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1 Introduction
In this doctoral thesis, I studied the inverse scattering problem of acoustic and EM wavesinteractingwith flat screens and investigate the singular behavior causedby curved-shapedscatterers.

In antenna theory, the inverse problem of wave scattering for large and thin objects isan important area. This area of study involves determining the characteristics of an objectthrough the analysis of its scattering features. This is beneficial in the analysis of radar andother imaging systems and in the design and optimization of antennas. The study wasinitiated when the Prussian Academy declared an open competition in 1879 to see whocould demonstrate the existence and non-existence of EM waves. In his pioneering work[43] James Clerk Maxwell predicted such kind of wave. In favor of Maxwell’s theory, thiscompetition was won in 1882 by Heinrich Hertz.
This begin by outlining the inverse scattering problem. According to [16] direct scat-tering problem has been inquired and a considerable size of knowledge is obtainable re-garding its solution. Conversely, the inverse scattering problem has only progressed since1980 from a small collection of specific approaches with a strict mathematical base toan area of vigorous activity with a stable mathematical foundation. The inverse scatter-ing problem, as viewed through numerical computations, is inherently nonlinear and hasbeen improperly posed. Despite that, it has significant applications in areas such as radar,sonar, medical imaging, geophysics, and non-destructive testing. Indeed, it is worth not-ing that the inverse problem has acquired a similar interest as the direct problem.
The research in Article I studies the question of whether an acoustic screen can bedetermined by using only one far field measurement. This means we have only one trans-mitter but the scattering field is measured in all directions. Such a measurement is calledpassive. The main result of this article is the mathematically rigorous proof that this istrue for two-dimensional flat screens.
The research applies to issues such as bringing down echo in an office space or direct-ing acoustic vibrations. By resolving the problem of finding a screen that can generate aspecific far-field pattern, the study contributes to the understanding of passive sonars andtheir effect on the sound pattern. The research focuses on the question that the shapeand location of a passive sonar can be determined by its sound reflection. This is a quitedifficult problem. The research showed however that a single input-output pair of soundwaves uniquely specifies the shape of a flat acoustic screen. Specifically, the researchobjective was to demonstrate that flat screens can be uniquely determined by a singleinput-output pair of sound waves.
In literature [16] the shape determination problem is known as Schiffer’s problem.Schiffer proved that a sound-soft obstacle with a non-empty interior can be uniquely de-termined by infinitely many far-field patterns. The proof was published after a privatecommunication in themonograph by Lax and Phillips [36]. Research in this area got signif-icant interest and a very active research community. For the shape determination, and re-sult from a numerical point of view, linear samplingmethod [13] and factorizationmethod[31] were developed, and they are well suited in this area. These methods were appliedin the context of the curved screens in acoustic [4] and electromagnetic scattering [11] todetermine the shape and location of the screen. Colton and Sleeman in [15] reduced therequirements to finitelymany far-field patterns in [16, 28]. It is widely conjectured that theuniqueness of Schiffer’s problem follows from a single far-field pattern. Various authorsshowed in [2, 12, 20, 38, 39, 40, 57], that polyhedral sound-soft obstacles are uniquelydetermined by a single far-field pattern in several setting. Themethod for determining theshape of a flat-screen using a single incident plane-wave was described in [4]. However,
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the proof of this method requires that the incident wave has some non-vanishing prop-erties everywhere on the plane where the screen is located. So far, there is no evidencesupporting the unique determination of an obstacle’s shape by a single far-field patternwithout any restricted a priori assumptions.
Here, I considered the scattering of a two-dimensional sound-soft and flat obstacle Ωin three-dimensional space. It was assumed that Ω is an open subset of {x3 = 0}=R2 ⊂

R3. Defining the direct scattering problem for screenΩ as follows. Given an incident wave
ui satisfying (∆+ k2)ui = 0 in R3 and a screen Ω, the scattering problem has a solution ifthere is us ∈ H1

loc(R3 \Ω) that satisfies the (10), (11), and (12).
Themethods for acoustic waves are based on ideas that are partially motivated by thestudy of certain integral operators [50] on the screen. As in [4] it was first establishedthat the far-field is the restriction to a ball of radius k of the two-dimensional Fouriertransform of a function supported on the screen. Next, I demonstrated that the screen’sdesign precisely supports that function, given that the incident wave might vanish on aportion of the screen. The latter part involves a delicate analysis of Taylor coefficients ofthe scattered wave at the screen, but it ultimately leads to our main theorem: that forincident waves that cause scattering, Schiffer’s problem is uniquely solvable for the flatscreen on any plane in three dimensions.
Furthermore, in my thesis, in Article II I proceed to solve the distinctive identifica-tion of inverse EM scattering in planar screen. I highlighted the shape determination ofa screen of electromagnetic waves with a single measurement. I demonstrated that thefar-field pattern of a scattered electromagnetic field relative to a single incoming planewave uniquely determines a bounded superconductive planar screen. This work is thegeneralization of our previous work [8]. The proof arises from the representation formulafor the exterior solution of Maxwell’s equations. The approach we used is based on theconcepts of certain integral operators [49, 50]. Similar to [8] the important part of ourargument is that the shape of the screen is precisely the support of the jump of the tan-gential component of the scattered magnetic field.
The proof of Schiffer is presented in [36] and it gives the basic uniqueness result forthe case of theDirichlet obstacle problem. Schiffer’s uniqueness theoremneeds scatteringdata from an infinite number of incoming waves. Schiffer’s uniqueness result has a widerange of study in to the behavior of sound soft obstacles subjected to countable numberof incident plane waves [16, 36] in the direction , including [35, 23, 40, 56, 59, 57] theresult of uniqueness in the general domain, [12, 20, 19] for polyhedral scatterers, [37, 41]for ball or disc, [33, 34, 46] and for smooth planer curves.The work has been done on inverse electromagnetic scattering problem In [26] in the TEpolarization case. They demonstrated that the knowledge of the electric far-field patternfor a single incoming wave is suitable to determine the shape of a rectangular penetrablescatterer uniquely. Liu and Zou [42] emphasized in recent progress on the unique deter-mination of general polyhedral scatterers by the far field data corresponding to one orseveral incident fields. For recent results in the time-harmonic inverse EM-scattering seethe short review by Rainer Kress [35].
The Article III in my thesis is the most important part. The motivation for this comesfrom studying the scattering of acoustic waves from a crack in a two-dimensional domain.In this research, incident wave ui satisfying (∆+ k2)ui = 0 in R3 reacts with a screen S.By screen S we mean a n−1 dimensional surface in a n dimensional spaces around, n =
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2 or n = 3. Mathematically I define it as follows:
(∆+ k2)us = 0, R3 \S, (1)

ui(x)+us(x) = 0, x ∈ S, (2)
r
(

∂

∂ r
− ik

)
us = 0, r → ∞, (3)

where r = |x| and the limit is uniform over all directions x̂ = x/r as r → ∞. Our problem iswhether the far-field pattern of us uniquely determines the shape of screen S. Researchof this problem leads to studying the support of a generalized function ρ which satisfiesan integral equation of the form
−
∫

S
Φ(x− y)ρ(y)dσ(y) = ui(x), (4)

where Φ is the Green’s function for ∆ + k2. Notice how it is analogous to (6). As forthe flat scatterers integral equation method can be used. For a more general object, it’sworthwhile to study the singular behavior of solutions to inhomogeneous integral equa-tion [3, 22]. The acoustic equation has yet to be resolved. To start with this research westudy the so-called one-sided Hilbert transform.
H f (x) = p.v

1
π

∫ +∞

0

f (y)
x− y

dy. (5)
Different terminology can be used for this transform semi-infinite Hilbert transform, halfHilbert transform, or the reduced Hilbert transform [30]. Our interest is to understand theexistence, uniqueness and behaviour at the origin of the solution ρ to the inhomogenousequations

H ρ = e (6)
for a given e. The equation (6) has been studied earlier in [17, 48, 53, 54] when e and
ρ are classically smooth or Lebesgue integrable. These sources have a practical point ofview, which focuses on computations or asymptotic expansion.

The scientific novelty of my thesis is explained by the following results.
• Unique determination of the shape of flat screenΩ by inverse scattering of acousticwaves.
• Unique identification of a Planar Screen in EM Inverse Scattering.
• Finding the singular behavior at the origin of solutions to the equation H ρ = e ona half-axis by using the Fourier, Mellin, and Hilbert transform and by explaining theconnections between these three transforms.
The analysis began by addressing the mathematical challenges. Complex plane wavesoffer clarity in many scattering scenarios due to their explicit form and non-zero valuesthroughout space. This often simplifies the nonlinear inverse scattering problem, trans-forming it into a linear inverse source problem with appropriate interpretation. This con-trast can be observed by comparing [9, 55, 27] with [6, 7, 10]. This type of measurementwhere the incident field is unchanged is called passive because we don’t need to changethe transmitter direction. This is relevantwhen onewishes to uniquely determine a screenwhere space contains other scatterers that are known. On the other hand, from the ap-plied perspective, solving the inverse problems has become essential regardless of the
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incident field’s control. This implies that even if we do not have control to manipulate theincident field, or cannot afford to control it, we can still attain the unique determinationof the scatterer’s shape. Similarly, the goal of electromagnetic inverse scattering workis to find a unique determination of supporting hyperplanes corresponding to the singlemeasurement having non-vanishing far-fields.The basic motivation is to understand the singular behavior of the solution
H ρ = e

also in cases where the right-hand side is not smooth, or integrable in the classical sense.Our first step in this study is to understand the singular behavior of waves near the end-points of cracks in the acoustic medium by simplifying the applied problem leads to thestudy of this equation H ρ = e on the half line in a class of generalized functions. Ourapproach is to use the Mellin transform defined for generalized functions
M [ f ](s) =

∫
∞

0
f (t)ts−1dt (7)

It has proven that ρ has a singularity of the form M [e](1/2) 1√
t where M is the Mellin

transform. For this, I am using specially built function spaces M ′(a,b) by Zemanian [32].These spaces enable me to investigate the relationship between the Mellin and Hilberttransform. Here, Fourier transforms also play a significant role. Since theMellin transformis simply the Fourier transform on the locally compact Abelian multiplicative group of thehalf-line.
A more natural way of thinking of these spaces is that u ∈ M ′(a,b) if informally

u(t) = O(t−a), t → 0, (8)
u(t) = O(t−b), t → ∞.

More exactly, u ∈ M ′(a,b) if the Mellin transform M [u](s) is holomorphic in the verticalstrip s ∈ S(a,b) defined by a<ℜ(s)< b and has polynomial growth on vertical lines.
Below I am providing a content overview of my thesis.In Chapter 2 I established the foundational concepts necessary for fundamental infor-mation in the subsequent discussions of Chapters 3 and 4. The initial concepts focus onscreens, direct and inverse scattering problems, the far-field representation of electricand magnetic fields, Maxwell’s equations, and the Silver-Müller radiation condition. Fur-thermore, I discussed some tools that are essential for the analysis of Hilbert, Mellin andFourier transform. We considered Mellin transform in distribution, local compact Abeliangroup, haar measure, test function, and inversion formula for Mellin transform.
In Chapter 3 I analyzed the interesting area of acoustic scattering. A crucial aspect ofour investigation is the solution to the direct scattering problem, which elegantly satisfiesequation (37). In Section 1 I computed the fundamental solution of theHelmholtz equationand radiating boundary condition which captures the scattered wave at point x outside ofthe screen. The far-field representation, derived from Equation (37), assumes that ρ is afunction. However, to expand the applicability of our findings, I extended the concept of ρto be a generalized function in the Sobolev spaces H − 1

2 (R
2). The uniqueness theoremis essential that shows that the scattering caused by flat screens determines the shapeuniquely as long as ui is not antisymmetric concerning R2 × 0. In Section 2 I introducedthe formulation of the inverse problem, where I showed that a single farfield determines
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the shape of the screen uniquely. Moreover, I showed that the shape of screen containedin support of ρ provides insight how scattered wave behaves in the area of the screen.Additionally, in Section 3 of this chapter, I studied EM scattering solutions outside ofthe planner screen. I presented a brief overview of a perfectly conducting screen. Therepresentation theorem has been discussed. Some important propositions and lemmasfor far-field patterns and layer potential in Sobolev spaces have been considered. I alsoexplained how our function belongs to the relevant Sobolev spaces. Integral equationsand representation formulas for scattered fields have been introduced. In Section 4 I an-alyzed that the far-field pattern of scattered electromagnetic waves uniquely determinesthe shape of the screen corresponding to the single incoming waves. In Section 5 solu-tion of the inverse problem is demonstrated. I formulated the proposition for the uniquedetermination of the planner screen. Moreover, I discussed some lemmas: about unique-ness when supporting hyperplane is known.
Chapter 4 explores the essential properties, applications, and connections of Fourier,Hilbert, and Mellin transforms on a half-line. The Mellin transform is established as aFourier transform in an LCA group (R+,

dt
t ). Furthermore, the Chapter examines the re-lationship between the Hilbert transform and the Mellin transform. Various properties ofthese transforms are studied, which demonstrates their significance. An important aspectof this chapter is to find unique solutions to the equation H ρ = e on a half-line, with aparticular focus on the singular behavior at 0. It explores mathematical techniques andformulations to characterize and understand the singular properties of the solution ρ atthis critical point and shows that the main asymptotic is of the form ct−1/2.
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2 Preliminary Concepts
2.0.1 Scattering theoryScattering theory is a branch of physics that deals with the results of an inhomogeneousmedium having incident waves or particles. Classical scattering theory addresses two ba-sic problems.Scattering of time-harmonic acoustic or EM waves with inhomogeneous medium charac-terized by compact support and with impenetrable bounded obstacles. Here we are con-sidering the case of acoustic waves, the incident field is assumed to be a time-harmonicplane wave. i.e

ui(x, t) = ei(kx·d−ωt) (9)
where k = ω/c0 the wave number, ω the frequency, c0 the speed of sound, and d isdirection of propagation.
2.0.2 Direct and inverse scattering problemAccording to [16] the total field of scattered wave is the sum of the incident field ui andscattered field us, then the direct scattering problem is to determine us with the knowl-edge of ui and differential equation conducting the wave motion. In contrast, the Inversescattering problem is to determine the shape of the scatterer with the knowledge of theasymptotic behavior of us.
2.0.3 Definition of the screenWe call a set Ω ⊂ R3 a screen, if Ω = Ω0 ×{0} for some simply connected boundeddomain Ω0 ⊂ R2 whose boundary is smooth, and which we call its shape.
2.0.4 Direct scattering problem for the screen ΩThe direct scattering problem for screen Ω can be defined as follows.Given an incidentwave ui satisfying (∆+k2)ui = 0 inR3. The direct scattering problemhasa solution in distributional function if there is us ∈ H1

loc(R3 \Ω) that satisfies the followingconditions.
(∆+ k2)us = 0, R3 \Ω, (10)
ui(x)+us(x) = 0, x ∈ Ω, (11)
r
(

∂

∂ r
− ik

)
us = 0, r → ∞, (12)

where r = |x|, and the limit is uniform across all directions with x̂ = x/r ∈ R2 as r → ∞.
2.0.5 Scattering from a sound-soft screenThemathematical description of the scattering of time-harmonic waves by screenΩ leadsto boundary-value problems of the Helmholtz equation. Prescribing the values of u on theboundary of the Ω (i.e., the Dirichlet problem) physically corresponds to prescribing thepressure of the acoustic. If ui is the incoming acoustic wave, then the total wave is theform of u = ui +us where us denotes the scattered wave. For a sound-soft obstacle, thetotal pressure must vanish on the boundary. In this case, us =−ui on the boundary.
2.0.6 Sobolev spacesSobolev spaces are a family of function spaces, that play a significant role in the theory ofpartial differential equations and related areas of mathematics. They were introduced by
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Sergei Sobolev in the 1930s as a way to study the regularity of solutions to certain types ofpartial differential equations. Weak derivatives are the basis of the general definition ofSobolev spaces. [21] defines certain function spaces, whose members have weak deriva-tives of various orders lying in various Lp spaces. Mathematically, it can be representedas:
W k,p(Ω)

where Ω is domain in Rn, 1 ≤ p ≤ ∞ is a positive real number representing the integrabil-ity of the weak derivatives, and k is nonnegative integer consists of all locally summablefunctions u : Ω → R such that for each multi-index α with |a| ≤ k, Dα u exist in the weaksense and belongs to Lp(U). The norm inW k,p(Ω) is given by:

|u|W k,p(Ω) =

(
∑

|α|≤k

∫

Ω

|∂ α u|pdx

)1/p

where α is a multi-index with |α|= k, ∂ α is the corresponding weak derivative oper-ator, and dx denotes the Lebesgue measure in Rn.
2.0.7 Traces of Sobolev spaces
For evaluating functions at the boundary ∂Ω of the domain, I need to define traces ofspaces. [21] describes ∂Ω to a function u ∈W 1,p(Ω) assuming that ∂Ω isC1. The function
u has value on ∂Ω in usual sense if u ∈C(Ω). I use trace operator denoted by u|∂Ω whenthe function u ∈ W 1,p(Ω) is not general continuous. Sobolev trace theorem follows bytrace operator.I define here a bounded linear operator T assuming that Ω is bounded and ∂Ω t isC1.

T : W I,p(Ω)→ Lp(∂Ω)

such that
1. If u ∈W I,p(Ω)∩C(Ω), then Tu = u|∂Ω.
2. For every u ∈W I,p the inequality ||Tu||Lp(∂Ω) ≤C||u||W I,p(Ω),

where the constantC depends only on p and Ω. Here u is the function space and T is theoperator.
2.0.8 Far-field patterns
Far-field pattern is also called scattering amplitude. According to [16] if us satisfy the Som-merfeld radiation condition (12) and the Helmholtz equation (∆+ k2)us = 0, We say that
u∞

s is the far-field of us if
us(x) =

eik|x|

|x|

(
u∞

s (x̂)+O

(
1
|x|

))
, |x| → ∞ (13)

uniformly across all direction x̂ = x/|x| .This equation expresses how the solution us(x) behaves as you move to points at an infi-nite distance from the source.
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2.0.9 Time Harmonic Maxwell’s equation in the exterior of screen
curlE − ikH = 0, curlH + ikE = 0 in R3 \D, (14)

E(x) =
i
k

curlcurl peikx·d +Es(x), H(x) =
i
k

curlcurl peikx·d +Hs(x). (15)
Equation (14) represents Maxwell’s equations, which are fundamental in describing elec-tromagnetic phenomena. Equation (15), on the other hand, represents the combined ef-fect of both the incoming wave eikx·d and the scattered wave, where vector d indicatesthe direction of wave propagation, and p denote the polarization of the waves.
2.0.10 Ck screenACk-screen, k = 1,2....∞ is a compact, connected submanifold of a two-dimensional hy-perplane in three-dimensional spaceR3. The termCk indicates that the screen is smoothup to kth derivatives, meaning that it is differentiable up to order k in its local coordinatescharts. The supporting hyperplane is called the affine hyperplane of the screen.
2.0.11 Perfectly conducting screenThe direct scattering problem for the perfectly conducting screen S is a specific electro-magnetic scattering problem where the screen S is assumed to be a perfectly conductingsurface. This means that the total electric field vanishes on the screen. Mathematically itcan be written as

ν × (Es +E0) = 0 on S. (16)
The symbol ν represents the outward unit normal vector to the boundary ∂D.
2.0.12 Silver–Müller–radiation conditionsIn the context of Maxwell equations, a solution E,H [16] whose domain contains the ex-terior of some sphere, is termed as a "radiating solution" if its fulfills one of the Silver–Müller–radiation conditions. These conditions are designed to ensure that the solutionbehaves like outgoing waves as the distance from the sphere tends to infinity.

lim
r→∞

(H × x− rE) = 0 or (17)
lim
r→∞

(E × x− rH) = 0. (18)
In both cases, r = |x| represents the magnitude of position vector. These limits are ex-pected to be uniform across all directions x/|x|.
2.0.13 EM-Plane Waves with Directional Propagation and Polarization VariationsThe provided equations define EM-plane waves. These are special types of electromag-netic waves characterized by specific propagation directions θ and polarizations direction
p×q.

E(θ ; p,q) = µ
1/2(p×θ)eik⟨θ ,x⟩, H(θ ; p,q) = ε

1/2(q×θ)eik⟨θ ,x⟩

. The expressions E(θ ; p,q) and H(θ ; p,q) represent the electric and magnetic fields ofthese EM plane waves, respectively.It is apparent that these fields satisfy the time-harmonic Maxwell’s equation
∇×E(θ ; p,q) = iωµ H(θ ; p,q), ∇×H(θ ; p,q) =−iωε E(θ ; p,q).

Here, ε is the electric permittivity, and µ is the magnetic permeability.
18



2.0.14 Far–field pattern of electric and magnetic field
According to the [16], every solution to the Maxwell equations involving radiating fielddenoted by E,H exhibits a characteristic asymptotic behavior.For every |x| → ∞, the expression E(x) and H(x) is given by

E(x) =
eik|x|

|x| {E∞(x̂)+O
(

1
|x|

)
}

H(x) =
eik|x|

|x| {H∞(x̂)+O
(

1
|x|

)
}

(19)

uniform across all directions x̂ = x
|x| , where vector field E∞ and H∞ are the electric far

field and magnetic far field pattern on the unit sphere S2 .
2.0.15 Hilbert transform
[51] define the classical Hilbert transform as follows:Consider the function defined on the real line, then Hilbert transform of f is function
H f (x) is defined by following formula

H f (x) =
1
π

p.v
∫

∞

−∞

f (t)
x− t

dt (20)
= lim

ε→0+

1
π

(∫ x−ε

∞

+
∫

∞

x+ε

)
f (t)
x− t

dt

provided that the limit exists.In addition, I define the half-line Hilbert transform. Other terminology for this trans-form are the reduced Hilbert transform, the half Hilbert transform and the semi-Hilberttransform [[30] section12.7].
H f (x) =

1
π

p.v.
∫

∞

0

f (t)
x− t

dt.

Correspondingly, the connection of the Hilbert transform to the Fourier transform F iswell-known.
F (H f )(ξ ) = isgnξ f̂ (ξ ) (21)

where f̂ = F f , for more explanation see [30, 61, 60].
2.0.16 Mellin transform
Finnish mathematician R. H. Mellin (1854-1933) was the first who introduce the Mellintransform and presented a systematic expression of the transformation along its corre-sponding inverse. During his work, he established the applications to the solution of thehypergeometric, and differential equations, as well as in the derivation of asymptotic ex-pansions with the effect of special functions theory.I can define it as follows:According to [5], consider a function denoted by f (t) defined on the positive real axis
0 < t < ∞. The Mellin transform denoted as M is the operation that maps the function
f into another function denoted by F defined on the complex plane as follows:

M [ f ;s] = F(s) =
∫

∞

0
f (t)ts−1dt. (22)
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The function F(s) is defined as the Mellin transform of f . In general the integral definingMellin transform is valid only for complex values specifically for s = a+ ib where a1 < a<
a2. The values of a1 and a2 depend on the function f (t) to transform. This introduces,what is known as the "strip definition" of Mellin transform represented as S(a1,a2). Insome situations, this strip may extend to a half-plane such as (a1 = 0; or a2 = +∞) oreven to the whole complex s-plane as in the case (a1 =−∞; or a2 = ∞).
2.0.17 Local compact abelian group(LCA) and Haar measure
Let G = (X , ·) be an LCA group, having group operation multiplication. Usually, The groupoperation is denoted by by addition [58] and the identity element is 0. Since our interestis multiplicative group G+ = (R+, ·). Here the group operation is denoted by product andthe identity element is 1. There exists a Haar measure m defined on X which is unchangedunder the group action. This measure has property m(xE) = m(E) for all x ∈ X and Borelset E. The uniqueness of the Haar measures is up to a positive constant. In the specificcase G+ = (R+, ·), the Haar measure is dt/t. Mathematically it can be written as

m(E) =
∫

E

dt
t

(23)
for any borel set (R+).The Haar measure m on G is also used to define function spaces such as Lp(G). Wepresent by Lp(G) instead of Lp(m).

∥ f∥Lp(G) =

(∫

X
| f (x)|pdm(x)

)1/p

. (24)
The norm ∥ f∥Lp(G) is shown to be scaling invariant, illustrated through an example with
G+.If fx(y) = f (yx−1) then ∥ fx∥Lp(G) = ∥ f∥Lp(G).

In particular for G+ we have ft(s) = f (s/t) and
∫

R+

| ft(s)|p
ds
s

=
∫

R+

| f (s)|p ds
s
. (25)

2.0.18 Fourier transform
Fourier transform is an integral transform of a function of time f (t), in to function of fre-quency g(x). [45] describes the notation and terminology of Fourier transform as follows:

g(x) = Fx(t) =
∫ +∞

−∞

f (t)e−2πxtdt (26)
where F denotes the Fourier transformation, and Fx(t) denotes the Fourier transformof f . We also define

F−1
t g(x) =

∫ +∞

−∞

g(x)e2πxtdx (27)
where the notation F−1

t denotes the inverse Fourier transformation. F−1
t g(x) is calledthe inverse Fourier transform of g(x).
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2.0.19 Fourier transforms in a locally compact Abelian groupSuppose G = (X , ·) is a LCA and a function γ : X →C is called a character if |γ(x)|= 1 forall x ∈ X and γ(xy) = γ(x)γ(y) for every x,y ∈ X .
γ(xy) = γ(x)γ(y) (28)

for every x,y ∈ X . Here character G is homomorphism from G → T where T is rotationgroup in a unit circle in a complex plane. The set of characters on LCA is denoted by Γ.
(γ1γ2)(x) = γ1(x)γ2(x) (29)

for x ∈ X . Γ is dual group of G. The Fourier transform of a function f ∈ L1(G) is definedas
f̂ (γ) =

∫

X
f (x)γ(−x)dx (30)

for γ ∈ Γ.
2.0.20 Test function on Ma1,a2The space M a1,a2 where a1 < a2 contains smooth functions φ : R+→ C satisfying, forevery k ∈ N. Here |φ |a1,a2,k < ∞. The norm is defined as

∥φ∥a1,a2,k = sup
0<t<∞

ζa1,a2(t)t
k+1
∣∣∣∣

dk

dtk φ(t)
∣∣∣∣, (31)

ζa1,a2(t) =

{
t−a1 , 0< x ≤ 1,
t−a2 , 1< x< ∞.

(32)
A sequence (φ j)

∞
j=1 ⊂ Ma1,a2 converges to φ ∈ Ma1,a2 if

∥∥φ j −φ
∥∥

a1,a2,k
→ 0 (33)

as j → ∞ for each k = 0,1,2, . . ..For a1 < a2 (real or ±∞), M(a1,a2) is defined. A function φ belongs to M(a1,a2) if
φ ∈ Ma,b for some a1 < a < b < a2. Convergence of a sequence (φ j)

∞
j=1 ⊂ M(a1,a2) isspecified through its tail converging to φ in a fixed space Ma,b with a1 < a< b< a2.

