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LUHIKOKKUVOTE

Kadesolevas magistritd6s on uuritud kahte meetodit reisilaevade perioodiliste kiljekorpuse avade
modelleerimiseks 10plike elementide (LE) mudelis, mida saab kasutada tugevusarvutusteks laeva
varajases  projekteerimisfaasis. Esimene  meetod seisneb  kiljekorpuse  struktuuri
homogeniseerimisel ning korpuse modelleerimisel homogeniseeritud ortotroopse materjaliga,
rakendades 4- ja 8-s6lmpunktiga elemente. Teine meetod baseerub kiiljekorpuse avade otseses
modelleerimises, kasutades jamedat |Gplike elementide vorku ja vOttes arvesse geomeetria
lihtsustuse ning vorgu suuruse moju struktuuri jaikusele.

Esitatud meetodid rakendati kahte tiilipi konstruktsiooni jaoks ja tulemuste valideerimiseks
kasutati tiheda vorgu LE-analliiisi. Esimeseks uuriti perioodiliste avadega kiljekorpust, et hinnata
membraanjdikuse korrektsust (ihtlase tdmbe- ja 16ikepinge seisundites. Teiseks uuriti meetodite
tapsust prismaatilise laeva mudelis 4-punkti painde all. Meetodite tdpsuse hindamisel on
vorreldud prismaatilise mudeli labipainet, pikisuunalisi normaaljdudusid tekkides ja kiiljekorpuse
vertikaalseid XY-loikejoude. Lisaks uuriti meetodite tapsust perioodilise struktuuri dartes ja suure
moondegradiendiga piirkondades.

Tulemused naitasid, et lihtne ortotroopne mudel, kus moondegradiendid on vaikesed, annab hea
tapsusega globaalse labipainde ja paindepingete jaotuse tekkides nii tsentraalsete kui ka
ekstsentriliste avade korral. Ortotroopse mudeli tdpsus vaheneb juhul kui moondegradiendid on
suured nt sisemised pikivaheseinad pole pidevad. Ortotroopse mudeli tapsus lokaalsete
sisejoudude mottes on rahuldav perioodilises struktuuris, kuid langeb oluliselt vore dartes ja suure
moondegradiendiga piirkondades. Ekstsentriliste avade korral avalduvad lisaks eelmainitule
ebatdpsused ka mikropolaarse efekti tottu: ekvivalentsus saavutatakse ainult keskmistatud
sisejoudude kuid mitte momentide suhtes. Ortotroopse mudeli tdpsus ei soltu oluliselt
ekvivalentse elemendi sdlmpunktide arvust.

Jameda vorguga mudelile tehti tundlikkusanaliils, vottes arvesse struktuuri lihtsustuse ja vorgu
suuruse mdoju. Sobilik kompromiss modelleerimise ajast, arvutuse mahukusest ja tapsusest, leiti
vorgu suurusel 4x4 elementi ava kohta. Sellise vorguga mudel osutus 12% jdigemaks Uhtlase
|6ikepinge seisundis. Hoolimata sellest andis jameda vérguga modelleerimine usaldusvaarseid
tulemusi prismaatilise laeva mudelis ning tapsus ei séltunud suuresti moondegradiendist ega
aare-efektist nagu ortotroopse mudeli korral.

Marksonad: Kruiisilaev, 10plike elementide anallils, ekvivalentne ortotroopne modelleerimine,
jameda vorguga modelleerimine



ABSTRACT

This thesis presents and investigates two common techniques of modeling large periodic side
shell openings in global finite element models for evaluation of passenger ship hull girder static
response in early design phase. The first technique is based on homogenization of side shell
structure and modeling side shell openings with homogenized orthotropic material using 4-noded
and 8-noded shell elements. Second technique is direct modeling of side shell openings using
coarse mesh, where cost of simplification to geometry and mesh size is studied.

The proposed techniques are validated with respect to 3D fine mesh analysis in two cases. First,
periodic side shell model is studied for evaluation of correct in plane response under uniform axial
and shear loading. Second, the techniques are investigated in a box-like ship under 4-point
bending load. Accuracy of both techniques is evaluated by means of hull girder deflection,
longitudinal deck forces and side shell vertical shear forces. In addition, the performance in
border of periodic grid and at areas of high strain gradients is investigated.

The results indicate that equivalent orthotropic modeling of both central and offset openings
gives accurate global deflection and longitudinal bending response in a simple model where strain
gradients are small. When significant strain gradients are introduced e.g. where internal
longitudinal bulkheads are discontinuous, the deflection and longitudinal bending response
accuracies are compromised. Local response of orthotropic model is less accurate and especially
compromised at edges of periodic grid and areas of high strain gradient. Additional local errors
arise due to micropolar behavior of offset openings, where the equivalence is only achieved in
forces but not in moments due to application of classical theory of elasticity. No significant
difference in response is observed whether 4- or 8-noded elements are applied.

For coarse mesh modeling a sensitivity analysis is performed taking account effect of
simplification of structure and mesh size. A reasonable compromise between modeling effort,
computational cost and accuracy is found at 4x4 elements per opening. Despite being stiffer in
uniformly loaded periodic side shell model, the accuracy of coarse mesh modeling is shown to be
reliable in application to box-like ship, where performance is not significantly affected by strain
gradients and boundary effects.

Keywords: Cruise ship, finite element analysis, equivalent orthotropic modeling, corase mesh
modeling
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1. INTRODUCTION

1.1 Background

Size and complexity of passenger ships has significantly increased over past decades. Late 1980’s
and early 1990’s saw passenger ships of gross tonnage up to 75000 with notable examples of
Sovereign [1] and Fantasy class [2]. In past ten years the size of cruise ships has reached a new
peak with three Oasis class ships of 225 000 GT delivered to Royal Caribbean Cruise Line while
operators such as Costa Cruises, Aida Cruises, MSC Cruises and Star Cruises have ordered ships
around 200 000 GT area [3]. In addition to increase in size, the structure has become more
complex due to demand for large open spaces, theatres, atriums, large balcony openings and split
superstructures, which increase complexity of structural response. As a result, there is demand

for tools that can be applied in structural analysis to explore possibility of innovative solutions.

Assessment of passenger ship global response is a challenging task as the hull girder response
does not follow beam theory as bulk carriers and tankers do [4]. This is largely due to complex
nature of force transfer between hull and superstructure but also a result of reduced in plane
shear stiffness of side shell. The reduction in side shell shear stiffness is caused by side shell
openings which results in sliding between decks and affects superstructure to carry longitudinal
bending loads. The result is non-linear longitudinal stress distribution under longitudinal bending
load [5] as shown on Figure 1.1. For this purpose, global 3D finite element analysis (FEA) is the
most reliable method to examine structural behavior and only method considered sufficient for

cruise ships as recognized by International Ships and Offshore Structures Congress in 1997 [6].
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—— - Detorled FEM-calculation

— — — Simplified FEM-calculahion

~ ~= — Analyhcal colculotion
Fs¢ - measurement

Figure 1.1 Typical longitudinal stress distribution in mid-section [5].

The basis of global strength assessment is the global finite element model of the ship as shown in
Figure 1.2. Due to practical reasons of modelling effort and computational cost the global
structure is modelled using coarse mesh where the element size is few meters — typically 1 or 2
elements per spacing of the web frames [6]. In global mesh only primary structural members i.e.
plates, girders, web frames and pillars are modelled directly, while structures such as plates with
cut-outs and stiffened panels are modelled either with simplified coarse mesh or as elements with
equivalent properties. Proposed modeling techniques for stiffened panels provide accurate

response [7] while modeling techniques for perforated side shell need further investigation.

Balcony opening modeled by

equivalent orthotropic element

(r’ ,:‘I'.--v"A' Direct modeling of openings

with coarse mesh

Figure 1.2 Ships global FE-model.
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For reliable global response, it is essential that the elements incorporating openings in side shell
are modelled accurately since openings in plate significantly reduce in plane shear stiffness [5].
This is important to consider in structural analyses as reduced side shell shear stiffness affects
efficiency of superstructure to carry vertical hull girder bending moment and shear force which

affect global response.

1.2 State of the art

Global 3D finite element analysis with fine mesh is considered the most reliable method of
assessing structural response of a ship [8]. However, modelling time of detailed fine mesh global
model of a large ship is very time consuming. In addition, due to high computational cost the
method is not applicable in early design phase of large and complex ships where design changes
are significant. Therefore, several alternative approaches have been proposed in literature to

obtain accurate structural response with lower cost than fine mesh modelling.

1.2.1 Domain decomposition method

In case of domain decomposition method, the finite element problem is not solved in one step
but interface is formed between global coarse mesh and local fine mesh (rectangular plate with
opening) problems. Classical domain decomposition consists of three steps. Firstly, local problem
is solved on the fine scale of the detail to derive its homogenized behavior. Secondly, global
model is solved to obtain global behavior of the structure. Thirdly, local solution at the detail level
is obtained based on global behavior [9] [10]. Similar technique is applied in hierarchical Dirichlet

projection method [11].

These methods however have two shortcomings. First, since the structure may not be periodic,
assumptions are made on boundary conditions of detail level problem. Second, global coarse
model results are used as boundary conditions to obtain solution at detail level — later may
introduce artificial edge effect which may affect local stress calculations. Shortly, the problems at

local and global scale are independent of each other [9].

16



These problems are overcome with use of FETI-DP algorithm [12], [13] in which interface
constraints between detail level models are enforced by using Lagrange multiplier and corner
degrees of freedom of interfaces are prescribed iteratively. The division of global model into
domains with corner and interface nodes is presented on Figure 1.3. Overall the domain
decomposition method is promising but further work is required to bring down the computational
cost. It is suggested to use the method by applying fine mesh only to crucial areas while modelling

the rest of structure with homogenized elements [9].

internal node (i)

TTTT
NN
[e)
=

LT
T

LT
Emmpiy
EREpA
EREEGS
P
HHH

NN

|

L]
(]
(]

corner node (¢) interface node (b)

Figure 1.3 Classification of subdomains, corner nodes (coarse global mesh), interface nodes and internal

nodes [9].

1.2.2 Direct modelling with coarse mesh

Direct modelling of openings with coarse mesh has been proposed in Lloyd’s Register 2004 rules
and in [6]. An example is shown in Figure 1.4.
Bar elemenrt

(representing deck Deck 14
10 centre ne)

Rgid bar T (bor eloment
(every frame)
l . My,
L
4aM,.
F= L Window representation in global model

Figure 1.4 Coarse modelling of openings [6].
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In this approach shear stiffness varies significantly with element size, shape and type [14]. The
coarse mesh modeling accuracy has been studied for various opening sizes by Zanic et al. [6].

