
1

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Informaatikainstituut

Infosüsteemide õppetool

Intelligentse süsteemi optimaalse käitumise

arendamine ja õpetamine

golfipallide kogumiseks

Magistritöö

Üliõpilane: Maksim Pristsepov

 Üliõpilaskood: 121776IAPM

 Juhendaja: lektor Raul Liivrand

Tallinn

2014

2

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem kaitsmisele esitatud.

Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärinevad

andmed on töös viidatud.

……………………………………. ………………………………

 (kuupäev) (allkiri)

3

Annotatsioon

Selle töö eesmärk on luua intelligentse süsteemi käitumist golfpallide effektiivse kogumiseks

avatud piirkonnas. Peamine tähelepanu on pööratud närvivõrgude kasutamisele käitumise jaoks

ja nende õpetamisele geneetilise algoritmi abil. Pakutud lahendused käitumiseks on alalüüsitud

ja võrreldatud emuleeritud keskkonnas. Töö sisu mõistmiseks on hea kui lugeja on tuttav

närvivõrgudega.

The goal of this work is to create an intelligent system’s behavior for the effective collection of

golf balls on open area. The main attention is paid to the neural networks for behavior’s

implementation and teaching them with the genetic algorithm. The proposed solutions are

analyzed and compared at emulated environment. The work is designed for readership familiar

with the neural networks.

4

Contents
1. Abbreviations and definitions .. 6

2. Introduction ... 7

3. Statement of the problem ... 7

4. Possible solutions .. 7

5. Emulation environment’s description ... 8

5.1. Environment’s elements ... 8

5.2. Environment’s requirements ... 9

5.3. Types of golf balls’ arrangement .. 9

5.4. Robot’s structure ... 10

5.5. Training graphs ... 11

5.6. Environment settings .. 12

5.6.1. Population settings ... 13

5.6.2. Genetic algorithm settings .. 13

5.6.3. Testing settings .. 15

6. Application Design .. 15

6.1. Graphic user interface ... 15

6.1.1. Neural Network ... 17

6.1.2. Genetic algorithm .. 17

6.1.3. Evolution ... 18

6.1.4. Environment .. 19

6.1.5. Robot’s behavior ... 20

6.1.6. Chart .. 20

7. Solution 1 - Tree of rules ... 21

8. Solution 2 – Forward Neural Network .. 22

8.1. Description of structure .. 22

8.2. Principle of operation of the neural network .. 24

8.3. Neuron .. 25

8.4. Activation function ... 26

8.4.1. Threshold function activation .. 26

8.4.2. Linear activation function .. 27

8.4.3. Sigmoid activation function .. 27

9. Solution 3 - Recurrent neural network .. 28

9.1. Description of the structure ... 29

5

10. Genetic algorithm ... 31

10.1. Description of the algorithm ... 31

10.2. Chromosome representation .. 32

10.3. Creating population ... 33

10.3.1. Roulette wheel selection .. 33

10.4. Selection .. 34

10.4.1. Fitness function .. 34

10.5. Crossover ... 35

10.5.1. One-point crossover ... 35

10.5.2. Two-points crossover ... 35

10.5.3. Uniformly distributed crossover .. 35

10.6. Mutation .. 37

10.7. Fitness landscape ... 38

11. Testing solutions ... 39

11.1. Types of tests ... 39

11.2. Conditions for tests.. 40

11.3. Neural networks’ training charts ... 40

11.4. Tests of Tree of rules ... 41

11.5. Tests of Forward neural network .. 43

11.6. Tests of Recurrent neural network .. 45

11.7. Test results... 47

12. Analysis and selection of the best solution ... 48

13. Summary ... 50

14. Kokkuvõte .. 50

15. Used materials .. 50

16. Notes ... 51

6

1. Abbreviations and definitions

Environment - implementation of the necessary conditions to compare different types of

behavior written in Java. It is a rectangular box with randomly scattered balls, in which robots

move and collect balls.

Robot - element in the simulated environment, acting as a system for finding and collecting golf

balls. It may use different types of behavior in order to search balls and move within the

boundaries of the environment. Also it has a radar before him with a limited vision range and

vision angle.

Leader - robot leader with the best fitness of its population, collecting the highest number of

balls.

Forward neural network - one of the possible behaviors of the robot for searching balls. It is a

neural network with direct signal propagation. A robot with the type of network can only

respond to changing environmental conditions, but has no memory.

Recurrent neural network - one of the possible behaviors of the robot for searching balls. It is

a neural network with back-propagation signals. A robot with the type of the network has a

memory, in other words, the network is able to remember the environment state from the

previous step and apply this knowledge to the next step in its favor.

Tree of rules - one of the possible behaviors of the robot for searching balls. In the case of this

kind of logic the robot reacts to changing environmental conditions in accordance with the rules

described in the form of a tree.

Neuron - the main part of the neural network was established by analogy with biological

neurons in the human brain, where artificial neuron operate the role of dendritic inputs and axon

is an artificial neuron output. Each neuron can have only one output. Neuron performs the

function of the inputs adder and is activated according to the activation function.

Neuron activation function - the function or threshold, exceeding which neuron goes to the

active state and sends its signal to other neurons. Output’s power depends on activation function.

Neuron layer - is a set of neurons in a part of the neural network. Usually neuron layer keeps

information about a particular feature or characteristic.

Genetic algorithm – is heuristic algorithm for finding the optimal solution by random selection,

combination and variations change the desired parameters by methods similar to natural

selection in nature.

First population - first set of robots with a randomly generated neuron networks. Afterwards the

neuron networks will be crossovered and mutated, which subsequently leads to the identification

of the dominant generation features.

Chromosome - the structure in the genetic algorithm, containing the basic parameters of the

object (neural network) as a vector, which determine the behavior of the object. Chromosome is

carried over the basic operations of the genetic algorithm as crossover and mutation.

7

Crossover – the process that exchanges chromosomes’ genes in the genetic algorithm between

two objects in order to create a third individual, that inherits the characteristics of their parents.

Mutate - the process of random changes in some parts of chromosomes in the genetic algorithm.

Supports greater diversity of characteristics in the population.

Selection - choice of robot-leaders with the maximum amount of collected balls. The robots can

participate in the next generation unchanged.

2. Introduction

All people have their hobbies, for example sports, which includes golf also. Golf field is a

grassed area with different height in different areas. There are more than 32,000 golf fields in the

world. This one field can reach in size from one to several tens of hectares. You can imagine

how many balls miss the hole, but remains lie somewhere in the grass. Searching the missed is a

mostly manual labor: divers are looking for balls in the ponds, golf workers are looking balls in

shrubs, also on large expanses of fields. At the present high-tech time such a job should be

automated.

At this time high resolution glasses were already invented, with which you can view the entire

field at a sufficiently great distance. Another device is the program for phones with a good

camera that can recognize the image of the ball on the field area of 10 kilometers in less than half

a minute. But these methods require human presence, that is a negative factor. It is necessary to

develop a fully autonomous system without human intervention. Maintenance costs of such a

system to find balls in the open field will be much lower, faster and more efficiently than the

manual labor. This work’s aim is to develop a similar system that could effectively search balls

on the golf field, consider possible solutions, analyze and compare it.

3. Statement of the problem

This work will examine the most effective robot’s behaviors for finding golf balls in the open

area of the field, using the following solutions, which include a simple description logic, the use

of forward neural network, recurrent neural network. Neural networks will be trained using

genetic algorithm. Environment will also be created to emulate the proposed solutions in Java in

order to compare behaviors’ effectiveness between themselves. There will also be a number of

tests for these solutions and then will be selected the best behavior of the system that solves the

problem based on test results.

This work does not consider the creation of mechanical and electronic components of the

proposed system, the recognition of balls in the grass and obstacles.

4. Possible solutions

The main aim of this work is to collect golf balls that are randomly scattered on the field. It was

suggested three possible solutions to this problem, two of which belong to a class of neural

networks. Later we will choose the best one.

● Tree of rules - set of rules in the form of a decision tree. If you have information about the

8

ball in the radar, the robot starts to go right on the ball, without turning. After lifting the ball,

it starts to go in a random direction for searching other balls. If another robot is closer to the

ball, then it is more likely to raise the ball, so the first robot turns around and goes back in the

search mode. This solution was chosen to compare the normal programmed decision tree and

neural networks, show the benefits of neural networks.

● Forward neural network - this method is a neural network without a memory. In other

words, the neural network signals go directly from inputs to outputs. This network is

deterministic, thus the robot will operate immediately based on the information about balls

and robots in vision. In the next step the robot will forget their old state and will operate

based on new information.

