
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C43

Logics for Low-Level Code and
Proof-Preserving Program Transformations

Ando Saabas

Tallinn 2008

TALLINN UNIVERSITY OF TECHNOLOGY
Institute of Cybernetics

This dissertation was accepted for the defence of the degree of Doctor of Philosophy
in Engineering on October 20, 2008.

Supervisors: Dr. Tarmo Uustalu
Institute of Cybernetics at Tallinn University of Technology

Enn Tõugu, DSc
Institute of Cybernetics at Tallinn University of Technology

Opponents: Dr. Bernd Fischer
School of Electronics and Computer Science
University of Southampton

Prof. David Sands
Department of Computer Science and Engineering
Chalmers University of Technology

Defence: November 14, 2008

Declaration: Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of Technology
has not previously been submitted for any degree or examination.

/Ando Saabas/

Copyright: Ando Saabas, 2008
ISSN 1406-4731
ISBN 978-9985-59-865-8

INFORMAATIKA JA SÜSTEEMITEHNIKA C43

Loogikad madala taseme koodile ja
tõestusi säilitavad programmiteisendused

Ando Saabas

Tallinn 2008

Logics for Low-Level Code and
Proof-Preserving Program Transformations

Abstract

The Proof-Carrying Code (PCC) paradigm has emerged as a way of instilling trust
in the code user about the properties of the code that she is about to run. The
underlying idea is simple: code is shipped with a proof which attests that it adheres
to the requirements set at the user’s computer. Consequently, the user does not
need to check the code itself, only its proof, which is a simple, fast and one-time
procedure. A program proof can be thought of as a semantic checksum, attesting
that the semantics of the program has not been tampered with.

While the underlying idea of Proof-Carrying Code is simple, it offers many
challenges in both scientific and engineering aspects. This thesis concentrates on two
aspects relevant for Proof-Carrying Code. First of all, we describe a way of giving
a compositional semantics and matching Hoare logic to low-level, “unstructured”
languages with jumps. Our work is based on the insight that a phrase structure can
be given to the seemingly non-modular code by defining the code to be either a single
instruction, or a finite union of pieces of code. We show that this seemingly trivial
phrase structure actually provides a convenient basis for compositional semantics
and logic. The semantic and logic descriptions that we thus obtain are similar in
sophistication to those of the standard While language. Notably, Hoare triples in
our logic can be interpreted in the usual way.

The second aspect we investigate concerns “proof compilation”: the problem
of translating a program proof alongside the program in the context of compilation.
While the problem is trivial in the case of a non-optimizing compiler, it becomes
complicated when optimizations take place: a valid proof of a program is in general
not valid for the optimized, semantically equivalent version of the same program. We
propose a way of describing optimizations via type systems, where the type system
specifies both the dataflow analysis underlying the optimization and the rewrite
rules making use of the analysis information and carrying out the optimization. The
type derivation of a program is then used to guide the transformation of the proof.
We demonstrate that this approach works both for high-level programs and Hoare
proofs and on control flow graph based program descriptions and flat, unstructured
program proofs. We are able to address complicated, program structure changing
optimizations such as partial redundancy elimination and also optimizations based
on bidirectional analysis.

5

Loogikad madala taseme koodile ja
tõestusi säilitavad programmiteisendused

Lühikokkuvõte

Nn. tõestusega kood (Proof-Carrying Code ehk PCC) on uuenduslik viis anda garan-
tiisid tarkvara turvalisuse ning funktsionaalsuse kohta. Idee on lihtne: kompileeritud
programmiga on kaasas tõestus — sertifikaat, mida kontrollides on võimalik kind-
laks teha, kas programm esitatud nõuetele vastab. Seega ei pea kasutaja kontrollima
programmi ennast, vaid ainult tõestust, mis on kiire ja ühekordne protseduur ning
toimub programmi kasutaja enda arvutis. Programmi tõestusest võib mõelda kui se-
mantilisest kontrollsummast, mis näitab, et programmi semantikat ei ole ebasobivalt
muudetud.

Antud töö käsitleb kahte PCC-ga lähedalt seotud probleemi. Kuna tarkvara
levitatakse kompileerituna (nn. madala taseme kood), on oluline madala taseme
koodi üle arutlemine, mis toimub läbi programmiloogika. Kompositsiooniliste loogi-
kate loomist madala taseme keelte jaoks on seni peetud keeruliseks, kuna neil puudub
kõrgkeeltele omane ilmutatud kujul fraasistruktuur. Antud töös näitame, et madala
taseme koodile võib anda struktuuri, defineerides koodi kas üksiku instruktsioonina
või kooditükkide lõpliku ühendina. Ilmneb, et see näiliselt lihtne struktuur on pii-
sav kompositsioonilise semantika ja loogika kirjeldamiseks. Defineeritud semantika
ja loogika on oma keerukuselt lähedased standardsetele While keele semantikale ja
loogikale.

Teine probleem, millele antud töö pühendub on nn. “tõestuste kompileerimine”.
Kuna tõestused koostatakse üldjuhul kõrgkeelsete programmide kohta, on PCC arhi-
tektuuri puhul mõistlik teisendada kõrgkeelsete programmide tõestused kompilee-
rimise käigus automaatselt madala taseme koodi tõestusteks. See ülesanne on suhte-
liselt lihtne juhul, kui kompilaator ei teosta optimeerimisi. Vastasel juhul osu-
tub transleerimine keeruliseks, kuna üldjuhul optimeeritud programmi jaoks algne
tõestus enam ei sobi. Käesolevas töös esitame viisi, kuidas andmevooanalüüsidel
põhinevaid optimeerimisi on võimalik esitada läbi tüübisüsteemide, kus tüübisüsteem
sisaldab nii analüüsi- kui ka optimeerimiskomponenti. Nii on võimalik tüübituletus-
puu põhjal teostada nii programmi- kui tõestusteisendusi. Oma töös näitame, et see
lähenemine töötab nii kõrgkeelsete programmide ja tõestuste jaoks (sh. keeruliste
optimeerimiste nagu osaline liiasuse kõrvaldamine) kui ka madala taseme koodi ja
mitte-modulaarsete tõestuste puhul.

6

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor Tarmo
Uustalu. I can honestly say a better supervisor is hard to come by and feel really
lucky to have been able to work with him during my studies. I have learned im-
mensely from our collaboration and feel that his rigor and scientific integrity are
truly something to strive for. But even more importantly, he has not only been a
supervisor, but also a friend.

I wish to thank Enn Tõugu for recruiting me to the Institute of Cybernetics
and for having been a mentor for me during the years here. His positive attitude
and open mind have always been an inspiration for me.

The Institute of Cybernetics has been a wonderful place to work at and has
truly allowed me to concentrate on research, a privilege not all PhD students can
enjoy in Estonia. I wish to thank the administrative staff, especially Jaan Penjam,
for providing such a student-friendly work-environment and all my colleagues who
have made my work here so pleasurable.

I am grateful to my opponents, Dr. Bernd Fischer and Prof. David Sands for the
time and hard work they invested in reading my thesis, their insightful comments
and constructive criticism.

I found the general topic for my thesis research during my internship in INRIA
Sophia Antipolis. I am grateful to Gilles Barthe and Tamara Rezk for the fruitful
discussions and collaboration that led me to this. I thank Margus Veanes for inviting
me to Redmond for an internship in Microsoft Research, which was a wonderful
experience.

There are several organizations that have supported my research financially
through different projects. The research was supported by EU FP6 integrated
project MOBIUS, the Estonian Science Foundation grants 5567 and 6940 and the
Estonian Doctoral School in ICT (2005-2008). I would also like to thank the EITSA
Tiger University Plus programme for their scholarship and the Estonian Associa-
tion of Information Technology and Telecommunications (ITL) for the Ustus Agur
stipend.

Last but not least, I wish to thank my family, especially my mother and father,
from whom I got the drive to learn new things and gain a better understanding of
the world. I am deeply grateful to them for all the support and encouragement they
have given me ever since I was a kid.

7

8

Contents

1 Introduction 11
1.1 Proof-Carrying Code . 12
1.2 Contributions . 14
1.3 References to previously published work 15
1.4 Organization of the thesis . 16

2 Preliminaries 17
2.1 The high-level language While . 17

2.1.1 Syntax . 17
2.1.2 Natural semantics . 17
2.1.3 Hoare logic . 17

2.2 The low-level language Push . 18
2.3 Program logics for Push . 20

3 A compositional approach to low-level languages 25
3.1 Structured version of Push and its natural semantics 25
3.2 Hoare logic . 33
3.3 A dip into type systems . 43
3.4 Compilation . 46

3.4.1 Example . 53
3.5 Related work . 56
3.6 Conclusion . 57

4 Proof-preserving program transformations 59
4.1 Introduction . 59
4.2 Dead code elimination . 62

4.2.1 Type system for live variables analysis 62
4.2.2 Type system for dead code elimination 65

4.3 Common subexpression elimination 75
4.3.1 Type system for available expressions analysis 75
4.3.2 Type system for conditional partial anticipability analysis . . 76
4.3.3 Type system for common subexpression elimination 78

4.4 Partial redundancy elimination . 90
4.4.1 Simple PRE . 90
4.4.2 Full PRE . 105

9

4.5 Related work . 117
4.6 Conclusion . 119

5 Bytecode transformations 121
5.1 Background . 121
5.2 Dead code elimination . 122

5.2.1 Dead stores elimination . 124
5.2.2 Load-pop pairs elimination 132

5.3 Store/load+ elimination . 139
5.3.1 Duplicating loads elimination 139
5.3.2 Store-load pairs elimination 144

5.4 Related work . 154
5.5 Conclusion . 155

6 Conclusions and future work 157

Bibliography 159

10

Chapter 1

Introduction

The issue of determining whether a given program is correct, i.e. adheres to the
given set of requirements, has been a topic of interest since the advent of computers.
There are numerous approaches to show that a program is fully or partially correct
with respect to some specification, ranging from manual testing and code review to
automated/intelligent testing to type systems, static analysis, model checking and
formal verification. These approaches are by no means mutually exclusive, although
there certainly is some hierarchy of what kinds of properties can be shown using
each individual approach. Not surprisingly, the more thorough one wants to be
with checking, the more sophisticated the tools need to be, and the more laborious
the job is for the person doing the checking. What can be checked and how also
depends on how the requirements are specified: specifications can range from simple
documentation expressed in a natural language, to semi-formal descriptions such as
UML diagrams, to fully formal code annotations in some mathematical language
such as first- or higher-order logic.

The holy grail of program correctness checking has been full formal verification,
going back to seminal papers by Floyd [29] and Hoare [30] in the late Sixties. In
formal verification, the requirements a program is intended to fulfill are specified in
some mathematical language, typically first-order logic. The programming language
must have a formal semantics, so an abstract mathematical model of the program
can be built, and rigorously proven to adhere to the specification. The proof process
is typically not fully automatic, but requires the guidance of the developer.

Formal verification can give a full guarantee that the program has the desired
properties (assuming the verification tools themselves are correct). The specifica-
tions can be very complex and can address many different properties such as code’s
safety/security, functionality, bounds on resource consumption etc. This is opposed
to for example testing, where full guarantees can usually not be given, or type sys-
tems, where the domain of what can be checked is limited.

The goal of formally verifying programs has proved to be very elusive and full
verification is still far from being mainstream. Still there has been steady progress in
approaching this goal. There are numerous tools available for program verification,
such as the Extended Static Checker for Java ESC/Java2 [18], the KeY tool [12],
Krakatoa for Java [42] and Caduceus for C [28], both built on the Why platform

11

[27], the Loop tool [66] and Jack [7], to name a few.
Verification is typically performed on the source code by the developer, while

the user only obtains the compiled binary of the code. A problem orthogonal to
verification is how to convince a user that it is safe to run the code she just obtained—
giving access to full source code to the user is not always desired, and even if it is,
the user usually does not have the means or the knowledge to compile the program.
Additionally, in general the user cannot fully trust her compiler. A traditional
method for giving some assurance to the user has been signing the code digitally.
A digital signature however only speaks about the origin of the code, not about the
code itself. The origin might not be fully trusted or even when it is, it does not give
a full guarantee that the code is actually safe. Would it be possible to convince the
user that the code is safe even when it is coming from an untrusted source?

1.1 Proof-Carrying Code

Proof-carrying code (PCC), proposed by Necula [45], is a technique for safely exe-
cuting code coming from an untrusted source. The general underlying idea is quite
simple: the untrusted code producer must supply the code with a proof, which shows
that the code adheres to the policy set at the host’s site. The host can then simply
check the proof against the code and the site’s policy, and only run the code if the
proof is correct. The particular policy is chosen by the host and can address a wide
array of properties, such as code safety, security or functionality. Proof checking is
a one-time procedure and there is no need to use cryptography or trust an outside
agent.

PCC has a lot of potential uses where the trusted computing base is dynamic,
such as mobile phones, PDA’s, smartcards etc. Example applications include exten-
sible operating systems, downloadable applets, safety-critical embedded controllers
etc.

The main highlights of the PCC architecture are the following.

• It is small and lightweight on the host’s side. The host does not have to verify
the code itself, only check a purported proof.

• PCC can operate on native code binaries. There is no inherent need for sand-
boxing PCC applications.

• It is general, so in addition to basic safety properties, other properties like
functionality, non-interference etc. can be expressed using the same approach.

• It operates at load time, so there is no overhead in runtime checking.

• PCC programs are tamper-proof. If the code and/or the proof are modified,
then either the proof becomes invalid with respect to the code and the policy
and the program is rejected, or if the proof is still valid, it means that the

12

Figure 1.1: Simplified overview of the PCC architecture

program still adheres to the given policy despite of the modifications and is
still safe to be executed.

Any instance of the general PCC architecture must contain at least a formal
specification language used to express the safety/functionality policy, a formal se-
mantics of the programming language of the distributed code, a formal language to
express the proofs, and a proof checker, i.e., an algorithm validating the proofs. The
general architecture of proof-carrying code is given in Figure 1.1.

While the basic idea underlying PCC is quite simple, there are many challenges
in both theoretical and engineering aspects of PCC. Among those are:

• Finding suitable logics and type systems for reasoning about low-level code.

• Obtaining proofs for the low-level code from source-level proofs (especially in
the light of compile-time optimizations).

• Compactly representing program proofs.

• Developing efficient and correct proof checkers.

All of this has made PCC a very popular topic in computer science, with a large
amount of literature dedicated to it in the last ten years.

13

1.2 Contributions

This work concentrates on two related aspects relevant for PCC.

• The first aspect is related to finding suitable logics and type systems for rea-
soning about low-level code. There are are many challenges in this area; one
question is how to deal with the unstructured nature of low-level code. Un-
like high-level programs, low-level code has no explicit phrase structure due to
the presence of jumps, i.e., it is seemingly non-modular. A consequence of a
language being non-modular is that it cannot have compositional semantics,
logics or type systems, therefore making reasoning about it more difficult. On
the example of a bytecode-like language, we show that there is a way to give
a useful structure to code with jumps and devise a compositional semantics
and Hoare logic for low-level languages, which do not make any assumptions
about the structure of the program. We show that the compositional seman-
tics agrees to the standard semantics and prove the compositional Hoare logic
to be sound and complete. The logic we present is standard in the sense
that Hoare triples can be interpreted in the standard way. We also show that
our approach allows for direct compilation from modular source-level program
proofs into modular low-level proofs.

• The second aspect we deal with is related to the question of how to obtain
certificates/proofs for compiled code when the source code is verified. Typi-
cally, programs are proved correct on the source level, using some verification
environment. If the source code is compiled, one would like to “compile”
its proof together with it. While this is straightforward for a non-optimizing
compiler, this is not the case when optimizations take place: the proof has
to be “optimized” along the program. We present a general and uniform way
of transforming proofs, using type systems. The type system is a declarative
representation of the dataflow analysis, and also includes an optimization com-
ponent corresponding to the code rewrite rules based on the analysis result.
The fundamental idea is to leverage the type system for optimizing both the
program and its proof, i.e. a type derivation of a statement not only specifies
how the statement has to be rewritten, but also how to modify its pre- and
postconditions, so that they remain valid after the rewrite.

We demonstrate our approach on three optimizations.

– We introduce our technique on dead code elimination, a relatively simple
optimization, requiring only one dataflow analysis. As such, it is a good
example to describe our general approach. At the same time, it is inter-
esting in being the archetypical optimization which requires weakening of
assertions in program proofs, and is thus a counterexample to the popular
belief that assertion transformation in the context of proof compilation
is always strengthening.

14

– We look at common subexpression elimination, which is an optimization
that requires linking of expression evaluation points to value reuse points
and coordinated modifications of the program near both ends of such
links, which seems to go against compositionality (where compositionality
is what we want from a type system for a high-level language). We show
how this can easily be overcome by a combined type system that reflects
a combination of two analyses.

– Our work on high-level program transformation culminates on partial
redundancy elimination, which is a very complex and subtle optimization
that requires four interdependent dataflow analyses and performs code
motion via edge splitting. In our type-systematic setting, this corresponds
to introducing new code at subsumption inferences. On this example we
also show that our approach is equally applicable to logics other than
the standard Hoare logic, for example logics for reasoning about resource
usage.

Besides showing the usefulness of the type-systematic approach for proof trans-
formation, we argue that that this approach can be useful for other purposes.
It can explain the optimization well in a declarative fashion, and makes it easy
to show different properties of optimization like soundness and improvement
(the latter is explained on the example of partial redundancy elimination).

We also extend our work on proof transformation to bytecode-like languages,
where we use a flat, unstructured logic. Bytecode optimizations are interest-
ing since many of them require bidirectional analyses (unlike most high-level
optimizations). This means that during the analysis (and principal type infer-
ence), information needs to be propagated both back and forth in the control
flow graph. This has the effect that the normal subsumption rule is not appli-
cable, since changing the type at one program point potentially affects the type
of all other program points. In our work, we show that our type-systematic
approach scales equally well to unstructured logics and bidirectional dataflow
analyses.

1.3 References to previously published work

Several parts of this thesis have been previously published as conference and journal
papers.

Chapter 3 is based on papers “A Compositional Natural Semantics and Hoare
Logic for Low-Level Languages” [53], published in Theoretical Computer Science,
and “Compositional type systems for stack-based low-level languages” [52], pre-
sented at Computing: Australasian Theory Symposium, CATS 2006. It contains
previously unpublished proofs of the metatheoretic properties of the compositional
semantics and logic and the proof of preservation of Hoare triples.

15

Chapter 4 is based on papers “Program and proof optimizations with type
systems” [55] published in the Journal of Logic and Algebraic Programming and
“Proof optimization for partial redundancy elimination” [56], presented at Partial
Evaluation and Program Manipulation, PEPM 2008.

Chapter 5 is based on a paper “Type Systems for Optimizing Stack-Based Code”
[54], presented at Bytecode Semantics, Verification, Analysis and Transformation,
BYTECODE 2007. The work on byte-code level proof transformations is previously
unpublished.

All of these papers have roughly equal contributions from both co-authors.

1.4 Organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2 we set the stage for
our development by fixing the source and target languages, and the corresponding
standard semantics and Hoare logic for these languages. In Chapter 3, we introduce
a compositional semantics and Hoare logic for a low-level language with jumps. We
also describe a compilation process to translate high-level proofs into corresponding
low-level proofs. Chapter 4 explains the proof transformation method for program
optimizations on the examples of dead code elimination, common subexpression
elimination and partial redundancy elimination. Chapter 5 extends these ideas to
optimizations on low-level languages and flat program proofs. Chapter 6 concludes
and highlights some directions for future research.

16

Chapter 2

Preliminaries

In this chapter, we fix the syntax, natural semantics and the standard Hoare
logic of the basic high-level language While and its low-level counterpart, Push.
The descriptions for While are very well known and are given here for the sake of
completeness; for a more thorough overview, the reader may turn to [48].

2.1 The high-level language While

2.1.1 Syntax

The syntax of While proceeds from a countable supply of arithmetic variables
x ∈ Var. Over these, three syntactic categories of arithmetic expressions a ∈ AExp,
boolean expressions b ∈ BExp and statements s ∈ Stm are defined by means of the
grammar

a ::= x | n | a0 + a1 | . . .
b ::= a0 = a1 | . . . | tt | ff | ¬b | . . .
s ::= x := a | skip | s0; s1 | if b then s0 else s1 | while b do s

2.1.2 Natural semantics

The semantics is given in terms of states. The states are defined as stores σ ∈
Store, i.e., mappings of variables to integers: State =df Store =df Var→ Z. The
arithmetical and boolean expressions are interpreted relative to stores as integers
and truth values by the semantic function J−K ∈ AExp + BExp → Store → Z,
defined in the denotational style by the usual equations. We write σ |= b to say that
JbKσ = tt.

Statements are interpreted via the evaluation relation �−� ⊆ State×Stm×
State defined inductively by the ruleset given in Figure 2.1.

2.1.3 Hoare logic

The assertions P ∈ Assn are defined as formulae of an unspecified underlying logic
over a signature consisting of (a) constants for integers and function and predicate

17

σ �x := a�σ[x 7→ JaKσ]
:=ns

σ �skip�σ
skipns

σ �s0�σ′′ σ′′ �s1�σ′

σ �s0; s1�σ′
compns

σ |= b σ �st�σ′

σ �if b then st else sf�σ′
iftt

ns

σ 6|= b σ �sf�σ′

σ �if b then st else sf�σ′
ifff

ns

σ |= b σ �s�σ′′ σ′′ �while b do s�σ′

σ �while b do s�σ′
whilett

ns

σ 6|= b

σ �while b do s�σ whileff
ns

Figure 2.1: Natural semantics rules of While

{Q[a/x]}x := a {Q}
:=hoa

{P} skip {P}
skiphoa

{P} s0 {R} {R} s1 {Q}
{P} s0; s1 {Q}

comphoa

{b ∧ P} st {Q} {¬b ∧ P} sf {Q}
{P} if b then st else sf {Q}

ifhoa

{b ∧ P} s {P}
{P}while b do s {¬b ∧ P}

whilehoa

P |= P ′ {P ′} s {Q′} Q′ |= Q

{P} s {Q}
conseqhoa

Figure 2.2: Hoare rules of While

symbols for the standard integer-arithmetical operations and relations and (b) the
program variables x ∈ Var as constants. For the completeness result, the language
is assumed to be expressive enough so as to allow the expression of the weakest
liberal precondition of any statement wrt. any given postcondition (cf. [19]). We
write σ |=α P to express that P holds in the structure on Z determined by (a) the
standard meanings of the arithmetical constants, function and predicate symbols
and (b) a state σ, under an assignment α of the logical variables. The writing
P |= Q means that σ |=α P implies σ |=α Q for any σ, α.

The derivable judgements of the logic are given by the relation {} − {} ⊆
Assn× Stm×Assn defined inductively by the ruleset in Figure 2.2.

2.2 The low-level language Push

The low-level counterpart of While we consider here is Push, a simple stack-based
language with jumps. The building blocks of the syntax of Push are labels ` ∈
Label, which are natural numbers, and instructions instr ∈ Instr. We also assume
having a countable set of program variables (registers) x ∈ Var (just as in While).
The instructions of the language are defined by the grammar

instr ::= load x | store x | push n | add | eq | ...
| pop | dup | goto ` | gotoF `

18

(`, store x) ∈ c n ∈ Z
c ` (`, n :: zs, σ) � (`+ 1, zs, σ[x 7→ n])

store
(`, load x) ∈ c

c ` (`, zs, σ) � (`+ 1, σ(x) :: zs, σ)
load

(`, push n) ∈ c
c ` (`, zs, σ) � (`+ 1, n :: zs, σ)

push
(`, add) ∈ c n0, n1 ∈ Z

c ` (`, n0 :: n1 :: zs, σ) � (`+ 1, n0 + n1 :: zs, σ)
add

(`, eq) ∈ c n0, n1 ∈ Z
c ` (`, n0 :: n1 :: zs, σ) � (`+ 1, n0 = n1 :: zs, σ)

eq

. . .

(`, pop) ∈ c
c ` (`, n :: zs, σ) � (`+ 1, zs, σ)

pop
(`, dup) ∈ c

c ` (`, n :: zs, σ) � (`+ 1, n :: n :: zs, σ)
dup

(`, goto m) ∈ c
c ` (`, zs, σ) � (m, zs, σ)

goto

(`, gotoF m) ∈ c
c ` (`, tt :: zs, σ) � (`+ 1, zs, σ)

gotoFtt
(`, gotoF m) ∈ c

c ` (`,ff :: zs, σ) � (m, zs, σ)
gotoFff

(`, store x) ∈ c ∀n ∈ Z, zs′ ∈ (Z + B)∗. zs 6= n :: zs′

c ` (`, zs, σ)�p
storeab

(`, add) ∈ c ∀n0, n1 ∈ Z, zs′ ∈ (Z + B)∗. zs 6= n0 :: n1 :: zs′

c ` (`, zs, σ)�p
addab

(`, eq) ∈ c ∀n0, n1 ∈ Z, zs′ ∈ (Z + B)∗. zs 6= n0 :: n1 :: zs′

c ` (`, zs, σ)�p
eqab

(`, pop) ∈ c
c ` (`, [], σ)�p

popab
(`, dup) ∈ c
c ` (`, [], σ)�p

dupab

∀b ∈ B, zs′ ∈ (Z + B)∗. zs 6= b :: zs′

c ` (`, zs, σ)�p
gotoFab

Figure 2.3: Single-step reduction rules of Push

(The pop and dup instructions are not needed as primitives in the language for
presenting the compositional semantics and logic in Chapter 3, but will be useful
for bytecode optimizations presented in Chapter 5.)

A piece of code c ∈ Code is a finite set of labelled instructions, i.e., a set
of pairs of a label and an instruction: Code =df Pfin(Label × Instr). A piece
of code c is wellformed, if no label in it labels two different instructions, i.e., if
(`, instr), (`, instr′) ∈ c imply instr = instr ′. The domain of a piece of code is the
set of labels in it: dom(c) =df {` | (`, instr) ∈ c}. If ` ∈ dom(c), we write c` for the
unique instruction that ` labels in c.

A state for Push consists of a label `, stack zs and store σ, which respectively
record the program counter(pc) value, the content of the operand stack and the store
at a moment: State =df Label× Stack× Store. A stack is a list whose elements
can be both boolean or integer values: Stack =df (Z + B)∗. (We use the notation

19

X∗ for lists over X, [] for the empty list, x :: xs for the list with head x and tail xs
and xs ++ ys for the concatenation of xs and ys.) Variables can only be of integer
type and must always be defined: Store =df Var→ Z.

If a language is low-level, its semantics is usually described in an operational
form that is small-step. The small-step semantics of Push is formulated via a
single-step reduction relation − `� ⊆ State×Code×State defined in Figure 2.3.
The associated multi-step reduction relation �∗ is its reflexive-transitive closure.
It is immediate that � is deterministic, there is always at most one step possible.
Additionally, we have the relation − ` �p ⊆ State×Code denoting abnormal ter-
mination, also given in Figure 2.3. There is no explicit halt instructions, a program
halts normally when the program counter exits the domain of the code.

Thus a state can be terminal for two reasons: (i) we have ` /∈ dom(c), which
signifies normal termination (for which we write c ` (`, zs, σ) 6�), or (ii) we have
` ∈ dom(c) but have of wrong types or shortage of potential operands on the stack,
which signifies abnormal termination (for which we write c ` (`, zs, σ)�p).

Lemma 1 (Determinacy of small-step semantics) If c ` (`, zs, σ)� (`′, zs ′, σ′)
and c ` (`, zs, σ)� (`′′, zs ′′, σ′′) then (`′′, zs ′′, σ′′) = (`′, zs ′, σ′).

Lemma 2 (Extension of the domain) If c0 ⊆ c1, ` ∈ dom(c0) and c0 ` (`, zs, σ)
�∗ (`′, zs ′, σ′) then c1 ` (`, zs, σ)�∗ (`′, zs ′, σ′).

Lemma 3 (Extension of the domain 2) If c0 ⊆ c1 and ` ∈ dom(c0) and c0 `
(`, zs, σ)�∗ (`′, zs ′, σ′)�p then c1 ` (`, zs, σ)�∗ (`′, zs ′, σ′)�p.

2.3 Program logics for Push

The Hoare logic of While is very standard and can be found in most textbooks
dealing with programming language semantics. For low-level languages, there is no
such consensus and there is no canonical logic for simple low-level languages such
as Push. The most popular approach involves a global context of label invariants,
following the style of the type system for bytecode by Stata and Abadi [61], and
can be found for example in Benton’s [14] and Bannwart and Müller’s [6] work. The
logic we will use for presenting the low-level proof transformations in Chapter 5 is
based on exactly this line of work.

When presenting a logic for a language in which errors can occur (type and
stack underflow errors in our case), there are several design options. One question
is whether the logic is error-ignoring or error-free. The difference between the two
logics is in their validity statements. For the error-ignoring logic (also called very
partial correctness logic) the validity statement says that if we start a program in a
state satisfying the precondition, and terminate normally, the final state satisfies the
postcondition. Such specifications are satisfied by both divergent and erroneous pro-
grams. For the error-free logic, validity additionally states that if we start a program
in a state satisfying the precondition, the program does not finish erroneously.

20

P` |= ∀z ∈ Z, w ∈ (Z + B)∗. (st = z :: w ⇒ P`+1[w/st , z/x])

P ` (`, store x)
store

P` |= P`+1[x :: st/st]

P ` (`, load x)
load

P` |= P`+1[n :: st/st]

P ` (`, push n)
push

P` |= ∀z0, z1 ∈ Z, w ∈ (Z + B)∗. (st = z0 :: z1 :: w ⇒ P`+1[z0 + z1 : w/st])

P ` (`, add)
add

. . .

P` |= ∀z ∈ Z + B, w ∈ (Z + B)∗. (st = z :: w ⇒ P`+1[w/st])

P ` (`, pop)
pop

P` |= ∀z ∈ Z + B, w ∈ (Z + B)∗. st = z :: w ⇒ P`+1[z :: z :: w/st]

P ` (`, dup)
dup

P` |= Pm

P ` (`, goto m)
goto

P` |= ∀b ∈ B, w ∈ (Z + B)∗. st = b :: w ⇒ ((b ∧ P`+1[w/st]) ∨ (¬b ∧ Pm[w/st]))

P ` (`, gotoF m)
gotoF

∀` ∈ dom(c). P ` (`, c`)

P ` c code

Figure 2.4: Error-ignoring programming logic for Push

The two flavours of logic are given in 2.4 and Figures 2.5. There, P is a vector
of assertions such that there is an assertion associated with each instruction of the
program. We use P` to denote the assertion (more precisely, the precondition) at
label `. Assertions are formulae of the underlying logic, which as extra-arithmetic
constants contains program variables Var and special constant st to refer to the
stack. The logic judgement P ` (`, instr) signifies that P is the context of invariants
for the labelled instruction (`, instr), independent of any possible code context in
which this instruction may occur. The logic judgement P ` c means that P is
the context of invariants for a program c as a whole. The precise meaning of P `
(`, instr) and P ` c will be clear from the definition of soundness and completeness.
We write (zs, σ) |=α Q to express that an assertion Q holds in the structure on
Z and B determined by (a) the standard meanings of the arithmetical and logical
constants, function and predicate symbols and (b) a state σ and a stack st under an
assignment α of the variables of the logical language (parameters).

The main difference between the two logics can be explained on the example
of the store instruction. The error-free logic requires that the assertion associated
with the store instruction guarantees that there is an integer on top of the the stack,
so that the instruction could be executed normally. Additionally, the assertion has
to imply the suitably modified assertion associated to the instruction following the
store. In the error-ignoring logic on the other hand, the latter has to be guaranteed
only if the stack holds an integer on top. If the stack is empty or holds the wrong

21

P` |= ∃z ∈ Z, w ∈ (Z + B)∗. st = z :: w ∧ P`+1[w/st , z/x]

P ` (`, store x)
store

P` |= P`+1[x :: st/st]

P ` (`, load x)
load

P` |= P`+1[n :: st/st]

P ` (`, push n)
push

P` |= ∃z0, z1 ∈ Z, w ∈ (Z + B)∗. st = z0 :: z1 :: w ∧ P`+1[z0 + z1 : w/st]

P ` (`, add)
add

. . .

P` |= ∃z ∈ Z + B, w ∈ (Z + B)∗. st = z :: w ∧ P`+1[w/st]

P ` (`, pop)
pop

P` |= ∃z ∈ Z + B, w ∈ (Z + B)∗. st = z :: w ∧ P`+1[z :: z :: st/st]

P ` (`, dup)
dup

P` |= Pm

P ` (`, goto m)
goto

P` |= ∃b ∈ B, w ∈ (Z + B)∗. st = b :: w ∧ ((b ∧ P`+1[w/st]) ∨ (¬b ∧ Pm[w/st]))

P ` (`, gotoF m)
gotoF

∀` ∈ dom(c). P ` (`, c`)

P ` c code

Figure 2.5: Error-free programming logic for Push

type on top, nothing has to be guaranteed, since a runtime error would occur.
Both logics are sound and complete in the usual sense, according to their validity

notions.

Theorem 1 (Soundness of the error-ignoring programming logic)
If P ` c and (zs, σ) |=α P` then for any (`′, zs ′, σ′) such that c ` (`, zs, σ) �∗

(`′, zs ′, σ′) 6�, (zs ′, σ′) |=α P`′.

Theorem 2 (Completeness of error-ignoring programming logic) If for any
(`, zs, σ) such that (zs, σ) |= P` it holds that for any (`′, zs ′, σ′) such that c `
(`, zs, σ)�∗ (`′, zs ′, σ′) 6� we have (zs ′, σ′) |= P`′ then P ` c.

Theorem 3 (Soundness of the error-free programming logic)
If P ` c and (zs, σ) |=α P` then (i) for any (`′, zs ′, σ′) such that c ` (`, zs, σ) �∗

(`′, zs ′, σ′) 6�, (zs ′, σ′) |=α P`′ and (ii) there is no state (`′, zs ′, σ′) such that c `
(`, zs, σ)�∗ (`′, zs ′, σ′)�p.

Theorem 4 (Completeness of the error-free programming logic) If for any
(`, zs, σ) such that (zs, σ) |= P` it holds that (i) for any (`′, zs ′, σ′) such that c `
(`, zs, σ)�∗ (`′, zs ′, σ′) 6� we have (zs ′, σ′) |= P`′ and (ii) there is no state (`′, zs ′, σ′)
such that c ` (`, zs, σ)�∗ (`′, zs ′, σ′)�p then P ` c.

22

P` |= shift(P`+1)[st(0)/x]

P ` (`, store x)
store

P` |= unshift(P`+1[x/st(0)])

P ` (`, load x)
load

P` |= unshift(P`+1[n/st(0)])

P ` (`, push n)
push

P` |= shift(P`+1)[st(0) + st(1)/st(1)]

P ` (`, add)
add

. . .

P` |= shift(P`+1)

P ` (`, pop)
pop

P` |= unshift(P`+1[st(1)/st(0)])

P ` (`, dup)
dup

P` |= Pm

P ` (`, goto m)
goto

P` |= st(0) ∧ shift(P`+1) ∨ ¬st(0) ∧ shift(Pm)

P ` (`, gotoF m)
gotoF

∀` ∈ dom(c). P ` (`, c`)

P ` c code

Figure 2.6: Neutral programming logic for Push

There are in fact several ways of presenting logics that guarantee error freedom.
For example Benton [14] uses a type system in parallel with the logic to rule out
erroneous behavior. This means that nothing can be proven about untypable pro-
grams. This is a reasonable way to proceed (although for example Microsoft’s CLR
does give semantics to untypable code). The approach where error freedom is built
directly into the logic (as in Figure 2.5) is stronger in the sense that certain prop-
erties of some untypable programs can also be proven, for example by showing that
an ill-behaving branch is never entered. The compositional logic we will introduce
in Chapter 3 will also be error-free.

For transformation of low-level proofs in Chapter 5, we will adopt a logic where
the difference between error-free and error-ignoring is abstracted away, in fact the
logic can be desugared both into the error-ignoring and error-free logic (however, the
intended reading in Chapter 5 is error-ignoring). Its style follows the bytecode logics
of Benton and Bannwart-Müller. In this notation, instead of having one extralogical
constant st , we have multiple extralogical contstants st(i) to refer to the i-th position
in the stack, where i is a numeral and st(0) is the top of the stack; using an arbitrary
expression as the argument (such as st(x+y)) is not allowed. So for example to state
that the third position in the stack holds a value 5, we have the assertion st(2) = 5.

The logic is given in Figure 2.6. We use operators shift and unshift where

shift(Q) = Q[st(i+ 1)/st(i) | i ∈ N]

and
unshift(Q) = Q[st(i− 1)/st(i) | i ∈ N ∧ i > 0],

where Q is an assertion.
Using the st(i) notation has the benefit of allowing us to talk about stack

positions directly, without having to bring quantifiers into assertions to create bound
variables for them. But there is also a drawback, namely it immediately begs the

23

question of how to interpret assertions referring to st(i) when the length of the stack
is less than or equal to i, for example ([], σ) |= st(0) = 1. The interpretation depends
on whether we consider the logic to be error-free or error-ignoring. In the first case,
such an assertions should be false, in the second case it should be vacuously true.

We solve this issue, by stating that this logic with its problem of nondenoting
terms can be desugared into the error-ignoring and error-free logics that are given in
2.4 and Figures 2.5 as needed. To translate the assertion Q containing extralogical
constants st(i), ..., st(n) for the error-ignoring logic, Q is rewritten as

∀z0, ...zn, w.(st = z0 :: ... :: zn :: w ⇒ Q[z0/st(0), .., zn/st(n)]).

Similarly, for the error-free logic we would get

∃z0, ...zn, w.(st = z0 :: ... :: zn :: w ∧Q[z0/st(0), .., zn/st(n)]).

Proofs can also be translated.

24

Chapter 3

A compositional approach to
low-level languages

Low-level languages are widely believed to be difficult to reason about because of
their inherent non-modularity. The lack of modularity is attributed to low-level code
being flat and to the presence of completely unrestricted jumps. The consequence
of a language being non-modular is that it cannot have a compositional semantics
or logic.

We show that the premise of non-modularity is untrue. While it is true that
there is no explicit structure to low-level code in the way of high-level programs, there
still is some structure: every piece of code is either a single labeled instruction, or a
finite union of smaller pieces of code with non-overlapping support. As it turns out,
this seemingly very banal structure actually provides a good enough phrase structure
for defining a compositional semantics and logic for the language. The fundamental
observation is that, differently from high-level statements, low-level pieces of code
are multiple-entry and multiple-exit: any label could be jumped to and a piece of
code could be exited from any jump instruction. The structure of finite unions is
in fact natural and arises whenever code is produced by combining smaller pieces of
code into larger ones, like it happens in a compiler.

In this chapter we introduce a compositional natural semantics and Hoare logic
for the bytecode-like low-level language Push given in the previous chapter, and
show how Hoare triples of While can be compiled down to the compositional logic
together with the program.

3.1 Structured version of Push and its natural seman-
tics

To overcome the non-compositionality problem of the semantics described above,
some structure needs to be introduced into Push code. As mentioned, a useful
structure to use for defining the semantics of a low-level language compositionally
is that of finite unions of non-overlapping pieces of code. This is present in the code
anyway, but it is ambiguous (any set is a finite union of disjoint sets in many ways)

25

and implicit, so one has to choose and make the choices explicit. Hence we define a
corresponding structured version of Push, which we call SPush. Structured pieces
of code sc ∈ SCode are defined by the following grammar

sc ::= (`, instr) | 0 | sc0 ⊕ sc1

which stipulates that a piece of code is either an empty piece of code, a single labelled
instruction or a finite union of pieces of code. Instructions of SPush are the same as
for Push, but we will skip the treatment of dup and pop in this chapter, since they
do not offer anything for illustrating the compositional approach. They will be used
in Chapter 5 for bytecode transformations. We define the domain dom(sc) of a piece
of code sc to be the set of all labels in the code: dom(0) = ∅, dom((`, instr)) = {l},
dom(sc0 ⊕ sc1) = dom(sc0) ∪ dom(sc1).

A piece of code is wellformed iff the labels of all of its instructions are different: a
single instruction is always wellformed, 0 is wellformed and sc0⊕sc1 is wellformed iff
both sc0 and sc1 are wellformed and dom(sc0)∩dom(sc1) = ∅. Note that contiguity
is not required for wellformedness, the domain of a piece of code does not have to
be an interval.

The compositional semantic description we give for SPush is a natural (big-
step) semantics. Since there is the possibility of abnormal terminations and we want
to distinguish between non-terminations and abnormal terminations, we define two
evaluation relations, � − � ,�−�p ⊆ State × SCode × State, one for normal
evaluations, the other for abnormal terminating evaluations. Both relate possible
initial states for evaluating a piece of code to the corresponding terminal states.
The two relations are defined (mutually inductively) by the rules in Figure 3.1.
Alternatively, we could have just one evaluation relation but indexed by a pair for
distinguishing between the two flavors of termination.

The loadns and pushns rules should be self-explanatory. Both store x and add
can potentially cause an error, therefore there are two rules for them, for normal
and abnormal evaluation.

We have spelled out the rules for goto m and gotoF m instructions in two dif-
ferent ways: a recursive style (in square brackets) and a direct style. The two styles
are equivalent, but we mostly comment the direct style. The recursive style could
be seen as a formal explanation of the direct style. The key observation about the
recursive rules should be that they work in conjunction with the oodns rule, which
terminates the derivation if a jump is possible (otherwise, the recursive rule is ap-
plied again, infinitely in case of the goto rule). The issue is that, differently from
other single-instruction pieces of code, a goto or gotoF instruction can loop back on
itself. This happens when the current label and the target label coincide.

The side condition in the gotons rule states that a goto m instruction only
terminates, if it does not loop directly back on itself. The gotoF 6=tt

ns rule should be
self-explanatory, however the gotoF m rules for the case there is a ff on the top of the
stack should be explained. The complication here is that just like goto m, gotoF m
can loop back on itself. Unlike goto m however, it cannot loop infinitely, since every

26

(`, zs, σ)�(`, load x)� (`+ 1, σ(x) :: zs, σ)
loadns

n ∈ Z
(`, n :: zs, σ)�(`, store x)� (`+ 1, zs, σ[x 7→ n])

storens

∀n ∈ Z, zs′ ∈ (Z + B)∗. zs 6= n :: zs′

(`, zs, σ) �(`, store x)�p (`, zs, σ)
storeabns

(`, zs, σ)�(`, push n)� (`+ 1, n :: zs, σ)
pushns

n0, n1 ∈ Z
(`, n0 :: n1 :: zs, σ)�(`, add)� (`+ 1, n0 + n1 :: zs, σ)

addns

∀n0, n1 ∈ Z, zs′ ∈ (Z + B)∗. zs 6= n0 :: n1 :: zs′

(`, zs, σ) �(`, add)�p (`, zs, σ)
addabns

. . .
(m, zs, σ)�(`, goto m)� (`′, zs′, σ′)

(`, zs, σ)�(`, goto m)� (`′, zs′, σ′)

(m, zs, σ) �(`, goto m)�p (`′, zs′, σ′)

(`, zs, σ) �(`, goto m)�p (`′, zs′, σ′)

 m 6= `

(`, zs, σ)�(`, goto m)� (m, zs, σ)
gotons

(`, tt :: zs, σ)�(`, gotoF m)� (`+ 1, zs, σ)

(m, zs, σ)�(`, gotoF m)� (`′, zs′, σ′)

(`,ff :: zs, σ)�(`, gotoF m)� (`′, zs′, σ′)

(m, zs, σ) �(`, gotoF m)�p (`′, zs′, σ′)

(`,ff :: zs, σ) �(`, gotoF m)�p (`′, zs′, σ′)

∀b ∈ B, zs′ ∈ (Z + B)∗. zs 6= b :: zs′

(`, zs, σ) �(`, gotoF m)�p (`, zs, σ)

m 6= `

(`, tt :: zs, σ)�(`, gotoF m)� (`+ 1, zs, σ)
gotoF6=tt

ns

m 6= `

(`,ff :: zs, σ)�(`, gotoF m)� (m, zs, σ)
gotoF6=ff

ns

m 6= ` ∀b ∈ B, zs′ ∈ (Z + B)∗. zs 6= b :: zs′

(`, zs, σ) �(`, gotoF m)�p (`, zs, σ)
gotoF6=abns

ffs ∈ {ff}∗

(`,ffs ++ tt :: zs, σ)�(`, gotoF `)� (`+ 1, zs, σ)
gotoF=

ns

ffs ∈ {ff}∗ ∀b ∈ B, zs′ ∈ (Z + B)∗. zs 6= b :: zs′

(`,ffs ++ zs, σ) �(`, gotoF `)�p (`, zs, σ)
gotoF=ab

ns

` ∈ dom(sci) (`, zs, σ)�sci� (`′′, zs′′, σ′′) (`′′, zs′′, σ′′)�sc0 ⊕ sc1� (`′, zs′, σ′)

(`, zs, σ)�sc0 ⊕ sc1� (`′, zs′, σ′)
⊕ns

` ∈ dom(sci) (`, zs, σ) �sci�p (`′, zs′, σ′)

(`, zs, σ) �sc0 ⊕ sc1�p (`′, zs′, σ′)
⊕abnns

` ∈ dom(sci) (`, zs, σ)�sci� (`′′, zs′′, σ′′) (`′′, zs′′, σ′′) �sc0 ⊕ sc1�p (`′, zs′, σ′)

(`, zs, σ) �sc0 ⊕ sc1�p (`′, zs′, σ′)
⊕ablns

` /∈ dom(sc)

(`, zs, σ)�sc� (`, zs, σ)
oodns

Figure 3.1: Natural semantics rules of SPush

27

successful jump removes an element from the stack. Instead it can either exit the
loop at some point (when it encounters a tt on top of the stack), or cause an error
if it either encounters an integer on the stack or the stack runs empty. Therefore,
two rules (gotoF=

ns and gotoF=ab
ns) are needed for normal and abnormal behavior of

gotoF m for the case when it loops back on itself. The rule gotoF 6=abns covers the case
when there is no boolean value at the top of the stack.

The rule ⊕ns says that, to evaluate the union sc0 ⊕ sc1 starting from some
state such that the pc is in the domain of sci, one first needs to evaluate sci, and
then evaluate the whole union again, but starting from the new intermediate state
reached. Finally, the oodns rule is needed to reflect the case where the reduction
sequence is normally terminated because the pc has landed outside the domain of
the code.

It is straightforward to show that the pc in the final state of a normally termi-
nating evaluation of a code is outside its domain while the pc in the final state of
an abnormally terminating evaluation is inside. Evaluation is deterministic in the
sense that any piece of code terminates either normally or abnormally in a definite
state, if it terminates at all.

Lemma 4 (Postlabels 1) If (`, zs, σ)�sc� (`′, zs ′, σ′), then `′ /∈ dom(sc).

Lemma 5 (Postlabels 2) If (`, zs, σ) �sc�p (`′, zs ′, σ′), then `′ ∈ dom(sc).

Lemma 6 (Determinacy 1) If (`, zs, σ)�sc� (`′, zs ′, σ′) and (`, zs, σ)�sc�
(`′′, zs ′′, σ′′) then (`′, zs ′, σ′) = (`′′, zs ′′, σ′′).

Lemma 7 (Determinacy 2) If (`, zs, σ) �sc�p (`′, zs ′, σ′) and (`, zs, σ) �sc�p
(`′′, zs ′′, σ′′), then (`′, zs ′, σ′) = (`′′, zs ′′, σ′′).

Every SPush piece of code can be mapped into a Push piece of code using a
forgetful function U ∈ SCode → Code, defined by U((`, instr)) =df {(`, instr)},
U(0) =df ∅, U(sc0⊕ sc1) =df U(sc0)∪U(sc1). The compositional natural semantics
of SPush agrees with the the standard small-step semantics of Push as given in
Chapter 2 in the following technical sense.

Theorem 5 (Preservation of evaluations by U) (i) If (`, zs, σ)�sc� (`′, zs ′, σ′),
then U(sc) ` (`, zs, σ) �∗ (`′, zs ′, σ′) 6�. (ii) If (`, zs, σ) �sc�p (`′, zs ′, σ′), then
U(sc) ` (`, zs, σ)�∗ (`′, zs ′, σ′)�p.

Proof. By induction on the derivation of (`, zs, σ)�sc� (`′, zs ′, σ′) or (`, zs, σ)�sc�p
(`′, zs ′, σ′).

We look at normally terminating triples first and have the following cases:

• The derivation of (`, zs, σ)�sc� (`′, zs ′, σ′) is

(`, zs, σ)�(`, load x)� (`+ 1, σ(x) :: zs, σ)
loadns

By rule load, we have {(`, load x)} ` (`, zs, σ)� (`+ 1, σ(x) :: zs, σ) 6�.

28

• The derivation of (`, zs, σ)�sc� (`′, zs ′, σ′) is

n ∈ Z
(`, n :: zs, σ)�(`, store x)� (`+ 1, zs, σ[x 7→ n])

storens

By rule store, we have {(`, store x)} ` (`, n :: zs, σ)� (`+ 1, zs, σ[x 7→ n]) 6�.

• The derivation of (`, zs, σ)�sc� (`′, zs ′, σ′) is

(`, zs, σ)�(`, push n)� (`+ 1, n :: zs, σ)
pushns

By rule push, we have {(`, push n)} ` (`, zs, σ)� (`+ 1, n :: zs, σ) 6�.

• The derivation of (`, zs, σ)�sc� (`′, zs ′, σ′) is

n0, n1 ∈ Z
(`, n0 :: n1 :: zs, σ)�(`, add)� (`+ 1, n0 + n1 :: zs, σ)

addns

By rule add, we have {(`, add)} ` (`, n0 :: n1 :: zs, σ) � (` + 1, n0 + n1 ::
zs, σ) 6�.

• The derivation of (`, zs, σ)�sc� (`′, zs ′, σ′) is

m 6= `

(`, zs, σ)�(`, goto m)� (m, zs, σ)
gotons

By rule goto, we have {(`, goto m)} ` (`, zs, σ)� (m, zs, σ) 6�.

• The derivation of (`, zs, σ)�sc� (`′, zs ′, σ′) is

m 6= `

(`, tt :: zs, σ)�(`, gotoF m)� (`+ 1, zs, σ)
gotoF 6=tt

ns

By rule gotoFtt, we have {(`, gotoF m)} ` (`, tt :: zs, σ)� (`+ 1, zs, σ) 6�.

• The derivation of (`, zs, σ)�sc� (`′, zs ′, σ′) is

m 6= `

(`,ff :: zs, σ)�(`, gotoF m)� (m, zs, σ)
gotoF 6=ff

ns

By rule gotoFff , we have {(`, gotoF m)} ` (`,ff :: zs, σ)� (m, zs, σ) 6�.

