIS are the reasoning models
based on human brain. They are widely used as nonlinear
regression algorithms. In fact, ANFIS is a symbiosis of an
ANN and fuzzy logic. For both algorithms training the
sample data are required. Here, the same data are exploited
for both models’ training.

Driver models are designed in MATLAB® R2016b from

Predicted
speed error
Av

Road
curvature
r

Road Predicted
speed limit line error
v, ANN / ANFIS Ax

Fig. 1. Driver performance model.
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MathWorks, Inc. (Natick, Massachusetts, USA) environment.
The Fuzzy Logic Toolbox™ was exploited for ANFIS, and
the Neural Network Toolbox™ was applied in ANN
modelling. The ANN and the ANFIS practical designing
guidance can be found in (Negnevitsky, 2005).

2.1 Artificial Neural Network

The feedforward ANN constructed in this work has an input
layer, hidden layer with 500 neurons, and output layer. For
maximum performance accuracy, it is recommended to use as
much neurons in hidden layers as possible, if it does not bring
a network overfitting. The number of neurons were selected
with trial and error method. In this respect, several ANNs
with 100 to 1000 neurons were designed and were compared
between each other. Better network performance was not
discerned with more than 500 neurons.

Initially, the hyperparameters are set by default in the
Toolbox, while the training parameters (i.e. initial weights
and threshold levels) are selected randomly. The last ones are
uniformly distributed inside a small range, whose limits
depend on a number of inputs of a neuron in the network.

Hyperbolic tangent transfer functions are applied to hidden
layers, because of their simplicity and good performance. The
output neuron transfer functions are linear. The ANN is
trained with Levenberg-Marquardt learning algorithm,
because it is the most popular, fast, and widely used approach
in nonlinear regression. In this algorithm, a backward
propagation of errors (back-propagation) method is applied
for gradients computation. It employs a dynamic
programming strategy to reuse rather than re-compute partial
sums associated with the gradients on intermediate nodes,
what makes the back-propagation approach one of the fastest
and the most efficient methods (Goodfellow et al., 2016).

2.2 Adaptive Neuro-Fuzzy Inference System

An ANFIS performance mainly depends on the membership
functions (MFs) quantity, and less — on the MFs type.
Nevertheless, the MFs’ shape is mostly responsible for the
output smoothness and reaction time. A number of MFs is

Fig. 2. Driver-in-the-loop experiment simulator.
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proportional to a number of linguistic rules. Higher number
of fuzzy rules allows more precise network tuning.

Like ANN, the ANFIS model is designed with trial and error
method. In particular, different MF numbers and shapes were
studied. The significantly better model performance was
achieved with nine Gaussian shape MFs for each input. The
MFs are symmetrically dispersed and overlap between each
other over the whole universe of discourse.

In total, 81 rules were generated after training the ANFIS. As
ANFIS is an equivalent to a first-order Sugeno fuzzy model,
the output MFs are 81 singletons, which were tuned
automatically. Defuzzification method is a weighted average.
Hybrid training method composed of the least-squares
estimator and the gradient descent methods was applied.

3. DATA COLLECTION

3.1 Participants

Overall, 13 male and 5 female participated in a driver-in-the-
loop experiment. The participation in the experiment was
voluntary and did not intend a reward. The drivers were
workers of the IPG Automotive GmbH (Karlsruhe,
Germany). Every one owned a valid driver license and had at
least one year of driving experience in Europe.

The youngest driver was 24 years old, and the oldest — 39.
Average participators’ age was 30.1 years old. The most
experienced driver owned a driving license for 21 years,
while the average driving experience was 11.3 years.

3.2 Apparatus

In Fig. 2, the experiment facilities are shown. The driver
simulator System Experience Platform was provided by the
IPG Automotive GmbH (Karlsruhe, Germany). The vehicle
mockup includes an automatic gearbox, a steering wheel,
pedals (i.e. gas and brake), and an adjustable driver’s seat.
The virtual world is depicted on a liquid-crystal screen in
front of the driver, where the vehicle speed, road shape, and
vehicle position on the route were displayed.

+——— Drivingdirection

Fig. 3. Road shape and segments speed limitations.
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The test-rig runs a vehicle model from IPG CarMaker®
(Karlsruhe, Germany). It is capable for real-time integration
with MATLAB® (Natick, Massachusetts, USA) environment.
Thus, it allows conducting real-time drive-in-the-loop
experiments. The data are saved with 50 Hz frequency.

A two-lane rural highway road with different curvatures and
speed limits (i.e. 30, 50, and 90 km/h) was modelled in the
virtual world. Its distance was 10 626 m/lap. The road shape
along with the speed limitations is introduced in Fig. 3. One
lap requires about ten minutes of driving, when all the traffic
rules are obeyed. There were no other dynamic objects (e.g.
pedestrians, other vehicles) introduced in the virtual world.
However, many different static objects (e.g. trees, houses,
traffic signs) were designed in the simulated world.

3.3 Procedure

The experiment participators’ mission was to drive the
simulator respecting all the traffic rules, reading and
following all the traffic signs. In particular, their main task
was to drive in the middle of the lane and to maintain the
speed limits as precisely as manageable. Not to mention that
all the drivers had an opportunity to pass one lap to become
acquainted with the test-rig before the test, due to time

301 T I

restriction each participant drove only three full laps during
the experiment.

The data collected during the first two laps were utilized for
each individual driver performance modelling. Every driver
passes the same road segment in different way. Although the
difference is very small, every driver completes the same
road segment slightly differently. By this reason, the data
gathered from driving at least two identical laps is necessary.
The data from the third lap were utilized in the ANN and the
ANFIS prediction performance testing.

4. RESULTS

The results of the driver performance prediction for a random
driver are presented in this section. For different driver-in-
the-loop experiment participants the results of the models
prediction accuracy are very similar. From three laps driving
around 80 000 nodes were collected for each individual
driver. These data were divided into a training data (67%)
and a testing (33%) for every participant separately.
Therefore, the data from approximately two full laps were
applied to driver performance model design, whereas the data
from the last lap were exploited for models testing. The
models were trained and verified off-line, after the driver-in-
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Fig. 4. Results of the driver performance prediction: red line — testing performance; black line — prediction with ANN; blue
line — prediction with ANFIS; green line — information about the road segment.
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the-loop experiment. The procedures are unique for every
participant. Therefore, every performance model is suitable
for a single driver only.

In Fig. 4, the prediction results along with models test are
presented. The red curve symbolizes the test data gathered
from the last lap. The black line is a predicted result by the
ANN, while the blue line — by the ANFIS. Both the ANN and
the ANFIS have very similar driver modelling results. For
most of the experiment period, performance results by the
ANN overlap with the performance results by the ANFIS.

In Fig. 4, the green curve represents an information about the
road segment, namely road speed limitation and curvature.
The prediction models read an instantaneous information
about the road shape and speed limitation. The lap can be
roughly divided into two parts (Fig. 3). The first part has a
lower speed limitation (i.e. 30 and 50 km/h) and frequent
curvature. The participant drove this part for the first 250
seconds (Fig. 4). The second part has a higher speed limit of
90 km/h with a high road radius, which the driver passed for
the rest of the validation time (Fig. 4).

In Fig. 4, upper scope, the speed limit maintenance ability Av
is introduced. Both the ANN and the ANFIS predict slight
oscillation in ability to keep speed limit for the first road part.
Roughly, the predicted Av varies between 2 and 4 km/h. In
fact, the driver did not hold the speed limit precisely. The
error oscillates between 0 and 6 km/h without noticeable
extremums. Thus, the prediction is reasonable enough
considering that the road on this segment is very curvy.

On the second road phase with higher speed limit (i.e. 90
km/h), the models show a high error in speed maintenance,
when the limits were changed from 30 km/h to 90 km/h. An
average driver is not able to instantly accelerate the vehicle or
drop the speed to its road speed limit. Consequently, this
phenomena is detected by the model.

Moreover, on the speedy segment there are also two curvy
phases (Fig. 3). Both the ANN and the ANFIS recognize a
significant speed reduction, and the driver dropped the speed
on this segment during the last validation lap as well (Fig. 4
inset, upper scope). The rest of the segment the predicted
vehicle velocity was almost linear, around 3 km/h faster or
slower than its road limit. The driver, however, passed the
rest of the road with smaller speed limit maintenance error,
what was unusual for her/his algorithms training phase.

In Fig. 4, lower scope, a middle line keeping ability Ax is
shown. The first part of the road is characterized with
frequent curvature (Fig, 3; Fig. 4, green curve). It is obvious
that lane keeping ability is harder. The amplitude is predicted
by the machine learning algorithms, where in average the
participant drove further than 0.5 m away from the middle of
the lane. The red curve on the plot indeed proves the same
driver’s behaviour on the road segment with frequent vehicle
body lateral oscillation. In some moment during the third
validation lap, the participant passed the segment with
considerably high error.

On the second road part, the ANN and the ANFIS
demonstrate almost linear behaviour, where the driver was
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Table 1. Algorithms comparison

Algorithm eay eax Training time [s]
ANN 2.7243 0.2712 379
ANFIS 2.8294 0.2742 549

able to stay in the middle of the road with slightly less than
0.5 m error to the left or to the right during the training
period. Nevertheless, during the validation the vehicle body
also oscillates on this segment, but with longer period.

Thus, the networks approximate the driver performance
almost linearly. It is worth to point out that on the two curvy
segments on the speedy curve the driver was able to keep the
road lane with the same error as predicted by the networks
(Fig. 4 inset, lower scope). It can be concluded that this
driver tends to drop the speed limit on this specific road
shape rather than cut the road curve (Fig. 4, insets), this
characterizes the specific behaviour of the particular driver.

The ANN and the ANFIS are compared on prediction
accuracy. In this regard, an average error between predicted
speed limit maintenance and real vehicle speed ea, and an
average error between predicted and real middle line keeping
ability ea are calculated. The results are presented in Table 1.
Although it was not important in our studies, the algorithms
training times are delivered in Table 1. In short, the designed
ANN driver model conducted more accurate prediction than
the ANFIS model. However, in this experiment, the
difference in prediction is insignificant.

The prediction by the ANFIS is also somewhat smoother than
by the ANN. It can be explained by the ANFIS algorithm
itself, because it uses a fuzzy set theory applying the training
capabilities for the rule-base optimization. Although, it
depends on the fuzzy logic MFs, mostly the algorithm is
more smooth and precise in control or decision making
systems (Negnevitsky, 2005). In fact, a smooth MFs types
(Gaussian shape) were used in this paper.

Networks predict driver performance with almost 3 km/h and
0.3 m error for Av and Ax, respectively. Considering that Av
([0 50]) has higher amplitude than Ax ([0 2]), the driver
models are accepted as reasonably accurate.

5. CONCLUSIONS

In this paper, the driver models with machine learning
algorithms are introduced. Two nonlinear regression
methods, namely ANN and ANFIS, were independently
designed to predict driver’s middle lane and speed limit
keeping abilities. The models are based on the road segments
characterized by curvature and speed limitation.

The ANN and the ANFIS were developed with the sample
data, collected on a vehicle simulator during a ride in a
virtual world. Eighteen drivers participated in the driver-in-
the-loop experiment. Thereafter, each driver passed one
additional lap, which was used for algorithms accuracy
testing of each individual participant. Although the ANN
prediction was more accurate comparing to the ANFIS, the
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difference in prediction is negligibly small. Overall, both the
ANN and the ANFIS prediction accuracy are satisfactory.

The ANN and the ANFIS models have the significant
benefits over proposed previously driver performance models
for driver distraction studies, where the classification
algorithms incapable for accurate driver distraction
investigation were introduced. Proposed in this work driver
models allow more accurate driver performance analysis. In
the future, these models will be combined with driver
distraction evaluation method (Aksjonov et. al., 2017) to
develop a practical tool for in-vehicle information system
human-machine interaction technologies assessment.
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Abstract—Driver distraction is a fundamental problem for
human safety, because the number of traffic accidents due to
distracted driving does not decrease. In this paper, an
enhancement of previously proposed driver distraction detection
and evaluation methodology is introduced. The method is
composed of computational intelligence algorithms: a driver
performance prediction algorithm with nearest neighbor
regression and an intelligent fuzzy logic evaluation algorithm.
Thanks to the improvement, an additional variable for driver
performance prediction and an additional performance-based
indicator were introduced. To verify the novelty, the series of
thirty driver-in-the-loop experiments has been delivered on an
industrial vehicle simulator. At this, an interaction with a vehicle
on-board computer was exploited as a distractive activity.
Finally, the enhanced method is compared to the previously
described one.
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1. INTRODUCTION

Driver distraction (DD) is a serious problem for the safety
of ground vehicles. Its negative impact is measured not only by
paid insurances, but also by humans’ and animals’ injuries and
lives. In 2016, only in the EU almost 20 % of drivers ended
abruptly in vehicle crashes caused by DD [1]. In the USA, this
number is even higher [2]. Therefore, detection and further
minimization of DD induced by an interaction with on-board
equipment is a significant challenge for all vehicle
manufacturers. A development of a practical tool for evaluation
of in-vehicle information systems (IVIS) for minimum DD
before their installation in series products is an inevitable task.

DD is defined as “anything that delays the recognition of
information necessary to safety maintain the lateral and
longitudinal control of the vehicle (driver’s primary task) due
to some event, activity, object or person, within or outside the
vehicle that compels or tends to induce the driver’s shifting
attention away from the fundamental driving task by
compromising the driver’s auditory, biomechanical, cognitive
or visual faculties or combinations thereof” [2]. The secondary
task is an activity not related to primary task that drivers
perform while controlling a vehicle.
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In the literature, there are no standard procedures to test
IVIS on the DD level. Several proposed methods rely on
surveys and questionnaires of experiment participants [3], [4].
These DD assessment ideas cannot be accepted as objective
valuations since they are based on individual opinions.
Consequently, the researchers decided to implement
computational intelligence (CI) algorithms for replacement of
subjective evaluations by artificial intelligence systems.

To detect DD, scholars have proposed applying support
vector machines (SVM) [5], fuzzy logic (FL) [6], and artificial
neural networks (ANN) with gradient boosting machines [7].
Some authors trusted such driver’s behavior measures as gaze
and head movement tracking. Others promoted psychological
attributes (e.g. driver electrocardio— and
electroencephalographical ~methods) also applying CI
approaches [8], [9]. Despite an accurate DD detection,
behavioral and psychological measures always require
supplementary equipment, such as cameras and neuroscan
systems. Furthermore, some devices (e.g. eye-tracking googles
or neuroscan helmets) are often considered as a distraction
source themselves. Also, these appliances increase system cost
and complexity [10].

Most advantageous approaches consider vehicle dynamic
performance (i.e. longitudinal and lateral control quality).
Referring to the DD definition, these factors estimate the
drivers’ primary tasks that must not be worsened due to
interaction with vehicle on-board equipment. In addition, these
methods do not require supplementary hardware, and turn out
to be more applicable in practice, because the data can be
gathered using only the sensors available in passenger vehicles,
such as steering wheel angle gauges, vehicle velocity
transducers, etc. Using these signals, researchers designed
different DD detection algorithms based on artificial and
computational intelligence: FL [11], SVM [12], Gaussian
mixture model (GMM) [13], and their combinations, such as
hidden Markov model with GMM [14], ANN with GMM [15],
and ANN with SVM [16].

Despite a vast variety of different DD detection solutions,
they all have an essential limitation, namely, Boolean logic
classification (i.e. distracted/non-distracted). Thus, the methods
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are not feasible as a practical tool for different secondary tasks
evaluation and comparative analysis on safe vehicle operation.

A novel DD detection and evaluation method using CI
algorithms, which is capable not only to detect DD, but also to
precisely measure its impact on safe vehicle control was
developed in [17]. The method combines ANN for DD
detection and FL for DD evaluation. In this paper, an
improvement of this methodology is presented. To differentiate
the improved approach from the previously proposed one, the
earlier developed method [17] is further called “o/d”, while the
last one is named “new” in this paper.

The new method is enhanced with additional performance-
based indicator, namely, the steering wheel acceleration.
Moreover, one more input is used in driver modelling, which is
a road curve direction (i.e. left, straight or right). These
innovations are called to improve an accuracy of the DD
measurement. And besides, the new method uses a nearest
neighbor regression (NNR) for driver modelling. The FL
algorithm is also redesigned, because more variables are used
now in DD assessment.

The paper is organized as follows. Next Section describes
the new DD detection and assessment method. Section III is
dedicated to the driver-in-the-loop experiment portfolio. In
Section IV, the case study results are presented and discussed.
The conclusion is reported in Section V.

II. DRIVER DISTRACTION DETECTION AND EVALUATION
METHOD

In Fig. 1, the DD detection and evaluation method block
scheme is presented. Parameters description is listed in Table I.
Superscript “¢” refers to the “training data” collected during the
DD-free driving and used for driver performance prediction.
Individual detection and evaluation is conducted for each
experiment participant in three main steps described below.

A schematic explanation of the two main performance-
based variables is shown in Fig. 2. To measure the lane keeping
offset Ax,. (Fig. 2a), it is assumed that a transparent vehicle
represents driver’s normal angle cutting. The white car
represents cornering under DD. The pink surface between these
two turns is considered as a difference between normal and
distracted road middle line keeping ability.

Similarly, it is anticipated that the speed limit on current

Preprocessed
training data Ay A a
Vi el ef
AV Ax af
¥ o] Ay, ) Av,
Driver | A At DD
¢ e—  model 0] N
(Predicior) Fuzzy Logic
ap &
Cq +— ) (Evaluator)

Fig. 1. Driver distraction detection and evaluation block scheme.

TABLE 1. PARAMETERS DESCRIPTION

Symbol Description Unit
v Speed limit km/h
C, Road curve radius m

Cq Road curve direction Left/Right
Ax Real lane keeping offset m
Av Real vehicle speed deviation km/h
a Real steering wheel acceleration °/s?
Ax, Predicted lane keeping offset m
Av, Predicted vehicle speed deviation km/h
a, Predicted steering wheel acceleration °/s?
Ax, Resultative lane keeping offset m
Av, Resultative vehicle speed deviation km/h
a, Resultative steering wheel acceleration °/s?
DD Driver distraction level %

road segment is 100 km/h (Fig. 2b). Normally, driver passes
this segment with 105 km/h. However, when she/he is
distracted, the speed rises to 115 km/h. Thus, the error between
normal and distracted speed maintenances Av; is calculated as a
second performance-based measure. The deviation is also
depicted as a pink sector in Fig. 2b. The third variable is simply
a difference between normal steering wheel acceleration and a
steering wheel acceleration while performing a secondary task.

First, an information about the road segment is inserted
inside the Driver model block. As the Driver model tends to
forecast driver’s performance, it is called the Predictor. The
road segment is described by three parameters: segment speed
limitation v;, road curve radius (curvature) c¢,, and road curve
direction ¢y The last one is a Boolean type with the crisp
values: -1 meaning that the road curve goes to the left, 0 — it is
straight, and 1 — it turns right.

Based on the received information about the road shape,
direction, and speed limit, a predicted driver performance (i.e.
Ay, Ax,, and ap) on this specific road segment appears on the
Predictor output. An NNR is applied as a prediction algorithm,
which stores a preprocessed training set, uses these data to look
up the nearest entry in it, and, finally, returns the associate
regression target as offered in [18]. The preprocessed data pass
through a dimensional reduction for model simplification and
data diminishment, what makes the algorithm more
understandable, robust, and computationally cheaper [19].

The main advantage of the NNR learning algorithm
comparing to the other CI methods used for prediction (e.g.
ANN, fuzzy neural networks, etc.) is its ability to achieve the
minimum possible training error on any regression dataset [18].
In principle, the NNR algorithm finds the shortest distance

()

g,
o s

o\ | 1,
S w0 nn.“ﬂlhu..‘u,o”
$ e \| 180 %
:Eh‘“ \l ’_':
= 20 \ =
) o -
(b)

Fig. 2. A schematic explanation of the main performance-based evaluation
variables: (a) Ax,; (b) Av,.
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TABLEIl.  RULE-BASE OF THE FL EVALUATOR TABLEIIL.  IVIS SECONDARY TASKS
ar = negative # In-vehicle secondary task
DD [%] i Axr i 1. Volume Volume regulation
neg far | neg close | zero | pos close | pos far 2. Radio
neg_high 100 85.8 42.9 85.8 100 3. Context Media
neg_low 100 57.2 14.3 57.2 100 4. selection Telephone
Av, zero 57.2 28.6 0 28.6 57.2 5. Navigation
pos_low 85.8 42.9 14.3 42.9 85.8 6. Radi Radio station selection from a primary list
pos_high 100 85.8 42.9 85.8 100 7. adio Radio station selection from an overall list
8. Media source selection (e.g. CD, SD-card)
ar=zero 9. Media Media item selection
DD [%] Ax, i 10. Song shuffle
neg far | neg close | zero | pos close | pos far 11. Telenh Call a number from the Favorite contact list
neg_high 100 71.5 429 71.5 100 12. clephone Call a number from an overall contact list
neg_low 85.8 143 0 14.3 85.8 13. Input location
Av, zero 429 0 0 0 429 14. | Navigation Input of a next target
pos_low 71.5 14.3 0 14.3 71.5 15. Zoom operation
pos_high 85.8 57.2 28.6 57.2 85.5
a, = positive positiye Ay, Ax,, and a represent speeding, driving towards
DD (%] Axr opposite lane, and steering to the left, accordingly.
neg far | neg close | zero | pos close | pos far . . .
eg_igh 100 5.8 2.9 958 100 Finally, three resulFath@ variables, Ay, Ax, ‘and ar, enter
neg_low 100 572 143 572 100 the FL Evaluator, which inferences the three inputs into a
Ave zero 57.2 28.6 0 28.6 57.2 single variable represented as a DD level in percentage. A FL
pos_low 85.8 429 14.3 429 85.8 Sugeno’s type inference mechanism based on matrix
pos_high 100 85.8 429 85.8 100 operations is used [20]. In this work, however, the FL

between a sample point with coordinates (v;, ¢, ¢4) and a set of
data points with coordinates (v/, ¢/, c¢d) applying the Euclidean
distance formula. Therefore, the Predictor assigns an output
(Ayp, Axp, ap) to a training set point (AY, Ax’, a'), which
corresponds to an appropriate point with the shortest distance
to the sample one.

Next, the driver’s performance under interaction with a
vehicle on-board computer is compared with the predicted in
the previous step one and a resultative performance (i.e. Ay,
Ax,, a;) is calculated. An example of the calculation is
presented here for a lane keeping ability Ax;:

Ax — Ax

P2

if Ax>0; Ax, >0; |Ax >|Ax,

Av=Ax,, if Ax<0; Ax, <0; [Aq > |Ax|

Ax, ={Ax+Ax,, if Ax>0; Ax, <0; |[Ax>|Ax,|

M

Ax+Ax,, if Ax<0; Ax, >0; |Ax]>[Ax,

0, if A <|Ax,

For other variables, Ay, and a,, the same rules are applied.
Summarily, when a predicted deviation is smaller comparing to
a real one, the difference between two values is calculated and
accepted as a resultative output, Ay, Ax,, or a,. Therefore, when
the driver’s performance due to DD becomes poorer from the
viewpoint of safe vehicle operation, a worsened vehicle
dynamic performance is counted. However, if a predicted
deviation is greater than or equal to a real one, the output is
zero. It means that a driver performs normally to her/his usual
driving, the driving is not corrupted by secondary tasks, and,
thus, she/he is not distracted.

Negative Ay, Ax,, and a, mean driving slower its speed
limit, driving to the right from the middle of the lane, and
turning a steering wheel to the right, respectively. Contrariwise,

Evaluator has three inputs and, thus, the fuzzification
procedure constructs a three-dimensional matrix. Each layer of
the matrix has its own rule-base.

Two inputs, Ay, and Ax, have five, and a, — three
symmetrically dispersed and overlapped between each other
over the universe of discourse (UOD) membership functions
(MFs). The triangular shapes are preferred for MFs, because
they are simple for programming and famous for fast response.
The UOD of Ay, is between [-12, 12], while Ax, is bounded in
[-1.5, 1.5]. The last input is restricted inside [-1500, 1500].

As the output DD represents a level of distraction in
percentage, its UOD lays inside [0, 100]. Eight output MFs
have singleton forms. They are dissipated on equal distance
between each other starting from 0 to 100 with a step 14.3: {0,
14.3, 28.6, 42.9, 57.2, 71.5, 85.8, 100}. It gives an equal
responsiveness for each output MF.

The inputs and output are mapped via modus-ponens-form
rules “If-And-Then”. The linguistic relation is determined in
Table II. The inputs-output relation example may be presented
as follows: IF the steering wheel acceleration is “negative”,
AND vehicle speed deviation is “pos_low”, AND lane keeping
offset is “neg_close”, THEN driver distraction is 42.9 %.

III. METHODOLOGY OF EXPERIMENTATION

A. Subjects

The DD detection and evaluation driver-in-the-loop
experiment was carried out with thirty drivers. Five experiment
participants were female, the rest — male. The drivers’ gender,
age and driving experience influence on the DD level were out
of the scope of this study. Every participant owned a valid
driver license and was physically and mentally healthy for safe
vehicle operation. The participators were rewarded for their
contribution.
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B. Apparatus

. Anadvanced driver simulator for DD tests was provided by
SKODA Auto a.s. (Mlada Boleslav, Czech Republic). It is a
fixed-base passenger vehicle mockup, with a same cockpit as
used in modern passenger vehicles. As the test rig has an
automatic transmission, drivers operated the simulator by
acting on a steering wheel and on the throttle and braking
pedals. The mockup head-up instrumental panel displays
vehicle speed. The participants drove the test bed in a virtual
world projected on a wall screen in front of the simulator.

The vehicle together with the virtual world scene was
modelled with an open source library for C++ programming
language, Open Dynamics Engine™ v 0.5 [21]. The Skoda
Yeti with 77 kW engine model configuration was used for
vehicle model parameterization. This model includes a vehicle
body, a suspension system, and four wheels with Pacejka’s
Magic Formula tire models [22].