● Recurrent neural network - this method is a neural network with the memory of the

previous step of the robot. This network should improve the efficiency of collecting balls by

storing information from the previous step.

5. Emulation environment’s description
Emulation environment was created with the essential requirements for the comparison of the

proposed solutions. The environment is a field scattered with balls (Picture 1), in which the

robots can move around and collect balls. Settings menu is created to control the population,

testing and learning algorithm (Environment Settings).

5.1. Environment’s elements
1. The field, where balls may be randomly scattered, and robots can move around and collect

the balls.

2. Golf balls

3. Robot that emulates an automatic system, contains the behavior to move and collect the balls.

4. Population’s settings

5. Learning algorithm’s settings

6. Menu for testing the proposed solutions

9

5.2. Environment’s requirements
1. The robots can move around the field in any direction.

2. Robots can collect balls.

3. When a robot collects a ball, this one disappears and new ball is created in random location.

Thus the same number of balls are on the field at any given time.

4. Field’s size can be changed.

5. Field have no bounds. In other words, if the robot reaches the boundary of the field, it comes

from the other side. Borders were removed because barriers’ recognition by robot is outside

the scope of this work.

6. While new population generates, all the robots appear in the center of the field and with the

same angle of rotation to ensure that all robots have identical conditions to collect balls.

5.3. Types of golf balls’ arrangement

Picture 2 Emulation environment with balls' random

position

Picture 3 Emulation environment with balls' constant

position

2

1

3

4 5

4
6

Picture 1 Application's main view

10

When the first population is created, balls can appear in a random location (Picture 2) or be

constantly positioned (Picture 3). Constant positioning of balls is mainly used for training so that

each robot has the same conditions to collect balls. Otherwise, if balls appear randomly during

training, robot-leader appearing in an empty area does not have time to collect the required

number of balls and not participate into the next generation.

5.4. Robot’s structure

Movement

In order to move robot uses the speed and direction angle. Angle of direction can be in the range

from 0 to 360 degrees. The angle starts from the X axis being the first quarter clockwise. The

speed of movement of the robot can be changed from 0 to 4 pixels per tick emulation

environment.

Picture 4 Robot's movement

In the picture (Picture 4) the angle of direction of the robot equals 330 degrees. Moving speed

was 2 pixels per tick increased to 4.

Obtaining information of the nearest objects

A robot can scan only the environment ahead of yourself on a given distance and a

predetermined angle. In other words, it can see everything that is in its radar. The robot

understands data such as:

1. Own speed

2. Own angle

3. Number of balls in the radar

4. The closest ball

5. Distance to the closest ball

6. Difference between the robot’s angle and the closest ball’s angle. (In other words, the angle

which the robot must turn to move directly to the ball)

7. Number of robots in the radar

8. The closest robot

9. distance to the closest robot

11

10. Difference between the robot’s angle and the other closest robot’s angle. (In other words, the

angle which the robot must turn to move directly to the other robot)

Picture 5 Nearest balls in vision

Picture 6 Nearest robots in vision

Thus In the picture (Picture 5) the robot sees two balls in the radar. It understands that the

distance to the nearest ball is 45px and the angle is 28 degrees.

Similarly, In the picture (Picture 6) robot sees two robots in the radar. It understands that the

distance to the nearest robot is 60px and the angle is 36 degrees. Information about other robots

is necessary because, otherwise, the robots will move in the same direction and try to pick the

same balls that will decrease the efficiency.

Balls’ collection

A robot can pick the ball if the distance between the ball and the robot is less than 15px and the

ball is in the radar. Distance for picking balls is designated by a circle. Those balls that

accidentally was in the region but were not detected the robot will not be raised.

Picture 7 Balls picking

In the picture (Picture 7) the closest ball will be picked, because it is seen by the robot and is

picking region.

5.5. Training graphs
In order to to better understand the learning process two graphs were created:

12

1. Evolution chart – the graph shows the process of evolution of the population in the course

of learning genetic algorithm. The graph shows the best fitness function value of each

population.

Picture 8 Evolution chart

 Y-axis shows the best value of the fitness function.

 X-axis shows the number of generations.

2. Fitness landscape chart – the graph shows the relationship between neural networks with

the unique structure and fitness.

Picture 9 Fitness landscape chart

 Y-axis shows the value of the fitness function (calculated in the number of picked balls).

 X-axis shows neural networks with different unique structures.

5.6. Environment settings
In order to simplify the analysis and comparison of the effectiveness of decisions were made

population settings where you can adjust number of balls on the field and the number of robots

with different types of behavior to populate. Also genetic algorithm and testing settings were

added for finding the optimal training options.

13

5.6.1. Population settings

Ва

1. Forward network robots: Number of robots with a forward neural network to create a

population

2. Recurrent network robots: Number of robots with a recurrent neural network to create a

population

3. Rules robots: Number robots with a decision tree to create a population

4. Balls: Number of golf balls on the field

5. Regenerate balls: If checked, the balls will always appear

6. Random balls’ position: If checked, the balls will occur in a random place, otherwise balls

will be placed in the grid.

7. Populate: Creates an initial population using the above parameters.

8. Start/Stop: Stops or starts the emulation process.

9. Save behavior: saves the current behavior (MovementBehavior) robot in a configuration file

5.6.2. Genetic algorithm settings

1

2

3

4

5

6

7

8

9

Picture 10 Population Settings

14

1. Evolve: Starts training robots using genetic algorithm.

2. Stop: Stops learning genetic algorithm.

3. Show evolution: Show or hides emulation process of every generation in real time while

training.

4. Fitness: Sets the threshold of the fitness function, after which the training is considered

complete (measured in number of collected balls).

5. Number of generations: if the fitness value is not specified then learning will continue until

the specified number of generations will be created. In this case, the best robot behavior is

chosen from the all generations.

6. Duration: Sets the lifetime of each generation (measured in ticks of emulation). In the

example robot-leader must collect at least 15 balls in 300 ticks for the successful completion

of training.

7. Population to change: Sets the amount of robots from the population in percentage that will

be changed. For example, if a population contains 10 robots and need to change 80% of the

population, then two robot-leaders with a maximum picked balls go into the next generation,

the remaining 8 robots will be removed from the population and replaced with mutated

individuals.

8. Crossover: If checked, the algorithm crosses chromosomes of two robots’ neural network in

order to create a new one.

9. Type: Specifies the type of crossover. Available options: ONE_POINT, TWO_POINTS,

UNIFORM, ALL. If you select ALL then the algorithm uses all possible types of crossover.

10. Mutate: If checked, the algorithm uses mutation to change neural network’s chromosome for

training.

11. Probability: Sets what percentage of the chromosomes will be mutated in a neural network

12. Range: Sets the minimum and maximum amount of chromosome’s mutation (interval from -

1.0 to 1.0)

1 2

3

4

5

6

7

8

9

Picture 11 Genetic algorithm settings

10

11

12

15

5.6.3. Testing settings

1. Average fitness: shows the average fitness value for the robot after the test completed

2. Load behavior: loads the robot's behavior (MovementBehavior) from the file and fills the

environment with the robots

3. Iterations : the number of iterations to test

4. Test: runs test with specified number of iterations

6. Application Design

6.1. Graphic user interface
Package com.xedako.agent.gui contains classes to display panels and field settings. Also

contains classes to control the flow of learning via graphical interface.

Picture 13 Class diagram. Main frame and settings

1. Settings: contains all the settings that are used in the menus.

2. CrossoverTypes: a collection of all kinds of crossover that are used to create a new

population

3. AddBallMouseListener: lets add additional golf balls on the field during emulation.

4. MainFrame: main point for starting the application.

5. FieldPanel: contains golf balls, robots. Emulation environment for robots.

6. ScheduleTask: runs emulation environment every time and redraws the field. Uses the

Timer.

7. MainTabbedPanel: contains settings for the population, genetic algorithm and testing,

allows to switch between them.

1

2

3 4

Picture 12 Testing settings

16

Picture 14 Class diagram. Genetic algorithm panel and population panel

1. GeneticAlgorithmPanel: genetic algorithm settings panel

2. CrossoverChangeListener: listener for checkbox «Crossover». Determines whether to use

the crossover during training

3. ShowEvolutionActionListener: listener for the button «Show evolution». Pressing displays

the emulation of each generation during training in real-time.

4. MutateChangeListener: listener for the button «Mutate». Specifies whether to use the

mutation of chromosomes during training.

5. StopEvolveActionListener: listener for the button «Stop». Stops and starts training with the

best robot emulation from the last generation.

6. PopulationPanel: Population settings panel.

7. PopulateClickListener: listener for the button «Populate». Pressing fills the field with golf

balls, creates robots and places them on the field.

