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Abstract

Until the artificial intelligence isn’t perfectly optimized or if code is still written by humans,
there will always be vulnerabilities in it. For one vulnerability, there might be multiple
ways to fix or mitigate it. Depending on the nature of the security flaw and environment, it
may take a fair amount of time to find a suitable solution for it. Even if found vulnerabilities
are easy to repair, a developer or engineer still has to commit to it and contribute some time
to fully understand the situation. This is a problem because there usually is a high risk of
human errors in code and also the work of software engineers or cybersecurity specialists
is generally very pricey.

This thesis measures the effectiveness of multi-agent system approach to large language
models in repairing real-world software vulnerabilities and providing security-related
solutions for them. It aims to provide foundational information on such system in handling
code-level security issues. Results of this study are compared to the results of other recent
studies focusing on the same topic, using similar data with different approaches like fine-
tuning models and prompt engineering. End Results show which approach of using large
language models to repair insecure code is more efficient - multi-agent or other analyzed
methods. Final analysis also displays whether the state of artificial intelligence is ready
to be, to some extent, set responsible for automatic code repair. Possibly, in turn it can
reduce the risk of human error in repairing vulnerable patterns and also time consumption
that would go into working out efficient solutions. Although there are security tools and
scanners from which some offer similar functionality, they are not that scalable and can’t
keep up with the rapid development of technology as well as AI powered tools.

Considering the results achieved by using artificial intelligence based multi-agent approach
for providing repairing solutions for vulnerable code snippets, it justified itself as a valid
option to consider for helping with vulnerable code analysis and fixing. Although it does
not entirely eliminate the need for human effort, it can provide alternative solutions and
ideas for the engineer to work with. With high probability, this will speed up the repairing
process and help to see the problem from different angles which in turn will improve the
quality of final solution.

The thesis is written in English and is 85 pages long, including 7 chapters, 8 figures and 4
tables.
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Annotatsioon
Suurel keelemudelil põhineva mitme agendi süsteemi efektiivsuse

hindamine haavatava koodi automaatses parandamises

Kuni tehisintellekt ei ole perfektselt optimiseeritud või kuni tarkvara luuakse ikkagi
inimeste poolt, ei kao turvanõrkused kuhugi. Ühe turvaaugu parandamiseks või leeven-
damiseks on tihti mitu erinevat viisi. Sõltuvalt selle olemusest ja seda ümbritsevast
keskkonnast, võib sobiva lahenduse leidmiseks kuluda arvestatav hulk aega. Isegi kui leitud
nõrkust on lihtne parandada, peab sellega tegelev insener mingi osa oma aega panustama,
et olukorda põhjalikult analüüsida ja seejärel lahendus implementeerida. Kuna inimlikke
vigu on võimatu täielikult vältida ning nii tarkvarainseneride kui ka küberturbeekspertide
tööaeg on väga kallis, kujutab eelkirjeldatud olukord olulist probleemi.

Selle uurimistöö käigus uuritakse kui efektiivselt suudab suurel keele mudelil põhinev
mitmest autonoomsest agendist koosnev süsteem parandada või pakkuda lahendusi päris
elust tulenevatele ehk mittekunstlikele tarkvara haavatavustele. Töö üheks eesmärgiks
on anda fundamentaalset informatsiooni selle kohta, kuidas taolised süsteemid käsitl-
evad koodis väljenduvaid turvaprobleeme. Saadud tulemusi võrreldakse teiste samale
teemale keskenduvate ja sarnaseid andmeid pruukivate hiljutiste uuringutega, mis kasu-
tavad erinevaid lähenemisi nagu mudelite peenhäälestamine ja mudeli sisendi disainimine.
Lõpptulemus kajastab, milline meetod on haavatava koodi automaatseks parandamiseks
efektiivsem - kas mitmel agendil põhinev süsteem või mõni muu analüüsitud lähenemistest.
Samuti näitab käesolev analüüs, kas tehisintellekt on piisavalt arenenud, et olla valmis
võtma vastutust automaatselt koodiparanduste sisseviimise eest. Potentsiaalselt võib see
protsess vähendada inimlike eksimuste arvu tarkvaraarenduses ja samuti säästa aega, mis
läheks nõrkuseid adresseerivate efektiivsete lahenduste väljatöötamiseks. Ka praegu eksis-
teerib erinevaid turvanõrkustega tegelevaid tööriistu ja skännereid, millest mõned pakuvad
sarnast funktsionaalsust. Probleem aga on selles, et nad ei ole nii skaleeruvad ning ei suuda
kaasas käia tehnoloogia ülikiire arengu ning ka tehisintellektil põhinevate tööriistadega.

Kui käesolevas uuringus kasutatud lähenemine osutub haavatava koodi parandamises
efektiivseks, viitab see võimalusele arvestada seda potentsiaalse valikuna, mida kasutada
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haavatava koodi analüüsimisel ja parandamisel. Kuigi inimeste tööd see täielikult ei välista,
võib see aidata leida alternatiivseid lahendusi ja ideid, millega insener edasi saab töötada.
Suure tõenäosusega kiirendab see koodi parandmise protsessi ja aitab näha probleemi
erinevate nurkade alt, mis kõik parendavad lõpptulemuse kvaliteeti.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 85 leheküljel, 7 peatükki, 8 joonist,
4 tabelit.
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List of Abbreviations and Terms

API Application Programming Interface
CPU Central Processing Unit
LLM Large Language Model
CVE Common Vulnerabilities and Exposures
SAST Static Application Security Testing
APR Automatic Program Repair
CLI Command Line Interface
JSON JavaScript Object Notation
URL Uniform Resource Locator
HTTP Hyper Text Transfer Protocol
LAN Local Area Network
SDK Software Development Kit
DoS Denial of Service
DDoS Distributed Denial of Service
SVP Software Vulnerability Prediction
DNN Deep Neural Network
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1. Introduction

1.1 Research Motivation

As the dependence on software in various domains is already high and constantly rising,
the quality and reliability of it is becoming more and more important. Putting more
responsibility on software also means that there is more to lose during a cyberattack.
Average cost of a data breach in 2024 was 4.88 million US dollars which was about 10%
more than in previous year. The same report also highlighted that the average cost savings
for organizations that used artificial intelligence in their security processes was 2.22 million
US dollars. [1] One of the key aspects to avoid successful cyberattacks is to keep the code
free of vulnerabilities. Vulnerable code can have large financial, reputational or even lethal
consequences. About every 17 minutes, new vulnerability is published and on average
it takes 277 days for security teams to identify a data breach. [2] This alone highlights
the importance of checking the code for vulnerabilities frequently and ensuring it can’t be
exploited.

Integrating more software into different domains means larger codebases, higher main-
tenance and greater chance of containing vulnerabilities. Software developers’ and
cybersecurity specialists’ work is usually expensive and therefore their time should be used
as efficiently as possible. There exists different security scanners and code analyzers but
most of them are responsible only for vulnerability detection not repairing. A lot of these
tools are relying on signatures of different vulnerabilities and are therefore deterministic.
This means that only previously acknowledged vulnerabilities and patterns can be detected.
Because of that, majority of code repairing process is still manual and time consuming.
Study conducted on measuring the performance of APR tools based on real-world Java
vulnerabilities [3] concluded that majority of fixing attempts do not succeed. A total of
90.12% out of all repairing attempts failed by which 4.35% was caused by tool failures,
13.62% by timeouts and over 82% due to tools’ repairing strategy limitation. [3] These
statistics confirm that a large part of current automatic security fixing solutions fail because
of their knowledge base that LLM-s have a great possibility to improve. Large language
models have lately proven to be quite efficient at code generation related tasks. This
knowledge lays a promising base to use LLM-s in the process of repairing vulnerable code.
Studies on this topic already exist [4] [5] [6] and their different approaches and usages of
models show various results. Therefore, it would be wise to take step further and study
how well can multi-agent large language model system fix vulnerable code.
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1.2 Problem Statement

A study was done on evaluating effectiveness of large language models in detecting security
vulnerabilities [7]. It found that across different LLM-s and datasets, analyzed models
managed to achieve an average accuracy of 62.8% and a F1 score of 0.71. Considering
these results, used LLM system outperforms other popular static analysis tools like
CodeQL. [7] Although there has been improvement in vulnerability detection, the process
of automated code repairing is still in an early state because of diversity and complexity
of software vulnerabilities. Existing solutions that are based on rule-based system often
fail to keep up with complex and new vulnerabilities. Traditional [5] and single-agent [4]
large language model solutions’ results are variable. A study experimented with using
a singular prompt based on predefined template for fixing vulnerable code [5] across
multiple LLM-s like Polycoder and J1 Jumbo. It found that from total of 58 500 generated
patches, only 3688 repaired their synthetic programs including two CWE-s. Another
study researched how effective is a single autonomous agent equipped with different
tools [4] in repairing software bugs. It found that out of 854 bugs in Defects4J dataset,
their solution managed to fix 164 which slightly outperformed the current state of art
method for APR. Although software bugs and vulnerabilities are not exactly the same, they
are similar and still comparable. Reasons for such outcomes of experiments with these
approaches might be the lack of context and thorough analysis with inputs from different
perspectives. This paper aims to address current limitations of automated vulnerability
repairing by evaluating the effectiveness of multi-agent LLM system in vulnerability fixing
on code-level. Main priority is to determine if the multi-agent large language model system
approach to automated vulnerability repairing offers improved efficiency and adaptability
compared to current methods.
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1.3 Research Questions

To reach the desired end result, the thesis’ author will search answers for following
questions:

RQ1: How well can large language model multi-agent system generate solutions for
vulnerable code?

RQ2: How does the multi-agent approach compare to the traditional approach in the case
of automated code repair?

RQ3: How does providing agents tools and additional information about the vulnerability
affect the quality of generated results?

RQ4: How does the removal of specific agents influence the quality of generated results?

1.4 Scope and Goal

The goal of this thesis is to evaluate multi-agent large language model system’s per-
formance at automated vulnerable code repairing. Experiments will focus on file-level
repairing meaning that the system is given the whole source code of file rather than
just a vulnerable function. Because of that, the system is also responsible for finding
the correct security flawed location in code. Therefore, in this context, the process of
automated code repair also somewhat includes analysis and vulnerability locating in the
code as multiple agents examine the provided source code, provide different perspectives
according to their context and finally generate the concluded outcome. Expected outcome
is to determine whether using multiple large language model based agents can enhance
the precision and speed of fixing dangerous flaws in code. The result will be compared
against other studies using AI based solutions for vulnerable code repair as well as against
a baseline result achieved by using a traditional single prompt in this study. Limitations
of the study include the availability and usage restrictions of large language models that
can be prompted through API and reliance on public datasets. Data wise the scope of
the study includes analyzing a public vulnerability dataset consisting of real-world Java
vulnerabilities. Key assumptions for this thesis are a high quality, realistic code dataset
and access to a sufficiently advanced language model that is capable of code analysis and
recognizing vulnerable patterns.
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1.5 Novelty

The novelty in this thesis lies in using multi-agent large language model system in the
automated process of fixing vulnerable code. Although the usage of artificial intelligence in
various domains is novel itself, there already exists studies done on large language models’
capabilities in programming [8]. Going into more detail, studies on code repairing with
the help of large language models exist [5] [4], but majority of them uses the traditional
approach of simply singularly prompting the model or using a single agent. Therefore,
research conducted on leveraging different multiple agents, especially in a niche area
like vulnerable code repair, is limited. Using numerous independent unique agents, this
research experiments with a rather uncommon approach of using artificial intelligence
with a purpose of improving automated code repair. Using this technique, the result goes
through multiple communication and feedback loops, theoretically continuously improving
and therefore being more accurate than the result that is generated by single agent or
prompt. It also contributes to the area by providing statistical evidence on the effectiveness
of solving code related tasks using multi-agent system. This lays a base for future research
in AI driven automated code vulnerability management or other software related problems
in general.
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2. Background

Artificial intelligence has gained massive attention in recent years. Just a little while ago,
a level of which current publicly usable artificial intelligence is currently on, was only
usable for small groups of people. Nowadays, popular AI systems are used on a daily
basis by huge amount of people from generating ideas about certain topics to usages in
different automated systems. According to Exploding Topics, ChatGPT passed the mark
of a million users in just five days after its launch and as of the beginning of March it had
over 180 million active users. Figure 1 displays the time taken in days to reach a million
users of ChatGPT along with other popular applications for comparison. [9]

Figure 1. Population growth of ChatGPT compared to other applications measured in days

Many different fields and industries benefit from using large language models in some way,
usually by reducing proportion of human participation of the activity. Good candidates for
this are from the sector of information technology. Usually, the salary of people who work
as a software developer or cybersecurity specialist is well above average and therefore their
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time at work is much more important. AI can do things like help developers write code,
detect intrusions and test software which results in companies cutting costs. According to
an article, software testing takes up 15% - 25% of total project budget [10]. It means that
testing can almost make one fourth of the whole estimate. If AI could handle even a half
portion of it, it would already be a big win for a company.

What does the term "artificial intelligence" actually mean? According to the study on the
state of art of artificial intelligence, it can be defined as a branch of study which consists
of many different disciplines that simulates and learns intelligent human behavior using
computers. In simple terms, AI works by accepting some amount of data, analyzing
and studying the provided data and then storing the acquired knowledge. After that it
tries to generate the most formal and correct response it can based on previously learned
information. [11]

Its history goes back to 1940s where the first artificial neuron model was presented and
1956 where the term "Artificial Intelligence" was first proposed. Next remarkable period
was 1970s when the concept of knowledge engineering was introduced. It helped to
proceed with developments, but also introduced new problems like obtaining knowledge
from expert systems. That reduced the speed of studying this area gradually until 1982
when the backpropagation algorithm and Hopfield neural network was introduced. This
created a new spark and rapidly increased the development the branches of artificial
intelligence like speech translation and recognition. Unfortunately, this was also the limit
of the development of this time. Then the study of AI was again more in the background
until 2006. At this time, better hardware started to get more available and affordable.
Also, the storage capacity got much larger which is very important in training and using
artificial intelligence. From that time until now, AI development has been very rapid and is
constantly being bettered. [11]

Today, technologies based on artificial intelligence are evolving constantly with major
breakthroughs being announced almost weekly from topics like generating images to self-
driving cars. The rapid development of artificial intelligence has enabled it to be utilized in
various areas, including software engineering, for automating tasks as well as filling an
assistant’s position. When guided and prepared correctly, AI systems are already able to
perform analysis on source code, generate properly structured code snippets and detect
vulnerabilities. Therefore, it is important to keep up with this technology’s development
by constantly researching and studying its possibilities using novel approaches.
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3. Literature Review

3.1 Methods

This literature review follows the traditional approach of literature review. To search for
topical studies and articles, terms like ’artificial intelligence’, ’large language models
software development’, ’multi-agent LLM’, ’artificial intelligence cybersecurity’, ’software
vulnerability detection’, ’static application security testing’ were used. Google Scholar was
used as a main search engine which resulted in finding sources from databases like ACM
Digital Library, IEEE Xplore and ScienceDirect. Since the area of artificial intelligence
has improved massively in recent years, it was ensured that selected articles were not
published before 2015. Many articles providing accurate numerical data were found
by studying references of other papers using the snowball method. Following topics
were predefined to direct the research: usage of large language models in the process
of writing code, multi-agent large language models, usage of artificial intelligence in
cybersecurity and software testing, usage of artificial intelligence in vulnerability detec-
tion and existing work on artificial intelligence based vulnerability and bug fixing solutions.