The road used in the virtual world was identical to the one
of the road segments in Czech Republic. It is a two-way lap
with 3.5 m width lanes in each direction. Its total length is
10 626 m, what takes approximately 10 minutes to complete it,
if all the traffic rules are respected. The road has two main
parts: 50 km/h speed limit with frequent sharp turns and 90
km/h speed limit with almost straight road shape. The steering
wheel acceleration was obtained from a signal provided by a
steering-wheel sensor mounted on the shaft end of the steering
axle. Lane keeping ability and vehicle velocity abnormality
were calculated from x, y, and z coordinates received from the
global positioning system of the virtual world. All the variables
were saved with 10 Hz frequency.

C. Procedure

As the drivers were regular contributors to the experimental
studies, they were familiar with the experiment’s facilities.
Nevertheless, before the experiment they were allowed to test
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Fig. 3. Driver performance prediction versus real driver performance example for one of the experiment participants: gray background — secondary task
accomplishment period; black line — real driver performance; purple line — predicted performance; green line — road information; (a) speed difference Av and
road speed limit v; (b) center lane keeping offset Ax and curve radius ¢,; (¢) steering wheel acceleration deviation a.
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the simulator as long as they preferred. What is more, the
participants were instructed to the exploited IVIS and
secondary tasks before the driver-in-the-loop experiment.

The study procedure included two stages. During the first one,
the participants were requested to drive two laps obeying all
the traffic rules as good as possible. Namely, their only tasks
were to stay in the middle of the lane and maintain the speed
limit. The collected driver-performance results were utilized as
the training data of the Predictor (Fig. 1) for each driver
separately. During the second phase, the same traffic
regulations fulfillment was again a priority. However, in this
stage the drivers were obliged to accomplish the IVIS
secondary tasks (Table III) while driving. The tasks were
insisted randomly and several times during the phase.

IV. RESULTS

In this section, the results of the driver-in-the-loop
experiment for a random driver are presented. During
experimental DD evaluation, participants were given the
opportunity to pass two or more full laps. However, for better
observability, only the last lap of the studied driver is analyzed
in this section. In Fig. 3, the gray background shows the period
of secondary task accomplishment, while the white background
is a normal driving between DD tasks. The predicted driver
performance, Av,, Ax,, and a,, are shown together with the real
one, Av, Ax, and a. The black curve represents driving under
distraction, the purple curve — the predicted performance, and
the green curve — information about the road segment.

In Fig. 3a, driver’s speed maintenance ability is delivered.
On a 50 km/h speed limitation segment (Fig. 3a; green line), as
predicted by the algorithm, the participant normally held the
speed around 5 km/h higher than road’s speed limit (Fig. 3a;
purple line). However, in driving under the secondary task
influence the driver tended to move slower (Fig. 3a; black
line). For instance, submitting the tasks 13 and 7 (Table III),
the speed deviation was significantly dropped down to -10

km/h. On the contrary, on a faster road segment, 90 km/h, the
participant normally kept the speed lower its limit. In average,
the vehicle drove 5 km/h slower. Though, some secondary
tasks, such as 6, 7, and 10 (Table III), called the speed
reduction.

In Fig. 3b, the centerline keeping ability is plotted. Taking
into consideration the road lane and vehicle body widths
(Section II1.B), the vehicle drove out of the road lane bounds
with exceeding x up to 1 or -1 m. However, based on
performance prediction (Fig. 3b, purple curve), the driver was
always staying inside of the road frontier during the free from
the DD run. In fact, on a curvy road segment, when the curve
radius ¢, frequently changes (Fig. 3b, green line), the lane
keeping ability while interacting with on-board computer (Fig.
3b, black line) was almost the same as it has been predicted.
Nevertheless, while fulfilling task 7 (Table I1I), the driver was
not able to keep the car inside of the road bounds and went off
the road several times. On the straight road segment with
higher speed limit (i.e. 90 km/h), the algorithm predicted
smooth lane keeping offset (Fig. 3b, purple line). On this
segment, despite the DD induced by secondary activities, the
participant held a road line very well (Fig. 3b, black line). Yet,
tasks 6 and 7 have forced the driver to cross the road lane
dividing lines multiple times.

The steering wheel acceleration on a curvy road segment
with 50 km/h speed limit was frequent in case of the DD
performance (Fig. 3c, black curve). However, the Predictor
forecasted almost the same frequent behavior for the free from
the secondary activity driving (Fig. 3¢, purple line). At this, as
in the previous cases, the task 7 (Table III) motivated the driver
to act on the steering wheel more frequently (Fig. 3c, black
line). Consequently, it led to high steering wheel acceleration a
oscillation comparing to the predicted one a@,. On a straight
road with 90 km/h speed limit, @ under DD (Fig. 3c, black line)
was neither higher nor more frequent than during the normal
driving (Fig. 3c, purple curve), except for the tasks 6 and 7
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Driver distraction evaluation results: gray background — the secondary task accomplishment period; red curve — new method; blue curve — old method.
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again. A meaningful difference in driving performance can be
observed during these tasks execution.

In Fig 4, the DD results for old and new methods are
reported. The curves were obtained as a result of the fusion of
the resultative performances Av,, Ax, and a, in the FL
Evaluator. The blue line symbolizes the DD evaluated only
with two performance-based variables Av, and Ax,, whereas the
red curve constitutes the method enhanced by an additional
variable, a,. For comparison, both results are shown together.

The new FL Evaluator does not detect higher DD level
without distraction. Contrariwise, when the experiment
participant’s performance was vitally burdened (Fig. 3), the FL
Evaluator lodges a corresponding evaluation. This is especially
noticeable, when driver performed tasks 6, 7, and 10 on a 90
km/h limit straight road segment (Fig. 4; inset). It has been
mentioned that these tasks led to greater performance
degradation, what was immediately detected by the improved
FL Evaluator. Moreover, the evaluation of DD is higher than
with the old Evaluator, which had only two performance-based
indicators. It is worth to note that the tasks 7 and 6 also took
more time than others, what multiplies their danger for the safe
vehicle operation.

V. CONCLUSION

An improvement of the DD detection and evaluation
method based on CI algorithms is suggested in this paper.
Similarly, to the old method [17], the new one, first, predicts
normal performance for every driver applying NNR algorithm.
Second, it compares the predicted performance with the one
submitted while accomplishing a secondary task, such as an
interaction between the driver and the vehicle on-board
computer. Finally, FL completes an evaluation of DD using the
performance-based indicators. The newly proposed method
uses three instead of two road characterization parameters for
driver behavior prediction. What is more, the new method
applies one additional performance-based variable for DD
evaluation, namely steering wheel acceleration. The results
proved that the new method does not raise DD, when the
participant is not distracted or drives free from IVIS
interaction. Contrariwise, when the driver is distracted, the new
method detects greater level of DD comparing to the old one.
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Abstract—In addition to vehicle control, drivers often perform
secondary tasks that impede driving. Reduction of driver dis-
traction is an important challenge for the safety of intelligent
transportation systems. In this paper, a methodology for the
detection and evaluation of driver distraction while performing
secondary tasks is described and an appropriate hardware and a
software environment is offered and studied. The system includes
a model of normal driving, a subsystem for measuring the errors
from the secondary tasks, and a module for total distraction
evaluation. A new machine learning algorithm defines driver
performance in lane keeping and speed maintenance on a specific
road segment. To recognize the errors, a method is proposed,
which compares normal driving parameters with ones obtained
while conducting a secondary task. To evaluate distraction,
an effective fuzzy logic algorithm is used. To verify the proposed
approach, a case study with driver-in-the-loop experiments was
carried out, in which participants performed the secondary task,
namely chatting on a cell phone. The results presented in this
research confirm its capability to detect and to precisely measure
a level of abnormal driver performance.

Index Terms— Euclidean distance, fuzzy logic, fuzzy neural
networks, machine learning, prediction method, vehicle safety.

I. INTRODUCTION

DRIVER is the most important participant of a car con-
Atrol, including steering, throttling, braking, maneuvering,
and other operations. These primary tasks must be accom-
plished safely for all traffic participants and their belongings.

Nevertheless, drivers often dedicate time and attention to
other activities, different from the driver’s primary ones. All
other tasks the drivers perform while driving are defined as
secondary tasks. They are divided into interaction with in-
vehicle information systems (IVIS) (e.g. monitoring and man-
aging vehicle state, navigating, info- and entertainment, etc.)
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and interaction with personal (e.g. passengers and pets)
or items brought in a vehicle, such as portable electronic
devices [1], [2].

Driver distraction (DD) is defined as an activity performed
by a driver that diverts an attention away from the primary
activity (vehicle longitudinal and lateral control) potentially
leading to safe driving degradation. It appears due to some
event, activity, object, or person within or outside the vehi-
cle, which compels or induces the driver’s attention away
from the primary task [1]. With an enhancement of IVIS,
driving comfort, entertainment, and navigation have dramat-
ically improved. However, at the same time, IVIS attracts
additional driver’s attention. It increases DD, what often leads
to traffic accidents with fatal consequences. Yearly, distracted
driving leads to more than 420000 injuries. Furthermore,
the number of drivers end abruptly in vehicle crashes due to
DD is more than 3100 every year in the USA alone [3].

DD may take several forms: auditory, biomechanical,
cognitive, or visual [1], [3]. Auditory distraction means
taking ears off the road (e.g. listening to the radio or
passengers). Biomechanical one is taking hands off the
steering wheel (e.g. eating, texting messages, IVIS adjust-
ing). Cognitive distraction means taking mind off the road
(e.g. thinking, talking). Visual distraction is caused by taking
eyes off the road (e.g. reading, watching video, road navigating
in IVIS). However, most of the secondary tasks take more than
one if not all the distraction forms simultaneously [1]-[4],
those tasks are among the most dangerous [3]. Texting, for
instance, requires manual, visual and cognitive distraction
types at once, when the last one is considered as the most
essential [3].

Research in driver’s decoy caused by the secondary activ-
ity, especially by IVIS, arises a great interest of both the
vehicle manufacturers and the traffic safety foundations, like
the American Automobile Association (AAA) Foundation for
Traffic Safety (Washington, DC, USA) and National High-
way Traffic Safety Administration (NHTSA) (Washington,
DC, USA). It helps to establish traffic safety policies, to con-
tribute to the design, and to improve IVIS, which must
be safe, intuitive, reachable, logic, and well organized to
decrease driver’s workload and disturbance and, consequently,
to increase traffic safety.

Therefore, a development of a robust DD detection and
evaluation method while performing a secondary task is a
significant target in safe intelligent transportation. It gives
an opportunity to study and to compare several types of

1524-9050 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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human-machine interaction (HMI) technologies (e.g. haptic,
vocal, gesture) and to use the most appropriate one in
IVIS design. DD assessment is also applied in advanced driver
assistance systems (ADAS) and in testing and evaluating their
impact on driver’s level of vigilance and road safety. Today,
there are no estimates for evaluating the influence of the
secondary tasks on DD that might indicate the secondary
activities that lead to potential traffic accidents, assess a degree
of their danger, and help mitigate these effects [1].

The goal of the current study is to develop a method
of evaluating a secondary task impact to the safe vehicle
operation suitable for DD detection, DD level measurement,
and comparison of the secondary tasks influence on DD.
The method is exploited as a benchmark for safe and clear
IVIS design with minimal driver’s burden in different HMI
technologies (e.g. voice command, hand gesture recognition).

This paper is organized as follows. The next section presents
the state of the art of DD detection relevant for current
studies. Section III is dedicated to the description of the
DD evaluation methodology. The real-time driver-in-the-loop
DD experiment is described in Section IV. Section V outlines
the experimentally obtained results. The research is concluded
in Section VL.

II. RELATED WORKS AND PROBLEM STATEMENT

In general, there are four attributes suitable for DD mea-
surement and detection: behavioral (e.g. eye and head
movement); performance-based (e.g. vehicle lateral and longi-
tudinal control); psychological (e.g. driver electrocardio— and
electroencephalographical methods), and subjective (e.g. self—
assessment questionnaires and expert evaluations). The first
two are the most frequently used ones. Different attributes
can be also combined [5]-[7].

On the other side, a variety of algorithms has been offered
for the DD detection based on statistical learning theory.
The gaze direction and the head orientation are the most
popular input attributes [8]. Artificial neural network (NN) and
gradient boosting machine combination were proposed in [9].
The glance region prediction algorithm was designed using
random forest classifier in [10] and convolutional NN —in [11].
In [12], dynamic Bayesian network (BN) outperformed logic
regression (LR), static BN, and support vector machine (SVM)
approaches in cognitive DD detection. SVM together with
semi-supervised extreme learning machine were combined
for the DD detection in [5]. Classification based on Maha-
lanobis distance calculation was applied for the evaluation of
IVIS-induced DD in real-time [13]. Fuzzy expert system
combined eye and face regions for the DD level fatigue esti-
mation in [14]. Different machine learning methods, in partic-
ular SVM, k-nearest neighbor (k-NN), and graph-regularized
extreme learning machine were compared in [15]. The com-
plex method designed in [7] connects the principle component
analysis, the linear discriminate analysis, and SVM. Finally,
in [16], a probabilistic restricted Coulomb energy NN was
implemented for drowsy driving prediction.

Multiple psychological attributes were also studied for
the DD detection. In [6], the brain activity measured by
electroencephalographic signals was involved to predict the
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start and the end of a distraction period using an adaptive-
threshold-based prediction framework. In [17], the same signal
analyses were applied for the DD detection by different
machine learning methods: decision tree, random forest,
k-NN, SVM, and Naive Bayes. The driver drowsiness detec-
tion using heart rate electrocardiogram signals with LR and
BN was described in [18].

Very popular is the usage or performance-based attributes
in the DD detection as an estimate of the vehicle dynamics.
As the signals are received here from the sensors available in
modern passenger vehicles [19], this approach does not require
any additional hardware.

An example of the DD detection usage in ADAS is
described in [20]. The scholars presented fuzzy system, which
personalizes the fuzzy membership functions based on individ-
ual driving habits. The system reflects user’s preferences in the
cruise control. Vehicle performance-based data were used in
the fuzzy system design.

The DD detection with artificial NN and Gaussian mixture
model (GMM) using performance-based attributes was intro-
duced in [21] and [22]. The double-class DD classifier based
on GMM was described in [23]. Vehicle dynamics and driving
performance results were engaged in the DD detection by an
extreme learning machine algorithm in [24] and SVM —in [2].
Kumagai and Akamatsu [25] presented the driver behavior
prediction with dynamic BN based on preliminary collected
data.

Since 1999, on-road data of drivers were collected for their
further study in [26]. Statistical signal processing and machine
learning techniques, such as GMM, hidden Markov model
(HMM), and BN were applied to simulate such aspects of
driver’s behavior like pedal orientation, car following, and lane
change. These data were successfully used for predicting the
driver behavior and detecting risky driver frustration.

Many different DD detection algorithms, namely static and
dynamic NN, adaptive neuro-fuzzy inference system (ANFIS),
and SVM, were compared in [27]. The last one outperformed
all other machine learning methods used in the work.

Lastly, different DD detection attributes, like performance-
based, psychological, and behavioral, were combined. A gaze
angle, a head rotation angle, and an interval between the
heart R-wave electrocardiogram signals were used in cognitive
DD [28], where the pattern recognition methods based on
SVM and adaptive boosting were compared. The last one
showed better accuracy. In [29], the control theoretic driver
model based on the literary physiological aspect was induced
by the driver’s behavior predictive model design. This model
was compared with a real driver performance.

The driver’s eye movement and vehicle performance were
integrated as a real-time cognitive DD attribute [4], [30], [31]
and the SVM algorithm was applied in these studies. Driving
performance and head movement tracking were integrated for
the DD detection with random forest model and HMM [32].
In [33], different machine learning methods, SVM, con-
ventional recurrent NN, and long or short-term memory
recurrent NN, using the same attributes were compared for
continuously driver’s state prediction. The last one was more
accurate in classification. In [34], DD prediction based on
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ANFIS was compared with the artificial NN and radial basic
function prediction algorithms. The results proved that ANFIS
has more accurate prediction capability. Driver performance
along with heart rate and behavioral attribute data were com-
bined for the DD and fatigue detection in [35]. Classification
was performed by a multi-modal approach based on HMM,
SVM, and BN.

Though the physiological and behavioral attributes repre-
sent a trend in DD detection, they always require additional
devices, such as cameras and neuroscan systems that multiply
system cost and complexity [8]. Moreover, often wearing
devices, like eye-tracking googles or neuroscan helmets, are
considered as a distraction source themselves. Then, some
scholars consider the behavioral methods as the only capable
to detect visual DD. Eye and head movement tracking are
not qualified to observe driver’s cognitive workload, such
as talking to a passenger. It is unknown, how a cognitive
distraction depends on eye and head movement required for
the primary task performance [4], [27], [30]. This is the reason
why the vehicle dynamic performance (center-lane driving and
vehicle speed limit maintenance) has been chosen as a driver’s
primary task in this study.

Despite a variety of machine learning algorithms proposed
for the DD detection, all of them use the Boolean binary
classification (distracted/not distracted). These solutions are
not suitable for different HMI technologies for accurate IVIS
comparison. Never approaches have been found for accu-
rate measuring of a DD level, especially in applying the
performance-based attributes while interacting with IVIS.

The target of this paper is to propose a method, which not
only detects, but also evaluates a DD level of each individual
driver considered as an essential task of the safe IVIS design.
To this aim, a regression problem of the DD detection is solved
aiming to form the output as a precise number [36] using the
machine learning approach. Thanks to accurate measurement,
the level of the secondary task influences on the driver’s
performance is evaluated here. Nonlinear regression based
on Euclidean distance (ED) calculation is applied for the
DD detection. Fuzzy logic (FL) is used for fusion of vehi-
cle performance data to assemble a level of DD from two
independent variables. The driver-in-the-loop experiment on
DD detection and evaluation was conducted, in which text
messaging on a cell phone has been chosen as a secondary
distractive activity required several modes of distraction simul-
taneously [3]. In this way, a difference in vehicle performance
at normal driving (fully dedicated to a primary activity) and
accomplishing a secondary task while driving was observed
aiming to estimate a personal degree of the secondary tasks
influence on driving [2].

Vehicle dynamics highly depend on the driver experi-
ence [35]. By this reason, a model of driver performance is
created, which is assumed as a normal driving for each exper-
iment participant. Next, the driving destructive performance
is compared with normal driving in the real-time driver-in-
the-loop experiment. To predict driver’s normal performance,
a regression-based machine learning algorithm is developed
for participants’ data collecting during a free run. In this paper,
a technique that solves a regression problem and predicts
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Fig. 1. DD detection and evaluation block scheme. Parameters description
is presented in Table I.

TABLE 1
PARAMETERS DESCRIPTION

Symbol Description Unit
r Road radius (curvature) m
14 Speed limit km/h
Ax Real lane keeping offset m
Av Real vehicle speed deviation km/h
Ax, Predicted lane keeping offset m
Av, Predicted vehicle speed deviation km/h
Ax, Resultative lane keeping offset m
Av, Resultative vehicle speed deviation km/h
DD Driver distraction level %

driver performance on a specific road segment is defined as
a predictor. What is more, as an ANFIS has very accurate
prediction capability [27], the prediction approach based on
ED formula is compared to an identical ANFIS predictor.

Next, the driving performance data are merged into a
uniform variable, which represents a percentage level of
DD caused by the secondary task. To this aim, the FL method
is used. Among the most popular signal fusion techniques —
FL, BN, and machine learning — FL is known as a perfect
approach for empirical modeling of human behavior reasoning,
because it simultaneously concerns several vague inputs, and
for the vigilance information fusion [35]-[37].

III. DESCRIPTION OF THE METHOD

A scheme of the DD detection and evaluation is shown
in Fig. 1. The symbols’ description and annotation are intro-
duced in Table I. The superscript “¢” determines “training
data”.

The method involves three steps. First, referring to a road
segment specification (road curvature r and speed limit V),
it predicts driver’s ability to keep the centerline Ax, and
to maintain the speed limit Awv,. The predictor is trained
preliminary without secondary activity for every driver, and
training data are collected. Second, the predicted driver per-
formance is compared with a performance with the secondary
task Ax and Av. As a result, their differences Ax, and Av, are
calculated. Finally, the FL evaluator using linguistic rules nor-
malizes two independent variables into a uniform variable DD,
which designates the DD level in percentage.

A. Prediction of Driver Performance Based on Euclidean
Distance Calculation

To create a prediction model for an individual driver,
he/she must drive a road segment without a distraction.
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Fig. 2. Training data dimensional reduction.

During this run, the driver is asked to demonstrate an accurate
performance: to obey the speed limits and to keep the middle
lane of the road as perfectly as possible. The predictors’ train-
ing data include four variables: speed limit V/; radius of the
road r'; lane keeping offset Ax’; vehicle speed deviation from
a speed limit Av’. The first two variables are related to the
road information whereas two others — to driver performance.
Thus, a map of driver performance is created on each specific
road segment, described by the road curvature (radius) r and
speed limit V.

Further, the obtained data are passed through preprocess-
ing (dimensional reduction), during which this training
information is diminished or simplified to reduce memory,
computation, and inference complexity. Besides, the model
simplification makes the method more robust, understandable,
and easy to plot and analyze. There exist some preprocessing
algorithms, such as the subset selection, the principle compo-
nents analysis, the factor analysis, etc. [23], [36]. An approach
used in this study is described below.

First, the training data are stored in a table. Second, the
radiuses of the road segments are rounded to the whole
numbers. Third, the unique pairs of a road curvature and a
speed limit are found. Finally, a mean offset between the road
centerline and a position of the car on the road, and a mean
difference between the speed limit on a road segment and a
real vehicle speed for each unique pair of road information are
calculated. This preprocessing allows shrinking significantly
the size of the data sample. For instance, the data collected
during the 20-minute driving consisted of about 50 000 nodes.
After preprocessing, these data shrank to 10% of total points.
Described preprocess steps separated with blue arrows are
shown in Fig. 2.

Consequently, the data table is obtained where every possi-
ble pair of input variables (road information) corresponds to a
pair of output variables (driver performance). The outputs sym-
bolize an average lane keeping and speed limit maintenance
ability for a specific road segment. Input/output mapping is
fulfilled with ED calculation.

During the experiment with the secondary activity, the infor-
mation about the road segment is inserted into a prediction
block containing preprocessed training data (Fig. 1). The
predictor inputs are the real-time speed limit V; and road
radius r. The input road information is aligned with unique
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Fig. 3. Visual explanation of predicted value search based on Euclidean
distance calculation.

pairs of the road set from the data table. The ED function
d(P, Q) is used to search a closest pair of the prediction model
input sets:

k
> (g —p)%, 1)

i=1

where £ is a spatial dimension.
The predicted searching procedure with ED calculation is
simplistically illustrated in Fig. 3. Assume that P is a point

. . . t
with coordinates (py = r, py, = V;). Points 0,'"P"" have
. i 1 input ..
coordinates (qyi " = rh, gyd" = V) from the training

data table, where n is a row number in the table. All the
distances are calculated between a single input point P and
each point Q,""" from the table with simplified training
data. A set of point coordinates Qi,"p”' with the shortest
distance between P and QTP “in Fig. 3 is accepted as
possible driver performance on a road segment and returns
the predicted output values (q;);,”p“t = AXpy, q%tpm = Avpy)
that correspond to their row in the table.

A predictor input and output pair matching is depicted
in Fig. 4. The input and output values are presented in separate
Cartesian coordinate systems. Each coordinate in the first
system has a unique pair of the coordinates in the parallel
two-dimensional one. By finding the nearest set of trained
input, the possible output is predicted and stored in the parallel
coordinate system. Accordingly, possible driver performance
is estimated, in a name of lane keeping and speed maintenance,
on each road segment given by its speed limit and curvature.

Next, as it is also seen in Fig. 1, driver predicted perfor-
mances Ax, and Av, are compared with the real ones Ax
and Ao using the following rules:

0 if A A

A =1 i Axp > Ax @
Ax — Axp, if Axp < Ax,

Ao, — 0, if Avp > Av 3)

Av — Avp, if Avp < Av.

More precisely, if a predicted value is higher than a real
value, the algorithm sends zero as a system output. It means
that driving is normal for the current driver. When a predictive
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Fig. 4. Visual explanation of driver performance prediction using Euclidean
distance formula.

value is smaller than a real value, the difference between
two values is calculated and assigned as a system output.
Hence, a hypothesis is posed that when the driver perfor-
mance becomes worse due to distraction, the algorithm detects
unusual vehicle dynamic performance. Finally, the obtained
lane keeping offset Ax, and speed difference Av, serve as the
inputs to the FL reasoning to evaluate a level of distraction.

B. Driver Performance Prediction With an Adaptive
Neuro-Fuzzy Inference System

To study the degree of accuracy of the prediction method
described in the previous subsection, an ANFIS prediction
model has been designed for a driver. Therefore, the ED and
ANFIS predictors are compared during driver-in-the loop
experimentation.

ANFIS is a feedforward five-layer network with supervised
learning capability. It is functionally equivalent to a first-order
Sugeno’s fuzzy model. To support both the batch (off-line)
and the pattern (on-line) learning, ANFIS combines least—
squares estimator and the gradient descent method as training
algorithms. During the single training epoch, ANFIS applies
both the forward and the backward passes [38]. Significant
improvement in ANFIS performance accuracy can be achieved
with a greater number of membership functions (MFs) for the
prediction model rather than an increasing number of training
epochs [36]. In our case, trained ANFIS is integrated with the
real-time experiment identically to the ED predictor. The same
training data without preprocessing as in the ED predictor
are utilized in ANFIS training. MATLAB® Fuzzy logic Tool-
box™ from MathWorks, Inc. (Natick, Massachusetts, USA)
is used to design an ANFIS predictor for each experiment
participant.

The difference in accuracy at applying 5, 50 or even 100
epochs is not sensitive [38]. The minimum possible for current
training data set sum of squared errors was obtained with five
MFs for every input variable. Hence, the network generates
25 rules, what took only three epochs. As suggested in [38]:
70% of sample data were used for training, 15% — for testing
and the rest — for validation.