• The derivation of (`, σ)�sc� (`′, σ′) is

ffs ∈ {ff}∗

(`,ffs ++ tt :: zs, σ)�(`, gotoF `)� (`+ 1, zs, σ)
gotoF=

ns

If ffs = [], we have the derivation similar to the gotoF 6=tt
ns case. In the general

case of ffs = ff0 :: ... :: ffn :: [], by rule gotoFff , we have the reduction sequence
{(`, gotoF `)} ` (`,ff0 :: ... :: ffn :: tt :: zs, σ)� (`,ff1 :: ... :: ffn :: tt :: zs, σ)�
..� (`,ffn :: tt :: zs, σ)� (`, tt :: zs, σ)� (`+ 1, zs, σ) 6�.

29

• The derivation of (`, σ)�sc� (`′, σ′) is of the form

` ∈ dom(sci) (`, zs, σ)�sci� (`′′, zs ′′, σ′′) (`′′, zs ′′, σ′′)�sc0 ⊕ sc1� (`′, zs ′, σ′)
(`, zs, σ)�sc0 ⊕ sc1� (`′, zs ′, σ′)

⊕ns

where i = 0 or 1: By the induction hypothesis, we have U(sci) ` (`, zs, σ)�∗

(`′′, zs ′′, σ′′) 6� and U(sc0) ∪ U(sc1) ` (`′′, zs ′′, σ′′) �∗ (`′, zs ′, σ′) 6�. By
Lemma 2, we have U(sc0)∪U(sc1) ` (`, zs, σ)�∗ (`′′, zs ′′, σ′′). Hence, U(sc0)∪
U(sc1) ` (`, zs, σ)�∗ (`′′, zs ′′, σ′′)�∗ (`′, zs ′′, σ′) 6�.

• The derivation of (`, σ)�sc� (`′, σ′) is

` /∈ dom(sc)
(`, zs, σ)�sc� (`, zs, σ)

oodns

We have U(sc) ` (`, σ) 6�.

For the abnormally terminating triples, for primitive instructions it is easy to
see the theorem holds, by inspecting the rule premises.

For composition, we have the following cases.

• The derivation has the form

` ∈ dom(sci) (`, zs, σ) �sci�p (`′, zs ′, σ′)
(`, zs, σ) �sc0 ⊕ sc1�p (`′, zs ′, σ′)

⊕abn
ns

where i = 0 or 1. By the induction hypothesis, we have U(sci) ` (`, zs, σ)�∗

(`′, zs ′, σ′)�p. Then by Lemma 3 we have U(sc0) ∪ U(sc1) ` (`, zs, σ) �∗

(`′, zs ′, σ′)�p.

• The derivation has the form

` ∈ dom(sci) (`, zs, σ)�sci� (`′′, zs ′′, σ′′) (`′′, zs ′′, σ′′) �sc0 ⊕ sc1�p (`′, zs ′, σ′)
(`, zs, σ) �sc0 ⊕ sc1�p (`′, zs ′, σ′)

⊕abl
ns

where i = 0 or 1. By the induction hypothesis (from the first half of the
theorem), we have U(sci) ` (`, zs, σ)�∗ (`′′, zs ′′, σ′′) 6� and (from the second
half of the theorem) U(sc0) ∪ U(sc1) ` (`′′, zs ′′, σ′′) �∗ (`′, zs ′, σ′)�p. By
Lemma 2 we have U(sc0) ∪ U(sc1) ` (`, zs, σ) �∗ (`′′, zs ′′, σ′′), and therefore
also U(sc0) ∪ U(sc1) ` (`, zs, σ)�∗ (`′′, zs ′′, σ′′)�∗ (`′, zs ′, σ′)�p.

�

Theorem 6 (Reflection of stuck reduction sequences by U) (i) If U(sc) `
(`0, zs, σ)�∗ (`′, zs ′, σ′) 6�, then (`0, zs, σ)�sc� (`′, zs ′, σ′). (ii) If U(sc) ` (`0, zs, σ)
�∗ (`′, zs ′, σ′)�p, then (`0, zs, σ) �sc�p (`′, zs ′, σ′)

30

Proof. By induction on the structure of sc and subordinate induction on the length
of the reduction sequence.

We use structural induction on sc. We look at the normally terminating
triples first. Assume we have a stuck reduction sequence (`0, zs0, σ0) � . . . �
(`k, zsk, σk) 6� for U(sc) (k ≥ 0) with the implications that `0, . . . , `k−1 ∈ dom(sc),
`k /∈ dom(sc). There are the following cases.

• sc = (`, load x): If `0 = `, then by Lemma 1 and rule load, the sequence can
only be (`, zs0, σ0)� (`+1, σ(x) :: zs0, σ0) 6�. We have (`, zs, σ)�(`, load x)�
(`+ 1, σ(x) :: zs, σ) by rule loadns.

If `0 6= `, then the sequence can only be (`0, zs0, σ0) 6�. We have (`0, zs, σ)�
(`, load x)� (`0, zs, σ) by rule oodns. The same will hold for the rest of the
primitive instructions.

• sc = (`, store x): If `0 = `, then by Lemma 1 and rule load, the sequence
can only be (`, n :: zs, σ) � (`+ 1, zs, σ[x 7→ n]) 6�. We have (`, n :: zs, σ)�
(`, store x)� (`+ 1, zs, σ[x 7→ n]) by rule storens.

If `0 6= `, we have the derivation via the oodns rule.

• sc = (`, push n): If `0 = `, then by Lemma 1 and rule load, the sequence can
only be (`, zs0, σ0)� (`+1, n :: zs0, σ0) 6�. We have (`, zs, σ)�(`, push n)� (`+
1, n :: zs, σ) by rule pushns.

If `0 6= `, we have the derivation via the oodns rule.

• sc = (`, add): If `0 = `, then by Lemma 1 and rule load, the sequence can only
be (`, n0 :: n1 :::: zs, σ) � (`+ 1, n0 + n1 :: zs, σ) 6�. We have (`, n0 :: n1 ::
zs, σ)�(`, add)� (`+ 1, n0 + n1 :: zs, σ) by rule addns.

If `0 6= `, we have the derivation via the oodns rule.

• sc = (`, goto m): If `0 = ` and m 6= `, then by Lemma 1 and rule goto,
the sequence can only be (`, zs0, σ0) � (m, zs0, σ0) 6� (we have m /∈ {`} =
dom(sc)). We have (`, zs0, σ0)�(`, goto m)� (m, zs0, σ0) by rule gotons.

If `0 = ` and m = `, then by Lemma 1 and rule goto a stuck reduction sequence
is an impossibility (the only reduction sequence of (`, zs0, σ0) is (`, zs0, σ0)�
(`, zs0, σ0)� . . . and that never reaches a stuck state).

If `0 6= `, we have the derivation via the oodns rule.

• sc = (`, gotoF m): If `0 = ` and zs0 = tt :: w, then by Lemma 1 and rule
gotoFtt the sequence can only be (`, tt :: w, σ) � (`+ 1, w, σ) 6�. We have
(`, tt :: w, σ)�(`, gotoF m)� (`+ 1, w, σ) by rule gotoF 6=tt

ns .

If `0 = `, zs0 = ff :: w and m 6= `, then by Lemma 1 and rule gotoFff

the sequence can only be (`,ff :: w, σ) � (m,w, σ) 6�. We have (`, tt ::
w, σ)�(`, gotoF m)� (`+ 1, w, σ) by rule gotoF 6=ff

ns .

31

If `0 = `, zs0 = ffs :: tt :: w and m 6= `, where ffs = ff0 :: ... :: ffn ::
[] , then by Lemma 1 and rules gotoFff and gotoFtt the sequence can only
be (`,ff0 :: ... :: ffn :: tt :: w, σ) � ... � (`,ffn :: tt :: w, σ) � (`, tt :: w, σ) �
(`+ 1, w, σ) 6�. We have (`,ffs ++ tt :: zs, σ)�(`, gotoF `)� (` + 1, zs, σ) by
rule gotoF=

ns.

If `0 6= `, we have the derivation via the oodns rule.

• sc = 0: The sequence can only be (`0, zs0, σ0) 6� (since dom(c) = ∅). We have
(`0, zs0, σ0)�0� (`0, zs0, σ0) by rule oodns.

• sc = sc0 ⊕ sc1: We also invoke mathematical induction on k.

If ` ∈ dom(sci) for i = 0 or 1, then it must be that k > 0 and that
`1, . . . `k−1 ∈ dom(sc0) ∪ dom(sc1) whereas `k /∈ dom(sc0) ∪ dom(sc1). Hence
there must be a number j, 0 < j ≤ k, such that `1, . . . `j−1 ∈ dom(sci), but
`j /∈ dom(sci). Our non-zero length stuck reduction sequence (`0, zs0, σ0) �
(`1, zs1, σ1) �∗ (`k, zsk, σk) 6� for U(sc0) ∪ U(sc1) splits into a non-zero
length stuck reduction sequence (`0, zs0, σ0) � (`1, zs1, σ1) �∗ (`j , zsj , σj) 6�
for U(sci) and a shorter than k stuck reduction sequence (`j , zsj , σj) �∗

(`k, zsk, σk) 6� for U(sc0) ∪ U(sc1). By the outer induction hypothesis, we
have (`0, zs0, σ0)�sci� (`j , zsj , σj). By the inner induction hypothesis, we
have (`j , zsj , σj)�sc0 ⊕ sc1� (`k, zsk, σk). Hence we have (`0, zs0, σ0)�sc0 ⊕
sc1� (`k, zsk, σk) by rule ⊕ns.

If ` /∈ dom(sc0) and ` /∈ dom(sc1), then the sequence can only be (`0, zs0, σ0) 6�.
We have (`0, zs0, σ0)�sc0 ⊕ sc1� (`0, zs0, σ0) by rule oodns.

For abnormally terminating triples assume we have a stuck reduction sequence
(`0, zs0, σ0) � . . . � (`k, zsk, σk)�p for U(sc) (k ≥ 0) and `0, . . . , `k ∈ dom(sc). We
omit the proof for primitive instruction and show it for composition.

• sc = sc0 ⊕ sc1: We need to use mathematical induction on k.

If ` ∈ dom(sci) for i = 0 or 1, there are two possibilities.

Either (`0, zs0, σ0) �∗ (`k, zsk, σk)�p, such that `k ∈ dom(sci), or there must
be a number j, 0 < j ≤ k, such that `0, . . . `j−1 ∈ dom(sci), but `j /∈ dom(sci).

In the first case, we have (`0, zs0, σ0) �sci�p (`k, zsk, σk) by the induction hy-
pothesis and (`0, zs0, σ0) �sc0 ⊕ sc1�p (`k, zsk, σk) via rule ⊕abnns

In the second case, our non-zero length abnormally terminating reduction se-
quence (`0, zs0, σ0)� (`1, zs1, σ1)�∗ (`k, zsk, σk)�p for U(sc0) ∪ U(sc1) splits
into a non-zero length stuck reduction sequence
(`0, zs0, σ0) � (`1, zs1, σ1) �∗ (`j , zsj , σj) 6� for U(sci) and a shorter than
k stuck reduction sequence (`j , zsj , σj)�∗ (`k, zsk, σk)�p for U(sc0) ∪ U(sc1).
By the outer induction hypothesis, we have (`0, zs0, σ0)�sci� (`j , zsj , σj). By
the inner induction hypothesis, we have (`j , zsj , σj) �sc0 ⊕ sc1�p (`k, zsk, σk).
Hence we have (`0, zs0, σ0) �sc0 ⊕ sc1�p (`k, zsk, σk) by rule ⊕ablns .

32

If ` /∈ dom(sc0) and ` /∈ dom(sc1), then there can be no derivation of (`, zs, σ)�∗

(`′, zs ′, σ′)�p.

�

From these theorems it is immediate that the SPush semantics of a structured
version of a piece of Push code cannot depend on the way it is structured: if
U(sc) = U(sc′), then sc and sc′ have exactly the same evaluations (although with
different derivations).

3.2 Hoare logic

The compositional natural semantics of SPush is a good basis for developing a com-
positional Hoare logic of it. Just as evaluations relate an initial and a terminal state,
Hoare triples relate pre- and postconditions about states. Since a state contains a
pc value and stack content, it must be possible to refer to these in assertions. In
our logic, we have special individual constants pc and st to refer to them. Using the
constant pc, we can make assertions about particular program points by constrain-
ing the state to correspond to a certain pc value. This allows us to make assertions
only about program points through which the particular piece of code is entered
or exited, thus eliminating the need for global contexts of invariants and making
reasoning modular.

The logic we define is an error-free partial correctness logic: for a Hoare triple
to be derivable, the postcondition must be satisfied by the terminal state of any
normal evaluation and abnormal evaluations from the allowed initial states must be
impossible. (We would get a more expressive partial correctness logic with triples
with two postconditions, one for normal terminations, the other for abnormal termi-
nations; in the case of a programming language with error-handling constructs, that
approach is the only reasonable one, see, e.g., [58]. Our logic corresponds to the
case where the abnormal postcondition is always ⊥, so there is no need to ever spell
it out. A different version where it is always > would correspond to error-ignoring
partial correctness.)

The signature of the Hoare logic contains, as extra-arithmetical and extra-list
constants, special individual constants pc, st and the program variables Var, to
refer to the values of the program counter, stack and program variables in a state.
The assertions P,Q ∈ Assn are formulae over that signature in an ambient logical
language containing the signature of arithmetic and lists of integers and booleans.
We use the notation Q[t0, .., tn/x0, .., xn] to denote that every occurrence of xi in Q
has been replaced with ti. The derivable Hoare triples {} − {} ⊆ Assn×SCode×
Assn are defined inductively by the rules in Figure 3.2.

The extra disjunct pc 6= `∧Q in the rules for primitive instructions is required
because of the semantic rule oodns: if we evaluate the instruction starting from
outside the domain of the instruction (i.e. pc 6= `), we have immediately terminated
and have hence remained in the same state, therefore any assertion holding before

33

{(pc = ` ∧Q[`+ 1, x :: st/pc, st]) ∨ (pc 6= ` ∧Q)} (`, load x) {Q}
loadhoa

{
(pc = ` ∧ ∃z ∈ Z, w ∈ (Z + B)∗. st = z :: w ∧Q[`+ 1, w, z/pc, st , x])

∨ (pc 6= ` ∧Q)

}
(`, store x) { Q }

storehoa

{(pc = ` ∧Q[`+ 1, n :: st/pc, st]) ∨ (pc 6= ` ∧Q)} (`, push n) {Q}
pushhoa

{
(pc = ` ∧ ∃z0, z1 ∈ Z, w ∈ (Z + B)∗. st = z0 :: z1 :: w

∧Q[`+ 1, z0 + z1 :: w/pc, st])
∨ (pc 6= ` ∧Q)

}
(`, add) { Q }

addhoa

. . .{
(pc = ` ∧ ((m 6= ` ∧Q[m/pc]) ∨m = `))

∨ (pc 6= ` ∧Q)

}
(`, goto m) { Q }

gotohoa

(pc = ` ∧((m 6= ` ∧((∃w ∈ (Z + B)∗. st = tt :: w
∧Q[`+ 1, w/pc, st])

∨(∃w ∈ (Z + B)∗. st = ff :: w
∧Q[m,w/pc, st])))

∨(m = ` ∧∃ffs ∈ {ff}∗, w ∈ (Z + B)∗.st = ffs ++ tt :: w
∧Q[`+ 1, w/pc, st])))

∨ (pc 6= ` ∧Q)

(`, gotoF m) { Q }

gotoFhoa

{P}0 {P}
0hoa

{pc ∈ dom(sc0) ∧ P} sc0 {P} {pc ∈ dom(sc1) ∧ P} sc1 {P}
{P} sc0 ⊕ sc1 {pc /∈ dom(sc0) ∧ pc /∈ dom(sc1) ∧ P}

⊕hoa

P |= P ′ {P ′} sc {Q′} Q′ |= Q

{P} sc {Q}
conseqhoa

Figure 3.2: Hoare rules of SPush

evaluating the instruction will also hold after. The disjunct m = ` in the rule for
goto m accounts for the case when goto m loops back on itself. We have a similar
case with the gotoF m rule, but here the situation is more subtle. As explained in
Section 3.1, when gotoF m loops back on itself, it can either exit normally to the
next instruction (in case there is some number of ffs on the stack, followed by a tt),
or raise an error. The disjunct m = ` ∧ .. accounts for that case.

The rule for unions can be seen as mix of the while and sequence rules of
the Hoare logic of While: if, evaluating either sc0 or sc1 starting from a state
that satisfies P and has the pc value in the domain of sc0 resp. sc1, we end in a
state satisfying P , then, after evaluating their union sc0 ⊕ sc1 starting from a state
satisfying P , we are guaranteed to be in a state satisfying P . Furthermore, we know
that we are then outside the domains of both sc0 and sc1. The rule of consequence
is the same as in the standard Hoare logic. Note that we have circumvented the
inevitable incompleteness of any axiomatization of logics containing arithmetic by
invoking semantic entailment instead of deducibility in the premises of the conseq
rule.

The Hoare logic is sound and complete.

Theorem 7 (Soundness of Hoare logic) If {P} sc {Q} and (`0, zs0, σ0) |=α P ,
then (i) for any (`′, zs ′, σ′) such that (`0, zs0, σ0)�sc� (`′, zs ′, σ′), we have (`′, zs ′, σ′)
|=α Q, and (ii) there is no (`′, zs ′, σ′) such that (`0, zs0, σ0) �sc�p (`′, zs ′, σ′).

34

Proof. By induction on the derivation of {P} sc {Q}. We have the following cases.

• The derivation of {P} sc {Q} is

{(pc = ` ∧Q[` + 1, x :: st/pc, st]) ∨ (pc 6= ` ∧Q)} (`, load x) {Q}
loadhoa

Suppose (`0, zs0, σ0) |=α (pc = ` ∧ Q[` + 1, x :: st/pc, st]) ∨ (pc 6= ` ∧ Q) and
(`0, zs0, σ0)�(`, load x)� (`′, zs ′, σ′) for some `0, zs0, σ0, `

′, zs ′, σ′, α.

If `0 = `, then (`0, zs0, σ0) |=α (pc = ` ∧Q[`+ 1, x :: st/pc, st]). By Lemma 6
and loadns rule, (`′, zs ′, σ′) = (`+ 1, σ0(x) :: zs0, σ0). Hence, (`′, zs ′, σ′) |=α Q.

If `0 6= `, then (`0, zs0, σ0) |=α (pc 6= `∧Q). From Lemma 6 and oodns rule, we
get that (`0, zs0, σ0) = (`′, zs ′, σ′), so (`′, zs ′, σ′) |=α Q trivially holds. There
is no possibility for abnormal termination for load x. The same will hold for
other primitive instructions for the case where `0 6= `.

• The derivation of {P} sc {Q} is

(pc = ` ∧ ∃z ∈ Z, w ∈ (Z + B)∗. st = z :: w

∧Q[` + 1, w, z/pc, st , x])
∨ (pc 6= ` ∧Q)

 (`, store x)
{

Q
} storehoa

Suppose (`0, zs0, σ0) |=α (pc = ` ∧ ∃z ∈ Z, w ∈ (Z + B)∗. st = z :: w ∧ Q[` +
1, w, z/pc, st , x]) ∨ (pc 6= ` ∧ Q) and (`0, zs0, σ0)�(`, store x)� (`′, zs ′, σ′) for
some `0, zs0, σ0, `

′, zs ′, σ′, α.

If `0 = `, then (`0, zs0, σ0) |=α (pc = ` ∧ ∃z ∈ Z, w ∈ (Z + B)∗. st = z ::
w ∧ Q[` + 1, w, z/pc, st , x]). Since ∃z ∈ Z, w ∈ (Z + B)∗. st = z :: w holds,
the abnormal rule for store x is not applicable and there has to exist an n
and zs ′0 s.t. zs0 = n :: zs ′0. By Lemma 6 and the storens rule, (`′, zs ′, σ′) =
(`0 + 1, zs ′0, σ0[x 7→ n]). Hence, (`′, zs ′, σ′) |=α Q.

If `0 6= `, then (`0, zs0, σ0) |=α (pc 6= ` ∧ Q). From Lemma 6 and the oodns

rule, we get that (`0, zs0, σ0) = (`′, zs ′, σ′), so (`′, zs ′, σ′) |=α Q trivially holds.

• The derivation of {P} sc {Q} is

{(pc = ` ∧Q[` + 1, n :: st/pc, st]) ∨ (pc 6= ` ∧Q)} (`, push n) {Q}
pushhoa

Suppose (`0, zs0, σ0) |=α (pc = ` ∧Q[` + 1, n :: st/pc, st]) ∨ (pc 6= ` ∧Q) and
(`0, zs0, σ0)�(`, push n)� (`′, zs ′, σ′) for some `0, zs0, σ0, `

′, zs ′, σ′, α.

If `0 = `, then (`0, zs0, σ0) |=α (pc = ` ∧Q[`+ 1, n :: st/pc, st]). By Lemma 6
and the pushns rule, (`′, zs ′, σ′) = (`0 + 1, n :: zs, σ0). Hence, (`′, zs ′, σ′) |=α Q.

If `0 6= `, then (`0, zs0, σ0) |=α (pc 6= ` ∧ Q). From Lemma 6 and the oodns

rule, we get that (`0, zs0, σ0) = (`′, zs ′, σ′), so (`′, zs ′, σ′) |=α Q trivially holds.
There is no possibility for abnormal termination for push x.

35

• The derivation of {P} sc {Q} is

(pc = ` ∧ ∃z0, z1 ∈ Z, w ∈ (Z + B)∗. st = z0 :: z1 :: w
∧Q[` + 1, z0 + z1 :: w/pc, st])

∨ (pc 6= ` ∧Q)

 (`, add)
{

Q
} addhoa

Suppose (`0, zs0, σ0) |=α (pc = `∧∃z0, z1 ∈ Z, w ∈ (Z + B)∗. st = z0 :: z1 :: w ∧
Q[`+1, z0 +z1 :: w/pc, st])∨(pc 6= `∧Q) and (`0, zs0, σ0)�(`, add)� (`′, zs ′, σ′)
for some `0, zs0, σ0, `

′, zs ′, σ′, α.

If `0 = `, then (`0, zs0, σ0) |=α (pc = `∧∃z0, z1 ∈ Z, w ∈ (Z+B)∗. st = z0 :: z1 ::
w∧Q[`+1, z0+z1 :: w/pc, st]). Since ∃z0, z1 ∈ Z, w ∈ (Z+B)∗. st = z0 :: z1 :: w
holds, the abnormal rule for add is not applicable. There have to exist n1, n2

and zs ′0 such that zs0 = n1 :: n2 :: zs ′0. By Lemma 6 and the addns rule,
(`′, zs ′, σ′) = (`+ 1, n0 + n1 :: zs ′0, σ0). Hence, (`′, zs ′, σ′) |=α Q.

If `0 6= `, then (`0, zs0, σ0) |=α (pc 6= ` ∧ Q). From Lemma 6 and oodns rule,
we get that (`0, zs0, σ0) = (`′, zs ′, σ′), so (`′, zs ′, σ′) |=α Q trivially holds.

• The derivation of {P} sc {Q} is

{
(pc = ` ∧ ((m 6= ` ∧Q[m/pc]) ∨m = `))

∨ (pc 6= ` ∧Q)

}
(`, goto m)

{
Q
} gotohoa

Suppose (`0, zs0, σ0) |=α (pc = `∧ ((m 6= `∧Q[m/pc])∨m = `))∨ (pc 6= `∧Q)
and (`0, zs0, σ0)�(`, goto m)� (`′, zs ′, σ′) for some `0, zs0, σ0, `

′, zs ′, σ′, α.

If `0 = `, then (pc = ` ∧ ((m 6= ` ∧ Q[m/pc]) ∨ m = `)). By Lemma 6
and the goto rule, we have that m 6= `0 and (`′, zs ′, σ′) = (m, zs, σ). Hence,
(`′, zs ′, σ′) |=α Q.

If `0 6= `, then (`0, zs0, σ0) |=α (pc 6= ` ∧ Q). From Lemma 6 and oodns rule,
we get that (`0, zs0, σ0) = (`′, zs ′, σ′), so (`′, zs ′, σ′) |=α Q trivially holds.

• The derivation of {P} sc {Q} is

(pc = ` ∧((m 6= ` ∧((∃w ∈ (Z + B)∗. st = tt :: w
∧Q[` + 1, w/pc, st])
∨(∃w ∈ (Z + B)∗. st = ff :: w
∧Q[m,w/pc, st])))

∨(m = ` ∧∃ffs ∈ {ff}∗, w ∈ (Z + B)∗.st = ffs ++ tt :: w
∧Q[` + 1, w/pc, st])))

∨ (pc 6= ` ∧Q)

(`, gotoF m)

{
Q
}

gotoFhoa

Suppose (`0, zs0, σ0) |=α (pc = `∧((m 6= `∧((∃w ∈ (Z+B)∗. st = tt :: w∧Q[`+
1, w/pc, st])∨ (∃w ∈ (Z + B)∗. st = ff :: w ∧Q[m,w/pc, st])))∨ (m = `∧∃ffs ∈
{ff}∗, w ∈ (Z + B)∗.st = ffs ++ tt :: w ∧Q[`+ 1, w/pc, st])))∨ (pc 6= `∧Q) and
(`0, zs0, σ0)�(`, gotoF m)� (`′, zs ′, σ′) for some `0, zs0, σ0, `

′, zs ′, σ′, α.

We get three cases.

If `0 = `, m 6= ` and (`0, zs0, σ0) |=α ∃w ∈ (Z + B)∗. st = tt :: w, then
(`0, zs0, σ0) |=α Q[` + 1, w/pc, st]. There has to exist a zs ′0 such that zs0 =

36

tt :: zs ′0. By Lemma 6 and the gotoF6=tt
ns rule, we have that (`′, zs ′, σ′) =

(`0 + 1, zs ′0, σ0). Hence, (`′, zs ′, σ′) |=α Q.

If `0 = `, m 6= ` and (`0, zs0, σ0) |=α ∃w ∈ (Z + B)∗. st = ff :: w, then
(`0, zs0, σ0) |=α Q[m,w/pc, st]. There has to exist a zs ′0 such that zs0 = ff ::
zs ′0. By Lemma 6 and gotoF 6=ff

ns rule, we have that (`′, zs ′, σ′) = (m, zs ′0, σ0).
Hence, (`′, zs ′, σ′) |=α Q.

In both cases, there is no possibility of abnormal termination.

If `0 = `, m = ` and (`0, zs0, σ0) |=α ∃ffs ∈ {ff}∗, w ∈ (Z + B)∗.st = ffs ++ tt ::
w, then (`0, zs0, σ0) |=α Q[` + 1, w/pc, st]. There has to exist a zs ′0 such
that zs0 = ff...ff :: tt :: zs ′0. By Lemma 6 and gotoF=

ns rules, we have that
(`′, zs ′, σ′) = (`0 + 1, zs ′0, σ0). Hence (`′, zs ′, σ′) |=α Q. Again, no application
of abnormal termination rule is possible.

If `0 6= `, then (`0, zs0, σ0) |=α (pc 6= ` ∧ Q). From Lemma 6 and oodns rule,
we get that (`0, zs0, σ0) = (`′, zs ′, σ′), so (`′, zs ′, σ′) |=α Q trivially holds.

• The derivation of {P} sc {Q} is

{P}0 {P}
0hoa

Suppose (`0, zs0, σ0) |=α Q and and (`0, zs0, σ0)�0� (`′, zs ′, σ′) for some `, zs, σ,
`′, zs ′, σ′, α. Then by Lemma 6 and rule oodns, (`0, zs0, σ0) = (`′, zs ′, σ′), and
(`′, zs ′, σ′) |=α Q trivially holds. Abnormal termination is not possible.

• The derivation of {P} sc {Q} is

...
{pc ∈ dom(sc0) ∧ P} sc0 {P}

...
{pc ∈ dom(sc1) ∧ P} sc1 {P}

{P} sc0 ⊕ sc1 {pc /∈ dom(sc0) ∧ pc /∈ dom(sc1) ∧ P}
⊕hoa

Suppose (`0, zs0, σ0) |=α P and (`0, zs0, σ0)�sc0 ⊕ sc1� (`′, zs ′, σ′) for some
`0, zs0, σ0, `

′, zs ′, σ′ and α. We invoke structural induction on the derivation of
(`0, zs0, σ0)�sc0 ⊕ sc1� (`′, zs ′, σ′).

If ` ∈ dom(sci), then by Lemma 6, it must be that the last inference of
the derivation of (`0, zs0, σ0)�sc0 ⊕ sc1� (`′, zs ′, σ′) is an application of rule
⊕ins to (`0, zs0, σ0)�sci� (`′′, zs ′′, σ′′) and (`′′, zs ′′, σ′′)�sc0 ⊕ sc1� (`′, zs ′, σ′)
for some `′′, zs ′′, σ′′. We have (`0, zs0, σ0) |=α pc ∈ dom(sci) ∧ P , from where
by the outer induction hypothesis (`′′, zs ′′, σ′′) |=α P and further by the inner
induction hypothesis (`′, zs ′, σ′) |=α pc /∈ dom(sc0) ∧ pc /∈ dom(sc1) ∧ P .

If ` /∈ dom(sc0) and ` /∈ dom(sc1), then by Lemma 6 and rule oodns, we
get (`′, zs ′, σ′) = (`0, zs0, σ0), from where it follows that (`′, zs ′, σ′) |=α pc /∈
dom(sc0) ∧ pc /∈ dom(sc1) ∧ P .

37

• The derivation of {P} sc {Q} is

P |= P ′

....
{P ′} sc {Q′} Q′ |= Q

{P} sc {Q}
conseqhoa

Suppose (`0, zs0, σ0) |= P and (`0, zs0, σ0)�sc� (`′, zs ′, σ′) for some `0, zs0, σ0,
`′, zs ′, σ′ and α. As P |= P ′, we get (`0, zs0, σ0) |=α P ′. By the induction
hypothesis, therefore (`′, zs ′, σ′) |=α Q

′. FromQ′ |= Q, this gives (`′, zs ′, σ′) |=α

Q.

�

To get completeness, we have to assume that the underlying logical language
is expressive. For any assertion Q, we need an assertion wlp(sc, Q) that, seman-
tically, is its weakest precondition, i.e., for any state (`, zs, σ) and valuation α of
free variables, we have (`, zs, σ) |=α wlp(sc, Q) iff (i) (`, zs, σ)�sc� (`′, zs ′, σ′) im-
plies (`′, zs ′, σ′) |=α Q for any (`′, zs ′, σ′) and (ii) there is no (`′, zs ′, σ′) such that
(`, zs, σ) �sc�p (`′, zs ′, σ′). The wlp function is available for example when the un-
derlying logical language has a greatest fixpoint operator.

Lemma 8 {wlp(sc, Q)} sc {Q}.

Proof. We use structural induction on sc. There are the following cases.

• sc = (`, load x).

By rule loadhoa, we have

{(pc = ` ∧Q[`+ 1, x :: st/pc, st]) ∨ (pc 6= ` ∧Q)} (`, load x) {Q}.

We will show that we also have

wlp((`, load x), Q) |= (pc = ` ∧Q[`+ 1, x :: st/pc, st]) ∨ (pc 6= ` ∧Q)

by showing that whenever (`0, zs0, σ0) |=α wlp((`, load x), Q), then also
(`0, zs0, σ0) |=α (pc = ` ∧ Q[` + 1, x :: st/pc, st]) ∨ (pc 6= ` ∧ Q). This will
give us {wlp((`, load x), Q)} (`, load x) {Q} by using the rule of consequence
(the argument will be similar for other instructions).

Indeed, suppose (`0, zs0, σ0) |=α wlp((`, load x), Q) for some `0, zs0, σ0 and
α. If `0 = `, then by rule loadns we have (`0, zs0, σ0)�(`, load x)� (`0 +
1, σ0(x) :: zs0, σ0), so (`0+1, σ0(x) :: zs0, σ0) |=α Q, from where (`0, zs0, σ0) |=α

pc = ` ∧ Q[` + 1, x :: st/pc, st]. If `0 6= `, then by rule oodns we have
(`0, zs0, σ0)�(`, load x)� (`0, zs0, σ0), so (`0, zs0, σ0) |=α Q, from where
(`0, zs0, σ0) |=α pc 6= ` ∧Q.

By rule conseqhoa, we get

{wlp((`, load x), Q)} (`, load x) {Q}

38

• sc = (`, store x): By rule storehoa, we have{
(pc = ` ∧ ∃z ∈ Z, w ∈ (Z + B)∗. st = z :: w ∧Q[`+ 1, w, z/pc, st , x])

∨ (pc 6= ` ∧Q)

}
(`, store x) { Q }

We also have wlp((`, store x), Q) |= pc = ` ∧ ∃z ∈ Z, w ∈ (Z + B)∗. st = z ::
w ∧ Q[` + 1, w, z/pc, st , x]) ∨ (pc 6= ` ∧ Q). Indeed, suppose (`0, zs0, σ0) |=α

wlp((`, store x), Q) for some `0, zs0, σ0 and α. Then there must exist some
zs ′0 such that zs0 = n :: zs ′0 (since (`0, zs0, σ0) |=α wlp((`, store x), Q) holds,
it rules out abnormal termination from (`0, zs0, σ0) via (`, store x) by defini-
tion). If `0 = `, then by rule storens we have (`0, zs0, σ0)�(`, store x)� (`0 +
1, zs ′0, σ0[x 7→ n]), so (`0 +1, zs ′0, σ0[x 7→ n]) |=α Q, from where (`0, zs0, σ0) |=α

pc = ` ∧ ∃z ∈ Z, w ∈ (Z + B)∗. st = z :: w ∧ Q[` + 1, w, z/pc, st , x]). If
`0 6= `, then by rule oodns we have (`0, zs0, σ0)�(`, store x)� (`0, zs0, σ0), so
(`0, zs0, σ0) |=α pc 6= ` ∧Q.

By rule conseqhoa, we get

{wlp((`, store x), Q)} (`, store x) {Q}

• sc = (`, push n). Analogous to load x case.

• sc = (`, add): By rule addhoa, we have
(pc = ` ∧ ∃z0, z1 ∈ Z, w ∈ (Z + B)∗. st = z0 :: z1 :: w
∧Q[` + 1, z0 + z1 :: w/pc, st])

∨ (pc 6= ` ∧Q)

 (`, add)
{

Q
}

We also have wlp((`, add), Q) |= (pc = ` ∧ ∃z0, z1 ∈ Z, w ∈ (Z + B)∗. st =
z0 :: z1 :: w ∧ Q[` + 1, z0 + z1 :: w/pc, st]) ∨ (pc 6= ` ∧ Q). Indeed, sup-
pose (`0, zs0, σ0) |=α wlp((`, add), Q) for some `0, zs0, σ0 and α. Then there
must exist some zs ′0 such that zs0 = n1 :: n2 :: zs ′0 (since (`0, zs0, σ0) |=α

wlp((`, add), Q) rules out abnormal termination from (`0, zs0, σ0) by defini-
tion). If `0 = `, then by rule addns we have (`0, zs0, σ0)�(`, add)� (`0 + 1, n1 +
n2 :: zs ′0, σ0), so (` + 1, zs ′0, σ0) |=α Q, from where (`0, zs0, σ0) |=α pc =
` ∧ ∃z0, z1 ∈ Z, w ∈ (Z + B)∗. st = z0 :: z1 :: w ∧ Q[` + 1, z0 + z1 :: w/pc, st].
If `0 6= `, then by rule oodns we have (`0, zs0, σ0)�(`, add)� (`0, zs0, σ0), so
(`0, zs0, σ0) |=α pc 6= ` ∧Q.

By rule conseqhoa, we get

{wlp((`, add), Q)} (`, add) {Q}

• sc = (`, goto m): By rule gotohoa, we have{
(pc = ` ∧ ((m 6= ` ∧Q[m/pc]) ∨m = `))

∨ (pc 6= ` ∧Q)

}
(`, goto m)

{
Q
}

We also have

wlp((`, goto m), Q) |= (pc = ` ∧ (Q[m/pc] ∨m = `)) ∨ (pc 6= ` ∧Q).

39

Indeed, suppose (`0, zs0, σ0) |=α wlp((`, goto m), Q) for some `0, zs0, σ0 and
α. If `0 = ` and m 6= `, then by rule gotons we have (`0, zs0, σ0)�(`, goto m)
� (m, zs0, σ0), so (m, zs0, σ0) |=α Q, from where (`0, zs0, σ0) |=α pc = ` ∧
Q[m/pc]. If `0 = ` and m = `, then (`0, zs0, σ0) |=α pc = ` ∧ m = `. If
`0 6= `, then by rule oodns we have (`0, zs0, σ0)�(`, goto m)� (`0, zs0, σ0), so
(`0, zs0, σ0) |=α pc 6= ` ∧Q.

By rule conseqhoa, we get

{wlp((`, goto m), Q)} (`, goto m) {Q}

• sc = (`, gotoF m): By rule gotoFhoa, we have

(pc = ` ∧((m 6= ` ∧((∃w ∈ (Z + B)∗. st = tt :: w
∧Q[` + 1, w/pc, st])

∨(∃w ∈ (Z + B)∗. st = ff :: w
∧Q[m,w/pc, st])))

∨(m = ` ∧∃ffs ∈ {ff}∗, w ∈ (Z + B)∗.st = ffs ++ tt :: w
∧Q[` + 1, w/pc, st])))

∨ (pc 6= ` ∧Q)

(`, gotoF m)

{
Q
}

We also have

wlp((`, gotoF m), Q) |=
(pc = ` ∧((m 6= ` ∧((∃w ∈ (Z + B)∗. st = tt :: w

∧Q[`+ 1, w/pc, st])
∨(∃w ∈ (Z + B)∗. st = ff :: w
∧Q[m,w/pc, st])))

∨(m = ` ∧∃ffs ∈ {ff}∗, w ∈ (Z + B)∗.st = ffs ++ tt :: w
∧Q[`+ 1, w/pc, st])))

∨ (pc 6= ` ∧Q)

Indeed, suppose (`0, zs0, σ0) |=α wlp((`, gotoF m), Q) for some `0, zs0, σ0 and
α. If `0 = ` and m 6= ` and zs0 is of the form tt :: zs ′0, then by rule gotoF 6=tt

ns

we have (`0, zs0, σ0)�(`, gotoF m)� (` + 1, zs ′0, σ0), so (` + 1, zs ′0, σ0) |=α Q,
from where (`0, zs0, σ0) |=α pc = ` ∧ ((m 6= ` ∧ ((∃w ∈ (Z + B)∗. st = tt ::
w ∧Q[`+ 1, w/pc, st])))).

If `0 = ` and m 6= ` and zs0 is of the form ff :: zs ′0, then by rule gotoF6=ff
ns

we have (`0, zs0, σ0)�(`, gotoF m)� (m, zs ′0, σ0), so (m, zs ′0, σ0) |=α Q, from
where again (`0, zs0, σ0) |=α pc = ` ∧ ((m 6= ` ∧ ((∃w ∈ (Z + B)∗. st = ff ::
w ∧Q[m,w/pc, st])).

If `0 = ` and m = ` and zs0 is of the form ff :: ... :: ff :: tt :: zs ′0 then by rule
gotoF=

ns we have (`0, zs0, σ0)�(`, gotoF m)� (`+1, zs ′0, σ0), so (`+1, zs ′0, σ0) |=α

Q, from where (`0, zs0, σ0) |=α pc = `∧(m = `∧∃ffs ∈ {ff}∗, w ∈ (Z+B)∗.st =
ffs ++ tt :: w ∧Q[`+ 1, w/pc, st]).

We know that zs0 cannot be of any other form, since the definition of wlp rules
out abnormal termination.

40

If `0 6= `, then by rule oodns we have (`0, zs0, σ0)�(`, gotoF m)� (`0, zs0, σ0),
so (`0, zs0, σ0) |=α pc 6= ` ∧Q.

By rule conseqhoa, we get

{wlp((`, gotoF m), Q)} (`, gotoF m) {Q}

• sc = 0: By rule 0hoa, we have

{wlp(0, Q)}0 {wlp(0, Q)}

We also have
wlp(0, Q) |= Q

Indeed, suppose (`0, zs0, σ0) |=α wlp(0, Q) for some `0, zs0, σ0 and α. Rule
oodns gives us (`0, zs0, σ0)�0� (`0, zs0, σ0) and hence (`0, zs0, σ0) |=α Q.

Hence by rule conseqhoa, we get

{wlp(0, Q)}0 {Q}

• sc = sc0 ⊕ sc1: By the induction hypothesis, we have

{wlp(sci,wlp(sc0 ⊕ sc1, Q))} sci {wlp(sc0 ⊕ sc1, Q)}

(for i = 0 and 1). We also have

pc ∈ dom(sci) ∧ wlp(sc0 ⊕ sc1, Q) |= wlp(sci,wlp(sc0 ⊕ sc1, Q))

(for i = 0 and 1). Indeed, suppose (`0, zs0, σ0) |=α pc ∈ dom(sci) ∧ wlp(sc0 ⊕
sc1, Q) for some `0, zs0, σ0 and α. Then `0 ∈ dom(sci) and (`0, zs0, σ0) |=α

wlp(sc0 ⊕ sc1, Q). Consider any `′′, zs ′′, σ′′, `′, zs ′, σ′ such that (`0, zs0, σ0)
�sci� (`′′, zs ′′, σ′′) and (`′′, zs ′′, σ′′)�sc0 ⊕ sc1� (`′, zs ′, σ′). By rule ⊕ins we
have (`0, zs0, σ0)�sc0 ⊕ sc1� (`′, zs ′, σ′), which gives us (`′, zs ′, σ′) |=α Q. We
can also see that there can be no abnormal termination for sci from state
(`0, zs0, σ0), since then by rule ⊕abnns , we would get abnormal termination for
sc0⊕sc1, which is impossible due to (`0, zs0, σ0) |=α wlp(sc0⊕sc1, Q). Further-
more, abnormal termination from (`′′, zs ′′, σ′′) by sc0 ⊕ sc1 is also impossible,
since that would yield abnormal termination for sc0⊕sc1 from state (`0, zs0, σ0)
via ⊕ablns rule, which is impossible due to (`0, zs0, σ0) |=α wlp(sc0 ⊕ sc1, Q).
Hence, (`0, zs0, σ0) |=α wlp(sci,wlp(sc0 ⊕ sc1, Q)) as needed.

Rule conseqhoa gives us

{pc ∈ dom(sci) ∧ wlp(sc0 ⊕ sc1, Q)} sci {wlp(sc0 ⊕ sc1, Q)}

(for i = 0 and 1). From here, rule ⊕hoa gives us

{wlp(sc0 ⊕ sc1, Q)} sc0 ⊕ sc1 {
pc /∈ dom(sc0) ∧ pc /∈ dom(sc1)

∧ wlp(sc0 ⊕ sc1, Q)
}

41

Further, we also have

pc /∈ dom(sc0) ∧ pc /∈ dom(sc1) ∧ wlp(sc0 ⊕ sc1, Q) |= Q

Indeed, suppose (`0, zs0, σ0) |=α pc /∈ dom(sc0) ∧ pc /∈ dom(sc1) ∧ wlp(sc0 ⊕
sc1, Q) for some `0, zs0, σ0 and α. We then have `0 /∈ dom(sc0 ⊕ sc1) and
(`0, zs0, σ0) |=α wlp(sc0 ⊕ sc1, Q). Rule oodns gives us (`0, zs0, σ0)�sc0 ⊕
sc1� (`0, zs0, σ0) and hence (`0, zs0, σ0) |=α Q.

Hence by rule conseqhoa, we get

{wlp(sc0 ⊕ sc1, Q)} sc0 ⊕ sc1 {Q}

�

Theorem 8 (Completeness of Hoare logic) If, for any (`, zs, σ) and α such
that (`, zs, σ) |=α P , it holds that (i) for any (`′, zs ′, σ′) such that (`, zs, σ)�sc�
(`′, zs ′, σ′), we have (`′, zs ′, σ′) |=α Q, and (ii) there is no (`′, zs ′, σ′) such that
(`, zs, σ) �sc�p (`′, zs ′, σ′), then {P} sc {Q}.

Proof. Immediate from the lemma using that any precondition of a code wrt. a
postcondition entails its wlp. �

While we have introduced the semantics and logic for a language with fixed
jump targets, our approach applies equally well to a version where indirect jumps
(also called embedded code pointers) are allowed. The modifications required are
trivial. In the instruction syntax, the jump targets would not be given as constant
labels in instructions, but would be popped off the stack. Thus the instruction
goto m would become goto, which branches to the label given on top of the stack.
The natural semantics rule for this instruction would be

m ∈ Z
(`,m :: zs, σ)�(`, goto)� (m, zs, σ)

gotons

It would also need an abnormal termination rule, since an infinite loop via the goto
instructions (by a jump back on itself) would not be possible anymore: the stack
would sooner or later run empty, giving abnormal termination.

For conditional jumps the rule change would be similar, so the jump target
would be popped off the stack in addition to the jump guard.

The Hoare rule for goto would become
{

(pc = ` ∧ ∃m ∈ Z, w ∈ (Z + B)∗, ls ∈ {`}∗. st = ls++m :: w ∧m 6= `
∧Q[m,w/pc, st])

∨ (pc 6= ` ∧Q)

}
(`, goto) { Q }

gotohoa

This is somewhat similar to Java bytecode jsr/ret instructions: jsr branches to
a given label in the method code and pushes a return address to the following
instruction, while ret recovers a return address from a register and branches to
the corresponding instruction. So jsr would be equivalent to the pair of instruction
(`, push `+2), (`+1, goto m), and ret would be equivalent to (`, load retAddress), (`+
1, goto).

42

3.3 A dip into type systems

The logic we presented is error-free: a Hoare triple guarantees, in addition to the pro-
gram satisfying the pre- and post condition relations, that it cannot have a runtime
error. Naturally, this logic can be weakened into a type system, which only guar-
antees that type errors cannot occur. In this section, we describe a compositional
type system guaranteeing error-freedom for SPush programs. We will not delve
deeply into the meta-theoretic properties of the type system, rather, this section
serves to demonstrate how the compositional approach is applicable for reasoning
about low-level code in general, not just for presenting the logic.

Instead of relating assertions as Hoare triples do, typings relate state types.
The intuitive meaning of a typing is analogous to that of a Hoare triple: it says that
if the given piece of code is run from an initial state in the given pretype, then if
it terminates normally, the final state is in the posttype, and, moreover, it cannot
terminate abnormally. Contrarily to assertions, state types are designed to record
only that state information that is necessary for guaranteeing error-freedom.

The building blocks for state types are value types τ ∈ ValType and stack
types Ψ ∈ StackType, defined by the grammars

τ ::= ⊥ | int | bool |?
Ψ ::= ⊥ | [] | τ :: Ψ | ∗

(note the overloading of the ⊥ sign). A state type Π ∈ StateType is a finite
set of labelled stack types, i.e., pairs of a label and a stack type: StateType =df

Pfin(Label × StackType). A state type Π is wellformed iff no label ` in it labels
more than one stack type, i.e., (`,Ψ) ∈ Π and (`,Ψ′) ∈ Π imply Ψ = Ψ′. The
domain dom(Π) of a state type is the set of labels appearing in it, i.e., dom(Π) =df

{` | (`,Ψ) ∈ Π}.

We will use the notation Π�L for the restriction of a state type Π to a domain
L ⊆ Label, i.e., Π�L =df {(`,Ψ) | (`,Ψ) ∈ Π, ` ∈ L}, and write L for the complement
of L, i.e., L =df Label\L.

The meanings of value, stack and state types are set-theoretic, they denote
sets of abstract values, abstract stacks and abstract states. The semantic functions
L− M ∈ ValType → P({int, bool}), L− M ∈ StackType → P(AbsStack), L− M ∈
StateType→ P(AbsState) are defined as follows:

43

τ ≤ τ ⊥ ≤ τ τ ≤ ?

Ψ ≤ Ψ

Ψ ≤ Ψ′′ Ψ′′ ≤ Ψ′

Ψ ≤ Ψ′ ⊥ :: Ψ ≤ ⊥ τ :: ⊥ ≤ ⊥ ⊥ ≤ Ψ Ψ ≤ ∗
τ ≤ τ ′ Ψ ≤ Ψ′

τ :: Ψ ≤ τ ′ :: Ψ′

∀`,Ψ. (`,Ψ) ∈ Π⇒ Ψ ≤ ⊥ ∨ ∃Ψ′. (`,Ψ′) ∈ Π′ ∧Ψ ≤ Ψ′

Π ≤ Π′

Figure 3.3: Subtyping rules of SPush

L⊥ M =df ∅
L int M =df {int}

L bool M =df {bool}
L ? M =df {int, bool}
L⊥ M =df ∅
L [] M =df {[]}

L τ :: Ψ M =df {δ :: ψ | δ ∈ L τ M, ψ ∈ LΨ M}
L ∗ M =df {int, bool}∗

LΠ M =df {(`, ψ) | (`,Ψ) ∈ Π, ψ ∈ LΨ M}

On each of the three categories of types, we define a subtyping relation by the
appropriate rules in Figure 3.3. These are relations ≤ ⊆ ValType × ValType,
≤ ⊆ StackType× StackType, ≤ ⊆ StateType× StateType.

The typing relation − : −→ ⊆ StateType×SCode×StateType is defined by
the rules in Figure 3.4. The typing rules for instructions are presented in a “weakest
pretype” style, where the pretype is obtained by applying appropriate substitutions
in the given posttype. For example the rule loadts for (`, load x) states that if stack
type τ :: Ψ (where τ is int or ?) or ∗ is required at label `+1, then the suitable stack
types for label ` are Ψ and ∗, respectively. Any other posttype at label ` + 1 does
not have a suitable pretype. At first sight, it might seem that wellformedness can
be lost in the pretype by taking the union. This is in fact not the case: there is at
most one stack type associated with label `+ 1 in Π, hence both sets have at most
one element and one of them must be empty. The rest of the non-jump instruction
rules are defined in similar fashion.

The jump rules might need some explanation. The goto=
ts rule allows to derive

pretype ∗ for label `: since the instruction does not terminate, any posttype will
be satisfied by any pretype at label `. The gotoF 6=ts rule combines two posttypes;
since gotoF can branch, both posttypes must be satisfied at the entry, meaning that
the pretype is the intersection of the posttypes. No pretype at ` can guarantee any
posttype in the case of (`, gotoF `), since such instruction could always terminate
abnormally. The consequence rule could also be called subsumption, given that we
are speaking about a type system: that is what it is really.

44

(`, load x) : {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π} ∪Π�{`} −→Π
loadts

(`, store x) : {(`, int :: Ψ) | (`+ 1,Ψ) ∈ Π} ∪Π�{`} −→Π
storets

(`, push n) : {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π} ∪Π�{`} −→Π
pushts

(`, add) :
{(`, int :: int :: Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ}

∪ {(`, int :: int :: ∗) | (`+ 1, ∗) ∈ Π} ∪Π�{`} −→Π

addts

. . .

m 6= `

(`, goto m) : {(`,Ψ) | (m,Ψ) ∈ Π} ∪Π�{`} −→Π
goto6=ts

(`, goto `) : {(`, ∗)} ∪Π�{`} −→Π
goto=

ts

m 6= `

(`, gotoF m) : {(`, bool :: (Ψ ∧Ψ′)) | (`+ 1,Ψ), (m,Ψ′) ∈ Π} ∪Π�{`} −→Π
gotoF6=ts

(`, gotoF `) : Π�{`} −→Π
gotoF=

ts

0 : Π−→Π
0ts

sc0 : Π�dom(sc0) −→Π sc1 : Π�dom(sc1) −→Π

sc0 ⊕ sc1 : Π−→Π�
dom(sc0)∪dom(sc1)

⊕ts

Π′0 ≤ Π0 sc : Π0 −→Π1 Π1 ≤ Π′1

sc : Π′0 −→Π′1
conseqts

Figure 3.4: Typing rules of SPush

The type system is sound wrt. the natural semantics in the sense of error-free
partial correctness.