3.2 Usage of Large Language Models in the Process of Writing Code

Majority of bigger domains like healthcare and logistics have significant parts that are
entrusted to the software. Therefore, there is a specific software that needs to be developed
and maintained. If earlier humans thought how to delegate their tasks to software then
now we are taking the next step and actively seeking how to delegate developing software
to computer. This domain is actively being explored and developed in hope to make
developing software more automated and use less human resources. Already at this point
of time, large language models themselves can generate code snippets on specific prompts.
Quality and reliability of the code heavily depends on the technique and model used, but
even the freely accessible smaller models can handle easier coding tasks pretty well.

A study conducted in 2022 compared code generation performance of different models
which also included large code-focused language models like Codex and CodeParrot [12].
During the study, they also built their own model named PolyCoder that uses GPT-2 as its
model architecture and is trained on 12 different programming languages. Surprisingly,
PolyCoder outperformed every other compared models in language C. Compared to similar
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size model GPT-Neo, both having about 2.7 billion parameters, PolyCode outperformed it
also in languages like Rust, TypeScript and Javascript. One of the ways they compared
models was benchmarking them on HumanEval dataset. HumanEval Benchmark dataset is
specifically designed to test the competence of code generation of different large language
models. It includes over 150 prompts with descriptions of desired code, variable names
and function definitions with arguments. Accordingly, it contains test cases to later check
if the generated result is valid according to the provided information in the prompt. [13] In
general, Codex still gave the best results on all programming languages except C. [12]

The quality of an LLM’s output is thought to depend on the model’s size and training
time. However, a smaller Codex model (300 million parameters) performed well on the
HumanEval benchmark, surpassing other models. This shows that in specific domains,
the size of a language model might not be as important. The study found that, across
multiple programming languages, the model trained on both natural language text and
code performed slightly better. This was compared to the model trained exclusively on
code. This indicates that for a model with broader reach in programming languages, it
might be more reasonable to train it with both natural language and code data. [12]

One area in software development where artificial intelligence manifests is existing AI
based code completion tools like Github Copilot, OpenAI Codex and Tabnine. Code
completion tools are usually integrated into integrated development environments. They
try to understand current context and take into account programming language’s syntax and
patterns to then offer solutions and snippets to complete currently writeable code. [14] A
study evaluated the ability of code repairing of Codex large language models. They chose
CWE-787 and CWE-89 as their base synthetic examples. They specified the beginning of
the vulnerable programs relevant to these CWEs and inserted it into large language model
which resulted in many different and unique vulnerable programs. After that they evaluated
the security level and functionality of code with code analysis engine called CodeQL and
unit tests. Finally, they extracted programs that were functional but still vulnerable to test
the code repairing capabilities of LLMs. [5]

For sample programs generation they used two OpenAI Codex engines which resulted
in generating 22 unique vulnerable programs containing CWE-89 and 95 vulnerable
programs containing CWE-787. As a result, 491 of a total 22034 suggested solutions
fixed the vulnerability of CWE-787 and 3197 of a total 10796 generated patches fixed
the vulnerability of CWE-89. It shows that large language models indeed can repair
vulnerable code. However, the resulting numbers are not anything too impressive. During
the experiment, it was also noted that LLMs can generate non-vulnerable code relatively
effectively if they understand the prompted task well. The authors of this paper concluded
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that, despite previous positive results, the state of the art in code repair using large language
models is limited. Their opinion is that these models are not yet ready to deliver real value
in a program repair framework. [5]

Another study was done on how well can artificial intelligence generate competition-level
code [15]. Competition-level code references to a code written in competitive programming
which usually solves a specific given problem, uses different algorithms and has to be as
efficient as possible. They introduced a code generation system called AlphaCode. Models
that it used had 41 billion and 9 billion parameters and were trained on 715 gigabytes of
human code from GitHub. They were later fine-tuned on 2.6 gigabyte dataset of competitive
programming problems called CodeContests. To evaluate the performance of AlphaCode,
they compared it against programming competitions available on Codeforces. As a result,
AlphaCode got an average ranking in the top 54.3% against other real humans and solved
66% of given problems with first try. This means that it performed better than half of all
competitors. The whole test was conducted so models didn’t take the core logic from the
training data, but came up with its own new solutions for problems. [15]

It represents that large language models can understand hard and complex code. This
hugely benefits the capability of repairing vulnerable code because it also requires the
model to understand the context and complicated code relations.

3.3 Multi-Agent Large Language Models

If most people are familiar with just prompting large language models through web, there
are multiple other ways to use those models. One of the approaches is to use a LLM
based agent. Agent in this context is an autonomous entity that can learn, decide and
act independently to fulfill its task and goals. They are often each specified with distinct
capabilities and objectives which makes them stronger in specific context. To advance this
approach, multiple previously described agents with different characteristics can be created
and combined into one unified system that is called a multi-agent system. Multi-agent
references that two or more agents communicate and work together to reach one common
goal [16]. For example, let’s say that the user needs to write an example of analytical
document. The first agent could be the writer who focuses on the content and main points
of the text. Second agent could be the designer who chooses the fonts and builds the
template where the content fits in. Lastly, third agent could be the final reviewer who looks
at the document with a critical look, tries to find flaws and provide solutions for them.
Figure 2 [17] abstractly describes how a team of artificial intelligence based agents handle
user requests.
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Figure 2. Workflow of AI agents processing user input

Although the first impression of multi-agent system is very promising, it can’t be instantly
confirmed that it’s the best approach for every scenario. A study conducted experiments
on both multi-agent and single-agent large language models to measure their reasoning
abilities [18]. For this they carried out multiple tests in the form of discussions. Discussion
in this case refers to an interactive process where a LLM analyzes and processes a question.
In the case of multi-agent system, these agents bounce their opinions back and forth, thus
progressively improving the final answer for the given task. For the initial understanding,
the study used FOLIO-wiki dataset to analyze both methods [19]. It was found that
discussion with a single LLM with large number of parameters combined with a strong
prompt produces similar result as the multi-agent LLM discussion. Some of the tasks
that were given to large language models were preceded with detailed descriptions of the
task. In the case of tasks that didn’t include demonstration, multi-agent approach to LLMs
outperformed single-agent method. It was also discovered that in multi-agent discussions,
performance of agents using weaker language models was progressively improved by
agents using more powerful LLMs. [18]

Another paper reviewed the development of large language model based multi-agents over
multiple domains that can be categorized into two main categories - problem solving and
world simulation [20]. Problem solving included software development and science exper-
iments, world simulation included gaming, economy and society. One of the highlighted
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challenges in this paper with LLM-based systems is hallucination. It refers to the fact that
one agent generates nonfactual information that the next agent accepts and expands on
it. Although this is probably a bigger problem in simulation processes, it still has to be
addressed also in code generation related tasks. Second main challenge the study brings
out is the evaluation and benchmarking of LLM multi-agent systems. It states that current
research focuses on assessing individual agents reasoning and understanding in narrow
scenarios. This is the area the author hopes to contribute to with his thesis. Although
this paper doesn’t conduct any specific experiments on LLMs, it does list quality datasets
across different domains, multi-agent implementation tools and other resources. This
knowledge is very useful when planning how to setup multi-agent LLM environments and
conduct experiments. [20]
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3.4 Usage of Artificial Intelligence in Cybersecurity And Software
Testing

With artificial intelligence being so widely used in software development, it’s not a surprise
that it is also popular in the field of cybersecurity. As parts of those two domains overlap,
the application of large language models usage also overlaps in some areas. Cybersecurity
is a field that has to always be aware of most recent news, must keep up with the time and
be able to scale well. Because of that, it sets a very promising ground for maximizing the
potential of artificial intelligence.

So far artificial intelligence in cybersecurity has had a great success in different intrusion
detection systems. Intrusion detection system is a tool for monitoring and inspecting
network traffic to find anomalies and possible malicious acts [21]. Advantage of using AI
in those systems comes from its ability to intelligently examine passing traffic and group it
into sections. First and maybe with most easily understandable impact attack method is
denial of service attack, often called DoS attack. It usually works by commanding a lot
of devices to repeatedly make requests to specific machine. It will be proceeded until the
targeted machine becomes overloaded, resulting in crashing and becoming unavailable. A
study conducted in 2016 applied a deep learning based Distributed Denial of Service attack
detection system. It was implemented in Software-Defined Networking environment. It
was noted that the mentioned system could detect DDoS attacks with an accuracy of almost
96% while having low amount of false-positives compared to other similar works. [22]

As AI can digest a lot of data and make conclusions out of it very quickly, it is also
pretty competent in more non-technical areas like detecting fake information. A paper
published in 2015 characterized a dataset consisting of 4.4 million public posts generated
on Facebook. It was found that it included over 11 thousand malicious units that had URLs
in them. Authors of this paper proposed their own dataset which was based on post’s
metadata, entity profile, content and URL features to detect malicious Facebook posts
in real time. Later this very dataset was used to train multiple machine learning datasets
which reached an accuracy of almost 87% of detecting potentially harmful public posts.
[23] If we were to use the method of machine learning to find vulnerable patterns in code,
the result of previously mentioned study indicates that it could be quite successful.

In the context of detecting and repairing vulnerable code with the help of AI, static
application security testing tools provide very similar functionality. Static application
security testing (SAST) tools analyze codebase of the application without executing it
while trying to detect vulnerabilities and flaws. Since SAST tools apply fixed vulnerability
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detecting techniques, it often results in high number of false positives. They also have a
weakness of finding configuration errors and are difficult to use for various types of security
vulnerabilities. [24] Study conducted in the end of 2021 compared the performance of
static application security testing tools and using the approach of software vulnerability
prediction (SVP) based on LLM. Results show that using the method of software vul-
nerability prediction scores better in both finding and assessing vulnerabilities than the
standard SAST tools. For example, analyzing code from dataset called Juliet, SAST tool
Flawfinder found security flaws with a precision of 0.507. At the same time, software
metrics features using SVP model found vulnerabilities with a precision of 0.843. [25] To
some extent, this indicates that classical SAST tools can’t keep up with new technology
and therefore AI-based solutions should be studied more deeply.

3.5 Usage of Artificial Intelligence in Vulnerability Detection

Artificial intelligence and machine learning have also made a big impact in detecting
vulnerabilities in software. Traditional methods and tools for automatic security flaw
detection are mostly based on identifying specific vulnerability signatures and performing
static code analysis. Therefore, they often fall short in identifying new and obfuscated
vulnerabilities.

A study conducted in 2020 [26] searched an answer to a question of how well can state-
of-the-art techniques that are based on deep learning perform on detecting real-world
vulnerabilities. It found that applying real-world scenarios, these techniques’ performance
drops more than 50% compared to other previous studies that achieved an accuracy as
high as 95% in vulnerability detection. For example, a technique called VulDeePecker
[27] achieved an F1 score of 85.4% in its origin study while when applied to real-world
scenarios, it resulted in a much lower of 12.18% F1 score. Respectively, it reached a
precision percentage of 86.9% previously and 11.12% in the currently handled study.
These results originated from using pre-trained models which led to average of 73%
drop of F1 score. However, even if the models were retrained with real-world data, F1
score’s difference was still about 54%. Main reasons for these results were identified to
be related to training data and model selection. Analyzing these reasons revealed that
the approaches frequently did not learn the characteristics of vulnerabilities but rather
unrelated information like variable names. To improve the state of deep learning based
vulnerability detection, the study proposes its own framework called ReVeal that addresses
previously found problems in model design. Using the ReVeal pipeline, compared to
analyzed state-of-the-art approaches, the precision percentage improved by 33.57% and
recall percentage increased as much as 128.38%. Although this study uses more simplistic

22



deep neural network models than the currently available large language models, it still
shows great potential and constant improvement for using AI in vulnerability detection.
[26]

Another study was done on vulnerability prediction [28], but instead of using deep neural
network models, it used currently popular large language models GPT-3.5 and GPT-4.
Due to much higher cost of using GPT-4, the paper primarily focuses on GPT-3.5 while
conducting additional experiments with GPT-4. Multiple experiments were done with
different configurations like providing the task description to LLM in one run and providing
vulnerable code examples in another run. Best result came from providing large language
model the task description along with similar code examples from training data to aid it in
its decision process. With this configuration, GPT-3.5 managed to achieve the highest F1
score of 54% and recall score of 47.2%. Using a similar approach, but with combining
top 3 similar code examples with another three of randomly selected samples, it managed
to achieve a F0.5 score of 62.8% and an accuracy of 62.7%. Compared to CodeBERT,
another pre-trained programming focused LLM, GPT-3.5 outperformed it in terms of
accuracy, precision and F0.5, but underperfomed in recall and F1 scores. Therefore, results
of these two models were similar. Limited experimentation done with GPT-4 revealed that
given the task description and code examples from CWE types, it resulted in a F1 score
of 76.4%, F0.5 score of 74.8%, recall score of 79.3% and an accuracy score of 75.5%.
While outperforming CodeBERT by 34.8% in accuracy, it also outperformed GPT-3.5 in
previously mentioned categories with quite a big margin. This indicates the importance of
choosing the base model. Overall, the results give a rather promising impression on using
large language models in software vulnerability detection. [28]

In summary, the analyzed studies present both the limitations and also a promising potential
in using AI in security flaw detection process. Pure deep neural network models didn’t
perform very well on real-world vulnerabilities, but using LLM-s provided much better
results. As seen in both scenarios using DNN models or LLM-s, either experimenting with
different model training methods or with various input designing approaches, they can
significantly change the end result. Based on these findings, utilizing artificial intelligence,
especially large language models, can have a great impact on automating vulnerability
detection and hopefully on other similar fields. Therefore, it should be studied further and
experimented with using different approaches.
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3.6 Existing Work on Artificial Intelligence Based Vulnerability and
Bug Fixing Solutions

As said before, artificial intelligence has already become a big and promising part of
software engineering and cybersecurity. Human mistakes in software engineering are
inevitable. These errors are easy to make as misplacing few characters or simply forgetting
to set a certain attribute can already cause a vulnerability. In software, regardless of the
error’s simplicity, it can do a lot of damage whether it’s financial, reputational or other.
Since it is already studied that large language models can understand and write code, it
would be wise to apply them also in vulnerability and bug fixing processes. Therefore,
the following studies were analyzed where artificial intelligence is used in both repairing
vulnerable code as well as in fixing bugs in code.