2.0.21 Convolution in LCA groupThe convolution of f ∈ L1(G) and g ∈ Lp(G), where 1 ≤ p< ∞, is defined as
( f ∗g)(x) =

∫
∞

−∞

f (xy−1)g(y)dy,

and the convolution theorem
(̂ f ∗g)(γ) = f̂ (γ) · ĝ(γ)

holds in any locally compact Abelian group G.
2.0.22 Strip of holomorphicity in Mellin transformWhen we say M f has strip of holomorphicity S (or S f ) we mean that

S = {s ∈ C | a1 <ℜ(s)< a2} (34)
for some a1 < a2 and M f is holomorphic on S. If f ∈ M ′(a1,a2) with S as above, wewrite f ∈ M ′

S or f ∈ M ′
S f
. Also, given a1,a2 ∈ R∪{−∞,+∞}, we denote
S(a1,a2) = {s ∈ C | a1 <ℜ(s)< a2}. (35)
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2.0.23 Inversion formula for Mellin transformIf F : S(a1,a2)→ C is holomorphic and satisfies |F(s)| ≤ K|s|−2 for some finite constant
K, and we set

f (t) =
1

2πi

∫
σ+i∞

σ−i∞
F(s)t−s ds, (36)

for a fixed σ ∈ (a1,a2), then f : R+ →C is continuous, does not depend on the choice of
σ and is in M ′(a1,a2). Furthermore M f = F on S(a1,a2).

22



3 Scattering Analysis of Acoustic and Electromagnetic Wave
I begin this chapter with some discussion and results of inverse acoustic and EM waves.The direct scattering problem is a fundamental aspect of scattering theory. Here I amrecalling that the direct scattering problem gives knowledge about the boundary of thescatterer and the nature of the imposed boundary condition. Through this problem, wedetermine the scatteredwave and behavior of the scatteredwave at large distanceswhichwe call far field. The inverse problem begins with the query of the direct problem. Theknowledge of the far field pattern and nature of the scatterer is determined by the inverseproblem.

The scattering of waves/or particles is a universal phenomenon that has a variety ofapplications across many scientific disciplines. Particularly, the scattering of plane wavesfrom spheres is the simplest situation [1] to studymathematically and it is quite an old sub-ject, however, it has an extremely enriched field. This field is still developing and has a va-riety of connections in many applied areas, such as seismology, optics, imaging, acoustics,quantum mechanics, nuclear physics, and many more. The practitioner of this study hasenabled us to discover much more worldwide, especially in direct and inverse problems.However, It is safe to say that, whatever we hear and see irrespectively, is a consequenceof acoustic and EM scattering from various objects.
The problem of inverse scattering with reduced measurement has gained a lot of in-terest lately. The motivation for the study of wave scattering comes from antenna theory.Our aim is to derive general principles for antenna structures instead of relying upon tra-ditional antenna structures having frequency independent features. To know about theshape of the antenna’s design inverse scattering problem strategy we use to solve theinput-output pair of waves. In acoustics scattering surface or screen is considered as sonarwhich is different from formal antennas. Depending on the sonar role they are categorizedas active or passive which behaves like a sound source or receiver. The study focuses onacoustic scattering from screens, lying between active and passive sonars. More appro-priately, we call these sonars as passive sonars as they don’t have an energy source butthey are active in the sense of a sound source which is more significant.
I am considering here a two-dimensional sound soft screen in three-dimensional spacei.eΩ⊂R3. The study of acoustic wave leads to the partial differential Helmholtz equation

(∇+k2)u= 0, k is thewave numberwhich is equal to ω

c , whereω is the angular frequencyand c is the speed of sound. In the context of a sound soft screen, the total pressurevanishes at the boundary of the screen. The total wave is expressed as the combinationof incident wave and scattered wave.
After an acoustic scattering discussion, I extended our result for a planar screen of timeharmonic EMwaves. According to analysis of acoustic scattering, I began formulationwiththe idea of the direct scattering problem. Screen is perfectly conducting Ck–screen, k =

1, ...,∞, in R3 is a compact, connected Ck–submanifold of an affine hyperplane L ⊂ R3.Similarly, the scattering of EM waves by planer screen leads to the study of Maxwell’sequations. This generalizes the scalar result of the Helmholtz equation. In EM inversescattering themain study reflected here is to determine the planar screen by using a singlefar field. This means that we have one fixed transmitter wave and the resulting scatteredfield is measured for all directions in the far field. We show that the far field of a scatteredEM field corresponding to a single incoming plane wave always uniquely determines abounded super-conductive planar screen.
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3.0.1 Solution of Direct Scattering Problem
The solution to the direct scattering problem is formulated by the Helmholtz equation andSommerfeld radiation condition. The scattered field us is denoted by an integral equationinvolving the potential function anddistribution paring definedon screen. Mathematicallywe can write as

us(x) =
∫

R2
Φ(x,y0)ρ(y′)dy′ (37)

for all x ∈R3 \Ω, where ρ(y′) is defined by the difference between the third derivative ofthe scattered field on the positive and negative sides of the screen. i.e
ρ(y′) = ∂3u+s (y

0)−∂3u−s (y
0). (38)

Here, it can be seen that distribution ρ(y′) is an element of H̃−1/2(Ω0). By taking thetrace x → Ω in (37) and considering that the total field at the boundary of the screen iszero (11) i.e us =−ui on Ω the sense of traces.
ui(x) =−

∫

R2
Φ(x,y0)ρ(y′)dy′. (39)

The potential solution of us belongs to localized in R3 \Ω. The direct problem can besolved if and only id ρ has a solution in H̃−1/2(Ω0). If I elobrate more, I can say that forgiven ρ in integral equation, I can define usby (37). This was shown in Theorem 2.5 in [62].Theorem 2.7 in the same source, proves that (39) has a unique solution ρ ∈ H̃−1/2(Ω0)given any ui ∈ H1/2(Ω0).
3.0.2 Fundamentals solution for the Helmholtz equation and radiating boundary con-

ditions
Φ(x,y) is the fundamental solution of the Helmholtz equation in three-dimensional space
R3 with a givenwave number k. It connects the behavior of a functionϕ within a boundeddomain D to its behavior on the boundary ∂D.LetD⊂R3 be a bounded domainwhose boundary is piecewise of classC1 and k ∈R+.Here,

Φ(x,y) =
eik|x−y|

4π|x− y| (40)
for x,y ∈ R3, x ̸= y. Then for any ϕ ∈C2(D) and x ∈ R3 \∂D we have

∫

D
Φ(x,y)(∆+ k2)ϕ(y)dy =

∫

∂D

(
Φ(x,y)∂ν ϕ(y)−ϕ(y)∂ν Φ(x,y)

)
ds(y)

(41)
This equation holds for a point x with both inside and outside of D having appropriateboundary conditions.On building upon these formulations, the next step in our analysis focuses on character-izing solutions that satisfy both the Helmholtz equation and the Sommerfeld radiationcondition.Let us belong to the local Sobolev-spaces such that

us ∈ H1
loc(R3 \Ω).If (∆+ k2)us = 0 in R3 \Ω and it satisfies the Sommerfeld radiation condition, then thefollowing representation arises
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us(x) =
∫

R2
Φ(x,y0)(∂3u+s −∂3u−s )(y

0)dy′ (42)
This representation effectively captures the behavior of the solution us at a point x outsidethe screen Ω. Here, (∂3u+s −∂3u−s )(y

0) denotes a function that contains the difference innormal derivatives of us at the point y0 on the screen. Importantly, this function is part ofthe space H̃−1/2(Ω0).
3.0.3 Asymptotic convergence of the fundamental solutionAsymptotic convergence which highlights our focus on the behavior of solutions to theHelmholtz equation as they propagate away from their sources.Here K ⊂ R3 is a nonempty compact set and positive constant k then the following ex-pression tends to zero as limr→∞. Mathematically expression as follows:

lim
r→∞

sup
|x|=r

sup
y∈K

|x|
∣∣∣∣∣∂

α
y

(
eik|x−y|

|x− y| −
eik|x|

|x| e−ikx̂·y
)∣∣∣∣∣= 0

for any multi-index α ∈ N3 with |α| ≤ 1. Recall that x̂ = x/|x|.The proof of this expression involves differentiation rules and convergence is illustrate formulti-indices with |α| ≤ 1This can be proven by splitting the terms in the above expression and showing their uni-formly individual convergence to zero. I used the differentiation rules for ∇y and estimatethe fundamental solution. The results of these terms uniformly go to zero as r → ∞. Theresults hold for both |α| = 0, and |α| = 1, and establish the desired asymptotic conver-gence.
3.0.4 Far-Field Representation of Scattered Waves on ScreensConsiderΩ⊂R3 is a screen and our scattered field us satisfy the direct scattering problemhaving an incident field ui on screen Ω. Then u∞

s (x̂) is the far field of scattered field isdenoted by following expression
u∞

s (x̂) =
1

4π

〈(
∂3u+s −∂3u−

)
(y0),e−ikx̂·y0

〉
y′

(43)
where x̂ represent point on the unit sphere.If the normal derivative of the scattered field is integrable over the screen, then the aboveexpression is equivalent to the following integral formulation

u∞
s (x̂) =

1
4π

∫

R2
e−ikx̂·y0(

∂3u+s −∂3u−
)
(y0)dy′.

I can start its proof by definition 2.0.8 of far-field representation, which states that thedifference between far-field u∞
s (x̂) and involving certain expression us(x).The primary step involves applying Lemma 3.0.3, which ensures that certain termsin the representation tend to zero uniformly. This relies on the convergence of specificfunctions in the restricted to any compact set

u∞
s (x̂) = lim

|x|→∞

|x|e−ik|x|〈
ρ(y′),Φ(x,y0)

〉
y′

should the limit exists. The distribution pairing is over y′ ∈ R2, We can rewrite
|x|e−ik|x|〈

ρ(y′),Φ(x,y0)
〉
=

〈
ρ(y′), |x|e−ik|x|

Φ(x,y0)− e−ikx̂·y0

4π

〉

y′
+

1
4π

〈
ρ(y′),e−ikx̂·y0〉

y′ .
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I can write theC1-test function in the first pairing on the right as
|x|e−ik|x|

Φ(x,y0)− e−ikx̂·y0

4π
=

e−ik|x||x|
4π

(
eik|x−y0|
|x− y0| −

eik|x|

|x| e−ikx̂·y0

)

which converge to zero in theC1 topology over y′, and a fortiori y0, restricted to any com-pact set by 3.0.3. Note that the C1-seminorms are taken with respect to the y′-variable,and the absolute value makes the e−ik|x| that doesn’t appear in the lemma disappear.Hence the application of the lemma is allowed. Elements of H̃−1/2(Ω0) acts well on C1

functions, so the distribution pairing with ρ and the test function tends to zero. Thus
lim
|x|→∞

|x|e−ik|x|〈
ρ(y′),Φ(x,y0)

〉
y′ =

1
4π

〈
ρ(y′),e−ikx̂·y0

〉
y′

as claimed.
3.0.5 Uniqueness of the scattered waves on screens
We have considered two screens Ω,Ω̃ ⊂ R3 and k ∈ R+. The incident wave ui and us, ũsbe scattered waves that satisfy the direct scattering problem for screens on Ω,Ω̃, respec-tively.

Here two conditions arise.If ui is not antisymmetric with respect to R2 ×{0} and u∞
s = ũ∞

s , then Ω = Ω̃. If ui is anti-symmetric then u∞
s = ũ∞

s = 0 for any screens Ω,Ω̃.For more explanation I am using as a reference Theorem 3.0.4 and Lemma 3.1.When incident wave ui is not antisymmetric with respect to R2 ×{0} then it leads to theequality of ρ = ρ̃ when far field scattered wave u∞
s and ũ∞

s are equal.This can be expressed by the relationship
Ω0 = suppρ = supp ρ̃ = Ω̃0

by Lemma 3.2. Because Ω0 is a smooth domain, we have Ω0 = intΩ0, and similarly for
Ω̃0. Thus the equation above implies Ω0 = Ω̃0 and by lifting, Ω = Ω̃.If incident wave ui antisymmetric it necessitates that ui = 0 everywhere on R2 ×{0}and as a result us = 0 satisfies all conditions of the direct scattering problem. Due touniqueness solutions to the direct scattering problem established by (2.0.4) are uniqueby [62, Thms 2.5–2.7], this is the only solution that is us = ũs = 0 and the same holds fortheir far-fields. Note that this result is independent of the shape of Ω,Ω̃ ⊂ R2.
3.1 The inverse scattering problem for screens
The solution to the inverse problem, determining a screen Ω from the knowledge of a sin-gle incident wave ui, and the corresponding far-field u∞

s scattered wave from the screencontains two steps: The first step determines the density function ρ from the far field andthen determines the screen from ρ . There is an interesting observation that the problemis only solvable for the screen if incident waves ui are not antisymmetric. One can see thatonly antisymmetric is not a deciding factor, whether ui is identically zero rather than anti-symmetry. If ui is zero on a non-empty open subsetR2 ×{0} then it implies the followingsymmetry property.
ui(x′,x3) =−ui(x′,−x3)
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for all x ∈ R3. It is interesting to see that partial invisibility is achieved inside thickenedscreens as long as the incident plane wave comes from a direction almost parallel to thescreen’s normal [18]. The direction of incident waves seems very important in scatteringfrom objects that are thin in one direction.
3.1.1 Formulation of inverse problem
I am going to solve the context of the inverse problem by following lemma. The lemmaestablishes the relationship between the far-field scattered wave u∞

s (x̂) and ρ in two di-mensions.
Lemma 3.1 Let k ∈ R+ and ρ ∈ E ′(R2) be a distribution of compact support,

u∞
s (x̂) =

1
4π

〈
ρ,e−ikx̂·y0

〉
. (44)

Here, x̂∈S2 belongs to the unit sphere, and the distribution pairing in variable y′=(y1,y2)∈
R2. This uniquely determines ρ by u∞

s . It establishes a direct connection between the far-
field scattered wave and the distribution of compact support, enabling the unique deter-
mination of ρ based on the observed far-field behavior.

Proof 1 The proof begins that the operatormappingρ 7→ u∞
s is boundedand linearE ′(R2)→

C0(S2). This is because x̂ 7→
(
y′ 7→ exp(−ikx̂ · y0)

)
is continuous S2 → E (R2).

So it is enough to show that if u∞
s = 0 then ρ = 0.

Let us assume the former and suppose that u∞
s = 0. Similar formula as in (44), if u∞

s = 0
we have

ρ̂(ξ ′) =
1

2π

〈
ρ,e−iξ ′·y′

〉

where the distribution pairing is over the variable y′ ∈ R2.
Rewriting the expression involving kx̂ · y, the proof derives following expression

u∞
s (x̂) =

1
2

ρ̂(kx̂1,kx̂2). (45)
The proof shows that if u∞

s is zero for all x̂ ∈ S2, this implies ρ̂(ξ ′) = 0 for all |ξ ′| ≤ k.
Utilizing the fact that ρ̂ can be extended to an entire function on C2, and it vanish on an
open subset of R2. From this we conclude that ρ̂ must be zero, which implies that u∞

s = 0
and hence ρ = 0.

Below is presented a lemma exploring a significant connection between the behaviorof scattered waves and the shape of a screen in the context of wave scattering.
Lemma 3.2 Consider a Helmholtz equation (∆+ k2)ui = 0 in R3. Let Ω ⊂ R3 be a screen
and us satisfy the direct scattering problem Denote

ρ(x′) = ∂3u+s (x
0)−∂3u−s (x

0)

for x′ ∈ R2. If ui(x′,x3) ̸=−ui(x′,−x3) for some x ∈ R3 then

Ω0 = suppρ (46)
for the shape Ω0 of the screen Ω.
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3.2 Solution to the Maxwell’s equations in R3/S
A system of Maxwell’s equations is considered

∇× e = iωµ h (47)
∇×h =−iωε e in R3 \S

and it satisfies the Silver–Müller–radiation condition
r̂× e+

√
ε

µ
h = o(|x|−1) (48)

r̂×h−
√

µ

ε
e = o(|x|−1).

As |x| → ∞, where r̂ = x
|x| > 0.

Then, for all x in R3:

e(x) = ∇×
∫

S
Φ(x− y)(ν ×{e+(y)− e−(y)})ds(y)

− 1
iωε

(∇×)2
∫

S
Φ(x− y)(ν ×{h+(y)−h−(y)})ds(y) (49)

h(x) = ∇×
∫

S
Φ(x− y)(ν ×{h+(y)−h−(y)})ds(y)

+
1

iωµ
(∇×)2

∫

S
Φ(x− y)(ν ×{e+(y)− e−(y)})ds(y) (50)

The proof involves constructing collar neighborhoods δ > 0. Let Oδ = {x± tν(x); x ∈
S, 0 ≤ t < δ} be a collar neighbourhood of the scattering surface S, and applying standardrepresentation formulas [14]. For small δ ,Oδ is a boundedpiecewise analytic domain. Theoutgoing fundamental solution Φ of the Helmholtz operator ∆+ k2 and the exterior unitnormal νδ of ∂Oδ are used.By utilizing the standard representation formulas, fields e and h can be represented out-sideOδ in terms of ∂Oδ . The expression converge to the corresponding integral as δ → 0over the surface S.
3.2.1 Exploring Sobolev–spaces in EM scattering
In the given context, a space of functions denoted as L2

loc(R3 \S) [47, 24] is considered.This space consists of measurable functions defined on R3 \ S, and these functions arerequired to be square integrable on compact subsets of R3 \ S. This becomes equippedwith semi–norms
∥ f∥R = ∥ f∥L2(R3\S)∩BR(0)), R> R0,

where R0 is so large that S ⊂ BR0(0).Next, its defined the curl and divergence operators in the square-integrable functionspace:
L2loc, curl(R3 \S) = {u ∈ L2loc(R3 \S); ∇×u ∈ L2loc(R3 \S)},
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L2loc, div(R3 \S) = {u ∈ L2loc(R3 \S); ∇ ·u ∈ L2loc(R3 \S)},
with seminorms we defines as

∥ f∥R,curl = (∥ f∥2
R +∥∇× f∥2

R)
1/2, ∥ f∥R,div = (∥ f∥2

R +∥∇ · f∥2
R)

1/2.

These seminorms are used to quantify the "size" or "magnitude" of the functions inthese spaces, constructed based on the L2 norms of the functions themselves and thenorms of their curl and divergence.In this definition of electromagnetic phenomena on a surface denoted as S, we focuson specific functions that possess H−1/2 regularity. These functions align with the sur-face’s curvature and have a certain level of smoothness. We quantify their properties byequipping the space of these tangential H−1/2 fields on S with a norm that reflects theirsize and behavior on the surface.
T H−1/2(S) = {u ∈ H−1/2(S)3;⟨ν ,u⟩= 0}

Here, the concept of surface divergence becomes significant. To extend this notion,
I introduced the space T H−1/2

Div (S) comprising functions from T H−1/2(S) that satisfies acondition involving their surface divergence.
T H−1/2

Div (S) = {u ∈ T H−1/2(S);Div(u) ∈ H−1/2(S)}

and equip it with the Hilbert–norm defined by
∥u∥2

T H−1/2
Div (S)

= ∥u∥2
T H−1/2(S)+

∥∥Div(u)2∥∥
H−1/2(S).

3.2.2 Layer potentials in Sobolev–spacesVarious layer potential operators associatedwith the electromagnetic field are introducedand defined within the context of Sobolev spaces. For x belonging to the complement of
S in R3 and u inC∞

0 (S)
3, I define the single-layer potential of u as follows:

VR3\S(u)(x) =
∫

S
Φ(x− y)u(y),ds(y)

where φ is a fundamental solution of the vector Helmholtz equation.I also introduce the electromagnetic layer operators: KR3\S, NR3\S

KR3\S(u)(x) = ∇×VR3\S(u)(x),

and
NR3\S(u)(x) = (∇×)2VR3\S(u)(x).

3.2.3 Extension and Radiation Conditions for Electromagnetic Potentials on bounded
domainsAssuming that the surface S can be extended to a well-defined boundary ∂U where Urepresents a bounded domain with C2 characteristics. A link has established betweensurface properties and electromagnetic behavior. The concept of the single-layer potential

VR3\S which describes the interaction of a vector field with a surface, can be extendedto yield a meaningful mapping. This extension takes place within distributional spaces,particularly the H−1/2(S) space.
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VR3\S : H−1/2(S)→ H1
loc(R3 \S)

andVR3\S(u) satisfies the Sommerfeld–radiation condition.
Additionally, the electromagnetic layer operators KR3\S, NR3\S which originate fromthe single layer potential, also undergo extensions.

KR3\S, NR3\S : ˙T H−1/2
Div (S)→ L2

loc,curl(R3 \S)

Importantly, these operators on functions belonging to the space T H−1/2
Div (S)which takesthe tangential traces of vector fields on the surface S. When these electromagnetic layer

operators are applied to functions u within T H−1/2
Div (S), the resulting electromagneticfields satisfy the Sommerfeld–radiation conditions.

3.2.4 Representation theorem for Electromagnetic Solutions on screens
A proposition states the representation of electromagnetic solutions in the context ofscreens. A screen S in three-dimensional space is considered with aC1 smoothness con-dition. Assuming the pairs (e,h) ∈ L2

loc,curl(R3 \ S)×L2
loc,curl(R3 \ S) and satisfy a set ofMaxwell’s equations involving the curl operator, a specific radiation condition known asthe Silver-Müller condition.

Proposition 3.3 Let S⊂R3 be aC1–screen. Assume (e,h)∈ L2
loc,curl(R3\S)×L2

loc,curl(R3\
S) solves

∇× e = iωµ h, ∇×h =−iωε e in R3 \S,

and the Silver–Müller–radiation condition

r̂× e+
√

ε

µ
h = o(|x|−1), r̂×h−

√
µ

ε
e = o(|x|−1), as |x| → ∞, r̂ = x/|x|> 0.

If ν × [e], ν × [h] ∈ T H−1/2
Div (S), then in R3 \S,

e = KR3\S(ν × [e])− 1
iωε

NR3\S(ν × [h]),

and
h = KR3\S(ν × [h])+

1
iωµ

NR3\S(ν × [e]).

Here ν is the specified unit normal of S. □

3.2.5 Representation Formulas for the Scattered Field
In the following, the proposition is presented into the argument of electromagnetic scat-tering phenomena by considering a perfectly conducting C2-screen. In this scenario, thescattered fields (Esc,Hsc) associated with the (E0,H0) are explored. Specifically, thesescattered fields belong to the spaces of L2

loc,curl(R3 \S)×L2
loc,curl(R3 \S).

Proposition 3.4 Let S be a perfectly conductingC2–screen, and let

(Esc,Hsc) ∈ L2
loc,curl(R3 \S)×L2

loc,curl(R3 \S)
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be the scattered field corresponding to an incoming field (E0,H0). Then in R3 \S one has

Esc =− 1
iωε

NR3\S(ν × [Hsc])

and
Hsc = KR3\S(ν × [Hsc]).

These fields have the following asymptotic behaviour as |x| → ∞:

Esc(x) =−x̂×
(

x̂× eik|x|

4πiωε|x|
∫

S
e−ik⟨x̂,y⟩(ν × [Hsc])(y)ds(y)

)
+O(|x|−2),

Hsc(x) = x̂× eik|x|

4πiωµ|x|
∫

S
e−ik⟨x̂,y⟩(ν × [Hsc])(y)ds(y)+O(|x|−2),

where x̂ = x/|x|, x ̸= 0.

3.3 Inverse problem for EM scattering by screens
This section determines unique aspectswhen the supporting hyperplane is predetermined.This holds for planar screens, where the uniqueness of the tangential density in the far-field pattern is explained by a key lemma. This lemma highlights the uniqueness of thetangential distribution, offering valuable insights into electromagnetic scattering.
Lemma 3.5 Consider a ρ signifies a tangential distributional density defined on a hyper-
plane L. ρ∞(x̂) defined for each x̂ within the unit sphere S2.

ρ
∞(x̂) = x̂×⟨ρ,exp{−ik⟨x̂, ·⟩}⟩, x̂ ∈ S2.

Then the map ρ 7→ ρ∞ is injective.

Proof 2 The proof begins by selecting suitable coordinates to define the hyperplane L as
{x; x3 = 0}. Introducing a distributional density ρ on L, represented as ρ = adσ , where
a = (a1,a2) ∈ E ′(R2) and dσ is the surface measure on the hyperplane L. Then ρ∞ = 0 is
equivalent with

ξ × (â1(ξ
′), â2(ξ

′),0) = 0, ξ = (ξ ′,(k2 −|ξ ′|2)1/2), |ξ ′|< k,

and hence â1 and â2 vanish in the unit ball of R2 and since they are entire functions they
are identically zero.

3.4 Unique Determination of a Planar Screen
Proposition 3.6 The unique determination of the supporting hyperplane from the far-field
behavior of a single scattering solution is established. Assume S1 and S2 are two planar
screens contained in supporting hyperplanes π1 and π2 respectively. Assume u1 = (e1,h2)
and u2 = (e2,h2) scattering solutions for the screens S1 and S2 corresponding to the same
initial field and having equal non–vanishing far fields. Then π1 = π2.

Proof 3 The proof revolves around understanding the behavior of scattered waves in re-
lation to the determination of supporting hyperplanes. Beginning with the jumps across
screens S1 and S2 denoted by ρ1 and ρ2 respectively. These jumps capture the discontinu-
ities in the cross products ν1 ×h1 and ν2 ×h2, where νi represent the unit normal across
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Si. Since u1 and u2 have equal far fields and R3 \ (S1 ∪ S2) is connected, we must have
u1 = u2 there. Hence both fields must be smooth across (S1 ∪S2)\ (S1 ∩S2) i.e both den-
sities ρ1 and ρ2 are supported in the intersection S1 ∩S2. If the planes π1 and π2 intersect
transversally, the jumps are supported on a codimension 2 subspace, and since they be-
long ṪH−1/2

(S1 ∪S2) they must vanis in [25]. If the intersection is transversal so also the
far fields vanish.
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4 The role of Mellin, Fourier, and Hilbert transform in scatter-
ing

This chapter is about the connection of Mellin, Fourier, and Hilbert transform on the half-axis. The study analysis how sound waves behave and present peculiar characteristicsnear precise geometric features like cracks or screens. Such type of consideration playsan important role in understanding the irregularities or discontinuities in the propaga-tion of acoustic waves. This type of study has potential applications in materials science,structural engineering, and medical imaging.
Mellin transform plays an important role in the asymptotic expansion of the theory ofspecial function. It plays a significant character in the singular behavior of the solution ofthe equation H ρ = e where the right-hand side might not be smooth or integrable inthe classical sense. The integral of Mellin transform exists only for complex value func-tions specifically, s = a+ ib where a1 < a < a2. The value of a1 and a2 depends on thefunction f (t). We initiate our problem with the help of Mellin transform for generalizedfunction. For function spaces we follow the approach of [64] where they allow us to builda relationship between Mellin and Hilbert transform. In an intuitive sense, the function ubelongs to the space M ′(a1,a2) class of distributions where a1,a2 ∈ R, and its behaviorsatisfies certain growth conditions (8). The Mellin transform M [u](s) these distributionswill be functions that are holomorphic on a vertical strip in the complex plane and alsopolynomially bounded as the imaginary part of the argument grows.
After studying and establishing the connection between the Mellin and Hilbert trans-form on the positive real axis, we begin to review some facts about Fourier transforms onlocally compact Abelian groups. Particularly, the discussion focuses that in the case of themultiplicative group (R+.)̇Mellin transform is exactly the Fourier transform in LCA.

4.0.1 Illustrations of the Fourier transform in different structures
1. For G = (R,+) and character are given

γξ (x) = eixξ

is a character and by denoting γξ simply by ξ , the Fourier transform is exprssed as:
f̂ (ξ ) =

∫
∞

0
f (x)e−ixξ dx.