When the secondary task experiment is performed,
the ANFIS model receives the same information about the road
as the ED predictor. The outputs of ANFIS represent the driver

performance predictions Ax, and Av,. Thus, two equivalent
predictors are trained with the same data to compare.

C. DD Evaluator With FL

FL system design includes four stages: fuzzification, infer-
ence engine, rule-base, and defuzzification. It may have many
inputs and outputs represented the real numbers. The first stage
in fuzzy reasoning is a fuzzification, where each real number
on the input is transformed into a fuzzy set, that is a pair
consisting of an element in universe of discourse (UOD) and a
degree of certainty of MF. The rule-base stores linguistic rules
and is exploited to match fuzzy input with fuzzy output sets via
an inference mechanism. Finally, a defuzzification procedure
transforms fuzzy output sets back to real numbers [37].

In [39], a fuzzy inference process based on simple matrix
operations is introduced. In the current study, the same
approach is used for FL evaluator design. It has two inputs:
an offset of the car position on the road Ax, from the road
centerline and a difference between the speed limit on a road
segment and a real vehicle speed Av,. The inputs are gen-
erated during the driver prediction and real-time performance
comparison described previously.

Both inputs Ax, and Av, have symmetrically dispersed
triangular MFs, what guarantee fast response and equal sensi-
tivity of the input variables [37]. MFs are overlapped over
the whole UOD. The Ax, is restricted to [0 1.5]. The
UOD of the Av, is narrowed in [0 12].

The inputs are transformed into appropriate column
vectors a and b, those elements are equal to a degree of
certainty of a relevant MF. MFs that are not crossed by the
input variable are equal to 0. Every input has three MFs.
Therefore, the fuzzified column vectors have the size of 3x1.
The dyadic product of obtained vectors generates a 3x3 matrix
C = ba’. Each element of the generated matrix C is a
real number between zero and one. The fuzzification process
together with the designed MFs is shown in Fig. 5.

The FL rule-base stores the linguistic rules relation between
the input and output MFs. The linguistic knowledge is
expressed in modes-ponens-form rules “If-Then”. As the sys-
tem has two inputs and one output, nine rules are designed
in total for the FL evaluator. The rule-base is presented
in Table II, where the MFs are named suitably for human
understanding. The distance from a vehicle and road centerline
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TABLE II
RULE-BASE OF THE FL EVALUATOR
Axy
DD
close far out
good no negligible low
Av:e bad no medium high
awful very_low very_high inacceptable
Ifais MF) and b is MF| Then R is ) a
R MF,[MF, .. MF,
If a is MF, and b is MF, Then R is r
! ? B MF, | ry | rg || 1y
MF, | ry | Iy |...| 1y,
[ 3 m—
1 Tz v Tin MFE,, | 1y | T Finn
T T e
R= 2:1 :22 i Z:n
"m1 Tmz Ton
Fig. 6. Transformation of a FL rule-base into an m x n matrix.

Ax, consists of 3 levels: “close” (to the centerline), “far”
(from the centerline) or “out” (of the road bounds). The ability
of the speed limit maintenance Av, is defined as “good”,
“bad” or “awful”. An example of the linguistic rule meaning is
as follows (Table II): IF the vehicle middle point is “far” from
the road centerline AND driver’s speed limit maintenance is
“awful”, THEN driver distraction is “very_high”.

Next, this linguistic knowledge is represented as a
3x3 matrix R, the elements of which are the values of the
output singleton MFs: {no = 0, negligible = 14.3, low = 28.6,
very_low = 42.9, medium = 57.2, high = 71.5, very_high
= 85.8, inacceptable =100}. The FL output presents DD in
percentage, where each MF has equal step between each other
in the UOD from 0 to 100. In Fig. 6, the transformation from
the FL linguistic knowledge into an mxn matrix R is shown.
In our case, both m and n are equal to three.

After that, equally sized matrices C and R are multiplied
with Hadamard product approach resulting in matrix D =
C o R. Each element of D contains information about the
certainty of each output MF activation for a specific input.

The last stage of the FL inference system is the conversion
of fuzzy matrices back to a numerical value. This is done via
one of the most popular defuzzification methods, center of
gravity. To transform the matrices into a number, a weighted
average of the matrix elements is found as the sum of the
elements in matrix D divided by the sum of the elements in
matrix C. The three-dimensional surface of the designed FL
DD evaluator is observed in Fig. 7. The FL design specification
is summarized in Table IIIL.

IV. CASE STUDY
A. Farticipants

The participants of the driver distraction experiment
were employees from IPG Automotive GmbH (Karlsruhe,
Germany). All the participants (13 males and 5 females) took

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 7. Three-dimensional surface of the DD fuzzy evaluator.
TABLE III
FL SPECIFICATION
Parameter Fuzzy logic evaluator
Structure Multi-input, single-output

Ax,=[01.5] (3 MFs)
Av, =10 12] (3 MFs)
DD =10 100] (8 MFs)
Triangular symmetric
Singleton symmetric
Matrix (Sugeno’s)

9 modes ponens
Geometric center

Crisp inputs

Crisp output

Input membership functions
Output membership functions
Inference mechanism
Rule-base

Defuzzification

part in the experiment voluntarily. Their age ranged between
24 and 39 (mean 30.11) years. The participants’ driving
experience ranged between 1 and 21 years (mean 11.33).

Before the experiment, the drivers were questioned regard-
ing the electronic devices, such as tablets, smartphones, lap-
tops, e-readers usage while driving. Two participants admitted
that they never use them while driving; two drivers noted that
they use a device sometimes. Remaining drivers reported that
they rarely use electronic devices. All the participants pointed
out that they are aware about a danger of using devices while
driving. After the experiment, the drivers also described their
impression of distractive driving.

B. Apparatus

The vehicle mockup driving simulator equipment System
Experience Platform (SEP) is demonstrated in Fig. 8. The
fixed-base test rig has a steering wheel and two pedals:
acceleration and brake. SEP has an adjustable driver sit and
two liquid-crystal displays. The virtual world is performed on
a display placed in front of the driver. The virtual vehicle
model has an automatic transmission. The vehicle speed
is observable for the driver from the head-up display. The
performance data are collected at a frequency of 50 Hz. The
SEP supports MATLAB®/Simulink® (Natick, Massachusetts,
USA) and IPG CarMaker® (Karlsruhe, Germany) real-time
integration.
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Fig. 8. SEP driving simulator.
B
/,//
\, Driving direction
Fig. 9. Road shape with speed limits.

C. Procedure

The participants drove a two-way, two-line highway road
of the total length of 10626 m and the line width of 3.5 m.
The road had three segments with different speed limits
(30, 50, and 90 km/h) and curvatures. The road shape along
with the segments speed limits is plotted in Fig. 9. There were
neither other vehicles or pedestrians nor animals modeled in
the virtual world. Before the experiment, the drivers received
unlimited time to familiarize themselves with the test rig and
with the road. Moreover, during the experiment, the road shape
and the vehicle location on the road were also displayed in the
corner of one of the SEP’s screens.

The first part of the experiment was dedicated to the data
collection for ANFIS and ED predictors. Each participant
passed two laps without a secondary task. They were asked
to drive along the right side of the road and to respect
all the traffic signs. The drivers were also informed, what
data are used in driving prediction. After passing two laps,
the participants continued driving one more lap, during which
one of the experiment organizers sent text messages to the
cellular phone prepared for the participants. The drivers were
requested to answer the text messages and to continue driving
respecting all the traffic rules. There was no time restriction
for secondary task execution. The data collected in the third
lap were used in the DD recognition.

The drivers were instructed to have a chat conversation
naturally. The experimenter asked the participants simple
questions, for instance “How are you?”, “What are your plans

©O—0 Road centerline D-a D=5
O—O0 Vehicle trajectory x5y xb; P

ja. Ib.
y [:::] Vehicle vse e e

ECY) B

C(x5y) D y9

Fig. 10. Visual explanation of data extraction for point D.

for the weekend?” and similar. The secondary task period
was captured since a driver took the phone in a hand and
ending when the driver released the phone from the hands. The
experimenter gave a reasonable time between the distractive
messages. Therefore, each participant drove roughly equal
time being distracted and being free from the secondary task.

D. Data Extraction

The road consists of the nodes with fixed locations in
Cartesian coordinate system, which are connected between
each other with straight lines. Each node contains data {unique
identification number (ID); x coordinate; y coordinate; speed
limit V;; road radius r }. During the experiment, the SEP saves
the location of the vehicle geometric center in the virtual world
with a fixed frequency.

In Fig. 10, an example of calculating Ax is illustrated. The
red line symbolizes a road segment of the road curve (Fig. 9),
while the green one - vehicle geometric center locations. In the
point D of the vehicle trajectory with the coordinates (x¢, y9),
two nearest nodes A and B are searched from the road curve
applying the ED function (1). Next, the shortest distance from
the point D to the straight line between two nodes A and B
is assigned as AxP. In Fig. 10, this shortest distance is the
line DE.

The maximum speed in the point D is calculated using the
coordinates of this point and the previous one C:

D \/(xd _ xc)Z + (yd _ y(?)Z
07 = > )
At
where At is the time constant between data measurement
for SEP. Finally, the speed deviation Av? for the point D is
found as a difference between v? and the speed limit Vi of
the closest node A.

The road radius and speed limit for the point D are
assigned from the closest of two nearest nodes of the road
trajectory. In Fig. 10, the point D (green) passes the road
segment characterized by the node A (red). Consequently, after
data extraction, the point D includes attributes {Ax?; Av?;
V,D ;D }.

V. RESULTS

In this section, the driver-in-the-loop experiment
results are presented. Two driver performance predictors,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Av, [km/h]

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Ax, [m]

Fig. 11. Driver performance prediction algorithms comparison: the red curve represents performance prediction by the ED; the blue curve displays performance

prediction by the ANFIS: (a) Avp; (b) Axp.

TABLE IV
ANFIS AND ED PREDICTION ACCURACY COMPARISON

Predictor Avruse [km/h] Axrmse [m] tirain [S]
ANFIS 2.1345 0.1506 148.072
ED 1.9992 0.1405 96.150

ED and ANFIS, are compared. In this paper, the performance
results of only one driver are introduced and are studied
in detail. A random driver was selected from the group
of driver-in-the-loop experiment participants. For all other
drivers, the results are very similar.

A. A Comparison Between ED and ANFIS Predictors

In Fig. 11, a comparison between ED calculation and
ANFIS predictors is reported. The red curve symbolizes per-
formance prediction by the ED, whereas the blue curve —
prediction by the ANFIS. Predicted results obtained from the
ED and the ANFIS are similar for both Av, (Fig. 11 a) and
Ax), (Fig. 11 b).

The main difference between the prediction algorithms is
that the ANFIS comparing to the ED has a smooth output.
Nevertheless, the average prediction accuracy is almost the
same for both algorithms. It can be explained by the ANFIS
hybrid training algorithm, where both antecedent and conse-
quent parameters are optimized in the backward and forward
passes, respectively [38]. The ED predictor, however, has
higher oscillation. The algorithm uses only the preprocessed
data with a single simplification. It provides slightly more
accurate prediction and, though, frequent fluctuation. Never-
theless, the output response remains identical to the ANFIS.

In Table IV, the root mean squared errors, which are respon-
sible for algorithm prediction accuracy, for every predicted
variable, Avgyse and Axgyske, are reported. In addition,
the algorithms’ training time #;,4i, is calculated. The ED shows

more accurate prediction capabilities and faster training term
comparing to the identical ANFIS predictor. For the rest of
the Section only the ED predictor results are studied.

B. DD Detection

Fig. 12 demonstrates driving performance of one of the
experiment participants conducting a secondary task. The gray
background symbolizes a period of the secondary distractive
activity (i.e. the cellular telephone is in the driver’s hand).
Red lines on every plot mark the predicted performance,
namely speed limit maintenance (Fig. 12 a) and lane keeping
ability (Fig. 12 b). Black line is driver’s real performance.
Green curves represent an appropriate information about the
road segment (Fig. 9): speed limit (Fig. 12 a) and curvature
(Fig. 12 b). The small road radius designates a sharp turn,
while the big radius — almost straight road.

It is observed that the driver failed in holding optimal speed
limits (Fig. 12 a) while performing the secondary activity. The
method predicted that the driver would not surpass the differ-
ence between actual and optimal for the road speeds in 3 km/h
on most of the road segments. Nevertheless, the participant
being distracted decreased or increased the vehicle velocity
by more than 5 km/h relatively the road speed limit.

For the studied driver, the speed limit maintenance on the
50 km/h speed limit segment was harder than on a high speed
limit (i.e. 90 km/h) one (Fig. 12 a). The road is significantly
curvy on the low speed road part, whereas the high speed
limit segment is almost straight (Fig. 9; Fig. 12 b). This is
also predicted by the ED (Fig. 12 a).

The driver faced difficulties keeping the vehicle in the
middle of the lane while performing the secondary task
(Fig. 12 b). In some moments, the driver went more than 4 m
far from the centerline. The width of the modeled in the virtual
world vehicle is 1.5 m. The width of a single lane is 3.5 m.
It means that when Ax is higher than 1 m, the participants
drive outside the lane bounds. Although, the ED predicts



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AKSJONOV et al.: DETECTION AND EVALUATION OF DD USING MACHINE LEARNING AND FL 9

Av,, Av [km/h]

100
80
60
40

V, [km/h]

20

= 4 r]*wrllr m 0 | VI - H fij 1000

= ﬁ ( | | | B

A iL *““ } IH"' ‘« g slha o an o ool w_____‘th..h.
lou {[S]SOO i
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Fig. 13. Resultative driver performance with ED predictor: gray background —

the secondary task accomplishment period; dark gray curve — driver resultative

performance (Eq. (2), (3)); green curve — information about the road segment: (a) Av, and Vj; (b) Ax, and r.

that the driver’s Ax does not exceed 0.5 m while normal
performance, the Ax was higher than 1 m when the driver
interacted with the mobile phone. Hence, the driver always
drove off the road while chatting on a cell phone. Conse-
quently, by applying the methods of the prediction of driver
performance, an abnormal driver’s behavior may be recog-
nized. As this behavior is caused by the secondary task accom-
plishment, it can be concluded that the method is suitable for
DD detection.

In Fig. 13, the resultative driver performance diagrams are
acquainted. The response values were calculated applying (2)
and (3) for the ED predictor. The results help estimate the
difference between driving with the secondary task and normal
driving from the viewpoint of the speed limit maintenance and
the lane keeping ability. Both estimates, Av, and Ax,, have
similar levels: low at normal driving and significantly high
while performing the secondary task.

C. DD Evaluation

In Fig. 14, a percentage level of DD is shown. The curve
represents the result of the FL data fusion. Two variables, Ao,
and Ax, (Fig. 13), pass through FL evaluator. The prediction
method represents normal driving (Fig. 14, white background)
for each individual participant, when evaluation of the driving
performance does not exceed 20%. On the contrary, when the
driver performs secondary task, her/his lane keeping and speed
maintenance ability degrade. The algorithm easily detects
this phenomenon and FL evaluates driving performance with
significantly high percentage (Fig. 14, gray background).

DD remains still high in a few seconds after secondary task
accomplishment (Fig. 14) because the drivers, after completing
the distractive task, realize the errors and try to return to
their lane and increase/decrease the speed as soon as possible.
This maneuver causes additional mistakes in vehicle operation.
Thus, DD is often dangerous not only during the secondary
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activity execution, but also for few seconds after. Hence,
the secondary activity increases the period of distraction.

Using the proposed method and considering 20% of DD
as abnormal driving, it can be seen in Fig. 14 that the driver
was always distracted while interacting with the mobile phone.
The experiment results are also confirmed by the driver-in-
the-loop experiment participants’ subjective evaluation. All the
drivers mentioned that they experienced visual, biomechanical,
and cognitive distractions at the same time, what caused their
driving performance burden leading to abnormal driving. This
phenomenon was assured by the proposed method (Fig. 14).

Furthermore, although the participants were informed about
the experiment procedure in details, and they were able to
observe their position on a track on one of the SEP screens,
it did not help them to avoid distraction induced by the
interaction with cell phones (Fig. 14). It also proves the
statement from [3]: “our cognitive ability does not allow us
to engage in more than one conscious task simultaneously.”
It certifies that when the driver is involved in the secondary
activity, safe driving is not guaranteed. Thus, minimization of
DD is worthy of significant effort and work.

VI. CONCLUSION

This paper presents a method for DD detection and eval-
uation while performing a secondary task. The detection is
executed by the machine learning algorithm based on the
ED calculation formula. FL fuses the performance-based data
to evaluate a level of DD in percentages. The main contribution
of this work is solving a regression problem in DD detection
and performance-based data fusion into a single variable
introduced for the DD assessment. Therefore, the method is
capable not only to detect DD, but also to evaluate its influence
on safe driving performance.

A machine learning algorithm predicts driver performance
in a name of lane keeping and speed maintenance ability on a
specific road segment. A road segment is described by speed
limit and road curvature. The data used in machine learning
are collected during driver’s normal performance, when no
distraction activity appears. To recognize DD, the proposed
method compares distracted while conducting a secondary task
driving with normal one, free from distraction, performances.

To verify the proposed DD detection and evaluation method,
the driver-in-the-loop experiment on driving decoy performing
a secondary task with 18 participants was conducted. Chatting
on a cellular telephone is examined as a secondary task.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

DD evaluation: gray background — the secondary task accomplishment period; green-yellow curve — DD detected with the ED predictor.

Data collected during two full laps driving is exploited for
predictor design. One more lap is driven with a secondary
activity execution. The proposed method enables accurate
driver decoy experimentation. The results presented in this
paper prove that the proposed method is capable to detect and
to measure precisely the percentage level of DD caused by an
unusual driver performance. The methodology is adaptable to
each individual driver. It allows examination and comparison
of the secondary tasks influence on driving quality of various
drivers.

The suggested methodology has a certain advantage over
other DD detection methods described in Section II. Partic-
ularly, as compared to the methods, where the behavioral
and psychological attributes are applied [6]—[18], the proposed
approach does not require additional devices, such as cameras
and neuroscan systems. Those devices increase the system
cost [8], what in its turn is a potential resistance for system
application in a commercial passenger vehicle. For the same
reason, the methods with different attribute combinations
(e.g. behavioral, psychological, and subjective) [30]-[35] are
not feasible in the real world implementation.

The method introduced here, like in [2] and [20]-[27],
uses only performance-based attributes, because the variables
can be obtained using the data from the available in modern
vehicles sensors [19]. However, the method described here,
in comparison with other performance-based approaches and
with all the works mentioned in Section II, is able to measure
a level of DD. The nonlinear regression technique used for
DD detection gives an opportunity for a precise DD measure-
ment. On the contrary, all the previously proposed methods
are binary classifiers with Boolean output (distracted/non-
distracted). Consequently, the suggested method can be used
as a practical tool for different evaluation and comparative
analyses of the secondary tasks influence on vehicle safety.

This work, however, has several limitations. Exactly, it
misses a statistical analysis with a greater sample size of
different driver segments (e.g. distributed between age, gender,
driving experience, etc.). This analysis will be conducted in
the future works. What is more, in this paper, the case study
involved only one secondary task: texting on a cell phone. In
the future, a variety of different DD activities will be tested
on their influence of the DD level. Like in [33], the IVIS
will be exploited as a number of secondary activities. To this
regard, the experiments will be conducted on the advanced
vehicle mockup with a vehicle cockpit identical to the one
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used in commercial vehicles. Finally, the method will be also
extended to more driving-performance variables, and different
DD recognition attributes will be combined.
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ABSTRACT-This paper presents a regenerative anti-lock braking system control method with road detection capability. The
aim of the proposed methodology is to improve electric vehicle safety and energy economy during braking maneuvers. Vehicle
body longitudinal deceleration is used to estimate a road surface. Based on the estimation results, the controller generates an
appropriate braking torque to keep an optimal for various road surfaces wheel slip and to regenerate for a given motor the
maximum possible amount of energy during vehicle deceleration. A fuzzy logic controller is applied to fulfill the task. The
control method is tested on a four in-wheel-motor drive sport utility electric vehicle model. The model is constructed and
parametrized according to the specifications provided by the vehicle manufacturer. The simulation results conducted on
different road surfaces, including dry, wet and icy, are introduced.

KEY WORDS : Fuzzy control, Anti-lock braking system, Electric vehicles, Vehicle dynamics, Vehicle safety

NOMENCLATURE

w : wheel angular speed, rad/s

a,, : vehicle longitudinal acceleration, m/s
Do : braking pressure, bar

r : wheel radius, m

m : mass of the quarter vehicle, g

g : gravitational acceleration, m/s’

T, : driving torque, Nm

T : tire torque, Nm

T, : total braking torque, Nm

Twe  :regenerative brake torque, Nm

Tys  : friction brake torque, Nm

1, : inertia about the wheel rotational axis, gm®
ky : braking coefficient

T, : phase torque of motor, Nm

I : phase current of motor, A

0 : rotor aligned position of motor, ©
L : phase bulk inductance of motor, H
N : number of phases of motor

Vou : vehicle longitudinal velocity, m/s
Vi : wheel longitudinal velocity, m/s

*Corresponding author. e-mail: valery.vodovozov@ttu.ee

A : wheel slip, %

Y7 : tire-road friction coefficient

u* : estimated road surface

F, : longitudinal force, N

F, : vertical force, N

E, : net energy consumption, kJ

P, : power spent on driving, W

P, : power recovered via regenerative braking area, W

7S : electric motor efficiency, %

s : distance, m

Gpemge - average deceleration, m/s’

ABS;, : ABS operation index of performance

Awenge - average wheel slip, %

A : actual and optimal wheel slip difference absolute
value, %

P,  :regenerated power comparing to the total power
required for deceleration, %

SUBSCRIPTS

i : subscript for each wheel; i € [front left (FL), front
right (FR), rear left (RL), rear right (RR)]

j : switched reluctance motor phase number
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ABBREVIATIONS

4WD : 4 in-Wheel-motor Drive

ABS : Antilock Braking System

ASM : Automotive Simulation Models™
DOF : Degree of Freedom

ESP : Electronic Stability Program
EV  : Electric Vehicle

FLC : Fuzzy Logic Controller

ICE : Internal Combustion Engine
MF  : Membership Function

MISO : Multiple Input, Single Output
PID : Proportional-Integral-Derivative

SRM : Switched Reluctance Motor
SUV : Sport Utility Vehicle
UOD : Universe of Discourse

1. INTRODUCTION

Modern life cannot be imagined without personal vehicles.
As the cities grow bigger and business spread wider, people
daily pass long distances to their work places or to meet
with their business partners in other cities or even other
countries. On-ground vehicles have become indispensable
machines helping people in overcoming distances and
saving time on transportation.

The world population increases every year and a demand
for personal vehicles grows in parallel. Within only few
past decades the number of internal combustion engine
(ICE) cars has dramatically enlarged on the roads. It brings
in this connection the biggest disadvantage of a developed
industry: the risk of accidents and consequent human
fatalities. Thus, a vehicle safety and driving assistance
systems’ improvement and development is needful.
Moreover, the problems related to energy management, oil
crisis, greenhouse gases, pollution and environment
protection have brought a necessity to create a new type of
environmental friendly transport. One of the promising
alternatives are the electric vehicles (EV), where an ICE is
replaced with an electric motor propulsion system (Bansal,
2005). EVs are not only less polluting, efficient and cheap
to operate, but also very quiet (Dhameja, 2002).

The EV batteries’ long recharging time, poor durability,
weight, cost and short lifetime are causing the largest
resistance to the EV mobility infrastructure development
(Dhameja, 2002). The biggest drawback of the commercial
EVs is their short range due to a small charge capacity.

One of the subtypes of an EV has four in-wheel-motor
drives (4WD) powertrain. The technology was already
available in 1900, when the great inventor and engineer
Ferdinand Porsche introduced a vehicle with wheel hub
motors built into steered front wheels. Unfortunately, the
mass production failed due to the invention technical
complexity.

With the technologies available today, the 4WD

powertrain EVs once again deserve an attention, because
they turn out to be perfect candidates for future mobility.
Each of the individual 4WD motors’ angular velocity and
torque can be directly measured. Furthermore, the electric
actuator works faster than a conventional hydraulic system
used nowadays in ICE vehicles. It opens an opportunity to
design a very rapid, efficient and accurate algorithm to
control vehicle dynamics via 4WD powertrain (Xiong and
Yu, 2011).

The well-known safety systems are an antilock braking
system (ABS) and an electronic stability program (ESP).
The ABS avoids wheel lock and maintains vehicle
steerability (Koch-Diicker and Papert, 2014). The ESP
assists in vehicle stability control (Ehret, 2014). The ABS
available in commercial vehicles requires a wheel slip
threshold that guarantees energy efficient deceleration only
on a dry asphalt surface (Koch-Diicker and Papert, 2014).
Consequently, it leads to power losses on lower adhesive
coefficient surfaces, because the wheel slip requirements
are lower on a slippery surface than on a dry road
(Doumiati et al., 2013).

In EV, the negative torque from braking inertia rotates
the motor in opposite to traction direction. The motor
works as a generator and charges an energy storage device
by converting kinetic energy created by the vehicle mass
into an electric power, instead of wasting it as a heat on the
brake pads or into the atmosphere (El-Garhy et al., 2013;
Miller, 2005). This process is known as regenerative
braking or energy recuperation (Dhameja, 2002). Kinetic
energy recycled from braking maneuvers increases the EV
driving distance. Thus, an ABS for EVs has a benefit for
safety and efficiency improvement via regenerative braking
and a challenge for more complex braking control methods
design.

This work’s aim is to combine the torque blending
technique together with a control of robust to different road
surfaces ABS. The generators use maximum power as the
actuators for the ABS system. The controller recognizes
the road surface to maintain energy efficient and safe
braking performance for a specific road. Hence, the
controller recuperates maximum possible kinetic energy
from braking and simultaneously supports robust to various
roads vehicle safety deceleration.