When this thesis is focusing on the multi-agent large language model approach to repair
code, a study conducted engineered a single autonomous agent to do it [4]. Autonomous
agent can plan and execute actions while using different external tools to fix a bug. This
is somewhat similar to the action of multi-agent LLM because it includes multiple steps
and states to finally solve a task. They concluded that their built autonomous agent named
RepairAgent outperformed previously registered as a state of art of automated program
repair process called ChatRepair. For data the study utilized a set of reproducible software
bugs called Defects4J. Out of the 835 bugs present in the dataset, RepairAgent was able to
fix 164 of them while ChatRepair fixed 162. This makes the RepairAgent’s successful repair
percentage 19.64% and ChatRepair’s 19.40%. Additionally, RepairAgent’s result included
39 bugs that could not be fixed with prior techniques. Although this confirms the capability
of LLM-s in code repairing tasks, the process of evaluating agent’s performance is currently
more valuable. Repairable code snippets have test cases to check if code is problem-free
or not. Generated solutions are categorized into two categories - plausible and correct
solutions. If the fix passes test cases, it is considered plausible. If it also syntactically
matches the fix created by a developer, it is considered correct. This evaluation technique
will be considered when building the evaluation process for this thesis. [4]

To measure the effectiveness of available pre-trained models code vulnerability fixing,
another study was conducted in 2023 [29]. The aim of the study was to bring out advantages
and disadvantages on performing automated vulnerability repair with multiple different pre-
trained large language models. Criteria for selecting models were that it must be publicly
accessible and trained on fairly large programming language corpus. Chosen models were:
CodeGPT, CodeBERT, GraphCodeBERT, UnixCoder and CodeT5. For datasets they used
two vulnerability datasets - CVEFixes and Big-Vul. Both of these datasets actively gather
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information about vulnerabilities by crawling public CVE databases and open-source
projects. To accurately evaluate selected models, a transformer neural network model
for repairing software vulnerabilities automatically called VRepair is taken as base. As
an evaluation method, this paper referred to prior studies that used previously discussed
measuring plausible and correct patches technique. It stated that this method should be
preferred, but it requires matching test cases to use it. Unfortunately, datasets used in this
study, CVEFixes and Big-Vul, don’t have test cases and therefore this evaluation technique
couldn’t be used. Instead, it uses percentage of perfect prediction accuracy to measure the
performance of vulnerability repairing. [29]

As results, chosen pre-trained models were over 16% more accurate than VRepair and
had an average prediction accuracy of almost 39% over all five models. Experimental
results of models independently were following: CodeGPT 37.93%, UniXcoder 40.62%,
GraphCodeBERT 37.98%, CodeBERT 32.94% and CodeT5 44.96%. One belief why
VRepair underperforms pre-trained models is that VRepair uses word-level tokenization
while other models use subword-level tokenization. Another reason could be that chosen
models are trained on much larger codebases than VRepair. The study also included
fine-tuning three of the models (CodeT5, CodeBERT and CodeGPT) and comparing the
outcome with traditional approach. Improvement varies in the range of 12% to 33%. Being
more specific, models’ accuracies were improved as follows: BERT architecture 22.51%,
T5 architecture 12.02% and GPT architecture 31.33%. [29]

Next, another three different studies using real-world Java vulnerabilities as data were
analyzed. The first study [6] uses OpenAI’s model GPT-4 [30] that is their most advanced
model to assess its capabilities in fixing real-world software vulnerabilities using Vul4J
[31] dataset. The main research question of this study is how well can GPT-4 automatically
repair real-world vulnerabilities in practical applications. Its evaluation process includes
conducting manual review along with using tests provided by Vul4J. The study uses the
method-level approach meaning that the vulnerable function is extracted from the file
and passed to the LLM. Additionally, the Vul4J dataset [31] was filtered to only contain
vulnerabilities that exist in the scope of a single file. This means that all the vulnerabilities
in the dataset that are formed across two or more files were excluded. As a result, GPT-4
[30] achieved a promising average fix rate of 33.33%. [6]

Second study [32] done on the automatic vulnerability repair using Java vulnerabilities
proposed their own neural network model named VulMaster that thrives at generating
vulnerability fixes using data-centric innovation. VulMaster uses a combination of two
large language models for its work - a fine-tuned CodeT5 as its base model and ChatGPT
as an additional LLM for helping with relevant inputs to the main model. Authors of the
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paper believe that this approach utilizes both models’ strengths as the fine-tuned CodeT5
can be thoroughly tailored for specific needs and ChatGPT has strong capabilities in
generating code when given a well-defined context. Their research uses large C/C++
dataset with over 5800 functions as its main data source, but also utilizes Vul4J [31] in an
additional evaluation results process. The paper’s evaluation process consists of generated
code manual verification and using test cases. This study also uses only single-hunk
vulnerabilities, filtering out every other instance that does not meet this criterion. The
study’s own provided model, VulMaster, managed to achieve a successful repair rate of
25.7%. [32]

Lastly, another study [33] was done on using code focused large language models for
automatic vulnerability repairing. This study’s code repair process is based on fine-grain
cue optimization and local sensitive fine-tuning of the models. With optimizing the cue
in detail, the research aims to solve the problem of LLM-s often not receiving enough
contextual information about the source code for repairing it. The provided method
integrates hints like vulnerability type and repair method into large language model input
in a similar manner to this paper. Similarly to the last two analyzed studies, this paper also
uses Vul4J [31] dataset as one of its data sources. As an evaluation method, the study uses
only manual verification by calculating the accuracy of the generated patch. The best result
was achieved by using local sensitive fine-tuning method on CodeT5 model combined with
multiple hints which managed to generate correct patches for 10 Vul4J vulnerabilities. [33]

Previously summarized results present a fairly promising statistics for using different
language models for code repairing. They also include processes of how the performance
of large language model code fixing is evaluated and which datasets are used in automatic
code repairing studies. This contributes to both choosing the evaluation method and dataset
for this thesis. Due to different approaches and models, outcomes of previous studies vary,
indicating the need for more experimentation. Overall, the results are still promising and
the impact of applying artificial intelligence to different areas in software development
and managing, as well as it repairing, is fairly large. Therefore, this domain appears to
significantly benefit from further studying and improvement.
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3.7 Summary of Findings

This literature review highlighted progress, potential and experimental results of large
language models in technological domains like code generation, code repairing and
programming. Studies conducted on using large language models for generating code
showcased their good performance and potential for future research. Existing work on
current AI based vulnerability fixing solutions also provided fair results. While leveraging
the traditional approach of using LLM-s didn’t show too good results then using an
autonomous agent with additional tools outperformed current state-of-art tool. This
motivates to discover further and test for example multi-agent system approach in this field.
At this point in time and up to author’s knowledge, there are no public papers applying
multi-agent approach to vulnerable code repair process. Exploring multi-agent large
language model systems in different domains presented mixed results. Using model with
large number of parameters, well-constructed prompts and detailed context, single agent
system provided similar quality results as multi-agent system. In more of an unknown
environment, multiple agents still outperformed standalone LLM. While multiple agents
aren’t always necessary in tasks based on artificial intelligence, current research shows
significant potential for automated vulnerable code repair to benefit from their use.

27



4. Research Methods

This thesis’ research is based on the quantitative experimental research method that allows
to evaluate generated results with manual reviewing and tests. The main process of
research involves developing the multi-agent large language model system tailored for
fixing software vulnerabilities and evaluating its effectiveness and capabilities in the
mentioned process. The whole system is based on a singular large language model that
is interacted with through API. Setting up, configuring and running the main system is
done by using Python and a multi-agent platform called CrewAI [34]. CrewAI provides an
open-source framework for orchestrating multiple AI agents that simplifies the process of
assigning roles, context and goals for different agents. It also helps with the interaction
between the agents, running the whole application and monitoring it in real-time. [34]

For the required data which in the context of this work is vulnerable code snippets,
the author is utilizing a publicly available dataset. There are several datasets available
like DiverseVul [35] and Big-Vul [36], but this thesis uses a dataset called Vul4J [31].
Vul4J dataset is constructed especially for the purpose of studying the effectiveness and
capabilities of automated program repairing. It consists of reproducible real-world Java
vulnerabilities which each have specific test cases proving the existence of vulnerability in
the file. [31]

On conducting the process of evaluating the validity and correctness of generated results,
author primarily uses manual verification along with tools and data from Vul4J dataset
[31]. Since this dataset has proof-of-vulnerability test cases that can be used to check
if the vulnerable part of the code still exists or not, they are used as one of the methods
for evaluation. For each vulnerability, before test cases get executed, it is checked if the
generated file fits into the vulnerable project and if the project compiles with it. If the
compilation is successful, only then will the tests be executed. Additionally, if the result
provided by the system does not compile with the existing project or do not pass tests, it
gets checked manually. It is then be compared to the official human patch and evaluated
whether the system progressed in right direction or not. Consequently, results are divided
between four different statuses - complete, highly relevant, minimally relevant or failed.
Experiment is run multiple times with different configurations and differently sized large
language models. For example, one run is conducted without giving agents any hints or
additional information and during another run agents have access to different tools and are
provided information about the vulnerability. For retrieving the base to compare the end
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results to, an iteration of simply prompting a LLM without agents is conducted. In the
end, the results achieved from not using multi-agent setup and also results from other simi-
lar studies are used to compare the main results of this paper from using multi-agent system.

4.1 Experimental Environment

To start experimenting with multiple large language model powered agents, a compatible
environment is required. Although it is possible to build a whole system that handles
the processes of registering agents and orchestrating their communication, there already
exist frameworks that take care of it. Developing it from scratch would take a lot of
additional time and research, therefore leaving less time for focusing on the paper’s main
topic. Because of that, the author decided to use pre-built multi-agent platform called
CrewAI [34] whose choice is justified in the multi-agent framework selection section of
the paper. With the help of CrewAI framework, it is possible to create custom agents
with different roles, goals and a specific background. [34] Using a multi-agent framework
simplifies the overall management of the agents that includes their communication and
system orchestration.

Some of the more developed large language models can be used through their own UI
or website for free, but using them through the API is usually priced. The initial setup
and development of the system requires rather large amount of interaction with the LLM.
Therefore, if large and developed models are not available, it is wise to sacrifice model’s
capabilities and choose LLM that is usable for cheap price or for free. The author of this
paper decided to go with setting up a local LLM on his own computer. This provided the
freedom to configure the connection to the model and ensure that the whole environment
is adjustable and controlled. The model used was Meta Llama 3 with 8 billion parameters
provided by Ollama [37]. The setup process of the LLM was rather straightforward
and simple - install Ollama with downloading the installer from their website, configure
preferred port and URL and run ollama run llama3 in terminal. With that, the model was
running on the specified port and could be prompted right away on URL "/api/generate".
[38]

curl -X POST http://localhost:11434/api/generate -d ’{

"model": "llama3",

"prompt":"Why is the sky blue?"

}’
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Although the model has only 8 billion parameters, it still requires resources to run it.
Therefore, the model was running on PC equipped with Intel I5-12600K processor and
GTX 1070 graphics card while the multi-agent system was developed on independent
laptop. Since they were both in the same network, the laptop could prompt the LLM
running on PC without any restrictions. Running the model locally gave the user the
opportunity to build the initial working application that could then later be improved
during experimentation. This approach saved the author from worrying about the costs of
using large language models or waiting behind other users in queue that would have been
real problems when models from other providers would have been used.

To possibly enhance the performance of multi-agent system automatically repairing vulner-
able files, author created a custom vulnerability analysis tool. The tool is based on static
application security testing (SAST) tool called Bearer [39] that is built to scan and analyze
source code to find and prioritize security risks. Bearer has two options - a free command
line based tool called Bearer CLI that is going to be used in this paper and a commercial
solution Bearer Pro. Bearer CLI supports languages like Python, Javascript, Go and Java.
Since the dataset used in this thesis consists only of Java vulnerabilities, this tool suits the
system well. It scans the provided code for vulnerabilities and security risks that cover
both OWASP Top 10 [40] and CWE Top 25 [41] lists. These lists include vulnerability cat-
egories like access control, injection, security misconfiguration and cryptographic failures.
It offers multiple configuring options to adjust the tool to your needs. For example, this
includes switching between scanner types, ignoring specific findings, limiting scanning
rules and changing the output format. [42] After installing it following the instructions in
its Github repository, it can be executed simply by inserting the following command to
command line interface (CLI): bearer scan <filename>. After the tool finishes its analysis,
it outputs a report containing rules that the code was run against, every detected finding
with a file and lines location that triggered it and a statistical summary of the findings.
The custom tool takes vulnerable file path as an input, creates the conditions and executes
Bearer CLI tool with provided path in command line and returns the outputted analysis
report. This will then get parsed to the specified agent to help it analyze vulnerable code in
process. [39]

As mentioned in the section above, dataset called Vul4J [31] is being used in the study for
data with its framework and tools. Its platform requires multiple dependencies like certain
versions of Java, Maven and Python. Additionally, it includes built-in SAST tool that can
be executed with framework commands that is also an extra dependency. Therefore, rather
than setting it all up on a local computer, it was easier to use their official Docker [43]
image [44]. Docker is a free-to-use platform that enables developers to build, package, and
run applications in isolated environments called containers. Containers, in turn, are units
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of software that pack the required code with all its dependencies, creating an independent
environment for the application to run in [45]. Taking a simple Java application for
example, the container would include a runtime environment such as lightweight Linux
operating system or Java runtime image, the actual application code, its dependencies and
different configuration files. As all mandatory components are packaged into one object,
this eliminates the need for the user to set up those things himself and avoids potential
problems originating from different environment settings. That means that it is possible
to run containerized applications anywhere with Docker installed independently of the
host operating system and existing dependencies and configurations. Image in the context
of Docker is a description of what should be put into and executed in a container. In a
simplified way, Docker container is just a single running instance of Docker image. [43] As
mentioned before, Vul4J fortunately has a pre-built Docker image that already has required
modules installed and was almost out-of-the-box solution with minor modifications. [31]

To analyze agent interactions and outputs in more detail, a tool called AgentOps [46] is used.
AgentOps is an observability and development tool platform for AI agents designed to
help developers build, monitor and assess AI agents. It offers a Python SDK to implement
it into a Python program. It integrates with a lot of popular multi-agent frameworks and
offers features like debugging by displaying graphs about step-by-step agent execution and
managing costs by tracking spend with different providers. To start, a project has to be
created on their web platform after which API key is generated. Next, using their Python
library, a session can be started simply by initializing the tool with provided API key at
the beginning of the program and closed at the end of the program. Interactions and calls
during the session will be recorded automatically and can be later analyzed on their web
dashboard. [46]

In conclusion, very abstractly describing, the experimental environment consists of the
running large language model, an external static application security testing solution
for implementing a custom tool and a multi-agent system built in Python along with
functionality to communicate, sync and modify files in the dataset running in Docker
container.
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4.2 Multi-Agent Framework

Multi-agent framework is a software environment that provides the tools to develop,
coordinate and interact with multiple autonomous agents. This helps to save a lot of
time when creating systems consisting of multiple agents. They provide a simple way to
register and specify agents needed for certain purpose. This process includes describing the
background, nature and goals for the agents. For example, if the goal is to analyze latest
cybersecurity incidents, an agent with a background of being a senior cybersecurity analyst
with 10-year experience could be created. Additionally, specific tasks with expected
outcome have to be described. Majority of those frameworks take care of the process how
agents interact with each other, manage their memory and knowledge base automatically
and make it possible to provide agents different tools. [47]