Let us a have a function abs that relates a concrete state to an abstract state:
abs ∈ State → AbsState, defined by abs(`, zs, σ) =df (`, abs(zs)) where abs ∈
Stack → AbsStack replaces concrete values in a stack with the names of their
types: abs([]) =df [], abs(n :: zs) =df int :: abs(zs) for n ∈ Z, and abs(b :: zs) =df

bool :: abs(zs) for b ∈ B.

Theorem 9 (Soundness of typing) If sc : Π−→Π′ and abs(`, zs, σ) ∈ LΠ M, then
(i) for any (`′, zs ′, σ′) such that (`, zs, σ)�sc� (`′, zs ′, σ′), we have abs(`′, zs ′, σ′) ∈
LΠ′ M, and (ii) there is no (`′, zs ′, σ′) such that (`, zs, σ) �sc�p (`′, zs ′, σ′).

It would also possible to show that the type system is complete wrt. the ab-
stract natural semantics, which operates on type names as abstract values instead
of concrete types.

It is fairly obvious that state types can be translated to assertions. We can
define concretization functions conc ∈ ValType→ P(Z+B), conc ∈ StackType→
P(Stack), conc ∈ StateType → Assn, taking us from the language of the type

45

system to the language of the logic, by

conc(⊥) =df ∅
conc(int) =df Z

conc(bool) =df B
conc(?) =df Z + B

conc(⊥) =df ∅
conc([]) =df {[]}

conc(τ :: Ψ) =df {z :: w | z ∈ conc(τ), w ∈ conc(Ψ)}
conc(∗) =df (Z + B)∗

conc(Π) =df∨
{pc = ` ∧ st ∈ conc(Ψ) | (`,Ψ) ∈ Π}

Concretization preserves and reflects derivable subtypings/entailments.

Theorem 10 (Preservation of subtypings and reflection of entailments by
concretization)
(i) τ ≤ τ ′ iff conc(τ) |= conc(τ ′). (ii) Ψ ≤ Ψ′ iff conc(Ψ) |= conc(Ψ′). (iii) Π ≤ Π′

iff conc(Π) |= conc(Π′).

Preservation holds also of typing.

Theorem 11 (Preservation of typings by concretization) If sc : Π −→ Π′,
then {conc(Π)} sc {conc(Π′)}.

We do not get reflection of Hoare triples by concretization, however. Consider,
for example, the code sc =df (0, push tt) ⊕ ((1, gotoF 3) ⊕ (2, push 17)). We have
conc((0, [])) = pc = 0 ∧ st = [], conc((3, [int])) = pc = 3 ∧ ∃z ∈ Z. st = [z] and can
derive {pc = 0 ∧ st = []} sc {pc = 3 ∧ ∃z ∈ Z. st = [z]}, while we cannot derive
sc : {(0, [])}−→{(3, [int])}. The type system does not discover that the false branch
will never be taken. The best posttype we can get for {(0, [])} is {(3, ∗)}.

3.4 Compilation

This section is a first look into proof transformation. We shall define a compilation
function from While programs to SPush pieces of code. and show that it preserves
and reflects evaluations. Moreover, we shall also show that compilation preserves and
reflects derivable Hoare triples. Non-constructively this is obvious because the logics
of both While and SPush are sound and complete. We show that compilation also
preserves and reflects the actual Hoare triple derivations that establish derivability,
thus effectively allowing for compilation of proofs.

The compilation function is standard except that it produces structured code
(we have chosen structures that are the most convenient for us) and is compositional.
The compilation rules are given in Figure 3.5. The compilation relation for expres-
sions −↘− ⊆ Label × (AExp ∪BExp) × SCode × Label relates a label and a

46

n `↘`+1 (`, push n) x `↘`+1 (`, load x)

a0
`↘`′′ sc0 a1

`′′↘`′ sc1

a0 + a1
`↘`′+1 (sc0 ⊕ sc1)⊕ (`′, add)

b0 `↘`′′ sc0 b1 `
′′↘`′ sc1

b0 = b1 `↘`′+1 (sc0 ⊕ sc1)⊕ (`′, eq)

a `↘`′ sc

x := a `↘`′+1 (sc ⊕ (`′, store x)) skip `↘` 0

s0 `↘`′′ sc0 s1 `
′′↘`′ sc1

s0; s1 `↘`′ sc0 ⊕ sc1

b `↘`′′ scb st `
′′+1↘`′′′ sct sf

`′′′+1↘`′ scf

if b then st else sf
`↘`′ (scb ⊕ (`′′, gotoF `′′′ + 1))⊕ ((sct ⊕ (`′′′, goto `′))⊕ scf)

b `↘`′′ scb s `
′′+1↘`′ sc

while b do s `↘`′+1 (scb ⊕ (`′′, gotoF `′ + 1))⊕ (sc ⊕ (`′, goto `))

Figure 3.5: Rules of compilation from While to SPush

While expression to a piece of code and another label. The relation for statements
−↘− ⊆ Label× Stm× SCode× Label is similar. The idea is that the domain
of a compiled expression or statement will be a left-closed, right-open interval. (It
may be an empty interval, which does not even contain its beginning-point.) The
first label is the beginning-point of the interval and the second is the corresponding
end-point.

Compilation is total and deterministic and produces a piece of code whose
support is exactly the desired interval.

Lemma 9 (Totality and determinacy of compilation)
(i) For any `, a, there exist sc, `′ such that a `↘`′ sc. If a `↘`0 sc0 and a `↘`1 sc1,
then sc0 = sc1 and `0 = `1.
(ii) For any `, b, there exist sc, `′ such that b `↘`′ sc. If b `↘`0 sc0 and b `↘`1 sc1,
then sc0 = sc1 and `0 = `1.
(iii) For any `, s, there exist sc, `′ such that s `↘`′ sc. If s `↘`0 sc0 and s `↘`1 sc1,
then sc0 = sc1 and `0 = `1.

Lemma 10 (Domain of compiled code)
(i) If a `↘`′ sc, then dom(sc) = [`, `′).

(ii) If b `↘`′ sc, then dom(sc) = [`, `′).
(iii) If s `↘`′ sc, then dom(sc) = [`, `′).

That compilation does not alter the meaning of an expression or statement is
demonstrated by the facts that While evaluations are preserved and SPush evalu-
ations are reflected by it. We must however take into account the fact a compiled
While expression or statement is intended to be entered from its beginning-point.

Theorem 12 (Preservation of evaluations by compilation)
(i) If a `↘`′ sc, then (`, zs, σ)�sc� (`′, JaKσ :: zs, σ).
(ii) If b `↘`′ sc, then (`, zs, σ)�sc� (`′, JbKσ :: zs, σ).
(iii) If s `↘`′ sc and σ �s�σ′, then (`, zs, σ)�sc� (`′, zs, σ′).

47

Proof. By induction on the structure of a or b or the derivation of σ �s�σ′. �

Theorem 13 (Reflection of evaluations by compilation)
(i) If a `↘`′ sc and (`, zs, σ)�sc� (`′′, zs ′, σ′), then `′′ = `′, zs ′ = JaKσ :: zs and
σ′ = σ.
(ii) If b `↘`′ sc and (`, zs, σ)�sc� (`′′, zs ′, σ′), then `′′ = `′, zs ′ = JbKσ :: zs and
σ′ = σ.
(iii) If s `↘`′ sc and (`, zs, σ)�sc� (`′′, zs ′, σ′), then `′′ = `′, zs ′ = zs and σ �s�σ′.

Proof. By induction on the structure of a, b or s and subordinate induction on the
derivation of (`, zs, σ)�sc� (`′′, zs ′, σ′). �

It is easy to show that compilation preserves derivable While Hoare triples (in
a suitable format that takes into account that a While statement proof assumes.
But one can also give a constructive proof: a proof by defining a compositional trans-
lation of While program proofs to SPush program proofs, i.e., a proof compilation
function.

Theorem 14 (Preservation of derivable Hoare triples)
(i) If a `↘`′ sc and P is a While assertion, then {pc = ` ∧ st = zs ∧ P} sc {pc =
`′ ∧ st = a :: zs ∧ P}.
(ii) If b `↘`′ sc and P is a While assertion, then {pc = ` ∧ st = zs ∧ P} sc {pc =
`′ ∧ st = b :: zs ∧ P}.
(iii) If s `↘`′ sc and {P} s {Q}, then {pc = `∧st = zs∧P} sc {pc = `′∧st = zs∧Q}.

Proof. Non-constructive proof is straightforward from soundness of the Hoare logic
of While, reflection of evaluations by compilation and completeness of the Hoare
logic of SPush.

Constructive proof is by induction on the structure of a or b or the derivation
of {P} s {Q}. We will construct the derivation tree for sc in the compositional
logic. Note that we will omit explicitly invoking the rule of consequence, since its
invocation should be obvious from the context.

(i) The proof is by induction on the structure of a. We will make use of the
fact that P or Q, being high-level assertions, do not include constants pc or st . We
have the following cases

• a = n.
Then sc = (`, push n) and `′ = `+ 1. We have the following derivation:

{ (pc = ` ∧ n :: st = n :: zs ∧ P)
∨ (pc 6= ` ∧ st = n :: zs ∧ P)

} (`, push n) {pc = ` + 1 ∧ st = n :: zs ∧ P}

{pc = ` ∧ st = zs ∧ P} (`, push n) {pc = ` + 1 ∧ st = n :: zs ∧ P}

• a = x.
Then sc = (`, load x) and `′ = `+ 1. We ave the following derivation:

{ (pc = ` ∧ x :: st = x :: zs ∧ P)
∨ (pc 6= ` ∧ st = x :: zs ∧ P) } (`, load x) {pc = `+ 1 ∧ st = x :: zs ∧ P}

{pc = ` ∧ st = zs ∧ P} (`, load x) {pc = `+ 1 ∧ st = x :: zs ∧ P}

48

• a = a0 + a1.
Then there are `0, `1, sc0, sc1 such that a0

`↘`0 sc0, a1
`0↘`1 sc1, sc = (sc0 ⊕

sc1)⊕ add and `′ = `1 + 1.

Let

I = (pc = ` ∧ st = zs ∧ P) ∨ (pc = `1 ∧ st = a1 :: a0 :: zs ∧ P)
∨ (pc = `′ ∧ st = a0 + a1 :: zs ∧ P)

I1 = (pc = ` ∧ st = zs ∧ P) ∨ (pc = `0 ∧ st = a0 :: zs ∧ P)
∨ (pc = `1 ∧ st = a1 :: a0 :: zs ∧ P)

We get the following derivation:

.... Ind. Hypot.

{pc = ` ∧ st = zs ∧ P} sc0 {pc = `0 ∧ st = a0 :: zs ∧ P}
{pc ∈ [`, `0) ∧ I1} sc0 {I1}

.... Ind. Hypot.

{pc = `0 ∧ st = a0 :: zs ∧ P} sc1 {pc = `1 ∧ st = a1 :: a0 :: zs ∧ P}
{pc ∈ [`0, `1) ∧ I1} sc1 {I1}

�
�
�
�

{I1} sc0 ⊕ sc1 {pc 6∈ [`, `1) ∧ I1}
{pc ∈ [`, `1) ∧ I} sc0 ⊕ sc1 {I} (1)

{I} (sc0 ⊕ sc1)⊕ (`1, add) {I ∧ pc 6∈ [`, `′)}
{pc = ` ∧ st = zs ∧ P} (sc0 ⊕ sc1)⊕ (`1, add) {pc = `′ ∧ st = a0 + a1 :: zs ∧ P}

(1) =

(pc = `1 ∧ ∃z0, z1 ∈ Z, w ∈ (Z + B)∗. st = z0 :: z1 :: w

∧`′ = `′ ∧ z0 + z1 :: w = a0 + a1 :: zs ∧ P)
∨ (pc 6= `1 ∧ pc = `′ ∧ st = a0 + a1 :: zs ∧ P)

 (`1, add)
{

pc = `′ ∧ st = a0 + a1 :: zs ∧ P
}

{pc = `1 ∧ I} (`1, add) {I}

(ii)

• b0 = b1
Analogous to a0 + a1 case.

(iii) The proof is by induction on s. Assume that s `↘`′ sc. We have the
following cases.

• The derivation of {P} s {Q} is

{Q[a/x]}x := a {Q}

49

Then there are `0, sca such that a `↘`0 sca, sc = sca ⊕ (`0, store x) and `′ =
`0 + 1.

Let

I = (pc = ` ∧ st = zs ∧ P [a/x]) ∨ (pc = `′ ∧ st = zs ∧ P)
∨ (pc = `1 ∧ st = a :: zs ∧ P [a/x])

We have the following derivation:

.... (i)

{pc = ` ∧ st = zs ∧ P [a/x]} sca {pc = `1 ∧ st = a :: zs ∧ P [a/x]}
{pc ∈ [`, `′) ∧ I} sca {I} (1)

{I} sca ⊕ (`0, store x) {pc 6∈ [`, `′) ∧ I}
{pc = ` ∧ st = zs ∧ P [a/x]} sca ⊕ (`0, store x) {pc = `′ ∧ st = zs ∧ P}

where (1) =

{
(pc = `0 ∧ ∃z ∈ Z, w ∈ (Z + B)∗. st = z :: w
∧`′ = `′ ∧ w = zs ∧ P [z/x])

∨ (pc 6= `0 ∧ pc = `′ ∧ st = zs ∧ P)

}
(`0, store x) { pc = `′ ∧ st = zs ∧ P }

{pc = `0 ∧ st = a :: zs ∧ P [a/x]} (`0, store x) {pc = `′ ∧ st = zs ∧ P}
{pc ∈ [`, `′) ∧ I} (`0, store x) {I}

• The derivation of {P} s {Q} is

{P} skip {P}

Then sc = 0 and `′ = `. We have the derivation

{pc = ` ∧ st = zs ∧ P}0 {pc = ` ∧ st = zs ∧ P}

• The derivation of {P} s {Q} is
....

{P} s0 {R}

....
{R} s1 {Q}

{P} s0; s1 {Q}

Then there are `′′, sc0, sc1 such that s0
`↘`′′ sc0, s1

`′′↘`′ sc1 and sc = sc0⊕sc1.
Let

I = (pc = ` ∧ st = zs ∧ P) ∨ (pc = `′′ ∧ st = zs ∧R)
∨ (pc = `′ ∧ st = zs ∧Q)

50

We have the following derivation:

.... Ind. Hypot.

{pc = ` ∧ st = zs ∧ P} sc0 {pc = `′′ ∧ st = zs ∧R}
{pc ∈ [`, `′′) ∧ I} sc0 {I}

.... Ind. Hypot.

{pc = `′′ ∧ st = zs ∧R} sc1 {pc = `′ ∧ st = zs ∧Q}
{pc ∈ [`′′, `′) ∧ I} sc1 {I}

�
�
�
�

{I} sc0 ⊕ sc1 {pc 6∈ [`, `′) ∧ I}
{pc = ` ∧ st = zs ∧ P} sc0 ⊕ sc1 {pc = `′ ∧ st = zs ∧Q}

• The derivation of {P} s {Q} is

....
{b ∧ P} st {Q}

....
{¬b ∧ P} sf {Q}

{P} if b then st else sf {Q}

Then there are `′′, `′′′, scb, sct, scf such that b `↘`′′ scb, st
`′′+1↘`′′′ sct,

sf
`′′′+1↘`′ scf and sc =

sc1︷ ︸︸ ︷
(scb ⊕ (`′′, gotoF `′′′ + 1))⊕

sc2︷ ︸︸ ︷
((sct ⊕ (`′′′, goto `′))︸ ︷︷ ︸

sc3

⊕scf).

Let

I = (pc = ` ∧ st = zs ∧ P) ∨ (pc = `′′ + 1 ∧ st = zs ∧ b ∧ P)
∨ (pc = `′ ∧ st = zs ∧Q)

I1 = (pc = ` ∧ st = zs ∧ P) ∨ (pc = `′′ ∧ st = b :: zs ∧ P)
∨ (pc = `′′ + 1 ∧ st = zs ∧ b ∧ P) ∨ (pc = `′′′ + 1 ∧ st = zs ∧ ¬b ∧ P)

I2 = (pc = `′′ + 1 ∧ st = zs ∧ b ∧ P) ∨ (pc = `′′′ + 1 ∧ st = zs ∧ ¬b ∧ P)
∨ (pc = `′ ∧ st = zs ∧Q)

I3 = (pc = `′′ + 1 ∧ st = zs ∧ b ∧ P) ∨ (pc = `′′′ ∧ st = zs ∧Q)
∨ (pc = `′ ∧ st = zs ∧Q)

.... (ii)

{pc = ` ∧ st = zs ∧ P} scb {pc = `′′ ∧ st = b :: zs ∧ P}
{pc ∈ [`, `′′) ∧ I1} scb {I1} (1)

{I1} sc1 {pc 6∈ [`, `′′ + 1) ∧ I1}
{pc ∈ [`, `′′ + 1) ∧ I} sc1 {I} (2)

{I} sc {pc 6∈ [`, `′) ∧ I}
{pc = ` ∧ st = zs ∧ P} sc {pc = `′ ∧ st = zs ∧Q}

51

where
(1) =

(pc = `′′ ∧((`′′′ + 1 6= `′′ ∧((∃w ∈ (Z + B)∗. st = tt :: w
((`′′ + 1 = `′′ + 1 ∧ b) ∨ (`′′ + 1 = `′′′ + 1 ∧ ¬b)) ∧ w = zs ∧ P)

∨(∃w ∈ (Z + B)∗. st = ff :: w
((`′′′ + 1 = `′′ + 1 ∧ b) ∨ (`′′′ + 1 = `′′′ + 1 ∧ ¬b)) ∧ w = zs ∧ P)))
∨...

∨ ..

(`′′, gotoF `′′′ + 1)

{(pc = `′′ + 1 ∧ b) ∨ (pc = `′′′ + 1 ∧ ¬b)) ∧ st = zs ∧ P}
{pc = `′′ ∧ I1} (`′′, gotoF `′) {I1}

and (2) =

.... Ind. Hypot.

{pc = `′′ + 1 ∧ st = zs ∧ b ∧ P} sct {pc = `′′′ ∧ st = zs ∧Q}
{pc ∈ [`′′ + 1, `′′′) ∧ I3} sct {I3}

{
(pc = `′′′ ∧ ((`′′′ 6= `′ ∧ `′ = `′ ∧ st = zs ∧Q)

∨`′ = `′′′))
∨ (pc 6= `′′′ ∧ pc = `′ ∧ st = zs ∧Q)

}
(`′′′, goto `′) { pc = `′ ∧ st = zs ∧Q }

{pc = `′′′ ∧ I3} (`′′′, goto `′) {I3}

�
�
�
��

{I3} sc3 {pc ∈ [`′′ + 1, `′′′ + 1) ∧ I3}

E
E
EE

{pc ∈ [`′′ + 1, `′′′ + 1) ∧ I2} sc3 {I2}

.... Ind. Hypot.

{pc = `′′′ + 1 ∧ st = zs ∧ ¬b ∧ P} scf {pc = `′ ∧ st = zs ∧Q}
{pc ∈ [`′′′ + 1, `′) ∧ I2} scf {I2}

{I2} sc2 {pc 6∈ [`′′ + 1, `′) ∧ I2}
{pc ∈ [`′′ + 1, `′) ∧ I)} sc2 {I}

• The derivation of {P} s {Q} is
....

{b ∧ P} st {P}
{P}while b do st {¬b ∧ P}

Then there are `′′, `′′′, scb, sct such that b `↘`′′ scb, st `
′′+1↘`′′′ sct and sc =

sc1︷ ︸︸ ︷
(scb ⊕ (`′′, gotoF `′))⊕

sc2︷ ︸︸ ︷
(sct ⊕ (`′′′, goto `)) and `′ = `′′′ + 1.

Let

I = (pc = ` ∧ st = zs ∧ P) ∨ (pc = `′′ + 1 ∧ st = zs ∧ b ∧ P)
∨ (pc = `′ ∧ st = zs ∧ ¬b ∧ P)

I1 = (pc = ` ∧ st = zs ∧ P) ∨ (pc = `′′ ∧ st = b :: zs ∧ P)
∨ (pc = `′′ + 1 ∧ st = zs ∧ b ∧ P) ∨ (pc = `′ ∧ st = zs ∧ ¬b ∧ P)

I2 = (pc = `′′ + 1 ∧ st = zs ∧ b ∧ P) ∨ (pc = `′′′ ∧ st = zs ∧ P)
∨ (pc = `′ ∧ st = zs ∧ ¬b ∧ P)

52

.... (ii)

{pc = ` ∧ st = zs ∧ P} scb {pc = `′′ ∧ st = b :: zs ∧ P}
{pc ∈ [`, `′′) ∧ I1} scb {I1} (1)

{I1} sc1 {pc 6∈ [`, `′′ + 1) ∧ I1}
{pc ∈ [`, `′′ + 1) ∧ I} sc1 {I}

.... Ind. Hypot.

{pc = `′′ + 1 ∧ st = zs ∧ b ∧ P} sct {pc = `′′′ ∧ st = zs ∧ P}
{pc ∈ [`′′ + 1, `′′′) ∧ I2} sct {I2} (2)

{I2} sc2 {pc 6∈ [`′′ + 1, `′) ∧ I2}
{pc ∈ [`′′ + 1, `′) ∧ I} sc2 {I}

�
�
�
�
�
�
��

{I} sc {pc 6∈ [`, `′) ∧ I}
{pc = ` ∧ st = zs ∧ P} sc {pc = `′ ∧ st = zs ∧ ¬b ∧ P}

where

(1) =

(pc = `′′ ∧((`′ 6= `′′ ∧((∃w ∈ (Z + B)∗. st = tt :: w
((`′′ + 1 = `′′ + 1 ∧ b) ∨ (`′′ + 1 = `′ ∧ ¬b)) ∧ w = zs ∧ P)

∨(∃w ∈ (Z + B)∗. st = ff :: w
((`′ = `′′ + 1 ∧ b) ∨ (`′ = `′ ∧ ¬b)) ∧ w = zs ∧ P)))
∨...

∨ ...

(`′′, gotoF `′)

{(pc = `′′ + 1 ∧ b) ∨ (pc = `′ ∧ ¬b)) ∧ st = zs ∧ P}
{pc = `′′ ∧ I1} (`′′, gotoF `′) {I1}

(2) =

{
(pc = `′′′ ∧ ((`′′′ 6= ` ∧ ` = ` ∧ st = zs ∧ P) ∨ `′′′ = `))

∨ (pc 6= `′′′ ∧ pc = `′ ∧ st = zs ∧ P)

}
(`′′′, goto `) { pc = `′ ∧ st = zs ∧ P }

{pc = `′′′ ∧ I2} (`′′′, goto `) {I2}

�

3.4.1 Example

As a simple example of compilation we present a While factorial program together
with its proof, and then the target SGoto program with its proof. The factorial
program in While is S =df while x < n do (x := x+1; s := s∗x). For this program,
we have the following Hoare proof (we refrain here from explicitly spelling out the
side conditions of consequence inferences, these are obvious from the context).

53

{ x+ 1 ≤ n
∧ s ∗ (x+ 1) = (x+ 1)! }x := x+ 1 { x ≤ n

∧ s ∗ x = x! }

{ x < n
∧ s = x! }x := x+ 1 { x ≤ n

∧ s ∗ x = x! } { x ≤ n
∧ s ∗ x = x! } s := s ∗ x { s = x!

∧ x ≤ n }

{x < n ∧ s = x!}x := x+ 1; s := s ∗ x {x ≤ n ∧ s = x!}
{x < n ∧ x ≤ n ∧ s = x!}x := x+ 1; s := s ∗ x {x ≤ n ∧ s = x!}

{x ≤ n ∧ s = x!}S {x 6< n ∧ x ≤ n ∧ s = x!}
{n ≥ 0 ∧ x = 0 ∧ s = 1}S {x = n ∧ s = n!}

The compilation function gives us the following SPush program (sc0).

1 load x
 sc3

 sc1

sc0

2 load n
3 less
4 gotoF 14
5 load x

 sc4

sc2

6 push 1
7 add
8 store x
9 load s

 sc5
10 load x
11 mult
12 store s
13 goto 1
14

To present its proof we introduce the notations

I1′ =df pc = 1 ∧ st = zs ∧ n ≥ 0 ∧ x = 0 ∧ s = 1

I1 =df pc = 1 ∧ st = zs ∧ x ≤ n ∧ s = x!

I2 =df pc = 2 ∧ st = x :: zs ∧ x ≤ n ∧ s = x!

I3 =df pc = 3 ∧ st = n :: x :: zs ∧ x ≤ n ∧ s = x!

I4 =df pc = 4 ∧ st = x < n :: zs ∧ x ≤ n ∧ s = x!

I5 =df pc = 5 ∧ st = zs ∧ x < n ∧ s = x!

I6 =df pc = 6 ∧ st = x :: zs ∧ x < n ∧ s = x!

I7 =df pc = 7 ∧ st = 1 :: x :: zs ∧ x < n ∧ s = x!

I8′ =df pc = 8 ∧ st = x + 1 :: zs ∧ x < n ∧ s = x!

I8 =df pc = 8 ∧ st = x + 1 :: zs ∧ x + 1 ≤ n ∧ s ∗ (x + 1) = (x + 1)!

I9 =df pc = 9 ∧ st = zs ∧ x ≤ n ∧ s ∗ x = x!

I10 =df pc = 10 ∧ st = s :: zs ∧ x ≤ n ∧ s ∗ x = x!

I11 =df pc = 11 ∧ st = x :: s :: zs ∧ x ≤ n ∧ s ∗ x = x!

I12 =df pc = 12 ∧ st = s ∗ x :: zs ∧ x ≤ n ∧ s ∗ x = x!

I13 =df pc = 13 ∧ st = zs ∧ x ≤ n ∧ s = x!

I14 =df pc = 14 ∧ st = zs ∧ x 6< n ∧ x ≤ n ∧ s = x!

I14′ =df pc = 14 ∧ st = zs ∧ x = n ∧ s = n!.

54

We will use the shorthand notation Ii,...,j to denote the disjunction Ii ∨ . . .∨ Ij .
The proof for the Push program is the following (the Hoare triples correspond-

ing to those in the While version are highlighted):

{J1} 1 {I2}
{pc = 1 ∧ I1,2,3} 1 {I1,2,3}

{J2} 2 {I3}
{pc = 2 ∧ I1,2,3} 2 {I1,2,3}

{I1,2,3} 1⊕ 2 {pc 6∈ [1, 3) ∧ I1,2,3}
{pc ∈ [1, 3) ∧ I1,3,4} 1⊕ 2 {I1,3,4}

E
EE {J3} 3 {I4}
{pc = 3 ∧ I1,3,4} 3 {I1,3,4}

{I1,3,4} sc3 {pc 6∈ [1, 4) ∧ I1,3,4}
{pc ∈ [1, 4) ∧ I1,4,5,14} sc3 {I1,4,5,14}

E
EE {J4} gotoF 14 {I5,14}
{pc = 4 ∧ I1,4,5,14} gotoF 14 {I1,4,5,14}
{I1,4,5,14} sc1 {pc 6∈ [1, 5) ∧ I1,4,5,14}
{pc ∈ [1, 5) ∧ I1,5,14} sc1 {I1,5,14}

{J5} 5 {I6}
{pc = 5 ∧ I5,6,7} 5 {I5,6,7}

{J6} 6 {I7}
{pc ∈ 6 ∧ I5,6,7} 6 {I5,6,7}

{I5,6,7} 5⊕ 6 {pc 6∈ [5, 7) ∧ I5,6,7}
{pc ∈ [5, 7) ∧ I5,7,8} 5⊕ 6 {I5,7,8}

E
E
E
E {J7} 7 {I8′}

{J7} 7 {I8}
{pc = 7 ∧ I5,7,8} 7 {I5,7,8}

{I5,7,8} 5⊕ 6⊕ 7 {pc 6∈ [5, 8) ∧ I5,7,8}
{pc ∈ [5, 9) ∧ I5,8,9} 5⊕ 6⊕ 7 {I5,8,9}

E
E
EE

{J8} 8 {I9}
{pc = 8 ∧ I5,8,9} 8 {I5,8,9}

{I5,8,9} sc4 {pc 6∈ [5, 9) ∧ I5,8,9}
{pc ∈ [5, 9) ∧ I5,9,13} sc4 {I5,9,13}

{J9} 9 {I10}
{pc = 9 ∧ I9,10,11} 9 {I9,20,11}

{J10} 10 {I11}
{pc = 10 ∧ I9,10,11} 10 {I9,10,11}

{I9,10,11} 9⊕ 10 {pc 6∈ [9, 11) ∧ I9,10,11}
{pc ∈ [9, 11) ∧ I9,11,12} 9⊕ 10 {I9,11,12}

E
EE {J11} 11 {I12}
{pc = 11 ∧ I9,11,12} 11 {I9,11,12}

{I9,11,12} 9⊕ 10⊕ 11 {pc 6∈ [9, 12) ∧ I9,11,12}
{pc ∈ [9, 12) ∧ I9,12,13} 9⊕ 10⊕ 11 {I9,12,13}

E
E
E
E
E
E
EE

{J12} 12 {I13}
{pc = 12 ∧ I9,12,13} 12 {I9,12,13}

{I9,12,13} sc5 {pc 6∈ [9, 13) ∧ I9,12,13}
{pc ∈ [9, 13) ∧ I5,9,13} sc5 {I5,9,13}

�
�
�
�
�
��

{I5,9,13} sc4 ⊕ sc5 {pc /∈ [5, 13) ∧ I5,9,13}
{pc ∈ [5, 13) ∧ I1,5,13} sc4 ⊕ sc5 {I1,5,13}

E
E
E
E
E
EE

{J13} goto 1 {I1}
{pc = 13 ∧ I1,5,13} goto 1 {I1,5,13}

{I1,5,13} sc2 {pc /∈ [5, 14) ∧ I1,5,13}
{pc ∈ [5, 14) ∧ I1,5,14} sc2 {I1,5,14}

�
�
�
�
�
�
��

{I1,5,14} sc0 {pc /∈ [1, 14) ∧ I1,5,14}
{I1} sc0 {I14}
{I1′′} sc0 {I14}
{I′1} sc0 {I14′}

55

where

J1 =df (pc = 1 ∧ I2[2, x :: st/pc, st]) ∨ (pc 6= 1 ∧ I2)

J2 =df (pc = 2 ∧ I3[3, n :: st/pc, st]) ∨ (pc 6= 2 ∧ I3)

J3 =df (pc = 3 ∧ ∃z0, z1, w.st = z0 :: z1 :: w ∧ I4[4, z1 < z0 :: st/pc, st]) ∨ (pc 6= 3 ∧ I4)

J4 =df (pc = 4 ∧ (14 6= 4 ∧ (∃w.st = tt :: w ∧ I5,14[5, w/pc, st])

∨(∃w.st = ff :: w ∧ I5,14[14, w/pc, st])) ∨ (14 = 4 ∧ ...)) ∨ (pc 6= 4 ∧ I5,14)

J5 =df (pc = 5 ∧ I6[6, x :: st/pc, st]) ∨ (pc 6= 5 ∧ I6)

J6 =df (pc = 6 ∧ I7[7, 1 :: st/pc, st]) ∨ (pc 6= 6 ∧ I7)

J7 =df (pc = 7 ∧ ∃z0, z1, w.st = z0 :: z1 :: w ∧ I8[8, z1 + z0 :: st/pc, st]) ∨ (pc 6= 7 ∧ I8)

J8 =df (pc = 8 ∧ ∃z, w.(st = z :: w ∧ I9[9, w, z/pc, st , x])) ∨ (pc 6= 8 ∧ I9)

J9 =df (pc = 9 ∧ I10[10, s :: st/pc, st]) ∨ (pc 6= 9 ∧ I10)

J10 =df (pc = 10 ∧ I11[11, x :: st/pc, st]) ∨ (pc 6= 10 ∧ I11)

J11 =df (pc = 11 ∧ ∃z0, z1, w.st = z0 :: z1 :: w ∧ I12[12, z1 ∗ z0 :: st/pc, st]) ∨ (pc 6= 11 ∧ I12)

J12 =df (pc = 12 ∧ ∃z, w.(st = z :: w ∧ I13[9, w, z/pc, st , s])) ∨ (pc 6= 12 ∧ I13)

J13 =df (pc = 13 ∧ (1 6= 13 ∧ I1[1/pc]) ∨ 1 = 13) ∨ (pc 6= 13 ∧ I1)

The example should explain the general idea of modularity of our logic: there
is no need of global information for a judgement, but only the invariants for the
entry and exit labels of the code at hand. As code is composed, we can eliminate
the invariants of the intermediate entries and exits that are not required any more,
so at the root of the tree, we only have the entry and exit invariants of the whole
program, i.e., I1 and I14′ .

From the example it is also obvious that the logic is much too verbose for
practical PCC applications. For practical use, the logic could both be simplified
(for example by assuming that code is always well-typed) and proof compression
techniques applied, such as the ones described in [47]. Also, it would be practical to
treat basic blocks rather than single instructions as elementary building blocks.

3.5 Related work

Hoare’s original logic [30] was for While. After that, quite a few proposals were
made for dealing with extensions of While, including both general and restricted
jumps. The first in this line was a paper by Clint and Hoare, which uses condi-
tional Hoare triples, establishing that an invariant has to hold at goto instructions,
to guarantee the precondition on the label. The rule they give for conventional la-
beling makes certain assumptions about the form of the program: only one label
per block, and no jumps into structures. This approach is extended in the paper by
Kowaltowski [36], where each block is assumed to have an explicit label. De Bruijn
[20] introduces both denotational semantics and a logic for a language with jumps.
The logic is similar to that of Clint and Hoare, but instead of a natural deduction
system for dealing with gotos, the logic takes a sequent calculus form so that the
validity of a formula can be defined more directly. In the logic by Arbib and Alagić

56

[3], Hoare triples can have multiple postconditions. This reflects the fact that if
there is a jump instruction in a compound statement, the statement has multiple
exits.

Logics for low-level languages without phrase structure have only become a
topic of active research with the advent of PCC, with Java bytecode and .NET CIL
being the main motivators. The one very notable exception is Floyd’s seminal paper
on a logic of control-flow graphs [29], preceding Hoare’s work. One of the first papers
on Java bytecode logic is by Quigley [51]. It is based on decompilation, so the logic
applies to programs that come from a fixed compiler that preserves the structure of
the high-level program. Benton’s logic for a Push-like stack-based language involves
global contexts of label invariants as de Bruin’s logic [14]. Bannwart and Müller’s
logic extends the work of Benton to a subset of Java bytecode with objects and
methods [6].

The work of Huisman and Jacobs [31] describes a Hoare logic for Java that can
handle exceptions as well. Schröder and Mossakowski discuss a systematic method
for designing Hoare logics for languages with monadic side-effects, in particular
exceptions [57, 58].

We based our semantics and logic on the implicit structure of finite unions. The
same structure is used by Tan and Appel [63, 62], who study the same language.
But instead of introducing a natural semantics for the structured version of the
language, they proceed from a small-step semantics ideology. As a result, they arrive
at a continuation-style Hoare logic explainable by Appel and McAllester’s ‘indexed
model’ [2], involving the notion of a label continuation being approximately true.
Benton defines a similar logic for a stack-based language with a typing component
ensuring that the stack is used safely [15].

We looked at translating proofs of While programs into proofs of SPush pro-
grams. This is related to our earlier work [11], where we showed the preservation
proof obligations in a similar setting.

There are number of formal deductive systems for showing different properties
for bytecode like languages. They are all typically non-compositional and make use
of a global context of label types or assertions, such that a type is associated with
every instruction in a program. One of the first in this line was the type system
by Stata and Abadi, which describes a Java bytecode verifier [61]. Kobayashi and
Kirane [34], and Barthe and Rezk [10] use this approach for a type system for secure
information flow analyses for sequential Java bytecode.

3.6 Conclusion

In this chapter, we showed that it is possible to obtain a compositional natural
semantics and Hoare logic based simply on the structure of finite unions of pieces
of code. The semantics and the logic have the desired metatheoretic properties: the
semantics is equivalent to the standard small-step semantics and the logic is sound
and complete. The semantic and logic descriptions are inherently no more complex

57

than those for a standard high-level language. Most of the perceived complexity of
the descriptions do not stem from compositionality, but rather from the presence of
the stack and the possibility of abnormal termination, which needs to be dealt with
explicitly. A major difference from the work of Benton and Tan and Appel is that
we avoid continuations and interpret Hoare triples in the standard way.

We believe that this work is relevant and interesting in the context of PCC,
since finite unions are a natural construction in realistic situations where a larger
piece of code would very typically arise as a sum of smaller pieces that are sepa-
rately produced, often by different producers, and should then also be proved correct
separately.

We also showed that translating a proof of a While program into a proof of the
corresponding SPush program is straightforward in the context of a non-optimizing
compiler. The issue of proof transformation in the light of optimizing compilers will
be tackled in the following chapters.

Looking at the example, it is obvious that the logic is very verbose and if
taken literally, would not be effective in a PCC setting. There are several ways to
remedy this issue. First of all, the logic can be significantly simplified by making the
assumption that the code is type-safe, i.e. passes the bytecode verifier. In this case,
potential sources of abrupt termination such as stack underruns, values of wrong
types on the stack or branching instructions looping back on themselves can be
ignored in the logic. It would also be very easy to compress the proofs, since in the
proof tree the same assertions associated with a label (pc = ...∧ ...) appear multiple
times. Exploring these issues is however outside the scope of this work.

58

Chapter 4

Proof-preserving program
transformations

4.1 Introduction

Proof-carrying code is based on the idea that in a security-critical code transmission
setting, the code producer should provide some evidence that the program she dis-
tributes is safe and/or functionally correct. The code consumer would thus receive
the program together with a certificate (proof) that attests that the program has
the desired properties.

The code producer would typically use some (interactive) verification environ-
ment to prove her source program. The question is how to communicate the verifi-
cation result to the code consumer who will not have access to the source code of
the program. It is clear that there should be a mechanism to allow compilation of
the program proof together with the program.

In the previous chapter we showed how the Hoare proof of a high-level program
could be compiled into the proof of its compiled version. In a related line of work,
we have shown how proof obligations computed for the source program are identical
to those of the compiled program, thus making proof transformation trivial [11].
However, both of these approaches consider a non-optimizing compiler. As soon
as optimizations or other program transformations take place, proof transformation
becomes non-trivial—a valid proof of a program may not be valid for the optimized
version of the same program.

A simple example illustrating this issue is given in Figure 4.1. In the left column,
we have a program which, given suitable values for i, s, p and n, computes c ∗n and
cn and saves the the results to s and p, respectively. The pre- and postcondition for
the program are {s = 0 ∧ p = 1 ∧ i = 0 ∧ n ≥ 0} and {s = c ∗ n ∧ p = cn} and a
suitable loop invariant is {s = c ∗ i ∧ p = ci ∧ i ≤ n}. If we now perform dead code
elimination on the program assuming p to be dead at the end of the program, we
obtain the new program given in Figure 4.1 b. It is obvious that we cannot state
anything about p in the postcondition anymore. Consequently, the precondition and
the loop invariant should also be relaxed.

59

a) b)

{s = 0 ∧ p = 1 ∧ i = 0 ∧ n ≥ 0} {s = 0 ∧ i = 0 ∧ n ≥ 0}
while i < n do while i < n do
{s = c ∗ i ∧ p = ci ∧ i ≤ n} {s = c ∗ i ∧ i ≤ n}

s := s+ c; s := s+ c;
p := p ∗ c; skip;
i := i+ 1; i := i+ 1;

{s = c ∗ n ∧ p = cn} {s = c ∗ n}

Figure 4.1: Example of annotation transformations required for dead code
elimination

a) b)

{i = 0 ∧ x = 0 ∧ n ≥ 0} {i = 0 ∧ x = 0 ∧ n ≥ 0}
t′ = a+ b;

t = a+ b; t = t′;
while i < n do while i < n do
{x := i ∗ (a+ b) ∧ i ≤ n} {x := i ∗ (a+ b) ∧ i ≤ n ∧ t′ = a+ b}

x := x+ (a+ b); x := x+ t′;
i := i+ 1; i := i+ 1;

{x = n ∗ (a+ b)} {x = n ∗ (a+ b)}

Figure 4.2: Annotation transformations required for common subexpression
elimination

It might seem that the reason why the assertions for the program (and therefore
also the proof) need to be transformed in the given example is that the transfor-
mation did not preserve the semantics of the program (while the vast majority of
standard program transformations are semantics-preserving). But in fact the same
issues apply to semantics-preserving optimizations. This can be shown on the ex-
ample of common sub-expression elimination, given in Figure 4.2. The original
program is shown in the left column. The pre- and postcondition for the program
are {i = 0 ∧ x = 0 ∧ n ≥ 0} and {x = n ∗ (a + b)}. A suitable loop invariant for
proving the program correct is x = i ∗ (a+ b) ∧ i ≤ n. The right column shows the
program after common subexpression elimination has been applied. The given loop
invariant is not strong enough for the transformed program any more, since there
is no use of (a+ b) in the optimized loop. The transformation of the invariant into
x = i ∗ t′ ∧ i ≤ n in accordance with the optimization is not sufficient either, since

60

it would be too weak to imply the postcondition. Instead, the invariant needs to
be strengthened to {x = i ∗ (a + b) ∧ i ≤ n ∧ t′ = a + b}, recording the knowledge
that t′ is equal to a+ b in the loop. What can be observed on this example is that
while the whole program optimization is indeed semantics-preserving, the same can
not be said about its sub-statements: for example x := x + (a + b) is replaced by
x := x + t′, which are obviously not semantically equivalent in general, but only
when some additional assumptions can be made about the state. This is exactly
the reason why the proof needs to be modified: these extra assumptions need to be
recorded in the assertions.

These examples also make it clear that in general assertion transformation is
not just strengthening (which seems to be a common misconception) nor weakening,
but the assertions for the original and optimized program can be incomparable. In
the dead code elimination example, less can be stated about the final result of the
program after the optimization, so the corresponding assertion needs to be weakened.
The same holds for the the loop invariant. Since less has to be assumed from the
pre-state for the invariant to hold, the precondition can also be weakened. In the
common subexpression elimination example, we saw that assertions needed to be
strengthened. If we combined these two optimizations, the new assertions would be
incomparable to the original ones.

In this chapter, we tackle exactly the problem of proof transformation in the
context of program optimizations based on dataflow-analysis. Such optimizations are
typically presented in an algorithmic manner, whereby the algorithms do not work
directly on the phrase structure of the given program, but rather on an intermediate
form such as its control-flow graph. This is a good way to go about optimizing
programs, but it is not an ideal presentation of what is done, if the optimizations
are required to have justifications that can be communicated.

Our approach is based on describing dataflow analyses declaratively as type
systems, so that the result of a particular program’s analysis is a type derivation.
Analysis results are presented in terms of types ascribed to expressions and state-
ments, certified by type derivations, and the transformation component carries out
the optimizations licensed by these type derivations. It turns out that we can use
the same type derivation as a guidance for automatically transforming not only the
program, but also its proofs.

A simplified view of a PCC scenario with program optimization happening on
the producer’s side is given in Figure 4.3. We are concerned with the stages shown in
the gray box—simultaneous transformation of both a program and its proof guided
by a type derivation representing the result of analyzing the program.

Our work also shows that type systems are a compact and useful way of de-
scribing dataflow analyses and optimizations in general: they can explain them well
in a declarative fashion (separating the issues of determining what counts as a valid
analysis or optimization result and how to find one) and make soundness and im-
provement simple to prove by structural induction on type derivations. In fact, proof
optimization works namely because of this: automatic proof transformations are a

61

Figure 4.3: Proof optimization in PCC

formal version of the constructive content of these semantic arguments.
We demonstrate our approach on three program optimizations, namely dead

code elimination, common subexpression elimination and partial redundancy elimi-
nation. All of the analyses are interesting from different aspects. Dead code elim-
ination is an optimization that requires weakening of assertions in program proofs,
which certificate-translation based approaches relying on assertion strengthening are
not able to handle in a straightforward way. Common subexpression elimination re-
quires two analyses (with the second analysis relying on the results of the first) for
linking expression evaluation points to value reuse points and coordinated modi-
fications of the program near both ends of such links, which seems to go against
compositionality. We show how this can easily be overcome by a combined type
system that reflects the combination of the two analyses. The scalability of our
approach is demonstrated on partial redundancy elimination, which is a very subtle
and complex optimization that changes the structure of the code by inserting nodes
in control flow edges.

4.2 Dead code elimination

4.2.1 Type system for live variables analysis

We begin with type systems for dead code elimination and its underlying analysis,
the live variables analysis. Discussing this analysis, we also comment on the general
method for describing data-flow analyses as type systems.

We call a variable live at a program point, if there exists a path from that
program point which (a) contains a useful use of the variable (by which we mean
a use in an assignment to a variable that is live at the end of the assignment, or a
use in an if- or while-guard) and (b) does not contain an assignment to the variable

62

before this use.1 The corresponding live variables analysis determines, for each
program point, which variables may be live at the program point. It is a backward
analysis, starting from a set of variables that one wishes to consider live at the end
of the program (at the top level, this would typically be Var: the final values of all
variables are of interest).

The types and the subtyping relation of the type system corresponding to a
data-flow analysis are the same as the underlying poset of the analysis, in this
case the poset (D,≤) =df (P(Var),⊇). A state on a computation path has type
live ∈ D, if some variable live in that state is not in live. The partial order is
the opposite to the usual one for live variable analysis in order to get a natural
subsumption rule (i.e. covariant in the posttype, contravariant in the pretype): from
the point of subsumption, the natural analyses are “forward may” and “backward
must” analyses; a backward may analysis is turned into a backward must analysis
by reversing the partial order. The property specified by a type is negated, because
the analysis is backward. (Let us recall that an analysis is a must analysis, if we
require a property to be satisfied by all paths coming to a program point. For the
may analysis, at least one path must have that property.)

A typing judgement for an arithmetic expression is of the form a : live −→
live ′, where the pretype live and the posttype live ′ are in each case elements of
D; for boolean expressions and statements the judgements are similar. Generally,
the intended meaning of a typing judgement is that, if the property specified by
the pretype holds before evaluating an expression a, then the property specified by
the posttype after the evaluation. In our case, this says that, if some variable live
before the evaluation is not in live, then some variable live after is not in live ′,
or, contrapositively (in the direction of the analysis), if all variables live after the
evaluation are in live ′, then all variables live before are in live. The typing rules
state the constraints of the analysis. For live variables, they appear in Figure 4.4.

The rule for variables reflects the fact that a use of a variable makes it live
(again in the direction of the analysis, i.e., backwards; this is also the direction for
the comments about all other rules below). As a result the weakest pretype of an
expression is obtained by adding its free variables to the posttype .

There are two rules for assignment, corresponding to the cases where the as-
signed variable x is in the posttype and where it is not. In the first case, since x is
possibly live at the end, the variables in the expression a assigned to it should be
included in the pretype. However, x itself should first be removed as the assignment
kills it (it will reappear in the pretype, if it is among the variables in the expression
a). In the second case, since x is necessarily dead at the end, there is no point in
making the variables in a possibly live at the beginning.

The rule complv for composition should be self-explanatory. To type an if-
statement, both of the branches have to have the same type (with the conseqlv rule,
the pretypes may be strengthened to agree). Additionally, variables used in the

1This is the strong version of liveness. In the alternative weaker version, any use of a variable
makes it live.

63

x : live ∪ {x} −→ live
varlv

n : live −→ live
numlv

a0 : live −→ live′′ a1 : live′′ −→ live′

a0 + a1 : live −→ live′
+lv

a0 : live −→ live′′ a1 : live′′ −→ live′

a0 = a1 : live −→ live′
=lv

x ∈ live′ a : live −→ live′ \ {x}
x := a : live −→ live′

:=1lv
x 6∈ live

x := a : live −→ live
:=2lv

skip : live −→ live
skiplv

s0 : live −→ live′′ s1 : live′′ −→ live′

s0; s1 : live −→ live′
complv

b : live −→ live′′ st : live′′ −→ live′ sf : live′′ −→ live′

if b then st else sf : live −→ live′
iflv

b : live −→ live′ st : live′ −→ live

while b do st : live −→ live′
whilelv

live ≤ live0 s : live0 −→ live′0 live′0 ≤ live′

s : live −→ live′
conseqlv

Figure 4.4: Type system for live variables analysis

guard add to the pretype of the if-statement.
The rule whilelv requires an invariant-type for the beginning of the loop body/end

of the guard to type a loop. The analysis computes it from a given posttype as the
greatest fixpoint of a function monotone with respect to ≤. The type system ac-
cepts any fixpoint. The conseqlv rule can be used to strengthen the given posttype
to any suitable such type. There is also the invariant-type for the end of the loop
body/beginning of the guard, obtained by adding the variables in the guard. There
is an obvious similarity between the loop invariants here and those in Hoare logic.

The reason why the whilelv rule has the presented form can be made more clear
on this example: while u < v do (x := y;u := u+ 1; y := z). If as a posttype of the
loop we have the variable x (i.e., x is the only variable whose value we are interested
in at the end), then in the naive approach (without strengthening it to the invariant
for the beginning of the loop body) it would appear that the assignment to y is not
necessary (while it clearly is needed, since the second time the loop is entered, its
value has changed, and the changed value is assigned to x). Also, the fact that the
assignment to u is not considered necessarily dead is because the invariant for the
end of the loop body has the free variables of the guard already included.

The conseqlv rule is a subsumption rule, but its role is completely analogous to
that of the consequence rule in Hoare logic (except that checking subtyping is trivial
whereas checking logical consequence needs a logic theorem prover, if no hints about
the proof are supplied).