The paper is organized as follows. In next Section, the
related to this studies works are analyzed and the current
paper contribution is discussed. The 4WD EV powertrain
modelling and parameterization are introduced in Section
3. The detailed explanation of the road detection algorithm
as well as the control method description are presented in
Section 4. In Section 5, the control results for different road
adhesions are introduced. A comparative analysis of the
controller performance for electric and hydraulic actuators
is also reported. The research is discussed and concluded in
Sections 6 and 7, respectively.
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2. RELATED WORKS

Many different conventional control methods were
proposed for EV energy regeneration. For instance, in
(Long et al., 2014), the sliding mode controller (SMC) and
the proportional-integral-derivative (PID) controllers were
compared. There, the SMC outperformed the PID. In Ye et
al. (2010), H, optimal control and H,, robust control were
combined to guarantee EV recuperation performance and
stability. Those methods require very complex numerical
models. Mathematical models are computationally intensive
and have complex stability problems. Moreover, models
are often not accurate due to approximations, uncertainty,
and lack of perfect knowledge. Fuzzy logic has an
advantage over conventional control techniques (e.g. PID,
SMC, H,,), because it does not require a complex dynamic
model development. Hereupon, it has a benefit in processing
and mapping ill-defined and uncertain variables.
Consequently, within few last decades, a fuzzy logic
controller (FLC) deserved special attention in complex,
imprecise nonlinear control (Passino and Yurkovich, 1998;
Reznik, 1997).

One of the first EV regenerative antiskid braking and
traction control system applying FLC with the tire-road
adhesive characteristic estimation was proposed in Cikanek
(1994). The controller was designed for a single-axle drive
EV architecture. Since then, many other rule-base
approaches were proposed for regenerative braking
enhancement.

An FLC was applied to control an EV ABS with optimal
wheel slip for varying road surfaces (Chen et al., 2010;
Khatun et al., 2003). In addition to robust ABS, the authors
in Pusca ef al. (2004) and Tahami et al. (2003) also studied
an ESP regulation. Although the controller showed precise
road adhesive coefficient estimation, the authors did not
investigate regenerative braking and torque blending.

Vehicle stability control for a 4WD hybrid EV was
stressed in Kim et al. (2008). The FLC compensated the
yaw dynamics control and recycled kinetic energy.
Nevertheless, the simulation results are limited to the yaw
rate and side slip angle compensation.

Fuzzy set theory also deserved an attention in kinetic
energy recuperation. The scholars in Paterson and Ramsay
(1993), Peng et al. (2006) and Li et al. (2008) proposed an
electric motor and friction braking torque blending based
on FLC. Furthermore, in Nian ef al. (2014), the FLC and
PID control were combined to distribute the mechanical
and electrical braking forces. Even so, the authors neither
consider braking torque between rear and front wheels
distribution nor ABS control design.

On the contrary, in Zhang et al. (2016), Jianyao et al.
(2015) and Xu et al. (2011), the authors examine both EV
torque blending and braking force allocation between EV
wheels. Nevertheless, the slip control and ABS safety
investigation were not presented. Further, in Zhang et al.
(2016), the researchers demonstrated effectiveness and

strong robustness in EV energy recuperation of the Takagi-
Sugeno fuzzy SMC over conventional PID and Mamdani's
type FLC. The results were verified in simulation and
experimentation. Though, vehicle safety was not stressed.
Optimal braking torque distribution with regenerative
capability was examined on vehicle stability for a single
line change in Kim et al. (2007) but an ABS controller was
not designed there.

A regenerative ABS controller was built by combining
FLC and SMC in Guo et al. (2014). The intelligent regulator
requires a reference slip threshold, which likewise in
modern industrial vehicles lead to energy losses on other
than dry road surfaces.

Fuzzy set theory is also widely used as an estimator of
vehicle states, for instance, linear velocity, battery
performance, vehicle side slip angle, tire-road interaction
parameters (Ivanov, 2015) and tire forces (Acosta and
Kanarachos, 2017). Tire-road surface estimation with ABS
control based on FLC was designed in Layne ef al. (1993).
The goal of the controllers was to keep the slip ratio to 20
% despite road friction characteristics.

In Paul ef al. (2016), the researchers went further and
offered, first, to estimate the road surface with fuzzy logic,
and therefore to provide a braking torque distribution. The
controller was tested on a single motor EV model. The
wheel slip and vehicle steerability were not studied on
different road surfaces, because the controller is designed
with a fixed slip value.

Advanced FLCs for road type detection and thus optimal
braking pressure generation were designed in Ivanov et al.
(2006), Aly (2010) and Castillo et al. (2016). Although the
experimental results showed perfect performance on
varying road surfaces, the control algorithms are very
complex. What is more, the FLCs were not tested on EV
decoupled braking system, but only on conventional
hydraulic brakes.

Other efficient techniques for vehicle states estimation
were proposed before. Kalman filtering is widely used in
vehicle longitudinal force estimation (Doumiati et al.,
2013). Lyapunov stability theory (Xia et al., 2016), a
combination of stiffness based estimation and least squares
(Han et al., 2015) and a combination of nonlinear Lipschitz
observer and modified super-twisting algorithm (Rath er
al., 2015) were designed for road friction coefficient
estimation. Those methods, however, require complicated
nonlinear models or additional sensors, what multiply
system’s cost and complexity.

In this paper, a simple method for road surface
recognition is presented. The estimation is based only on
vehicle body maximum deceleration rate. The proposed
technique is fulfilled with FLC and, unlike other methods
mentioned in this Section, requires neither complicated
mathematical model nor additional sensors, because the
longitudinal acceleration measurement sensors are already
in use in modern vehicles (Zabler, 2014). What is more, the
FLC is able to compensate the lack of knowledge about
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many other road surfaces that are not preliminary

considered.

Previously, the road surface estimation strategy and ABS
control were tested on hydraulic brake model (Aksjonov et
al., 2016). On the contrary, in this paper, the FLCs are
designed for both electric and hydraulic actuators that are
interacted together. The proposed controllers’ task is to
maximize energy recuperation from the vehicle deceleration
maneuver. Hereupon, the same FLCs ensure the robustness
to different road surfaces by maintaining an optimal wheel
slip during the whole braking process and by avoiding a
reference slip control. Therefore, an energy efficient torque
blending and road surface estimation are implemented in
the same controller without complex vehicle models.

In short, the following problems are solved:

«road surface detection from vehicle body longitudinal
acceleration with vehicle energy efficient deceleration
due to optimal wheel slip control and maximum energy
regeneration capability using fuzzy set theory;

« controller implementation on ten degree of freedom
(10DOF) 4WD EV model,

« control method robustness to different road surfaces
demonstration and comparison with only friction and
braking with blocked wheels.

3. VEHICLE MODELLING

3.1. Dynamics of a Braked Wheel

The 3DOF single-wheel vehicle model for the EV
longitudinal motion (Figure 1) is described by the
following system of equations (Kiencke and Nielsen,
2005):

I,-o=T,-T -T,

Fo=m:v, )
F=m-g

z

where the tire torque 7, is expressed as:

— @

t

Due to its small influence comparing to the braking and
friction forces during braking maneuvers, other forces, like
aerodynamic drag and lateral wind force, are neglected.

A distinctive feature of the 4WD EV: total braking
torque 7, is a sum of regenerative brake T, and friction
brake 7., torques:

T, =Ty +T, )
where the friction brake torque is determined as (Kiencke
and Nielsen, 2005):

Ty =71k -p, “

In turn, the friction braking coefficient &, depends on brake
disc friction area, mechanical efficiency of brake
components, and braking factor. Tire deformation (change
of the wheel radius r) due to its small impact is neglected.
Thus, both variables r and k, are assumed as constants. The

Figure 1. Vehicle single-wheel model of a braked wheel
schematic drawing.

friction braking torque changes proportionally to the brake
pressure p,.

Finally, in case of a saturated phase, a torque 7; equation
for switched reluctance motor (SRM) can be given as
(Ehsani et al., 2005):

1.
_ roLe.1)
=[5k )

The output torque of an SRM in traction or regenerative
modes T,z is the summation of torques in all the phases
(Ehsani ef al., 2005):

Tow =27 ©)

The input to the SRM drive is direct current voltage.
However, a convertor controls phase current /; flow.
Therefore, control of the phase torque depends directy on /,
(Ehsani ef al., 2005).

In modern vehicles, the torque of the vehicle wheel
cannot be measured, but only estimated. On the contrary,
both p, and /, can be measured by appropriate sensors
(Zabler, 2014). In this paper, the wheel torques are
controlled by influencing on p, and /. The variables serve
as the controller correcting variables. Nevertheless, they
will be directly expressed as the relevant torques.

For the braking maneuver the longitudinal wheel slip 4
is expressed as (Kiencke and Nielsen, 2005):

Vix ~Vwx

A ="Ya"Ye 100 0 %)

where the longitudinal wheel velocity v,, is:

v =r-o ®)

Tire deformation depends on a normal force F, (Pacejka,
2006). The wheel radius r is assumed as constant.

Tire-road adhesive coefficient x is determined as a ratio
between longitudinal F, and vertical F, forces applied on a
wheel (Kiencke and Nielsen, 2005):

p= ©)

z
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From the single-wheel dynamics, Equation (1), £ can be
simplified as:
F_m-v, v,

u=— —_ =

10
F mg g (10

Two main variables, the vehicle longitudinal acceleration
a,, and the wheel angular velocity w;, serve as the
controller inputs. The input signals are measured by the
available on board sensors (Zabler, 2014). In this paper, ¢
is connected to maximum vehicle acceleration rate a,,
(Equation (10)) for road surface recognition. The detected
road surface is defined as z*.

An overall motor power P,, with motor efficiency 7,
expended on driving or braking is as follows (Ehsani et al.,
2005):

P,=n,T, o (11)

Electric motor net energy consumption E. is described
by an equation of power spent on driving and recycled
during the regenerative braking, if the last one is applied
(Ehsani et al., 2005):

P.dt

braking

Ee= Itractloll Pudt + (12)

Table 1. Electric vehicle configurations.

731

The index of performance ABS, is introduced to
evaluate the effectiveness of the ABS control. It describes
the ratio between vehicle deceleration with and without the
applied controller:

ABS, = da

a.\k\d

13)

3.2. Vehicle Modelling and Parametrization

Full 10DOF vehicle mathematical model Automotive
Simulation Models™ (ASM) 2014-B (64-bit) is supplied
by the dSPACE®* GmbH (Paderborn, Germany). The ASM
allow a vehicle model parameterization according to the
user’s needs. The ASM interaction with the MATLAB®/
Simulink® (Natick, MA, USA) R2013b (64 Bit) allows
removing or substitution of the vehicle component models,
if necessary. Furthermore, the control algorithm can be
easily designed and simulated in MATLAB® environment
without any supplementary software requirements. A
multibody vehicle model simulation is accompanied with a
visual interface, what help user to understand vehicle
behavior in details. The EV and its powertrain system
configurations are provided by a vehicle manufacturer and

Components Parameters Desription
Type Sport utility vehicle
Vehicle overall mass 2117 kg
Front axle suspension spring constant stiffness 26700 N/m
Vehicle Rear axle suspension spring constant stiffness 23000 N/m
Front axle suspension stabilizer stiffness 2851.4 N/m
Rear axle suspension stabilizer stiffness 6833.5 N/m
Tire type 235/55 R19
Tire numerical model Pacejka’s Magic Formula
Type Switched reluctance

Peak torque at 800 V (+/— 10 %)
Peak power at 800 V (+/— 10 %)
Nominal torque at 800 V (+/— 10 %)
Nominal power at 800 V (+/— 10 %)
Maximum speed

Motor inertia (without gearbox)
Mass

Motor dimension

Liquid cooling system

Electric motor

200 Nm (30 sec)

100 kW (30 sec)

125 Nm

42 kW

1500 rpm

21087 kgmm®

50 kg

215 x 265 mm

Water 10 1/min, 50 °C max inlet

Type

Two stage reducer with helical gear and half-shaft

Transmission . )

(in-wheel motor) Ov§rall motor-gear ratio 1:10.5
Estimated torsion stiffness of half-shaft 6500 Nm/rad
Voltage 400 V DC
Peak power 160 kW
Nominal power 80 kW
Mass 274 kg

Battery pack — yiume 0.235 m*
Energy capacity 15 Ah (6 kWh)
Module type 12 lithium-titanate oxide anode cells
Modules number 15
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Ultracapacitor
Mistor Battery pack

"
+ )
i
3 =¥
brake FLC|— s

Brake caliper

Wheel Gearbox
Brake disk

Converter

Figure 2. In-wheel motor architecture scheme: black —
hardware; blue — software.

presented in Table 1.

The studied EV model was parametrized as a sport
utility vehicle (SUV). Its total body weight is 2117 kg.
Each 4WD powertrain motor is connected to the wheel
through a gearbox and a half-shaft transmission. In Figure
2, a simplified in-wheel motor architecture and a controller
are introduced. The EV has a decoupled electro-hydraulic
brake system. Friction and electric motor brakes impacting
on braking pressure and the motor phase current can be
controlled independently.

Vehicle deceleration is a very fast process. In regenerative
braking, huge amount of energy is released within a very
short time. Most of the EV batteries are not able to save
this energy. Despite, ultracapacitors are characterized by
very high power, excellent life cycle, but represent a low-
capacity energy storage. Consequently, most of the modern
EVs are also equipped with ultracapacitors used in
regenerative braking for fast energy storing (Bansal, 2005).
The power electronics losses are neglected in the model.

Lithium-titanate battery is used as an energy storage
device. Its maximum energy capacity is 6 kWh and a peak
power reaches 160 kW. Wheels are equipped with a SRM.
The SRM’s maximum torque that can be applied during 30
seconds at 800 V voltage in both motor and generator
modes is 200 Nm. The torque versus angular speed relation
for the studied SRM is shown in Figure 3. Taking into
consideration the in-wheel motor overall transmission gear
ratio, the maximum torque applied directly to the wheel
reaches 2100 Nm (Savitski ez al., 2016).

A first-order transfer function describes the electric
motor dynamics as follows (Savitski et al., 2014, 2016):

T‘d‘m l 0.,002s

S (14)
T; 0,0022s + 1

whereas the motor transfer function in generator mode
while braking is as follows:
T;AM = 1 0,025s

T 0,025 +1

s)

The tires are modelled with the Pacejka’s Magic
Formula (Pacejka, 2006). Before designing the controller,
the tire characteristics were studied. To this regard, the

Current limit ™, | 7 Traction

—— Braking

105 He Py

iciency Tj

T (Nm)
i

( 400 800 1200 1600 2000

-105

=210

® (rpm)

Figure 3. Torque — rotational speed characteristic for SRM
in motoring and regeneration modes.

— Front wheels
—— Rear wheels

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
A (%)
Figure 4. Tire-road friction — slip curves of the studied tire
model for various road surfaces using Magic Formula
model (Pacejka, 2006).

vehicle model was simulated on dry, damp, wet, and icy
road surfaces. An ABS control was not applied. The
vehicle decelerates under heavy braking conditions with
locked wheels.

The tire-road friction u versus the wheel slip 4 are
plotted (Figure 4) to specify the stable working range for
the given tire. Since the meaning of the vehicle body
deceleration curves on different road surfaces is the same
as the i — A curves, they are not introduced in this paper.
Only the straight road braking maneuver is studied, a slip
angle effect on tire dynamics is omitted.

Tire dynamics have an exponential behavior (Figure 4).
The optimal slip lays on the curve’s peak, where the
adhesive coefficient has its maximum rate. The plot region
from 0 to optimal slip value is called stable for each road
surface, where the vehicle maintains steerability. The rest
of the curve from optimal to 100 % slip is called unstable

Table 2. Optimal wheel slip values and vehicle body
maximum deceleratin rate for different road surfaces.

Dry Damp Wet Icy
road road road  road

13.18 10.66 834 6.14
Rear wheels 12.31 9.54 7.12 582
Peak deceleration (m/s®) 11.78  8.79 5.89 296

2 (%)

Front wheels
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zone, where the vehicle lateral control (steerability) is
impossible. Moreover, the vehicle maximum deceleration
on a given road surface is achieved only with the optimal
wheel slip. Braking with the slip ratios higher or lower than
the optimum value leads to braking force reduction
(Rajamani, 2012).

Although the vehicle velocity and tire models are the
same for the front and rear wheels, the  — A curves are
slightly different (Figure 4). This can be explained by
unequal body mass and, therefore, normal force distribution
between the front and rear wheels (Rajamani, 2012).
Vehicle vertical load has an impact on a tire dynamic
behavior (Pacejka, 2006), because friction coefficient
depends on a normal force, Equation (9).

Each road surface for the front and rear wheels of the EV
has its own optimal slip. The optimal value maintenance
leads to the most effective and energy efficient braking
performance. Due to the forces balance, the vehicle
decelerates as fast as feasible at the same time presuming
the lateral control (Koch-Diicker and Papert, 2014). With
the reference to the plots in Figure 4, the optimal slip
values are concluded in Table 2. The peak vehicle
deceleration values on different roads are also introduced
in Table 2. The data are essential details for the control
method design described in next Section.

4. CONTROL METHOD

4.1. Control Method Description

Regenerative ABS control algorithm has several
requirements: (i) fast vehicle deceleration, (ii) vehicle
steerability preservation, (iii) maximum energy recuperation
rate. First two requirements are fulfilled with the wheel slip
control. Efficiency of the ABS can be dramatically
improved by holding an optimal wheel slip for a given tire
on different road surfaces. The third requirement is
satisfied by braking using the torque generated by an SRM
only. This torque may not be enough to preserve the
required slip and fast vehicle deceleration. Hence, the
controller must involve a friction braking system in series
while using the electric motor as a generator.

In this work, an improvement of ABS performance is
proposed for the 4WD EV by keeping the wheel slip on its
optimal level for various roads. For this, the algorithm uses
vehicle body longitudinal deceleration to comprehend
which kind of road is behind the tires. Additionally, the
controller employs the electric motor for energy recuperation
on its maximum power and therefore recycles as much
energy as possible.

The regenerative-friction decoupled ABS control block
scheme for a single wheel is presented in Figure 5. The
idea is very simple: the controller uses electric motor
torque and retains vehicle deceleration with an optimal slip
ratio for a given road. The mechanical friction brake
system is activated only when the generator’s torque is not
enough to maintain the optimal slip. In fact, the controlled

L [Wheel slip| A RBFLC| 7' T
a,. Vx| calculation RB + b
(7); (8) N I
Road —fp* FB FLC
surface TFB
estimation

Figure 5. Single wheel controller block scheme: RB FLC
— regenerative braking fuzzy logic controller; FB FLC—
friction braking fuzzy logic controller; 1/s — integrational
operation.

parameters are phase current for the regenerative brakes
and the brake caliper pressure for the friction brakes. For
better understanding, the outputs are expressed directly as
appropriate torques.

Displacement of a braking pedal activates the ABS
controller. The safety feature is deactivated when the
braking pedal is released or vehicle velocity is smaller than
8 km/h, because a distance travelled with the locked wheels
from 8 km/h is not critical for vehicle safety (Koch-Diicker
and Papert, 2014).

An integrated signal transmitted from a vehicle
longitudinal acceleration a,, sensor and a signal from a
wheel speed w; sensor are used to estimate a tire slip for
each wheel 4. The same estimation approach is used in
modern vehicles (Koch-Diicker and Papert, 2014). The
method is assumed to be enough accurate as the sensors
offset, noise, and integration drift have no dramatic
influence on A calculation. A side slip influence can be also
neglected, because only straight braking maneuver is
performed (Pacejka, 2006).

The a,, cannot provide the peak friction coefficient
directly (Figure 4). However, if the maximum possible
acceleration on a given road surface is known, the
information may be utilized to understand the road surface
u#* and to specify the optimal wheel slip accordingly
(Table 2).

In heavy braking maneuver, the driver requests a peak
braking torque by slamming on a brake pedal. During the
first time lapse of the braking maneuver, the ABS is not yet

a,, (m/s?)

= = = Locked wheels

Optimal wheel slip control
t(s)

Figure 6. Vehicle longitudinal deceleration with locked
wheels and with optimal slip control on wet and icy road
surfaces.
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a,, (m/s?); p*

18 19 20 21
t(s)

Figure 7. Example of road surface estimation in braking on
varying road surfaces from icy, dry to wet profiles.

activated, and this interval is used for maximum a,,
detection. Therefore, the peak measured deceleration rate is
referred to an appropriate road surface from Table 2. As
soon as the road is estimated, the controller identifies an
optimal wheel slip for a given road surface (Table 2), and
the ABS control is running. A road surface detection
example for wet and icy roads is presented in Figure 6. The
controller detects a maximum deceleration rate and tries to
maintain it during the whole braking maneuver by holding
an optimal wheel slip.

Apart from this, to understand if the road surface has
changed during the maneuver, the value of maximum a,,
resets to zero every 0.3 seconds. While * resets, a top
braking torque is requested again. While the total torque
grows, the algorithm records the new peak of a,,. Thus, if
the road surface has not been changed, approximately the
same deceleration peak as in the previous step is fixed.
However, if the road surface is different from the one in
previous step, a new maximum value of a,, is noted.

Figure 7 illustrates the principle of the proposed
technique for braking performance. The black line represents
vehicle a,,. The blue dotted line indicates estimated road
surface w* for varying roads from icy to dry and to wet.
More information about the controller performance on
varying road surfaces can be found in Aksjonov et al.
(2016). In next Section, where the simulation results are
presented, it can be seen that the wheel slip do not rise
significantly while the u* resets. Consequently, the road
surface estimation method has no effect on the vehicle
lateral control maintenance.

To guarantee controller robustness to other roads, it is
not enough to have the information about A and g*
exclusively on dry, wet and icy surfaces. In reality, the
drivers deal with a variety of different environment
conditions. For instance, the optimal slips for dry concrete
or snow roads are not the same as for the dry or icy
surfaces, respectively (Doumiati ef al., 2013). Besides, the
tire forces for the worn and new tire on the same road have
different behavior (Pacejka, 2006).

In our case, it is not necessary to collect a huge amount
of data for different road surfaces. It is enough to study the
most common ones (e.g. dry, wet, icy). Based on their

tendency, the controller can be designed as an artificial
decision making system using fuzzy logic. On the contrary,
the conventional control applications are not suitable for
nonlinear plant control with uncertain knowledge and
measurement or without mathematical model (Passino and
Yurkovich, 1998; Reznik, 1997).

The fuzzy set theory allows to cover the unknown
workspace of the road surfaces and their optimal slip rates
(Figures 4). For example, if the road surface is neither wet
nor icy, but has a tire behavior somewhere in the middle, it
is not efficient to maintain optimal slip exactly for wet or
for icy roads. In this case, the amount of braking torque
must be applied to hold the optimal slip value also
somewhere between wet and icy surfaces.

The FLC, rather than conventional controllers, is capable
to deal with the type of information that is partly true and
partly false to any degree at the same time (partly icy and
partly wet). It is easily understandable to human due to its
attempt to model humans’ sense of words, decision making
and common sense (Negnevitsky, 2005). Its linguistic
reasoning may be applied as follows: IF a vehicle peak
deceleration rate is somewhere between wet and icy road,
THEN hold an optimal wheels slip value somewhere
between wet and icy road.

In this work, the FLC is chosen due to its ability to
discern vague information about other possible road
surfaces. The FLC is designed for both the friction and the
regenerative ABS controllers with wheel slip 4 and
estimated road surface u* as the input signals. The FLC
design is described below.

4.2. Fuzzy Logic Controller Design

An FLC may have multiple inputs and outputs. The input
numerical signals are traditionally called “crisp” and
translated into the fuzzy sets through the fuzzification
process. The fuzzy set, in its turn, is a pair consisting of an
element in universe of discourse (UOD) and a degree of
membership function (MF). The rule-base block stores a

*
W max

TRp._ max

Figure 8. Regenerative braking fuzzy logic controller
MFs: (a) A input; (b) #* input; (c) Tys output with a set of
MF values {zero (Z), very small (VS), small (S), medium
(M), high (H), very high (VH)}.
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Figure 9. Friction braking FLC MFs: (a) A input; (b) y*
input; (c) Txs input; (d) 7is output with a set of MF values
{zero (Z), very small (VS), small (S), medium (M), high
(H), very high (VH)}.

linguistic knowledge, which is used to convert the fuzzy
input sets into the fuzzy output sets by the inference engine.
The fuzzy set outputs are then turned back to the real
numbers via defuzzification.

An electric motor is faster than a hydraulic actuator.
Thus, for the electric motor FLC, Gaussian (exponential)
shape MFs are applied. The regenerative braking control
variables MFs are presented in Figure 8. The MFs overlap
between each other over the whole UOD. A symmetric
dispersion guarantees equal sensitivity of the controllers.
The triangular MFs chosen for the mechanical system
control are qualified by fast response because of their
narrow shape (Figure 9).

In the FLC design, the input and output variables of the
controllers must have a closed frontier [min, max] of the
UOD. For the A inputs the bounds for the front and rear
wheels are chosen according to the tire stable region
(Figure 4). This approach is valid because it affords an
optimal slip control for almost every studied road surface.
The road friction &#* UOD limitations obtained during the
vehicle parameterization are described in Section 3.

The z* input has 4 MFs (Figures 8 (b) and 9 (b)) with
UOD restriction narrowed in 3, 12]. An additional input of
the friction braking controller acquires an activation signal,
which has only 2 MFs (Figure 9 (c)). This input turns on
the friction braking system, when the regenerative braking
FLC output signal reaches its maximum value.

The maximum pressure of the friction brake and the
maximum torque of the generator are known from the EV
datasheet. Thus, the UODs of the output variables lay
between [0, 151] and [0, 200], correspondingly. Each
output variable has 6 MFs (Figures 8 (c) and 9 (d)).

The controllers have a multiple input, single output
(MISO) structure. Taken from (Passino and Yurkovich,
1998) MISO pattern of the FLC linguistic rules in modus
ponens form (If-Then) for the regenerative ABS is as
follows:

Table 3. Fuzzy regenerative ABS control rule-base.