The criteria set by author for choosing the suitable framework for this experiment are
following: has to have a possibility to debug and analyze agents’ outputs, communication
and decisions, doesn’t have big learning curve and should be usable through their official
library or API using programming language, preferably Python. The ability to monitor
agents’ outputs and their interaction can give a lot of useful feedback on what the process
is missing or what to improve. Using multiple agents in sequential order means that one
agent’s decision and answer depends strictly on the previous agent’s answer. Therefore,
if the end result is not in the form of what the user expects or is defective, without
seeing what exactly is happening internally when the system tries to solve a problem,
it is difficult to point out where the system acts incorrectly. Compared to just building
an application based on multiple autonomous agents, this is even more important for
experimental studies because one needs to see if and how every little change affects the
behavior of the system. Often systems that are very scalable and highly customizable tend
to be difficult to use and require time to work with them efficiently as they have to offer a
lot of different functionalities. Since the purpose of this paper is not to build a complex
business associated application, but rather a straightforward workflow for experimenting,
scalability and detailed adaptation are not that important. Because of lack of previous
experience with multi-agent frameworks, time limit and absence of specific requirement,
the framework should rather be with a small learning curve and as transparent as possible.
This will also make the buildable system easily understandable and simple to refactor
and change the parts of it during exploration phase. Since handling and working with the
dataset has to be done with the help of writing code, managing the multi-agent system
should also be possible with programming. The no-code approach is getting more and
more popular and the field of AI based applications is no different. However, in the context
of this paper, the author prefers using the multi-agent building framework and tools through
programming language as it provides more transparency and control over the system flow.
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Although using multiple autonomous agents with artificial intelligence is relatively recent
approach, there already exists multiple developed frameworks that have active support
and community. There are some that are developed by smaller communities and also
ones that have larger technical background, resources and are developed by huge tech
corporations. For example, one of these is called AutoGen [48] that is developed and
maintained by Microsoft. AutoGen is an open-source multi-agent AI application creating
framework that is able to work alongside humans and act autonomously. It has Python
libraries that make it possible to interact with the framework using code. Although it
does have and independent .NET version of the framework, the main focus of the product
seems to be on Python. The framework’s core provides a simple way to build and launch
scalable, event-driven AI agent systems. It contains features like multiple language support
which currently are Python and Dotnet, being highly customizable by offering memory
as a service, tools registry and custom agents and being easily scalable. Additionally,
it provides asynchronous messaging between agents and a way to monitor and debug
currently worked on agent systems. [48] They have a separate product called AgentChat
which is a high-level API constructed with a goal of building multi-agent applications and
is mainly aimed at beginners. It is built based on their main core package, but instead of
advanced core programming model that offers the user more freedom and customization,
the AgentChat is more abstract and therefore provides shortcuts to get started faster. [49]
Data logging can be done in two different modes - SQLite database or file. Logging has to
be started and ended manually by calling accordingly runtime logging starting and ending
functions. [50]

Next framework candidate is called CrewAI that is not maintained by any big tech company,
but rather a small team and was initially created by one person, João Moura [51]. CrewAI
[34] is the leading multi-agent open-source platform that makes creating and orchestrating
different AI agents simple. It has an independent platform with graphical user interface to
manage and automate workflows using multiple agents which is more aimed at enterprises
and is a paid product. Besides that, they have an open-source framework written in Python
that is free to use and is the target for evaluation in the context of this paper. CrewAI is
being used by multiple globally known companies like Oracle and KPMG, has over 28 000
stars on Github and is in use in over 40 percent of Fortune 500 companies. While some
multi-agent frameworks are built on top of other larger frameworks like LangChain [52]
then CrewAI is completely independent and built from scratch. It also offers two different
ways to use the framework - first is called "Crews" that provides more abstract controls and
higher-level customization. It enables user to create AI teams consisting of agents that each
have their own goals, roles and tools. Its official tool selection includes tools for example
for scraping elements from websites, extracting data from files supporting different formats
and interpreting Python code [53]. Additionally, developer can build their own tools by
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implementing custom logic and registering it as a framework tool. Agent tools are simply
Python functions that contain description of its nature so the agent will know what and
when to use it for, potentially inputs and its operating logic. Since agent will purely use the
tool’s output for its work, developer has a great freedom of choice deciding what the tool
should do. Other approach of using CrewAI is called "Flows" which gives the developer
opportunity to go deeper with detailing, providing making single large language model
calls for extra precision and other granular controls. For debugging and monitoring the
framework has verbose mode which provides insights on how agents execute internally
just by toggling it on. [54] Reviewing its documentation, getting started with using the
Python framework seems relatively simple - install dependencies, define agents with their
tasks and the minimalistic program should already work. In addition to the seemingly
small learning curve, it also has a very logical syntax and structure regarding different
components of the framework and their connectivity. Defining agents and tasks can either
be done directly through variables in Python file or externally using files in YAML format
[55].

Third possible choice is LangGraph. LangGraph is a multi-agent framework that provides
low-level control of the orchestration process. It offers long-term memory, customizable
architectures and in case of handling complex tasks, human-in-the-loop interaction [56].
It is used by well-known companies like Elastic who uses it for an assistant as a threat
detector and Uber who generates unit tests with the help of LangGraph. It is important not
to confuse LangGraph with LangChain [52] as they have very similar names. Although
they are different products, they are still closely connected. LangChain is more of a
general product that provides high-level components and integrations for building large
language model applications. LangGraph is a separate library built on top of LangChain
and is therefore part of LangChain’s ecosystem meaning it integrates effortlessly with
other LangChain products. The name of the framework also expresses its working process
- it is based on graphs meaning that components of the program are connected by nodes
and edges. [56] It is also based on Python and has multiple libraries to be used to build
multi-agent applications in that environment. According to the documentation, setting
up the framework and launching primitive application with it isn’t hard, but isn’t very
straightforward either. When wanting to go further, it seems that it can get quite complex
and requires some basic or low-level components to be built by user himself. [57] Logging
and debugging is solved through different streaming modes which can be attached to
streams of graphs. There are different modes for streaming like values, messages and
debug. According to the specified mode, corresponding info is output. [58]
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In conclusion, three multi-agent frameworks were selected for evaluation: AutoGen [48],
CrewAI [34] and LangGraph [56]. Main criteria for choosing the best suitable product
were following: ease of monitoring and debugging agent interactions, minimal learning
curve and small complexity and usability through code, preferably Python. Each criterion
was broadly explained from the point of the framework in its description. Next, criteria
matchings of chosen candidates are set side by side and finally the best one will be selected.
Firstly, focusing on the possibility and simplicity to see and analyze agent’s work process,
AutoGen’s solution seems the most uncomfortable since it provides logging either to
database or file and has to be managed manually. CrewAI and LangGraph are similar in
the case of monitoring as logging to console can be toggled with just one option. One
difference is that LangGraph provides multiple modes for that, but those don’t seem that
important in the context of this paper. In terms of the learning curve, LangGraph has the
steepest learning curve followed by AutoGen. CrewAI appears to be easier to adopt to
than the other two and has the most logical structure and setup. It is also fully independent
and differs from others by not being part of another ecosystem. All candidates have the
opportunity to be used with Python and have a strong support for it. Therefore, in this
context one does not outweigh the other. Considering all the criteria, CrewAI looks to be
the most suitable candidate of the three as it doesn’t have a big learning curve, is well
structured and has a simple logging functionality.
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4.3 Dataset

There are several publicly available datasets that can be used in studying areas related to
software vulnerabilities. Based on how they are built, they may include only code snippets
of vulnerable functions or whole files and projects that contain a vulnerability. Some of
them also contain additional information like CVE codes and official vulnerability fixing
human developed patches. One of the criteria by which the author chose the dataset was
that it should contain actual real-world vulnerabilities that are not artificially created for
testing purposes. This means that the vulnerabilities have to be registered in some reputable
vulnerability database and be linked with corresponding CVE code. This ensures that the
large language model system has to handle the context and nature of real production-ready
code. When using single snippets of artificially vulnerable functions, the result of the
research may not indicate how the multi-agent LLM system acts when used on real projects.
Second criteria for choosing the dataset was the capability to evaluate and validate the
generated potentially vulnerability-free result. As multiple datasets include officially fixed
code besides the vulnerable one, semantically comparing fixed code with the generated
result is one option. This alone however does not ensure that the result of the LLM even
compiles and therefore repairs the existing vulnerability. Therefore, the author looked for
a capability to evaluate the results within the dataset. This could be accomplished with
including test cases for each vulnerability or use some other alternative method to run
and validate the result. Since the action of multi-agent system analyzing and processing
vulnerable code is resourceful and takes time, the number of used records will be limited.
Therefore, the large size of the dataset isn’t among the first things in the prioritization list.

First filtered out datasets included DiverseVul [35], Big-Vul [36], Vul4J [31] and CVEFixes
[59]. Although the selection for vulnerability repairing based datasets compared to simply
code fixing datasets isn’t big, there still exists multiple ones with different properties. Some
of them are purely based on scraping large vulnerability databases and collecting different
CVE-s along with vulnerable code. Others have additional information, such as officially
applied patches for corresponding vulnerabilities and specially crafted tests to prove the
existence of the vulnerability in the code.

DiverseVul is a vulnerable source code dataset that is constructed with a purpose of being
used in deep learning based vulnerability detection [35]. This dataset contains almost 19
000 vulnerable functions that cover over 150 common weakness enumerations (CWE)
and over 330 000 non-vulnerable functions. Compared to other prior similar datasets,
DiverseVul is a lot bigger and can therefore provide a more realistic result. As it does
include vulnerable code, but is more directed to the vulnerability detection research not
vulnerability repairing research, it is a possible candidate, but rather a weak one. [35]
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Big-Vul is a C and C++ programming language based vulnerability dataset that includes
CVE codes and code changes [36]. This dataset is built by crawling different open-source
projects and searching public vulnerability databases to link the found code with according
CVE-s. Found vulnerabilities contain information like CVE ID-s, CVE summaries and
CVE severity scores. It consists of over 3700 vulnerable functions across 91 different types
of vulnerabilities that are extracted from almost 350 different publicly available Github
projects. The whole dataset is formatted in a CSV format that makes it easy to analyze and
process by another programs. [36]

Vul4J is a vulnerability dataset that consists of real-world Java code vulnerabilities [31].
It includes test cases for proving that the stated vulnerability actually exists in the code
along with the official human patch and other information for reproducing the vulnerability.
Currently it contains a total of 120 different vulnerabilities of which 79 have test cases.
Additionally, besides the dataset, it includes a framework that allows the user checkout to
a certain vulnerability, compile it and run the according test cases which makes managing
and working with data easier and more understandable. [31]

CVEFixes [59] is a collection of vulnerabilities from different open-source projects along
with provided fixes. It is constructed automatically by crawling and collecting the CVE
records in the U.S National Vulnerability Database [60]. It covers over 12 000 different
vulnerable code fixing commits from over 4200 projects. The dataset is built to act as a
relational database making it easier for users to work with. They provide both the full
dataset as well as the code for the automated vulnerability collection so that anyone can
run the process themselves. [59]

4.3.1 Evaluating Datasets

Based on the first criterion, dataset containing real-world vulnerabilities, all of the
previously mentioned datasets pass. All of them are constructed either by crawling
large vulnerability databases, open-source projects or utilizing the combination of those
processes. Looking from the angle of the convenience on working with the dataset, both
Big-Vul and DiverseVul fall behind. Although DiverseVul is in JSON format and BigVul
in CSV format, they don’t have the extra functionality for handling the data like the other
two - CVEFixes a relational database structure and Vul4J independent framework. While
the database-like structure is easily understandable and workable with, upon analyzing
Vul4J framework, it still can’t beat that extra functionality. Vul4J framework’s additional
features makes it simpler to integrate it into automated experimental flow which is valuable
in the context of this paper. Evaluating the ease and preparedness of validating experiment
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results, Vul4J clearly stands out from other ones by having test cases. Although it contains
less vulnerabilities than all the other ones, as said before, the size of the dataset isn’t that
important in this context. Therefore, Vul4J was the dataset author decided to proceed with
as it matched best with provided criteria and had additional useful properties compared to
others.

4.3.2 Chosen Dataset

Vul4J can be run on a host machine directly or in a Docker container. When choosing
to run it directly on a host machine, the machine must run either on Linux or MacOS,
have certain versions of Java, Maven and Python installed. Compatible versions of those
dependencies are listed on their Github page [31]. For Docker image, there are two
options available - latest image which is more lightweight and contains, as the name says,
latest updates and "all-dependencies" option which is bigger in size and includes older
compatible dependencies for all vulnerabilities to be reproducible. [44] Since some of
the vulnerabilities rely on dependencies that are deprecated for now, reproducing those
vulnerabilities didn’t work anymore. The larger Docker image of the dataset addresses this
issue and solves it by including all the required dependencies with compatible versions.

While some vulnerable code datasets contain only single functions or code snippets that are
vulnerable, Vul4J [31] contains whole projects that are vulnerable. All vulnerabilities in
the dataset have an unique ID in a format of Vul4J-ID which can be used to target a specific
record. For each data record, there is a separate folder called "VUL4J" that contains human
patch and a JSON file including a full path to a vulnerable file. The framework provides a
functionality to checkout to a certain data record with the following command:

vul4j checkout --id VUL4J-5 -d /tmp/vul4j/VUL4J-5

This copies the ID equivalent project to the specified folder with additional files mentioned
before. Now the vulnerable project is in its own folder and can be worked with individually.
Next, one can compile the project to see if it compiles without errors and is successful. By
default, all the projects should compile successfully, but this is useful when starting to fix
the vulnerable file to ensure that it doesn’t break the project. The compilation can also be
done through the framework with the following command:

vul4j compile -d /tmp/vul4j/VUL4J-5
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This eliminates the need for setting up an environment to compile and run the code yourself
and therefore also excludes potential problems that might arise from having different
environment properties. As mentioned before, the majority of dataset records have test
cases proving the presence of vulnerable code. After the vulnerability has been compiled,
it is possible to run those tests and get summary of results in JSON formatted file with the
following command:

vul4j test -d /tmp/vul4j/VUL4J-5

Test results include information like vulnerability ID, CVE code, repository with a link
pointing to the origin project and a link to the human patch commit and statistics for tests.
Statistics include the number of tests that were run, number of ones passing, number of
errors and lastly the number of tests that failed or were skipped. Additionally, it lists
exactly which tests passed, which were skipped and if there were any that failed, it outputs
exactly what was the test named and why did it fail. The framework also enables user to
reproduce already existing vulnerabilities that are listed in the CSV dataset as well as new
ones that the user can add themselves. The process of reproducing vulnerability includes
compiling it, running specified tests and analyzing with the built-in SAST tool. If there are
no tests or warning specified in the CSV dataset, those steps are skipped. [31]
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4.4 Selection of Large Language Model

Other similar studies [6] [32] that focus on vulnerable code repair with the help of large
language models use ones that either have the flagship status, like GPT-4 [30] or are
specifically fine-tuned for this purpose. Recent rapid development of new LLM-s like
DeepSeek R1 [61] and the publishing of new models’ training and development techniques
lays a promising base for smaller publicly available models. Therefore, this paper is
mainly focusing on using two differently sized large language models by DeepSeek [61]
- DeepSeek R1 with 32 billion and 671 billion parameters. For initial development of
a working workflow and analysis of datasets, smaller LLM-s provided by Ollama [37]
are used. These will run on the author’s personal computer and are used through LAN
on another computer where the workflow is being developed. Smaller sized model used
to generate final results of the experiment is run on TalTech’s infrastructure and bigger
model is deployed and used through Azure AI Foundry platform [62]. Both of them are
communicated with through their API-s accordingly.