Modelling with 12 4-noded shell elements per web-frame/deck does not generally give
satisfactory results and can be applied only for small openings (LT" < 0,3;2—" < 0,3). Accuracy can

be increased by using 8-node shell elements. It is suggested that large openings are to be
modelled with bracketed beam hybrid elements due to large number of 4-noded shell elements
required for satisfactory accuracy [6]. Rounded corners of an opening can be taken into account

with plate thickness correction factor curves obtained from FEA or by direct modelling [14].

In case of coarse mesh model with 1-2 plate elements per web frame length the opening
deformation is uncoupled from deck deformation, thus stiffness of structure is underestimated.

This however can be balanced with overestimation of opening stiffness due to coarse mesh [14].

Melk proposed to model balcony openings with Timoshenko beams representing plate strips
between openings [15]. The modelling approach was proven accurate for given geometry but
method suffers from fact that modelled unit cell is not located between consecutive web frames

and decks. Therefore, local mesh refinement would be required around balcony openings.

1.2.3 Modelling with equivalent orthotropic elements

The principle in equivalent orthotropic modeling is that heterogeneous structure e.g perforated
side shell with properties E, G, v is replaced with homogeneous media with equivalent averaged
properties Ex Ey, G, v. In this case representative volume element (RVE) of periodic structure is

homogenized and replaced with equivalent element as illustrated on Figure 1.5.

Explicit Equivalent
E.G v Homogenization Ex, Ey, G, v

Figure 1.5 Homogenization of explicit structure to equivalent homogenized media.
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Alternatively equivalence in stiffness can be realized by plate element with reduced thickness to
satisfy shear stiffness equivalence and rod elements for compensation of axial stiffness [16], in

this case equivalency in Poisson’s ratio is not achieved.

Equivalent properties can be derived either analytically or by sub-modelling. Fransman has
analytically derived equations for centrally placed rectangular window (Figure 1.6, middle) in grid
of similar windows and window adjacent to rigid bulkhead with one side (Figure 1.6, bottom).
Different equivalent properties are derived for same structure in different locations because
realistic boundary conditions need to be taken account during derivation of equivalent properties
as interface to boundaries is lost in coarse orthotropic model. Corner radii are not considered by

Fransman, contribution of window frames is included in the approach. [5]
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ALONG A2OVE nES

Figure 1.6 Sub-modelling of periodic openings [5].

Fricke et al. have derived analytical formula for shear stiffness of centrally placed rectangular
window in a grid of similar windows. In addition, a formula for taking account corner radius is

proposed. The formula requires calibration with finite element analysis [14].

Alternative option is to determine equivalent properties by sub-modelling. It has been
determined that the deformation shape for plate with centrally placed hole in a grid of similar
elements under uniform in plane shear load is anti-symmetric [17], [18]. Therefore, sub-model of
single RVE is sufficient to obtain equivalent in plane properties of a plate with cut out. Anti-

symmetric boundary conditions are given by equations 1.1-1.4 according to Figure 1.7.
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Additionally, strains along edges of RVE are restricted according to equations 1.5-1.6. This has

been determined to be natural deformation shape of RVE under uniform shear load by analysis of

periodic grid under pure shear load by Sun [17] and confirmed in this thesis work. For offset

openings, applicability of equations 1.5-1.6 has not been investigated and may result in

overestimated shear stiffness.

v(—=b,z) = v(b, z)

w(=b,z) = w(b,2)

17()" _C) = U(y; C)

w(y, —c) =w(y,c)

Ezz(ibv Z) =0

Eyy(y' iC) =0

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

The axial stiffness is obtained by analyzing the sub-model under uniaxial tension. In case of

normal load in Y direction proposed boundary conditions are following [17]:

v(=b,z) =0,
v(b, z) = const,

w(y,—c) =0,

w(y, c) = const.
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Figure 1.7 RVE deformation under pure shear load [17].
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The shortcoming of this method is that these boundary conditions were derived only for centrally
placed openings with no frames and stiffeners. Suitable boundary conditions for sub-modeling

offset openings with stiffeners are proposed in chapter 2.3.3

The problem of offset openings is also tackled by modelling approach described by Amian [18]. It
is based on a sub-model composed of an array of rectangular plates with openings and deriving
equivalent properties based on response of plate inside a plate field as in Figure 1.8. The report
does not however describe arising limitations due to modeling offset openings with homogeneous
material, neither is contribution of stiffeners taken account. The accuracy of Amian’s modeling

technique is not verified in global scale.

0

oy = .-w-u(rleﬂ top/bottom
U =0

Figure 1.8 Sub-model with neighbouring structures constrained and loaded for derivation of equivalent

shear stiffness [18].

1.2.4 Second order computational homogenization method

The basic principle of computational homogenization is illustrated on Figure 1.9. The macroscopic

deformation gradient tensor Fy; and its gradient VOFM obtained from macrostructure (global FE
model) are transferred to microstructure in order to define boundary value problem on RVE. The
problem on RVE is solved in standard way by FEA resulting boundary displacements and boundary

surface tractions. By mathematical averaging equations, macroscopic stress tensor Py and higher

order stress tensor 3QM are obtained. Tangent operators of stress and strain are obtained by
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static condensation and fed back into macro scale problem. The nested finite element problems

of macro (global) and micro (local) scale are solved iteratively [19].

MACRO .
Higher-order
continuum
P, 'Q, S
’ F\n b Vu F\i
Tangents
MICRO

Solving B.V.P.

Figure 1.9 2nd order computational homogenization principle [19].

The advantage of second order computational homogenization method over classical
homogenization method (and 1st order computational method), described in chapter 1.2.3, is
accounting for large strain gradients (loading is not assumed uniform) and accurate modeling of
edge effect [19]. The method is not however implemented into commercial FE solvers such as NX
Nastran 11. Also, the computation and model preparation is costly compared to classical
homogenization methods. This method is not applied in the thesis, but conclusions from related
papers [19] and [20] are used to investigate and explain errors arising in classical homogenization
method. These limitations have not received much attention in papers where classical

homogenization method is applied to ships structures.

1.3 Aim of thesis

The aim of the thesis is to develop and implement modeling techniques for modeling ship’s side
shell openings such as window and balcony openings. The outcome will be an evaluation of
modeling techniques which improves reliability and time consumption of static response
assessment in early design phase. The technique should be computationally feasible and
applicable in limited time frame of early design phase. The results will be validated with respect to

response of box-like prismatic ship and side shell models according to 3D fine mesh FEA.
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The assessment of modeling techniques is driven by typical modern passenger ship structure as in
Figure 1.10. Various opening types are distinguished when considering applicability of different

modeling techniques by opening type:

1. Balcony openings in a periodic grid of similar openings

2. Balcony openings in a periodic grid of similar openings with one edge free or next to rigid
bulkhead

3. Balcony openings with irregular surroundings

4. Window openings in a periodic grid of similar openings with one edge free or next to rigid
bulkhead

5. Hull openings with irregular surroundings

m Il'[ill‘ |
NN WA nEm

1
“nnnr“—

Figure 1.10 Passenger ship side shell.

Since homogenization is based on periodicity assumption the areas where periodicity is violated
(3-5) are not considered. In this thesis, the applicability of modeling techniques for periodic type 1
openings and openings in edge of periodic structure (type 2) are studied. Equivalent orthotropic
modelling is described in 2. Methods; explicit modeling with coarse mesh is discussed in 3. Direct
modelling of openings with coarse mesh. The evaluation of each modeling approach is given in 4.

Results. The evaluation of results and suggestions for modeling are presented in 5. Conclusions.
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2. METHODS

2.1 Membrane finite elements for plane stress analysis

In following finite elements applied in the work are discussed in order to describe arising

limitations due to discretization.

The properties of quadrilateral plane elements implemented in NX Nastran as CQUAD4 and
CQUADS can be separated into membrane properties associated with plane displacements (u, v)
and bending properties associated with out of plane displacements and rotations (w, @, ). Thus
four-node quadrilateral plane element has 20 degrees of freedom [21]. The focus in this work is
on in-plane properties, since these have a large effect on ships load carrying mechanism in global

bending modes. Therefore, only membrane properties of the elements are discussed.

Plane rectangular bilinear element shown on Figure 2.1 has 8 degrees of freedom — u and v for

each node. The displacement field according to nodal degrees of freedom is defined as

(U1

U1

Uz
{u}_ [N1 0O N, O N; O N, O vz> (2.1)
v - 0 N1 0 NZ 0 N3 0 N4_ us (’ ’

U3

Uy

Uy
where shape functions Nj are linear:
Ny = (a—x)(b ) 2.2)
17 4ab a=x Yo '
Ny = —(a+ )b ) (23)
27 4ab arx Yo '
N—1(+)(b+) (2.4)
37 4ab arx Yo '
Ny=—(a-x)b+) (2.5)
* 7 4ab a=x - '
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Figure 2.1. Plane rectangular bilinear element [10].
The strain displacement matrix [B] is
— a 0 —
0x
0 0
[B] = 3y [N] (2.6)
a o
dy O0Oxl
and element stiffness matrix [k] is
b ra
[k] = f f [B]* [E][B]t dx dy. (2.7)
-bY-a

where [E] is material property matrix.

Bilinear elements are attractive for their simple formulation but they are too stiff in bending. That
is illustrated in Figure 2.2 (b) where bending moment M, is applied to rectangular bilinear

element resulting in nodal displacements u.
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Figure 2.2 Bilinear element (a). Bilinear element subject to bending moment M; (b). Explicit behaviour of

plate subject to bending moment M, (c) [10].

The displacement field of bilinear element under bending moment M is found from

(U

0

—-u
{u}z[Nl 0O N, O N; O N, O ()> (2.8)
vl |0 Ny 0 N, 0 N3y 0 Ngl)u ([ )

0

—-u

0 /

The horizontal and vertical displacement field in bilinear element is obtained as:

u=u(@-00b-y - 5@+l - +5@+00b+y) - - o

—0)(b + y)) =a,

v=0. (2.10)

The correct displacements for membrane under pure in plane bending according to Figure 2.2 (c)
are
_xy ( x Z)aﬁ ( 5% 2) bu
u=tu— and v=|1-(=) |—=+(1-(>) Jv=— (2.11)
ab (a) 2b (b) 2a
By comparing displacement equations 2.9-2.11 it is found that while correct behavior results in
storage of strain energy only due to normal strain, the behavior of bilinear element stores strain

energy due to normal strains and shear strains. This results in too high bending stiffness of

bilinear element [10].