8. StartClickListener: listener for the button «Start». Pressing starts or stops environment

emulation.

Picture 15 Class diagram. Testing panel

1. TestingPanel: Testing settings panel

2. TestActionListener: Listener for the button «Test». Pressing runs test with the loaded

behavior

17

3. LoadNetworkActionListener: Listener for the button «Load network». Pressing opens the

file's browser, where you can select a file to download for testing.

6.1.1. Neural Network

Package com.xedako.agent.behavior.nn contains classes for creating neural networks with

various configurations.

Picture 16 Class diagram. Neural network

1. NeuralNetwork: main class for creating a neural network with a given configuration.

Accepts the number of inputs and outputs. It is also possible to add hidden neural layers.

Method finalizeStructure connects neurons between themselves with random weights.

2. NeuronLayer: used to create a layer of neurons in a neural network. Creates a

predetermined number of neurons with predetermined function.

3. Neuron: basic component in the neural network. Receives signals from other neurons. It

provides its signal to other neurons based on activation function.

4. ActivationFunction: neuron’s activation function. Determines the strength of the output

signal of the neuron. In this work, the neural network uses linear and sigmoid activation

function.

5. Link: defines the connection between two neurons. Contains the weight that strengthens or

weakens the output signal.

6.1.2. Genetic algorithm

Package com.xedako.agent.genetic contains classes for initializing a genetic algorithm.

18

Picture 17 Class Diagram. Genetic algorithm

1. GeneticAlgorithm: Used to train the neural network. Starts evolution and returns the best

robot-leader at the end.

2. Population: Used to store the generation of robots. Sorts generation by the picked balls,

selects the best leaders and creates a new generation using the leaders.

3. Chromosome: Contains the weights of neural network as a vector. Can mutate and crossover

with another chromosome.

4. Fitness: interface for fitness function’s implementation.

5. FitnessComparator: Used to sort a population by fitness.

6.1.3. Evolution

Packege com.xedako.agent.genetic.evolution contains implementation of genetic algorithm for

training neural networks.

Picture 18 Class diagram. Evolution

1. AgentsEvolution: main class for training neural networks using genetic algorithm. Starts

training from creating a population and emulating environment as long as the desired number

of picked balls will be achieved.

19

2. AdaptiveNeuralNetwork: neural network that can be trained by genetic algorithm. Contains

the implementation of crossover and mutation functions for neural network.

3. ForwardNeuralNetwork: implementation of a neural network with direct signal

propagation

4. RecurrentNeuralNetwork: implementation of recurrent neural networks.

5. NeuralNetworkFitness: contains the implementation of the fitness function for the neural

network

6.1.4. Environment

Package com.xedako.agent contains classes for emulation environment, balls’ collection,

movement of robots.

Picture 19 Class diagram. Environment

1. AgentEnvironment: The environment’s emulation. Contains a list of robots and balls.

Provides information about the location of all the objects. Can find the closest objects for the

given robot.

2. Point: Contains the object coordinates. Also contains functions for manipulating geometric

coordinates of the object.

3. Agent: Contains speed and direction’s angle for a robot. Also contains functions for

movement.

4. Ball: Represents the golf ball in the simulated environment.

5. Robot: Represents the robot to collect golf balls. Contains the limitations: maximum speed,

vision angle, vision distance. Also contains rendering logic.

6. RobotData: Contains information about the environment, the nearest objects, the parameters

for a particular robot. The data is used for the analysis by a specific decision (Forward neural

20

network, recurrent neural network, tree of rules) and computation speed and rotation’s angle

for the next step.

6.1.5. Robot’s behavior

Package com.xedako.agent.behavior contains the implementation of robot behavior.

Picture 20 Class diagram. Robot's behavior

1. MovementBehaviorRobot: Robot with a certain type of behavior.

2. MovementBehavior: Interface for robot’s behavior.

3. TreeOfRulesMovementBehavior: The behavior of the robot using logic in form of a tree.

4. NeuralNetworkMovementBehavior: abstract class behavior of the robot with general logic

for the use of neural networks.

5. ForwardNeuralNetworkMovementBehavior: The behavior of the robot using a neural

network with a direct signal propagation

6. RecurrentNeuralNetworkMovementBehavior: The behavior of the robot using recurrent

neural network.

6.1.6. Chart

Package com.xedako.agent.chart contains classes of graphs to analyze the progress of neural

networks’ training. Charting library was used TFreeJ http://www.jfree.org/jfreechart.

Picture 21 Class diagram. Charts

1. EvolutionChart: Chart of the robots’ evolution. Shows the best robot-leader fitness in each

generation.

21

2. FitnessLandscapeChart: Chart of fitness landscape. Shows relationship between fitness

robot-leader’s with unique neural network.

7. Solution 1 - Tree of rules

First solution for picking the balls is a programmed logic in the form of a tree. Unlike the neural

network, the solution has no need to train. On the other hand the robot will not be able to adapt

to changing environment’s conditions. It is necessary always to rewrite the logic that is a big

drawback of the solution. TreeOfRulesMovementBehavior class implements the solution. The

logic of this solution is presented in the following diagram (Picture 22). It is possible to read the

description of the decision at paragraphs (14, 15) in (Used materials).

Picture 22 Tree of rules algorithm

Description of the algorithm:

22

1. The initial velocity of the robot is zero, the robot begins to accelerate

2. robot moves with constant velocity in a random direction to search the balls

3. if no balls found, the robot moves into search mode on the next tick

4. If the ball is found and another robots are not in the radar, the robot changes its direction to

the ball and accelerates

5. If the ball is found, but the other robot was closer to that ball, the first robot turns, slows

down and moves into the search mode on the next tick

6. If the ball is found and the distance between the ball and the second robot is more than the

distance between the ball and the first robot, so it has time to pick up the ball first, the robot

changes its direction to the ball and accelerates

8. Solution 2 – Forward Neural Network

The second solution is implemented using forward neural network. In solution Tree of rules it is

necessary to program the robot's behavior and rewrite the logic if environment’s conditions was

changed. Neural networks are a very effective solution. It is enough to give the neural network

information about new environment’s conditions, then to teach it with the genetic algorithm, and

neural network will create the connections with sufficient weights between the inputs and

outputs in order to achieve a performance in a modified environment.

ForwardNeuralNetworkMovementBehavior class implements the solution. It is possible to read

the description of the decision at paragraphs (11, 12) in (Used materials).

Neural network can be called a software implementation built on the principle of the

organization and functions of biological neural chains (human brain). Artificial neural network is

a black box, having a number of inputs and outputs, which can set the connections between

inputs and outputs. It consists of adders (neurons), linked with connections that can amplify or

attenuate incoming signals from other neurons. The neuron can be activated, summing up the

signals, and send its output to next neurons. Thus it is possible to indicate which outputs neural

network should send for the corresponding inputs. The network can learn and customize the

weights of connections between neurons.

8.1. Description of structure

In this work network’s structure has been used with the following parameters:

● 6 inputs

● 6 neurons in the first (input) layer with a linear activation function

● 4 neuron in the second (hidden) layer with a sigmoid activation function

● 2 neuron in the third (ouput) layer with sigmoid activation function

 2 outputs

23

Picture 23 Forward neural network's structure

In the picture (Picture 23) a forward neural network’s structure is shown. ―Forward‖ means that

the signals transfer through the network to outputs and are not used at the next activation. This

neural network consists of three layers, which contains 6, 4 and 2 neurons respectively. Each

layer is connected with the other layer such that each neuron of the first layer has a connection

with each neuron of the next layer.

Input layer

First layer plays a role of the input layer. The number of neurons is equal to the number of its

inputs. This layer’s neurons receive their input and transmit forward, because they have no

weights that could strengthen or weaken the incoming signal. Also these neurons use linear

activation function, which does not affect the signal. Thus, this layer receives the inputs and

sends them to the second inner layer without any modifications.

Hidden layer

Second layer plays the role of the hidden layer. Because of this example uses a lot of input

parameters, it was decided to add a hidden layer with 4 neurons. The number of neurons was

chosen empirically. The robot's behavior may differ greatly from different combinations of

parameters. Hidden layer keeps the features by which the robot will behave more intelligently.

This layer’s neurons use sigmoid activation function to weaken strong signals and amplify weak

signals.

Output layer

Last layer is the output layer. It has a number of neurons, equaled to the number of outputs.

Similarly to neurons in the hidden layer, this layer’s neurons use sigmoid activation function to

weaken the strong signals and amplify weak signals.