A big difference of the type system from the analysis algorithm is that while
the algorithm computes the weakest preproperty for a given postproperty, the type
system approves any valid pretype-posttype pair. Again, stronger pretypes are easy
to get from the weakest one with conseqlv. The analysis algorithm can in fact be
seen as an algorithm for principal type inference: given a statement s and a posttype
live ′, one attempts to construct a type derivation. Constructing the tightest one

64

x ∈ live′ a : live −→ live′ \ {x}
x := a : live −→ live′ ↪→ x := a

:=1
opt
lv

x 6∈ live

x := a : live −→ live ↪→ skip
:=2

opt
lv

skip : live −→ live ↪→ skip
skipopt

lv

s0 : live −→ live′′ ↪→ s′0 s1 : live′′ −→ live′ ↪→ s′1

s0; s1 : live −→ live′ ↪→ s′0; s′1
compopt

lv

b : live −→ live′′ st : live′′ −→ live′ ↪→ s′t sf : live′′ −→ live′ ↪→ s′f

if b then st else sf : live −→ live′ ↪→ if b then s′t else s′f
ifopt

lv

b : live −→ live′ st : live′ −→ live ↪→ s′t

while b do st : live −→ live′ ↪→ while b do s′t
whileopt

lv

live ≤ live0 s : live0 −→ live′0 ↪→ s′ live′0 ≤ live′

s : live −→ live′ ↪→ s′
conseqopt

lv

Figure 4.5: Type system for dead code elimination

takes calculation of greatest fixpoints with respect to ≤ to obtain the invariant-
types of the loops and as a result one learns the weakest pretype live. This type
declares only these variables to be possibly live initially that really have some chance
of being live. In type systems jargon, it makes sense to call live the principal type
of s with respect to live ′.

Soundness of live variable analysis with respect to the natural semantics can
be conveniently formulated “relationally”. Let σ ∼live σ

′ denote that two states σ
and σ′ agree on all variables in a set live ⊆ Var, i.e.,

∧
x∈live σ(x) = σ′(x). Then

soundness states that any program is simulated by itself with respect to ∼. We look
at this in more detail in the next section, where we discuss the optimization based
on live variable analysis, namely dead code elimination.

4.2.2 Type system for dead code elimination

Dead code elimination removes from a statement the assignments that cannot affect
the final values of the variables that are live at the end.

This optimization can be explained in an extended version of the live variables
type system. Apart for assigning types to statements, it also defines their corre-
sponding optimized forms. A typing judgement has the form s : live −→ live ′ ↪→ s′,
where s′ is a statement; it says that s′ is the optimized form of s. The rules of this
extended type system are given in Figure 4.5. Arithmetic and boolean expressions
are not optimized, so we do not repeat their rules.

The only rule where an actual optimization takes place is :=2
opt
lv : if we know

from the typing of an assignment that the assigned variable is necessarily dead after,
then its value cannot affect any live variables. Thus we can replace the assignment
with skip. We could add even stronger optimizations, for example removing a skip
from a sequence or replacing an if-statement with skip, if both branches optimize to
skip, but this can be seen as a separate optimization and we do not integrate it here.

An example of a derivation of a dead code elimination can be seen in Figure 4.6.
In this example, we are interested in the program slice concerned with variable x.

65

x ∗ 2 : {x, y} −→ {y}
x := x ∗ 2 : {x, y} −→ {x, y} ↪→ x := x ∗ 2 z := z + 1 : {x, y} −→ {x, y} ↪→ skip

x := x ∗ 2; z := z + 1 : {x, y} −→ {x, y} ↪→ x := x ∗ 2; skip

while x < y do (x := x ∗ 2; z := z + 1) : {x, y} −→ {x, y} ↪→ while x < y do (x := x ∗ 2; skip)

while x < y do (x := x ∗ 2; z := z + 1) : {x, y} −→ {x}
↪→ while x < y do (x := x ∗ 2; skip)

Figure 4.6: An analysis and transformation of an example program

Thus the only variable in the posttype is x, and the code not affecting its final value
is considered dead and thus removed.

The statement of soundness of dead code elimination is similar to that for
the underlying analysis. Soundness says that the original and optimized form of a
program simulate each other with respect to ∼.

Theorem 15 (Soundness of dead code elimination)
(o) If live ≤ live ′ and σ ∼live σ∗, then σ ∼live′ σ∗.
(i) If a : live −→ live ′ and σ ∼live σ∗, then JaKσ = JaKσ∗ and σ ∼live′ σ∗.
(ii) If b : live −→ live ′ and σ ∼live σ∗, then JbKσ = JbKσ∗ and σ ∼live′ σ∗.
(iii) If s : live −→ live ′ ↪→ s′ and σ ∼live σ∗, then
— σ �s�σ′ implies the existence of σ′∗ such that σ′ ∼live′ σ

′
∗ and σ∗ �s′�σ′∗,

— σ∗ �s′�σ′∗ implies the existence of σ′ such that σ′ ∼live′ σ
′
∗ and σ �s�σ′.

Although our language is deterministic, nontermination is possible, therefore
both directions (preservation and reflection of evaluations) are necessary to establish
equitermination. Reflection in particular establishes that the optimized program
cannot terminate more often than the original form.

Proof. (o) holds trivially, since live ⊇ live′.
We can see that (i) holds by inspecting the typing rules for a and seeing that live
includes all free variables of a, and live ⊇ live ′. Thus all variables of a are equal in
σ and σ∗, and consequently JaKσ = JaKσ∗. By (o), it also follows that σ′ ∼live′ σ

′
∗.

A similar argument can be made for (ii).
(iii) is proved by induction on the derivation of s : live −→ live ′ ↪→ s′. We show

the first part of (iii) (the other direction is analogous). We assume σ ∼live σ∗ and
σ �s�σ′ and have the following cases:

• The type derivation is of the form

x ∈ live ′ a : live −→ live ′ \ {x}
x := a : live −→ live ′ ↪→ x := a

:=1
opt
lv

The given semantic derivation must be of the form

σ �x := a�σ[x 7→ JaKσ]

66

so σ′ = σ[x 7→ JaKσ]. We have the semantic judgement σ∗ �x := a�σ′∗, where
σ′∗ = σ∗[x 7→ JaKσ]. From (i), it follows that JaKσ = JaKσ∗ and σ′ ∼live′\{x} σ

′
∗.

Since JaKσ = JaKσ∗, it means that σ′(x) = σ′∗(x), and therefore we get σ′ ∼live′

σ′∗

• The type derivation is of the form

x 6∈ live
x := a : live −→ live ↪→ skip

:=2
opt
lv

The given semantic derivation must be of the form

σ �x := a�σ[x 7→ JaKσ]

so σ′ = σ[x 7→ JaKσ]. We have the semantic judgement σ∗ �skip�σ∗. Since
x 6∈ live, from σ ∼live σ∗ we may conclude that σ′ ∼live σ

′
∗.

• The type derivation is of the form

...
s0 : live −→ live ′′ ↪→ s′0

...
s1 : live ′′ −→ live ′ ↪→ s′1

s0; s1 : live −→ live ′ ↪→ s′0; s′1
compopt

lv

The given semantic judgement must be of the form

...
σ �s0�σ′′

...
σ′′ �s1�σ′

σ �s0; s1�σ′

For some σ′′∗ , σ
′
∗ we have the semantic judgement

.... IH
σ∗ �s′0�σ

′′
∗

.... IH
σ′′∗ �s′1�σ

′
∗

σ∗ �s′0; s′1�σ
′
∗

From the first induction hypothesis, we get that σ′′ ∼live′′ σ
′′
∗ , which allows us

to invoke the second the second induction hypothesis from which we get that
σ′ ∼live′ σ

′
∗.

• The type derivation is of the form

b : live −→ live ′′ st : live ′′ −→ live ′ ↪→ s′t sf : live ′′ −→ live ′ ↪→ s′f

if b then st else sf : live −→ live ′ ↪→ if b then s′t else s′f
ifopt

lv

67

We have that either σ |= b or σ 6|= b. In the first case, the given semantic
derivation is of the form

σ |= b

....
σ �st�σ′

σ �if b then st else sf�σ′

From (ii), it follows that σ(b) = σ∗(b) and therefore if σ |= b then σ∗ |= b.
From (ii) it also follows that σ ∼live′′ σ∗. We thus have the derivation

σ∗ |= b

.... IH
σ∗ �s′t�σ′∗

σ∗ �if b then s′t else s′f�σ
′
∗

for some σ′∗.

By the induction hypothesis, we also get that σ′ ∼live′ σ
′
∗

Similar reasoning holds for σ 6|= b.

• The type derivation is of the form

....
b : live −→ live ′

....
st : live ′ −→ live ↪→ s′t

while b do st : live −→ live ′ ↪→ while b do s′t
whileopt

lv

We also invoke structural induction on the given semantic derivation of σ �
while b do st�σ′. We have that either σ |= b or σ 6|= b. In the first case, the
given semantic derivation is of the form

σ |= b

....
σ �st�σ′′

....
σ′′ �while b do st�σ′

σ �while b do st�σ′

From (ii), it follows that σ(b) = σ∗(b) and therefore if σ |= b then σ∗ |= b.
From (ii) it also follows that σ ∼live′′ σ∗. We thus have the derivation

σ∗ |= b

.... outer IH
σ∗ �s′t�σ′′∗

.... inner IH
σ′′∗ �while b do s′t�σ′∗

σ∗ �while b do s′t�σ′∗

for some σ′∗ and σ′′∗ .

By the outer induction hypothesis, we get that σ′′ ∼live σ
′′
∗ . From the inner

induction hypothesis, we get σ′ ∼live′ σ
′
∗

68

If σ 6|= b, then the semantic derivation must be

σ 6|= b

σ �while b do st�σ

Again by (ii), we have that σ∗ 6|= b. We have the derivation

σ 6|= b

σ∗ �while b do s′t�σ∗

The fact that σ′ ∼live′ σ
′
∗ follows trivially.

• The type derivation is of the form

live ≤ live0 s : live0 −→ live ′0 ↪→ s′ live ′0 ≤ live
s : live −→ live ′ ↪→ s′

conseqopt
lv

We also have the given semantic judgement σ �s�σ′. Since live ⊇ live0, from
σ ∼live σ∗ we obtain that σ ∼live0 σ∗. By the induction hypothesis, there must
be a state σ′∗ such that σ∗ �s′�σ′∗ and σ′ ∼live′0

σ′∗. Since live ′0 ⊇ live ′, we have
that σ′ ∼live′ σ

′
∗.

�

We now arrive at our main motivation for the type-systematic setup, namely
proof transformation. It is easy to see that Theorem 15 has a counterpart for the
Hoare logic. Essentially, it says that optimization preserves and reflects Hoare triple
derivability (in fact even actual derivations).

Let P |live abbreviate the formula ∃[v(x) | x /∈ live](P [v(x)/x | x /∈ live]), where
v is some assignment of unique logic variable names to program variables (so that,
informally, P |live is obtained from P by quantifying out all program variables not in
live). For example for the assertion P =df x = 2 ∧ y = 7 and type live = {x}, P |live

is ∃y′ (x = 2 ∧ y′ = 7).

Theorem 16
(o) If live ≤ live ′, then P |live |= P |live′.
(i) If a : live−→live ′, then (P [a/w])|live |= (P |live′)[a/w] (where w is a logic variable).
(ii) If b : live−→live ′, then (P [b/w])|live |= (P |live′)[b/w] (where w is a logic variable).
As a consequence, (P |live) |= b⇒ ((b∧ P)|live′) and (P |live) |= ¬b⇒ ((¬b∧ P)|live′).
(iii) If s : live −→ live ′ ↪→ s′ and {P} s {Q}, then also {P |live} s′ {Q|live′}.

The theorem can be concluded from Theorem 15 using the soundness and com-
pleteness of the Hoare logic. But it is also provable constructively, without any
indirection via semantics, by induction on the structure of the type derivation. The

69

proof of (iii) gives a transformation of a given Hoare triple derivation into a deriva-
tion for the modified triple.

Proof. (Constructive proof)

(o) The assumption live ≤ live ′ means live ⊇ live ′. Therefore, P |live |= P |live′

follows by existential introduction: for any variable x ∈ live \ live ′, a suitable con-
structed witness for v(x) is x.

(i) We construct a derivation of (P [a/w])|live |= (P |live′)[a/w] by induction on
the derivation of a : live −→ live ′, which gives the following cases.

• The type derivation is

x : live ∪ {x} −→ live
varlv

The required entailment (P [x/w])|live∪{x} |= (P |live)[x/w] follows from
(P [x/w])|live∪{x} ≡ P |live∪{x}[x/w], which holds trivially, and P |live∪{x}[x/w] |=
P |live [x/w], which results from P |live∪{x} |= P |live from existential introduction
(taking x as the constructed witness for v(x)), if x /∈ live.

• The type derivation is
n : live −→ live

numlv

The required entailment holds trivially: we have (P [n/w])|live ≡ (P |live)[n/w].

• The type derivation is of the form
....

a0 : live −→ live ′′

....
a1 : live ′′ −→ live ′

a0 + a1 : live −→ live ′
+lv

The required entailment (P [a0 +a1/w])|live |= (P |live′)[a0 +a1/w] follows from
the following chain of entailments:

(P [a0 + a1/w])|live =
= (P [w0 + w1/w][a1/w1][a0/w0])|live w0, w1 are not free in P
|= ((P [w0 + w1/w][a1/w1])|live′′)[a0/w0] by IH
|= ((P [w0 + w1/w])|live′)[a1/w1][a0/w0] by IH
= (P |live′)[w0 + w1/w][a1/w1][a0/w0] trivially
= (P |live′)[a0 + a1/w] w0, w1 are not free in P

where w0 and w1 are logic variables distinct from the free logic variables of P .

(ii) is proved similarly to (i).
(iii) We construct a derivation of {P |live} s {Q|live′} by induction on the deriva-

tion of s : live −→ live ′ and inspection of the derivation of {P} s {Q}. We have the
following cases.

70

• The type derivation is of the form

x ∈ live ′

....
a : live −→ live ′ \ {x}

x := a : live −→ live ′ ↪→ x := a
:=1lv

and the given Hoare derivation is

{P [a/x]}x := a {P}

We get this modified Hoare triple derivation:

(P [a/x])|live |= (P |live′)[a/x] {(P |live′)[a/x]}x := a {P |live′}
{(P [a/x])|live}x := a {P |live′}

The entailment (P [a/x])|live |= (P |live′)[a/x] is the consequence of the following
chain of entailments:

(P [a/x])|live = (P [w/x][a/w])|live w is not free in P
|= ((P [w/x])|live′\{x})[a/w] by (i)
⇔ ((P [w/x])|live′)[a/w] x does not occur in P [w/x]
= (P |live′)[w/x][a/w] x ∈ live ′

= (P |live′)[a/x] w is not free in P

where w is a logic variable distinct from the free logic variables of P .

• The type derivation is of the form

x /∈ live
x := a : live −→ live ↪→ skip

:=2lv

and the given Hoare triple derivation is

{P [a/x]}x := a {P}

For the optimized program skip, we have the Hoare triple derivation

P [a/x]|live |= P |live {P |live} skip {P |live}
{P [a/x]|live} skip {P |live}

The entailment (P [a/x])|live |= (P |live)[a/x] is a consequence of (P [a/x])|live |=
P |live , which holds by x /∈ live and existential elimination and introduction (for
the constructed witness of v(x) on the right one must take a[w/x] where w is
the assumed witness of v(x) on the left), and P |live ≡ (P |live)[a/x], which also
holds since x /∈ live, as P |live has therefore no occurrences of x.

71

• The type derivation is of the form

....
s0 : live −→ live ′′ ↪→ s′0

....
s1 : live ′′ −→ live ′ ↪→ s′1

s0; s1 : live −→ live ′ ↪→ s′0; s′1
complv

and the given Hoare derivation is of the form

....
{P} s0 {R}

....
{R} s1 {Q}

{P} s0; s1 {Q} .

We get the Hoare derivation

.... IH
{P |live} s′0 {R|live′′}

.... IH
{R|live′′} s′0 {Q|live′}

{P |live} s′0; s′1 {Q|live′}

• The type derivation is of the form

....
b : live −→ live ′′

....
st : live ′′ −→ live ′ ↪→ s′t

....
sf : live ′′ −→ live ′ ↪→ s′f

if b then st else sf : live −→ live ′ ↪→ if b then s′t else s′f
if lv

and the given Hoare triple derivation is of the form

....
{b ∧ P} st {Q}

....
{¬b ∧ P} sf {Q}

{P} if b then st else sf {Q} .

We have the Hoare triple derivation

P |live |=
b⇒ (b ∧ P)|live′′

.... IH
{(b ∧ P)|live′′} s′t {Q|live′}

{b ∧ (P |live)} s′t {Q|live′}

P |live |=
¬b⇒ (¬b ∧ P)|live′′

.... IH
{(¬b ∧ P)|live′′} s′f {Q|live′}

{¬b ∧ (P |live)} s′f {Q|live′}

�
�
�
��

{P |live} if b then s′t else s′f {Q|live′}

The two entailments hold by (ii).

72

• The type derivation is of the form

....
b : live −→ live ′

....
st : live ′ −→ live ↪→ s′t

while b do st : live −→ live ′ ↪→ while b do s′t
whilelv

and the given Hoare triple derivation of the form

....
{b ∧ P} st {P}

{P}while b do st {¬b ∧ P}.

We have the Hoare triple derivation

(P |live) |= b⇒ (b ∧ P)|live′

.... IH
{(b ∧ P)|live′} s′t {P |live}

{b ∧ (P |live)} st {P |live}
{P |live}while b do s′t {¬b ∧ (P |live)} (P |live) |= ¬b⇒ (¬b ∧ P)|live′

{P |live}while b do s′t {(¬b ∧ P)|live′}

The two entailments hold by (ii).

• The type derivation is of the form

live ≤ live0

....
s : live0 −→ live ′0 ↪→ s′ live ′0 ≤ live ′

s : live −→ live ′ ↪→ s′
conseqlv

and the given Hoare triple derivation is of the form

P |= P ′

....
{P ′} s {Q′} Q′ |= Q

{P} s {Q} .

We have the following Hoare triple derivation:

P |live |= P ′|live0

.... IH
{P ′|live0} s′ {Q′|live′0

} Q′|live′0
|= Q|live′

{P |live} s′ {Q|live′}

The entailment P |live |= P ′|live0 follows from P |live |= P ′|live , which holds by
P |= P ′, and P ′|live |= P ′|live0 , which holds by (o). Similarly for Q′|live′0

|=
Q|live′ .

73

{x ∗ 2 = 2z+1 ∧ z + 1 ≤ ceil(log y)}x := x ∗ 2 {x = 2z+1 ∧ z + 1 ≤ ceil(log y)}

{x = 2z+1 ∧ z + 1 ≤ ceil(log y)} z := z + 1 {x = 2z ∧ z ≤ ceil(log y)}

�
��

{x ∗ 2 = 2z+1 ∧ z + 1 ≤ ceil(log y)}x := x ∗ 2; z := z + 1 {x = 2z ∧ z ≤ ceil(log y)}
{x < y ∧ x = 2z ∧ z ≤ ceil(log y)}x := x ∗ 2; z := z + 1 {x = 2z ∧ z ≤ ceil(log y)}

{x = 2z ∧ z ≤ ceil(log y)}while x < y do (x := x ∗ 2; z := z + 1) {x 6< y ∧ x = 2z ∧ z ≤ ceil(log y)}
{x = 2 ∧ z = 1 ∧ y > 1}while x < y do (x := x ∗ 2; z := z + 1) {x = 2z ∧ z = ceil(log y)}

Figure 4.7: A proof of the example program

�

Theorem 16 gives us “proof optimization”. Given a Hoare triple derivation
for an original program, we get a modified Hoare triple and its derivation for its
optimized form. In the example of program analysis and optimization in Figure 4.6
we saw that the program

while x < y do (x := x ∗ 2; z := z + 1)

admits the type {x, y}−→{x} and that the corresponding optimized form is while x <
y do (x := x ∗ 2; skip) (further simplifiable to while x < y do x := x ∗ 2 by a trivial
post-processing pass based on the equivalence s; skip = s).

A Hoare logic derivation for the triple

{x = 2 ∧ z = 1 ∧ y > 1}
while x < y do (x := x ∗ 2; z := z + 1)

{x = 2z ∧ z = ceil(log y)}

is given in Figure 4.7. (In order to save space, we have not spelled out the side
conditions of inferences by the consequence rule.)

This Hoare triple derivation is mechanically transformable, following the given
type derivation, into the derivation of the modified Hoare triple

{∃z′ (x = 2 ∧ z′ = 1 ∧ y > 1)}
while x < y do x := x ∗ 2

{∃y′, z′ (x = 2z
′ ∧ z′ = ceil(log y′)}

given in Figure 4.8. (Note the inference by the consequence rule after the rule for
skip: this involves a change of witness for z′ as described in the proof of Theorem 16, a
form of a shadow of the assignment z := z+1 in the original program.) The modified
Hoare triple is equivalent to

{x = 2 ∧ y > 1}while x < y do x := x ∗ 2{∃z′ > 0 (x = 2z
′
)}.

74

{∃z′ (x ∗ 2 = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y))}x := x ∗ 2 {∃z′ (x = 2z

′+1 ∧ z′ + 1 ≤ ceil(log y))}

{∃z′ (x = 2z
′ ∧ z′ ≤ ceil(log y))} skip {∃z′ (x = 2z

′ ∧ z′ ≤ ceil(log y))}

{∃z′ (x = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y))} skip {∃z′ (x = 2z

′ ∧ z′ ≤ ceil(log y))}

�
��

{∃z′ (x ∗ 2 = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y))}x := x ∗ 2; skip {∃z′ (x = 2z

′ ∧ z′ ≤ ceil(log y))}

{x < y ∧ ∃z′ (x = 2z
′ ∧ z′ ≤ ceil(log y))}x := x ∗ 2; skip {∃z′ (x = 2z

′ ∧ z′ ≤ ceil(log y))}

{∃z′ (x = 2z
′ ∧ z′ ≤ ceil(log y))}while x < y do (x := x ∗ 2; skip) {x 6< y ∧ ∃z′ (x = 2z

′ ∧ z′ ≤ ceil(log y))}

{∃z′ (x = 2 ∧ z′ = 1 ∧ y > 1)}while x < y do (x := x ∗ 2; skip) {∃z′ (x = 2z
′ ∧ z = ceil(log y))}

{∃z′ (x = 2 ∧ z′ = 1 ∧ y > 1)}while x < y do (x := x ∗ 2; skip) {∃y′, z′ (x = 2z
′ ∧ z′ = ceil(log y′))}

Figure 4.8: Transformed proof

4.3 Common subexpression elimination

4.3.1 Type system for available expressions analysis

We now look at another, more involved optimization called common subexpression
elimination. The idea in common subexpression elimination is to avoid re-evaluation
of non-trivial expressions. This is considerably more complicated and subtle than
dead code elimination. The first phase in this optimization is the analysis of available
expressions.

An (non-trivial arithmetic) expression is available at a program point, if every
path to it (a) contains an evaluation of this expression (as a subexpression of an as-
signed expression or the guard of an if- or while-statement) and (b) does not contain
a later modification (an assignment to a variable of the expression). The available
expressions analysis finds, for each program point, which expressions must be avail-
able at that point. It is a forward analysis and starts from the set of expressions
that one wishes to regard as available at the beginning of the program (typically,
this would be ∅).

The types and subtyping of the type system for available expressions are
(D,≤) =df (P(AExp+),⊇). A state on a computation path has type av ∈ D,
if all expressions in av are available in that state. A typing judgement for an arith-
metic expression has the form a : av −→ av ′ and means that, if all expressions in av
are available before an evaluation of a, then all expressions in av ′ are available after
the evaluation (for boolean expressions and statements, they are similar).Variables
and numerals do not change the availability of expressions.

The typing rules appear in Figure 4.9. We use mod(x) to denote the set of
nontrivial arithmetic expressions containing x, i.e., mod(x) =df {a | x ∈ FV (a)}.
The rule +ts

ae expresses that a compound expression makes itself and the subexpres-
sions of its operands available. The rules for boolean expressions are similar. The
rule :=ts

ae says that, after an assignment x := a, the arithmetic subexpressions of

75

x : av −→ av varts
ae n : av −→ av numts

ae

a0 : av −→ av ′′ a1 : av ′′ −→ av ′

a0 + a1 : av −→ av ′ ∪ {a0 + a1}
+ts

ae

a0 : av −→ av ′′ a1 : av ′′ −→ av ′

a0 = a1 : av −→ av ′
=ts

ae

a : av −→ av ′

x := a : av −→ av ′\mod(x)
:=ts

ae

skip : av −→ av
skipts

ae

s0 : av −→ av ′′ s1 : av ′′ −→ av ′

s0; s1 : av −→ av ′
compts

ae

b : av −→ av ′′ st : av ′′ −→ av ′ sf : av ′′ −→ av ′

if b then st else sf : av −→ av ′
ifts

ae

b : av −→ av ′ st : av ′ −→ av

while b do st : av −→ av ′
whilets

ae

av ≤ av0 s : av0 −→ av ′0 av ′0 ≤ av ′

s : av −→ av ′
conseqts

ae

Figure 4.9: Type system for available expressions analysis

expression a have been computed and are thus available. However, since x was as-
signed to, any precomputed value of an expression containing x is effectively killed.
The skip and composition rules should be self-explanatory. The rule ifts

ae says that if
both branches of an if-statement have the same typing, we can give their posttype
to the whole statement. But since the guard is always evaluated before either of the
branch, the pretype of both branches is the posttype of the guard. The rule whilets

ae

requires an invariant-type for the beginning of the guard/end of the body of the
loop, which will become the pretype of the loop itself. A given pretype for the loop
can be weakened to this type using the conseqts

ae rule.
A type derivation of a program gives us two kinds of information. Firstly, based

on the typing, we know where an expression first becomes available: where the
expression is not available in its pretype. Secondly, it tells us where a pre-computed
value can be used: where it is available in the pretype.

It would be possible to state and prove that the available expressions analysis
is sound. We refrain from doing it here, as this requires an instrumentation of the
standard natural semantics (the concept of state must be adjusted to record the
last computed value of every non-trivial arithmetic expression, and the evaluation
relation of the semantics must be adjusted accordingly). But we will state and prove
the soundness of common subexpression elimination.

4.3.2 Type system for conditional partial anticipability analysis

The technique behind common subexpression elimination is to save computed values
of expressions in new variables and to use these saved values instead of re-evaluating
the expressions.

Although from the available expression analysis, we know where a particular
expression becomes available and where a pre-computed value can be used, this
information is not enough for the purpose of common subexpression elimination. The

76

reason is of course that a new variable to save the computation of the subexpression
should only be introduced or updated when that subexpression is possibly used
later on at a point where it is available. However, at the program point where
an expression becomes available, we do not have that information from available
expressions analysis. We would need to know what we call conditionally partially
anticipable (cpant) expressions. We say that an expression is cpant at a program
point, if there is a path from that program point that (a) contains an evaluation of
it where the expression is available at the beginning of the evaluation, and (b) does
not contain an earlier evaluation of it.

The need for the expression to be available before becoming anticipable in the
reverse control-flow graph can be explained through the following example:

if b then

s2︷ ︸︸ ︷
x := 3 else

s3︷ ︸︸ ︷
x := z + u ∗ v︸ ︷︷ ︸

s1

; y := u ∗ v︸ ︷︷ ︸
s4

.

The expression u ∗ v is not available after statement s1, since it is not evaluated
in both of its branches. So the expression can not be used for optimization at
statement s4 and therefore a new variable should not be introduced at statement s3.
The type system for cpant can give us this information; since the expression u ∗ v
is not available before statement s4, the statement, although using u ∗ v, does not
make it anticipable.

This analysis decides which expressions may be cpant at each program point.
It relies on the results of the available expressions analysis and is a backward anal-
ysis. This analysis removes the need for establishing explicit “use-def” chains for
expressions, i.e., associations of program points where an expression is evaluated
(“defined”) to program points where the computed value could be reused (“used”).
Instead, it finds, for each program point, the expressions for which there can be a
value reuse point (a future point where, for some reason, one could use the present
value of an expression, or even a previously stored value of it, if it is presently
available).

Since the cpant type system must use the typings from the available expressions
type system, it is an extension. The types and the subtyping relation are (D,≤) =df

({(av , cpant) ∈ P(AExp+) × P(AExp+) | cpant ⊆ av},⊇ × ⊇). A state (on a
computation path) is in a type (av , cpant) ∈ D if in that state all expressions in av
are available and some cpant expression is not in cpant (remember that since cpant
analysis is a backward one, the intuitive reading is contrapositive to the forward
one). A typing judgement for an arithmetic expression (or a boolean expression, or
a statement) is therefore of the form a : av , cpant −→av ′, cpant ′ and says that, if all
expressions in av are available before an evaluation of a, then all expressions of av ′

are available after the evaluation, and, moreover, if all expressions av are available
before an evaluation and all expressions cpant after the evaluation are in cpant ′,
then all expressions cpant before the evaluation are in cpant .

The typing rules are given in Figure 4.10. The key rule is +ts
le . As was ex-

plained, an expression is made cpant at the beginning (i.e., included in the cpant

77

x : av , cpant −→ av , cpant
varts

le n : av , cpant −→ av , cpant
numts

le

a0 : av , cpant −→ av ′′, cpant ′′ a1 : av ′′, cpant ′′ −→ av ′, cpant ′

a0 + a1 : av , cpant ∪ ({a0 + a1} ∩ av)−→ av ′ ∪ {a0 + a1}, cpant ′
+ts

le

a0 : av , cpant −→ av ′′, cpant ′′ a1 : av ′′, cpant ′′ −→ av ′, cpant ′

a0 = a1 : av , cpant −→ av ′, cpant ′
=ts

le

a : av , cpant −→ av ′, cpant ′

x := a : av , cpant −→ av ′ \mod(x), cpant ′
:=ts

le

skip : av , cpant −→ av , cpant
skipts

le

s0 : av , cpant −→ av ′′, cpant ′′ s1 : av ′′, cpant ′′ −→ av ′, cpant ′

s0; s1 : av , cpant −→ av ′, cpant ′
compts

le

b : av , cpant −→ av ′′, cpant ′′ st : av ′′, cpant ′′ −→ av ′, cpant ′ sf : av ′′, cpant ′′ −→ av ′, cpant ′

if b then st else sf : av , cpant −→ av ′, cpant ′
ifts

le

b : av , cpant −→ av ′, cpant ′ st : av ′, cpant ′ −→ av , cpant

while b do st : av , cpant −→ av ′, cpant ′
whilets

le

av , cpant ≤ av0, cpant0 s : av0, cpant0 −→ av ′0, cpant ′0 av ′0, cpant ′0 ≤ av ′, cpant ′

s : av , cpant −→ av ′, cpant ′
conseqts

le

Figure 4.10: Type system for cpant analysis

pretype) only if it is already necessarily available there (thus in the intersection
with the availability pretype). The rest of the rules mimic the rules of the available
expressions and live variables analyses.

4.3.3 Type system for common subexpression elimination

The cpant expressions type system can now be used to perform common subex-
pression elimination. The rules of the optimization type system extend the cpant
expressions type system; the rules are given in Figure 4.11.

Since additional variables need to be introduced into the program, we use an
assignment nv : AExp+ → Varaux of a unique auxiliary program variable to every
non-trivial arithmetical expression (Varaux being an additional supply of program
variables not available for normal programming). This is a way for two program
points that will evaluate resp. reuse an expression value to agree on a variable that
can safely (without the danger of a redefinition on the way) carry this value.

The main optimization is done in the rules for arithmetic expressions. The
judgements for arithmetic expressions have the form a : av , cpant −→ av ′, cpant ′ ↪→
(nvd, a′), where nvd is a sequence of assignments (auxiliary variable definitions em-
anating from a; the empty sequence is denoted by ε) and a′ is an expression (the
optimized version of a) (for boolean expressions, the judgements are similar). Note
that optimizations need also be made ”inside” expressions, since arithmetic subex-
pressions can be evaluated and later used within the same expression (for example,
in the expression x ∗ y+x ∗ y, the subexpression x ∗ y does not have to be evaluated
twice).

There are three rules for +: for the case where the compound expression is

78

n : av , cpant −→ av , cpant ↪→ (ε, n)
numopt

le x : av , cpant −→ av , cpant ↪→ (ε, x)
varopt

le

a0 + a1 ∈ av
a0 : av , cpant −→ av ′′, cpant ′′ ↪→ (nvd0, a′0) a1 : av ′′, cpant ′′ −→ av ′, cpant ′ ↪→ (nvd1, a′1)

a0 + a1 : av , cpant ∪ {a0 + a1} −→ av ′ ∪ {a0 + a1}, cpant ′ ↪→ (nvd0;nvd1, nv(a0 + a1))
+1

opt
le

a0 + a1 ∈ cpant ′ a0 + a1 6∈ av
a0 : av , cpant −→ av ′′, cpant ′′ ↪→ (nvd0, a′0) a1 : av ′′, cpant ′′ −→ av ′, cpant ′ ↪→ (nvd1, a′1)

a0 + a1 : av , cpant −→ av ′ ∪ {a0 + a1}, cpant ′

↪→ (nvd0;nvd1;nv(a0 + a1) := a′0 + a′1, nv(a0 + a1))

+2
opt
le

a0 + a1 6∈ cpant ′ a0 + a1 6∈ av
a0 : av , cpant −→ av ′′, cpant ′′ ↪→ (nvd0, a′0) a1 : av ′′, cpant ′′ −→ av ′, cpant ′ ↪→ (nvd1, a′1)

a0 + a1 : av , cpant −→ av ′ ∪ {a0 + a1}, cpant ′ ↪→ (nvd0;nvd1, a′0 + a′1)
+3

opt
le

a0 : av , cpant −→ av ′′, cpant ′′ ↪→ (nvd0, a′0) a1 : av ′′, cpant ′′ −→ av ′, cpant ′ ↪→ (nvd1, a′1)

a0 = a1 : av , cpant −→ av ′, cpant ′ ↪→ (nvd0;nvd1, a′0 = a′1)
=opt

le

a : av , cpant −→ av ′, cpant ′ ↪→ (nvd, a′)

x := a : av , cpant −→ av ′ \mod(x), cpant ′ ↪→ nvd;x := a′
:=opt

le

skip : av , cpant −→ av , cpant ↪→ skip
skipopt

le

s0 : av , cpant −→ av ′′, cpant ′′ ↪→ s′0 s1 : av ′′, cpant ′′ −→ av ′, cpant ′ ↪→ s′1

s0; s1 : av , cpant −→ av ′, cpant ′ ↪→ s′0; s′1
compopt

le

b : av , cpant −→ av ′′, cpant ′′ ↪→ (nvd, b′)
st : av ′′, cpant ′′ −→ av ′, cpant ′ ↪→ s′t sf : av ′′, cpant ′′ −→ av ′, cpant ′ ↪→ s′f

if b then st else sf : av , cpant −→ av ′, cpant ′ ↪→ nvd; if b′ then s′t else s′f
ifopt

le

b : av , cpant −→ av ′, cpant ′ ↪→ (nvd, b′) st : av ′, cpant ′ −→ av , cpant ↪→ s′t

while b do st : av , cpant −→ av ′, cpant ′ ↪→ nvd; while b′ do (s′t;nvd)
whileopt

le

av , cpant ≤ av0, cpant0 s : av0, cpant0 −→ av ′0, cpant ′0 ↪→ s′ av ′0, cpant ′0 ≤ av ′, cpant ′

s : av , cpant −→ av ′, cpant ′ ↪→ s′
conseqopt

le

Figure 4.11: Type system for common subexpression elimination

79

already available and can be replaced with the corresponding auxiliary variable (rule
+1

opt
le), the case where the expression only becomes available, and is also cpant, so

an auxiliary variable definition is introduced (rule +2
opt
le) and the case where an

expression only becomes available, but is not cpant, so it is left as it is.
The judgements for statements are of the form s : av , cpant −→ av ′, cpant ′ ↪→

s′, where s′ is a statement (the optimized form of s). The rules for assignment,
skip, composition and if-statements should be straightforward. The rule whileopt

le for
while-loops allows for reuse of expressions that are evaluated in the guard. Since a
guard may be entered from two program points (the beginning of the loop and end
of the loop body), the auxiliary variable definitions have to appear at both places.

The derivation in Figure 4.12 is an example of common subexpression elimina-
tion. At the beginning of the program, p ∗ q is available (this is just an assumption
made). The expression u ∗ v becomes available after the first statement; the expres-
sion is used at three places. The information that it is used later on in the program
reaches the first assignment (via the cpant expressions type). Therefore, the value
of u ∗ v is recorded in the auxiliary variable. In the if-guard and then-branch, this
expression is replaced with the new variable. In the else-branch, the expression p ∗ q
is replaced with a variable holding the value of this expression.

Common subexpression elimination is sound in the sense that the optimized
program and the original one simulate each other: at corresponding program points
the states of the two programs agree on the normal program variables and, moreover,
if some expression is in the cpant type, then its value in the state of the original
program and the value of the corresponding auxiliary variable in the state of the
optimized program coincide. Let σ ∼cpant σ

′ denote that two states σ (on the normal
program variables Var) and σ′ (on the normal and auxiliary program variables
Var+Varaux) agree modulo cpant ⊆ AExp+ in the following sense:

∧
x∈Var σ(x) =

σ′(x) ∧
∧
a∈cpantJaKσ = σ′(nv(a)). The soundness theorem is:

Theorem 17 (Soundness of common subexpression elimination)
(o) If av , cpant ≤ av ′, cpant ′ and σ ∼cpant σ∗, then σ ∼cpant ′ σ∗.
(i) If a : av , cpant −→ av ′, cpant ′ ↪→ (nvd, a′), σ∗ �nvd�σ′∗, and σ ∼cpant σ∗, then
JaKσ = Ja′Kσ′∗ and σ ∼cpant ′ σ

′
∗.

(ii) If b : av , cpant −→ av ′, cpant ′ ↪→ (nvd, b′), σ∗ �nvd�σ′∗, and σ ∼cpant σ∗, then
JbKσ = Jb′Kσ′∗ and σ ∼cpant ′ σ

′
∗.

(iii) If s : av , cpant −→ av ′, cpant ′ ↪→ s′ and σ ∼cpant σ∗ , then
— σ �s�σ′ implies the existence of σ′∗ such that σ′ ∼cpant ′ σ

′
∗ and σ∗ �s′�σ′∗,

— σ∗ �s′�σ′∗ implies the existence of σ′ such that σ′ ∼cpant ′ σ
′
∗ and σ �s�σ′.

Proof. (o) As av , cpant ≤ av ′, cpant ′ implies cpant ⊇ cpant ′, it is immediate that
σ ∼cpant σ∗ is a stronger statement than σ ∼cpant ′ σ∗.

All of (i)-(iii) are proved by induction on the structure of the type derivation.
We only prove the first half of (iii).

For (i), we use induction on the derivation of a : av , cpant −→ av ′, cpant ′ ↪→
(nvd, a′). We assume that σ∗ �nvd�σ′∗ and σ ∼cpant σ∗.

80

u ∗ v : {p ∗ q}, {p ∗ q} −→ {p ∗ q, u ∗ v}, {p ∗ q, u ∗ v} ↪→ (utv := u ∗ v, utv)

u ∗ v + z : {p ∗ q}, {p ∗ q} −→ {p ∗ q, u ∗ v, u ∗ v + z}, {p ∗ q, u ∗ v}
↪→ (utv := u ∗ v, utv + z)

x := u ∗ v + z : {p ∗ q}, {p ∗ q} −→ {p ∗ q, u ∗ v, u ∗ v + z}, {p ∗ q, u ∗ v}
↪→ utv := u ∗ v;x := utv + z

z := 10 : {p ∗ q, u ∗ v, u ∗ v + z}, {p ∗ q, u ∗ v} −→ {p ∗ q, u ∗ v}, {p ∗ q, u ∗ v} ↪→ z := 10

E
E
E
E
E
E
E
E

x := u ∗ v + z; z := 10 : {p ∗ q}, {p ∗ q} −→ {p ∗ q, u ∗ v}, {p ∗ q, u ∗ v}
↪→ utv := u ∗ v;x := utv + z; z := 10

u ∗ v : {p ∗ q, u ∗ v}, {p ∗ q, u ∗ v} −→ {p ∗ q, u ∗ v}, {p ∗ q, u ∗ v} ↪→ (ε, utv)

u ∗ v = c : {p ∗ q, u ∗ v}, {p ∗ q, u ∗ v} −→ {p ∗ q, u ∗ v}, {p ∗ q, u ∗ v} ↪→ (ε, utv = c)

u ∗ v : {p ∗ q, u ∗ v}, {u ∗ v} −→ {p ∗ q, u ∗ v}, ∅ ↪→ (ε, utv)

p := u ∗ v : {p ∗ q, u ∗ v}, {u ∗ v} −→ {u ∗ v}, ∅ ↪→ p := utv

E
E
E
EE

p ∗ q : {p ∗ q, u ∗ v}, {p ∗ q} −→ {u ∗ v, p ∗ q}, ∅ ↪→ (ε, ptq)

p ∗ q + r : {p ∗ q, u ∗ v}, {p ∗ q} −→ {u ∗ v, p ∗ q, p ∗ q + r}, ∅ ↪→ (ε, ptq + r)

z := p ∗ q + r : {p ∗ q, u ∗ v}, {p ∗ q} −→ {u ∗ v, p ∗ q, p ∗ q + r}, ∅ ↪→ z := ptq + r

�
�
�
�
�
�
�
�
��

if u ∗ v = c then p := u ∗ v else z := p ∗ q + r : {p ∗ q, u ∗ v}, {p ∗ q, u ∗ v} −→ {u ∗ v}, ∅
↪→ if utv = c then p := utv else z := ptq + r

�
�
�
�
�
�
�
�
�
�
�
�
�
�

x := u ∗ v + z; z := 10; if u ∗ v = c then p := u ∗ v else z := p ∗ q + r : {p ∗ q}, {p ∗ q} −→ {u ∗ v}, ∅
↪→ utv := u ∗ v;x := utv + z; z := 10; if utv = c then p := utv else z := ptq + r

Figure 4.12: An analysis and transformation of an example program

We keep in mind that nvd redefines no normal variables and no auxiliary vari-
ables for expressions in av and that all auxiliary variables of a′ must be for expres-
sions in av ′.

We consider the following non-trivial cases.

• The type derivation is of the form

a0 + a1 ∈ av

.

...
a0 : av , cpant −→ av ′′, cpant ′′

↪→ (nvd0, a′0)

.

...
a1 : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ (nvd1, a′1)

a0 + a1 : av , cpant ∪ {a0 + a1} −→ av ′ ∪ {a0 + a1}, cpant ′ ↪→ (nvd0;nvd1, nv(a0 + a1))

There must exist a state σ′′∗ such that σ∗ �nvd0�σ′′∗ and σ′′∗ �nvd1�σ′∗. The
assumption σ ∼cpant∪{a0+a1} σ∗ implies Ja0 + a1Kσ = Jnv(a0 + a1)Kσ∗. As a0 +
a1 ∈ av , we know that nv(a0 + a1) is not modified by nvd0;nvd1, hence Ja0 +
a1Kσ = Jnv(a0+a1)Kσ∗ = Jnv(a0+a1)Kσ′∗. The assumption σ ∼cpant∪{a0+a1} σ∗

81

also tell us that σ ∼cpant σ∗, from where by the first induction hypothesis it
follows that σ ∼cpant ′′ σ

′′
∗ and further by the second induction hypothesis that

σ ∼cpant ′ σ
′
∗.

• The type derivation is of the form

a0 + a1 ∈ cpant ′

a0 + a1 6∈ av

....
a0 : av , cpant −→ av ′′, cpant ′′

↪→ (nvd0, a′0)

....
a1 : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ (nvd1, a′1)

a0 + a1 : av , cpant −→ av ′ ∪ {a0 + a1}, cpant ′ ↪→ (nvd0;nvd1;nv(a0 + a1) := a′0 + a′1, nv(a0 + a1))

Again, we know that there must exist states σ′′∗ and σ′′′∗ such that σ∗ �nvd0�σ′′∗ ,
σ′′∗ �nvd1�σ′′′∗ and σ′′′∗ �nv(a0 + a1) := a′0 + a′1�σ

′
∗, so that σ′∗ = σ′′′∗ [nv(a0 +

a1) 7→ Ja′0 + a′1Kσ
′′′
∗]. From σ ∼cpant σ∗ by the two induction hypotheses it

follows that Ja0Kσ = Ja′0Kσ
′′
∗ and σ ∼cpant ′′ σ

′′
∗ and further that Ja1Kσ = Ja′1Kσ

′′′
∗

and σ ∼cpant ′ σ
′′′
∗ . Since nvd1 redefines no normal variables and no auxiliary

variables for expressions in av ′′ and since all auxiliary variables of a′0 are for
expressions in av ′′, Ja′0Kσ

′′
∗ = Ja′0Kσ

′′′
∗ . Consequently, we see that Ja0 + a1Kσ =

Ja0Kσ + Ja1Kσ = Ja′0Kσ
′′′
∗ + Ja′1Kσ

′′′
∗ = Ja′0 + a′1Kσ

′′′
∗ = Jnv(a0 + a1)Kσ′∗. This in

combination with σ ∼cpant ′ σ
′′′
∗ and the fact that the only change from σ′′′∗ to

σ′∗ concerns nv(a0 + a1) also gives us that σ ∼cpant ′ σ
′
∗.

• The type derivation is of the form

a0 + a1 6∈ cpant ′

a0 + a1 6∈ av

....
a0 : av , cpant −→ av ′′, cpant ′′

↪→ (nvd0, a′0)

....
a1 : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ (nvd1, a′1)

a0 + a1 : av , cpant −→ av ′ ∪ {a0 + a1}, cpant ′ ↪→ (nvd0;nvd1, a′0 + a′1)

We know that there must exist a state σ′′∗ such that σ∗ �nvd0�σ′′∗ and σ′′∗ �nvd1

�σ′∗. From σ ∼cpant σ∗ by the two induction hypotheses it follows that
Ja0Kσ = Ja′0Kσ

′′
∗ and σ ∼cpant ′′ σ

′′
∗ and further that Ja1Kσ = Ja′1Kσ

′
∗ and

σ ∼cpant ′ σ
′
∗. Since nvd1 redefines no normal variables and no auxiliary vari-

ables for expressions in av ′′ and since all auxiliary variables of a′0 are for ex-
pressions in av ′′, Ja′0Kσ

′′
∗ = Ja′0Kσ

′
∗. Consequently, we see that Ja0 + a1Kσ =

Ja0Kσ + Ja1Kσ = Ja′0Kσ
′
∗ + Ja′1Kσ

′
∗ = Ja′0 + a′1Kσ

′
∗.

The proof of (ii) is similar to that of (i). In particular, the case of =opt
le is

analogous to the case of +3
opt
le .

(iii) We use induction on the structure of s : av , cpant −→ av ′, cpant ′ ↪→ s′. We
assume σ ∼cpant σ∗ and σ �s�σ′.

We consider the following cases:

• The type derivation is of the form
....

a : av , cpant −→ av ′, cpant ′ ↪→ (nvd, a′)

x := a : av , cpant −→ av ′ \mod(x), cpant ′ ↪→ nvd;x := a′
:=opt

le

82

The given semantic derivation must be of the form

σ �x := a�σ[x 7→ JaKσ]

so σ′ = σ[x 7→ JaKσ]. Let σ′′∗ be the unique state such that σ∗ �nvd�σ′′∗
and let σ′∗ = σ′′∗ [x 7→ Ja′Kσ′′∗], so we have a derivation of σ′′∗ �x := a′�σ′∗.
From the assumption σ ∼cpant σ∗ by (i) we know that JaKσ = Ja′Kσ′′∗ and
σ ∼cpant ′ σ

′′
∗ . Consequently, σ′(x) = JaKσ = Ja′Kσ′′∗ = σ′∗(x). Further, since

cpant ′ ⊆ av ′ \ mod(x), no expression in cpant ′ contains x. Accordingly, no
expression in cpant ′ can change its value during the assignment x := a′ taking
from σ′′∗ to σ′∗. Therefore, from the knowledge that σ ∼cpant ′ σ

′′
∗ we may

conclude that σ′ ∼cpant ′ σ
′
∗.

• The type derivation is of the form

....
b : av , cpant −→ av ′′, cpant ′′

↪→ (nvd, b′)

E
E

....
st : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ s′t

....
sf : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ s′f

if b then st else sf : av , cpant −→ av ′, cpant ′ ↪→ nvd; if b′ then s′t else s′f
ifopt

le

We have that either σ |= b or σ 6|= b. In the first case, the given semantic
derivation is of the form

σ |= b

....
σ �st�σ′

σ �if b then st else sf�σ′

Let σ′′∗ be the unique state such that σ∗ �nvd�σ′′∗ . From σ ∼cpant σ∗ by (ii)
we learn that JbKσ = Jb′Kσ′′∗ and σ ∼cpant ′′ σ

′′
∗ . Thus we have the derivation

σ′′∗ |= b′

.... IH
σ′′∗ �s′t�σ′∗

σ′′∗ �if b′ then s′t else s′f�σ
′
∗

By induction hypothesis we get that σ′ ∼cpant ′ σ
′
∗.

Similar reasoning holds for σ 6|= b.

• The type derivation is of the form

....
b : av , cpant −→ av ′, cpant ′ ↪→ (nvd, b′)

....
st : av ′, cpant ′ −→ av , cpant ↪→ s′t

while b do st : av , cpant −→ av ′, cpant ′ ↪→ nvd; while b′ do (s′t;nvd)
whileopt

le

83

We also invoke structural induction on the given semantic derivation of
σ �while b do st�σ′. We have that either σ |= b or σ 6|= b. In the first case,
the given semantic derivation is of the form

σ |= b

....
σ �st�σ′′

....
σ′′ �while b do st�σ′

σ �while b do st�σ′

Let σ′′′∗ be the unique state such that σ∗ �nvd�σ′′′∗ . From σ ∼cpant σ∗ by (ii)
we infer that JbKσ = Jb′Kσ′′′∗ and σ ∼cpant ′ σ

′′′
∗ . Thus we have the derivation

σ′′′∗ |= b′

.... outer IH
σ′′′∗ �s′t�σ′′∗

.... inner IH
σ′′∗ �nvd�σ′′′′∗

σ′′′∗ �s′t;nvd�σ′′′′∗

.... inner IH
σ′′′′∗ �while b′ do (s′t;nvd)�σ′∗

σ′′′∗ �while b′ do (s′t;nvd)�σ′∗

Here the outer hypothesis applies thanks to σ ∼cpant ′ σ
′′′
∗ and ensures the

existence of σ′′∗ that also satisfies σ′′ ∼cpant σ
′′
∗ . Further, the inner hypothesis

applies, taking care of the composition nvd; while b′ do (s′t;nvd), and ensures
the existence of σ′∗ such that σ′ ∼cpant ′ σ

′
∗.

If σ 6|= b, then the semantic derivation must be

σ 6|= b

σ �while b do st�σ

i.e., σ′ = σ. Let state σ′∗ be the unique state such that σ∗ �nvd�σ′∗. From
σ ∼cpant σ∗ by (ii) we know that JbKσ = Jb′Kσ′∗ and σ ∼cpant ′ σ

′
∗. Thus we have

the derivation
σ′∗ 6|= b′

σ′∗ �while b′ do (s′t;nvd)�σ′∗

and we also know that σ ∼cpant ′ σ
′
∗.