By adding one node to each side of four-node quadrilateral a quadratic quadrilateral element

(CQUADS) as shown on Figure 2.3 is formed.
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Y 3

Figure 2.3 Quadratic quadrilateral element.

Shape functions for 8-noded element can be defined as

-1 X y
Ny = @-00-y(1+-+7)

Ny =@+ 0b-y(1--+3)

4a b

_1 X y
Ny = —(@+0)0+y(1---7)
N, =m(a—x)(b+y) (1—;—5), (2.12)
Ng = a2 (a—x)(b—y)@a+x),

1

Ne =573 (@+x)(b—y)b+y),
N, = 2a%h (a=x)(b+y)a+x),
Ng = 55— (a=x)(b—y)(b+y).

As a result of parabolic shape functions the deformation shape for 8-node element can take
quadratic form and parasitic shear phenomenon can be avoided. In addition, the shear and axial
forces on opposite edges of an element no longer need to be equal as for bilinear quadrilateral

element [10].
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2.2. Equivalent orthotropic material modeling

The principle in equivalent orthotropic modelling is that each single panel with opening between
decks and web frames is modelled with one or more elements with equivalent stiffness
properties. The representative volume element (RVE) is smallest volume from which equivalent
properties can be derived. In periodic structure RVE can be chosen as unit cell of structure. There
are several approaches in choosing the unit cell for which the equivalent properties are derived as
shown on Figure 2.4. In this work, the third option is chosen as it naturally complies with global FE
mesh, web frame and deck locations. In following only equivalent in plane properties are

considered.

8 R _ _‘:31 ....... e
L o o s

|
|
L
L

Figure 2.4 Alternative selections of unit cell in side shell [22].

The equivalent stiffness of heterogeneous structure is described by equivalent elements where
homogenized in plane stiffness properties of explicit structure are considered. For homogenized
model, a single layer shell element with same thickness as side shell plate is used. In case of
stiffened openings, effective in plane stiffness of both plate with opening and stiffeners
contribution are derived for this single layer equivalent material as illustrated in Figure 2.5. In
homogenization, this means that all forces (plate and stiffener) on the boundaries of RVE are

assumed to be in plate layer when calculating average stresses on boundaries of RVE.
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Explicit structure with Equivalent homogenized
stiffeners structure

Opening Plate

T T I Equivalent plate

Stiffener

Figure 2.5 Homogenization of stiffened panel with openings.

Equivalent in-plane stiffness is set by 2D elasticity matrix [E]eq obtained according to principles

described in chapter 2.3:

1 E, VyxEx 0
[Eleq = Fp— VeyEy Ey 0 , (2.13)
YY1 o0 0 G(1 = vyxVyy)

2.2.1 Equivalent orthotropic element internal forces and strains relation

The normal stress vector {o} = {O‘x gy Txy} is found by multiplying the strains {e} = {ex gy yxy}

with the elasticity matrix [E],4:

{o} = [E]eq{e}- (2.14)

Internal forces in the in the membrane element are related to the in-plane stresses and

deformations and they are obtained by integrating equation 2.14 over the plate thickness t. Thus,

the normal force vector {N} = {N, N, ny}Tis:

t/2
(N} = f [E].q {e)dz. (2.15)

-t/2
Since membrane-bending coupling effects are neglected, the normal force can be written as:
{N} = [Al{}°, (2.16)
where {}° is the mid-plane strain vector

0

Ex dugy/0x
&y ¢ = { vy /0y } (2.17)
y)?y 0ugy/0y + 0vy/0x
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and [A] is the membrane stiffness matrix:

t/2
[4] = f [E].qdz. (2.18)
—t/2

2.3 Homogenization

2.3.1 Equivalent stress, strain and strain energy

When modeling large periodic structure using RVE it is important to understand how it deforms
when uniform tensile or shear load is applied at boundaries of the structure. In case of
homogenous material, a uniform stress and strain state exists under uniform loading, but this is
not the case in periodic structure which consists of openings surrounded by vertical and
horizontal plate strips. Due to all RVE-s being identical they have identical stress and strain fields.
Therefore, from global point of view the stress and strain fields are periodic except for narrow
boundary layer (typically depth of 1 RVE) where the structure is loaded. The periodicity
constraints obtained from large periodic structure are applied for single RVE to derive equivalent

orthotropic properties from axial and shear load cases [17].

In classical homogenization theory, the structure is modeled as a homogenous orthotropic
medium with effective elastic properties that describe averaged properties of the heterogeneous
structure. For description of macroscopically homogenous medium the macro stress and strain

are obtained by averaging stress and strain tensors over the volume of RVE [17]:

3 1

0;j = va 0ij(x,y,2)dV (2.19)
and

_ 1

& = va &j(x,y,2)dv. (2.20)
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For equivalence between actual heterogeneous structure and homogenous medium strain energy

equivalence is used. Total strain energy U stored in volume V of equivalent medium is:

1_
U= EO’UEUV (221)

The strain energy stored in heterogeneous RVE is

, 1 1 L
U' = —OijeijdV=§ o-ij(gij_gij-l_gij) av
v %4

2
1 1
=§f O-L](‘SL]—‘C—TL]) dV+E£TUf O-ij av (222)
%4 %4
1 _ 1
=§f O-ij(gij _fij) dV—l—EO-UEUV
%4
Therefore
' 1 _
U —Uzz . aij(eij—sij)dV

(2.23)

_1f 9 o N\
_2 v O-ij ax]'ui ax]'ui

a ..
According to classical theory of elasticity, equilibrium equation ajcl{ = 0 due to absence of volume
]
forces and
U —-u 1f a( ( i;)) dV (2.24)
— —_ — —(o;:(u; — Uu; .
2), 0x; WA :

According to Gauss theorem, the volume integral can be converted to surface integral

1 _
U -U-= EL O'ij(ul' - ui)n]- dS, (225)

where S is surface of RVE and n; outward normal of the surface. On the surface S
u; = l_l.l' (226)

Therefore
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U'=U (2.27)

In more general case when deformation shape of RVE is antisymmetric (Uy top — Uy pot = CONst =
Uy, Uxright — Uxleft = CONSt = Uy, Uxtop — Uxbot = CONSt = Uy and Uy right — Uy left = CONSt =
Uy) and stress field on RVE is symmetric (0jjtop = Oijpot aNd Ojjlefc = Oijright), the strain energy
equilibrium according to deformation of homogenized RVE presented on Figure 2.6 is:

1 _
U -U-= EL O'L'j(ui —ui)le ds =

1
= Ef ayy,wp(uy,bot — 0) (—ny(x)) ds
s

bot
1 _
+t3 0yy,top(Uy,top = Ty) (”y (x)) ds
Stop
1
+ Ef Uxx,left(ux,left - 0)(_nx()’)) ds
Sleft
1 _
+ Ef Oxx left (ux,right - ux)(nx(:)’)) ds (2.28)
Srl’ght

+
N =

—

Oxy,top (ux.bot - 0) (—ny (x)) ds

Shot

+
N =

—

Oxy,top (ux,top - ax) (ny (x)) ds

Stop

+
N[ =

—

ny,left(uy,left - 0)(_nx(3’)) ds
Sleft

ny,left(uy,right - ay)(nx(:)’)) ds =

+
N =
S

Srl’ght
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= [considering that Stop = Spor and Siesr = Sright]

1 _
= _f Uyy.wp(_uy,bot + Uy top — uy)"y (x)dS
S

2 bot
1 _
+ E Uxx,left(_ux,left + ux,right - ux)nx (:V) ds
Sleft (2.28)
1 _
+ E ny,top(_ux,bot + ux,top - ux)ny (x) ds
Shot
1 _
+ E ny,left(_uy,left + Uy right — uy)nx(y) ds =0,

Sleft

where surface normals n, and n,, were assumed equal for heterogeneous ad homogeneous

structures as the change of surface normal due to deformation is very small.

AXIAL SHEAR
COMPONENTS COMPONENTS

y y
My Uy
Aiuvtop(x)
Uy Uy =
e e _+ ===
\ \
Ux,|eﬂ(Y)" \r i I‘Jx,nght(y)
-Nx | I n
| |
I I
I Yy bot®) li
—_ = = I J/ = == L X
_ny
Undeformed Homogenized Hete?ogeneous

Figure 2.6 Deformation of homogenized RVE. Axial components (left), shear components (right).

Thus, the average stress g;; and strain &; fulfill equivalence in strain energy between explicit
heterogeneous material and equivalent homogeneous material. These average expressions are

used for derivation of heterogeneous structure’s equivalent properties. The stress and strain state
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of heterogeneous structure is obtained by FEA. For simpler analysis, the volume integral of strain

field can be expressed in form of surface integral

1 1
&j = va &j(x,y,2)dV = ﬁf (wnj + wn;)ds (2.29)
S

where S is the boundary surface of RVE, u; is i-component of displacement and n; is j-component

normal to S [17].

2.3.2 Homogenization of orthotropic RVE with central opening

In case of panels with central opening and no stiffeners orthotropic properties are valid for
equivalent elements as shown in [17]. According to definition, an orthotropic material has
minimum of 2 orthogonal planes of symmetry where elastic properties are independent of
direction in each plane. Thus, their constitutive matrices are composed of 9 independent

variables. The conventional compliance matrix is in form of

1 Vyx Vyx ]
e N N
E, E, E,
v 1 Y%
-2 — =2 9 0 0
Exx Ex Ey k. Oxx
Eyy Yz Vyz 1 0 0 o ||y
Ezz _ Ex Ey EZ Ozz
Eyz | 1 Oyz |
£ 0 0 0 57— 0 0 |lo, (2.30)
£ yz o
xy 1 xy
0 0 0 0 0
2G,,
0 0 0 0 0 1
26,y
where 2% — Yxy Vax _ Vxz Vyz _ Vzy

Ey, Ex'E, Ex E, E

In case of 2-dimensional membrane problems on x-y plane the compliance matrix takes the from
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— XX
E, E,
€ o
XX ny 1 XX
[gyy] =I"% 5 0 [Uyy],
Exy x y 1 Oxy (2.31)
0 0
2G|
where -2 = XX,
E,  Ey

Therefore, for of equivalency between explicit heterogeneous structure and homogenized

equivalent media effective Ey, E,,, Gy, and vy, need to be determined [17].