ξ ∈ R. This implies that the dual group of (R,+) is (R,+) itself.
2. If G = T , the dual group is (Z,+) and the Fourier transform is given by

f̂ (n) =
1

2π

∫ 2π

0
f (eiθ )e−inθ dθ .

3. By Pontryagin Duality Theorem states that the dual group of Z is T and the Fouriertransform in this context is given by
f̂ (eix) =

∫
∞

n=−∞

f (n)einx.

.
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4.0.2 Mellin transform is a Fourier transform in R+·The content describes the Mellin transform as a Fourier transform in the multiplicativegroup on R+. The dual group of G+ is identified as the additive imaginary axis of thecomplex plane. To find Fourier transform in the group G+ = (R+, ·) we need to find itsdual space Γ. For z = ix, x ∈ R, define
γz(t) = tz = t ix, t ∈ R+. (51)

Clearly, this is a character in G+ since
γz(ts) = (ts)ix = t ixsix

for s, t ∈ R+.I can see in ([58], Section 2.2) that there are no other characters. Hence we can inter-pret that the dual group of G+ is the additive imaginary axis of the complex plane and theFourier transform is given by
f̂ (z) =

∫
∞

0
tz f (t)

dt
t

(52)
for f ∈ L1(G+) and z ∈ iR. But this is exactly the definition of the Mellin transform [44,63], whenever the right-hand side is integrable. Thus we have shown that the Mellintransform is nothing else than the Fourier transform in the multiplicative group on R+.
4.0.3 The connection of Mellin transform with Hilbert transformThe connection of Mellin transform with Hilbert transform is represented by the formula

H f (t) = p.v.
∫

∞

0

1
1− t/s

f (s)
ds
s

= h∨ f (t) (53)
where h = p.v. 1

1−t and ∨ stands for the Mellin convolution is (R+, ·).The convolution theorem suggests that (53) implies that the Mellin transform of H fis
MH f (z) = ĥ(z) f̂ (z) = cot(πz) f̂ (z) (54)

where ̂ is the Fourier transform on the LCA (R+, ·), or in other words, the Mellin trans-form. The second equality follows from Example 8.24.II in [52],
p.v.

∫
∞

0
tz 1

1− t
dt
t
= π cot(πz). (55)

4.1 Space of Mellin transform in distributions
In this section, I define a class of distributions on the positive real axis which we callMellin transformable distribution. These distributions are denoted by M ′(a1,a2) where
a1,a2 ∈ R. The Mellin transform of these distributions will be holomorphic functions ona vertical strip in the complex plane and polynomially bounded as the imaginary part ofthe argument grows. To construct this class, spaces of ordinary smooth test functionson D(R+) is defined, which is compactly supported and also functions of the form ts−1

for some complex numbers s. The dual of these spaces become the Mellin transform ofa class of distributions. There is precise detail in both [64] and [5] related to all thesedistributions.
Herewehave longer discussion aboutMellin transformon spaceof distributions, whichshows that M (a1,a2), a1 < a2 are non-trivial. As a consequence of the following, we see
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that the linear functionals that we are building are in fact distributionsD ′(R+). It is worthnoting that they allow exponential growth, so cannot be interpreted as tempered distribu-tions. The result of Mellin transform distribution is represented by following two points.
• Let a1,a2 be real numbers and s ∈ C. Let φ(t) = ts−1 for t > 0. Then φ ∈ Ma1,a2if and only if a1 ≤ ℜ(s) ≤ a2. As a consequence φ ∈ M (a1,a2) if and only if a1 <

ℜ(s)< a2.
• LetD(R+) be the space of compactly supported smooth test functions onR+ withthe usual topology. Then D(R+)⊂ M (a1,a2) continuously for any a1 < a2 real orinfinite. The inclusion is dense.

4.1.1 Mellin transform for distributionsBefore definingMellin transform for distribution I am recalling some formulations of mea-surable function φ ∈ M (a1,a2) and fu : R+ → C,
⟨u,φ⟩=

∫
∞

0
fu(t)φ(t)dt, φ ∈ M (a1,a2). (56)

Recalling that the Mellin transform of a measurable function f : R+ → C is given by
M f (s) = f̃ (s) =

∫
∞

0
f (t)ts−1 dt (57)

for that s ∈C for which the integral converges in the sense of Lebesgue. Inspired by thesetwo observations I define theMellin transform of distributions Let a1,a2 ∈ {−∞,+∞}∪Rwith a1 < a2 and let u ∈ M ′(a1,a2). Then the Mellin transform of u is
M u(s) = ũ(s) = ⟨u, ts−1⟩ (58)

for s ∈ C, a1 <ℜ(s)< a2.
4.2 The Hilbert transform
The following subsection discusses theMellin transform of the Hilbert transform distribu-tion. Mellin transform of the distribution

⟨H,φ⟩= 1
π

lim
ε→0+

(∫ 1−ε

0
+
∫

∞

1+ε

)
φ(t)
1− t

dt, (59)
where in the principal value sense iH = π−1/(1− t) is almost the kernel of the Hilberttransform of a function vanishing on R− .

H f (x) =
1
π

p.v.
∫

∞

0

f (y)
x− y

dt. (60)
By changing the variables y = x/t, dy =−xdt/t2 in (60) we get the following:

H f (x) =− 1
π

p.v.
∫

∞

0

1
1− t

f
(x

t

) dt
t
=−(H ∨ f )(x). (61)

where ∨ can be defined as
( f ∨g)(τ) =

∫
∞

0
f (t)g

(
τ

t

) dt
t
, τ > 0 (62)

if f and g are integrable functions and otherwise
⟨ f ∨g,θ⟩= ⟨ f ,ψ⟩, ψ(t) = ⟨g,θt⟩ (63)

for θ ∈ M (a1,a2), t > 0 and θt(τ) = θ(tτ).
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4.2.1 Distribution of 1/(1− t) belong to M ′(0,1)The distribution 1/(1− t) in the principal value sense belongs to M ′(0,1). Moreover, itcan be written as
〈

1
1− t

,φ

〉
=

(∫ 1/2

0
+
∫

∞

3/2

)
φ(t)
1− t

dt −
∫ 3/2

1/2

φ(t)−φ(1)
t −1

dt (64)
where 1/(1− t) is interpreted as a pointwise function on the right-hand side. Lastly, thereis a finiteC such that |⟨1/(1− t),φ⟩| ≤C(∥φ∥0,1,0 +∥φ∥0,1,1).

I analyze here how distributions will satisfy their results. Let us denote u = 1/(1−
t), and the proof demonstrates that the distribution pairing ⟨u,φ⟩ ∈ C is well-definedon the complex number for φ ∈ M (0,1) where M (0,1) is space of test function withcertain smoothness properties. Suppose a function h(t) which is used for simplifying theexpression, where h(t) = 1 for 1/2< t < 3/2 and h(t) = 0 otherwise. The limit of integralsinvolving a test function φ and cut off function h(t) is represented as:

⟨u,φ⟩= lim
ε→0

(∫ 1−ε

0
+
∫

∞

1+ε

)(
φ(t)−φ(1)h(t)

1− t
+

φ(1)h(t)
1− t

)
dt (65)

with s = 2− t.
The representation involves a combination of integrals over different intervals andterms related to the smoothness of φ is employed to simplify the expression. The useof the secant function ensures the continuity of integrand.

(∫ 1−ε

0
+
∫

∞

1+ε

)
φ(t)−φ(1)h(t)

1− t
dt =

(∫ 1/2

0
+
∫

∞

3/2

)
φ(t)
1− t

dt (66)
+

(∫ 1−ε

1/2
+
∫ 3/2

1+ε

)
φ(t)−φ(1)

1− t
dt.

The first integrand is continuous on (0,1/2)∪ (3/2,∞) because the secant function en-sures the continuity of integrand. It is also integrable since
∫ 1/2

0

∣∣∣∣
φ(t)
1− t

∣∣∣∣dt +
∫

∞

3/2

∣∣∣∣
φ(t)
1− t

∣∣∣∣dt < ∞

. We can establish the continuity of the distribution pairing by considering the limit of thedistribution pairing for a sequence of test functions converging to zero, as
∣∣⟨u,φ j⟩

∣∣≤C
(∥∥φ j

∥∥
a,b,0 +

∥∥φ j
∥∥

a,b,1

)
→ 0

and continuity is proven. The linearity property is trivial. Hence u ∈ M ′(0,1). Theseresults shows that the distribution u = 1/(1− t) behaves pretty well within the wide classof test functions and making it a valid element of the distribution space M ′(0,1) whenprincipal value pairings are considered.
4.2.2 Mellin transform of [1/(1− t)](s) = π cot(πs)We have M [1/(1− t)](s) = π cot(πs) in the principal value sense for 0 < ℜ(s)< 1. Thedistribution is in M (0,1). We need to calculate

p.v.
∫

∞

0

ts−1

1− t
dt. (67)

Refer to Example 8.24.II in [52], especially pages 219–220 for the calculations.
36



4.3 Mellin transform of the Hilbert transform:
I established the Hilbert transform for both test functions and distributions. The princi-pal value integrals satisfy that the Hilbert transform is well-defined for a wider class ofdistributions and functions.For a test function f ∈ D(R+), the Hilbert transform can be expressed as involvingthe Cauchy Principle value

H f (x) = p.v.
1
π

∫
∞

0

f (y)
x− y

dy =
1
π

∫
∞

0

f (x/t)
1− t

dt
t
. (68)

If we have distribution u ∈M ′(a,b)with 0 ≤ a< b ≤ 1, it is an element ofM ′(a,b) thenHilbert transform is defined as
H u =−H ∨u

with
⟨H,φ⟩= p.v.

1
π

∫
∞

0

φ(t)
1− t

dt (69)
⟨H ∨u,θ⟩= ⟨H,ψ⟩, ψ(t) = ⟨u,θt⟩, θt(s) = θ(ts) (70)

for θ ∈ M (a,b). Here,
M [ f ∨g](s) = M f (s)M g(s), a1 < R(s)< a2 (71)

Lastly, if u is distribution M ′(a,b) with 0 ≤ a< b, then Millen transform of H u is repre-sented by the equation
M [H u](s) =−cot(πs)M [u](s) (72)

for a<ℜ(s)< b.
4.4 Inhomogenous Hilbert transform on a half-line
In this section, I will prove that the solution ρ to the equation

H ρ = e, R+ (73)
has a blow-up singularity at x = 0 when e is general but in a suitable function space. Inthis section, the inhomogeneous Hilbert transform on a half-line is investigated and estab-lished a significant result regarding the behavior of the solution to the equationH ρ = e.Through rigorous proof, we demonstrate that the blow-up singularity occurs for a gen-eral e within the appropriate function space. This result holds significant implications forpractical applications and theoretical analysis, as it sheds light on the behavior of the in-homogeneous Hilbert transform in specific settings.
4.4.1 Mellin transform at 1/2
Here it discusses the Mellin transform at the point M [e](1/2) = 0. Suppose that e ∈
M ′(a,b), ρ ∈M ′(α,β ) belong to certain function spaces where 0 ≤ a ≤ α < β ≤ b ≤ 1.It also assumes the validity of an equation (73) within M ′(α,β ) By applying the Mellintransform of (73) and using properties from the previous result 4.3 we have

−cot(πs)M [ρ](s) = M [e](s)
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A specific case where 1/2 lies within the interval (α,β ). If this is true thenM [e](1/2) and
M [ρ](1/2) are well defined complex numbers. Since Mellin transform of−cot(π/2) = 0. The equation simplifies that M [e](1/2) = 0. The implies result concludes that Mellintransform of the distribution e at s = 1/2 is zero.

The solution to equation H ρ = e in suitable function spaces. Two cases arise here.
• Case 1 : Unique solution exist when M [e](1/2) = 0.

• Case 2: Two solution exist M [e](1/2) ̸= 0.
By employing the Mellin transform inversion formula and certain estimates for the func-tion F(s) = − tan(πs)M e. The behavior of F(s) and M e in different vertical strips al-lows the conclusion of existence and representation of solutions for the inhomogeneousHilbert transform on a half-line.
4.4.2 Existence of solution
Lemma 4.1 Let e ∈ M ′(a,b) for some 0 ≤ a< b ≤ 1. If

a< b ≤ 1/2, or 1/2 ≤ a< b, or M [e](1/2) = 0

then there is ρ ∈ M ′(a,b) satisfying H ρ = e. Furthermore, for any α,β ,c with a< α <
c< β < b for this ρ it holds that

ρ(t) =
−1
2πi

(−t d/dt)m+2
∫ c+i∞

c−i∞
s−m−2 tan(πs)M [e](s)t−sds (74)

in M ′(α,β ). Here m ∈ N can be any number for which there is a polynomial P of degree
m such that |M [e](s)| ≤ P(|x|) on S(α,β ).

In the case where

a< 1/2< b, and M [e](1/2) ̸= 0

there are no solutions in anyM ′(α,β )withα < 1/2< β . Instead there isρ− ∈M ′(a,1/2)
and ρ+ ∈ M ′(1/2,b) such that H ρ± = e in M ′(a,1/2) and M ′(1/2,b), respectively.
They satisfy

ρ−(t) =
−1
2πi

(−t d/dt)m+2
∫ c−+i∞

c−−i∞
s−m−2 tan(πs)M [e](s)t−sds, (75)

ρ+(t) =
−1
2πi

(−t d/dt)m+2
∫ c++i∞

c+−i∞
s−m−2 tan(πs)M [e](s)t−sds (76)

inM ′(α−,β−) andM ′(α+,β+), respectively, for any a<α−< c−< β−< 1/2 and 1/2<
α+ < c+ < β+ < b. Here m ∈ N can be any number for which there is a polynomial P of
degree m such that |M [e](s)| ≤ P(|x|) on S(α−,β+).
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4.4.3 Unique solutionIf two distributions, denoted as ρ1 and ρ2 belongs to the space of tempered distributions
M ′(a,b) and the sameHilbert transform, i.e.,H ρ1 =H ρ2, then they are identical same.Uniqueness can be shown by taking Mellin transform of the equation and using the Prop-erties of the Hilbert transform This leads to the expression

−cot(πs)M [ρ1](s) =−cot(πs)M [ρ2](s)

for s ∈ S(a,b). When s ̸= 1/2 we can divide by the cotangent and get
M [ρ1](s) = M [ρ2](s)

Since the difference of the Mellin transforms is holomorphic in the strip (a,b), the twodistributions are equal throughout this region.The properties of the Mellin transform are referred to conclude that
ρ1 = ρ2 in M ′(a,b)

4.4.4 Cauchy Integral applications in distribution theoryCauchy Integral plays an important role in understanding the behavior of these distribu-tions in the context of integral transforms. It provides a mathematical tool to expressdistributions in terms of integrals involving a holomorphic function with certain growthconditions.Let us suppose 0<α < 1/2< β < 1 and f : S(α,β )→Cbe holomorphicwith | f (s)| ≤
Csm for some m ∈ N. For α < c− < 1/2< c+ < β define

ρ̄−(t) =
−1
2πi

∫ c−+i∞

c−−i∞
s−m−2 tan(πs) f (s)t−sds,

ρ̄+(t) =
−1
2πi

∫ c++i∞

c+−i∞
s−m−2 tan(πs) f (s)t−sds.

Then
ρ̄+(t) =

2m+2

π
f ( 1

2 )t
−1/2 + ρ̄−(t) (77)

for all t ∈ R+. The function f is holomorphic in the strip S(α,β ), and shows controlledgrowth, precisely | f (s)| ≤ Csm, where C is a constant and m is a natural number. Theintegrands in ρ+,ρ− are holomorphic in S(a,b)\{1/2}. Since f is holomorphic in S(a,b).The estimates for the tangent function of imply that
|tan(πs)| ≤Cc+

when ℜs = c+. This is because c+ is fixed and away from half-integers, and the estimatefor f in the assumptions give
∣∣s−m−2 tan(πs) f (s)

∣∣≤ K|s|−2 (78)
for ℜs = c+. Since |s|−2 is integrable on {c++ it | t ∈ R} we get

ρ̄+(t) = lim
M→∞

−1
2πi

∫ c++iM

c+−iM
s−m−2 tan(πs) f (s)t−sds. (79)

The integrals over specific paths play an important role in the analysis, particularlyin the calculation of integrals and residues. They are used to design a counterclockwise
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rectangle with the point s = 1
2 in the interior. The integrand in (79) is holormorphic ina neighbourhood of this rectangle as long as the neighbourhood is small enough to notreach s = 1/2.





P+− = c+− iM
P++ = c++ iM
P−+ = c−+ iM
P−− = c−− iM





γ+−(r) = (1− r)P+−+ rP++

γ++(r) = (1− r)P+++ rP−+

γ−+(r) = (1− r)P−++ rP−−
γ−−(r) = (1− r)P−−+ rP+−

(80)

By Cauchy’s residue theorem
−1
2πi

(∫

γ+−
+
∫

γ++

+
∫

γ−+

+
∫

γ−−

)
It(s)ds =−Res(It ,1/2). (81)

Now let us consider the behavior of Integrand on horizontal path γ++(r),γ−−(r). Theestimates for integration are given by
|It(s)|=

∣∣s−m−2 tan(πs) f (s)t−s∣∣≤Ct−aM−2

As M approaches infinity and the term M−2 diminishes, concluding that the integrandsvanish in the limit.Now let us investigate what happens when it goes to vertical path.The integral over γ+− multiplied by the constant in front of it in 81 equals ρ̄+(t), aswe saw above in 79 when we passed the integral limits to infinity. Lastly, just as at thebeginning of this proof, we can let M → ∞ in the integral over γ−+ and get−ρ̄−(t).
4.5 Solution of H ρ = e
In the context of equation H ρ = e, where H represents the Hilbert transform. Beforestarting the theorems, it’s necessary to clarify the notation used in these spaces. Thespaces under consideration are denoted by u ∈ M ′(a,b) if informally

u(t) = O(t−a), t → 0,

u(t) = O(t−b), t → ∞.

A more exact understanding of these spaces u ∈ M ′(a,b) involves the Mellin transform
M [u](s)which is expected to be holomorphic in the vertical strip s ∈ S(a,b) is defined by
a<ℜ(s)< b and has polynomial growth on vertical lines.Following theorems are presented that are related to the solution of an equation in-volving a linear operator H acting on a function ρ resulting in a prescribed function e.These theorems characterize a solution’s uniqueness, existence, and properties to a par-ticular partial differential equation.
Theorem 4.2 Let e ∈ M ′(a,b) with 0 ≤ a < b ≤ 1. If b ≤ 1/2 or 1/2 ≤ a or a < 1/2 < b
and M [e](1/2) = 0 the equation

H ρ = e

has a unique solution ρ = ρ0 ∈ M ′(a,b). Furthermore if ρ ′ ∈ M ′(a′,b′) is another solu-
tion with S(a′,b′)⊂ S(a,b) then ρ ′ = ρ0 in M ′(a′,b′).

The above theorem shows that equation H ρ = e has a unique solution if e satisfies cer-tain conditions regarding to Mellin transform at s = 1/2, particularlyM [e](1/2) = 0. Theexistence result is followed by 4.4.2.
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Theorem 4.3 Let e∈M ′(a,b)with 0≤ a< 1/2< b≤ 1 andM [e](1/2) ̸= 0. ThenH ρ =
e has no solutions with 1/2 ∈ Sρ . Instead there are unique solutions ρ− ∈M ′(a,1/2) and
ρ+ ∈ M ′(1/2,b) and they satisfy

ρ+(t)−ρ−(t) =
4
π

M [e](1/2)
1√
t
. (82)

Furthermore if ρ ′ ∈ M ′(a′,b′) is another solution with S(a′,b′) intersecting S(a,1/2) or
S(1/2,b) then ρ ′ = ρ− or ρ ′ = ρ+ in M ′(a′,b′), respectively.

Proof 4 (Proof of Theorem 4.3) The existence andnon-existence follow fromLemma4.4.2.
Uniqueness is given by Lemma 4.4.3. All that’s left to prove is the identity (82). The exis-
tence lemma gives us formulas for ρ− and ρ+ in the form of (75) and (76). These are just
(−td/dt)m applied to the integrals in Section 4.4.4 with f (s) = M [e](s). Thus

ρ+(t)−ρ−(t) =
2m+2

π
M [e](1/2)

(
−t

d
dt

)m 1√
t
.

But t−1/2 is an eigenfunction of (−td/dt), since

(−td/dt)t−1/2 =−t · (−1/2)t−1/2−1 = 2−1t−1/2.

Hence (−td/dt)mt−1/2 = 2−mt−1/2 and the resul follows.

The Equation (82) shows thatρ+ has a singularity of type t−1/2 unless theMellin transformof e vanishes at s = 1/2. This suggests that acoustically scattered waves frommost cracksor screens will have a singularity at their ends. However, if
e(t) =

{
ei
√

t , 0 ≤ t ≤ (2π)2,

0, t > (2π)2,

it turns out that M [e](1/2) = 0.
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5 Conclusion
In this thesis, I considered the inverse scattering problem to determine the shape of aflat screen by using the Acoustic and EM waves and examining the singular behavior ofscattered fields near the boundary of the scatterer. I explained the scattering analysis ofAcoustic and EMwaves in Chapter 3. Moreover, I described the curve shape scatterer’s sin-gularity containing equation H ρ = e by using the important integral transforms methodin Chapter 4. The contents of the Chapters are based on the papers which are provided inthe appendix.

In the introduction, I provided an overview of my research which consists of threearticles. The study contributes to our understanding of passive sonars and their effect onsound patterns. The research focuses on the question that the shape and location of apassive sonar can be resolved by its sound reflection. This is quite a difficult problem,and I resolved that a single input-output pair of sound waves can specify the shape ofboth acoustic and EM flat screens. The motivation for studying the singularity of wavescomes from analyzing the scattering of acoustic waves from a crack or screen in a two-dimensional domain.
In Chapter 2, I provided the definitions and discussed fundamental concepts essen-tial for understanding the subsequent chapters. These concepts include addressing thedirect scattering problem from screens and explaining the role of sound-soft screens inscattering phenomena. I defined some generalized functions that are helpful in the studyof the scattered fields. I explored fundamental concepts such as Maxwell’s equations, Sil-ver Muller’s radiation conditions, and the characterization of electric-magnetic far-fieldpatterns in electromagnetic (EM) scattering problems. In addition, I introduced wave sin-gularity concepts on the half-line and outlined the framework of the Mellin transform,establishing its connection with Hilbert and Fourier transforms. I provided a definition oftest function spaces and corresponding dual spaces of distributions. These spaces play animportant role in understanding how the convolution andMellin transformwork together.
Wave scattering with reduced measurement has recently become a topic of consid-erable interest. In Chapter 3, I explored the significance of a single far-field pattern indetermining the characteristics of a screen using just one pair of input and output waves.The shape determining problem is known as Schiffer’s problem, as Schiffer introducedthis kind of inverse scattering problem and proved that sound-soft obstacles can be de-termined with many far-field patterns. My work in this Chapter shows that given the far-field caused by any single incident wave scattering off a smooth flat-screen. I consideredthe two-dimensional sound soft flat screen Ω in three-dimensional space. Acoustic wavesscattered by Ω lead to the study of the Helmholtz equation. A direct scattering problemhas a solution with a scattered field belonging to some function spaces. The fundamen-tal solution for the Helmholtz equation and radiating boundary conditions has been dis-cussed. The uniqueness of our passive inverse problem is proved as long as incidentwavesare not antisymmetric with respect to R2 ×{0}.Furthermore, the unique determination of the unknown screen and supporting hy-perplane corresponding to the single measurement of the far-field is another importantresult of the inverse EM scattering problem. The proof followed from the representationformula for the exterior solution of Maxwell’s equations. Here, the main idea was to re-duce the scattering problem to a single tangential integral equation on the screen, wherethe unknown is the jump of the tangential component of the scatteredmagnetic field. Weshowed that the far field uniquely determines the jump of the scattered field and also thescreen, since the boundary of the field is the support of the jump.
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Finally, in Chapter 4, I considered the singular behavior of solutions to the equation
H ρ = e on a half-axis, where H represents the one-sided Hilbert transform, ρ is an un-known solution, and e is a known incident field. This investigation serves as a simplifiedmodel problem aimed at understanding wave field singularities caused by curve-shapedscatterers in a planar domain. I have demonstrated that the solution ρ exhibits a sin-gularity of the form M [e](1/2)/

√
t, where M denotes the Mellin transform. To obtainthis, I used specially constructed function spaces M′(a,b) introduced by Zemanian. Thesespaces allowed us to precisely explore the relationship between the Mellin and Hilberttransforms. Additionally, I discussed the Fourier transform, recognizing that the Mellintransform is essentially a Fourier transform on the locally compact Abelian multiplicativegroup of the half-line. This insight guided our investigation and provided a framework forour analysis.

In considering future directions, the following questions could arise:Generalizing this work to compact real-analytic screens is a planned direction, howeverthis will require more advanced techniques. As possible applications mentioned below:
• Suppose we have an inaccessible array of radars from which one can only obtaindistant data. Such information could say whether the array uses classical dipoleantennas or more advanced tripole antennas [29]. My result indicates that suchinformation can, in principle, be obtained with a single measurement.
• In antenna theory, one can control better the far-field pattern of the antenna by tak-ing into account the singularities of the electric-magnetic fields near the boundaryof the reflector.
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Abstract
Inverse scattering of Acoustic and Electromagnetic waves from
flat screens and properties of integral transforms on a half axis
In the field of mathematical physics, scattering theory has played a significant role in thetheory of antennas. Recently, there has been rising interest in this area. In the context ofthis thesis, the problem of fixed frequency acoustic and electromagnetic scattering froma sound-soft flat screen and properties of integral transforms on a half axis have beenconsidered. The screen is situated on a two–dimensional plane and interacts with incidentwaves, scattering them into three–dimensional space.

This study is relevant in applications such as reflecting sonars and antennas, where it’snot safe to assume that the incident wave is a simple plane wave. The results of this workare significant. It demonstrates that it is possible to precisely determine the shape of thescreen using the far-field pattern generated by a single arbitrary incident wave, given thatit is not antisymmetric with respect to the plane. Themethodwe are using is based on theidea of being partly motivated by a certain integral operator. Themethodology we are fol-lowing is in which we begin by demonstrating that the far-field pattern can be regarded asthe restriction to a ball of radius k (representing thewavenumber) of the two-dimensionalFourier transform of a function that has support on the screen. To address the issuewherethe incident wave might vanish on parts of the screen, we establish a significant insight:the shape of the screen is precisely defined by the support of this function.
In addition, I studied that the far-field pattern of a scattered electromagnetic field,resulting from a single incoming plane wave, uniquely characterizes a bounded supercon-ductive planar screen. This finding generalizes our acoustic results, highlighting the uniquedetermination capabilities of electromagnetic scattering. The goal of this work is to dis-cover the unique determination of supporting hyperplanes corresponding to the singlemeasurement having non–vanishing far–fields. This work stands in contrast to some pre-vious studies that primarily focused on simple scatterers like polyhedral shapes, balls, ordiscs, aswell as smooth planar curves. These findings are remarkable because it holds truefor screens of various shapes, even those with complex, smooth, and simply connecteddomains.
Furthermore, I examined the singular behavior at the origin of solutions to the equa-tion H ρ = e on a half-axis, where H is the one-sided Hilbert transform, ρ an unknownsolution and e a known function. More exactly, I studied the connection of the Mellintransform to the Hilbert and Fourier transforms in a half-axis R+ = (0,∞). This analysisis our first step into understanding the singular behavior of waves near the endpoint ofcracks or screens in an acoustic medium. Our approach is to use the Mellin transform forgeneralized function and connection of this with Hilbert and Fourier transform.
To understand wave field singularities caused by curve-shaped scatterers in a planardomain, this is a simpler model problem. Our analysis determines that ρ exhibits a sin-gularity pattern represented by M [e](1/2) 1√

t , where M denotes the Mellin transform.
Our approach involves the utilization of specially designed function spaces These allowus to precisely investigate the relationship between the Mellin and Hilbert transforms.Additionally, Fourier analysis plays a vital role since the Mellin transform is essentially aform of the Fourier transform on the locally compact Abelian multiplicative group of thehalf-line. This familiar operator guides our investigation.
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Kokkuvõte
Akustiliste ja elektromagnetlainete pöördhajumine lameekraa-
nilt ja integraalteisenduste omadused poolteljel
Matemaatilise füüsika vallas, antenniteoorias on olulist rolli mänginud hajumise teooria.Viimasel ajal on huvi selle valdkonna vastu kasvanud. Käesolevas lõputöös on käsitletudfikseeritud sagedusega akustilise ja elektromagnetilise hajumise probleemi helipehmeltlameekraanilt ning integraalteisenduste omadusi poolteljel. Ekraan asub kahemõõtmeli-sel tasandil ja interakteerub langevate lainetega, hajutades need kolmemõõtmelisse ruu-mi.