Neural network’s inputs

24

1. Balls' count in vision: the number of balls that the robot sees in the radar.

2. The nearest ball's distance: the distance to the nearest ball

3. The nearest ball's delta angle: the angle between the nearest ball and the robot. In other

words, it is an angle which the robot must turn to move straight to the ball.

4. Robots' count in vision: the number of robots that the robot sees in the radar.

5. The nearest robot's distance: the distance to the nearest robot

6. The nearest robot's delta angle: the angle between the nearest other robot and the robot. In

other words, it is an angle which the robot must turn to move straight to the other robot.

Neural network’s outputs

1. Delta speed: speed, which must be added to the initial speed. The value can be either

positive or negative. Thus the robot can speed up and slow down.

2. Delta angle: angle of rotation, which must be added to the initial angle of rotation. The value

can be either positive or negative. Thus the robot can rotate both clockwise and

counterclockwise.

8.2. Principle of operation of the neural network
1. Input layer’s neurons receive input signals and transmit neurons to the inner layer without

any modifications.

2. Connections between neurons strengthen or weaken the signals by multiplying weights of

connections and signal.

3. Inner layer’s neurons summarize all the received signals from the input layer’s neurons,

which have been modified by weights.

4. Then the sum of signals is passed through the activation function, and altered signal goes to

the neurons of the output layer.

5. Neurons in the output layer process the signals similar to the neurons in the inner layer.

Signals are multiplied by the corresponding connections’ weights and summed by neuron. A

sigmoid activation function modifies the sum of the signals.

6. Neurons of the output layer return the final signals.

Principle of operation of the neural network can be represented as a polynomial function where

the inputs of the neural network are variables and outputs - function values. The main challenge

is to choose the coefficients of multipliers.

In order to create a polynomial function it is necessary to mark the weights of the neural network

with variables wij,kt, where

 i - number of the layer with the neuron that transmits a signal

 j - number of the layer’s neuron that transmits a signal

 k - number of the layer with the neuron that receives a signal

 t - number of the layer’s neuron that receives a signal

Thus weight w11,21 means the weight between the first neuron of the first layer and the first

neuron of the second layer.

Denote variables:

25

 sigma - Sigmoid activation function

 a - Balls’ count in vision

 b - The nearest ball’s distance

 c - The nearest ball’s delta angle

 d - Robots’ count in vision

 e - The nearest robot’s distance

 f - The nearest robot’s delta angle

Thus we have:

1. Function polynomial for output Delta speed

sigma(

w21,31*sigma(a*w11,21 + b*w12,21 + c*w13,21 + d*w14,21 + e*w15,21 + f*w16,21) +

w22,31*sigma (a*w11,22 + b*w12,22 + c*w13,22 + d*w14,22 + e*w15,22 + f*w16,22) +

w23,31*sigma (a*w11,23 + b*w12,23 + c*w13,23 + d*w14,23 + e*w15,23 + f*w16,23) +

w24,31*sigma (a*w11,24 + b*w12,24 + c*w13,24 + d*w14,24 + e*w15,24 + f*w16,24)

)

2. Function polynomial for output Delta angle

sigma(

w21,32*sigma(a*w11,21 + b*w12,21 + c*w13,21 + d*w14,21 + e*w15,21 + f*w16,21) +

w22,32*sigma (a*w11,22 + b*w12,22 + c*w13,22 + d*w14,22 + e*w15,22 + f*w16,22) +

w23,32*sigma (a*w11,23 + b*w12,23 + c*w13,23 + d*w14,23 + e*w15,23 + f*w16,23) +

w24,32*sigma (a*w11,24 + b*w12,24 + c*w13,24 + d*w14,24 + e*w15,24 + f*w16,24)

)

So by choosing the weights it is possible to set a completely different connections between

inputs and outputs to configure the neural network.

8.3. Neuron
Neuron is a main element in the neural network. Almost all the neural networks use this element.

By analogy with biological prototype artificial neuron has one output (axon) and a plurality of

inputs (synapses). A signal can come from a neuron’s single output to an arbitrary number of

inputs of other neurons.

Formally neuron can be divided into three parts: the connections of a neuron, the adder and the

activation function.

26

Picture 24 Neuron's structure

In the picture (Picture 24) the structure of a neuron is shown, where the inputs of the neuron are

marked with (x1, x2, xi, xi+1), the weights are marked with (w1, w2, wi, wi+1). Next, the adder

computes the sum of inputs and weights. Activation function changes the result and returns the

output of the neuron (y). For example, this example uses a sigmoid activation function, which

averages output a bit.

Neuron’s connections connect the output of one neuron and the inputs of another neuron. The

weight may be positive or negative. Thus, connections with the positive weights amplify an input

signal, connections with a negative weights weaken the input signal. In this work the weight

range is used (-1, 1), so outputs could also be negative. In this case, the robot will be able to

brake, accelerate and turn in a different direction.

Mathematical model

A neuron is a weighted adder, the single output is determined by its inputs and matrix of weights

as follow:

𝑦 = 𝑓 𝑢 , 𝑢 = xiwi

𝑛

𝑖=0

Where xi and wi — input signals of the neuron and the corresponding weights, respectively. u is

called the induced local field, and f (u)-activation function of the neuron.

8.4. Activation function
Activation function determines the dependence of the signal at the output of the neuron from the

weighted sum of the input signals. In this work, the following activation functions were used.

8.4.1. Threshold function activation

Threshold activation function is a difference. Commonly used in digital systems where the task

is to classify objects or divide them into groups.

27

Picture 25 Sign activation function

𝑓 𝑥 =
−1, 𝑥 < 0

1, 𝑥 ≥ 0

Until the signal reaches zero, the function will return -1. If the signal is greater than zero, the

function will return 1. Thus, the function may return discrete values -1 and 1.

8.4.2. Linear activation function

The function has two linear parts, where the activation function is identically equal to minimum

and maximum allowable value. Also the function has an area in which the function is

monotonically increasing. This function is used in the first input layer neurons of the neural

network, because this function returns the unchanged signal for further processing in a hidden

second layer.

Picture 26 Linear activation function

𝑓 𝑥 =
−1, 𝑥 < −1
𝑥, −1 ≤ 𝑥 < 1
1, 𝑥 ≥ 1

Until the signal reaches 1, the function will return -1. If the signal is in the range of -1 to 1, the

function will return the unchanged signal. If the signal is greater than 1, the function will return

1. Thus the function may return the discrete values on plots (-∞, -1) and [1, ∞). Unchanged

signals will return at the interval [-1, 1).

8.4.3. Sigmoid activation function

It is monotonically increasing everywhere differentiable S-shaped nonlinear function with

saturation. This function can amplify weak signals and weaken strong signals. It is used in the

28

second and third layers in the neural network. The main task of this function is to get rid of noise

and smooth signals.

Picture 27 Sigmoid activation function

𝑓 𝑥 =
2

1 + 𝑒−4𝑥
− 1

While input tends to - ∞, output tends to -1. In the same way when input tends to + ∞, the output

tends to 1. The graph has S-shaped curve at the section from -1 to 1 and returns values similar to

the input signals.

9. Solution 3 - Recurrent neural network
Third decision was made with recurrent neural network. The most difficult type of neural

networks, where feedback exists. In this context feedback means that network uses previous

inputs at the next iteration. The previous input values are applied to respective inputs at the next

activation of the network. RecurrentNeuralNetworkMovementBehavior class implements the

solution. It is possible to read the description of the decision at paragraphs (9, 10) in (Used

materials).

Presence of feedback allows to store and reproduce the sequence of reactions to one stimulus.

This network is able to memorize the previous state and react to it.

29

Picture 28 Recurrent neural network's structure

9.1. Description of the structure

The structure of this network is very similar to the structure of the neural network with direct

signal propagation (Forward neural network), so no need to describe the structure again. Unlike

the forward neural network that network has the additional inputs from previous iteration.

1. Balls' count in vision from previous step: the number of balls in radar in the previous step

2. The nearest ball's distance from previous step: distance to the nearest ball in previous step

3. The nearest ball's delta angle from previous step: the angle between the ball and the

nearest robot. It is an angle the robot has to turn in order to move straight to the ball in the

previous step

4. Robots' count in vision from previous step: the number of robots in radar in the previous

step.

5. The nearest robot's distance from previous step: distance to the nearest robot in previous

step

30

6. The nearest robot's delta angle from previous step: the angle between the robot and the

nearest second robot. It is an angle the robot has to turn in order to move straight to the

second robot in the previous step

Principle of operation is similar to the operation of (Forward neural network). However, the last

step is distinguished by the fact that the output layer’s neurons return outputs and also transmit

outputs to the corresponding inputs for the next activation of the network.