EFFECTIVE MODULI

The RVE for analysis of normal loads is given in Figure 2.7. In case of axial loading the boundaries

of RVE correspond to symmetry lines of RVE.

Figure 2.7 RVE with central opening.

The normal displacements of the boundary cause the boundary to displace only parallel to the
original one. The displacement constraints, according to equations 1.7-1.10 are applicable to

heterogeneous FE model of RVE:

u(0,y) =0
u(b,y) = const = 8, (2.32)

v(x,0) =0
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v(x,L) = const = §,,

where u and v are displacements in x and y direction respectively. The displacements &, and &,,

are obtained from finite element analysis of RVE.

The horizontal axial loading is modelled by forced displacement §,. on side x = b. The force F, is

obtained as interface load acting on side x = b. Axial average strain can be expressed as

1 1 5,
Exx = ﬁ«[ (uyny + uyn,)ds = st Uyn,dS = " (2.33)
The strain energy absorbed is
1 1 1 1 1
U= EaijeijV = Eo-xxexxv + anyeny + EnyfxyV = Eo-xxgxxv (2.34)

since 0y, €y, = 0 and gy, &y, = 0 as determined form finite element analysis of RVE. The average
stresses 0, and dy,, are zero on each side of RVE despite gy, being locally non-zero. &, # 0

while &, = 0, therefore the strain energy is absorbed only due to horizontal stress gy, and strain

Exx-

The external work W which equals strain energy absorbed is

1 1 1_ 6
W =2 Eby = 5 GexfuxV = 50 fv. (2.35)
Thus

Fy
5, ==~ 2.36
Oxx = 7, (2.36)

where t is thickness of the RVE. The equivalent longitudinal modulus and Poisson’s ratio are

obtained from

a. E.b g, 6,b
Ex=#= X andvxy=—#=_L- (2.37)
Exx Lto, Exx Oy L
Similarly, for vertical tension case, forced displacement applied for boundary y = L yields
a. E,L g, o, L v
E,=2=2Y" y =-2=-_2X orv,="22E,. 2.38
Y &yy  bté, - Eyy 8yb > oE, Y ( )
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In case of shear loading the deformed shape of RVE needs to satisfy periodicity and symmetry
conditions. In general, large repetitive structure need to be analysed to obtain natural boundary
conditions for singe RVE. However, it was tested that analysis of 3x3 RVE-s is sufficient to establish
accurate boundary conditions for single RVE under pure shear load. The natural displacement
field and boundary conditions for RVE under pure shear load are obtained from central RVE as it is
sufficiently removed from boundaries. Following boundary conditions for sub-modelling shear

load case are proposed for RVE shown on Figure 2.8:
u(0,y) = u(b,y)
v(0,y) = v(b,y)
u(x,0) = u(x, L)
(2.39)
v(x,0) = v(x,L)

Exr(%,0) = &4 (x, L) = 00 u(x,0) = u(x,L) = 6,

£yy(0,¥) = &y, (b,y) = 00r v(0,y) = v(b,y) =6,

Y
Fxy
oy
r L
/ /
/ /
/
/ /
/ /
/ /
A ]
_Li__ X
Fxy

Figure 2.8 RVE with central opening for shear load case.

For application of shear load case equal and opposite shear loads F,, are applied on edgesy = 0
andy = L. The RVE is placed on rollers to eliminate rigid body motion (§, = 0). The vertical

reaction from rollers and constraint €,,,(0,y) = €,,,(b,y) = 0 result in effective shear force on
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vertical sides or RVE, thus both vertical and horizontal shear components are active and RVE is

under pure shear load. Average in plane shear strain is obtained from

_ 2
Yay = va Exy dV

1
= —f (uxny + uynx) ds = (2.40)
s

Form external work - strain energy equilibrium

2 Ixy x 2 Oxy}xyl’ 2 Oxy I t OxyOx t :
Gy 1;21 (2.42)

The effective in plane shear modulus is found as

Gey _ eyl
Yoy  Dt26,

Gry = (2.43)

where 26, is horizontal displacement of edge y = L relative to edge y = 0.

2.3.3 Homogenization of RVE with offset openings and stiffeners

In ship’s global models the equivalent mesh is organized so that there are few equivalent
elements between web frames and decks. The preferred mesh size of side shell is usually 1 or 2
elements per web frame spacing and 1 element between decks. The location of RVE needs to
coincide with global mesh arrangement so that accurate equivalent property can be applied for
every equivalent element. In case of balconies, the opening is usually not in the center of RVE and
stiffeners are included in the structure, therefore homogenization of structure with offset

openings and stiffeners is investigated.

For equivalent orthotropic modeling described above, the terms C13 and C23 in equation 2.44

[18] which quantify the coupling between shear and axial response were zero. In following the
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presence of these coupling terms are determined for stiffened RVE with offset opening and

suitable boundary conditions for analysis of RVE are established.

[ i _Yyx C13_
. E, E, -
XX »ny 1 xXx
&yy|=-—== (23 ]|%y (2.44)
Exy Ex Ey . Oxy
c31 (32
26y |

The equivalent in plane properties for stiffened panels with opening are derived for equivalent
element with same thickness as explicit structure’s plate layer. Therefore, contribution of
stiffeners to equivalent properties are included in this single layer. In following all traction forces
on RVE are assumed to be in plate layer when calculating averaged stresses. This is necessary to

achieve equivalence between explicit and homogenized structure’s in plane stiffness.
EFFECTIVE MODULI

The coupling terms can be determined from axial load cases. Since the opening is not in the
centre of the RVE, the constraints proposed in chapter 2.3.2 are not valid. For horizontal axial load
case, same constraints as for RVE with central opening can be applied for vertical edges due to

symmetry with respect to vertical axis:

u(0,y) =0
(2.45)
u(b,y) = const = 6,

The constraints of horizontal edges need to satisfy periodicity of the repetitive structure as well as
its natural deformation field which occurs when uniform axial load is applied far from considered
RVE. Following constraint equations for horizontal edges of RVE are proposed according to
analysis of structure on Figure 2.9 consisting of 3x3 RVEs:
u(x,0) = u(x, L)

(2.46)

v(x,L) —v(x,0) = const = §,,.

The difference compared to central opening case is that horizontal edges of RVE no longer remain

straight but their vertical displacements v and horizontal displacements u are coupled.
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Figure 2.9 Model of 3x3 RVE-s under horizontal axial load.

In addition to in plane constraints, web frame and deck lines are constrained for out of plane

displacement TZ and rotations RX, RY. These degrees of freedom are restricted in ship structures

by decks and web frames which are not included in sub-modelling. The out of plane constraints

are applied for analysis of all load cases: horizontal axial, vertical axial and shear.

The horizontal axial loading is modelled by forced displacement §,, on side x = b. The force F, is

obtained as interface load acting on side x = b. The axial average strains can be expressed as

1
Exx = ﬁf (Uuxny, + uyn,)dS =
S

)

1 x
VJ; uxnde = ?,

1

_ 1 1
&y = ﬁf (uyny + uyny)dS = Vf Uyn,dS = Vf (Uy,top — Uy, pottom)tdL =
S S L

_ 2 ths _ Y
Lt Y LT

The average horizontal stress in RVE is obtained same as in chapter 2.3.2:

Fx
Lt

Oxx = 77

Equivalent properties can be obtained according to compliance matrix (2.44) from:

_ 1
Exx =E_
x

V.
Gx — %Eyy + C13Gyy;
y

_ _ _ 1
&y = €310y, + €320y, + Taxy.

xy
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From analysis of the RVE ayy =0, 0y, = 0and &, =0, thus

a. E.b £, 6,b
Ex=ﬁ= x andvxyz—#z—L (252)
Exx Lto, Exx Oy L
and
_ _ gxy
&xy = C130,, = C13 = 5 =0. (2.53)
XX

Therefore, there is no coupling between horizontal normal and shear term.

For vertical axial load case, same constraints as for RVE with central opening can be applied for
vertical edges due to symmetry with respect to vertical axis. The boundary constraints for
horizontal edges y=L and y=0 were established by analysing displacement field of a structure of

3x3 openings under vertical tension, Figure 2.10.

P

A
UL T VLY

Figure 2.10 Model of 3x3 RVE-s under vertical axial load.

Following constraints on edges of RVE are obtained:
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u(0,y) =0

u(b,y) = const = 6§,
(2.54)
u(x,0) = u(x, L)

v(x,L) —v(x,0) = const = g,

However, in FEA it is practically difficult to couple horizontal edges in x and y directions while
applying an axial load on the same edges. This is due to reason that vertical axial force distribution
that causes natural deformation shape is not known a priori. Therefore, the vertical load case is
realised by partially including the neighbouring openings of studied RVE in the model. It is
sufficient to model the panel above and below the studied RVE until half height of the opening to
achieve natural deformation field on the RVE. The proposed boundary conditions for submodel on

Figure 2.11 are:

u(0,y) =0
u(b,y) = const = 68, (2.55)
v(x,—L,) =0

The horizontal axial loading is modelled by forced vertical displacement on top edge. The force F,

is obtained as interface load acting on sectionsy = L and y = 0.

L1

Figure 2.11 Submodel for vertical axial load case.
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The axial average strain can be expressed as

s =t f ( + )dS 1f ds
Eyy = uyn uyn == uyn =
yy 2V s vy vy 174 s vy

1
= Vf (Uytop — Uy, pottom)tdL = [The vertical displacements of nodes aty =
L

=0andy =

= L are naturally coupled due to peridoicity of the sturcutre, thus (Uy ;op

1

_ _ _ 7y
— Uy pottom = 63/] —mtbay =

where
v(x,L) —v(x,0) = const = §,,.
From external work strain energy equivalence:

1 1

_ _ T = = _ T = y
W = EFy(Sy = EO'yy&‘ny = EO'nyV,

the average stress g, is

B

Oyy = bt

The equivalent properties can be obtained according to compliance matrix (2.44) from:

_ Vxy _ 1 _ _
Eyy = —E—xoxx + E—yayy + C230yy,

1
Ery = C31Gy + €325, + =Gy
26y,

According to analysis ayy = 0xy = 0 and &, = 0, therefore

_ B Oyy EL
&y = = 0yy = By =——= )
E, &y  Oybt
ey = €328 2=t
Exy—C3 O'yy3C3 —a—ﬂ.