A MF, MF, MF, MF, MF, MF,

u*
Iy VS Z Z z z  z
Wet M S VS z z V4
Damp VH H M S VS V4
Dry VH VH VH H S V4
If u, is 4, and w, is A%, Then y, is B, (16)

where u, and u, denote the FLC inputs A and u*,
respectively; y, denotes the controller output torque; 4', and
A", relate to the j" and A" linguistic value related to wheel
slip and road surface, respectively; and B, is the linguistic
value of the output torque.

Table 3 shows the linguistic relation between the
controller inputs and output. The rules are true for both the
friction and the regenerative braking FLCs. In total, 24
rules are used for regenerative braking control, while 25
rules are utilized for mechanical friction brake. A controller
activation signal represents an additional rule in the friction
actuator. The Mamdani’s inference mechanism is applied.

The rule-base is designed to keep an optimal wheel slip
by providing a necessary braking torque on every road
surface. When the slip is higher than its optimal value, the
torque diminishes. When the slip value is lower, the torque
increases. For example, for the wet road the optimal wheel
slip is between 7 ~ 8 %, which is somewhere between MF,
and MF; depending on the front or rear wheels. A
preliminary study (Section 3) has shown that to hold this
value, approximately 1300 Nm and 750 Nm torques are
required for front and rear wheels, respectively. The torque
corresponds to “small (S)” and “very small (VS)” output
MFs. When the slip value is higher, the torque decreases.
When the slip value is lower, the torque rises. The same
logic in linguistic rules is true for other road surfaces.

Fuzzy reasoning ends up with defuzzification procedure.
The decoupled ABS controller defuzzification is calculated
using the center-of-gravity approach. This method is

TRIi FB

A ° W%

May

Figure 10. Regenerative ABS FLC surface.
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Table 4. Fuzzy logic controller design outlook.

Parameter Regenerative braking

Friction braking

MISO

Slip A (6 MFs)
Road condition g* (4 MFs)

Structure

Crisp input

Crisp output

Fuzzy conjunction AND = min (4, y*)

MFs Gaussian Symmetric
Inference method Mamdani’s
Rule-base 24 Modus Ponens
Implication operation min (Trs)
Aggregation method max (Txs)

Defuzzification Geometric centre

Regenerative brake torque 7wy (6 MFs)

MISO

Slip 4 (6 MFs)
Road condition * (4 MFs)
Regenerative brake torque Ty (2 MFs)

Friction brake torque 77 (6 MFs)
AND = min (A, p*, Txs)

Linear Symmetric

Mamdani’s

25 Modus Ponens

min (Trs)

max (Trs)

Geometric centre

chosen based on the authors’ experience and good
continuity and plausibility. The three-dimensional surface
of the designed FLC is expressed in Figure 10.

Each of the 4WDs is controlled independently. Altogether,
four controllers are designed for the regenerative braking
ABS: front and rear wheels regenerative braking, front and
rear wheels friction braking FLCs. The outlook of the
designed for the regenerative and friction braking ABS
FLCs is summarized in Table 4.

5. RESULTS

Simulation results conducted on a straight road are
presented in this section. The vehicle is accelerated to 100
km/h and then the heavy braking is applied. The results are
introduced as a comparison between decoupled regenerative
ABS control, only mechanical friction ABS control, and
pure wheel blocking deceleration. Different road surfaces
(i.e. dry, wet, icy) are examined to study the control method
ability to maintain an optimal wheel slip ratio.

The regenerative ABS control simulation results on the
straight dry asphalt road are studied in this section in
details (Figure 11). The road surface estimation is
introduced in Figure 11 (a). At around 15.1 seconds, the
controller measures the first peak of a,. This value is
almost 12 m/s*. Referring to Table 2 (peak a,, for dry road
is 11.78 m/s’), the controller reveals vehicle deceleration on
a dry road. Herewith, the optimal slip value for each wheel
for a dry asphalt is detected (Table 2). The road surface
estimation procedure continues upon the fixed frequency
until the ABS deactivation.

The wheels and vehicle speed curves are viewed in
Figure 11 (b). At the time about 17.2 seconds the ABS
control is turned off, because the vehicle speed reaches 8
km/h. The road estimation also stops. The maximum
mechanical braking pressure is then applied and the wheels

are immediately locked for an insignificantly short period.

The wheel slip plots are shown in Figure 11 (c). The
difference in the slip value for the front and the rear wheels
can be easily recognized. Optimal slip deceleration on the
dry surface is maintained during the whole braking
process, because the road surface is uniform.

Braking torque curves for front and rear wheels are
introduced in Figures 11 (d) and (e), accordingly. Both the
regenerative and mechanical friction torque curves are
shown in the same charts. At 15.1 seconds, the total
braking torque (a sum of regenerative and mechanical
torques) on both wheels is maximum, because the
controller measures peak vehicle deceleration, and the
ABS is not yet turned on.

For the front wheels, the torque generated by the SRMs
is not enough to retain the optimal wheel slip value. As a
result, the controller requests additional torque from the
mechanical brakes to maintain optimal slip deceleration
(Figure 11 (c)). Both regenerative and friction brakes work
simultaneously. However, the electric motors do not supply
constant torque within the whole braking maneuver. In
around 16.7 seconds, the generators due to their efficiency
limit (Figure 3) diminish the torque and the recuperation
energy decreases. Contrariwise, the friction braking pressure
rises to continue maintaining optimal wheel slip.

For the rear wheels, the mechanical friction braking
torque is not actuated, because the SRM’s one is enough to
retain the optimal slip for the rear wheels on a dry road.
Likewise, for the front wheels, the motor stops recycling
kinetic energy on low speeds due to the SRM characteristics.
Therefore, with low wheel velocities, the friction brakes
are also activated.

An SRM power dissipation is performed in Figure 11 (f).
The negative amount of power shown is the energy
recuperated during the vehicle deceleration for only one
rear or front wheel. The power saved by the front wheel is
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Figure 11. Regenerative braking on a straight dry asphalt road surface: (a) Road surface estimation; (b) Velocity curves; (c)
Wheel longitudinal slip curves; (d) Front wheels braking torque curves; (e) Rear wheels braking torque curves; (f) Power

dissipation curves.

greater than the one by the rear wheel.

A comparison between regenerative strategy and only
friction braking on different road surfaces, including icy,
wet and dry is shown in Table 5. The friction braking is
also designed to retain the optimal wheel slip. For the dry
road, the front wheels (9 %) do not recover as much energy
as the rear wheels (6 %). This is due to the higher overall
torque demand for required wheel slip braking. The rest of
the necessary torque for front wheels is compensated by the
friction brake, which is almost as high as the generator’s
one (Figure 11 (d)). Accordingly, the effectiveness of
energy regeneration on the dry surface is not exalted as, for
instance, braking on a wet or icy surfaces, where only
motor torque is enough to decelerate the car with the
optimal wheel slip.

For the icy and wet roads, front and rear wheels

recuperation is equal, because only the SRM is applied to
stop the vehicle. Hence, the brake pads wear is minimum
and the brakes particle emission is also belittled. Each
wheel saves around 10 % of the whole energy spent on
transport deceleration. Eventually, the control method
maintains an optimal slip ratio for each studied road
surface individually, what promises robust and energy
efficient vehicle deceleration and lateral dynamics control
preservation.

In modern vehicles, the controllers keep the slip around
20 %. This threshold is optimal individually for a dry
asphalt surface. An optimal slip for icy road is usually
more than two times smaller (Figure 4) and the threshold of
20 % consequently leads to more than 50 % energy losses.
With the reference slip control, the energy losses are also
true for other roads, like wet, snow or damp. As with the
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Table 5. ABS braking performance comparison on different road surfaces.

Criterion

au\'t:ru't: M 0, 0, 0,
Road Type s (m) (m /SS) ABS,, i Awerage (%0) A (%) Py (%) E.(K])
FL 11.79 139 6.24 27.19
; FR 11.79 139 6.10 27.19
Regenerative 3599 _ 1149 150
brake RL 11.32 0.99 9.25 32.83
RR 11.32 0.99 9.26 32.83
FL 11.53 1.65 0 4031
ot FR 11.52 1.65 0 4031
Dry Fricion 3315 _ 1137 149
brake RL 10.87 1.44 0 4031
RR 10.94 137 0 4031
FL 100 - 0 4031
FR 100 - 0 4031
Pure wheel 5, 30 545 _
blocking RL 100 - 0 4031
RR 100 - 0 4031
FL 8.70 0.36 9.47 22.57
; FR 8.70 0.36 9.47 22.57
Regenerative ¢4 46 _ 500 193
brake RL 8.13 1.01 9.52 29.45
RR 8.13 1.01 9.52 28.82
FL 9.04 0.70 0 4031
ot FR 9.03 0.69 0 4031
Wet Friction ¢ 15 583 190 >
brake RL 8.51 139 0 4031
RR 8.51 139 0 4031
FL 100 - 0 4031
FR 100 - 0 4031
Pure wheel 1604 3097 -
blocking RL 100 - 0 4031
RR 100 - 0 4031
FL 6.28 0.14 10.27 24.14
: FR 6.28 0.14 10.27 24.14
Regenerative 13097 _ 585 174
brake RL 5.82 0 9.75 27.36
RR 5.82 0 9.75 27.36
FL 6.43 0.29 0 4031
ot FR 6.43 0.29 0 4031
Iey Friction 43559 _280  1.70 >
brake RL 5.58 0.24 0 4031
RR 5.59 0.23 0 4031
FL 100 - 0 4031
FR 100 - 0 4031
Pure wheel =003 164 - X
blocking RL 100 - 0 4031
RR 100 - 0 4031
proposed control method, a wheel slip deceleration optimal energy efficiency. The studied in this paper decoupled

for varying road surfaces guarantees an improvement of regenerative and friction braking ABS FLC distributes
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torque between 4WD powertrain wheels to maintain an
optimal wheel slip for every road surface.

However, the average slip values are different, when
comparing regenerative and friction brakes. The difference
between theoretical (Table 2) and calculated during the
simulation experiment slip A. for each wheel is presented in
Table 5. The smaller the difference, the higher the accuracy
in slip control is accomplished.

Although the controllers for electric and hydraulic
systems are identical, the regenerative ABS FLC holds the
wheel slip values closer to the optimal for a given tire
model (Table 2), thus, A, is lower. It evidences that the
electric actuators’ reaction is faster than the mechanical
one, what allows the precise wheel slip control. What is
more, the smaller the error in wheel slip control, the shorter
the braking distance is achieved (Table 5) due to higher
braking force (Rajamani, 2012).

For the modelled SUV EV, the proposed control method
allows to save around 10 % of the whole energy required
for the fast and simultaneously safe deceleration, what is
maximum for a given SRM. Thanks to the recuperative
braking technology, energy consumption in each studied
case is smaller for the decoupled system, comparing to the
pure friction or braking with blocked wheels. Therefore,
the regenerative ABS control method opens a possibility
for energy improvement, what is an essential problem in
environmental sustainability.

6. DISCUSSION

Electric mobility is a promising technology on a way to
environmentally sustainable transportation. The EVs have
a list of advantages over conventional ICE vehicles, such as
quite operation, cheap fuel, and zero emission. In addition,
EVs architecture, like individual 4WD powertrain, opens a
great opportunity to design accurate, efficient and fast
dynamics control methods using different computational
intelligence techniques. Nevertheless, EV mobility has also
some disadvantages, such as a long recharging time and a
short driving distance. The distance range may be increased
using the kinetic energy recovery system.

Multiple researches studied in Section 2 show that
scholars focused only on ABS (Chen et al., 2010; Khatun
et al., 2003) and ESP control (Kim ez al., 2008; Pusca et
al., 2004; Tahami et al., 2003) using FLC, or exclusively
on regenerative braking algorithms (Li ef al., 2008; Nian et
al., 2014; Paterson and Ramsay, 1993; Peng et al., 2006;
Zhang et al., 2016). Other authors merely dedicated the
FLC approaches on electric and friction torque blending
strategies (Jianyao et al., 2015; Xu ef al., 2011; Zhang et
al., 2009). In Guo et al. (2014), the solution depends on a
wheel slip threshold. In all these cases, unlike for the FLC
described in this paper, the controller robustness and
energy efficient deceleration are not proved.

The regenerative braking ABS control method proposed
here is directed to illustrate both energy recuperation and

vehicle efficient safety fulfilments. The control method has
the series architecture, in which electric motor torque is
used maximally. The power gained from kinetic energy of
the decelerated vehicle is directed to recycle the power
back to the storage devices, such as ultracapacitors or
directly to the battery cell.

Tire-road adhesive coefficient estimation was performed
using fuzzy set theory in Layne et al. (1993) and Sharkawy
(2006). The controllers were designed with the slip
threshold of 20 %. In Paul et al. (2016), the ABS
performance was not presented, hence, the vehicle safety is
not demonstrated. In this paper, the recuperation braking
control method is accompanied with ABS. The control
method is designed to identify road adhesion and then to
hold the optimal for various road surfaces wheel slip. The
controller dependence on reference slip threshold is
avoided.

The proposed controller has a certain advantage over
earlier introduced similar methods. Namely, in Paul ez al.
(2016), likewise in this paper, the authors substituted a
complex mathematical model for tire-road friction
coefficient estimation with simple FLC. However, despite
the high energy recuperation the controller did not hold an
optimal for various road surfaces wheel slip. Thus, unlike
inherent to the FLC described in this paper, a maximum
possible efficient deceleration with steerability maintenance
is not preserved.

In Castillo et al. (2016), a road type was detected by
Kalman filter, FLC, and artificial neural network models
combination. In Ivanov et al. (2006), road surface was
estimated using eight variables applying three different
FLCs. Lastly, another intelligent ABS FLC was described
in Aly (2010), where three different FLCs (i.e. road
identifier, optimal wheel slip estimator, and ABS controller)
were connected in series. These controllers show good
robustness to varying road surfaces. However, they are,
unlike the controller proposed in this paper, where a road
surface comprehension is accomplished referring to only
single variable, vehicle body peak deceleration, very
complex and computationally expansive. In addition, the
algorithms were designed only for on a conventional
hydraulic braking system. The appliance on the electric
actuators and decoupled system were not stressed.

In suggested in this paper FLC, when the torque
generated by the SRM is not enough to keep an optimal
slip for a given surface, the controller runs the conventional
friction brakes. Torque blending as well as regenerative
energy capability are embodied based on fuzzy sets theory
for each wheel separately. The controller outcomes are
studied on a different road surfaces and are compared with
the ABS control without regenerative possibility and with
locked wheels deceleration.

A 10DOF vehicle model with a visual simulation
interface helps to comprehend the vehicle behavior under
various conditions. Analyzing the simulation outcomes in
Section 5, it is concluded:
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« the proposed solution recovers in average 8 % of power
for each wheel, when on the wet and icy surfaces the
energy consumption is lower;

« the control method maintains the optimal wheel slip value
for varying road surfaces (Figure 4);

e electric actuators are faster than mechanical one, what
enables them to maintain more accurate wheel slip
control.

Additionally, the results have shown that with the
designed control method the friction brakes are used less in
EV. The time of friction between pads and discs is
decreased, and thus the brake pads wear is minimized. It
reduces at the same time the vehicle maintenance cost,
brake components wear, and brake pads particles emission
(El-Garhy et al., 2013).

7. CONCLUSION

In short, the research innovations in recuperation ABS

control stressed in this paper are listed as follows:

*Road surface recognition from vehicle longitudinal
deceleration with optimal wheel slip for different road
surface braking performance and high efficiency kinetic
energy recovery based on FLC;

« Control method verification on 10DOF SUV EV
mathematical model parametrized according to the
vehicle manufacturer;

« Simulation comparison between decoupled regenerative,
pure friction, and locked wheels braking performance on
different road surfaces.

The results obtained in current research are limited with
numerical simulation. Hence, the additional advantage of
the present work is that it opens a great opportunity for
further research. For instance, the controller could be tested
on a hardware-in-the-loop system or on a real vehicle,
because different behavior is expected for simulation and
real world environments.

Due to missing information, state-of-charge, battery
temperature, and some other aspects of power consumption
are neglected in the model described in this paper. The
future research will cover a study of the controller
effectiveness on an extended model, where the mentioned
characteristics have to be taken into consideration.
Similarly, different maneuvers, for example, braking while
cornering, may be also studied.

Finally, although the controller outputs are restricted by
the system physical parameters (maximum motor current
and maximum pressure), the controller nonlinear stability
analysis may be performed, such as the Lyapunov’s direct
method proved to be very efficient in FLC stability analysis
(Passino and Yurkovich, 1998).
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Abstract—Steep improvement of an in-vehicle info- and
entertainment systems has a positive impact on vehicle control,
comfort, safety, etc. Nevertheless, it also leads to a multitasking
load increase on the in-vehicle information system due to
fundamental problems of driver distraction. In this paper, a
method for detection and evaluation of driver distraction induced
by the driver’s secondary activity is developed. The methodology
is based on the machine learning and computation intelligence
algorithms blend, which includes a driver model, a driver
distraction detector, and a fuzzy logic evaluator. Several data
fitting algorithms efficient for nonlinear regression are designed
and are compared on the accuracy of the driver performance
prediction. The method is verified by the driver-in-the-loop
experiment with thirty participants on an advanced vehicle
simulator. Driver’s interaction with the commercial in-vehicle
information system is exploited as a secondary distractive task.

Keywords—Prediction methods; regression analysis; fuzzy
logic; computational intelligence; vehicle safety; man-machine
systems

1. INTRODUCTION

With a rapid development of the in-vehicle information
systems (IVIS), driver distraction (DD) becomes a new serious
challenge for on-ground vehicle safety. DD is defined as
“anything that delays the recognition of information necessary
to safety maintain the lateral and longitudinal control of the
vehicle (driver’s primary task) due to some event, activity,
object or person (driver’s secondary activity), within or outside
the vehicle that compels or tends to induce the driver’s shifting
attention away from the fundamental driving task by
compromising the driver’s auditory, biomechanical, cognitive
or visual faculties or combinations thereof.” Almost 3500
people are killed and almost 400000 people are injured in the
traffic accidents by distracted driving annually in the USA
alone. In the EU, 20% of all fatalities on the road are due to
DD. Unfortunately, this trend does not tend to decline [1], [2].

To improve vehicle safety, IVIS-induced DD detection and
following minimization via human-machine interface (HMI)
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design are the essential tasks for all vehicle manufacturers. The
objective of this study is the development of a robust DD
detection and evaluation methodology, which is capable not
only to detect DD, but also to measure precisely its impact on
safe vehicle operation for further DD minimization via vehicle
cockpit design.

Some DD evaluation methods are based on subjective
evaluation (e.g. questionnaire, survey) [3], [4], which depends
on expert’s judgment and cannot be accepted as a fair
evaluation. Therefore, scholars proposed different solutions for
DD detection using modern practical machine learning and soft
computing algorithms relying on behavioral (e.g. eye and head
movement) attributes. For instance, in [5], k-nearest neighbor
(k-NN), graph-regularized extreme learning machine and
support vector machine (SVM) were compared on DD
detection accuracy. Fuzzy logic (FL) [6], and artificial neural
network (ANN) combined with gradient boosting machine [7]
were also considered. Other researchers trusted the
psychological attributes (e.g. electrocardio—  and
electroencephalographical signals). In [8], decision ftree,
random forest, ~-NN, SVM, and Naive Bayes algorithms were
compared, while in [9] the Bayesian network and logic
regression were used. The reliance on additional devices, such
as cameras and neuroscan system, is the methods’ main
drawback, because it rises the system price and complexity
[10]. Moreover, this equipment is often considered as
distractive.

Consequently, the performance-based attributes (e.g.
vehicle lateral and longitudinal dynamics) are more feasible for
practical application, because, in this case, DD detection and
evaluation mechanism is supported by the signals transmitted
from the sensors available in modern vehicles (e.g. vehicle
speed, steering wheel rotation, vehicle acceleration, etc.). In
[11], Gaussian mixture model was designed for DD detection.
In [12], [13], the same algorithm was combined with ANN.
Other computational intelligence and statistical learning theory
approaches, like SVM [14], fuzzy logic [15], ANN with SVM
[16], [17] were also applied for induced by secondary activity
DD classification.
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Although the accuracy of the proposed methods for DD
detection is very high, all previously suggested approaches
represent the binary logic classifiers, i.e. distracted/non-
distracted. Thus, the methods are not applicable for precise
measurement and evaluation of the secondary activity effect on
the vehicle safe operation. Consequently, a new method for
detecting and accurate measuring the secondary task impact on
the DD level was developed by the authors [18].

In this paper, however, the method is enhanced with
additional driver performance variable, namely steering wheel
acceleration, and with one additional characteristic of the road
segment. These innovations lead to the FL evaluator re-design
that accordingly, provides more accurate DD evaluation.
Hence, three performance-based variables are blended for DD
detection and evaluation, instead of two in [18].

Furthermore, as the machine learning theory contains a vast
variety of prediction algorithms [19], [20], different techniques
for solving nonlinear regression problems, such as Gaussian
process regression model (GPRM), ANN, layer-recurrent
neural network (LRNN), adaptive neuro-fuzzy inference
system (ANFIS), and A-NN are applied for driver modelling
The prediction models are compared in this study to determine
the most accurate one. In [18], though, only the most
commonly used prediction model ANN was applied. This
paper tends to find the most accurate prediction model among
the studied ones here. The algorithms are verified by the driver-
in-the-loop experiment on an advanced driver decoy simulator,
where DD is caused by various tasks from IVIS.

This paper is organized as follows. The DD detection and
evaluation mechanism is described in the next section. In
Section III, data collection is explained. Thereafter, the results
of the drive-in-the-loop experiment are introduced. Finally, the
studies are concluded in Section V.

II. DRIVER DISTRACTION DETECTION AND EVALUATION
METHOD

The block scheme of the DD detection and evaluation
method is introduced in Fig. 1. The parameters description is
presented in Table I. The method involves three steps.

First, the Driver model (Predictor) block predicts driver’s
performance on a road segment, which is described by three
properties: speed limit v, road curvature ¢, and road curve
direction ¢,. The last feature may have three variables: -1 — the
road leads to the left; 1 — to the right; or 0, when the road is

straight. The predictor uses preliminary collected data and
applies a machine learning algorithm for vehicle dynamic
performance prediction (i.e. vehicle speed deviation Av,, lane
keeping ability Ax,, and steering wheel acceleration a,). The
Driver model is unique for every person.

Next, the predicted vehicle longitudinal and lateral
dynamics are compared with the same performance variables
collected while driving under DD: Av, Ax, and a. In this phase
the resultative performance, which is described by three
parameters (i.e. Av, Ax,, a,) is calculated. The following rules
are applied to each parameter (the example is shown only for
Av, calculation):

Av=Av,, if Av>0; Av, >0; [AV] > |Av,|
Av=Av,, if Av<0; Av, <0; [Av]>[Av,|
Av, ={AV+Av,, if Av>0; Av, <0; [A]>[Av, (1)
Av+Av,, if Av<0; Av, >0; AV > \Avp\
0, if [Av]<|av,

In short, the block outputs zero, when the performance
value under DD is smaller than the predicted one. If the DD
performance value is greater than predicted value, the
difference between two variables is calculated. Therefore, the
difference symbolizes, how much does the secondary activity
influence the vehicle dynamic performance from the safety
point of view? Negative resultative performance, Ay,, Ax,, and
a,, means driving slower its speed limit, driving on a right side
from the road middle line, and turning a steering wheel to the
right, correspondingly. Contrariwise, positive resultative values
represent speeding, driving to the left from the center of the
lane, and steering to the left, accordingly.

Finally, the resultative performance enters the Evaluator
block. In this stage, the intelligent FL algorithm fuses three
variables into a single output. The output represents DD in
percentage and is utilized as a DD evaluation coefficient.

A. Driver Model

Various practically used machine learning algorithms may
be exploited in the Predictor model. In this paper, the
prediction results of the most superb ones for solving nonlinear
regression matter, namely GPRM, ANN, LRNN, ANFIS, and
k-NN, are developed and are compared between each other.

TABLE L. PARAMETERS DESCRIPTION
Trz;r;;ng Av  Ax a Symbol Description Unit
Vi Speed limit km/h
virelef c Road curve radius m
AV AX; at Cq Road curve direction Left/Right
Ax Real lane keeping offset m
Vv e Av, 1) Av, Av Real vehicle speed deviation km/h
Driver a Real steering wheel acceleration °/s?
¢ Ax, Ax, DD Ax, Predicted lane keeping offset m
re— model | ) | : A, Predicted vehicle speed deviati km/h
. Fuzzy Logic i cle speed deviation m
(Predictor) a, a, y Log a, Predicted steering wheel acceleration °/s?
Ca o (1) (Evaluator) Ax, Resultative lane keeping offset m
Av, Resultative vehicle speed deviation km/h
a, Resultative steering wheel acceleration °/s?
Fig. 1. Driver distraction detection and evaluation method block scheme. DD Driver distraction level %

4514



Due to the software simplicity, all the algorithms were
designed with MATLAB R2016b from MathWorks, Inc
(Natick, Massachusetts, United States). In this sub-section,
these algorithms are briefly described.

1) Gaussian Process Regression Model: Gaussian process
methods are widely used for regression problem, where the
predicted values are continuous quantitiecs. The GPRM are
nonparametric kernel-based probabilistic models with the
main advantage of simplicity of implementation and
interpretability. However, the algorithm has also a significant
disadvantage, because its prediction accuracy degrades if the
mapping between inputs and outputs cannot be approximated
by a linear function. For more details about GPRM, the
readers may refer to the Chapter 2 in [21]. In this work, the
GPRM is trained using the linear basis function and exact
prediction method.

2) Artificial Neural Network: ANN is the feedforward
multilayer perceptron, while the multilayer perceptron is a
mathematical function mapping the input-output values. The
ANN contains an input layer, at least one hidden layer of
computational neurons, and an output layer [20], [22]. In this
work, the ANN with two hidden layers and 100 neurons in
each hidden layer is trained with the Levenberg-Marquardt
learning algorithm. The method is fast and efficient for the
nonlinear regression problem. In this method, the gradients are
computed by a backward propagation of errors, what makes it
the most rapid and efficient algorithm. Thanks to their
simplicity, the sigmoid activation functions were used in
hidden layer neurons, while the output neuron transfer
functions are linear. Number of neurons in the hidden layers is
responsible for model exactness. At the same time, more
neurons in the layers lead to network’s computational cost
growth [22]. In the designed ANN, an improvement of the
network performance has not been noticed with more than 100
neurons. Initially the hyperparameters are set by default in the
software, however, the training parameters, namely initial
weights and threshold levels, are selected randomly.