In order to construct polynomial function it is necessary to mark additional variables

1. g - Balls’ count in vision from previous step

2. h - The nearest ball’s distance from previous step

3. i - The nearest ball’s delta angle from previous step

4. j - Robots’ count in vision from previous step

5. k - The nearest robot’s distance from previous step

6. l - The nearest robot’s delta angle from previous step

Thus we have:

1. polynomial function for output Delta speed

sigma(

w21,31*sigma(a*w11,21+b*w12,21+c*w13,21 + d*w14,21 + e*w15,21 +

f*w16,21+g*w17,21+h*w18,21+i*w19,21+j*w20,21+k*w21,21+l*w22,21) +

w22,31*sigma (a*w11,22 + b*w12,22 + c*w13,22 + d*w14,22 + e*w15,22 +

f*w16,22+g*w17,22+h*w18,22+i*w19,22+j*w20,22+k*w21,22+l*w22,22) +

w23,31*sigma (a*w11,23 + b*w12,23 + c*w13,23 + d*w14,23 + e*w15,23 +

f*w16,23+g*w17,23+h*w18,23+i*w19,23+j*w20,23+k*w21,23+l*w22,23) +

w24,31*sigma (a*w11,24 + b*w12,24 + c*w13,24 + d*w14,24 + e*w15,24 +

f*w16,24+g*w17,24+h*w18,24+i*w19,24+j*w20,24+k*w21,24+l*w22,24)

)

2. polynomial function for output Delta angle

sigma(

w21,32*sigma(a*w11,21+b*w12,21+c*w13,21 + d*w14,21 + e*w15,21 +

f*w16,21+g*w17,21+h*w18,21+i*w19,21+j*w20,21+k*w21,21+l*w22,21) +

w22,32*sigma (a*w11,22 + b*w12,22 + c*w13,22 + d*w14,22 + e*w15,22 +

f*w16,22+g*w17,22+h*w18,22+i*w19,22+j*w20,22+k*w21,22+l*w22,22) +

w23,32*sigma (a*w11,23 + b*w12,23 + c*w13,23 + d*w14,23 + e*w15,23 +

f*w16,23+g*w17,23+h*w18,23+i*w19,23+j*w20,23+k*w21,23+l*w22,23) +

31

w24,32*sigma (a*w11,24 + b*w12,24 + c*w13,24 + d*w14,24 + e*w15,24 +

f*w16,24+g*w17,24+h*w18,24+i*w19,24+j*w20,24+k*w21,24+l*w22,24)

)

Similarly, by changing the weights, it is possible to set a completely different connections

between inputs and outputs and configure the network properly.

10. Genetic algorithm
Genetic algorithm was implemented and used for training the neural networks. This is an

heuristic algorithm for finding the optimal solution via random selection, combining and

changing variations of the parameters by methods similar to natural selection in nature.

10.1. Description of the algorithm
This algorithm can be divided into 7 main processes shown in the chart (Picture 29): first

population, selection, crossover, mutation, new population, environment population, fitness

function.

Picture 29 Genetic algorithm

1. First population: at this stage robots will be added into the environment added with a

given neural network (forward or recurrent neural network), whose weights are generated

randomly. At the time all the robots usually rotate in one place, move randomly, in a

32

word, they are not trained.

2. Environment emulation: At this stage emulation starts. Balls are scattered at an equal

distance from each other, and robots are created with one of the two neural networks. The

environment will be launched for specified number of ticks in settings.

3. Fitness calculation: Each robot has to collect balls after emulating. Fitness to the

environment for each robot equals to the number of collected balls. If the fitness is

greater or equal than the target fitness value in settings, the evolution ends.

4. Selection: All the robots will be sorted by the value of fitness. At this stage the specified

percentage of the population will be moved to the new population without any

modifications in order to save old population’s features.

5. Crossover: a neural network can be represented as a vector of weights (chromosome). At

this stage, two neural networks (parents) will be randomly selected, and their

chromosomes are crossed for creating a new neural network (child).

6. Mutation: crossover interchanges parents’ chromosome and cannot generate

chromosomes with very different characteristics. At this stage, all the child chromosomes

will be mutated in order to get different features.

7. New population: at this stage a new population is filled with crossed and mutated

chromosomes in order to calculate new fitness for each robot in environment.

10.2. Chromosome representation
Genetic algorithm is used to train the neural network. Neural network can be represented in a

convenient form that can be easily changed. That form is a chromosome - a vector of bits or

numbers which characterize the structure of the network. In the scope of the work, the network is

presented in the form of the weights’ vector, as shown in the picture (Picture 30).

Picture 30 Chromosome representation

33

The chromosome contains 32 weights for forward neural network and 56 for recurrent neural

network. By replacing and changing the weights it is possible to set the network structure, by

which robots will start to collect balls.

10.3. Creating population
As mentioned above, the initial population is created with random weights, in other words a

random set of genes. It is necessary to create the next population, using crossover and mutation

only for robots whose neural networks are configured more proper (robots that collect more

balls). (Roulette wheel selection) algorithm is used to select the robots from the population.

All the populations must have the same number of individuals (robots). However, the population

may not contain too few individuals. By analogy with the evolution in nature, if the population is

too small, it may not contain all the necessary features of individuals, where one individual of

them could collect all the best features for achieving the highest efficiency. In this work it was

decided to use 10 robots for each population.

10.3.1. Roulette wheel selection

This algorithm allows select a robot from a population in proportion to their fitness value.

Always two robots (parents) are selected whose chromosomes are used to create a new robot

(child). In other words, robots, whose fitness value is higher than others (robots that collected

more balls) will be more likely to become a parent.

Picture 31 Roulette wheel selection

In the picture (Picture 31) the algorithm is presented for selecting robot-parents. As can be seen

the population has 9 robots. After the emulation each robot has collected balls. This number of

balls is the value of the fitness. Robots have been sorted according to the value of fitness in

ascending order. For example, the first robot’s fitness value is 67 (it collected 67 balls). Then all

the fitness values are summed and total fitness is 200. On the chart it is possible to notice that

there are cumulative fitness (67.0, 100.0, 124.0, etc.) after each robot, which includes previous

robots’ fitness value.

Roulette wheel selection’s algorithm

Chromosome selectParentProportionateFitness()

1 Collections.sort(chromosomes, new FitnessComparator(fitness));

2 allFitnessScores = 0;

3 cumulativeFitnessScores.clear();

4 cumulativeFitnessScores.add(allFitnessScores);

34

5 for (Chromosome c : chromosomes) {

6 double score = fitness.getScore(c);

7 allFitnessScores += score;

8 cumulativeFitnessScores.add(allFitnessScores);

9 }

10 int probability = (int) (Math.random() * allFitnessScores);

11 for (int i = 1; i < cumulativeFitnessScores.size(); i++) {

12 if (cumulativeFitnessScores.get(i - 1) <= probability

13 && cumulativeFitnessScores.get(i) >= probability) {

14 return chromosomes.get(i - 1);

15 }

16 }

17 return ListUtil.getLast(chromosomes);

All chromosomes are sorted in ascending order by their fitness value. The list

cumulativeFitnessScores contains the cumulative value of fitness, the first value is 0.

Next this list is filled with values in cycle. Each chromosome’s efficiency is calculated and

recorded in this list as the cumulative value. Next, a random number (probability)is

calculated from the total fitness. In the next cycle the range is being found, where

probability would be greater than the first number and less than the second. if the range is

found, the function returns a chromosome belonging to the range, otherwise it returns the

chromosome with the smallest value of fitness.

Thus, the chromosome has a probability of becoming a parent in proportion to the value of

fitness.

10.4. Selection
At the selection’s stage a certain percentage of individuals will be selected in population and

transferred to the new population. The remaining individuals, that cannot be transferred to the

new population due to their small fitness, will be removed. Selection will be processed before the

crossover and mutation, because the next population must use all chromosomes from previous

one in order to save as many features as possible. Number of robots, that will be removed,

marked as a percentage in settings (Population to change). For example, if the population has

10 robots and population to change is 80%, then only two robot-leaders will be ―alive‖ and can

be to new population. The other 8 robots will be removed after creating a new population. Thus

robots’ survival depends on its fitness value.

10.4.1. Fitness function

Fitness function is a measure that shows how useful the specific structure of the network for

picking balls. Fitness value is calculated after starting the emulation and equals the number of

collected balls.

Because of the complexity of the system it is difficult to make a formula which was represented

a smooth ascending function that clearly shows the effectiveness of all networks’ structure. So

the next function is simple enough and was chosen as a fitness function.

Fitness = picked balls’ count

35

The curve must increase during the evolution at which robots could develop every time. In this

case evolution passes quickly enough.