Thus, there is no coupling between axial and shear terms.
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SHEAR EQUIVALENCE

The boundary conditions for RVE with offset opening and stiffeners under in plane shear loading
are established by analysing a structure of 3x3 RVE-s, Figure 2.12. The natural displacement field
and boundary conditions are obtained from central RVE as it is sufficiently removed from

boundaries.

Figure 2.12 Model of 3x3 RVE-s under shear load.
Following boundary conditions are proposed for single RVE, Figure 2.13:
u(0,y) = u(b,y)
v(0,y) = v(b,y)
(2.63)
u(x, L) — u(x,0) = const = 26,

v(x,0) = v(x,L)

Additionally, vertical boundaries are constrained to constant lateral displacement as for RVE with
central opening which was determined to be natural deformation shape from analysis of structure

of 3x3 RVE-s.
£yy(0,y) = £y, (b,y) = 0 0r v(0,y) = v(b,y) = §, (2.64)

Horizontal edges however cannot be constrained for constant lateral displacement as in case of

RVE with central opening as symmetry is violated with respect to horizontal axis.
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Figure 2.13 RVE with offset opening and stiffeners for shear load case.

For shear load case, equal and opposite shear loads F,, are applied on edgesy = 0 and y = L. The
RVE is pinned at (0; 0) and on roller at (b; 0) to eliminate rigid body motion (6, = 0). The pin and
roller constraint reactions at bottom corners result in shear load on vertical sides of the model.

Therefore, the RVE is loaded with pure shear. Average in plane shear strain is obtained from

2 1 1 26
Vay = —f Exy dV = —f (uxny + uyn,) ds = —f (uyn,)dsS = —= (2.65)
V) Vs Vs
Form external work-strain energy equilibrium
E xy25x = Eaxyfxyv
(2.66)
= Oxy 0y bt,
_ ny
Ty = v (2.67)
The effective in plane shear modulus is found as
Oxy  Fyyl
Gyy = — = ——, 2.68
Y Yey  bt26y (2.68)

Where 26, is horizontal displacement of edge y = L relative to edge y = 0.

45



2.4 Limitations in equivalent orthotropic modeling

2.4.1 Equivalency in forces and moments

The homogenization of RVE is based on strain energy equivalence according to average stresses
and strains. The use of classical theory is valid for application to panels with central opening for
which stress distributions for uniaxial load cases on the edges of RVE are symmetric and
equivalence in forces (eq. 2.69) and moments (eq. 2.70) between heterogeneous and

homogenized media are achieved as shown on Figure 2.14.

E, F L

2o fo Gxt dy (2.69)
and

M( —L) fL tydy = LF"+LF"—0 (2.70)
zy—z—oaxxy'y—zz 75 = -

-F/2 Fu/2

'Fx/z FX/Z

Figure 2.14 Force and moment on RVE with central opening under horizontal tension (heterogeneous

explicit model - top, Homogeneous equivalent model - bottom).
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In case of offset opening the stress distribution on edges of unit cell under horizontal axial load
case is not however symmetric, which reveals micropolar effect [23]. This results in net moment
acting on midpoint of side of heterogeneous structure as illustrated on Figure 2.15 for horizontal
axial tension, while homogenized model shows no net moment about midpoint of vertical side. As
result of homogenization according to classical theory the equivalency in forces (eq. 2.69) is
achieved as in case of central opening. The equivalency in moments about midpoint of vertical

side (eq. 2.71) is not realized.

L

L
M, ()’:—) =f Oxxtydy + —
0

L
ZX_p 2.71
5 + 5 (2.71)

N~

-Fx/2 Fx/2

-Fx/2 Fx/2

Figure 2.15 Force and moment on RVE with offset opening under horizontal tension (heterogeneous explicit

model - top, Homogeneous equivalent model - bottom).

This problem can be tackled by application of couple-stress theory. In this generalization of
classical elasticity for in plane problem, the stress becomes asymmetric with four components
(Oxx) Tyy) Txy, Tyx) @and couple-stress (moment per unit area my,, m,,;) is introduced. In addition
to classical strain components &y, €y, and yy,, there are also curvature components k,, and k,,,
produced by couple-stress. Rectangular components of stress and couple-stress are presented on
Figure 2.16 [24]. This generalization of classical elasticity is not implemented into commercial FEA

packages and is therefore not applied in scope of this work and elements based on classical
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theory of elasticity are used. The errors arising due to lack of equivalency in moments are

discussed in chapter 4.

(0}
m y
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Figure 2.16 Rectangular components of stress and couple-stress [24].

2.4.2 Periodicity of structure and load

In equivalent orthotropic modeling applied to materials science the boundary layer on which the
load is applied and periodicity is violated is very small compared to extent of the body [17]. In
application to ship structures however the boundary layer is significant part of the homogenized
structure as illustrated on Figure 2.17. Due to significant extent of boundary layer in ship

structures, compromised response is expected in large part of the structure.

e -"“ [mw@mfﬂ

“%wau..;;:ut

Figure 2.17 Boundary layer on ships side shell.
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In addition to violation of structural periodicity, the structure is not only loaded at the boundaries
of periodic grid but considerable local loads occur in side shell where adjacent longitudinal
bulkheads are discontinuous. This results in significantly non-periodic stress state and large strain
gradients in periodic side shell. However, periodic stress and strain field was assumed in finding
boundary conditions for sub-model used for derivation of equivalent properties. Therefore, the
equivalent properties are based on certain deformation shape that realizes if stress and strain
fields are periodic — loading is uniform. If external load is applied on RVE in periodic structure the
stress and strain fields will no longer be periodic and assumed deformation shape will not realize.
Due to different deformation mode, the effective shear moduli of these unit cells will be different.
The problem is illustrated on Figure 28 by two unit cells subject to 1F shear load and 3F shear load
as a result of external loading in periodic grid both deforming anti-symmetrically. As seen, the
deformation shapes of adjacent edges do not match. Therefore, these deformation shapes cannot
realize for adjacent openings in explicit structure and actual deformation shape will differ
resulting in different effective moduli. In homogenization theory, it is known as violating principle
of separation of scales which assumes, that microscopic scale (unit cell) is much smaller than
characteristic length over which macroscopic loading varies in global model [19]. The effect of
large strain gradients is investigated in chapter 4.4.2 by comparison of box-like ship response with
continuous and discontinuous longitudinal bulkheads. The influence of boundary layer to global

response is evaluated in chapter 4.4.1.

Figure 2.18 Antisymmetric deformation of unit cells under pure shear load (1F - top and 3F - bottom).
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2.5 Inclusion of stiffeners and window frames in equivalent

modelling

Since in case of equivalent orthotropic modeling a plate with a cutout is replaced by single or few
equivalent shell elements the stiffeners, window frames and insert plates cannot be modeled
explicitly due to incompatibility with coarse equivalent mesh. The contribution of stiffeners and
window frames to equivalent shear modulus has been neglected in past research [6], [18], [22],
[25] with exception of Fransman [5], who included window frame’s contribution in equivalent

shear modulus derivation.

In case of typical balcony openings there are vertical stiffeners close to vertical sides of opening
and single longitudinal stiffener above the opening. The vertical stiffeners have major
contribution to bending stiffness of vertical plate strips where they act as flanges for vertical plate
strips. Horizontal stiffeners contribute similarly to bending stiffness of horizontal plate strips. In
addition to contribution to bending stiffness of the plate strips, both vertical and horizontal
stiffeners carry shear loads when shear deformation of plate strips is considered. The contribution

of stiffeners to effective shear modulus of single opening is presented in chapter 4.1.
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3. DIRECT MODELING OF OPENINGS WITH COARSE MESH

The global model of ship is composed of coarse mesh as shown on Figure 3.1. The areas such as
window and balcony openings in the side shell are modelled with simplified geometry and coarse
mesh. As a result, accuracy of response depends on mesh size which was studied for centrally
placed rectangular window by Fricke [25], but also on simplification of structure for compatibility
with coarse mesh size. Later involves excluding corner radius and insert plates, lumping of
stiffeners and offsetting the opening. These factors have moderate effect on axial stiffness
properties but significant effect on shear stiffness of an opening. In following the effect of

simplification only to shear stiffness is discussed.

Figure 3.1 Section of global coarse mesh model.

3.1 Effect of simplification of structure to shear stiffness

In order to understand, how stiffeners and window frames contribute to in plane shear stiffness
of panel with cutout, it is necessary to look at the components contributing to shear stiffness as

illustrated on Figure 3.2:

Undeformed opening

Shear deformation of vertical and horizontal plate strips

1.
2
3. Local deformation at intersection plate of vertical and horizontal plate strips
4. Bending of vertical plate strips

5

Bending of horizontal plate strips
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Shear deformation components 2 and 3 are present in all types of opening. The bending
components 4 and 5 are less pronounced for small openings with wide and short plate strips and
more pronounced for large balcony openings with long narrow plate strips between openings. For

accurate response, all components need to be accurately accounted.
c 3 4 )
/ / @
[ J

Figure 3.2 Shear deformation components of an opening.

The proposed simplification to balcony openings for coarse mesh modeling includes neglecting
corner radius (Figure 3.3, b), offsetting the opening to bottom of the panel and lumping stiffeners
to side of the opening (Figure 3.3, c). First is necessary as rounded corners cannot be included in
coarse mesh. Later is needed to avoid using elements with very high aspect ratio to model bottom
plate strip of the panel. The stiffeners are lumped to sides of the opening to comply with coarse

mesh. Height Ly and width b, of the opening remains constant while corner radius is excluded.

a b c

\ b | | b | | b |

[ | [ | | |
t[ | j[ 1 %I
—1 — _-t
—

\
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N
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Figure 3.3 Simplification of balcony opening for coarse mesh modelling. a — explicit model, b — neglecting of
corner radius, c — offsetting the opening to bottom of the panel and lumping stiffeners to side of the

opening.

Neglecting corner radius has major effect on bending of vertical and horizontal plate strips at

intersection of vertical and horizontal plate strips due to locally reduced section modulus in
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simplified model as illustrated on Figure 3.4. In explicit model, the section modulus of vertical

(by+f(RY)3t

2 , while in simplified model section modulus is constant ] =

plate strips isI(R,y) =

byt . . - . .
"2 . As section modulus depends on third power of plate strip width, exclusion of corner radius

has large influence to bending contribution to shear stiffness.