Seda tüüpi uuring on eriti asjakohane niisuguste rakenduste puhul nagu peegeldavadsonarid ja antennid, mille puhul ei ole ohutu eeldada, et langev laine on lihtne tasapinna-line laine. Töö tulemused onmärkimisväärsed. Need näitavad, et ekraani kuju on võimaliktäpseltmäärata, kasutades ühe suvalise langeva laine tekitatud kaugväljamustrit eeldusel,et see ei ole tasandi suhtes antisümmeetriline.Meetod,midame kasutame, põhineb ideelolla osaliselt motiveeritud teatud integraaloperaatori poolt. Meie järgitav metoodika onsee, etme alustame sellega, et näitame, et kaugväljamustrit võib vaadelda kui tugiekraanilkandjat omava funktsiooni kahemõõtmelise Fourier’ teisenduse ahendit ringi raadiusega
k (esindab lainearvu). Et käsitleda juhtu, kui langev laine võib ekraani osadel kaduda, jõua-me olulisele tõdemusele: ekraani kuju on täpselt määratud selle funktsiooni toe põhjal.

Lisaks tegime kindlaks, et ühest sissetulevast tasapinnalisest lainest põhjustatud ha-jutatud elektromagnetvälja kaugvälja muster määrab üheselt tõkestatud ülijuhtiva tasa-pinnalise ekraani. See leid üldistabmeie akustilisi tulemusi, tuues esile elektromagnetilisehajumise ainulaadsedmääramisvõimalused. Selle töö eesmärk on teha kindlaks ühelemit-tehääbuvat kaugvälja omavale mõõtmisele vastava tugihüpertasapinna ühene määratus.See töö vastandub mõnele varasemale uuringule, mis keskendusid peamiselt lihtsateleobjektidele, nagu hulktahukad, kerad või ringid, aga ka sujuvad tasapinnalised kõverad.Need leiud on tähelepanuväärsed, kuna need kehtivad erineva kujuga ekraanide puhul,isegi nende puhul, millel on keerukad, siledad ja ühelisidusad piirkonnad.
Peale selle me uurisime poolteljel antud võrrandi H ρ = e lahendite singulaarset käi-tumist nullpunktis, kus H on ühepoolne Hilberti teisendus, ρ tundmatu lahend ja e et-teantud funktsioon. Täpsemalt uurime Mellini teisenduse seost Hilberti ja Fourier’ tei-sendustega poolteljel R+ = (0,∞). See analüüs on meie esimene samm akustilises kesk-konnas pragude või ekraanide lõpp-punkti lähedal olevate lainete singulaarse käitumisemõistmisel. Meie lähenemisviis seisneb Mellini teisenduse kasutamisel üldistatud funkt-sioonide jaoks ja selle ühendamisel Hilberti ja Fourier’ teisendustega.
See on lihtne mudelprobleem, et mõista tasapinnalise piirkonna kõverakujuliste haju-tajate põhjustatud lainevälja singulaarsusi. Meie analüüs teeb kindlaks, et ρ näitab sin-gulaarsusmustrit, mida esindab M [e](1/2) 1√

t , kus M tähistab Mellini teisendust. Meie
lähenemisviis hõlmab Zemaniani poolt kasutusele võetud spetsiaalselt loodud funktsioo-niruume.Need võimaldavadmeil täpselt uuridaMellini ja Hilberti teisenduste vahelisi seo-seid. Lisaks on Fourier’ analüüsil oluline roll, kuna Mellini teisendus on sisuliselt Fourier’teisenduse vorm poolsirge lokaalselt kompaktsel Abeli multiplikatiivsel rühmal. See tun-tud operaator juhib meie uuringut.
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Abstract: We consider the problem of fixed frequency acoustic scattering from a sound-soft flat screen.
More precisely, the obstacle is restricted to a two-dimensional plane and interacting with an arbitrary
incident wave, it scatters acoustic waves to three-dimensional space. The model is particularly
relevant in the study and design of reflecting sonars and antennas, cases where one cannot assume
that the incident wave is a plane wave. Our main result is that given the plane where the screen
is located, the far-field pattern produced by any single arbitrary incident wave determines the exact
shape of the screen, as long as it is not antisymmetric with respect to the plane. This holds even for
screens whose shape is an arbitrary simply connected smooth domain. This is in contrast to earlier
work where the incident wave had to be a plane wave, or more recent work where only polygonal
scatterers are determined.

Keywords: inverse scattering; screen; uniqueness; single measurement; passive measurement

MSC: 35R30; 35P25; 35A02

1. Introduction

1.1. Antennas

The motivation for the study of wave scattering from thin and large objects lies in the
antenna theory. The starting point for this was when the Prussian Academy announced an open
competition about who could be the first to show the existence or non-existence of electromagnetic
(EM) waves in 1879. The existence of these waves were predicted 15 years earlier by the mathematical
theory of James Clerk Maxwell [1]. The competition was won in 1882 by young Heinrich Hertz,
in favor of Maxwell’s theory. He did this by constructing a dipole antenna radiating EM waves which
he could measure. It is needless to mention the importance which this experiment together with
Maxwell’s theory has had for modern society. Hertz’s antenna consisted of two identical perfectly
conducting planar bodies, in his case squares, which create radiating EM waves. Since, by reciprocity,
radiating antennas are identical to receiving antennas, the theory of antennas is closely connected to
EM scattering and inverse scattering theory.

A key question in antenna design for scientific radio arrays is how to choose the antenna topology
so that its impedance and radiation patterns are frequency independent (FI) over a wide range of
frequencies and, simultaneously, the radiation pattern supports beamforming. Well-known examples
of FI antennas include log-periodic, log-spiral, and UHF fractal antennas on high-frequencies. While
proven good for extremely wide band work, these are heavy and complicated structures and thus not
cost-efficient for extremely large arrays.

Mathematics 2020, 8, 1156; doi:10.3390/math8071156 www.mdpi.com/journal/mathematics
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Instead of relying on traditional antenna forms, we aim to derive general principles for designing
antennas with frequency independent characteristics. A major step in such a design strategy is to solve
the inverse scattering problem: given an input–output pair of waves, which antenna shape produces it?
The input is a given incident wave, and the output is the far-field pattern produced by the antenna.
The path to antenna design is a long one, so in this paper we study the technically easier acoustic
scattering problem.

In acoustics, scattering surfaces or screens are not called antennas but sonars. Traditionally sonars
are classified into active and passive sonars, depending on whether they act as a sound source
or receiver. We consider acoustic scattering from screens, something which lies between these two
extremes. It is more correct to call these screens passive sonars as they do not have an energy source,
but they are active in the sense that their effect on the sound pattern is significant. In general the
nomenclature “sonar” refers to probing using an active and passive sonar. Our research is rather in
the domain of acoustic design. The mathematical question of finding a screen that scatters a given
incident wave into a particular far-field has applications like the following, for example: how to reduce
echo in an office space? How to direct acoustic vibrations or reduce them? Of course, it also answers
the probing question: can we determine the shape and location of a passive sonar by how it reflects
sound? These are complex questions, only one part of which we are going to solve, namely that a
single input–output pair of sound waves uniquely determines the shape of a flat acoustic screen.

1.2. Mathematical Background

The problem of inverse scattering with reduced measurement data has gained a lot of interest lately.
Traditionally determining a scatterer from far-field measurements requires sending all possible incident
waves and recording the corresponding far-field patterns. The method of using complex geometrical
optics solutions infinitely many far-field measurements in the fixed frequency setting was pioneered
by Sylvester and Uhlmann in [2], and was the first method for uniquely determining an arbitrary
smooth enough scattering potential by far-field measurements. The field has grown extremely fast
since then, almost to the point of saturation, and we will only point the reader towards the surveys
in [3] for references up to 2003, which gives a good picture of the situation except for scattering in two
dimensions, which was solved by Bukhgeim [4] in 2007 and improved by several authors, e.g., [5–9].

In many applications the scatterer is impenetrable, or we are only interested in its shape or location.
The shape determination problem is known as Schiffer’s problem in the literature [10]. M. Schiffer
showed that a sound-soft obstacle (with non-empty interior) can be uniquely determined by infinitely
many far-field patterns. The proof appeared as a private communication in the monograph by Lax and
Phillips [11]. Linear sampling [12] and factorization [13] methods were developed and they are very
well suited for shape determination, also from the numerical point of view. These were applied in the
context of curved screens in acoustic [14] and electromagnetic [15] scattering to determine the shape
and location of the screen, also numerically. However, these methods require the full use of infinitely
many far-field patterns, except for a case of interest in [14] to which we will return later in more detail.

There was still much to improve: counting dimensions shows that a single far-field (a mapping
Sn−1 → C) should be enough to determine the shape (a manifold of dimension n− 1). Colton and
Sleeman reduced the requirements to finitely many far-field patterns [16]. It is widely conjectured that
the uniqueness for Schiffer’s problem follows from a single far-field pattern [10,17], and the situation
for a general shape is wide open. This brings in the current results. Various authors proved at roughly
the same time in the recent past that polyhedral sound-soft obstacles are uniquely determined by a
single far-field pattern in various settings [18–24]. Part of the results above apply for screens as long as
the screen is polygonal. A special case in [14] gives the unique determination of a flat screen by a single
incident plane-wave measurement. Their proof requires that the incident wave has non-vanishing
properties everywhere on the plane where the screen is located—an issue that we remedy completely.
So far there is no proof for the unique determination of an obstacle’s shape by one far-field pattern
without restrictive a priori assumptions. The results in [25] come very close: the obstacle can be any
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Lipschitz domain as long as its boundary is not an analytic manifold. It does not allow screens, which
is our focus.

An alternative approach to unique determination which has gained interest recently, is to
consider what can be determined with less data, e.g., one measurement, in the setting of penetrable
scatterers which were usually treated with various methods based on the Sylvester—Uhlmann [2] or
Bukhgeim [4] papers. Much of the recent work taking this point of view uses unique continuation
results and precise analysis on the behavior of Fourier transforms of the characteristic functions of
various shapes [26–32]. A very interesting point of view is determining the so-called convex scattering
support [33,34] by one far-field measurement. Again, none of the above are applicable to screens
per se.

Our work in this paper shows that given the far-field caused by any single given incident wave
scattering off a smooth flat screen, the latter’s shape is determined uniquely. Our methods are based on
ideas which are partly motivated by the study of certain integral operators in [35,36]. As in [14], we first
show that the far-field is the restriction to a ball of radius k (the wavenumber) of the two-dimensional
Fourier transform of a function supported on the screen. Next, since the incident wave might vanish
on part of the screen, we show that the shape of the screen is exactly the support of that function.
This latter part involves a delicate analysis of the Taylor coefficients of the scattered wave at the screen,
but it leads to our main theorem: that Schiffer’s problem is uniquely solvable for flat screens on a plane
in three dimensions, for any incident wave that causes scattering.

Let us discuss the significance of our result, with focus especially on our improvements over [14]:
that any incident field is allowed. We will start with the mathematical challenges. Unlike for infinite
measurements inverse problems such as [2,4], properties of the incident wave affect greatly the
solvability of single measurement inverse problems. Complex plane waves make things technically
simpler in many scattering problems because of their explicit form and non-vanishing everywhere.
This often reduces the non-linear inverse scattering problem to the linear inverse source problem
after a suitable interpretation, or avoids other challenges, as can be seen by comparing [26,27,31]
to [28–30]. Furthermore, in situations involving scattering from multiple objects, the total incident
field impinging on a given component is the sum of the original incident field and the fields scattered
by the other components. This is relevant when one wishes to uniquely determine a screen where
space contains other scatterers that are known. On the other hand, from the applied point of view,
solving the inverse problems for any given incident field enables passive measurements. This means
that even if we do not have control over the incident wave, or cannot afford to control it, the shape
of the scatterer can be uniquely determined. This is both good and bad. It means that the flat
screen design problem of finding its shape such that it scatters one given incident wave into a given
far-field has no more than a unique solution. On the other hand it shows the impossibility of more
complex input–output systems. One cannot require it to scatter two or more incident waves into
their corresponding far-fields in general. The first incident wave and far-field pair already determines
the shape.

Lastly, we remark that inverse scattering for screens has still many open problems.
Current solutions require that the screen have at least a differentiable boundary, something which arises
from the way that the direct scattering problem has been shown solvable in [37] and other sources.
To bring forward the range characterization condition from [14] to the situations of let us say Herglotz
incident waves, one would need to solve a deconvolution problem. A more difficult and certainly
more interesting question mathematically and from the point of view of applications, is the unique
determination of the shape of a curved screen from one measurement, passive or fully controlled.
The problem is solved for infinitely many measurements in [14], but counting dimensions suggests
that it should be solvable with one measurement.
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1.3. Definitions and Theorems

Let us go forward to the mathematics. We start by defining what we mean by a screen and the
scattering problem from screens. Then we state our three main theorems. They give representation
formulas for the scattered wave, the far-field pattern, and the unique solvability of Schiffer’s problem
for determining the shape of a scattering screen using a single incident wave. In Section 2 we prove
the representation formulas, and then in Section 3 we solve the inverse problem.

We consider the scattering of a two-dimensional sound-soft and flat obstacle Ω in
three-dimensional space. We will assume that Ω is an open subset of R2 × {0}.

Definition 1. We call a set Ω ⊂ R3 a screen, if Ω = Ω0 × {0} for some simply connected bounded domain
Ω0 ⊂ R2 whose boundary is smooth, and which we call its shape.

The scattering of acoustic waves by Ω leads to the study of the Helmholtz equation (∆ + k2)u = 0
where the wave number k is given by the positive constant k = ω/c where c is the constant speed of
sound in the background fluid (air, water, etc.) and ω is the angular frequency of the wave. The pressure
of the total wave vanishes on the boundary of a sound-soft obstacle, and the total wave is a sum of the
incident and scattered waves. This leads to the following set of partial differential equations.

Definition 2. We define the direct scattering problem for a screen Ω as follows. Given an incident wave
ui satisfying (∆ + k2)ui = 0 in R3 and a screen Ω, the direct scattering problem has a solution if there is
us ∈ H1

loc(R
3 \Ω) that satisfies the following conditions

(∆ + k2)us = 0, R3 \Ω, (1)

ui(x) + us(x) = 0, x ∈ Ω, (2)

r
( ∂

∂r
− ik

)
us = 0, r → ∞, (3)

where r = |x| and the limit is uniform over all directions x̂ = x/r ∈ S2 as r→ ∞.

There are a few things above that we should clarify. By H1
loc(R

3 \ Ω) we mean the set of
distributions ψ on R3 \Ω for which ψ|U ∈ H1(U) for any bounded convex open set U ⊂ R3 \Ω.
Secondly, since strictly speaking us is not defined on Ω, by (2) we mean that the Sovolev trace of us

both from above (x3 > 0) and below (x3 < 0) coincides, and is equal to −ui on Ω.
We shall start by showing a representation formula, the one in (4), for solutions us of the direct

scattering problem for the screen. This is mainly done so that the reader would get a better intuition
about this type of problems and to fix notation and function spaces clearly. This formula is well known,
and it gives a unique solution to the direct problem [37]. After that we will show that the far-field,
defined below, corresponding to a single given non-trivial incident wave uniquely determines the
screen Ω. This type of theorem was shown in [14] on the condition that the incident wave does not
vanish on the plane R2 × {0}. To get rid of this assumption, we must show Lemma 7. We remark that
the far-field pattern exists and is unique for each us satisfying the following assumptions. See [10]
for reference.

Definition 3. Let us satisfy the Sommerfeld radiation condition of (3) and the Helmholtz equation (∆ +

k2)us = 0 outside a ball B ⊂ R3. We say that u∞
s is the far-field of us if

us(x) =
eik|x|

|x|

(
u∞

s (x̂) +O
(

1
|x|

))

uniformly over x̂ as x → ∞.
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We define some notation which will be useful throughout the whole text.

• x, y, . . . represent variables in R3, and we associate to them various projections described below.
• x′, y′, . . . mean variables in R2 or projections to R2. For example if x = (1, 2, 3) ∈ R3 then in that

context x′ = (1, 2) ∈ R2, but we could have dy′ in an integral over a subset of R2 without having
to define the variable y separately.

• x0, y0, . . . denote lifts to R3, meaning x0 = (x′, 0). For example if x′ = (−1,−2) then x0 =

(−1,−2, 0). This notation can also be used as a projection R3 → R2 × {0}. So, if x = (1, 2, 3) then
x0 = (1, 2, 0). Essentially x′0 = (x′)0 = x0 and x0′ = (x0)′ = x′ but we do not use this combined
notation explicitly.

• Φ is reserved for the fundamental solution to (∆ + k2), defined in Lemma 2.
• u+, u− mean the function u restricted to R2 ×R+ and R2 ×R−, respectively. If their variable is

in R2 × {0} then they are the two-sided limits (traces) as x3 → 0. We often use ∂3u+ and ∂3u−.
These are simply the derivatives in the x3-direction of u+ and u−, respectively. Often this is
evaluated on R2 × {0} where it then denotes the one-sided derivative, i.e., the trace of ∂3u±.

• H̃−1/2(Ω0): this is the set of H−1/2(R2) distributions whose support is contained in Ω0, where
we recall that Ω0 signifies the shape of a screen Ω.

Let us discuss the direct scattering problem (1)–(3) first. In Section 2, Lemma 4, we will show the
well-known representation formula

us(x) =
∫

R2
Φ(x, y0)ρ(y′)dy′ (4)

for all x ∈ R3 \Ω, where
ρ(y′) = ∂3u+

s (y
0)− ∂3u−s (y

0) (5)

is an element of H̃−1/2(Ω0) and the integral in (4) is interpreted as a distribution pairing between ρ

and the smooth test function Φ restricted to the screen. Taking the trace x → Ω in (4) and recalling
that us = −ui on Ω in the sense of traces, (2), we get

ui(x) = −
∫

R2
Φ(x, y0)ρ(y′)dy′. (6)

Now, for any candidate solution us ∈ H1
loc(R

3 \Ω), it solves the direct problem (1)–(3) if and only
if ρ, as defined above, is in H̃−1/2(Ω0) and is the solution to (6). More precisely, given ρ solving the
integral equation, we can define us by (4), and it would solve the direct scattering problem. This was
shown in Theorem 2.5 in [37]. Theorem 2.7 in the same source proves that (6) has a unique solution
ρ ∈ H̃−1/2(Ω0) given any ui ∈ H1/2(Ω0).

Our main contributions are the following. The first of which is the familiar far-field representation
derived from (4) if ρ is a function. We generalize is to distributions in H−1/2(R2). This is required for
consistency of the function spaces involved. This detail has not been stated explicitly in earlier work
involving scattering from screens.

Theorem 1. Let Ω ⊂ R3 be a screen and us satisfy the direct scattering problem for some incident field ui and
screen Ω. Then its far-field has the representation

u∞
s (x̂) =

1
4π

〈(
∂3u+

s − ∂3u−
)
(y0), e−ikx̂·y0

〉
y′

(7)

for x̂ ∈ S2. If ∂3u+
s − ∂3u−s is integrable on Ω, this formula is equivalent to

u∞
s (x̂) =

1
4π

∫

R2
e−ikx̂·y0(

∂3u+
s − ∂3u−

)
(y0)dy′.
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Our main theorem shows that even with an unoptimal incident wave, the scattering caused by it
from flat screens determines the shape uniquely.

Theorem 2. Let Ω, Ω̃ ⊂ R3 be screens and k ∈ R+. Let ui be an incident wave and us, ũs be scattered waves
that satisfy the direct scattering problem for screens Ω, Ω̃, respectively.

If ui is not antisymmetric with respect to R2 × {0} and u∞
s = ũ∞

s , then Ω = Ω̃. If it is antisymmetric
then u∞

s = ũ∞
s = 0 for any screens Ω, Ω̃.

2. Representation Theorems

In this section, we will prove that solutions to the direct scattering problem satisfy (4). In essence
we present the well-known but very condensed argument of [37] in more detail for the convenience of
the readers. We will start with representation formulas for smooth functions and then approximate the
H1-smooth us. At the end of the section we will prove Theorem 1.

Lemma 1. Let D ⊂ R3 be a bounded domain whose boundary is piecewise of class C1 and let ν denote the
unit normal vector to the boundary ∂D directed to the exterior of D. Then, for u, v ∈ C2(D) we have Green’s
second formula ∫

D
(v∆u− u∆v)dx =

∫

∂D

(∂u
∂ν

v− u
∂v
∂ν

)
ds (8)

where ds is the surface measure of ∂D.

Proof. Theorem 3 in Appendix C.2 of [38].

Lemma 2. Let D ⊂ R3 be a bounded domain whose boundary is piecewise of class C1 and k ∈ R+. Let

Φ(x, y) =
eik|x−y|

4π|x− y|

for x, y ∈ R3, x 6= y. Then for any ϕ ∈ C2(D) and x ∈ R3 \ ∂D we have
∫

D
Φ(x, y)(∆ + k2)ϕ(y)dy =

∫

∂D

(
Φ(x, y)∂ν ϕ(y)− ϕ(y)∂νΦ(x, y)

)
ds(y)

+

{
0, x ∈ R3 \ D,

−ϕ(x), x ∈ D.
(9)

Proof. We have (∆ + k2)ϕ bounded and y 7→ Φ(x, y) integrable for any x, so
∫

D
Φ(x, y)(∆ + k2)ϕ(y)dy = lim

r→0

∫

D\B(x,r)
Φ(x, y)(∆ + k2)ϕ(y)dy.

Green’s second formula, given in (8), applied to the integral on the right gives

. . . =
∫

D\B(x,r)
(∆ + k2)Φ(x, y)ϕ(y)dy

+
∫

S(x,r)∩D

(
Φ(x, y)∂ν ϕ(y)− ϕ(y)∂νΦ(x, y)

)
ds(y)

+
∫

∂D\B(x,r)

(
Φ(x, y)∂ν ϕ(y)− ϕ(y)∂νΦ(x, y)

)
ds(y).

The first integral here vanishes because (∆y + k2)Φ(x, y) = 0 when y 6= x.
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The integral over ∂D \ B(x, r) gives the second term in the claim when r → 0 because Φ, ∂Φ are
integrable since x /∈ ∂D. Let us estimate the first term in the first boundary integral. We have

∫

S(x,r)∩D
Φ(x, y)∂ν ϕ(y)ds(y) =

∫

S(x,r)∩D

eikr

4πr
∂ν(y)ds(y)

and by the ML-inequality we have
∣∣∣∣
∫

S(x,r)∩D
Φ(x, y)∂ν ϕ(y)ds(y)

∣∣∣∣ ≤
1

4πr
sup

y∈S(x,r)∩D
|∇ϕ(y)|4πr2 → 0

as r → 0 because |∇ϕ| has a uniform bound in D. In the last integral we have ∂nuΦ(x, y) =

−∂r
(
eikr/(4πr)

)
= −ikeikr/(4πr) + eikr/(4πr2). The integral involving ikeikr/(4πr) can be estimated

as above to conclude that it vanishes when r → 0. The remaining integral is

− eikr

4πr2

∫

S(x,r)∩D
ϕ(y)ds(y) = − eikr

4πr2

∫

S(x,r)∩D

(
ϕ(y)− ϕ(x)

)
ds(y)− eikr

4πr2 ϕ(x)s
(
S(x, r) ∩ D

)
.

We have |ϕ(y)− ϕ(x)| ≤ supξ∈D |∇ϕ(ξ)||x− y| so the absolute value of the first integral above
can be estimated as

. . . ≤ sup |∇ϕ|
4πr2

∫

S(x,r)∩D
|x− y|dy =

sup |∇ϕ|
4πr2 rs

(
S(x, r) ∩ D

)
→ 0

as r → 0. The form of the remaining term implies the claim in each of the cases x ∈ D, x ∈ R3 \ D.

Lemma 3. Let D ⊂ R3 be a bounded domain with smooth boundary and k ∈ R+. Let us ∈ H1(D) with
(∆ + k2)us ∈ L2(D). Then

us(x) = −
∫

D
Φ(x, y)(∆ + k2)us(y)dy +

∫

∂D

(
Φ(x, y)∂νus(y)− us(y)∂νΦ(x, y)

)
ds(y) (10)

for x ∈ D in the distribution sense. For x ∈ R3 \ D we have

0 = −
∫

D
Φ(x, y)(∆ + k2)us(y)dy +

∫

∂D

(
Φ(x, y)∂νus(y)− us(y)∂νΦ(x, y)

)
ds(y) (11)

in the distribution sense. Here the boundary integrals involving ∂νus are to be interpreted as distribution
pairings between a H−1/2(∂D) function and a test function.

Proof. We will prove only the first case, namely x ∈ D. The second one follows similarly. Let (ϕj)
∞
j=0

be a sequence of smooth functions defined on D such that

∥∥us − ϕj
∥∥

H1(D)
+
∥∥∥(∆ + k2)(us − ϕj)

∥∥∥
L2(D)

→ 0

as j → ∞. Such a sequence exists, for example by convolving us with a mollifier ψε, as in ϕj =

(us ∗ ψ1/j)|D.
We have Φ(x, y) = Ψ(x − y) for Ψ(z) = exp(ik|z|)/(4π|z|) which is locally integrable in R3.

Hence the first term in the right-hand side of (10), equal to Ψ ∗ (∆ + k2)us, can be approximated by
Ψ ∗ (∆ + k2)ϕj in the L2(D)-sense.

For any x ∈ D the second integral in (10) is well defined because y 7→ Φ(x, y) and y 7→ ∂νΦ(x, y)
are smooth on the smooth manifold ∂D. Moreover, the x-dependence is smooth, so the mapping

us 7→
∫

∂D
us(y)∂νΦ(x, y)ds(y)
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is bounded H1(D)→ H1/2(∂D)→ C0(D) and similarly

us 7→
∫

∂D
Φ(x, y)∂νus(y)

)
ds(y)

is bounded H1(D)→ H−1/2(∂D)→ C0(D) when the integral is interpreted as a distribution pairing
between a H−1/2(∂D)-function and a test function. The continuity does not necessarily hold up to
the boundary. Because ϕj → us in H1(D) and the trace operators map Tr : H1(D) → H1/2/D), ∂ν :
H1(D)→ H−1/2(∂D), so the boundary integrals with us replaced by ϕj converge to the corresponding
ones in C0(D), namely uniformly over compact subsets of D.