10.5. Crossover
Crossover – a genetic operator used to vary the robots from one population to another. It is

similar to biological reproduction which is based on genetic algorithm. Using the algorithm

(Roulette wheel selection) it is possible to select two robot-parents and to create a robot-child

with the help of their chromosomes. There are three methods using in order to create a new

chromosome: one-point crossover, two-points crossover, uniformly distributed crossover.

10.5.1. One-point crossover

Two parents’ chromosomes are selected, which are divided in half at a random location. It takes

a random part of the first chromosome and a random part of the second chromosome for creating

a new one.

Picture 32 One-point crossover

10.5.2. Two-points crossover

It is similar to the algorithm (one-point crossover), but this algorithm selects two points for

dividing parents’ chromosomes. Likewise, a new random chromosome takes part from one of the

two parents’ chromosome.

Picture 33 Two-points crossover

10.5.3. Uniformly distributed crossover

This algorithm uses a fixed index for blending chromosomes. Unlike previous algorithms, this

crossover allows mix the genes not only by segment, but also by individual genes. Thus new

chromosome has more differences.

36

Picture 34 Uniformly distributed crossover

Uniformly distributed crossover’s algorithm

List<T> uniformCrossover(List<T> list, List<T> list2, int

crossCount) {

1 List<T> crossed = new ArrayList<T>();

2 int cumulIdx = 0;

3 int crossPoint1Idx = 0;

4 int crossPoint2Idx = 0;

5 boolean firstList = true;

6 int segmentAvgSize = list.size() / crossCount;

7 for (int i = 0; i <= crossCount; i++) {

8 crossPoint2Idx = (int) ((i != crossCount)

9 ? cumulIdx + MathUtil.random(1, segmentAvgSize -1)

10 : list.size());

11 cumulIdx += segmentAvgSize;

12

13 if (firstList) {

14 crossed.addAll(list.subList(crossPoint1Idx,

15 crossPoint2Idx));

16 } else {

17 crossed.addAll(list2.subList(crossPoint1Idx,

18 crossPoint2Idx));

19 }

20 firstList = !firstList;

21 crossPoint1Idx = crossPoint2Idx;

22 }

23 return crossed;

24 }

The function takes two lists with the same size and the number of points indicating how many

parts chromosomes will be divided to. The number of points is a random variable. Next, it is

necessary to find the first and the second point of each segment. Firstly, the average length of the

segment(segmentAvgSize) must be found. Secondly, the first point (crossPoint1Idx)

omits 0. The variable(cumulIdx)denotes the point, where offset will be added to the side by a

random amount. Thus, by adding the random offset it is possible to find the second point

(crossPoint2Idx). After that, the list (crossed) copies chromosome’ segment from the

first or second parent, where the first point of the segment is(crossPoint1Idx)and second

37

point is(crossPoint2Idx).In the final step, the parent is changed to copy segment from.

The first point becomes the second, the new second point will be found.

10.6. Mutation
Mutation is a genetic operator used to vary robots’ neural networks from one population to

another. It is analogous to biological mutation, which randomly change some genes. Using the

algorithm (Roulette wheel selection) two robot-parents are selected, and it is possible to create a

robot-child with the help of their chromosomes. Crossover cannot always guarantee high

diversity. Mutation makes huge changes in the chromosome, which can quickly lead to a global

maximum of the fitness function.

Picture 35 Mutation

This operator is characterized by the probability and the range of mutation. In the picture

(Picture 32) the probability of each gene’s mutation is 30%. The range of mutation varies (from -

0.7 to 0.7). These values can be set in the settings of learning (Probability) and (Range),

respectively.

Mutation algorithm

Chromosome mutate() {

1 AdaptiveNeuralNetwork cloned = clone();

2 for (int i = 0; i < links.size(); i++) {

3 if (MathUtil.random(0, 100) <= mutationProbability) {

4 Link link = links.get(i);

5 double mutated = link.getWeight()

6 + MathUtil.random(mutateRangeMin, mutateRangeMax);

7 link.setWeight(MathUtil.toRange(mutated, -1, 1));

8 }

9 }

10 return cloned;

The function clones all the genes (weights) of the chromosome. Next in a loop the probability of

mutation is calculated for each gene. If the probability is higher than the target value in the

settings(mutationProbability), then the weight is changed by a random value from the

range (mutateRangeMin, mutateRangeMax). Finally the function returns the mutated

chromosome.

38

10.7. Fitness landscape

Fitness landscape (another name is adaptive landscape) - is a graph where the axis X - all

possible network’s structures, the axis Y is a fitness value. The graph is used to visualize the

dependence between all possible genotypes (networks with different structures) and the values of

fitness. Very similar genotypes are close on the chart, while different genotypes are far away

from each other.

Picture 36 Fitness landscape. Local and global maximum

It is very important to analyze this graph because it is very important to avoid local minimum

problem. During the evolution of the population robot’s network with the best fitness is located

on the plot. If the robot is at the foot of a local maximum and the mutation rate is small, then the

genetic algorithm will find a neural network located on the top of a small hill, next mutations

will generate similar networks, the best of which will still be at the local maximum. Algorithm

finishes and returns the best neural network from local maximum. In order to avoid it, the range

of mutation should be large enough to create a network that would be above the local maximum.

Only in this case, the genetic algorithm will find the best of all possible networks.

In order to distinguish the networks with different structures and interpret it in a unique numeric

value, the following algorithm was used

double getHash() {

 List<Link> links = getLinks();

 double hash = 0;

 for (int i = 0; i < links.size(); i++) {

 hash += i * (links.get(i).getWeight() + 1);

 }

 return hash;

}

This function takes all the weights of the neural network and multiplies it by weight’s serial

39

number in a loop. By the way it is possible to identify the location of a neural network in the

graph by obtained unique numeric hash.

In order to display the fitness landscape 5000 populations were created, where robot-leaders

were selected from and shown on the graph.

Picture 37 Fitness landscape

In the picture (Picture 37) the fitness landscape is shown for 5000 neural networks with different

structure. Red line shows the fitness value for each neural network. Blue graph is a moving

average. It is possible to notice that the landscape is very noisy. Moving average is almost

straight. It says that the similar neural networks on the graph can give different fitness values.

According to this graph it is possible to find a neural network with sufficient good fitness value

even with a very small range of mutation and creating small number of populations.

11. Testing solutions
In the scope of this work there were three solutions for the robot’s behavior for pickings balls.

1. Tree of rules - the tree contains the rules by which the robot will collect balls.

2. Forward Neural Network - neural network with no memory, only reacting to current events.

3. Recurrent Neural Network - neural network with memory that can also take into account the

events from the previous step.

In order to compare these solutions it is necessary to make tests with various conditions of

environment to get average fitness value. There are 4 types of tests for each of the solutions (12

tests in total), and the most effective solution will be chosen based on the results.

11.1. Types of tests
1. There is an environment with a large number of robots and a small number of balls (20

robots and 10 balls). The test should show how robots behave in a high competition.

2. There is an environment with a small number of robots and a small number of balls (5 robots

and 10 balls). The test should show how robots can effectively seek balls scattered at great

distances.

3. There is an environment with a large number of robots and a large number of balls (20 robots

and 100 balls). The test should show the behavior of robots in normal environmental

40

conditions when balls and robots are almost simultaneously in robot’s radar.

4. There is an environment with a small number of robots and a large number of balls (5 robots

and 100 balls). The test should show how robots will react to large accumulations of balls,

and how effectively they will collect balls.

11.2. Conditions for tests
1. The emulation will be run 500 times for each of solution.

2. 500 generations will be used to train neural networks, where the best one will be

selected for participating in tests.

3. Emulation’s duration is 300 ticks.

4. In order to train neural networks balls are spaced constantly in the field.

5. Balls are scattered randomly in the field for testing.

6. During training the number of balls will be restored.

7. Robots will appear in the center of the field, the initial rotation angle is 0 degrees.

8. Forward neural network must have three layers with 6, 4 and 2 neurons respectively.

9. Recurrent neural network must have three layers of 12, 4 and 2 neurons respectively.

10. The following settings will be used for learning the neural networks

1. Forward neural network: 10

2. Recurrent neural network: 10

3. Balls: 100

4. Fitness: 0.0

5. Number of generations: 5000

6. Duration: 300 ticks

7. Population to change: 90.0%

8. Crossover type: ALL

9. Mutation probability: 90%

10. Mutation range: -0.6 – 0.6

11. Field width is 800px and height is 600px

12. the following robot’s settings will be used for each test

1. maximum speed - 4px/tick

2. Vision range – 160px

3. Vision angle – 160 degrees

4. distance to pick a ball – 15px

11.3. Neural networks’ training charts

In order to test the neural network, they must be trained.