In addition, local rotation at intersection plate is larger in case of simplified model as the moment

from plate strips is carried to smaller section.

Moment carried to

smaller section

Reduced section

. modulus
Moment carried to

,' larger section

Figure 3.4 Local bending of vertical and horizontal plate strips under shear load. Explicit geometry - left,

simplified model - right.

Offsetting the opening does not have major influence to shear stiffness as top and bottom edges’
vertical and horizontal displacements are coupled when under shear load in periodic grid. This

results in top and bottom plate strips acting as a single beam with height L, + L; and moment of

(Lp+Lp)dt
12

inertia ] = which is equal to moment of inertia of top plate strip in simplified model,
Figure 3.3 (c). The influence to shear stiffness when offsetting the opening was determined to be
zero by FEA of opening constrained anti-symmetrically as in periodic grid under shear load. In case
the opening is not in periodic grid, offsetting results in changed bending stiffness of bottom and
top plate strips as top and bottom edge displacements are not coupled. If the offset distance
would be significant relative to opening geometry, modelling by explicit geometry (no offsetting)

should be considered to avoid errors due to inaccurate bending stiffness of bottom and top plate

strips.

Lumping of stiffeners increases the bending stiffness of vertical and horizontal plate strips as
stiffeners which act as flanges of the plate strips are moved further away from the neutral axis.

This results in increased section modulus of vertical and horizontal plate strips with stiffeners.
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3.2 Effect of coarse mesh size to shear stiffness

In case of 4-noded CQUAD4 plate elements and coarse mesh, the elements are not capable of
accurately representing bending behavior of plate strips due to linear shape functions and
parasitic shear phenomenon. CQUADS8 elements have parabolic shape functions and no parasitic
shear effect but require relatively large number of nodes for modeling which would increase local
mesh density and modeling effort. In addition, the mid-side nodes need to be in center 1/3 of
element edge. Therefore, the sensitivity analysis for coarse mesh is only performed for CQUADA4

elements.

Since the bending is most pronounced close to intersection plate, mesh size at intersection of
vertical and horizontal plate strips should be sufficiently fine to capture accurate response.
Nevertheless, this kind of mesh size is too fine for practical modeling. Therefore, sensitivity
analysis needs to be performed. A balance in error due to simplification of model and coarse
mesh size is sought for in order to obtain modeling approach with reasonably accurate stiffness.
The shear stiffness sensitivity analysis for coarse mesh is presented in 4.2.3 along with cumulative

error due to simplification and mesh size.
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4. RESULTS

In this chapter, the equivalent orthotropic properties are presented for central and stiffened
offset balcony openings according to methods proposed in chapter 2.3. The accuracy of openings
modeled with coarse mesh accounting for different mesh size and simplification of structure is
presented. To evaluate the accuracy of proposed modeling techniques, two cases studies are
performed. In first case, the accuracy of side shell behavior is studied to validate the modeling
techniques in simple case where the side shell is loaded at its boundaries. In second case study,
modeling techniques are evaluated in periodic grid and its boundaries when the loading is no
longer only applied on sides of the grid but follows load carrying mechanism of a box-like ship
under 4-point bending. The aim is to test the performance of modeling techniques in periodic grid
and at boundary of periodic grid. In addition, the effect of significantly non-uniform loading

resulting in high strain gradients is evaluated to study performance of openings in periodic grid.

4.1 Equivalent in plane properties

Equivalent in plane properties of central opening and typical balcony (Figure 4.1) openings were
calculated according to procedure proposed in chapter 2.3. The mesh size was 50 mm. Side shell
plating was modeled with CQUAD4 shell elements and stiffeners with CBEAM elements. The
necessity to include stiffeners in calculation of equivalent shear modulus was studied by

calculating effective shear modulus for typical balcony opening with and without stiffeners.

2562 2562
o
120 o
- 120 g
|
FB1S50x20 — / \
0| = FB150x20 — =
w0 = =
2 N &
e
&
1750
\ _ 1750

Figure 4.1 Central opening (left), typical offset balcony opening (right).
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The obtained equivalent orthotropic properties are presented in Table 4.1. While the contribution
of stiffeners to equivalent axial modulus is well known, its contribution to equivalent shear
modulus is often neglected [6], [18], [22], [25]. It is seen that neglecting of stiffeners results in
12,3% underestimation of effective shear modulus. Therefore, inclusion of stiffeners in equivalent

shear modulus calculation should not be neglected in case of large balcony openings.

Table 4.1. Equivalent orthotropic properties of balcony openings.

Description Ex, GPa Ey, GPa |G, GPa Vyxy

Central opening 62,80 70,50 4,98 0,13
Offset opening (no stiffeners) 62,80 70,50 4,98 0,13
Offset opening (with stiffeners) 82,06 93,18 5,68 0,12

4.2 Coarse mesh modeling accuracy

The coarse mesh stiffness accuracy is determined by first studying the effect of simplification of

structure and secondly due to using coarse mesh.

4.2.1 The reference model

The models against which the cost of simplification of structure and coarse mesh size is compared
are presented on Figure 4.2, where the structure and geometry are same as presented on Figure
4.1. The models consist of CQUAD4 elements for side plating and CBEAM elements for stiffeners.
They are constrained for out of plane displacements and rotations along deck and web-frame
lines as it would be in ships side shell connected to web-frames and decks which restrict out of
plate displacements. The in plane, constraints and load imposed on both reference and simplified

models are same as derived for homogenization in chapter 2.3.
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Figure 4.2 Fine mesh reference model of balcony opening. Offset — left, central — right.

4.2.2 Effect of simplification to shear stiffness

In case of modeling with coarse mesh the structure is first simplified. The effect of simplification
on stiffness properties of the structure is studied by fine mesh sensitivity analysis. The effect of
simplification on offset balcony opening is presented on Figure 4.3 by first excluding corner radius
and then offsetting the opening to bottom of the plate while moving the stiffeners to the edge of
the opening. In case of offset opening exclusion of corner radii results in 23% decrease of shear
stiffness while offsetting opening and stiffeners increases shear stiffness to -17% compared to
explicit value. For model with central opening only corner radius was neglected, which resulted in

26% of shear stiffness reduction.
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Figure 4.3 Shear stiffness due to simplification of typical balcony opening (Figure 4.1). a) explicit. b)
excluded corner radii. c) excluded corner radii, opening offset to bottom edge of plate and stiffeners

lumped to opening edge.

4.2.3 Effect of coarse mesh size to shear stiffness

Sensitivity analysis of mesh size to shear stiffness was performed for 4 different mesh sizes of 4x2;
4x4; 4X6 and 6x8 plate elements per panel. The results for typical balcony opening are presented
in Figure 4.4. The modeling option with 8x6 elements gives 19,9 % increase of shear stiffness
compared to simplified fine mesh model, accounting for error due to simplification of geometry,
the total stiffness error becomes -0,2%. In case of 4x6 elements the cumulative error is 10,5% due
to overestimated bending stiffness of vertical and horizontal plate strips. The cumulative error for
4x4 mesh is 12,8%, while overestimation of shear stiffness by 4x2 elements model is 41,9%. Later
is assigned to fact that single elements for vertical plate strips do not allow curved bending shape

to realize, with high aspect ratio being another source of error.

In case studies for offset opening coarse mesh size of 4x4 elements is applied as it is considered
the best compromise between modeling effort, calculation time and stiffness accuracy. For
central opening the mesh size of 4x5 elements is used for reasonable aspect ratio of vertical plate
strip elements. This results in cumulative shear stiffness increase of 5,1% compared to fine mesh

reference.
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Figure 4.4 Shear stiffness modelling accuracy of typical balcony opening.

4.3 Case study 1 - Periodic side shell

In this study, the orthotropic and coarse modeling techniques are evaluated in side shell model
for uniaxial and shear load cases. The periodic side shell model for offset openings is presented on
Figure 4.5 and consists of CQUAD4 shell elements for side shell plate and CBEAM beam elements
for stiffeners. The structure of single opening is same as presented on Figure 4.1. The model

represents a periodic part of side shell.

A

Figure 4.5 Periodic side shell test model.
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4.3.1 Axial response

The structure is constrained and loaded as shown on Figure 4.6. The horizontal and vertical axial
response are compared in terms of axial force required to cause 1 mm horizontal or 1 mm vertical
displacement of loaded edges respectively. The orthotropic model shows accurate response for
horizontal load case and 2,2% smaller stiffness compared to reference for vertical tension load
case as shown in Table 4.2. The difference in case of vertical tension originates from edge effect —
the horizontal edges of the model are forced straight, while equivalent elements were derived
assuming periodic boundary conditions. For coarse model, horizontal axial stiffness is
overestimated by 1,7% and vertical axial stiffness by 2,5%. In either case the accuracy is

considered sufficient.
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Figure 4.6 Submodel of 3x3 openings in side shell constrained and loaded for horizontal tension load case

(left) and vertical tension load case (right).

Table 4.2. Axial forces causing 1 mm displacement of vertical/horizontal side of side shell model.

Model F., kN F,, kN Error F,, % Error Fy, %
Fine 1038,0 1085,2

Orthotropic 1037,9 1061,2 0,0 -2,2
Coarse 1036,1 1112,0 1,7 +2,5

4.3.2 Shear response

For evaluation of shear response, the structure is constrained as shown on Figure 4.7: out of plane

displacement and rotations are constrained along deck and web-frame lines, top and bottom
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edges are coupled in x and y direction by constraint equations. Vertical edges of the model are
constrained to zero vertical strain which was determined to be natural deformation shape under
pure shear loading, see chapter 2.3.3. Bottom corners are placed on roller and pin. Vertical
reaction force of the roller and pin act as shear force on vertical sides of the model as shown on
Figure 4.8. Evaluation of shear stiffness accuracy is based on horizontal displacements along web
frame lines. The horizontal displacement curves are presented on Figure 4.8. For uniform loading
the orthotropic model shows accurate results at corner nodes of RVE-s, while the coarse model
shows 12,4% higher shear stiffness, which was predicted in chapter 4.2.3 Effect of coarse mesh

size to shear stiffness.
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Figure 4.7 Submodel of 3x3 openings in side shell constrained and loaded for shear load case.
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Figure 4.8 Horizontal displacement curves along web frames under shear load.
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4.4 Case study 2 - Box ship with periodic side shell (4-point

bending) for evaluation of periodic side shell performance

The aim of 4-point bending study for box ship is to evaluate

e performance of modeling techniques in periodic grid
e performance of modeling techniques at the edge of periodic grid
e performance of modeling techniques when loading is significantly non-uniform (large

strain gradients are present)

Two box-like ship models are used. The first model (M1) is presented on Figure 4.9 and consists of
decks, pillars, web frames and side shell with balcony openings. The structural scantlings are
shown in APPENDIX 1. SCANTLINGS OF BOX-LIKE SHIP. As there are no internal longitudinal
bulkheads the global bending and shear response is largely governed by side shell shear stiffness.
The aim of the model is to evaluate performance of modeling techniques in periodic grid and at
boundaries of grid. The comparison is performed based on hull girder deflection and longitudinal

deck forces in bending area.

i
i
i
Tl
Tl

Figure 4.9 Box ship model 1 (M1).