• The type derivation is of the form

av , cpant ≤ av0, cpant0

....
s : av0, cpant0 −→ av ′0, cpant ′0 ↪→ s′ av ′0, cpant ′0 ≤ av ′, cpant ′

s : av , cpant −→ av ′, cpant ′ ↪→ s′
conseqopt

le

We also have the given semantic judgement σ �s�σ′. Since cpant ⊇ cpant0,
from σ ∼cpant σ∗ we obtain that σ ∼cpant0

σ∗. By the induction hypothesis,
there must be a state σ′∗ such that σ∗ �s′�σ′∗ and σ′ ∼cpant ′0

σ′∗. Since cpant ′0 ⊇
cpant ′, we have that σ′ ∼cpant ′ σ

′
∗.

84

�

To state the corresponding theorem about the Hoare logic, we define P |cpant to
abbreviate P∧

∧
a∈cpant a = nv(a) and P |cpant to mean ∃[v(a) | a /∈ cpant](P [a/nv(a) |

a ∈ cpant][v(a)/nv(a) | a /∈ cpant]).
The theorem is the following:

Theorem 18
(o) If av , cpant ≤ av ′, cpant ′, then P |cpant |= P |cpant ′.
(i) If a : av , cpant −→ av ′, cpant ′ ↪→ (nvd, a′), then
— {(P [a/w])|cpant}nvd {(P |cpant ′)[a′/w]},
— {P}nvd {Q[a′/w]} implies P |cpant |= (Q|cpant ′)[a/w],
(ii) If b : av , cpant −→ av ′, cpant ′ ↪→ (nvd, b′), then
— {(P [b/w])|cpant}nvd {(P |cpant ′)[b′/w]}; it follows that {P |cpant}nvd {(b′ ⇒ (b ∧
P)|cpant ′) ∧ (¬b′ ⇒ (¬b ∧ P)|cpant ′)},
— {P}nvd {Q[b′/w]} implies P |cpant |= (Q|cpant ′)[b/w],
(iii) If s : av , cpant −→ av ′, cpant ′ ↪→ s′, then
— {P} s {Q} implies {P |cpant} s′ {Q|cpant ′},
— {P} s′ {Q} implies {P |cpant} s {Q|cpant ′}.

Proof. (o) Since av , cpant ≤ av ′, cpant ′ implies that cpant ⊇ cpant ′, one gets
P |cpant |= P |cpant ′ by conjunction elimination.

Concerning (i)-(iii) we only prove the first halves. To save space, we do not
show the entailment side conditions of the consequence rule.

(i) We use induction on the derivation of a : av , cpant−→av ′, cpant ′ ↪→ (nvd, a′).
We restrict our attention to the following cases.

• The type derivation is of the form

a0 + a1 ∈ av

....
a0 : av , cpant −→ av ′′, cpant ′′

↪→ (nvd0, a′0)

....
a1 : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ (nvd1, a′1)

a0 + a1 : av , cpant ∪ {a0 + a1} −→ av ′ ∪ {a0 + a1}, cpant ′ ↪→ (nvd0;nvd1, nv(a0 + a1))
+1

opt
le

We have the following derivation.

.... IH

{(P [nv(a0 + a1)/w])|cpant}nvd0 {(P |[nv(a0 + a1)/w])cpant′′)}

.... IH

{(P [nv(a0 + a1)/w])|cpant′′}nvd1 {(P [nv(a0 + a1)/w])|cpant′}

�
��

{(P [nv(a0 + a1)/w])|cpant}nvd0;nvd1 {(P [nv(a0 + a1)/w])|cpant′}
{(P [a0 + a1/w])|cpant∪{a0+a1}}nvd0;nvd1 {(P |cpant′)[nv(a0 + a1)/w]}

The entailment (P [a0 + a1/w])|cpant∪{a0+a1} |= (P [nv(a0 + a1)/w])|cpant holds
as (P [a0+a1/w])|cpant∪{a0+a1} |= (P [a0+a1/w])|cpant∧nv(a0+a1) = a0+a1 |=
(P [nv(a0 + a1)/w])|cpant by substitution of equals for equals.

85

• The type derivation is of the form

a0 + a1 ∈ cpant ′

a0 + a1 6∈ av

....
a0 : av , cpant −→ av ′′, cpant ′′

↪→ (nvd0, a′0)

....
a1 : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ (nvd1, a′1)

a0 + a1 : av , cpant −→ av ′ ∪ {a0 + a1}, cpant ′ ↪→ (nvd0;nvd1;nv(a0 + a1) := a′0 + a′1, nv(a0 + a1))

We have the following derivation.

.... IH

{((P [w0 + a1/w] ∧ a0 = w0)[a0/w0])|cpant}
nvd0

{((P [w0 + a1/w] ∧ a0 = w0)|cpant′′)[a
′
0/w0]}

{(P [a0 + a1/w])|cpant}nvd0 {(P [a′0 + a1/w] ∧ a0 = a′0)|cpant′′}

.... IH

{((P [a′0 + w1/w] ∧ a0 = a′0 ∧ a1 = w1)[a1/w1])|cpant′′}
nvd1

{((P [a′0 + w1/w] ∧ a0 = a′0 ∧ a1 = w1)|cpant′)[a
′
1/w1]}

{(P [a′0 + a1/w] ∧ a0 = a′0)|cpant′′}nvd1 {(P [a′0 + a′1/w] ∧ a0 = a′0 ∧ a1 = a′1)|cpant′}

�
�
�
�
�
�
�

{(P [a0 + a1/w])|cpant}nvd0;nvd1 {(P [a′0 + a′1/w])|cpant′ ∧ a0 + a1 = a′0 + a′1}

{(P [nv(a0 + a1)/w]|cpant′)[a
′
0 + a′1/nv(a0 + a1)]}nv(a0 + a1) := a′0 + a′1 {(P [nv(a0 + a1)/w])|cpant′}

{(P [a′0 + a′1/w])|cpant′ ∧ a0 + a1 = a′0 + a′1}nv(a0 + a1) := a′0 + a′1 {(P |cpant′)[nv(a0 + a1)/w]}

�
�
�
�
�
�
�
�
�
�
�
�
�
��

{(P [a0 + a1/w])|cpant}nvd0;nvd1;nv(a0 + a1) := a′0 + a′1 {(P |cpant′)[nv(a0 + a1)/w]}

In this derivation, w0, w1 are picked fresh. The entailment (P [a′0+a′1/w])|cpant ′∧
a0 + a1 = a′0 + a′1 |= ((P [nv(a0 + a1)/w])|cpant ′)[a′0 + a′1/nv(a0 + a1)] holds be-
cause (P [nv(a0 +a1)/w])|cpant ′ ⇔ (P [nv(a0 +a1)/w])|cpant ′\{a0+a1}∧a0 +a1 =
nv(a0 + a1), so (P [nv(a0 + a1)/w]|cpant ′)[a′0 + a′1/nv(a0 + a1)] ⇔ (P [a′0 +
a′1/w])|cpant ′\{a0+a1} ∧ a0 + a1 = a′0 + a′1.

• The type derivation is of the form

a0 + a1 6∈ cpant ′

a0 + a1 6∈ av

....
a0 : av , cpant −→ av ′′, cpant ′′

↪→ (nvd0, a′0)

....
a1 : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ (nvd1, a′1)

a0 + a1 : av , cpant −→ av ′ ∪ {a0 + a1}, cpant ′ ↪→ (nvd0;nvd1; a′0 + a′1)
+3

opt
le

We have this Hoare derivation:

.... IH

{((P [w0 + a1/w])[a0/w0])|cpant}nvd0 {((P [w0 + a1/w])|cpant′′)[a
′
0/w0]}

{(P [a0 + a1/w])|cpant}nvd0 {(P [a′0 + a1/w])|cpant′′}

.... IH

{((P [a′0 + w1/w])[a1/w1])|cpant′′}nvd1 {((P [a′0 + w1/w])|cpant′)[a
′
1/w1]}

{(P [a′0 + a1/w])|cpant′′}nvd1 {(P [a′0 + a′1/w])|cpant′}

�
�
�
��

{(P [a0 + a1/w])|cpant}nvd0;nvd1 {(P |cpant′)[a
′
0 + a′1/w]}

The entailments are justified as in the previous case.

86

The proof of (ii) is similar to that of (i). In particular, the case of =opt
le is

analogous to the case of +3
opt
le . Once the main statement has been established, the

consequence {P |cpant}nvd {(b′ ⇒ (b ∧ P)|cpant ′) ∧ (¬b′ ⇒ (¬b ∧ P)|cpant ′)} follows
from the instance

{(((w ⇒ (b ∧ P)) ∧ (¬w ⇒ (¬b ∧ P)))[b/w])|cpant}
nvd

{(((w ⇒ (b ∧ P)) ∧ (¬w ⇒ (¬b ∧ P)))|cpant ′)[b′/w]}

by the entailments P |cpant |= ((b ⇒ (b ∧ P)) ∧ (¬b ⇒ (¬b ∧ P))|cpant ≡ (((w ⇒
(b ∧ P)) ∧ (¬w ⇒ (¬b ∧ P)))[b/w])|cpant and (((w ⇒ (b ∧ P)) ∧ (¬w ⇒ (¬b ∧
P)))|cpant ′)[b′/w] |= ((w ⇒ (b ∧ P)|cpant ′) ∧ (¬w ⇒ (¬b ∧ P)|cpant ′))[b/w] ≡ (b′ ⇒
(b ∧ P)|cpant ′) ∧ (¬b′ ⇒ (¬b ∧ P)|cpant ′).

(iii) We use induction on the derivation of s : av , cpant −→ av ′, cpant ′ ↪→ s′.
We consider the following cases.

• The type derivation is

a : av , cpant −→ av ′, cpant ′ ↪→ (nvd; a′)
x := a : av , cpant −→ av ′ \mod(x), cpant ′ ↪→ nvd;x := a′

:=opt
le

The given Hoare derivation must be of the form

{P [a/x]}x := a {P}

This translates into the following Hoare derivation
..
.. (ii)

{(P [w/x][a/w])|cpant}nvd {(P [w/x])|cpant′ [a
′/w]}

{(P [a/x])|cpant}nvd {P |cpant′ [w/x][a′/w]}
{P |cpant′ [a

′/x]}x := a′ {P |cpant′}
{P |cpant′ [w/x][a′/w]}x := a′ {P |cpant′}

{P [a/x]|cpant}nvd;x := a′ {P |cpant′}

We have (P [w/x])|cpant ′ [a′/w] |= P |cpant ′ [w/x][a′/w], since cpant ′ ⊆ av ′ \
mod(x), so there are no expressions with x as a free variable in cpant ′.

• The type derivation is of the form
....

b : av , cpant −→ av ′′, cpant ′′

↪→ (nvd, b′)

E
E

.

...
st : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ s′t

....
sf : av ′′, cpant ′′ −→ av ′, cpant ′

↪→ s′f

if b then st else sf : av , cpant −→ av ′, cpant ′ ↪→ nvd; if b′ then s′t else s′f
ifopt

le

and the given Hoare derivation is of the form
....

{b ∧ P} st {Q}

....
{¬b ∧ P} sf {Q}

{P} if b then st else sf {Q} .

87

Let P ′ =df b
′ ⇒ (b ∧ P)|cpant ′′ ∧ ¬b′ ⇒ (¬b ∧ P)|cpant ′′ . We can make the

following derivation:

.... (ii)
{P |cpant}nvd {P ′}

.... IH
{(b ∧ P)|cpant′′} st {Q|cpant′}
{b′ ∧ P ′} st {Q|cpant′}

.... IH
{(¬b ∧ P)|cpant′′} sf {Q|cpant′}
{¬b′ ∧ P ′} sf {Q|cpant′}

{P ′} if b′ then s′t else s′f {Q|cpant′}
{P |cpant}nvd; if b′ then s′t else s′f {Q|cpant′} .

• The type derivation is of the form
....

b : av , cpant −→ av ′, cpant ′ ↪→ (nvd; b′)

....
st : av ′, cpant ′ −→ av , cpant ↪→ s′t

while b do st : av , cpant −→ av ′, cpant ′ ↪→ nvd; while b′ do (s′t;nvd)
whileopt

le

The given Hoare derivation must be of the form

....
{b ∧ P} st {P}

{P}while b do st {¬b ∧ P}

Let P ′ =df b
′ ⇒ (b ∧ P)|cpant ′ ∧ ¬b′ ⇒ (¬b ∧ P)|cpant ′ . The transformed Hoare

derivation is

.... (ii)
{P |cpant}nvd {P ′}

.... IH
{(b ∧ P)|cpant′} s′t {P |cpant}
{b′ ∧ P ′} s′t {P |cpant}

.... (ii)
{P |cpant}nvd {P ′}

{b′ ∧ P ′} s′t;nvd {P ′}
{P ′}while b′ do (s′t;nvd) {¬b′ ∧ P ′}

{P |cpant}nvd; while b′ do (s′t;nvd) {(¬b ∧ P)|cpant′}

�

A Hoare proof for the program analyzed in Figure 4.12 is given in Figure 4.13.
A Hoare proof for the optimized program is given in Figure 4.14. As can be seen from
the example, the precondition of the program needs to be strengthened according
to the given pretype. Similarly, assertions for the intermediate program points are
also strengthened, according to the types.

88

{>} x := u ∗ v + z {>} {>} z := 10 {>}
{>} x := u ∗ v + z; z := 10 {>}

{u ∗ v = u ∗ v} p := u ∗ v {p = u ∗ v}
{u ∗ v = c ∧ >} p := u ∗ v {p = u ∗ v ∨ z = p ∗ q + r}

{p ∗ q + r = p ∗ q + r} z := p ∗ q + r {z = p ∗ q + r}
{u ∗ v 6= c ∧ >} z := p ∗ q + r {p = u ∗ v ∨ z = p ∗ q + r}

�
�
�
�

{>} if u ∗ v = c then p := u ∗ v else z := p ∗ q + r {p = u ∗ v ∨ z = p ∗ q + r}

�
�
�
�
�

{>} x := u ∗ v + z; z := 10;
if u ∗ v = c then p := u ∗ v else z := p ∗ q + r {p = u ∗ v ∨ z = p ∗ q + r}

Figure 4.13: A proof of the example program

{ptq = p ∗ q}utv := u ∗ v { utv = u ∗ v∧
ptq = p ∗ q }

{ utv = u ∗ v∧
ptq = p ∗ q }x := utv + z { utv = u ∗ v∧

ptq = p ∗ q }

�
�
��

{ptq = p ∗ q} utv := u ∗ v;x := utv + z { utv = u ∗ v∧
ptq = p ∗ q }

{ utv = u ∗ v∧
ptq = p ∗ q } z := 10 { utv = u ∗ v∧

ptq = p ∗ q }

�
�
�
�
�
�
�
�
��

{ptq = p ∗ q} utv := u ∗ v;x := utv + z; z := 10 { utv = u ∗ v∧
ptq = p ∗ q }

{utv = u ∗ v} p := utv {p = u ∗ v}
{u ∗ v = u ∗ v ∧ utv = u ∗ v} p := utv {p = u ∗ v}

{u ∗ v = c ∧ utv = u ∗ v} p := utv {p = u ∗ v ∨ z = p ∗ q + r}

{ptq + r = p ∗ q + r} z := ptq + r {z = p ∗ q + r}
{p ∗ q + r = p ∗ q + r ∧ ptq = p ∗ q} z := ptq + r {z = p ∗ q + r}
{u ∗ v 6= c ∧ ptq = p ∗ q} z := ptq + r {p = u ∗ v ∨ z = p ∗ q + r}

E
E
E
EE

{utv = u ∗ v ∧ ptq = p ∗ q} if utv = c then p := utv else z := ptq + r {p = u ∗ v ∨ z = p ∗ q + r}

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

{ptq = p ∗ q} utv := u ∗ v;x := utv + z; z := 10;
if utv = c then p := utv else z := ptq + r {p = u ∗ v ∨ z = p ∗ q + r}

Figure 4.14: Transformed proof

89

4.4 Partial redundancy elimination

In this section we look at a particularly complex optimization called partial redun-
dancy elimination (PRE). PRE is a widely used compiler optimization that elimi-
nates computations that are redundant on some but not necessarily all computation
paths of a program. This optimization is notoriously tricky and has been exten-
sively studied since it was invented by Morel and Renvoise [44]. There is no single
canonical algorithm for performing the optimization. Instead, there is a plethora of
subtly different ones. The clearest formulations by Paleri et al. [50] and Xue and
Knoop [69] are based on four unidirectional dataflow analyses.

As a case study, the optimization is interesting in several aspects. As already
said it is a highly nontrivial optimization. It is also interesting in the sense that it
modifies program structure by inserting new nodes into the edges of the control flow
graph. This makes automatic proof transformation potentially more difficult.

The language used While using the control flow graph based representations
of program is common in the literature dealing with PRE, we will work directly
with While programs like we did for dead code elimination and common subex-
pression elimination. However, to simplify the presentation we allow expressions to
contain at most one operator. This is to mimic the standard algorithms for partial
redundancy elimination, which do no consider deep expressions. As was shown in
previous sections, this is an inessential restriction: with the help of just a little more
infrastructure we could also instead treat optimizations handling deep expressions
directly.

The grammar for arithmetic and boolean expressions is thus the following (l ∈
Lit are the literals):

l ::= x | n
a ::= l | l0 + l1 | l0 ∗ l1 | . . .
b ::= l0 = l1 | l0 ≤ l1 | . . .

We write AExp+ for the set AExp \ Lit of nontrivial arithmetic expressions. The
rest of the language remains unchanged.

4.4.1 Simple PRE

PRE is an optimization to avoid computations of expressions that are redundant
on some but not necessarily all computation paths of the program. Elimination
of these computations happens at the expense of precomputing expressions and
using auxiliary variables to remember their values. In some sense PRE is similar
to CSE. The main difference between the two lies in the fact that while CSE only
saves computed values at their evaluation places as needed, PRE tries to actively

90

Figure 4.15: Example application of PRE

place new computations into the control flow graph to reduce the total number of
evaluations needed by the program. As such, PRE subsumes CSE.

An example application of partial redundancy elimination is shown in Figure
4.15 where the graph in Figure 4.15(a) represents the original program and the
graph in Figure 4.15(b) represents the program after partial redundancy elimination
optimization. The computations of y + z in nodes 2 and 3 are partially redundant
in the original program and can be eliminated, and likewise the fully redundant
computation in node 4. The result of the computation of y + z in node 6 can
be saved into an auxiliary variable t (thus a new node is added in front of node
6). Additional computations of y + z are inserted into the edge leading from node
1 to node 2 and the edge entering node 3. This is the optimal arrangement of
computations, since there are two fewer evaluations of y + z in the loop and one
fewer on the path leading from node 3 to 2. Furthermore, the number of evaluations
of the expression has not increased on any path through the program.

In this section we scrutinize a simplified version of PRE that is more conser-
vative than full PRE. Although powerful already, it does not eliminate all partial
redundancies, but is more easily presentable, relying on two dataflow analyses. The
example program in Figure 4.15(a) can be fully optimized by simple PRE. Its de-
ficiencies will be discussed in Section 4.4.2, where the description of full PRE is
given.

The two dataflow analyses are a backward anticipability analysis and a forward
nonstandard, conditional partial availability analysis that uses the results of the
anticipability analysis. The anticipability analysis computes for each program point
which nontrivial arithmetic expressions will be evaluated on all outgoing paths before

91

Figure 4.16: Property annotations on example program

any of their operands are modified. The partial availability analysis computes which
expressions have already been evaluated and later not modified on some paths to
a program point where that expression is anticipable. (As such, it is symmetric to
common subexpression elimination.)

There are two possible optimizations for assignments. If we know that an expres-
sion is anticipable after an assignment, it means that the expression will definitely
be evaluated later on in the program, so an auxiliary variable can be introduced, to
carry the result of the evaluation. If we know that an expression is conditionally par-
tially available before the assignment, we can assume it has already been computed
and replace the expression with the auxiliary variable holding its value. If neither
case holds, we leave the assignment unchanged. To make a conditionally partially
available expression fully available in the optimized program, we must perform code
motion, i.e., insert evaluations of expressions into edges where they are not partially
available at the beginning-point but are partially available at the end-point.

The standard-style description of the algorithm relies on the properties ANTIN ,
ANTOUT , CPAVIN , CPAVOUT , MOD , EVAL. The global properties ANTIN i

(ANTOUT i) denote anticipability of nontrivial arithmetic expressions at the entry
(exit) of node i. Similarly CPAVIN i and CPAVOUT i denote conditional partial
availability. The local property MOD i denotes the set of expressions whose value
might be modified at node i whereas EVALi denotes the set of nontrivial expressions
which are evaluated at node i. The standard inequations for the analyses for CFGs

92

are given below (s and f correspond to the start and finish nodes of the whole CFG).

ANTOUT i ⊆
{
∅ if i = f⋂
j∈succ(i) ANTIN j otherwise

ANTIN i ⊆ (ANTOUT i \MOD i) ∪ EVALi

CPAVIN i ⊇
{
∅ if i = s⋃
j∈pred(i) CPAVOUT i otherwise

CPAVOUT i ⊇ ((CPAVIN i ∪ EVALi) \MOD i)
∩ ANTOUT i

CPAVIN i ⊆ ANTIN i

CPAVOUT i ⊆ ANTOUT i

We use inequalities here instead of equalities to be more in line with our type system,
since the type system will accept all valid analysis results, not only the strongest
one. Also note that the last inequalities do not correspond to transfer functions.
Instead they state a domain restriction on conditional partial availability sets.

Annotations corresponding to these inequalities are given in Figure 4.16, leading
to the optimization in Figure 4.15. For example, the expression evaluations in nodes
2, 3 and 4 can be replaced, since the expressions are partially available at the entry
of the node (CPAVIN) and will be made fully available by the optimizations. At
node 6, the expression is anticipable at the exit, and not available at the entry, thus
this is the place where the result should be precomputed and saved in a temporary.
For this, a new node to save the result of the computation is inserted before node 6.
Edge splitting happens between nodes 1 and 2, and at the entry edge into node 3.
At the exit of node 1, the expression is not partially available, but is at the entry to
node 2. Thus the edge needs to be split, and a new node computing the expression
added, thus making it fully available. The same happens to the entry edge of node
3.

Type system for simple PRE

We now present the two analyses as type systems. Types and subtyping for anticipa-
bility are sets of nontrivial arithmetic expressions and set inclusion, i.e,
(P(AExp+),⊆). A program point has type ant ∈ P(AExp+) if all the expres-
sions in ant are anticipable, i.e., on all paths from that program point, there will
be a use of the expression before any of its operands are modified. Subtyping is
set inclusion, i.e., ant ≤ ant ′ iff ant ⊆ ant ′. Typing judgements s : ant −→ ant ′

associate a statement with a pre- and posttype pair, stating that, if at the end of
a statement s the expressions in ant ′ are anticipable, then at the beginning the
expressions in ant must be anticipable. The typing rules are given in Figure 4.17.
We use eval(a) to denote the set {a}, if a is a nontrivial expression, and ∅ oth-
erwise, and mod(x) to denote the set of nontrivial expressions containing x, i.e.,
mod(x) =df {a | x ∈ FV (a)}. The assignment rule states that the assignment to

93

x kills all expressions containing x and at the same time the expression assigned
becomes anticipable, if nontrivial. To type an if-statement the pre- and posttypes
for both branches have to match. For a while loop, some type must be invariant for
the loop body.

The anticipability analysis gives us the information about where it is definitely
profitable to precompute expressions. Intuitively, they should be precomputed where
they first become available and are anticipable, and reused where they are already
available. The second analysis, the conditional partial availability analysis, prop-
agates this information forward in the control flow graph. As it depends on the
anticipability analysis, we need to combine the two in the type system. For the
combined type system, a type is a pair (ant , cpav) ∈ P(AExp+)×P(AExp+) sat-
isfying the constraint cpav ⊆ ant , where ant is an anticipability type and cpav is
a conditional partial availability type. Subtyping ≤ is pointwise set inclusion, i.e.
(ant , cpav) ≤ (ant ′, cpav ′) iff ant ⊆ ant ′ and cpav ⊆ cpav ′. Typing judgements
take the form s : ant , cpav −→ ant ′, cpav ′. The intended meaning of the added con-
ditional partial availability component here is that, if the expressions in cpav are
conditionally partially available before running s, then expressions in cpav ′ may be
conditionally partially available after running the program.

The typing rules of the combined type system are given in Figure 4.18. The
rules for assignment now have the conditional partial availability component. An
expression is conditionally partially available in the posttype of an assignment if it is
so already in the pretype or is evaluated by the assignment and the assignment does
not modify any of its operands. Additionally, the expression is only declared con-
ditonally partially available if it is actually anticipable (worth to be precomputed),
thus the intersection with the anticipability type.

The optimization component of the type system is shown in Figure 4.19. Def-
initions of auxiliary variables can be introduced in two places, before assignments
(if the necessary conditions are met) and at subsumptions. An already computed
value is used if an expression is conditionally partially available (rule :=3pre). If it is
not, but is anticipable (will definitely be used), and the assignment does not change
the value of the expression, then the result of evaluating it is recorded in the auxil-
iary variable for that expression (rule :=2pre). The auxiliary function nv delivers a
unique new auxiliary variable for every nontrivial arithmetic expression, just like it
did for CSE. Edge splitting is performed by the subsumption rule, which introduces
auxiliary variable definitions when there is shrinking or growing of types (this typi-
cally happens at the beginning of loops and at the end of conditional branches and
loop bodies).

Semantic soundness and improvement

Again, we take soundness to mean that an original program and its optimized version
simulate each other up to a similarity relation ∼ on states, indexed by conditional
partial availability types of program points (remember that for CSE, it was condi-
tional partial anticipability types).

94

x := a : ant ′ \mod(x) ∪ eval(a)−→ ant ′ skip : ant −→ ant

s0 : ant −→ ant ′′ s1 : ant ′′ −→ ant ′

s0; s1 : ant −→ ant ′

st : ant −→ ant ′ sf : ant −→ ant ′

if b then st else sf : ant −→ ant ′

st : ant −→ ant

while b do st : ant −→ ant

ant ≤ ant0 s : ant0 −→ ant ′0 ant ′0 ≤ ant ′

s : ant −→ ant ′

Figure 4.17: Type system for anticipability

x := a : ant ′ \mod(x) ∪ eval(a), cpav −→ ant ′, (cpav ∪ eval(a) \mod(x)) ∩ ant ′

skip : ant , cpav −→ ant , cpav

s0 : ant , cpav −→ ant ′′, cpav ′′ s1 : ant ′′, cpav ′′ −→ ant ′, cpav ′

s0; s1 : ant , cpav −→ ant ′, cpav ′

st : ant , cpav −→ ant ′, cpav ′ sf : ant , cpav −→ ant ′, cpav ′

if b then st else sf : ant , cpav −→ ant ′, cpav ′
st : ant , cpav −→ ant , cpav

while b do st : ant , cpav −→ ant , cpav

ant , cpav ≤ ant0, cpav0 s : ant0, cpav0 −→ ant ′0, cpav ′0 ant ′0, cpav ′0 ≤ ant ′, cpav ′

s : ant , cpav −→ ant ′, cpav ′

Figure 4.18: Type system for the underlying analyses of simple PRE

Let σ ∼cpav σ∗ denote that two states σ and σ∗ agree on the auxiliary variables
wrt. cpav ⊆ AExp+ in the sense that ∀x ∈ Var. σ(x) = σ∗(x) and ∀a ∈ cpav . JaKσ =
σ∗(nv(a)). We can then obtain the following soundness theorem.

Theorem 19 (Soundness of simple PRE)
If s : ant , cpav −→ ant ′, cpav ′ ↪→ s∗ and σ ∼cpav σ∗, then

— σ �s�σ′ implies the existence of σ′∗ such that σ′ ∼cpav ′ σ
′
∗ and σ∗ �s∗�σ′∗,

— σ∗ �s∗�σ′∗ implies the existence of σ′ such that σ′ ∼cpav ′ σ
′
∗ and σ �s�σ′.

Proof. We only prove the first half of the theorem. The proof of the other half is
similar.

Given s : ant , cpav −→ ant ′, cpav ′ ↪→ s∗, σ ∼cpav σ∗ and σ �s�σ′, we must find
σ′∗ such that σ′ ∼cpav ′ σ

′
∗ and σ∗ �s∗�σ′∗. The proof is by induction on the typing

derivation with a subsidiary induction on the derivation of the semantic judgement.
We look at the following nontrivial cases.

• Case :=pre: The type derivation is of the form

x := a : ant , cpav −→ ant ′, cpav ′ ↪→ s∗

where ant =df ant ′\mod(x)∪eval(a), cpav ′ =df (cpav∪eval(a)\mod(x))∩ant ′.
We note that from the constraint cpav ⊆ ant it follows that cpav ⊆ cpav ′ ∪

95

a 6∈ cpav a 6∈ ant ′ ∨ x ∈ FV (a)

x := a : ant ′ \mod(x) ∪ eval(a), cpav −→ ant ′, (cpav ∪ eval(a) \mod(x)) ∩ ant ′ ↪→ x := a
:=1pre

a 6∈ cpav a ∈ ant ′ x 6∈ FV (a)

x := a : ant ′ \mod(x) ∪ eval(a), cpav −→ ant ′, (cpav ∪ eval(a) \mod(x)) ∩ ant ′

↪→ nv(a) := a;x := nv(a)

:=2pre

a ∈ cpav

x := a : ant ′ \mod(x) ∪ eval(a), cpav −→ ant ′, (cpav ∪ eval(a) \mod(x)) ∩ ant ′ ↪→ x := nv(a)
:=3pre

skip : ant , cpav −→ ant , cpav ↪→ skip
skippre

s0 : ant , cpav −→ ant ′′, cpav ′′ ↪→ s′0 s1 : ant ′′, cpav ′′ −→ ant ′, cpav ′ ↪→ s′1

s0; s1 : ant , cpav −→ ant ′, cpav ′ ↪→ s′0; s′1

comppre

st : ant , cpav −→ ant ′, cpav ′ ↪→ s′t sf : ant , cpav −→ ant ′, cpav ′ ↪→ s′f

if b then st else sf : ant , cpav −→ ant ′, cpav ′ ↪→ if b then s′t else s′f
ifpre

st : ant , cpav −→ ant , cpav ↪→ s′t

while b do st : ant , cpav −→ ant , cpav ↪→ while b do s′t
whilepre

ant , cpav ≤ ant0, cpav0 s : ant0, cpav0 −→ ant ′0, cpav ′0 ↪→ s′ ant ′0, cpav ′0 ≤ ant ′, cpav ′

s : ant , cpav −→ ant ′, cpav ′ ↪→ [nv(a) := a | a ∈ cpav0 \ cpav]; s′; [nv(a) := a | a ∈ cpav ′ \ cpav ′0]
conseqpre

Figure 4.19: Type system for simple PRE, with the optimization component

eval(a):

cpav = cpav ∩ ant
= cpav ∩ ((ant ′ \mod(x)) ∪ eval(a))
⊆ (cpav \mod(x) ∩ ant ′) ∪ eval(a)
= ((cpav ∪ eval(a)) \mod(x) ∩ ant ′) ∪ eval(a)
= cpav ′ ∪ eval(a)

and cpav ′ ∩ mod(x) = ∅. The corresponding given semantic derivation must
be of the form

σ �x := a�σ[x 7→ JaKσ]

hence σ′ = σ[x 7→ JaKσ].

– Subcase :=1pre: We know that a /∈ cpav . We also know that either
a /∈ ant ′ or x ∈ FV (a) (i.e., a /∈ mod(x)), so cpav ⊇ cpav ′. Moreover,
s∗ =df x := a.
We have the semantic derivation

σ∗ �x := a�σ′∗

where σ′∗ =df σ∗[x 7→ JaKσ∗]. From σ ∼cpav σ∗ it follows that JaKσ =
JaKσ∗, so that, using cpav ⊇ cpav ′ as well, we can conclude σ′ = σ[x 7→
JaKσ] ∼cpav ′ σ∗[x 7→ JaKσ] = σ∗[x 7→ JaKσ∗] = σ′∗.

96

– Subcase :=2pre: We have that a /∈ cpav . We also have that a is nontrivial
and cpav ∪ {a} ⊇ cpav ′. Also, s∗ =df nv(a) := a;x := nv(a). We have
the semantic derivation

σ∗ �nv(a) := a�σ′′∗ σ′′∗ �x := nv(a)�σ′∗
σ∗ �nv(a) := a;x := nv(a)�σ′∗.

where σ′′∗ =df σ∗[nv(a) 7→ JaKσ∗] and σ′∗ =df σ
′′
∗ [x 7→ σ′′∗(nv(a))] = σ′′∗ [x 7→

JaKσ∗]. From σ ∼cpav σ∗ it is immediate that σ ∼cpav∪{a} σ∗[nv(a) 7→
JaKσ] = σ∗[nv(a) 7→ JaKσ∗] = σ′′∗ and therefore by cpav ∪ {a} ⊇ cpav ′ we
have σ′ = σ[x 7→ JaKσ] ∼cpav ′ σ

′′
∗ [x 7→ JaKσ] = σ′′∗ [x 7→ JaKσ∗] = σ′∗.

– Subcase :=3pre: We have that a ∈ cpav , so it follows that cpav ⊇ cpav ′.
We have s∗ =df x := nv(a). We have the semantic derivation

σ∗ �x := nv(a)�σ′∗

where σ′∗ =df σ∗[x 7→ σ∗(nv(a))]. We know that a ∈ cpav , so from σ ∼cpav

σ∗ we learn JaKσ = σ∗(nv(a)). Further, using also that cpav ⊇ cpav ′, we
realize that σ′ = σ[x 7→ JaKσ] ∼cpav ′ σ∗[x 7→ JaKσ] = σ∗[x 7→ σ∗(nv(a))] =
σ′∗.

• Case conseqpre: The type derivation is of the form
....

s : ant0, cpav0 −→ ant ′0, cpav ′0 ↪→ s∗

s : ant , cpav −→ ant ′, cpav ′ ↪→ s′; s∗; s′′

where (ant , cpav) ≤ (ant0, cpav0), (ant′0, cpav ′0) ≤ (ant ′, cpav ′), s′ =df

[nv(a) := a | a ∈ cpav0 \ cpav] and s′′ =df [nv(a) := a | a ∈ cpav ′ \ cpav ′0].
First we find σ0 such that σ∗ �s′�σ0 and σ ∼cpav0

σ0. We have the semantic
derivation

σ∗ �s′�σ0

where σ0 =df σ∗[nv(a) 7→ JaKσ∗ | a ∈ cpav0 \ cpav]. From σ ∼cpav σ∗ we get
that σ ∼cpav0

σ∗[nv(a) 7→ JaKσ | a ∈ cpav0 \ cpav] = σ∗[nv(a) 7→ JaKσ∗ | a ∈
cpav0 \cpav] = σ0, since every expression in the difference of cpav0 and cpav is
explicitly made equal to its corresponding auxiliary variable and no variables
from Var are modified. From the induction hypothesis we obtain that there
is a state σ1 such that σ0 �s∗�σ1 and σ′ ∼cpav ′0

σ1. It is now enough to show
that there is a state σ′∗ such that σ1 �s′′�σ′∗ and σ′ ∼cpav ′ σ

′
∗. Similarly for

the case of s′, we have the derivation

σ1 �s′′�σ′∗

where σ′∗ =df σ1[nv(a) 7→ JaKσ1 | a ∈ cpav ′ \ cpav ′0]. Again it is easy to realize
that σ′ ∼cpav ′0

σ1 gives us σ′ ∼cpav ′ σ1[nv(a) 7→ JaKσ′ | a ∈ cpav ′ \ cpav ′0] =
σ1[nv(a) 7→ JaKσ1 | a ∈ cpav ′ \ cpav ′0] = σ′∗.

97

�

It is possible to show more than just correctness of the optimization using
the relational method. One can also show that the optimization is actually an
improvement in the sense that the number of evaluations of an expression on any
given program path cannot increase. This means that no new computations can be
introduced which are not used later on in the program. This is not obvious, since
code motion might introduce unneeded evaluations.

To show this property, there must be a way to count expression uses. This can be
done via a simple instrumented semantics, which counts the number of evaluations of
every expression. In the instrumented semantics a state is a pair (σ, r) of a standard
state σ ∈ Var → Z (an assignment of integer values to variables) and a “resource”
state r ∈ AExp+ → N associating to every nontrivial arithmetic expression a
natural number for the number of times it has been evaluated. The rules of the
semantics are as those for the standard semantics, except that for assignments of
nontrivial expressions we stipulate

(σ, r)�x := a� (σ[x 7→ JaKσ], r[a 7→ r(a) + 1])

The corresponding similarity relation between the states is the following. We
define (σ, r) ≈cpav (σ∗, r∗) to mean that two states (σ, r) and (σ∗, r∗) are similar
wrt. cpav ⊆ AExp+ in the sense that σ ∼cpav σ∗ and, moreover, ∀a ∈ cpav . r∗(a) ≤
r(a) + 1 and ∀a ∈ AExp+ \ cpav . r∗(a) ≤ r(a).

Here the conditional partial availability types serve as an “amortization” mech-
anism. The intuitive meaning of an expression being in the type of a program point
is that there will be a use of this expression somewhere in the future, where this
expression will be replaced with a variable already holding its value. Thus it is
possible that a computation path of an optimized program has one more evaluation
of the expression before this point than the corresponding computation path of the
original program due to an application of subsumption. This does not break the
improvement argument, since the type increase at the subsumption point contains a
promise that this evaluation will be taken advantage of (“amortized”) in the future.

Theorem 20 (Improvement property of simple PRE)
If s : ant , cpav −→ ant ′, cpav ′ ↪→ s∗ and (σ, r) ≈cpav (σ∗, r∗), then
— (σ, r)�s� (σ′, r′) implies the existence of (σ′∗, r

′
∗) such that (σ′, r′) ≈cpav ′ (σ′∗, r

′
∗)

and (σ∗, r∗)�s∗� (σ′∗, r
′
∗),

— (σ∗, r∗)�s∗� (σ′∗, r
′
∗) implies the existence of (σ′, r′) such that (σ′, r′) ≈cpav ′

(σ′∗, r
′
∗) and (σ, r)�s� (σ′, r′).

Proof. Again we only show the proof of the first part. The reasoning is similar to
that we showed in the proof of Theorem 19, so we only concentrate ob the evaluation
counting part of the states and ignore the variable values.

Given s : ant , cpav−→ant ′, cpav ′ ↪→ s∗, (σ, r) ≈cpav (σ∗, r∗) and (σ, r)�s� (σ′, r′),
we look for a state (σ′∗, r

′
∗) such that (σ′, r′) ≈cpav ′ (σ′∗, r

′
∗) and (σ∗, r∗)�s∗� (σ′∗, r

′
∗).

98

The proof is by induction on the type derivation and we look at the following non-
trivial cases.

• Case :=pre: The type derivation is of the form

x := a : ant , cpav −→ ant ′, cpav ′ ↪→ s∗

where ant =df ant ′\mod(x)∪eval(a), cpav ′ =df (cpav∪eval(a)\mod(x))∩ant ′.

From Theorem 19, we remember that cpav ⊆ cpav ′ ∪ eval(a).

At the same time also cpav∪eval(a) ⊇ (cpav∪eval(a))\mod(x)∩ant ′ = cpav ′.
So for any nontrivial expression a′ 6= a, a′ ∈ cpav and a′ ∈ cpav ′ are in fact
equivalent statements.

The given semantic derivation must be of the form

(σ, r)�x := a� (σ[x 7→ JaKσ], r[a 7→ r(a) + 1])

– Subcase :=1pre: We have that a /∈ cpav and either a /∈ ant ′ or x ∈ FV (a),
so a /∈ cpav ′. Moreover, s∗ =df x := a.
We have the semantic derivation

(σ∗, r∗)�x := a� (σ′∗, r
′
∗) .

where (σ′∗, r
′
∗) =df (σ∗[x 7→ JaKσ∗], r∗[a 7→ r∗(a) + 1]). From the assump-

tion we know that r∗(a) ≤ r(a), so r′∗(a) = r∗(a) + 1 ≤ r(a) + 1 = r′(a).
– Subcase :=2pre: We have that a /∈ cpav and both a ∈ ant ′ and x /∈ FV (a),

hence a ∈ cpav ′. Moreover, s∗ =df nv(a) := a;x := nv(a). We have the
semantic derivation

(σ∗, r∗)�nv(a) := a�σ′′∗ , r′′∗ (σ′′∗ , r
′′
∗)�x := nv(a)� (σ′∗, r

′
∗)

(σ∗, r∗)�nv(a) := a;x := nv(a)� (σ′∗, r
′
∗) .

where (σ′′∗ , r
′′
∗) =df (σ∗[nv(a) 7→ JaKσ∗], r∗[a 7→ r∗(a)+1]) and (σ′∗, r

′
∗) =df

(σ′′∗ [x 7→ σ′′∗(nv(a))], r′′∗). Similarly to the previous case, from r∗(a) ≤ r(a)
we obtain r′∗(a) = r′′∗(a) = r∗(a) + 1 ≤ r(a) + 1 = r′(a) < r′(a) + 1.

– Subcase :=3pre: We have that a ∈ cpav and s∗ =df x := nv(a). We have
the derivation

(σ∗, r∗)�x := nv(a)� (σ′∗, r
′
∗) .

where (σ′∗, r
′
∗) =df (σ∗[x 7→ σ∗(nv(a))], r∗). From r∗(a) ≤ r(a) + 1 we get

that r′∗(a) = r∗(a) ≤ r(a) + 1 = r′(a) (so all is well both if a /∈ cpav ′ and
if a ∈ cpav ′; both situations are possible).

In all three subcases, for any nontrivial a′ 6= a, if a′ ∈ cpav , then we have
that a′ ∈ cpav ′ as well and therefore from r∗(a′) ≤ r(a′) + 1 we get r′∗(a

′) =
r∗(a′) ≤ r(a′) + 1 = r′(a′) + 1. Similarly, for a′ 6= a such that a′ /∈ cpav we
have a′ /∈ cpav ′, so r∗(a′) ≤ r(a′) gives us r′∗(a

′) = r∗(a′) ≤ r(a′) = r′(a′).

99

• Case conseqpre: The type derivation is of the form

....
s : ant0, cpav0 −→ ant ′0, cpav ′0 ↪→ s∗

s : ant , cpav −→ ant ′, cpav ′ ↪→ s′; s∗; s′′

where (ant , cpav) ≤ (ant0, cpav0), (ant′0, cpav ′0) ≤ (ant ′, cpav ′) and s′ =df

[nv(a) := a | a ∈ cpav0 \cpav], s′′ =df [nv(a) := a | a ∈ cpav ′ \cpav ′0]. First we
find a state (σ0, r0) such that (σ∗, r∗)�s′� (σ0, r0) and (σ, r) ≈cpav0

(σ0, r0).
We have the semantic derivation

(σ∗, r∗)�s′� (σ0, r0) .

where (σ0, r0) =df (σ∗[nv(a) 7→ JaKσ∗ | a ∈ cpav0 \ cpav], r∗[a 7→ r∗(a) + 1 | a ∈
cpav0 \ cpav]). For any expression a ∈ cpav , from cpav ⊆ cpav0 we have a ∈
cpav0, whereas from r∗(a) ≤ r(a)+1 we can conclude r0(a) = r∗(a) ≤ r(a)+1.
Similarly, for any nontrivial expression a /∈ cpav0, from cpav ⊆ cpav0 we learn
that a /∈ cpav , and then r∗(a) ≤ r(a) tells us that r0(a) = r∗(a) ≤ r(a). If
an expression a is in cpav0 \ cpav , then from r∗(a) ≤ r(a) we can conclude
r0(a) = r∗(a) + 1 ≤ r(a) + 1.

By the induction hypothesis, there must exist a state (σ1, r1) such that (σ0, r0)
�s∗� (σ1, r1) and (σ′, r′) ≈cpav ′0

(σ1, r1). It is now enough to exhibit a state
(σ′∗, r

′
∗) such that (σ1, r1)�s′′� (σ′∗, r

′
∗) and (σ′, r′) ≈cpav ′ (σ′∗, r

′
∗). This can be

done in the same way as for s′.

�

To prove that an optimization is really optimal in the sense of achieving the
best possible improvement (which simple PRE really is not), we would have to fix
what kind of modifications of a given program we consider as possible transformation
candidates (they should not modify the control flow graph other than by splitting
edges, they should not take advantage of the real domains and interpretation of
expressions etc.). The argument would have to compare the optimization to other
sound transformation candidates.

For proof transformation, the key observation is that the expressions which
are conditionally partially available must have been computed and their values not
modified, thus their values are equal to the values of the corresponding auxiliary
variables that have been defined.

Let P |cpav abbreviate
∧

[nv(a) = a | a ∈ cpav] ∧ P . We have the following
theorem.

Theorem 21 (Preservation of Hoare logic provability/proofs)
If s : ant , cpav −→ ant ′, cpav ′ ↪→ s∗, then {P} s {Q} implies {P |cpav} s∗ {Q|cpav ′}.

100

Proof. Nonconstructively, this theorem is a corollary from the correctness of the
optimization (second half) and soundness and relative completeness of Hoare logic.

We present a constructive proof which yields automatic Hoare proof transfor-
mation. Given a derivation of s : ant , cpav −→ ant ′, cpav ′ ↪→ s∗ and an aligned
Hoare proof of {P} s {Q}, we induct on the type derivation and transform the given
Hoare proof into one of {P |cpav} s∗ {Q|cpav ′}.

We look at the cases where actual modifications happen (the cases for sequence,
if, and while constructs are again straightforward).

• Case :=pre: The type derivation is

x := a : ant , cpav −→ ant ′, cpav ′ ↪→ s∗

where ant =df ant ′\mod(x)∪eval(a), cpav ′ =df (cpav∪eval(a)\mod(x))∩ant ′.
We notice that this implies cpav ∪ eval(a) ⊇ cpav ′ and cpav ′ ∩ mod(x) = ∅.
The latter observation gives that P [a′/x]|cpav ′ ⇔ P |cpav ′ [a′/x].

The given Hoare logic proof is

{P [a/x]}x := a {P}

– Subcase :=1pre: We have that a /∈ cpav . We also have that either a /∈ ant ′

or x ∈ FV (a) (i.e., a /∈ mod(x)), so cpav ⊇ cpav ′. Moreover, s∗ =df x :=
a.
From cpav ⊇ cpav ′ it follows that P [a/x]|cpav |= P [a/x]|cpav ′ . The trans-
formed Hoare logic proof is

{P |cpav ′ [a/x]}x := a {P |cpav ′}
{P [a/x]|cpav ′}x := a {P |cpav ′}
{P [a/x]|cpav}x := a {P |cpav ′}

– Subcase :=2pre: We have that a /∈ cpav . We also have that a is nontrivial,
so that cpav ∪ {a} ⊇ cpav ′. Moreover, s∗ =df nv(a) := a;x := nv(a).
From cpav ∪ {a} ⊇ cpav ′ it follows that P [nv(a)/x]|cpav∪{a} |=
P [nv(a)/x]|cpav ′ . From reflexivity of equality, P [a/x]|cpav ⇔ P [a/x]|cpav∧
a = a ⇔
(P [nv(a)/x]|cpav∪{a})[a/nv(a)]. The transformed Hoare logic proof is

B0 B1

{P [a/x]|cpav}nv(a) = a;x := nv(a) {P |cpav ′}

where B0 ≡

{P [nv(a)/x]|cpav∪{a}[a/nv(a)]}nv(a) = a {P [nv(a)/x]|cpav∪{a}}
{P [a/x]|cpav}nv(a) = a {P [nv(a)/x]|cpav ′}

101

and B1 ≡
{P |cpav ′ [nv(a)/x]}x := nv(a) {P |cpav ′}
{P [nv(a)/x]|cpav ′}x := nv(a) {P |cpav ′}

– Subcase :=3pre: We have that a ∈ cpav , so cpav ⊆ cpav ′. Moreover,
s∗ =df x := nv(a).
We have a ∈ cpav and cpav ⊇ cpav ′, therefore P [a/x]|cpav |= P [a/x]|cpav ′∧
nv(a) = a. Substitution of equals for equals gives P |cpav ′ [a/x] ∧ nv(a) =
a |= P |cpav ′ [nv(a)/x]. The transformed Hoare logic proof is

{P |cpav ′ [nv(a)/x]}x := nv(a) {P |cpav ′}
{P |cpav ′ [a/x] ∧ nv(a) = a}x := nv(a) {P |cpav ′}
{P [a/x]|cpav ′ ∧ nv(a) = a}x := nv(a) {P |cpav ′}

{P [a/x]|cpav}x := nv(a) {P |cpav ′}

• Case conseqpre: The type derivation is

....
s : ant0, cpav0 −→ ant ′0, cpav ′0 ↪→ s∗

s : ant , cpav −→ ant ′, cpav ′ ↪→ s′; s∗; s′′

where (ant , cpav) ≤ (ant0, cpav0), (ant′0, cpav ′0) ≤ (ant , cpav) and s′ =df

[nv(a) := a | a ∈ cpav0 \ cpav], s′′ =df [nv(a) := a | a ∈ cpav ′ \ cpav ′0].
The given Hoare logic proof is

....
{P0} s {Q0}
{P} s {Q}

where P |= P0 and Q0 |= Q.

By the induction hypothesis, there is a Hoare logic proof of {P0|cpav0
} s∗ {Q0|cpav ′0

}.
It is an assumption that P |= P0, hence P |cpav |= P0|cpav .

By reflexivity of equality P0|cpav ⇔ P0|cpav ∧
∧

[a = a| | a ∈ cpav0 \ cpav] |=
P0|cpav0

[a/nv(a) | a ∈ cpav0\cpav]. Hence from the axiom {P0|cpav0
[a/nv(a) |

a ∈ cpav0 \ cpav]} s′ {P0|cpav0
} by the consequence rule we have a proof of

{P |cpav} s′ {P0|cpav0
}.

Similarly we can make a proof of {Q0|cpav ′0
} s′′ {Q|cpav ′}.

Putting everything together with the sequence rule, we obtain a proof of
{P |cpav} s′; s∗; s′′ {Q|cpav ′}, which is the required transformed Hoare logic proof.