Choosing the DeepSeek R1 model [61] as the base model over other available models
was motivated by multiple key factors. Firstly, since the R1 is a fairly new model in the
context of being publicly available, being released in January 2025 [63], there aren’t many
studies published on it. Its release caused a lot of discussion about how much cheaper it
was built compared to other similar sized models and its surprising performance in various
areas. Secondly, related to the first point, R1 demonstrated competitive performance
compared to other superior models. For example, it outperforms or performs very similarly
compared to OpenAI model o1 [64] in areas like math or coding. Both models were tested
on a mathematical benchmark consisting of complex mathematical problems where the
DeepSeek’s R1 model received 97.3% success rate and OpenAI o1 96.4%. They were
also evaluated in programming capability with using them in a competitive programming
platform that mirror real-world software development scenarios. In programming, R1
reached a success rate of 96.3% while the o1 model was slightly better and resulted in a
96.6% success rate. [65] Both coding and math experiment show less than 1% difference,
making the DeepSeek’s R1 large language model a good candidate for further studying
and comparing in various fields. Lastly, it is simple to run smaller distilled versions of the
original R1 model through providers like Ollama [37]. This enabled to explore how does
the model size affect the results in a automated vulnerability repair process.
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Additionally, DeepSeek’s price list is a lot of cheaper than for example OpenAI o1’s. Using
R1 to output one million tokens costs 2.19 USD dollars according to its standard price [66]
while the same process for o1 costs 60 USD dollars [67]. Figure 3 [63] illustrates the API
input and output pricing for DeepSeek R1 and OpenAI o1 models considering both cache
hits and misses. That is a significant difference between models that perform relatively
similar in multiple fields.

Figure 3. Price comparison of DeepSeek R1 and OpenAI o1

TalTech has an independent AI laboratory [68] primarily aimed for students to learn how
to use AI to solve various problems. Students of TalTech who have given access, can
SSH into the server using their official university account credentials and use the available
resources. There are a total of 7 laboratories, each equipped with hardware of different
capabilities. For example, there is a lab equipped with Intel E5-1620 CPU, 64GB of RAM
and NVidia GTX1080Ti graphics card and another lab equipped with AMD Threadripper
3970X CPU, 128GB of RAM and NVidia RTX4090 graphics card with 24GB of memory.
Thanks to this, users can select and checkout to a laboratory that meets the requirements for
their experiments and testings. [68] According to the hardware requirements declared here
[69], DeepSeek’s distilled R1 model with 32 billion parameters can be run with RTX4090
GPU. This confirmed the author’s plan to use TalTech’s AI lab to experiment with the
distilled model.

Azure provides a platform called Azure Foundry AI [62] which enables to conduct AI
operations, build and tune models and develop applications. It is specially designed for
developers to build different AI based applications and explore, test and use AI tools. The
platform offers wide variety of large language models that an user can deploy and start
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using right away. Although navigating through Azure’s different products and portals
might confuse a first-time user, deploying and setting up LLM in Foundry AI is relatively
simple. To start, a project has to be created. After defining and initializing the project, user
has to navigate to the model catalog, choose which model they would like to deploy and
click a button to deploy it. Next, an API key and specific URL is generated which, after
the successful deployment, can be used to communicate with selected LLM. Additionally,
Microsoft provides students credits and discounts in Azure to experiment with and try their
products. In summary, all three of following aspects affected choosing the Azure Foundry
AI platform to deploy and use original sized DeepSeek R1 [61] large language model -
Microsoft product’s reputation, ease of system setup and student benefits. [62]
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5. Experimental Flow

Since evaluating multi-agent system efficiency in repairing vulnerable code relies on
quantitative research method, it includes handling and processing a large amount of
data. To make it efficient and less time consuming to experiment with, author decided
to create an automated workflow starting from extracting the vulnerable code from data
records to compiling and running tests on the possibly fixed version of the code. As the
experimenting includes a lot of changing attributes and configuration to reach the best
possible result, same processes have to be run multiple times. To make modifying the flow
easier, it was built with additional functionalities like targeting or excluding a certain list
of vulnerabilities by ID-s and structured so that intermediate steps can be excluded without
breaking the overall process. An automated workflow makes both the testing phase as well
as generating final results simpler, more flexible and timesaving.

5.1 Multi-Agent Setup

As stated above, a framework called CrewAI [34] is used to define different agents along
with their tasks and generally handle the agent communication and activity process. It
allows wide range of different customizable attributes to modify agents’ life cycle. This
includes modifying how tasks and agents are handled - either sequentially or hierarchically
and is the planning enabled for pre-execution strategy. Initially, only two agents were used
- software developer and security analyst. Analyst’s goal was to analyze the vulnerable
code, find a vulnerability and provide a detailed description with recommendations on
how to fix it. Software developer got the information from the security analyst and tried to
fix the code according to that. This agent setup was used to ensure that the agents were
initialized correctly and that the system was working without problems. Since looping
through the vulnerabilities and letting multi-agent system repair them takes a lot of time
and resources, it is wise to test first on a smaller scale. The final setup used to conduct
full-scale experiments consisted of 5 different agents - security researcher, security analyst,
software developer, code sanitization engineer and code integrity engineer. Last two agents’
roles in code aren’t exactly the same as their names, but are more general to ensure that the
system understands their background and specialization correctly. Therefore, their names
in the paper are derived from their tasks and goals rather than their roles.
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Researcher Agent
Researcher agent’s full role description is cybersecurity researcher whose goal is find
information and details about the currently processed vulnerability. It is provided the
corresponding CVE code of the security flaw which it can use as a main identifier. It also
has two similar web searching tools that it can use whenever it decides to - specific website
scraping tool and more generic web searching tool. Its task is to find as detailed and useful
information about the vulnerability as possible and construct a summary of it including
information on how to repair it in the Java code.

Security Analyst Agent
Next in the sequence is a senior security analyst whose purpose is to spot the exact location
in the code where the vulnerability lies and, with the help of information about the CVE
from the previous agent, provide a thorough description of the situation and useful tips
for developing and implementing a fix for it. The agent is described to have an extensive
knowledge in cybersecurity and is provided both the vulnerable code to analyze and also
the CVE identifier that the code contains. It is also provided a custom static application
security testing tool that it can prompt to help it examine the code better.

Software Developer Agent
After the analyst comes the software developer agent who carries the main role in this team.
It is described as a senior developer who is specialized in Java development and also has an
extensive background in cybersecurity. Its goal is to analyze the previously described and
located vulnerability and develop and implement a fix for it while keeping the rest of the
code untouched. Additionally, to the CVE identifier and vulnerable code, this agent is also
provided a vulnerable file name to specify what the class name should be. The developer
agent is also provided some extra tips it has to follow. Examples of these are that it should
not change Java class’ inheritance properties or constructor unless really needed, it should
not delete or rewrite any existing code that is not related to the vulnerability and it should
take into account previously provided recommendations and information about the security
flaw. Expected output of this agent is a repaired vulnerability-free version of the inputted
Java file that compiles without errors.

Code Sanitization and Code Integrity Agents
Now that potentially non-vulnerable Java code is generated, it should also be correct
semantically and compatible with the project it was extracted from. That is also the point
why previous agent was told to modify only the vulnerable part of the code and leave the
rest of the file untouched if possible. To ensure that the generated result does not have
semantic errors, two extra agents are used. Penultimate agent’s task is to clear the now
repaired code of comments, explanations and other additional information so the end result
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would be clear and pure Java code. Last agent’s purpose in the sequence is to add all
methods from the original file that were not associated with the vulnerability. This should
help to raise the chance that the absolute end result contains a fix for the vulnerability as
well as compiles within the project it originates from. Complete code semantic descriptions
of the agents and their tasks can be found in appendices. Figure 4 abstractly illustrates the
process of agents’ interaction with each other and LLM to producing a final pure code
result.

Figure 4. Abstract process of agents’ interaction with each other and LLM to resulting
final Java file

45



As mentioned in agents describing section, some of them also have access to different tools.
In the context of this paper, three different tools are used. First of them is from CrewAI’s
[53] official tool selection that can be imported from their independent tool Python library
called crewai_tools. After that, it can simply be initialized, configured to user’s needs in
the code and passed to the desired agent. Name of the tool is SerperDevTool that is built to
search across the internet and find most relevant results for the topic searched [70]. It is
based on another provider’s, Serper [71], API that claims to be world’s fastest and cheapest
Google search API. Using this, the tool performs a semantic search with provided query,
fetches results through the mentioned API and returns them. As it uses an external party’s
service for its job, a freely retrievable Serper API key has to defined as an additional step.
It has multiple configuration options like the endpoint for search API which by default is
https://google.serper.dev/search, specification for country or location to search for results
and a number of search results to return. In conclusion, this tool allows the system to
conduct relevant searches about specified topic. The next used tool is similar in a sense
that it also focuses on getting data from the web. It is also from CrewAI’s provided tool list
and is called ScrapeWebsiteTool. Unlike the previous tool, this one deals with extracting
information from a specific website rather than using a search engine to find results. It is
specifically designed to read and extract the content from a provided website. As there
exist websites that can be targeted by CVE identifier that include information about the
specified vulnerability, it is a promising utility in this research. It works by making HTTP
requests and parsing the received HTML content from the response. It only takes in one
argument, website URL, which is mandatory because that defines the site that is being
processed. [72] The last tool is not provided by CrewAI, but rather custom built by the
author. It is a static application security testing tool that is based on another CLI tool called
Bearer [39]. The working principle of it is simple - it takes in the dataset vulnerability
identifier that is used to locate the vulnerable project. Then the Bearer tool command for
scanning is executed on the project folder and result of this is returned to the agent. Further
explanation of this tool setup and usage is described in the experimental environment
section. Ultimately, as understanding and locating the vulnerability in the code are critical
processes in fixing the security flaw, these tools should potentially enhance both of these
procedures.
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5.2 Filtering the Dataset

As stated above, the used dataset Vul4J [31] contains a total of 79 vulnerabilities that are
equipped with tests. Some of those vulnerable projects have multiple vulnerable files.
Study with similar focus [32] using the same dataset used only single-hunk vulnerabilities.
Single-hunk vulnerability means that the vulnerability exists in a single code block or
single line. Reasoning for choosing these as a target group was that the APR models
that they investigated were built to target single-hunk bugs. [32] To avoid unnecessary
complexity in building LLM prompts and handling results, the author also decided to
exclude multi-file vulnerabilities from the targeted experiment dataset. But for more
realistic scenarios, instead of focusing on single-hunk vulnerabilities, author decided to
target single file vulnerabilities meaning that the security flaw could be spread across
multiple lines, but must be in a scope of a single file. In the dataset, there are 11 records
that contain multiple files containing security flaw. Therefore, all of the vulnerable projects
with more than one vulnerable file were excluded. Before starting to actually repair and
run tests, author decided to compile all of the projects as they are in the dataset. As a result
of this, it appeared that there exist some projects that fail to compile by default. There were
14 of such projects. These were also excluded from the final target group as they would
have resulted in false positives. Since most of the large language models have an input size
limit which can be forwarded to them, two of the vulnerable files combined with agent’s
prompt were too long. Because it is not that critical for a dataset to be big in the context
of this research, these two vulnerabilities were also excluded. Finally, starting from the
original amount of 79, excluding 11 of the ones with multiple vulnerable files, 14 of those
that did not compile, one that the LLM was unable to process and two that were too long
resulted in a working dataset containing 51 vulnerabilities. To clarify what are the natures
of the filtered vulnerabilities, author grouped them by Common Weakness Enumerations.
Table 1 below displays each Vul4J [31] vulnerability used in this study being mapped into
correct CWE category along with the enumeration’s short description. All of the CWE
descriptions are derived from the official CWE Mitre website [73].
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CWE code with description Vul4J ID

CWE-20 - Improper Input Validation 1, 10, 26, 30, 48, 49, 66

CWE-22 - Path Traversal 18, 41, 43, 65, 69, 76

CWE-74 - Injection 45

CWE-77 - Command Injection 33

CWE-79 - Cross-site Scripting 25, 34, 50, 59, 60

CWE-264 - Permissions, Privileges, and Access
Controls

28, 29

CWE-269 - Improper Privilege Management 52

CWE-284 - Improper Access Control 22

CWE-287 - Improper Authentication 40

CWE-310 - Cryptographic Issues 44

CWE-502 - Deserialization of Untrusted Data 54, 77

CWE-532 - Insertion of Sensitive Information
into Log File

57

CWE-611 - Improper Restriction of XML Exter-
nal Entity Reference

2, 24, 47, 61, 64

CWE-835 - Infinite Loop 6, 7, 8, 12, 13, 53, 55

Not Mapped 5, 9, 17, 19, 20, 31, 32, 46, 70, 71

Table 1. Used Vul4J vulnerabilities grouped by CWE categorizations

As seen from the Table 1 above, excluding the ones that aren’t mapped to any CWE,
the highest number of vulnerabilities are equally divided into two categories - CWE-20
and CWE-835 which stand for improper input validation and infinite loop vulnerability
respectively with both containing 7 instances. These are closely followed by CWE-22
indicating the security flaw of path traversal with having 6 vulnerabilities. Lastly, there
are two categories which stand out with having larger number of vulnerabilities being
CWE-79 and CWE-611 which point to cross-site scripting and improper restriction of
XML external entity reference respectively. They both contain 5 vulnerabilities each
making them last groups having a greater weight compared to other CWE-s. Failing
compilation of some vulnerabilities was probably caused by deprecations of different
dependencies and libraries. Therefore, at least some of them, could probably have gotten
fixed by using Vul4J full version Docker image [44] instead of the lightweight one. But
since author would have anyway filtered the dataset to be smaller due to various reasons,
including manual evaluation, it was decided to use the original image and avoid potential
accompanying problems with additional features and more data.
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5.3 Automated Workflow Description

In the context of this paper, Vul4J dataset [31] is being run in the Docker [43] container.
Therefore, the first step is starting the container with the dataset containing folder synced
to the host machine. Since the multi-agent system is not running in the same environment
as the dataset, mirroring the data is essential. Since the commands related to dataset
framework, for example for compiling the project and running tests, have to be executed
inside the container, a connection with the specific running container has to be established.
Once the connection has been established, preparing vulnerabilities for experiments can
start. As the vulnerabilities can be identified with a specifically formatted ID, an array
is constructed containing desired range of identifiers. By default, all of the previously
filtered out 51 vulnerabilities in the dataset are targeted. However, since targeting specific
vulnerabilities separately is necessary in various experimental scenarios, the program has
the functionality that supports it. This list is then being looped through and every selected
vulnerability is handled independently. For each data record, framework commands that
checkout to a vulnerability and compile are executed. As a result of this, vulnerable project
will be created, compiled and moved into a separate folder named after the vulnerability ID.
In addition to the compiled project, this folder also contains a separate folder containing
extra contents about the existing vulnerability. For example, it includes JSON formatted
file that contains following information: CVE ID, official project URL, command for
running tests, information on human patch including its GitHub URL with fixing commit
hash, file path and contents. There are also two folders - one for vulnerable file and one
for the patched file that contain corresponding Java file and a JSON file that specifies the
file name and its path in the project. Using the vulnerable file path, vulnerable code is
extracted from the correct file and set ready to be analyzed.