The second model (M2) of box ship is shown on Figure 4.10. M2 is composed of longitudinal
bulkhead, side shell with periodic openings, decks and web frames. The structural scantlings are

shown in APPENDIX 1. SCANTLINGS OF BOX-LIKE SHIP. M2 is used for evaluation of side shell

62



shear forces when longitudinal bulkhead is present. Modified model M2 where discontinuous
longitudinal bulkhead causes significantly non-uniform loading in side shell is used to evaluate
performance of modeling techniques when large strain gradients are present. Modified model

M2’s structural scantlings are presented in APPENDIX 1. SCANTLINGS OF BOX-LIKE SHIP.

Both models are constrained and loaded as shown on Figure 4.11. The loads and constraints are
applied to rigid elements at sections x=0, x=1/3L, x=2/3L and x=L. The rigid elements couple y, z
displacements and x, z rotations of all nodes in their longitudinal coordinate imitating the
behavior of transversal bulkhead while leaving x-displacement and y-rotation free, allowing sliding
between deck levels. The response is evaluated by vertical shear force in side shell at shear
dominated area (region 1, x=L/6) and by longitudinal deck force at pure bending area (region 2,

x=L/2).

Figure 4.10 Box ship model 2 (M2).
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Figure 4.11 4-point bending loads.

The fine, orthotropic and coarse mesh are illustrated on Figure 4.12. In all cases the global mesh
size is 2 elements per web frame spacing and 4 elements between decks. The decks and
longitudinal bulkheads incorporating stiffeners are modelled with equivalent shell elements
proposed by Avi [7]. Longitudinal girders, web frames and side shell stiffeners are modelled with
CBEAM elements, except for side shell stiffeners in orthotropic model, which are included in
equivalent orthotropic properties for side shell openings. In fine model, mesh size is locally
reduced to 50 mm at side shell. The coarse model is characterized by 4 elements longitudinally
and 4 (5 for model with central openings) vertically between decks and web frames at side shell.

Orthotropic model was studied in 3 modifications: two CQUAD4 elements per opening (pictured),

single CQUAD4 element per opening and single CQUADS8 element per opening.

Figure 4.12 Example of fine, coarse and orthotropic mesh size for box-like ship.
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4.4.1 Performance of modeling techniques in periodic grid and boundary of

grid

The performance of modeling techniques in periodic grid and boundaries was evaluated for two
modifications of box like ship models: openings in the center of RVE and offset openings on
stiffened RVE. Firstly, the global response is evaluated based on global deflection and longitudinal
deck forces in model M1 and secondly side shell modeling accuracy is evaluated by side shell

shear forces in model M2.

M1 with central openings

The deflection of fine, orthotropic and coarse models are 131,1 mm, 132,3 mm and 126,5 mm
respectively, orthotropic model being 1,1 % more flexible and coarse 3,4% less flexible than
reference. Deflection curves along all deck lines are within 1% for each model, curves of bottom
deck-side shell intersection line are presented on Figure 4.13. It is seen that there is no significant
difference whether one or two 4-noded or single 8-noded element is used for orthotropic mesh,
which indicates that shear locking is negligible in global model and linear shape functions and
single integration point for 4-noded element is in practice not significantly less accurate than 8-
noded elements. The sensitivity of side shell shear stiffness to hull girder deflection is shown by
modifying orthotropic model side shell shear stiffness by +15%. It is seen that deflection
significantly depends on orthotropic element shear stiffness while accurate result is obtained with

proposed technique.

Figure 4.14 shows deflection difference of coarse and orthotropic models compared to fine mesh
reference. In shear dominated area, it is seen that orthotropic model does not produce periodic
deflection curve such as fine mesh model. In shear area, the coarse model shows slightly different
but also periodic deflection curve, hence the rough curve. The difference in periodicity is because
fine model gives accurate warping of plate strips between openings under shear load, while
orthotropic model does not show any warping and coarse model does not produce accurate
warping shape due to mesh size. In pure bending area, the warping of plate strips is negligible and

difference between fine mesh and both alternative models is close to constant.
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Figure 4.13 Deflection curves along deck O - side shell intersection line, M1 central openings.
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Figure 4.14. Deflection difference of coarse and orthotropic models compared to fine mesh, M1 central

openings.

Longitudinal deck forces in midship area are presented on Figure 4.15. All models have similar
longitudinal force distribution. From fine model curve, it is seen that the model does not behave

like a beam as predicted according to Figure 1.1: top and bottom decks carry more longitudinal
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force than they would in case of linear distribution. Higher deck force of orthotropic models at
bottom and top decks are explained by boundary effect in orthotropic modelling. The orthotropic
model overestimates the shear stiffness of top and bottom deck openings which results in 5,0%

higher deck force on top deck while coarse model error is less than 0,4% at top and bottom decks.
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Figure 4.15 Longitudinal deck forces in region 2, M1 central openings.
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M2 WITH CENTRAL OPENINGS

The accuracy of side shell modeling is evaluated based on side shell vertical shear force at region
1, Figure 4.16. Considering orthotropic model, the shear force error between decks 2-5 is under
12% and considerably higher near boundaries of periodic grid. The inaccuracy in border areas of
periodic grid originates from violation of periodicity assumption. The smaller errors inside grid are
result of errors in border area translating into the grid. The shear forces acting on opening at deck
6-7 in explicit fine mesh model (Figure 4.16) show that shear forces on border opening are
significantly different on opposite edges which homogenized material cannot accurately describe.
The shear forces acting on opposite edges of an opening at deck 3-4 area are close to being equal

and the response of orthotropic model is closer to explicit behavior.

Similarly to model M1, there is no significant difference whether one or two CQUAD4 or single

CQUADS element is used for orthotropic mesh.

For coarse mesh, the shear force error is less than 7% except for deck 0-1, where larger error is
present due to parasitic shear phenomenon which occurs in 4-noded shell element next to
longitudinal girder below side shell. If longitudinal girder shear forces are added to deck 0-1 then

reference shear force is 35,8 kN and coarse model 26,1 kN.

Total vertical shear force through side shell is 2,3% more than reference for coarse model and

8,2% less for orthotropic model, which indicates better overall accuracy of coarse mesh model.
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Figure 4.16 Vertical shear forces in side shell, region 1, M2 central openings.
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M1 WITH OFFSET OPENINGS

The deflection of fine, orthotropic and coarse models are 117,3 mm, 118,8 mm and 118,4 mm
respectively, orthotropic model being 1,3 % and coarse 0,9% more flexible than reference.
Deflection curves along bottom deck — side shell intersection line are presented on Figure 4.17.
Close deflection curves indicate that both modeling techniques result in sufficiently accurate

global deflection when large periodic structure is considered.

O T T T T 1
(L\ 20 40 60 80 / 100
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o
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Fine
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Figure 4.17 Deflection curves along deck 0 - side shell intersection line, M1 offset openings.

Longitudinal deck forces diagram on Figure 4.18 shows orthotropic model’s boundary effect at top
and bottom decks. As a result of higher shear stiffness of coarse model side shell the longitudinal

force distribution is more beam-like than reference.
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Figure 4.18 Longitudinal deck forces in region 2, M1 offset openings.

Even though micropolar effect is clearly observed due to offset openings as illustrated by
moments M,, about midpoint of vertical side of openings on Figure 4.19, its effect to global

response is small. The reason being that side shell contribution to longitudinal axial response is

small compared to decks’.
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Figure 4.19 Moments M,, of in plane forces about mid-height of an opening, region 2 (mid-ship), M1 offset

openings.
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M2 WITH OFFSET OPENINGS

Side shell vertical shear force is presented on Figure 4.20. The orthotropic model forces show
better than 17% error between decks 1-5 and significantly larger error at boundaries of the model

which is assigned to violation of periodicity as in case of model with central openings.

Coarse model shows less than 5% error between decks 1-6, the error at top deck is 10% and larger
inaccuracy is present at deck 0-1 which is due to same reason as in case of central openings.
Additional source of error is simplification of coarse model structure by offsetting the openings to
bottom of RVE and neglecting corner radius at boundary of periodic grid while coarse mesh

sensitivity analysis was performed only for periodic openings.

It is also noted that for model with central openings all models showed close to parabolic shear
force distribution which is normal to rectangular beam section. In this case however the
idealization of parabolic shear force distribution is not valid as the openings and therefore shear
center of side shell is offset in Z-direction. This is clearly seen in shear force distributions of
explicit and coarse model but not evident in orthotropic model. The reason for this is that for
homogeneous element the shear center is in the midpoint of the side while this is not the case for

heterogeneous structure where the shear center is above the midpoint.

¥ fine (703 kN)
M coarse (683 kN)

Between decks

ortho cquad4, 1el (644 kN)
ortho cquad4, 2el (646 kN)

B ortho cquads, 1el (646 kN)

50 0 50 100 150

F, kN

Figure 4.20 Vertical shear forces in side shell of box-like ship, region 1, M2 offset openings.
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4.4.2 Performance of modeling techniques at high strain gradient areas

To evaluate accuracy of orthotropic model in case the loading on adjacent openings is significantly
different (the stress and strain field cannot be considered periodic) the box-like ship model M2
with central openings was modified by replacing the longitudinal bulkhead at deck 3-4 with pillar
line. The modified model is presented on Figure 4.21. As a result, the majority of vertical shear
force flows through side shell between decks 3-4 instead of pillar line which has low shear

stiffness compared to side shell as illustrated on Figure 4.21.
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Figure 4.21 Explicit model of modified box-like ship model. Majority of shear flow, central openings.