3) Layer-Recurrent Neural Network: The difference
between LRNN and ANN is that the first one has a feedback
loops (with a delay) from its output to its next input. The
network uses the hyperbolic tangent sigmoid transfer functions
for the hidden layers and the linear transfer function in the
output layer. More information about the recurrent and
recursive nets can be found in Chapter 10 in [20]. In this work,
the LRNN, as ANN, was trained with the Levenberg-
Marquardt method. The network contains 15 neurons in the
hidden layer. The input delay of the feedback signal from the
hidden layer is 1:2.

4) Adaptive Neuro-Fuzzy Inference System: ANFIS is an
equivalent to a first-order Sugeno’s fuzzy model. The model is
a combination of the two most popular computational
intelligence algorithms: ANN and FL. The network is a six-
layer feedforward ANN that uses a hybrid training method,
which combines the back-propagation algorithm in the
backward pass and least squares - in the forward pass, to

optimize both the antecedent and the consequent parameters
[21], [23]. The greater number of membership functions
(MFs), rather than their shape, improves the model efficiency.
This is because the number of MFs directly influences the
amount of linguistic links between inputs and outputs allowing
more precise ANFIS tuning [21]. In this work, the ANFIS
contains nine MFs for each input variable. They are
symmetrically dispersed and overlaped between each other
over the whole universe of discourse (UOD). The MFs have
triangular shapes, because they are simple for programming.
The output MFs are linear.

5) k-Nearest Neughbor: k-NN represents the last algorithm
used as the Predictor. The algorithm for storing the input-
output training set is enough simple. When requested, it
searches the closest entry in the data set and returns the
associated target. The main advantage of the algorithm is its
ability to achieve the minimum possible training error on any
regression data kit. Thus, it makes the algorithm one of the
most accurate for prediction from a simple data sample.
Nevertheless, at the same time it makes the method
computationally expansive for real-time applications [19],
[20]. In our case, k = 1. Hence, a new input (v, ¢, cq)
representing the sample data from driving under DD, searches
a nearest point from the preliminary gathered data (v/, ¢/, ¢d).
As a result, the predicted performance is returned (Ay,, Ax,
ap), which corresponds to an appropriate point from the
training data set (Ay', Ax', a’).

B. Fuzzy Logic Evaluator

The FL evaluator has three inputs (i.e. Ay, Ax,, a,) and a
single output, DD. In this work, a Sugeno’s type inference
mechanism based on simple matrix operation is applied [24],
where the inputs are fuzzified into a 5x5x3 matrix. Due to its

TABLEIl.  Fuzzy LOGIC EVALUATOR RULE-BASE
ar = negative
o Axr

DD [%] neg far | neg close | zero | pos close | pos far
neg_high 100 85.8 429 85.8 100
neg_low 100 57.2 14.3 572 100

Av, zero 57.2 28.6 0 28.6 57.2
pos_low 85.8 429 14.3 42.9 85.8
pos_high 100 85.8 42.9 85.8 100

ar = zero
o Ax,

DD [%] neg far | neg close | zero | pos close | pos far
neg_high 100 71.5 429 71.5 100
neg_low 85.8 14.3 0 14.3 85.8

Avy zero 42.9 0 0 0 42.9
pos_low 71.5 14.3 0 14.3 71.5
pos_high 85.8 57.2 28.6 57.2 85.5

a, = positive
o Ax,

DD %] neg _far | neg close | zero | pos close | pos_far
neg_high 100 85.8 429 85.8 100
neg_low 100 57.2 14.3 57.2 100

Avy zero 57.2 28.6 0 28.6 57.2
pos_low 85.8 429 14.3 42.9 85.8
pos_high 100 85.8 429 85.8 100
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simplicity, all the input MFs have triangular shapes, where
both Av, and Ax, have five MFs and a, — three MFs. The MFs
are symmetrically dispersed and overlapped between each
other over the whole UOD, what gives them equal sensitivity.
The Ay, is bounded in [-12, 12], the Ax, OUD is closed in [-1.5,
1.5], and a; - inside [-1500, 1500].

The input and output mapping is done via 75 linguistic
rules. The rule-base is lodged in Table II. As the fuzzified from
the input matrix size is 5x5x3, the rule-base has three different
tables for each layer of the three-dimensional matrix. The UOD
of the output is restricted in [0, 100], because the final output
represents the level of DD in percentage. Eight linear-form
MFs are designed for the output. The output MFs are dissipated
on equal step 14.3 between each other. An example of the
modus-ponens-form rules connection is as follows: IF the
steering wheel acceleration is “positive”, AND vehicle speed
deviation is “pos_low”, AND lane keeping offset is “pos_far”,
THEN driver distraction is 85.8 %.

III. DATA COLLECTION

A. Participants

Thirty drivers without serious physical or mental health
disorders, who use passenger vehicles daily contributed to the
driver-in-the-loop experiment. Participants’ female — male ratio
was 5 to 25. The contributors’ gender, age, and driving
experience and statistical analysis on DD level were not under
the scope of the studies. The participation was not voluntarily,
but rewarded.

B. Apparatus

The real-time driver-in-the-loop experiment was conducted
using the advanced driver decoy simulator provided by the
SKODA Auto a.s. HMI laboratory (Mlad4d Boleslav, Czech
Republic). The simulator is a fixed-base test rig with an
identical to a commercial vehicle cockpit. The driver operates
the simulator in the virtual world, which is displayed on the
wall in front of the test bed. All the secondary activities are
submitted via cockpit HMI. The data are collected with 10 Hz
frequency. More information about the experiment facilities,
including the simulator, software, vehicle modelling and
parameterization, can be found in [18].

C. Procedure

The driver-in-the-loop experiment consisted of two phases.
In the first phase, each driver was requested to drive the
simulator in the virtual world staying in the middle of the road

i

RSy
AT W R

Fig. 2. Driver-in-the-loop experiment procedure.

and holding the speed limit, as she/he would do in the real
world. The data collected during this step were expended for
the Predictor design. The two-lane road is identical to one of
the road segments in Czech Republic, where each lane is 3.5 m
width. The road shape has two main segments: 50 km/h speed
limit with curvy shape, and almost straight road with 90 km/h
speed limitation. There were no other dynamic objects (e.g.
other vehicles, people or animals) modelled in the virtual
world.

During the second stage, the participators were requested to
continue driving in the virtual world as accurate as possible.
Simultaneously, this time they were obliged to accomplish the
secondary tasks by interacting with IVIS. The drivers got
different commands (such as searching for a specific radio
station, selecting the new city in the navigation system, making
a call to a specific contact, etc.) from the experimenter. After
the secondary task submission, the participants had to give a
feedback via a windshield washer switch behind the steering
wheel. If the secondary task is completed wrong, the drivers
were asked to repeat the activity.

In Fig. 2, the photo taken during the second stage is shown.
One of the experiment contributors interacts with the IVIS
while piloting the simulator in the virtual world. The data
gathered during this phase were applied for DD detection and
IVIS-induced DD evaluation.
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Fig. 3. Prediction algorithms comparison for Ay, versus training reference data.
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IV. RESULTS

In this section, the results of the driver-in-the-loop
experiment are introduced. A random driver is selected from
the experiment participants. Her/his performance is studied
here in details. For the rest of the experiment participants the
outcomes are very similar. For better observation, only 10
minutes of the DD experiment are presented.

Vehicle speed deviation (Fig. 3), lane keeping ability (Fig.
4), steering wheel acceleration (Fig. 5) along with the curve
representing the reference data (black line in each plot) are
delivered. It is hard to distinguish the optimization curves for
all studied nonlinear regression algorithms (i.e. A-NN, ANN,
ANFIS, GPRM, and LRNN). Therefore, in Table III the
models’ performance accuracies are presented.

In Table III, the sum of the squared error of prediction
(SSE), which is a main parameter for regression accuracy [21],
is calculated for every variable and each Predictor. In addition,
the model training time #,4» as another important parameter of
the real-time application is tracked for every variable. It is
concluded that, for our task, the A-NN outperforms other
multidimensional mapping algorithms in both SSE and training

_——

DD [%]

50 100 200

Fig. 6. Driver distraction evaluation by fuzzy logic.
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TABLEIIl.  THE PREDICTORS’ PREDICTION ACCURACY COMPARISON
SSE Avp Axp ap tuain [S]
GPRM 4436 1.121 4.512 112.775
ANN 6.089 1.243 6.843 282.737
LRNN 1.243 1.340 6.890 231.515
ANFIS 6.843 1.216 6.678 155.720
k-NN 5.941 0918 4.137 50.39

time features. This judgment also confirms the statement from
[20] that the nearest neighbor regression, depending of the data
sample, is one of the most accurate predictors.

In Fig. 6, DD evaluation results are scoped, where due to its
excellent performance the £-NN is applied as the Driver model
(Fig. 1). The gray background symbolizes the period of the
secondary task accomplishment. Though there were different
IVIS-induced distractive tasks requested from the participators,
an investigation of each single task’s impact on vehicle safety
was not under the scope of this study. The white background
indicates free from distraction driving. The red curve represents
the level of DD inferenced by the FL Evaluator.

In short, it can be noticed that some secondary activities led
to a significantly high level of DD. Moreover, the drivers

[ T ] 1 |

450

300 350 400
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require more time to complete these tasks, what can be
addressed to the tasks’ complexity and consequent humans’
cognitive workload increase. On the contrary, some tasks do
not cause DD at all, what makes them safe for multitasking
vehicle operation.

V. CONCLUSION

In this paper, a new IVIS-induced DD detection and
evaluation method is described. The methodology concerns the
Driver model designed with help of machine learning
algorithms, the comparative rules for DD detection, and the FL
Evaluator algorithm. The last one melts three performance-
based attributes (i.e. vehicle lane and speed limit keeping
abilities, as well as applied on a steering wheel force) into a
single output, which expresses a level of DD in percentage.

Various nonlinear regression techniques are used for the
Predictor development. Based on prediction accuracy and
algorithm training time, the A-NN outperformed other
approaches, namely ANN, ANFIS, GPRM, and LRNN. The
methodology is tested in driver-in-the-loop experiment with
thirty participants. Overall, the method can be applied as a
practical tool for evaluation of the driver’s secondary activity
influence on vehicle safe piloting.
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Blended antilock braking system control method for all-wheel drive

electric sport utility vehicle

Andrei Aksjonov - Valery Vodovozov - Klaus Augsburg - Eduard Petlenkov

Abstract At least two different actuators work in
cooperation in regenerative braking for electric and hybrid
vehicles. Torque blending is an important area, which is
responsible for better manoeuvrability, reduced braking
distance, improved riding comfort, etc. In this paper, a
control method for electric vehicle blended antilock braking
system based on fuzzy logic is promoted. The principle
prioritizes usage of electric motor actuators to maximize
recuperation energy during deceleration process. Moreover,
for supreme efficiency it considers battery’s state of charge
for switching between electric motor and conventional
electrohydraulic brakes. To demonstrate the functionality of
the controller under changing dynamic conditions a
hardware—in—the—loop simulation with real electrohydraulic
brakes test bed is utilized. In particular, the experiment is
designed to exceed the state of charge threshold during
braking operation, what leads to immediate switch between
regenerative and friction brake modes.

1 Introduction

One of the advantageous features of the electric vehicles
(EVs) is their ability to recuperated energy during a
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deceleration process. In EVs, friction braking (FB)
cooperates with regenerative braking (RB), what opens a
need to efficient torque control between two separate
actuators (i.e. torque blending), which are characterized by
different dynamics. In some cases, RB is simply not enough
to achieve requested braking torque, therefore, the FB
system is activated in parallel or in series. In other case, the
battery conditions (e.g. temperature, battery’s state of
charge (SOC), etc.) must be considered. For instance, when
the battery is fully charged, the recuperation is no longer
useful and even dangerous [1].

The SOC is a ratio of the remaining battery capacity to the
full charged one. It is one of the most important parameters
in EVs. Its feature is used not only in battery management
to estimate potential driving range before the next recharge,
but also in vehicle traction (e.g. hybrid EV) and braking
(e.g. blended braking system) control strategies [1]. For
example, to avoid electric battery overcharge, and
consequent damage, the regeneration by electric motors is
usually limited to a specific upper bound, 80-90% [2].
Therefore, the SOC must be always involved in a blended
antilock braking system (ABS).

Nowadays, the fuzzy logic controllers (FLCs) are widely
used in automotive engineering to solve various problems
[3]. For instance, in [4], an effectiveness and strong
robustness of a fuzzy sliding mode control over
conventional proportional-integral-derivative (PID) and
Mamdani's type FLC in energy recuperation for EV in
simulation environment was demonstrated. Complexity of
vehicle dynamics in deceleration process, especially during
emergency braking, was not integrated in the study.

An FLC-based RB strategy integrated with series RB was
developed in [5]. The FLC received driver’s force
command, vehicle speed, battery’s SOC and temperature to
determine distribution between FB and RB to improve
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energy recuperation efficiency. In [6], the FLC involved
SOC and a ratio between brake torque and biggest brake
torque to determine factual FB and RB brake torques. An
RB control strategy applying FLC was presented in [7]. The
simulation results demonstrated that the developed method
is able to recover energy and distribute power flow to
maintain SOC around target value. A PID in combination
with FLC ensured efficient RB strategy of the EV [8]. The
SOC was taken as an input of the FLC. Despite impressive
results, all these works only focused on the base brake case.
The ABS function was not considered.

In [9], the authors applied genetic algorithm in EV stability
control logic using RB of the rear wheels motor and FB of
electrohydraulic brake (EHB). The simulation results
showed that the optimal recuperation strategy is able to
provide an increase of recuperation energy. However,
neither SOC in torque allocation nor ABS performance were
under investigation. Brake force distribution strategy for
EVs based on estimation of tire—road friction coefficient
was provided in [10]. The road condition estimation was
also based on fuzzy theory. An efficient torque blending was
demonstrated in [11]. The experiment was conducted on a
real vehicle braking on low—friction road surface. In [12],
the FLC was used to adjust braking torque between RB and
FB. However, in these works torque blending or force
distribution did not consider SOC of a battery.

Scholars in [13] integrated sliding mode controller with
FLC for an ABS control to maintain optimal wheel slip ratio
deceleration. The SOC was reckoned in torque blending in
this instant. Nevertheless, for the ABS control method the
reference slip was fixed, thus, changing optimal slip for
various road conditions was not involved. Advanced control
allocation with energy recuperation for EV was introduced
in [14]. The authors also involved battery’s SOC. Both
works did not study the situation, when SOC exceeds its
bound during braking manoeuvre.

Earlier [15], the EV torque blending with recuperation
capabilities with SOC taken into account was proposed by
the authors. It was integrated with three types of controllers,
namely PID, tabular, and FLC. In this paper, the attention is
once again focused on SOC’s influence on EV’s blended
ABS. To this aim, the intelligent FLC control method
previously developed by the authors [16] is applied in
hardware—in—the—loop (HIL) simulation with real EHB
system. The HIL testbed accompanied with a hardware
delay is exploited to represent actual EHB dynamics,
making the simulation experiment more valued for real life
application. The deceleration test is designed in a way that
SOC reaches its maximum threshold in the middle of the
braking process. Consequently, blended braking system
rapidly switches from RB to FB.

In RB, the recovered energy is not stored directly in the
battery, but in the ultracapacitor. From the latter, the
recuperated energy is transmitted slowly to the battery or is
used for vehicle acceleration. Thus, the SOC shall also
consider capacity of an ultracapacitor. Furthermore, the

electronic power converters play an essential role in energy
recuperation in EVs as they are an intermediate connection
between energy sources and motors. In this paper, it is
assumed that the energy is transferred directly to the battery,
thus, the SOC may surpass its maximum limit during the EV
deceleration. However, the power electronics loses are
neglected in the powertrain model. Nevertheless, possible
consideration of the SOC of ultracapacitor in torque
blending was also proposed by the authors in [15].

This paper is organized as follows. The next section stresses
the HIL simulation environment together with vehicle
modeling. Section III describes the blended ABS control
method. In Section IV, the HIL simulation results are
delivered. The paper is briefly concluded in Section V.

2 Vehicle model and experimental setup
2.1. Single wheel model

A simplified schematic single wheel brake diagram is drawn
in Fig. 1. The rolling resistance and lateral dynamics are
neglected, because only the straight braking manoeuvre is
studied in this work. The torque balance about a wheel axis
is expressed as:

Jwow =Tqg =%y " Fy =T, (1)
where Jy — moment of inertia of wheel; wy — angular
velocity of wheel; 7}, — braking torque; 7, — driving torque;
rw — radius of deformed tire; F, — longitudinal force of tire.

A distinctive feature of the EV: its braking torque 7} is a
summation of the RB Tz and FB T3 braking torques [16]:

Ty = Tpp + Tgs- 2)
In practice, Tzz and Trp are not measured by the sensors
directly. They change proportionally to phase current of a
switched reluctance motor (SRM) and line pressure of an
EHB, accordingly. Those states are measured by available
on-board sensors in modern vehicles. In this paper, the
variables are represented as torques directly.

Fig. 1 A schematic drawing of a braked wheel for a single-wheel
model.
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2.2. State estimation

An essential characteristic of an ABS is tire—road friction
coefficient . Straight direction braking manoeuvre neglects
lateral dynamics, hence, p is calculated as a ratio of
longitudinal F; and normal F’ forces:

n=r 3
The proposed control method uses p to understand the road
surface under the tires of the EV. In this regard, p is assumed
to be proportional to the EV body deceleration rate [16]:

* Fx _ myayx ayx

KR e ~ 0 “)
where m, — mass of vehicle; ayx — longitudinal acceleration
of vehicle; g — gravitational acceleration.

Maximum achieved vehicle deceleration during the first
period of heavy braking manoeuvre is related to road surface
conditions and is used as the road recognizer in the proposed
control method. The variable is expressed as p* [16].

Another important state for the control method is
longitudinal wheel slip A, which is estimated from vehicle
vir and wheel vy, longitudinal velocities:

A = wxT%x 1000, (5)
vy

X
Vehicle longitudinal velocity is derived from the vehicle
body deceleration signal:

vyx = [ ayy dt. (6)
Wheel longitudinal speed is found as:

Uy = Ty * Wy (M

2.3. Electric vehicle model

The EV model is completed in IPG CarMaker® 6.0
(Germany) software. The 14 degrees—of—freedom model is
interacted with MATLAB® from MathWorks, Inc. (USA)
allowing users for rapid control algorithm development and
testing. The software’s integration in the HIL systems opens
a great possibility for advance prototypes testing and
concepts engineering, what sensitively saves development
time and cost.

The sport utility EV model with all-wheel drive powertrain
represents a vehicle under investigation. The specification
of the vehicle parameterizations are provided by the EV’s
manufacturer (e.g. mass, dimensions, electric propulsion
system, etc.) or are collected experimentally (e.g.
suspension, tire model, etc.).

Each of four wheels is equipped with SRM. In-wheel motor
transmission type is a two—stage reducer with helical gear
and half-shaft. Considering SRM’s peak torque (i.e. 200
Nm at 800 V) together with overall SRM—gear ration (i.e.
1:10.5), maximum torque achieved on single wheel reaches
2100 Nm. The motors behaviour is defined by the first—
order transfer function. More information about vehicle
model together with its parameters is available in [16].

Fig. 2 Electrohydraulic brake system test bed.

The braking linings’ coefficient of friction is modelled by
means of a dynamic model, which was validated against
data collected on the brake dynamometric test bed at
Technische Universitdt Ilmenau (Germany). This model
considers the influence of speed, pressure, and temperature
on the brake linings’ coefficient of friction [17].

The tire dynamics are approximated with Pacejka’s “Magic
Formula” with experimentally obtained coefficients. The
tire—road model is a relevant element for the control method
design. Particularly, it is important to know, what is the most
efficient workspace for the A with various road surfaces?
Deceleration with the optimal A results in maximum braking
manoeuvre efficiency that impacts the deceleration distance.
Moreover, when the wheel slip is equal or smaller than its
corresponding peak (so—called stable region), the EV
presumes steerability. On the contrary, deceleration with the
A exceeding its optimal one (i.e. unstable zone) leads to
wheels’ lockage and lateral control aggravation. The ABS’s
task is to avoid wheel slip unstable region.

2.4. Electrohydraulic brake system test bed

The EHB with control unit test bed (Fig. 2), was provided
by Technische Universitit Ilmenau. The test rig is
developed by the ZF TRW Automotive GmbH (Germany).
The EHB setup is used in vehicle braking dynamics studies
for reproduction of the real pressure dynamics of the brake
circuit.

The vehicle model sends demanded braking pressure for
each wheel to the EHB control unit. The dSPACE®
(Germany) platform is utilized as an intermediate
connection between the vehicle numerical model and the
EHB. The requested braking pressure received from the
vehicle model activates the valves that generate
corresponding braking pressure between the wheels and the
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callipers. Finally, measured with the appropriate sensors
line braking pressure on each wheel is returned back to the
vehicle model.

3 Blended anti-lock braking system control method
3.1. Control method

The ABS control method supplies an appropriate braking
torque to decelerate the vehicle with optimal wheel slip for
each wheel. Different road surfaces are taken into account
in control method design. A detailed description of control
method and its design can be found in [16]. Only brief
introduction is delivered here.

The control area network bus provides vehicle longitudinal
deceleration together with wheel velocity (Fig. 3). In the
next steps, applying (4) — (7), two commanded variables, A
and p*, are obtained. They are used by the FLCs to generate
a required torque for the actuators.

Two FLCs are designed separately for SRM and EHB
control for each wheel. The fuzzy system accepts the
information about vehicle body deceleration during the first
step of heavy braking. Its maximum value is fed as a
constant crisp input to the FLC to recognize road surface.
This crisp input is uncertain, hence, computational
intelligence methods, such as a fuzzy set theory, are capable
to deal with such ill-defined and vague data. Thanks to the
methods robustness, precise mathematical modelling may
be avoided. The second input is wheel slip, which is used to
decide for the requested torque 77 increase or decrease.

Both FLC inputs have symmetrically dispersed over the
whole universe of discourse triangular membership
functions, five for A and seven for u*. Equal sensitivity of
the inputs is ensured by membership functions overlapping.
The A is bounded in [0 18], and p* — in [0 10]. Sugeno’s
inference method is exploited in this study. In Tab. 1, the
rule base for the front and rear wheels in regenerative
braking mode is provided. Considering motor’s peak torque
limits, the output torque for the SRM has eleven linguistic
values from 0 to 200 Nm. The 7z is between 0 and 150 bar
and has the same design principle as the RB (Tab. 1). The
FLCs are designed referring to given tire model and expert’s
knowledge concerning efficient plant control.

Table 1 FLC rule base for front / rear wheels in regenerative mode

P

Tia [Nm] Zero Icy I;et Damp Dry
N 60 80 160 200/120  200/140
S 40 60 140 200/100  200/120
Ss 20 40 120 200/80  200/100

[02] Sy 0 20 100 180/40 200/80
NE 0 0 60 160/20 200/40
Sis 0 0 20 140/0 180/20
Sis 0 0 0 120/0 160/0

| Controller area network bus

ay; | Wy
vy, observer
(6)
Road surface Vi
estimation (4)
e I A calculation |__
(5); (7

b L
FB FLC

socC

RBFLC

req_in req_in
Trg l Tre
| Torque blending

req_out
Trp 1

Electrohydraulic
brake system

req_out
j Trp

Switched reluctance
motor model

T I I T
7,]

Fig. 3 Control block scheme for a single wheel of the EV: superscript
"4 stands for “requested”’; RB FLC — regenerative braking fuzzy logic
controller; FB FLC — friction braking fuzzy logic controller.

The modus ponens rules (If premise Then consequence) are
the common expression of fuzzy input—output fit. Like in
this work, the tabular representation is often acquired with
trial and error method. The main criteria for Tab. 1 design is
to achieve wheel slip for each tire as close as possible to the
optimal one. An example of input—output linguistic
mapping is as follows: If wheel “slip is 3 % (S3)” and road
surface is “Dry”, Then request from the SRM “200” Nm for
the front wheels and “720” Nm for the rear wheels. The final
step is to translate the output linguistic variables back to
crisp numbers. For this, centre of gravity is applied.

3.2. Torque blending

Torque blending is realized with simple logic rules. It
requires several inputs, in particular requested input RB and
FB torques Trs®-" and Trz*-", vehicle longitudinal
velocity vyx, and SOC of the battery SOC. Torque blending
block outputs are requested RB torque Tz"*?-"" for the SRM
and requested FB torque 75~ for the EHB (Fig. 3). The
approach flowchart is presented in Fig. 4. It is developed to
prioritize the usage of the SRMs, yet without battery
damage due to overcharge.

Activate ABS

req_out
Tagt =0
req_out _preq_in
TF B 7TFB

. req_out _mmax
{ Tis =75

Treq.in
Tea =

max g
TRg 2
No

reqout_mreq_in _mmax
Trs =Trg T

Deactivate ABS

Fig. 4 Control flowchart of torque blending for a single wheel.

preqou_
Teg =0

Teqout_qreq in
{lma =Trs
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S

Firstly, the algorithm checks the velocity of the vehicle.
When vehicle longitudinal speed is slower than a desired
minimum threshold vy,™™" (typically 15 — 8 km/h), the ABS
control is deactivated, because the distance travelled with
very low speed with locked wheels is not critical.