Next, a vulnerable Java file name, that is currently being worked on, is extracted. It
is used in agents’ prompts to specify what should be the name of the Java class for
the end result and also for defining the file name where generated result is written in.
Depending on the current experiment run configuration if agent tools are used or not,
preparatory work for them is done. Three tools are being used - one for performing
semantic search on the internet [70], second for reading and extracting content from a
specified website [72] and last is a custom SAST tool. Therefore, an URL of the scrapable
website have to be defined. For the website used as a base site for scraping information,
a vulnerability specific NIST national vulnerability database website [60] is used. The
URL structure of the website is the following: https://nvd.nist.gov/vuln/detail/{CVEID}.
As the website’s address pattern is quite generic, the CVE code of the vulnerability can
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be extracted from the file mentioned above and appended directly to the NIST URL.
This site provides detailed information about corresponding vulnerability, including
description of the CVE, metrics along with base score, CWE categorization and links to
solutions and advisories related to the CVE. Semantic searching web tool is not passed any
argument directly, but the associated vulnerability extracted CVE identifier is passed to the
multi-agent system and from there to the research agent. Therefore, it is still indirectly
forwarded to the tool as the agent, with high chance, uses it for researching the security flaw.

50



5.4 Evaluation Method

To assess the effectiveness of the multi-agent large language model system for automated
vulnerable code repair, a combination of manual verification and using unit tests was used.
The initial idea was to mainly rely and focus on using the dataset’s tests as the ground
truth for results verification. While experimenting with a small fraction of the dataset,
the author observed that LLM-s struggled to generate the file with similar structure and
essential attributes as the original Java file. Therefore, there were multiple scenarios where
the multi-agent system actually fixed the vulnerability or provided a very similar solution
as the official human patch, but was initially marked as failed because it did not compile.
For example, if the generated code contained the same security flaw fixing line at the same
location as the human patch, but imported an exception originating from a library that the
project didn’t include, the tests were not executed. That is one of the reasons why manual
verification was essential in the evaluation process.

A total of four different categories were created to label results. Large language model
outputs are inherently generative and the model itself is not bound to follow any fixed
structure in its response. Therefore, there are a lot of different ways a LLM can approach
fixing the vulnerability which often makes it hard to evaluate the generated solutions using
binary classifications - complete or failed. Hence two additional segments were created.
All of the evaluation categories along with their descriptions and criteria are listed below.

Complete The generated fix correctly addresses the vulnerability with a solution matching
the ground truth patch. Minor modifications like adding an import or removing
singular line are allowed. The vulnerability must be fully mitigated.

Highly Relevant The generated fix spots the correct location in code and implements a
valid and logically sound solution that differs from the ground truth patch. Complete
mitigation of the vulnerability is not required, but the solution must correctly address
the issue and be meaningful.

Minimally Relevant The fix identifies the correct vulnerability and location in code, but
fails to fix it or implements an invalid logic.

Failed If the generated result does not target correct location in code, does not implement
anything similar to the actual patch or does not modify anything in the file.
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If the generated fix is correct, but includes additional code in other locations that is not
entirely irrelevant, it is still considered a valid fix. Since the LLM system is given a
complete content of a Java file, it would be too harsh to discard a correct solution with
minor unrelated modifications. Same evaluation logic is applied when the generated result
is not compilable within its origin project, meaning it might not include one or more
unaffected functions and instead contain a comment such as Additional methods omitted

for clarity. If the fix for the security flaw is valid and there are no major or breaking
changes made to the rest of the code, it is still labeled as complete or as one of the relevant
categories, depending on the implementation.

5.4.1 Unit Tests

Initially, all the projects were compiled with the vulnerable Java file being replaced with
the patched one. Purpose of this process was to ensure that test return correct results by
default and that the human patch indeed fixes the vulnerability. This resulted in JSON
formatted files containing default test results for every vulnerability. This was done to
later compare generated solutions tests results with official ones. Prerequisite for running
tests is that the project must compile successfully with having the original exploitable
file replaced with the generated one. Therefore, as stated in the section describing the
experimental workflow, tests were automatically executed only when the project compiled
without errors. After all test results of both generated solutions and original patched
projects were acquired, the numbers of failing, skipping, running and passing tests were
compared.

5.4.2 Manual Evaluation

Each vulnerability repair, not depending on whether it compiled or not, was manually in-
spected. The generated result was first compared with original vulnerable file to determine
if the file is in correct format and if any changes were made. If the generated code was
completely identical to the original file, it could be right away marked as failed without
further analysis. Depending on the structure of the LLM outputted file, similar logic could
be applied. Files consisting of only singular function without any attributes of Java class
structure, unless perfectly fixing the vulnerability, were also immediately marked as failed.
If the generated result implemented correct attributes and structure of original class, but
failed to include some non-vulnerable methods that the original contained, the result was
allowed for further assessment. Results that passed the first phase were then compared
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against the official human written patch. Depending on the final evaluation, the large
language model system generated solution was then put in one of the following categories
that are described above - complete, highly relevant, minimally relevant or failed. Figure 5
illustrates the whole described manual evaluation process.

Figure 5. Process of manual evaluation of the generated result

A closer look at the unit tests revealed that some of these were constructed to depend on at-
tributes irrelevant to the vulnerability. By that it is meant that certain tests checked specific
variable values or thrown exceptions to determine if the test passes or not. However, this
approach did not always confirm or rule out the existence of the vulnerability in the code.
For example, a vulnerability with the identifier of VUL4J-49 [31] has its tests based on a
fact that upon executing a certain function, an exception instance of InvalidJWTSignature-

Exception class is expected to be thrown. In preliminary experimental results, the system
was able to fix the vulnerability in a correct way, but threw a InvalidJWTException class
exception instead. Therefore, tests results did not indicate the real state of a file regarding
vulnerability. Considering similarly constructed tests and a requirement of successful
compilation to even run tests, author decided to shift the main focus in evaluation to
manual verification and use tests as an additional method.
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6. Results

The results of this study were obtained through multiple experimental runs using two dif-
ferent sized DeepSeek’s [61] models - DeepSeek R1 671B and DeepSeek R1 32B. Reason
for utilizing the smaller model was to show the difference in performance resulting from
the model size. Both models were used to conduct runs with three different configurations.
First run was done using the five-agent setup described in the multi-agent setup section
above. In addition to the agents’ goals and tasks, the system was provided the complete
source code of the vulnerable file and the file’s name. Providing the Java file name was
done to enhance the chances of the generated result being similar to the original file so it
would compile in its origin project. The second run was very similar to the first one with
a difference of having additional information on the vulnerability and access to different
tools. Extra information included CVE code of the specific vulnerability and tools provided
were two web scraping and searching tools and one SAST tool. This made it possible for
agents to search information about the particular security flaw from the internet and analyze
the code for potential weak spots. Final run was done utilizing the traditional approach of
using a single prompt to communicate with LLM. Similarly to the second iteration of the
experiment, the prompt also included CVE code, vulnerable file source code and file name.
The purpose of this run was to set a baseline to compare multi-agent solution results to.
All of the results are shown in Table 2 displayed below. First run’s results are marked as
"Multi-agent w/o tools & hint" in table, second run’s results as "Multi-agent with tools &
hint" and final run’s as "Without agents and hint". Hint in this context means vulnerability
specific CVE code. Complete, highly relevant, minimally relevant and failed are marked
in the table as follows: Comp., H. Rel, M. Rel and Fail.
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Table 2. Comparison of results using different configurations with two models
Model /
Approach

DeepSeek-R1 671B DeepSeek-R1 32B

Comp. H. Rel. M. Rel. Fail. Comp. H. Rel. M. Rel. Fail.
Without
agents and
with hint

6 9 3 33 0 2 0 49

Multi-
agent w/o
tools &
hint

5 7 6 33 0 1 1 49

Multi-
agent with
tools &
hint

11 7 6 27 1 2 1 47

A total of 51 vulnerabilities from the Vul4J [31] dataset were used. As expected, the best
result came from using DeepSeek’s R1 [61] full-size model with 671 billion attributes
accompanied with the system having information about the vulnerability and access to
tools. It managed to completely fix 11 vulnerabilities that were very similar or exactly
the same as the human patched version and required minor modifications. In addition to
complete fixes, this setup managed to provide 7 solutions that were categorized as highly
relevant and 6 as minimally relevant. Next iteration was conducted using the same setup
except without hint and agents’ tools. This resulted in 5 instances being classified as
completely repaired and 13 as relevant, with 7 of them categorized as highly relevant and
6 as minimally relevant. Last iteration using the full-sized model done using the traditional
approach with hint included successfully repaired 6 vulnerabilities and provided relevant
code for 12 of them of which 9 were above average relevant and 3 which had abstract
hints or implementations of the fix. Running the same iterations using the distilled model
produced following results: 1 successfully repaired and 3 relevant fixes using multiple
agents with tools and hint, 2 relevant fixes with same setup, but without tools and hints and
2 relevant fixes using the traditional approach. Distribution of the relevant fixes between
two levels were following: 2 highly relevant and 1 minimally relevant with tools and hints,
equally 1 minimally and 1 highly relevant without tools and 2 highly relevant using no
agents.
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6.1 Validating Using Tests

As described in the evaluation section, Vul4J dataset [31] tests do not always express
if the file is vulnerable to the specific security flaw or not. This is because certain tests
check for specific exceptions to be thrown or word-by-word exact same strings to be
returned in order to be passed. This often resulted in a situation where the vulnerability
was actually mitigated, but tests still failed. Due to this kind construction of tests, they
were used rather as an additional verification method. Every generated vulnerability fix
that was categorized as completely fixed using multi-agent system with tools and hint
utilizing full-sized R1 LLM was verified by running tests. Table 3 presents a summary
of the results, listing each vulnerability separately that was marked as completely fixed
in the manual evaluation process. Along with the vulnerability identifier, an additional
comment is included about the required modification the user needed to make in order for
the solution to pass all its tests. Empty slot means that complete solution was not generated
by the specified configuration. The table uses a set of descriptive markings to indicate
required actions. The "+" sign means that the solution was correct as it was generated
and needed no further modifications. Remove Single Line indicates the need of deleting
a singular, often unrelated to vulnerability, additional line of code. Relocate Single Line

marks the requirement of moving one line of code which in the context of this experiment
was an if-clause in both scenarios. Add Import signifies the addition of a single dependency
and Append Methods the need of appending non-vulnerable methods from the original file
for successful compilation.

Table 3. Required modifications to pass Vul4J tests
ID Multi-Agent w/ tools and hint Multi-Agent w/o tools and hint Traditional w/ hint

VUL4J-13 +

VUL4J-41 + +

VUL4J-43 + +

VUL4J-45 Remove Single Line

VUL4J-46 Append Methods + Remove Single Line

VUL4J-47 Append Methods Append Methods

VUL4J-49 Relocate Single Line Relocate Single Line

VUL4J-50 +

VUL4J-57 +

VUL4J-61 Add Import Remove Single Line

VUL4J-64 Remove Single Line Add Import

VUL4J-66 +

VUL4J-69 +

VUL4J-71 Add Import

VUL4J-77 + +
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As seen from the table, the proportion of the returned solutions that categorize as a fully
compatible Java file, meaning they didn’t need any modifications, drops gradually going
setup by setup. The highest percentage of 54.5% comes from the setup with tools and
hint which is followed by the configuration without tools and hint resulting in exactly
50%. Configuration without agents reached a 40% in providing fully compatible fixes.
Percentage wise, the run done without agents produced significantly more incomplete
files which required appending methods from the original file to be compilable. There
were three vulnerabilities that got all fixed by at least two different setup runs and didn’t
need any modifications in any case - VUL4J-41, VUL4J-43 and VUL4J-77. There were
some exceptions for vulnerabilities with ID-s of VUL4J-13, VUL4J-41, VUL4J-43 and
VUL4J-57 where tests expected an exception to be thrown with certain text. Although
these tests failed initially because the message was not correct word-by-word, it was
marked as successful because the vulnerability was mitigated. As for the completely fixed
vulnerabilities’ natures, the most fixed vulnerabilities belonged to common weakness
enumerations CWE-22 and CWE-611. CWE-22 marks path traversal vulnerabilities and
CWE-611 points to the improper restriction of XML external entity reference flaw [73].
Vulnerabilities belonging to CWE-22 category, including previously mentioned VUL4J-41
and VUL4J-43, were repaired 5 times and flaws belonging to CWE-611 6 times in total
across all three configurations. To confirm this evaluation, all solutions marked as highly
relevant were also grouped by CWE-s. Looking at the distribution of highly relevant results
across CWE-s, the credibility of the first assumption done on completely fixed solutions is
correct as the relevant solutions included 4 CWE-611 and CWE-22 vulnerabilities. This
is the most amount of instances in one category which is followed by having 2 fixed
vulnerabilities in CWE-79 and CWE-74 enumerations. In conclusion, majority of LLM
produced solutions were compatible and passed tests in their origin form or required very
minor modifications like adding a singular import or removing vulnerability unrelated
singular added line. This confirmed author’s markings about the vulnerabilities specified
in the table above.

6.2 Usage of Provided Tools

For tracking the usage of a provided custom SAST tool, an indicator was created for each
execution. Every time an agent decided to use this tool, a file was created into a folder
named after the specific CVE currently being handled. Since agents act autonomously and
make their decisions themselves based on the context they have, they can’t explicitly be
forced to use certain tools. Therefore, access to tools can be given, but they still have to be
initialized by agents independently. It was observed that during the run using full-sized
model and tools, the system used the SAST tool for 16 out of 51 vulnerabilities. However,
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when provided the same tool for an iteration done using distilled model, none of the tool
executions were recorded. This indicates that smaller models are not that efficient using
additional tools in its work. Online discussions and articles [74] confirm the author’s
hypothesis that the usage of tools strongly depends on the capabilities of the used LLM.
Large language models, especially ones with fewer parameters, might sometimes pretend
that they are calling the tool, but are actually not and instead hallucinate by making up the
output itself. Additional reason for tools not being used are that some LLM-s are trained
to be too focused on specific context and are therefore limited for these opportunities,
meaning that during its though process, it does not reach a decision of calling or even
discovering tools it is provided. [74] Although two other tools performing web searching
and scraping were not individually tracked, based on previous information, a similar
hypothesis can be made. This is also reflected in the results using a distilled model where
the difference with tools and without tools are only one complete and one relevant fix as
the same situation using a full-sized model results in a much bigger gap.
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An AI analysis and monitoring tool called AgentOps [46] whose description and imple-
mentation process is described in experimental environment section was used. In the
context of this study, it was mainly used to help monitoring agents’ communication with
each other and also them interacting with provided tools. The platform displays a whole
timeline of a specific recorded session that is divided into different sections. Figure 6
displays how it looks visually on the platform. Its purpose is to visually represent the chain
of events consisting of agents and tool interactions.

Figure 6. LLM session divided into different states

Blue lines indicate interactions with the large language model. These include both user
specified agents that in the scope of this study are for example software developer and
security analyst, but also intermediate actions done by the framework like the team
planning. Short yellow lines display agents’ interactions with tools. Although observing
the exact tool section of the session does not expose any details about it, analyzing the next
agent call reveals the usage and results of using the tool. Looking at the steps made in a
session using the bigger model, it can be seen where the system agent decides to use both
web searching and scraping tools. After listing its complete plan how it decides to execute
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the process of repairing vulnerable code, the next thing it does is use a web scraping tool
to get information about the provided CVE. Figure 7 below displays the first response of a
LLM after the agents had been initialized and their steps had been planned.