In conclusion, for a test function ψ ∈ C∞
0 (D) we have

〈us, ψ〉 = lim
j→∞
〈ϕj, ψ〉

= lim
j→∞

〈
−
∫

D
Φ(x, y)(∆ + k2)ϕj(y)dy +

∫

∂D

(
Φ(x, y)∂ν ϕj(y)− ϕj(y)∂νΦ(x, y)

)
ds(y), ψ(x)

〉

x

=

〈
−
∫

D
Φ(x, y)(∆ + k2)us(y)dy +

∫

∂D

(
Φ(x, y)∂νus(y)− us(y)∂νΦ(x, y)

)
ds(y), ψ(x)

〉

x

so the equality holds in D ′(D).

Lemma 4. Let Ω ⊂ R3 be a screen, k ∈ R+ and Φ the fundamental solution from Lemma 2. Let us ∈
H1

loc(R
3 \Ω). If (∆ + k2)us = 0 in R3 \Ω and it satisfies the Sommerfeld radiation condition, then

us(x) =
∫

R2
Φ(x, y0)(∂3u+

s − ∂3u−s )(y
0)dy′ (12)

for x ∈ R3 \ Ω. Also y′ 7→ (∂3u+
s − ∂3u−s )(y0) is in H̃−1/2(Ω0), and more precisely the integral above

represents the distribution pairing of a H̃−1/2(Ω0)-function with the smooth test function Φ restricted to
R2 × {0} on the y-variable.

Proof. Fix x ∈ R3 \Ω. Let D ⊂ R3 be a bounded domain with smooth boundary for which x ∈ D and
Ω ⊂ ∂D and furthermore we want this set to be on top of Ω, namely that its boundary normal pointing
to the interior at Ω is e3 and not −e3. Let R > supz∈D |x− z|. We will use the formulas of Lemma 3 on
D, which has Ω on its boundary, and B(x, R) \ D.

First note that since (∆ + k2)us = 0 only the boundary integrals on the right-hand sides of (10)
and (11) remain. We will see the first integral as is, namely

us(x) =
∫

∂D

(
Φ(x, y)∂D

ν us(y)− us(y)∂D
ν Φ(x, y)

)
ds(y), (13)

where we denote by ∂D
ν the internal boundary normal derivative of D, applied to functions on D.

We will have the integrals in (11) to be over the set B(x, R) \D. The boundary of this set is S(x, r)∪ ∂D,
and the boundary normal pointing to its interior is −e3 on Ω ⊂ ∂(B(x, R) \ D). We will split the
boundary integral accordingly, and in the integral over ∂D we denote by ∂Dc

ν the external boundary
normal derivative applied to function on B(x, R) \ D. In conclusion (11) becomes

0 =
∫

S(x,R)

(
Φ(x, y)∂νus(y)− us(y)∂νΦ(x, y)

)
ds(y)

+
∫

∂D

(
Φ(x, y)(−∂Dc

ν )us(y)− us(y)(−∂Dc
ν )Φ(x, y)

)
ds(y). (14)
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Finally, by interior elliptic regularity we see that us is continuous (in fact real analytic) in some
neighborhood of x. Also, because x is outside of ∂D and S(x, R), the individual boundary integrals
above are continuous. Hence the equality in the sense of distributions is in fact a pointwise equality
for continuous functions. In other words, both of (13) and (14) hold as continuous functions. We still
remind that the integrals involving ∂νus represent distribution pairings for an element of H−1/2(∂D)

with that of a smooth Φ.
Let us add (13) and (14). By smoothness, ∂D

ν Φ = ∂Dc
ν Φ. Please note that two-sided Sobolev traces

of H1-functions yield identical results, so the integrals of us∂D
ν Φ and us∂Dc

ν Φ in (13) and (14) cancel
out. The sum then gives

us(x) =
∫

S(x,R)

(
Φ(x, y)∂νus(y)− us(y)∂νΦ(x, y)

)
ds(y) +

∫

∂D
Φ(x, y)

(
∂D

ν us − ∂Dc
ν us

)
(y)ds(y). (15)

Please note that as R→ ∞ the first integral in (15) vanishes because us satisfies the Sommerfeld
radiation condition. Also, us is C1 outside of Ω by elliptic interior regularity, so the second integral’s
integrand is zero when y /∈ Ω. Thus, letting R→ ∞ gives

us(x) =
∫

Ω
Φ(x, y)

(
∂D

ν us − ∂Dc
ν us)(y)dy

which implies the claim as ∂D
ν us = ∂3u+

s and ∂Dc
ν us = ∂3u−s on Ω ⊂ R2 × {0}. Furthermore, as above,

since us is C1 outside of Ω, we see that ∂3u+
s − ∂3u−s = 0 outside of Ω, so the integrand in the statement

is in H̃−1/2(Ω0), as claimed.

With the proposition above, we are almost ready to prove the formula for the far-field of a wave
scattered by a screen, Theorem 1. But first let us prove a lemma.

Lemma 5. Let k ∈ R+ and K ⊂ R3 be a non-empty compact set. Then

lim
r→∞

sup
|x|=r

sup
y∈K
|x|
∣∣∣∣∣∂

α
y

(
eik|x−y|

|x− y| −
eik|x|

|x| e−ikx̂·y
)∣∣∣∣∣ = 0

for any multi-index α ∈ N3 with |α| ≤ 1. Recall that x̂ = x/|x|.

Proof. The case of |α| = 0 is well known, see for example the proof of Theorem 2.5 in [10]. For |α| = 1
we will instead show the equivalent statement with ∂α

y replaced by ∇y. Recall the following
differentiation rules

• ∇y|x− y|s = −s x−y
|x−y| |x− y|s−1 for all s ∈ R,

• ∇yeik|x−y| = −ik x−y
|x−y| e

ik|x−y|, and
• ∇ye−ikx̂·y = −ikx̂e−ikx̂·y.

These imply that

∇y

(
eik|x−y|

|x− y| −
eik|x|

|x| e−ikx̂·y
)

= −ik
x− y
|x− y|

eik|x−y|

|x− y| +
x− y
|x− y|

eik|x−y|

|x− y|2
+ ikx̂

eik|x|

|x| e−ikx̂·y

= −ik
(

x− y
|x− y| − x̂

)
eik|x−y|

|x− y| − ikx̂

(
eik|x−y|

|x− y| −
eik|x|

|x| e−ikx̂·y
)
+

x− y
|x− y|

eik|x−y|

|x− y|2
.

Let us consider the three types of terms above. To prove the estimate, let us take the absolute
value and multiply by |x|. The last one gives

|x|
∣∣∣∣∣

x− y
|x− y|

eik|x−y|

|x− y|2

∣∣∣∣∣ =
|x|

|x− y|2
→ 0
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uniformly as y ∈ K, |x| = r and r → ∞. The first term gives

|x|
∣∣∣∣∣−ik

(
x− y
|x− y| − x̂

)
eik|x−y|

|x− y|

∣∣∣∣∣ = k
|x|
|x− y|

∣∣∣∣
x− y
|x− y| −

x
|x|

∣∣∣∣

where can still estimate
∣∣∣∣

x− y
|x− y| −

x
|x|

∣∣∣∣ =
∣∣∣∣

x− y
|x− y|

|x| − |x− y|
|x| − y

|x|

∣∣∣∣ ≤
||x| − |x− y||

|x| +
|y|
|x| ≤ 2

|y|
|x|

because ||x| − |x− y|| ≤ |y| by the triangle inequality. Thus, the first term also tends to zero uniformly
as r → ∞. Lastly, the second one is estimated as

|x|
∣∣∣∣∣−ikx̂

(
eik|x−y|

|x− y| −
eik|x|

|x| e−ikx̂·y
)∣∣∣∣∣ = k|x|

∣∣∣∣∣
eik|x−y|

|x− y| −
eik|x|

|x| e−ikx̂·y
∣∣∣∣∣

which tends to zero uniformly because this is the case |α| = 0 proven at the beginning of this proof.

Proof of Theorem 1. By the definition of the far-field there is a finite constant C > 0 independent of x
such that ∣∣∣u∞(x̂)− |x|e−ik|x|us(x)

∣∣∣ ≤ C
|x|

when |x| → ∞. Let us denote ρ(y′) = (∂3u+
s − ∂3u−s )(y0). Then (12) gives

u∞
s (x̂) = lim

|x|→∞
|x|e−ik|x|〈ρ(y′), Φ(x, y0)

〉
y′

should the limit exist. The distribution pairing is over y′ ∈ R2. We can rewrite

|x|e−ik|x|〈ρ(y′), Φ(x, y0)
〉
=

〈
ρ(y′), |x|e−ik|x|Φ(x, y0)− e−ikx̂·y0

4π

〉

y′
+

1
4π

〈
ρ(y′), e−ikx̂·y0〉

y′ .

We can write the C1-test function in the first pairing on the right as

|x|e−ik|x|Φ(x, y0)− e−ikx̂·y0

4π
=

e−ik|x||x|
4π

(
eik|x−y0|
|x− y0| −

eik|x|

|x| e−ikx̂·y0

)

which converges to zero in the C1 topology over y′, and a fortiori y0, restricted to any compact set by
Lemma 5. Please note that the C1-seminorms are taken with respect to the y′-variable, and the absolute
value makes the e−ik|x| that does not appear in the lemma disappear. Hence the application of the
lemma is allowed. Elements of H̃−1/2(Ω0) act well on C1-functions, so the distribution pairing with ρ

and the test function tends to zero. Thus

lim
|x|→∞

|x|e−ik|x|〈ρ(y′), Φ(x, y0)
〉

y′ =
1

4π

〈
ρ(y′), e−ikx̂·y0

〉
y′

as claimed.

3. Solving the Inverse Problem

We are ready to tackle the inverse problem in this section. In the following lemma, if ρ is integrable
then u∞

s (x̂) = 1
4π

∫
R2 e−ikx̂·y0

ρ(y′)dy′.
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Lemma 6. Let k ∈ R+ and ρ ∈ E ′(R2) be a distribution of compact support. Let

u∞
s (x̂) =

1
4π

〈
ρ, e−ikx̂·y0

〉
(16)

for x̂ ∈ S2 and where the distribution pairing is over the variable y′ = (y1, y2) ∈ R2. Then ρ is uniquely
determined by u∞

s .

Proof. The operator mapping ρ 7→ u∞
s is bounded and linear E ′(R2) → C0(S2). This is because

x̂ 7→
(
y′ 7→ exp(−ikx̂ · y0)

)
is continuous S2 → E(R2). So it is enough to show that ρ = 0 if u∞

s = 0.
Let us assume the latter. For ξ ′ ∈ R2 we have

ρ̂(ξ ′) =
1

2π

〈
ρ, e−iξ ′ ·y′

〉

where the distribution pairing is over the variable y′ ∈ R2. This looks similar to Formula (16) in the
statement. We can rewrite

−ikx̂ · y0 = −ik(x̂1, x̂2, x̂3) · (y1, y2, 0) = −i(kx̂1, kx̂2) · (y1, y2).

Thus
u∞

s (x̂) =
1
2

ρ̂(kx̂1, kx̂2). (17)

The left-hand side is zero for all x̂ ∈ S2. When x̂ goes through the whole of S2, the sum including
only two of the squares, x̂2

1 + x̂2
2, goes through the whole interval (0, 1). Alternatively

ρ̂(ξ ′) = 2u∞
s

(
ξ1/k, ξ2/k,

√
k2 − ξ2

1 + ξ2
2/k
)
= 0

for all |ξ ′| ≤ k. Since ρ has compact support, ρ̂ can be extended to an entire function on C2. Since it
vanishes on an open subset of R2 it must be the zero function. Hence u∞

s = 0 implies ρ = 0.

Lemma 7. Let (∆ + k2)ui = 0 in R3. Let Ω ⊂ R3 be a screen and us satisfy the direct scattering problem of
Definition 2. Denote

ρ(x′) = ∂3u+
s (x0)− ∂3u−s (x0)

for x′ ∈ R2 and its properties are given in Lemma 4. If ui(x′, x3) 6= −ui(x′,−x3) for some x ∈ R3 then

Ω0 = supp ρ (18)

for the shape Ω0 of the screen Ω.

Proof. The function ρ is a well-defined H−1/2(Ω0)-function by Lemma 4 so in particular supp ρ ⊂ Ω0.
It remains to prove that Ω0 ⊂ supp ρ.

Assume the contrary that Ω0 is not contained in the support of ρ. Then neither is Ω0 because
if Ω0 ⊂ supp ρ then Ω0 ⊂ supp ρ = supp ρ. Because Ω0 is an open set and supp ρ is closed there is
x′0 ∈ Ω0 and r > 0 such that B(x′0, r) ⊂ Ω0 \ supp ρ.

Let us study the behavior of us in the tube B(x′0, r) × R. We have ρ = 0 on B(x′0, r).
Recall Formula (4), which combined with the vanishing of ρ implies that (∆ + k2)us = 0 in the
whole tube, and interior elliptic regularity implies that us is smooth there. In addition the formula
implies that us(x1, x2, x3) = us(x1, x2,−x3) for all x in the tube. The vanishing of ρ gives ∂3u+

s = ∂3u−s
on the base of the tube. These two imply that actually ∂3us(x′, 0) = 0 for x′ ∈ B(x′0, r).
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We have the following

us = −ui, (19)

∂3us = 0 (20)

on B(x′0, r) × {0}. Let us calculate the higher order derivatives. Please note that ∂
j
3 and (∆ + k2)

commute, and (∆ + k2)us = 0 in the tube. Thus

0 = ∂
j
3(∆ + k2)us = (∆ + k2)∂

j
3us = (∆′ + k2)∂

j
3us + ∂

j+2
3 us

in the tube, and we denote ∆′ = ∂2
1 + ∂2

2. This gives ∂
j+2
3 us = −(∆′ + k2)∂

j
3us. Let us restrict ourselves

to B(x′0, r)× {0} next. By induction and (19) and (20) we see that

∂
j
3us =

{
(−1)j+1(∆′ + k2)jui, j ∈ 2N,

0, j ∈ 2N+ 1

on B(x′0, r)× {0}. This can still be simplified! Recall that ui is an incident wave, so (∆ + k2)ui = 0
everywhere. This means that (∆′ + k2)ui = −∂2

3ui, and a fortiori (∆′ + k2)juj = (−∂2
3)

jui everywhere
by the commutating of ∂2

3 and (∆′ + k2). This implies

∂
j
3us =

{
−∂

j
3ui, j ∈ 2N,

0, j ∈ 2N+ 1.
(21)

The other derivatives, ∂1 and ∂2 commute with each other and ∂3, so finally we have

∂αus =

{
−∂αui, α3 ∈ 2N,

0, α3 ∈ 2N+ 1
(22)

on B(x′0, r)× {0} for all multi-indices α ∈ N3.
Let us define

ũi(x) =
1
2
(
ui(x1, x2, x3) + ui(x1, x2,−x3)

)

for all x ∈ R3. This satisfies the Helmholtz equation everywhere, and is an incident wave because ui is
one. We see that

∂αũi(x) =
1
2
(
∂αui(x1, x2, x3) + (−1)α3 ∂αui(x1, x2,−x3)

)

so

∂αũi =

{
∂αui, α3 ∈ 2N,

0, α3 ∈ 2N+ 1
(23)

on B(x′0, r)× {0}. By (22) we see immediately that ∂αus = −∂αũi on the base of the tube for all α ∈ N3.
Both functions us and −ũi satisfy the Helmholtz equation not only in the tube but also in R3 \ B(0, R),
where R > 0 is large enough that Ω ⊂ B(0, R). Solutions of the Helmholtz equation are real analytic.
Because their Taylor-expansions at (x′0, 0) are equal, the functions are equal in the component of(

B(x′0, r)×R
)
∪
(
R3 \ B(0, R)

)
that contains (x′0, 0), so in particular us = −ũi in all of R3 \ B(0, R).

The function us satisfies the Sommerfeld radiation condition, so so does ũi. On the other hand
(∆ + k2)ũi = 0 in all of R3, so ũi is the zero function (Use e.g., (9) for a large ball whose radius grows
to infinity. The boundary integral decreases to zero as was seen for the first integral in (15).), which
means that ui is antisymmetric with respect to R2 × {0}, a contradiction. Hence Ω0 ⊂ supp ρ.



Mathematics 2020, 8, 1156 13 of 15

The solution to the inverse problem of determining a screen Ω from the knowledge of a
single incident wave ui and the corresponding far-field u∞

s scattered from the screen comes from
a combination of determining ρ from the far-field, and then Ω from ρ. There is a slight surprise,
namely that the problem is only solvable for incident waves that are not too (anti)symmetric. However,
one sees that antisymmetry is not the deciding factor: what matters is whether ui is identically zero
on the screen. By a similar argument as that at the end of the proof of Lemma 7, we see that if ui = 0
on a non-empty open subset of R2 × {0} then ui(x′, x3) = −ui(x′,−x3) for all x ∈ R3. It is interesting
to see that partial invisibility is achieved inside thickened screens as long as the incident plane wave
comes from a direction almost parallel to the screen’s normal [39]. The direction of incident waves
seems very important in scattering from objects that are thin in one direction.

Proof of Theorem 2. Theorem 1 and Lemma 6 imply that ρ = ρ̃ when u∞
s = ũ∞

s . If ui is not
antisymmetric with respect to R2 × {0} then

Ω0 = supp ρ = supp ρ̃ = Ω̃0

by Lemma 7. Because Ω0 is a smooth domain, we have Ω0 = int Ω0, and similarly for Ω̃0. Thus, the
equation above implies Ω0 = Ω̃0 and by lifting, Ω = Ω̃.

If ui is antisymmetric then ui = 0 everywhere on R2 × {0} and us = 0 satisfies all conditions of
the direct scattering problem. Since solutions to the direct scattering problem (2) are unique by ([37]
[Thms 2.5–2.7]), this is the only solution. Thus, us = ũs = 0 and the same holds for their far-fields.
This is irrespective of the shape of Ω, Ω̃ ⊂ R2.
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Abstract: The target of our research is the object being a highly conducting thin plate or a flat screen.
We especially focus on the question of when a single measurement uniquely determines an object. By
this, we mean that we have one fixed transmitted wave and the resulting scattered field is measured
for all directions in the far field. Such measurements are called passive, since there is no need to
move the transmitter after its position has been fixed. We show that the far field of a scattered
electromagnetic field corresponding to a single incoming plane wave always uniquely determines
a bounded super-conductive planar screen. This generalises a previous scalar result of Blåsten,
Päivärinta and Sadique [3].

Keywords: Inverse conductivity problem; electrical impedance tomography; unknown boundary;
Teichmüller mapping

MSC: 35R30; 35Q61; 78A46

1. Introduction

The study of wave scattering from highly conductive objects is rooted in the field of
antenna theory. This interest began with a competition initiated by the Prussian Academy
in 1879 to demonstrate the existence or non-existence of electromagnetic waves. Maxwell’s
theory [27] predicted the existence of such waves 15 years earlier. In 1882, the competition
was won by Heinrich Hertz, who constructed a dipole antenna that was able to radiate and
measure EM waves, thereby confirming Maxwell’s prediction.

Inverse scattering problems involve determining the properties of an object, such as its
shape, size, and composition, from the produced scattered field when it is illuminated with,
say, electromagnetic or acoustic waves. A well-studied problem is to determine the shape
of an object by analysing the far field of the scattered wave. This is a problem that involves
both mathematics and numerical techniques, and it has many practical applications. An
overview of this topic can be found in the book [7] by Colton and Kress.

Recently, there has been an increasing number of publications about the inverse
scattering problem with fewer measurements. Especially fascinating is the question of
when just a single measurement determines an object uniquely. By this, we mean that
we have one fixed transmitted wave and the resulting scattered field is measured for all
directions in the far field. Such measurements are called passive, since you do not need
to move the transmitter after its position has been fixed. This is exactly the target of the
research here, the object being a highly conducting thin plate, i.e., a flat screen.

In [3], we considered the problem of fixed frequency acoustic scattering from a sound-
soft flat screen. The main result of that paper is that the far field produced by any single
incident wave determines the precise shape of the screen, given that it is not anti-symmetric
with respect to the plane. Our current work is the generalisation of the result of [3] to

Mathematics 2023, 1, 0. https://doi.org/10.3390/math1010000 https://www.mdpi.com/journal/mathematics
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Maxwell’s equations. This shape determination problem is known in the literature [7]
as Schiffer’s problem. The first uniqueness result for the case of the Dirichlet problem
was presented by Schiffer in 1967 [31]. The Schiffer’s uniqueness theorem for the inverse
Dirichlet problem assumes a lot of information about the waves as it is using an infinite
number of incident frequencies. After Schiffer’s uniqueness result for sound-soft obstacles
by countably many incident plane waves [7,31], extensive research in this direction has
been conducted. Notable contributions include uniqueness results for general domain [11,
21,24,32–34,38], polyhedral scatterers [2,8–10], for the ball or disc [6,18], and for smooth
planar curves [22,23,29,35].

Important results on the inverse electromagnetic scattering problem in the TE polarisa-
tion case was conducted in [19]. They demonstrated that in the special case of a rectangular
penetrable scatterer, it can be uniquely determined just by measuring the electric far-field
pattern for a single incoming wave.

In [13], the authors studied uniqueness of an inverse acoustic obstacle scattering prob-
lem, demonstrating the unique determination of sound-hard and sound-soft polyhedral
scatterers in Rn. More precisely, they proved that N far-field measurements corresponding
to N incident plane waves given by a fixed wave number and N linearly independent
incident directions uniquely determine the obstacle. A few of the uniqueness results in
inverse electromagnetic and acoustic obstacle scattering problems were obtained by Liu
and Zou [24]. They emphasize recent developments in the unique determination of a
general polyhedral scatterer using far-field data corresponding to one or several incident
fields. For other recent results in time-harmonic inverse EM-scattering, see the short review
by Rainer Kress [21].

A particular case in [1] gives the unique determination of a flat screen by a single
incident plane-wave measurement with robin boundary condition. We also wish to mention
the article [2], in which the authors demonstrate that the far-field pattern corresponding to
one incident plane wave uniquely identifies a sound-soft polyhedral scatterer.

However, they consider the polyhedral sound-soft acoustic problem and not the
electromagnetic problem.

In addition, [25] has established a reflection principle for the time-harmonic Maxwell
equations. They derive a uniqueness result for the inverse electromagnetic scattering
problem for a polyhedral scatterer. The scatterers considered can exhibit a wide variety;
for instance, they might comprise a finite number of compact polyhedral shapes along
with a finite number of portions from two-dimensional surfaces. Another important work
is [17], where the authors consider an obstacle composed of finite solid polyhedra, and
they prove that it can be uniquely characterised by the far-field pattern associated with a
single incident electromagnetic plane wave. To our knowledge, there is no proof for the
unique determination of a planar screen by one far-field pattern without restrictive a priori
assumptions such as the assumptioned polyhedron shape. The research in [14] comes very
close to ours. There, the obstacle can be any Lipschitz domain provided that its boundary
is not an analytic manifold. But that work does not consider screens, which is our priority.

The main motivation for this study comes from antenna theory [20,26,36]. A typical
(radar) antenna consists of a configuration of planar screens attached to a common stem,
and understanding both the direct and inverse scattering of electromagnetic waves from
such structures is a natural and important problem. Our study is the natural first step in
analysing the inverse problem of recovering the shape of the antenna using exactly one
incoming wave.

The goal of this work is to prove the unique determination of the unknown screen and
supporting hyperplane corresponding to a single measurement of the far field. The proof
follows from the representation formula for the exterior solution of Maxwell’s equations.
The main idea of our paper is to reduce the scattering problem to an integral equation on
the screen. Here, the integral operator is the analogue of the double-curl layer potential on
the screen, and has as its unknown the jump of the tangential component of the magnetic
field. The inverse problem is then solved by showing that, first of all, the incoming plane
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wave uniquely determines the solution to this integral equation, and secondly, that when
the tangential component of the incoming plane wave does not vanish on the screen, the
support of the solution is full, i.e., the whole screen. More precisely, our main results state
that a single far field corresponding to an incoming plane wave uniquely determines a
planar screen, as follows:

Theorem 1. Let S be a C2–screen contained in a supporting hyperplane L and let

E(θ; p, q) = µ1/2(p × θ)eik⟨θ,x⟩, H(θ; p, q) = ε1/2(q × θ)eik⟨θ,x⟩

describe the EM-plane wave with wavenumber k = ω
√

εµ, propagation direction θ and polarizations
p and q. Let (esc, hsc) be the electromagnetic wave scattered by S and assume that it does not
identically vanish. Then, the non-vanishing far-field pattern of (esc, hsc) uniquely determines both
the supporting hyperplane L and the screen S if neither p or q is parallel to θ.

Remark 1. As will be clear from the proofs, the scattered field will vanish only if the electric
polarization p × θ is parallel to the screen.

The plan of this paper is as follows: Analysis of mathematical proof and the concept for
the direct scattering problem of EM waves are discussed in Section one. We start by giving
a precise definition of a planar screen and discuss time-harmonic Maxwell’s equations in
the exterior of the screen. Representation theorem for the fundamental solution of vector
Helmholtz equation is also analysed here. In Section 2, the solution of the inverse problem
is presented, including also the unique determination of the supporting hyperplane.

2. Scattering from a Perfectly Conducting Screen
2.1. Formal Definitions

Definition 1. A planar Ck–screen, k = 1, . . . , ∞, in R3 is a compact, connected Ck–submanifold
of an affine hyperplane L ⊂ R3. The affine hyperplane L is called the supporting hyperplane of S.
In the sequel we also fix a globally defined unit normal vector field on S and denote it by ν. Also, the
boundary of S as a submanifold of L is denoted by ∂S.

Consider the time-harmonic Maxwell’s equations in the exterior of a screen S:

∇× E = iωµH, ∇× H = −iωεE in R3 \ S. (1)

Here, the magnetic permeability µ and the dielectricity ε are known positive constants and we
assume also that the angular frequency ω > 0 is known.

Given an incident filed (E0, H0), i.e., a solution of

∇× E0 = iωµH0, ∇× H0 = −iωεE0 in R3,

the corresponding scattered field (Esc, Hsc) is (formally) defined by demanding that (E, H),
where E = E0 + Esc and H = H0 + Hsc satisfy (1), and the scattered field is outgoing in the
sense that it satisfies the Silver–Müller radiation conditions,

r̂ × Esc +

√
ε

µ
Hsc = o(|x|−1), r̂ × Hsc −

√
µ

ε
Esc = o(|x|−1), as |x| → ∞. (2)

Here, r̂ = x/|x|. If we further assume that the screen is perfectly conducting, i.e., the total
field vanishes on S, this leads to the direct scattering problem for the perfectly conducting screen
S: for a given incident field, (E0, H0) show that there is a unique scattered field (Esc, Hsc)
s.t.

∇× Esc = iωµHsc, ∇× Hsc = −iωεEsc in R3 \ S (3)
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satisfying (2) and such that
ν × (Esc + E0) = 0 on S. (4)

Note that we have not specified in what sense the boundary value (4) holds. This will
depend on the spaces where we look for solutions and the availability of suitable trace
theorems.