�

An example application of the type system and transformation of Hoare logic
proofs is shown in Figures 4.20, 4.21 and 4.22. We have a program s =df while i <

102

n := n+ (y + z) : {y + z}, {y + z} −→ {y + z}, {y + z}
↪→ n := n+ t

E
E i := i+ 1 : {y + z}, {y + z} −→ {y + z}, {y + z}

↪→ i := i+ 1

n := n+ (y + z); i := i+ 1 : {y + z}, {y + z} −→ {y + z}, {y + z}
↪→ n := n+ t; i := i+ 1

while i < k do (n := n+ (y + z); i := i+ 1) : {y + z}, {y + z} −→ {y + z}, {y + z}
↪→ while i < k do (n := n+ t; i := i+ 1)

while i < k do (n := n+ (y + z); i := i+ 1) : {y + z}, ∅ −→ {y + z}, {y + z}
↪→ t := y + z; while i < k do (n := n+ t; i := i+ 1)

x := y + z : {y + z}, {y + z} −→ ∅, ∅
↪→ x := t

�
�
�
�
�
�
�
��

while i < k do (n := n+ (y + z); i := i+ 1);x := y + z : {y + z}, ∅ −→ ∅, ∅
↪→ t := y + z; while i < k do (n := n+ t; i := i+ 1);x := t

Figure 4.20: Type derivation for the example program

{i+ 1 ≤ k ∧ n+ (y + z) = (i+ 1) ∗ (y + z)}n := n+ (y + z) {i+ 1 ≤ k ∧ n = (i+ 1) ∗ (y + z)}

{i+ 1 ≤ k ∧ n = (i+ 1) ∗ (y + z)} i := i+ 1 {i ≤ k ∧ n = i ∗ (y + z)}

�
�

{i < k ∧ n = i ∗ (y + z)}n := n+ (y + z); i := i+ 1 {i ≤ k ∧ n = i ∗ (y + z)}
{i ≤ k ∧ n = i ∗ (y + z)}while i < k do (n := n+ (y + z); i := i+ 1) {i 6< k ∧ i ≤ k ∧ n = i ∗ (y + z)}

{n = k ∗ (y + z)}x := y + z {n = k ∗ (y + z)}

�
�
�
�
�
�
�

{n = 0 ∧ i = 0 ∧ k ≥ 0}while i < k do (n := n+ (y + z); i := i+ 1);x := y + z {n = k ∗ (y + z)}

Figure 4.21: The original proof for the example program

{i ≤ k ∧ n = i ∗ (y + z)} t := y + z { i ≤ k ∧ n = i ∗ (y + z)
∧ t = y + z }

{i+ 1 ≤ k ∧ n+ t = (i+ 1) ∗ (y + z) ∧ t = y + z}
n := n+ t

{i+ 1 ≤ k ∧ n = (i+ 1) ∗ (y + z) ∧ t = y + z}

{i+ 1 ≤ k ∧ n = (i+ 1) ∗ (y + z) ∧ t = y + z}
i := i+ 1

{i ≤ k ∧ n = i ∗ (y + z) ∧ t = y + z}

%
%
%
%
%

{i < k ∧ n = i ∗ (y + z) ∧ t = y + z}
n := n+ t; i := i+ 1

{i ≤ k ∧ n = i ∗ (y + z) ∧ t = y + z}
{i ≤ k ∧ n = i ∗ (y + z) ∧ t = y + z}

while i < k do (n := n+ (y + z); i := i+ 1)
{i 6< k ∧ i ≤ k ∧ n = i ∗ (y + z) ∧ t = y + z}
{i ≤ k ∧ n = i ∗ (y + z)}

t := y + z; while i < k do (n := n+ (y + z); i := i+ 1)
{i = k ∧ n = i ∗ (y + z) ∧ t = y + z}

{n = k ∗ (y + z)}x := t {n = k ∗ (y + z)}
{n = k ∗ (y + z) ∧ t = y + z}

x := t
{n = k ∗ (y + z)}

{n = 0 ∧ i = 0 ∧ k ≥ 0}
t := y + z; while i < k do (n := n+ t; i := i+ 1);x := t

{n = k ∗ (y + z)}

Figure 4.22: The transformed proof

103

{i+ 1 ≤ k ∧ c+ 1 = i+ 1}n := n+ (y + z) {i+ 1 ≤ k ∧ c = (i+ 1)}

E
E
E
EE

{i+ 1 ≤ k ∧ c = (i+ 1)} i := i+ 1 {i ≤ k ∧ c = i}
{i < k ∧ c = i}n := n+ (y + z); i := i+ 1 {i ≤ k ∧ c = i)}

{i ≤ k ∧ c = i}while i < k do (n := n+ (y + z); i := i+ 1) {i 6< k ∧ i ≤ k ∧ c = i)}

{c+ 1 = k + 1}x := y + z {c = k + 1}

�
�
�
��

{c = 0 ∧ i = 0 ∧ k ≥ 0}while i < k do (n := n+ (y + z); i := i+ 1);x := y + z {c = k + 1)}

Figure 4.23: An original proof for resource usage

{i ≤ k ∧ c+ 1 ≤ i+ 1} t := y + z {i ≤ k ∧ c ≤ i+ 1}

E
E
E
E
E
EE

{i+ 1 ≤ k ∧ c ≤ (i+ 1) + 1}n := n+ t {i+ 1 ≤ k ∧ c ≤ (i+ 1) + 1}

{i+ 1 ≤ k ∧ c ≤ (i+ 1) + 1} i := i+ 1 {i ≤ k ∧ c ≤ i+ 1}

�
�

{i < k ∧ c ≤ i+ 1}n := n+ t; i := i+ 1 {i ≤ k ∧ c ≤ i+ 1}
{i ≤ k ∧ c ≤ i+ 1}while i < k do (n := n+ (y + z); i := i+ 1) {i 6< k ∧ i ≤ k ∧ c ≤ i+ 1}
{i ≤ k ∧ c ≤ i} t := y + z; while i < k do (n := n+ (y + z); i := i+ 1) {i = k ∧ c ≤ i+ 1}

{c ≤ k + 1}x := t {c ≤ k + 1)}

�
�
�
�
�
�
��

{c ≤ 0 ∧ i = 0 ∧ k ≥ 0} t := y + z; while i < k do (n := n+ t; i := i+ 1);x := t {c ≤ k + 1}

Figure 4.24: The transformed proof for resource usage

k do (n := n + (y + z); i := i + 1);x := y + z and a Hoare derivation tree for
{n = 0 ∧ i = 0 ∧ k ≥ 0} s {n = k ∗ (y + z)}. Note that to make the derivation trees
smaller, we use n := n + (y + z), i.e. an expression with more than one operator.
This can be considered as syntactic sugar, since the assignment could be rewritten
as n′ := y+z;n := n+n′. The optimization lifts the computation of y+z out of the
while-loop. This renders the original proof of the program impossible to associate to
the transformed program. For example, the old loop invariant is not valid any more,
since it talks about y + z, but the expression is not present in the modified loop.
Figure 4.22 shows the proof tree where this has been remedied using the information
present in the types.

We can also achieve an automatic proof transformation corresponding to the
improvement property. This allows us to invoke a performance bound of a given
program to obtain one for its optimized version.

Similarly to semantic improvement, where we needed an instrumented seman-
tics, now we need an instrumented Hoare logic. We extend the signature of the stan-
dard Hoare logic with an extralogical constant paq for any expression a ∈ AExp+.
The inference rules of the instrumented Hoare logic are the analogous to those for
the standard Hoare logic except that the axiom for nontrivial assignment becomes

{P [a/x][paq+ 1/paq]}x := a {P}

It should not come as a surprise that the instrumented Hoare logic is sound and

104

relatively complete wrt. the instrumented semantics.
Now, we define P‖cpav to abbreviate

[∃v(a) | a ∈ AExp+].∧
[nv(a) = a ∧ paq ≤ v(a) + 1 | a ∈ cpav]

∧
∧

[paq ≤ v(a) | a /∈ cpav]

∧ P [v(a)/paq].

Here v(a) generates a new unique logic variable for every nontrivial arithmetic ex-
pression. With this notation we can state a refined theorem, yielding transformation
of proofs of the instrumented Hoare logic.

Theorem 22 (Preservation of instrumented Hoare logic provability/proofs)
If s : ant , cpav −→ ant ′, cpav ′ ↪→ s∗, then {P} s {Q} implies {P‖cpav} s∗ {Q‖cpav ′}.

The proofs (nonconstructive and constructive) are similar to those of the pre-
vious theorem.

To witness the theorem in action we revisit the program analyzed in Figure 4.20.
Figure 4.23 demonstrates that in the instrumented Hoare logic we can prove that
the program computes y + z exactly k + 1 times (we have abbreviated py + zq to
c). The invariant for the while-loop is i ≤ k ∧ c = i. Figure 4.24 contains the
transformed proof for the optimized program. We can prove that y+ z is computed
at most k+ 1 times, but the proof is quite different; in particular, the loop invariant
is now i ≤ k ∧ c = i + 1. (In this proof, we have enhanced readability by replacing
the existentially quantified assertions yielded by the automatic transformation with
equivalent quantifier-free simplifications.)

As expected, this formal counterpart of the semantic improvement argument
is no smarter than the semantic improvement argument itself. In our semantic
improvement statement we claimed that the optimized program performs at most
one extra evaluation per expression as compared to the original program, namely for
the expression that is precomputed for future use. Had we claimed something more
specific and stronger about, e.g., those loops from where at least one assignment can
be moved out, our corresponding automatic proof transformation could have been
stronger as well. It is not our goal to delve deeper into this interesting point here.
Rather, we are content here with the observation that constructive and structured
semantic arguments have can be given formal counterparts in the form of automatic
proof transformations.

4.4.2 Full PRE

We now look at the formulation of full PRE by Paleri et al. [50]. As was explained in
Section 4.4.1, simple PRE does not use all optimization opportunities. This stems
from the fact that it only takes into account total anticipability. An example of a
program which simple PRE does not optimize is the following one.

105

The program is left unoptimized by simple PRE since y + z is not anticipable
at the exit of node 2. Full PRE would optimize the program by introducing a
new auxiliary variable to hold the computation of y + z in node 2 and copying the
computation of y + z into the edge leaving node 1. This would allow to skip the
computation of y + z in node 3.

This does not mean that it is possible to simply substitute the total anticipa-
bility analysis with partial anticipability. The following example illustrates this.

While it is seemingly similar to the previous example, it cannot be optimized
the same way, since if we moved a computation of y + z into the edge (1,5), we
would potentially worsen the runtime behavior of the program, since going through
the program through nodes (1, 5, 4), there would be an extra evaluation of y + z
that was not present in the original program. In fact no further optimization of this
program is possible.

The fundamental observation which allows us to perform PRE fully and cor-
rectly is that partial anticipability is enough only if the path leading from the node
where the expression becomes available (node 2 in the examples) to a node where
the expression becomes anticipable (node 3 in the examples) contains no nodes at
which the expression is neither anticipable nor available.

The last condition can be detected by two additional dataflow analyses, thus
the full PRE algorithm requires four analyses in total. These are standard (total)
availability and anticipability, and safe partial availability and safe partial antici-
pability analyses. The two latter depend on availability and anticipability. Their
descriptions rely on the notion of safety. A program point is said to be safe wrt. an
expression if that expression is either available or anticipable at that program point.

106

The dataflow inequations for the whole program in the CFG representation are
the following.

ANTOUT i ⊆
{
∅ if i = f⋂
j∈succ(i) ANTIN j otherwise

ANTIN i ⊆ ANTOUT i \MOD i ∪ EVALi

AVIN i ⊆
{
∅ if i = s⋂
j∈pred(i) AVOUT i otherwise

AVOUT i ⊆ (AVIN i ∪ EVALi) \MOD i

SPANTOUT i ⊇
{
∅ if i = f⋃
j∈succ(i) SPANTIN j otherwise

SPANTIN i ⊇ (SPANTOUT i \MOD i ∪ EVALi) ∩ SAFEIN i

SPAVIN i ⊇
{
∅ if i = s⋃
j∈pred(i) SPAVOUT i otherwise

SPAVOUT i ⊇ ((SPAVIN i ∪ EVALi) \MOD i) ∩ SAFEOUT i

ANTOUT i ⊆ SPANTOUT i ⊆ SAFEOUT i

ANTIN i ⊆ SPANTIN i ⊆ SAFEIN i

AVIN i ⊆ SPAVIN i ⊆ SAFEIN i

AVOUT i ⊆ SPAVOUT i ⊆ SAFEOUT i

SAFEIN i = ANTIN i ∪AVIN i

SAFEOUT i = ANTOUT i ∪AVOUT i

Using the results of the analysis, it is possible to optimize the program in the
following way. A computation of an expression should be added to the edge (i, j),
if the expression is safely partially available at the entry of node j, but not at the
exit of node i. Furthermore, the expression should be safely partially anticipable
at the entry of node j. This transformation makes partially redundant expressions
fully redundant exactly in places where it is necessary, thus the checking of safe
partial anticipability. Note that the latter was not necessary in simple PRE, since
conditional partial availability already implied anticipability. In a node where an
expression is evaluated if the expression is already safely partially available, its
evaluation can be replaced with a use of the auxiliary variable. If the expression is
not available, but is safely partially anticipable, the result of the evaluation can be
saved in the auxiliary variable.

We now present these analyses and the optimization as type systems. The type
system for anticipability was already described in Section 4.4.1. The type system
for availability was shown in Section 4.3

The type systems for safe partial availability and safe partial anticipability are
given as a single type system in Figure 4.25. They do not depend on each other,
but depend on the safety component. We use s to denote a full type derivation of

107

x := a : (spant ′\mod(x) ∪ eval(a)) ∩ safe, spav −→ spant ′, (spav ∪ eval(a) \mod(x)) ∩ safe′

skip : spant , spav −→ spant , spav

s0 : spant , spav −→ spant ′′, spav ′′ s1 : spant ′′, spav ′′ −→ spant ′, spav ′

s0; s1 : spant , spav −→ spant ′, spav ′

st : spant , spav −→ spant ′, spav ′ sf : spant , spav −→ spant ′, spav ′

if b then st else sf : spant , spav −→ spant ′, spav ′

st : spant , spav −→ spant , spav

while b do st : spant , spav −→ spant , spav

spant , spav ≤ spant0, spav0 s : spant0, spav0 −→ spant ′0, spav ′0 spant ′0, spav ′0 ≤ spant ′, spav ′

s : spant , spav −→ spant ′, spav ′

Figure 4.25: Type system for the underlying analyses of full PRE

s : ant , av −→ ant ′, av ′, thus safety safe in the pretype of s is defined as ant ∪ av ,
safety in the posttype safe ′ is ant ′ ∪ av ′.

The complete type of a program point is thus (ant , av , spant , spav) ∈ P(AExp+)
×P(AExp+)×P(AExp+)×P(AExp+), satisfying the conditions ant ⊆ spant ⊆
ant ∪ av and av ⊆ spav ⊆ ant ∪ av . Subtyping for safe partial anticipability is
reversed set inclusion, i.e., ≤=df⊇. For safe partial availability it is set inclusion,
≤=df⊆.

Without the extra restrictions on the types, the type system would still be
sound, but it would lose its improvement property, i.e., it might allow optimizations
which introduce unneeded evaluations. The restriction ant ⊆ spant guarantees
that the set of fully anticipable expression cannot be bigger than the set of partially
anticipable expressions. This is guaranteed by the principal type inference algorithm,
but in the type system the subsumption rule could break this relation without the
extra restriction. The same holds for full and partial availability. The restrictions
spant ⊆ ant ∪ av and spav ⊆ ant ∪ av guarantee safety as in the original algorithm
of Paleri et al.

The optimizing type system for full PRE is given in Figure 4.26. Code motion
at subsumption is now guided by the intersection of safe partial availability and safe
partial anticipability. In the definition of soundness, the similarity relation on states
also has to be invoked at this intersection. The same holds for proof transformation.

Theorem 23 (Soundness of full PRE)
If s : spant , spav −→ spant ′, spav ′ ↪→ s∗ and σ ∼spant∩spav σ∗, then
— σ �s�σ′ implies the existence of σ′∗ such that σ′ ∼spant ′∩spav ′ σ

′
∗ and σ∗ �s∗�σ′∗,

— σ∗ �s∗�σ′∗ implies the existence of σ′ such that σ′ ∼spant ′∩spav ′ σ
′
∗ and σ �s�σ′.

The proof is quite similar to that for simple PRE. Full PRE is using partial
anticipability instead of full anticipability, but this does not affect the soundness

108

a 6∈ spav a 6∈ spant ∨ x ∈ FV (a)

x := a : (spant ′\mod(x) ∪ eval(a)) ∩ safe, spav −→ spant ′, (spav ∪ eval(a) \mod(x)) ∩ safe′

↪→ x := a

a 6∈ spav a ∈ spant x 6∈ FV (a)

x := a : (spant ′\mod(x) ∪ eval(a)) ∩ safe, spav −→ spant ′, (spav ∪ eval(a) \mod(x)) ∩ safe′

↪→ nv(a) := a;x := nv(a)

a ∈ spav

x := a : (spant ′\mod(x) ∪ eval(a)) ∩ safe, spav −→ spant ′, (spav ∪ eval(a) \mod(x)) ∩ safe′

↪→ x := nv(a)

skip : spant , spav −→ spant , spav ↪→ skip

s0 : spant , spav −→ spant ′′, spav ′′ ↪→ s′0 s1 : spant ′′, spav ′′ −→ spant ′, spav ′ ↪→ s′1

s0; s1 : spant , spav −→ spant ′, spav ′ ↪→ s′0; s′1

st : spant , spav −→ spant ′, spav ′ ↪→ s′t sf : spant , spav −→ spant ′, spav ′ ↪→ s′f

if b then st else sf : spant , spav −→ spant ′, spav ′ ↪→ if b then s′t else s′f

st : spant , spav −→ spant , spav ↪→ s′t

while b do st : spant , spav −→ spant , spav ↪→ while b do s′t

spant , spav ≤ spant0, spav0 s : spant0, spav0 −→ spant ′0, spav ′0 ↪→ s′ spant ′0, spav ′0 ≤ spant ′, spav ′

s : spant , spav −→ spant ′, spav ′

↪→ [nv(a) := a | a ∈ (spav0 ∩ spant0) \ spav]; s′; [nv(a) := a | a ∈ (spav ′ ∩ spant ′) \ spav ′0]

Figure 4.26: Type system for full PRE, with the optimization component

of the optimization. We only have to show that the use of safety can not affect
soundness in a hazardous way.

Proof. Again we only prove the first half of the theorem. The proof is by induction
on the structure of the type derivation and we look at the same cases as for simple
PRE.

• Case :=pre: The type derivation is of the form

x := a : spant , spav −→ spant ′, spav ′ ↪→ s∗

where spant =df (spant ′\mod(x))∪eval(a))∩safe, spav ′ =df ((spav∪eval(a))\
mod(x)) ∩ safe ′.

We notice that safe ∪mod(x) ⊇ safe ′ since

safe ∪mod(x) = ant ∪ av ∪mod(x)
= (ant ′ \mod(x)) ∪ eval(a) ∪ av ∪mod(x)
⊇ ant ′ ∪ ((av ∪ eval(a)) \mod(x))
= ant ′ ∪ av ′

= safe ′

109

From this it follows that (spant ∩ spav) ∪ eval(a) ⊇ spant ′ ∩ spav ′:

(spant ∩ spav) ∪ eval(a)
= (((spant ′ \mod(x)) ∪ eval(a)) ∩ spav ∩ safe) ∪ eval(a)
= (spant ′ \mod(x) ∩ spav ∩ safe) ∪ eval(a)
⊇ spant ′ ∩ (spav ∪ eval(a)) \mod(x) ∩ safe
= spant ′ ∩ (spav ∪ eval(a)) \mod(x) ∩ (safe ∪mod(x))
⊇ spant ′ ∩ (spav ∪ eval(a)) \mod(x) ∩ safe ′

= spant ′ ∩ spav ′

We also note it separately that spant ′ ∩ spav ′ ∩mod(x) = ∅.
The given semantic judgement must be of the form

σ �x := a�σ[x 7→ JaKσ]

– Subcase :=1pre: We know that a /∈ spav . We also know that either
a /∈ spant ′ or x ∈ FV (a) (so a /∈ spav ′), so a /∈ spant ′ ∩ spav ′, which
implies spant ∩ spav ⊇ spant ′ ∩ spav ′. Moreover, s∗ =df x := a.
We have the semantic derivation

σ∗ �x := a�σ′∗

where σ′∗ =df σ∗[x 7→ JaKσ∗]. From σ ∼spant∩spav σ∗ it follows that JaKσ =
JaKσ∗, so that, using spant∩spav ⊇ spant ′∩spav ′ as well, we can conclude
σ′ = σ[x 7→ JaKσ] ∼spant ′∩spav ′ σ∗[x 7→ JaKσ] = σ∗[x 7→ JaKσ∗] = σ′∗.

– Subcase :=2pre: We have that a /∈ spav and a is nontrivial. Also, s∗ =df

nv(a) := a;x := nv(a). We have the semantic derivation

σ∗ �nv(a) := a�σ′′∗ σ′′∗ �x := nv(a)�σ′∗
σ∗ �nv(a) := a;x := nv(a)�σ′∗.

where σ′′∗ =df σ∗[nv(a) 7→ JaKσ∗] and σ′∗ =df σ
′′
∗ [x 7→ σ′′∗(nv(a))] = σ′′∗ [x 7→

JaKσ∗]. From σ ∼spant∩spav σ∗ it is immediate that σ ∼(spant∩spav)∪{a}
σ∗[nv(a) 7→ JaKσ] = σ∗[nv(a) 7→ JaKσ∗] = σ′′∗ and therefore by (spant ∩
spav) ∪ {a} ⊇ spant ′ ∩ spav ′ we have σ′ = σ[x 7→ JaKσ] ∼spant ′∩spav ′

σ′′∗ [x 7→ JaKσ] = σ′′∗ [x 7→ JaKσ∗] = σ′∗.

– Subcase :=3pre: We have that a ∈ spav , but then a is nontrivial and a ∈
safe (as spav ⊆ safe), so further a ∈ ((spant ′ \mod(x))∪eval(a))∩safe =
spant as well, i.e., a ∈ spant ∩ spav . As a consequence, spant ∩ spav ⊇
spant ′ ∩ spav ′, too. We have s∗ =df x := nv(a). We have the semantic
derivation

σ∗ �x := nv(a)�σ′∗

110

where σ′∗ =df σ∗[x 7→ σ∗(nv(a))]. From a ∈ spant∩spav and σ ∼spant∩spav

σ∗ we learn that JaKσ = σ∗(nv(a)). Further, using also that spant∩spav ⊇
spant ′ ∩ spav ′, we realize that σ′ = σ[x 7→ JaKσ] ∼spant ′∩spav ′ σ∗[x 7→
JaKσ] = σ∗[x 7→ σ∗(nv(a))] = σ′∗.

• Case conseqpre: The type derivation is of the form

....
s : spant0, spav0 −→ spant ′0, spav ′0 ↪→ s∗

s : spant , spav −→ spant ′, spav ′ ↪→ s′; s∗; s′′

where (spant , spav) ≤ (spant0, spav0), (spant′0, spav ′0) ≤ (spant ′, cpav ′), s′ =df

[nv(a) := a | a ∈ (spant0 ∩ spav0) \ spav] and s′′ =df [nv(a) := a | a ∈
(spant ′ ∩ spav ′) \ spav ′0]. First we find a state σ0 such that σ∗ �s′�σ0 and
σ ∼spant0∩spav0

σ0. We have the semantic derivation

σ∗ �s′�σ0

where σ0 =df σ∗[nv(a) 7→ JaKσ∗ | a ∈ (spant0 ∩ spav0) \ spav].

As σ ∼spant∩spav σ∗, it is enough to show that expressions not in spant ∩ spav
but in spant0∩spav0 are made equal to their corresponding auxiliary variables
by s′. But this is exactly what s′ does, as

(spant0 ∩ spav0) \ (spant ∩ spav)
= (spant0 ∩ spav0 \ spant) ∪ (spant0 ∩ spav0 \ spav)
= (spant0 ∩ spav0) \ spav

using spant ⊇ spant0.

From the induction hypothesis we obtain that there is a state σ1 such that
σ0 �s∗�σ1 and σ′ ∼spant ′0∩spav ′0

σ1. It is now enough to show that there is a
state σ′∗ such that σ1 �s′′�σ′∗ and σ′ ∼spav ′∩spav ′ σ

′
∗. This can be done similarly

to the case of s′.

�

For proof transformation, let P |spant∩spav abbreviate
∧

[nv(a) = a | a ∈ spant ∩
spav] ∧ P . We have the following theorem.

Theorem 24 (Preservation of Hoare logic provability/proofs for PRE)
If s : spant , spav −→ spant ′, spav ′ ↪→ s∗, then
—{P} s {Q} implies {P |spant∩spav} s∗ {Q|spant ′∩spav ′}.

Proof. The proof is by induction on the type derivation and we look at the same
cases as before.

111

• Case :=pre: The type derivation is

x := a : spant ′ ∩ safe, spav −→ spant , spav ′ ∩ safe ′ ↪→ s∗

where spant ′ =df (spant\mod(x)∪eval(a)), spav ′ =df (spav∪eval(a)\mod(x)).

From the soundness proof we remember that (spant∩spav)∪eval(a) ⊇ spant ′∩
spav ′ and spant ′ ∩ spav ′ ∩mod(x) = ∅. The latter fact tells us that for any a′

and P , we have P [a′/x]|spant ′∩spav ′ ⇔ P |spant ′∩spav ′ [a′/x].

The given Hoare logic proof must be of the form

{P [a/x]}x := a {P}

– Subcase :=1pre: We have that a /∈ spav . We also have that either a /∈
spant ′ or x ∈ FV (a) (so a /∈ spav ′), so altogether a /∈ spant ′ ∩ spav ′,
which implies spant ∩ spav ⊇ spant ′ ∩ spav ′. Moreover, s∗ =df x := a.
From spant ∩ spav ⊇ spant ′ ∩ spav ′, it follows thatP [a/x]|spant∩spav |=
P [a/x]|spant ′∩spav ′ . The transformed Hoare logic proof is

{P |spant′∩spav ′ [a/x]}x := a {P |spant′∩spav ′}
{P [a/x]|spant′∩spav ′}x := a {P |spant′∩spav ′}
{P [a/x]|spant∩spav}x := a {P |spant′∩spav ′}

– Subcase :=2pre: We have that a /∈ spav . We also have that a is nontrivial.
Moreover, s∗ =df nv(a) := a;x := nv(a).
From (spant ∩ spav) ∪ {a} ⊇ spant ′ ∩ spav ′, it follows that
P [nv(a)/x]|(spant∩spav)∪{a} |= P [nv(a)/x]|spant ′∩spav ′ . From reflexivity of
equality, P [a/x]|spant∩spav ⇔ P [a/x]|spant∩spav ∧ a = a ⇔
(P [nv(a)/x]|(spant∩spav)∪{a})[a/nv(a)]. The transformed Hoare logic proof
is

B0 B1

{P [a/x]|spant∩spav}nv(a) = a;x := nv(a) {P |spant′∩spav ′}

where B0 ≡

{P [nv(a)/x]|(spant∩spav)∪{a}[a/nv(a)]}nv(a) = a {P [nv(a)/x]|(spant∩spav)∪{a}}
{P [a/x]|spant∩spav}nv(a) = a {P [nv(a)/x]|spant′∩spav ′}

and B1 ≡

{P |spant′∩spav ′ [nv(a)/x]}x := nv(a) {P |spant′∩spav ′}
{P [nv(a)/x]|spant′∩spav ′}x := nv(a) {P |spant′∩spav ′}

– Subcase :=3pre: We have that a ∈ spav . We also have that a ∈ spant(as
a ∈ spav ⊆ safe and a is nontrivial). This has a ∈ spant ∩ spav as

112

a consequence and therefore we also get spant ∩ spav ⊇ spant ′ ∩ spav ′.
Further, s∗ =df x := nv(a).
From a ∈ spant ∩ spav and spant ∩ spav ⊇ spant ′ ∩ spav ′ we get
P [a/x]|spant∩spav |= P [a/x]|spant ′∩spav ′ ∧nv(a) = a. Substitution of equals
for equals gives P |spant ′∩spav ′ [a/x] ∧ nv(a) = a |= P |spant ′∩spav ′ [nv(a)/x].
The transformed Hoare logic proof is

{P |spant′∩spav ′ [nv(a)/x]}x := nv(a) {P |spant′∩spav ′}
{P |spant′∩spav ′ [a/x] ∧ nv(a) = a}x := nv(a) {P |spant′∩spav ′}
{P [a/x]|spant′∩spav ′ ∧ nv(a) = a}x := nv(a) {P |spant′∩spav ′}

{P [a/x]|spant∩spav}x := nv(a) {P |spant′∩spav ′}

• Case conseqpre: The type derivation is

....
s : spant0, spav0 −→ spant ′0, spav ′0 ↪→ s∗

s : spant , spav −→ spant ′, spav ′ ↪→ s′; s∗; s′′

where (spant , spav) ≤ (spant0, spav0), (spant ′0, spav ′0) ≤ (spant , spav) and
s′ =df [nv(a) := a | a ∈ (spant0 ∩ spav0) \ spav], s′′ =df [nv(a) := a | a ∈
(spant ′ ∩ spav ′) \ spav ′0]. The given Hoare logic proof is

....
{P0} s {Q0}
{P} s {Q}

where P |= P0 and Q0 |= Q.

By the induction hypothesis, there is a Hoare logic proof of
{P0|spant0∩spav0

} s∗ {Q0|spant ′0∩spav ′0
}.

It is an assumption that P |= P0, hence P |spant∩spav |= P0|spant∩spav . Using
reflexivity of equality we get P0|spant∩spav ⇔ P0|spant∩spav ∧

∧
[a = a | a ∈

(spant0 ∩ spav0) \ (spant ∩ spav)] |= P0|spant0∩spav0
[a/nv(a) | a ∈ (spav0 ∩

spant0) \ (spant ∩ spav)].

From the soundness proof we remember that (spant0∩spav0)\(spant ∩ spav) =
spant0 ∩ spav0) \ spav . Hence from the axiom {P0|(spant0∩spav0)[a/nv(a) | a ∈
(spant0 ∩ spav0) \ spav]} s′ {P0|(spant0∩spav0)} by the consequence rule we have
a proof of {P |(spant∩spav)} s′ {P0|spant0∩spav0

}.

Similarly we can make a proof of {Q0|spant ′0∩spav ′0
} s′′ {Q|spant ′∩spav ′}.

Putting everything together with the sequence rule, we obtain a proof of
{P |spant∩spav} s′; s∗; s′′ {Q|spant ′∩spav ′}, which is the required transformed Hoare
logic proof.

113

�

The similarity relation between the states for showing the improvement property
is the following. We define (σ, r) ≈spant∩spav ,av (σ∗, r∗) to mean that two states (σ, r)
and (σ∗, r∗) are similar wrt. spant ∩ spav and av in the sense that σ ∼spant∩spav σ∗
and, moreover, ∀a ∈ spant ∩ spav \ av . r∗(a) ≤ r(a) + 1 and ∀a 6∈ spant ∩ spav \
av . r∗(a) ≤ r(a).

This relation is more involved than in the case of simple PRE. For simple PRE,
an expression being in a type cpav meant a “promise” that there will be a use of
the expression, because cpav implied anticipability. For full PRE this is not the
case, since spant ∩ spav does not imply that there is a future use of the expression.
This is where the notion of safety comes into play. Since spant ∩ spav ⊆ safe where
safe = ant ∪ av , then if a ∈ spant ∩ spav , either a ∈ ant or a ∈ av . Notice that
a ∈ spant ∩ spav \ av implies a ∈ ant which means that we allow an increase in the
number of expression evaluations only at places where the expression is anticipable.
The reason why there cannot be an increase of evaluations of a where a ∈ av is
simply that availability implies that the expression is already computed on all paths
to that program point, so no extra evaluation could have been added. This is
the reason why we need to parameterize the similarity relation with av . A simple
example explaining this is the program x := a; if b then y := a else skip, which can
be optimized to nv(a) = a;x := nv(a); if b then y := nv(a) else skip. After the first
statement, a is clearly both safely partially available and safely partially anticipable.
But the count of evaluations of a should not be one larger for the optimized program
than for the original one, hence we need to take into account that a is available.
Consequently we can guarantee that the final number of evaluations of a for the
optimized program is no bigger than that of the original one.

Theorem 25 (Improvement property of full PRE)
If s : spant , spav −→ spant ′, spav ′ ↪→ s∗ and (σ, r) ≈(spant∩spav ,av) (σ∗, r∗), then
— (σ, r)�s� (σ′, r′) implies the existence of (σ′∗, r

′
∗) such that (σ′, r′) ≈(spant ′∩spav ′,av ′)

(σ′∗, r
′
∗) and (σ∗, r∗)�s∗� (σ′∗, r

′
∗),

— (σ∗, r∗)�s∗� (σ′∗, r
′
∗) implies the existence of (σ′, r′) such that (σ′, r′) ≈(spant ′∩spav ′,av ′)

(σ′∗, r
′
∗) and (σ, r)�s� (σ′, r′).

Proof. We only prove the first half of theorem. The proof is by induction on the
structure of the type derivation. We look at the following nontrivial cases.

• Case :=pre: The type derivation is of the form

x := a : spant , spav −→ spant ′, spav ′ ↪→ s∗

where spant =df ((spant ′\mod(x))∪eval(a))∩safe, spav ′ =df (spav∪eval(a))\
mod(x) ∩ safe ′.

114

We have that spant ∩ spav \ av ⊆ (spant ′ ∩ spav ′ \ av ′) ∪ eval(a):

(spant ′ ∩ spav ′ \ av ′) ∪ eval(a)
= (spant ′ ∩ (spav ∪ eval(a)) \mod(x) ∩ safe ′ \ ((av ∪ eval(a)) \mod(x)))
∪eval(a)

= (spant ′ ∩ (spav ∪ eval(a)) \mod(x) ∩ safe ′ \ (av ∪ eval(a))) ∪ eval(a)
= (spant ′ ∩ spav \mod(x) ∩ safe ′ \ av) ∪ eval(a)
⊇ (spant ′ ∩ spav \mod(x) ∩ safe \ av) ∪ eval(a)
⊇ ((spant ′ \mod(x)) ∪ eval(a)) ∩ safe ∩ spav \ av
= spant ∩ spav \ av

From the proof of soundness we remember that (spant ∩ spav) ∪ eval(a) ⊇
spant ′ ∩ spav ′. We also recall that spant ′ ∩ spav ′ ∩ mod(x) = ∅. This yields
that that (spant∩spav\av)∪eval(a) ⊇ ((spant∩spav)∪eval(a))\av ⊇ (spant ′∩
spav ′) \ av ⊇ spant ′ ∩ spav ′ \ ((av ∪ eval(a)) \mod(x)) = spant ′ ∩ spav ′ \ av ′.

So for any nontrivial expression a′ 6= a, a′ ∈ spant ∩ spav \ av and a′ ∈
spant ′ ∩ spav ′ \ av ′ are equivalent.

The given semantic derivation must be of the form

(σ, r)�x := a� (σ[x 7→ JaKσ], r[a 7→ r(a) + 1])

– Subcase :=1pre: We have that a /∈ spav , which implies that a /∈ spant ∩
spav \ av , and either a /∈ spant ′ or x ∈ FV (a) (so a /∈ spav ′), which
implies that a /∈ spant ′ ∩ spav ′ \ av ′. Moreover, s∗ =df x := a.
We have the semantic derivation

(σ∗, r∗)�x := a� (σ′∗, r
′
∗) .

where (σ′∗, r
′
∗) =df (σ∗[x 7→ JaKσ∗], r∗[a 7→ r∗(a) + 1]). From the assump-

tion we know that r∗(a) ≤ r(a), so r′∗(a) = r∗(a) + 1 ≤ r(a) + 1 = r′(a).

– Subcase :=2pre: We have that a /∈ spav , implying a /∈ spant ∩ spav \ av ,
and both a ∈ spant ′ and x /∈ FV (a), hence a ∈ av ′, implying a /∈
spant ′ ∩ spav ′ \ av ′. Moreover, s∗ =df nv(a) := a;x := nv(a). We have
the semantic derivation

(σ∗, r∗)�nv(a) := a�σ′′∗ , r′′∗ (σ′′∗ , r
′′
∗)�x := nv(a)� (σ′∗, r

′
∗)

(σ∗, r∗)�nv(a) := a;x := nv(a)� (σ′∗, r
′
∗) .

where (σ′′∗ , r
′′
∗) =df (σ∗[nv(a) 7→ JaKσ∗], r∗[a 7→ r∗(a)+1]) and (σ′∗, r

′
∗) =df

(σ′′∗ [x 7→ σ′′∗(nv(a))], r′′∗). Similarly to the previous case, from r∗(a) ≤ r(a)
we obtain r′∗(a) = r′′∗(a) = r∗(a) + 1 ≤ r(a) + 1 = r′(a).

115

– Subcase :=3pre: We have that a ∈ spav , which has as a consequence that
a ∈ spant (as a is nontrivial and a ∈ spav ⊆ safe), but we do not know
whether a /∈ av . Hence we do not know whether a ∈ spant ∩ spav \ av .
However, since a ∈ spav ′ if and only if a ∈ av ′ (both hold if x /∈ FV (a)
and neither holds if x ∈ FV (a)), we know that a /∈ spant ′ ∩ spav ′ \ av ′.
Moreover, s∗ =df x := nv(a). We have the semantic derivation

(σ∗, r∗)�x := nv(a)� (σ′∗, r
′
∗) .

where (σ′∗, r
′
∗) =df (σ∗[x 7→ σ∗(nv(a))], r∗). From r∗(a) ≤ r(a) + 1 (which

holds both if a /∈ spant ∩ spav \ av and if a ∈ spant ∩ spav \ av) we get
that r′∗(a) = r∗(a) ≤ r(a) + 1 = r′(a).

In all three subcases, for any nontrivial a′ 6= a, if a′ ∈ spant∩spav \av , then we
have that a′ ∈ spant ′ ∩ spav ′ \ av ′ as well and therefore from r∗(a′) ≤ r(a′) + 1
we get r′∗(a

′) = r∗(a′) ≤ r(a′) + 1 = r′(a′) + 1. Similarly, for a′ 6= a such that
a′ /∈ spant ∩ spav \ av we have a′ /∈ spant ′ ∩ spav ′ \ av ′, so r∗(a′) ≤ r(a′) gives
us r′∗(a

′) = r∗(a′) ≤ r(a′) = r′(a′).

• Case conseqpre: The type derivation is of the form

....
s : spant0, spav0 −→ spant ′0, spav ′0 ↪→ s∗

s : spant , spav −→ spant ′, spav ′ ↪→ s′; s∗; s′′

where (ant , av) ≤ (ant0, av0), (spant , spav) ≤ (spant0, spav0), (ant ′0, av ′0) ≤
(ant ′, av ′), (spant ′0, spav ′0) ≤ (spant ′, spav ′) and s′ =df [nv(a) := a | a ∈
(spant0∩ spav0)\ spav], s′′ =df [nv(a) := a | a ∈ (spant ′∩ spav′)\ spav ′0]. First
we find a state (σ0, r0) such that (σ∗, r∗)�s′� (σ0, r0) and (σ, r) ≈spant0∩spav0,av0

(σ0, r0). We have the semantic derivation

(σ∗, r∗)�s′� (σ0, r0) .

where (σ0, r0) =df (σ∗[nv(a) 7→ JaKσ∗ | a ∈ (spant0 ∩ spav0) \ spav], r∗[a 7→
r∗(a) + 1 | a ∈ (spant0 ∩ spav0) \ spav]) and we know that (σ, r) ≈spant∩spav ,av

(σ∗, r∗).

For any expression a ∈ spav \ av , from spav \ av ⊆ spav \ av0 ⊆ safe \ av0 ⊆
ant0 ⊆ spant0, spav ⊆ spav0 and av ⊇ av0, we have a ∈ spant0 ∩ spav0 \
av0, whereas from r∗(a) ≤ r(a) + 1 (which is necessarily guaranteed) we can
conclude r0(a) = r∗(a) ≤ r(a) + 1. For any expression a ∈ spav ∩ av , we have
a /∈ spant∩spav\av , so from r∗(a) ≤ r(a) we can conclude r0(a) = r∗(a) ≤ r(a)
(which is sufficient to ensure).

For any nontrivial expression a /∈ spant0∩spav0, it is obvious that a /∈ spant0∩
spav0 \ av0 and from spav \ av ⊆ spav \ av0 ⊆ safe \ av0 ⊆ ant0 ⊆ spant0 and

116

spav ⊆ spav0 we learn that a /∈ spant ∩spav \av . In this situation r∗(a) ≤ r(a)
tells us that r0(a) = r∗(a) ≤ r(a).

If an expression a is in (spant0 ∩ spav0) \ spav , then a /∈ spant ∩ spav \ av and
a ∈ spant0 ∩ spav0 \ av0 (as a /∈ spav ⊇ av ⊇ av0), thus from r∗(a) ≤ r(a) we
can conclude r0(a) = r∗(a) + 1 ≤ r(a) + 1.

By the induction hypothesis, there must exist a state (σ1, r1) such that (σ0, r0)
�s∗� (σ1, r1) and (σ′, r′) ≈spant ′0∩spav ′0,av ′0

(σ1, r1). It is now enough to ex-
hibit a state (σ′∗, r

′
∗) such that (σ1, r1)�s′′� (σ′∗, r

′
∗) and (σ′, r′) ≈spant ′∩spav ′,av ′

(σ′∗, r
′
∗). This can be done in the same way as for s′.

�

4.5 Related work

The work in this chapter is closely related to the work by Laud et al. [38], which
gives a general method for casting monotone forward and backward data-flow anal-
yses as type systems. We followed their scheme of translating dataflow analyses into
type systems, but concentrated our work on soundness and proof transformations for
specific optimizations, rather than the meta-theoretic properties of the translation
scheme. Also, differently from their work, we look at optimizations which require
multiple analyses. It is related in the same vein to the work of Nielson and Nielson
on flow logic [49], which is an approach to static analyses to separate the specifi-
cation of when an analysis acceptable for a program from computing that analysis
information.

One of the first papers considering proof transformation in the context of com-
pilation was by Barthe et al. [11]. They showed that in the absence of program
optimizations, proof transformation can be simply identity (modulo variable renam-
ing and other minor changes), by constructing a weakest precondition calculus for
the low-level language which generates proof obligations that are syntactically sim-
ilar to those generated from the original, high-level program. In a continuation of
this work, Barthe et al. [8] considered an optimizing compiler and showed how cer-
tificates for high-level programs can be translated into certificates for the compiled
programs. In their approach, only assertion strengthening is considered. As a result,
optimizations which are sound for similarity relations weaker than equality on the
original program variables (such as dead code elimination) need to be addressed in
an ad hoc fashion. For dead code elimination, dead assignments are not removed,
but the register transfer language they use is extended with “ghost assignments”
that do not affect the standard semantics of the RTL (being equivalent to skip), but
are treated by the verification condition generator as if they were normal assign-
ments. In the most recent work in this direction [9], Barthe and Kunz develop an
abstract interpretation framework for certificate translation, where they also address
the issue of assertion weakening.

117

Also close to our work is that of Benton [13], which describes constant folding
and dead code elimination as a type system, but does not consider optimizations
such as common subexpression elimination or partial redundancy elimination. He
also employs the relational method for stating the soundness of analyses and opti-
mizations. Additionally, he develops a relational Hoare logic for proving instances
of soundness of a program optimization, by showing that a given relation holds
between the original and the optimized program. Metatheoretic statements about
optimizations still need to be proved as statements about the logic.

Lerner et al. [39, 40] have developed a framework for writing compiler opti-
mizations that can be automatically proved sound. They separate the proof that
an analysis is sound into two parts: the analysis-dependent part where they define
a soundness property which must be satisfied by each propagation rule, but can
be typically proved automatically and the analysis-independent part, which can be
proved manually once and for all.

There is a large body of work dedicated on proving optimizations correct. Bertot
et al. report a correctness proof of compiler optimizations where optimizations are
formulated as instances of a general framework for data flow analysis, implemented
in the Coq proof assistant [16]. Lacey et al. describe a framework in which optimiza-
tions are specified as rewrite rules with side conditions that are written as temporal
logic formulas [37]. Proof of the correctness of the optimization can then be made
using the temporal logic formula as an assumption, which significantly simplifies the
proof.

The work on translation validation has a goal similar to ours, the main idea
being that rather than formally verifying an optimizing compiler in full, one would
validate the correctness of the target program wrt. source program after every pro-
gram compiler run [46, 70]. This is similar to our goal, where we translate the
program proof for each particular program, rather than having a general argument
about the soundness of the optimization. Their main motivation for instance-based
validation is tackling the complexity of full compiler verification, while in the context
of PCC, the goal is to prevent having to ship the source code to the consumer as
evidence that target program is correct.

Another related line of work is by Albert et al. [1] on abstraction carrying code,
where analysis results are certified in an abstract interpretation framework rather
than via type systems.

In Section 4.4 we showed that PRE is actually improving and how resource usage
proofs can be transformed just like functional correctness proofs. This is related
to work by Aspinall et al. [5] on optimization validation, which, orthogonally to
translation validation, aims to show that an instance of an optimizing transformation
actually improves the program wrt. some resource usage measure (as opposed to
preserving the semantics).

Partial redundancy elimination is a very subtle and sophisticated analysis, as
can be seen by the vast amount of literature dedicated to getting it right. The
optimization was first proposed by Morel and Renvoise [44], using a bidirectional

118

analysis. Biderectional analyses were also used by subsequent papers by Dhamdhere
et al., addressing the shortcomings of the original algorithm [24, 22]. A new interest
in PRE was sparked by papers by Knoop et al. [33, 26], which showed that bidirec-
tional analyses are not needed for PRE, but the optimization can be performed by
cascading four unidirectional analysis. The algorithm, called lazy code motion finds
code insertion points by modelling the optimization as a code motion transforma-
tion. Many implementations of PRE in compilers use a slight modification of this
algorithm by Drechsler and Stadel [25]. Later algorithms avoid the explicit code
motion modelling step by identifying code insertion points directly [50, 23, 17]. The
most recent development in this field by Xue and Knoop [69] show PRE to be a
maximum flow problem. Our work is based on the formulation by Paleri et al. [50],
which seems to be the simplest and most straightforward algorithm, but for some
reason has not received very much attention in literature.

4.6 Conclusion

The main goal of this chapter was to demonstrate how the type-systematic approach
to dataflow analysis can be used for showing soundness of optimizations and as a
result, also for performing proof transformations which follow from the soundness
proofs.

On the example of dead code elimination, we showed that by using our ap-
proach, it is completely straightforward to transform proofs where soundness of the
optimization depends on similarity relation weaker than equality on program vari-
ables. Common subexpression elimination was technically interesting for the fact
that it requires links (essentially use-def chains) to be established across the phrase
structure of a program, which is inherently non-compositional, since it is expressed
in terms of a control flow graph. We showed that this can be overcome with a com-
bined type systems. The scalability of the type-systematic approach was further
demonstrated on the example of partial redundancy elimination, a subtle and com-
plicated optimization that performs code motion and edge splitting to place moved
expression evaluations. In our type system, this corresponds to introducing new
assignments at subsumption inferences.

In addition, we believe this chapter to be a good advocacy for using type systems
for describing dataflow analysis in general. Type systems provide a clean separation
of concerns of what is a valid analysis result and how one is computed. In fact, it
is unnecessary to know exactly about the algorithm to believe the analysis result.
On the other hand, extracting a type inference algorithm from the type-system is in
general straightforward. In certain PCC settings, it can also be important to com-
municate analysis results via checkable certificates. In this case, the type derivation
of a program can be compressed into annotations from which reconstruction of the
full derivation is simple, the important piece of information being the loop invariants.
The type-system presentation of an optimization also makes it easy to show that the
optimization is generally sound, via a simple structural induction on type deriva-

119

tions, which can make our approach beneficial even when communicating analysis
results or transforming proofs is not required.

On the example of PRE, we looked briefly into the optimality argument and
showed that PRE improves a program in a nonstrict sense, i.e., it does not make
it worse. In general, it is the best improvement one can achieve, since an already
optimal program cannot be improved further. It would be interesting, however, to
explore special cases where an optimization leads to a strict improvement. In this
case, it would be be possible to also show the improvement in the resource usage
proof, i.e., that the program uses less resources after the optimization.

It would also be interesting to look at how to state that the optimization is the
best possible one. This would require a strict definition of what can be considered a
valid modification of a program: for example, one would not expect an optimization
to change the algorithmic behavior of a program, even if the program’s semantics is
preserved. Then an optimal modification would be a sound acceptable modification
improving at least as much as any other.

One road that was left unexplored here concerns modularity of analyses and
optimizations. For common subexpression and partial redundancy elimination, we
proved the optimization to be sound in one monolithic step. Instead, this could
have been done in independent and reusable steps. For CSE, it could be done in
three steps: by first proving that available expressions type system is sound, then
proving conditional partial anticipability sound with respect to any sound available
expressions analysis, and by finally defining and proving common subexpression
elimination sound with respect to any sound conditional partial anticipability anal-
ysis. For showing soundness of PRE, the soundness proof of availability could then
be reused. On the other hand, it is also easy to argue for the benefit of the mono-
lithic proof. The monolithic proof deals directly with standard big-step semantics,
while the modular proof would require non-standard, instrumented semantics to be
introduced. This would be an extra set of formalisms to have to trust, which some-
what defeats the purpose of the modular proof (which is to provide a cleaner, more
understandable proof). But it would certainly be of interest to look into designing a
systematic framework for cascaded semantic arguments and proof transformations
about such cascaded optimizations.

120

Chapter 5

Bytecode transformations

So far, we have looked at transformations that operate on high-level structured
code. Dataflow analyses however are typically performed on CFG-based program
descriptions. Also, so far we have only looked at transformations which require uni-
directional analyses, i.e., analyses which propagate information in only one direction
in the control flow path. Although many analyses are of this form, there are many
useful bidirectional ones (as already mentioned, the original PRE algorithms were
all bidirectional, as are several type inference algorithms).

In this chapter, we investigate some bytecode transformations which address
exactly these two issues. The unstructured nature of bytecode directs us to the use
of CFG based description of the analyses (and thus the proof transformation) and
the presence of stacks requires many non-trivial analyses to be bidirectional.

We also spell out several algorithms for direct optimization of stack-based code,
which to our knowledge have not appeared in the literature so far.

5.1 Background

Popular Java compilers such as Sun’s javac or Eclipse’s Java Compiler are very
conservative with optimizations, since most optimizations are presumed to be per-
formed in the virtual machine by the just-in-time compiler. On the other hand,
ahead-of-time optimizations are still important, especially in the context of mobile
devices, where just-in-time compilers are not as powerful as on desktops or servers
[21] and the size of the distributed binaries should be as small as possible.

Optimizing bytecode directly offers challenges not present in high or intermediate-
level program optimizations. The following reasons can be outlined:

• Expressions and statements are not explicit. In a naive approach, a recon-
struction of expression trees from instructions would be required for many
optimizations.

• Related instructions are not necessarily next to each other. A value could
be put on the stack, a number of other instructions executed and only then
the value used and popped. This means that related instructions, for example

121

those that put a value on a stack, and those that consume it, can be arbitrarily
far apart. Links between them need to be found during the analysis.

• A single expression can span several different basic blocks. The Java Virtual
Machine specification does not require zero stack depth at control flow junc-
tions, so an expression used in a basic block can be partially computed in other
basic blocks.

Most work done in the area of intraprocedural optimizations takes the approach
of only optimizing code inside basic blocks [35, 41, 67, 59]. There are probably two
main reasons for this. First, analyzing bytecode across basic block boundaries is
significantly more subtle than analyzing only code inside basic blocks. Second, in
compiled code, expressions that span basic blocks are rare (although they do arise,
e.g., from Java’s ?-expressions). Some prominent bytecode optimizers, such as Soot
[64], use an approach where class files are first converted to three-address interme-
diate representation, optimized using standard techniques and converted back to
bytecode. A similar approach is employed in many JIT compilers.