Figure 7. Decision indicating web scraping agent tool usage

It shows that the system plans to use the exact website, vulnerability specific NVD NIST
page [60], that the tool was configured to use beforehand which is described in the
experimental flow section. This is exactly how the system flow was visualized when
choosing and configuring tools to include. This is followed by the tool execution step after
which its result can be seen. The next agent interaction includes navigation headers of the
NIST webpage and also vulnerability specific information that was present on the website.
The described situation is presented as Figure 8 below.

Figure 8. Result of web scraping tool targeting vulnerability specific NIST NVD website
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As seen on the picture above, the response text ends with next determined action which
is using the second tool for searching the web. Observing the following calls, it can be
seen that the tool based on Google Search API called Serper [71] is indeed executed with
the specified query. Step after tool execution confirms that it was used successfully as the
response contains a GitHub issue number #466 pointing to a correct issue and a detailed
description of the currently processed vulnerability with a code of CVE-2017-18349. This
was confirmed manually by using a search engine with the same following query: CVE-

2017-18349 Fastjson GitHub Pippo fix. This returned a GitHub issue link with the same
issue number as a first result. After that a summary of the mentioned CVE is constructed
which includes thorough explanation of the vulnerability, affected components along with
CVSSv3 impact score that were extracted from the web and recommendation for fixing it.
This conclusion then gets used later in the chain for actually generating and implementing
a fix for the security flaw in code.

Previously described chain of events confirms that the provided tools are used correctly
and purposefully, at least when using the full-sized model. They are integrated into the
flow as the author planned from the beginning - agents should use these tools to gather as
much information about the vulnerability as possible before starting to fix it. Also, the
results of the multi-agent system utilizing the original DeepSeek R1 [61] model show
significant difference between complete and relevant fixes compared to the iteration done
without tools. As the difference seems a little too big to be accidental, this confirms the
usefulness of providing agents different tools they might need to achieve their goals.

6.3 Results From Previous Studies and Comparison

At the time of writing this paper, up to author’s knowledge, there are no publicly available
papers on the multi-agent approach on fixing vulnerable code. Despite this, there does exist
research on simply prompting large language models and using singular agents for doing
that. Going more specific to being able to compare this paper’s results directly to other
papers, author found and picked out three studies that focus on repairing vulnerable code
using LLM-s and use the same dataset, Vul4J [31], as this paper. General introductions of
the analyzable studies are in the literature review section. Therefore, this section focuses
purely on the results of the papers and their similarities with the current paper.

A study [6] based on the GPT-4 [30] large language model used a very similar evaluation
process as the current paper - manual code review paired with Vul4J dataset [31] tests. The
process of extracting vulnerable code and passing it to the large language model is also
similar, but not exactly same. Instead of passing the whole file to the LLM, it extracts the
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source code of the vulnerable method and passes the model only this small snippet of code.
Although the OpenAI models’ specifications are not public and therefore the exact size of
the GPT-4 model is not known, it is still categorized as a big model like the main one in the
current study, DeepSeek R1 [61]. Also, according to the comparative study assessing both
model’s capabilities in code generation [75] they are very similar. Although taking into
account the LLM input difference, the results of this paper are still comparable to those
of the study based on the GPT-4 model in terms of evaluating multi-agent and traditional
approach for automated vulnerability repairing. Similarly to this paper, the targeted study
also targeted only single-file fixes from the dataset which left it 46 vulnerabilities to work
with. The study conducted three runs that resulted in 12, 14 and 11 passing vulnerability
fixes respectively. Considering the number of targeted vulnerabilities, percentages of
fixed security flaws were 32.43%, 37.84% and 29.73% which results in the average of
33.33%. Additionally to evaluating purely the amount of fixed vulnerabilities, this study
also evaluated the correctness of returned textual instructions. The study concluded that
there is a strong correlation between correct repair instructions and fixed source code
and vice versa. Although there were some exceptions where guidelines were correct,
but the code could not be fixed, most of the repairing results matched with instructional
results. Study admits that the paper’s results are much worse compared to ones conducted
on synthetic vulnerability datasets, but higher than other similar studies using the Vul4J
dataset. It concluded that large language models are improving continuously and the point
in time where they can be applied into real practical processes is not far. [6]

The next study that proposed their own neural network model VulMaster [32] also uses
the same evaluation method as the current and also lastly analyzed paper - manual code
verification and Vul4J tests. Additionally, it also targets only single-hunk vulnerabilities
which makes the number of targeted vulnerabilities in this study 35. It used multiple large
language models with different natures like frozen LLM-s, fine-tuned LLM-s and also APR
models. Out of all their selected models, VulMaster gave the best result with repairing 9
out of 35 vulnerabilities, resulting in a repair rate of 25.7%. This was followed by Codex
and InCoder models resulting in 6 successful repairs and CodeGen fixing 5 security flaws.
[32]

A study using coding focused LLM-s [33] utilizes a different evaluation approach. Instead
of manual review and tests, it uses a specific formula to calculate the accuracy of the
generated solution. The paper doesn’t explicitly mention the number of used vulnerabilities
from the Vul4J [31] dataset. Judging by the highest mentioned vulnerability identifier,
Vul4J-74, it is expected that the dataset is used in its original size that’s covered with tests
which is 79 instances. Three fine-tuned models, CodeT5, PLBART and InCoder produced
6 correct patches while CodeGen produced 7 correct patches for Vul4J dataset. Digging
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deeper, the study found that providing LLM vulnerability type as a hint also resulted in
7 successfully repaired vulnerabilities while explicitly specifying vulnerable code lines
resulted in 8 correct patches in Vul4J dataset scope. [33]

In conclusion, none of the three previously analyzed studies, even when LLM-s were
given only the vulnerable function, resulted in a too high fixing percentage. While the
37.84% vulnerability fixing rate achieved in study using GPT-4 [6] is optimistic, it is much
lower than, for example the rate of bug fixing using synthetic dataset. Although a software
bug and software vulnerability are not identical concepts, they are similar enough to be
compared in the context of automatic code repairing. A study focused on bug fixing [76]
that also used GPT-4 large language model [30] achieved a success rate of 77.5% by using
follow-up requests and providing more information on the bug. This was done on synthetic
bug fixing dataset QuixBugs [77]. This again confirms that the real-world cases, whether
bugs or vulnerabilities, are more complex and much more difficult to handle.

To assess the effectiveness of the used multi-agent LLM system in automated vulnerability
repair, its results are compared to previous studies using the same dataset. Initial study
analyzed that is based on GPT-4 model [6] reached an average fixing rate of 33.33%.
Current study’s best result achieved by using multi-agent system was 11 successfully
repaired vulnerabilities out of 51 which translates roughly to 21.57%. Additionally,
another 13 flaws were provided solutions that were very similar in terms of logic and
implementation. It is very important to note that the considered paper forwarded large
language model only the code of the vulnerable function rather than passing in whole file
content. Considering that, results achieved by utilizing multi-agent approach are quite
promising. Second study [32] managed to achieve a result of fixing 9 out of 35 security
flaws using their own model called VulMaster. This result exceeds the current paper’s
completely fixed vulnerabilities’ rate only with 4.13% with rest of the relevant solutions
being excluded. Since the current study uses only one pre-trained model as it is compared
to VulMaster using a combination of two LLM-s with one being fine-tuned, their solution’s
slightly better performance is understandable. Lastly analyzed study [33] managed to
fix 10 Vul4J [31] flaws with utilizing sensitively fine-tuned model and multiple-hint
prompts. Assuming that the dataset was used in its full size with 79 instances, 10 repaired
vulnerabilities translates to a repair rate of 12.66%. Considering the usage of file-level
approach and other studies’ results, the multi-agent method for automated vulnerability
repair justifies itself by resulting a fix rate of complete solutions similar or a little smaller
than other studies received with additional considerable amount of other relevant fixes.
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6.4 Ablation Study

In addition to the experiments conducted for main results, an ablation study was done.
Ablation refers to removing one or more parts of the system to observe how it affects the
behavior of the whole system [78]. In the scope of this study, the usable system consists of
a base pre-trained large language model and multiple autonomous agents. Therefore, it was
analyzed how removing different agents affects the vulnerability repairing performance
of the multi-agent system. Since the setup used in this study relies on sequential process
structure meaning that the agents are placed in a sequence and the execution order is
always the same. This also means that agents are directly connected to their tasks and
goals. Therefore, some of the agents were more important and could not be excluded
because otherwise the system would not understand its end goal - fixing the vulnerable
code.

For the first ablation experiment, a researcher agent was removed. Researcher agent’s
goal was to gather as much and as detailed information about the identified vulnerability.
Its output was specified to include a detailed summary about the vulnerability as well
as information on how to fix it in code. As a result, the 4-agent setup without the re-
searcher managed to completely repair 8 vulnerabilities and provide relevant solutions for
7 vulnerabilities that includes 4 highly relevant and 3 minimally relevant fixes.

In the second run, additionally to removing a researcher agent, a security analyst agent
was also removed. Security analyst agent’s main task was to locate and describe the
vulnerability in the code and provide tips for repairing it for software developer agent.
Its output was configured to consist of exactly these two parts - description of the found
vulnerability and recommendations for the agent that is going to repair it. Running the
system without these two agents resulted in completely repairing 8 vulnerabilities and
generating useful fixes for also 8 vulnerabilities from which 5 were highly relevant and 3
minimally relevant. Results for both ablation experiments are displayed in Table 4 below.
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Agent setup / Evalua-
tion Categories

Complete Highly Relevant Minimally Relevant Failed

Without researcher 8 4 3 36

Without researcher and
analyst

8 5 3 35

5-agent setup w/o tools
& hint

5 7 6 33

5-agent setup with tools
& hint

11 7 6 27

Table 4. Evaluation of different approaches.

As seen from the table above, both of the setups resulted in the same exact amount of
completely repaired vulnerabilities. The number of relevant solutions is also very similar
differing only by one. Although the original 5-agent setup that was provided a hint and
could use tools outperforms both of the ablation experiments, their results are comparable
with experiment done without providing tools and hint and experiment without agents.
When the iterations done without tools and hint and without agents resulted in 5 and 6
complete results respectively then both ablation study runs outperformed them with 8
complete results. However, the configurations with three and four agents managed to
provide relevant solutions for 8 and 7 vulnerabilities respectively while the setup without
tools and hint generated 13 relevant solutions and setup without agents 12 relevant solutions.
This means that the total number of failed solutions using reduced amount of agents is
36 and 35 respectively whereas the 5-agent setup without tools and hint resulted in 33
failures. While the original 5-agent setup with tools and hint clearly outperforms other
configurations by resulting in only 27 failed solutions, the overall value of the rest of the
outputs provided by using different setups is similar. As one might expect, some of the
vulnerabilities are easier for LLM to repair than others. Consequently, over half of the
completely fixed vulnerabilities overlapped in both iteration results that are identified by
following ID-s: Vul4J-45, Vul4J-46, Vul4J-61, Vul4J-64, Vul4J-77.

Two of the last agents in sequence in original setup were developed with a focus on
improving the generated result syntactically. These agents were called file cleaner and file
completion agents with having a software architect and software developer backgrounds
respectively. As said, these agents were not explicitly initialized to repair the vulnerability
in code, but rather to improve the chance of the generated result being syntactically correct
and compilable. Since neither of them were critical in the process of fixing the security
flaw, an additional iteration without these agents was done. Because of the reason that
they didn’t directly participate in vulnerability fixing process, comparing the number of
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correctly fixed security flaws was not considered meaningful. Instead, the number of
directly compilable generated results was compared. Using the original 5-agent setup
generated 30 solutions that could be directly replaced into the origin project and compiled
successfully. By removing the file cleaner and file completion agents this result dropped to
7 within project directly compilable results. There is a significant difference of 23 instances
which confirms the effectiveness of adding these two additional agents to enhance the
quality of the final output.

In conclusion, removing researcher and security analyst agents resulted in a worse result
than using the original 5-agent setup. This confirms the usefulness of adding independent
agents to the flow that gather information about the vulnerability before starting fixing
it. However, the difference between removing only the researcher and removing the
researcher with security analyst is not big. Running the configuration without either of
them actually resulted in one relevant solution more than running it only without the
researcher. Considering that the difference in results is so minor, this indicates that their
individual contributions may overlap and it’s possible that one agent combining both of
their goals and tasks may be enough to provide similar value. An additional experiment
done without file cleaner and file completion agents whose goals was to improve the end
result syntactically and make it compliant with its origin project provided a lot fewer
directly compilable solutions than the original setup. Although they are not directly
connected to repairing the vulnerability, they proved their importance for making the
potentially vulnerability-free generated result fit into its origin project and modifying it to
only include correct Java code.
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6.5 Additional Observations

In addition to evaluating the accuracy and effectiveness of vulnerability repairs, several
secondary behaviors and performance characteristics of the system were observed. These
include unnecessary code formatting and refactoring by the LLM as well as its challenge
to consistently output compilable code that’s structure would align with original file’s.
Additionally, it was compared how much time on average it takes for the system to provide
solutions for the vulnerabilities.

6.5.1 Code Formatting and Generating Compilable Files

Alongside fixing security flaws, LLM-s very often refactored and formatted other parts
of code which in most cases made the code more readable, but wasn’t necessary from
the perspective of code repairing. This was often expressed through rewriting ternary
conditional operator containing lines into full-size if-blocks or vice versa. Also, it was
observed that the LLM preferred to keep long variable definitions and function calls in
one line even if it was split into multiple lines in the original file. Another commonly
modified element was the set of Spring [79] annotations. Although majority of the time the
modifiable annotation was descriptive and not mandatory, there were cases where the LLM
removed annotations that suppressed warnings or were required. Removing annotations
can fail the compilation even when the rest of code might be correct and vulnerability-free.
One big challenge for LLM-s were to return the complete compilable Java file that would
straight fit into the origin project. Even though it was precisely described that the end result
should contain all the non-vulnerable methods as the original file and its inheritance and
other important properties should not be modified unless really necessary, it still struggled
in some cases. Since the model was given the whole Java file without information where
exactly the vulnerability in the code is located, it is, in some cases, expected. As mentioned
in the ablation study, adding two additional agents to ensure the file’s syntactic correctness
and the presence of needed methods improved the results significantly.