Forward neural network’s training chart

41

Picture 38 Forward neural network evolution in 500 generations.

Forward neural network is trained for 500 generations (Picture 39) Network with the best

configuration was able to collect 24 balls for 300 ticks.

Recurrent neural network’s training chart

Picture 39 Recurrent neural network evolution in 500 generations.

Recurrent neural network is trained for 500 generations (Picture 39). Network with the best

configuration was able to collect 32 balls for 300 ticks.

11.4. Tests of Tree of rules

Test 1

Test parameters

 Number of balls: 100

 Number of robots: 20

Results

42

Picture 40 Testing chart for Tree of rules with 100 balls and 20 robots

Average fitness: 10.282

Test 2

Test parameters

 Number of balls: 100

 Number of robots: 5

Results

Picture 41 Testing chart for Tree of rules with 100 balls and 5 robots

Average fitness: 13.868

Test 3

Test parameters

 Number of balls: 10

 Number of robots: 20

Results

43

Picture 42 Testing chart for Tree of rules with 10 balls and 20 robots

Average fitness: 2.322

Test 4

Test parameters

 Number of balls: 10

 Number of robots: 5

Results

Picture 43 Testing chart for Tree of rules with 10 balls and 5 robots

Average fitness: 3.428

11.5. Tests of Forward neural network

Test 5

Test parameters

 Number of balls: 100

 Number of robots: 20

Results

44

Picture 44 Testing chart for forward neural network with 100 balls and 20 robots.

Average fitness: 10.54

Test 6

Test parameters

 Number of balls: 100

 Number of robots: 5

Results

Picture 45 Testing chart for forward neural network with 100 balls and 5 robots.

Average fitness: 14.162

Test 7

Test parameters

 Number of balls: 10

 Number of robots: 20

45

Results

Picture 46 Testing chart for forward neural network with 10 balls and 20 robots.

Average fitness: 0.554

Test 8

Test parameters

 Number of balls: 10

 Number of robots: 5

Results

Picture 47 Testing chart for forward neural network with 10 balls and 5 robots.

Average fitness: 0.786

11.6. Tests of Recurrent neural network

Test 9

Test parameters

 Number of balls: 100

 Number of robots: 20

Results

46

Picture 48 Testing chart for recurrent neural network with 100 balls and 20 robots.

Average fitness: 13.972

Test 10

Test parameters

 Number of balls: 100

 Number of robots: 5

Results

Picture 49 Testing chart for recurrent neural network with 100 balls and 5 robots.

Average fitness: 16.336

Test 11

Test parameters

 Number of balls: 10

 Number of robots: 20

Results

47

Picture 50 Testing chart for recurrent neural network with 10 balls and 20 robots.

Average fitness: 0.376

Test 12

Test parameters

 Number of balls: 10

 Number of robots: 5

Results

Picture 51 Testing chart for recurrent neural network with 10 balls and 5 robots.

Average fitness: 0.66

11.7. Test results

Test results table

Balls Robots Forward neural

network

Recurrent neural

network

Tree of rules

10 20 0.554 0.376 2.322

10 5 0.786 0.66 3.428

100 20 10.54 13.972 10.282

100 5 14.162 16.336 13.868

Graph of test results

48

12. Analysis and selection of the best solution
After testing it is possible to see that both neural networks showed almost identical results while

emulation with few balls. In both tests with 10 balls robot with trained forward neural network

collected average 0.554 and 0.786 balls per 300 ticks. Robot with trained recurrent neural

network collected 0.376 and 0.66 balls per 300 ticks. In this case, simple description logic tree of

rules is much better than the neural networks. A robot with behavior based on tree of rules

collected 2,322 and 3,428 balls. Analysis showed that the neural networks cannot search the balls

and move in a random direction when there are no balls in the radar.

They rotate at a single location and scan a certain area (Picture 52). The reason for this behavior

is that forward and recurrent neural networks’ inputs omit zero, i.e. inputs: balls' count, the

nearest ball's distance, the nearest ball's delta angle, robot’ count, the nearest robot's distance, the

nearest robot's delta angle inputs are 0. Thus, while the calculating the polynomial function for

output delta angle, all the weights are multiplied by zero inputs, as a result the output is 0 too.

Polynomial function for output Delta angle

sigma(

0

2

4

6

8

10

12

14

16

18

10 balls/20
robots

10 balls/5
robots

100 balls/20
robots

100 balls/5
robots

fi
tn

e
ss

Solutions' tests

Forward neural network

Recurrent neural network

Tree of rules

Picture 52 Inefficient behavior for

searching balls

49

w21,32*sigma(0*w11,21 + 0*w12,21 + 0*w13,21 + 0*w14,21 + 0*w15,21 + 0*w16,21) +

w22,32*sigma (0*w11,22 + 0*w12,22 + 0*w13,22 + 0*w14,22 + 0*w15,22 + 0*w16,22) +

w23,32*sigma (0*w11,23 + 0*w12,23 + 0*w13,23 + 0*w14,23 + 0*w15,23 + 0*w16,23) +

w24,32*sigma (0*w11,24 + 0*w12,24 + 0*w13,24 + 0*w14,24 + 0*w15,24 + 0*w16,24)

) = sigma(w21,32*sigma(0) + w22,32*sigma (0) + w23,32*sigma (0) + w24,32*sigma (0)) =

sigma(0) = 0

In this case, the direction’s angle of the robot cannot be changed. The robot’s speed has the same

result, so speed cannot be also changed.

In case of Tree of rules robot moves with constant velocity in a random direction to search the

ball, so it can scan bigger area and therefore collect more balls.

However Recurrent neural network showed excellent fitness for tests with a lot of balls. In tests

with 100 balls, robot with behavior based on this network has collected an average of 13,972 and

16,336 balls for 300 ticks, which is far superior comparing to the results of the other two

solutions. Analysis showed that feedback made some randomness in the behavior of the robot.

Picture 53 Efficient behavior for search balls

When robot moves, it constantly rotates from side to side (Picture 53) and therefore covers a

large area, and is able to scan and collect large piles of balls at once.

Thus, it is possible to conclude that these neural networks are not ideal. It is necessary to find

other ways of presenting information or restructure the network. Neural networks are not able to

look for balls on the empty field that described simple logic (tree of rules) can do perfectly.

However, genetic algorithm found good configuration for recurrent neural network, which has

surpassed the results of the forward neural network and tree of rules. Therefore, in the scope of

the work, I would suggest using recurrent neural network to solve the problem. Perhaps it is

necessary to change the values of the inputs or replace zero values with negative numbers. In

favor of the neural network the fact exists that the genetic algorithm can always find the most

versatile solution for a clearly defined problem, even such solution that is very difficult or almost

impossible to describe by simple logic.

50

13. Summary
In the scope of this work the most effective solutions were implemented for finding golf balls on

open area of the field using the following programming approaches, like a simple description

logic (Tree of Rules), the use of Forward neural network and Recurrent neural network. Also the

neural networks were trained using genetic algorithm. The environment was also created in Java

in order to simulate the proposed solutions to compare behaviors, analyze the effectiveness of

each behavior. A series of tests were passed that showed the effectiveness, suitability of each

solution for different environmental conditions. According to tests’ results the advantages and

disadvantages of neural networks were detected comparing to the simple description logic. In

this work recurrent neural network was chosen from the proposed solutions as the most effective

solution of the problem (collecting balls) because in case of very difficult environmental

conditions it is not always possible to write an effective logic that would have been better than

trained neural network.

I would like to develop the direction of neural networks in the future to solve this problem of

finding balls on the golf fields. Also I would like to train neural network to recognize the pattern

of balls in the grass and detect the obstacles (trees and ponds).

14. Kokkuvõte
Selles töös kõige tõhusamad lahendused on rakendatud golfpallide leidmiseks avatud piirkonnas,

kasutades järgmist programmeerimist lahendust, nagu kirjeldatud loogika (Tree of rules),

Forward ja Recurrent närvivõrkude kasutamine. Mõlemad närvivõrgud olid õpetatud geneetilise

algoritmi abil. Keskkond oli loodud Javaga selleks, et simuleerida pakutud lahendusi, võrrelda

käitumist ja analüüsida iga käitumise effektiivsust. Testid olid tehtud, mis näitasid iga käitumise

eelised ja puudused erinevates keskkonna tingimustes. Testide tulemustest närvivõrkude plussid

ja minused olid tuvastatud võrreldes kirjeldatud loogikaga. Selles töös Recurrent närvivõrk on

valitud nagu kõige tõhusam lahendus antud probleemi lahendamiseks (pallide kogumiseks), sest

ei ole võimalik või on väga raske kirjutada effektiivsust loogikat keeruliste keskkonnatingimuste

juhul, et see lahendus oleks parem kui närvivõrgu.