2.2. Representation Theorems

Assume for now that S ⊂ R3 is a C2 screen. Denote by Ck
S the closed subspace of

Ck(R3 \ S) consisting of those u ∈ Ck(R3 \ S) such that u and all its derivatives up to order
k have normal limits on S, i.e., for all |α| ≤ k, there are limits

lim
δ→+0

∂α
xu(x ± δν(x)) = u±

α (x), x ∈ S,

where u±
α ∈ C(S). Note that we do not assume that limits u+

α and u−
α coincide on S.

Proposition 1. Assume (e, h) ∈ (C1
S)

3 × (C1
S)

3 solves

∇× e = iωµ h, ∇× h = −iωε e in R3 \ S,

and the Silver–Müller radiation condition

r̂ × e +
√

ε

µ
h = o(|x|−1), r̂ × h −

√
µ

ε
e = o(|x|−1), as |x| → ∞, r̂ = x/|x| > 0.

Then, for all x ∈ R3,

e(x) = ∇×
∫

S
Φ(x − y)(ν × {e+(y)− e−(y)}) ds(y)

− 1
iωε

(∇×)2
∫

S
Φ(x − y)(ν × {h+(y)− h−(y)}) ds(y)

and

h(x) = ∇×
∫

S
Φ(x − y)(ν × {h+(y)− h−(y)}) ds(y)

+
1

iωµ
(∇×)2

∫

S
Φ(x − y)(ν × {e+(y)− e−(y)}) ds(y).

Proof. For δ > 0, let δ = {x ± tν(x); x ∈ S, 0 ≤ t < δ} be a collar neighbourhood of
S. For sufficiently small δ, this is a bounded, piecewise analytic domain. The standard
representation formulas (see for example [5]) give that for all x ∈ R3 \ δ, we have

e(x) = ∇×
∫

∂δ

Φ(x − y)(νδ(y)× e(y)) ds(y)− 1
iωε

(∇×)2
∫

∂δ

Φ(x − y)(νδ(y)× h(y)) ds(y)

and

h(x) = ∇×
∫

∂δ

Φ(x − y)(νδ(y)× h(y)) ds(y) +
1

iωµ
(∇×)2

∫

∂δ

Φ(x − y)(νδ(y)× e(y)) ds(y).

Here, Φ is the outgoing fundamental solution of the Helmholtz operator ∆ + k2 and νδ is
the exterior unit normal of ∂δ. Then, as δ → +0,

e(x) = ∇×
∫

S
Φ(x − y)(ν × {e+(y)− e−(y)}) ds(y)

− 1
iωε

(∇×)2
∫

S
Φ(x − y)(ν × {h+(y)− h−(y)}) ds(y)
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and

h(x) = ∇×
∫

S
Φ(x − y)(ν × {h+(y)− h−(y)}) ds(y)

+
1

iωµ
(∇×)2

∫

S
Φ(x − y)(ν × {e+(y)− e−(y)}) ds(y),

as claimed.

In what follows, we will denote the jumps of a function (or a vector field) u across S
by [u], i.e.,

[u](y) = u+(y)− u−(y), y ∈ S.

2.3. EM-Plane Waves and Far-Field Patterns

Let θ, p ∈ S2 and denote q = p × θ. We call the field

E(θ; p, q) = µ1/2(p × θ)eik⟨θ,x⟩, H(θ; p, q) = ε1/2(q × θ)eik⟨θ,x⟩

the EM-plane wave with wavenumber k, propagation direction θ and polarizations p and q. It is
easy to see that these fields satisfy the time-harmonic Maxwell’s equations

∇× E(θ; p, q) = iωµ H(θ; p, q), ∇× H(θ; p, q) = −iωε E(θ; p, q).

when k2 = εµ. Since the scalar components of the scattered electric and magnetic fields
are solutions of the Helmholz equation (∆ + k2)u = 0 satisfying the Sommerfeld radiation
condition, they have representations

E(x) =
E∞(x)
|x| + o(|x|−1), H(x) =

H∞(x)
|x| + o(|x|−1

where E∞ and H∞ are the electric and magnetic far-field patterns. If the initial field is the
EM-plane wave (E(θ; p, q), H(θ; p, q)), we denote the corresponding far-field patterns by
E∞(θ; p, q) and H∞(θ; p, q).

2.4. Relevant Sobolev Spaces

Let (see [15,30]) L2
loc(R

3 \ S) be the space of measurable functions that are square
integrable on compact subsets of R3 \ S). This becomes a Fréchet space when equipped
with semi-norms

∥ f ∥R = ∥ f ∥L2(R3\S)∩BR(0)), R > R0,

where R0 is so large that S ⊂ BR0(0). Define also

L2
loc, curl(R

3 \ S) = {u ∈ L2
loc(R

3 \ S); ∇× u ∈ L2
loc(R

3 \ S)},

L2
loc, div(R

3 \ S) = {u ∈ L2
loc(R

3 \ S); ∇ · u ∈ L2
loc(R

3 \ S)},

and equip these space with semi-norms

∥ f ∥R,curl = (∥ f ∥2
R + ∥∇× f ∥2

R)
1/2, ∥ f ∥R,div = (∥ f ∥2

R + ∥∇ · f ∥2
R)

1/2.

Also, let
TH−1/2(S) = {u ∈ H−1/2(S)3; ⟨ν, u⟩ = 0},

i.e., the space of tangential H−1/2 fields on S. We equip this with the norm induced from
H−1/2(S)3. With Div denoting the surface divergence, we also define

TH−1/2
Div (S) = {u ∈ TH−1/2(S); Div (u) ∈ H−1/2(S)}
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and equip it with the Hilbert norm, defined by

∥u∥2
TH−1/2

Div (S)
= ∥u∥2

TH−1/2(S) + ∥Div (u)∥2
H−1/2(S).

Assume now that U ∈ R3 is a bounded C2 domain with a connected complement, such
that S ⊂ ∂U is a compact C2-submanifold and fix the unit normal ν of S so that it extends
to a unit exterior normal ν̃ of U. If u, φ ∈ (C∞

0 )3 then the vector Green’s identities give
∫

∂U
⟨ν̃ × u, φ⟩ ds =

∫

U
⟨∇ × u, φ⟩ − ⟨u,∇× φ⟩ dx,

and extending this by density to φ ∈ H1(R3) and u ∈ L2
curl(U) gives the existence of the

tangential trace ν̃ × u|∂U ∈ TH−1/2(∂U). We can argue similarly for the exterior domain.
Using this definition, we have well-defined tangential trace maps t± from the direction of
±ν,

t± : L2
loc,curl(R

3 \ S) ∋ u 7→ ν × u± ∈ TH−1/2(S)

Similarly, if u ∈ (C∞
0 )3 and ψ ∈ C∞

0 , we get from the Divergence Theorem that
∫

U
⟨ν̃, u⟩ψ ds =

∫

U
⟨u,∇ψ⟩+ ψ∇ · u dx,

and, using this, we have well-defined normal traces n±,

n± : L2
loc, div(R

3 \ S) ∋ u 7→ ⟨ν, u±⟩ ∈ H−1/2(S).

Note also that if u ∈ L2
loc,curl(R

3 \ S), then ∇× u ∈ L2
loc, div(R

3 \ S) and

Div (ν × u±) = −⟨ν,∇× u±⟩ ∈ H−1/2(S),

i.e., the tangential traces of L2
loc,curl(R

3 \ S) are in TH−1/2
Div (S). Note also that since extension

by zero across a C2 hypersurface is continuous in fractional Sobolev spaces, Hs when
s < 1/2 the space TC∞

0 (S) is dense in THs(S). However, this is not necessarily true for the

Div spaces, and hence, the closure of TC∞
0 (S) in TH−1/2

Div (S) is denoted by ˙TH−1/2
Div (S).

2.5. Layer Potentials in Sobolev spaces

For x ∈ R3 \ S) and u ∈ C∞
0 (S)3 define the (vector) single-layer potential of u by

VR3\S(u)(x) =
∫

S
Φ(x − y) u(y) ds(y)

and the electromagnetic layer operators by

KR3\S(u)(x) = ∇× VR3\S(u)(x),

and
NR3\S(u)(x) = (∇×)2VR3\S(u)(x).

Proposition 2. Assume that S can be extended to a boundary ∂U for some bounded C2 domain U.
Then, the single-layer potential has an extension to a bounded map

VR3\S : H−1/2(S) → H1
loc(R

3 \ S)

and VR3\S(u) satisfies the Sommerfeld radiation condition. Also, the electromagnetic potentials
have extensions into bounded maps

KR3\S, NR3\S : ˙TH−1/2
Div (S) → L2

loc,curl(R
3 \ S)
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and KR3\S(u) and NR3\S(u) satisfy the Sommerfeld radiation conditions for any u ∈ ˙THDiv
−1/2(S).

Proof. By known continuity properties (see for example [28]), the single-layer potential
defines a continuous map H−1/2(U) → H1

loc(R
3 \ U), and, in fact, VR3\U(φ) is continuous

across U and the jump in the normal derivative is equal to φ|U . Hence, the claim for V
follows since C∞

0 (S) is dense in H−1/2(S). This also implies the claims for KR3\S and NR3\S,
since for u ∈ TC∞

0 (S), we have

(∇×)2VR3\S(u) = −∇VR3\S(Div u) + k2VR3\S(u)

and
(∇×)3VR3\S(u) = k2∇× VR3\S(u).

Using this, we can generalise the representation theorem 1 to weak solutions:

Proposition 3. Let S ⊂ R3 be a C1 screen. Assume (e, h) ∈ L2
loc,curl(R

3 \ S)× L2
loc,curl(R

3 \ S)
solves

∇× e = iωµ h, ∇× h = −iωε e in R3 \ S,

and the Silver–Müller radiation condition

r̂ × e +
√

ε

µ
h = o(|x|−1), r̂ × h −

√
µ

ε
e = o(|x|−1), as |x| → ∞, r̂ = x/|x| > 0.

If ν × [e], ν × [h] ∈ TH−1/2
Div (S), then in R3 \ S,

e = KR3\S(ν × [e])− 1
iωε

NR3\S(ν × [h]),

and
h = KR3\S(ν × [h]) +

1
iωµ

NR3\S(ν × [e]).

Here, ν is the specified unit normal of S.

2.6. Representation Formulas for the Scattered Field

Proposition 4. Let S be a perfectly conducting C2 screen, and let

(Esc, Hsc) ∈ L2
loc,curl(R

3 \ S)× L2
loc,curl(R

3 \ S)

be the scattered field corresponding to an incoming field (E0, H0). Then, in R3 \ S, one has

Esc = − 1
iωε

NR3\S(ν × [Hsc])

and
Hsc = KR3\S(ν × [Hsc]).

These fields have the following asymptotic behaviour as |x| → ∞:

Esc(x) = −x̂ ×
(

x̂ × eik|x|

4πiωε|x|
∫

S
e−ik⟨x̂,y⟩(ν × [Hsc])(y) ds(y)

)
+ O(|x|−2),

Hsc(x) = x̂ × eik|x|

4πiωµ|x|
∫

S
e−ik⟨x̂,y⟩(ν × [Hsc])(y) ds(y) + O(|x|−2),

where x̂ = x/|x|, x ̸= 0.
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Proof. Since on a perfectly conducting screen, ν × [Esc] = −ν × [E0] = 0 and the repre-
sentations of Esc and Hsc follow from Proposition 1. The asymptotic behaviour is obvious
since for |x| → ∞, y ∈ S and a(y), a vector field on S,

∇x ×
eik|x−y|

|x − y| a(y) = x̂ × eik|x|−ik⟨x̂,y⟩

|x| a(y) + O(|x|−2)

(∇x×)2 eik|x−y|

|x − y| a(y) = x̂ × (x̂ × eik|x|−ik⟨x̂,y⟩

|x| a(y)) + O(|x|−2).

In view of the above proposition, we can write

Esc(x) =
eik|x|

4π|x|E∞(x̂) + O(|x|−2), Hsc(x) =
eik|x|

4π|x|H∞(x̂) + O(|x|−2)

where the far-field patterns E∞ and H∞ are given by

E∞(x̂) = −x̂ ×
(

x̂ × 1
iωε

∫

S
e−ik⟨x̂,y⟩(ν × [Hsc])(y) ds(y)

)

H∞(x̂) = x̂ × 1
iωµ

∫

S
e−ik⟨x̂,y⟩(ν × [Hsc])(y) ds(y).

Note also that εE∞(x̂) = −µ x̂ × H∞(x̂), and that the uniqueness of the scattered field fol-
lows from the uniqueness of the Dirichlet and Neumann problems for the scalar Helmholtz
equation [37].

2.7. Integral Equations for the Scattered Field

Assume now that U ⊂ R3 is a bounded C2 domain with a connected complement
such that S ⊂ ∂U is a C2 submanifold. Using the usual jump relations (see for example
[5,30]), the tangential components of NR3\U(u) and NU(u) are continuous up to ∂U and

they have equal traces for all u ∈ TH−1/2
Div (∂U). Furthermore, for u ∈ TH−1/2

Div (∂U), one has

ν × NR3\U(u)|∂U = ν × NU(u)|∂U = N(u),

where the surface integral operator N is given by

N(u) = ν̃ ×∇S(Div u) + k2ν̃ × S(u).

Here, ν̃ is the exterior unit normal to U, which is assumed to agree with ν on S, and S is the
direct boundary value of the single layer potential, i.e.,

S( f )(x) =
∫

∂U
Φ(x − y) f (y) ds(y), x ∈ R3.

Note also that using the trace theorems given in Section 2.5, one has N : TH−1/2
Div (∂U) →

TH−1/2
Div (∂U) continuously and for the restriction to S, one has N : ˙TH−1/2

Div (S) → TH−1/2
Div (S),

again continuously.
Assuming now that (Esc, Hsc) is the field scattered by the screen S and ν × [Hsc] ∈

˙TH−1/2
Div (S), we get from Proposition 4 and the continuity results of Section 2.5 that

ν × Esc = iN(ν × [Hsc])/ωε,
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and since the screen is perfectly conducting, one gets an integral equation for the jump of
the tangential component of the magnetic field,

−ν × E0 = iN(ν × [Hsc])/ωε, ν × [Hsc] ∈ ˙TH−1/2
Div (S). (5)

Solvability properties of this equation have been considered in [4]. More precisely, it is
shown that (5) is uniquely solvable in ˙TH−1/2

(S).

3. Solution of the Inverse Problem
3.1. Uniqueness When the Supporting Hyperplane Is Known.

The following lemma shows that for a planar screen, the tangential density of the
far-field pattern is uniquely determined.

Lemma 1. Assume that ρ is a compactly supported tangential distributional density on a hyperplane
L. Let

ρ∞(x̂) = x̂ × ⟨ρ, exp{−ik⟨x̂, ·⟩}⟩, x̂ ∈ S2.

Then the map ρ 7→ ρ∞ is injective.

Proof. We may assume that coordinates have been chosen so that L is defined by {x; x3 =
0}. Let ρ = adσ where a = (a1, a2) ∈ E ′(R2) and dσ is the surface measure on the
hyperplane L. Then, ρ∞ = 0 is equivalent to

ξ × (â1(ξ
′), â2(ξ

′), 0) = 0, ξ = (ξ ′, (k2 − |ξ ′|2)1/2), |ξ ′| < k,

and hence, â1 and â2 vanish in the unit ball of R2 and since they are entire functions, they
are identically zero.

This implies that the far field E∞ (or H∞ for that matter) uniquely determines the
density [ν × Hsc] ds when the screen S is flat, i.e., included in a hyperplane.

Proposition 5. Let S be a C2 screen contained in a supporting hyperplane L and let (e0, h0) be
an electromagnetic plane wave with wave number k with electric and magnetic polarisations p and
q. Assume that ρ ∈ ˙TH−1/2

(S) solves −ν × e0 = −iN(ν × ρ)/ωε on S. Then, if p or q are not
parallel to θ and ν × (p × θ) ̸= 0 the density ρ has full support, i.e., supp(ρ) = S.

Proof. Assume coordinates chosen so that the L = {x ∈ R3; x3 = 0}. Assume that there is
a relatively open U ⊂ S such that ρ = 0. Define

h̃ = KR3\S(ν × ρ), ẽ =
i

ωε
∇× h̃.

Then, h̃, ẽ ∈ L2
loc, curl(R

2 \ S) and they satisfy Maxwell’s equations

∇× ẽ = iωµ h̃, ∇× h̃ = −iωε ẽ.

The second equation follows from the definition and the first is an immediate consequence
of the vector Green’s formulas:

∇× ẽ =
i

ωε
(∇×)2 h̃ =

i
ωε

(∇∇ · −∆)(KR3\S(ν × ρ)) =
i

ωε
(∇∇ · −∆)(∇× SR3\S(ν × ρ))

=
i

ωε
k2 ∇× SR3\S(ν × ρ) = −iωµ∇× SR3\S(ν × ρ) = −iωµ h̃.
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From the jump relations of the vector potentials, [ν × h̃] = [ν × ρ̃] = 0 on U and

−ẽ = − i
ωε

∇× h̃ = − i
ωε

NR3\S(ν × ρ)

we have
ν × ẽ|S = iN(ν × ρ)/ωε|S = ν × e0.

Let E = e0 − ẽ and H = h0 − h̃. Then, from the above observations, (E, H) solves (1) and

ν × E|S = 0, [ν × H]|U = 0.

Now, let Ê be an extension of E from the upper half-space {x3 > 0} to the lower half-space
so that it is odd in the tangential component and even in the normal component, i.e.,

Ê(x1, x2,−x3) = (−E1(x),−E2(x), E3(x)), x = (x1, x2, x3),

and let Ĥ be an extension of H, which is even in the tangential component and odd in the
normal component,

Ĥ(x1, x2,−x3) = (H1(x), H2(x),−H3(x)), x = (x1, x2, x3).

Then, a straightforward computation shows that

∇× Ê = iωµ Ĥ, ∇× Ĥ = −iωε Ê, x3 ̸= 0.

Let V = U ×R. Then, since the tangential components of E vanish on S and the tangential
components of H are continuous across U, this holds also for the tangential components of
Ê and Ĥ across U. Thus, (Ê, Ĥ) solves

∇× Ê = iωµ Ĥ, ∇× Ĥ = −iωε Ê, x ∈ V,

and hence, by unique continuation, E = Ê and H = Ĥ in V and, thus, also in R3 \ S, since
ν × Ĥ = ν × H on U. Hence, we can write

e0 = Ê + ẽ, h0 = Ĥ + h̃. (6)

We say that a vector field has parity 1 if the tangential component is even and the normal
component is odd with respect to {x3 = 0}, and it has parity −1 if the tangential component
is odd and the normal component is even. Notice, then, that since h̃ is the EM-double
layer of a tangential density, it has parity −1. Hence, ẽ = −i∇× h̃/ωε has parity 1. Also,
the decomposition of a field as a sum of fields with parity +1 and −1 is unique. Since ẽ
satisfies the Silver–Müller radiation condition, the incoming field e0 must have parity −1
and similarly, h0 must have parity 1. Recall that

e0(x) = µ1/2(p × θ)eik⟨θ,x⟩, h0(x) = ε1/2(q × θ)eik⟨θ,x⟩, q = p × θ,

Hence, the parity 1 part of e0 is given by

µ1/2(q1e(+)
0 , q2e(+)

0 , iq3e(−)
0 ),

where e(+)
0 (x) = cos(k⟨θ, x⟩) and e(−)

0 (x) = sin(k⟨θ, x⟩). This vanishes identically if and
only if q = 0, i.e., p × θ = 0. Similarly, the parity −1 part of h0 is

ε1/2(i(q × θ)1e(−)
0 , i(q × θ)2e(−)

0 , (q × θ)3e(+)
0 ),

which vanishes identically if and only if q × θ = 0. Since p, q and θ are unit vectors and
q = p × θ, this is not possible.
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3.2. Unique Determination of a Planar Screen

We show that the supporting hyperplane uniquely determines the far field of a single
scattering solution. This, combined with the unique determination results of the previous
subsection, then proves Theorem 1.

Proposition 6. Assume S1 and S2 are two planar screens contained in supporting hyperplanes
π1 and π2, respectively. Assume u1 = (e1, h2) and u2 = (e2, h2) are scattering solutions for the
screens S1 and S2 corresponding to the same initial field and having equal non-vanishing far fields.
Then, π1 = π2.

Proof. Let ρ1 and ρ2 be the jumps of ν1 × h1 and ν2 × h2 across S1 and S2, respectively. Here,
νi is the specified unit normal to S1. Since u1 and u2 have equal far fields and R3 \ (S1 ∪ S2)
is connected, we must have u1 = u2 there. Hence, both fields must be smooth across
(S1 ∪ S2) \ (S1 ∩ S2), i.e., both densities ρ1 and ρ2 are supported in the intersection S1 ∩ S2.
If the planes π1 and π2 intersect transversally, the jumps are supported on a codimension 2
subspace, and since they belong to ˙TH−1/2

(S1 ∪ S2), they must vanish (Note that a non-
vanishing, compactly supported distribution density on a codimension 2 submanifold of
R3 belongs to Hs if and only if s < −1. This follows, for example, from estimates at the
end of Section 7.1 in [16] by applying these to a suitable dyadic decomposition.) if the
intersection is transversal, so the far fields also vanish.

4. Conclusions

In this article, we proved that a non-vanishing far-field pattern of a single plane wave
uniquely determines a planar super-conducting screen. The proof was based on reduction
of the scattering problem to a single tangential integral equation on the screen where the
unknown is the jump of the tangential component of the scattered magnetic field. We
showed that the far field uniquely determines the jump, and that screen is what supports
the jump. We plan to generalise this to compact, real-analytic screens in a future work.

However, this will require more advanced techniques. As a possible application, we
mention the following problem: Suppose we have an inaccessible array of radars from
which we can only obtain distant data. Such information could be, say, whether the array
uses classical dipole antennas or more advanced tripole antennas [20]. Our result indicates
that such information can, in principle, be obtained with a single measurement.
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THE FOURIER, HILBERT, AND MELLIN TRANSFORMS ON A
HALF-LINE\ast 

EMILIA L. K. BL\r ASTEN\dagger , LASSI P\"AIV\"ARINTA\ddagger , AND SADIA SADIQUE\ddagger 

Abstract. We are interested in the singular behavior at the origin of solutions to the equation
H \rho = e on a half-axis, where H is the one-sided Hilbert transform, \rho an unknown solution, and e a
known function. This is a simpler model problem on the path to understanding wave field singularities
caused by curve-shaped scatterers in a planar domain. We prove that \rho has a singularity of the form
M [e](1/2)/

\surd 
t, where M is the Mellin transform. To do this, we use specially built function spaces

M \prime (a, b) by Zemanian, and these allow us to precisely investigate the relationship between the Mellin
and Hilbert transforms. Fourier comes into play in the sense that the Mellin transform is simpy the
Fourier transform on the locally compact Abelian multiplicative group of the half-line, and as a more
familiar operator, it guides our investigation.

Key words. half-line, Mellin transform, singular behavior, vertical strip, unique solution

MSC codes. 46F12, 68R10, 68U05

DOI. 10.1137/23M1560628

1. Introduction. In the present article, we let R. H. Mellin meet J. B. J. Fourier
and D. Hilbert. More exactly, we study the connection of the Mellin transform to the
Hilbert and Fourier transforms in a half-axis \BbbR + = (0,\infty ). Mellin defined his trans-
form in 1886 [12] in connection with his studies on certain difference and differential
equations. A bit more than a decade later, Hilbert presented a new singular integral
transform [10] at the third International Congress of Mathematicians, 1904, where he
gave a lecture about the Riemann--Hilbert problem. Fourier's work preceded these
works of Mellin and Hilbert by more than 60 years [7].

The classical Hilbert transform on the real line is defined by the formula

H f(x) =Cauchy Principal value integral

\int \infty 

 - \infty 

f(y)

x - y
dy.(1)

The connection to the Fourier transform F is the well-known formula

F (H f)(\xi ) = i sgn \xi \widehat f(\xi ),(2)

where \widehat f = Ff ; see [11, 19, 20]. However, the Mellin transform is defined on a half-
axis, and the connection to the Hilbert transform, and especially to the Fourier trans-
form, is less widely known, despite being a quite old result [6, 9]. The secret to
these connections is lying on the fact that the half-axis is a locally compact Abelian
group with respect to multiplication. The Fourier transform is well defined in all such
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groups, and the convolution theorem holds [18]. Since the one-sided Hilbert transform
[11] satisfies

H f(t) = p.v.

\int \infty 

0

f(t/s)

1 - s
ds,

which is a convolution in the multiplicative group (\BbbR +, \cdot ), we have discovered the
connection of the Hilbert and Fourier transforms1 in \BbbR +. It remains to find out the
Fourier transform in \BbbR +. After this lengthy introduction, it should be no big surprise
that it is exactly the Mellin transform. All of this is explained with more detail in
section 2 below.

In this article, we are interested in the so-called one-sided Hilbert transform

H f(x) = p.v.
1

\pi 

\int +\infty 

0

f(y)

x - y
dy.(3)

Other terminology for this transform is the reduced Hilbert transform, the half-Hilbert
transform, or the semi-infinite Hilbert transform [11, section 12.7]. Our interest is in
understanding the existence, uniqueness, and behavior at the origin of solutions \rho to
the inhomogenous equation

H \rho = e(4)

for a given e.
Equation (4) has previously been studied in a classical context, with \rho and e

being classically smooth or Lebesgue integrable. See, for example, [5, 14, 17, 16].
These references have a practical point of view, with emphasis on computations or
asymptotic expansions. Our motivation is to understand the singular behavior of the
solution in cases where the righthand side might not be smooth or integrable in the
classical sense. The motivation for this comes from studying scattering of quantum
or acoustic waves from a crack or screen in a two-dimensional domain. The three-
dimensional problem for a flat two-dimensional scattering screen was studied in [4].
In that paper, an incident probing wave ui satisfying (\Delta +k2)ui = 0 in \BbbR 3 reacts with
a screen S, and, as a consequence, a scattered wave us is emitted. These are tied
together mathematically as follows:

(\Delta + k2)us = 0, \BbbR 3 \setminus S,(5)

ui(x) + us(x) = 0, x\in S,(6)

r
\Bigl( \partial 
\partial r

 - ik
\Bigr) 
us = 0, r\rightarrow \infty ,(7)

where r = | x| and the limit is uniform over all directions \^x = x/r as r \rightarrow \infty . The
research question was whether the far-field pattern of us uniquely determines the shape
S. Analyzing the problem leads to studying the support of a generalized function \rho ,
which satisfies an integral equation of the form

 - 
\int 

S

\Phi (x - y)\rho (y)d\sigma (y) = ui(x),(8)

where \Phi is the Green's function for \Delta + k2 in three dimensions. Notice how it is
analogous to (4). The methods in [4] apply to flat scatterers. For more general

1This is why we study the Hilbert transform on a half-axis and not on a finite interval as in
section 4 of [23] or in [2].
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objects, it is fruitful to study the singular behavior of solutions to inhomogenous
integral equations as above; see [1, 8, 21] and the references therein related to the
crack problem for the conductivity equation. The problem has yet to be solved in the
acoustic setting.