6.5.2 Time Consumption

Additionally, two extra runs were conducted using different setups with intention to track
the time it takes for the system to provide solutions to vulnerabilities. The first experiment
utilized the multi-agent system equipped with tools while the second run used an approach
without agents. Comparing the times for both of these configurations indicate if and how
much does the time consumption differ between a system using multiple autonomous
agents and the one without agents for repairing vulnerable code. To not use too much
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resources, but still use a sufficient amount of vulnerabilities to calculate the average time,
a total of 40 vulnerabilities were used. Times were measured two different ways - a time
for each vulnerability from the start of the loop until the end of the loop and a total time
from starting the program until the program termination. To clarify, in code, repairable
vulnerabilities are handled one by one in a loop meaning that the system executes the same
block of code for each vulnerability. Later, all of the independent vulnerability fixing
times were summarized which allowed to calculate the average time for the system to
provide a solution. The summarized time for providing solutions for all 40 instances using
the multi-agent setup was 4 hours 35 minutes and 17 seconds while the whole process
in total took 5 hours and 2 minutes. This means that about 27 minutes were spent on
secondary activities like connecting to a Docker [43] container, writing metrics and data
to files and switching between vulnerabilities. Taking the summarized time, it results
in an average solution providing time of 413 seconds converting to 6 minutes and 53
seconds. Using the no-agent approach, the cumulative time taken to provide solutions
for all 40 vulnerabilities was 2 hours 48 minutes and 59 seconds. Dividing this with the
number of used vulnerabilities results in an average fixing time of 254 seconds. The
overall time of the process was 2 hours and 59 minutes which leaves about 10 minutes
for processes not directly associated with vulnerability fixing. The difference between the
fastest and slowest time between the two different setups was similar. The setup without
agents had a fastest fixing time of 46 seconds and slowest fixing time of 651 seconds
while the multi-agent setup’s times were 203 seconds and 828 seconds respectively. In
conclusion, the average time for providing a solution for a vulnerability is longer for the
configuration with multiple agents which is expected. Difference between average times
between two setups were 159 seconds which is not too significant considering the multi-
agent setup contained 5 agents. The time spent in addition to fixing the vulnerabilities
didn’t differ too much, but was still longer for the configuration using agents with mak-
ing 8.9% of the total time while the no-agent setup spent 5.6% of its total process time for it.
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7. Conclusion

As the software becomes increasingly important with it being integrated into more and
more domains, its reliability and trustworthiness also rises significantly. One of the main
ways to ensure software security is to keep the code free of vulnerabilities. Traditional
methods for repairing and detecting vulnerabilities in code tend to lack scalability and
adaptability, especially when working with complex codebases. To handle sanitizing
code that changes quick and differentiates across various technologies and domains, new
scalable code repairing solutions have to be developed. The rapid development and public
popularization of artificial intelligence technologies fit as a suitable candidate for solving
this problem.

Artificial intelligence based solutions have experienced a significant increase in their
usage across various domains. Fields of software development and cybersecurity are no
exceptions by already including AI based code completion and vulnerability management
tools. There exist a lot of different ways of using AI in software management processes.
This thesis investigated the potential of using a multi-agent system built on large language
model for automated vulnerability repair on real-world Java vulnerabilities. By constructing
a sequence of agents with separate goals and backgrounds like software developer, security
analyst and researcher, a real development team was being simulated. Performance of the
system was evaluated against a dataset containing real-world Java vulnerabilities and the
results were compared to other AI utilizing studies also focusing on vulnerable code repair
and using the same dataset.

Results justified the usage of multiple autonomous agents by providing similar results
compared to other AI based security flawed code fixing studies. A run with best perform-
ing configuration managed to correctly fix 11 vulnerabilities with same or very similar
implementation as human patch. To pass all of the dataset’s tests, some of those required
minor modifications like adding additional import. In addition, the same setup produced a
total of another 13 relevant solutions. Of those, 7 implemented analogous logic as patch
being marked as highly relevant and 6 targeting correct vulnerability without providing
clear solution being categorized as minimally relevant. Also, the system showed a great
performance of analyzing long Java files and implementing a vulnerability specific fix in a
correct location. This lays a promising base for further experimentation with combining
autonomous agents and also for handling full-sized files in the process of vulnerability
repair rather than providing only the vulnerable function.
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In conclusion, this thesis provides evidence that using multi-agent system is a promising
direction in the field of vulnerable code repair. While it is not ready to fully replace human
expertise in this area, it has a potential of significantly speeding up the process of handling
security flaws originating from code thus reducing costs and minimizing the vulnerable
time window. Future work in this area could focus on experimenting using the multi-agent
approach based on other, potentially fine-tuned, large language models. Also, since there
are a lot of various ways how to construct and combine autonomous agent with their tools
and goals, it would be useful to experiment with and compare the results of using different
multi-agent setups.

7.1 Limitations

During the experimentation and research, several limitations were addressed that influenced
the selection of the study components and the interpretation of the results. These limitations
highlight the challenges that can be addressed right in the beginning when planning to
conduct similar experiments.

Analyzing the whole file
Using the approach of passing the whole source code of the vulnerable file to the large
language model system prevents it from processing large files due to input size limitations.
In the context of this paper, the prompt size limitation influenced only few test instances,
but this can be a bigger obstacle when working with larger files.

Single evaluable experiment run for each setup
Due to resource and time limitations, although multiple experiments with different con-
figurations were conducted, evaluation ready runs were only executed once. Since large
language models are non-deterministic, running each experiment for example three times,
would bring more certainty and credibility to the end results.

Using a single large language model
In the scope of this study, only one large language model was used to generate evaluable
results - DeepSeek R1 [61] in two different sizes. This means that the results’ credibility is
heavily influenced by agent and their tools usage capability of a singular LLM. Therefore,
it would be useful to experiment with the multi-agent system using other large language
models like GPT-4o [30].
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Appendix 2 - Software Developer Agent and Its Task
s o f t w a r e _ d e v e l o p e r _ a g e n t = Agent (

r o l e = " S e n i o r S o f t w a r e Deve lope r " ,

g o a l = " " " A n a l y z e found Java s o f t w a r e v u l n e r a b i l i t y and

imp lemen t a f i x f o r i t .

Keep t h e l e f t o v e r code p r e s e n t and un touched " " " ,

b a c k s t o r y = " " "

You ’ re a s e a s o n e d Java s o f t w a r e d e v e l o p e r t h a t a l s o has

a background o f

c y b e r s e c u r i t y who ’ s t a s k i s t o a n a l y z e t h e s o f t w a r e

v u l n e r a b i l i t y and d e v e l o p a f i x f o r i t . " " " ,

v e r b o s e = True ,

l lm = llm ,

t o o l s =[ s e r p e r _ d e v _ t o o l ]

)

s o f t w a r e _ d e v e l o p e r _ t a s k = Task (

a g e n t = s o f t w a r e _ d e v e l o p e r _ a g e n t ,

d e s c r i p t i o n = " " "

Fix t h e found v u l n e r a b i l i t y i n Java code and imp lemen t

i n i n t o e x i s t i n g code .

CVE code o f t h e v u l n e r a b i l i t y i s { c v e _ i d } .

− Take i n t o a c c o u n t t h e recommenda t ions and i n f o r m a t i o n

t h a t o t h e r s have g a t h e r e d abou t t h e v u l n e r a b i l i t y .

− Do n o t change Java c l a s s ’ c o n s t r u c t o r or i n h e r i t a n c e

p r o p e r t i e s .

− Do n o t d e l e t e or r e w r i t e any e x i s t i n g code , o n l y

r e p l a c e or r e f a c t o r t h e v u l n e r a b l e p a r t .

− The Java c l a s s name has t o be { f i l e _ n a m e } and i t has

t o e x t e n d or imp lemen t e x a c t same c l a s s e s as t h e

o r i g i n a l code .

Here i s t h e v u l n e r a b l e code : { v u l n e r a b l e _ j a v a _ c o d e }

" " " ,

e x p e c t e d _ o u t p u t = " " "

R e p a i r e d v u l n e r a b i l i t y − f r e e v e r s i o n o f t h e i n p u t t e d Java

f i l e t h a t c o m p i l e s w i t h o u t e r r o r s .

" " " ,

)
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Appendix 3 – Security Analyst Agent and Its Task
s e c u r i t y _ a n a l y s t _ a g e n t = Agent (

r o l e = " S e n i o r S e c u r i t y A n a l y s t " ,

g o a l = " " "

Find a v u l n e r a b i l i t y i n t h e p r o v i d e d Java code and

p r o v i d e a t h o ro u g h d e s c r i p t i o n o f t h e v u l n e r a b i l i t y

t h a t h e l p s t h e s o f t w a r e d e v e l o p e r d e v e l o p and

imp lemen t a f i x f o r i t . " " " ,

b a c k s t o r y = " " "

You ’ re a s e c u r i t y a n a l y s t whose t a s k i s t o r e v i e w

v u l n e r a b l e Java code and f i n d a v u l n e r a b i l i t y from i t

.

S i n c e you have e x t e n s i v e knowledge i n c y b e r s e c u r i t y , you

can p r o v i d e a l o t u s e f u l i n f o r m a t i o n abo t t h e

v u l n e r a b l e code f o r r e p a i r i n g i t . " " " ,

v e r b o s e = True ,

l lm = llm ,

t o o l s =[ b e a r e r _ s a s t _ t o o l ]

)

s e c u r i t y _ a n a l y s t _ t a s k = Task (

a g e n t = s e c u r i t y _ a n a l y s t _ a g e n t ,

d e s c r i p t i o n = " " "

F o l l o w i n g code s n i p p e t c o n t a i n s v u l n e r a b i l i t y w i t h

Common V u l n e r a b i l i t i e s and Exposures (CVE) ID o f {

c v e _ i d } .

Find i t i n t h e code and p r o v i d e a d e t a i l e d d e s c r i p t i o n

o f t h e v u l n e r a b i l i t y and recommenda t ions f o r f i x i n g

i t .

Here i s t h e v u l n e r a b l e code : { v u l n e r a b l e _ j a v a _ c o d e } " " " ,

e x p e c t e d _ o u t p u t = " " "

Thorough d e s c r i p t i o n o f t h e found v u l n e r a b i l i t y i n t h e

code and recommenda t ions f o r t h e s o f t w a r e d e v e l o p e r

t h a t i s

go ing t o r e p a i r i t .

" " "

)
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Appendix 4 – Research Agent and Its Task
r e s e a r c h _ a g e n t = Agent (

r o l e = " C y b e r s e c u r i t y R e s e a r c h e r " ,

g o a l = " " "

Find i n f o r m a t i o n and d e t a i l s abou t t h e v u l n e r a b i l i t y .

" " " ,

b a c k s t o r y = " " "

You are an e x p e r i e n c e d c y b e r s e c u r i t y r e s e a r c h e r w i t h a

v a l u a b l e s k i l l o f f i n d i n g e x t e n s i v e i n f o r m a t i o n abou t

v u l n e r a b i l i t i e s and p r o v i d i n g d e t a i l e d i n f o r m a t i o n

abou t them .

" " " ,

l lm = llm ,

v e r b o s e = True ,

t o o l s = [ web_tool , s e r p e r _ d e v _ t o o l ]

)

r e s e a r c h _ a g e n t _ t a s k = Task (

a g e n t = r e s e a r c h _ a g e n t ,

d e s c r i p t i o n = " " "

Find as d e t a i l e d and u s e f u l i n f o r m a t i o n as p o s s i b l e

abou t t h e v u l n e r a b i l i t y t h a t would h e l p i n f i x i n g i t .

Common V u l n e r a b i l i t i e s and Exposures ID o f t h e

v u l n e r a b i l i t y i s { c v e _ i d } .

" " " ,

e x p e c t e d _ o u t p u t = " " "

A d e t a i l e d summary o f t h e v u l n e r a b i l i t y and i n f o r m a t i o n

on how t o r e p a i r i t i n t h e code .

" " "

)
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Appendix 5 – File Cleaning Agent and Its Task
c o d e _ s a n i t i z a t i o n _ a g e n t = Agent (

r o l e = " S o f t w a r e A r c h i t e c t " ,

g o a l = " " "

Remove a l l t h e a d d i t i o n a l i n f o r m a t i o n and e x p l a n a t i o n s

from t h e r e s u l t . R e t u rn o n l y pure Java code .

Ensure t h a t t h e code c o m p i l e s and i s ready f o r

p r o d u c t i o n .

" " " ,

b a c k s t o r y = " " "

You are a s o f t w a r e a r c h i t e c t w i t h long e x p e r i e n c e

s p e c i a l i z e d i n Java .

" " "

)

c o d e _ s a n i t i z a t i o n _ t a s k = Task (

a g e n t = c o d e _ s a n i t i z a t i o n _ a g e n t ,

d e s c r i p t i o n = " " "

Remove a l l t h e e x p l a n a t i o n s , comments and o t h e r

a d d i t i o n a l i n f o r m a t i o n from t h e o u t p u t and r e t u r n

o n l y pure Java code f i l e .

Java c l a s s name must be { f i l e _ n a m e } .

" " " ,

e x p e c t e d _ o u t p u t = " " "

Clear and pure Java code t h a t c o m p i l e s w i t h o u t e r r o r s .

" " "

)
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Appendix 6 – File Completion Agent and Its Task
c o d e _ i n t e g r i t y _ a g e n t = Agent (

r o l e = " S o f t w a r e d e v e l o p e r " ,

g o a l = " " "

Compare Java code g e n e r a t e d by o t h e r a g e n t t h a t you g e t

as an i n p u t w i t h o r i g i n a l v u l n e r a b l e code .

Make s u r e t h a t t h e g e n e r a t e d Java code c o n t a i n s r e s t o f

t h e methods from o r i g i n a l code t h a t were n o t

a s s o c i a t e d w i t h v u l n e r a b i l i t y r e p a i r i n g .

Keep i n mind t h a t t h e f i x e d Java f i l e must n o t c o n t a i n

e n t r y p o i n t method as i t i s p a r t o f e x i s t i n g p r o j e c t .

" " " ,

b a c k s t o r y = " " "

You are a s o f t w a r e a g e n t w i t h long e x p e r i e n c e t h a t i s

s p e c i a l i z e d i n Java programming language .

" " "

)

c o d e _ i n t e g r i t y _ t a s k = Task (

a g e n t = c o d e _ i n t e g r i t y _ a g e n t ,

d e s c r i p t i o n = " " "

Add a l l methods t h a t were n o t a s s o c i a t e d w i t h t h e

v u l n e r a b i l i t y from t h e o r i g i n a l Java code t o t h e

g e n e r a t e d end r e s u l t Java code .

Goal o f t h i s i s t o e n s u r e t h a t t h e g e n e r a t e d Java f i l e

f i t s i n t o e x i s t i n g p r o j e c t p e r f e c t l y and c o m p i l e s

w i t h o u t prob lems .

O r i g i n a l Java code i s f o l l o w i n g : { v u l n e r a b l e _ j a v a _ c o d e }

" " " ,

e x p e c t e d _ o u t p u t = " " "

F ixed v u l n e r a b i l i t y − f r e e Java code t h a t i s as s i m i l a r t o

t h e o f f i c i a l v u l n e r a b l e Java code c o n t a i n i n g a l l

methods t h a t are n o t v u l n e r a b l e .

" " "

)

82



Appendix 7 – System and User Message of A Single Prompt
SystemMessage ( " " "

You are a s e n i o r Java d e v e l o p e r w i t h c y b e r s e c u r i t y

background .

Your goa l i s t o f i x t h e p r o v i d e d Java code w i t h o u t m o d i f y i n g

t h e code t h a t i s n o t r e l a t e d t o t h e v u l n e r a b i l i t y .

" " " )

UserMessage ( f " " "

Fix t h e f o l l o w i n g v u l n e r a b l e Java code w i t h o u t m o d i f y i n g

u n n e c c e s s a r y p a r t s o f i t .

S i n c e t h e Java f i l e i s p a r t o f a b i g g e r p r o j e c t , chang ing

i t s s t r u c t u r e can break t h e c o m p i l a t i o n p r o c e s s .

P r o v i d e t h e f i x e d Java code w i t h o u t v u l n e r a b i l i t i e s t h a t

c o m p i l e s .

The v u l n e r a b l e code c o n t a i n s a v u l n e r a b i l i t y w i t h a CVE code

o f { c v e _ i d } .

Here i s t h e v u l n e r a b l e Java code : { v u l n e r a b l e _ c o d e }

" " " )
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