Tulevikus tahaksin arendada selles suunas närvivõrku golfpallide leidmiseks piirkondades.

Samuti tahaksin treenida närvivõrku tunnustada palli mustrit muru sees ja avastada takistusi

piirkondades (puud ja tiigid).

15. Used materials
1. Artificial intelligence. [WWW] http://en.wikipedia.org/wiki/Artificial_intelligence.

2. Artificial neural network [WWW] http://en.wikipedia.org/wiki/Artificial_neural_network

3. Нейронные сети [WWW] http://www.aiportal.ru/articles/neural-networks/neural-

networks.html

4. Модель нейрона [WWW] http://www.aiportal.ru/articles/neural-networks/model-

neuron.html

5. Многослойные нейронные сети [WWW] http://www.aiportal.ru/articles/neural-

networks/multilayer-networks.html

6. Классификация нейронных сетей [WWW] http://www.aiportal.ru/articles/neural-

networks/classification.html

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Artificial_neural_network
http://www.aiportal.ru/articles/neural-networks/neural-networks.html
http://www.aiportal.ru/articles/neural-networks/neural-networks.html
http://www.aiportal.ru/articles/neural-networks/model-neuron.html
http://www.aiportal.ru/articles/neural-networks/model-neuron.html
http://www.aiportal.ru/articles/neural-networks/multilayer-networks.html
http://www.aiportal.ru/articles/neural-networks/multilayer-networks.html
http://www.aiportal.ru/articles/neural-networks/classification.html
http://www.aiportal.ru/articles/neural-networks/classification.html

51

7. Обучение нейронной сети [WWW] http://www.aiportal.ru/articles/neural-

networks/learning-neunet.html

8. Intelligent agent [WWW] http://en.wikipedia.org/wiki/Intelligent_agent

9. Recurrent neural network [WWW] http://en.wikipedia.org/wiki/Recurrent_neural_network

10. Herbert Jaeger Fraunhofer Institute for Autonomous Intelligent Systems (AIS) since 2003:

International University Breme: A tutorial on trainingre current neuralnet works ,covering

BPPT, RTRL ,EKF and the" echo state network" approach [WWW] http://minds.jacobs-

university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf

11. Feedforward neural network [WWW]

http://en.wikipedia.org/wiki/Feedforward_neural_networks

12. Simon Haykin: Feedforward neural network: An introduction [WWW]

http://media.wiley.com/product_data/excerpt/19/04713491/0471349119.pdf

13. Prof. Leslie Smith Centre for Cognitive and Computational Neuroscience Department of

Computing and Mathematics University of Stirling: An Introduction to Neural Networks.

[WWW] http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html#algs

14. Decision tree [WWW] http://en.wikipedia.org/wiki/Decision_tree

15. Деревья принятия решений: [WWW] http://logic.pdmi.ras.ru/~sergey/teaching/ml/notes-

01-dectrees.pdf

16. Neural Networks [WWW] http://www.emilstefanov.net/Projects/NeuralNetworks.aspx

17. Genetic algorithm [WWW] http://en.wikipedia.org/wiki/Genetic_algorithm

18. Mutation (genetic algorithm) [WWW]

http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29

19. Selection (genetic algorithm) [WWW]

http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29

20. Fitness proportionate selection [WWW]

http://en.wikipedia.org/wiki/Fitness_proportionate_selection

21. Генетический алгоритм. Просто о сложном [WWW] http://habrahabr.ru/post/128704/

22. Stuart J. Russell, Peter Norvig: Artificial Intelligence: A Modern Approach, 1995 [WWW]

http://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0131038052

16. Notes
Picture 2 Emulation environment with balls' random position ... 9

Picture 3 Emulation environment with balls' constant position .. 9

Picture 1 Application's main view ... 9

Picture 4 Robot's movement .. 10

Picture 5 Nearest balls in vision .. 11

Picture 6 Nearest robots in vision .. 11

Picture 7 Balls picking ... 11

Picture 8 Evolution chart ... 12

Picture 9 Fitness landscape chart ... 12

Picture 10 Population Settings ... 13

Picture 11 Genetic algorithm settings .. 14

Picture 13 Class diagram. Main frame and settings .. 15

Picture 12 Testing settings ... 15

http://www.aiportal.ru/articles/neural-networks/learning-neunet.html
http://www.aiportal.ru/articles/neural-networks/learning-neunet.html
http://en.wikipedia.org/wiki/Intelligent_agent
http://en.wikipedia.org/wiki/Recurrent_neural_network
http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf
http://en.wikipedia.org/wiki/Feedforward_neural_networks
http://media.wiley.com/product_data/excerpt/19/04713491/0471349119.pdf
http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html#algs
http://en.wikipedia.org/wiki/Decision_tree
http://logic.pdmi.ras.ru/~sergey/teaching/ml/notes-01-dectrees.pdf
http://logic.pdmi.ras.ru/~sergey/teaching/ml/notes-01-dectrees.pdf
http://www.emilstefanov.net/Projects/NeuralNetworks.aspx
http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Fitness_proportionate_selection
http://habrahabr.ru/post/128704/
http://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0131038052
file:///D:\MAKSIM\TTU\Master\Loputoo\L�put��%20intelligent-agents%202014-01-21%20eng.docx%23_Toc378171726
file:///D:\MAKSIM\TTU\Master\Loputoo\L�put��%20intelligent-agents%202014-01-21%20eng.docx%23_Toc378171733
file:///D:\MAKSIM\TTU\Master\Loputoo\L�put��%20intelligent-agents%202014-01-21%20eng.docx%23_Toc378171734
file:///D:\MAKSIM\TTU\Master\Loputoo\L�put��%20intelligent-agents%202014-01-21%20eng.docx%23_Toc378171736

52

Picture 14 Class diagram. Genetic algorithm panel and population panel 16

Picture 15 Class diagram. Testing panel ... 16

Picture 16 Class diagram. Neural network .. 17

Picture 17 Class Diagram. Genetic algorithm ... 18

Picture 18 Class diagram. Evolution ... 18

Picture 19 Class diagram. Environment .. 19

Picture 20 Class diagram. Robot's behavior .. 20

Picture 21 Class diagram. Charts ... 20

Picture 22 Tree of rules algorithm ... 21

Picture 23 Forward neural network's structure .. 23

Picture 24 Neuron's structure ... 26

Picture 25 Sign activation function ... 27

Picture 26 Linear activation function .. 27

Picture 27 Sigmoid activation function ... 28

Picture 28 Recurrent neural network's structure .. 29

Picture 29 Genetic algorithm ... 31

Picture 30 Chromosome representation ... 32

Picture 31 Roulette wheel selection... 33

Picture 32 One-point crossover ... 35

Picture 33 Two-points crossover ... 35

Picture 34 Uniformly distributed crossover... 36

Picture 35 Mutation ... 37

Picture 36 Fitness landscape. Local and global maximum .. 38

Picture 37 Fitness landscape .. 39

Picture 38 Forward neural network evolution in 500 generations... 41

Picture 39 Recurrent neural network evolution in 500 generations. ... 41

Picture 40 Testing chart for Tree of rules with 100 balls and 20 robots 42

Picture 41 Testing chart for Tree of rules with 100 balls and 5 robots ... 42

Picture 42 Testing chart for Tree of rules with 10 balls and 20 robots ... 43

Picture 43 Testing chart for Tree of rules with 10 balls and 5 robots ... 43

Picture 44 Testing chart for forward neural network with 100 balls and 20 robots. 44

Picture 45 Testing chart for forward neural network with 100 balls and 5 robots. 44

Picture 46 Testing chart for forward neural network with 10 balls and 20 robots. 45

Picture 47 Testing chart for forward neural network with 10 balls and 5 robots. 45

Picture 48 Testing chart for recurrent neural network with 100 balls and 20 robots. 46

Picture 49 Testing chart for recurrent neural network with 100 balls and 5 robots. 46

Picture 50 Testing chart for recurrent neural network with 10 balls and 20 robots. 47

Picture 51 Testing chart for recurrent neural network with 10 balls and 5 robots. 47

Picture 52 Inefficient behavior for searching balls .. 48

Picture 53 Efficient behavior for search balls ... 49

file:///D:\MAKSIM\TTU\Master\Loputoo\L�put��%20intelligent-agents%202014-01-21%20eng.docx%23_Toc378171775