In this chapter we give uniform formal declarative descriptions and algorithms
for a number of optimizations and their underlying analyses for the stack-based
language presented in Chapter 2. We conflate the semantic domain Z + B of values
into a single domain of representations of integers and booleans (“words”) on which
both the arithmetic and boolean operations are total, so operand type errors cannot
occur. Stack underflow errors are still possible. Alternatively, we could assume that
programs come well-typed. We will show how the transformations can be proven
sound and that they preserve program proofs. Just like for the structured language,
we use type systems with a transformation component for this purpose.

The analyses and optimizations we address are dead store, load-pop pairs, du-
plicating loads and store-load pairs elimination, which are typical optimization sit-
uations in stack-based code. The optimizations are designed to work on general
code, i.e., they do not make any assumptions about its form (the code need not be
the compiled version of a high-level program). Also, the analyses and optimizations
are not in any way “intra-basic block”. On the contrary, they work across basic
block boundaries and do not require that the stack is empty at these. We show
that optimizations modifying pairs of instructions crossing basic block boundaries
require bidirectional analyses, as information must be propagated both forward and
backward during an analysis.

5.2 Dead code elimination

As was explained in Chapter 4, standard dead code elimination optimization re-
moves those statements from a program which do not affect the values of variables
that are live at the end of the program. The optimization is easy to perform on
high-level programs or intermediate (expressions-based low-level) code after a live
variables analysis by removing assignments to variables which are known to be dead

122

immediately after the assignment. In stack-based code, where expressions are not
explicit and related instructions are not necessarily next to each other, removing
dead code is not so straightforward. For example the program x := z + y could be
compiled into

0, load z
1, load y
2, add
3, store x
4,

If the analysis shows that x is dead, then in the intermediate code, the assignment
to x can be deleted. In the stack-based code however, not only the store instruction
on line 3, but also lines 0-2 should be deleted.

Another issue which sets stack-based code optimizations apart from optimiza-
tions in the intermediate language is that statements and expression can span several
basic blocks or, put in another way, basic blocks are not necessarily entered into or
exited from with an empty stack. A simple example of such code is the following
stack-based low-level equivalent of if b then x := z else y := z where z is loaded only
once, and in both branches only the store instruction is applied:

0, load z
1, load b
2, gotoF 5
3, store x
4, goto 6
5, store y
6,

If live variable analysis reveals that the variable x is dead, the store instruction at
line 3 cannot simply be removed, since if the true branch were taken, the unassigned
value of the variable x would be left on the stack after exiting the branch. Also,
the load instruction on line 0 cannot be deleted, because, while it is used by a dead
store, it is also used by a live store in the false branch. In such cases, without moving
instructions, the best thing to do is replacing instruction 3 with a pop.

We approach dead code elimination in two stages. In the first stage (which we
call dead stores elimination), all dead store and add instructions are replaced with
pop instructions (so that the optimization does not affect the stack height at any
label) based on an analogue of the standard live variables analysis. In the second
stage, pop instructions with corresponding preceding load/push instruction(s) are
eliminated, if possible, and care is taken that stack heights remain consistent after
this transformation.

Both of these analyses are completely general, do not make any assumptions on
the form of bytecode, and work across basic block boundaries.

123

5.2.1 Dead stores elimination

The live variables analysis of our stack-based language is similar to live variables
analysis for languages with expressions, except that the stack is also accounted for.
This means that in addition to variables being possibly live or certainly dead, stack
positions can also be either possibly live or certainly dead. For example, if we know
that immediately after an execution of a store x instruction, the variable x is dead,
then we also know that before the execution the top of the stack is dead, meaning
that whatever value the stack top holds, it does not affect the value of a live variable.

We describe both the analysis and the optimization in terms of a type system.
For live variable analysis, the code type Σ ∈ CodeType is an assignment of a

label type to every label: CodeType =df Label→ LabelType. A label type is a
pair of a stack and store type: LabelType =df StackType × StoreType. Stack
types es ∈ StackType are defined by the grammar

es ::= [] | e :: es | ∗

where e ∈ LocType is a location type “possibly live” or “certainly dead”:
LocType =df {L, D}. The stack type ∗ stands for stacks of arbitrary height with
all stack positions dead. Store types d ∈ StoreType are assignments of variables
to location types: StoreType =df Var→ LocType.

The subtyping and typing rules are given in Figure 5.1. We use the shorthand
Σ` for Σ(`). The subtyping judgement Σ` ≤ Σ′` denotes that the first label type is
a subtype of the second (i.e., stronger). Similarly, the subtyping judgement Σ ≤ Σ′

denotes that the first code type is a subtype of the other. The typing judgement
Σ ` (`, instr) signifies that the labelled instruction (`, instr) admits type Σ, i.e.,
that Σ is a valid analysis of this particular labelled instruction (independent of any
possible code context in which it may occur). The typing judgement Σ ` c means
that the code c types with Σ, i.e., that Σ is a valid analysis of c as a whole.

The typing rules of our particular analysis only allow a variable or stack position
to be marked “dead” at a label ` in a valid code type if there cannot be a path from
` to a label `′ such that the instruction at `′ contains a useful use of that position
and the variable or stack position is not redefined on the path. Otherwise it must be
marked “live”. A typical useful use of the stack top is storing it in a variable marked
“live” at the successor label. The stack top and next-to-top positions are usefully
used by an addition, provided the stack top is marked “live” at the successor label.
The stack top used by a pop is certainly dead, since its value is lost and does not
affect the values of any location. For load x, the type of x depends on its type and
the type of the stack top at the successor label: if x was live at the successor label
already, it stays live, otherwise if the top of the stack was live (thus needed), x also
becomes live.

The type system also has a transformation component for transforming a given
piece of code into an optimized variant, guided by a valid code type. The judgement
Σ ` c ↪→ c′ denotes that, based on a valid analysis Σ, c can be optimized to c′.

124

L ≤ D e ≤ e [] ≤ [] es ≤ ∗
e ≤ e′ es ≤ es′

e :: es ≤ e′ :: es′
∀x.d(x) ≤ d′(x)

d ≤ d′

es ≤ es′ d ≤ d′

(es, d) ≤ (es′, d′)

∀` ∈ Label.Σ` ≤ Σ′`

Σ ≤ Σ′

Σ` ≤ (L : es, d[x 7→ D]) (es, d) = Σ`+1 d(x) = L

Σ ` (`, store x) ↪→ (`, store x)
store1

Σ` ≤ (D : es, d) (es, d) = Σ`+1 d(x) = D

Σ ` (`, store x) ↪→ (`, pop)
store2

Σ` ≤ (es, d[x 7→ d(x) ∧ e]) (e : es, d) ≤ Σ`+1

Σ ` (`, load x) ↪→ (`, load x)
load

Σ` ≤ (es, d) (e : es, d) ≤ Σ`+1

Σ ` (`, push n) ↪→ (`, push n)
push

Σ` ≤ (L :: L :: es, d) (L :: es, d) = Σ`+1

Σ ` (`, add) ↪→ (`, add)
add1

Σ` ≤ (D :: D :: es, d) (D :: es, d) ≤ Σ`+1

Σ ` (`, add) ↪→ (`, pop)
add2

Σ` ≤ (D : es, d) (es, d) = Σ`+1

Σ ` (`, pop) ↪→ (`, pop)
pop

Σ` ≤ ((e0 ∧ e1) :: es, d) (e0 :: e1 :: es, d) ≤ Σ`+1

Σ ` (`, dup) ↪→ (`, dup)
dup

Σ` ≤ Σm

Σ ` (`, goto m) ↪→ (`, goto m)
goto

Σ` ≤ (L :: es, d) (es, d) = Σ`+1 ∧ Σm

Σ ` (`, gotoF m) ↪→ (`, gotoF m)
gotoF

∀` ∈ dom(c).Σ ` (`, c`) ↪→ (`, c′`)

Σ ` c ↪→ c′
code

Figure 5.1: Type system for live variables analysis and dead stores elimination

The instructions that can be optimized (those that decrease the stack height
by 1) have two rules. A store x instruction can be optimized, if x is marked “dead”
in the posttype (i.e., at the successor label of the instruction). An add instruction
can be optimized, if the top of the stack is “dead” in the posttype.

Note that while we have not spelled them out, optimizations for load and push
instructions could also be added to the type system. Namely, if in the posttype of
a load instruction the top of the stack is “dead”, it is obvious that the value is not
used on any forward path, thus the concrete value put on the stack does not matter
(only the correct stack height does). Thus, the instruction could be replaced with
the cheapest instruction that puts some value of the correct type on the stack, e.g.,
push 0.

To illustrate that the analysis does not need related instructions to be next to
each other, let us look at the program y := x;x := w + 1 as a piece of code where
the assignment y := x has been moved to the middle (instructions 3-4). For this
example, we assume the variable y to be live and variable x to be dead at the end
of the program. The analysis gives the following result.

125

Σ` `, c` `, c′`
[] [y 7→ D,x 7→ L] 0, push 1 0, push 1

[D] [y 7→ D,x 7→ L] 1, load w 1, load w
[D,D] [y 7→ D,x 7→ L] 2, add 2, pop

[D] [y 7→ D,x 7→ L] 3, load x 3, load x
[L, D] [y 7→ D,x 7→ D] 4, store y 4, store y

[D] [y 7→ L, x 7→ D] 5, store x 5, pop
[] [y 7→ L, x 7→ D] 6, 6,

The optimization replaces the store x and add instructions with pop instructions
(since in both cases variable x resp. the stack top is dead in the type of the successor).
This leaves the stack balanced. Our next analysis (Subsection 5.2.2) will show that
the pop instructions on lines 2 and 5 can be removed together with the instructions
on lines 0 and 1, since stack usage will remain consistent after those transformations
too.

Principal type inference algorithm for dead stores We now look at the
principal type inference algorithm which finds the weakest valid code type that is
stronger than a given one, using the given one as the initial value (Algorithm 1).
Typically, the given code type would set the stack type to be empty and the store
to be “all live” at the exit labels (successor labels outside the domain). Elsewhere,
the label type has the default value “any”.

input : Bytecode program c, intial type Σinit

output: Final type Σ
Σ ← Σinit;
repeat

Σold ← Σ;
foreach ` ∈ dom(c) do

updbwd(c`);
end

until Σ ≤ Σold ;
Algorithm 1: Dead stores

The (partial) greatest lower bound operations are as follows:

glbs of value types
> =df D

D ∧D =df D
L ∧ e =df L
e ∧ L =df L

glb of store types
>(x) =df D

(d ∧ d′)(x) =df d(x) ∧ d′(x)

126

glb of stack types
> =df ∗

∗ ∧ es =df es
es ∧ ∗ =df es
[] ∧ [] =df []

[] ∧ e :: es =df error
e :: es ∧ [] =df error

e :: es ∧ e′ :: es ′ =df (e ∧ e′) :: (es ∧ es ′)

glbs of label types
> =df (>,>)

(es, d) ∧ (es ′, d′) =df (es ∧ es ′, d ∧ d′)

The update procedure is as follows:

c` updbwd`,Σ` :=
store x case Σold

`+1 of
(es, d) 7→ Σ` ∧ (d(x) :: es, d[x 7→ D])

load x case Σold
`+1 of

(∗, d) 7→ Σ`

([], d) 7→ error
(e :: es, d) 7→ Σ` ∧ (es, d[x 7→ d(x) ∧ e])

push n case Σold
`+1 of

(∗, d) 7→ Σ`

([], d) 7→ error
(e :: es, d) 7→ Σ` ∧ (es, d)

add case Σold
`+1 of

(∗, d) 7→ Σ` ∧ (D :: D :: ∗, d)
([], d) 7→ error
(e :: es, d) 7→ Σ` ∧ (e :: e :: es, d)

pop case Σold
`+1 of

(es, d) 7→ Σ` ∧ (D :: es, d)
dup case Σold

`+1 of
(∗, d) 7→ Σ` ∧ (D :: ∗, d)
([], d) 7→ error
([e], d) 7→ error
(e0 :: e1 :: es, d) 7→ Σ` ∧ ((e0 ∧ e1) :: es, d)

goto m Σ` ∧ Σold
m

gotoF m case Σold
`+1 ∧ Σold

m of
(es, d) 7→ Σ` ∧ (L :: es, d)

The optimization is easily stated to be sound using a label-type indexed simi-
larity relation on states, ∼es . The relations are defined as follows:

[] ∼[] []
zs ∼es zs∗

z :: zs ∼L::es z :: zs∗
zs ∼es zs∗

z :: zs ∼D::es z∗ :: zs∗ zs ∼∗ zs∗

∀x ∈ Var.d(x) = L⇒ σ(x) = σ∗(x)
σ ∼d σ∗

zs ∼es zs∗ σ ∼d σ∗
(`, zs, σ) ∼(es,d) (`, zs∗, σ∗)

We can see that two states are related by a label type (a stack and store type),
if they agree on the locations marked “live”. Reducing an original piece of code and

127

its optimized form from a related pair of states must maintain this relation. We
obtain the following soundness theorem.

Theorem 26 (Soundness of dead stores elimination) If Σ ` c ↪→ c′, then:

1. If (`, zs, σ) ∼Σ` (`∗, zs∗, σ∗), then

— for any (`′, zs ′, σ′) such that c ` (`, zs, σ)� (`′, zs ′, σ′) there exist (`′∗, zs ′∗, σ
′
∗)

such that (`′, zs ′, σ′) ∼Σ`′ (`′∗, zs ′∗, σ
′
∗) and c′ ` (`∗, zs∗, σ∗)� (`′∗, zs ′∗, σ

′
∗),

— for any (`′∗, zs ′∗, σ
′
∗) such that c′ ` (`∗, zs∗, σ∗) � (`′∗, zs ′∗, σ

′
∗) there exist

(`′, zs ′, σ′) such that (`′, zs ′, σ′) ∼Σ`′ (`′∗, zs ′∗, σ
′
∗) and c ` (`, zs, σ)� (`′, zs ′, σ′).

2. If (`, zs, σ) ∼Σ` (`∗, zs∗, σ∗), then

— for any (`′, zs ′, σ′) such that c ` (`, zs, σ) �∗ (`′, zs ′, σ′) 6� there exist
(`′∗, zs ′∗, σ

′
∗) such that (`′, zs ′, σ′) ∼Σ`′ (`′∗, zs ′∗, σ

′
∗) and c′ ` (`∗, zs∗, σ∗) �∗

(`′∗, zs ′∗, σ
′
∗) 6�.

— for any (`′∗, zs ′∗, σ
′
∗) such that c′ ` (`∗, zs∗, σ∗) �∗ (`′∗, zs ′∗, σ

′
∗) 6� there

exist (`′, zs ′, σ′) such that (`′, zs ′, σ′) ∼Σ`′ (`′∗, zs ′∗, σ
′
∗) and c ` (`, zs, σ) �∗

(`′, zs ′, σ′) 6�.

Proof. Part (1) is easily checked by inspecting the typing/transformation rules
for labelled instructions, the two interesting cases are the optimizations of store x
and add. We look at the first half and assume that (`, zs, σ) ∼Σ` (`∗, zs∗, σ∗) and
c ` (`, zs, σ)� (`′, zs ′, σ′).

• Case
Σ` ≤ (D : es, d) (es, d) = Σ`+1 d(x) = D

Σ ` (`, store x) ↪→ (`, pop)
store2

We know that Σ`+1 = (es, d) and Σ` ≤ (D : es, d). From Lemma 1, the
only possible reduction is c ` (`, n :: zs, σ) � (` + 1, zs, σ[x 7→ n]). The
corresponding reduction for c′` is c′ ` (`, n :: zs∗, σ∗) � (` + 1, zs∗, σ∗). Since
x is dead in Σ`+1, we have that since σ ∼Σ` σ∗ then also σ[x 7→ n] ∼Σ`+1

σ∗.
Also, if n :: zs ∼Σ` n :: zs∗ then zs ∼Σ`+1

zs∗. Thus it is easy to see that
(`+ 1, zs, σ[x 7→ n]) ∼Σ`+1

(`+ 1, zs∗, σ∗).

• Case
Σ` ≤ (D :: D :: es, d) (D :: es, d) ≤ Σ`+1

Σ ` (`, add) ↪→ (`, pop)
add2

We follow a similar reasoning as in the above case. We know that (D :: es, d) =
Σ`+1 and Σ` ≤ (D :: D :: es, d). From Lemma 1, the only possible reduction is
c ` (`, n :: m :: zs, σ)� (`+1, n+m :: zs, σ). The corresponding reduction for
c′` is c′ ` (`, n :: m :: zs∗, σ∗) � (` + 1,m :: zs∗, σ∗). If (`, n :: m :: zs, σ) ∼Σ`

(`, n :: m :: zs∗, σ∗), then (`+ 1, n+m :: zs, σ) ∼Σ`+1
(`+ 1,m :: zs∗, σ∗), since

states σ and σ∗ are not changed in the reduction and the top of the stack is
dead in Σ`+1, so we only have to observe that n+m has the same type as m.

128

The rest of the cases are trivial.

Part (2) follows from part (1) by induction on the length of the reduction
sequence. �

Proof transformation for dead store elimination We now look at proof op-
timizations of Push programs. Since the type system is non-compositional, we use
the non-compositional logic introduced in Chapter 2. While it would be possible to
apply proof transformation for the compositional logic described in Chapter 3, the
non-compositional logic is simpler to use for presentation purposes.

The general idea here is similar to that of Hoare logic proof transformation.
Each assertion at a label is modified wrt. the type at that label, which reflects the
changes made in the program. For dead store elimination, a statement about dead
variables or stack positions might become unprovable, since the code affecting them
could be replaced. Thus, we should quantify out all program variables and stack
positions which are dead.

Let P |Σ be P where all P` have been modified wrt. Σ`. Let P`|Σ` =df ∃[v(x) |
d(x) = D]∃[v(st(n)) | es(n) = D]P`[v(x)/x | d(x) = D][v(st(n))/st(n) | es(n) = D]
where (es, d) = Σ` and v is some assignment of unique logic variable names to
program variables and stack positions. Intuitively, it means existentially quantifying
out variables and stack positions which are dead. As an example, for assertion
st(0) = 5 ∧ x = 4 ∧ y = 5 and type ([D], [x 7→ L, y 7→ D]), the new assertion would
be ∃s0, y

′.s0 = 5 ∧ x = 4 ∧ y′ = 5, which is equivalent to x = 5.
We will use the following lemma in the proof of program proof preservation.

Lemma 11 shift(P)|(D:es,d) ≡ shift(P |(es,d))

We have the following theorem for proof preservation.

Theorem 27

1. If Σ ` (`, instr) ↪→ (`, instr ′) and P ` (`, instr) then P |Σ ` (`, instr ′)

2. If Σ ` c ↪→ c′ and P ` c, then also P |Σ ` c′.

Proof. For part (1), we give a constructive proof by examining each typing rule.
The interesting cases are store and add.

• Case store2. The typing judgement is of the following form

Σ` ≤ (D : es, d) (es, d) = Σ`+1 d(x) = D

Σ ` (`, store x) ↪→ (`, pop)
store2

We also have the logic judgement of the form

P` |= shift(P`+1)[st(0)/x]
P ` (`, store x)

129

We have to show that
P`|Σ` |= shift(P`+1|Σ`+1

)
P |Σ ` (`, pop)

We have the following sequence of entailments:

P`|Σ` |= shift(P`+1)[st(0)/x]|Σ` by the given entailment for store and
existential introduction and elimination

|= shift(P`+1)[st(0)/x]|(D::es,d) by Σ` ≤ (D :: es, d)
|= shift(P`+1)|(D::es,d) both x and st(0) dead, the witness

for st(0) serves as witness for v(x)
|= shift(P`+1|(es,d)) Lemma 11
|= shift(P`+1|Σ`+1

)

• Case add2. The typing judgement is of the following form

Σ` ≤ (D :: D :: es, d) (D :: es, d) ≤ Σ`+1

Σ ` (`, add) ↪→ (`, pop)

We also have the logic judgement of the form

P` |= shift(P`+1)[st(0) + st(1)/st(1)]
P ` (`, add)

We have to show that
P`|Σ` |= shift(P`+1|Σ`+1

)
P |Σ ` (`, pop)

We have the following sequence of entailments

P`|Σ` |= shift(P`+1)[st(0) + st(1)/st(1)]Σ`
by the given entailment for add and
by existential introduction and elimination

|= shift(P`+1)[st(0) + st(1)/st(1)]|(D::D::es,d)

by Σ` ≤ (D :: D :: es, d)
|= shift(P`+1)|(D::D::es,d)

st(0) and st(1) are dead
|= shift(P`+1|(D::es,d))

Lemma 11
|= shift(P`+1|Σ`+1

)

Part (2) follows trivially from part (1) by the definition of P ` c.
�

130

Example

We now look at the example presented in Chapter 4 for dead code elimination for the
high-level language. The to-be-optimized program is while x < y do (x := x∗2; z :=
z + 1). The given post-type for its compiled version states that the stack should
be empty, and z and y should be dead at the end of the program. The program is
compiled the following way and obtains the type given below. The optimized version
is also given.

` Σ` c` c′`
1 [] [x 7→ L, y 7→ L, z 7→ D] load x load x
2 [L] [x 7→ L, y 7→ L, z 7→ D] load y load y
3 [L,L]] [x 7→ L, y 7→ L, z 7→ D] less less
4 [L] [x 7→ L, y 7→ L, z 7→ D] gotoF 14 gotoF 14
5 [] [x 7→ L, y 7→ L, z 7→ D] load x load x
6 [L] [x 7→ L, y 7→ L, z 7→ D] push 2 push 2
7 [L,L] [x 7→ L, y 7→ L, z 7→ D] mult mult
8 [L] [x 7→ L, y 7→ L, z 7→ D] store x store x
9 [] [x 7→ L, y 7→ L, z 7→ D] load z load z
10 [D] [x 7→ L, y 7→ L, z 7→ D] push 1 push 1
11 [D,D] [x 7→ L, y 7→ L, z 7→ D] add pop

12 [D] [x 7→ L, y 7→ L, z 7→ D] store z pop

13 [] [x 7→ L, y 7→ L, z 7→ D] goto 1 goto 1
14 [] [x 7→ L, y 7→ D, z 7→ D]

The pre- and post-type of the program and assertions associated with each label
are given below. The concrete entailments between assertions have not been spelled
out directly, but they should be obvious.

Pre ≡ z = 1 ∧ x = 2 ∧ y > 1
x < y ∧ 2 ∗ x = 2z+1 ∧ z + 1 ≤ ceil(log y) ∨ ¬(x < y) ∧ ... 1 load y

x < st(0) ∧ 2 ∗ x = 2z+1 ∧ z + 1 ≤ ceil(log y) ∨ ¬(x < st(0)) ∧ ... 2 load x
st(0) < st(1) ∧ 2 ∗ x = 2z+1 ∧ z + 1 ≤ ceil(log y) ∨ ¬(st(0) < st(1)) ∧ ... 3 less

st(0) ∧ 2 ∗ x = 2z+1 ∧ z + 1 ≤ ceil(log y) ∨ ¬(st(0)) ∧ ... 4 gotoF 14
2 ∗ x = 2z+1 ∧ z + 1 ≤ ceil(log y) 5 load x

2 ∗ st(1) = 2z+1 ∧ z + 1 ≤ ceil(log y) 6 push 2
st(0) ∗ st(1) = 2z+1 ∧ z + 1 ≤ ceil(log y) 7 mult

st(0) = 2z+1 ∧ z + 1 ≤ ceil(log y) 8 store x
x = 2z+1 ∧ z + 1 ≤ ceil(log y) 9 push 1

x = 2z+st(0) ∧ z + st(0) ≤ ceil(log y) 10 load z

x = 2st(0)+st(1) ∧ st(0) + st(1) ≤ ceil(log y) 11 add

x = 2st(0) ∧ st(0) ≤ ceil(log y) 12 store z
x = 2z ∧ z ≤ ceil(log y) 13 goto 1

Post ≡ x = 2z ∧ z = ceil(log y) 14

The transformed assertions are the following, where each dead variable and stack
position is quantified out.

131

Pre ≡ z = 1 ∧ x = 2 ∧ y > 1

∃z′.x < y ∧ 2 ∗ x = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y) ∨ ¬(x < y) ∧ ... 1 load y

∃z′.(x < st(0) ∧ 2 ∗ x = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y) ∨ ¬(x < st(0)) ∧ ... 2 load x

∃z′.st(0) < st(1) ∧ 2 ∗ x = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y) ∨ ¬(st(0) < st(1)) ∧ ... 3 less

∃z′.st(0) ∧ 2 ∗ x = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y) ∨ ¬(st(0)) ∧ ... 4 gotoF 14

∃z′.2 ∗ x = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y) 5 load x

∃z′.2 ∗ st(1) = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y) 6 push 2

∃z′.st(0) ∗ st(1) = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y) 7 mult

∃z′.st(0) = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y) 8 store x

∃z′.x = 2z
′+1 ∧ z′ + 1 ≤ ceil(log y) 9 push 1

∃z′, st0.x = 2z
′+st0 ∧ z′ + st0 ≤ ceil(log y) 10 load z

∃st0, st1.x = 2st0+st1 ∧ st0 + st1 ≤ ceil(log y) 11 pop
∃st0.x = 2st0 ∧ st0 ≤ ceil(log y) 12 pop

∃z′.x = 2z
′
∧ z′ ≤ ceil(log y) 13 goto 1

Post ≡ x = 2z ∧ z = ceil(log y) 14

5.2.2 Load-pop pairs elimination

This analysis tries to find pop instructions with corresponding load/push instructions
and eliminate them. The optimization introduces a subtlety that is present in all
bytecode transformations which remove pairs of stack height changing instructions
across basic block boundaries. This is illustrated in Figure 5.2 (where the ls nodes
denote level sequences of instructions).1 Looking at this example, it might seem
that the load x instruction can be eliminated together with pop. Closer examination
reveals that this is not the case: since load y is used by store z, the pop instruction
cannot be removed, because then, after taking branch 2, the stack would not be
balanced. This in turn means that load x cannot be removed. As can be seen from
this example, a unidirectional analysis is not enough to come to such conclusion:
information that a stack position is definitely needed flows backward from store z
to load y along branch 3, but then the same information flows forward along path
2, and again backward along path 1. Thus a bidirectional analysis is needed, which
at each node propagates information both forward and backward. We also see that
we are not really dealing with pairs, but webs of instructions in general.

In the appropriate type system, a code type Σ ∈ CodeType is again an as-
signment of a label type to every label: CodeType =df Label → LabelType.
Here, label types are stack types, LabelType =df StackType. Stack types es are
defined by the grammar

es ::= [] | e :: es | ∗

where e ∈ LocType are “mandatory” and “optional” elements: LocType =df

{mnd, opt}. The stack type ∗ is for stacks of arbitrary height with all positions
optional.

1A sequence of instructions is a level sequence, if the net change of the stack height by these
instructions is 0 and the instructions do not consume any values that were already present in the
stack before executing these instructions.

132

Figure 5.2: Example program

The typing and subtyping rules are given in Figure 5.3. The typing rules state
that, if at some label a stack element is marked “mandatory”, then at all other
labels of its lifetime, this particular element is also considered “mandatory”. Thus
the typing rules explain which optimizations are acceptable. The rule for store
instructions states that the instruction always requires a “mandatory” element on
the stack, thus its predecessors must definitely leave a value on top of the stack.
Instructions that put elements on the stack “do not care”: if an element is required,
they can push a value (a mnd element on the stack in the posttype), otherwise the
instruction could be omitted (an opt element on the stack in the posttype). The
same holds for pop: if an element is definitely left on the stack, a pop instruction is
not removed, otherwise it can be removed.

The analysis (i.e., type derivation) algorithm, as mentioned above, is bidirec-
tional. The intuition behind the algorithm is the following. The types definitely
required at some labels should be given (typically the types at the exit labels of
the code are set to be the empty stack, possibly also the type at the entry label).
All other types are initialized to the default type “any state”. The algorithm then
computes the weakest valid type of the code that is stronger than the given type.
At each label, information is gathered from all its successors and predecessors. The
constraints initiate from the given types and the store and conditional jump instruc-
tions, which require that a value is present on the stack for them (i.e., a mnd element
has to be on top of the stack type). Other instructions that produce or consume a
value from the stack can initially be assumed to produce or consume “useless” val-
ues (denoted by opt in the type system). Type information arriving from different
directions to a program point can be intersected according to subtyping relations
given in Figure 5.3. This guarantees that, if an instruction definitely needs a value
on the stack, this information is propagated to all of its predecessors. Similarly, if
an instruction definitely must produce a value on the stack (since some subsequent
instruction may need it), this information is propagated to its successor.

133

mnd ≤ opt e ≤ e [] ≤ []

e ≤ e′ es ≤ es′

e :: es ≤ e′ :: es′ es ≤ ∗
∀` ∈ Label.Σ` ≤ Σ′`

Σ ≤ Σ′

Σ` = mnd :: Σ`+1

Σ ` (`, store x) ↪→ (`, store x)
store

mnd :: Σ` = Σ`+1

Σ ` (`, load x) ↪→ (`, load x)
load1

opt :: Σ` = Σ`+1

Σ ` (`, load x) ↪→ (`, nop)
load2

mnd :: Σ` = Σ`+1

Σ ` (`, push n) ↪→ (`, push n)
push1

opt :: Σ` = Σ`+1

Σ ` (`, push n) ↪→ (`, nop)
push2

Σ` = mnd :: mnd :: es mnd :: es = Σ`+1

Σ ` (`, add) ↪→ (`, add)
add1

Σ` = opt :: opt :: es opt :: es = Σ`+1

Σ ` (`, add) ↪→ (`, nop)
add2

Σ` = mnd :: Σ`+1

Σ ` (`, pop) ↪→ (`, pop)
pop1

Σ` = opt :: Σ`+1

Σ ` (`, pop) ↪→ (`, nop)
pop2

Σ` = mnd :: es mnd :: mnd :: es = Σ`+1

Σ ` (`, dup) ↪→ (`, dup)
dup1

Σ` = e1 :: es opt :: e1 :: es = Σ`+1

Σ ` (`, dup) ↪→ (`, nop)
dup2

Σ` = Σm

Σ ` (`, goto m) ↪→ (`, goto m)
goto

Σ` = mnd :: es es = Σm es = Σ`+1

Σ ` (`, gotoF m) ↪→ (`, gotoF m)
gotoF

∀` ∈ dom(c).Σ ` (`, c`) ↪→ (`, c∗`)

Σ ` c ↪→ c∗
code

Figure 5.3: Type system for load-pop pairs elimination

Looking at the example in Figure 5.2, where we initialize the posttype of the
control-flow graph to be the empty stack, the pretype of store z requires a mnd
element on the top of the stack. This means that the posttype of load y has to have
mnd on the top of the stack. This information propagates to the pop instruction,
and from there to load x instruction. Thus the analysis shows that no instruction
can be deleted. If, on the other hand, store z were not present, the postlabels of the
two load instructions and prelabel of the pop instruction would keep their initial opt
stack top types, and the three instructions could be deleted.

A piece of code corresponding to Figure 5.2 is given in the following example
in the left column (where the level sequences of instructions have been omitted
to simplify presentation). It gets a type showing that no optimization is possible.
In the right column, we consider a minimally different piece of code where store z
instruction has been replaced with pop. Here the analysis shows that both the pop
and corresponding load instructions can be removed.

134

Σ` `, c` `, c′`
[] 0, load b 0, load b

[mnd] 1, gotoF 9 1, gotoF 9
[] 2, load y 2, load y

[mnd] 3, load b′ 3, load b′

[mnd, mnd] 4, gotoF 7 4, gotoF 7
[mnd] 5, store z 5, store z

[] 6, goto 11 6, goto 11
[mnd] 7, pop 7, pop

[] 8, goto 11 8, goto 11
[] 9, load x 9, load x

[mnd] 10, goto 7 10, goto 7
[] 11, 11,

Σ` `, c` `, c′`
[] 0, load b 0, load b

[mnd] 1, gotoF 9 1, gotoF 9
[] 2, load y 2, nop

[opt] 3, load b′ 3, load b′

[mnd, opt] 4, gotoF 7 4, gotoF 7
[opt] 5, pop 5, nop

[] 6, goto 11 6, goto 11
[opt] 7, pop 7, nop

[] 8, goto 11 8, goto 11
[] 9, load x 9, nop

[opt] 10, goto 7 10, goto 7
[] 11, 11,

Principal type inference Algorithm 2 calculates the greatest type of a piece of
code c smaller than a given code type Σinit (with Σinit

` = > for most `), if such exists,
iterating forward and backward update procedures:

input : Bytecode program c, intial type Σinit

output: Final type Σ
Σ ← Σinit;
repeat

Σold ← Σ;
foreach ` ∈ dom(c) do

updfwd(c`);
updbwd(c`);

end
until Σold ≤ Σ ;

Algorithm 2: Load-pop pairs

The (partial) glb operations are as follows:

glbs of value types
> =df opt

opt ∧ opt =df opt
mnd ∧ e =df mnd
e ∧mnd =df mnd

glbs of label types
> =df ∗

∗ ∧ es =df es
es ∧ ∗ =df es
[] ∧ [] =df []

[] ∧ (e :: es) =df error
(e :: es) ∧ [] =df error

(e :: es) ∧ (e′ :: es ′) =df (e ∧ e′) :: (es ∧ es ′)

The update procedures are as follows:

135

c` updfwd`,Σ`+1 := updbwd`,Σ` :=
store x case Σold

` of
∗ 7→ Σ`+1

[] 7→ error
e :: es 7→ Σ`+1 ∧ es

case Σold
`+1 of

es 7→ Σ` ∧mnd :: es

load x case Σold
` of

es 7→ Σ`+1 ∧ opt :: es
case Σold

`+1 of
∗ 7→ Σ`

[] 7→ error
e :: es 7→ Σ` ∧ es

push n case Σold
` of

es 7→ Σ`+1 ∧ opt :: es
case Σold

`+1 of
∗ 7→ Σ`

[] 7→ error
e :: es 7→ Σ` ∧ es

add case Σold
` of

∗ 7→ Σ`+1 ∧ opt :: ∗
[] 7→ error
[e] 7→ error
e0 :: e1 :: es 7→

Σ`+1 ∧ (e0 ∧ e1) :: es

case Σold
`+1 of

∗ 7→ Σ` ∧ opt :: opt :: ∗
[] 7→ error
e :: es 7→ Σ` ∧ e :: e :: es

pop case Σold
` of

∗ 7→ Σ`+1

[] 7→ error
e :: es 7→ Σ`+1 ∧ es

case Σold
`+1 of

es 7→ Σ` ∧ opt :: es

dup case Σold
` of

∗ 7→ Σ`+1 ∧ opt :: opt :: ∗
[] 7→ error
e :: es 7→ Σ`+1 ∧ opt :: e :: es

case Σold
`+1 of

∗ 7→ Σ` ∧ opt :: ∗
[] 7→ error
[e] 7→ error
e0 :: e1 :: es 7→

Σ` ∧ (e0 ∧ e1) :: es
goto m Σm := Σm ∧ Σold

` Σ` ∧ Σold
m

gotoF m case Σold
` of

∗ 7→ Σ`+1

[] 7→ error
e :: es 7→ Σ`+1 ∧ es

Σm := Σm ∧ es

case Σold
`+1 ∧ Σold

m of
es 7→ Σ` ∧mnd :: es

The type-indexed similarity relation on states for establishing soundness of the
optimization is defined as follows:

[] ∼[] []
zs ∼es zs∗

z :: zs ∼mnd::es z :: zs∗
zs ∼es zs∗

z :: zs ∼opt::es zs∗ zs ∼∗ []

zs ∼es zs∗

(`, zs, σ) ∼es (`, zs∗, σ)

The rules state that two states are related, if they agree everywhere except for the
optional stack positions in the first state, which must be omitted in the second.

The soundness statement is the same as in Theorem 26 and the proof is analo-
gous. The same will hold for the optimizations in the next subsections.

136

Proof transformation Let P |Σ be P where all P` have been modified wrt. Σ`.
Let P`|Σ` =df (∃[v(st(n)) | es(n) = opt]P`[v(st(n))/st(n) | es(n) = opt])[st(m −
c)/st(m) | c = stoffset(m, es)] where es = Σ`, v is some assignment of unique logic
variable names to stack positions and stoffset is defined as

stoffset(m, []) = 0
stoffset(0,mnd :: es) = 0

stoffset(m,mnd :: es) = stoffset(m− 1, es)
stoffset(m, opt :: es) = 1 + stoffset(m, es).

Informally, P |Σ is obtained from P by quantifying out stack positions which are
opt, i.e., are not present in the optimized program and any stack position below the
removed one is shifted up. For example, for assertion st(0) = 4 ∧ st(1) = 5 and
type [opt,mnd], the modified assertion becomes ∃st0.st0 = 4 ∧ st(0) = 5, which is
equivalent to st(0) = 5.

We will use the following lemma.

Lemma 12 (i) If st(0) 6∈ P then unshift(P)|es ≡ P |opt::es and (ii) shift(P)|opt::es ≡
P |es .

We obtain the following theorem from proof transformation.

Theorem 28

1. If Σ ` (`, instr) ↪→ (`, instr ′) and P ` (`, instr) then P |Σ ` (`, instr ′)

2. If Σ ` c ↪→ c′ and P ` c, then also P |Σ ` c′.

Proof. For the constructive proof, we examine each typing rule. The interesting
cases are the optimizing cases of load, push, pop and add.

• Case load2. The typing judgement is of the following form

opt :: Σ` = Σ`+1

Σ ` (`, load x) ↪→ (`, nop)

We also have the logic judgement of the form

P` |= unshift(P`+1[x/st(0)])
P ` (`, load x)

We have to show that
P`|Σ` |= P`+1|Σ`+1

P ` (`, nop)

We have the following sequence of entailments:

137

P`|Σ` |= unshift(P`+1[x/st(0)])|Σ` by given entailment for load,
existential introduction and
elimination and variable renaming

|= P`+1[x/st(0)]|Σ`+1
by Lemma 12 and opt :: Σ` = Σ`+1

|= P`+1|Σ`+1
by existential introduction (x
is the witness for v(st(0))

• Case push2. Analogous to load.

• Case pop2. The typing judgement is of the following form

Σ` = opt :: Σ`+1

Σ ` (`, pop) ↪→ (`, nop)

We also have the logic judgement of the form

P` |= shift(P`+1)
P ` (`, pop)

pop

We have to show that
P`|Σ` |= P`+1|Σ`+1

P ` (`, nop)

We have the following sequence of entailments

P`+1|Σ`+1
|= shift(P`+1)|Σ` by the given entailment for pop,

existential introduction and
elimination and variable renaming

|= P`+1|Σ`+1
by Lemma 12

• Case add2. The typing judgement is of the form

Σl = opt :: opt :: es opt :: es = Σ`+1

Σ ` (`, add) ↪→ (`, nop)
add2

We also have the logic judgement of the form

P` |= shift(P`+1)[st(0) + st(1)/st(1)]
P ` (`, add) add

We have to show that
P`|Σ` |= P`+1|Σ`+1

P ` (`, nop)

138

We have the following sequence of entailments.

P`|Σ` |= shift(P`+1)[st(0) + st(1)/st(1)]|Σ`
by the given entailment for add,
by existential introduction and elimination and variable renaming

|= shift(P`+1)|Σ` st(0) and st(1) opt in Σ`

|= P`+1|Σ`+1
by Lemma 12 and Σ

`
= opt :: Σ`+1.

�

The following example illustrates the assertion transformation.

` Σ` c` c′` P` P`|Σ`
1 [] load y load y > >
2 [mnd] load x nop y = st(0) y = st(0)
3 [opt,mnd] pop nop y = st(1) ∧ st(0) = x ∃s0.(y = st(0) ∧ s0 = x)
4 [mnd] store z store z y = st(0) y = st(0)
5 [] y = z y = z

5.3 Store/load+ elimination

In this section, we deal with one of the more widely used bytecode optimizations—
redundant store/load computations. This optimization is based on the observation
that if a store is followed by a reload of the same variable to the same stack position
(and the variable is not redefined in the meantime), then, provided there are no
future uses of that variable, both the store and the load instruction can be eliminated.
Similarly, if there is a store followed by n loads, then the store and loads can be
replaced by n− 1 dup instructions. Note that for these optimizations, the store and
the loads do not necessarily have to be next to each other, there can be intervening
instructions, as long as the stack height remains the same after the instructions and
the values below the top are not consumed by them.

We approach this optimization in two stages. First, a simple forward copy
propagation analysis determines whether some load instructions can be replaced with
dup instructions. In the second stage, store/load pairs are detected and transformed.

5.3.1 Duplicating loads elimination

This analysis is a simple copy propagation analysis, which tries to determine if before
a load x instruction, the value of x is already on top of the stack. If this is the case,
the load x instruction can be replaced with a dup instruction. It is a unidirectional,
forward analysis.

In the type system, label types are stack types or a special type “no state”:
LabelType =df StackType + {∅}. Stack types es ∈ StackType are lists of
location types, which this time are elements of x ∈ Var (signifying that the location

139

x ≤ nac e ≤ e [] ≤ []

e ≤ e′ es ≤ es′

e :: es ≤ e′ :: es′ ∅ ≤ τ
∀` ∈ Label.Σ` ≤ Σ′`

Σ ≤ Σ′

Σ` = e :: es replace(x, nac, es) ≤ Σ`+1

Σ ` (`, store x) ↪→ (`, store x)
store

x :: Σ` ≤ Σ`+1 ∀es.Σl 6= x :: es

Σ ` (`, load x) ↪→ (`, load x)
load1

x :: Σ` ≤ Σ`+1 Σl = x :: es

Σ ` (`, load x) ↪→ (`, dup)
load2

nac :: Σ` ≤ Σ`+1

Σ ` (`, push n) ↪→ (`, push n)
push

Σ` = e0 :: e1 :: es nac :: es ≤ Σ`+1

Σ ` (`, add) ↪→ (`, add)
add

Σ` = e :: es es ≤ Σ`+1

Σ ` (`, pop) ↪→ (`, pop)
pop

Σ` = e :: es e :: e :: es ≤ Σ`+1

Σ ` (`, dup) ↪→ (`, dup)
dup

Σ` ≤ Σm

Σ ` (`, goto m) ↪→ (`, goto n)
goto

Σ` = e :: es es ≤ Σ`+1 es ≤ Σm

Σ ` (`, gotoF m) ↪→ (`, gotoF n)
gotoF

Σ` = ∅
Σ ` (`, instr) ↪→ (`, instr)

instr

∀` ∈ dom(c).Σ ` (`, c`) ↪→ (`, c′`)

Σ ` c ↪→ c′
code

Figure 5.4: Type system for duplicating loads elimination

is certainly a copy of the variable x) and a special type “not a copy” (the location is
possibly not a copy of any variable): StackType =df LocType∗, LabelType =df

StackType + {∅} and LocType =df Var + {nac}.
The subtyping and typing rules are given in Figure 5.4. The typing rules state

that a stack position can be marked with a variable at label ` if on all paths to
this label, this variable is put on the stack in this position, and not modified later.
In other words, at label ` the value in the corresponding position in the stack is
necessarily equal to the value of the variable. If a stack type holds a nac element
in some position it means that this position may not be a copy (e.g., since on some
path to `, a numeral is pushed to that position).

Thus the typing rule for load reflects that, after the instruction, the value on
top of the stack and the value of the corresponding variable are necessarily equal.
A store x explicitly kills all variables x in the stack, since the values in the stack
and the new value of the variable cannot be guaranteed to be consistent anymore.
The function replace means exactly that in the store rule. An optimization can be
made, if a variable x is on top of the stack before a load x instruction. In this case,
the load can be replaced with a dup, as in the following example:

Σ` (`, c`) (`, c′`)
[] 0, load x 0, load x

[x] 1, push 1 1, push 1
[nac, x] 2, store y 2, store y

[x] 3, load x 3, dup
[] 4, 4,

140

This optimization could be improved by not only keeping track of copies of
variables in the stack, but also in the variables. A location type would then be a set
of variables (those variables of which the given location is certainly a copy; the empty
set will signify that the location is possibly not a copy of anything). Then, even
if there were consecutive loads from different variables, a dup could be introduced,
provided that the two variables were actually copies of each other.

The principal type inference algorithm calculates the least type of a piece of
code c greater than a given code type Σinit (with Σinit

` = ⊥ for most `), if such
exists, iterating a forward update procedure. The general form of the algorithm is
as Algorithm 1, only forward updating.

The (partial) lub operations are the following:

lubs of value types

x ∨ x =df x
x ∨ x′ =df nac if x 6= x′

nac ∨ e =df nac
e ∨ nac =df nac

lubs of label types
⊥ =df ∅

∅ ∨ es =df es
es ∨ ∅ =df es
[] ∨ [] =df []

[] ∨ (e :: es) =df error
(e :: es) ∨ [] =df error

(e :: es) ∨ (e′ :: es ′) =df (e ∨ e′) :: (es ∨ es ′)

The update procedures are as follows:

141

c` updfwd`,Σ`+1 :=
store x case Σold

` of
∅ 7→ Σ`+1

[] 7→ error
e :: es 7→ Σ`+1 ∨ replace(x, nac, es)

load x case Σold
` of

∅ 7→ Σ`+1

es 7→ Σ`+1 ∨ x :: es
push n case Σold

` of
∅ 7→ Σ`+1

es 7→ Σ`+1 ∨ nac :: es
add case Σold

` of
∅ 7→ Σ`+1

[] 7→ error
[e] 7→ error
e0 :: e1 :: es 7→ Σ`+1 ∨ nac :: es

pop case Σold
` of

∅ 7→ Σ`+1

[] 7→ error
e :: es 7→ Σ`+1 ∨ es

dup case Σold
` of

∅ 7→ Σ`+1

[] 7→ error
e :: es 7→ Σ`+1 ∨ e :: e :: es

goto m Σm := Σm ∨ Σold
`

gotoF m case Σold
` of

∅ 7→ Σ`+1

[] 7→ error
e :: es 7→ Σ`+1 ∨ es;

Σm := Σm ∨ es

The label-type indexed similarity relation on states to establish soundness of
the optimization is defined as follows:

[] ∼σ
[]

[]

zs ∼σes zs∗

z :: zs ∼σnac::es z :: zs∗

zs ∼σes zs∗

σ(x) :: zs ∼σx::es σ(x) :: zs∗

zs ∼σes zs∗

(`, zs, σ) ∼es (`, zs∗, σ)

(Note that no states are in the relation ∼∅.)

Proof transformation Let P |Σ be P where all P` have been modified wrt. Σ`.
Let P`|Σ` =df P` ∧

∧
[st(n) = x | es(n) = x] where es = Σ`. Informally, P`|Σ` is the

conjunction of P` and the equalities of corresponding stack positions and variables
in type Σ`.

Lemma 13 unshift(P)|es ≡ unshift(P |nac::es)

We obtain the following theorem for proof transformation.

142

Theorem 29

1. If Σ ` (`, instr) ↪→ (`, instr ′) and P ` (`, instr) then P |Σ ` (`, instr ′).

2. If Σ ` c ↪→ c′ and P ` c, then also P |Σ ` c′.

Proof. The only interesting case is for load2.

• Case load2. The typing judgement is of the following form

x :: Σ` ≤ Σ`+1 Σl = x :: es
Σ ` (`, load x) ↪→ (`, dup)

load2

We also have the logic judgement of the form

P` |= unshift(P`+1[x/st(0)])
P ` (`, load x)

We have to show that

P`|Σ` |= unshift(P`+1|Σ`+1
[st(1)/st(0)])

P ` (`, dup)

We have the following sequence of entailments.

P`|Σ` |= unshift(P`+1[x/st(0)])|Σ` by the given entailment for load
|= unshift(P`+1[x/st(0)])|x::es Σ` = x :: es
|= unshift(P`+1[x/st(0)]|nac::x::es) by Lemma 13
|= unshift(P`+1|x::x::es[x/st(0)]) (st(0) = x)[x/st(0)] ≡ true
|= unshift(P`+1|x::x::es[st(1)/st(0)]) by substitution of equals

for equals, since st(1) = x
|= unshift(P`+1|Σ`+1

[st(1)/st(0)]) x :: x :: es ≤ Σ`+1

�

Example

Let us look at the previously shown example with precondition x = 3 and postcon-
dition st(0) = 3. The transformation is the following.

Σ` (`, c`) (`, c′`) P P |Σ
[] 0, load x 0, load x x = 3 x = 3

[x] 1, push 1 1, push 1 x = 3 x = 3 ∧ st(0) = x
[nac, x] 2, store y 2, store y x = 3 x = 3 ∧ st(1) = x

[x] 3, load x 3, dup x = 3 x = 3 ∧ st(0) = x
[] 4, 4, st(0) = 3 st(0) = 3

143

5.3.2 Store-load pairs elimination

The store-load pairs analysis tries to find store instructions followed by a load in-
struction to the same stack position and referring to the same variable (before any
new store to the same variable takes place). Provided that this variable is not used
later on, both instructions could be eliminated. Since the possible future use of a
variable requires a live variable analysis, we take the approach to only remove the
load instruction, but keep the store instruction and precede it with a dup, as in the
following example:

0, store x 0, dup
1, load x 1, store x
2, . . . 2, . . .

The benefit of this approach is that a check for future uses of x can be omitted.
If it turns out that the variable is not needed, a dead code elimination optimization
would remove the dup and store instructions later on.

Since this optimization manipulates pairs of instructions, a bidirectional anal-
ysis is needed, as was the case with load-pop pairs.

Similarly to the previous analysis, label types are again stack types or the
special type ∅ for “no state”: LabelType =df StackType + {∅}. Stack types
es ∈ StackType are lists of location types, which are elements x of Var (a position
to be inserted in the optimized code to keep a copy of variable x in the stack)
and “mandatory” (original positions): StackType =df LocType∗, LocType =df

Var + {mnd}.
The subtyping and typing rules are given in Figure 5.5. The typing rules say

that, if a label has some stack type, then every time this label is reached in the
execution of the code the size of the stack will be equal to the number of mnd
elements in the stack. In addition, if at some label the stack type contains an
element of Var, it means that, if the code were optimized according to the typing
rules, then at that label in the optimized code, the stack would hold an additional
copy of that variable between the positions corresponding to the positions of the
original code.

The optimization rules for the analysis are presented in Figure 5.6. The opti-
mization is slightly more complex than the previous ones. Since a single instruction
might be transformed into 2 instructions, a remapping of labels is potentially needed.
We use the auxiliary function offset which returns the offset of an instruction (the
difference between its position in the optimized program and the original program),
taking into account the optimizations happening at lower labels. The function takes
as its argument the original position (label) and the type context.