Secondly, when the SOC reaches maximum allowed
threshold SOCux (e.g. 90%), the braking switches to pure
FB mode, where the torque for the SRM is equal to zero:

T};rgq_out =0
T;;q_out =T;;q_in‘ (8)

Thirdly, the blended ABS considers the SRM’s peak
performance. Specifically, when peak torque Tzz"* of the
SRM is requested by the FLC, the block supplies the peak
torque request to the SRM and calculates additional torque
for the FB actuator to ensure optimal A deceleration as:

req_out _
{ Trp =Trg™ )
. . .
Teg " =Tpg " = TRg™
Finally, when none of the previous conditions are true, the
EV decelerates only with SRMs as the ABS actuators:

req_out _mreq_in
{TRB _TRB

req_out
Teg =0

(10)

4 Results

The results of the EV heavy braking with activated ABS on
a dry asphalt road (p = 1) is delivered in Fig. 5. At the
experiment time 3.5 seconds, the SOC of the EV’s battery
is assumed to exceed its upper bound. At this moment, the
torque blending control is easily noticeable, because the EV
switches from RB to pure FB mode. Energy recuperation is
no longer conducted. The vehicle speed together with the
wheels’ speeds are introduced in Fig. 5. (a).

Before the controller intervention, the wheels’ slip rates
grow due to exceeded torque requested by the driver (i.e. the
braking pedal is instantly pressed to its maximum) (Fig. 5.
(b)). Nevertheless, after the ABS activation, the wheel slip
rates drop down to their optimal values for a given road
surface. The optimal slips for every wheel are also depicted.

In Fig. 5. (c), the road surface estimation method is scoped.
At the beginning of the braking manoeuvre, the controller
measures the maximum deceleration rate of the EV body.
Its peak value is mapped with an appropriate road surface.
The blue line symbolizes the crisp input for the estimation
road conditions. The variable together with wheel slip is
therefore processed by the FLC to estimate a relevant
braking torques.

In Fig. 5. (d), braking torques for each in-wheel SRM of the
EV are presented. Until the SOC makes an impact on
blended ABS, it is seen that the SRM supplies its maximum
available torque for the front wheels. As a result, the torque
blending requests additional torque from the EHB (Fig. 5.
(e)) to lead A as close as possible to their theoretical optimal

values in accordance to (9). For the rear wheels, however,
the generated torques by the SRMs (Fig. 5. (d)) are enough
to reach optimal rate. Thus, the FB torques are not required
(Fig. 5. (e)) as stated by (10).
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Fig. 5 Experimental results from vehicle braking on a high—p (u = 1)
road surface: (a) vehicle and wheels speeds; (b) wheels longitudinal
slips; (c) road recognition with vehicle body deceleration rate (d) FB
torques; (¢) RB torques; [FL — front left, FR — front right, RL — rear
left, RR — rear right].

When the SOC overshoot steps in (i.e. t = 3.5 s), the energy
regeneration stops, and the SRMs are not used as braking
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actuators any more (Fig. 5. (d)). Consequently, the RB
torques for all wheels drop to zero. On the contrary, the
system moves to the pure FB mode. Now, only the EHB’s
torques are applied to decelerate the transport (Fig. 5. (e)),
applying (8).

Moreover, the FB torques are not as smooth as RB ones.
Furthermore, the optimal wheel slip achievability is not as
precise as in the case, when the SRMs affect vehicle
deceleration (Fig. 5. (b)). This phenomenon is mainly due to
the EHB significant delay as well as the plant complexity
(i.e. wheel tire highly nonlinear behaviour). It was also
studied by the authors in the previous work [16].

The conclusion was made that thanks to the electric drives’
fast response, the control method accomplishes fast and
more accurate control. As a result, the EV’s RB braking
affords noticeably more efficient EV deceleration
performance under the ABS operation. It allows for vehicle
stopping distance diminishment. However, the electric
motors are not always fully available as the braking systems,
as for instance in the case of deceleration on high—u surfaces
or in case with the exceeded SOC threshold.

5 Conclusions

In this paper, the blended ABS control method for all-wheel
drive sport utility EV is described. The SOC and the
requested torques from both actuators, namely in—wheel
SRMs and EHB, are taken into consideration for providing
a sufficient braking torque to presume maximum
deceleration efficiency for every wheel independently. The
efficiency is guaranteed by the optimal wheel slip ratio
braking for each separate wheel. In combination with the
intelligent FLC, the blended ABS control method provides
high efficiency and robustness against varying road
conditions and changing system states.

The proposed solution is verified against HIL simulation,
where the experimentally validated EV is coupled with EHB
test bed, which provides real brakes dynamics followed by
significant hardware delay. The presented experimental
results are dedicated to heavy braking conditions on a high—
u road surface, during which the upper SOC threshold is
achieved. As a result, the blended ABS switches from the
RB mode to the pure FB, and the vehicle continues the
deceleration process with optimal slip ratio without motors’
impact and performance degradation.

Despite good optimal slip control for various road surfaces,
the proposed FLC-based control method has several
limitations. Firstly, the method depends on tire model,
whose behaviour is also different for other types of vehicle
characterized by different centres of gravity, masses, etc.
Hence, for other vehicle and tire types the control method
must be slightly modified. Secondly, to design an FLC for
complex control  system, like ABS, expert’s
multidisciplinary knowledge is essential.
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Hardware-in-the-Loop Test of a Fuzzy Logic-
Based Control Method for Anti-Lock Braking

System on All-Wheel Drive Electric Vehicle

Andrei Aksjonov, Vincenzo Ricciardi, Valery Vodovozov, and Klaus Augsburg

Abstract—An anti-lock braking system aims to maximize
braking effectiveness and to maintain vehicle steerability
during emergency braking maneuvers. However,
unexpected road conditions might lead to a degradation of
the system performance. To cope with this problem an
intelligent fuzzy logic-based anti-lock braking system
control method for 4-on-board-motor drive sport utility
electric vehicle was developed. It features a very simple and
at the same time effective and robust road recognition tool
with estimation of the best braking conditions for a specific
road surface. In this paper, the functionality of the
developed control method is tested in hardware-in-the-loop
simulation on the equipment available at Technische
Universitit Ilmenau (Germany). It includes the test bed,
which is capable of reproducing the real pressure dynamics
of the brake circuit allowing simulation of various tire-road
adhesions conditions and brake blending scenarios. The
results indicate that fuzzy logic-based control method
manages highly nonlinear and time-variant dynamics of the
braking system and offers significant feasibility for optimal
slip control at regenerative braking. Hence, the
experimental results ensure its potentiality for practical
application.

Index Terms — Anti-lock braking system, brake blending,
electric vehicle, fuzzy control, intelligent control, vehicle dynamics

1. INTRODUCTION

IN addition to its fundamental purpose of people and goods
transportation, safety in vehicle technology (i.e. marine, air,
and ground vehicles) plays a considerable role, which has
higher priority than time or cost. To improve vehicle safety,
advanced driver assistance systems are developed by scientists
and vehicle manufacturers from all over the world. One of the
oldest advanced driver assistance systems is an active safety
element, namely the anti-lock braking system (ABS). It was
first used in a volume-production ground vehicle 40 years ago,
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in 1978 [1]. Since then, a constant development of ABS
components and control methods together with other vehicle
safety systems has taken place. Nowadays, ABS is a mandatory
safe feature for all passenger vehicles.

An excessive braking torque applied to the wheels leads to
wheels’ lockage, which, in turn, deteriorates vehicle steerability
and significantly reduces braking force. Therefore, the vehicle
is able to neither turn and avoid collision nor decelerate as fast
as practicable. To solve this problem, the ABS was applied to
ground vehicles inspired by the aerospace industry, where the
wheel lockage during the braking was excluded several decades
before [1]. ABS aims at decelerating a vehicle as fast as possible
along with simultaneous maintaining steerability during an
emergency braking maneuver. Its superior goal is to enhance
the braking, steering, and driving stability.

Development and further verification of safety systems on
real vehicle is often very expensive and time consuming. On the
other hand, computer simulation does not always allow a
realistic environment for testing such complex vehicle active
safety technologies as ABS, traction control systems, or
electronic stability program. As a consequence, in recent years
the researchers have extensively used hardware-in-the-loop
(HIL) simulation techniques that replicate vehicle subsystems
such as braking system, suspension, and steering rack while the
rest of the vehicle is represented as a numerical model. HIL
testing provides real behavior of the studied vehicle system and
enables significant cost and time reduction of testing and
development [2].

This work belongs to a development of an intelligent ABS
control method based on fuzzy set theory and designed for 4-
on-board-motor drive (4WD) electric vehicle (EV). The
contribution of this paper is functionality verification of
previously proposed ABS control method [3] against HIL
platform, which is available at Technische Universitit [lmenau
(Germany). The HIL consists of an electro-hydraulic brake
system (EHB) interfaced with the vehicle dynamics simulator
IPG CarMaker® (Karlsruhe, Germany). Experimentally
validated model of a full electric sport utility vehicle (SUV)

V. Vodovozov is with the Department of Electrical Power Engineering and
Mechatronics, Tallinn University of Technology, Tallinn, 19086 Estonia (e-
mail: valery.vodovozov(@taltech.ee).
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equipped with four on-board motors was used for the simulation
task. Moreover, data collected from the brake dynamometric
test rig at Technische Universitdt [lmenau (Germany) are used
to identify the Ostermeyer’s model to reproduce the real
behavior of the brake linings coefficient of friction [4].

The paper is structured as follows. In the next Section, an
analysis of related works and problem statement are presented.
Section III is devoted to the 4WD EV model. In Section IV, the
ABS control method based on fuzzy logic is explained in
details. The HIL experimental results at low-p and varying road
conditions are presented and compared in Section V. Finally,
the paper is concluded in Section VI.

II. RELATED WORKS AND PROBLEM STATEMENT

The fuzzy set theory [5] found a wide range of practical and
theoretical applications in automotive area, in particular
artificial decision making systems (e.g. vehicle-environment
interaction, driver modeling, and driver assistance systems) and
control methods for both conventional and electric vehicles
(e.g. vehicle dynamics control and ride comfort) [6]. Most of
the related works are limited with numerical simulation. Hence,
practical applicability of the algorithm is not certain.

Among the first patent applications, it is worth mentioning
the ABS control based on fuzzy logic for friction braking (FB)
by Nissan Motor Co., Ltd. (Yokohama, Japan) [7] and for
regenerative braking (RB) by Ford Motor Company (Dearborn,
Michigan, USA) [8]. Afterwards, many different control
approaches exploiting a fuzzy logic controller (FLC) were
developed for different vehicles, including EV with 4WD
powertrain. For instance, in [9], an FLC was proposed for FB
to maintain the wheel slip to a desired road surface. In [10], a
self-learning fuzzy sliding-mode control was designed for
conventional ABS. Later, the scholars improved the proposed
control method introducing a self-organized function-link fuzzy
cerebellar model articulation controller [11]. For EV, a fuzzy
sliding mode controller with braking force distribution between
RB and FB was proposed in [12]. In [13], an ABS and electronic
stability program controller for 4WD EV was presented.

It is worth noting that mentioned controllers were all
designed to keep a fixed optimal slip for specific tire-road
adhesion conditions (i.e. 20% - optimal for dry asphalt).
Nonetheless, physical behavior of the tire is very different for
various road surfaces as well as tire conditions (i.e. worn,
seasonal, depressurized, etc.). Thus, braking with optimal slip
for dry asphalt on an icy or wet road, where ABS function is
extremely important, leads to up to 50% braking force losses
and consequent efficiency deterioration [14]. Moreover, they
were only verified against computer simulation, which does not
ensure their correct operation on a real vehicle.

Both the computer and HIL simulations were conducted for
a Mamdani’s FLC applied to EV [15], for an FLC combined
with proportional-integral-derivative controller [16] and for a
quasi-sliding mode controller accompanied with fuzzy-neural
network estimator applied to a conventional passenger car [17].
Although the experiments showed promising results, the
controllers were again limited to reference slip input.

As a reference slip control does not solve the problem of
efficient and robust ABS performance, the scholars devised
several methods to recognize the road surface or estimate road-

adhesion coefficient, which allowed for an optimal slip control
of each wheel separately [18] — [20]. Unfortunately, again only
computer simulations were performed for a simple single wheel
model [18] or a full vehicle [19], [20].

In [21], authors went further and developed ABS FLC that
provides optimal slip for varying road conditions. Recently,
another solution consisting of sliding mode control and FLC
cooperation was presented [22]. The developed methodologies
were validated on a quarter-car HIL test bench. Although
optimal slip was maintained for changing road conditions,
namely vehicle braking on road surfaces from icy to dry [21]
and from wet to dry [22], a single wheel HIL simulation is not
enough to verify the whole vehicle performance. Due to the
weight transfer during a braking process, front and rear wheels
have different optimal slips. Moreover, due to the mechanical
connection offered by the suspensions, the wheels have a
significant influence on each other [23].

Another approach used fuzzy logic for road surface
detection, and additional FLC for pressure control that keeps
optimal wheels slip. The control method was first tested against
a quarter-car HIL simulation [24]. Later, road type recognition
was enhanced by the authors with artificial neural network and
validated in simulation and testing on a real vehicle [25]. Based
on these results, fuzzy logic performs very well in road
recognition (i.e. from high-p, to low-p, to high-p).

In [26], fuzzy logic was again used for road adhesion
estimation. The method was simulated and tested on prototype
EV. However, an ABS controller was not considered at this
stage. Finally, a complex control method based on fuzzy logic
for 4WD EV was developed in [27]. The FLC required three
inputs and a state observer to detect road friction coefficient and
to decide upon an optimal wheel slip. The control method was
tested in simulation and experiment with a real car.

Bearing in mind drawbacks and complexity of the proposed
FLC-based control methods, the authors, first, developed a
control method for both electric motor with energy recuperation
priority [3] and conventional FB [28]. The method used a single
FLC as estimator and controller simultaneously. Therefore, it
recognized road surface and held optimal wheel slip
deceleration on various road adhesions as well as in complex
braking maneuvers. The controllers were previously verified in
simulation only, what does not guaranty its functionality on a
under real braking system dynamics. Therefore, in this paper,
the control strategy proposed by the authors in [3] is tested via
HIL experiments with real EHB system.

In addition, several dynamics, which were neglected in the
previous studies [3], [28], are now taken into consideration.
Particularly: (i) the Magic Tire Formula 6.1 [29] identified
against experimental data on a wet surface is used; (ii) front and
rear tire deformations are now accounted [23], [30] to achieve
a more accurate estimation of the wheel slip; (iii) the dynamics
of the brake linings coefficient of friction is herein modelled
based on experimental data collected at Technische Universitit
Ilmenau (Germany). The FLC-based control method is tested
on low-pu and on varying road conditions (from high-p to low-
). In short, the main contribution of this study lies in
verification of the ABS control method based on fuzzy logic
under HIL simulation consisting of an EHB integrated with an
experimentally validated model of a full electric SUV in IPG
CarMaker® environment.
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Fig. 1. Simplified drawing of a braked wheel: single-wheel model.

III. VEHICLE MODEL

A. Dynamics of a Braked Wheel

A simplified schematic drawing of a braked wheel is depicted
in Fig. 1. The variables used in the paper are listed in alphabetic
order in Appendix in Table A.I. During straight braking, lateral
force mostly has no impact on braking. Thus, torque balance
about a wheel axis is described as [30]:

Jwow =Tqg = 1w F —Tp. (1)

Owing to its small impact, rolling resistance is neglected.
The braking torque of a 4WD EV is a sum of regenerative
Trs and friction 7rp brake torques:

Ty = Trp + Tra, 2)
where the 7r3 is calculated as [30]:
Trs =2 Uy Ap Dy Ty 3)

A wide range of phenomena occurs between the brake pad
and disc causing a remarkable variation in the brake linings
coefficient of friction, such as increase of brake disc
temperature [31]. To this effect, the Ostermeyer’s model [4] is
validated against brake dynamometric data collected at
Technische Universitit Ilmenau to render the dynamics of the
brake linings coefficient of friction [31].

In case of saturated phase, the torque Tg, of a switch
reluctance motor (SRM) is calculated as [32]:

; [ OLOE) . .
Tip = 2o i, C))

therefore, the output torque of the SRM is a sum of all phase
torques:

Tag = E)-1 Thp (i, 0), ®)
where N is phase number of motor. A converter of a SRM

controls the flow of the phase current i;, which is proportional
to phase torque [32].

Although the Trp and Tpp cannot be measured directly,
pertinent sensors available in modern cars measure p, and i
[33]. Hence, in this paper, the controller’s corrective variables
are RB torque for SRM and braking pressure — for FB.

B. States Estimation

The tire-road adhesion coefficient p is a ratio of the applied
forces on a wheel. Considering uniform adhesion among the
wheels, the tire-road friction can be approximated as [30]:

_ & _ mvayx _ avx ©6)

Fy my-g g’

In this paper, a maximum value of vehicle body deceleration
during braking maneuver ay, is utilized for road surface
estimation. Thanks to the robustness and simplicity offered by
the fuzzy set theory, this approach proved to be effective in
ABS control without the need of sophisticated road surface
algorithms [3]. An estimate of the maximum adhesion potential,
according to eq. (6), is defined as p*.

During braking, the longitudinal wheel slip expressed in
percentage is calculated as [30]:

1 = rxTvwx 100%, 7)

vvx

where longitudinal vehicle velocity is an integration of the
vehicle longitudinal acceleration [30], [33]:

vy = [ ayy dt, (®)

and longitudinal wheel velocity is derived from the measured
wheel speed:

Vure = Ty - O ©)

Accurate wheel slip calculation (7) must also consider tire
radius deformation (9). The radius of deformed tire is a relation
of the stationary wheel ground contact force to the tire stiffness
in accordance with [30]:

_ (Fz_on)
Tw = Two — “kr

(10)

The wheel vertical load F: is approximated using a quasi-
static longitudinal weight transfer approach [30]. In the case of
pure longitudinal driving without lateral acceleration, tire
vertical forces can be computed as:

Fz(f) =my (lTrg - %an)

. (11)
3 h
Fz(r) =my (ng + Tcan)

C. Vehicle Configuration

The vehicle under investigation is a full electric SUV
equipped with EHB. Each wheel is equipped with an SRM drive
connected through a half-shaft transmission that enables
independent wheels control. The 4WD SUV parameters are
listed in Table A.II located in the Appendix.
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Fig. 2. Tire-road friction-slip curves of a studied tire model for various road
surfaces modelled with Pacejka’s Magic Formula 6.1 [29]: (a) front wheels; (b)
rear wheels.

TABLE [
OPTIMAL WHEELS’ SLIP RATES AND VEHICLE’S BODY PEAK DECELERATION
VALUES FOR COMMON ROAD SURFACES

Iey Wet Damp Dry

Font wheels A [%] 2.51 5.25 7.81 9.83
Rear wheels A [%] 2.71 6.09 8.95 11.64
Peak ay, [m/s’] 2.66 5.12 7.66 10.03

An experimentally validated 14 degree-of-freedom vehicle
model is provided by the proprietary software IPG CarMaker®
6.0. The model is fully integrated with MATLAB®/Simulink®
(Natick, MA, USA) R2015a (64 Bit) enabling fast controller
development and simulation. A fixed time step of 1 ms was set
during the simulations and the signals required by the observers
were acquired from the high-speed control area network frame
with a sampling time of 3 ms (100Hz). An additive noise was
employed to incorporate white Gaussian noise into the
simulation signals. The standard deviation values of the noise
were extracted from real test data available at Technische
Universitit Ilmenau: 6, = 0.1 rad s°'; 645, = 0.05 m s2.

D. Tire Model

The Pacejka’s “Magic Formula” 6.1 is applied for tire
modelling [29]. In case of only longitudinal motion, for
longitudinal Fy, and normal F. forces acting on a tire, the
normalized longitudinal force p is calculated as [23]:

Fx

P=F—Z-

(12)

The normalized longitudinal forces vs longitudinal wheel
slip for common road surfaces (i.e. icy, wet, damp, dry) are
scoped in Fig. 2 for front and rear wheels. The curves are
obtained from a simulation of the parametrized SUV on
different road surfaces. The ABS controller was deactivated,
and a straight lane heavy braking maneuver was performed
starting from 100 km/h.

The peak of each curve is emphasized with a dot where the
tire exhibits the optimal slip ratio for a given road surface. The
region from zero to peak is called stable. Here, because of the

Fig. 3. Different views of the EHB hardware-in-the-loop testbed.

positive force-slip gradient, the vehicle is easy to control and to
maintain steerability. The rest of the curve is referred to as
unstable zone, because in this working space, the wheels rapidly
lock and steerability is compromised. The main task of the ABS
controller is to decelerate a vehicle with a slip rate as close as
possible to the peak for a given road surface. Deviation from
this optimal slip leads to braking force degradation [23].

The optimal wheel slips are reported in Table I along with
the corresponding peak vehicle body deceleration values for
different road surfaces. Optimal slips and maximum vehicle
deceleration rates for various roads represent essential
information for the proposed FLC design. It must be mentioned
that the number of passengers and their positioning in the
vehicle might have an effect on the tire-road characteristics.
Indeed, an asymmetric load produces a shift in the optimal
wheel slip ratios for left and right sides. However, such a
difference is very small [29] and, for the sake of simplicity, is
neglected in this work.

E. Brake Disk Model

Data from the brake dynamometric test rig at Technische
Universitit [lmenau were used to identify the Ostermeyer’s
model [4], [31] to reproduce the real dynamics of the brake
linings coefficient of friction. Such a model allows for an
improved fidelity of the HIL platform, because it accounts for
the brake linings’ coefficient of friction dependence against
speed, pressure, and temperature. The model relies on two
differential equations in the friction p, and temperature t states:

{Ilb=—“'{#b'(Tb'wW'Fcl'*'ﬁ)—Y'T} (13)
tT=¢e1pw, Fyu—8(t—1) ’
where the brake clamping force F,; is found as:

Fy =Ap'pb' (14)

Such a model assumes that the friction coefficient is
proportional to the total area of contact patches [4]. The
resulting patches area is determined by the equilibrium between
the flow of growth (temperature related) and destruction (wear
related). It is worth noticing that the term r; - @w - F.; embeds
the combined effect of clamping force and sliding speed, whilst
the constant parameters a, f, v, 8, and ¢ are attributable to the
pad chemical formulation. Namely: (i) a is a time constant
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Fig. 4. Hardware and software communication.

ruling the growth/destruction rate of the contact area and its
current value; (ii) B is the correlation parameter between the
change rate of the contact area and its current value; (iii) y
correlates the change rate of the contact area to the temperature;
(iv) € rules the frictional power dissipated as heat on the contact
patches; (v) d is herein referred to as brake cooling factor and
rules the convection effect. Based on the collected experimental
data, the parametrization used for the simulations is presented
in Appendix (Table A.III). The initial brake temperature To must
be specified before the simulation starts to account for the initial
brake thermal state. For the present analysis an initial
temperature 9 = 298 K was considered. The detailed
explanation of the Ostermeyer’s model is provided in [4].

F. Blended Braking System

1) Hardware-in-the-loop testbed: EHB system

The employed EHB system shown in Fig. 3 is based on the
slip control boost technology developed by ZF TRW
Automotive (Koblenz, Germany). The EHB system finds wide
use in EV, because it ensures smooth coordination between FB
and RB without the driver noticing it. Such a system also
ensures faster response time, more flexible packaging, and
better integration with other chassis and powertrain control
systems.

The hardware setup consists of the EHB and the EHB control
unit. The brake calipers are mounted on two discs, fixed with
respect to the structure frame. The main task of the HIL is to
reproduce the real pressure dynamics of the brake circuit, which
is demonstrated to have a remarkable impact on the ABS
performance.

The HIL is connected to a host personal computer (PC)
through the dSPACE® (Paderborn, Germany) electronic
platform. The PC runs the IPG CarMaker® multibody SUV
model parameterized according to experimental data. The
dSPACE® unit serves as an intermediate connection between
the vehicle numerical model and the real EHB (Fig. 4). Its task
is to convert signals from analogue to digital form and vice
versa for real-time experiments.

The dSPACE® platform receives signals (i.e. brake pedal
displacement, wheel speed, vehicle speed, demanded braking
pressure, etc.) from IPG CarMaker® 4WD EV model for the
EHB actuation. The HIL is provided with sensors to measure
the brake line pressure in the four brake calipers in a range from
0 to 20 MPa with cut-off frequency of 1 kHz. The signals are
fed back to the PC through dSPACE® equipment, where they
are taken into consideration in vehicle model [34].

2) Four on-board-motor powertrain model

The SRM’s drive torque versus angular speed relation

characteristics are presented in Fig. 5. These curves are
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Fig. 5. SRM’s torque-rotational speed characteristic in traction and braking
modes.

obtained from experimental measurements of the studied SRM.
Considering transmission gear ratio, the maximum torque
applied directly to the wheel achieves 2100 Nm. The SRM
dynamics are described by the first-order transfer function [35]:

TRE _ 1 -0.002s
7787 = 00022541 C :
RB .

(15)

IV. ANTI-LOCK BRAKING SYSTEM CONTROL METHOD

A. Control Method Description

The main task of the ABS controller is fast vehicle
deceleration by keeping vehicle handling stability and
steerability. Additionally, for the EVs, the ABS must guarantee
the maximum energy recuperation from the braking process.
The main tasks are ensured by holding the optimal wheel slip
value. Efficient regenerative braking is provided by applying
the maximum possible braking torque from the electric motors,
and adding braking torque from a conventional EHB only when
the torque generated by the electric motors is not sufficient to
attain an optimal wheel slip.

The control method under investigation in this paper is
designed to keep optimal wheel slip for each wheel on different
road surfaces. A peak longitudinal deceleration is utilized to
recognize the road surface under the tires. The control scheme
for a single wheel is presented in Fig. 6. The scheme is identical
for each individual wheel. In the State Observation stage, a
wheel slip is calculated using the signals from the available
sensors (e.g. longitudinal deceleration ay: and wheel velocity
®@w). In this regard, tire deformation is estimated using (10) and
(11). Integrated signal from ay: is used for vehicle speed
estimation (8). Finally, applying (7)-(9), A is calculated, which
serves as a first input to the FLCs.