The global deflection of fine, coarse and orthotropic model are 105,1 mm, 104,2 mm and 109,5
respectively, coarse mesh model is 0,9% less and orthotropic 4,2% more flexible. Comparison of
vertical shear forces in region 1 is presented on figure 4.22. It is seen that in addition to errors at
boundaries of the model, there is significant difference between reference and orthotropic model
side shell shear forces at deck 3-4 and adjacent decks. In case of model with continuous

longitudinal bulkhead the error in vertical shear force at these decks was only 10%. The significant
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error is explained by large strain gradients arising due to violation of uniform loading assumption

as discussed in chapter 2.4.2.

In contrast to orthotropic model, the coarse mesh model shows reliable vertical shear force
around high strain gradient area as shown on Figure 4.22. The reliability of coarse mesh model is
also seen form accurate longitudinal deck forces on Figure 4.23. In case of orthotropic model, the
hull girder bending response at deck 3-4 is less accurately modelled. This shows that for
orthotropic modelling not only periodicity of structure is required but close to uniform load is
needed for reasonable accuracy. Later should be taken account, when orthotropic modelling is
applied in areas where discontinuous longitudinal bulkheads are present and sliding between
deck levels depends largely on side shell shear stiffness. In such cases coarse mesh modelling

should be considered as the reliability of response is better.
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Figure 4.22 Vertical shear forces in side shell of modified box ship, region 1, central openings.
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Figure 4.23 Longitudinal force in decks of modified box ship, region 2, central openings.
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5. CONCLUSIONS

The aim of the thesis was to investigate applicability and develop a modeling approach for
equivalent orthotropic and coarse mesh modeling of ship’s central and stiffened offset side shell
openings. The applicability was first assessed by tests on semi-global scale of side shell. Next, the
approaches were evaluated in box-like ship to study the performance of modeling techniques in a
periodic side shell, at its boundaries and at periodic side shell where large strain gradients are

present.

For equivalent orthotropic modeling limitations of applicability were established. It was shown
that in case of homogenizing offset openings according to classical theory the equivalent material
behavior is orthotropic and coupling between shear and axial terms is zero. The necessity to
include structural detail such as stiffeners for derivation of equivalent shear modulus was
determined, which has not been covered in past studies [6], [18], [22], [25]. In addition, it was
shown that in case of offset openings micropolar effect is present and the classical theory of
elasticity is not valid as it assumes symmetric stress tensor and does not account for moments
resulting from asymmetric stress distribution on RVE. For accurate local response a couple-stress
theory [24] should be applied. This allows asymmetric stress tensor and moments per unit area.
Despite compromised local response in side shell, the effect of micropolar behavior to global

response was shown to be small.

While inaccuracy of orthotropic modeling at boundaries of periodic structure is well known, it was
demonstrated that accuracy is also compromised at locations adjacent to discontinuous internal
longitudinal bulkheads where large strain gradients occur. These limitations of boundary effect
and strain gradients can be tackled by computational homogenization methods described by
Geers in [19]. This approach is not however implemented into commercial FEA packages such as

NX Nastran 11.

For coarse mesh modeling a mesh size sensitivity analysis for shear stiffness was performed for
central and offset balcony openings inside a grid of similar openings. The contribution due to
simplification of structure was taken account. Later has been covered only for corner radii and
centrally placed openings in [25]. Coarse mesh modeling was shown to be sufficiently accurate for
obtaining global and local response independent of large strain gradients. More significant errors
in local response were detected at boundary areas due to coarse mesh’s inability to accurately

model localized deformations.
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For reliable and efficient response estimation following notes about modeling techniques should

be considered:

e Both, orthotropic and coarse mesh modelling result in sufficiently accurate global
deflection and longitudinal bending response provided that equivalent properties are
accurately derived and coarse mesh is verified by sensitivity analysis of shear stiffness.

e Accuracy of global response in orthotropic modeling is reduced when high strain gradients
are present, which occurs when internal longitudinal bulkheads adjacent to side shell are
discontinuous.

e Local response accuracy of orthotropic modeling depends on periodicity of structure and
presence of large strain gradients. At boundaries of periodic grid and where high strain
gradients are present, the local response accuracy is significantly compromised.

e The response of orthotropic model does not significantly vary if single or two 4-noded
elements or single 8-noded element per opening is used.

e The coarse mesh model gives more reliable local side shell and global bending response at
boundaries of periodic grid.

e (Coarse mesh accuracy is not significantly compromised at locations of significantly non-

uniform loading.

In future works, it is proposed that orthotropic and coarse mesh modeling as described in this
thesis shall be tested in realistic ship models for evaluation of global response accuracy.
Considering limitations of orthotropic modeling (boundary effect, large strain gradients, evolving
opening geometry), it is suggested to investigate implementation of second order computational
homogenization methods [20] to model periodic structures in scope of marine structures. These
tackle the issues of boundary effect and large strain gradients as well as evolving microstructure

eg. changing opening geometry.
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5. KOKKUVOTE

T606 eesmark oli uurida ja arendada ortotroopse ning jameda vorega modelleerimise rakendamist
laeva tsentraalsete ja ekstsentriliste avadega kiljekorpusele. Esimese sammuna hinnati meetodite
tapsust perioodilises struktuuris rakendatuna perioodiliste avadega kiiljekorpusele. Lisaks uuriti
modelleerimistehnikaid prismaatilise laeva mudelis hindamaks meetodite tdpsust perioodilise

struktuuri dartes ja piirkondades kus esinevad suured moondegradiendid.

Ekvivalentse ortotroopse tehnika rakendamisel ekstsentrilistele ja tsentraalsetele avadele,
kasutades homogeniseerimist klassikalise elastsusteooria jargi, on materjali omadused
ortotroopsed ja normaal- ning nihkepinge komponendid teineteisest sdltumatud. Toos leiti, et
ekvivalentsete materjaliomaduste tuletamisel tuleks arvesse votta ka jdigastajate moju paneeli
|6ikejaikusele. Viimast pole erialases kirjanduses [6], [18], [22], [25] varasemalt arvesse vdetud.
Lisaks naidati, et ekstsentriliste avade homogeniseerimisel ilmneb mikropolaarne efekt, mida
klassikaline materjalikasitlus ei kirjelda kuna eeldatakse simmeetrilist pingetensorit ja ei arvesta
asimmeetrilisest pingejaotusest tulenevaid momente Uhikrakul. Tdpsema lokaalse pingeseisundi
kirjeldamiseks tuleks rakendada couple-stress teooriat. Viimane vdimaldab aslimmeetrilist
pingetensorit ja elementaarpinnal esinevaid momente. Hoolimata lokaalsest ebatdpsusest on

mikropolaarse efekti mdju globaalses mastaabis vaike.

Kirjandusest ja teooriast oli teada, et otrotroopse tehnika tapsus perioodilise struktuuri dartes
vaheneb. Lisaks sellele ndidati, et meetodi tapsus kahaneb ka piirkondades, kus ilmnevad suured
moondegradiendid. Moondegradiendid on tihti tingitud kiljekorpusega kohakuti olevast
mittepidevast vaheseinast. Et vdltida moondegradientidest ja dare efektist tulenevaid ebatdpsusi
voib rakendada computational homogenization meetodit, mida on kirjeldatud Geers'i
publikatsioonis [19]. Viimast meetodit pole aga rakendatud kommertslikesse 16plike elementide

analillsi programmidesse nagu NX Nastran 11.

Jameda vorega mudeli jaoks tehti I6ikejaikuse tundlikkuse anallilis vOre suurusest nii perioodilise
tsentraalsele kui perioodilise ekstsentrilise ava korral. Lisaks vOeti arvesse geomeetria lihtsustuse
moju loikejaikusele. Struktuuri lihtsustuse mdju on varasemalt arvestatud vaid ava nurkade
raadiuse ara jatmise suhtes tsentraalse ava korral [25]. Jdmeda vorega mudel andis rahuldavaid
tulemusi nii globaalses kui lokaalses mottes sGltumata suurte moondegradientide ilmnemisest.
Markimisvaarsed ebatdpsused esinesid vaid perioodilise struktuuri dartes kuna jame vore ei

voimalda piisava tapsusega kirjeldada lokaliseerunud deformatsioone.
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Usaldusvaarse ja efektiivse mudeli koostamisel tuleks arvesse votta jargnevaid tulemusi:

e Nii ortotroopne kui jameda vorega mudel véimaldavad hinnata rahuldava tapsusega
globaalset labipainet ja paindepingete jaotust eeldusel, et ekvivalentsed
materjaliomadused on tuletatud Gigetel eeldustel ja jameda vore suurus on |8ikejaikuse
tundlikuse anallisiga kooskdlas.

e Ortotroopse mudeli globaalset tapsust vdahendavad suured moondegradiendid, mis
esinevad kui kiljekorpusega kohakuti olevad pikkivaheseinad pole pidevad.

e Ortotroopse mudeli lokaalne tapsus sOltub struktuuri perioodilisusest ja suurte
moondegradientide ilmnemisest. Perioodilise vore &dartes ja suure moodnegradiendiga
piirkondades ei ole ortrotroopne mudel lokaalsete sisejoudude ja deformatsiooni
hindamiseks usaldusvdarne.

e Ortotroopse mudeli tapsus ei s6ltu oluliselt ekvivalentse elemendi sdlmpunktide arvust.

e Jameda vorega mudel kirjeldab parema tapsusega lokaalseid sisejdudusid ja siirdeid ning
annab tapsemaid tulemusi struktuuri dartes.

e Jameda vorega mudeli tdpsus ei sOltu oluliselt suurtest moodnegradientidest.

Edaspidistes toodes soovitatakse rakendada siin pakutud tehnikaid realistlikus laeva
globaalmudelis, et hinnata meetodite tapsust juhul, mil perioodilise struktuuri osakaal on piiratud
ja koormamine kompleksne. Arvestades ortotroopse tehnikaga kaasnevaid piiranguid (dare efekt,
suured moonde gradiendid, muutuv avade geomeetria) soovitatakse uurida teist jarku
computational homogenizationi meetodite rakendatavust laeva perioodiliste struktuuride
modelleerimisel. Viimane meetod vdimaldab arvestada dare efekti, suurte moondegradientide ja

muutuva avade geomeetriaga.
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Appendix A. Scantlings of box-like ship
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Appendix A. Scantlings of box-like ship
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Appendix A. Scantlings of box-like ship
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