This study is our first step into understanding the singular behavior of waves
near the endpoint of cracks or screens in an acoustic medium. Simplifying the applied
problem leads to the study of H \rho = e on the half-line in a class of generalized
functions. Our approach is to use the Mellin transform

M [f ](s) =

\int \infty 

0

f(t)ts - 1dt(9)

defined for generalized functions. We follow the approach of Zemanian [24]. See
sections 3 and 4 for more details. We then see how the Hilbert transform applies to
these generalized functions in section 5. In section 6, we prove the following theorems,
but first, some explanation of the notation. An intuitive way of thinking of these
spaces is that u\in M \prime (a, b) if informally

u(t) =O(t - a), t\rightarrow 0,

u(t) =O(t - b), t\rightarrow \infty .

A more precise understanding is that u \in M \prime (a, b) if the Mellin transform M [u](s)
is holomorphic in the vertical strip s \in S(a, b) defined by a < \Re (s) < b and has
polynomial growth on vertical lines. This is enough to understand our theorems.

Theorem 1.1. Let e \in M \prime (a, b) with 0 \leq a < b \leq 1. If b \leq 1/2 or 1/2 \leq a or
a< 1/2< b and M [e](1/2) = 0, then

H \rho = e

has a unique solution \rho = \rho 0 \in M \prime (a, b). Furthermore, if \rho \prime \in M \prime (a\prime , b\prime ) is another
solution with S(a\prime , b\prime )\subset S(a, b), then \rho \prime = \rho 0 in M \prime (a\prime , b\prime ).

Theorem 1.2. Let e \in M \prime (a, b) with 0 \leq a < 1/2 < b \leq 1 and M [e](1/2) \not = 0.
Then, H \rho = e has no solutions \rho whose Mellin transform contains s = 1/2 in its
strip of holomorphicity. Instead, there are unique solutions \rho  - \in M \prime (a,1/2) and
\rho + \in M \prime (1/2, b), and they satisfy

\rho +(t) - \rho  - (t) =
4

\pi 
M [e](1/2)

1\surd 
t
.(10)

Furthermore, if \rho \prime \in M \prime (a\prime , b\prime ) is another solution with S(a\prime , b\prime ) intersecting S(a,1/2)
or S(1/2, b), then \rho \prime = \rho  - or \rho \prime = \rho + in M \prime (a\prime , b\prime ), respectively.

Equation (10) shows that \rho + has a singularity of type t - 1/2 unless the Mellin
transform of e vanishes at s = 1/2. This suggests that acoustically scattered waves
from most cracks or screens will have a singularity at their ends. However, if

e(t) =

\Biggl\{ 
ei

\surd 
t, 0\leq t\leq (2\pi )2,

0, t > (2\pi )2,

it turns out that M [e](1/2) = 0. In this case, some incident plane wave might not
have as strong a singularity at t = 0 for the curve \Gamma (t) = (t,

\surd 
t) as for most other

curves or incident waves. Further analysis is needed and will appear in forthcoming
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papers, but in this paper, we focus on the intrinsic properties of the one-sided Hilbert
transform.

One might wonder what the role of the point s = 1/2 is in the theorems above.
It arises as the only zero of the Mellin transform cot(\pi s) of the kernel of the Hilbert
transform H that is in the strip 0 < \Re s < 1. This strip comes from the technical
proof showing that the kernel p.v.1/(1 - t) is Mellin transformable; see Lemma 5.1.

2. Hilbert and Mellin transforms for measurable functions. In this
section, we define the Hilbert transform and Mellin transform in \BbbR + and establish
their connection. Before that, we recall some known facts about Fourier transforms
on locally compact Abelian groups. Then, we show that in the case of the multiplica-
tive group (\BbbR +, \cdot ), we get exactly the Hilbert transform.

Definition of the LCA and Haar measure. Let G = (X, \cdot ) be any locally
compact Abelian (LCA) group. Usually [18] the group operation is denoted by ad-
dition and identity element by 0. Since our main interest is the multiplicative group
G+ = (\BbbR +, \cdot ) we denote the group operation by a product xy, x, y \in X and by 1 the
identity element.

It is well known that there exists a measure m on X that is invariant in the group
action; i.e.,

m(xE) =m(E)(11)

for every x \in X and every Borell set E. Such a measure is called the Haar measure,
and it is unique up to a positive constant. If m and m\prime are two Haar measures on G,
then m\prime = \lambda m for some \lambda > 0. It is quite easy to see that, in G+ = (\BbbR +, \cdot ), the Haar
measure is dt/t, i.e., the measure m with

m(E) =

\int 

E

dt

t
(12)

for any Borell set in \BbbR +. If m is a Haar measure on an LCA group G, we write Lp(G)
instead of Lp(m). Note that

\| f\| Lp(G) =

\biggl( \int 

X

| f(x)| pdm(x)

\biggr) 1/p

(13)

is scaling invariant: If fx(y) = f(yx - 1), then \| fx\| Lp(G) = \| f\| Lp(G). In particular, for
G+, we have ft(s) = f(s/t) and

\int 

\BbbR +

| ft(s)| p
ds

s
=

\int 

\BbbR +

| f(s)| p ds
s
,(14)

which can, of course, also be obtained directly by changing variables.

Fourier transforms in an LCA group. If G= (X, \cdot ) is an LCA group, we call
a function \gamma :X\rightarrow \BbbC a character, if | \gamma (x)| = 1 for all x\in X and

\gamma (x \cdot y) = \gamma (x)\gamma (y)(15)

for every x, y \in X. So, a character on G is a homomorphism from G to T , where T is
the group of rotations of the unit circle in the complex plane.

The set of all characters on a given LCA group is denoted by \Gamma . We equip it with
multiplication

(\gamma 1\gamma 2)(x) = \gamma 1(x)\gamma 2(x)(16)

for x\in X. This makes \Gamma a group. It is called the dual group of G.
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We are ready to define the Fourier transform of f \in L1(G) by

\widehat f(\gamma ) =
\int 

X

f(x)\gamma (x - 1)dm(x)(17)

for \gamma \in \Gamma . We denote

\gamma (x) = (x,\gamma )(18)

from now on.

Example 2.1.
1. If G= (\BbbR ,+), we have, for \xi \in \BbbR , that

\gamma \xi (x) = eix\xi 

is a character, and by denoting \gamma \xi simply by \xi , the Fourier transform turns
out to be

\widehat f(\xi ) =
\int \infty 

 - \infty 
f(x)e - ix\xi dx.

Hence, the dual group of (\BbbR ,+) is (\BbbR ,+) itself.
2. If G= T , the dual group is (\BbbZ ,+), and

\widehat f(n) = 1

2\pi 

\int 2\pi 

0

f(ei\theta )e - in\theta d\theta .

3. By the Pontryagin duality theorem, the dual group of \BbbZ is T , and

\widehat f(eix) =
\int \infty 

 - \infty 
f(n)e - inxdm\BbbZ (n) =

\infty \sum 

n= - \infty 
f(n)e - inx.

The convolution of f \in L1(G) and g \in Lp(G), 1\leq p <\infty is defined as

f \ast g(x) =
\int 

X

f(xy - 1)g(y)dm(y),(19)

and the convolution theorem

\widehat f \ast g(\gamma ) = \widehat f(\gamma )\widehat g(\gamma )(20)

holds in any LCA group [18].
To find out the Fourier transform in the group of our main interest, G+ = (\BbbR +, \cdot ),

we need to find its dual space \Gamma . But this is simple: For z = ix, x\in \BbbR , define

\gamma z(t) = tz = tix, t\in \BbbR +.(21)

Clearly, this is a character in G+ since

\gamma z(ts) = (ts)ix = tixsix

for s, t\in \BbbR +.
It is not difficult to see [18, section 2.2] that there are no other characters. Hence,

we can interpret that the dual group of G+ is the additive imaginary axis of the
complex plane, and the Fourier transform is given by

\widehat f(z) =
\int \infty 

0

tzf(t)
dt

t
(22)
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for f \in L1(G+) and z \in i\BbbR . But this is exactly the definition of the Mellin transform
[12, 22] whenever the righthand side is integrable. Thus, we have shown that the
Mellin transform is nothing other than the Fourier transform in the multiplicative
group on \BbbR +. Accordingly, all the results for the Fourier transforms in LCA groups,
such as Plancherel's theorem, the inversion formula, and convolution theorem, follow
now, as a matter of routine, from the general theory of Fourier analysis in LCA groups
[18]. The connection to the Hilbert transform is in the formula

H f(t) = p.v.

\int \infty 

0

1

1 - t/s
f(s)

ds

s
= h\vee f(t),(23)

where h= p.v. 1
1 - t and \vee stands for the Mellin convolution (\BbbR +, \cdot ). The convolution

theorem suggests that (23) implies that the Mellin transform of H f is

MH f(z) = \widehat h(z) \widehat f(z) = cot(\pi z) \widehat f(z),(24)

where \widehat is the Fourier transform on the LCA group (\BbbR +, \cdot ), or, in other words, the
Mellin transform. The second equality follows from Example 8.24.II in [15],

p.v.

\int \infty 

0

tz
1

1 - t

dt

t
= \pi cot(\pi z).(25)

The problem is that h is not a function but a proper distribution. The theory of
distributions does not exist for general LCA groups, and we must develop the theory
for Mellin and Hilbert transforms specifically for the group (\BbbR +, \cdot ). This is done in
the sections below.

Implications of LCA group theory. To end this introduction, we give an
exercise on how to use this new connection of the Fourier transform in LCA groups
and the Mellin transform to prove generally challenging results. For the reader's
convenience, we also give its solution.

Exercise 2.1. Assume that f \in L1(\BbbR +, dt/t) and that its Mellin transform M f \in 
L1(i\BbbR ). Then, f must be continuous, and

lim
t\rightarrow 0+

f(t) = 0.(26)

Before giving a solution, we make two remarks about the result. It is relatively
easy to construct a function in L1(\BbbR +, dt/t) that is continuous, but the limit in (26)
does not exist. We can even construct it so that it is positive and unbounded. How-
ever, if the limit exists, then it must be equal to zero.

Solution. We denote G+ = (\BbbR +, dt/t) and by \Gamma + its dual group (i\BbbR ,+). For
any LCA group G, the Fourier transform \widehat f of a function belonging to L1(G,m), m
being a Haar measure, is in the space C0(\Gamma ), where \Gamma is its dual group and C0(\Gamma ) is
the closure of compactly supported continuous functions in L\infty (\Gamma ) [18, section 1.2.3].
Hence, in our case, \widehat f \in L1(i\BbbR )\cap C0(i\BbbR ). We do not need this to solve the exercise but
use instead Pontryagin's duality theorem [18, section 1.5] to get first f(t) =Fg( - t),
where g is the Fourier transform of f , namely, g= \widehat f . Next, we apply the above result
in the context of the dual pair (\Gamma +,G+) instead of the original pair (G+,\Gamma +). We
finally obtain that f \in C0(G+), which means that f is continuous and f(t) = 0 when
t\rightarrow 0.
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3. Space of Mellin transformable distributions. In this section, we define
a class of distributions on the positive real axis. The Mellin transform of these dis-
tributions will be functions that are holomorphic on a vertical strip in the complex
plane and also polynomially bounded as the imaginary part of the argument grows.
This class of distributions will be denoted by M \prime (a1, a2), where a1, a2 \in \BbbR defines the
strip of holomorphicity. The construction is analogous to how tempered distributions
S \prime (\BbbR ) are defined for extending the range of the Fourier transformation.

The strategy is loosely described in [3], which follows [13]. The general idea is
to define spaces of ordinary smooth test functions on \BbbR + that contain compactly
supported smooth test functions D(\BbbR +) and also functions of the form ts - 1 for some
complex numbers s. One then defines the duals of these as the spaces of interest. We
note that both [3] and [13] are scant on the precise details. In fact, the latter uses the
notation Tp,q and implicitly T\alpha ,\omega to mean different things. This causes confusion when
applied to real cases. For example, the function g(t) = 1 for 0< t< 1 and g(t) = 0 for
t\geq 1 belongs to T0,1 when interpreted in the latter way but not in the former. A more
reliable reference is [24]. Although the test function spaces are defined differently than
in the former references, the final space of Mellin transformable distributions ends up
being the same.

Section 11.3.3. in [13] compares their initial test function space Mp,q to spaces
M (a, b) defined by Zemanian in [24] and concludes rightly that the function g above
does not belong to M \prime 

0,\infty . However, these are not defined in Zemanian; instead, a
larger space M \prime (0,\infty ) is defined, and it does contain that function.

We start by describing a space of test functions that will be used to define the
Mellin transform of a class of distributions. This summarizes section 4.2 of Zemanian
[24].

Definition 3.1. Let a1 < a2 be real numbers. Then, Ma1,a2
contains all smooth

functions \phi :\BbbR + \rightarrow \BbbC such that, for any k \in \BbbN , we have \| \phi \| a1,a2,k
<\infty , where

\| \phi \| a1,a2,k
= sup

0<t<\infty 
\zeta a1,a2(t)t

k+1

\bigm| \bigm| \bigm| \bigm| 
dk

dtk
\phi (t)

\bigm| \bigm| \bigm| \bigm| ,(27)

\zeta a1,a2(t) =

\Biggl\{ 
t - a1 , 0< t\leq 1,

t - a2 , 1< t<\infty .
(28)

A sequence (\phi j)
\infty 
j=1 \subset Ma1,a2

converges to \phi \in Ma1,a2
if

\| \phi j  - \phi \| a1,a2,k
\rightarrow 0(29)

as j\rightarrow \infty for each k= 0,1,2, . . ..
For a1 < a2 real or \pm \infty , we define M (a1, a2) as follows. A function \phi is an

element of M (a1, a2) if \phi \in Ma,b for some a1 < a < b < a2. A sequence (\phi j)
\infty 
j=1 \subset 

M (a1, a2) converges to it if a tail (\phi j)
\infty 
j=j0

, j0 \in \BbbN converges to \phi in some fixed space
Ma,b with a1 <a< b< a2.

Lemma 3.2. Let a1, a2 be real numbers, and let s \in \BbbC . Let \phi (t) = ts - 1 for t > 0.
Then, \phi \in Ma1,a2

if and only if a1 \leq \Re (s) \leq a2. As a consequence, \phi \in M (a1, a2) if
and only if a1 <\Re (s)<a2.

Proof. We have

tk+1 - a1

\biggl( 
d

dt

\biggr) k

\phi (t) = (s - 1)(s - 2) . . . (s - k)ts - a1 ,(30)
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and this is bounded in the interval (0,1) if and only if \Re (s) \geq a1. We see similarly
that tk+1 - a2(d/dt)k\phi (t) is bounded on (1,\infty ) if and only if \Re (s) \leq a2, which proves
the claim.

The above and the following lemma show that the M (a1, a2), a1 <a2 are nontriv-
ial. As a consequence of the following, we see that the linear functionals that we are
building are in fact distributions D \prime (\BbbR +). We skip the proof. It is worth noting that
they allow exponential growth and so cannot be interpreted as tempered distributions.

Lemma 3.3. Lets D(\BbbR +) be the space of compactly supported smooth test functions
on \BbbR + with the usual topology. Then, D(\BbbR +) \subset M (a1, a2) continuously for any
a1 <a2 real or infinite. The inclusion is dense.

We will introduce the space of distributions, which will form a natural domain
for the Mellin transform. For intuition, see section 4.3 in [24].

Definition 3.4. Let a1 < a2 be real or infinite. By M \prime (a1, a2), we mean the
space of continuous linear functionals on M (a1, a2). In detail, u \in M \prime (a1, a2) if the
following hold:

1. \langle u,\phi \rangle is a complex number for each \phi \in M (a1, a2).
2. \langle u, c1\phi 1+ c2\phi 2\rangle = c1\langle u,\phi 1\rangle + c2\langle u,\phi 2\rangle for all c1, c2 \in \BbbC and \phi 1, \phi 2 \in M (a1, a2).
3. \langle u,\phi j\rangle \rightarrow 0 as j\rightarrow \infty if \phi j \rightarrow 0 in M (a1, a2)

Furthermore, we say that a sequence uj \rightarrow 0 in M \prime (a1, a2) if \langle uj , \phi \rangle \rightarrow 0 in \BbbC for all
\phi \in M (a1, a2).

Example 3.1. Let

g(t) =

\Biggl\{ 
1, 0< t< 1,

0, t\geq 1.
(31)

Then, g \in M \prime (a1, a2) if and only if a1 \geq 0 and a2 > a1, where the latter is because
we have not allowed a2 = a1 in the definitions. Let a2 > a1 \geq 0, \phi \in M (a1, a2), and
(\phi j)

\infty 
j=1 \subset M (a1, a2) converging to 0 in that space. Definition 3.1 implies that there is

a, b such that a1 <a< b< a2 with \phi ,\phi j \in Ma,b and the latter converging to 0 in that
same space. We have not defined it explicitly, but the interpretation of an ordinary
function as a potential element of Mellin transformable distributions is by integrating
the function multiplied by a test function. We see that

\langle g,\phi \rangle =
\int 1

0

\phi (t)dt=

\int 1

0

ta - 1t0+1 - a\phi (t)dt\leq 
\int 1

0

ta - 1 dt\| \phi \| a,b,0 =
1

a
\| \phi \| a,b,0.(32)

The same implies that \langle g,\phi j\rangle \leq a - 1\| \phi j\| a,b,0 \rightarrow 0 as j \rightarrow \infty . Hence, g \in M \prime (a1, a2)
when a2 >a1 \geq 0.

Next, assume that a2 >a1 < 0 and that g \in M \prime (a1, a2). Then, there is p < 0 such
that a1 < p< a2. Let \phi (t) = tp - 1. By Lemma 3.2, we see that \phi \in M (a1, a2), but by
(32), it is clear that \langle g,\phi \rangle =\infty . Hence, g /\in M (a1, a2) when a1 < 0.

Remark 3.5. Lemma 3.3 implies that M \prime (a1, a2) \subset D \prime (\BbbR +) for any a1 < a2 and
that the inclusion is continuous. However, the converse does not hold because, for
example, t\rightarrow tz is in D \prime (\BbbR +)\setminus M \prime (a1, a2) for any z \in \BbbC and a1 <a2. Also, it looks like
arbitrary elements of

L2,c(\BbbR +) =

\biggl\{ 
f :\BbbR + \rightarrow \BbbC measurable

\bigm| \bigm| \bigm| \bigm| 
\int \infty 

0

| f(t)| 2t2c - 1dt <\infty 
\biggr\} 

(33)
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do not belong to M \prime (a1, a2). However, it may happen that f \in M \prime (a1, a2) might
satisfy f \in L2,c(\BbbR +), and then, a Plancherel-type theorem involving Mellin transform
holds.

Our strategy for this section is the following. We will define the Mellin transform
for elements of M \prime (a1, a2) and then study how the Hilbert transform on \BbbR + acts on
them. After this, we will prove estimates for elements in L2,c(\BbbR +)\cap M \prime (a1, a2) (which
are dense in L2,c(\BbbR +)). Continuity will then imply the estimates for L2,c(\BbbR +). Note
that tz - 1 \in M (a1, a2) even though it is not in M \prime (a1, a2).

4. The Mellin transform for distributions. We are now ready to define the
Mellin transform of u \in M \prime (a1, a2). Recall that if u \in M \prime (a1, a2) can be represented
in the form

\langle u,\phi \rangle =
\int \infty 

0

fu(t)\phi (t)dt, \phi \in M (a1, a2)(34)

for some measurable function fu :\BbbR + \rightarrow \BbbC , then we identify u and fu. Recall that the
Mellin transform of a measurable function f :\BbbR + \rightarrow \BbbC is given by

M f(s) = \widetilde f(s) =
\int \infty 

0

f(t)ts - 1 dt(35)

for those s\in \BbbC for which the integral converges in the sense of Lebesgue. Inspired by
these two observations, we define the following.

Definition 4.1. Let a1, a2 \in \{  - \infty ,+\infty \} \cup \BbbR with a1 <a2, and let u\in M \prime (a1, a2).
Then, the Mellin transform of u is

Mu(s) = \widetilde u(s) = \langle u, ts - 1\rangle (36)

for s\in \BbbC , a1 <\Re (s)<a2.
Remark 4.2. Equation (36) is well defined because the test function \phi (t) = ts - 1

is in M (a1, a2) whenever a1 <\Re (s)<a2 by Lemma 3.2.

It turns out that the Mellin transform of a distribution in M \prime (a1, a2) has many
nice properties. We summarize some of them. For proofs and details, see [24].

Lemma 4.3. If f \in M \prime (a1, a2) with a1 < a2 real numbers or  - \infty ,+\infty , then
s \mapsto \rightarrow M f(s) is holomorphic in a1 <\Re (s)<a2.

Definition 4.4. When we say M f has strip of holomorphicity S (or Sf ), we
mean that

S = \{ s\in \BbbC | a1 <\Re (s)<a2\} (37)

for some a1 < a2 and that M f is holomorphic on S. If f \in M \prime (a1, a2) with S as
above, we write f \in M \prime 

S or f \in M \prime 
Sf
. Also, given a1, a2 \in \BbbR \cup \{  - \infty ,+\infty \} , we denote

S(a1, a2) = \{ s\in \BbbC | a1 <\Re (s)<a2\} .(38)

The Mellin transform for distributions has several properties.

Theorem 4.5. In the following, we assume that f \in M \prime 
Sf

and g \in M \prime 
Sg
. It holds

that the following are true:
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1. If n\in \BbbN , then ( - t d/dt)nf \in M \prime 
Sf

and M [( - t d/dt)nf ](s) = snM [f ](s).
2. If Sf \cap Sg \not = \emptyset and M f = M g on Sf \cap Sg, then f = g as distributions in

M \prime 
Sf\cap Sg

and a fortiori in D \prime (\BbbR +).
3. A function F : Sf \rightarrow \BbbC is the Mellin transform of some f \in M \prime 

Sf
if and only

if
(a) F is holomorphic in Sf and
(b) for any closed substrip of Sf of the form \alpha 1 \leq \Re (s) \leq \alpha 2, there is a

polynomial P such that | F (s)| \leq P (| s| ) on that strip.
4. Let Sf \cap Sg = \{ s\in \BbbC | a1 <\Re (s)<a2\} . Then,

M [f \vee g](s) =M f(s)M g(s), a1 <\Re (s)<a2,(39)

where

(f \vee g)(\tau ) =
\int \infty 

0

f(t)g
\Bigl( \tau 
t

\Bigr) dt
t
, \tau > 0(40)

if f and g are integrable functions, and otherwise,

\langle f \vee g, \theta \rangle = \langle f,\psi \rangle , \psi (t) = \langle g, \theta t\rangle (41)

for \theta \in M (a1, a2), t > 0, and \theta t(\tau ) = \theta (t\tau ).

Recall from section 2 that f \vee g in (40) is the convolution of the multiplicative group
(\BbbR +, \cdot ), and dt/t is its Haar measure.

The following gives an inversion formula for the Mellin transform.

Theorem 4.6. If F : S(a1, a2)\rightarrow \BbbC is holomorphic and satisfies | F (s)| \leq K| s|  - 2

for some finite constant K, and we set

f(t) =
1

2\pi i

\int \sigma +i\infty 

\sigma  - i\infty 
F (s)t - s ds(42)

for a fixed \sigma \in (a1, a2), then f :\BbbR + \rightarrow \BbbC is continuous, does not depend on the choice
of \sigma , and is in M \prime (a1, a2). Furthermore, M f = F on S(a1, a2).

The following corollary is Theorem 4.4.1 in [24]. In that reference, it is used to
prove the result that corresponds to item 3 of Theorem 4.5 of our article,2 and it gives
another inversion formula for the cases where the theorem above cannot be applied,
namely, if F has a singularity on the border of S(a1, a2).

Corollary 4.7. Let F : S(a1, a2) \rightarrow \BbbC be holomorphic, and let Q : \BbbC \rightarrow \BbbC be a
polynomial that has no zeroes in S(a1, a2) such that

\bigm| \bigm| \bigm| \bigm| 
F (s)

Q(s)

\bigm| \bigm| \bigm| \bigm| \leq 
K

| s| 2
, b1 <\Re (s)< b2(43)

for some a1 < b1 < b2 <a2 and a finite constant K. Set

g(t) =
1

2\pi i

\int \sigma +i\infty 

\sigma  - i\infty 

F (s)

Q(s)
t - s ds(44)

for some b1 < \sigma < b2. Then, g : \BbbR + \rightarrow \BbbC is continuous and belongs to M \prime (b1, b2), as
does f(t) =Q( - t d/dt)g(t). Furthermore, M f = F on S(b1, b2).

2Strictly speaking, this applies to the corresponding results for the Laplace transform. The
results from the Mellin transform are only stated.
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5. The Hilbert transform. We will need to know the Mellin transform of the
distribution

\langle H,\phi \rangle = 1

\pi 
lim

\varepsilon \rightarrow 0+

\biggl( \int 1 - \varepsilon 

0

+

\int \infty 

1+\varepsilon 

\biggr) 
\phi (t)

1 - t
dt,(45)

namely, H = \pi  - 1/(1 - t) in the principal value sense. It is almost the kernel of the
Hilbert transform of a function vanishing on \BbbR  - ,

H f(x) =
1

\pi 
p.v.

\int \infty 

0

f(y)

x - y
dt.(46)

In fact, formally

H f(x) = - 1

\pi 
p.v.

\int \infty 

0

1

1 - t
f
\Bigl( x
t

\Bigr) dt
t
= - (H \vee f)(x),(47)

which can be deduced from (46) by change integration variables y = x/t and dy =
 - xdt/t2.

Lemma 5.1. The distribution 1/(1  - t) in the principal value sense belongs to
M \prime (0,1). Furthermore, it can be written as

\biggl\langle 
1

1 - t
, \phi 

\biggr\rangle 
=

\Biggl( \int 1/2

0

+

\int \infty 

3/2

\Biggr) 
\phi (t)

1 - t
dt - 

\int 3/2

1/2

\phi (t) - \phi (1)

t - 1
dt,(48)

where 1/(1 - t) is interpreted as a pointwise function on the righthand side. Lastly,
there is a finite C such that | \langle 1/(1 - t), \phi \rangle | \leq C(\| \phi \| 0,1,0 + \| \phi \| 0,1,1).