As an example, a piece of code could be typed in the following way:

144

[] ≤ []

es ≤ es′

e :: es ≤ e :: es′
es ≤ es′

x :: es ≤ es′ ∅ ≤ τ
∀` ∈ Label.Σ` ≤ Σ′`

Σ ≤ Σ′

Σ` = mnd :: es es = Σ`+1 ¬member(x, es)

Σ ` (`, store x)
store1

Σ` = mnd :: es x :: es = Σ`+1 ¬member(x, es)

Σ ` (`, store x)
store2

Σ` = es mnd :: es = Σ`+1

Σ ` (`, load x)
load1

Σ` = x : es mnd :: es = Σ`+1

Σ ` (`, load x)
load2

mnd :: Σ` = Σ`+1

Σ ` (`, push n)
push

Σ` = mnd :: mnd :: es Σ`+1 = mnd :: es

Σ ` (`, add)
add

Σ` = mnd :: Σ`+1

Σ ` (`, pop)
pop

Σ` = mnd :: es mnd :: mnd :: es = Σ`+1

Σ ` (`, dup)
dup

Σ` = Σm

Σ ` (`, goto m)
goto

Σ` = mnd :: es es = Σ`+1 es = Σm

Σ ` (`, gotoF m)
gotoF1

Σ` = ∅ ∅ = Σ`+1

Σ ` (`, instr)
nonjump

Σ` = ∅ ∅ = Σ`+1 ∅ = Σm

Σ ` (`, gotoF m)
gotoF2

∀` ∈ dom(c).Σ ` (`, c`)

Σ ` c code

Figure 5.5: Type system for store-load pairs elimination

Σ` = mnd :: es es = Σ`+1 ¬member(x, es) n = offset(`,Σ)

Σ ` (`, store x) ↪→ {(`+ n, store x)}
store1

Σ` = mnd :: es x :: es = Σ`+1 ¬member(x, es) n = offset(`,Σ)

Σ ` (`, store x) ↪→ {(`+ n, dup), (`+ n+ 1, store x)}
store2

Σ` = es mnd :: es = Σ`+1 n = offset(`,Σ)

Σ ` (`, load x) ↪→ {(`+ n, load x)}
load1

Σ` = x : es mnd :: es = Σ`+1 n = offset(`,Σ)

Σ ` (`, load x) ↪→ ∅
load2

mnd :: Σ` = Σ`+1 n = offset(`,Σ)

Σ ` (`, push n) ↪→ {(`+ n, push n)}
push

Σ` = mnd :: mnd :: es Σ`+1 = mnd :: es n = offset(`,Σ)

Σ ` (`, add) ↪→ {(`+ n, add)} add

Σ` = mnd :: Σ`+1 n = offset(`,Σ)

Σ ` (`, pop) ↪→ {(`+ n, pop)}
pop

Σ` = mnd :: es mnd :: mnd :: es = Σ`+1 n = offset(`,Σ)

Σ ` (`, dup) ↪→ {(`+ n, dup)}
dup

Σ` = Σm Σm = es n1 = offset(`,Σ) n2 = offset(m,Σ)

Σ ` (`, goto m) ↪→ {(`+ n1, goto m+ n2)}
goto

Σ` = mnd :: es es = Σ`+1 es = Σm n1 = offset(`,Σ) n2 = offset(m,Σ)

Σ ` (`, gotoF m) ↪→ {(`+ n1, gotoF m+ n2)}
gotoF1

Σ` = ∅ ∅ = Σ`+1 n = offset(`,Σ)

Σ ` (`, instr) ↪→ {(`+ n, instr)}
nonjump

Σ` = ∅ ∅ = Σ`+1 ∅ = Σm n = offset(`,Σ)

Σ ` (`, gotoF m) ↪→ {(`+ n, gotoF m)}
gotoF2

∀` ∈ dom(c).Σ ` (`, c`) ↪→ z`

Σ ` c ↪→
⋃
{z` | ` ∈ dom(c)} code

Figure 5.6: Optimizing type system for store-load pairs elimination

145

Σ` `, c` `, c′`
[] 0, push 1 0, push 1

[mnd] 1, store x 1, dup
[x] 2, push 1 2, store x

[mnd, x] 3, store y 3, push 1
[x] 4, load x 4, store y

[mnd] 5, store z 5, dup
[z] 6, 6, store z

Here, the offset of instructions 2 and 3 is one. The offset of instructions 1 and 5 is
zero (the offset is the net change of the labels preceding the given label.

Note that the type given is the principal type that the analysis algorithm would
derive when the type of label 6 is initialized to ∅. It is also acceptable to type label
6 with [].

The analysis algorithm works as follows. The lowest acceptable types of some
labels should be given (typically the type of the entry point of the program, i.e.,
label 0, is set to [] and optionally also the types of the exit labels). The rest of
the labels are initialized to be of the default type ∅. The algorithm then tries
to compute the actual and potential stack heights for each label. As mentioned
before, the mnd elements in the type mean the actual elements; the variables in
the type mean potential elements present after optimization. For store and load,
“speculative” types can initially be given, since a store could potentially be replaced
with a dup and a store (so that after the transformation an extra value would be
on the stack) and load with nop (since the extra value already present removes the
need of reloading it). The types of the successors and predecessors of a label are
used to compute the local label type. The types arriving from different directions
are combined by a non-deterministic union operation determined by the subtyping
relation. (Both [x] and [y] are greater than [x, y] and [y, x], so there is no unique least
upper bound for them, only minimal upper bounds.) As a result, any provisional
additional position is dropped from the stack, if it turns out that on some incoming
or outgoing path the potential added stack height is not really viable. At first sight,
the nondeterministic lub may seem counterintuitive, but is in fact natural for this
kind of optimization, since there can be two different equally strong optimizations
for a given piece of code. This is can be illustrated on the following example.

146

Σ1
` Σ2

` (`, c`) (`, c1
`) (`, c2

`)
[] [] 0, push 1 0, push 1 0, push 1

[mnd] [mnd] 1, store x 1, dup 1, store x
[x] [] 2, push 2 2, store x 2, push 2

[mnd, x] [mnd] 3, store y 3, push 2 3, dup
[x] [y] 4, load x 4, store y 4, store y

[mnd] [mnd, y] 5, store z 5, store z 5, load x
[] [y] 6, load y 6, load y 6, store z

[mnd] [mnd] 7, store w 7, store w 7, store w
[] [] 8, 8, 8,

In this example, load from either x or y can be removed by inserting a dup
instructions before either a store to x or y, respectively. The two possible typings
for code c are Σ1 and Σ2, which result in optimized programs c1 and c2. It is not
possible to remove both load instructions at the same time, at least not without
rearranging them.

The type inference algorithm calculates nondeterministically a minimal type of
a piece of code c greater than a given code type Σinit (with Σinit

` = ⊥ for most `), if
such a type exists, iterating forward and backward update procedures. The general
form of the algorithm is the same as for Algorithm 2.

The (partial, non-deterministic) minimal upper bound operations are the fol-
lowing:

mubs of label types
⊥ =df ∅

∅ ∨ es =df es
es ∨ ∅ =df es
[] ∨ [] =df []

[] ∨ x :: es =df [] ∨ es
[] ∨mnd :: es =df error

x :: es ∨ [] =df es ∨ []
mnd :: es ∨ [] =df error

x :: es ∨ x :: es ′ =df x :: (es ∨ es ′)
x :: es ∨ x′ :: es ′ =df es ∨ x′ :: es ′ if x 6= x′

x :: es ∨ x′ :: es ′ =df x :: es ∨ es ′ if x 6= x′

x :: es ∨mnd :: es ′ =df es ∨ (mnd :: es ′)
mnd :: es ∨ x :: es ′ =df (mnd :: es) ∨ es ′

mnd :: es ∨mnd :: es ′ =df mnd :: (es ∨ es ′)

147

The update procedures are the following:

c` updfwd`,Σ`+1 :=
store x case Σold

` of
∅ 7→ Σ`+1

xs 7→ error
xs++mnd :: es 7→ Σ`+1 ∨ x :: remove(x, es)

load x case Σold
` of

∅ 7→ Σ`+1

x :: es 7→ Σ`+1 ∨mnd :: es
es 7→ Σ`+1 ∨mnd :: es

push n case Σold
` of

∅ 7→ Σ`+1

es 7→ Σ`+1 ∨mnd :: es
add case Σold

` of
∅ 7→ Σ`+1

xs0 7→ error
xs0++(mnd :: xs1) 7→ error
xs0++(mnd :: xs1)++(mnd :: es) 7→ Σ`+1 ∨mnd :: es

pop case Σold
` of

∅ 7→ Σ`+1

xs 7→ error
xs++(mnd :: es) 7→ Σ`+1 ∨ es

dup case Σold
` of

∅ 7→ Σ`+1

xs 7→ error
xs++(mnd :: es) 7→ Σ`+1 ∨mnd :: mnd :: es

goto m Σm := Σm ∨ Σold
`

gotoF m case Σold
` of

∅ 7→ Σ`+1

xs 7→ error
xs++(mnd :: es) 7→ Σ`+1 ∨ es;

Σm := Σm ∨ es

148

c` updbwd`,Σ` :=
store x case Σold

`+1 of
∅ 7→ Σ`

x :: es 7→ Σ` ∨mnd :: es
es 7→ Σ` ∨mnd :: es

load x case Σold
`+1 of

∅ 7→ Σ`

xs 7→ error
xs++(mnd :: es) 7→ Σ` ∨ x :: es

push n case Σold
`+1 of

∅ 7→ Σ`

xs 7→ error
xs++(mnd :: es) 7→ Σ` ∨ es

add case Σold
`+1 of

∅ 7→ Σ`

xs 7→ error
xs++(mnd :: es) 7→ Σ` ∨mnd :: mnd :: es

pop case Σold
`+1 of

∅ 7→ Σ`

es 7→ Σ` ∨mnd :: es
dup case Σold

`+1 of
∅ 7→ Σ`

xs0 7→ error
xs0++(mnd :: xs1) 7→ error
xs0++(mnd :: xs1)++(mnd :: es) 7→ Σ` ∨mnd :: es

goto m Σ` := Σ` ∨ Σold
m

gotoF m case Σold
`+1 ∨ Σold

m of
∅ 7→ Σ`

es 7→ Σ` ∨mnd :: es

The similarity relation between states wrt. to a given type is defined as follows:

[] ∼σ
[]

[]

`′ = `+ offset(`,Σ)

` ∼Σ `′

zs ∼σes zs∗

z :: zs ∼σmnd::es z :: zs∗

zs ∼σes zs∗

zs ∼σx::es σ(x) :: zs∗

zs ∼σes zs∗ ` ∼Σ `′

(`, zs, σ) ∼Σ (`′, zs∗, σ)

Since the optimization can change instruction labels, it needs to be accounted
for in the similarity relation. Two states are related, if the second one has appro-
priate additional positions in its stack component, agreeing suitably with the store
component (additional positions copy variables) and the labels are shifted according
to the type. Again no two states are in the relation ∼∅.

Proof transformation Let P`|es = P`[st(m + c)/st(m) | c = stoffset(m, es)] ∧∧
[st(n) = x | es(n) = x], where stoffset is defined as

149

stoffset(m, []) = 0
stoffset(0,mnd :: es) = 0

stoffset(m,mnd :: es) = stoffset(m− 1, es)
stoffset(m,x :: es) = 1 + stoffset(m, es)

Intuitively, P`|es is obtained from P` by shifting all original stack positions in the
assertion according to the type (“making room” for the new stack positions), and all
stack positions containing a variable are made equal to that variable in the assertion.
For example for assertion st(0) = 5∧ st(1) = 7 and type x :: mnd :: y :: mnd, we get
the new assertion st(1) = 5 ∧ st(3) = 7 ∧ st(0) = x ∧ st(2) = y.

When defining the modified P wrt. Σ, i.e. P |Σ , we have to take into account
that the size and the labeling of the code can change during optimizations so the
domain of the assertion vector also changes. The new assertion vector P |Σ is defined
as

P |Σ(n) =
{
P`|Σ`

if n = `+ offset(`,Σ)
shift(P`|Σ`

) ∧ st(0) = st(1) if Σ`+1 = x :: es and n = `+ offset(`,Σ) + 1

This maps all the (possibly label shifted) unoptimized instructions to their new
labels, while the optimized store instructions get a new assertions (second case in
the equation).

The following example shows the original and modified assertions. The asser-
tions at labels 2, 3 and 6 are shifted, while assertions for store instructions at label
1 and 5 are expanded into 2 new assertions.

Σ` `, c` P` `, c′` P |Σ `
[] 0, push 1 1 = 1 0, push 1 1 = 1

[mnd] 1, store x st(0) = 1 ∧ 2 = 2 1, dup st(0) = 1 ∧ 2 = 2
[x] 2, push 2 x = 1 ∧ 2 = 2 2, store x st(1) = 1 ∧ 2 = 2 ∧ st(0) = st(1)

[mnd, x] 3, store y x = 1 ∧ st(0) = 2 3, push 2 x = 1 ∧ 2 = 2 ∧ st(0) = x
[x] 4, load x x = 1 ∧ y = 2 ∧ x = x 4, store y x = 1 ∧ st(0) = 2 ∧ st(1) = x

[mnd] 5, store z x = 1 ∧ y = 2 ∧ st(0) = x 5, dup x = 1 ∧ y = 2 ∧ st(0) = x
[z] 6, x = 1 ∧ y = 2 ∧ z = x 6, store z x = 1 ∧ y = 2 ∧ st(0) = x ∧ st(0) = st(1)

7, 7, x = 1 ∧ y = 2 ∧ z = x ∧ st(0) = z

Lemma 14 shift(P)|mnd::es ≡ shift(P |es).

We obtain the following theorem for proof transformation.

Theorem 30

1. If Σ ` (`, instr) ↪→ z and P ` (`, instr) then P |Σ ` z

2. If Σ ` c ↪→ c′ and P ` c, then also P |Σ ` c′.

Proof. The interesting case is the store x optimization.

150

• Case store2. The typing judgement is of the following form

Σ` = mnd :: es x :: es = Σ`+1 ¬member(x, es) n = offset(`,Σ)
Σ ` (`, store x) ↪→ {(`+ n, dup), (`+ n+ 1, store x)}

We also have the logic judgement of the form

P` |= shift(P`+1)[st(0)/x]
P ` (`, store x)

store

We have to show that

P |Σ(`+ n) |= unshift(P |Σ(`+ n+ 1)[st(1)/st(0)])
P |Σ ` (`+ n, dup)

dup

and

P |Σ(`+ n+ 1) |= shift(P |Σ(`+ n+ 2))[st(0)/x]
P |Σ ` (`+ n+ 1, store x)

store

We know that P |Σ(` + n) = P`|Σ` = P`|mnd::es and since Σ`+1 = x :: es, then
P |Σ(`+ n+ 1) = shift(P`)|Σ` ∧ st(0) = st(1) = shift(P`)|mnd::es ∧ st(0) = st(1)
and P |Σ(`+ n+ 2) = P`+1|Σ`+1

= P`+1|x::es .

– For the dup rule, we need to show that P`|mnd::es |= unshift((shift(P`|mnd::es)∧
st(0) = st(1))[st(1)/st(0)]). We have the following sequence of entail-
ments.

P`|mnd::es |=
|= unshift(shift(P`|mnd::es))
|= unshift(shift(P`|mnd::es)[st(1)/st(0)])

shift(P) does not contain st(0)
|= unshift(shift(P`|mnd::es)[st(1)/st(0)] ∧ st(1) = st(1))
|= unshift((shift(P`|mnd::es) ∧ st(0) = st(1))[st(1)/st(0)])

– For store rule, we have to show that (shift(P`|mnd::es) ∧ st(0) = st(1)) |=
shift(P`+1|x::es)[st(0)/x].

We know that P` |= shift(P`+1)[st(0)/x]. We have the following sequence
of entailments.

151

shift(P`|mnd:es) ∧ st(0) = st(1)
|= shift(P`)|mnd::mnd::es ∧ st(0) = st(1) by Lemma 14
|= shift(shift(P`+1)[st(0)/x])|mnd::mnd:es ∧ st(0) = st(1)

By the given entailment for store, variable renaming
and conjunction introduction and elimination

|= shift(shift(P`+1)[st(0)/x]|mnd:es) ∧ st(0) = st(1)
by Lemma 14

|= (shift(shift(P`+1)|mnd:es [st(0)/x]) ∧ st(0) = st(1)
by ¬member(x, es)

|= shift(shift(P`+1|es)[st(0)/x]) ∧ st(0) = st(1)
by Lemma 14

|= shift(shift(P`+1|es))[st(0)/x] ∧ st(0) = st(1)
since st(0) = st(1)

|= shift(P`+1|x::es)[st(0)/x] ∧ st(0) = st(1)
x :: es accounts for the shift()

|= shift(P`+1|x::es)[st(0)/x]

�

Example

As an example lets look at a program s ≡ while x < n do x := x+ 1; y := x ∗ x; z :=
z + y. The corresponding bytecode program c, its type Σ and its optimized version
c′ are the following.

152

` Σ c` c′`
1 [] load n load n
2 [mnd] load x load x
3 [mnd,mnd] less less
4 [mnd] gotoF 18 gotoF 18
5 [] push 1 push 1
6 [mnd] load x load x
7 [mnd,mnd] add add
8 [mnd] store x dup

9 [x] load x store x
10 [mnd] load x load x
11 [mnd,mnd] mult mult
12 [mnd] store y dup

13 [y] load y store y

14 [mnd] load z load z
15 [mnd,mnd] add add
16 [mnd] store z store z
17 [] goto 1 goto 1
18

Suitable pre- and postconditions for the program are x = 0∧ z = 0∧n ≥ 0 and
z =

∑n
i=1 i

2, respectively. The suitable assertions for each label are

x = 0 ∧ z = 0 ∧ n > 0
x < n ∧ x ≤ n ∧ z + (x + 1) ∗ (x + 1) = ... ∨ x 6< n ∧ ... 1 load n

x < st(0) ∧ x ≤ n ∧ z + (x + 1) ∗ (x + 1) = ... ∨ x 6< st(0) ∧ ... 2 load x
st(0) < st(1) ∧ x ≤ n ∧ z + (x + 1) ∗ (x + 1) = ... ∨ st(0) 6< st(1) ∧ ... 3 less

st(0) ∧ x ≤ n ∧ z + (x + 1) ∗ (x + 1) = ... ∨ ¬st(0) ∧ ... 4 gotoF 18

x ≤ n ∧ z + (x + 1) ∗ (x + 1) =
∑x+1
i=1 i2 5 push 1

x ≤ n ∧ z + (x + st(0)) ∗ (x + st(0)) =
∑x+st(0)
i=1 i2 6 load x

x ≤ n ∧ z + (st(0) + st(1)) ∗ (st(0) + st(1)) =
∑st(0)+st(1)
i=1 i2 7 add

x ≤ n ∧ z + st(0) ∗ st(0) =
∑st(0)
i=1 i2 8 store x

x ≤ n ∧ z + x ∗ x =
∑x
i=1 i2 9 load x

x ≤ n ∧ z + x ∗ st(0) =
∑x
i=1 i2 10 load x

x ≤ n ∧ z + st(0) ∗ st(1) =
∑x
i=1 i2 11 mult

x ≤ n ∧ z + st(0) =
∑x
i=1 i2 12 store y

x ≤ n ∧ z + y =
∑x
i=1 i2 13 load y

x ≤ n ∧ z + st(0) =
∑x
i=1 i2 14 load z

x ≤ n ∧ st(0) + st(1) =
∑x
i=1 i2 15 add

x ≤ n ∧ st(0) =
∑x
i=1 i2 16 store z

x ≤ n ∧ z =
∑x
i=1 i2 17 goto 1

z =
∑n
i=1 i2 18

The assertions for the optimized program are

153

x = 0 ∧ z = 0 ∧ n > 0
x < n ∧ x ≤ n ∧ z + (x + 1) ∗ (x + 1) = ... ∨ x 6< n ∧ ... 1 load n

x < st(0) ∧ x ≤ n ∧ z + (x + 1) ∗ (x + 1) = ... ∨ x 6< st(0) ∧ ... 2 load x
st(0) < st(1) ∧ x ≤ n ∧ z + (x + 1) ∗ (x + 1) = ... ∨ st(0) 6< st(1) ∧ ... 3 less

st(0) ∧ x ≤ n ∧ z + (x + 1) ∗ (x + 1) = ... ∨ ¬st(0) ∧ ... 4 gotoF 18

x ≤ n ∧ z + (x + 1) ∗ (x + 1) =
∑x+1
i=1 i2 5 push 1

x ≤ n ∧ z + (x + st(0)) ∗ (x + st(0)) =
∑x+st(0)
i=1 i2 6 load x

x ≤ n ∧ z + (st(0) + st(1) ∗ (st(0) + st(1))) =
∑st(0)+st(1)
i=1 i2 7 add

x ≤ n ∧ z + st(0) ∗ st(0) =
∑st(0)
i=1 i2 8 dup

x ≤ n ∧ z + st(1) ∗ st(1) =
∑st(0)
i=1 i2 ∧ st(0) = st(1) 9 store x

x ≤ n ∧ z + x ∗ st(0) =
∑x
i=1 i2 ∧ x = st(0) 10 dup

x ≤ n ∧ z + st(0) ∗ st(1) =
∑x
i=1 i2 11 mult

x ≤ n ∧ z + st(0) =
∑x
i=1 i2 12 dup

x ≤ n ∧ z + st(1) =
∑x
i=1 i2 ∧ st(0) = st(1) 13 store y

x ≤ n ∧ z + st(0) =
∑x
i=1 i2 14 load z

x ≤ n ∧ st(0) + st(1) =
∑x
i=1 i2 15 add

x ≤ n ∧ st(0) =
∑x
i=1 i2 16 store z

x ≤ n ∧ z =
∑x
i=1 i2 17 goto 1

z =
∑n
i=1 i2

5.4 Related work

As mentioned in the introduction, one of the more well-known bytecode transfor-
mation tools is Soot [64]. Soot’s approach to bytecode optimization is to transform
bytecode into 3-address intermediate code, to use standard techniques to optimize
the intermediate code, and then to translate the code back into bytecode. The
back and forth translation can introduce several inefficiencies into bytecode, such as
redundant store/load computations. This is tackled by either transforming the inter-
mediate code into an aggregated form, using some peephole optimization techniques
and converting it to bytecode using standard tree traversal techniques, or by trans-
lating the intermediate code into a streamlined form of bytecode, and performing
store-load optimizations on its basic blocks [65]. The benefit of Soot’s approach is of
course that optimizations on the intermediate language are routine to perform. The
drawback is that multiple transformations between different representations make
the optimizations performed non-transparent and the code can lose some properties
that were present before. This can become an issue, when preservation of properties
beyond the standard semantics (e.g., code size) is desired.

The Java bytecode analyzer Julia [60] provides a framework for implementing
different static analyses on Java bytecode. Analyses implemented so far include
escape analysis, rapid type analysis, information-flow analysis, static initialisation
analysis and several others. To our knowledge the analyses outlined here have not
been implemented in Julia.

The jDFA framework performs basic analysis of liveness and constant propaga-
tion on bytecode [43]. Liveness information is only computed for local registers (not
for the stack). More complicated analyses, which would allow removal of dead code

154

or constant folding, are not implemented. Further implementation of this framework
seems to have stopped.

VanDrunen et al. [67] give a formalization and soundness proofs for specific
pattern based eliminations of store-load pairs in basic blocks. Their work is partly
motivated by that of Shpeisman and Tikir [59], who list specific instances for code
replacement in Java bytecode, considering variations of dup instruction available
there, but do not formalize these transformations.

Our analyses and optimizations are presented in the form of type systems,
following the approach of Stata and Abadi [61], who described the Java bytecode
verifier as a type system. Bidirectional analyses for high-level languages have been
described in great detail by Khedker and Dhamdhere [32]. Such analyses have been
used in high-level optimizations such as the original Morel-Renvoise algorithm [44]
for partial redundancy elimination and several subsequent ones [24, 22] (discussed
more thoroughly in the previous chapter).

5.5 Conclusion

We have described four different data-flow analyses for optimizing stack-based code.
Our main goal was to give general and formal descriptions for both the analyses
and optimizations based on them. We have outlined the difficulties associated to
bytecode optimizations that modify pairs of stack height changing instructions across
basic block boundaries. The analyses have been presented in the form of type
systems, which lend themselves for proof transformation, being in this respect very
similar to the high-level optimizing type systems presented in the previous chapter.

We have also presented the algorithms for computing strongest analyses. The
analyses have been implemented for full Java bytecode, except for Jsr/Ret instruc-
tions (which have been deprecated in Java’s SDK since version 6 [68]). The im-
plementations follow closely the algorithms presented, using the ASM [4] bytecode
manipulation framework. Additionally, we have implemented the Simple PRE algo-
rithm (described in the previous chapter) for Java bytecode. In this case we do some
preprocessing on bytecode, to discover expressions which can potentially be moved.
The expression moving phase, which is trivial for a high-level language (simply by
replacing an expression on the right hand side of an assignment with a temporary
variable) is more complicated for bytecode since expressions can potentially span
several basic blocks. To overcome this, we use the dead-store and load-pop elimi-
nation optimizations. For example to remove an expression, it suffices to “mark” it
with a pop instruction, and then run the load-pop elimination on the code.

Indeed, while the algorithms presented in this chapter are not particularly
performance-enhancing on their own in general, they can be thought of as build-
ing blocks for other, more complicated optimization. For high-level language the
optimization/code-rewriting part is in general easy after the required dataflow anal-
yses are performed, but this is not necessarily the case for bytecode, since moving
around code poses its own challenges. One interesting line of work would be to

155

show how this can be overcome by chaining together the “utility” analyses with
optimization-specific analyses like anticipability in case of Simple PRE.

156

Chapter 6

Conclusions and future work

This thesis concentrated on two aspects relevant to PCC. We demonstrated
that introducing compositional big-step semantics and Hoare logics for languages
with jumps is quite straightforward by using finite unions of pieces of code as the
underlying phrase structure. We did this on the example of a bytecode-like language.
The semantic and logic descriptions are fundamentally no more complicated than
those for structured high-level languages. Especially noteworthy is that Hoare triples
in our logic are interpreted in the standard way, unlike other logics targeting similar
languages [15, 63, 62]. Quite naturally, Hoare triples of While can be compiled into
Hoare triples of the bytecode language.

We also proposed a viable solution for dealing with proof “optimization”. The
main insight there was to describe dataflow analyses as type systems. Since the
shape of the type derivation tree matches the Hoare derivation tree, it is easy to
transform assertions in places relevant to the optimization, where the transformation
is guided by the particular type. This is in contrast to transforming proof obligations
generated by weakest precondition calculus. In the latter case, there is no explicit
connection between the program point that is modified in the transformation and
to the part of the proof that needs to be modified accordingly, the connection is
only indirect. This makes proof transformation using the type-systematic approach
much more straightforward.

Future work There are several paths along which this work can be extended.
In this thesis, we only dealt with classical Hoare logic (without procedures)

and intraprocedural optimizations. The work on proof transformation should be ex-
tended to interprocedural optimizations (for example interprocedural constant prop-
agation or common subexpression elimination). This would assume working with
a logic that handles procedure/method calls. It would also be interesting to look
at optimizations for object-oriented programs, e.g. static initialization optimization,
elimination of dynamic casts, etc. Another line of future work in the same vein
would be considering transformations based on alias analysis for program proofs in
separation logic. We believe the way to go would still be by using type-indexed
similarity relations.

157

Some of the paths we have already mentioned. It would be of interest to inves-
tigate how similarity relations could be systematically derived from the type system.
Right now, we craft the similarity relation in an ad hoc way. It should be possible
to build a systematic framework for extracting the similarity from the type system
(both for analysis and optimization type systems).

It would also be of interest to look into modularizing soundness proofs of opti-
mizations as explained in Chapter 4. In this thesis, if an optimization was a result of
a cascade of analyses, we proved the optimization sound in one monolithic step. In-
stead, each analysis could be proven correct separately, using different instrumented
semantics along the way. Then, those proofs could be reused for proving sound a
similar optimization which uses some of the same analyses. As we already argued
before, the drawback of the modular proof is that, more often than not, dataflow
analyses abstract not over states, but over some other properties of computation,
such as computation paths and expression evaluations on them. This means that in
order to prove the analysis sound, non-standard instrumented semantics need to be
introduced, which are in general different for each individual analysis. The benefit
of the monolithic proof is that it is based only on standard (big-step) semantics, so
no new formalism needs to be introduced.

In Chapter 5, we described two bidirectional analyses, where information is
propagated both back and fourth in the control flow graph. A notable feature of the
type system for bidirectional analysis is that it does not have the usual subsumption
rule (for weakening/strengthening the pre/posttype), since changing a type in one
program point is not possible in the general case: any change might influence types
in other program points. This means that subsumption is only applicable for a
“web” of types that are related to each other. An interesting line of work would
be to look more deeply into the theoretical aspects of type systems for bidirectional
analysis. We have already made some progress in this area.

158

Bibliography

[1] E. Albert, G. Puebla, and M. V. Hermenegildo. Abstraction-carrying code. In
F. Baader and A. Voronkov, editors, Proc. of 11th Int. Conf. Logic for Pro-
gramming Artificial Intelligence and Reasoning, LPAR 2004, volume 3452 of
Lecture Notes in Computer Science, pages 380–397. Springer-Verlag, 2005.

[2] A. Appel and D. McAllester. An indexed model of recursive types for founda-
tional proof-carrying code. ACM Transactions on Programming Languages and
Systems, 23(5):657–683, 2001.

[3] M. A. Arbib and S. Alagić. Proof rules for gotos. Acta Informatica, 11:139–148,
1979.

[4] ASM. http://asm.objectweb.org/, 2008 (accessed September 20, 2008).

[5] D. Aspinall, L. Beringer, and A. Momigliano. Optimisation validation. In
Proc. of 5th Int. Wksh. on Compiler Optimization Meets Compiler Verification,
COCV 2006, volume 13 of Electronic Notes in Theoretical Computer Science,
pages 573–600. Elsevier, 2006.

[6] F. Y. Bannwart and P. Müller. A program logic for bytecode. In F. Spoto,
editor, Proc. of Bytecode Semantics, Verification, Analysis and Transformation,
volume 141 of Electronic Notes in Theoretical Computer Science, pages 255–
273. Elsevier, 2005.

[7] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet,
M. Pavlova, and A. Requet. JACK: a tool for validation of security and be-
haviour of Java applications. In F. S. de Boer et al., editors, Proc. of 5th Int.
Symp. on Formal Methods for Components and Objects, FMCO 2006, volume
4709 of Lecture Notes in Computer Science, pages 152–174. Springer-Verlag,
2007.

[8] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate translation for
optimizing compilers. In K. Yi, editor, Proc. of 13th Int. Static Analysis Sym-
posium, SAS 2006, volume 4134 of Lecture Notes in Computer Science, pages
301–317. Springer-Verlag, 2006.

159

[9] G. Barthe and C. Kunz. Certificate translation in abstract interpretation. In
S. Drossopoulou, editor, Proc. of 17th European Symposium on Programming,
ESOP 2008, volume 4960 of Lecture Notes in Computer Science, pages 368–382.
Springer-Verlag, 2008.

[10] G. Barthe and T. Rezk. Non-interference for a JVM-like language. In
M. Fähndrich and G. Morrisett, editors, Proc. of 2005 ACM SIGPLAN Int.
Wksh. on Types in Language Design and Implementation, TLDI 2005, pages
103–112. ACM Press, 2005.

[11] G. Barthe, T. Rezk, and A. Saabas. Proof obligations preserving compilation.
In T. Dimitrakos, F. Martinelli, P. Ryan, and S. Schneider, editors, Proc. of 3rd
Int. Wksh. on Formal Aspects in Security and Trust, FAST 2005, volume 3866
of Lecture Notes in Computer Science, pages 112–126. Springer-Verlag, 2005.

[12] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2007.

[13] N. Benton. Simple relational correctness proofs for static analyses and pro-
gram transformations. In N. D. Jones and X. Leroy, editors, Proc. of 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2004, pages 14–25. ACM Press, 2004.

[14] N. Benton. A typed logic for stacks and jumps, 2004. Draft.

[15] N. Benton. A typed, compositional logic for a stack-based abstract machine.
In K. Yi, editor, Proc. of 3rd Asian Symp. on Programming Languages and
Systems, APLAS 2005, volume 3780 of Lecture Notes in Computer Science,
pages 364–380. Springer-Verlag, 2005.

[16] Y. Bertot, B. Grégoire, and X. Leroy. A structured approach to proving com-
piler optimizations based on dataflow analysis. In J.-C. Filliâtre, C. Paulin-
Mohring, and B. Werner, editors, Revised Selected Papers from 1st Int. Wksh.
on Types for Proofs and Programs, TYPES 2004, number 3839 in Lecture Notes
in Computer Science, pages 66–81. Springer-Verlag, 2004.

[17] D. Bronnikov. A practical adoption of partial redundancy elimination. ACM
SIGPLAN Notices, 39(8):49–53, 2004.

[18] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions: Ad-
vanced specification and verification with JML and ESC/Java2. In F. S. de Boer
et al., editors, Proc. of 5th Int. Symp. on Formal Methods for Components and
Objects, FMCO 2006, volume 4111 of Lecture Notes in Computer Science, pages
342–363. Springer-Verlag, 2006.

[19] S. A. Cook. Soundness and completeness of an axiom system for verification.
SIAM Journal on Computing, 7(1):70–90, 1978.

160

[20] A. de Bruin. Goto statements: Semantics and deduction systems. Acta Infor-
matica, 15:385–424, 1981.

[21] M. Debbabi, A. Mourad, C. Talhi, and H. Yahyaoui. Accelerating embedded
Java for mobile devices. IEEE Communications, 43(9):80–85, 2005.

[22] D. M. Dhamdhere. Practical adaptation of the global optimization algorithm
of Morel and Renvoise. ACM Transactions on Programming Languages and
Systems, 13(2):291–294, 1991.

[23] D. M. Dhamdhere. E-path PRE—partial redundancy elimination made easy.
ACM SIGPLAN Notices, 37(8):53–65, 2002.

[24] K. H. Drechsler and M. P. Stadel. A solution to a problem with Morel and
Renvoise’s “Global optimization by suppression of partial redundancies”. ACM
Transactions on Programming Languages and Systems, 10(4):635–640, 1988.

[25] K. H. Drechsler and M. P. Stadel. A variation of Knoop, Rüthing and Steffen’s
“Lazy code motion”. ACM SIGPLAN Notices, 28(5):29–38, 1993.

[26] K. H. Drechsler and M. P. Stadel. Optimal code motion: theory and practice.
ACM Transactions on Programming Languages and Systems, 16(4):1117–1155,
1994.

[27] J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research
Report 1366, LRI, Université Paris Sud, 2003.

[28] J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs. In
J. Davies, W. Schulte, and M. Barnett, editors, Proc. of 6th International Con-
ference on Formal Engineering Methods, ICFEM 2004, volume 3308 of Lecture
Notes in Computer Science, pages 15–29. Springer-Verlag, 2000.

[29] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, volume 19 of Proc. of Symp. in
Appl. Math., pages 19–33. American Mathematical Society, 1967.

[30] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576–580, 1969.

[31] M. Huisman and B. Jacobs. Java program verification via a Hoare logic with
abrupt termination. In T. Maibaum, editor, Proc. of Fundamental Approaches
to Software Engineering, volume 1783 of Lecture Notes in Computer Science,
pages 284–303. Springer-Verlag, 2000.

[32] U. P. Khedker and D. M. Dhamdhere. A generalized theory of bit vector data
flow analysis. ACM Transactions on Programming Languages and Systems,
16(5):1472–1511, 1994.

161

[33] J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion. In Proc. of the ACM
SIGPLAN’92 Conf. on Programming Language Design and Implementation,
PLDI 1992, pages 224–234. ACM Press, 1992.

[34] N. Kobayashi and K. Kirane. Type-based information analysis for low-level lan-
guages. In Proc. of 3rd Asian Wksh. on Programming Languages and Systems,
APLAS’02, pages 302–316, 2003.

[35] P. J. Koopman. A preliminary exploration of optimized stack code generation.
Journal of Forth Applications and Research, 6(3):241–251, 1994.

[36] T. Kowaltowski. Axiomatic approach to side effects and general jumps. Acta
Informatica, 7:357–360, 1977.

[37] D. Lacey and E. Van Wyk N. D. Jones. Proving correctness of compiler
optimizations by temporal logic. Higher-Order and Symbolic Computation,
17(3):173–206, 2004.

[38] P. Laud, T. Uustalu, and V. Vene. Type systems equivalent to data-flow anal-
yses for imperative languages. Theoretical Computer Science, 364(3):292–310,
2006.

[39] S. Lerner, T. Millstein, and C. Chambers. Automatically proving the correct-
ness of compiler optimizations. In Proc. of the ACM SIGPLAN 2003 Conf. on
Programming Language Design and Implementation, PLDI 2003, pages 220–
231. ACM Press, 2003.

[40] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automatically proving the
correctness of compiler optimizations. In J. Palsberg and M. Abadi, editors,
Proc. of 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2005, pages 364–377. ACM Press, 2005.

[41] M. Maierhofer and M. A. Ertl. Local stack allocation. In K. Koskimies, editor,
Proc. of 7th Int. Conf. on Compiler Construction, CC ’98, volume 1383 of
Lecture Notes in Computer Science, pages 189–203. Springer-Verlag, 1998.

[42] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certifi-
cation of Java/JavaCard programs annotated with JML annotations. Journal
of Logic and Algebraic Programming, 58:89–106, 2004.

[43] M. Mohnen. An open framework for data-flow analysis in Java. In Proc. of
2nd Wksh. on Intermediate Representation Engineering for Virtual Machines,
2002.

[44] E. Morel and C. Renvoise. Global optimization by suppression of partial re-
dundancies. Communications of the ACM, 22(2):96–103, 1979.

162

[45] G. C. Necula. Proof-carrying code. In Proc. of 24st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1997, pages 106–
119. ACM Press, 1997.

[46] G. C. Necula. Translation validation for an optimizing compiler. In Proc. of
the ACM SIGPLAN 2000 Conf. on Programming Language Design and Imple-
mentation, PLDI 2000, pages 88–94. ACM Press, 2000.

[47] G. C. Necula and P. Lee. Efficient representation and validation of proofs. In
Proc. of the 13th IEEE Symp. on Logic in Computer Science, LICS 1998, pages
93–104. IEEE Press, 1998.

[48] H. R. Nielson and F. Nielson, editors. Semantics with Applications: A Formal
Introduction. Wiley, 1992.

[49] H. R. Nielson and F. Nielson. Flow logic: a multi-paradigmatic approach to
static analysis. In The Essence of Computation, Complexity, Analysis, Trans-
formation: Essays Dedicated to Neil D. Jones, volume 2566 of Lecture Notes in
Computer Science, pages 223–244. Springer-Verlag, 2002.

[50] V. K. Paleri, Y. N. Srikant, and P. Shankar. Partial redundancy elimination:
a simple, pragmatic, and provably correct algorithm. Science of Computer
Programming, 48(1):1–20, 2003.

[51] C. L. Quigley. A programming logic for Java bytecode programs. In D. A.
Basin and B. Wolff, editors, Proc of. 16th Int. Conf. on Theorem Proving in
Higher-Order Logic, TPHOLs 2003, volume 2758 of Lecture Notes in Computer
Science, pages 41–54. Springer-Verlag, 2003.

[52] A. Saabas and T. Uustalu. Compositional type systems for stack-based low-level
languages. In B. Jay and J. Gudmundssson, editors, Proc. of 12th Computing:
Australasian Theory Symp., CATS 2006, volume 51 of Confs. in Research and
Practice in Inform. Techn., pages 27–39. Australian Computer Society, 2006.

[53] A. Saabas and T. Uustalu. A compositional natural semantics and Hoare logic
for low-level languages. Theoretical Computer Science, 373(3):273–302, 2007.

[54] A. Saabas and T. Uustalu. Type systems for optimizing stack-based code. In
M. Huisman and F. Spoto, editors, Proc. of 2nd Wkshp. on Bytecode Semantics,
Verification, Analysis and Transformation, BYTECODE 2007, volume 190(1)
of Electron. Notes in Theor. Comput. Sci., pages 103–119. Elsevier, 2007.

[55] A. Saabas and T. Uustalu. Program and proof optimizations with type systems.
Journal of Logic and Algebraic Programming, 77(1–2):131–154, 2008.

[56] A. Saabas and T. Uustalu. Proof optimization for partial redundancy elim-
ination. In R. Glück and O. de Moor, editors, Proc. of 2008 ACM SIG-
PLAN Wksh. on Partial Evaluation and Semantics-Based Program Manipu-
lation, PEPM 2008, pages 91–101. ACM Press, 2008.

163

[57] L. Schröder and T. Mossakowski. Monad-independent Hoare logic in HasCASL.
In M. Pezzè, editor, Proc. of 6th Int. Conf. on Fundamental Approaches to
Software Engineering, FASE 2003, volume 2621 of Lecture Notes in Computer
Science, pages 261–277. Springer-Verlag, 2003.

[58] L. Schröder and T. Mossakowski. Generic exception handling and the Java
monad. In C. Rattray, S. Maharaj, and C. Shankland, editors, Proc. of 10th
Int. Conf. on Algebraic Methodology and Software Technology, AMAST 2004,
number 3116 in Lecture Notes in Computer Science, pages 443–459. Springer-
Verlag, 2004.

[59] T. Shpeisman and M. Tikir. Generating efficient stack code for Java. Technical
Report CS-TR-4069, University of Maryland, 1999.

[60] F. Spoto. Julia: A generic static analyser for the Java bytecode. In Proc. of
Workshop on Formal Techniques for Java Programs, FTfJP 2005, 2005.

[61] R. Stata and M. Abadi. A type system for Java bytecode subroutines. ACM
Transactions on Programming Languages and Systems, 21(1):90–137, 1999.

[62] G. Tan. A compositional logic for control flow and its application for proof-
carrying code. PhD thesis, Princeton Univ, 2005.

[63] G. Tan and A. W. Appel. A compositional logic for control flow. In E. A.
Emerson and K. S. Namjoshi, editors, Proc. of 7th Int. Conf. on Verification,
Model Checking, and Abstract Interpretation, VMCAI 2006, volume 3855 of
Lecture Notes in Computer Science, pages 80–94. Springer-Verlag, 2006.

[64] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot
– a Java bytecode optimization framework. In Proc. of Conf. on the Centre of
Advanced Studies for Collaborative Research, pages 125–135, 1999.

[65] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundare-
san. Local stack allocation. In D. A. Watt, editor, Proc. of 9th Int. Conf. on
Compiler Construction, CC 2000, volume 1781 of Lecture Notes in Computer
Science, pages 18–34. Springer-Verlag, 2000.

[66] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In
T. Margaria and W. Yi, editors, Proc. of 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 2001,
volume 2031 of Lecture Notes in Computer Science, pages 299–312. Springer-
Verlag, 2001.

[67] T. VanDrunen, A. L. Hosking, and J. Palsberg. Reducing loads and stores in
stack architectures, 2000. Draft.

[68] New JDK 6 Verifier. https://jdk.dev.java.net/verifier.html, 2008 (ac-
cessed September 20, 2008).

164

[69] J. Xue and J. Knoop. A fresh look at PRE as a maximum flow problem.
In A. Mycroft and A. Zeller, editors, Proc. of 15th Int. Conf. on Compiler
Construction, CC 2006, volume 3923 of Lecture Notes in Computer Science,
pages 139–154. Springer-Verlag, 2006.

[70] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. Voc: a methodology for the
translation validation of optimizing compilers. Journal of Universal Computer
Science, 9(3):223–247, 2003.

165

List of Publications

• M. Veanes, A. Saabas. On bounded reachability of programs with set compre-
hensions. Proceedings of the 15th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning, LPAR 2008 (Doha, Qatar,
November 2008). Lecture Notes in Computer Science, Springer, 2008. To
appear.

• A. Saabas, T. Uustalu. Program and proof optimizations with type systems.
Journal of Logic and Algebraic Programming, v. 77, n. 1-2, pp. 131-154,
2008.

• A. Saabas, T. Uustalu. Proof optimization for partial redundancy elimina-
tion. Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evalu-
ation and Semantics-Based Program Manipulation, PEPM’08 (San Francisco,
January 2008), pp. 91-101, ACM, 2008.

• M. J. Frade, A. Saabas, T. Uustalu. Foundational certification of data-flow
analyses. Proceedings of the 1st IEEE and IFIP International Symposium
on Theoretical Aspects of Software Engineering, TASE 2007 (Shanghai, June
2007), pp. 107-116. IEEE CS Press, 2007.

• A. Saabas, T. Uustalu. Type systems for optimizing stack-based code. Pro-
ceedings of the 2nd Workshop on Bytecode Semantics, Verification, Analysis
and Transformation, Bytecode 2007 (Braga, March 2007), v. 190, n. 1 of
Electron. Notes in Theoretical Computer Science, pp. 103-119. Elsevier,
2007.

• A. Saabas, T. Uustalu. A compositional natural semantics and Hoare logic for
low-level languages. Theoretical Computer Science, v. 373, n. 3, pp. 273-302,
2007.

• A. Saabas, T. Uustalu. Compositional Type Systems for Stack Based Low-
Level Languages. Proceedings of the 12th Computing, Australasian Theory
Symp., CATS 2006 (Hobart, Jan. 2006), v. 51 of Confs. in Research and
Practice in Inform. Techn., pp. 27-39. Australian Comput. Soc., 2006.

• A. Saabas, T. Uustalu. A compositional natural semantics and Hoare logic
for low-level languages. Proceedings of the 2nd Workshop on Structured Op-
erational Semantics, SOS 2005 (Lisbon, July 2005), v. 156, n. 1 of Electronic
Notes in Theoretical Computer Science, pp. 151-168. Elsevier, 2006.

• P. Grigorenko, A. Saabas, E. Tyugu. Visual tool for generative program-
ming. Proceedings of the 10th European Software Engineering Conference,
ESEC/FSE-13 (Lisbon, Sept. 2005), pp. 249-252, ACM Press, 2005.

166

• G. Barthe, T. Rezk, A. Saabas. Proof Obligations Preserving Compilation.
Proceedings of the 3rd Workshop on Formal Aspects in Security and Trust,
2005 (Newcastle upon Tyne, 2005), v. 3866 of Lecture Notes in computer
Science, pp. 112-126, Springer Verlag, 2006

• P. Grigorenko, A. Saabas, E. Tyugu. COCOVILA - Compiler-Compiler for
Visual Languages. Proceedings of the 5th Workshop on Language Descrip-
tions, Tools and Applications, 2005 (Edinburgh, April 2005), v. 141, n. 4
of Electronic Notes in Theoretical Computer Science, pp. 137-142. Elsevier,
2005.

167

Curriculum Vitae

Personal Data
Name Ando Saabas
Date of birth 21.09.1979
Citizenship Estonian

Contact data
Address Institute of Cybernetics at TUT, Akadeemia tee 21, 12618 Tallinn
Phone 6204240
E-mail ando@cs.ioc.ee

Education
2004 – 2008 Tallinn University of Technology, Phd studies in computer

science
2003 – 2004 Internship at INRIA, Sophia Antipolis (10.2003–01.2004)
2002 – 2004 Tallinn University of Technology, BSc studies in computer

science
1998 – 2002 Tallinn University of Technology, MSc studies in computer

science

Positions held
2005 – ... Institute of Cybernetics at TUT; Researcher
2008 – 2008 Internship at Microsoft Research, Redmond (02.2008 –

04.2008)
2002 – 2005 Institute of Cybernetics at TUT; Engineer
1999 – 2001 Stockholm Environmental Institute Tallinn Centre (SEI-

Tallinn); Programmer

Administrative responsibilities
2007 Testcom-FATES/FORTE 2007, Tallinn, 26-29 June 2007; member

of the organizing committee
2006 MPC/AMAST 2006, Kuressaare, 2-8 July 2006; member of the

organizing committee
2005 4th Estonian Summer School in Computer and System Science

(ESSCaSS’05), Pedase, 7-12 August 2005; member of the organiz-
ing committee

2005 TCP/ICFP/GPCE 2005, Tallinn, 23 Sept.-1 Oct. 2005; member
of the organizing committee

2004 2nd APPSEM II Workshop, Tallinn, 14-16 April 2004; member of
the organizing committee

2004 3rd Estonian Summer School in Computer and System Science
(ESSCaSS’04), Pedase, 8-12 August 2004; member of the organiz-
ing committee

168

Elulookirjeldus

Isikuandmed
Nimi Ando Saabas
Sünniaeg 21.09.1979
Kodakondsus Eesti

Kontaktandmed
Address TTÜ Küberneetika Instituut, Akadeemia tee 21, 12618 Tallinn
Telefon 6204240
E-post ando@cs.ioc.ee

Hariduskäik
2004 – 2008 Tallinna Tehnikaülikool, doktoriõpingud informaatikas
2003 – 2004 Intern Prantsuse Rahvuslikus Teadusinstituudis INRIA,

Sophia Antipolises (10.2003–01.2004)
2002 – 2004 Tallinna Tehnikaülikool, magistriõpingud informaatikas
1998 – 2002 Tallinna Tehnikaülikool, bakalaureuseõpingud informaatikas

Teenistuskäik
2005 – ... Tallinna Tehnikaülikool, Küberneetika Instituut; teadur
2008 – 2008 Intern Microsoft Researchi Redmondi uurimislaboris

(02.2008 – 04.2008)
2002 – 2005 Tallinna Tehnikaülikool, Küberneetika Instituut; insener
1999 – 2001 Säästva Eesti Instituut (SEI-Tallinn); programmeerija

Teadusorganisatsiooniline ja -administratiivne tegevus
2007 Testcom-FATES/FORTE 2007, Tallinn, 26.-29. juuni 2007; kor-

raldustoimkonna liige
2006 MPC/AMAST 2006, Kuressaare, 2.-8. juuli 2006; korraldus-

toimkonna liige
2005 4th Estonian Summer School in Computer and System Science

(ESSCaSS’05), Pedase, 7.-12. august 2005; korraldustoimkonna
liige

2005 TCP/ICFP/GPCE 2005, Tallinn, 23. sept. - 1. okt. 2005; korral-
dustoimkonna liige

2004 2nd APPSEM II Workshop, Tallinn, 14.-16. aprill 2004; korral-
dustoimkonna liige

2004 3rd Estonian Summer School in Computer and System Science
(ESSCaSS’04), Pedase, 8.-12. august 2004; korraldustoimkonna
liige

169

	Introduction
	Proof-Carrying Code
	Contributions
	References to previously published work
	Organization of the thesis

	Preliminaries
	The high-level language While
	Syntax
	Natural semantics
	Hoare logic

	The low-level language Push
	Program logics for Push

	A compositional approach to low-level languages
	Structured version of Push and its natural semantics
	Hoare logic
	A dip into type systems
	Compilation
	Example

	Related work
	Conclusion

	Proof-preserving program transformations
	Introduction
	Dead code elimination
	Type system for live variables analysis
	Type system for dead code elimination

	Common subexpression elimination
	Type system for available expressions analysis
	Type system for conditional partial anticipability analysis
	Type system for common subexpression elimination

	Partial redundancy elimination
	Simple PRE
	Full PRE

	Related work
	Conclusion

	Bytecode transformations
	Background
	Dead code elimination
	Dead stores elimination
	Load-pop pairs elimination

	Store/load+ elimination
	Duplicating loads elimination
	Store-load pairs elimination

	Related work
	Conclusion

	Conclusions and future work
	Bibliography