To recognize road surface p*, the peak deceleration value of
the sensor is fixed during the first phase of heavy braking. When
the driver steps on the brake pedal, the ABS is not yet activated
and the EHB operates in the base brake mode. The controller
switches on as soon as the slip value exceeds a fixed threshold.
During this term, the road surface estimation (Fig. 6) is able to
recognize the maximum vehicle body deceleration. Thereafter,
the controller avails itself of the variable for road surface
estimation by mapping its value against the ones in Table L.
During the braking process, p* is reset with a certain frequency.
While the variable is reset, the ABS is turned off allowing
maximum requested braking torque on the wheels. In this
period, a peak ayy is measured again. If the road surface remains
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Fig. 6. Control method block scheme for a single wheel: RB FLC — regenerative braking fuzzy logic controller; FB FLC — friction braking fuzzy logic controller.

unchanged, the same peak ayxis detected as in the previous step.
However, if the road surface changes, the value of u* is updated
according to the road profile. More details on the principle of
the used road recognition technique are explained in [3].

The method of road estimation proved to be very efficient in
combination with fuzzy logic. In this case, it is necessary to
know neither the peak deceleration rates nor the wheel optimal
slips for every possible road surface. As to the limited available
data about the wheel slip curves, computational intelligence
methods based on fuzzy set theory, artificial neural networks,
etc. can be used as an artificial decision making system to
approximate the SUV behavior for varying road surfaces.
Conventional controllers, unlike soft computing methods, are
not suitable for dealing with this type of stochastic and ill-
defined information [5].

For instance, when the peak vehicle body deceleration is
somewhere between wet and damp to any degree of certainty,
it is efficient to hold the optimal slip precisely neither for wet
nor for damp road. The optimal slip ratio, according to the
tendency (Fig. 2) lays somewhere between those two road
surfaces. Fuzzy logic processes this type of vague information
using linguistic reasoning understandable for human. For
example, fuzzy inference may be expressed in the modus
ponens (If premise Then consequence) form as follows: If the
road surface value is between wet and damp and wheel slip
ratio is high for damp road, then decrease torque to obtain
wheel slip ratio between optimal for wet and damp roads. In
this example, a premise part consists of two elements.

In the Fuzzy Control stage, both RB and FB FLCs receive A
and p* as inputs. The regenerative torques or pressure are
generated to keep an optimal slip for each wheel. The FB FLC
also receives information about the requested braking torque
from the electric motor. The FB controller activates the
conventional EHB only if the maximum possible torque of the
SRM (Fig. 5) for a given speed is requested, and the slip value
is lower than its optimal one for a given road (Table I).

Finally, the requested RB torque ngq and FB pressure p;eq
proceed to the electric motor model and the EHB, respectively.
As a result, actual torques from both systems (i.e. Trp and Trs)
are generated. Their sum is a total braking torque 7} (2).

B. Fuzzy Logic Controller

An FLC is composed of four main elements: fuzzification
interface, inference engine, rule base, and defuzzification
interface. It may have multiple inputs and multiple outputs.
FLC takes a numerical value (“crisp”) and transforms it into a
linguistic variable in the fuzzification interface. Using a pre-
defined rule-based (a set of “If-Then” rules), the mapping
between input and output linguistic values is conducted by the
inference engine. Finally, defuzzification interface turns
consequent linguistic output back into its crisp value [5].

1) Fuzzification

The first FLC input is the wheel slip A. It has seven
symmetrically dispersed and overlapping membership
functions (MFs) over the whole universe of discourse (UOD)
with a set of linguistic values {“slip equal to 0 (So); “slip equal
to 3” (S3); “slip equal to 6” (Se); “slip equal to 9 (So); “slip
equal to 12 (Si2); “slip equal to 15” (Sis); “slip equal to 18”
(S18)}. Its UOD is bounded inside [0 18] limit, which provides
the range of values the A can assume.

The second crisp input is the road surface estimate p*. The
input has five symmetrically dispersed and overlapping MFs.

0.17
0.83
0

SO S} 56 S‘) SlZ SlS SIX

p )

#a:

0
0
0
0

p(n*)

n¥*=4.2

Fig. 7. FLC MFs and fuzzification procedure for randomly picked A = 2.45
and p* =4.2: p (L / p*) — degree of certainty of an FLC input.
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Fig. 8. Front wheel RB FLC rule base (Table V) expression as a matrix R.

The set of MF values is {“Zero”; “Icy”;
“Dry”}. The UOD is restricted inside [0 10].
Symmetrical dispersion of the MFs over the UOD is
responsible for equal MFs’ sensitivity. Due to simplicity and
fast response, all the inputs’ MFs have triangular shape. The
UOD limits are chosen based on the information about the plant
(Table I) obtained during the parameterization (Section IIT).

In Fig. 7, a fuzzification process for the designed MFs for the
FLC inputs is presented. The crisp inputs are fuzzified with a
singleton (blue) function. As a result, two arrays a and b are
obtained. Each position of the array corresponds to an
appropriate MF linguistic value, and it contains a rate of its
degree of membership (value between 0 and 1) for a given
input. When the input singleton does not intersect a MF, its
array position value is equal to zero. Thereafter, a dyadic
product of two arrays is calculated resulting in matrix C [36]:

“Wet”; “Damp”;

C=a®b=ab". (16)
2) Rule base and inference mechanism

A rule base captures the expert’s knowledge about how to
control the plant. Because a finite number of input MFs are
designed, there is only a finite number of fuzzy rules. When
there are not more than three inputs, a conventional way to list
all possible sets of linguistic relations is to use a tabular
representation [5].

The output of the RB FLC is the requested torque Tpg". In
total, it has eleven possible values starting from 0 to 200 with
equal step of 20 between each variable. Its fuzzy rule base is
presented in Table II for front and rear wheels. The requested
FB pressure p,°? is limited to 150 bar. Therefore, its consequent
values from 0 to 150 form sixteen output options with a fixed
step of 10 between each other. Input-output mapping of the FB
FLC for front and rear wheels is introduced in Table III. Each
FLC has 35 rules.

All the rule bases were obtained with a trial and error method,
where the main criterion was to keep wheel slip as close as
possible to its optimal rate. A linguistic quantification for one
of the front wheels in regenerative braking may be expressed,

[Nm]

[Nm]

req
RBm
req

RBm

@

* [m/s?] M%)

@

* [m/s”

@

i o

o+ [/s?] A[%]

o+ /s

Fig. 9. FLC three-dimensional surfaces for regenerative braking and friction
braking front (subscript ‘(f)’) and rear wheels (subscript (r)’).

for example, as follows: If wheel “slip equals to 9” and road
surface is “Wet” then request from the SRM regenerative
braking torque equal to “700” Nm.

For inference engine, every rule base is converted into a
matrix R. In our case, every matrix R for each rule base has 7x5
size. In Fig. 8 the transformation for RB front wheels FLC is
shown. The same principle is applied to other rule bases.

Finally, fuzzy inference is done via Hadamard product of two
matrices of the same dimensions: C from the fuzzification
interface, and R from the rule base [36]:

D=CoR. a7
3) Defuzzification

The final element of every FLC is a defuzzification interface,
where a resultative crisp output is obtained. In this step, the
derived matrices C and D are converted into a single number,
which is, thus, supplied in a plant. In this paper, a weighted
average of the matrix elements is found. To this effect, a sum
of elements in matrix D is divided by a sum of the elements in
matrix C. The calculation is shown for the RB requested torque
on the front wheels [36]:

i=1,2,....N
=12,...M,

:N
1;j= 1d1/

M
req
Trp(r) = 32

(18)

N
l:l;]:lclj

where dj; is an element of i" row and j” column of matrix D and
¢ is an element of i row and j column of matrix C.

At last, the nonlinear three-dimensional surfaces for every
FLC are generated (Fig. 9). The surfaces plots represent the
outputs of the FLCs against their own inputs A and p* [5].

TABLEII TABLE III
FLC RULE BASE FOR REGENERATIVE BRAKING FOR FRONT / REAR WHEELS FLC RULE BASE FOR FRICTION BRAKING FOR FRONT / REAR WHEELS
* 2 * 2
Ty [Nm] W misl Py’ [bar] W misl
Zero Icy Wet Damp Dry Zero Icy Wet Damp Dry
So 60 80 160 200/120 200/ 140 So 20 30 60 90/70 150/90
S3 40 60 140 200/ 100 200/ 120 S3 10 20 50 80/50 130/80
A Ss 20 40 120 200/ 60 200/ 100 2 Ss 0 10 30 70/30 110/70
[%] Sy 0 20 100 180 /40 200/ 80 [%] Sy 0 0 10 50/10 90/50
Sz 0 0 60 160/20 200/ 40 Sz 0 0 0 30/0 60/30
Sis 0 0 20 140/0 180/20 Sis 0 0 (] 10/0 30/10
Sis 0 0 0 120/0 160 /0 Sis 0 0 0 0/0 0/0
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Fig. 10. Experimental results from braking on a low-p (1=0.25) road surface
for regenerative braking: (a) vehicle and wheels speeds (b) wheels longitudinal
slips; (c) RB torques; (d) road detection with vehicle body deceleration.

V. HARDWARE-IN-THE-LOOP EXPERIMENTAL RESULTS

A. Low-u Surface Experiment

High-performance ABS is essential on low-p surfaces (e.g.
icy, dry), because on a slippery road the vehicle can very
quickly become uncontrollable [14]. In this subsection, the
results of heavy braking on a low-p road surface (p=0.25) are
presented (Fig. 10, Fig. 11). The vehicle is accelerated to 100
km/h, and then the maximum braking torque is requested. The
experiment is conducted with blended braking control (Fig. 10),
and compared to the conventional FB (Fig. 11). It must be
noticed that the experiment has been conducted with many
different road friction coefficients. In addition, various HIL
tests on changing road surfaces were performed. Nevertheless,
due to paper limitation, only experimental testing results for
low-p road surface are reported here.

1) Regenerative braking

In Fig. 10.a, wheel speeds and vehicle longitudinal velocity
diagrams for RB are plotted. The braking torques are generated
by the electric motors only. Thus, the vehicle decelerates in full
regenerative mode, as the FBs are not applied. Each wheel
rotates almost with the same speed because the optimal wheel
slip ratios are approximately the same for both the front and the
rear wheels, roughly equal to 3 % (Table I). Thanks to its fast
dynamics, the controller is able to maintain the optimal slip
value for each wheel (Fig. 10.b).

In Fig. 10.b, the optimal wheel slip is also depicted as a black
dashed line. Every two seconds peaks in the slip signals are
observable. These are the results of the reset, which is used to
understand whether the road surface is changed or not during
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Fig. 11. Experimental results from braking on a low-p (1=0.25) road surface
for friction braking: (a) vehicle and wheels speeds (b) wheels longitudinal
slips; (c) FB torques; (d) road detection with vehicle body deceleration.

the braking maneuver. As already mentioned, within this time
period, the road surface estimator applies the maximum braking
torque (Fig. 10.c) and concurrently the road recognition is reset
to null (Fig. 10.d). The road recognition strategy was previously
also tested on vehicle stability, and the results have shown no
dramatic impacts on ABS performance [3].

In Fig. 10.c, wheel RB torques are represented. The SRMs
respond very fast allowing precise and smooth control of the
vehicle. Finally, in Fig. 10.d, the vehicle longitudinal
deceleration ays curve is shown along with a road recognition
variable p*, which represents the maximum braking potential.
At the beginning of the heavy braking maneuver (i.c. at around
2 seconds), the controller detects maximum possible
deceleration rate. Thereafter, the FLC addresses this variable to
an appropriate road surface (Table I), whose linguistic value is
“lcy”. As a result, thanks to optimal wheel slip control, a
constant vehicle deceleration is maintained during the whole
braking process. Therefore, high efficiency of a braking process
is deemed with an enabled steerability.

2) Friction braking

In Fig. 11.a, wheels speed and vehicle velocity are presented
for the conventional FB case. In this experiment, the vehicle
decelerates by only applying the FB torques supplied by the
EHB. The difference between RB and FB results is easily
noticeable. The wheel slip tracking of the FB (Fig. 11.b) has
significant lower performance than the RB (Fig. 10.b). This
phenomenon is attributable to the EHB slower dynamics
compared to the SRM model. Indeed, the FLC for the FB was
tuned to optimize the optimal slip tracking performance (Table
I) and avoid controller output oscillation detrimental to the EHB
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Fig. 12. Experimental results from braking on a transient road surface

condition (from high-p (u=1) to low-p (u=0.25)) for regenerative braking: (a)
vehicle and wheels speeds (b) wheels longitudinal slips; (c) RB torques; (d)
FB torques; (e) road detection with vehicle body deceleration.

actuators. Therefore, the FLC FB efficiency is sensibly
decreased.

In Fig. 11.c, the FB torques for each wheel are revealed.
Comparing to RB (Fig. 10.c), HIL system entails a slower but
markedly oscillating dynamics that take a tool on the driving
comfort. Nevertheless, both FLCs are requesting similar torque
values for the front and rear wheels.

In Fig. 11.d, road detection together with vehicle body
deceleration curve are presented. The vehicle deceleration rate
is considerably lower than for the full RB scenario (Fig. 10.¢).
The tracking of a slip value lower than its optimal value still
ensures steerability but to the detriment of the braking force
(Fig. 2), which accordingly leads to efficiency losses [29].

3) Regenerative and friction braking performance comparison

Although the difference between the FLCs’ performance for
RB and FB is clearly visible in Fig. 10 and 11, the main ABS
performance indexes are presented in Table IV. The average
deceleration rate for RB braking is higher comparing to the FB.

TABLE IV
RB AND FB ABS PERFORMANCE BENCHMARKING ON ICE ROAD SURFACE
Mode Mean ay, [m/s?] Sraking [M] ABSjp
RB 2.6033 149.0047 1.2535
FB 2.3611 169.0679 1.1369
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condition (from high-p (u=1) to low-p (u=0.25)) for friction braking: (a)
vehicle and wheels speeds (b) wheels longitudinal slips; (c) FB torques; (d)
road detection with vehicle body deceleration.

Accordingly, the braking distance of the RB is smaller than FB
by almost 20 m, which is a significant result in vehicle safety.

Furthermore, ABS index of performance ABS; is considered
to evaluate the system’s efficiency. The variable is a ratio
between the mean vehicle body decelerations achieved
respectively with enabled controller and with locked wheels
when no ABS control is applied [3]:

afts
ABSIP = W' (19)

B. Varying Road Conditions (From High-u to Low-u)

Despite ABS’s functionality is extremely important on low-
u (i.e. icy, wet) surfaces, the road conditions are rarely
homogeneous. In addition to this, the wheels may be also easily
locked under emergency braking on high-p surfaces, such as
dry or damp asphalt. In this Subsection, the results stemming
from a heavy braking maneuver on changing road surface are
reported. Particularly, the vehicle starts decelerating on a high-
1 (u=1) surface and continues towards low-p (u=0.25). For this
test, the RB requires additional torque from the EHB, as the
torque generated by the SRMs is not enough to reach optimal
wheel slip.

1) Regenerative braking (blended)

In Fig. 12, vehicle braking results in regenerative mode on a
changing road surface are presented. The vehicle decelerates
with higher wheel slip values at the beginning of the maneuver.
Whilst the slip of the rear wheels is close to its optimal value
(Table I), for the front wheels the value is much lower. This
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TABLE V
RB AND FB ABS PERFORMANCE BENCHMARKING ON TRANSIENT SURFACE
Mean ay,  Mean ay,
Mode | on high-u  on low-y S’E;;:']/m . flﬁsﬁ. o:ﬁil/[i
[m/s?] [m/s?] gk B
RB 9.6368 2.4896 66.3462 1.0863 1.1988
FB 8.5675 1.9674 69.2806 1.0776 1.0473

phenomenon is due to the fact that the peak brake torque for the
front wheels exceeds the SRMs Ilimits (Fig. 12.c).
Consequently, the controller activates the FB to supply the
brake torque gap (Fig. 12.d). The slow EHB dynamics
deteriorates the wheel slip tracking performance on the front
wheels causing efficiency losses.

The road estimator successfully detects transient road
conditions (Fig. 12.e). At the beginning, the peak deceleration
is around 10 m/s?, which refers to high-u surface (Table I). After
4 seconds, the vehicle drives on a low-pu road, the control
method resets p* and measures peak ajp; again. As the road
surface has changed, a new value of p* is recognized.
Thereafter, the controller reduces the braking torques (Fig. 12.c,
d) to maintain the wheel slip rates close to their optimal values
for a low-p road surface (Table I).

2) Friction braking

Friction braking performance results are presented in Fig. 13.
The difference in optimal slip control is easily noticeable (Fig.
13.b): the EHB is not able to reach optimal slip for high-p
surface and keeps its value on significantly lower percentage
for all wheels. The road estimation (Fig. 13.d) worked similar
to the RB experiment. However, this time the vehicle
deceleration rate is much lower.

3) Regenerative and friction braking performance comparison

A comparison of the main ABS performance indexes in the
case of transient road surface conditions for regenerative and
friction braking experiments is reported in Table V. Based on
Fig. 12.e and Fig. 13.d, it is worth noticing that the mean vehicle
decelerations in the regenerative mode are higher in comparison
with the FB for both the high-p and low-u phases. As a result,
the controller requires around 3 m shorter distance with electric
motors to bring the vehicle to a full stop. Furthermore, the ABS
index of performance is higher for the RB as compared to the
FB for all changing road conditions tested in this experiment.

VI. CONCLUSION

This research deals with development and testing of an
intelligent FLC-based ABS control method designed for 4WD
electric SUV. In this paper, the functionality of the previously
developed FLC-based control method is tested on HIL platform
at Technische Universitit Ilmenau (Germany). The platform
consists of a real EHB connected to a host PC through the
dSPACE?® electronic platform. The PC runs the IPG CarMaker®
software containing the experimentally validated model of a
full 4WD electric SUV. The HIL system is capable of
reproducing the real pressure dynamics in the brake circuit,
whereas the vehicle dynamics are rendered by a numerical
model. Thus, successful implementation of the proposed
control method in HIL simulation increases its potential
applicability on industrial passenger vehicle.

The data from the brake dynamometric test rig at Technische
Universitit [Imenau were exploited to identify the Ostermeyer’s
model [4] to capture the real behavior of the brake linings
coefficient of friction. The adopted fuzzy inference system,
characterizing the developed approach, is reported in a
dedicated section. Particularly, the control information content
is represented under the form of surfaces plots of the FLC
input/output. The developed controller is provided with a road
surface recognition feature based on the estimation of the
maximum braking potential for a specific road.

Numerous sets of experiments are conducted to test the
functionality of the developed control method against different
road and brake blending scenarios. Presented experimental
results on low-p surface and changing road conditions prove
that the controller is able to track the optimal slip values for
each wheel and recognize the road surface conditions.
Nevertheless, the EHB slower dynamics compared to the SRM
model takes a tool on the controller tracking performance: in
the case of pure conventional FB utilization, the controller
exhibits significant lower performance. The fast dynamics of
the SRM allows an accurate tracking of the optimal wheel slip.

As a result, the mean vehicle decelerations in full RB mode
are higher in comparison with conventional FB for both high-pt
and low-pu surfaces. Furthermore, the ABS index of
performance also proves that the controller in case of full
braking regeneration performs better than in the case of pure FB
utilization. In the future, the FLC-based ABS control method
will be tested on a real SUV with 4WD powertrain in presence
of different road surfaces (i.e. dry and wet asphalt).
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APPENDIX
TABLE A.1
NOMENCLATURE
Symbol * Quantity Unit
ayy Longitudinal acceleration of vehicle m/s’
ABS)p Index of performance of ABS controller -
4, Piston area of caliper m’
Fy Clamping force of brake N

F, Longitudinal force of tire N

F, Lateral force of tire N

F. Vertical force of tire N
F. Normal force of tire at rest N

g Gravitational acceleration m/s?

h, Centre-of-gravity height m

i Phase current of SRM A

Jw Moment of inertia of wheel kg m?

kr Equivalent stiffness of tire N/m

! Wheel base m

I Semi-wheelbase of front m

1 Semi-wheelbase of rear m

L Phase bulk inductance of SRM H

my Mass of vehicle kg
o Line pressure of brake Pa

Iy Effective braking radius m

rw Radius of deformed tire m
Fwo Radius of undeformed tire m

Sbraking Braking distance m

T, Braking torque of wheel Nm

Ta Driving torque of wheel Nm
Trs Friction braking torque Nm
Trs® Regenerative braking torque Nm

Vi Longitudinal velocity of vehicle m/s
Vire Longitudinal velocity of wheel m/s

o Time constant of Wig!

B Change rate vs real contact area of w

v Change rate vs t of p, WK!

d Cooling factor of brake s!

Correlation between brake friction power and e

g KW's

heat generated on the patch

0 Rotor aligned position of SRM rad

A Longitudinal slip of wheel -
Aopt Optimal longitudinal slip of wheel -

" Tire-road adhesion coefficient -

i Lining coefficient of friction of brake -

u* Estimated road surface -

p Normalized longitudinal force -
Gare Noise standard deviation of ay: m/s?
Cow Noise standard deviation of rad/s

T Temperature of brake disk K

T Initial temperature of brake disc K
O Angular speed of wheel rad/s

* Subscript “i” is for each wheel: [front left (FL), front right (FR), rear left

(RL), rear right (RR), f — front, r — rear].
" Superscript ” is a phase number of SRM.

TABLE A.Il
VEHICLE CONFIGURATION
Component Parameters Description

Type Sport utility vehicle
Vehicle overall mass 1963 kg
Fro_nt / rear axle SUSPENSION 5 <00/ 30000 N/m
spring constant stiffness
Fror}t. / rear.ayfle SUSPEnsion  1-35c o/ 10843 6 N/m
stabilizer stiffness
Wheelbase 2.665 m

Vehicle Track width 1.625 m
Centre of gravity height 0.673 m
Drag coefficient 0.35
Frontal surface 2.323 m?
Tire type 235/55R19
Tire model Pacejka’s Magic Formula
Front wheels tire stiffness 2.647-10° N/m
Rear wheels tire stiffness 1.273-10° N/m
Voltage 400 VDC
Peak / nominal power 160 /80 kW
Mass 274 kg

Battery pack Volume 0.235 m’
Cell capacity 15 Ah (6 kWh)
Driving range >40 km

Module type

Operation temperature

12 lithium-titanic ~ oxide
anode cells

0-55°C

Type

Peak torque / power at 800
V (+-10%)

Nominal torque / power at
800 V (+/- 10%)
Maximum speed
Motor inertia
gearbox)

Mass
Dimensions

Electric motor (without

Liquid cooling system

Operation temperature

Switch reluctance

200 Nm / 100 kW (30 sec)

135 Nm /42 kW
15000 min™!
21087 kg mm?

50 kg

495 x 155 x 282 mm
Water 10 I/min, 55 °C max
inlet

-40 -85 °C

Two-stage reducer with

Transmission Type helical gear and half-shaft
(on-board Overall motor-gear ratio 1:10.56
motor) Estimated torsion stiffness
on half-shaft 6500 Nm/rad
TABLE A.III
BRAKE DISK MODEL PARAMETERIZATION
Parameter Value for front wheels Unit
A, 2.5:10° m*
I 0.140 m
o 5.560-10" Wt
B 1.645-10° w
v 1.051-10° WK!
3 3.298-107 s!
€ 3.166-10° KW'g!
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Appendix 2

Table A2.1. Electric sport utility vehicle configuration.

Component | Parameters Description
Type Sport utility vehicle
Vehicle overall mass 1963 kg
Front / rear axle suspension | 25000 /30000 N/m
spring constant stiffness
Front / rear axle suspension | 17326.8 /10843.6 N/m
stabilizer stiffness
Wheelbase 2.665m
Vehicle Track width 1.625m
Centre of gravity height 0.673 m
Drag coefficient 0.35
Frontal surface 2.323 m?
Tire type 235/55 R19
Tire model Pacejka’s Magic Formula

Front wheels tire stiffness

2.647-10° N/m

Rear wheels tire stiffness

1.273-10° N/m

Battery pack

Voltage 400V DC

Peak / nominal power 160/ 80 kW

Mass 274 kg

Volume 0.235m3

Cell capacity 15 Ah (6 kWh)

Driving range > 40 km

Module type 12 lithium—titanic oxide anode
cells

Operation temperature 0-55°C

Type

Switch reluctance

Peak torque / power (30 sec)

200 Nm / 100 kW

Nominal torque / power

135 Nm / 42 kW

Electric Maximum speed 15000 min?!
Motor inertia (without gearbox) | 21087 kg mm?
motor
Mass 50 kg

Dimensions

495 x 155 x 282 mm

Liquid cooling system

Water 10 I/min, 55 °C max inlet

Operation temperature

-40 -85 °C

Transmission

Type

Two-stage reducer with helical
gear and half—shaft

(on—board

Overall motor—gear ratio

1:10.56

motor)

Estimated torsion stiffness on
half-shaft

6500 Nm/rad
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Figure A2.1. Simplified scheme of four on—-board motor powertrain electric vehicle
architecture with control links: CAN BUS — controller area network bus; RB FLC —
regenerative braking fuzzy logic controller; FB FLC — friction braking fuzzy logic controller.
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Figure A2.2. Simplified scheme of on—board motor architecture with control links: RB FLC
— regenerative braking fuzzy logic controller;, FB FLC — friction braking fuzzy logic
controller; avx — longitudinal acceleration of vehicle; ww — angular velocity of wheel; i; —
current of j'" phase of motor; p» — line pressure of brake.
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Figure A2.3. Switched reluctance motor drive torque versus angular speed relation
characteristic in traction and braking modes.
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Appendix 3

Table A3.1. List of the in—vehicle secondary tasks.

In—vehicle secondary task

Volume

Volume regulation

Context selection

Radio

Media

Telephone

Navigation

Radio

Radio station selection from a primary list

Radio station selection from an overall list

©l0 (N[00 & w3

[any
©

Media

Media source selection (e.g. CD, SD—card)

Media item selection

Song shuffle

[y
=

[any
Nt

Telephone

Call a number from a favourite contact list

Call a number from an overall contact list

[any
w

[any
E

[any
u

Navigation

Insert location

Insert next target

Zoom

w——— Driving direction

Figure A3.1. Road shape with segments speed limits.
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