Proof. Let us denote u = 1/(1 - t), and recall that the distribution pairings are
done with the principal value. We will first prove that \langle u,\phi \rangle \in \BbbC for \phi \in M (0,1). The
latter means there are 0 < a < b < 1 such that \phi \in Ma,b. In particular, (27) implies
that \| \phi \| a,b,0 and \| \phi \| a,b,1 are finite. Let h(t) = 1 for 1/2 < t < 3/2, and let h(t) = 0
otherwise. Then,

\langle u,\phi \rangle = lim
\epsilon \rightarrow 0

\biggl( \int 1 - \epsilon 

0

+

\int \infty 

1+\epsilon 

\biggr) \biggl( 
\phi (t) - \phi (1)h(t)

1 - t
+
\phi (1)h(t)

1 - t

\biggr) 
dt;(49)

with s= 2 - t, we see that

\int 1 - \epsilon 

1/2

\phi (1)h(t)

1 - t
dt= \phi (1)

\int 1 - \epsilon 

1/2

dt

1 - t
= \phi (1)

\int 1+\epsilon 

3/2

 - ds
 - 1 + s

= \phi (1)

\int 1+\epsilon 

3/2

ds

1 - s

= - 
\int 3/2

1+\epsilon 

\phi (1)h(s)

1 - s
ds,

and so, the last integral in (49) vanishes. For the first integral, recall that \phi is smooth.
Hence, the secant (\phi (t) - \phi (1))/(t - 1) is a continuous function of t. We see that

\biggl( \int 1 - \epsilon 

0

+

\int \infty 

1+\epsilon 

\biggr) 
\phi (t) - \phi (1)h(t)

1 - t
dt=

\Biggl( \int 1/2

0

+

\int \infty 

3/2

\Biggr) 
\phi (t)

1 - t
dt(50)

+

\Biggl( \int 1 - \epsilon 

1/2

+

\int 3/2

1+\epsilon 

\Biggr) 
\phi (t) - \phi (1)

1 - t
dt.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



7540 E. L. K. BL\r ASTEN, L. P\"AIV\"ARINTA, AND S. SADIQUE

This proves (48), as \epsilon can be let equal to zero as the secant is continuous. The first
integrand is continuous on (0,1/2)\cup (3/2,\infty ). It is also integrable since

\int 1/2

0

\bigm| \bigm| \bigm| \bigm| 
\phi (t)

1 - t

\bigm| \bigm| \bigm| \bigm| dt\leq 
\int 1/2

0

ta - 1t1 - a| \phi (t)| \cdot 2dt\leq 2

\bigg/ 1/2

0

ta

a
sup

0<t<1/2

t1 - a| \phi (t)| 

\leq 21 - a

a
\| \phi \| a,b,0 <\infty .(51)

Similarly,

\int \infty 

3/2

\bigm| \bigm| \bigm| \bigm| 
\phi (t)

1 - t

\bigm| \bigm| \bigm| \bigm| dt\leq 
\int \infty 

3/2

tb - 1

t - 1
t1 - b| \phi (t)| dt\leq \| \phi \| a,b,0

\int \infty 

3/2

tb - 1

t - 1
dt

\leq \| \phi \| a,b,03
\int \infty 

3/2

tb - 1

t
dt= \| \phi \| a,b,03

\bigg/ \infty 

3/2

tb - 1

b - 1

=
3(3/2)b - 1

1 - b
\| \phi \| a,b,0 <\infty (52)

because 1/(t - 1)\leq 3/t for t\geq 3/2.
For the second integrand in (50), note that

\bigm| \bigm| \bigm| \bigm| 
\phi (t) - \phi (1)

t - 1

\bigm| \bigm| \bigm| \bigm| = | \phi \prime (\xi )| \leq sup
1/2<t<3/2

| \phi \prime (t)| \leq C\| \phi \| a,b,1 <\infty (53)

for some finite constant C. Hence, we can take the limit and have

lim
\epsilon \rightarrow 0

\Biggl( \int 1 - \epsilon 

1/2

+

\int 3/2

1+\epsilon 

\Biggr) 
\phi (t) - \phi (1)

1 - t
dt= - 

\int 3/2

1/2

\phi (t) - \phi (1)

t - 1
dt,(54)

which is bounded by

\int 3/2

1/2

C\| \phi \| a,b,1dt=C\| \phi \| a,b,1 <\infty .(55)

Hence, \langle u,\phi \rangle \in \BbbC for any \phi \in Ma,b with 0<a< b< 1. Similarly, by our calculation, so
far we have | \langle u,\phi \rangle | \leq C

\bigl( 
\| \phi \| a,b,0+\| \phi \| a,b,1

\bigr) 
for a finite constant C whenever \phi \in Ma,b.

By (27), we can decrease a and increase b to get

| \langle u,\phi \rangle | \leq C(\| \phi \| 0,1,0 + \| \phi \| 0,1,1)

for any \phi \in Ma,b. Because this holds for arbitrary 0 < a < b < 1, by Definition 3.1,
the same estimate holds for all \phi \in M (0,1). So, the estimate in our claim is proven.

Now, let (\phi j)
\infty 
j=1 \rightarrow 0 in M (0,1). This means that there is 0 < a < b < 1 such

that (\phi j)
\infty 
j=1 \subset Ma,b and \| \phi j\| a,b,k \rightarrow 0 as j\rightarrow \infty for each k \in \BbbN . Thus,

| \langle u,\phi j\rangle | \leq C
\Bigl( 
\| \phi j\| a,b,0 + \| \phi j\| a,b,1

\Bigr) 
\rightarrow 0,

and continuity is proven. The linearity property is trivial. Hence, u\in M \prime (0,1).

Lemma 5.2. We have M [1/(1 - t)](s) = \pi cot(\pi s) in the principal value sense for
0<\Re (s)< 1.
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Proof. The distribution is in M (0,1). All we need to do is to calulate

p.v.

\int \infty 

0

ts - 1

1 - t
dt.(56)

Refer to Example 8.24.II in [15], especially pages 219--220 for the calculations.

Definition 5.3. For f \in M \prime (a, b) with 0\leq a< b\leq 1, define the Hilbert transform
by

H f = - H \vee f,(57)

where H is defined in (45) and \vee in (41).

Lemma 5.4. The Hilbert transform is a well-defined element of M \prime (a, b), and if
f is smooth and compactly supported in \BbbR +, we have (46).

Proof. Lemma 5.1 implies that H \in M \prime (0,1), and so, Theorem 4.6.1 and the
paragraph after it in [24] imply that H \vee f \in M \prime (a, b) when f \in M \prime (a, b).

Let f be smooth and compactly supported. We will use Theorem 4.6.2 by Zema-
nian [24]. In the sense of distributions on \BbbR +, we have H \vee f equal to the following
smooth function:

g(x) :=

\biggl\langle 
H,

1

t
f
\Bigl( x
t

\Bigr) \biggr\rangle 

t

= lim
\varepsilon \rightarrow 0

1

\pi 

\biggl( \int 1 - \varepsilon 

0

+

\int \infty 

1+\varepsilon 

\biggr) 
f(x/t)

1 - t

dt

t
.(58)

A change of integration variables t= x/y, dt= - xdy/y2 gives

 - g(x) = lim
\varepsilon \rightarrow 0

1

\pi 

\Biggl( \int x/(1+\varepsilon )

0

+

\int \infty 

x/(1 - \varepsilon )

\Biggr) 
f(y)

x - y
dy,(59)

which equals (46) by the following.
It remains to show that

lim
\varepsilon \rightarrow 0

\Biggl( \int x/(1+\varepsilon )

0

+

\int \infty 

x/(1 - \varepsilon )

\Biggr) 
f(x/t)

t - 1

dt

t
= lim

\varepsilon \rightarrow 0

\biggl( \int x - \varepsilon 

0

+

\int \infty 

x+\varepsilon 

\biggr) 
1

x - y
f(y)dy(60)

for all x. We obtain
\Biggl( \int x/(1+\varepsilon )

0

+

\int \infty 

x/(1 - \varepsilon )

\Biggr) 
f(x/t)

t - 1

dt

t
=

\biggl( \int x - \varepsilon x

0

+

\int \infty 

x+\varepsilon x

\biggr) 
1

x - y
f(y)dy

+

\Biggl( \int x/(1+\varepsilon )

x - \varepsilon x

+

\int x+\varepsilon x

x/(1 - \varepsilon )

\Biggr) 
1

x - y
f(y)dy.(61)

For any fixed x\in (0,\infty ), the first terms above clearly converges to the righthand side
of (60). For 0< \varepsilon < 1/2, we have

0<
1

1 + \varepsilon 
 - (1 - \varepsilon )\leq \varepsilon 2,(62)

0<
1

1 - \varepsilon 
 - (1 + \varepsilon )\leq 2\varepsilon 2,(63)

0< 1 - 1

1 + \varepsilon 
\leq \varepsilon 

2
.(64)
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Hence, in the term

\int x/(1+\varepsilon )

x - \varepsilon x

1

x - y
f(y)dy,

we have | x - y| \geq \varepsilon x/2 by (64). The length of the integration interval is less than \varepsilon 2x
by (62). It follows that the absolute value of this term has the upper bound

\varepsilon 2x \cdot 2

\varepsilon x
max | f | \leq 2\varepsilon max | f | ,

and this tends to 0 as \varepsilon \rightarrow 0. Similarly, using (63) and (64), one can show that
\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 1+\varepsilon x

x/(1 - \varepsilon )

1

x - y
f(y)dy

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 2\varepsilon max | f | .

We have thus shown that

lim
\varepsilon \rightarrow 0

\biggl( \int 1 - \varepsilon 

0

+

\int \infty 

1+\varepsilon 

\biggr) 
f(x/t)

t - 1

dt

t
=H f(x)

for every x\in (0,\infty ).

The results of this section can be summarized as follows.

Theorem 5.5. The Hilbert transform H applied to test functions f \in D(\BbbR +) can
be written as

H f(x) = p.v.
1

\pi 

\int \infty 

0

f(y)

x - y
dy= - p.v.

1

\pi 

\int \infty 

0

f(x/t)

1 - t

dt

t
.(65)

Applied to a distribution u\in M \prime (a, b) with 0\leq a< b\leq 1, it is an element of M \prime (a, b)
defined by H u= - H \vee u with

\langle H,\phi \rangle =p.v.
1

\pi 

\int \infty 

0

\phi (t)

1 - t
dt,(66)

\langle H \vee u, \theta \rangle = \langle H,\psi \rangle , \psi (t) = \langle u, \theta t\rangle , \theta t(s) = \theta (ts)(67)

for \theta \in M (a, b). Lastly, if u\in M \prime (a, b) with 0\leq a< b\leq 1, then

M [H u](s) = - cot(\pi s)M [u](s)(68)

for a<\Re (s)< b.
Proof. Equations (65), (66), and (67) are a restatement of Definition 5.3 and

Lemma 5.4, the latter of which gives the mapping properties for H mentioned in the
claim. Equation (68) follows from (39) in Theorem 4.5 and Lemma 5.2.

6. Inhomogenous Hilbert transform on a half-line. In this section, we will
prove that the solution \rho to

H \rho = e, \BbbR +(69)

has a blow-up singularity at x= 0 when e is general but in a suitable function space.

Lemma 6.1. Let 0 \leq a \leq \alpha < \beta \leq b \leq 1, and let e \in M \prime (a, b) and \rho \in M \prime (\alpha ,\beta ).
Assume that (69) holds in M \prime (\alpha ,\beta ). If 1/2\in (\alpha ,\beta ), then M [e](1/2) = 0.
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Proof. Take the Mellin transform of (69). By Theorem 5.5, we have

 - cot(\pi s)M [\rho ](s) =M [e](s)

for \alpha < \Re (s) < \beta . In particular, this holds at s = 1/2 if this point belongs to the
interval (\alpha ,\beta ). Since M \prime (a, b)\subset M \prime (\alpha ,\beta ), we have \rho , e\in M \prime (\alpha ,\beta ). Then, by Lemma
4.3, both M [\rho ] and M [e] are holomorphic in a complex neighborhood of s= 1/2; in
particular, M [\rho ](1/2) is a well-defined finite complex number. Since cot(\pi /2) = 0, a
value not changed by multiplying with a complex number, we have M [e](1/2) = 0.

Lemma 6.2. Let x, y \in \BbbR . If x is at least \varepsilon > 0 distance from 1/2 +\BbbZ , then
\bigm| \bigm| tan

\bigl( 
\pi (x+ iy)

\bigr) \bigm| \bigm| 2 \leq 
\bigl( 
cos\pi (1 - 2\varepsilon ) + 1

\bigr)  - 2
,(70)

which is finite when such an x exists. Otherwise, if | y| =M > 0, we have
\bigm| \bigm| tan

\bigl( 
\pi (x+ iy)

\bigr) \bigm| \bigm| 2 \leq 
\bigl( 
1 - (cosh(2\pi M)) - 1

\bigr)  - 2
,(71)

which is always finite and at most 4 when M > 1/\pi .

Proof. We start with the trigonometric identity

tan
\bigl( 
\pi (x+ iy)

\bigr) 
=

sin(2\pi x) + i sinh(2\pi y)

cos(2\pi x) + cosh(2\pi y)
.(72)

Taking the square of the modulus and using sinh2(2\pi y) = cosh2(2\pi y) - 1, we get

\bigm| \bigm| tan
\bigl( 
\pi (x+ iy)

\bigr) \bigm| \bigm| 2 = sin2(2\pi x) + cosh2(2\pi y) - 1
\bigl( 
cos(2\pi x) + cosh(2\pi y)

\bigr) 2 .(73)

If x is at least distance \varepsilon > 0 from 1/2 + \BbbZ , we must have 0 < \varepsilon \leq 1/2. Then,
cos(2\pi x)\geq cos(2\pi (1/2 - \varepsilon )), and since cosh(2\pi y)\geq 1 and sin2(2\pi x)\leq 1, we get

\bigm| \bigm| tan
\bigl( 
\pi (x+ iy)

\bigr) \bigm| \bigm| 2 \leq cosh2(2\pi y)
\bigl( 
cos\pi (1 - 2\varepsilon ) + cosh(2\pi y)

\bigr) 2 .

This implies (70) after reducing the fraction by its numerator, noting that  - 1 <
cos\pi (1 - 2\varepsilon )\leq 0 and using cosh(2\pi y)\geq 1.

Now, if we just have | y| =M > 0, we can estimate cos(2\pi x)\geq  - 1 and sin2(2\pi x)\leq 
1 in (73) to get

\bigm| \bigm| tan
\bigl( 
\pi (x+ iy)

\bigr) \bigm| \bigm| 2 \leq cosh2(2\pi y)
\bigl( 
 - 1 + cosh(2\pi y)

\bigr) 2 .

However, sinceM > 0 and the evenness of the hyperbolic cosine, we have cosh(2\pi y) =
cosh(2\pi M)> 1, so the righthand side is a finite constant depending on M . The last
claim follows since M > 1/\pi implies that cosh(2\pi M)> 2.

Lemma 6.3. Let e\in M \prime (a, b) for some 0\leq a< b\leq 1. If

a< b\leq 1/2 or 1/2\leq a< b or M [e](1/2) = 0,

then there is \rho \in M \prime (a, b) satisfying H \rho = e. Furthermore, for any \alpha ,\beta , c with
a< \alpha < c< \beta < b for this \rho , it holds that

\rho (t) =
 - 1

2\pi i
( - t d/dt)m+2

\int c+i\infty 

c - i\infty 
s - m - 2 tan(\pi s)M [e](s)t - sds(74)
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in M \prime (\alpha ,\beta ). Here, m \in \BbbN can be any number for which there is a polynomial P of
degree m such that | M [e](s)| \leq P (| x| ) on S(\alpha ,\beta ).

In the case where

a< 1/2< b and M [e](1/2) \not = 0,

there are no solutions in any M \prime (\alpha ,\beta ) with \alpha < 1/2 < \beta . Instead, there is \rho  - \in 
M \prime (a,1/2) and \rho + \in M \prime (1/2, b) such that H \rho \pm = e in M \prime (a,1/2) and M \prime (1/2, b),
respectively. They satisfy

\rho  - (t) =
 - 1

2\pi i
( - t d/dt)m+2

\int c - +i\infty 

c -  - i\infty 
s - m - 2 tan(\pi s)M [e](s)t - sds,(75)

\rho +(t) =
 - 1

2\pi i
( - t d/dt)m+2

\int c++i\infty 

c+ - i\infty 
s - m - 2 tan(\pi s)M [e](s)t - sds(76)

in M \prime (\alpha  - , \beta  - ) and M \prime (\alpha +, \beta +), respectively, for any a < \alpha  - < c - < \beta  - < 1/2 and
1/2 < \alpha + < c+ < \beta + < b. Here, m \in \BbbN can be any number for which there is a
polynomial P of degree m such that | M [e](s)| \leq P (| x| ) on S(\alpha  - , \beta +).

Proof. Write F (s) =  - tan(\pi s)M [e](s). Then, F : S(a, b) \rightarrow \BbbC is holomorphic
everywhere except at s = 1/2 if M [e](1/2) \not = 0. We want to use the Mellin trans-
form inversion formula. For that, we need to show an estimate for | F (s)| that holds
uniformly in a vertical strip of the complex plane.

Let us first consider the case ``a< b\leq 1/2, 1/2\leq a< b, or M [e](1/2) = 0."" In that
case, F is holomorphic on S(a, b). We want to let \rho be the inverse Mellin transform
of F , but for that, we need to prove some estimates first so that we can use item 3 of
Theorem 4.5.

Consider an arbitrary closed substrip \alpha 1 \leq \Re (s) \leq \alpha 2 of S(a, b). If it contains
s= 1/2, then our assumptions imply that M [e](1/2) = 0, in which case | F (1/2)| <\infty 
so that there is r > 0 and C < \infty such that | F (s)| < C when | s - 1/2| < r. When
| s - 1/2| \geq r, we have

| tan(\pi s)| \leq Cr

by Lemma 6.2. Furthermore, there is some polynomial P such that

| M [e](s)| \leq P (| s| )(77)

on that closed vertical strip by item 3 of Theorem 4.5. In both cases, whether \alpha 1 \leq 
1/2\leq \alpha 2 or not, there is thus some finite constant K for which

| F (s)| \leq K
\bigl( 
1 + P (| s| )

\bigr) 
(78)

when \alpha 1 \leq \Re (s)\leq \alpha 2. Because this is an arbitrary vertical closed substrip of S(a, b),
then, by the same item of the same theorem, we see that there is \rho \in M \prime (a, b) such
that M \rho = F on S(a, b).

Next, by the Mellin transform formula for the Hilbert transform of Theorem 5.5,
we have

M [H \rho ](s) = - cot(\pi s)( - tan(\pi s))M [e](s) =M [e](s)(79)

for s \in S(a, b). So, by the uniqueness of the inverse Mellin transform (item 2 of
Theorem 4.5), we have H \rho = e in M \prime (a, b). Next, let \alpha ,\beta , c be as in the assumptions.
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Then, as in (77), we see that there is a polynomial P such that | M [e](s)| \leq P (| s| ) for
\alpha \leq \Re (s)\leq \beta . Let Q(x) = x2+m and m=degP . By the estimate for | F (s)| from (78),
we have

\bigm| \bigm| \bigm| \bigm| 
F (s)

Q(s)

\bigm| \bigm| \bigm| \bigm| \leq 
K
\bigl( 
1 + P (| s| )

\bigr) 

| s| 2| s| m
\leq C

| s| 2

when \alpha \leq \Re (s)\leq \beta . If we set

f(t) =
1

2\pi i
( - td/dt)m+2

\int c+i\infty 

c - i\infty 
s - m - 2F (s)t - sds,

then the integral gives a continuous function \BbbR + \rightarrow \BbbC that is in M \prime (\alpha ,\beta ), and also,
f \in M \prime (\alpha ,\beta ) satisfies M f = F in S(\alpha ,\beta ) by Corollary 4.7. Because M \rho = F in
S(a, b), we have f = \rho in M \prime (\alpha ,\beta ) by item 2 of Theorem 4.5. This concludes the
proof of the first case. In the case where a< 1/2< b and M [e](1/2) \not = 0, there are no
solutions in M \prime (a, b) by Lemma 6.1. Note also that, in this case, F is holomorphic
in S(a,1/2) and S(1/2, b) while having a singularity at s= 1/2. Consider the closed
vertical strips \alpha 1 \leq \Re (s)\leq \alpha 2 and \beta 1 \leq \Re (s)\leq \beta 2 for arbitrary a< \alpha 1 <\alpha 2 < 1/2 and
1/2<\beta 1 <\beta 2 < b. As in the first part of the proof, we see that

| tan(\pi s)| \leq C\alpha 2,\beta 1

by Lemma 6.2 when s belongs to either of these two closed strips because \alpha 2 < 1/2
and 1/2<\beta 1. As before, we have

| M [e](s)| \leq P (| s| )

on \alpha 1 \leq \Re (s)\leq \beta 2 by item 3 of Theorem 4.5. These two estimates give a polynomial
upper bound for | F (s)| on \alpha 1 \leq \Re (s) \leq \alpha 2 and on \beta 1 \leq \Re (s) \leq \beta 2 as in the first
part of the proof. Since the closed substrips were arbitrary, these then imply the
existence of \rho  - \in M \prime (a,1/2) and \rho + \in M \prime (1/2, b) satisfying H \rho \pm = e in M \prime (a,1/2)
and M \prime (1/2, b), respectively. With identical deductions as in the first part of the
poof, we see the integral representation formulas for \rho \pm in M \prime (\alpha \pm , \beta \pm ).

Lemma 6.4. Let 0\leq a< b\leq 1, and let \rho 1, \rho 2 \in M \prime (a, b). If

H \rho 1 =H \rho 2,

then \rho 1 = \rho 2 in M \prime (a, b).

Proof. By taking the Mellin transform of the equation and using the transforma-
tion properties of the Hilbert transform from Theorem 5.5, we see that

 - cot(\pi s)M [\rho 1](s) = - cot(\pi s)M [\rho 2](s)

for s\in S(a, b). When s \not = 1/2, we can divide by the cotangent and get

M [\rho 1](s) =M [\rho 2](s)

for s \in S(a, b) \setminus \{ 1/2\} . But \rho 1  - \rho 2 \in M \prime (a, b), so M [\rho 1] - M [\rho 2] is holomorphic in
S(a, b). Hence, the equality holds in the whole S(a, b). According to the properties
of the Mellin transform in Theorem 4.5, we have \rho 1 = \rho 2 in M \prime (a, b).
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Lemma 6.5. The residue of tan(\pi s) at s= 1/2 is given by

Res
\bigl( 
tan(\pi s),1/2

\bigr) 
= - 1

\pi 
.

Proof. We have sin(\pi /2) = 1 and cos(\pi /2) = 0, so the residue is given by the
cosine. Then,

lim
s\rightarrow 1/2

s - 1/2

cos(\pi s)
= lim

s\rightarrow 1/2

1

\pi 

\pi s - \pi /2

cos(\pi s) - cos(\pi /2)
=

1

\pi 
lim

\xi \rightarrow \pi /2

1
cos \xi  - cos(\pi /2)

\xi  - \pi /2

=
1

\pi 

1

cos\prime (\pi /2)
= - 1

\pi 

1

sin(\pi /2)
= - 1

\pi 
.

Thus, Res(tan(\pi s),1/2) = lims\rightarrow 1/2(s - 1/2) tan(\pi s) = - 1/\pi .

Lemma 6.6. Let 0<\alpha < 1/2<\beta < 1, and let f : S(\alpha ,\beta )\rightarrow \BbbC be holomorphic with
| f(s)| \leq Csm for some m\in \BbbN . For \alpha < c - < 1/2< c+ <\beta , define

\=\rho  - (t) =
 - 1

2\pi i

\int c - +i\infty 

c -  - i\infty 
s - m - 2 tan(\pi s)f(s)t - sds,

\=\rho +(t) =
 - 1

2\pi i

\int c++i\infty 

c+ - i\infty 
s - m - 2 tan(\pi s)f(s)t - sds.

Then,

\=\rho +(t) =
2m+2

\pi 
f( 12 )t

 - 1/2 + \=\rho  - (t)(80)

for all t\in \BbbR +.

Proof. The integrands in \rho +, \rho  - are holomorphic in S(a, b) \setminus \{ 1/2\} since f is
holomorphic in S(a, b). The estimates for the tangent function of Lemma 6.2 imply
that

| tan(\pi s)| \leq Cc+

when \Re s= c+. This is because c+ is fixed and away from half-integers. This and the
estimate for f in the assumptions give

\bigm| \bigm| s - m - 2 tan(\pi s)f(s)
\bigm| \bigm| \leq K| s|  - 2

(81)

for \Re s= c+. Since | s|  - 2
is integrable on \{ c+ + it | t\in \BbbR \} , we get

\=\rho +(t) = lim
M\rightarrow \infty 

 - 1

2\pi i

\int c++iM

c+ - iM

s - m - 2 tan(\pi s)f(s)t - sds(82)

for each t\in \BbbR +.
Define the following points and paths

\left\{ 
   

   

P+ - = c+  - iM

P++ = c+ + iM

P - + = c - + iM

P -  - = c -  - iM

\left\{ 
   

   

\gamma + - (r) = (1 - r)P+ - + rP++,

\gamma ++(r) = (1 - r)P++ + rP - +,

\gamma  - +(r) = (1 - r)P - + + rP -  - ,

\gamma  -  - (r) = (1 - r)P -  - + rP+ - ,

(83)
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which form a counterclockwise rectangle with the point s= 1/2 in the interior of the
loop. The integrand in (82) is holormorphic in a neighborhood of this rectangle as
long as the neighborhood is small enough to not reach s= 1/2. For any t\in \BbbR +, denote
the integrand by

It(s) = s - m - 2 tan(\pi s)f(s)t - s, It : S(a, b) \setminus \{ 1/2\} \rightarrow \BbbC (84)

to save space. By Cauchy's residue theorem,

 - 1

2\pi i

\Biggl( \int 

\gamma + - 

+

\int 

\gamma ++

+

\int 

\gamma  - +

+

\int 

\gamma  -  - 

\Biggr) 
It(s)ds= - Res(It,1/2).(85)

Let us calcuate the residue at s = 1/2. The factors of It are holomorphic around
s= 1/2 except for tan(\pi s), whose residue is given by Lemma 6.5. We have

Res(It,
1
2 ) =

\biggl( 
1

2

\biggr)  - m - 2

f( 12 )t
 - 1/2Res(tan(\pi s), 12 )

= - 2m+2

\pi 
f( 12 )t

 - 1/2.(86)

Next, let us investigate what happens when we let M \rightarrow \infty again. For the horizontal
segments, recall the horizontal estimate for the tangent in Lemma 6.2. It implies
that | tan(\pi s)| \leq 2 when | \Im (s)| > 1/\pi . The estimate for f in the assumptions gives a
uniform bound for | f(s)/sm| . Furthermore, | t - s| = t - \Re (s) \leq t - \alpha when \Re (s)>\alpha . This
value is independent of M . Lastly, on \gamma ++ and \gamma  -  - , we have

\bigm| \bigm| s - 2
\bigm| \bigm| \leq M - 2, and the

lengths of these paths are both c+  - c - . Summarizing, on \gamma ++ and \gamma  -  - , we have

| It(s)| \leq Ct - aM - 2,

so the integrals over these horizontal paths vanish as M \rightarrow +\infty .
The integral over \gamma + - multiplied by the constant in front of it in (85) equals

\=\rho +(t), as we saw above in (82) when we passed the integral limits to infinity. Lastly,
just as at the beginning of this proof, we can let M \rightarrow \infty in the integral over \gamma  - + and
get  - \=\rho  - (t). The claim follows.

We have all the ingredients to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Existence is given by Lemma 6.3. Uniqueness follows from
Lemma 6.4.

Proof of Theorem 1.2. The existence and nonexistence follow from Lemma 6.3.
Uniqueness is given by Lemma 6.4. All that is left to prove is the identity (10). The
existence lemma gives us formulas for \rho  - and \rho + in the form of (75) and (76). These
are just ( - td/dt)m applied to the integrals in Lemma 6.6 with f(s) =M [e](s). Thus,

\rho +(t) - \rho  - (t) =
2m+2

\pi 
M [e](1/2)

\biggl( 
 - t d
dt

\biggr) m
1\surd 
t
.

But t - 1/2 is an eigenfunction of ( - td/dt) since

( - td/dt)t - 1/2 = - t \cdot ( - 1/2)t - 1/2 - 1 = 2 - 1t - 1/2.

Hence, ( - td/dt)mt - 1/2 = 2 - mt - 1/2, and the result follows.
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